
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITY OF MUMBAI 

 

Teacher’s Reference Manual 

Subject: Internet of Things 

 

with effect from the academic year  

2018 – 2019  

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 2 

 
 

2 Displaying Time over 4-Digit 7-Segment Display using Raspberry Pi. 

 Let us see how, how we can connect this 4-digit 7-segment module with our Raspberry 

Pi. The 7-segment module has 16 pins as shown below. You module might have lesser, 

but don’t worry it will still have the following for sure 

1. 7 or 8 segment pins (here pins starting from 1 to 8) 

2. Ground pin (here pin 11) 

3. 4 digit pins (here pins 13 to 16) 

 

The following table will also help you in making the connections and verifying it 

to be as per the schematics shown above. 

S.No Rsp Pi GPIO 

number 

Rsp Pi PIN 

number 

7-Segment 

name 
7-Seg pin number (here 

in this module) 

1 GPIO 26 PIN 37 Segment a 1 

2 GPIO 19 PIN 35 Segment b 2 

3 GPIO 13 PIN 33 Segment c 3 

4 GPIO 6 PIN 31 Segment d 4 

5 GPIO 5 PIN 29 Segment e 5 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 3 

 
 

6 GPIO 11 PIN 23 Segment f 6 

7 GPIO 9 PIN 21 Segment g 7 

8 GPIO 10 PIN 19 Segment DP 8 

9 GPIO 7 PIN 26 Digit 1 13 

10 GPIO 8 PIN 24 Digit 2 14 

11 GPIO 25 PIN 22 Digit 3 15 

12 GPIO 24 PIN 18 Digit 4 16 

13 Ground Ground Ground 11 

 

Programming your Raspberry Pi: 

First we are going to import GPIO file from library, below function enables us to 

program GPIO pins of PI. We are also renaming “GPIO” to “IO”, so in the program 

whenever we want to refer to GPIO pins we will use the word ‘IO’. We have also 

imported time and datetime to read the value of time from Rsp Pi. 

import RPi.GPIO as GPIO 

import time, datetime 

Sometimes, when the GPIO pins, which we are trying to use, might be doing some other 

functions. In that case, we will receive warnings while executing the program. Below 

command tells the PI to ignore the warnings and proceed with the program. 

IO.setwarnings(False) 

We can refer the GPIO pins of PI, either by pin number on board or by their function 

number. Like ‘PIN 29’ on the board is ‘GPIO5’. So we tell here either we are going to 

represent the pin here by ‘29’ or ‘5’. GPIO.BCM means we will represent using 5 for 

GPIO5 pin 29. 

IO.setmode (GPIO.BCM) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 4 

 
 

As always we should begin by initialising the pins, here both the segment pins and the 

digit pins are output pins. For programming purpose we form arrays for segment pins 

and initialize them to ‘0’ after declaring them as GPIO.OUT 

segment8 = (26,19,13,6,5,11,9,10) 

for segment in segment8: 

    GPIO.setup(segment, GPIO.OUT) 

    GPIO.output(segment, 0) 

Similarly for the digit pins we declare them as output pins and make them ‘0’ by default 

#Digit 1 

    GPIO.setup(7, GPIO.OUT) 

    GPIO.output(7, 0) #Off initially 

    #Digit 2 

    GPIO.setup(8, GPIO.OUT) 

    GPIO.output(8, 0) #Off initially 

    #Digit 3 

    GPIO.setup(25, GPIO.OUT) 

    GPIO.output(25, 0) #Off initially 

    #Digit 4 

    GPIO.setup(24, GPIO.OUT) 

    GPIO.output(24, 0) #Off initially 

We have to form arrays to display each number on a seven segment display. To 

display one number we have to control all 7 segment pins (dot pin excluded), that is they 

either has to be turned off or turned on. For example to display the number 5 we have 

make the following arrangement 

S.No Rsp Pi GPIO 

number 

7-Segment 

name 
Status to display ‘5’. 

(0-> OFF, 1->ON) 

1 GPIO 26 Segment a 1 

2 GPIO 19 Segment b 1 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 5 

 
 

3 GPIO 13 Segment c 0 

4 GPIO 6 Segment d 1 

5 GPIO 5 Segment e 1 

6 GPIO 11 Segment f 0 

7 GPIO 9 Segment g 1 

Similarly we have sequence number for all numbers and alphabets. You can write on 

your own or use the chart below. 

 

 

With these data we can form the arrays for each number in our python program as shown 

below. 

null = [0,0,0,0,0,0,0] 

zero = [1,1,1,1,1,1,0] 

one = [0,1,1,0,0,0,0] 

two = [1,1,0,1,1,0,1] 

three = [1,1,1,1,0,0,1] 

four = [0,1,1,0,0,1,1] 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 6 

 
 

five = [1,0,1,1,0,1,1] 

six = [1,0,1,1,1,1,1] 

seven = [1,1,1,0,0,0,0] 

eight = [1,1,1,1,1,1,1] 

nine = [1,1,1,1,0,1,1] 

  

If you follow the program there will be a function to display each character to our 7-

segment display but, lets skip this for now and get into the while infinite loop. 

Where read the present time from Raspberry Pi and split the value of time between 

four variables. For example if the time is 10.45 then the variable h1 will have 1, h2 will 

have 0, m1 will have 4vand m2 will have 5. 

    now = datetime.datetime.now() 

    hour = now.hour 

    minute = now.minute 

    h1 = hour/10 

    h2 = hour % 10 

    m1 = minute /10 

    m2 = minute % 10 

    print (h1,h2,m1,m2) 

  

We have to display these four variable values on our four digits respectively. To write a 

value of variable to a digit we can use the following lines. Here we are display on digit 

1 by making it go high then the function print_segment (variable) will be called to 

display the value in variable on the segment display. You might be wondering why we 

have a delay after that and why we turn this digit off after this. 

GPIO.output(7, 1) #Turn on Digit One 

print_segment (h1) #Print h1 on segment 

time.sleep(delay_time) 

GPIO.output(7, 0) #Turn off Digit One 

  

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 7 

 
 

The reason is, as we know we can display only one digit at a time, but we have four 

digits to be displayed and only if all the four digits are displayed the complete four digit 

number will be visible for the user. 

The last thing to learn it to know how the print_segment(variable) function works. 

Inside this function we use the arrays that we have declared so far. So whatever variable 

that we send to this function should have the value between (0-9), the variable character 

will receive this value and compare it for real value. Here the variable is compared with 

‘1’. Similarly we compare with all number from 0 to 9. If it is a match we use the arrays 

and assign each value to its respective segment pins as shown below. 

def print_segment(charactor): 

    if charactor == 1: 

        for i in range(7): 

            GPIO.output(segment8[i], one[i]) 

Display time on 4-Digit 7-segment using Raspberry Pi: 

Use the schematic and code given here to make the connections and program your 

raspberry pi accordingly. After everything is done just launch the program and you 

should find the current time being displayed in the seven segment display. But, there are 

few things that you have to check before this 

1. Make sure you have set your Raspberry Pi with current time just in case if it running 

on offline time. 

2. Power your Raspberry pi with a Adapter and not with your Laptop/computer 

because the amount of current drawn by the 7-segment display is high and your 

USB port cannot source it. 

Code:  

import RPi.GPIO as GPIO 

import time, datetime 

now = datetime.datetime.now() 

GPIO.setmode(GPIO.BCM) 

GPIO.setwarnings(False) 

  

 #GPIO ports for the 7seg pins 

segment8 =  (26,19,13,6,5,11,9,10) 

  

for segment in segment8: 

    GPIO.setup(segment, GPIO.OUT) 

    GPIO.output(segment, 0) 

  

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 8 

 
 

    #Digit 1 

    GPIO.setup(7, GPIO.OUT) 

    GPIO.output(7, 0) #Off initially 

    #Digit 2 

    GPIO.setup(8, GPIO.OUT) 

    GPIO.output(8, 0) #Off initially 

    #Digit 3 

    GPIO.setup(25, GPIO.OUT) 

    GPIO.output(25, 0) #Off initially 

    #Digit 4 

    GPIO.setup(24, GPIO.OUT) 

    GPIO.output(24, 0) #Off initially 

null = [0,0,0,0,0,0,0] 

zero = [1,1,1,1,1,1,0] 

one = [0,1,1,0,0,0,0] 

two = [1,1,0,1,1,0,1] 

three = [1,1,1,1,0,0,1] 

four = [0,1,1,0,0,1,1] 

five = [1,0,1,1,0,1,1] 

six = [1,0,1,1,1,1,1] 

seven = [1,1,1,0,0,0,0] 

eight = [1,1,1,1,1,1,1] 

nine = [1,1,1,1,0,1,1] 

def print_segment(charector): 

    if charector == 1: 

        for i in range(7): 

            GPIO.output(segment8[i], one[i]) 

    if charector == 2: 

        for i in range(7): 

            GPIO.output(segment8[i], two[i]) 

    if charector == 3: 

        for i in range(7): 

            GPIO.output(segment8[i], three[i]) 

    if charector == 4: 

        for i in range(7): 

            GPIO.output(segment8[i], four[i]) 

    if charector == 5: 

        for i in range(7): 

            GPIO.output(segment8[i], five[i]) 

    if charector == 6: 

        for i in range(7): 

            GPIO.output(segment8[i], six[i]) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 9 

 
 

    if charector == 7: 

        for i in range(7): 

            GPIO.output(segment8[i], seven[i]) 

    if charector == 8: 

        for i in range(7): 

            GPIO.output(segment8[i], eight[i]) 

    if charector == 9: 

        for i in range(7): 

            GPIO.output(segment8[i], nine[i]) 

    if charector == 0: 

        for i in range(7): 

            GPIO.output(segment8[i], zero[i])         

             

    return; 

while 1: 

    now = datetime.datetime.now() 

    hour = now.hour 

    minute = now.minute 

    h1 = hour/10 

    h2 = hour % 10 

    m1 = minute /10 

    m2 = minute % 10 

    print (h1,h2,m1,m2) 

   

    delay_time = 0.001 #delay to create virtual effect 

     

     

    GPIO.output(7, 1) #Turn on Digit One 

    print_segment (h1) #Print h1 on segment 

    time.sleep(delay_time) 

    GPIO.output(7, 0) #Turn off Digit One 

    GPIO.output(8, 1) #Turn on Digit One 

    print_segment (h2) #Print h1 on segment 

    GPIO.output(10, 1) #Display point On 

    time.sleep(delay_time) 

    GPIO.output(10, 0) #Display point Off 

    GPIO.output(8, 0) #Turn off Digit One 

    GPIO.output(25, 1) #Turn on Digit One 

    print_segment (m1) #Print h1 on segment 

    time.sleep(delay_time) 

    GPIO.output(25, 0) #Turn off Digit One 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 10 

 
 

    GPIO.output(24, 1) #Turn on Digit One 

    print_segment (m2) #Print h1 on segment 

    time.sleep(delay_time) 

    GPIO.output(24, 0) #Turn off Digit One 

  

    #time.sleep(1) 

     

3 Raspberry Pi Based Oscilloscope 

 
Project Requirements 

The requirement for this project can be classified into two: 

1. Hardware Requirements 

2. Software Requirements 

Hardware requirements 

To build this project, the following components/part are required; 

1. Raspberry pi 2 (or any other model) 

2. 8 or 16GB SD Card 

3. LAN/Ethernet Cable 

4. Power Supply or USB cable 

5. ADS1115 ADC 

6. LDR (Optional as its meant for test) 

7. 10k or 1k resistor 

8. Jumper wires 

9. Breadboard 

10. Monitor or any other way of seeing the pi’s Desktop(VNC inclusive) 

Software Requirements 

The software requirements for this project are basically the python modules (matplotlib 

and drawnow) that will be used for data visualization and the Adafruit module for 

interfacing with the ADS1115 ADC chip. I will show how to install these modules on 

the Raspberry Pi as we proceed. 

While this tutorial will work irrespective of the raspberry pi OS used, I will be using the 

Raspberry Pi stretch OS and I will assume you are familiar with setting up the Raspberry 

Pi with the Raspbian stretch OS, and you know how to SSH into the raspberry pi using 

a terminal software like putty. If you have issues with any of this, there are tons 

of Raspberry Pi Tutorials on this website that can help. 

With all the hardware components in place, let's create the schematics and connect the 

components together. 

  

m
unotes.in

http://circuitdigest.com/microcontroller-projects/getting-started-with-raspberry-pi
http://circuitdigest.com/microcontroller-projects/getting-started-with-raspberry-pi
https://circuitdigest.com/simple-raspberry-pi-projects-for-beginners


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 11 

 
 

Circuit Diagram: 

To convert the analog input signals to digital signals which can be visualized with the 

Raspberry Pi, we will be using the ADS1115 ADC chip. This chip becomes important 

because the Raspberry Pi, unlike Arduino and most micro-controllers, does not have an 

on-board analog to digital converter(ADC). While we could have used any raspberry pi 

compatible ADC chip, I prefer this chip due to its high resolution(16bits) and its well 

documented datasheet and use instructions by Adafruit. You can also check 

our Raspberry Pi ADC tutorial to learn more about it. 

