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UNIT I 

1 

INTRODUCTION 

Unit Structure 

1.1 Objectives 

1.2 Introduction 

1.2.1 Introduction to AI 

1.2.2 Objectives of AI 

1.3 What is Artificial Intelligence? 

1.3.1 What is AI. 

1.3.2 Definitions of AI 

1.4 Foundations of AI 

1.4.1 Introduction 

1.4.2 Turing Test 

1.4.3 Weak AI versus Strong AI 

1.4.4 Philosophy 

1.5 History 

1.6 The state of art AI today. 

1.6.1 Current AI Innovations 

1.6.2 Practical Applications of AI 

1.7 Summary 

1.8 Unit End Questions 

1.9 References 

1.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Define Artificial Intelligence 

 Understand foundations of AI 

 Explain how the AI was evolved 

 Explain history of AI. 

 Describe the Today’s AI, and Where and What research/ work is 

going in AI field. 

1.2 INTRODUCTION 

1.2.1 Introduction to Ai: 

Artificial Intelligence is to make computers intelligent so that they can act 

intelligently as humans. It is the study of making computers does things 

which at the moment people are better at. 
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AI has made great effort in building intelligent systems and understanding 

them. Another reason to understand AI is that these systems are interesting 

and useful in their own right. 

Many tools and techniques are used to construct AI systems. The AI 

encompasses a huge variety of fields like computer science, mathematics, 

logical reasoning, linguistics, neuro-science and psychology to perform 

specific tasks. 

AI can be used in many areas like playing chess, proving mathematical 

theorems, writing poetry, diagnosing diseases, creating expert systems, 

speech recognition etc. 

1.2.2 Objectives of Ai: 

The field of artificial intelligence, or AI, attempts to understand intelligent 

entities. Thus, one reason to study it is to learn more about ourselves. 

AI strives to build intelligent entities as well as understand them. 

The study of intelligence is also one of the oldest disciplines. For over 

2000 years, philosophers have tried to understand how seeing, learning, 

remembering, and reasoning could, or should, be done. 

AI currently encompasses a huge variety of subfields, from general-

purpose areas such as perception and logical reasoning, to specific tasks 

such as playing chess, proving mathematical theorems, writing poetry, and 

diagnosing diseases. 

Often, scientists in other fields move gradually into artificial intelligence, 

where they find the tools and vocabulary to systematize and automate the 

intellectual tasks on which they have been working all their lives. 

Similarly, workers in AI can choose to apply their methods to any area of 

human intellectual endeavor. In this sense, it is truly a universal field.  

1.3 ARTIFICIAL INTELLIGENCE/WHAT IS 

ARTIFICIAL INTELLIGENCE? 

1.3.1 What Is Artificial Intelligence?: 

Artificial Intelligence is the branch of computer science concerned with 

making computers behave like humans.  

Major AI textbooks define artificial intelligence as "the study and design 

of intelligent agents," where an intelligent agent is a system that perceives 

its environment and takes actions which maximize its chances of success. 

John McCarthy, who coined the term in 1956, defines it as "the science 

and engineering of making intelligent machines, especially intelligent 

computer programs."  
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Artificial Intelligence 1.3.2 Definitions of AI: 

Artificial intelligence is “The science and engineering of making 

intelligent machines, especially intelligent computer programs”. 

Artificial Intelligence is making a computer, a computer-controlled robot, 

or a software think intelligently, as the intelligent humans think. AI is 

accomplished by studying how the human brain thinks and how humans 

learn, decide, and work while trying to solve a problem, and then using the 

outcomes of this study as a basis of developing intelligent software and 

systems. 

Some Definitions of AI: 

There are various definitions of AI. They are basically categorized into 

four categories: 

i) Systems that think like humans 

ii) Systems that think rationally 

iii) Systems that act like humans 

iv) Systems that act rationally 

Category 1) Systems that think like humans: 

An electronic machine or computer thinks like a human being. 

“The exciting new effort to make computers think … machines with 

minds, in the full literal sense” (Haugeland, 1985) 

“The automation of activities that we associate with human thinking, 

activities such as decision making, problem solving, learning... ” 

(Bellman, 1978) 

Category 2) Systems that think rationally: 

An electronic machine or computer thinks rationally. If system thinks the 

right thing, the system is rational. 

"The study of mental faculties through the use of computational 

models".(Charniak and McDermott, 1985). 

"The study of the computations that make it possible to perceive, reason, 

and act". (Winston, 1992). 

Category 3) Systems that act like humans: 

An electronic machine or computer acts like human being. It acts same as 

human being.  

"The art of creating machines that performs functions that require 

intelligence when performed by people" (Kurzweil, 1990) 

"The study of how to make computers do things at which, at the moment, 

people are better" (Rich and Knight, 1991 ) 
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Category 4) Systems that act rationally: 

An electronic machine or computer acts rationally.  

"A field of study that seeks to explain and emulate intelligent behavior in 

terms of computational processes" (Schalkoff, 1990) 

"The branch of computer science that is concerned with the automation of 

intelligent behavior" (Luger and Stubblefield, 1993) 

1.4 FOUNDATIONS OF AI  

1.4.1 Introduction: 

AI is a field which has inherited many ideas, viewpoints, and techniques 

from other disciplines like mathematics, formal theories of logic, 

probability, decision making, and computation. 

From over 2000 years of tradition in philosophy, theories of reasoning and 

learning have emerged, along with the viewpoint that the mind is 

constituted by the operation of a physical system. From over 400 years of 

mathematics, we have formal theories of logic, probability, decision 

making, and computation. From psychology, we have the tools with which 

to investigate the human mind, and a scientific language within which to 

express the resulting theories. From linguistics, we have theories of the 

structure and meaning of language. Finally, from computer science, we 

have the tools with which to make AI a reality. 

1.4.2 Turing Test: 

Acting humanly: The Turing Test Approach 

 Test proposed by Alan Turing in 1950 

 The computer is asked questions by a human interrogator.  

The computer passes the test if a human interrogator, after posing some 

written questions, cannot tell whether the written responses come from a 

person or not. Programming a computer to pass , the computer need to 

possess the following capabilities : 

● Natural language processing  to enable it to communicate successfully 

in English. 

● Knowledge representation to store what it knows or hears 

 Automated reasoning to use the stored information to answer 

questions and to draw new conclusions. 

● Machine learning to adapt to new circumstances and to detect and 

extrapolate patterns 

To pass the complete Turing Test, the computer will need 

● Computer vision to perceive the objects, and  
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Artificial Intelligence ● Robotics  to manipulate objects and move about. 

Problem: Turing test is not reproducible, constructive, or amenable to 

mathematical analysis 

1.4.3 Weak Ai Versus Strong Ai: 

The definition of AI is along two dimensions, human vs. ideal and thought 

vs. action. But there are other dimensions that are worth considering. One 

dimension is whether we are interested in theoretical results or in practical 

applications. Another is whether we intend our intelligent computers to be 

conscious or not.. The claim that machines can be conscious is called the 

strong AI claim; the WEAK AI position makes no such claim. Artificial 

intelligence is … 

 a.  "a collection of algorithms that are computationally tractable, 

adequate approximations of intractably specified problems" 

(Partridge, 1991) 

 b.  "the enterprise of constructing a physical symbol system that can 

reliably pass the Turing Test" (Ginsberg, 1993) 

 c.  "the field of computer science that studies how machines can be made 

to act intelligently" (Jackson, 1986) 

 d.  "a field of study that encompasses computational techniques for 

performing tasks that apparently require intelligence when performed 

by humans" (Tanimoto, 1990)  

e.  "a very general investigation of the nature of intelligence and the 

principles and mechanisms required for understanding or replicating 

it" (Sharpies et ai, 1989)  

f.  "the getting of computers to do things that seems to be intelligent" 

(Rowe, 1988) 

Philosophy (428 B.C.-Present): 

Philosophers made AI conceivable by considering the ideas that the mind 

is in some ways like a machine that operates on knowledge encoded in 

some internal language and that thought can be used to choose what 

actions to take. 

Philosophy is the implication of knowledge and understanding of 

intelligence , ethics, logic, methods of reasoning, mind as physical system, 

foundations of learning, language and rationality. 

Mathematics: 

Philosophers staked out most of the important ideas of AI, but to make the 

leap to a formal science required a level of mathematical formalization in 

three main areas: computation, logic,  
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Algorithm and Probability: 

With logic a connection was made between probabilistic reasoning and 

action.! DECISION THEORY Decision theory, pioneered by John Von 

Neumann and Oskar Morgenstern (1944), combines! probability theory 

with utility theory to give the first general theory that can distinguish 

good! actions from bad ones. Decision theory is the mathematical 

successor to utilitarianism, and provides the theoretical basis for many of 

the agent designs. 

Psychology (1879 – Present): 

Psychology is to adopt the idea that humans and animals can be 

considered information processing machines. 

 It is all about adaptation, phenomena of perception and motor control, 

experimental techniques (psychophysics, etc.) 

Computer Engineering (1940-Present): 

For artificial intelligence to succeed, we need two things: intelligence and 

an artifact. The computer has been the artifact of choice. AI also owes a 

debt to the software side of computer science, which has supplied the 

operating systems, programming languages, and tools needed to write 

modern programs.  Computer engineers provided the artifacts that make 

AI applications possible.  

To succeed in artificial intelligence, two things are required: intelligence 

and an artifact. A computer machine is the best artifact to exhibit the 

intelligence. During World War II, Some innovations are done in AI field.  

In 1940, Alan Turing’s team had developed Heath Robinson to decode the 

German messages. Then in 1943, Colossus was built from vacuum tubes 

to decode complex code. In 1941, the first operational programmable 

computer Z-3 was invented. In the US, ABC the first electronic computer 

was assembled between 1940 and 1942. Mark I, II, and III computers were 

developed at Harvard. ENIAC was developed; it is the first general-

purpose, electronic, digital computer. Computing artillery firing tables is 

one of its application.  

In 1952, IBM 701 was built. This was the first computer to yield a profit 

for its manufacturer. IBM went on to become one of the world's largest 

corporations, and sales of computers have grown. 

Computer engineering has been remarkably successful, regularly doubling 

performance every two years.  

Linguistics (1957-Present): 

Linguists showed that language use fits into this model. Modern 

linguistics and AI, then, were "born" at about the same time, and grew up 

together, intersecting in a hybrid field called computational linguistics or 

natural language processing.  
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Artificial Intelligence In 1957. B. F. Skinner published Verbal Behavior. It is related to 

behaviorist approach to language learning. But curiously, a review of the 

book became as well-known as the book itself, and served to almost kill 

off interest in behaviorism. The author of the review was Noam Chomsky, 

who had just published a book on his own theory. Syntactic Structures. 

Chomsky showed how the behaviorist theory did not address the notion of 

creativity in language—it did not explain how a child could understand 

and make up sentences that he or she had never heard before. Chomsky's 

theory—based on syntactic models going back to the Indian linguist 

Panini (c. 350 B.C.)—could explain this, and unlike previous theories, it 

was formal enough that it could in principle be programmed. 

1.5 HISTORY OF AI         

The Gestation of Artificial Intelligence (1943-1955): 

The first work that is now generally recognized as AI was done by Warren 

McCulloch and Walter Pitts (1943). They drew on three sources: 

knowledge of the basic physiology and function of neurons in the brain; 

the formal analysis of propositional logic due to Russell and Whitehead; 

and Turing's theory of computation.   

McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester 

to help him bring together U.S. researchers interested in automata theory, 

neural nets, and the study of intelligence. They organized a two-month 

workshop at Dartmouth in the summer of 1956. Perhaps the longest-

lasting thing to come out of the workshop was an agreement to adopt 

McCarthy's new name for the field: artificial intelligence. 

Early Enthusiasm, Great Expectations (1952-1969): 

The early years of A1 were full of successes-in a limited way.  

General Problem Solver (GPS) was a computer program created in 1957 

by Herbert Simon and Allen Newell to build a universal problem solver 

machine. The order in which the program considered sub goals and 

possible actions was similar to that in which humans approached the same 

problems. Thus, GPS was probably the first program to embody the 

"thinking humanly" approach.  

At IBM, Nathaniel Rochester and his colleagues produced some of the 

first A1 programs. Herbert Gelernter (1959) constructed the Geometry 

Theorem Prover, which was able to prove theorems that many students of 

mathematics would find quite tricky.  

Lisp was invented by John McCarthy in 1958 while he was at the 

Massachusetts Institute of Technology (MIT). In 1963, McCarthy started 

the AI lab at Stanford. 

Tom Evans's ANALOGY program (1968) solved geometric analogy 

problems that appear in IQ tests. 
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A Dose of Reality (1966-1973): 

From the beginning, AI researchers were making predictions of their 

coming successes. The following statement by Herbert Simon in 1957 is 

often quoted: “It is not my aim to surprise or shock you-but the simplest 

way I can summarize is to say that there are now in the world machines 

that think, that learn and that create. Moreover, their ability to do these 

things is going to increase rapidly until-in a visible future-the range of 

problems they can handle will be coextensive with the range to which the 

human mind has been applied. 

Knowledge-Based Systems: The Key To Power? (1969-1979): 

Dendral was an influential pioneer project in artificial intelligence (AI) of 

the 1960s, and the computer software expert system that it produced. Its 

primary aim was to help organic chemists in identifying unknown organic 

molecules, by analyzing their mass spectra and using knowledge of 

chemistry. 

A1 Becomes An Industry (1980-Present): 

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year 

plan to build intelligent computers running Prolog. Overall, the A1 

industry boomed from a few million dollars in 1980 to billions of dollars 

in 1988. 

The Return of Neural Networks (1986-Present): 

Although computer science had neglected the field of neural networks 

after Minsky and Papert's Perceptrons book, work had continued in other 

fields, particularly physics. Large collections of simple neurons could be 

understood in much the same way as large collections of atoms in solids. 

Psychologists including David Rumelhart and Geoff Hinton continued the 

study of neural-net models of memory. 

Recent Events: 

In recent years, approaches based on hidden Markov models (HMMs) 

have come to dominate the area. Speech technology and the related field 

of handwritten character recognition are already making the transition to 

widespread industrial and consumer applications. 

The Bayesian network formalism was invented to allow efficient 

representation of, and rigorous reasoning with, uncertain knowledge. 

1.6 THE STATE OF ART AI TODAY 

1.6.1 Current Ai Innovations: 

Chatbots, smart cars, IoT devices, healthcare, banking, and logistics all 

use artificial intelligence to provide a superior experience. One AI that is 

quickly finding its way into most consumer's homes is the voice assistant, 
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Artificial Intelligence such as Apple's Siri, Amazon's Alexa, Google's Assistant, and Microsoft's 

Cortana. Some of them are listed below in tabular format.  

Area Application/ Example/ Company Name 

Autonomous cars 

(Driverless car) 

Tesla Model S, Pony.ai, Waymo, Apple, 

Kia-Hyundai, Ford, Audi, Huawei. 

Speech Recognition Apple's Siri  and Google's Alexa 

Chatbot Swelly, eBay, Lyft, Yes sire, 1-800-Flowers 

Web search engines ai.google 

Translator SYSTRAN 

Natural Language 

Processing 

IBM Watson API,  

Medical Diagnosis, 

Imaging 

Artificial Intelligence assistance in “keeping 

well” 

Pattern Detection RankBrain by Google 
 

1.6.2 Practical Applications of Ai: 

Autonomous Planning And Scheduling:  

A hundred million miles from Earth, NASA's Remote Agent program 

became the first on-board autonomous planning program to control the 

scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote 

Agent generated plans from high-level goals specified from the ground, 

and it monitored the operation of the spacecraft as the plans were 

executed-detecting, diagnosing, and recovering from problems as they 

occurred. 

Game Playing:  

IBM's Deep Blue became the first computer program to defeat the world 

champion in a chess match when it bested Garry Kasparov by a score of 

3.5 to 2.5 in an exhibition match (Goodman and Keene, 1997).  

Autonomous Control:  

The ALVINN computer vision system was trained to steer a car to keep it 

following a lane. It was placed in CMU's NAVLAB computer-controlled 

minivan and used to navigate across the United States-for 2850 miles it 

was in control of steering the vehicle 98% of the time. 

Diagnosis:  

Medical diagnosis programs based on probabilistic analysis have been 

able to perform at the level of an expert physician in several areas of 

medicine.   

Logistics Planning:  

During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic 

Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do 

automated logistics planning and scheduling for transportation. This 

involved up to 50,000 vehicles, cargo, and people at a time, and had to 
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account for starting points, destinations, routes, and conflict resolution 

among all parameters. The AI planning techniques allowed a plan to be 

generated in hours that would have taken weeks with older methods. The 

Defense Advanced Research Project Agency (DARPA) stated that this 

single application more than paid back DARPA's 30-year investment in 

AI.  

Robotics:  

Many surgeons now use robot assistants in microsurgery. HipNav 

(DiGioia et al., 1996) is a system that uses computer vision techniques to 

create a three-dimensional model of a patient's internal anatomy and then 

uses robotic control to guide the insertion of a hip replacement prosthesis. 

Language Understanding And Problem Solving:  

PROVERB (Littman et al., 1999) is a computer program that solves 

crossword puzzles better than most humans, using constraints on possible 

word fillers, a large database of past puzzles, and a variety of information 

sources including dictionaries and online databases such as a list of 

movies and the actors that appear in them.  

1.7 SUMMARY  

Artificial intelligence is “The science and engineering of making 

intelligent machines, especially intelligent computer programs”. 

Turing test: To pass the complete Turing test, the computer will need 

Computer vision to perceive the objects, and Robotics to manipulate 

objects and move about. 

Artificial intelligence is to make computers intelligent so that they can act 

intelligently as humans.  

Categorical definitions of AI are: Systems that think like humans, Systems 

that think rationally, Systems that act like humans, Systems that act 

rationally. 

AI comprises of Philosophy, Mathematics, Algorithm and Probability, 

Psychology, Computer Engineering, Linguistics etc. 

Work on Machine Intelligence started early. But the period which is 

considered as History of AI started from The Gestation of Artificial 

Intelligence (1943-1955), till The Return of Neural Networks (1986-

Present) and Recent Events. 

There are various current AI innovations such as Autonomous cars 

(Driverless car), Speech Recognition, Chatbot, Web search engines, 

Translator, Natural Language Processing, Medical Diagnosis, Imaging 

Pattern Detection etc. 

Various practical applications of AI such as Autonomous Planning And 

Scheduling, Game Playing, Autonomous Control, Diagnosis, Logistics 

m
unotes.in



 

 11 

Logical Agent 

 

Artificial Intelligence Planning, Robotics, Language Understanding And Problem Solving etc. 

1.8 UNIT END QUESTIONS 

1.1 There are well-known classes of problems that are intractably difficult 

for computers, and other classes that are provably undecidable by any 

computer. Does this mean that AI is impossible? 

1.2  Suppose we extend Evans's ANALOGY program so that it can score 

200 on a standard IQ test. Would we then have a program more 

intelligent than a human? Explain.  

1.3  Examine the AI literature to discover whether or not the following 

tasks can currently be solved by computers:  

a.  Playing a decent game of table tennis (ping-pong). 

b.  Driving in the center of Cairo. 

c.  Playing a decent game of bridge at a competitive level.  

d.  Discovering and proving new mathematical theorems.  

e.  Writing an intentionally funny story.  

f.  Giving competent legal advice in a specialized area of law.  

g.  Translating spoken English into spoken Swedish in real time.  

1.4  Find an article written by a lay person in a reputable newspaper or 

magazine claiming the achievement of some intelligent capacity by a 

machine, where the claim is either wildly exaggerated or false.  

1.5  Fact, fiction, and forecast: 

a.  Find a claim in print by a reputable philosopher or scientist to the 

effect that a certain capacity will never be exhibited by computers, 

where that capacity has now been exhibited.  

b.  Find a claim by a reputable computer scientist to the effect that a 

certain capacity would be exhibited by a date that has since passed, 

without the appearance of that capacity.  

c.  Compare the accuracy of these predictions to predictions in other 

fields such as biomedicine, fusion power, nanotechnology, 

transportation, or home electronics. 

1.6  Some authors have claimed that perception and motor skills are the 

most important part of intelligence, and that "higher-level" capacities 

are necessarily parasitic—simple add-ons to these underlying 

facilities. Certainly, most of evolution and a large part of the brain 

have been devoted to perception and motor skills, whereas AI has 

found tasks such as game playing and logical inference to be easier, in 

many ways, than perceiving and acting in the real world. Do you think 
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that AI's traditional focus on higher-level cognitive abilities is 

misplaced?  

1.7  "Surely computers cannot be intelligent—they can only do what their 

programmers tell them." Is the latter statement true, and does it imply 

the former? 

1.8  "Surely animals cannot be intelligent—they can only do what their 

genes tell them." Is the latter statement true, and does it imply the 

former?  

1.9 REFERENCES  

Artificial Intelligence: A Modern Approach, 4th US ed.by Stuart Russell 

and Peter Norvig. 

Deepak Khemani, “A first course in Artificial Intelligence”, McGraw Hill 

edition, 2013.  

Patrick Henry Winston , “Artificial Intelligence”, Addison-Wesley, Third 

Edition  
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INTELLIGENT AGENTS 

Unit Structure 

2.1  Objectives 

2.2  Introduction 

2.3  Agents and environment 

2.4  Good Behavior 

 2.4.1 Rational Agent 

 2.4.2 Mapping from percept sequences to actions 

 2.4.3 Performance Measure 

 2.4.4 PEAS 

2.5  Nature of environment  

2.6  The structure of agents 

 2.6.1 Structure 

 2.6.2 Softbots 

 2.6.3 PAGE 

 2.6.4 Types of Agent 

2.7  Summary 

2.8 Unit End Questions 

2.9 References 

2.1 OBJECTIVES  

After going through this unit, you will be able to: 

 Define AI Agent,  

 Understand the Agent and its Environment 

 Understand the Rationality of agent, Performance measure 

 Identify the PEAS, and PAGE 

 Understand the nature of Environment 

 Explain the Structure of Agents 

2.2 INTRODUCTION 

An agent is anything that can be viewed as capturing its environment 

through cameras, sensors or some other input devices and acting upon that 

environment through effectors. A human agent has eyes, ears, and other 

organs for sensors, and hands, legs, mouth, and other body parts for 

effectors. A robotic agent substitutes cameras and infrared range finders 

for the sensors and various motors for the effectors. A software agent has 

encoded bit strings as its percepts and actions.  
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The focus is on design agents that do a good job of acting on their 

environment,  

What we mean by a good job, rationality, performance measure, then 

different designs for successful agents, which things should be known to 

the agent and several kinds of environments. 

2.3 AGENT AND ENVIRONMENT 

Definition: An agent is anything that perceives its environment through 

sensors and acting upon that environment through effectors. 

An agent is split into architecture and an agent program. 

An intelligent agent is an agent capable of making decisions about how it 

acts based on experiences. 

 

Sensors are used to receive percept signals. Percept signals can be 

anything like audio, video, image, etc. 

Effectors are used to make action. We can also call effectors as actuators.  

The following are the sensors and actuators for Robot / Robotic agent  

Sensors: Cameras, infrared range finders, scanners, etc. 

Actuators: Various motors, screen, printing devices. 

A robotic agent substitutes cameras and infrared range finders for the 

sensors and various motors for the effectors.  

Environment is the surrounding of the robotic agent. It is the area in which 

agent does the work, performs some actions. In a vacuum cleaner robotic 

agent, a room will be an environment. There are various types of 

environment fully observable or partially observable, Static or dynamic, 

Accessible or inaccessible, Known or unknown, Single agent or multi 

agent etc.  
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Agent perceives the signals of other robotic agent actions, temperature, 

humidity, pressure, air type, atmospheric conditions, climate, other 

surrounding conditions and many more. In addition to this, in taxi driving 

example – road conditions, traffic conditions, weather conditions, rain or 

smoke fog, wind, driving rules etc.  

2.4 GOOD BEHAVIOR  

Here, the behavior of the AI agent is checked. For this rationality, 

performance measure is considered.  

2.4.1 Rational agent: 

A rational agent is the one that does ―right‖ things and acts rationally so as 

to achieve the best outcome even when there is uncertainty in knowledge. 

Rational agent can be defined as an agent who makes use of its percept 

sequence, experience and knowledge to maximize the performance 

measures of an agent for every possible action. Performance measures can 

be any like Accuracy, Speed, Safety, total work done with respect to time, 

efficiency, saving money and time, following Legal rules, etc.  

 

What is rational at any given time depends on four things: 

1)  The performance measure defines the degree of success. Performance 

is the measure of successful completion of any task.  

2)  Complete perceptual history is the percept sequence. This percept 

sequence is a sequence of signals or inputs that the agent has 

perceived so far.  

3)  What the agent knows about the environment. Especially about the 

environment dimensions, structure, basic laws, task, user, other 

agents, etc. 

4)  The actions that the agent can perform. It shows the capability of the 

agent.  
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Ideal rational agent:  

For each possible percept sequence, an ideal rational agent should do 

whatever action is expected to maximize its performance measure, on the 

basis of the evidence provided by the percept sequence and whatever 

built-in knowledge the agent has. 

2.4.2 The ideal mapping from percept sequences to actions: 

For each percept signal what will be the associated action of the agent. 

This information can be described in tabular format.  

 

Let’s Consider the Vacuum Cleaner robotic agent. It cleans the room. For 

simplicity two tiles are considered. The Vacuum cleaner agent is present 

on Tile A and observing the environment i.e. Tile A and Tile B both. Both 

the tiles have some dirt. This agent has to clean the dirt by sucking it.  

 

The following table shows the percept sequence and its associated action. 
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Autonomous Agent:  

An agent is autonomous to the extent that its action choices depend on its 

own experience, rather than on knowledge of the environment that has 

been built-in by the designer.  

There are various autonomous agent are in development stage. Driverless 

car- Waymo, Google’s Alexa, etc.  

2.4.3 How and When to evaluate the agent’s success: 

Performance measure: 

Performance measure is one of the major criteria for measuring success of 

an agent’s performance.  

As a general rule, it is better to design performance measures according to 

what one actually wants in the environment, rather than according to how 

one thinks the agent should behave.  

Example: The performance measure of Vacuum-cleaner Robotic agent can 

depend upon various factors like it’s dirt cleaning ability, time taken to 

clean that dirt, consumption of electricity, etc. 

2.4.4 PEAS Properties of Agent: 

What is PEAS? 

PEAS: Performance, Environment, Actuators, Sensors. 

Performance Measures - used to evaluate how well an agent solves the 

task at hand 

Environment - surroundings beyond the control of the agent 

Actuators - determine the actions the agent can perform 

Sensors - provide information about the current state of the environment 

Examples: 

1) Automated Car Driving agent/Driverless Car: 

Performance measures: Safety, Optimum speed, Comfortable journey, 

Maximize profits. 

Environment: Roads, Traffic conditions, Clients. 

Actuators: Steering wheel, Accelerator, Gear, Brake, Light signal, Horn. 

Sensors: Cameras, Sonar system, Speedometer, GPS, Engine sensors, etc. 

