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Unit- I
1. (a) Let G——-{[a a];aeR;aaﬁO}
a a

Show that G is a group under nﬁatrix
multiplication. 6
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(i) Let G be a group such thatifa, b,c €G
and ab = ca = b = c, then prove that G
is abelian. 3
(ii) Let H={x€|J(20):x = 1 mod3}.
List all elements of H.

Prove or disprove that H is a subgroup of
U (20). 3

Prove that the intersection of two subgroups of
a group is a subgroup but their union is not so.
6

Define cyclic group. Prove that every cyclic
group is Abelian. Is the converse true ?

Justify. 6
Give an example of a non cyclic group all of
whose proper subgroups are cyclic. 6
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(i) Write o and B as product of disjoint
cycles. 2
(ii) Find o (a. B) and o (™) 4

Let 'a' be an element of a finite group G.
Prove that a°@ = e. 6

2

(b)
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Consider the subgroup H = {1, 9} of group
G = U(20) under multiplication modulo 20.
Find the number of cosets of H in G and
determine all the distinct cosets of H in G.

6
Prove that the center Z (G) of a group G is a
normal subgroup of G. 6

Unit- II

Prove that a non empty subset S of a ring R
is a subring of R if and only if

a-besand abe Sy a,b 8S. 6.5

Prove that Ql:\ﬁ} = {a +bv2:a,be Q} isan
integral domain. 6.5

(i) Let z be the ring of integers and n be a
fixed integer.

Show thatl =<n>{nx:x e 7}is an ideal

of 7. 3.5

(ii) Give an example of a finite , non

commutative ring . 3
Unit- III

Determine whether or not the set

R R0 R 6 S T i T

R B o
is linearly independent over Z,. 6.5
3 P.T.O.
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(b) Define the liner span of a subset of a vector
space V (F) and prove that the linear span of
a set S is a subspace of V(F) containing S.

6.5
(c) Determine whether or not {(1, 3, 2), (2, 0,1),
(1, 1,1) } from a basis of R®. 6.5

6. (a) Matrix of a linear transformation T with
respect to basis {(1,2), (0,1)} of R’ is given

214
by 3 ol

Determine the linear transformation T.
‘ 6.5

(b) Let U and V be two finite dimensional vector
spaces over F. Let T from U to V be a linear
transformation. If {u,, R )
generates U then show that Range space of
T is generated by ,
LT Tl ) ,T(a )}

: 6.5

(c) Find the range, rank, kernel (Null space) and
nullity of T where linear transformation
T: R°— R’is defined by

T, y) = (v, x + 2y, x + y).
6.5
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