 

 

 

 

ADS1115 and Raspberry Pi Connections: 

VDD – 3.3v 

GND – GND 

SDA – SDA 

SCL – SCL 

With the connections all done, power up your pi and proceed to install the dependencies 

mentioned below. 

Install Dependencies for Raspberry Pi Oscilloscope: 

Before we start writing the python script to pull data from the ADC and plot it on a live 

graph, we need to enable the I2C communication interface of the raspberry pi and 

install the software requirements that were mentioned earlier. This will be done in below 

steps so its easy to follow: 

Step 1: Enable Raspberry Pi I2C interface 

To enable the I2C, from the terminal, run; 

m
unotes.in

https://circuitdigest.com/microcontroller-projects/raspberry-pi-adc-tutorial


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 12 

 
 

sudo raspi-config 

When the configuration panels open, select interface options, select I2C and click enable. 

  

Step 2: Update the Raspberry pi 

The first thing I do before starting any project is updating the Pi. Through this, I am sure 

every thing on the OS is up to date and I won’t experience compatibility issue with any 

latest software I choose to install on the Pi. To do this, run below two commands: 

sudo apt-get update 

sudo apt-get upgrade 

  

Step 3: Install the Adafruit ADS1115 library for ADC 

With the update done, we are now ready to install the dependencies starting with the 

Adafruit python module for the ADS115 chip. Ensure you are in the Raspberry Pi home 

directory by running; 

cd ~ 

then install the build-essentials by running;                                         

sudo apt-get install build-essential python-dev python-smbus git 

Next, clone the Adafruit git folder for the library by running; 

git clone https://github.com/adafruit/Adafruit_Python_ADS1x15.git 

Change into the cloned file’s directory and run the setup file; 

cd Adafruit_Python_ADS1x1z  

sudo python setup.py install 

After installation, your screen should look like the image below. 

 

m
unotes.in

https://github.com/adafruit/Adafruit_Python_ADS1x15.git


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 13 

 
 

 

Step 4: Test the library and 12C communication. 

Before we proceed with the rest of the project, it is important to test the library and 

ensure the ADC can communicate with the raspberry pi over I2C. To do this we will use 

an example script that comes with the library. 

While still in the Adafruit_Python_ADS1x15 folder, change directory to the examples 

directory by running; 

cd examples 

Next, run the sampletest.py example which displays the value of the four channels on 

the ADC in a tabular form. 

Run the example using: 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 14 

 
 

python simpletest.py 

If the I2C module is enabled and connections good, you should see the data as shown in 

the image below. 

 

If an error occurs, check to ensure the ADC is well connected to the PI and I2C 

communication is enabled on the Pi. 

  

Step 5: Install Matplotlib 

To visualize the data we need to install the matplotlib module which is used to plot all 

kind of graphs in python. This can be done by running; 

sudo apt-get install python-matplotlib 

You should see an outcome like the image below. 

m
unotes.in

mailto:I@C


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 15 

 
 

 

  

Step6: Install the Drawnow python module 

Lastly, we need to install the drawnow python module. This module helps us provide 

live updates to the data plot. 

We will be installing drawnow via the python package installer; pip, so we need to 

ensure it is installed.  This can be done by running; 

sudo apt-get install python-pip 

We can then use pip to install the drawnow package by running: 

sudo pip install drawnow 

You should get an outcome like the image below after running it. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 16 

 
 

 

With all the dependencies installed, we are now ready to write the code. 

Python Code for Raspberry Pi Oscilloscope: 

 The python code for this Pi Oscilloscope is fairly simple especially if you are familiar 

with the python matplotlib module. Before showing us the whole code, I will try to break 

it into part and explain what each part of the code is doing so you can have enough 

knowledge to extend the code to do more stuffs. 

At this stage it is important to switch to a monitor or use the VNC viewer, anything 

through which you can see your Raspberry Pi’s desktop, as the graph being plotted won’t 

show on the terminal. 

  

With the monitor as the interface open a new python file. You can call it any name you 

want, but I will call it scope.py. 

sudo nano scope.py 

With the file created, the first thing we do is import the modules we will be using; 

import time 

import matplotlib.pyplot as plt 

from drawnow import * 

import Adafruit_ADS1x15 

  

Next, we create an instance of the ADS1x15 library specifying the ADS1115 ADC 

adc = Adafruit_ADS1x15.ADS1115() 

  

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 17 

 
 

Next, we set the gain of the ADC. There are different ranges of gain and should be 

chosen based on the voltage you are expecting at the input of the ADC. For this tutorial, 

we are estimating a 0 – 4.09v so we will be using a gain of 1. For more info on gain you 

can check the ADS1015/ADS1115 datasheet. 

GAIN = 1 

  

Next, we need to create the array variables that will be used to store the data to be plotted 

and another one to serve as count. 

Val = [ ] 

cnt = 0 

  

Next, we make know our intentions of making the plot interactive known so as to enable 

us plot the data live. 

plt.ion() 

  

Next, we start continuous ADC conversion specifying the ADC channel, in this case, 

channel 0 and we also specify the gain. 

It should be noted that all the four ADC channels on the ADS1115 can be read at the 

same time, but 1 channel is enough for this demonstration. 

adc.start_adc(0, gain=GAIN) 

  

Next we create a function def makeFig, to create and set the attributes of the 

graph which will hold our live plot. We first of all set the limits of the y-axis using ylim, 

after which we input the title of the plot, and the label name before we specify the data 

that will be plotted and its plot style and color using plt.plot(). We can also state the 

channel (as channel 0 was stated) so we can identify each signal when the four channels 

of the ADC are being used.  plt.legend is used to specify where we want the information 

about that signal(e.g Channel 0) displayed on the figure. 

 plt.ylim(-5000,5000) 

 plt.title('Osciloscope') 

 plt.grid(True) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 18 

 
 

 plt.ylabel('ADC outputs') 

 plt.plot(val, 'ro-', label='lux') 

 plt.legend(loc='lower right') 

  

Next we write the while loop which will be used constantly read data from the ADC and 

update the plot accordingly. 

The first thing we do is read the ADC conversion value 

value = adc.get_last_result() 

Next we print the value on the terminal just to give us another way of confirming the 

plotted data. We wait a few seconds after printing then we append the data to the list 

(val) created to store the data for that channel. 

print('Channel 0: {0}'.format(value)) 

time.sleep(0.5) 

val.append(int(value)) 

  

We then call drawnow to update the plot. 

drawnow(makeFig) 

  

To ensure the latest data is what is available on the plot, we delete the data at index 0 

after every 50 data counts. 

cnt = cnt+1 

if(cnt>50): 

val.pop(0) 

That’s all! 

The complete Python code is given at the end of this tutorial. 

  

Raspberry Pi Oscilloscope in Action: 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 19 

 
 

Copy the complete python code and paste in the python file we created earlier, remember 

we will need a monitor to view the plot so all of this should be done by either VNC or 

with a connected monitor or screen. 

Save the code and run using; 

sudo python scope.py 

If you used a different name other than scope.py, don’t forget to change this to match. 

After a few minutes, you should see the ADC data being printed on the terminal. 

Occasionally you may get a warning from matplotlib (as shown in the image below) 

which should be suppressed but it doesn’t affect the data being displayed or the plot in 

anyway. To suppress the warning however, the following lines of code can be added 

after the import lines in our code. 

Import warnings 

import matplotlib.cbook 

warnings.filterwarnings(“ignore”, category=matplotlib.cbook.mplDeprecation) 

 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 20 

 
 

 

 

Code:  

import time 

import matplotlib.pyplot as plt 

#import numpy 

from drawnow import * 

# Import the ADS1x15 module. 

import Adafruit_ADS1x15 

# Create an ADS1115 ADC (16-bit) instance. 

adc = Adafruit_ADS1x15.ADS1115() 

GAIN = 1 

val = [ ] 

cnt = 0 

plt.ion() 

# Start continuous ADC conversions on channel 0 using the previous gain value. 

adc.start_adc(0, gain=GAIN) 

print('Reading ADS1x15 channel 0') 

#create the figure function 

def makeFig(): 

    plt.ylim(-5000,5000) 

    plt.title('Osciloscope') 

    plt.grid(True) 

    plt.ylabel('ADC outputs') 

    plt.plot(val, 'ro-', label='Channel 0') 

    plt.legend(loc='lower right') 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 21 

 
 

while (True): 

    # Read the last ADC conversion value and print it out. 

    value = adc.get_last_result() 

    print('Channel 0: {0}'.format(value)) 

    # Sleep for half a second. 

    time.sleep(0.5) 

    val.append(int(value)) 

    drawnow(makeFig) 

    plt.pause(.000001) 

    cnt = cnt+1 

    if(cnt>50): 

        val.pop(0) 

 

4 Controlling Raspberry Pi with WhatsApp. 

 Step 1: Installation 

Update the packages with 

sudo apt-get update 

sudo apt-get upgrade 

Update firmware 

sudo rpi-update 

Prepare the system with the necessary components to Yowsup 

sudo apt-get install python-dateutil 

sudo apt-get install python-setuptools 

sudo apt-get install python-dev 

sudo apt-get install libevent-dev 

sudo apt-get install ncurses-dev 

Download the library with the command 

git clone git://github.com/tgalal/yowsup.git 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 22 

 
 

navigate to the folder 

cd yowsup 

and install the library with the command 

sudo python setup.py install 

Step 2: Registration 

After installing the library we have to register the device to use WhatsApp. Yowsup 

comes with a cross platform command-line frontend called yowsup-cli. It provides you 

with the options of registration, and provides a few demos such as a command line client. 

WhatsApp registration involves 2 steps. First you need to request a registration code. 

And then you resume the registration with code you got. 

Request a code with command 

python yowsup-cli registration --requestcode sms --phone 39xxxxxxxxxx --cc 39 --mcc 2

22 --mnc 10 

Replace with your data , 

cc is your country code in this example 39 is for Italy, 

mcc is Mobile Country Code  

mnc is Mobile Network Code  

You should receive on your phone a sms message with a code like xxx-xxx 

Send a message to request registration with this command, (replace xxx-xxx with code 

you received) 

python yowsup-cli registration --register xxx-xxx --phone 39xxxxxxxxxx --cc 39 

If all goes well, we should get a message like this 

status: ok 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 23 

 
 

  kind: free 

  pw: xxxxxxxxxxxxxxxxxx= 

  price: € 0,89 

  price_expiration: 1416553637 

  currency: EUR 

  cost: 0.89 

  expiration: 1445241022 

  login: 39xxxxxxxxxxx 

  type: existing 

Warning 

WhatsApp requires the registration of a number, and with that number you can use 

WhatsApp on only one device at a time, so it is preferable to use a new number. 

WhatsApp can be used on one device at a time and if you will make many attempts to 

register the number, it could be banned. We recommend you using Telegram. 

Step 3: Utilization 

Create a file to save your credentials 

sudo nano /home/pi/yowsup/config 

with this content 

## Actual config starts below ## 

  cc=39 #if not specified it will be autodetected 

  phone=39xxxxxxxxxx 

  password=xxxxxxxxxxxxxxx= 

Ok, we're ready for the test, Yowsup has a demo application in 

/home/pi/yowsup/yowsup/demos 

Navigate to yowsup folder 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 24 

 
 

cd /home/pi/yowsup 

Start yowsup-cli demos with the command 

yowsup-cli demos --yowsup --config config 

You can see Yowsup prompt 

If type "/help" you can see all available commands 

First use the '/L' command for login; to send a message type 

/message send 39xxxxxxxxxx "This is a message sent from Raspberry Pi" 

replace xxx with the recipient number 

If you respond with a message it will be displayed on Raspberry. 

5 Setting up Wireless Access Point using Raspberry Pi 

 
Required Components: 

The following components will be needed to set up a raspberry pi as a wireless access 

point: 

1. Raspberry Pi 2 

2. 8GB SD card 

3. WiFi USB dongle 

4. Ethernet cable 

5. Power supply for the Pi. 

6. Monitor (optional) 

7. Keyboard (optional) 

8. Mouse (optional) 

Steps for Setting up Raspberry Pi as Wireless Access Point: 

Step 1: Update the Pi 

As usual, we update the raspberry pi to ensure we have the latest version of everything. 

This is done using; 

sudo apt-get update 

m
unotes.in

https://circuitdigest.com/microcontroller-projects/setting-up-wireless-access-point-using-raspberry-pi


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 25 

 
 

followed by; 

sudo apt-get upgrade 

With the update done, reboot your pi to effect changes. 