2) Medical Diagnosis system: 

Performance measures: Healthy patient (Sterilized instruments), minimize 

costs.  
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Environment: Patients, Doctors, Hospital environment. 

Actuators: Camera, Scanner (to scan patient’s report). 

Sensors: Body scanner, Organs scanner e.g. MRI, CT SCAN etc, Screen, 

Printer. 

3) Soccer Player Robot: 

Performance measures: Number of goals, speed, legal game. 

Environment: Team players, opponent team players, playing ground, goal 

net. 

Actuators: Joint angles, motors. 

Sensors: Camera, proximity sensors, infrared sensors. 

2.5 NATURE OF ENVIRONMENT OR PROPERTIES OF 

ENVIRONMENT   

1) Accessible vs. inaccessible: 

If an agent can obtain complete and accurate information about the state's 

environment, then such an environment is called an Accessible 

environment else it is called inaccessible. 

Example: 

Accessible environment- An empty closed room whose state can be 

defined by its temperature, air pressure, humidity. 

Inaccessible environment- Information about an event occurs in the 

atmosphere of the earth. 

2) Deterministic vs. non deterministic: 

If an agent's current state and selected action can completely determine the 

next state of the environment, then such an environment is called a 

deterministic environment. 

In an accessible, deterministic environment an agent does not need to 

worry about uncertainty. If the environment is inaccessible, however, then 

it may appear to be nondeterministic. This is particularly true if the 

environment is complex, making it hard to keep track of all the 

inaccessible aspects. Thus, it is often better to think of an environment as 

deterministic or nondeterministic from the point of view of the agent. 

3) Episodic vs. non episodic: 

In an episodic environment, the agent's experience is divided into 

"episodes." Each episode consists of the agent perception and its 

corresponding action. The quality of its action depends just on the episode 

itself, because subsequent episodes do not depend on what actions occur in 
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previous episodes. Episodic environments are much simpler because the 

agent does not need to think ahead. However, in a non-episodic 

environment, an agent requires memory of past actions to determine the 

next best actions. 

4) Static vs. dynamic: 

If the environment can change while an agent is deciding on an action, 

then we say the environment is dynamic for that agent; otherwise it is 

static. Static environments are easy to deal with because the agent need 

not keep looking at the world while it is deciding on an action, nor need it 

worry about the passage of time. If the environment does not change with 

the passage of time but the agent's performance score does, then we say 

the environment is semi dynamic. 

Taxi driving is an example of a dynamic environment whereas Crossword 

puzzles are an example of a static environment. 

5) Discrete vs. continuous: 

If there are a limited number of distinct, clearly defined percepts and 

actions we say that the environment is discrete. Chess is discrete—there 

are a fixed number of possible moves on each turn. Taxi driving is 

continuous—the speed and location of the taxi and the other vehicles 

sweep through a range of continuous values. 

Examples of environments and their nature or characteristics are as 

follows: 

 

2.6 STRUCTURE OF INTELLIGENT AGENT  

2.6.1 Structure: 

Structure of the agent describes how the agent works. 

The job of AI is to design the agent program. Agent program is a function 

that implements the agent mapping from percepts to actions. An 

architecture or hardware is used to run this agent program. 
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The relationship among agents, architectures, and programs can be 

summed up as follows: 

agent = architecture + program 

2.6.2 Software Agents: 

It is also referred to as softbots.  

It lives in artificial environments where computers and networks provide 

the infrastructure.  

It may be very complex with strong requirements on the agent  

e.g. softbot designed to fly a flight simulator, softbot designed to scan 

online news sources and show the interesting items to its customers, 

World Wide Web, real-time constraints,  

Natural and artificial environments may be merged user interaction 

sensors and actuators in the real world - camera, temperature, arms, 

wheels, etc. 

2.6.3 Page:  

PAGE is used for high-level characterization of agents. 

P-  Percepts - Information is acquired through the agent’s sensory system. 

A- Actions - Operations are performed by the agent on the environment 

through its actuators. 

G-  Goals - Desired outcome of the task with a measurable performance. 

E- Environment - Surroundings beyond the control of the agent. 

Following are some examples of agents and their PAGE descriptions. 

Sr. 

No. 

Agent 

Type 

Percepts Actions Goals Environm

ent 

1. Medical 

diagnosis 

system 

Symptoms

, findings, 

patient's 

answers 

Questions, 

tests, 

treatments 

Healthy 

patient, 

minimize 

costs 

Patient, 

hospital 

2. VacBot – 

Vacuum 

Cleaner 

Bot 

tile 

properties 

like 

clean/dirt, 

empty/occ

upied 

movement 

and 

orientation 

pick up 

dirt, move 

desired 

outcome of 

the task with 

a  

measurable 

performance 

surroundin

gs beyond 

the control 

of the 

agent 

3. StudentB

ot 

images 

(text, 

comments, 

questions, 

mastery of 

the material 

classroom 

 

m
unotes.in



 

 21 

Artificial Intelligence 

 
pictures, 

instructor, 

classmates

) 

sound 

(language) 

gestures 

note-

taking (?) 

performance 

measure: 

grade 

4. Satellite 

image 

analysis 

system 

Pixels of 

varying 

intensity, 

color 

Print a 

categorizat

ion of 

scene 

Correct 

categorizatio

n 

Images 

from 

orbiting 

satellite 

5. Part-

picking 

robot 

Pixels of 

varying 

intensity 

Pick up 

parts and 

sort into 

bins 

Place parts in 

correct bins 

Conveyor 

belt 

with parts 

6. Refinery 

controlle

r 

Temperatu

re, 

pressure 

readings 

Open, 

close 

valves; 

adjust 

temperatur

e 

Maximize 

purity, 

yield, safety 

Refinery 

7. Interacti

ve 

English 

tutor 

Typed 

words 

Print 

exercises, 

suggestion

s, 

correction

s 

Maximize 

student's 

score on 

test 

Set of 

students 

 

2.6.4 Different types of Agent program: 

Every agent program has some skeleton. Real agent program implements 

the mapping from percepts to action. There are four types of agent 

program as follows: 

1)  Simple reflex agents 

2)  Agents that keep track of the world 

3)  Goal-based agents 

4)  Utility-based agents 

1) Type 1: Simple Reflex Agent: 

Reflex agents respond immediately to percepts.  

They choose actions only based on the current percept. 

They are rational only if a correct decision is made only on the basis of 

current precept. 

Their environment is completely observable. 

In the simple reflex agent, the correct decision can be made on the basis of 

the current percept. 
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Let’s consider the driverless car – Car A. If the car B is running in front of 

car A, and suddenly if car B has applied brakes, and car B brake lights 

come ON, then driverless car agent should notice that and initiate 

breaking. Thus it can be specified in condition action rule and can be 

represented in the form as  

―If condition Then Action‖.  

―if car-in-front-is-breaking then initiate-braking‖. 

 

 
Schematic Diagram: Simple Reflex Agent 

Following is the agent program basically it is a function for a simple reflex 

agent. It works by finding a rule whose condition matches the current 

situation (as defined by the percept) and then doing the action associated 

with that rule. 

Function Simple_Reflex_Agent( percept ) returns action  

 Static: rules, a set of condition-action rules 

 state  Interpret_Input (percept ) 

 rule  Rule_Match ( state, rules) 

 action  Rule_Action [ rule ] 

return action 

This agent program calls the Interpret_Input() function that generates an 

abstracted description of the current state from the percept input, and the 

Rule_Match() function returns the first rule in the set of rules that matches 

the given state description. Such agents can be implemented very 

efficiently, but their range of applicability is very less. 
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2) Type 2: Agents that keep track of the world: 

It is a reflex agent with internal state.  

Internal State is a representation of unobserved aspects of current state 

depending on percept history.  

Consider an example of a driverless car. If the car in front is a recent 

model, and has the centrally mounted brake light, then it will be possible 

to tell if it is braking from a single image. Unfortunately, older models 

have different configurations of tail lights, brake lights, and turn-signal 

lights, and it is not always possible to tell if the car is braking. 

Thus, even for the simple braking rule, our driver will have to maintain 

some sort of internal state in order to choose an action. Here, the internal 

state is not too extensive—it just needs the previous frame from the 

camera to detect when two red lights at the edge of the vehicle go on or off 

simultaneously. 

Consider one case in car driving: from time to time, the driver looks in the 

rear-view mirror to check on the locations of nearby vehicles. When the 

driver is not looking in the mirror, the vehicles in the next lane are 

invisible (i.e., the states in which they are present and absent are 

indistinguishable); but in order to decide on a lane-change maneuver, the 

driver needs to know whether or not they are there. 

It happens because the sensors do not provide access to the complete state 

of the world. In such cases, the agent may need to maintain some internal 

state information in order to distinguish between world states that generate 

the same perceptual input but nonetheless are significantly different. Here, 

"significantly different" means that different actions are appropriate in the 

two states. 

As time passes internal state information has to be updated. For this two 

kinds of knowledge have to be encoded in the agent program. First, we 

need some information about how the world evolves independently of the 

agent—for example, that an overtaking car generally will be closer behind 

than it was a moment ago. Second, we need some information about how 

the agent's own actions affect the world—for example, that when the agent 

changes lanes to the right, there is a gap (at least temporarily) in the lane it 

was in before.  

Following Figure shows how the current percept is combined with the old 

internal state to generate the updated description of the current state.  
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Diagram: Schematic Diagram for Agent that keep track of the world/ 

Reflex Agent with Internal State 

Agent Program:  

The interesting part is the function Update-State, which is responsible for 

creating the new internal state description. As well as interpreting the new 

percept in the light of existing knowledge about the state, it uses 

information about how the world evolves to keep track of the unseen parts 

of the world, and also must know about what the agent's actions do to the 

state of the world. 

Following is the reflex agent with internal state. It is an agent that keeps 

track of the world. It works by finding a rule whose condition matches the 

current situation (as defined by the percept and the stored internal state) 

and then doing the action associated with that rule. 

function Reflex-Agent-With-State(percept)  returns action 

static: state, a description of the current world state 

rules, a set of condition-action rules 

state  Update-State (state, percept) 

rule  Rule-Match (state, rules) 

action  Rule-Action [rule] 

state  Update-State (state, action) 

return action. 

3) Type 3: Goal-based agents: 

Goal-based agents act so that they will achieve their goal 

If just the current state of the environment is known then it is not always 

enough to decide what to do. 

m
unotes.in



 

 25 

Artificial Intelligence 

 
The agent tries to reach a desirable state, the goal may be provided from 

the outside (user, designer, environment), or inherent to the agent itself 

The agent performs the action by considering the Goal. To achieve the 

goal, agent has to consider long sequences of actions. Here, Search & 

Planning is required. Decision making is required. It involves 

consideration of the future—both "What will happen if I do such-and-

such?" and "Will that make me happy? 

Goal based agents can only differentiate between goal states and non goal 

states. Hence, their performance can be 100% or zero.  

Goal-based agent is more flexible than reflex agent since the knowledge 

supporting a decision is explicitly modeled, thereby allowing for 

modifications. 

Limitation: Once the goal is fixed, all the actions are taken to fulfill it. 

And the agent loses flexibility to change its actions according to the 

current situation.  

Example: Vacuum cleaning Robot agent whose goal is to keep the house 

clean all the time. This agent will keep searching for dirt in the house and 

will keep the house clean all the time. 

 

Diagram: Schematic Diagram for Goal Based Agent 

4) Type 4: Utility-based agents: 

Utility-based agents try to maximize their own "happiness." 

There are conflicting goals, out of which only few can be achieved. Goals 

have some uncertainty of being achieved and you need to weigh likelihood 

of success against the importance of a goal. 

Goals alone are not really enough to generate high-quality behavior. Here, 

the degree of happiness is considered. 

For example, there are many action sequences that will get the taxi to its 

destination, thereby achieving the goal, but some are quicker, safer, more 
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reliable, or cheaper than others. Goals just provide a crude distinction 

between "happy" and "unhappy" states, whereas a more general 

performance measure should allow a comparison of different world states 

(or sequences of states) according to exactly how happy they would make 

the agent if they could be achieved. Because "happy" does not sound very 

scientific, the customary terminology is to say that if one world state is 

preferred to another, then it has higher utility for the agent. 

Utility is therefore a function that maps a state onto a real number, which 

describes the associated degree of happiness. A complete specification of 

the utility function allows rational decisions in two kinds of cases where 

goals have trouble. First, when there are conflicting goals, only some of 

which can be achieved (for example, speed and safety), the utility function 

specifies the appropriate trade-off. Second, when there are several goals 

that the agent can aim for, none of which can be achieved with certainty, 

utility provides a way in which the likelihood of success can be weighed 

up against the importance of the goals 

Utility function is used to map a state to a measure of utility of that state. 

We can define a measure for determining how advantageous a particular 

state is for an agent. To obtain this measure a utility function can be used. 

The term utility is used to depict how ―HAPPY‖ the agent is to find out a 

generalization.  

Examples: 1) Google Maps – A route which requires Least possible time. 

1) Automatic Car: Should reach to the target location within least possible 

time safely and without consuming much fuel. 

 

Diagram: Schematic Diagram for Utility Based Agent 

2.7 SUMMARY  

An agent is anything that perceives its environment through sensors and 

acting upon that environment through effectors. 

A rational agent is the one that does ―right‖ things and acts rationally so as 

to achieve the best outcome even when there is uncertainty in knowledge. 
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PEAS- Performance, Environment, Actuators, Sensors determines the 

behavior of an agent.  

There are various nature of environment or properties of environment, 

they are as Accessible vs. inaccessible, Deterministic vs. non 

deterministic, Episodic vs. non episodic, Static vs. dynamic, Discrete vs. 

continuous, etc. 

Structure of Intelligent Agent: agent = architecture + program.  

PAGE is used for high-level characterization of agents.  

Different types of Agent program are as Simple reflex agents, Agents that 

keep track of the world, Goal-based agents, Utility-based agents. 

2.8 UNIT END QUESTIONS 

1.  Describe is an agent, rational Agent, autonomous agent.  

2.  Which are the four things that is considered to check the agent is 

rational at any given time? 

3.  What is the good behavior of agent. How performance measure is the 

key factor for  

4.  Which are the four things that is considered to check the rationality of 

agent at any given time. 

5.  How and When to evaluate the agent’s success? 

6. Describe Performance measure is one of the major criteria for 

measuring success of an agent’s performance. 

7. What is PEAS Properties of Agent? Explain with example the PEAS 

for any four agents.  

8.  Explain Nature of Environment or Properties of Environment 

9.  What is softbot?  

10.  What is PAGE? Describe with any five examples.  

11.  Explain the structure of Agent. 

12. Which are the types of agent? Explain all the types with schematic 

diagram. 

13. Write the Agent program for Simplex Reflex Agent and Reflex Agent 

with Internal State.  
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3 
SOLVING PROBLEMS BY SEARCHING 
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3.3 Problem Solving Agents 
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3.9 Summary 

3.10 Exercises  
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3.1 OBJECTIVES 

After this chapter, you should be able to understand the following 

concepts: 

1. Understand how to formulate a problem description. 

2. Understand and solve some problems of Artificial Intelligence. 

3. Know about uninformed search and based algorithms. 

4. Understand informed search and based algorithms. 

5. Know about heuristic functions and strategies. 

3.2 INTRODUCTION 

A problem-solving agent firstly formulates a goal and a problem to solve. 

Then the agent calls a search procedure to solve it. It then uses the solution 

to guide its actions. It will do whatever the solution recommends as the 

next thing to do and then remove that step from the sequence. Once the 

solution has been executed, the agent will formulate a new goal. Searching 

techniques like uninformed and informed or heuristic use in many areas 

like theorem proving, game playing, expert systems, natural language 

processing etc. In search technique, firstly select one option and leave 

other option if this option is our final goal, else we continue selecting, 

testing and expanding until either solution is found or there are no more 

states to be expanded. 
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3.3 PROBLEM SOLVING AGENTS 

It is very important task of problem domain formulation. Problems are 

always dealt with an Artificial Intelligence. It is commonly known as 

state. For solving any type of task (problem) in real world one needs 

formal description of the problem. Each action changes the state and the 

goal is to find sequence of actions and states that lead from the initial start 

state to a final goal state. 

Goals help organize behavior by limiting the objectives that the agent is 

trying to achieve and hence the actions it needs to consider. Goal 

formulation, based on the current situation and the agent‘s performance 

measure, is the first step in problem solving. 

Problem formulation is the process of deciding what actions and states to 

consider, given a goal. the agent will not know which of its possible 

actions is best, because it does not yet know enough about the state that 

results from taking each action. If the agent has no additional 

information—i.e., if the environment is unknown.  

An agent with several immediate options of unknown value can decide 

what to do by first examining future actions that eventually lead to states 

of known value. 

The agent‘s task is to find out how to act, now and in the future so that is 

reaches a goal state. Before it can do this, it needs to decide what sorts of 

actions and states it should consider. 

3.3.1 Well Defined problem: 

A problem can be defined formally by four components. 

1) The initial state that the agent starts in:  

For example, Consider a agent program Indian Traveller developed for 

travelling Hyderabad to Mumbai travelling through different states. The 

initial state for this agent can be described as In (Hyderabad). 

2) A description of the possible actions available to the agent: 

Given a particular state s, ACTIONS(s) returns the set of actions that can 

be executed in s. We say that each of these actions is applicable in s. For 

example, from state In (Mumbai), the applicable actions are {Go 

(Solapur), Go (Osmanabad), Go (Vijayawada)} 

3) The goal test: 

Which determines whether a given state is a goal state. Sometimes there is 

an explicit set of possible goal states, and the test simply checks whether 

the given state is one of them. 

For example, In Indian traveller problem the goal is to reach Mumbai i.e it 

is a singleton set. {In (Mumbai)} 
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explicitly enumerated set of states. For example, in chess, the goal is to 

reach a state called ―checkmate,‖ where the opponent‘s king is under 

attack and can‘t escape. 

4) A path cost function that assigns a numeric cost to each path. The 

problem-solving agent chooses a cost function that reflects its own 

performance measure. For the agent trying to get to Mumbai, time is of 

the essence, so the cost of a path might be its length in kilometres. The 

step cost of taking action a in state x to reach state y is denoted by c (x, 

a, y). 

A solution to a problem is an action sequence that leads from the initial 

state to a goal state. Solution quality is measured by the path cost function, 

and an optimal solution has the lowest path cost among all solutions. 

 

Fig. 3.2.1 Indian traveller map 

3.4 EXAMPLES PROBLEMS 

The problem-solving approach has been applied to a vast array of task 

environments. We list some known problems like Toy problem and real-

world problem. A toy problem is intended to illustrate or exercise various 

problem-solving methods. This problem gives exact description so it is 

suitable for researchers to compare the performance of algorithms. A real-

world problem is one whose solution people actually care about.  

3.4.1 Toy Problems: 

The first example we examine is the vacuum world.  

This can be formulated as problem as follows: 
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1) States: 

The state is determined by both the agent location and the dirt locations. 

The agent is in one of two locations, each of which might or might not 

contain dirt. 

2) Initial state: 

Our vacuum can be in any state of the 8 states shown in the figure 3.2. 

3) Actions: 

Each state has just three actions: Left, Right, and Suck 

4) Transition Model: 

The actions have their expected effects, except that moving Left in the 

leftmost square, moving Right in the rightmost square, and Sucking in a 

clean square have no effect. 

5) Goal test: 

No dirt at all locations. 

6) Path cost: 

Each cost step is 1. 

 

Fig. 3.2 The state space for the vacuum world. Links denote actions: L 

= Left, R= Right, S= Suck 

The second example we examine is 8 puzzle problem. 

The 8-puzzle consists of eight numbered, movable tiles set in a 3x3 frame. 

Each tile has a number on it. A tile that is adjacent to the blank space can 

slide into the space. A game consists of a starting position and a specified 

goal position. The goal is to transform the starting position into the goal 

position by sliding the tiles around. 
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1) States: 

Location of eight tiles and blank. 

2) Initial state: 

Any state can be designed as the initial state. 

3) Actions: 

Move blank left, right, up or down. 

4) Goal test: 

This checks whether the states match the goal configuration. 

5) Path cost: 

Each step cost is 1. 

 

Fig.3.3 An instance of 8-puzzle problem 

The third example is 8-Queen problem: 

The goal of the 8-queens problem is to place eight queens on a chessboard 

such that no queen attacks any other. (A queen attacks any piece in the 

same row, column or diagonal.) 

This can be formulated as problem as follows: 

1) States: 

Any arrangement of 0 to 8 queens on the board is a state 

2) Initial state: 

No queens on board. 

3) Actions: 

Add a queen to any empty square. 
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4) Transition Model: 

Returns the board with a queen added to the specified square. 

5) Goal Test: 

8 queens are on the board, none attacked. 

 

Fig. 3.4 Solution to the 8-queen problem 

The fourth example is Water Jug problem: 

You are given two jugs, a 4-gallon one and a 3-gallon one, a pump which 

has unlimited water which you can use to fill the jug, and the ground on 

which water may be poured.  

Neither jug has any measuring markings on it. How can you get exactly 2 

gallons of water in the 4-gallon jug?  

State Representation and Initial State – we will represent a state of the 

problem as a tuple (x, y) where x represents the amount of water in the 4-

gallon jug and y represents the amount of water in the 3-gallon jug. Note 0 

d‖ x d‖ 4, and 0 d‖ y d‖ 3. Our initial state: (0,0). The goal state is à (2, n). 

Rules:  

1.  Fill the 4-Gallon Jug (x,y) (4,y) 

2.  Fill the 3-Gallon Jug.  (x,y) (x,3) 

3.  Pour some water out of 4 Gallon jug  (x,y)(x-d,y) 

4.  Pour some water out of 3 Gallon jug  (x,y)(x,y-d) 

5.  Empty 4 Gallon jug on the ground.   (x,y)(0,y) 

6.  Empty 3 Gallon jug on the ground  (x,y)(x,0) 
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gallon jug is full.  (x,y)(4, y - (4 - x))  

8.  Pour some water from 4 Gallon jug into the 3 Gallon jug until the 3 

gallon jug is full.  (x,y)(x - (3-y), 3) 

9.  Pour all water from 3 to 4 gallon.  (x,y)(x+y, 0) 

10.  Pour all water from 4 to 3 Gallon jug.  (x,y)(0, x+y) 

11.  Pour 2 gallon from 3 G to 4 G.  (0,2)(2,0)  if x<y 

12.  Empty the 2 G in 4 G on the ground.  (2,y)(0,y) if x<y 

 

Gallons in the 4-

Gallon Jug 

Gallons in 3-Gallon 

Jug 

Rules Applied 

0 0 - 

0 3 2 

3  0 9 

3 3 2 

4 2 7 

0 2 5 

2 0 9 

 

The fifth example is Missionaries and Cannibals: 

Three missionaries and their three cannibals are present at one side of a 

river and need to cross the river. There is only one boat available. 

At any point of time the number of cannibals should not outnumber the 

number of missionaries at that bank. 

It is also known that only two persons can occupy the boat available at a 

time. Let Missionary is denoted by ‗M‘ and cannibal by ‗C‘ 

Rules: 

1.  (0, M): One missionary sailing the boat from bank-1 to bank-2. 

2.  (M,0): One missionary sailing boat from bank-2 to bank-1. 

3.  (M, M): Two missionaries sailing the boat from bank 1 to bank 2. 

4.  (M, M): Two missionaries sailing the boat from bank 2 to bank 1. 

5.  (M, C): One missionary & one cannibal sailing the boat from bank 1 

to bank-2. 

6.  (C, M): One missionary & one cannibal sailing the boat from bank 2 

to bank-1. 

7.  (C, C): Two cannibals sailing the boat from bank-1 to bank-2. 

8.  (C, C): Two cannibals sailing the boat from bank-2 to bank-1. 

9.  (0, C): One cannibal sailing the boat from bank-1 to bank-2. 
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10.  (C,0): One cannibal sailing the boat from bank-2 to bank-1. 

 

SSS 

 

 

After 

application 

of rules 

Person in the 

river bank -1 

Person in the 

river bank -2 

Boat 

Position 

Start state M, M, M, C, C, C 0 Bank-1 

  5 M, M, C, C C, M Bank-2 

  2 M, M, M, C, C C Bank-1 

  7 M, M, M C, C, C Bank-2 

  10 M, M, M, C C, C Bank-1 

  3 M, C  C, C, M, M Bank-2 

  6 M, C, M, C C, M Bank-1 

  3 C, C C, M, M, M Bank-2 

  10 C, C, C M, M, M Bank-1 

  7 C C, C, M, M, M Bank-2 

  10 C, C C, M, M, M Bank-1 

  7 0 M, M, M, C, C, C Bank-2 

 

3.4.2 Real-World Problems: 

Example 1: Route finding problem: 

A route-finding problem is defined in terms of specified locations and 

transitions along links between them, such as web sites and in-car systems 

that provide driving directions, are relatively straightforward extensions of 

the Indian map example. Others, such as routing video streams in 

computer networks, military operations planning, and airline travel-

planning systems. 

Ex. Airline travel problem specified as follows: 

1) States: 

 Each state obviously includes a location (e.g., an airport) and the current 

time. 

2) Initial state: 

This is specified by the user‘s query. 

3) Actions: 

Take any flight from the current location, in any seat class, leaving after 

the current time, leaving enough time for within-airport transfer if needed. 
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The state resulting from taking a flight will have the flight‘s destination as 

the current location and the flight‘s arrival time as the current time 

5) Goal test: 

Are we at the final destination specified by the user? 

6) Path cost:  

This depends on monetary cost, waiting time, flight time, customs and 

immigration procedures, seat quality, time of day, type of airplane, 

frequent-flyer mileage awards, and so on. 

Touring Problem: 

This is closely related to route-finding problems, but with an important 

difference. Consider, for example, the problem visits every city in Fig. 3.1 

at least once. Starting and ending at Solapur. The actions correspond to 

trips between adjacent cities. Each state must include not just the current 

location but also the set of cities the agent has visited. So, the initial state 

would be In (Solapur), visited (Solapur). and the goal test would check 

whether the agent is in Bucharest and all 27 cities have been visited.  

Example 2: Travelling salesman problem (TSP problem) 

It is a touring problem in which each city must be visited exactly once. 

The aim is to find the shortest tour.  

1) States: 

Cities or locations 

Each city must be visited exactly once. Visited cities must be kept as state 

information. 

2) Initial state: 

Starting point, no cities visited. 

3) Successor function: 

Move from one city to another city. 

4) Goal test: 

All cities visited, Agent at the initial location. 

5) Path cost: 

Distance between cities. 
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Example 3: VLSI Layout Problem: 

problem requires positioning millions of components and connections on a 

chip to minimize area, minimize circuit delays, minimize stray 

capacitances, and maximize manufacturing yield.  

1) States: 

Position of components, wires on a chip. 

2) Initial State: 

Incremental: no components placed 

Complete-state: All components place (randomly, manually) 

3) Successor Function: 

Incremental: placed components, route wire 

Complete-state: move components, move wire 

4) Goal test: 

All components placed; components connected as specified 

5) Path cost:  

Complex. 

