17.12.18(M)~

[This question paper contains 8 printed pages]

Your Roll No.

Sl. No. of Q. Paper : 193

Unique Paper Code : 42171103

Name of the Course : B.Sc.(Prog.)

Name of the Paper : Atomic structure,

bonding, general organic chemistry and aliphatic hydrocarbons.

Semester :

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates:

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt any three questions from each Section. Use separate Answer booklet for each Section.

Section - A

1. (a) Write Schrodinger's wave equation and explain various terms involved in it. 2.5

P.T.O.

· (M) 8/1/1/-

193

	(b)	Explain as to why orbitals 1p, 2d or 3f are not possible?
	(c)	Draw the Molecular Orbital diagram for NO molecule.
	(d)	Plot radial probability distribution curves for 4s, 4p, 4d and 4f orbitals.
2.	(a)	What is the significance of ψ and ψ^2 ? Explain.
	(b)	Bond angles in CH ₄ , NH ₃ , and H ₂ O are different inspite of same hybridisation. Explain.
	(c)	Write the hybridization of the central atom and shape of the following molecules: PCl ₂ , ClF ₃ , SnCl ₂ 3
	(d)	Write the M.O. configuration of O_2^+ , O_2^- , O_2^- and O_2^{2-} and arrange them in increasing order of their bond length. 4.5
3.	(a)	Arrange the following compounds in the increasing order of their hardness: AgF, AgBr, AgCl 1.5
	(b)	Explain why He ₂ molecule does not exist?
	(c)	Write the expression of Born – Lande equation and explain the terms involved in it. 3
	(d)	Write short notes on:

- (i) Heisenberg's Uncertainty Principle
- (ii) Lattice Energy

kJmol-1

- (iii) Solvation Energy
- 4. (a) The observed dipole moment of HX molecule is 1.92 D and bond distance is 1.20Å. Calculate the % ionic character of the molecule, HX. (electronic charge e = 1.602 x 10⁻¹⁹ C).
 - (b) What are Eigen functions and Eigen values?
 - (c) Explain the stability of half filled and full filled orbitals.
 - (d) Calculate the heat of formation ΔH_f of MgF₂ from its elements using Born- Haber's cycle with the given data.
 Sublimation Energy of Mg, (S) = 146.4 kJmol⁻¹ Dissociation Energy of F₂, (D) = 158.9 kJmol⁻¹ Ionization Energy of Mg²⁺ (I) = 2184.0 kJmol⁻¹

kJmol⁻¹
Lattice Enthalpy of MgF₂ (U₀) = -2922.5

Electron Affinity of F(g) to F(E) = -334.7

3 P.T.O.

Section - B

- 5. (i) Differentiate between homolysis and heterolysis using suitable examples. 2.5
 - (ii) Explain why tert.-butyl carbocation is more stable than methyl carbocation.
 - (iii) Draw the energy diagram for the conformations of n-butane.
 - (iv) Draw all possible stereoisomers of 2, 3-Dibromobutane using Fischer projection. Identify the erythreo, threo and the meso forms. Comment on the optical activity of the meso form.
- 6 (a) Give the mechanism and product formed in the given reactions:

(i)
$$H_{3}C$$
 H $+ Br_{2}$ CCl_{4} $+ Br_{2}$

(ii)
$$H-C$$
 CH_3+H_2O H_2SO_4 H_2SO_4

(iii) CH CH_3 H' CH_3 H'

(b) Complete the following reactions:

3.5

(i)
$$H_3C$$
 CH_3 $(BH_3)_2$ A H_2O_2/OH B

7. (a) Give priority numbers to the groups attached and assign R/S configuration to the chiral centres in the given compounds: 5

(i)
$$H = \frac{CH_2CH_3}{1}NH_2$$

 CH_3

(iii)
$$H = \frac{CH_3}{I} C = CH$$

 $HC = CH_2$

(b) Describe Wurtz reaction.

- 1.5
- (c) Giving reason, write the major product formed in the following reactions: 6

8. (a) Giving priority numbers to the groups attached assign E/Z to the following geometrical isomers:

$$C_6H_5$$
 CH_3 H_3CO NH_2 H_3C H

- (b) Give stepwise synthesis of acetylene using 1, 2-dichloroethane. 1.5
- (c) Convert the following:

5

(i) to Sawhorse projection

(ii) to Fischer Projection

(iii) to Fischer Projection