  

Step 2: Install “dnsmasq” and “hostapd” 

Next, we install the software that makes it possible to setup the pi as a wireless access 

point and also the software that helps assign network address to devices that connect to 

the AP. We do this by running; 

sudo apt-get install dnsmasq 

followed by; 

sudo apt-get install hostapd 

or you could combine it by running; 

sudo apt-get install dnsmasq hostapd 

  

Step 3: Stop the software from Running 

Since we don’t have the software configured yet there is no point running it, so we 

disable them from running in the underground. To do this we run the following 

commands to stop the systemd operation. 

sudo systemctl stop dnsmasq 

sudo systemctl stop hostapd 

  

Step 4: Configure a Static IP address for the wireless Port 

Confirm the wlan port on which the wireless device being used is connected. For my Pi, 

the wireless is on wlan0. Setting up the Raspberry Pi to act as a server requires us to 

assign a static IP address to the wireless port. This can be done by editing 

the dhcpcd config file. To edit the configuration file, run; 

sudo nano /etc/dhcpcd.conf 

Scroll to the bottom of the config file and add the following lines. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 26 

 
 

interface wlan0 

static ip_address=192.168.1.200/24 #machine ip address 

 After adding the lines, the config file should look like the image below. 

 

Note: This IP address can be changed to suit your preferred configuration. 

Save the file and exit using; ctrl+x followed by Y 

  

Restart the dhcpcd service to effect the changes made to the configuration using; 

sudo service dhcpcd restart 

  

Step 5: Configure the dhcpcd server 

With a static IP address now configured for the Raspberry Pi wlan, the next thing is for 

us to configure the dhcpcd server and provide it with the range of IP addresses to be 

assigned to devices that connect to the wireless access point. To do this, we need to 

edit the configuration file of the dnsmasq software but the config file of the software 

contains way too much info and a lot could go wrong If not properly edited, so instead 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 27 

 
 

of editing, we will be creating a new config file with just the amount of information that 

is needed to make the wireless access point fully functional. 

Before creating the new config file, we keep the old on safe by moving and renaming it. 

sudo mv /etc/dnsmasq.conf  /etc/dnsmasq.conf.old 

Then launch the editor to create a new configuration file; 

sudo nano /etc/dnsmasq.conf 

with the editor launched, copy the lines below and paste in or type directly into it. 

interface = wlan0  #indicate the communication interface which is usually wlan0 for wire

less 

dhcp-range = 192.168.1.201, 192.168.1.220, 255.255.255.0,24h #start addr(other than ma

chine ip assigned above), end addr, subnet mask, mask 

the content of the file should look like the image below. 

 

Save the file and exit. The content of this config file is just to specify the range of IP 

address that can be assigned to devices connected to the wireless access point. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 28 

 
 

With this done, we will be able to give an identity to devices on our network. 

The next set of steps will help us configure the access point host software, setup the ssid, 

select the encrytpion etc. 

  

Step 6: Configure hostapd for SSID and Password 

We need to edit the hostapd config file(run sudo nano /etc/hostapd/hostapd.conf) to 

add the various parameters for the wireless network being setup including the ssid and 

password. Its should be noted that the password (passphrase) should be between 8 and 

64 characters. Anything lesser won’t work. 

interface=wlan0 

driver=nl80211 

ssid=piNetwork   

hw_mode=g 

channel=7 

wmm_enabled=0 

macaddr_acl=0 

auth_algs=1 

ignore_broadcast_ssid=0 

wpa=2 

wpa_passphrase=mumbai123 # use a very secure password and not this 

wpa_key_mgmt=WPA-PSK 

wpa_pairwise=TKIP 

rsn_pairwise=CCMP 

  

The content of the file should look like the image below. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 29 

 
 

 

Feel free to change the ssid and password to suit your needs and desire. 

Save the config file and exit. 

  

After the config file has been saved, we need to point the hostapd software to where the 

config file has been saved. To do this, run; 

sudo nano /etc/default/hostapd 

find the line with daemon_conf commented out as shown in the image below. 

 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 30 

 
 

 

Uncomment the DAEMON_CONF line and add the line below in between the quotes in 

front of the “equal to” sign. 

/etc/hostapd/hostapd.conf 

  

Step 7: Fire it up 

Since we disabled the two software initially, to allow us configure them properly, we 

need to restart the system after configuration to effect the changes. 

Use; 

sudo systemctl start hostapd 

sudo systemctl start dnsmasq 

  

Step 8: Routing and masquerade for outbound traffic 

We need to add routing and masquerade for outbound traffic. 

To do this, we need to edit the config file of the systemctl by running: 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 31 

 
 

sudo nano /etc/sysctl.conf 

Uncomment this line net.ipv4.ip_forward=1(highlighted in the image below) 

 

Save the config file and exit using ctrl+x followed by y. 

Next we move to masquerading the outbound traffic. This can be done by making some 

changes to the iptable rule. To do this, run the following commands: 

sudo iptables -t nat -A  POSTROUTING -o eth0 -j MASQUERADE 

then save the Iptables rule using: 

sudo sh -c "iptables-save > /etc/iptables.ipv4.nat" 

  

Step 9: Create Wireless Access Point on startup: 

For most wireless access point application, it is often desired that the access point comes 

up as soon as the system boots. To implement this on the raspberry pi, one of the easiest 

ways is to add instructions to run the software in the rc.local file so we put commands 

to install the iptable rules on boot in the rc.local file. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 32 

 
 

To edit the rc.local file, run: 

sudo nano /etc/rc.local 

and add the following lines at the bottom of the system, just before the exit 0 statement 

iptables-restore < /etc/iptables.ipv4.nat 

  

Step 9: Reboot! and Use 

At this stage, we need to reboot the system to effect all the changes and test the wireless 

access point starting up on boot with the iptables rule updated. 

Reboot the system using: 

sudo reboot 

As soon as the system comes back on, you should be able to access the wireless access 

point using any Wi-Fi enabled device and the password used during the setup. 

Accessing the Internet from the Raspberry Pi’s Wi-Fi Hotspot 

To implement this, we need to put a “bridge” in between the wireless device and the 

Ethernet device on the Raspberry Pi (the wireless access point) to pass all traffic between 

the two interfaces. To set this up, we will use the bridge-utils software. 

Install hostapd and bridge-utils. While we have installedhostapd before, run the 

installation again to clear all doubts. 

sudo apt-get install hostapd bridge-utils 

Next, we stop hostapd so as to configure the software. 

sudo systemctl stop hostapd 

  

When a bridge is created, a higher level construct is created over the two ports being 

bridged and the bridge thus becomes the network device. To prevent conflicts, we need 

to stop the allocation of IP addresses by the DHCP client running on the Raspberry Pi to 

the eth0 and wlan0 ports. This will be done by editing the config file of the dhcpcd client 

to include denyinterfaces wlan0 and denyinterfaces eth0 as shown in the image below. 

The file can be edited by running the command; 

sudo nano /etc/dhcpcd.conf 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 33 

 
 

 

Note: From this point on, ensure you don’t disconnect the Ethernet cable from your 

PC if you are running in headless mode as you may not be able to connect via SSH 

again since we have disabled the Ethernet port. If working with a monitor, you have 

nothing to fear. 

 Next, we create a new bridge called br0 

sudo brctl addbr br0 

Next, we connect the ethernet port (eth0) to the bridge (br0) using; 

sudo brctl addif br0 eth0 

(Note: if eth0 doesn’t exists use ifconfig command to list all Ethernet adapters and use th

e name from list)  

Next, we edit the interfaces file using sudo nano /etc/network/interfaces so various 

devices can work with the bridge. Edit the interfaces file to include the information 

below; 

#Bridge setup 

auto br0 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 34 

 
 

iface br0 inet manual 

bridge_ports eth0 wlan0 

  

Lastly we edit the hostapd.conf file to include the bridge configuration. This can be done 

by running the command: sudo nano /etc/hostapd/hostapd.conf  and editing the file to 

contain the information below. Note the bridge was added below the wlan0 interface and 

the driver line was commented out. 

interface=wlan0 

bridge=br0 

ssid=piNetwork 

hw_mode=g 

channel=7 

wmm_enabled=0 

macaddr_acl=0 

auth_algs=1 

ignore_broadcast_ssid=0 

wpa=2 

wpa_passphrase=mcctest1 

wpa_key_mgmt=WPA-PSK 

wpa_pairwise=TKIP 

rsn_pairwise=CCMP 

With this done, save the config file and exit. 

To effect the changes made to the Raspberry Pi, reboot the system. Once it comes back 

up, you should now be able to access the internet by connecting to the Wireless 

access point created by the Raspberry Pi. This of course will only work if internet 

access is available to the pi via the Ethernet port. 

 

 6 
Fingerprint Sensor interfacing with Raspberry Pi 

 
Finger Print Sensor, which we used to see in Sci-Fi moives few years back, is now 

become very common to verify the identity of a person for various purposes. In present 

time we can see fingerprint-based systems everywhere in our daily life like for attendance 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 35 

 
 

in offices,  employee verification in banks, for cash withdrawal or deposits in ATMs, for 

identity verification in government offices etc. We have already interfaced it with Arduino, 

today we are going to interface FingerPrint Sensor with Raspberry Pi. Using this 

Raspberry Pi FingerPrint System, we can enroll new finger prints in the system and can 

delete the already fed finger prints. Complete working of the system has been shown in 

the Video given at the end of article. 

Required Components: 

1. Raspberry Pi 

2. USB to Serial converter 

3. Fingerprint Module 

4. Push buttons 

5. 16x2 LCD 

6. 10k pot 

7. Bread Board or PCB (ordered from JLCPCB) 

8. Jumper wires 

9. LED (optional) 

10. Resistor 150 ohm -1 k ohm (optional) 

 Circuit Diagram and Explanation: 

In this Raspberry Pi Finger Print sensor interfacing project, we have used a 4 push 

buttons: one for enrolling the new finger pring, one for deleting the already fed finger 

prints and rest two for increment/decrement the position of already fed Finger prints. 

A LED is used for indication that fingerprint sensor is ready to take finger for matching. 

Here we have used a fingerprint module which works on UART. So here we have 

interfaced this fingerprint module with Raspberry Pi using a USB to Serial converter. 

 

So, first of all, we need to make the all the required connection as shown in Circuit 

Diagram below. Connections are simple, we have just connected fingerprint module to 

Raspberry Pi USB port by using USB to Serial converter. A 16x2 LCD is used for 

displaying all messages. A 10k pot is also used with LCD for controlling the contrast of 

the same. 16x2 LCD pins RS, EN, d4, d5, d6, and d7 are connected with GPIO Pin 18, 

23, 24, 25, 8 and 7 of Raspberry Pi respectively. Four push buttons are connected to 

GPIO Pin 5, 6, 13 and 19 of Raspberry Pi. LED is also connected at pin 26 of RPI. 

 

m
unotes.in

https://circuitdigest.com/microcontroller-projects/fingerprint-attendance-system-using-arduino-uno
https://circuitdigest.com/article/16x2-lcd-display-module-pinout-datasheet


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 36 

 
 

 

Installing Library for Finger Print Sensor: 

After making all the connections we need to power up Raspberry Pi and get it ready 

with  terminal open. Now we need to install fingerprint library for Raspberry Pi in 

python language by following the below steps. 

Step 1: To install this library, root privileges are required. So first we enter in root by 

given command: 

sudo bash 

Step 2: Then download some required packages by using given commands: 

wget –O – http://apt.pm-codeworks.de/pm-codeworks.de.gpg | apt-key add – 

wget http://apt.pm-codeworks.de/pm-codeworks.list -P /etc/apt/sources.list.d/ 

m
unotes.in

http://apt.pm-codeworks.de/pm-codeworks.de.gpg
http://apt.pm-codeworks.de/pm-codeworks.list%20-P%20/etc/apt/sources.list.d/


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 37 

 
 

 

  

Step 3: After this, we need to update the Raspberry pi and install the downloaded 

finger print sensor library: 

sudo apt-get update 

sudo apt-get install python-fingerprint –yes 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 38 

 
 

 

  

Step 4: After installing library now we need to check USB port on which your finger 

print sensor is connected, by using given the command: 

ls /dev/ttyUSB* 

Now replace the USB port no., with the USB port you got over the screen and replace it 

in the python code. Complete Python code is given at the end of this project. 

 Operation of Fingerprint Sensor with Raspberry Pi: 

Operation of this project is simple, just run the python code and there will be some intro 

messages over LCD and then user will be asked to Place Finger on Finger Print Sensor. 

Now by putting a finger over fingerprint module, we can check whether our finger prints 

are already stored or not. If your fingerprint is stored then LCD will show the message 

with the storing position of fingerprint like ‘Fount at Pos:2’ otherwise it will show ‘No 

Match Found’. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 39 

 
 

 

Now to enroll a finger Print, user needs to press enroll button and follow the 

instructions messages on LCD screen. 