Example 4: Robot Navigation 

It is a generalization of the route-finding problem described earlier. Rather 

than following a discrete set of routes, a robot can move in a continuous 

space with (in principle) an infinite set of possible actions and states. For a 

circular robot moving on a flat surface, the space is essentially two-

dimensional. When the robot has arms and legs or wheels that must also 

be controlled, the search space becomes many-dimensional. 

1) States:  

Locations, Position of actuators. 

2) Initial state: 

Start position 

3) Successor Function: 

Movement, action of actuators 

4) Goal Test: 

Task-dependent 
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complex 

Example 5: Automatic assembly sequencing 

The aim is to find an order in which to assemble the parts of some object. 

If the wrong order is chosen, there will be no way to add some part later in 

the sequence without undoing some of the work already done. Checking a 

step in the sequence for feasibility is a difficult geometrical search 

problem closely related to robot navigation. 

1) States: 

 Location of components 

2) Initial state: 

No components assembled  

3) Successor function: 

Place component 

4) Goal test: 

System fully assembled 

5) Path cost: 

Number of moves 

3.5 SEARCHING FOR SOLUTIONS 

A solution is an action sequence, so search algorithms work by 

considering various possible action sequences. The possible action 

sequences starting at the initial state form a search tree with the initial 

state at the root; the branches are actions and the nodes correspond to 

states in the state space of the problem. A search problem where we aim 

not only at reaching our goal but also at doing so at minimal cost is an 

optimisation problem. 
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3.6 UNINFORMED SEARCH 

This topic covers several search strategies that come under the heading of 

uninformed search or blind search. This search algorithm uses only initial 

state, search operators and a test for a solution. It proceeds systematically 

by exploring nodes either randomly or in some predetermined order. 

3.6.1 Breadth First Search (BFS): 

It is a simple strategy in which the root node is expanded first, then all the 

successors of the root node are expanded next, then their successors, and 

so on. 

All the nodes are expanded at a given depth in the search tree before any 

nodes at the next level are expanded. 

It starts at the tree root and explores all of the neighbor nodes at the 

present depth prior to moving on to the nodes at the next depth level. 

 

Fig. 3.5 Breadth-first search on a simple binary tree. At each stage, 

the node to be expanded next is indicated by a marker 

Function Breadth First Search (start) 

Begins 

Open  start 

Closed [ ]; 

While(open # [ ]) do 

 Begin 

  X  remove first [open] 

  If x is goal then return success 

  Else begin 

   Right end (open)  generated child(x) 

   Closed  x; 

   End 

    End 

  Return fail 

  End 
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fashion. It maintains two lists namely open and closed.  Open list contains 

states which have been generated but whose children have not been 

expanded and closed list records states that have already been examined. 

Open is maintained as a queue First in first out (FIFO). 

Time complexity: Equivalent to the number of nodes traversed in BFS 

until the shallowest solution.                                                                      

Space complexity: Equivalent to how large can the fringe get.               

Completeness: BFS is complete, meaning for a given search tree, BFS 

will come up with a solution if it exists. 

Optimality: BFS is optimal as long as the costs of all edges are equal.  

3.6.2 Depth First Search (DFS): 

The algorithm starts at the root node and explores as far as possible along 

each branch before backtracking.  

DFS traverses the tree deepest node first. It would always pick the deeper 

branch until it reaches the solution. The strategy can be implemented by 

tree search with LIFO (Last in First Out) queue, most popularly known as 

a stack. 

Function Breadth First Search (start) 

Begins 

Open  start 

Closed [ ]; 

While (open # [ ]) do 

 Begin 

  X  remove first [open] 

  If x is goal then return success 

  Else begin 

   Left end (open)  generated child(x) 

   Closed  x; 

   End 

    End 

  Return fail 

  End 

DFS always expands the deepest nodes in the current fringe of the search 

tree. The search proceeds immediately to the deepest level of the search 

tree. 
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Fig. 3.6 Depth-first search on a binary tree 

3.6.3 Uniform Cost Search: 

When all step costs are equal, breadth-first search is optimal because it 

always expands the shallowest unexpanded node. By a simple extension, 

we can find an algorithm that is optimal with any step-cost function. 

Instead of expanding the shallowest node, uniform-cost search expands the 

node n with the lowest path cost g(n).  

 

Fig. 3.7 Uniform cost search on a binary tree 

Uniform-cost search does not care about the number of steps a path has, 

but only about their total cost. Therefore, it will get stuck in an infinite 

loop if there is a path with an infinite sequence of zero-cost actions. 

Uniform-cost search is guided by path costs rather than depths. 

The primary goal of the uniform-cost search is to find a path to the goal 

node which has the lowest cumulative cost. 

Uniform-cost search expands nodes according to their path costs form the 

root node.  

It can be used to solve any graph/tree where the optimal cost is in demand.  

A uniform-cost search algorithm is implemented by the priority queue. It 

gives maximum priority to the lowest cumulative cost.  
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edges is the same. 

3.6.4 Depth Limited Search: 

The problem of Depth First Search can be solved by supplying DFS with a 

predetermined depth limit L.  Nodes at depth L are treated as if they have 

no successors. It shows the infinite path problem. This approach 

introduces an additional source of incompleteness when L<d i.e. the 

shallowest goal is beyond the depth limit L. 

Depth-limited search can be terminated with two Conditions of failure: 

Standard failure value: It indicates that problem does not have any 

solution.  

Cutoff failure value: It defines no solution for the problem within a given 

depth limit. 

 

Fig. 3.8 Depth limited search tree 

In the above example start node is S, Goal node is J and limit is 2.  

Completeness: DLS search algorithm is complete if the solution is above 

the depth-limit. 

Time Complexity: Time complexity of DLS algorithm is O(b
ℓ
). 

Space Complexity: Space complexity of DLS algorithm is O(b×ℓ). 

Optimal: Depth-limited search can be viewed as a special case of DFS, 

and it is also not optimal even if ℓ>d. 

3.6.9 Iterative Deepening Depth-First: 

The iterative deepening algorithm is a combination of DFS and BFS 

algorithms. This search algorithm finds out the best depth limit and does it 

by gradually increasing the limit until a goal is found. 

This algorithm performs depth-first search up to a certain "depth limit", 

and it keeps increasing the depth limit after each iteration until the goal 

node is found. 
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This Search algorithm combines the benefits of Breadth-first search's fast 

search and depth-first search's memory efficiency. 

The iterative search algorithm is useful uninformed search when search 

space is large, and depth of goal node is unknown. 

Function iterative deepening search (problem): returns solution or 

failure 

 Begin 

  Inputs, problem, depth 

   For depth 0 to ∞ do 

   Result <- depth – limited – search (problem, depth) 

  If result # cut-off then return result. 

 End. 

 

Fig. 3.9 Iterative deepening depth first search tree 

1‘st Iteration  A 

2nd Iteration  A, B, C 

3rd Iteration  A, B, D, E, C, F, G 

4th Iteration  A, B, D, H, I, E, C, F, K, G 

In the fourth iteration, the algorithm will find the goal node. 

Completeness: 

This algorithm is complete is if the branching factor is finite. 

Time Complexity: 

Let's suppose b is the branching factor and depth is d then the worst-case 

time complexity is O(b
d
). 

Space Complexity: 

The space complexity of IDDFS will be O(bd). 
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IDDFS algorithm is optimal if path cost is a non- decreasing function of 

the depth of the node. 

3.6.10 Bidirectional Search: 

Bidirectional search algorithm runs two simultaneous searches, one form 

initial state called as forward-search and other from goal node called as 

backward-search, to find the goal node.  

Bidirectional search substitutes one single search graph with two small 

subgraphs in which one starts the search from an initial vertex and other 

starts from goal vertex. The search stops when these two graphs intersect 

each other. Bidirectional search can use search techniques such as BFS, 

DFS, DLS, etc 

 

Fig. 3.10 Bidirectional search tree 

In the above search tree, bidirectional search algorithm is applied.  

This algorithm divides one graph/tree into two sub-graphs. It starts 

traversing from node 1 in the forward direction and starts from goal node 

16 in the backward direction. The algorithm terminates at node 9 where 

two searches meet. 

Completeness: Bidirectional Search is complete if we use BFS in both 

searches. 

Time Complexity: Time complexity of bidirectional search using BFS 

is O(b
d
). 

Space Complexity: Space complexity of bidirectional search is O(b
d
). 

Optimal: Bidirectional search is Optimal. 
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3.7 INFORMED SEARCH STRATEGIES 

In this topic we will see more efficient search strategy, the informed 

search strategy or Heuristic Search. It is a search strategy that uses 

problem-specific knowledge beyond the definition of the problem itself. 

The term Heuristic is used for algorithms which find solutions among all 

possible ones. Heuristic is a rule of thumb or judgement technique that 

leads to a solution but provides no guarantee of success.  

3.7.1 Greedy Best-First Search: 

Best First Search is a combination of depth-first (DFS) and breadth-first 

(BFS) search methods. It is used to select the single path at a time which is 

more promising one than the current path. The most promising node is 

chosen for expansion. It evaluates nodes by using just the heuristic 

function; that is, f(n) = h(n). 

Best first search algorithm: 

Step 1: Put the initial node in OPEN. 

Step 2: Pick the best node on OPEN, use heuristic method to find the 

promising node, generate its successor. 

Follow the steps to each of its successor, do the step 2 till OPEN is not 

empty and the goal is not achieved. 

Step 3: Evaluate the non-generated nodes so far add them to the list of 

OPEN and record their parents. If they have been generated before, 

change the parent if new path is better than previous one. 

Advantages: 

Best first search can switch between BFS and DFS by gaining the 

advantages of both the algorithms. 

This algorithm is more efficient than BFS and DFS algorithms. 

Disadvantages: 

It can behave as an unguided depth-first search in the worst-case scenario. 

It can get stuck in a loop as DFS. 

This algorithm is not optimal. 

State H(n) 

S 13 

A 12 

B 4 

C 7 

D 3 

E 8 
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H 4 

I 9 

G 0 

 

Fig. 3.11 Greedy best first search graph. 

Expand the nodes of S and put in the CLOSED list 

Initialization: Open [A, B], Closed [S] 

Iteration 1: Open [A], Closed [S, B] 

Iteration 2: Open [E, F, A], Closed [S, B] 

: Open [E, A], Closed [S, B, F] 

Iteration 3: Open [I, G, E, A], Closed [ S, B, F] 

: Open [I, E, A], Closed [S, B, F, G] 

Hence the final solution path will be: S----> B----->F----> G 

Time Complexity: The worst-case time complexity of Greedy best first 

search is O(b
m

). 

Space Complexity: The worst-case space complexity of Greedy best first 

search is O(b
m

). Where, m is the maximum depth of the search space. 

Complete: Greedy best-first search is also incomplete, even if the given 

state space is finite. 

Optimal: Greedy best first search algorithm is not optimal. 

3.7.2 A* search: 

A* combines the value of the heuristic function h(n) and the cost to reach 

the node n, g(n).  
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F(n)= g(n)+h(n) 

Since g(n) gives the path cost from the start node to node n, and h(n) is the 

estimated cost of the cheapest path from n to the goal, we have f(n) = 

estimated cost of the cheapest solution through n.  

It has combined features of UCS and greedy best-first search, by which it 

solves the problem efficiently. A * search algorithm finds the shortest path 

through the search space using the heuristic function. 

This search algorithm expands less search tree and provides optimal result 

faster. 

A* algorithm is similar to UCS except that it uses g(n)+h(n) instead of 

g(n). 

Algorithm of A* Algorithm: 

Step1: Place the starting node in the OPEN list. 

Step 2: Check if the OPEN list is empty or not, if the list is empty then 

return failure and stops. 

Step 3: Select the node from the OPEN list which has the smallest value 

of evaluation function (g+h), if node n is goal node, then return success 

and stop, otherwise 

Step 4: Expand node n and generate all of its successors, and put n into 

the closed list. For each successor n', check whether n' is already in the 

OPEN or CLOSED list, if not then compute evaluation function for n' and 

place into Open list. 

Step 5: Else if node n' is already in OPEN and CLOSED, then it should be 

attached to the back pointer which reflects the lowest g(n') value. 

Step 6: Goto to Step 2. 

Advantages: 

A* search algorithm is the best algorithm than other search algorithms. 

A* search algorithm is optimal and complete. 

This algorithm can solve very complex problems. 

Disadvantages: 

It does not always produce the shortest path as it mostly based on 

heuristics and approximation. 

A* search algorithm has some complexity issues. 

The main drawback of A* is memory requirement as it keeps all generated 

nodes in the memory, so it is not practical for various large-scale 

problems. 
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State H(n) 

S 5 

A 3 

B 4 

 C 2 

D 6 

G 0 

 

 

 

 Fig. 3.12 A * search graph 

Initialization: {(S, 5)} 

Iteration1: {(S--> A, 4), (S-->G, 10)} 

Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)} 

Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S--> A-->B, 

7), (S-->G, 10)} 

Iteration 4 will give the final result, as S--->A--->C--->G it provides the 

optimal path with cost 6. 

Complete: A* algorithm is complete as long as: 

Branching factor is finite. 

Cost at every action is fixed. 

Time complexity: It depends upon heuristic function. the time complexity 

is O(b^d), where b is the branching factor. 

Space Complexity: The space complexity of A* search algorithm 

is O(b^d). 
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Optimal: A* search algorithm is optimal. 

1 2 3 

8  4 

7 6 5 

 

3.8 HEURISTIC FUNCTIONS 

Heuristic function estimates the cost of an optimal path between a pair of 

states in a single agent path-finding problem. Heuristic helps in solving 

problems, even though there is no guarantee that is will never lead in the 

wrong direction. 

A good heuristic function is determined by its efficiency. More is the 

information about the problem, more is the processing time. 

Some toy problems, such as 8-puzzle, 8-queen, tic-tac-toe, etc., can be 

solved more efficiently with the help of a heuristic function. 

Consider the following 8-puzzle problem where we have a start state and a 

goal state. Our task is to slide the tiles of the current/start state and place it 

in an order followed in the goal state. There can be four moves either left, 

right, up, or down. 

1 2 3 

8 6  

  7 5 4 

 

  Start state Goal state 

   

Fig. 3.13 8-puzzle solution 
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3.9 SUMMARY 

To solve Artificial Intelligence problem, we need to follow certain steps. 

Firstly, define the problem precisely it means specify the problem space, 

the operators for moving within the space and the starting and goal state. 

Secondly, analyse the problem and finally, select one or more techniques 

for representing knowledge and for problem solving and apply it to the 

problem. 

A problem consists of five parts: the initial state, a set of actions, a 

transition model describing the results of those actions, a goal test 

function, and a path cost function. The environment of the problem is 

represented by a state space. A path through the state space from the initial 

state to a goal state is a solution 

Uninformed search methods have access only to the problem definition. 

The basic algorithms are as follows:  

 Breadth-first search expands the shallowest nodes first; it is complete, 

optimal for unit step costs, but has exponential space complexity.  

 Uniform-cost search expands the node with lowest path cost, g(n), and 

is optimal for general step costs.  

 Depth-first search expands the deepest unexpanded node first. It is 

neither complete nor optimal, but has linear space complexity. Depth-

limited search adds a depth bound.  

 Iterative deepening search calls depth-first search with increasing 

depth limits until a goal is found. It is complete, optimal for unit step 

costs, has time complexity comparable to breadth-first search, and has 

linear space complexity. 

 Bidirectional search can enormously reduce time complexity, but it is 

not always applicable and may require too much space.  

 Informed search methods may have access to a heuristic function h(n) 

that estimates the cost of a solution from n.  

 The generic best-first search algorithm selects a node for expansion 

according to an evaluation function.  

 Greedy best-first search expands nodes with minimal h(n). It is not 

optimal but is often efficient. 

 A∗ search expands nodes with minimal f(n) = g(n) + h(n). A∗ is 

complete and optimal, provided that h(n) is admissible (for TREE-

SEARCH) or consistent (for GRAPH-SEARCH). 

3.10 EXERCISES 

1.  Compare uniformed search with informed search. 

2.  What are the problems with Hill climbing and how can they be solved 
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3.  State the best first search algorithm. 

4.  Explain advantages and disadvantages of DFS and BFS. 

5.  You have two jugs, measuring 8 gallons, 5 gallons and a water faucet. 

You can fill the jugs up or empty them out from one to another or 

onto the ground. You need to measure out exactly three gallons. 

6.  Three towers labelled A, B and C are given in which tower A has 

finite number of disks (n) with decreasing size. The task of the game 

is to more the disks from tower A to tower C using tower B as an 

auxiliary. The rules of the game are as follows: 

1. Only one disk can be moved among the towers at any given time. 

2. Only the ―top‖ disk can be removed. 

3. No large disk can site over a small disk. 

Solve the problem and describe the following terms:  

a) State b) Initial state c) Goal state d) Operators e) Solution 

7  Write down the heuristic function for 8-puzzle problem and solve the 

problem. 

8  What is the use of online search agent in unknown environment? 

9  Define the following terms in reference to Hill Climbing 

 a) Local Maximum 

 b) Plateau 

 c) Ridge 

10  Using suitable example, illustrate steps of A * search. Why is A* 

search better than best first search? 

11  Describe A* search algorithm. Prove that A* is complete and optimal 
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4.1 OBJECTIVES 

After this chapter, you should be able to: 

 Understand the local search algorithms and optimization problems. 

 Understand searching techniques of non-deterministic action. 

 Familiar with partial observation. 

 Understand online search agents and unknown environments. 

4.2 INTRODUCTION 

This chapter covers algorithms that perform purely local search in the state 

space, evaluating and modifying one or more current states rather than 

systematically exploring paths from an initial state. These algorithms are 

suitable for problems in which all that matters is the solution state, not the 

path cost to reach it. The family of local search algorithms includes 

methods inspired by statistical physics (simulated annealing) and 

evolutionary biology (genetic algorithms). 

The search algorithms we have seen so far, more often concentrate on path 

through which the goal is reached. But the problem does not demand the 

path of the solution and it expects only the final configuration of the 

solution then we have different types of problem to solve. 

Local search algorithm operates using single path instead of multiple 

paths. They generally move to neighbours of the current state. Local 

algorithms use very little and constant amount of memory. Such kind of 

algorithms have ability to figure out reasonable solution for infinite state 

spaces. 

They are useful for solving pure optimization problems. For search where 

path does not matter, Local search algorithms can be used, which operates 
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by using a single current state and generally move only to neighbours of 

the state.  

4.3 LOCAL SEARCH ALGORITHMS  

• Algorithms that perform purely local search in the state space, 

evaluating and modifying one or more current states rather than 

systematically exploring paths from an initial state. 

• These algorithms are suitable for problems in which all that matters is 

the solution state, not the path cost to reach it. 

•  The family of local search algorithms includes methods inspired by 

statistical physics (simulated annealing) and evolutionary biology 

(genetic algorithms). 

• This systematicity is achieved by keeping one or more paths in memory 

and by recording which alternatives have been explored at each point 

along the path. 

• When a goal is found, the path to that goal also constitutes a solution to 

the problem. 

•  In many problems, however, the path to the goal is irrelevant. 

• Local search algorithms operate using CURRENT NODE a single 

current node (rather than multiple paths) and generally move only to 

neighbors of that node. 

• Local Search Algorithm use very little memory—usually a constant 

amount; and they can often find reasonable solutions in large or infinite 

(continuous) state spaces for which systematic algorithms are 

unsuitable. 

• It is also useful for solving pure optimization problems, in which the 

aim is to find the best state according to an objective function. 

• Hill Climbing is a technique to solve certain optimization problems. 

• In these techniques, we start with a sub-optimal solution and the 

solution is improved repeatedly until some condition is maximized. 

• The idea of starting with a sub-optimal solution is compared to walking 

up the hill, and finally maximizing some condition is compared to 

reaching the top of the hill. 

Algorithm: 

1)  Evaluate the initial state. If it is goal state then return and quit. 

2)  Loop until a solution is found or there are no new operators left. 

3)  Select & apply new operator. 

4) Evaluate new state 

If it is goal state, then quit. 
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If it is better than current state then makes it new current state. 

If it is not better than current then go to step 2. 

4.3.1 Hill Climbing search: 

It is so called because of the way the nodes are selected for expansion. At 

each point search path, successor node that appears to lead most quickly to 

the top of the hill is selected for exploration. It terminates when it reaches 

a ―peak‖ where no neighbour has a higher value. This algorithm doesn’t 

maintain a search tree so the data structure for the current node need only 

record the state and the value of the objective function. Hill Climbing 

Algorithm is sometimes called as a greedy local search because it grabs a 

good neighbour state without thinking ahead about where to go next. 

Unfortunately, hill climbing suffers from following problems: 

This is shown in Figure 4.2.1 

 

Fig. 4.1 Hill Climbing 

 Local maxima: 

Local maximum is a state which is better than its neighbour states, but 

there is also another state which is higher than it. They are also called as 

foot-hills. It is shown in Fig. 4.2.2 

 

                                 Local Maximum 

 

 

 

 

 

Fig. 4.2 Local maximum or Foot Hill 
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Solution to this problem: 

Backtracking technique can be a solution of the local maximum in state 

space landscape. Create a list of the promising path so that the algorithm 

can backtrack the search space and explore other paths as well. 

 Plateau: 

It is a flat area of the search space in which a whole set of neighbouring 

states (nodes) have the same heuristic value. A plateau is shown in Fig. 

4.3. 

 

  

          Plateau/ Flat maximum 

 

 

 

Fig 4.3 Plateau 

Solution to this problem: 

The solution for the plateau is to take big steps or very little steps while 

searching, to solve the problem. Randomly select a state which is far away 

from the current state so it is possible that the algorithm could find non-

plateau region. 

Another solution is to apply small steps several times in the same 

direction. 

 Ridge: 

It’s an area which is higher than surrounding states but it cannot be 

reached in a single move. It is an area of the search space which is higher 

than the surrounding areas and that itself has a slope. Ridge is shown in 

Fig. 4.4. 

  Ridge 

 

 

 

Fig. 4.4 Ridge 
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Solution to this problem: 

Trying different paths at the same time is a solution. With the use of 

bidirectional search, or by moving in different directions, we can improve 

this problem. 

Advantages of Hill Climbing: 

It can be used in continuous as well as discrete domains. 

Disadvantages of Hill Climbing: 

It is not an efficient method. 

It is not suitable for those problems whose value of heuristic function 

drops off suddenly when solution may be in sight. 

It is local method as it looks at the immediate solution and decides about 

the next step to be taken rather than exploring all consequences before 

taking a move. 

4.3.2 Simulated Annealing: 

A hill-climbing algorithm which never makes a move towards a lower 

value guaranteed to be incomplete because it can get stuck on a local 

maximum. And if algorithm applies a random walk, by moving a 

successor, then it may complete but not efficient. Simulated Annealing is 

an algorithm which yields both efficiency and completeness. In 

mechanical term Annealing is a process of hardening a metal or glass to a 

high temperature then cooling gradually, so this allows the metal to reach 

a low-energy crystalline state.  

The same process is used in simulated annealing in which the algorithm 

picks a random move, instead of picking the best move. If the random 

move improves the state, then it follows the same path. Otherwise, the 

algorithm follows the path which has a probability of less than 1 or it 

moves downhill and chooses another path. 

Algorithm: 

1.  Evaluate the initial state. If it is also goal state, then return it and quit. 

Otherwise, continue with the initial state as the current state. 

2.  Initialize BEST-SO-FAR to the current state. 

3.  Initialize T according to the annealing schedule. 

4.  Loop until a solution is found or until there are no new operators left 

to be applied in the current state. 

a)  Select an operator that has not yet been applied to the current 

state and apply it to produce a new state. 

b)  Evaluate the new state. Compute 
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  E = (value of current)- (value of new state) 

 If the new state is a goal state, then return it and quit. 

 If it is not goal state but is better than the current state, then make 

it the current state. Also set BEST-SO-FAR to this new state. 

 If it is not better than current state, then make it the current state 

with probability p’ as defined above. This step is usually 

implemented by invoking a random number generator to produce 

a number in the range [0, 1]. If that number is less than p’ then 

the move is accepted. Otherwise, do nothing. 

c) Revise T as necessary according to the annealing schedule. 

5. Return BEST-SO-FAR, as the answer. 

To implement this revised algorithm, it is necessary to select an annealing 

schedule, which has three components. The first is the initial value to be 

used for temperature. The second is the criteria that will be used to decide 

when the temperature of the system should be reduced. The third is a 

amount by which the temperature will be reduced each time it is changed. 

There may also be a fourth component of the schedule, namely, when to 

quit. Simulated annealing is often used to solve problems in which the 

number of moves from a given sate is very large. For such problems, it 

may not make sense to try all possible moves. 

4.3.3 Local beam search: 

In this algorithm, it holds k number of states at any given time. At the 

start, these states are generated randomly. The successors of these k states 

are computed with the help of objective function. If any of these 

successors is the maximum value of the objective function, then the 

algorithm stops. Otherwise, the (initial k states and k number of successors 

of the states = 2k) states are placed in a pool. The pool is then sorted 

numerically. The highest k states are selected as new initial states. This 

process continues until a maximum value is reached. function Beam 

Search (problem, k), returns a solution state.  

Start with k randomly generated states 

Loop 

 Generate all successors of all k states 

 If any of the states =solution, then return the state 

 Else select the k best successors 

End 

4.3.4 Genetic algorithms: 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms that 

belong to the larger part of evolutionary algorithms. Genetic algorithms 

are based on the ideas of natural selection and genetics. These are 
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intelligent exploitation of random search provided with historical data to 

direct the search into the region of better performance in solution space. 

They are commonly used to generate high-quality solutions for 

optimization problems and search problems. 

Genetic algorithms simulate the process of natural selection which means 

those species who can adapt to changes in their environment are able to 

survive and reproduce and go to next generation. In simple words, they 

simulate ―survival of the fittest‖ among individual of consecutive 

generation for solving a problem. Each generation consist of a population 

of individuals and each individual represents a point in search space and 

possible solution. Each individual is represented as a string of 

character/integer/float/bits. This string is analogous to the Chromosome. 

Steps of genetic algorithms: 

Initial Population:  

The process begins with a set of individuals which is called a Population. 

Each individual is a solution to the problem you want to solve. An 

individual is characterized by a set of parameters (variables) known as 

Genes. Genes are joined into a string to form a Chromosome (solution). In 

a genetic algorithm, the set of genes of an individual is represented using a 

string, in terms of an alphabet. Usually, binary values are used (string of 

1s and 0s). We say that we encode the genes in a chromosome. 

Fitness Function:  

The fitness function determines how fit an individual is (the ability of an 

individual to compete with other individuals). It gives a fitness score to 

each individual. The probability that an individual will be selected for 

reproduction is based on its fitness score.  

Selection:  

The idea of selection phase is to select the fittest individuals and let them 

pass their genes to the next generation. Two pairs of individuals (parents) 

are selected based on their fitness scores. Individuals with high fitness 

have more chance to be selected for reproduction. 

