7.12.18 (M)

This	question	paper	contains	4	printed	pages]
1 1115	question					

per conta		3-1				- 1
Roll No.						

S. No. of Question Paper : 39

Unique Paper Code : 32171101

: Inorganic Chemistry—I

Name of the Paper : Inorganic Chemistry

Name of the Course : B.Sc. (H) Chemistry

Name of the Course : B.Sc. (H) Chemistry

Semester : 1

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all.

Question No. 1 is compulsory.

- 1. Explain any five of the following with suitable reason: 5×3
 - (a) Which is more covalent: NaCl or Nal.?
 - (b) Which has the greater bond dissociation energy: $O_2 \text{ or } O_2^+$?
 - (c) All the three N-O bonds in NO₃ are equal.
 - (d) Shape of dz^2 orbital is different from other d-orbitals.
 - (e) BeCl₂ has zero dipole moment while H₂S has some value.
 - Which has greater melting point: o-nitrophenol or p-nitrophenol?

(M)8/SI.4

- 2. (a) Calculate the lattice energy of MgO (in kJmol⁻¹): Given: A = 1.7475; $r (Mg^{2+}) = 0.65 \text{ Å}; r (O^{2-}) = 1.40 \text{ Å};$ $n = 7; e = 4.8 \times 10^{-10} \text{ e.s.u.}; N = 6.02 \times 10^{23}.$
 - (b) Define resonance energy and draw the resonating structures of NO₃⁻ and N₃⁻.
 - (c) Are 5g and 6h sub-shells possible? Give reasons. If they are possible, show how many orbitals can be present in each sub-shells?
- (a) Give Allred and Rochow's scale of electronegativity.
 Calculate the electronegativity of silicon atom using this scale. The covalent radius of Si atom is 1.175 Å.
 - (b) What are isoelectronic ions? How effective nuclear charge affects the radii of isoelectronic ions: N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺?
 - (c) The dipole moment of LiH is 1.964×10^{-29} Cm and bond length for LiH is 1.596 Å. What is the percent ionic character in LiH? (Charge on one electron = 1.6×10^{-19} C).
- 4. (a) How do you arrive at Schrodinger wave equation for H-atom starting with simple sine wave equation?
 - (b) Using Slater's rule, calculate Z* for :
 - (i) 3d
 - (ii) 4s electron in Co atom (Z = 27).

(c) Explain the shapes of the following molecules/ions according to VSEPR theory:

- 5. (a) Draw the MO energy level diagram for N₂⁺. Discuss its bond order and magnetic behaviour. Why is the bond order in N₂⁺ less than in N₂ molecule ?
 - (b) What are the four special properties which an acceptable wave function must have? Why these restrictions are reasonable?
 - (c) Using Pauling's method, calculate the radii of Na⁺ and F⁻ ions. The observed internuclear distance in NaF crystal is 213 pm. 4,4,4
- 6. (a) Taking Z-axis as nuclear axis, explain whether the following orbitals will overlap to form molecular orbitals or not?
 - (i) $s + p_x$
 - (ii) $p_x + d_{xy}$
 - (iii) $p_y + d_{x^2 y^2}.$

(4)

- (b) Calculate the limiting radius ratio for the ionic compound when the coordination number of the cation is 4.
- (c) What is a radial distribution function? Draw this function for 1s, 2p and 3s orbitals.

 4,4,4
- 7. (a) Draw the Born-Haber cycle for the formation of CaCl₂ and explain the various terms involved.
 - (b) State Pauli's exclusion principle. Using this principle, calculate the number of electrons in L shell.
 - (c) Define electronegativity. How the electronegativity varies with s-character in different hybridisation of organic compounds?

 4,4,4
- 8. Write short notes on any three of the following:
 - (i) Bent's Rule
 - (ii) Band theory of metallic bonding
 - (iii) Hund's rule of maximum multiplicity
 - (iv) Polarisation and polarisabilty.

3×4