If the user wants to delete any of fingerprints then the user needs to press delete 

button. After which, LCD will ask for the position of the fingerprint which is to be 

deleted. Now by using another two push button for increment and decrement, user can 

select the position of saved Finger Print and press enroll button (at this time enroll 

button behave as Ok button) to delete that fingerprint. For more understanding have a 

look at the video given at the end of the project. 

 

  

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 40 

 
 

Python Programming: 

Python for interfacing Finger Print Sensor with RPi is easy with using fingerprint 

library functions. But if the user wants to interface it himself, then it will be little bit 

difficult for the first time. In finger print sensor datasheets, everything is given that is 

required for interfacing the same module. A GitHub code is available to test your 

Raspberry pi with Finger Print sensor. 

Here we have used the library so we just need to call library function. In code, first we 

need to import libraries like fingerprint, GPIO and time, then we need to define pins for 

LCD, LED and push buttons. 

import time 

from pyfingerprint.pyfingerprint import PyFingerprint 

import RPi.GPIO as gpio 

 

RS =18 

EN =23 

D4 =24 

D5 =25 

D6 =8 

D7 =7 

 

enrol=5 

delet=6 

inc=13 

dec=19 

led=26 

 

HIGH=1 

LOW=0 

  

After this, we need to initialize and give direction to the selected pins 

m
unotes.in

https://github.com/bastianraschke/pyfingerprint


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 41 

 
 

gpio.setwarnings(False) 

gpio.setmode(gpio.BCM) 

gpio.setup(RS, gpio.OUT) 

gpio.setup(EN, gpio.OUT) 

gpio.setup(D4, gpio.OUT) 

gpio.setup(D5, gpio.OUT) 

gpio.setup(D6, gpio.OUT) 

gpio.setup(D7, gpio.OUT) 

 

gpio.setup(enrol, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(delet, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(inc, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(dec, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(led, gpio.OUT) 

  

Now we have initialized fingerprint Sensor 

try: 

    f = PyFingerprint('/dev/ttyUSB0', 57600, 0xFFFFFFFF, 0x00000000) 

    if ( f.verifyPassword() == False ): 

        raise ValueError('The given fingerprint sensor password is wrong!') 

except Exception as e: 

    print('Exception message: ' + str(e)) 

    exit(1) 

  

We have written some function to initialize and drive the LCD, check the complete code 

below in code section: 

def begin(), def lcdcmd(ch), def lcdwrite(ch), def lcdprint(Str), def setCursor(x,y) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 42 

 
 

  

After writing all LCD driver functions, we have placed functions for fingerprint 

enrolling, searching and deleting. 

def enrollFinger() function is used for enrol or save the new finger prints. 

def searchFinger() function is used to searthc the already stored finger prints 

def deleteFinger() functinos is used to deoted the already saved finger print by pressing 

the correspontind push button. 

All above function’s Code is given the in python code given below. 

  

After this, finally, we need to initialize system by in while 1 loop by asking to Place 

Finger on finger print sensor and then system will check whether this finger print it valid 

or not and display the results accordingly. 

begin() 

lcdcmd(0x01) 

lcdprint("FingerPrint ") 

lcdcmd(0xc0) 

lcdprint("Interfacing ") 

time.sleep(3) 

lcdcmd(0x01) 

lcdprint("Circuit Digest") 

lcdcmd(0xc0) 

lcdprint("Welcomes You  ") 

time.sleep(3) 

flag=0 

lcdclear() 

 

while 1: 

    gpio.output(led, HIGH) 

    lcdcmd(1) 

    lcdprint("Place Finger") 

    if gpio.input(enrol) == 0: 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 43 

 
 

        gpio.output(led, LOW) 

        enrollFinger() 

    elif gpio.input(delet) == 0: 

        gpio.output(led, LOW) 

        while gpio.input(delet) == 0: 

            time.sleep(0.1) 

        deleteFinger() 

    else: 

        searchFinger() 

  

Complete Python Code is given below. 

Code:  

import time 

from pyfingerprint.pyfingerprint import PyFingerprint 

import RPi.GPIO as gpio 

RS =18 

EN =23 

D4 =24 

D5 =25 

D6 =8 

D7 =7 

enrol=5 

delet=6 

inc=13 

dec=19 

led=26 

HIGH=1 

LOW=0 

gpio.setwarnings(False) 

gpio.setmode(gpio.BCM) 

gpio.setup(RS, gpio.OUT) 

gpio.setup(EN, gpio.OUT) 

gpio.setup(D4, gpio.OUT) 

gpio.setup(D5, gpio.OUT) 

gpio.setup(D6, gpio.OUT) 

gpio.setup(D7, gpio.OUT) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 44 

 
 

gpio.setup(enrol, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(delet, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(inc, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(dec, gpio.IN, pull_up_down=gpio.PUD_UP) 

gpio.setup(led, gpio.OUT) 

try: 

    f = PyFingerprint('/dev/ttyUSB0', 57600, 0xFFFFFFFF, 0x00000000) 

    if ( f.verifyPassword() == False ): 

        raise ValueError('The given fingerprint sensor password is wrong!') 

except Exception as e: 

    print('Exception message: ' + str(e)) 

    exit(1) 

def begin(): 

  lcdcmd(0x33)  

  lcdcmd(0x32)  

  lcdcmd(0x06) 

  lcdcmd(0x0C)  

  lcdcmd(0x28)  

  lcdcmd(0x01)  

  time.sleep(0.0005) 

  

def lcdcmd(ch):  

  gpio.output(RS, 0) 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x10==0x10: 

    gpio.output(D4, 1) 

  if ch&0x20==0x20: 

    gpio.output(D5, 1) 

  if ch&0x40==0x40: 

    gpio.output(D6, 1) 

  if ch&0x80==0x80: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

  # Low bits 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x01==0x01: 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 45 

 
 

    gpio.output(D4, 1) 

  if ch&0x02==0x02: 

    gpio.output(D5, 1) 

  if ch&0x04==0x04: 

    gpio.output(D6, 1) 

  if ch&0x08==0x08: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

   

def lcdwrite(ch):  

  gpio.output(RS, 1) 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x10==0x10: 

    gpio.output(D4, 1) 

  if ch&0x20==0x20: 

    gpio.output(D5, 1) 

  if ch&0x40==0x40: 

    gpio.output(D6, 1) 

  if ch&0x80==0x80: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

  # Low bits 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x01==0x01: 

    gpio.output(D4, 1) 

  if ch&0x02==0x02: 

    gpio.output(D5, 1) 

  if ch&0x04==0x04: 

    gpio.output(D6, 1) 

  if ch&0x08==0x08: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

def lcdclear(): 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 46 

 
 

  lcdcmd(0x01) 

  

def lcdprint(Str): 

  l=0; 

  l=len(Str) 

  for i in range(l): 

    lcdwrite(ord(Str[i])) 

     

def setCursor(x,y): 

    if y == 0: 

        n=128+x 

    elif y == 1: 

        n=192+x 

    lcdcmd(n) 

def enrollFinger(): 

    lcdcmd(1) 

    lcdprint("Enrolling Finger") 

    time.sleep(2) 

    print('Waiting for finger...') 

    lcdcmd(1) 

    lcdprint("Place Finger") 

    while ( f.readImage() == False ): 

        pass 

    f.convertImage(0x01) 

    result = f.searchTemplate() 

    positionNumber = result[0] 

    if ( positionNumber >= 0 ): 

        print('Template already exists at position #' + str(positionNumber)) 

        lcdcmd(1) 

        lcdprint("Finger ALready") 

        lcdcmd(192) 

        lcdprint("   Exists     ") 

        time.sleep(2) 

        return 

    print('Remove finger...') 

    lcdcmd(1) 

    lcdprint("Remove Finger") 

    time.sleep(2) 

    print('Waiting for same finger again...') 

    lcdcmd(1) 

    lcdprint("Place Finger") 

    lcdcmd(192) 

    lcdprint("   Again    ") 

    while ( f.readImage() == False ): 

        pass 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 47 

 
 

    f.convertImage(0x02) 

    if ( f.compareCharacteristics() == 0 ): 

        print "Fingers do not match" 

        lcdcmd(1) 

        lcdprint("Finger Did not") 

        lcdcmd(192) 

        lcdprint("   Mactched   ") 

        time.sleep(2) 

        return 

    f.createTemplate() 

    positionNumber = f.storeTemplate() 

    print('Finger enrolled successfully!') 

    lcdcmd(1) 

    lcdprint("Stored at Pos:") 

    lcdprint(str(positionNumber)) 

    lcdcmd(192) 

    lcdprint("successfully") 

    print('New template position #' + str(positionNumber)) 

    time.sleep(2) 

def searchFinger(): 

    try: 

        print('Waiting for finger...') 

        while( f.readImage() == False ): 

            #pass 

            time.sleep(.5) 

            return 

        f.convertImage(0x01) 

        result = f.searchTemplate() 

        positionNumber = result[0] 

        accuracyScore = result[1] 

        if positionNumber == -1 : 

            print('No match found!') 

            lcdcmd(1) 

            lcdprint("No Match Found") 

            time.sleep(2) 

            return 

        else: 

            print('Found template at position #' + str(positionNumber)) 

            lcdcmd(1) 

            lcdprint("Found at Pos:") 

            lcdprint(str(positionNumber)) 

            time.sleep(2) 

    except Exception as e: 

        print('Operation failed!') 

        print('Exception message: ' + str(e)) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 48 

 
 

        exit(1) 

     

def deleteFinger(): 

    positionNumber = 0 

    count=0 

    lcdcmd(1) 

    lcdprint("Delete Finger") 

    lcdcmd(192) 

    lcdprint("Position: ") 

    lcdcmd(0xca) 

    lcdprint(str(count)) 

    while gpio.input(enrol) == True:   # here enrol key means ok 

        if gpio.input(inc) == False: 

            count=count+1 

            if count>1000: 

                count=1000 

            lcdcmd(0xca) 

            lcdprint(str(count)) 

            time.sleep(0.2) 

        elif gpio.input(dec) == False: 

            count=count-1 

            if count<0: 

                count=0 

            lcdcmd(0xca) 

            lcdprint(str(count)) 

            time.sleep(0.2) 

    positionNumber=count 

    if f.deleteTemplate(positionNumber) == True : 

        print('Template deleted!') 

        lcdcmd(1) 

        lcdprint("Finger Deleted"); 

        time.sleep(2) 

begin() 

lcdcmd(0x01) 

lcdprint("FingerPrint ") 

lcdcmd(0xc0) 

lcdprint("Interfacing ") 

time.sleep(3) 

lcdcmd(0x01) 

lcdprint("Circuit Digest") 

lcdcmd(0xc0) 

lcdprint("Welcomes You  ") 

time.sleep(3) 

flag=0 

lcdclear() 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 49 

 
 

while 1: 

    gpio.output(led, HIGH) 

    lcdcmd(1) 

    lcdprint("Place Finger") 

    if gpio.input(enrol) == 0: 

        gpio.output(led, LOW) 

        enrollFinger() 

    elif gpio.input(delet) == 0: 

        gpio.output(led, LOW) 

        while gpio.input(delet) == 0: 

            time.sleep(0.1) 

        deleteFinger() 

    else: 

        searchFinger() 

7 
Raspberry Pi GPS Module Interfacing. 

 
Required Components: 

1. Raspberry Pi 3 

2. Neo 6m v2 GPS Module 

3. 16 x 2 LCD 

4. Power source  for the Raspberry Pi 

5. LAN cable to connect the pi to your PC in headless mode 

6. Breadboard and Jumper cables 

7. Resistor / potentiometer to the LCD 

8. Memory card 8  or 16Gb running Raspbian Jessie 

GPS Module and Its Working: 

GPS stands for Global Positioning System and used to detect the Latitude and Longitude 

of any location on the Earth, with exact UTC time (Universal Time Coordinated). GPS 

module is the main component in our vehicle tracking system project. This device 

receives the coordinates from the satellite for each and every second, with time and date. 

  

GPS module sends the data related to tracking position in real time, and it sends so 

many data in NMEA format (see the screenshot below). NMEA format consist several 

sentences, in which we only need one sentence. This sentence starts from $GPGGA and 

contains the coordinates, time and other useful information. This GPGGA is referred 

to Global Positioning System Fix Data. Know more about Reading GPS data and its 

strings here. 

We can extract coordinate from $GPGGA string by counting the commas in the string. 

Suppose you find $GPGGA string and stores it in an array, then Latitude can be found 

m
unotes.in

http://circuitdigest.com/article/what-is-gps
http://circuitdigest.com/microcontroller-projects/reading-gps-data-using-computer-and-arduino
http://circuitdigest.com/microcontroller-projects/reading-gps-data-using-computer-and-arduino


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 50 

 
 

after two commas and Longitude can be found after four commas. Now these latitude 

and longitude can be put in other arrays. 