Crossover: 

It is the most significant phase in a genetic algorithm. For each pair of 

parents to be mated, a crossover point is chosen at random from within the 

genes. Offspring are created by exchanging the genes of parents among 

themselves until the crossover point is reached.  

Mutation:  

In certain new offspring formed, some of their genes can be subjected to a 

mutation with a low random probability. This implies that some of the bits 

in the bit string can be flipped. 
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Fig. 4.5 The genetic algorithm, illustrated for digit strings representing 8-

queens states. The initial population in (a) is ranked by the fitness function 

in (b), resulting in pairs for mating in (c). They produce offspring in (d), 

which are subject to mutation in (e) 

4.4 SEARCHING WITH NON-DETERMINISTIC 

ACTION 

When the environment is either partially observable or nondeterministic 

(or both), precepts become useful. When the environment is 

nondeterministic, precepts tell the agent which of the possible outcomes of 

its actions has actually occurred. In both cases, the future precepts cannot 

be determined in advance and the agent’s future actions will depend on 

those future precepts. So, the solution to a problem is not a sequence but a 

contingency plan (also known as a strategy) that specifies what to do 

depending on what precepts are received. 

4.4.1 The erratic vacuum world: 

There are three actions- Left, right and Suck. And the goal is to clean up 

all the dirt.  

 

Fig. 4.6 The eight possible states of the vacuum world; states 7 and 8 

are goal states. 
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In the erratic vacuum world, the Suck action works as follows:  

•  When applied to a dirty square the action cleans the square and 

sometimes cleans up dirt in an adjacent square, too.  

•  When applied to a clean square the action sometimes deposits dirt on 

the carpet.  

•  a contingency plan such as the following: 

[Suck, if State = 5 then [Right, Suck] else [ ]] 

If the environment is observable, deterministic, and completely known, 

then the problem is trivially solvable by any of the algorithms. 

For example, if the initial state is 1, then the action sequence [Suck, Right, 

Suck] will reach a goal state, 8. Thus, solutions for nondeterministic 

problems can contain nested if–then–else statements; 

4.4.2 AND- OR search trees: 

A solution to a problem can be obtained by decomposing it into smaller 

sub-problems. Each of this sub-problem can then be solved to get its 

solution. These sub-solutions can then be recombined to get a solution as a 

whole. OR graph finds a single path. 

AND arc may point to any number of successor nodes, all of which must 

be solved in order for an arc to point a solution. This is actually called as 

an AND-OR graph or AND/OR tree. 

 

Fig. 4.7 An algorithm for searching AND–OR graphs generated by 

nondeterministic environments. 

Figure 4.8 gives a recursive, depth-first algorithm for AND–OR graph 

search. One key aspect of the algorithm is the way in which it deals with 

cycles, which often arise in nondeterministic problems (e.g., if an action 

sometimes has no effect or if an unintended effect can be corrected). If the 

current state is identical to a state on the path from the root, then it returns 

with failure. This doesn’t mean that there is no solution from the current 

state; it simply means that if there is a noncyclic solution, it must be 

reachable from the earlier incarnation of the current state, so the new 
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incarnation can be discarded. With this check, we ensure that the 

algorithm terminates in every finite state space, because every path must 

reach a goal, a dead end, or a repeated state. 

Example. 

 

 

 

 

 

  

 

 

Fig. 4.8 AND/OR graph example 

4.5 SEARCHING WITH PARTIAL OBSERVATIONS 

When an environment is partially observable, an agent can be in one of 

several possible states. An action leads to one of several possible 

outcomes. 

To solve these problems, an agent maintains a belief state that represent 

the agent’s current belief about the possible physical state it might be in, 

given the sequence of actions and percepts up to that point. 

Agents percepts cannot pin down the exact state the agent is in 

Let Agents have Belief states 

◦ Search for a sequence of belief states that leads to a goal 

◦ Search for a plan that leads to a goal 

Sensor-less vacuum world 

Assume belief states are the same but no location or dust sensors 

Initial state = {1, 2, 3, 4, 5, 6, 7, 8} 

Action: Right 

Result = {2, 4, 6, 8} 

Right, Suck 

Result = {4, 8} 

Right, Suck, Left, Suck 

Result = {7} guaranteed! 

Goal: Buy a bike 

Goal= Get a bike 

Goal: Steal a bike Goal: Get some 

money 
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Fig. 4.2.9 Sensor less vacuum world 

4.5.1 Searching with no observation: 

It is instructive to see how the belief-state search problem is constructed. 

Suppose the underlying physical problem P is defined by ACTIONSP, 

RESULTP, GOAL-TESTP, and STEP-COSTP.  

Then we can define the corresponding sensor less problem as follows: 

• Belief states: The entire belief-state space contains every possible set 

of physical states. If P has N states, then the sensor less problem has up 

to 2N states, although many may be unreachable from the initial state.  

• Initial state: Typically, the set of all states in P, although in some cases 

the agent will have more knowledge than this. 

• Actions: This is slightly tricky. Suppose the agent is in belief state b = 

{s1, s2}, but ACTIONS P(s1) ≠ ACTIONS (s2); then the agent is 

unsure of which actions are legal. 

 Transition model: The agent doesn’t know which state in the belief 

state is the right one; so as far as it knows, it might get to any of the 

states resulting from applying the action to one of the physical states in 

the belief state. 

 Goal test: The agent wants a plan that is sure to work, which means 

that a belief state satisfies the goal only if all the physical states in it 

satisfy GOAL-TEST P. The agent may accidentally achieve the goal 

earlier, but it won’t know that it has done so. 

 Path cost: This is also tricky. If the same action can have different 

costs in different states, then the cost of taking an action in a given 

belief state could be one of several values. 
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Fig. 4.10 (a) Predicting the next belief state for the sensorless vacuum 

world with a deterministic action, right. (b) Prediction for the same 

belief state and action in the slippery version of the sensorless vacuum 

world. 

4.5.2 Searching with observations: 

For a general partially observable problem, we have to specify how the 

environment generates percepts for the agent. For example, we might 

define the local-sensing vacuum world to be one in which the agent has a 

position sensor and a local dirt sensor but has no sensor capable of 

detecting dirt in other squares. The formal problem specification includes 

a PERCEPT(s) function that returns the percept received in a given state. 

(If sensing is nondeterministic, then we use a PERCEPTS function that 

returns a set of possible percepts.) For example, in the local-sensing 

vacuum world, the PERCEPT in state 1 is [A, Dirty]. Fully observable 

problems are a special case in which PERCEPT(s) = s for every state s, 

while sensorless problems are a special case in which PERCEPT(s) = null. 

• The ACTIONS, STEP-COST, and GOAL-TEST are constructed from 

the underlying physical problem just as for sensorless problems, but 

the transition model is a bit more complicated. 

• The prediction stage is the same as for sensorless problems: given the 

action a in belief state b, the predicted belief state is ˆb = PREDICT 

(b, a). 

• The observation prediction stage determines the set of percepts o that 

could be observed in the predicted belief state: POSSIBLE-

PERCEPTS (ˆb) = {o : o = PERCEPT(s) and s ∈ ˆb} .  

• The update stage determines, for each possible percept, the belief state 

that would result from the percept. The new belief state bo is just the 

set of states in ˆb that could have produced the percept: bo = 

UPDATE (ˆb, o) = {s : o = PERCEPT(s) and s ∈ ˆb}. 

• Putting these three stages together, we obtain the possible belief states 

resulting from a given action and the subsequent possible percepts: 

RESULTS (b, a) = {bo : bo = UPDATE(PREDICT(b, a), o) and o ∈ 

POSSIBLE-PERCEPTS(PREDICT(b, a))} . 
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Fig.4.10 Two example of transitions in local-sensing vacuum worlds. (a) 

In the deterministic world, Right is applied in the initial belief state, 

resulting in a new belief state with two possible physical states; for those 

states, the possible percepts are [B, Dirty] and [B, Clean], leading to two 

belief states, each of which is a singleton. (b) In the slippery world, Right 

is applied in the initial belief state, giving a new belief state with four 

physical states; for those states, the possible percepts are [A, Dirty], [B, 

Dirty], and [B, Clean], leading to three belief states as shown. 

4.5.3 Solving partially observable problems: 

The preceding section showed how to derive the RESULTS function for a 

nondeterministic belief-state problem from an underlying physical 

problem and the PERCEPT function. 

To solve these problems, an agent maintains a belief state that represent 

the agent's current belief about the possible physical state it might be in, 

given the sequence of actions and percepts up to that point.  

Agent’s percepts cannot pin down the exact state the agent is in 

Let Agents have Belief states 

 Search for a sequence of belief states that leads to a goal 

 Search for a plan that leads to a goal 

For such formulation, the AND-OR search algorithm can be applied 

directly to derive a solution. Figure 4.2.11 shows part of the search tree for 

the local-sensing vacuum world, assuming an initial percept [A, Dirty]. 

The solution is the conditional plan [Suck, Right, if B state = {6} then 

Suck else [ ]] . 

 

Fig. 4.11 AND -OR search tree 

4.5.4 An agent for partially observable environments: 

The design of a problem-solving agent for partially observable 

environments is quite similar to the simple problem-solving agent. the 

agent formulates a problem, calls a search algorithm (such as AND-OR-

GRAPH-SEARCH) to solve it, and executes the solution. There are two 

main differences. First, the solution to a problem will be a conditional plan 
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rather than a sequence; if the first step is an if–then–else expression, the 

agent will need to test the condition in the if-part and execute the then-part 

or the else-part accordingly. Second, the agent will need to maintain its 

belief state as it performs actions and receives percepts. 

 

Fig. 4.12 Two prediction–update cycles of belief-state maintenance in the 

kindergarten vacuum world with local sensing. 

4.6 ONLINE SEARCH AGENTS AND UNKNOWN 

ENVIRONMENTS 

So far, we have concentrated on agents that use offline search algorithms. 

They compute a complete solution before setting foot in the real world and 

then execute the solution. In contrast, an online search agent interleaves 

computation and action: first it takes an action, then it observes the 

environment and computes the next action. Online search is a good idea in 

dynamic or semi dynamic domains—domains where there is a penalty for 

sitting around and computing too long.  

Online search is also helpful in nondeterministic domains because it 

allows the agent to focus its computational efforts on the contingencies 

that actually arise rather than those that might happen but probably won’t. 

Of course, there is a trade-off: the more an agent plans ahead, the less 

often it will find itself up the creek without a paddle. 

Online search is a necessary idea for unknown environments, where the 

agent does not know what states exist or what its actions do. In this state 

of ignorance, the agent faces an exploration problem and must use its 

actions as experiments in order to learn enough to make deliberation 

worthwhile.  

The canonical example of online search is a robot that is placed in a new 

building and must explore it to build a map that it can use for getting from 

A to B. 

4.6.1 Online search problem: 

An online search problem must be solved by an agent executing actions, 

rather than by pure computation. online search agents can build a map and 

find a goal if one exists. 

We assume a deterministic and fully observable environment but we 

stipulate that the agent knows only the following: 
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1. ACTIONS(s) 

2. The step-cost function  

3. GOAL-TEST(s). 

For example, in the maze problem shown in Figure, the agent does not 

know that going Up from (1,1) leads to (1,2); nor, having done that, does it 

know that going Down will take it back to (1,1). 

 Necessary in unknown environments 

 Robot localization in an unknown environment (no map) 

 Does not know about obstacles, where the goal is, that UP from (1,1) 

goes to (1, 2) 

 Once in (1, 2) does not know that down will go to (1, 1) 

 Some knowledge might be available 

 If location of goal is known, might use Manhattan distance heuristic  

 Competitive Ratio = Cost of shortest path without exploration/Cost of 

actual agent path 

 Irreversible actions can lead to dead ends and CR can become infinite. 

 Hill- Climbing is already an online search algorithm but stops at local 

optimal. 

 

Fig. 4.13 A simple maze problem 

4.6.2 Online search agents: 

After each action, an online agent receives a percept telling it what state it 

has reached; from this information, it can augment its map of the 

environment. An online algorithm, on the other hand, can discover 

successors only for a node that it physically occupies.  

To avoid traveling all the way across the tree to expand the next node, it 

seems better to expand nodes in a local order. Depth-first search has 

exactly this property because (except when backtracking) the next node 

expanded is a child of the previous node expanded. 

An online depth-first search agent is shown in Figure 4.2.14 
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Fig. 4.14 An online search agent that uses depth-first exploration. The 

agent is applicable only in state spaces in which every action can be 

―undone‖ by some other action 

It is fairly easy to see that the agent will, in the worst case, end up 

traversing every link in the state space exactly twice. For exploration, this 

is optimal; for finding a goal, on the other hand, the agent’s competitive 

ratio could be arbitrarily bad if it goes off on a long excursion when there 

is a goal right next to the initial state.  

Because of its method of backtracking, ONLINE-DFS-AGENT works 

only in state spaces where the actions are reversible. There are slightly 

more complex algorithms that work in general state spaces, but no such 

algorithm has a bounded competitive ratio. 

4.6.3 Online local search: 

Like depth-first search, hill-climbing search has the property of locality in 

its node expansions. In fact, because it keeps just one current state in 

memory, hill-climbing search is already an online search algorithm! 

Unfortunately, it is not very useful in its simplest form because it leaves 

the agent sitting at local maxima with nowhere to go. Moreover, random 

restarts cannot be used, because the agent cannot transport itself to a new 

state. 

Instead of random restarts, one might consider using a random walk to 

explore the environment. A random walk simply selects at random one of 

the available actions from the current state; preference can be given to 

actions that have not yet been tried. It is easy to prove that a random walk 

will eventually find a goal or complete its exploration, provided that the 

space is finite. On the other hand, the process can be very slow. 

 

Fig. 4.15 An environment in which a random walk will take exponentially 

many steps to find the goal 
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4.7 SUMMARY 

This chapter has examined search algorithms for problems beyond the 

―classical‖ case of finding the shortest path to a goal in an observable, 

deterministic, discrete environment. Local search methods such as hill 

climbing operate on complete-state formulations, keeping only a small 

number of nodes in memory. Several stochastic algorithms have been 

developed, including simulated annealing, which returns optimal solutions 

when given an appropriate cooling schedule. 

A genetic algorithm is a stochastic hill-climbing search in which a large 

population of states is maintained. New states are generated by mutation 

and by crossover, which combines pairs of states from the population. 

In nondeterministic environments, agents can apply AND–OR search to 

generate contingent plans that reach the goal regardless of which outcomes 

occur during execution.  

When the environment is partially observable, the belief state represents 

the set of possible states that the agent might be in. Standard search 

algorithms can be applied directly to belief-state space to solve sensor less 

problems, and belief-state AND–OR search can solve general partially 

observable problems. 

4.8 UNIT END QUESTIONS 

1  What do you mean by local maxima with respect to search technique? 

2  Explain Hill Climbing Algorithm. 

3  Explain AO* Algorithm. 

4  Explain a searching with nondeterministic action. 

5  Explain searching with partial observations. 

6  Write a note on simulated annealing. 

7  Explain a local search algorithm. 

8  Write a note on online search agents. 

9  Write a note on unknown environments. 

10  Consider the sensorless version of the erratic vacuum world. Draw the 

belief-state space reachable from the initial belief state {1, 2, 3, 4, 5, 

6, 7, 8}, and explain why the problem is unsolvable. 
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5.0 OBJECTIVE 

The objective of this chapter is to study the different strategies used by 

players to compete each other and try to win the game. 

5.1 INTRODUCTION 

In this chapter we will see Adversarial search method in which we 

examine the situation where agent compete with one another and try to 

defeat one another in order to win the game. Adversarial search is a game 

playing technique in which two or more players with conflicting goals are 

trying to explore the same search space for the solution. 
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5.2 GAMES  

In single agent environment the solution is expressed in the form of 

sequence of actions. But there might be a situation occur in a game 

playing where more than one agent searching for a solution in the same 

search space. The environment with more than one agent is called as 

multi-agent environment, in which each agent has to consider the action of 

other agent and how they affect its own welfare. Such conflicting goal 

give rise to the adversarial search. So, searches in which two or more 

players with conflicting goals are trying to explore the same search space 

for the solution are known as Games. 

Types of Games in AI: 

Perfect Information Game: In this game agent act sequentially and 

observe the state of the world before acting. Each agent acts to maximize 

its own utility. The agent has all the information about the game and they 

can monitor each other movements as well. E.g. Chess, Checkers etc. 

Imperfect information Game: In this type of game agent don’t have all 

information about the game and not aware of what’s going on. For e.g. tic-

toc-toe, blind bridge, battleship etc. 

Deterministic game- Deterministic games are follow a strict pattern and 

set of rules for the game. Change in state is fully determined by player 

move. For e.g. chess, Go, Checkers, tic-tac-toe etc. 

Non-Deterministic games: non-deterministic games have various 

unpredictable events and it involves a factor of chance or luck. So, change 

in state is partially determineds by chance. In this type of game each 

action response is not fixed. Such type of game is also called as stochastic 

games. E.g. Poker, Monopoly, Backgammon etc. 

Game Problem formulation: 

A game can be formally defined s a kind of search problem with various 

elements as follows 

 S0- initial state, which specifies how the game is set up at the start 

 Player(s)-defines which player has the move in a state 

 Actions(s)-returns the set of legal moves in a state. 

 Result (s, a)-The transition model defines the result of a move. 

 Terminal -Test(s)- A terminal test is true when the game is over and 

false otherwise. Terminal state is sate where game has ended. 

 Utility (s, p)- Utility function defines the final numeric value for a 

game that ends in terminal state s for player p. Let’s consider chess in 

which outcome is a win, lose or draw, with values +1, 0 or ½.  

In zero-sum game the total payoff to all players is the same for every 

instance of the game. Chess is a zero some game because every game has 

payoff of either 0+1, 1+0 or ½ + ½.  
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Game Tree:  

A game tree is defined by the initial state, ACTION and RESULT 

functions. A game tree is a tree where nodes indicate game states and 

edges indicate moves.  

We consider tic-tac-toe game with two player, one player call MAX and 

another player call MIN.  the following figure shows the part of game tree 

for tic-tac-toe. Max has nine possible moves from initial state. The player 

alternates between placing an X on MAX’s turn and O on MIN’s turn until 

reach up to leaf node. Leaf nodes corresponding to terminal state such that 

one plyer has three in a row or all the squares are filled. Both players will 

continue each node, and trying to keep each other from winning. In game 

tree there a layer for MIN and MAX called as ply. The numbers on leaf 

node indicate the utility value of the terminal state. By considering MAX 

point of view, high value is good for MAX and bad for MIN. In this either 

MAX win or MIN win or it’s draw. 

 

5.3 OPTIMAL DECISION IN GAMES 

The optimal solution in a normal search problem would be a sequence of 

actions that leads to a goal state or a terminal state. In adversarial search, 

MAX must find a contingent strategy, which specifies MAX’s move in the 

initial state, then as a result from every possible response by MIN, Max 

makes moves in the state, then MIN’s moves in the state resulting from 

every possible response by MAX to those moves and so on. 

Given a game tree, the optimal strategy can be determined from the 

minimax value of each node, which can be written as MINIMAXX(n). if 

both players play optimally from the start of the game until end of the 

m
unotes.in



 

 73 

Artificial Intelligence game, then the minimax value of a node is the utility of being in the 

corresponding state. The minimax value of a terminal state is just its 

utility. MAX prefers to move to a state of maximum value and MIN 

prefers a state of minimum value then 

 

5.3.1 Minimax Algorithm: 

Minimax is a barracking algorithm used in decision making and game 

theory.  It is used to find the optimal move for a player by assuming the 

opponent is also playing optimally.  It uses recursion to search through the 

game tree. A Minimax algorithm is often used to play games in AI such as 

Chess, tic-tac-toe, Go etc. Algorithm computes the minimax decision for 

the current state. 

In this algorithm there are two players, MAX and MIN. Both players play 

the game as one tries to get the highest score while the opponent tries to 

get the lowest score. In the MINIMAX algorithm, the complete game tree 

is explored based on depth first search algorithm. A MINIMAX algorithm 

proceeds down the tree until the terminal node, then backtracks the tree in 

a recursive manner. 

In the following diagram, the algorithm first recurses down to the three 

lowest left nodes and uses UTILITY function on them to find their values 

are 3,12 and 8 respectively. Then it takes the minimum vale 3 and return 

that value as the backup for node B. A same process gives backup value of 

2 for C and 2 for D. Finally, to get the backed-up value of 3 for the root 

node, we take the maximum of 3,2, and 2. 

If maximum depth of the tree is m and at each point legal moves are b then 

the time complexity of the minimax algorithm is O(b
m

). The algorithm 

that generates all action at once then, the space complexity is O(bm). The 

algorithm that generates actions one at a time then space complexity is 

O(m). 
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Example: 

1 The algorithm generates the entire game tree and apply the utility 

function to get the utility values for the terminal state. Now consider 

in the following diagram A is the initial state. 

 

1) Now, first find the utilities value for MAX, so we will compare 

each value in terminal state with initial value for MAX and 

determine the higher node values.  

So, for node D   max (-1, 8) => 8 

      for node E   max (-3, -1) => -1 

      for node F   max (2, 1) => 2 

      for node G   max (-3, 4) => 4 

 

2) Now, it’s a turn for minimizer to minimize the MAX utility, so it 

will compare all node values and finds the third layer node values. 

for node B   min (8, -1) =>-1 

for node C   min (2, 4) => 2 
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3) Now its turn for MAX to choose the maximum of all node values 

and find the maximum value for the root node 

for node A   max ( -1, 2) => 2 

 

5.3.2 Optimal Decision in Multiplayer Game: 

There are many popular games that allow more than two players.  Let us 

examine how we can use the minimax concept for multiplayer games. 

From a technical perspective, this seems straightforward but it raises some 

interesting new conceptual issues. First, its necessary to replace single 

value of each node with a vector of value. Consider a three player game 

with players A, B and C having a vector (VA,VB,VC) associated with each 

node. This vector gives the utility of the state from each player’s point of 

view for terminal states. This can be implemented using utility functions 

that return a vector of utilities.  
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Now, for nonterminal states, consider the node X in the game tree as 

shown in below figure. In that state, player C decides what to do. The two 

choices lead to terminal states with utility vectors (VA =1, VB =2, VC =6) 

and (VA =4, VB =2, VC =3). C choose the first move because 6 is bigger 

than 3, means if state X is reached, subsequently play will lead to a 

terminal state with utilities (VA =1, VB =2, VC =6). So, in this vector it 

backed-up the values of X. 

Algorithm for calculating minimax decision 

 

5.4 ALPHA-BETA PRUNING 

It is the modified version of minimax algorithm. In minimax search, the 

number of game states it has to examine is exponential in the depth of the 

tree. The exponent can’t be eliminated but we can cut it to half. Therefore, 

there is a way to compute   the correct minimax decision without checking 

every node in the game tree called as pruning. It involves two threshold 

Fig. The first three piles of game tree with three players (A, B, C).  
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alpha-beta pruning or alpha-beta algorithm. This can be applied at any 

depth of a tree. The alpha-beta pruning to a standard minimax algorithm 

returns the same moves but it removes all the nodes which are not 

affecting the final decision. It makes the algorithm fast by pruning these 

nodes. 

α=the best or the highest value choice found so far at any point along the 

path of maximizer. The initial value of beta is -∞. 

β= the best or lowest value choice found so far at any point along the path 

of minimizer. The initial value of beta is +∞. 

During alpha-beta search, the value of alpha and beta are updated as they 

go along, and prunes the remaining branches at a node as soon as the value 

of current node is known to be worse than the current alpha and beta 

values for MAX and MIN respectively. The main condition required for 

alpha-beta pruning is α >= β. 

Alpha-Beta Search Algorithm: 

 

Example: 

1) In the first step MAX player start with first move from node A       

where α= -∞ and β= +∞. Now these values of α and β   are passed to 

node B and then node D. 
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2) At node D the MAX player will play and calculate the α value. The 

value of α compare with 2 and 3. So max (2, 3) =3. So, 3 will be the 

value of α at node D. 

3) Now backtracking is performed at node B. The value of β will 

change as MIN player will play. Now β= +∞, will compare with the 

available subsequent nodes value. So, min (∞, 3) = 3, hence at node 

B now α= -∞, and β= 3. 

 

4) Algorithm traverse the next successor of node B which is nothing but 

node E. the value of α =-∞ and β =3. Now, MAX will play at node E 

and value of α will change. The current value of α will be compared 

with 5. So max (-∞, 5) =5. At node E, α =5 and β =3. But α>= β so 

the right successor of E will be pruned an algorithm stop traversing 

it. Now value of E node is 5. 
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5) Algorithm again backtrack the tree from node B to A. The value of 

alpha will be changes at node A. max (- ∞,3) =3 and β=+∞. Both the 

values are passed to right successor of A which is C. Now, at node 

C, α=3 and β= +∞, and these same values will be passed on to node 

F 

6) At node F value of alpha is compared with 0 so max (3,0)= 3 and 

compared with right child 1, so max (3,1) =3 but still α remains 3, 

but the node value of F will become 1. 

 

7) Node F return the node value 1 to node C. At node C the value of 

beta is changed so min (∞, 1) =1. Now at C, α=3 and β= 1, and again 

it satisfies the condition α>=β. Now G node will be pruned and 

algorithm not traverse the entire sub tree of G. C now returns the 

value of 1 to A here the best value for A is max (3, 1) = 3. And 

following is the final game tree. 
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5.4.1 Move Ordering: 

The effectiveness of alpha-beta pruning is highly dependent on the order 

in which states are examined. It can be of two types 

1) Worst ordering- Alpha beta pruning algorithm exactly work like 

minimax algorithm and it does not prune any leaves of the tree in 

some cases. So, in that case consumes more time because of alpha 

beta factors. Such a move pruning is known as worst ordering. the 

time complexity in for such case is O(b
m

). 

2) Ideal ordering- it occurs when lots of pruning happens in the tree. 

Best move is occurred at the left side of the tree. The time 

complexity in ideal ordering is O(b
m/2

).  

5.5 IMPERFECT REAL-TIME DECISION 

The minimax algorithm generates entire game search space while the 

alpha beta pruning algorithm allows to prune large path. The alpha beta 

has to search all the way to terminal state for at least a portion of search 

space. Due to the fact that moves have to be made within a reasonable 

amount of time, this depth is not usually practical. In order to make a 

move in reasonable amount of time, program should cut off the search 

earlier and heuristic evaluation function is applied. It effectively turns 

nonterminal nodes into terminal leaves. 

Alter minimax or alpha beta in two ways, first is replace the utility 

function by heuristic evaluation function EVAL. This estimates the 

position’s utility. And second, replace terminal test by a cutoff test that 

decides when to apply EVAL function. The following is the heuristic 

minimax for state s and maximum depth d 

H-MINIMAX (s, d)=         

                          EVAL(s)                                                                   if 

CUTOFF-TEST(s,d) 
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Player(s)=MAX                                                                                                                                           minaЄ Action(s) 

H-MINIMAX (RESULT(s,a),d+1                  if 

Player(s)=MIN 

5.5.1 Evaluation Function: 

This function returns an estimate of the expected utility of the game from 

a given position. the performance of a game playing program strongly 

depends on the quality of its evaluation function. It is possible that the 

wrong evaluation function will be led an agent to position that turns out to 

be lost. 

