13.12.18 (M

This question paper contains 4+2 printed pages]

Roll No.		1				7.0	
			100				23-20

S. No. of Question Paper 40

Unique Paper Code 32171102

Name of the Paper

: Physical Chemistry-I

Name of the Course

B.Sc. (Hons.) Chemistry

Semester

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all.

Question No. 1 is compulsory.

Use of scientific calculator and log tables is allowed.

Physical constants : $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$, $N_A = 6.023 \times 10^{23}$ mol^{-1} , $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$.

1. Attempt any five of the following: 5×3=15

Explain why:

The end-centred bravais lattice is not possible for a cubic (a) unit cell ?

Hill in the talk was at encount. The talk

13.12.18 (.11)

(b)	The pH	of water	is not	7.0 at	t 60°C ?	Will	it remain
	neutral at	this temp	erature	?			

- (c) Irrespective of their nature, drops of all the liquids falling freely in air are spherical in shape?
- (d) Addition of KNO₃ increases the surface tension of water but addition of detergent decreases it?
- (e) CO and N₂ have the same speed distribution at the same temperature?
- (f) The viscosity of gas increases with temperature but that of liquid decreases with temperature?
- (g) The initial slope of the graph of compressibility factor,
 Z versus the pressure, p, at constant temperature is
 positive for some gases and negative for others?
- 2. (a) Write the mathematical expression for the Maxwell distribution of molecular speeds of a gas, explain briefly the terms involved. How does the change in temperature influence the distribution of molecular speeds?
 - (b) Calculate the temperature at which average velocity of SO_2 equals to that of O_2 at 20 K.

(c)	Derive	the	relations	using	van	der	Waals	gas
	equation	: P _c	$= a/27b^2$ a	nd T _c =	8a/2	7Rb.		4

- 3. (a) Explain the terms σ , λ , Z_1 and Z_{11} . Discuss the effect of temperature and pressure on these terms. 5
 - (b) Calculate λ , Z_1 and Z_{11} for oxygen at 298 K and 10^{-3} mmHg. Given $\sigma = 3.61 \times 10^{-8}$ cm.
 - (c) Write a note on continuity of state.
- 4. (a) Starting from the postulates of the kinetic theory of gases, derive the kinetic gas equation.
 - (b) Calculate the pressure exerted by 3.023×10^{23} molecules of CH₄ in 0.5 dm³ at 298 K using van der Waals equation. (Given: $a = 2.253 \text{ L}^2$ atm mol⁻², $b = 0.0428 \text{ L mol}^{-1}$ and R = 0.0821 L atm mol⁻¹ K⁻¹).
 - (c) What are the units of van der Waals constants a and b? Do these constants depend upon temperature of the gas?
- 5. (a) Define the surface tension of liquid. Describe drop number method for the determination of surface tension of a liquid.

- (b) With the given viscometer, the times of flow at 20°C for water and an unknown liquid (d = 1.22 g cm⁻³) were found to be 155 sec and 80 sec respectively. Calculate the absolute viscosity of the unknown liquid at 20°C if viscosity and density of water are 1.005 centipoise and 1 g cm⁻³ respectively.
- (c) What is capillary action? Derive: $\gamma = \pm \frac{1}{2}h\rho gr$, where the symbols have their usual meanings.
- 6. (a) What are the differences between crystalline and amorphous solids?
 - (b) When a certain crystal was studied by the Bragg's method using X-rays of wavelength 229 pm, first order X-ray reflection was observed at an angle of 23°20':
 - (i) What is corresponding inter-planar spacing?
 - (ii) When another X-ray source was used, a reflection was observed at 15°26'? What was the wavelength of these X-rays?

- (c) Give the Miller indices of the plane which intercepts the three crystallographic axes at the multiple of unit distance at:
 - (i) 3/2, 2, 1

(ii) 1/2, 2/3, ∞.

7. (a) Show that the concentration of H₃O⁺ in an aqueous solution of an acid HA can be computed from the expression:

$$K_{a} = \frac{\left[H_{3}O^{+}\right]^{3} - \left[H_{3}O^{+}\right]K_{w}}{\left[H_{3}O^{+}\right]\left[HA\right]_{0} - \left[H_{3}O^{+}\right]^{2} + K_{w}}$$

Under what conditions can the following expressions be used:

(i)
$$K_a = \frac{\left[H_3O^+\right]^2}{\left[HA\right]_0 - \left[H_3O^+\right]}$$

(ii)
$$K_a = \frac{\left[H_3O^+\right]^2}{\left[HA\right]_0}$$
.

(b) What is the pH of a solution containing 10^{-8} M hydronium ion and compare it with the pH value of 10^{-8} M HCl solution?

(c)	What is pH of a solution obtained by mixing 50 mL,							
	0.1 M CH ₃ COOH and 50 mL, 0.1 M NaOH. Given							
	$pK_a(CH_3COOH) = 4.74.$ 3							

- 8. (a) Show that the pH of an aqueous solution of salt formed from a weak acid and strong base is given by $pH = 7 + \frac{1}{2}(pK_a + \log c).$
 - (b) Define different types of buffer solutions. Derive Henderson-Hasselbalch equation for pH of acidic and basic buffer.
 - (c) What is the solubility of $Ag_2(CrO_4)$ in water if the value of solubility product is $K_{sp} = 1.3 \times 10^{-11} \text{ M}^3$?
 - 9. (a) What is an indicator and how does it work? 3
 - (b) Define solubility and solubility product. Determine solubility of $Mg(OH)_2$ in pure water and 0.01 M NaOH solution. K_{sp} of $Mg(OH)_2 = 1.2 \times 10^{-11} \text{ M}^3$.
 - (c) Will a precipitate form if 20 cm³ of 0.01 M AgNO₃ and 20 cm³ of 0.0004 M NaCl are mixed? Given K_{sp} of AgCl = 1.7 × 10⁻¹⁰ M².

6