Identifier Description 

$GPGGA Global Positioning system fix data 

HHMMSS.SSS Time in hour minute seconds and 

milliseconds format. 

Latitude Latitude (Coordinate) 

N Direction N=North, S=South 

Longitude Longitude(Coordinate) 

E Direction E= East, W=West 

FQ Fix Quality Data 

NOS No. of Satellites being Used 

HPD Horizontal Dilution of Precision 

Altitude Altitude from sea level 

M Meter 

Height Height 

Checksum Checksum Data 

Preparing the Raspberry Pi to communicate with GPS: 

Step 1: Updating the Raspberry Pi: 

The first thing I like I like to do before starting every project is updating the raspberry 

pi. So lets do the usual and run the commands below; 

sudo apt-get update 

sudo apt-get upgrade 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 51 

 
 

then reboot the system with; 

sudo reboot 

  

Step 2: Setting up the UART in Raspberry Pi: 

The first thing we will do under this is to edit the  /boot/config.txt file. To do this, run 

the commands below: 

sudo nano /boot/config.txt 

at the bottom of the config.txt file, add the following lines 

dtparam=spi=on 

dtoverlay=pi3-disable-bt 

core_freq=250 

enable_uart=1 

force_turbo=1 

ctrl+x to exit and press y and enter to save. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 52 

 
 

 

Ensure there are no typos or errors by double checking as an error with this might prevent 

your pi from booting. 

What are the reasons for these commands, force_turbo enables UART to use the 

maximum core frequency which we are setting in this case to be 250. The reason for this 

is to ensure consistency and integrity of the serial data been received. Its important to 

note at this point that using force_turbo=1 will void the warranty of your raspberry pi, 

but asides that, its pretty safe. 

  

The dtoverlay=pi3-disable-bt disconnects the bluetooth from the ttyAMA0, this is to 

allow us access to use the full UART power available via ttyAMAO instead of the mini 

UART ttyS0. 

  

Second step under this UART setup section is to edit the boot/cmdline.txt 

I will suggest you make a copy of the cmdline.txt and save first before editing so you 

can revert back to it later if needed. This can be done using; 

sudo cp boot/cmdline.txt boot/cmdline_backup.txt 

sudo nano /boot.cmdline.txt 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 53 

 
 

  

Replace the content with; 

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=de

adline fsck.repair=yes rootwait quiet splash plymouth.ignore-serial-consoles 

Save and exit. 

With this done then we will need to reboot the system again to effect changes (sudo 

reboot). 

  

Step3: Disabling the Raspberry Pi Serial Getty Service 

The next step is to disable the Pi’s serial the getty service, the command will prevent it 

from starting again at reboot: 

sudo systemctl stop serial-getty@ttyS0.service 

sudo systemctl disable serial-getty@ttyS0.service 

  

The following commands can be used to enable it again if needed 

sudo systemctl enable serial-getty@ttyS0.service 

sudo systemctl start serial-getty@ttyS0.service 

Reboot the system. 

  

Step 4: Activating ttyAMAO: 

We have disabled the ttyS0, next thing is for us to enable the ttyAMAO. 

sudo systemctl enable serial-getty@ttyAMA0.service 

  

Step5: Install Minicom and pynmea2: 

We will be minicom to connect to the GPS module and make sense of the data. It is also 

one of the tools that we will use to test is our GPS module is working fine. An alternative 

to minicom is the daemon software GPSD. 

sudo apt-get install minicom 

m
unotes.in

mailto:serial-getty@ttyS0.service
mailto:serial-getty@ttyAMA0.service


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 54 

 
 

To easily parse the received data, we will make use of the pynmea2 library. It can be 

installed using; 

sudo pip install pynmea2 

Step 6: Installing the LCD Library: 

For this tutorial we will be using the AdaFruit library. The library was made for AdaFruit 

screens but also works  for display boards using HD44780. If your display is based on 

this then it should work without issues. 

I feel its better to clone the library and just install directly. To clone run; 

git clone https://github.com/adafruit/Adafruit_Python_CharLCD.git 

  

change into the cloned directory and install it 

cd ./Adafruit_Python_CharLCD 

sudo python setup.py install 

Connections for Raspberry Pi GPS module Interfacing: 

Connect the GPS Module and LCD to the Raspberry Pi as shown in the Circuit Diagram 

below. 

m
unotes.in

https://github.com/adafruit/Adafruit_Python_CharLCD.git


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 55 

 
 

 

 

m
unotes.in

https://circuitdigest.com/fullimage?i=circuitdiagram_mic/interfacing-GPS-module-with-Raspberry-pi-circuit-diagram.png


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 56 

 
 

Testing before Python Script: 

 Its important to test the GPS module connection before proceeding to the python script, 

We will employ minicom for this. Run the command: 

sudo minicom -D/dev/ttyAMA0 -b9600 

where 9600 represents the baud rate at which the GPS module communicates. This may 

be used for once we are sure of data communication between the GPS and the RPI, its 

time to write our python script. 

The test can also be done using cat 

sudo cat /dev/ttyAMA0 

 

In Window, you can see NMEA sentences which we have discussed earlier. 

 Code:  

  

import time 

import serial 

import string 

import pynmea2 

import RPi GPIO as gpio 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 57 

 
 

#to add the LCD library 

import Adafruit_CharLCD as LCD 

  

gpio.setmode(gpio.BCM) 

  

#declaring LCD pins 

lcd_rs = 17 

lcd_en = 18 

lcd_d4 = 27 

lcd_d5 = 22 

lcd_d6 = 23 

lcd_d7 = 10 

  

lcd_backlight = 2 

  

lcd_columns = 16 #Lcd column 

lcd_rows = 2 #number of LCD rows 

  

lcd = LCD.Adafruit_CharLCD(lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, 

lcd_d5, lcd_d6, lcd_d7, lcd_columns, lcd_rows, lcd_backlight) 

  

port = "/dev/ttyAMA0" # the serial port to which the pi is connected. 

  

#create a serial object 

ser = serial.Serial(port, baudrate = 9600, timeout = 0.5) 

  

while 1: 

    try: 

        data = ser.readline() 

    except: 

print("loading")  

#wait for the serial port to churn out data 

  

    if data[0:6] == '$GPGGA': # the long and lat data are always contained in the GPGGA 

string of the NMEA data 

  

        msg = pynmea2.parse(data) 

  

#parse the latitude and print 

        latval = msg.lat 

concatlat = "lat:" + str(latval) 

        print concatlat 

lcd.set_cursor(0,0) 

lcd.message(concatlat) 

  

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 58 

 
 

#parse the longitude and print 

longval = msg.lon 

concatlong = "long:"+ str(longval) 

print concatlong 

lcd.set_cursor(0,1) 

lcd.message(concatlong) 

            

    time.sleep(0.5)#wait a little before picking the next data. 

8 
IoT based Web Controlled Home Automation using Raspberry Pi 

 
Required Components: 

For this project, the requirements will fall under two categories, Hardware and Software: 

I. Hardware Requirements: 

1. Raspberry Pi 3 (Any other Version will be nice) 

2. Memory card 8 or 16GB running Raspbian Jessie 

3. 5v Relays 

4. 2n222 transistors 

5. Diodes 

6. Jumper Wires 

7. Connection Blocks 

8. LEDs to test. 

9. AC lamp to Test 

10. Breadboard and jumper cables 

11. 220 or 100 ohms resistor 

II. Software Requirements: 

Asides the Raspbian Jessie operating system running on the raspberry pi, we will also 

be using the WebIOPi frame work, notepad++ running on your PC and filezila to copy 

files from the PC to the raspberry pi, especially the web app files. 

Also you dont need to code in Python for this Home Automation Project, 

WebIOPi will do all the work. 

m
unotes.in

https://circuitdigest.com/microcontroller-projects/iot-raspberry-pi-home-automation


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 59 

 
 

 

Preparing the Raspberry Pi: 

To update the raspberry Pi below commands and then reboot the RPi; 

sudo apt-get update 

sudo apt-get upgrade 

sudo reboot 

  

With this done, the next thing is for us to install the webIOPi framework. 

Make sure you are in home directory using; 

cd ~ 

  

Use wget to get the file from their sourceforge page; 

wget http://sourceforge.net/projects/webiopi/files/WebIOPi-0.7.1.tar.gz 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 60 

 
 

  

When download is done, extract the file and go into the directory; 

tar xvzf WebIOPi-0.7.1.tar.gz 

cd WebIOPi-0.7.1/ 

  

At this point before running the setup, we need to install a patch as this version of the 

WebIOPidoes not work with the raspberry pi 3 which I am using and I couldn’t find a 

version of the WebIOPi that works expressly with the Pi 3. 

Below commands are used to install patch while still in the WebIOPi directory, run; 

wget https://raw.githubusercontent.com/doublebind/raspi/master/webiopi-pi2bplus.patch 

patch -p1 -i webiopi-pi2bplus.patch 

  

Then we can run the setup installation for the WebIOPi using; 

sudo ./setup.sh 

Keep saying yes if asked to install any dependencies during setup installation. When 

done, reboot your pi; 

sudo reboot 

Test WebIOPi Installation: 

Before jumping in to schematics and codes, With the Raspberry Pi back on, we will need 

to test our WebIOPi installation to be sure everything works fine as desired. 

Run the command; 

sudo webiopi -d -c /etc/webiopi/config 

  

After issuing the command above on the pi, point the web browser of your computer 

connected to the raspberry pi to http://raspberrypi.mshome.net:8000 or 

http;//thepi’sIPaddress:8000. The system will prompt you for username and password. 

Username is webiopi 

m
unotes.in

http://raspberrypi.mshome.net:8000/
http://raspberrypi.mshome.net:8000/


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 61 

 
 

Password is raspberry 

This login can be removed later if desired but even your home automation system 

deserves some extra level of security to prevent just anyone with the IP controlling 

appliances and IOT devices in your home. 

  

After the login, look around, and then click on the GPIO header link. 

 

  

For this test, we will be connecting an LED to GPIO 17, so go on and set GPIO 17 as an 

output. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 62 

 
 

 

  

With this done, connect the led to your raspberry pi as shown in the schematics below. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 63 

 
 

 

After the connection, go back to the webpage and click the pin 11 button to turn on or 

off the LED. This way we can control the Raspberry Pi GPIO using WebIOPi. 

  

After the test, if everything worked as described, then we can go back to the terminal 

and stop the program with CTRL + C. If you have any issue with this setup, then hit me 

up via the comment section. 

Building the Web Application for Raspberry Pi Home Automation: 

Here we will be editing the default configuration of the WebIOPi service and add our 

own code to be run when called. The first thing we will do is get filezilla or anyother 

FTP/SCP copy software installed on our PC. You will agree with me that coding on the 

pi via the terminal is quite stressful, so filezilla or any other SCP software will come in 

handy at this stage. Before we start writing the html, css and java script codes for 

this IoT Home automation Web application and moving them to the Raspberry Pi, lets 

create the project folder where all our web files will be. 

  

Make sure you are in home directory using, then create the folder, go into the created 

folder and create html folder in the directory: 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 64 

 
 

cd ~ 

mkdir webapp 

cd webapp 

mkdir html 

  

Create a folder for scripts, CSS and images inside the html folder 

mkdir html/css 

mkdir html/img 

mkdir html/scripts 

 

With our files created lets move to writing the codes on our PC and from then move to 

the Pi via filezilla. 

  

The JavaScript Code: 

The first piece of code we will write is that of the javascript. Its a simple script to 

communicate with the WebIOPi service. 

  

Its important to note that for this project, our web app will consist of four buttons, which 

means we plan to control just four GPIO pins, although we will be controlling just two 

relays in our demonstration. Check the full Video at the end. 

 webiopi().ready(function() { 

                        webiopi().setFunction(17,"out"); 

                        webiopi().setFunction(18,"out"); 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 65 

 
 

                        webiopi().setFunction(22,"out"); 

                        webiopi().setFunction(23,"out"); 

                                                var content, button; 

                        content = $("#content"); 

                                                button = webiopi().createGPIOButton(17," Relay 1"); 

                        content.append(button); 

                                                button = webiopi().createGPIOButton(18,"Relay 2"); 

                        content.append(button); 

                                                button = webiopi().createGPIOButton(22,"Relay 3"); 

                        content.append(button); 

                                                button = webiopi().createGPIOButton(23,"Relay 4"); 

                        content.append(button); 

                                }); 

The code above runs when the WebIOPi is ready. 