Design good evaluation function: 

1) The evaluation function should order the terminal states same as true 

utility function:  win states must better than draws, which in turn 

draw states must be better than loss states.  

2) The computation must not take too long. 

3) The evaluation function should be strongly correlated with the actual 

chances of winning for non-terminal states. 

The majority of evaluation functions work by calculating various features 

of the state. For example, there are features for the number of white 

pawns, black pawn and so on in chess. This all features define various 

categories of state. The state in each category has same value for all the 

features. Consider one category includes two pawns vs. one pawn. Any 

given category contains some states that led to wins, some draw and some 

led to losses.  The evaluation function cannot determine which states are 

which. It can return single value that reflect the proportion of states with 

each outcome.  

Suppose in two-pawns vs. one-pawn 72% of the states led to win, 20% 

loss and 8% draw. Then expected value=(0.72* 

1)+(0.20*0)+(0.08*0.5)=0.76. the expected value can be found for each 

category resulting in an evaluation function for each state. The evaluation 

function for terminal not return actual expected values as long as the 

ordering of the state is the same. Many evolutions function find separate 

numerical contributions from each feature and combine them to find total 

value. Weighted linear function is a kind of evaluation function that can be 

expressed as the following 

Eval(s) = w1 f1 (s) + w2 f2 (s) + … + wn fn(s) 

Where wi is a weight, fi is a feature of the position, the fi is the number of 

each kind of piece and the wi is the value of the pieces in a chess. 

5.5.2 Cutting off Search: 

Alpha-beta search is modified so that it will call the heuristic EVAL 

function when it is appropriate to cut off the search. So, we can modify 
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alpha beta search algorithm and replace terminal state with cutoff-test and 

utility is replace by EVAL. 

if Cutoff-Test(state, depth) then return Eval(state) 

by setting a fixed depth limit is the easiest way to control the amount of 

searching so that cutoff return true for all depth greater than fixed depth d. 

In order to select a move within the allocated time, the depth d is chosen 

for it. Iterative deepening search can be applied and also helps with move 

ordering. The program returns the move selected by the deepest completed 

search as time runs out. 

5.5.3 Forward Pruning: 

Forward pruning is a technique in which some moves at a given node are 

pruned immediately without further consideration. It reduces number of 

nodes t be examined at each level in a search process. Beam search is a 

one approach for forward pruning. Consider a beam of the n best moves 

for each ply rather than considering all possible moves. But in this 

approach, there is no guarantee that the best move will not be pruned 

away. 

The PROBCUT or probabilistic cut algorithm is a forward pruning version 

of alpha-beat search. Same as alpha-beta search PROBCUT also prunes 

node that are probably out side the window. This probability is computed 

by doing a shallow search and find the backed-up value v of a node. Based 

on past experience, estimate the probability that a score of v at depth d in 

the tree would be outside (α, β). 

5.5.4 Search Versus Lookup: 

Many games plying programs us table lookup for the opening and ending 

of game rather than search. In order to play each opening, the best advice 

of human expert is copied from books and input it in a table for the 

computer’s use.  Also, computer can collect statistics from a database of 

previously played games to see which opening sequences are led to win. 

After starting the game, in the early moves there are few choices and thus 

usually after 10 moves the program must switch form table lookup to 

search. Near the end of the game there are few possible positions and thus 

more chance to do lookup.  

A human can tell the general strategy for playing a game while computer 

on the other hand can completely solve the endgame by producing a 

policy, which is mapping from every possible state to the best move in that 

state. 

5.6 STOCHASTIC GAMES 

Many games are unpredictable in nature, such as dice throw., such type of 

games is called as stochastic games. The outcome of such games depends 

on skills as well as luck. For e.g., Gambling game Golf ball game, 

Backgammon game etc. 
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the starting of player’s turn to find the legal moves. Each player moves the 

pieces according to the dice are thrown. For example, if a player who 

plays with black piece roll the dice and dice shown 6-5 and has  four 

possible moves.  

 

The goal of the game is to move all one’s pieces off the board. White 

moves clockwise and black move anticlockwise. A piece can move to any 

position until multiple opponents are pieces are there. White knows his or 

her own legal moves but don’t know about the black legal moves. So 

white cannot build a standard game tree. A game tee in a backgammon 

must include chance node in addition with MIN and MAX node. The 

possible dice node denoted by the branches leading from each chance nod. 

Brach is labeled with the roll and its probability. There are 36 ways to 

thrown the dice, but because a 6-5 is the same as 5-6, there are only 21 

distinct rolls.  

 

Fig. Game tree for Backgammon position 
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The next step is to understand how to make correct decision and pick up 

the move that leads to the best position. The position does not define 

minimax value, instead expected value of position has been calculated. For 

chance node expected value is calculated by using the sum of the value 

over all outcomes, weighted by the probability of each chance action 

EXPECTIMINIMAX(s) = 

 UTILITY(s)                                                           if TERMINAL-TEST(s)  

maxa EXPECTIMINIMAX (RESULT(s, a))         if PLAYER(s) = MAX  

mina EXPECTIMINIMAX (RESULT(s, a))         if PLAYER(s) = MIN  

∑r P(r)EXPECTIMINIMAX (RESULT(s, r))       if PLAYER(s) = 

CHANCE 

Where r is possible dice roll, (RESULT(s, r) same state as s 

5.6.1 Evaluation functions for games of chance 

In the same way that heuristic function returns an estimate of the distance 

to the goal, an evaluation function returns an estimate of the expected 

utility of the game from a given position. The performance of the game 

playing program depends strongly on the quality of its evaluation function. 

An inaccurate evaluation function will guide an agent towards position 

that turns out to be lost. There are some ways to design good Evaluation 

function. 

First, the evaluation function should order the terminal states in the same 

way as the true utility function: state that are wins must evaluate better 

than draws, which in turn must be better than losses. Using the evaluation 

function would otherwise cause an agent to make mistakes even if it can 

see all the way to the end of the game. Second, the computation must not 

take too long. Third, the evaluation function must be strongly correlated 

with the actual chances of winning for nonterminal states. 

Most evaluation function works by calculating various features of the 

state. For example, in chess, we would have features for the number of 

white pawns, black pawns, white queen, black queen and so on. These 

combine feature defines various categories or equivalent classes of states. 

The state in each category has the same values for all the features. Any 

given category will contain some state that lead to wins, some that lead to 

draws and some that lead to losses. The evaluation function cannot know 

which state are which, but it can return a single value that reflects the 

proportion of states with each outcome. For example, suppose our 

experience suggests that 72% of the states encountered in the two-pawns 

vs. one-pawn category lead to a win 20% to a loss (0), and 8% to a draw 

(1/2). Then a reasonable evaluation for states in the category is the 

expected value: (0.72 × +1) + (0.20 × 0) + (0.08 × 1/2) = 0.76. An 

evaluation function can be derived for every state by determining the 

expected value for each category. As with terminal states, the evaluation 
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the states is the same. 

This kind of analysis required too many categories and hence too much 

experience to estimate all the probabilities of winning. Instead, most 

evaluation functions compute separate numerical contributions for each 

feature and then combine them to calculate the total value. For example, 

introductory chess books give an approximate material value for each 

piece: each pawn is worth 1, a knight or bishop is worth 3, a rook 5, and 

the queen 9. Other features such as “good pawn structure” and “king 

safety” might be worth half a pawn, say. These feature values are then 

simply added up to obtain the evaluation of the position. 

A secure advantage equivalent to a pawn gives a substantial likelihood of 

winning, and a secure advantage equivalent to three pawns should give 

almost certain victory Mathematically, this kind of evaluation function is 

called a weighted linear function and denoted as 

 

where each wi is a weight and each fi is a feature of the position. 

5.7 PARTIALLY OBSERVABLE GAMES 

Partially observable games are qualitatively different from other games. In 

these games various tricks are used to confused the opponent include the 

use of scouts and spies together the information and use of concealment 

and bluff too confuse the opponent etc. Kriegspiel is a partially observable 

chess. 

5.7.1 Kriegspiel: Partially Observable Chess: 

The uncertainty about the state of the board arises entirely from lack of 

access to the choices made by the opponent in deterministic partially 

observable games. For e.g., Battleships, Stratego etc. In partially 

observable chess the pieces can move but are completely invisible from 

the opponent. Means White can see only his pieces and black can see only 

his pieces. There is a referee who can see all the pieces of black and white 

and who can judge the game. It also periodically makes announcement 

that are heard by both players.   

Any move that white chess piece would make if there were not any black 

piece is proposed to the referee. If move is not legal then referee 

announced illegal move. So, white piece may keep proposing until legal 

one is found and try to guess more about the location of black piece. If 

legal move is proposed then the referee announces the following “capture 

on square X”, “check by D”, Knight, Rank, File, Long Diagonal, Short 

Diagonal etc. If Black piece is checkmated the referee says so; otherwise, 

its Black’s turn to play. 
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Kriegspiel state estimation directly map onto the partially observable, non-

deterministic framework.  For partially observable game the notion of 

strategy is altered. a move is making for every possible percept sequence 

that might receive. For Kriegspiel a winning strategy is one that, for each 

possible percept sequence leads to an actual checkmate foe every possible 

board state in the current belief state, regardless of how opponent moves. 

5.7.2 Card Games: 

Many examples of partial observability are provided by card game, where 

the missing information is generated randomly. In many games cards are 

distributed randomly at the beginning of the game, where each plyer not 

visible to opponent. For e.g., bridge, hearts etc.  

It might seem that, these card games are the same as dice game. The cards 

are distributed randomly and find the moves available for each player. 

Consider all possible deals of invisible cards and solve each one as if it 

were a fully observable game. Then select the move that has best outcome. 

Suppose that each deal has probability P(s) then the moves are as follows 

argmax  ∑sa P(s) MINIMAX(RESULT(s, a))  

In most of the card games the number of possible deals is larger. In bridge 

game, each player sees two hands out of the four so there are two unseen 

hands of 13 cards. Then the number of deals is 10,400,600.  So instead of 

solving 10 million we resort to Monte Carlo approximation. In this, 

instead of taking all the deal, consider a random sample of N deals where 

probability of deals s appearing in sample is propositional to P(s). even for 

small N like 100 to 1000 the method gives good approximation. 

5.8 STATE-OF-ART GAME PROGRAMMING 

State of art game programs are blindly fast, highly optimized machine that 

incorporate the latest engineering. But this type of games is not much use 

for doing shopping or driving off-road 

Chess: 

it is well known for defeating world champion Garry Kasparov. Deep Blue 

examined 200 million positions per second, used very sophisticated 

evaluation and undisclosed methods for extending some lines of search up 

to 40 ply. The key to its success seems to have been its ability to generate 

singular extensions beyond the depth limit for sufficiently interesting lines 

of forcing/forced moves. 

Checkers:  

Jonathan Schaeffer and colleagues developed CHINOOK which runs on 

regular computers and it uses alpha beta search. It is used an endgame 

database defining perfect play for all positions. 
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it is also called as Reversi. It is more popular as a computer game than a 

board game. It has a smaller search space than chess and 5 to 15 legal 

moves.  

Backgammon:  

The most of the work has gone into improving evaluation function. Gerry 

Tesauro combined reinforcement learning with neural network to develop 

accurate evaluator. 

Go:  

It is the most popular board game in Asia. It is 19 by 19 board game in 

which moves are allowed into every empty square. The branching factor 

starts at 361 which is too daunting for alpha-beta search method. The 

evaluation function for this game is difficult to write because control 

territory is often very unpredictable until the endgame. 

Bridge:  

It is multiplayer game in which cards are hidden from the other player. 

Players are paired into two teams for four player games.   

5.9 SUMMARY 

 A game has five components such as initial state, legal actions, result 

of action, terminal test and utility function. 

 The minimax algorithm can select optimal moves by a depth-first 

enumeration of the game tree in two player zero sum game. 

 The alpha-beta search algorithm achieves much greater efficiency by 

eliminating subtree that are irrelevant. 

 Instead of considering whole game tree, cut the search off at some 

point and apply evaluation function to calculate the utility of state. 

 Game of chance can be handled by an extension to minimax 

algorithm that calculate a chance node. 

 Humans retain the edge in several games of imperfect information, 

such as poker, bridge, and Kriegspiel. 

5.10 EXERCISE 

1)  Explain various strategies of game playing. 

2)  Explain the components to formally defined the game. 

3)  Explain minimax algorithm with example. 

4)  What is evaluation function? 
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5)  Explain alpha-beta pruning  

6) Explain alpha-beta cut-offs in game playing with example. 

7)   Describe and implement state description, move generators, terminal 

state, utility function and evaluation function for any of the following 

stochastic game: Bridge, Monopoly 

8)  Prove that alpha -beta pruning takes time O(2
m/2

) with optimal move 

ordering, where m is maximum depth of the game tree. 
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6.0 OBJECTIVE 

In this chapter we design agent-based system that can represent a complex 

world. The new representation about the world can be derived by using 

process of inference and these new representations to deduce what to do. 

Also develop a logic as a general class of representation to support 

knowledge-based agent. 

6.1 INTRODUCTION 

Knowledge can be a particular path towards the solution. The knowledge 

must be represented in a particular format before using it. In 8 puzzle 
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transition model, the knowledge of what the actions do is hidden inside the 

domain specific code of the RESULT function. I observable environment 

as agent can represent what it knows about the current state is to list all 

possible concrete states. In this chapter logic is develop as a general class 

of representations to support knowledge-based agent. The knowledge-

based agent can accept new tasks in the form of explicitly described gals. 

The agent can achieve ability quickly by learning new knowledge about 

the environment and also update the relevant knowledge so they can adapt 

to changes in the environment.  

6.2 KNOWLEDGE-BASED AGENT 

The main component of knowledge-based agent is its knowledge base. A 

knowledge base is a set of sentences and each sentence expressed in a 

language known as knowledge representation language.it is also known as 

KB. It represents some assertion about the world. Sometimes a sentence is 

dignified with axioms, taking the sentence as given without deriving it 

from another sentence. 

 

The above diagram represents the architecture of knowledge based-agent. 

This agent takes the input by perceiving the environment. The knowledge 

base use TELL and ASK operation. TELL is add new sentence to the 

knowledge base perceive from the environment whereas, ASK is way to 

query what is known. The new sentence is derived from old is called as 

inference. Both ASK and TELL operation involve inference and it obey 

the requirements that when one ASKs a question of the knowledge base. 

The answer should follow from what has been told previously to 

knowledge base. The agent maintains a knowledge base which initially 

contain some background knowledge. The following figure shows a 

knowledge-based agent program. 
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MAKE-PERCEPT-SENTENCE generate a sentence asserting that the 

agent perceived the given percept at a given time. MAKE-ACTION-

QUERY generate a sentence that asks what action should be taken at the 

current time. MAKE-ACTION-SENTENCE generate a sentence asserting 

that the selected action was executed. 

The knowledge-based agent has three different levels: 

1) Knowledge level: this is the first level of knowledge-based agent in 

which need to specify only what the agent knows and what its goals 

are, in order to fix its behavior. For example, an automated taxi might 

have to go from Location A to location B and one bridge is the only 

link between the two locations. An agent crosses the bridge because it 

knows that, that will achieve its goal.  

2) Logical level: At this level it is necessary to understand how 

knowledge representation of knowledge is stored. The sentences are 

encoded into different logics. For example, at logical level we expect 

that automatic taxi agent reach to the destination. 

3) Implementation level: this level agent take action as per logic and 

knowledge level. So, it is representation of logic and knowledge. For 

example, at this level an automated taxi agent implements his 

knowledge and logic to reach to destination. 

6.3 THE WUMPUS WORLD 

 The Wumpus world is an example of a world which describe an 

environment in which knowledge-based agent can show their worth. It is a 

cave consisting of 4X4 rooms connected by passageways. So, there are 

total 16 rooms connected with each other. The cave has a room contain 

beast and the beast can eat anyone who enter into the room. The Wumpus 

can be killed by the agent if he is facing it. There are some rooms contains 

pits. And if agent falls in pits, then he will be stuck there forever. In this 

cave, there is a possibility of finding a heap of gold. So, the goal of agent 

is to find the gold and climb out the cave without fallen into pits or eaten 

by Wumpus. The agent will get a reward if he come out with gold. If agent 

falls in the pit or eaten by Wumpus then he will get penalty. 
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There are some points which helps the agent to navigate through the cave 

safely such as the rooms adjacent to the Wumpus are smelly, so it would 

have some stench. The room adjacent to pits has a breeze, so when agent 

reach near pits, he feels the breeze. If the room is glitter, then it Contin 

gold. The Wumpus can be killed by the agent if is facing it. 

 

The PEAS for the Wumpus world are described as follow 

 Performance measure- +1000 if the agent come out from the cave 

with gold. -1000 if agent falls into the pits or eaten by the Wumpus. -1 

for each action taken and -10 for using an arrow. 

 Environment:  

 4 X 4 grid of rooms connected to each other.  

 The agent always starts from the position [1,1] facing to right.  

 The location of gold and the Wumpus are selected randomly from the 

squares. 

 Each square of the cave other than the start can be pit with probability 

0.2. 

 Actuators:  

 the agent can move forward 

  turn left and turn right by 90
0
. 

  The grab action can be used to pick up the gold.  

 The action shoot can be used to fire an arrow.  

 The arrow continues until it either hits the Wumpus or wall. The agent 

has only one arrow.  

 The action climb can be used to climb out of the cave. 
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 The agent will perceive the stench if he is in the room which is adjacent 

to Wumpus.  

 It perceives breeze if the room directly adjacent to pit.  

 The glitter is perceived by agent when room contains gold.  

 It perceives bump if agent walk into the wall.  

 When the Wumpus is shot, it releases a horrible scream which can be 

perceived anywhere in the cave. 

The percept will be given to agent program in the form of five symbols if 

there is a stench and breeze but no glitter, bump or scream the agent 

program will get [Stench, Breeze, None, None, None] 

Consider the following example, the agent’s initially starts from the 

location [1,1] and [1,1] is a safe square. Suppose it can be denoted by “A” 

or “OK” respectively in square [1,1]. So, the first percept is [None, None, 

None, None, None] from which agent can conclude about neighboring 

squares such as [1,2] and [2,1] are out of dangers. They are OK.  

 

Let’s suppose agent supposed to move in [2,1], so there must be a pit in 

[2,2] or [3,1] or both. Now at this point only one square is OK [1,2]. So, 

agent is turn around and go back to [1,1] and then [1,2] 

The agent perceives a stench in [1,2] means there must be a Wumpus 

nearby. But nearby of [1,2] is [1,1] and [2,2] and both are OK. So, agent 

can guess that Wampus is in [1,3]. The agent feels that there is a lack of a 

breeze in [1,2] means there is no pit in [2,2]. The agent already inferred 

that there must be a pit in either [2,2] or [3,1]. So this means it must be in 

[3,1] .  

Now at room [2,2] there is neither pit nor Wumpus so agent moves to [2,3] 

that detect a glitter. So, agent should grab the gold and return to home. 
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6.4 LOGIC 

The proof or validation of a reason can be defined as Logic. Knowledge 

base consist of sentence and these sentences are expressed according to 

the syntax. Syntax is a formal description of the structure of program in a 

given language. The notion of syntax must be in well forms for example 

“x+y=10” is a well-formed but “xyz+=” is not in well formed. 

A logic can also define the semantic or meaning of sentence. Semantic is a 

formal description of the programs in a given language. The truth of each 

sentence with respect to each possible world defined by semantics. For 

example, consider the sentence “x+y=10” is true in a world where possible 

value of x is 5 and y is 5, but false where x is 1 and y is1. In standard logic 

each sentence must be either true or false only. The term Model is used 

instead of possible world when need to be more precise.  

If a sentence α is true in a model then m is a model of α and M(α) notation 

is used to mean the set of all models of α. Logical reasoning is the process 

through which any assertion is verified. It is relation of logical entailment 

between sentences. It can be denoted by α |=β and mean that the sentence 

α entails the sentence β. The entailment is defined as α |=β if and only if, 

in every model in which α is true then β is also true and can be written as 

α |=β iff M(α) ⊆ M(β) 

this analysis can be applied on Wumpus world reasoning example. 

6.5 PROPOSITIONAL LOGIC: A VERY SIMPLE LOGIC 

Propositional logic is a simplest form of logic in which knowledge is 

represented as proposition. A proposition is a declarative statement that’s 

either true or false. It is also called as a Boolean logic because it works on 

0 and 1. The symbolic variable is used to represent the logic such A, X etc. 
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connectivity. In tautology propositional formula is always true whereas in 

contradiction propositional formula is always false. 

6.5.1 Syntax: 

Syntax of propositional logic defines allowable sentences in the model. 

The atomic sentences can be made up of single propositional symbol. 

Each symbol stands for proposition that can be either true or false. The 

uppercase symbols are used for example, A,P,R etc. Complex sentences 

are constructed from simple sentences by using parentheses and logical 

connectives. There are five connectives are as follows 

1) Negation or not- A sentence such as ¬ P is called as negation of P. A 

literal is either a positive or negative literal. 

For example, Sonu did not read the Novels can be represented as ¬READ 

(Sonu, Novels) 

2)  and – it is called as conjunction used to represent compound statement. 

Denoted by ∧. 

For example, Sonu is intelligent and hardworking can be represented as 

follows 

Suppose P- Sou is intelligent 

              Q- Sonu is Hardworking then P∧Q 

3) or – A sentence such as P∨Q is called as disjunction. 

For example, Sonu is Doctor or Engineer  

Suppose P- Sou is Doctor 

              Q- Sonu is Engineer then P∨Q 

4) implies- it is used to represent if then statement and denoted by P=>Q 

for example, if it’s raining, then streets are wet 

Suppose P-if it’s raining 

                Q-Street is wet then P=>Q 

5) if and only if- it is also called as bidirectional connective. P ⇔ Q 

show that it is true whenever both P=>Q and Q=>P are true. 

For example, Sonu eat the fruit if and only if it’s an Apple 

Suppose P-Sonu eats fruit 

              Q- it’s an Apple then P ⇔ Q 
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A BNF( Backus Naur-Form)- A BNF grammar of sentences in 

propositional logic is described as follows 

Sentence->Atomic sentence| Complex sentence  

Atomic sentence->True | False | Symbol 

Symbol-> P | Q | R…. 

Complex sentence->¬ Sentence 

   |(Sentence ∧ Sentence) 

   |(Sentence ∨ Sentence) 

   |(Sentence => Sentence) 

   |(Sentence ⇔  Sentence) 

Operator precedence- ¬, ∧, ∨, =>, ⇔   

Every sentence constructed with binary connectives must be closed in 

parenthesis because grammar is very strict about parenthesis. 

6.5.2 Semantics: 

The semantic defines the rules for determining the truth of a sentence with 

respect to particular model.  In a propositional logic, model fixes the truth 

value as true or false for every proposition symbol. Suppose if the 

sentence in the knowledge base makes use of the proposition symbols 

such as P1,2, P2,2 and P3,1 then model is as follows 

M1 = {P1,2=false, P2,2=false, P3,1=false} 

With these three symbols there are 2
3
=8 possible models. The semantic 

must specify how to compute the truth value of any sentence and it done 

recursively. By using atomic sentences and five connectives all sentences 

are constructed. So, it’s necessary to specify how to compute the truth of 

atomic sentence and sentence which are formed with each of the five 

connectives. The atomic sentences are easy 

 True is true and False is false in every model. 

 The truth value of every other proposition symbol must be specified 

directly in the model. 

There are five rules for complex sentence, that hold any substances P and 

Q in any model m: 

 ¬ P is true iff P is false in m. 

 P∧ Q is true iff both P and Q are true in m. 

 P ∨ Q is true iff either P or Q is true in m. 

 P=>Q is true unless P is true and Q is false in m. 

 P ⇔ Q  is true iff P and Q are both true or both false in m. 
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Now consider immutable aspects of the Wumpus world with the following 

symbol for each location [x,y] such as 

Px,y is true if there is a pit in [x,y] 

Wx,y is true if there is Wumpus in [x,y] dead or alive 

Bx,y is true if the agent perceives a breeze in [x,y] 

Sx,y is true if the agent perceive a stench in {x,y\ 

Now consider the following situations and label each sentence Ri so it can 

be referred further. 

1) there is no pit in [1,1] 

R1: ¬ P1,1  

2) A square is breeze if and only if there is pit in a neighboring square 

R2: B1,1 ⇔ (P1,2 V P2,1)  

R3: B2,1 ⇔ (P1,1 V P2,2 V P3,1)  

3) Now the breeze percept has been included for the first two squares 

R4: ¬ B1,1 

R5: ¬ B2,1 

6.5.4 A Simple Inference Procedure: 

The first algorithm for inference is model checking approach which is 

direct implementation of entailment. It checks that α is true in every model 

in which KB is true. Models are assignments of true or false to every 

symbol. Now consider Wumpus world example, the proposition symbols 

are B1,1, B2,1, P1,1, P1,2, B2,1, B2,2, an B3,1 with these seven symbols there 

are 2
7
=128 possible models. 

A general algorithm for deciding entailment in propositional logic is as 

shown below. The algorithm directly implements the definition of 

entailments so algorithm is sound. The algorithm is complete because it 

works for any KB and α and always terminate. There are 2
n
 models if KB 

and α contains n symbols in all. The algorithm has time complexity O(2
n
). 
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6.6 PROPOSITIONAL THEOREM PROVING 

To construct the proof of the desired sentence the rules can be apply 

directly to the sentence in knowledge base without consulting the model. 

The entailment can be done by theorem proving. If the number of models 

is large but the length of the proof is short then theorem proving can be 

more efficient as compare to model checking.  

Logical equivalence- two sentences α and β are logically equivalent if 

they re true in the same set of models. It can be denoted by α ≡ β. Or any 

two sentences α and β are equivalent only if each of them entails the other 

and denoted by α ≡ β if and only if α |= β and β |= α. 

Validity- a sentence is true in all model then it is valid. 

Tautology- A valid sentence is called as tautology. 

Deduction theorem- it is derived from the definition of entailment, which 

was known to the ancient Greeks for any sentences α and β, α |= β if and 

only if the sentence (α ⇒ β) is valid  

Satisfiability- A sentence is satisfiable if it is true in or satisfied by some 

model. It can be checked by enumerating the possible models until one is 

found that satisfies the sentence. 

6.6.1 Inference and proofs: 

Inference rules can be applied to derive a proof.  

1) Modus Pones: 

It is represented as follows 

 

It indicates that any sentence of the form α ⇒ β and α are given, then the 

sentence β can be inferred 

For example, if (Wumpus Ahead ∧ Wumpus Alive) => Shoot and 

(Wumpus Ahead ∧ Wumpus Alive) are given then shoot can be inferred. 
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inferred 

 

 for example, from the sentence (Wumpus Ahead ∧ Wumpus Alive) the 

inference, “Wumpus Alive” can be drawn. 

