17.12.18(M)~ [This question paper contains 8 printed pages] Your Roll No. Sl. No. of Q. Paper : 193 Unique Paper Code : 42171103 Name of the Course : B.Sc.(Prog.) Name of the Paper : Atomic structure, bonding, general organic chemistry and aliphatic hydrocarbons. Semester : Time: 3 Hours Maximum Marks: 75 ## Instructions for Candidates: - (a) Write your Roll No. on the top immediately on receipt of this question paper. - (b) Attempt any three questions from each Section. Use separate Answer booklet for each Section. ### Section - A 1. (a) Write Schrodinger's wave equation and explain various terms involved in it. 2.5 P.T.O. · (M) 8/1/1/- 193 | | (b) | Explain as to why orbitals 1p, 2d or 3f are not possible? | |----|-----|--| | | (c) | Draw the Molecular Orbital diagram for NO molecule. | | | (d) | Plot radial probability distribution curves for 4s, 4p, 4d and 4f orbitals. | | 2. | (a) | What is the significance of ψ and ψ^2 ? Explain. | | | (b) | Bond angles in CH ₄ , NH ₃ , and H ₂ O are different inspite of same hybridisation. Explain. | | | (c) | Write the hybridization of the central atom and shape of the following molecules: PCl ₂ , ClF ₃ , SnCl ₂ 3 | | | (d) | Write the M.O. configuration of O_2^+ , O_2^- , O_2^- and O_2^{2-} and arrange them in increasing order of their bond length. 4.5 | | 3. | (a) | Arrange the following compounds in the increasing order of their hardness: AgF, AgBr, AgCl 1.5 | | | (b) | Explain why He ₂ molecule does not exist? | | | (c) | Write the expression of Born – Lande equation and explain the terms involved in it. 3 | | | (d) | Write short notes on: | - (i) Heisenberg's Uncertainty Principle - (ii) Lattice Energy kJmol-1 - (iii) Solvation Energy - 4. (a) The observed dipole moment of HX molecule is 1.92 D and bond distance is 1.20Å. Calculate the % ionic character of the molecule, HX. (electronic charge e = 1.602 x 10⁻¹⁹ C). - (b) What are Eigen functions and Eigen values? - (c) Explain the stability of half filled and full filled orbitals. - (d) Calculate the heat of formation ΔH_f of MgF₂ from its elements using Born- Haber's cycle with the given data. Sublimation Energy of Mg, (S) = 146.4 kJmol⁻¹ Dissociation Energy of F₂, (D) = 158.9 kJmol⁻¹ Ionization Energy of Mg²⁺ (I) = 2184.0 kJmol⁻¹ kJmol⁻¹ Lattice Enthalpy of MgF₂ (U₀) = -2922.5 Electron Affinity of F(g) to F(E) = -334.7 3 P.T.O. #### Section - B - 5. (i) Differentiate between homolysis and heterolysis using suitable examples. 2.5 - (ii) Explain why tert.-butyl carbocation is more stable than methyl carbocation. - (iii) Draw the energy diagram for the conformations of n-butane. - (iv) Draw all possible stereoisomers of 2, 3-Dibromobutane using Fischer projection. Identify the erythreo, threo and the meso forms. Comment on the optical activity of the meso form. - 6 (a) Give the mechanism and product formed in the given reactions: (i) $$H_{3}C$$ H $+ Br_{2}$ CCl_{4} $+ Br_{2}$ (ii) $$H-C$$ CH_3+H_2O H_2SO_4 H_2SO_4 (iii) CH CH_3 H' CH_3 H' (b) Complete the following reactions: 3.5 (i) $$H_3C$$ CH_3 $(BH_3)_2$ A H_2O_2/OH B 7. (a) Give priority numbers to the groups attached and assign R/S configuration to the chiral centres in the given compounds: 5 (i) $$H = \frac{CH_2CH_3}{1}NH_2$$ CH_3 (iii) $$H = \frac{CH_3}{I} C = CH$$ $HC = CH_2$ (b) Describe Wurtz reaction. - 1.5 - (c) Giving reason, write the major product formed in the following reactions: 6 8. (a) Giving priority numbers to the groups attached assign E/Z to the following geometrical isomers: $$C_6H_5$$ CH_3 H_3CO NH_2 H_3C H - (b) Give stepwise synthesis of acetylene using 1, 2-dichloroethane. 1.5 - (c) Convert the following: 5 (i) to Sawhorse projection # (ii) to Fischer Projection # (iii) to Fischer Projection