  

Below we have explained the JavaScript code: 

webiopi().ready(function(): This just instructs our system to create this function and run 

it when the webiopi is ready. 

webiopi().setFunction(23,"out"); This helps us tell the WebIOPi service to set GPIO23 

as output. We Have four buttons here, you could have more of it if you are implementing 

more buttons. 

var content, button; This line tells our system to create a variable named content and 

make the variable a button. 

content = $("#content"); The content variable is still going to be used across our html 

and css. So when we refer to #content, the WebIOPi framework creates everything 

associated with it. 

button = webiopi().createGPIOButton(17,"Relay 1"); WebIOPi can create different 

kinds of buttons. The piece of code above helps us to tell the WebIOPi service to create 

a GPIO button that controls the GPIO pin in this case 17 labeled “Relay 1”. Same goes 

for the other ones. 

content.append(button); Append this code to any other code for the button created 

either in the html file or elsewhere. More buttons can be created and will all have the 

same properties of this button. This is especially useful when writing the CSS or Script. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 66 

 
 

The CSS Code: 

The first part of the script represent the stylesheet for the body of the web app and its 

shown below; 

 body { 

         background-color:#ffffff; 

         background-image:url('/img/smart.png'); 

         background-repeat:no-repeat; 

         background-position:center; 

         background-size:cover; 

         font: bold 18px/25px Arial, sans-serif; 

         color:LightGray; 

     } 

I want to believe the code above is self-explanatory, we set the background color as 

#ffffff which is white, then we add a background image located at that folder location 

(Remember our earlier folder setup?), we ensure the image doesn’t repeat by setting the 

background-repeat property to no-repeat, then  instruct the CSS to centralize the 

background. We then move to set the background size, font and color. 

  

With the body done, we written the css for buttons to look pretty. 

button { 

         display: block; 

         position: relative; 

         margin: 10px; 

         padding: 0 10px; 

         text-align: center; 

         text-decoration: none; 

         width: 130px; 

         height: 40px; 

         font: bold 18px/25px Arial, sans-serif;  color: black; 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 67 

 
 

         text-shadow: 1px 1px 1px rgba(255,255,255, .22); 

         -webkit-border-radius: 30px; 

          -moz-border-radius: 30px; 

          border-radius: 30px; 

To keep this brief, every other thing in the code was also done to make it look good. You 

can change them up see what happens, I think its called learning via trial and error but 

one good thing about CSS is things being expressed in plain English which means they 

are pretty easy to understand. The other part of the button block has few extras for text 

shadow on the button and button shadow. It also has a slight transition effect which helps 

it look nice and realistic when the button is pressed. These are defined separately for 

webkit, firefox, opera etc just to ensure the web page performs optimally across all 

platforms. 

  

The next block of code is for the WebIOPi service to tell it that this is an input to the 

WebIOPi service. 

input[type="range"] { 

                                                display: block; 

                                                width: 160px; 

                                                height: 45px; 

                        } 

 

 

The last thing we want to do is give some sort of indication when button has been 

pressed. So you can sort of look at the screen and the color of the buttons let you know 

the current state. To do this, the line of code below was implemented for every single 

button. 

                        #gpio17.LOW { 

                                                background-color: Gray; 

                                                color: Black; 

                        } 

                        #gpio17.HIGH { 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 68 

 
 

                                                background-color: Red; 

                                                color: LightGray; 

                        } 

  

The lines of codes above simply changes the color of the button based on its current 

state. When the button is off(LOW) the buttons background color becomes gray to show 

its inactive and when its on(HIGH) the background color of the button becomes RED. 

CSS in the bag, lets save as smarthome.css, then move it via filezilla(or anyother SCP 

software you want to use) to the styles folder on our raspberry pi and fix the final piece, 

the html code. Remember to download full CSS from here. 

  

HTML Code: 

The html code pulls everything together, javascript and the style sheet. 

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w

3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> 

        <meta name="mobile-web-app-capable" content="yes"> 

        <meta name="viewport" content = "height = device-height, width = device-width, u

ser-scalable = no" /> 

        <title>Smart Home</title> 

        <script type="text/javascript" src="/webiopi.js"></script> 

        <script type="text/javascript" src="/scripts/smarthome.js"></script> 

        <link rel="stylesheet" type="text/css" href="/styles/smarthome.css"> 

        <link rel="shortcut icon" sizes="196x196" href="/img/smart.png" /> 

</head> 

<body> 

                        </br> 

                        </br> 

m
unotes.in

https://circuitdigest.com/sites/default/files/code-files-for-IoT-web-controlled-Home-automation-using-raspberry-pi.zip


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 69 

 
 

                        <div id="content" align="center"></div> 

                        </br> 

                        </br> 

                        </br> 

                        <p align="center">Push button; receive bacon</p> 

                        </br> 

                        </br> 

</body> 

</html> 

  

Within the head tag exist some very important features. 

            <meta name="mobile-web-app-capable" content="yes">  

The line of code above enables the web app to be saved to a mobile desktop is using 

chrome or mobile safari. This can be done via the chrome menu. This gives the app an 

easy launch feel from the mobile desktop or home. 

  

The next line of code below gives some sort of responsiveness to the web app. It enables 

it occupy the screen of any device on which its launched. 

<meta name="viewport" content = "height = device-height, width = device-width, user-s

calable = no" />  

  

The next  line of code declares the title shown on the title bar of the web page. 

<title>Smart Home</title> 

  

The next four line of codes each perform the function of linking the html code to several 

resources it needs to work as desired. 

        <script type="text/javascript" src="/webiopi.js"></script> 

        <script type="text/javascript" src="/scripts/smarthome.js"></script> 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 70 

 
 

        <link rel="stylesheet" type="text/css" href="/styles/smarthome.css"> 

        <link rel="shortcut icon" sizes="196x196" href="/img/smart.png" /> 

  

The first line above calls the main WebIOPi framework JavaScript which is hard-coded 

in the server root. This needs to be called every time the WebIOPi is to be used. 

The second line points the html page to our jQuery script, the third points it in the 

direction of our style sheet. Lastly the last line helps set up an icon to be used on the 

mobile desktop in case we decide to use it as a web app or as a favicon for the webpage. 

  

The body section of the html code just contains break tags to ensure the buttons aligned 

properly with the line below telling our html code to display what is written in the 

JavaScript file. The id=”content” should remind you of the content declaration for our 

button earlier under the JavaScript code. 

<div id="content" align="center"></div> 

WebIOPi Server Edits for Home Automation: 

At this stage, we are ready to start creating our schematics and test our web app but 

before then we need to edit the config file of the webiopi service so its pointed to use 

data from our html folder instead of the config files that came with it. 

  

To edit the configuration run the following with root permission; 

sudo nano /etc/webiopi/config 

Look for the http section of the config file, check under the section where you have 

something like,  #Use doc-root to change default HTML and resource files location 

Comment out anything under it using # then if your folder is setup like mine, point your 

doc-root to the path of your project file 

doc-root = /home/pi/webapp/html 

Save and exit. You can also change the port from 8000, in case you have another server 

running on the pi using that port. If not save and quit, as we move on. 

Its Important to note that you can change the password of the WebIOPi service using the 

command; 

sudo webiopi-passwd 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 71 

 
 

It will prompt you for a new username and password. This can also be removed totally 

but security is important right? 

  

Lastly run the WebIOPi service by issuing below command: 

sudo /etc/init.d/webiopi start 

The server status can be checked using; 

sudo /etc/init.d/webiopi status 

It can be stopped from running using; 

sudo /etc/init.d/webiopi stop 

  

To setup WebIOPi to run at boot, use; 

sudo update-rc.d webiopi defaults 

If you want to reverse and stop it from running at boot, use; 

sudo update-rc.d webiopi remove 

9 
Visitor Monitoring with Raspberry Pi and Pi Camera. 

 
Components Required: 

1. Raspberry Pi 

2. Pi camera 

3. 16x2 LCD 

4. DC Motor 

5. IC L293D 

6. Buzzer 

7. LED 

8. Bread Board 

9. Resistor (1k,10k) 

10. Capacitor (100nF) 

11. Push Button 

12. Connecting wires 

13. 10k Pot 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 72 

 
 

14. Power supply 

Working Explanation: 

Working of this Raspberry Pi Monitoring System is simple. In this, a Pi camera is 

used to capture the images of visitors, when a push button is pressed or triggered. A DC 

motor is used as a gate. Whenever anyone wants to enter in the place then he/she needs 

to push the button. After pushing the button, Raspberry Pi sends command to Pi Camera 

to click the picture and save it. After it, the gate is opened for a while and then gets 

closed again. The buzzer is used to generate sound when button pressed and LED is used 

for indicating that Raspberry Pi is ready to accept Push Button press, means when LED 

is ON, system is ready for operation. 

 

Here the pictures of visitors are saved in Raspberry Pi with the name which itself 

contains the time and date of entry. Means there is no need to save date and time 

separately at some other place as we have assigned the time and date as the name of the 

captured picture, see the image below. We have here taken the image of a box as visitor, 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 73 

 
 

 

Circuit Explanation: 

Circuit of this Raspberry Pi Visitor Surveillance System is very simple. Here 

a Liquid Crystal Display(LCD) is used for displaying Time/Date of visitor entry and 

some other messages. LCD is connected to Raspberry Pi in 4-bit mode. Pins of LCD 

namely RS, EN, D4, D5, D6, and D7 are connected to Raspberry Pi GPIO pin number 

18, 23, 24, 16, 20 and 21. Pi camera module is connected at camera slot of the 

Raspberry Pi. A buzzer is connected to GPIO pin 26 of Raspberry Pi for indication 

purpose. LED is connected to GPIO pin 5 through a 1k resistor and a push button is 

connected to GPIO pin 19 with respect to ground, to trigger the camera and open the 

Gate. DC motor (as Gate) is connected with Raspberry Pi GPIO pin 17 and 27 

through Motor Driver IC (L293D). Rest of connections are shown in circuit diagram. 

 

 

To connect the Pi Camera, insert the Ribbon cable of Pi Camera into camera slot, slightly 

pull up the tabs of the connector at RPi board and insert the Ribbon cable into the slot, 

then gently push down the tabs again to fix the ribbon cable. 

m
unotes.in

http://circuitdigest.com/microcontroller-projects/raspberry-pi-lcd-display-tutorial
https://circuitdigest.com/fullimage?i=circuitdiagram_mic/Visitor-monitoring-with-raspberry-pi-camera-circuit-diagram.png


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 74 

 
 

 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 75 

 
 

 

  

Raspberry Pi Configuration and Programming Explanation: 

After successfully installing Raspbian OS on Raspberry Pi, we need to install Pi camera 

library filesfor run this project in Raspberry pi. To do this we need to follow given 

commands: 

$ sudo apt-get install python-picamera 

$ sudo apt-get install python3-picamera 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 76 

 
 

 

  

After it, user needs to enable Raspberry Pi Camera by using Raspberry Pi Software 

Configuration Tool (raspi-config): 

$ sudo raspi-config 

Then select Enable camera and Enable it. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 77 

 
 

 

  

Then user needs to reboot Raspberry Pi, by issuing sudo reboot, so that new setting 

can take. Now your Pi camera is ready to use. 

$ sudo reboot 

  

The Python Program of this project plays a very important role to perform all the 

operations. First of all, we include required libraries, initialize variables and define pins 

for LCD, LED, Motor and other components. 

import RPi.GPIO as gpio 

import picamera 

import time 

 

m11=17 

m12=27 

led=5 

buz=26 

 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 78 

 
 

button=19 

 

RS =18 

... ....  

... ..... 

  

Function def capture_image() is created to capture the image of visitor with time and 

date. 

def capture_image(): 

    lcdcmd(0x01) 

    lcdprint("Please Wait.."); 

    data= time.strftime("%d_%b_%Y\%H:%M:%S") 

    camera.start_preview() 

    time.sleep(5) 

    print data 

    camera.capture('/home/pi/Desktop/Visitors/%s.jpg'%data) 

    camera.stop_preview() 

    lcdcmd(0x01) 

    lcdprint("Image Captured") 

    lcdcmd(0xc0) 

    lcdprint(" Successfully ") 

    time.sleep(2) 

  

Function def gate() is written for driving the DC motor which is used as a Gate here. 

def gate(): 

            lcdcmd(0x01) 

            lcdprint("    Welcome  ") 

            gpio.output(m11, 1) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 79 

 
 

            gpio.output(m12, 0) 

            time.sleep(1.5) 

            gpio.output(m11, 0) 

            gpio.output(m12, 0) 

            time.sleep(3) 

            gpio.output(m11, 0) 

            gpio.output(m12, 1) 

            time.sleep(1.5) 

            gpio.output(m11, 0) 

            gpio.output(m12, 0) 

            lcdcmd(0x01); 

            lcdprint("  Thank You  ") 

            time.sleep(2) 

  

Some functions are defined for LCD like def begin() function is used to initialize 

LCD, def lcdcmd(ch) function is used for sending command to LCD, def 

lcdwrite(ch) function is used for sending data to LCD and def lcdprint(Str) function is 

used to send data string to LCD. You can check all these functions in Code given 

afterwards. 