3) Monotonicity: it says that the set of entailed sentences can only 

increases as information is added to the knowledge base. For any 

sentence α and β 

if KB|= α   then KB ∧ β|= α 

Monotonicity means inference rules can be applied whenever suitable 

premises are found in the knowledge base. the conclusion of the rule must 

follow regardless of what else is in the knowledge base.  

6.6.2 Proof by Resolution: 

The single inference rule called resolution that produce a complete 

inference algorithm when coupled with any complete search algorithm. 

Unit resolution rule takes a clause of a disjunction of literals and produce a 

new clause. A single literal can be viewed as a disjunction of one literal 

known as a unit clause. the unit resolution rule can be generalized to the 

full resolution rule 

 

Where li and mj are complementary literals. So, resolution takes two 

clauses and generate a new clause. The new clause containing all the 

literals of the two original clause except two complementary literals. The 

resulting clause should contain only one copy of each literal is the 

technical aspect of resolution rule. The removal of multiple copies of 

literals is called factoring.  

Conjunctive Normal Form: 

Every sentence of propositional logic is logically equivalent toa 

conjunction of clauses. A sentence can be expressed as a conjunction of 

clause is called as Conjunctive normal form or CNF. The following s 

procedure for converting sentence B1,1(P1,2 ∨ P2,1 ) into CNF 

1) Eliminate , by replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α) 

(B1,1⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) . 

2) Eliminate ⇒, by replacing α ⇒ β with ¬α ∨ β 

 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)  
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3) CNF requires ¬ to appears only in literals, so it is necessary to move ¬ 

inwards by repeated application of the following equivalence. 

   ¬(¬α) ≡ α (double-negation elimination) 

 ¬(α ∧ β) ≡ (¬α ∨ ¬β) (De Morgan) 

 ¬(α ∨ β) ≡ (¬α ∧ ¬β) (De Morgan) 

We require only one application of the last rule in the example. 

 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∧ P2,1) ∨ B1,1) 

4) Now there is a sentence containing nested ∧ and ∨ operators applied to 

literals. Now by applying distributive law, distributing ∨ over ∧ 

whenever possible 

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 

The original sentence is now converted in CNF as a conjunction of three 

clauses. It can be use as input to resolution procedure. 

A resolution Algorithm: 

It takes the input as a knowledge base and α and its output is either true or 

false. First (KB ∧ ¬ α) is converted into CNF. Then the resolution rule is 

applied to the resulting clauses. Each pair in which complementary literals 

are there is resolved to produce anew clause and it is added to the new set 

if it is not there. The procedure continues until one of the two things 

happens first, there are no new clauses that can be added in which KB 

does not entails α or second two clauses resolve to yield the empty clause 

in which case KB entails α. Th resolution algorithm is as shown belove. 

 

6.6.3 Horn Clauses and Definite Clauses: 

Some real-world knowledge base uses more restrictions on the form of 

sentences to enables them to use more restricted and efficient inference 

algorithm. The definite clause is one such restricted form, which is a 

disjunction of literals with exactly one positive literal. 
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P1,2 ∨ P2,1) is not definite clause. 

Horn clause is a disjunction of literals with at most one positive literal. So, 

all definite clauses are horn clauses. Goal cluses are those in which there is 

no positive literals.  

6.6.4 Forward and Backward Chaining: 

Forward chaining is an example of the data driven reasoning concept that 

is reasoning in which the focus attention starts with the known data.it is 

called as data driven as it reach the goal state using available data.  

Forward chaining is the process of making conclusion based on known 

fact by starting from initial state to goal state. It can be used within an 

agent to derive conclusion from incoming percepts. While doing this, it 

cannot be kept any query in mind. The forward chaining is used in expert 

system. For example, the Wumpus agent might TELL its percept to 

knowledge base using an incremental forward chaining algorithm.  

Now consider example following example, 

As per the law, it is crime for B country to sell weapons to hostile nations. 

Country A is an enemy of Country B, has some missiles, and all the 

missiles were sold to it by John. John is a B country citizen now prove that 

John is criminal. Now convert all facts into first order definite clause. 

It is a crime for a country B to sell weapons to hostile nation.  Let’s 

consider variables p, q and r. 

Rules: 

1) Country B(p ) ∧ weapon ( q)  ∧  sells (p,q,r)  ∧  hostile (r )-> 

criminal (p) 

2) Country A has some missiles. ?powns(A,p) ∧ missile(p)   or Owns( 

A,T1) Missiles(T1) 

3) All missiles are sold to country A by John. ?p Missiles(p) ∧ 

Owns(A, p)-> Sells (John, p, A) 

4) Missiles are weapons. Missile (p) -> Weapons (p) 

5) Enemy of country B is hostile. Enemy (p, B)-> Hostile( p) 

6) Country A is an enemy of Country B. Enemy (A , B) 

7) John is from country B. Country B(John) 

Steps: 

1) First start with the known facts and select the sentences which do not 

have implications such as B(Roberts), Enemy(A, B), Owns( A, T1) and 

Missile(T1) can be represented as below 

2) The facts thar are infer from available facts and with satisfied premises 

Rule 1- does not satisfy premises, so it will not be added in the first 

iteration 
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Rule 2 and 3 are already added. 

Rule 4  -satisfy the substitution {p/T1}, so Sells (John, T1, A) is added. It 

infers from conjunction of rue 2 and 3 

Rule 6- is satisfy with substitution (p/A) so Hostile (A) is added. It infers 

from rule 7. 

 

3) Check rule 1 is satisfied with the substitution {p/John, q/T1, r/A}, so 

add Criminal(John). So, we reached at goal state and proved that Jhon 

is Criminal. 

 

Backward Chaining: In backward chaining it starts with the goal and 

works backward from the query. If the query is known to be rule, then no 

work is needed. Otherwise, the algorithm finds implications that can be 

proved true then q is true. It is form of goal-directed reasoning. In this the 

goal is broken into sub-goals to prove the facts true. In backward chaining 

same example is consider. 

Rules: 

1) Country B(p ) ∧ weapon ( q)  ∧  sells (p,q,r)  ∧  hostile (r )-> 

criminal (p) 

2) Country A has some missiles. ?powns(A,p) ∧ missile(p)   or Owns( 

A,T1) Missiles(T1) 

3) All missiles are sold to country A by John. ?p Missiles(p) ∧ 

Owns(A, p)-> Sells (John, p, A) 

4) Missiles are weapons. Missile (p) -> Weapons (p) 
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6) Country A is an enemy of Country B. Enemy (A , B) 

7) John is from country B. Country B(John) 

Steps- in backward chaining start with goal state which is Criminal ( Jhon)  

1) We will take the goal fact and from this infer other facts. At the end 

prove that those facts true. So, now goal fact is Jhon is Criminal as 

shown below 

 

2) We will infer other facts from all fact which satisfies the rules. In rule 1 

goal predicate is present with substitution {Jhon/p}. So, add all the 

conjunctive facts below the first level and replace p with Jhon. 

 

3) now extract further fact Missile(q) which infer from Weapon(q) as it 

satisfies rule 5 Weapon(q) is also true with the substitution of a 

constant T1 at q 

 

4) now infer facts Missile(t1) and Owns (A, T1) from Sells (Jhon, T1, r) 

which satisfies the rule 4 with substitute of A in place of r. so two 

statements are proved here. 
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5) Infer the fact Enemy (A, B) from Hostile( A) which satisfies rule 6 an 

hence all the statements are proved true using backward chaining. 

 

6.7 EFFECTIVE PROPOSITIONAL MODEL CHECKING 

For better inferences efficient algorithm is needed that based on model 

checking. Algorithm approach can be backtracking search or hill-climbing 

search. 

6.7.1 A Complete Backtracking Algorithm: 

This algorithm is also called as Davis-Putnam algorithm or DPLL 

algorithm. It takes as input a sentence in conjunction normal form, which 

is set of clauses. It is recursive depth first enumeration of possible models. 

The algorithm is improvement over earlier general inferencing algorithm. 

There are three improvements over the simple scheme TT-ENTAILS. 

1) Early termination: The algorithm finds whether the sentence must 

be true or false. A clause is true if any literal is true. A sentence is 

false if any clause is false, which occurs when each of its literal is 

false. 

2) Pure symbol heuristic: it is a symbol that always appears with same 

“sign” in all clauses. If a sentence has a model, then it has a model 

with pure symbol assigned so as to make literal true. 

3) Unit clause heuristic: it is clause with just one literal. One unit 

clause can create another unit clause. The only literal in unit clause is 

true. 
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6.7.2 A Local Search Algorithm: 

The local search algorithm like hill-climbing can be applied directly to 

satisfiable problem. These algorithms are worked properly if correct 

evaluation function is provided. The task of algorithm is to find an 

assignment that satisfies every clause. Therefore, those evaluation function 

counts the number of unsatisfied clauses will be a good. 

WALKSAT algorithm picks up an unsatisfied clause and pick a symbol in 

the clause to flip. It randomly chooses one of the ways to pick which 

symbol to flip is min-conflict and random walk. Min- conflict is steps that 

minimizes the number of unsatisfied clauses in the new state. Random 

walks that pick the symbol randomly.  

When the input sentence is indeed satisfiable WALKSAT returns a model. 

But when it is return failure then there are two possible causes. First, the 

sentence is unsatisfiable and second is need to give the algorithm more 

time. WALKSAT algorithm cannot always detect unsatisfiability, which is 

very necessary for deciding entailment. 
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6.7.3 The Landscape of random SAT Problems 

There are some SAT problems that are harder than others. Simple 

problems can be solved with any old algorithm. Because SAT is NP-

complete, at least some problem instances will require exponential running 

time. The n-queen problem quite tricky for backtracking search algorithm 

but trivially easy for local search methods such as min conflict. This is 

because solutions are very densely distributed in the space of assignments, 

and any initial assignment is guaranteed to have a nearby solution. 

Therefore, n-queens is easy because it is underconstrained. 

In the case of satisfiability problems in conjunctive normal form, an 

underconstrained problem is one with relatively few clauses constraining 

the variables.  Consider the following example with a randomly generated 

3-CNF sentence with five symbols and five clauses 

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ 

E ∨ ¬C) . 

For this sentence sixteen of the 32 possible assignments are model, so, it 

would take just two random guesses to find a model.  In general, 

underconstrained problems like this are easily satisfiable. In contrast, an 

overconstrained problem will have many clauses in relation to the number 

of variables and is likely to have no solution. 

Beyond these basic intuitions, we have to define how random sentences 

are generated. The notation CNFk(m,n) denotes a k-CNF sentence with m 

cluses and n symbols, where the clauses are chosen   uniformly, 

independently and without replacement from all clauses with k different 

literals, which are positive or negative at random.  

The probability of satisfiability can be measured by examining the sources 

of random sentences. As shown in following figure (a), plots the 

probability for CNF3(m,50), that is, sentences with 50 variables and 3 

literals per clause, as a function of clause/ symbol ratio, m/n. For small 

m/n the probability of satisfiability is close to 1, whereas for large m/n, the 

probability is close to 0. The probability drops fairly sharply around 

m/n=4.3. so, as n increases “cliff” gets sharper and sharper and stay in 

roughly the same place for k=3. Theoretically, the satisfiability threshold 

conjecture says that for every k ≥ 3, there is a threshold ratio rk such that, 

as n goes to infinity, the probability that CNFk(n, rn) is satisfiable becomes 

1 for all values of r below the threshold, and 0 for all values above the 

threshold. The conjecture remains unproven. 
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(a) Graph showing the probability that a random 3-CNF sentence with n = 50 

symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of 

the median run time on random 3-CNF sentences 

6.8 AGENT BASED ON PROPOSITIONAL LOGIC 

Inference based agent -it requires the separate copies of its knowledge 

base for every time step. Inference based agent takes exponential time for 

inferencing and huge time requirements for completeness. It is easy to 

represent in propositional logic language. It requires large memory as it 

stores previous percepts or states. 

Circuit based agent- it doesn’t require separate copy of its KB for every 

time step. Circuit based agent takes linear time for inferencing which is 

dependent on circuit size. For a complete circuit CBA will take 

exponential time with respect to circuit size so it is incomplete. It is easy 

to describe and construct knowledge base.  

6.9 SUMMARY 

 Intelligent agent require knowledge about the world in order to take 

good decision. Knowledge is contained in agent in the form of 

sentences. 

 Sentences in a knowledge representation language are stored in a 

knowledge base. 

 Basic concept of logic is represented by syntax, semantics, entailment, 

inference, soundness and completeness. 

 Syntax is a formal structure of sentences. Semantics is truth of 

sentences based on models. 

 Entailments is necessary truth of one sentence given another. 

Inference is deriving sentences from other sentences 

 In sound inference algorithm, derivations produce only entailed 

sentences. In complete algorithm, derivations can produce all entailed 

sentences. 

 Propositional logic isa simple language consisting of proposition 

symbols and logical connectives. 

 Resolution is complete for propositional logic, forward, backward 

chaining are linear time, complete for Horn clauses. 
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6.11 UNIT END QUESTIONS 

1) Explain knowledge-based agent? Explain role and importance. 

2) What is knowledge based 

3) Write a short note on Wumpus world problem. 

4) Describe PEAS for Wumpus world problem. 

5) What is logic? 

6) Explain propositional logic. 

7) Explain resolution algorithm. 

8) Explain CNF 

9) Write a short note on propositional theorem proving. 

10) Write the connectives used to form complex sentence of propositional 

logic with example. 

11) Explain backward and forward chaining with example. 
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7 
FIRST-ORDER LOGIC 

Unit Structure 

7.0 Objectives 
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7.2 First-Order Logic 

7.3 Syntax and semantics of First-Order Logic 

7.3.1 Models for First-Order Logic 

7.3.2 Symbols and Interpretations 

7.3.3 Terms 
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7.3.5 Complex Sentences 
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7.3.7 Equality 

7.3.8 An alternative semantics 

7.4 Using First-Order Logic 

7.4.1 Assertions and Queries in First-Order Logic 

7.4.2 The kinship domain 

7.4.3 Numbers, Sets 

7.4.4 The Wumpus World 

7.5 Knowledge Engineering in First-Order Logic 

7.5.1 Knowledge Engineering process  

7.5.2 Electronic Circuit Domain 

7.6 Summary 

7.7 Unit End Exercises  

7.8 Bibliography  

7.9 List of References 

7.0 OBJECTIVES 

After going through this chapter, you will be able to: 

 Represent knowledge in knowledge base using First-Order logic. 

 Understand syntax and semantics of First-Order logic. 

 Make use of Quantifiers for representation of knowledge. 

 Learn use of First-Order logic in kinship domain, number and sets, 

and in Wumpus world. 

 Understand Knowledge-Engineering process. 

 Apply First-Order logic in electronic circuit domain. 
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7.1 INTRODUCTION 

Statements can be represented using propositional logic. But 

unfortunately, in propositional logic, we can only represent the facts, 

which are either true or false. Propositional logic is not sufficient to 

represent the complex sentences or natural language statements. The 

propositional logic has very limited expressive power. Propositional logic 

lacks the expressive power to concisely describe an environment with 

many objects. Consider the following sentence, which cannot be 

represented using propositional logic. 

 "Some humans are intelligent" 

 "Sachin likes cricket." 

To represent the above statements, propositional logic is not sufficient, so 

we need some more powerful logic such as first-order logic. We can adopt 

the foundation of propositional logic that is a declarative, compositional 

semantics which is context-independent and unambiguous and build a 

more expressive logic on that foundation, by borrowing representational 

ideas from natural language while avoiding its drawbacks. Important 

elements in natural language are:  

 Objects (squares, pits, Wumpus)  

 Relations among objects (is adjacent to, is bigger than) or unary 

relations or properties (is red, round)  

 Functions (father of, best friend of)  

First-order logic (FOL) is built around the above 3 elements that is 

objects, relations & functions. 

7.2 FIRST-ORDER LOGIC 

 First-order logic is another way of knowledge representation in 

artificial intelligence. It is an extension to propositional logic. 

 First-Order logic is sufficiently expressive to represent the natural 

language statements in a concise way. 

 First-order logic is also known as Predicate logic or First-order 

predicate logic. First-order logic is a powerful language that develops 

information about the objects in an easier way and can also express the 

relationship between those objects. 

 First-order logic (like natural language) does not only assume that the 

world contains facts like propositional logic but also assumes the 

following things in the world: 

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits, 

wumpus, etc. 

o Relations: It can be unary relation such as: red, round, is adjacent, or 

n-any relation such as: the sister of, brother of, has color, comes 

between. 
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 As a natural language, first-order logic also has two main parts: 

o Syntax 

o Semantics 

7.3 SYNTAX & SEMANTICS OF FIRST-ORDER 

LOGIC 

We begin this section by specifying the way in which the possible worlds 

of first-order logic reflect the ontological commitment to objects and 

relations. Then we introduce the various elements of the language, 

explaining their semantics as we go along. 

7.3.1 Models for First-Order Logic: 

Models of a logical language are the formal structures that constitute the 

possible worlds under consideration. Models for propositional logic link 

proposition symbols to predefined truth values. Models for first-order 

logic have objects. Every possible world must contain at least one object.  

Below figure shows a model with five objects:  

1. Richard the Lionheart, King of England;  

2. his younger brother, the evil King John;  

3. the left legs of Richard;  

4. the left legs of John;  

5. and a crown. 

 

Figure: A model with five objects 

The objects in the model may be related in various ways. In the figure, 

Richard and John are brothers. Thus, the brotherhood relation in this 

model is the set 

{ <Richard the Lionheart, King John>, <King John, Richard the 

Lionheart> }  
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The “brother” and “on head” relations are binary relations that is, they 

relate pairs of objects. The model also contains unary relations, or 

properties: the “person” property is true of both Richard and John; and the 

“crown” property is true only for the crown. 

Certain kinds of relationships are considered as functions, in that a given 

object must be related to exactly one object. For example, each person has 

one left leg, so the model has a unary “left leg” function that includes the 

following mappings: 

         <Richard the Lionheart>→ Richard’s 

left leg  

         <King John> → John’s left leg. 

7.3.2 Symbols and Interpretations: 

The syntax determines which collections of symbols are legal expressions 

in first-order logic. The basic syntactic elements of first-order logic are the 

symbols that stand for objects, relations, and functions. The symbols, 

therefore, come in three kinds:  

1. Constant symbols: 

Constants symbols refer to objects in a universe of discourse. Objects can 

be anything like integers, people, real numbers and geometric shapes etc. 

Example: Richard, John 

2. Predicate symbols:  

A predicate symbol represents a property of or relation between terms that 

can be true or false. Each predicate symbol has an associated arity 

indicating its number of arguments. Brother, OnHead, Person, King, and 

Crown, etc. are predicate symbols. 

Example:  

King(John) is a unary predicate which is having one arguments. 

Brother(John, Richard) is a Binary predicate which is having two 

arguments. 

3. Function symbols: 

Function constants refer to functions like mother, age, LeftLeg, plus and 

times. Each function symbol has an associated arity indicating its number 

of arguments. Example:   

mother(Jane) - here, mother has  arity one (unary) while in times(3,2) - 

times  has arity two(binary). 

            Sentence   → AtomicSentence | ComplexSentence 

AtomicSentence   → Predicate | Predicate(Term, . . .) | Term = 
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            ComplexSentence   → ( Sentence ) | [ Sentence ] 

                                   | ¬Sentence 

                                   | Sentence ∧ Sentence 

                                   | Sentence ∨ Sentence 

                                   | Sentence ⇒ Sentence 

                                   | Sentence ⇔ Sentence 

                                   | Quantifier Variable, . . . Sentence 

                  Term   → Function(Term, . . .) 

                                   | Constant 

                                   | Variable 

          Quantifier   → ∀| ∃ 

          Constant     → A | X1 | John | · · · 

          Variable      → a | x | s | ··· 

          Predicate     → True | False | After | Loves | Raining | ··· 

          Function      → Mother | LeftLeg | · · · 

          OPERATOR PRECEDENCE : ¬,=, ∧, ∨,⇒,⇔ 

Figure: The syntax of first-order logic, specified in Backus–Naur form 

and Operator precedences are specified from highest to lowest. 

Like proposition symbols, the choice of names is entirely up to the user & 

every model must provide the information required to determine if any 

given sentence is true or false.  

In addition to its objects, relations, and functions, each model includes an 

interpretation that specifies exactly which objects, relations and functions 

are referred to by the constant, predicate, and function symbols. 

One possible interpretation for our example is as follows: 

Interpretation: 

 Richard refers to Richard the Lionheart and John refers to the evil King 

John. 

 Brother refers to the brotherhood relation; OnHead refers to the “on 

head” relation that holds between the crown and King John; Person, 

King, and Crown refer to the sets of objects that are persons, kings, and 

crowns. 
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 LeftLeg refers to the “left leg” function. 

7.3.3 Terms: 

Objects are represented by terms. Terms are simply names for objects. A 

term is a logical expression that refers to an object. Constant symbols are 

therefore terms, but it is not always convenient to have a distinct symbol 

to name every object.  

For example, in English we might use the expression “King John’s left 

leg” rather than giving a name to his leg. At that time instead of using a 

constant symbol, we use LeftLeg(John). A complex term is formed by a 

function symbol followed by a parenthesized list of terms as arguments to 

the function symbol. 

Complex term is not a “subroutine call” that “returns a value.” There is no 

LeftLeg subroutine that takes a person as input and returns a leg. We can 

reason about left legs (e.g., stating the general rule that everyone has one 

and then deducing that John must have one) without ever providing a 

definition of LeftLeg. 

For example, suppose the LeftLeg function symbol refers to the function 

and John refers to King John, then LeftLeg(John) refers to King John’s 

left leg.  

7.3.4 Atomic Sentences: 

A sentence can either be an atomic sentence or a complex sentence. An 

atomic sentence is simply a predicate applied to a set of terms. Atomic 

sentences are the most basic sentences of first-order logic. These sentences 

are formed from a predicate symbol followed by a parenthesis with a 

sequence of terms. We can represent atomic sentences as  

Predicate (term1, term2, ......, term n) 

Example:  

1. Ravi and Ajay are brothers:  Brothers(Ravi, Ajay). 

2. Chinky is a cat:  cat (Chinky). 

3. John owns a car:   Owns(John, Car)        

Atomic sentences can also have complex terms as arguments. Such as, 

Married(Father (Ravi),Mother (Ajay)) 

states that Ravi’s father is married to Ajay’s mother. 

7.3.5 Complex Sentences: 

Logical connectives can be used to construct more complex sentences, 

with the same syntax and semantics as in propositional calculus. Logical 

connectives like ￢, ∧, ∨, ⇒, ⇔ can be used. 

( Sentence ) | [ Sentence ] 
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Sentence ∧ Sentence 

Sentence ∨ Sentence 

Sentence ⇒ Sentence 

Sentence ⇔ Sentence 

Quantifier Variable, . . . Sentence 

Here we have four sentences that are true in the model that we have 

considered previously. 

¬Brother (LeftLeg(Richard), John) 

Brother (Richard , John) ∧ Brother (John,Richard) 

King(Richard ) ∨ King(John) 

¬King(Richard) ⇒ King(John)  

7.3.6 QUANTIFIERS 

A quantifier is a language element which generates quantification, and 

quantification specifies the quantity of specimen in the universe of 

discourse. These are the symbols that permit to determine or identify the 

range and scope of the variable in the logical expression. There are two 

types of Quantifiers. 

1. Universal Quantifier, (for all, everyone, everything) 

2. Existential quantifier, (for some, at least one). 

1. Universal Quantification (∀): 

Universal quantifier is a symbol of logical representation, which specifies 

that the statement within its range is true for everything or every instance 

of a particular thing. The Universal quantifier is represented by a symbol 

∀, which resembles an inverted A. 

Note: In universal quantifier we use implication "→". 

If x is a variable, then ∀x is read as: 

For all x 

For each x 

For every x. 

Example 1: 

The rule, “All kings are persons,” is written in first-order logic as 
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∀ x King(x) ⇒ Person(x)  

Thus, the sentence will be read as, “For all x, if x is a king, then x is a 

person.” The symbol x is called variable. By convention, variables are 

lowercase letters.  

Variable:  

 A variable is a term by itself. 

 It can also serve as the argument of a function for example, LeftLeg(x).  

 A term with no variables is called a ground term. 

Consider the model that we have used previously and the intended 

interpretation that goes with it. We can extend the interpretation in five 

ways by asserting all possible values of x: 

x → Richard the Lionheart, 

x → King John, 

x → Richard’s left leg, 

x → John’s left leg, 

x → the crown. 

The universally quantified sentence ∀ x King(x) ⇒ Person(x) is true if the 

sentence King(x) ⇒ Person(x) is true under each of the five extended 

interpretations. That is, the universally quantified sentence is equivalent to 

asserting the following five sentences: 

i. Richard the Lionheart is a king ⇒ Richard the Lionheart is a person. 

ii. King John is a king ⇒ King John is a person. 

iii. Richard’s left leg is a king ⇒ Richard’s left leg is a person. 

iv. John’s left leg is a king ⇒ John’s left leg is a person. 

v. The crown is a king ⇒ the crown is a person. 

Since, in our model, King John is the only king, the second sentence 

asserts that he is a person and remaining four assertions are not valid 

because Richard is not king and left leg of a person and crown object 

cannot be a person. 

Example 2: 

All man drink coffee. 

Let a variable x which refers to a man so all x can be represented as 

below: 

x1 drinks coffee. 

x2 drinks coffee. 

x3 drinks coffee. 

. 
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We can write it as: 

∀x man(x) → drink (x, coffee). 

It will be read as: For all x, if x is a man, then x drinks coffee. 

2. Existential Quantification: 

Existential quantifiers are the type of quantifiers, which express that the 

statement within its scope is true for at least one instance of something. It 

is denoted by the logical operator ∃, which resembles as inverted E. When 

it is used with a predicate variable then it is called as an existential 

quantifier. The sentence ∃x P says that P is true for at least one object x.  

Note: In Existential quantifier we always use AND or Conjunction symbol 

(∧). 

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will 

be read as: 

There exists a 'x.' 

For some 'x.' 

For at least one 'x.' 

Example 1:  

King John has a crown on his head, we write 

∃ x Crown(x) ∧ OnHead(x, John)  

That is, at least one of the following is true: 

i.  Richard the Lionheart is a crown ∧ Richard the Lionheart is on John’s 

head; 

ii. King John is a crown ∧ King John is on John’s head; 

iii. Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head; 

iv. John’s left leg is a crown ∧ John’s left leg is on John’s head; 

v. The crown is a crown ∧ the crown is on John’s head. 

The fifth assertion is true in the model. 

Example 2: 

Some boys are intelligent. 

∃x: boys(x) ∧ intelligent(x) 

It will be read as: There are some x where x is a boy who is intelligent. 

Properties of Quantifiers: 

 In universal quantifier, ∀x∀y is similar to ∀y∀x. 

 In Existential quantifier, ∃x∃y is similar to ∃y∃x. 

