15.12.18

This question paper contains 4+2 printed pages]

Roll No.						100				
----------	--	--	--	--	--	-----	--	--	--	--

S. No. of Question Paper : 36

Unique Paper Code : 32161303

Name of the Paper : Genetics

Name of the Course : B.Sc. (H) Botany

Semester III

Duration: 3 Hours Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

- Define the following (any five): (a) $5 \times 1 = 5$
 - (i) Pseudoallele -
 - Plaque (ii)
 - Alkylating Agents (iii)
 - (iv) Hemizygous
 - (v) Polygenic Inheritance
 - (vi) Test Cross.

Expand the following (any four): 4×1=4 NCO (ii) SCA MMS (iv) QTL. (v) State any one important contribution of the following (c) scientists (any five): 5×1=5 H. G. Muller C. Stern Reginald Punnet Lucien Cuenot * Carl Correns Sutton and Boveri. Answer the following (any five): 5×1=5 (d)

Write down the term used for depicting the degree

of expression in an organism having a particular

genotype.

		(3)
	(ii)	What does an arrow signify in a pedigree
		analysis ?
	(iii)	What would be the phenotypic ratio when two
		non-allelic genes controlling a single trait interac
		in an additive manner ?
	(iv)	What is the chemical nature of H substance ?
	(v)	What is the probability of obtaining a child with
		blood group O+ from parents with blood group O+
		and AB+ ?
000	(vi)	Write down the chromosomal formula for a double
		monosomic individual.
)	Differ	rentiate between (any three): 3×4=12
	(i) ·	Dominance and Epistasis
	(ii)	Euploidy and Aneuploidy
	(iii)	Multiple Alleles and Polygenes
	(iv)	Allopatric and sympatric speciation.
)		down the chromosomal formulae for : $2 \times 1 = 2$
	(i)	Turner's Syndrome

Edward's Syndrome.

P.T.O.

3.	(a)	Write short notes on any two: 2×5=10
		(i) Hardy Weinberg's Law
		(ii) rII locus in bacteriophage T4
	anudu	(iii) Genetic mechanism of leaf variegation in Four o'clock plant.
	(b)	An allele W, for white wool is dominant over allele w for
	effect to	black wool. In a sample of 900 sheep, 891 are white and
		9 are black. Calculate allelic frequencies within this
		population, assuming, the given population is in Hardy-
		Weinberg equilibrium. 4
4.	(a)	Elaborate ClB method for detecting mutations. 7
	(b)	Using a forked line method list the genotypes for the
		following dihybrid crosses: 7
		DdGg × DdGg
		D/d Plant height (Tall and Dwarf)
		G/g Seed color (Yellow and Green)
5.	(a)	How has polyploidy contributed towards evolution of
		agriculture crops ? Elaborate with any two suitable
		examples. 10

	(3)		30
	(b) Describe criss-cross inheri	tance giving a	suitable
	example.		4
6.	(a) Explain the experiment that pro	ovided cytologica	l proof o
	crossing over.		8
	(b) Discuss base excision repa	air mechanism	of DNA
	damage repair.		6
7.	Ebony body colour (e), rough eyes	(ro), brevis bris	stles (bv)
	are three recessive mutations in fr	uit flies. A wild	type fly
	(e+ ro+ bv+), was crossed with trip	le mutant fly (e r	o bv). F ₁
	progeny were heterozygous and they	were crossed wit	h mutant
	homozygous recessive males. The re-	esults of the test	cross are
	as follows:		
	Wild type	e+ ro+ bv+	625
	Ebony, rough eyes, brevis bristles	e ro bv	634
	Ebony	e ro+ bv+	165
	Rough eyes, brevis bristles	e+ ro bv	158
	Brevis bristles	e+ ro+ bv	93
	Ebony, rough eyes	e ro bv+	91
	Rough eyes	e+ ro bv+	5
	Ebony, brevis bristles	e ro+ bv	4

(6)

36

(a)	Are the above genes linked? Give reasons for your
	answer.
(b)	Diagram the crosses giving the genotype of parents
	and F_1 .
(c)	What is the order of the genes?
(d)	Calculate the map distance between the genes and
	construct the linkage map.
(e)	Calculate the coefficient of coincidence. 2
()	Calculate the interference and comment on its
	significance. 2

6