  

Then we have initialized the LCD and Pi Camera, and continuously read the Push 

button using whileloop. Whenever the push button is pressed, to open the gate for entry, 

image of the visitor is captured and saved at the Raspberry pi with date & time and gate 

gets opened.  

while 1: 

        d= time.strftime("%d %b %Y") 

        t= time.strftime("%H:%M:%S") 

        lcdcmd(0x80) 

        lcdprint("Time: %s"%t) 

        lcdcmd(0xc0) 

        lcdprint("Date:%s"%d) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 80 

 
 

        gpio.output(led, 1) 

        if gpio.input(button)==0: 

            gpio.output(buz, 1) 

            gpio.output(led, 0) 

            time.sleep(0.5) 

            gpio.output(buz, 0) 

            capture_image() 

            gate() 

        time.sleep(0.5) 

  

This Camera Monitoring System has lot of scope to upgrade, like a software can be 

built in Computer Vision or in OpenCV to match the captured picture of visitor with the 

already stored images and only authorized the visitor if some match has been found, this 

will only open the gate for authorised people. 

Code:  

import RPi.GPIO as gpio 

import picamera 

import time 

m11=17 

m12=27 

led=5 

buz=26 

button=19 

RS =18 

EN =23 

D4 =24 

D5 =16 

D6 =20 

D7 =21 

HIGH=1 

LOW=0 

gpio.setwarnings(False) 

gpio.setmode(gpio.BCM) 

gpio.setup(RS, gpio.OUT) 

gpio.setup(EN, gpio.OUT) 

gpio.setup(D4, gpio.OUT) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 81 

 
 

gpio.setup(D5, gpio.OUT) 

gpio.setup(D6, gpio.OUT) 

gpio.setup(D7, gpio.OUT) 

gpio.setup(led, gpio.OUT) 

gpio.setup(buz, gpio.OUT) 

gpio.setup(m11, gpio.OUT) 

gpio.setup(m12, gpio.OUT) 

gpio.setup(button, gpio.IN) 

gpio.output(led , 0) 

gpio.output(buz , 0) 

gpio.output(m11 , 0) 

gpio.output(m12 , 0) 

data="" 

def capture_image(): 

    lcdcmd(0x01) 

    lcdprint("Please Wait.."); 

    data= time.strftime("%d_%b_%Y\%H:%M:%S") 

    camera.start_preview() 

    time.sleep(5) 

    print data 

    camera.capture('/home/pi/Desktop/Visitors/%s.jpg'%data) 

    camera.stop_preview() 

    lcdcmd(0x01) 

    lcdprint("Image Captured") 

    lcdcmd(0xc0) 

    lcdprint(" Successfully ") 

    time.sleep(2) 

def gate(): 

            lcdcmd(0x01) 

            lcdprint("    Welcome  ") 

            gpio.output(m11, 1) 

            gpio.output(m12, 0) 

            time.sleep(1.5) 

            gpio.output(m11, 0) 

            gpio.output(m12, 0) 

            time.sleep(3) 

            gpio.output(m11, 0) 

            gpio.output(m12, 1) 

            time.sleep(1.5) 

            gpio.output(m11, 0) 

            gpio.output(m12, 0) 

            lcdcmd(0x01); 

            lcdprint("  Thank You  ") 

            time.sleep(2) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 82 

 
 

def begin(): 

  lcdcmd(0x33)  

  lcdcmd(0x32)  

  lcdcmd(0x06) 

  lcdcmd(0x0C)  

  lcdcmd(0x28)  

  lcdcmd(0x01)  

  time.sleep(0.0005) 

  

def lcdcmd(ch):  

  gpio.output(RS, 0) 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x10==0x10: 

    gpio.output(D4, 1) 

  if ch&0x20==0x20: 

    gpio.output(D5, 1) 

  if ch&0x40==0x40: 

    gpio.output(D6, 1) 

  if ch&0x80==0x80: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

  # Low bits 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x01==0x01: 

    gpio.output(D4, 1) 

  if ch&0x02==0x02: 

    gpio.output(D5, 1) 

  if ch&0x04==0x04: 

    gpio.output(D6, 1) 

  if ch&0x08==0x08: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

   

def lcdwrite(ch):  

  gpio.output(RS, 1) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 83 

 
 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x10==0x10: 

    gpio.output(D4, 1) 

  if ch&0x20==0x20: 

    gpio.output(D5, 1) 

  if ch&0x40==0x40: 

    gpio.output(D6, 1) 

  if ch&0x80==0x80: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

  # Low bits 

  gpio.output(D4, 0) 

  gpio.output(D5, 0) 

  gpio.output(D6, 0) 

  gpio.output(D7, 0) 

  if ch&0x01==0x01: 

    gpio.output(D4, 1) 

  if ch&0x02==0x02: 

    gpio.output(D5, 1) 

  if ch&0x04==0x04: 

    gpio.output(D6, 1) 

  if ch&0x08==0x08: 

    gpio.output(D7, 1) 

  gpio.output(EN, 1) 

  time.sleep(0.005) 

  gpio.output(EN, 0) 

  

def lcdprint(Str): 

  l=0; 

  l=len(Str) 

  for i in range(l): 

    lcdwrite(ord(Str[i])) 

begin() 

lcdcmd(0x01) 

lcdprint("Visitor Monitoring") 

lcdcmd(0xc0) 

lcdprint("    Using RPI     ") 

time.sleep(3) 

lcdcmd(0x01) 

lcdprint("Circuit Digest") 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 84 

 
 

lcdcmd(0xc0) 

lcdprint("Saddam Khan") 

time.sleep(3) 

lcdcmd(0x01) 

camera = picamera.PiCamera() 

camera.rotation=180 

camera.awb_mode= 'auto' 

camera.brightness=55 

lcdcmd(0x01) 

lcdprint(" Please Press ") 

lcdcmd(0xc0) 

lcdprint("    Button      ") 

time.sleep(2) 

while 1: 

        d= time.strftime("%d %b %Y") 

        t= time.strftime("%H:%M:%S") 

        lcdcmd(0x80) 

        lcdprint("Time: %s"%t) 

        lcdcmd(0xc0) 

        lcdprint("Date:%s"%d) 

        gpio.output(led, 1) 

        if gpio.input(button)==0: 

            gpio.output(buz, 1) 

            gpio.output(led, 0) 

            time.sleep(0.5) 

            gpio.output(buz, 0) 

            capture_image() 

            gate() 

        time.sleep(0.5) 

 

10 
Interfacing Raspberry Pi with RFID. 

 Setting up Raspberry Pi for Serial Communication 

Before proceeding with the Interface of Raspberry Pi and RFID Reader Module, there 

are a few things you need to do in your Raspberry Pi in order to enable the Serial 

Communication in Raspberry Pi. 

In Raspberry Pi, the Serial Port can be used or configured in two ways: Access Console 

and Serial Interface. By default, the Serial Port of the Raspberry Pi is configured to 

access the Linux Console i.e. as Console I/O pins. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 85 

 
 

But, we want to change this to act as a Serial Communication Port so that we can 

connected external peripherals, like RFID Reader in this project, to communicate 

through serial communication. 

In order to do this, first login to your Raspberry Pi using SSH (Putty). Enter the 

Raspberry Pi Configuration Tool by entering the following command. 

sudo raspi-config 

In the “Interfacing Options”, select the “Serial” option. 

 

Now, it asks whether you would like to access the login shell over serial communication. 

Select “No” option. Then, it asks do you want to enable the Serial Port Hardware. Select 

“Yes” option. 

 

Finish the process and Reboot the Raspberry Pi. After the Raspberry Pi is powered up, 

once agin login using Putty and in order to check whether the Serial Port is Enabled or 

not, enter the following command. 

dmesg | grep tty 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 86 

 
 

 

At the bottom, you can see, “ttyS0” is configured as Serial. Now, you can proceed with 

Interfacing RFID Reader Module with Raspberry Pi to communicate over Serial. 

Circuit Diagram of Raspberry Pi RFID Reader Interface 

The following image shows the connections between the Raspberry Pi and the EM-18 

RFID Reader. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 87 

 
 

 

  

Components Required 

• Raspberry Pi 3 Model B 

• EM-18 RFID Reader Module 

• RS232 – to – USB Adapter (as my RFID Reader has only RS232 Output) 

• Few RFID Cards or RFID Tags 

• Power Supply for RFID Reader (my RFID Reader has a 5V Regulator) 

• 5V Supply for Raspberry Pi and RS232-USB Adapter 

• Connecting Wires 

• 680Ω Resistor (1/4 Watt) 

• 1.5KΩ Resistor (1/4 Watt) 

Circuit Design 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 88 

 
 

On Raspberry Pi, the GPIO14 and GPIO14 i.e. Physical Pins 8 and 10 are the UART TX 

and RX Pins respectively. As we have already enabled the Serial Port of the Raspberry 

Pi, you can connect these pins to the external peripherals. 

It is now a good time to note that Raspberry Pi works on 3.3V Logic. Hence, the RX Pin 

of the Raspberry Pin must only be given with 3.3V Logic. In order to do that, we need to 

level convert the TX line of the RFID Reader to 3.3V using a simple Voltage Divider 

Network consisting to two resistors. 

I have used 680Ω and 1.5KΩ resistors. The output of the voltage divider is connected to 

the UART RXD pin of the Raspberry Pi i.e. GPIO15. Make a common ground 

connection between the Raspberry Pi and the RFID Reader Module. 

Code 

A simple Python Script is written to read the values from the RFID Card, compare it with 

the predefined values (I have already collected the data of all the RFID Cards 

beforehand) and display specific information. 

 
import time 

 
import serial 

 
           

 
       

 
data = serial.Serial( 

 
                    port='/dev/ttyS0', 

 
                    baudrate = 9600, 

 
                    parity=serial.PARITY_NONE, 

 
                    stopbits=serial.STOPBITS_ONE, 

 
                    bytesize=serial.EIGHTBITS 

 
                    ) 

 
                    #timeout=1 # must use when using data.readline() 

 
                    #) 

 
print " " 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 89 

 
 

 
           

 
try:      

 
   while 1: 

 
         #x=data.readline()#print the whole data at once 

 
         #x=data.read()#print single data at once 

 
          

 
         print "Place the card" 

 
         x=data.read(12)#print upto 10 data at once and the  

 
                        #remaining on the second line 

 
          

 
         if x=="13004A29E191": 

 
             print "Card No - ",x 

 
             print "Welcome Bala" 

 
             print " " 

 
          

 
         elif x=="13006F8C7282": 

 
             print "Card No - ",x 

 
             print "Welcome Teja" 

 
             print " " 

 
         else: 

 
             print "Wrong Card....." 

 
             print " "         

 
          

 
         #print x 

 
 

 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 90 

 
 

 
except KeyboardInterrupt: 

 
       data.close() 

 
 

 

Working 

The Working of the Raspberry Pi RFID Reader Module Interface is very simple. After 

enabling the Serial Port on the Raspberry Pi, we must assign the rest of the parameters 

associated with UART Communication i.e. Baud Rate, Parity, Stop Bits and the Size of 

the Data. All these values are set in the Python code.   

After this, you will get a message as “Place the Card”. When you place your RFID Card 

on the RFID Reader, the RFID Reader Module it will read the data from the Card and 

sends the data to the Raspberry Pi over Serial Communication. 

This data is further analyzed by the Raspberry Pi and appropriate messages are displayed 

in the screen.   

 

Applications 

Interfacing RFID Reader with Raspberry Pi can be very useful as you can implement a 

wide range of applications like: 

1. Access Control 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 91 

 
 

2. Authentication 

3. e-Ticket 

4. e-Payment 

5. e-Toll 

6. Attendance 

11 Building Google Assistant with Raspberry Pi. 

  Equipment List 

Recommended: 

1.  Raspberry Pi 2 or 3 

2.  Micro SD Card 

3.  USB Microphone 

4.  Speakers 

5.  Ethernet Network Connection or Wifi dongle (The Pi 3 has WiFi inbuilt) 

Optional: 

 Raspberry Pi Case 

Testing your Audio for Google Assistant 

1. Before we get into all the hard work of setting up our Google Assistant and setting up 

the required API .we will first test to ensure our audio is working. At this stage, you must 

have your USB microphone and speakers attached to your Raspberry Pi. 

Once you are sure both are connected to the Raspberry Pi, we can test to make sure that 

the speakers are working correctly by running the following command. 

speaker-test -t wav 

You should hear sound from your speakers. This sound will be a person speaking. If you 

do not hear anything coming from your speaker’s double check they are plugged in 

correctly and are turned up. 

