This question paper contains 4 printed pages]	
	Roll No.
S. No. of Question Paper: 89	
Unique Paper	Code : 32351102
Name of the Paper : Algebra	
Name of the Course : B.Sc. (Hons.) Mathematics	
Semester	
Duration : 3 Hours Maximum Marks : 75	
(Write your Roll No. on the top immediately on receipt of this question paper.)	
Attempt any two parts from each question.	
	All questions are compulsory.
1. (a)	Find polar representation of the complex number: 6
	$z = \sin a + i(1 + \cos a), a \in [0, 2\pi).$
(b)	Find $ z $ and arg z, arg $(-z)$ for :
	(i) $z = (1 - i) (6 + 6i)$
	(ii) $z = (7 - 7\sqrt{3}i)(-1 - i)$.
(c)	Solve the equation:
	$z^4 = 5(z-1)(z^2-z+1).$
2 (a)	For $a, b \in \mathbb{Z}$, define $a \sim b$ iff $a^2 - b^2$ is divisible
	by 3:
	(i) Prove that ~ is an equivalence relation on Z.
	(ii) Find the equivalence classes of 0 and 1.
(b)	Define:

Is f one-to-one? (i)

 $f: \mathbf{Z} \to \mathbf{Z}$ by $f(x) = x^2 - 5x + 5$

(ii) Is f onto?

Justify each answer.

13-12-18 (M)

- (c) Show that the open intervals (0, 1) and (4, 6) have the same cardinality.
- 3. (a) Suppose a, b and c are three non-zero integers with a and c relatively prime. Show that : 6 gcd(a, bc) = gcd(a, b).

 $4x \equiv 2 \pmod{6}$.

- (b) (i) Solve the following congruence if possible. If no solution exists, explain why not:
 - (ii) Find three positive and three negative integers in 5 w.r.t. congruence mod 7.
- (c) Use mathematical induction to establish the following inequality:

 $n! > n^3$, for all $n \ge 6$.

4. (a) Find the general solution to the following linear system: 6½

$$3x_2 - 6x_3 + 6x_4 + 4x_5 = -5$$
$$3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9$$
$$3x_1 - 9x_2 + 12x_3 - 9x_4 + 6x_5 = 15.$$

(b) Let
$$u = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$$
 and $A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$.

Is u in the subspace of \mathbb{R}^3 spanned by the columns of A. Why or why not ? $6\frac{1}{2}$

- (c) Let: $v_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, v_3 = \begin{bmatrix} 5 \\ -7 \\ b \end{bmatrix}.$
 - (i) For what values of h is v_3 in span $\{v_1, v_2\}$?
 - (ii) For what values of h is $\{v_1, v_2, v_3\}$ linearly dependent? Justify each answer. $6\frac{1}{2}$
- 5. (a) Let $A = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 5 & 1 \\ 3 & 6 & 0 \end{bmatrix}$, and define by $T : R^3 \to R^3$ by

T(x) = Ax. Find all x in R^3 such that T(x) = 0. Does

$$b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
 belong to range of T ? 6½

- (b) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the x_1 -axis and then reflects points through the x_2 -axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation? $6\frac{1}{2}$
- (c) Let

$$A = \begin{bmatrix} 2 & -3 & -4 \\ -8 & 8 & 6 \\ 6 & -7 & -7 \end{bmatrix} \text{ and } u = \begin{bmatrix} 6 \\ -10 \\ 11 \end{bmatrix}.$$

Is u in Nul A? Is u in Col A? Justify each answer.

- 6. (a) Given $b_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $b_2 = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$ and $B = \{b_1, b_2\}$ is basis of subspace H of \mathbb{R}^2 .
 - (i) Determine if $x = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$ belongs to H.
 - (ii) Find $[x]_B$, the B-coordinate vector of x. $6\frac{1}{2}$
 - (b) Determine the basis of the null space of the following matrix:

$$A = \begin{bmatrix} 1 & 2 & -5 & 0 & -1 \\ 2 & 5 & -8 & 4 & 3 \\ -3 & -9 & 9 & -7 & -2 \\ 3 & 10 & -7 & 11 & 7 \end{bmatrix}.$$
 6½

(c) Is
$$\lambda = -2$$
 an eigenvalue of $\begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$.

If so, find one corresponding eigenvector. 61/2