 ∃x∀y is not similar to ∀y∃x. 
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Nested quantifiers: 

More complex sentences can be expressed using multiple quantifiers. The 

simplest case is where the quantifiers are of the same type. For example, 

“Brothers are siblings” can be written as 

∀ x ∀ y Brother (x, y) ⇒ Sibling(x, y)  

Siblinghood is a symmetric relationship, we can write 

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)  

In other cases, we will have mixtures. “Everybody read few books” means 

that for every person, there is some book that person read: 

∀ x ∃ y Read(x, y)  

On the other hand, to say “There is someone who is liked by everyone,” 

we write 

∃ y ∀ x Likes(x, y)  

The order of quantification is therefore very important. It becomes clearer 

if we insert parentheses. 

Connections between ∀ and ∃: 

The two quantifiers are actually connected with each other, through 

negation. Asserting that everyone dislikes parsnips is the same as asserting 

there does not exist someone who likes them, and vice versa: 

∀ x ¬Likes(x, Parsnips ) is equivalent to ¬∃ x Likes(x, Parsnips)  

We can go one step further: “Everyone likes ice cream” means that there 

is no one who does not like ice cream: 

∀ x Likes(x, IceCream)  

is equivalent to  

¬∃ x ¬Likes(x, IceCream)  

Because ∀ is a conjunction over the universe of objects and ∃ is a 

disjunction, quantifiers obey De Morgan’s rules. The De Morgan rules for 

quantified and unquantified sentences are as follows: 

∀ x ¬P ≡ ¬∃x P   ¬(P ∨ Q) ≡ ¬P ∧¬Q 

¬∀x P ≡ ∃x ¬P   ¬(P ∧ Q) ≡ ¬P ∨¬Q 

∀x P ≡ ¬∃x ¬P   P∧ Q ≡ ¬(¬P ∨¬Q) 

∃x P ≡ ¬∀x ¬P   P∨ Q ≡ ¬(¬P ∧¬Q)  
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Some Examples of First-Order Logic using quantifiers: 

1. All birds fly. 

In this statement the predicate is fly(bird). 

And since there are all birds who fly so it will be represented as follows. 

              ∀x bird(x) →fly(x) 

2. Every man respects his parent. 

In this statement, the predicate is respect(x, y), where x=man, and y= 

parent. 

Since there is every man so will use ∀, and it will be represented as 

follows: 

∀x man(x) → respects (x, parent) 

3. Some boys play cricket. 

In this statement, the predicate is play(x, y), where x= boys, and y= game. 

Since there are some boys so we will use ∃, and it will be represented as: 

∃x boys(x) → play(x, cricket) 

4. Not all students like both Mathematics and Science. 

In this statement, the predicate is like(x, y), where x= student, and y= 

subject. 

Since there are not all students, so we will use ∀ with negation, so 

following representation for this: 

 ¬∀ (x) [ student(x) → like(x, Mathematics) ∧ like(x, Science)] 

5. Only one student failed in Mathematics. 

In this statement, the predicate is failed(x, y), where x= student, and y= 

subject.  

Since there is only one student who failed in Mathematics, so we will use 

following representation for this: 

∃(x) [ student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) 

→ ¬failed (x, Mathematics)] 

7.3.7 Equality: 

Equality symbol can be used to signify that two terms refer to the same 

object. For example, Father (John)=Henry says that the object referred to 

by Father (John) and the object referred to by Henry are the same.  
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The equality symbol can be used to state facts about a given function, as 

we just did for the Father symbol. It can also be used with negation to 

insist that two terms are not the same object. To say that Richard has at 

least two brothers, we would write 

∃ x, y Brother (x,Richard ) ∧ Brother (y,Richard ) ∧¬(x=y)  

The sentence ∃ x, y Brother (x,Richard ) ∧ Brother (y,Richard ) does not 

have the intended meaning. If x is John & y is also John the sentence will 

not be valid because Richard’s both the brothers will not be having the 

same name as John, therefore x and y both should be different. For this 

purpose, ¬(x=y) is added. The notation x ≠ y is sometimes used as an 

abbreviation for ¬(x=y). 

7.3.8 An Alternative Semantic: 

Continuing the example from the previous section, suppose that we 

believe that Richard has two brothers, John and Geoffrey. If we assert 

Brother (John,Richard ) ∧ Brother (Geoffrey,Richard)  

First, this assertion is true in a model where Richard has only one brother, 

we need to add John ≠ Geoffrey. Second, the sentence doesn’t rule out 

models in which Richard has many more brothers besides John and 

Geoffrey. Thus, the correct translation of “Richard’s brothers are John and 

Geoffrey” is as follows: 

Brother (John,Richard ) ∧ Brother (Geoffrey,Richard) ∧ John ≠ Geoffrey 

∧ ∀x Brother (x,Richard ) ⇒ (x=John ∨ x=Geoffrey)  

7.4 USING FIRST-ORDER LOGIC 

Now we have defined an expressive logical language, it is time to learn 

how to use it. In this section, we provide representations of some simple 

domains. In knowledge representation, a domain is just some part of the 

world about which we wish to express some knowledge. We begin with a 

brief description of the TELL/ASK interface for first-order knowledge 

bases. Then we look at the domains of  

1. Family relationships 

2. Numbers  

3. Sets and lists  

4. The Wumpus world 

7.4.1 Assertions and Queries In First-Order Logic: 

1. Assertions:  

Sentences are added to a knowledge base using TELL, exactly as in 

propositional logic. Such sentences are called assertions. For example, we 

can assert that John is a king, Richard is a person, and all kings are 

persons: 
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TELL(KB, Person(Richard)) . 

TELL(KB, ∀ x King(x) ⇒ Person(x)) . 

2. Queries: 

We can ask questions from the knowledge base using ASK. For example, 

ASK(KB, King(John)) 

Above query returns true. Questions asked with ASK are called queries or 

goals.  

ASK(KB, Person(John)) 

This query also returns true using above assertions. We can ask quantified 

queries, such as 

ASK(KB, ∃ x Person(x)) . 

The answer is true, but we do not know the value of x makes the sentence 

true. If we want to know what value of x makes the sentence true, we will 

use a different function which is called ASKVARS. 

ASKVARS(KB, Person(x)) 

Above function yields a stream of answers. In this case there will be two 

answers: {x/John} and {x/Richard}. Such an answer is called a 

substitution or binding list. Which means in above query x can be 

substituted with John or Richard. 

7.4.2 The Kinship Domain: 

The first example we consider is the domain of family relationships, or 

kinship. This domain includes facts such as “Elizabeth is the mother of 

Charles” and “Charles is the father of William” and rules such as “One’s 

grandmother is the mother of one’s parent”. We have following in Kinship 

domain according to First-Order logic. 

1. Objects: objects in kinship domain are people.  

2. Unary predicates: Male and Female.  

3. Binary Predicates: Kinship relations parenthood, brotherhood, 

marriage, and so on are represented by binary predicates: Parent, 

Sibling, Brother, Sister, Child, Daughter, Son, Spouse, Wife, 

Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle.  

4. Functions: Mother and Father, because every person has exactly one 

of each of these (at least according to nature’s design). 

We can go through each function and predicate, writing down what we 

know in terms of the other symbols.  
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Example: 

1. One’s mother is one’s female parent: 

∀ m, c Mother (c)=m ⇔ Female(m) ∧ Parent(m, c)   

2. One’s husband is one’s male spouse: 

∀ w, h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w)  

3. Male and female are disjoint categories: 

∀ x Male(x) ⇔ ¬Female(x)  

4. Parent and child are inverse relations: 

∀ p, c Parent(p, c) ⇔ Child (c, p)  

5. A grandparent is a parent of one’s parent: 

∀ g, c Grandparent (g, c) ⇔ ∃p Parent(g, p) ∧ Parent(p, c)  

6. A sibling is another child of one’s parents: 

∀ x, y Sibling(x, y) ⇔ x = y ∧ ∃p Parent(p, x) ∧ Parent(p, y)  

We could go on for several examples like this. Each of these sentences can 

be viewed as an axiom of the kinship domain. The axioms define the 

Mother function and the Husband, Male, Parent, Grandparent, and Sibling 

predicates. This is a natural way in which we can build up the 

representation of a domain.  

Axioms can also be “just plain facts,” such as Male(Jim) and Spouse(Jim, 

Laura) etc. Not all logical sentences about a domain are axioms. Some are 

theorems that is, they are entailed by the axioms. For example, consider 

the assertion that siblinghood is symmetric: 

∀ x, y Sibling(x, y) ⇔ Sibling(y, x)  

7.4.3 Numbers, Sets: 

I. Numbers: 

Numbers are the most vivid example of how a large theory can be built up 

from a tiny kernel of axioms. We describe here the theory of natural 

numbers or non-negative integers. We will use a predicate NatNum that 

will be true of natural numbers; we need one constant symbol, 0; and we 

need one function symbol, S (successor). The Peano axioms define natural 

numbers and addition. Natural numbers are defined recursively: 

NatNum(0) . 

That is, 0 is a natural number and 

∀ n NatNum(n) ⇒ NatNum(S(n))  
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number. So the natural numbers are 0, S(0), S(S(0)), and so on.  

We also need axioms to constrain the successor function: 

∀ n 0 ≠ S(n)  

∀ m, n m ≠ n ⇒ S(m) ≠ S(n)  

Now we can define addition in terms of the successor function: 

∀m NatNum(m) ⇒ + (0,m) = m  

Above axiom says that adding 0 to any natural number m gives m itself. 

∀ m, n NatNum(m) ∧ NatNum(n) ⇒ + (S(m), n) = S(+(m, n))  

We can also write S(n) as n+ 1, so the second axiom becomes 

∀ m, n NatNum(m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n) + 1  

This axiom reduces addition to repeated application of the successor 

function. 

Once we have addition, it is straightforward to define multiplication as 

repeated addition, exponentiation as repeated multiplication, integer 

division and remainders, prime numbers, and so on. Thus, the whole of 

number theory (including cryptography) can be built up from one 

constant, one function, one predicate and four axioms. 

ii. Set: 

The domain of sets is also fundamental to mathematics as well as to 

commonsense reasoning. We want to be able to represent individual sets, 

including the empty set. We need a way to build up sets by adding an 

element to a set or taking the union or intersection of two sets. We will 

want to know whether an element is a member of a set and we will want to 

distinguish sets from objects that are not sets. 

1. The empty set is a constant written as {}.  

2. There is one unary predicate, Set, which is true of sets.  

3. The binary predicates are x∈ s (x is a member of set s) and s1 ⊆ s2 (set 

s1 is a subset of set s2). 

4. The binary functions are s1 ∩ s2 (the intersection of two sets), s1 ∪ s2 

(the union of two sets), and {x|s} (the set resulting from adjoining 

element x to set s).  

One possible set of axioms is as follows: 

1. The only sets are the empty set and those made by adjoining something 

to a set: 

∀ s Set(s) ⇔ (s={}) ∨ (∃ x, s2 Set(s2) ∧ s={x|s2})  
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2. The empty set has no elements adjoined into it. In other words, there is 

no way to decompose {} into a smaller set and an element: 

¬∃ x, s {x|s}={}  

3. Adjoining an element already in the set has no effect: 

∀ x, s x∈ s ⇔ s={x|s}  

4. The only members of a set are the elements that were adjoined into it. 

We express this recursively, saying that x is a member of s if and only if s 

is equal to some set s2 adjoined with some element y, where either y is the 

same as x or x is a member of s2: 

∀ x, s x∈ s ⇔ ∃y, s2 (s={y|s2} ∧ (x=y ∨ x∈ s2))  

5. A set is a subset of another set if and only if all of the first set’s 

members are members of the second set: 

∀ s1, s2 s1 ⊆ s2 ⇔ (∀x x∈ s1 ⇒ x∈ s2)  

6. Two sets are equal if and only if each is a subset of the other: 

∀ s1, s2 (s1 =s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)  

7. An object is in the intersection of two sets if and only if it is a member 

of both sets: 

∀ x, s1, s2 x∈ (s1 ∩ s2) ⇔ (x∈ s1 ∧ x∈s2)  

8. An object is in the union of two sets if and only if it is a member of 

either set: 

∀ x, s1, s2 x∈ (s1 ∪ s2) ⇔ (x∈ s1 ∨ x∈s2)  

7.4.4 The Wumpus World: 

The first-order axioms for Wumpus world are much more concise, 

capturing in a natural way exactly what we want to say. Wumpus agent 

receives a percept sequence with five elements. The corresponding first-

order sentence stored in the knowledge base must include both the percept 

and the time at which it occurred; otherwise, the agent will get confused 

about when it saw what. 

We use integers for time steps. A typical percept sentence would be 

Percept ([Stench, Breeze, Glitter, None, None], 5)  

Here, Percept is a binary predicate, and Stench and so on are constants 

placed in a list.  

The actions in the wumpus world can be represented by logical terms: 

Turn(Right ), Turn(Left ), Forward , Shoot , Grab, Climb  

To determine which action is best, the agent program executes the query 
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which returns a binding list such as {a/Grab}. The agent program can then 

return Grab as the action to take.  

The raw percept data implies certain facts about the current state. For 

example: 

∀ t, s, g, m, c Percept ([s, Breeze, g,m, c], t) ⇒ Breeze(t) , 

∀ t, s, b, m, c Percept ([s, b, Glitter,m, c], t) ⇒ Glitter (t) , 

and so on. Notice the quantification over time t. In propositional logic, we 

would need copies of each sentence for each time step. 

Simple “reflex” behavior can also be implemented by quantified 

implication sentences. 

For example,  

∀ t Glitter (t) ⇒ BestAction(Grab, t)  

Given the percept and rules from the preceding paragraphs, this would 

yield the desired conclusion 

BestAction(Grab, 5) that is, Grab is the right thing to do. 

We have represented the agent’s inputs and outputs; now it is time to 

represent the environment itself.  

Objects are squares, pits, and the wumpus. We could name each square 

Square1,2 and so on but then the fact that Square1,2 and Square1,3 are 

adjacent would have to be an “extra” fact, and we would need one such 

fact for each pair of squares. It is better to use a complex term in which the 

row and column appear as integers; for example, we can simply use the 

list term [1, 2]. Adjacency of any two squares can be defined as 

∀ x, y, a, b Adjacent ([x, y], [a, b]) ⇔(x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y 

= b ∧ (x = a − 1 ∨ x = a + 1))  

We will use a unary predicate Pit that is true of squares containing pits. 

Since there is exactly one wumpus, we will use a constant Wumpus. 

The agent’s location changes over time, so we write At(Agent, s, t) to 

mean that the agent is at square s at time t. We can fix the wumpus’s 

location with  

∀t At(Wumpus, [2,2], t) 

We can then say that objects can only be at one location at a time: 

∀ x, s1, s2, t At(x, s1, t) ∧ At(x, s2, t) ⇒ s1 = s2  

Given its current location, the agent can infer properties of the square from 

properties of its current percept. For example, if the agent is at a square 
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and perceives a breeze, then that square is breezy: 

∀ s, t At(Agent, s, t) ∧ Breeze(t) ⇒ Breezy(s)  

Having discovered which places are breezy, the agent can deduce where 

the pits are. Whereas propositional logic necessitates a separate axiom for 

each square and would need a different set of axioms for each 

geographical layout of the world, first-order logic just needs one axiom: 

∀ s Breezy(s) ⇔ ∃r Adjacent (r, s) ∧ Pit(r)  

Similarly, in first-order logic we can quantify over time, so we need just 

one successor-state axiom for each predicate, rather than a different copy 

for each time step. For example, the axiom for the arrow becomes 

∀ t HaveArrow(t + 1) ⇔ (HaveArrow(t) ∧¬Action(Shoot, t))  

7.5    KNOWLEDGE ENGINEERING IN FIRST-ORDER 

LOGIC 

The process of constructing a knowledge-base in first-order logic is called 

as knowledge- engineering. In knowledge-engineering, someone who 

investigates a particular domain, learns important concept of that domain, 

and generates a formal representation of the objects, is known as 

knowledge engineer. 

7.5.1 Knowledge Engineering Process: 

Knowledge engineering projects vary widely in content, scope, and 

difficulty, but all such projects include the following steps:  

1. Identify the task: 

The knowledge engineer must delineate the range of questions that the 

knowledge base will support and the kinds of facts that will be available 

for each specific problem instance. For example, does the wumpus 

knowledge base need to be able to choose actions or is it required to 

answer questions only about the contents of the environment? Will the 

sensor facts include the current location? The task will determine what 

knowledge must be represented in order to connect problem instances to 

answers. This step is analogous to the PEAS process for designing agents. 

2. Assemble the relevant knowledge: 

The knowledge engineer might already be an expert in the domain, or 

might need to work with real experts to extract what they know by a 

process called knowledge acquisition. At this stage, the knowledge is not 

represented formally. The idea is to understand the scope of the 

knowledge base, as determined by the task, and to understand how the 

domain actually works. For the wumpus world, which is defined by an 

artificial set of rules, the relevant knowledge is easy to identify. For real 

domains, the issue of relevance can be quite difficult. 
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Translate the important domain-level concepts into logic-level names. 

This involves many questions of knowledge-engineering style. Like 

programming style, this can have a significant impact on the eventual 

success of the project. For example, should pits be represented by objects 

or by a unary predicate on squares? Should the agent’s orientation be a 

function or a predicate? Should the wumpus’s location depend on time? 

Once the choices have been made, the result is a vocabulary that is known 

as the ontology of the domain. The word ontology means a particular 

theory of the nature of being or existence.  

4. Encode general knowledge about the domain: 

The knowledge engineer writes down the axioms for all the vocabulary 

terms. This pins down the meaning of the terms, enabling the expert to 

check the content. Often, this step reveals misconceptions or gaps in the 

vocabulary that must be fixed by returning to step 3 and iterating through 

the process. 

5. Encode a description of the specific problem instance:  

If the ontology is well thought out, this step will be easy. It will involve 

writing simple atomic sentences about instances of concepts that are 

already part of the ontology. For a logical agent, problem instances are 

supplied by the sensors, whereas a “disembodied” knowledge base is 

supplied with additional sentences in the same way that traditional 

programs are supplied with input data. 

6. Pose queries to the inference procedure and get answers: 

We can let the inference procedure operate on the axioms and problem-

specific facts to derive the facts we are interested in knowing. Thus, we 

avoid the need for writing an application-specific solution algorithm. 

7. Debug the knowledge base: 

The answers to queries will be correct on the first try. More precisely, the 

answers will be correct for the knowledge base as written, assuming that 

the inference procedure is sound, but they will not be the ones that the user 

is expecting. For example, if an axiom is missing, some queries will not be 

answerable from the knowledge base. A considerable debugging process 

could ensure that no axioms are missing.  

7.5.2 The Electronic Circuit Domain: 

In this topic, we will understand the Knowledge engineering process in an 

electronic circuit domain. This approach is mainly suitable for creating 

special-purpose knowledge base. Following are some main steps of the 

knowledge-engineering process. Using these steps, we will develop a 

knowledge base which will allow us to reason about digital circuit (One-

bit full adder) which is given below. 
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1. Identify the task: 

The first step of the process is to identify the task, and for the digital 

circuit, there are various reasoning tasks. At the first level or highest level, 

we will examine the functionality of the circuit: 

i. Does the circuit add properly? 

ii. What will be the output of gate A2, if all the inputs are high? 

At the second level, we will examine the circuit structure details such as: 

i. Which gate is connected to the first input terminal? 

ii. Does the circuit have feedback loops? 

2. Assemble the relevant knowledge: 

In the second step, we will assemble the relevant knowledge which is 

required for digital circuits. So, for digital circuits, we have the following 

required knowledge: 

i. Logic circuits are made up of wires and gates.  

ii. Signal flows through wires to the input terminal of the gate, and each 

gate produces the corresponding output which flows further. 

iii. In this logic circuit, there are four types of gates used: AND, OR, 

XOR, and NOT. 

iv. All these gates have one output terminal and two input terminals 

(except NOT gate, it has one input terminal). 

3. Decide on vocabulary: 

The next step of the process is to select functions, predicate, and constants 

to represent the circuits, terminals, signals, and gates. Firstly, we will 

distinguish the gates from each other and from other objects. Each gate is 

represented as an object which is named by a constant, such as, Gate(X1). 

The functionality of each gate is determined by its type, which is taken as 

constants such as AND, OR, XOR, or NOT.  
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ii. For the terminal, we will use predicate: Terminal(x).  

iii. For gate input, we will use the function In(1, X1) for denoting the first 

input terminal of the gate, and for output terminal we will use Out (1, 

X1). The function Arity(c, i, j) is used to denote that circuit c has i 

input, j output.  

iv. The connectivity between gates can be represented by predicate 

Connect(Out(1, X1), In(1, X1)).  

v. We use a unary predicate On(t), which is true if the signal at a 

terminal is on. 

4. Encode general knowledge about the domain: 

To encode the general knowledge about the logic circuit, we need some 

following rules: 

i. If two terminals are connected then they have the same input signal, it 

can be represented as 

    ∀  t1, t2 Terminal (t1) ∧ Terminal (t2) ∧ Connect (t1, t2) → Signal 

(t1) = Signal (t2)   

ii. Signal at every terminal will have either value 0 or 1, it will be 

represented as: 

∀  t Terminal (t) →Signal (t) = 1 ∨Signal (t) = 0  

iii. Connect predicates are commutative: 

∀  t1, t2 Connect(t1, t2)  →  Connect (t2, t1)        

iv. Representation of types of gates: 

 ∀  g Gate(g) ∧ r = Type(g) → r = OR ∨r = AND ∨r = XOR ∨r = NOT    

v. Output of AND gate will be zero if and only if any of its input is zero. 

 ∀  g Gate(g) ∧ Type(g) = AND →Signal (Out(1, g))= 0 ⇔  ∃n Signal 

(In(n, g))= 0    

vi. Output of OR gate is 1 if and only if any of its input is 1: 

 ∀  g Gate(g) ∧ Type(g) = OR → Signal (Out(1, g))= 1 ⇔  ∃n Signal 

(In(n, g))= 1    

vii. Output of XOR gate is 1 if and only if its inputs are different: 

 ∀  g Gate(g) ∧ Type(g) = XOR → Signal (Out(1, g)) = 1 ⇔  Signal 

(In(1, g)) ≠ Signal(In(2, g))   

viii. Output of NOT gate is invert of its input: 
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 ∀  g Gate(g) ∧ Type(g) = NOT →   Signal (In(1, g)) ≠ Signal (Out(1, 

g))  

ix. All the gates in the above circuit have two inputs and one output 

(except NOT gate). 

 ∀  g Gate(g) ∧ Type(g) = NOT →   Arity(g, 1, 1)    

 ∀  g Gate(g) ∧ r =Type(g)  ∧ (r= AND ∨r= OR ∨r= XOR) →  Arity 

(g, 2, 1)   

x. All gates are logic circuits: 

    ∀  g Gate(g) → Circuit (g) 

5. Encode a description of the problem instance: 

Now we encode problem of circuit C1, firstly we categorize the circuit and 

its gate components. This step is easy if ontology about the problem is 

already thought. This step involves the writing simple atomics sentences 

of instances of concepts, which is known as ontology. 

For the given circuit C1, we can encode the problem instance in atomic 

sentences as below: Since in the circuit there are two XOR, two AND, and 

one OR gate so atomic sentences for these gates will be: 

For XOR gate: Type(x1)= XOR, Type(X2) = XOR   

For AND gate: Type(A1) = AND, Type(A2)= AND   

For OR gate: Type (O1) = OR. 

And then represent the connections between all the gates. 

6. Pose queries to the inference procedure and get answers: 

In this step, we will find all the possible set of values of all the terminal 

for the adder circuit. The first query will be: 

What should be the combination of input which would generate the first 

output of circuit C1, as 0 and a second output to be 1? 

∃ i1, i2, i3 Signal (In(1, C1))=i1  ∧  Signal (In(2, C1))=i2  ∧ Signal (In(3, 

C1))= i3 ∧ Signal (Out(1, C1)) =0 ∧ Signal (Out(2, C1))=1 

7. Debug the knowledge base: 

Now we will debug the knowledge base, and this is the last step of the 

complete process. In this step, we will try to debug the issues of 

knowledge base. In the knowledge base, we may have omitted assertions 

like 1 ≠ 0. 
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7.6 SUMMARY 

 First-order logic a representation language that is far more powerful 

than propositional logic.  

 First-order logic makes use of objects and relations and thereby it gains 

more expressive power. 

 The syntax of first-order logic is built upon propositional logic. It adds 

terms to represent objects, and has universal and existential quantifiers. 

 A possible world, or model, for first-order logic includes a set of 

objects and an interpretation that maps constant symbols to objects, 

predicate symbols to relations among objects, and function symbols to 

functions on objects. 

 Use of First-Order logic is various domain such as kinship domain, 

number and sets and in Wumpus world.  

 Developing a knowledge base in first-order logic requires a careful 

process of analyzing the domain, choosing a vocabulary, and encoding 

the axioms required to support the desired inferences. 

7.7 UNIT END QUESTIONS 

1. Why is First-Order Logic used over Propositional Logic? 

2. What is First-Order Logic? Discuss the different elements used in first 

order logic. 

3. Explain Universal and Existential quantifier with example. 

4. Define following terms. 

a. Predicate 

b. Function (in logic) 

c. Model in First-order Logic 

d. First-order Logic 

5. Explain Knowledge Engineering process in detail. 

6. Translate the following sentences into first-order logic: 

a. Understanding leads to friendship. 

b. Friendship is transitive. 

Define all predicates, functions, and constants you use. 

7. Write the following assertions in first-order logic: 

a. Emily is either a surgeon or a lawyer. 
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b. Joe is an actor 

c. All surgeons are doctors. 

d. Joe does not have a lawyer (i.e., is not a customer of any lawyer). 

e. Emily has a boss who is a lawyer. 

f. Every surgeon has a lawyer. 
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8.0 OBJECTIVES 

After going through this chapter, you will learn: 

 Inference rule for quantifiers. 

 First-Order logic Inference rule. 
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 Unification for finding substitutions that make different logical 

expressions look identical.  

 Inference using forward chaining & backward chaining. 

 Translation of sentences into Conjunctive Normal Form (CNF) for 

first-order logic. 

 Resolution inference rule using which two clauses that share no 

variables, can be resolved if they contain complementary literals. 

 Resolution strategies that help find proofs efficiently. 

8.1 INTRODUCTION 

Inference in First-Order Logic is used to derive new facts or sentences 

from existing sentences. In inference we define effective procedures for 

answering questions posed in first- order logic. In propositional logic we 

studied how inference can be achieved for propositional logic. In this 

chapter, we extend those results to obtain algorithms that can answer any 

answerable question stated in first-order logic. We will introduce inference 

rules for quantifiers and show how to reduce first-order inference to 

propositional inference. Then we introduce the idea of unification, 

showing how unification can be used to construct inference rules that 

work with first-order sentences. Forward chaining, backward chaining and 

logic programming systems are also covered in this chapter. Forward and 

backward chaining can be very efficient, but those are applicable only to 

knowledge bases that can be expressed  as sets of Horn clauses. General 

first-order sentences require resolution-based theorem proving, which is 

also discussed in this chapter. 