2. Now, let’s test our microphone by making a recording, to do this we will run the 

following command on your Raspberry Pi. This command will make a short 5-second 

recording. 

arecord --format=S16_LE --duration=5 --rate=16000 --file-type=raw out.raw 

If you receive an error when running this command make sure that you have your 

microphone plugged in, this command will only succeed if it can successfully listen to 

your microphone. 

3. With our recording done we can now run the following command to read in our raw 

output file and play it back to our speakers. Doing this will allow you to test the playback 

volume and also listen to the recording volume. 

Doing this is a crucial task as you don’t want your Raspberry Pi picking up every little 

noise but you also don’t want it being able to barely hear you when you say “Ok 

Google“. 

aplay --format=S16_LE --rate=16000 out.raw 

4. If you find the playback volume or recording volume is either too high or too low, 

then you can run the following command to launch the mixer. This command will allow 

you to tweak the volumes for certain devices. 

alsamixer 

m
unotes.in

https://pimylifeup.com/out/amazon/raspberrypi
https://pimylifeup.com/out/amazon/microsdcard8gb
https://pimylifeup.com/out/amazon/usbmicrophone
https://pimylifeup.com/out/amazon/raspberrypispeaker
https://pimylifeup.com/out/amazon/ethernetcord
https://pimylifeup.com/out/amazon/wifidongle
https://pimylifeup.com/out/amazon/allraspberrypicases


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 92 

 
 

Once you have confirmed that your microphone and speakers are working correctly, you 

can move onto setting up your very own Raspberry Pi Google Assistant. 

 Registering for the Google API 

1. Before we get started with setting up the Google Assistant code on the Raspberry Pi 

itself, we must first register and setup oAuth access to Google’s Assistant API. To do 

this, you will need to have a Google account already. 

Once you have your Google account ready, go to the following web address. 

https://console.cloud.google.com/project 

2. Once you have logged into your account, you will be greeted with the following 

screen. On here you will want to click the “Create Project” link as shown in our 

screenshot. 

 
3. On this next screen, you will be asked to enter a project name (1.) as well as selecting 

the two radial boxes. For the project name just set something relevant to what you plan 

on doing. For instance, we set ours to “Pimylifeup Google Assistant” 

For the two radial boxes, we selected ‘No‘ to wanting email updates and ‘Yes‘ to agree 

to their terms of service. 

Finally, you will need to press the “Create” button (2.). 

m
unotes.in

https://console.cloud.google.com/project


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 93 

 
 

 
4. The project creation process can take some time, so be patient. You should receive a 

notification in the top right-hand corner of the screen when it’s complete. If it doesn’t 

automatically appear after some time, try refreshing the page. 

Once it has appeared, click the project name to select it as shown below. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 94 

 
 

 
5. Now on this screen click the hamburger icon (1.) in the top right-hand corner to bring 

out the side menu. Then on the side menu, you will want to select “API’s and Service” 

(2.). This screen is where we will create all the authentication details that we need and 

also where we will enable the Google Assistant API. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 95 

 
 

 
6. Now to get to the more interesting part of enabling the correct API, we need to click 

the “Enable APIS and SERVICES” link like as shown below 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 96 

 
 

 
7. Finally, let’s search up the API that we are after. To do this type in “Google 

Assistant” in the search box. (1.) Once the results have shown up, you need to click the 

box that has “Google Assistant API” (2.) written on it, as this will take us to the screen 

to activate it. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 97 

 
 

 
8. On this screen, you need to click the “Enable” button as shown below. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 98 

 
 

 
9. You should now be taken back to the “APIs & services” page, here you want to click 

“Credentials” in the sidebar. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 99 

 
 

 
10. Now that we are on the “Credentials” screen we need to switch to the “OAuth 

consent screen” tab (1.) 

Afterward, you will need to enter a name in the “Project name shown to users” field 

(2.), for our tutorial we named this “Pi Assistant Project“. If you use your name, make 

sure you don’t use the word Google in it as it will automatically refuse you. 

Once you have entered the Product name of your choice, you can click the “Save” button 

(3.) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 100 

 
 

 
11. With the OAuth consent screen now setup we can create some credentials for it. To 

do this make sure you go back to the “Credentials” tab (1.). 

On this screen click the “Create credentials” button (2.) which will open up a drop-

down menu. 

In this drop-down menu click “OAuth client ID” (3.). 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 101 

 
 

 
12. Now while creating your client ID, set the “Application type” to “Other” (1.). You 

can also decide to change the “Name” for the client id, in our case we just left it set to 

the default name. 

Finally, press the “Create” Button (2.) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 102 

 
 

 
13. Now we need to download the credentials file for our newly created oAuth 

credential. To do this click the download button as shown in the screenshot below. Keep 

this somewhere safe, as we will the text inside the file to the Raspberry Pi. (Of course, 

unless you downloaded it directly to your Pi) 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 103 

 
 

 
14. Finally, we need to go to the URL displayed below, on here you will need to activate 

the following activity controls to ensure that the Google Assistant API works correctly. 

• Web & App Activity 

• Location History 

• Device Information 

• Voice & Audio Activity 

https://myaccount.google.com/activitycontrols 

 Downloading and setting up Google Assistant 

1. Now that we have setup your Google account with the Google Assistant API there are 

a few things we need to do. Before we begin, we should update the Raspberry Pi’s 

operating system to ensure that we are running the latest available software. 

To do this run the following two commands on the Raspberry Pi. 

sudo apt-get update 

sudo apt-get upgrade 

2. Once the Raspberry Pi has finished updating, we can then proceed with setting up 

everything we need for running the Google Assistant API. 

m
unotes.in

https://pimylifeup.com/category/projects/operating-systems/
https://pimylifeup.com/category/projects/operating-systems/


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 104 

 
 

On your Raspberry Pi, we will be creating a file where we will store the credentials we 

downloaded earlier on our computer. 

To do this run the following two commands to create a folder and begin writing a file to 

store the credentials in. 

mkdir ~/googleassistant 

nano ~/googleassistant/credentials.json 

3. Within this file, we need to copy the contents of the credentials file that we 

downloaded to your computer. You can open the .json file in any text editor and 

press CTRL + A then CTRL + C to copy the contents. 

Now in your SSH window, right click and click “Paste”. 

4. Once you have copied the contents of your credentials over to our nano session, we 

can then save the file by pressing Ctrl + X then Y and then finally hitting Enter. 

5. Now with the credentials file now saved safely to our Raspberry Pi we will start 

installing some of the dependencies we rely on. 

Run the following command to install Python3 and the Python 3 Virtual Environment to 

our Raspberry Pi. 

sudo apt-get install python3-dev python3-venv 

6. We can now enable python3 as our virtual environment variable by running the 

following command on our Raspberry Pi. 

python3 -m venv env 

7. With that now enabled we can go ahead and ensure that we have installed the latest 

versions of pip and the setuptools. To do this, we will run the following command on the 

Raspberry Pi. 

env/bin/python -m pip install --upgrade pip setuptools --upgrade 

8. To get into this new Python environment that we have set up we should run the 

following command in terminal. 

source env/bin/activate 

9. Now that we have all the packages we need to install the Google Assistant Library, to 

do this we will run the following command to utilize pip to install the latest version of 

the Python package. 

python -m pip install --upgrade google-assistant-library 

 Getting the Google Assistant Running 

1. Now that we have set up all the prerequisites to running the Google Assistant software 

on our Raspberry Pi we can finally get up to running it. 

To do this, we must first install the Google authorization tool to our Raspberry Pi. This 

package will allow us to authenticate our device and give ourselves the rights to be able 

to make Google Assistant queries for your Google Account. 

Run the following command on the Raspberry Pi to install the Python authorization tool. 

python -m pip install --upgrade google-auth-oauthlib[tool] 

2. With the Google Authentication library now installed, we need to run it. To do this, we 

will be running the following command on our Raspberry Pi. 

This command will generate a URL you will need to go to in your web browser so be 

prepared. 

google-oauthlib-tool --client-secrets ~/googleassistant/credentials.json --scope 

https://www.googleapis.com/auth/assistant-sdk-prototype --save --headless 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 105 

 
 

3. You will now be presented with the text “Please visit this URL to authorize this 

application:” followed by a very long URL. Make sure you copy this URL entirely to 

your web browser to open it. 

4. On this screen login to your Google account, if you have multiple accounts make sure 

you select the one you set up your API key with. 

Afterward, you should be presented with a screen with the text “Please copy this code, 

switch to your application and paste it there” followed by a long authentication code. 

Copy the authentication code and paste it back into your terminal session and press enter. 

If the authentication was accepted you should see the following line appear on your 

command line: 

“credentials saved: /home/pi/.config/google-oauthlib-tool/credentials.json” 

5. Finally, we have finished setting up everything we need to ruin the Google Assistant 

sample on our Raspberry Pi. All that is left to do now is to run it. We can run the 

software by running the following command on your Raspberry Pi. 

google-assistant-demo 

6. Say “Ok Google” or “Hey Google“, followed by your query. The Google Assistant 

should give you a response. If the Assistant software doesn’t respond to your voice, then 

make sure that you have correctly setup your microphone and speakers by checking all 

cables. 

 

 

12 Installing Windows 10 IoT Core on Raspberry Pi. 

 To get up and running you need a few bits and pieces: 

1. Raspberry Pi 3. 

2. 5V 2A microUSB power supply. 

3. 8GB or larger Class 10 microSD card with full-size SD adapter. 

4. HDMI cable. 

5. Access to a PC. 

6. USB WiFi adapter (older models of Raspberry Pi) or Ethernet cable. 

At this point, the HDMI cable is only to plug the Raspberry Pi into a display so you can 

make sure your install worked. Some Raspberry Pi starter kits include everything you 

need, but the list above covers the power, display, and something to install Windows 10 

IoT Core on. 

1. Go to the Windows 10 developer center. 

2. Click Get Windows 10 IoT Core Dashboard to download the necessary application. 

m
unotes.in

http://target.georiot.com/Proxy.ashx?TSID=15093&dtb=1&GR_URL=https%3A%2F%2Fwww.amazon.com%2FRaspberry-Pi-RASPBERRYPI3-MODB-1GB-Model-Motherboard%2Fdp%2FB01CD5VC92%2F%3Ftag%3Dwpcentralb-20%26ascsubtag%3DUUwpUdUnU46378YYwYg
http://target.georiot.com/Proxy.ashx?TSID=15093&dtb=1&GR_URL=https%3A%2F%2Fwww.amazon.com%2FCanaKit-Raspberry-Supply-Adapter-Listed%2Fdp%2FB00MARDJZ4%2F%3Ftag%3Dwpcentralb-20%26ascsubtag%3DUUwpUdUnU46378YYwYg
http://target.georiot.com/Proxy.ashx?TSID=15093&dtb=1&GR_URL=https%3A%2F%2Fwww.amazon.com%2Fdp%2FB073K14CVB%2F%3Ftag%3Dwpcentralb-20%26ascsubtag%3DUUwpUdUnU46378YYwYg
http://target.georiot.com/Proxy.ashx?TSID=15093&dtb=1&GR_URL=https%3A%2F%2Fwww.amazon.com%2FAmazonBasics-High-Speed-HDMI-Cable-Standard%2Fdp%2FB014I8SIJY%2F%3Ftag%3Dwpcentralb-20%26ascsubtag%3DUUwpUdUnU46378YYwYg
http://target.georiot.com/Proxy.ashx?TSID=15093&dtb=1&GR_URL=https%3A%2F%2Fwww.amazon.com%2FEdimax-EW-7811Un-150Mbps-Raspberry-Supports%2Fdp%2FB003MTTJOY%2F%3Ftag%3Dwpcentralb-20%26ascsubtag%3DUUwpUdUnU46378YYwYg
https://developer.microsoft.com/en-us/windows/iot/Downloads.htm


T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 106 

 
 

 

3. Install the application and open it. 

4. Select set up a new device from the sidebar. 

5. Select the options as shown in the image below. Make sure you select the correct drive 

for your microSD card and give your device a name and admin password. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 107 

 
 

 

6. Select the WiFi network connection you want your Raspberry Pi to connect to, if 

required. Only networks your PC connects to will be shown. 

7. Click download and install. 

The application will now download the necessary files from Microsoft and flash them to 

your microSD card. It'll take a little while, but the dashboard will show you the progress. 

m
unotes.in



T.Y.B.Sc. (I.T.) 2018 
 

USIT5P2 – Internet of Things Practical                                  Teacher’s Reference Manual Page 108 

 
 

 

Once the image has been installed on the microSD card, it's time to eject it from your PC 

and go over to the Raspberry Pi. First connect up the micro USB cable and power supply, 

HDMI cable and USB WiFi adapter or Ethernet cable. Connect the HDMI cable to your 

chosen display, insert the microSD card into the Raspberry Pi and power it up. 

 

 

m
unotes.in