8.2 PROPOSITIONAL Vs. FIRST-ORDER INFERENCE 

There are some simple inference rules that can be applied to sentences with 

quantifiers to obtain sentences without quantifiers. These rules lead to the 

idea that first-order inference can be done by converting the knowledge 

base to propositional logic and then using propositional inference. 

8.2.1 Inference Rules for Quantifiers: 

As propositional logic we also have inference rules in first-order logic. 

Following are some basic inference rules in First-Order logic:  

1. Universal Instantiation 

2. Existential Instantiation 

3. Universal Generalization 

4. Existential Generalization 

8.2.1.1 Universal Instantiation: 

 Universal instantiation is also called as universal elimination or UI is 

a valid inference rule. It can be applied multiple times to add new 

sentences. 
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knowledge base. 

 As per universal instantiation, we can infer any sentence obtained by 

substituting a ground term (a term without variables) for the variable.  

 The universal instantiation rule state that we can infer any sentence 

P(c) by substituting a ground term c (a constant within domain x) 

from ∀ x P(x) for any object in the universe of discourse. 

 It can be represented as  

Example:1 

IF "Every person like ice-cream"=> ∀x P(x). So we can infer that 

"John likes ice-cream" => P(c) 

Example: 2 

Let's take a famous example, 

"All kings who are greedy are Evil." So let our knowledge base contain 

this detail as in the form of First-Order Logic: 

∀x king(x) ∧ greedy (x) → Evil (x), 

So, from this information, we can infer any of the following statements 

using Universal Instantiation: 

King(John) ∧ Greedy (John) → Evil (John), 

King(Richard) ∧ Greedy (Richard) → Evil (Richard), 

King(Father(John)) ∧ Greedy (Father(John)) → Evil (Father(John)), 

Here, the substitutions are {x/John },  {x/Richard },  and  {x/Father (John 

)}. 

8.2.1.2 Existential Instantiation: 

 Existential instantiation is also called as Existential Elimination, which 

is a valid inference rule in first-order logic. 

 It can be applied only once to replace the existential sentence.  

 The new knowledge base is not logically equivalent to old knowledge 

base, but it will be satisfiable if old knowledge base was satisfiable.  

 This rule states that one can infer P(c) from the formula given in the 

form of ∃x P(x) for a new constant symbol c. 

 The restriction with this rule is that c used in the rule must be a new 

term for which P(c) is true. 

 It can be represented as:  
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Example: 

From the given sentence:  

∃x Crown(x) ∧ OnHead(x, John),  

We can infer:  

Crown(K) ∧ OnHead( K, John), as long as K does not appear in the 

knowledge base. 

The above used K is a constant symbol, which is called Skolem constant. 

The Existential instantiation is a special case of Skolemization process. 

8.2.1.3 Universal Generalization: 

 Universal generalization is a valid inference rule which states that if 

premise P(c) is true for any arbitrary element c in the universe of 

discourse, then we can have a conclusion as  

 It can be represented as:  

 This rule can be used if we want to show that every element has a 

similar property. 

 In this rule, x must not appear as a free variable. 

Example:  

Let's represent, P(c): "A byte contains 8 bits", so for ∀ x P(x) "All bytes 

contain 8 bits.", it will also be true. 

8.2.1.4 Existential Generalization: 

 An existential introduction is also known as an existential 

generalization, which is a valid inference rule in first-order logic. 

 This rule states that if there is some element c in the universe of 

discourse which has a property P, then we can infer that there exists 

something in the universe which has the property P. 

 It can be represented as:  

Example:  

Let's say that, 

"Priyanka got good marks in English." 

"Therefore, someone got good marks in English." 
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Once we have defined rules for inferring non-quantified sentences from 

quantified sentences, it is possible to reduce first-order inference to 

propositional inference.  

The first idea is that, just as an existentially quantified sentence can be 

replaced by one instantiation, a universally quantified sentence can be 

replaced by the set of all possible instantiations. For example, suppose our 

knowledge base contains just the sentences 

∀ x King (x) ∧ Greedy (x) ⇒ Evil (x) 

King (John ) 

Greedy (John ) 

Brother (Richard , John )  

Then we apply UI to the first sentence using all possible ground-term 

substitutions from the vocabulary of the knowledge base. In this case, 

{x/John} and {x/Richard}. We obtain 

King (John) ∧ Greedy (John) ⇒ Evil (John) 

King (Richard) ∧ Greedy (Richard) ⇒ Evil (Richard)  

We discarded the universally quantified sentence. Now, the knowledge 

base is propositionalized. We have King (John), Greedy (John), 

Evil(John), King(Richard) as proposition symbols. Now, we can apply any 

of the propositional algorithms to obtain conclusions such as Evil(John).  

Every First-Order Logic knowledge base (KB) can be propositionalized so 

as to preserve entailment. A ground sentence is entailed by new KB if it is 

entailed by the original KB. 

Idea of the inference is that first propositionalize knowledge base (KB) 

and query. After that apply resolution and then return result. 

Problems with propositionalization:  

Propositionalization generates lots of irrelevant sentences. 

Example, from: 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 

King(John) 

King(John) 

∀y Greedy(y) 

Brother(Richard,John) 

It seems obvious that Evil(John), but propositionalization produces lots of 

facts such as Greedy(Richard) that are irrelevant. 

m
unotes.in



   

 138 

Inference in First-Order  

Logic 

 

8.3 UNIFICATION AND LIFTING 

The inference of Evil(John) from the below sentences seems completely 

obvious to a human being. We now show how to make it completely 

obvious to a computer using inference rules. 

∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) 

King(John) 

Greedy(John) 

8.3.1 A First-Order Inference Rule- Generalized Modus Ponens Rule: 

For the inference process in FOL, we have a single inference rule which is 

called Generalized Modus Ponens. It is lifted version of Modus ponens. It 

raises Modus Ponens from ground (variable-free) propositional logic to 

first-order logic. The key advantage of lifted inference rules over 

propositionalization is that they make only those substitutions that are 

required to allow particular inferences to proceed. 

Generalized Modus Ponens can be summarized as, " P implies Q and P is 

asserted to be true, therefore Q must be True." 

According to Modus Ponens, for atomic sentences pi, pi', q. Where there is 

a substitution θ such that SUBST (θ, pi',) = SUBST(θ, pi), it can be 

represented as: 

 

Example: 

We will use this rule for Kings are evil, so we will find some x such that x 

is king, and x is greedy so we can infer that x is evil. 

Here let say,  

p1' is king(John)         p1 is king(x)   

p2' is Greedy(y)  p2 is Greedy(x)   

θ is {x/John, y/John}           q is Evil(x)   

SUBST(θ, q) is Evil(John) . 

8.3.2 Unification: 

Unification is a process of making two different logical atomic 

expressions identical by finding a substitution. Unification depends on the 

substitution process. It takes two literals as input and makes them identical 

using substitution.  

Lifted inference rules require finding substitutions that make different 

logical expressions look identical. This process is called unification and is 
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takes two sentences and returns a unifier for them if one exists: 

UNIFY(p, q)= θ where SUBST(θ, p)= SUBST(θ, q) . 

Let us look  at some examples  of how  UNIFY  should  behave. Suppose 

we have a query 

AskVars (Knows (John , x)): whom does John know?  

Answers to this query can be found by finding all sentences in the 

knowledge base that unify with Knows(John , x). Here are the results of 

unification with four different sentences that might be in the knowledge 

base: 

UNIFY(Knows (John, x), Knows (John, Jane)) = {x/Jane } 

UNIFY(Knows (John, x), Knows (y, Bill )) = {x/Bill, y/John } 

UNIFY(Knows (John, x), Knows (y, Mother (y))) = {y/John , x/Mother 

(John )} 

UNIFY(Knows (John, x), Knows (x, Elizabeth )) = fail . 

The last unification fails because x cannot take on the values John and 

Elizabeth at the same time. Now, remember that Knows(x, Elizabeth) 

means “Everyone knows Elizabeth,” so we should be able to infer that 

John knows Elizabeth. The problem arises only because the two sentences 

happen to use the same variable name, x. The problem can be avoided by 

standardizing apart one of the two sentences being unified, which means 

renaming its variables to avoid name clashes. For example, we can rename 

x in Knows(x, Elizabeth) to x17 (a new variable name) without changing 

its meaning. Now the unification will work: 

UNIFY(Knows(John, x), Knows(x17, Elizabeth)) = {x/Elizabeth, 

x17/John} . 

There is one more complication: we said that UNIFY should return a 

substitution that makes the two arguments look the same. But there could 

be more than one such unifier.  

For example, UNIFY(Knows(John, x), Knows(y, z)) could return {y/John, 

x/z} or {y/John, x/John, z/John}. The first unifier gives Knows(John, z) as 

the result of unification, whereas the second gives Knows(John, John). 

The second result could be obtained from the first by an additional 

substitution {z/John}; we say that the first unifier is more general than the 

second, because it places fewer restrictions on the values of the variables. 

It turns out that, for every unifiable pair of expressions, there is a single 

most general unifier (or MGU) that is unique up to renaming and 

substitution of variables. (For example, {x/John} and {y/John} are 

considered equivalent, as are {x/John, y/John} and {x/John, y/x}.) In this 

case it is {y/John, x/z}. 
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8.3.3 Storage and Retrieval: 

The TELL and ASK functions used to inform and interrogate a knowledge 

base are the more primitive STORE and FETCH functions. STORE(s) 

stores a sentence s into the knowledge base and FETCH(q) returns all 

unifiers such that the query q unifies with some sentence in the knowledge 

base. The problem we used to illustrate unification for finding all facts that 

unify with Knows(John, x) is an example of FETCH. 

The simplest way to implement STORE and FETCH is to keep all the 

facts in one long list and unify each query against every element of the 

list. Such a process is inefficient, but it works. We can make FETCH more 

efficient by ensuring that unifications are attempted only with sentences 

that have some chance of unifying. For example, there is no point in trying 

to unify Knows(John, x) with Brother (Richard, John). We can avoid such 

unifications by indexing the facts in the knowledge base. A simple scheme 

called predicate indexing puts all the Knows facts in one bucket and all the 

Brother facts in another. The buckets can be stored in a hash table for 

efficient access. Predicate indexing is useful when there are many 

predicate symbols but only a few clauses for each symbol.  

Sometimes, however, a predicate has many clauses. For example, suppose 

that the tax authorities want to keep track of who employs and we use a 

predicate Employs(x, y). This would be a very large bucket with millions 

of employers and tens of millions of employees. Answering a query such 

as Employs(x,Richard ) with predicate indexing would require scanning 

the entire bucket. For this particular query, it would help if facts were 

indexed both by predicate and by second argument, perhaps using a 

combined hash table key. Then we could simply construct the key from 

the query and retrieve exactly those facts that unify with the query.  

For other queries, such as Employs(IBM , y), we would need to have 

indexed the facts by combining the predicate with the first argument. 

Therefore, facts can be stored under multiple index keys, rendering them 

instantly accessible to various queries that they might unify with. 

Given a sentence to be stored, it is possible to construct indices for all 

possible queries that unify with it. For the fact Employs(IBM ,Richard), 

the queries are 

Employs(IBM ,Richard)  Does IBM employ Richard? 

Employs(x,Richard )   Who employs Richard? 

Employs(IBM , y)   Whom does IBM employ? 

Employs(x, y)   Who employs whom? 
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Figure (a) The subsumption lattice whose lowest node is 

Employs(IBM, Richard). 

Figure(b) The subsumption lattice for the sentence Employs (John, John). 

These queries form a subsumption lattice, as shown in Figure(a). The 

lattice has some interesting properties. For example, the child of any node 

in the lattice is obtained from its parent by a single substitution and the 

“highest” common descendant of any two nodes is the result of applying 

their most general unifier. The portion of the lattice above any ground fact 

can be constructed systematically. A sentence with repeated constants has 

a slightly different lattice, as shown in Figure(b).  

The scheme we have described works very well whenever the lattice 

contains a small number of nodes. If function symbols are allowed, the 

number of nodes is also exponential in the size of the terms in the sentence 

to be stored. This can lead to a huge number of indices. We can respond 

by adopting a fixed policy, such as maintaining indices only on keys 

composed of a predicate plus each argument, or by using an adaptive 

policy that creates indices to meet the demands of the kinds of queries 

being asked.  

8.4 FORWARD AND BACKWARD CHAINING 

In artificial intelligence, forward and backward chaining is one of the 

important topics, but before understanding forward and backward chaining 

lets first understand that from where these two terms came. 

Inference engine: 

The inference engine is the component of the intelligent system in 

artificial intelligence, which applies logical rules to the knowledge base to 

infer new information from known facts. The first inference engine was 

part of the expert system. Inference engine commonly proceeds in two 

modes, which are: 

1. Forward chaining 

2. Backward chaining 

Horn Clause and Definite clause: 

Horn clause and definite clause are the forms of sentences, which enables 
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knowledge base to use a more restricted and efficient inference algorithm. 

Logical inference algorithms use forward and backward chaining 

approaches, which require knowledge base in the form of the first-order 

definite clause. 

 Definite clause: A clause which is a disjunction of literals with exactly 

one positive literal is known as a definite clause or strict horn clause. A 

definite clause either is atomic or is an implication whose antecedent is 

a conjunction of positive literals and whose conclusion is a single 

positive literal. The following are first-order definite clauses: 

King(x) ∧ Greedy(x) ⇒ Evil(x)  

King(John)  

Greedy(y)  

 Horn clause: A clause which is a disjunction of literals with at most 

one positive literal is known as horn clause. Hence all the definite 

clauses are horn clauses. 

Example: (¬ p V ¬ q V k). It has only one positive literal k. 

It is equivalent to p ∧ q → k. 

8.4.1 Forward Chaining: 

Forward chaining is also known as a forward deduction or forward 

reasoning method when using an inference engine. Forward chaining is a 

form of reasoning which start with atomic sentences in the knowledge 

base and applies inference rules (Modus Ponens) in the forward direction 

to extract more data until a goal is reached. 

The Forward-chaining algorithm starts from known facts, triggers all rules 

whose premises are satisfied, and add their conclusion to the known facts. 

This process repeats until the problem is solved. 

Properties of Forward-Chaining: 

 It is a bottom-up approach, as it moves from bottom to top. 

 It is a process of making a conclusion based on known facts or data, 

by starting from the initial state and reaches the goal state. 

 Forward-chaining approach is also called as data-driven as we reach 

to the goal using available data. 

 Forward -chaining approach is commonly used in the expert system, 

such as CLIPS, business, and production rule systems. 

Consider the following famous example which we will use in both 

approaches. 

Example: 

"As per the law, it is a crime for an American to sell weapons to hostile 
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missiles were sold to it by Robert, who is an American citizen." 

Prove that "Robert is criminal." 

To solve the above problem, first, we will convert all the above facts into 

first-order definite clauses, and then we will use a forward-chaining 

algorithm to reach the goal. 

Facts Conversion into First-Order Logic: 

1. It is a crime for an American to sell weapons to hostile nations. (Let's 

say p, q, and r are variables) 

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) ⇒ Criminal(p)       

...(1) 

2. Country A has some missiles.  

∃p Owns(A, p) ∧ Missile(p) 

It can be written in two definite clauses by using Existential 

Instantiation, introducing new Constant T1. 

Owns(A, T1)             ......(2) 

Missile(T1)             .......(3) 

3. All of the missiles were sold to country A by Robert. 

Missiles(p) ∧ Owns (A, p) ⇒ Sells (Robert, p, A)       ......(4) 

4. Missiles are weapons. 

Missile(p) ⇒ Weapons (p)             .......(5) 

5. Enemy of America is known as hostile. 

Enemy(p, America) ⇒Hostile(p)             ........(6) 

6. Country A is an enemy of America. 

Enemy (A, America)             .........(7) 

7. Robert is American. 

American(Robert)            ..........(8) 

This knowledge base contains no function symbols and therefore it is an 

instance of the class Datalog knowledge bases. Datalog is a language that 

is restricted to first-order definite clauses with no function symbols. 

Datalog gets its name because it can represent the type of statements 

which are typically made in relational databases. 
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Forward chaining proof: 

Step-1: 

In the first step we will start with the known facts and will choose the 

sentences which do not have implications, such as: American(Robert), 

Enemy(A, America), Owns(A, T1), and Missile(T1). All these facts will 

be represented as below. 

 

Step-2: 

At the second step, we will see those facts which infer from available facts 

and with satisfied premises. 

Rule-(1) does not satisfy premises, so it will not be added in the first 

iteration. 

Rule-(2) and (3) are already added. 

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is 

added, which infers from the conjunction of Rule (2) and (3). 

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and 

which infers from Rule-(7). 

 

Step-3: 

At step-3, as we can check Rule-(1) is satisfied with the substitution 

{p/Robert, q/T1, r/A}, so we can add Criminal(Robert) which infers all the 

available facts. And hence we reached our goal statement. 
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approach. 

8.4.2 Backward Chaining: 

Backward-chaining is also known as a backward deduction or backward 

reasoning method when using an inference engine. A backward chaining 

algorithm is a form of reasoning, which starts with the goal and works 

backward, chaining through rules to find known facts that support the 

goal. In this section we will study backward chaining example and then 

we describe how it is used in logic programming, which is the most widely 

used form of automated reasoning. 

Properties of backward chaining: 

 It is known as a top-down approach. 

 Backward-chaining is based on modus ponens inference rule. 

 In backward chaining, the goal is broken into sub-goal or sub-goals to 

prove the facts true. 

 It is called a goal-driven approach, as a list of goals decides which 

rules are selected and used. 

 Backward-chaining algorithm is used in game theory, automated 

theorem proving tools, inference engines, proof assistants, and various 

AI applications. 

 The backward-chaining method mostly used a depth-first search 

strategy for proof. 

8.4.2.1 Backward Chaining Example: 

In backward-chaining, we will use the same above example, and will 

rewrite all the rules. 

1. It is a crime for an American to sell weapons to hostile nations. (Let's 

say p, q, and r are variables) 

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) ⇒ Criminal(p)       

...(1) 

2. Country A has some missiles.  

∃p Owns(A, p) ∧ Missile(p)  

It can be written in two definite clauses by using Existential 

Instantiation, introducing new Constant T1. 

Owns(A, T1)             ......(2) 

Missile(T1)             .......(3) 

3. All of the missiles were sold to country A by Robert. 

Missiles(p) ∧ Owns (A, p) ⇒ Sells (Robert, p, A)       ......(4) 
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4. Missiles are weapons. 

Missile(p) ⇒ Weapons (p)             .......(5) 

5. Enemy of America is known as hostile. 

Enemy(p, America) ⇒Hostile(p)             ........(6) 

6. Country A is an enemy of America. 

Enemy (A, America)             .........(7) 

7. Robert is American. 

American(Robert)           ..........(8) 

Backward-Chaining proof: 

In Backward chaining, we will start with our goal predicate, which is 

Criminal(Robert), and then infer further rules. 

Step-1: 

At the first step, we will take the goal fact. And from the goal fact, we will 

infer other facts, and at last, we will prove those facts true. So, our goal 

fact is "Robert is Criminal," so following is the predicate of it. 

 

Step-2: 

At the second step, we will infer other facts form goal fact which satisfies 

the rules. As we can see in Rule-1, the goal predicate Criminal(Robert) is 

present with substitution {Robert/P}. So, we will add all the conjunctive 

facts below the first level and will replace p with Robert. 

Here we can see American (Robert) is a fact, so it is proved here. 
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At step-3, we will extract further fact Missile(q) which infer from 

Weapon(q), as it satisfies Rule-(5). Weapon (q) is also true with the 

substitution of a constant T1 at q. 

 

Step-4: 

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form 

Sells(Robert, T1, r) which satisfies the Rule- 4, with the substitution of A 

in place of r. So these two statements are proved here. 

 

Step-5: 

At step-5, we can infer the fact Enemy(A, America) from Hostile(A) 

which satisfies Rule- 6. And hence all the statements are proved true using 

backward chaining. 
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8.4.2.2 Logic Programming: 

In Logic programming the system is constructed by expressing knowledge 

in a formal language and that problem is solved by running inference 

processes on that knowledge. Prolog is the most widely used logic 

programming language. It is used primarily as a Rapid prototyping 

language and for symbol-manipulation tasks such as writing compilers and 

parsing natural language. Many expert systems have been written in 

Prolog for legal, medical, financial, and other domains. 

Prolog programs are sets of definite clauses written in a notation which is 

different from standard first-order logic. Prolog uses uppercase letters for 

variables and lowercase for Constants which is the opposite of our 

convention for logic. Commas separate conjuncts in a clause, and the 

clause is written “backwards”; instead of  

A ∧ B ⇒ C  

In Prolog we have  

C :- A, B.  

Here is a typical example: 

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z). 

The notation [E|L] denotes a list whose first element is E and whose rest is 

L. Here is a Prolog program for append(X,Y,Z), which succeeds if list Z is 

the result of appending lists X and Y: 

append([],Y,Y). 

append([A|X],Y,[A|Z]) :- append(X,Y,Z). 

In English, we can read these clauses as  
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2. [A|Z] is the result of appending [A|X] onto Y, provided that Z is the 

result of appending X onto Y. 

We can ask the query  

append(X,Y,[1,2]): what two lists can be appended to give [1,2]?  

We get the solutions 

X=[] Y=[1,2]; 

X=[1] Y=[2]; 

X=[1,2] Y=[] 

The execution of Prolog programs is done through depth-first backward 

chaining. Some aspects of Prolog fall outside standard logical inference:  

 Prolog uses the database semantics rather than first-order semantics, 

and this is apparent in its treatment of equality and negation. 

 There is a set of built-in functions for arithmetic. Literals using these 

function symbols are “proved” by executing code rather than doing 

further inference. For example, the goal “X is 4+3” succeeds where X 

bound to 7. On the other hand, the goal “5 is X+Y” fails, because the 

built-in functions do not do arbitrary equation solving. 

 There are built-in predicates that have side effects when executed. 

These include input-output predicates and the assert/retract predicates 

for modifying the knowledge base. Such predicates have no 

counterpart in logic and can produce confusing results. 

 Prolog uses depth-first backward-chaining search with no checks for 

infinite recursion. This makes it very fast when given the right set of 

axioms, but incomplete when given the wrong ones. 

 Dynamic programming is the one in which the solutions to 

subproblems are constructed incrementally from smaller subproblems 

and are cached to avoid re-computation. We can obtain a similar 

effect in a backward chaining system using memoization that is, 

caching solutions to subgoals as they are found and then reusing those 

solutions when the subgoal recurs, rather than repeating the previous 

computation.  

 This is the approach taken by tabled logic programming systems, 

which use efficient storage and retrieval mechanisms to perform 

memoization. Tabled logic programming combines the goal-

directedness of backward chaining with the dynamic programming. 

 Prolog uses database semantics. There is no way to assert that a 

sentence is false in Prolog. This makes Prolog less expressive than 

first-order logic, but it is part of what makes Prolog more efficient and 
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more concise. If given problem can be described with database 

semantics, it is more efficient to reason with Prolog or some other 

database semantics system, rather than translating into FOL and 

reasoning with a full FOL theorem prover. 

8.4.3 Forward Chaining Vs. Backward Chaining: 

 

Sr. 

No 
Forward Chaining Backward Chaining 

1 

Forward chaining starts from 

known facts and applies 

inference rule to extract more 

data unit it reaches to the goal. 

Backward chaining starts from 

the goal and works backward 

through inference rules to find 

the required facts that support 

the goal. 

2 It is a bottom-up approach It is a top-down approach 

3 

Forward chaining is known as 

data-driven inference 

technique as we reach to the 

goal using the available data. 

Backward chaining is known as 

goal-driven technique as we 

start from the goal and divide 

into sub-goal to extract the 

facts. 

4 

Forward chaining reasoning 

applies a breadth-first search 

strategy. 

Backward chaining reasoning 

applies a depth-first search 

strategy. 

5 
Forward chaining tests for all 

the available rules 

Backward chaining only tests 

for few required rules. 

6 

Forward chaining is suitable 

for the planning, monitoring, 

control, and interpretation 

application. 

Backward chaining is suitable 

for diagnostic, prescription, and 

debugging application. 

7 

Forward chaining can generate 

an infinite number of possible 

conclusions. 

Backward chaining generates a 

finite number of possible 

conclusions. 

8 
It operates in the forward 

direction. 

It operates in the backward 

direction. 

9 
Forward chaining is aimed for 

any conclusion. 

Backward chaining is only 

aimed for the required data. 

 

8.5 RESOLUTION 

Resolution is a valid inference rule producing a new clause implied by two 

clauses containing complementary literals. A literal is an atomic symbol or 

its negation, i.e., P, ~P. Resolution is a theorem proving technique that 

proceeds by building refutation proofs, i.e., proofs by contradictions. It 

was invented by a Mathematician John Alan Robinson in the year 1965.  

A Knowledge Base is actually a set of sentences all of which are true, i.e., 
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into conjunctive normal form (CNF), where each sentence is written as a 

disjunction of (one or more) literals. 

Resolution is used, if there are various statements are given, and we need 

to prove a conclusion of those statements. Unification is a key concept in 

proofs by resolutions. Propositional resolution using refutation is a 

complete inference procedure for propositional logic. Here, we describe 

how to extend resolution to first-order logic. Resolution is a single 

inference rule which can efficiently operate on the conjunctive normal 

form or clausal form. 

8.5.1 Conjunctive Normal Form for First-Order Logic: 

First-order resolution requires that sentences be in conjunctive normal 

form (CNF) that is, a conjunction of clauses, where each clause is a 

disjunction of literals.  

Clause: Disjunction of literals is called a clause. It is also known as a unit 

clause. 

Literals can contain variables, which are assumed to be universally 

quantified. For example, the sentence 

∀ x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x) 

in CNF form it can be written as 

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal 

(x)  

Every sentence of first-order logic can be converted into an inferentially 

equivalent CNF sentence.  

The procedure for conversion to CNF is similar to the propositional case. 

The principal difference arises from the need to eliminate existential 

quantifiers. We illustrate the procedure by translating the sentence 

“Everyone who loves all animals is loved by someone,” or 

∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]  

The steps for translating the sentences in CNF are as follows: 

1. Eliminate implications: 

∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]  

2. Move ¬ inwards:  

In addition to the usual rules for negated connectives, we need rules for 

negated quantifiers. Thus, we have 

¬∀x p becomes ∃ x ¬p 

¬∃x p becomes ∀ x ¬p  
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Our sentence will go through the following transformations: 

∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]  

∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]  

∀ x [∃ y Animal (y) ∧¬Loves(x, y)] ∨ [∃ y Loves(y, x)]  

Notice how a universal quantifier (∀ y) in the premise of the implication 

has become an existential quantifier. The sentence will now be read as 

“Either there is some animal that x doesn’t love, or someone loves x.” The 

meaning of the original sentence has been preserved. 

3. Standardize variables:  

For sentences like (∃xP(x))∨(∃xQ(x)) which use the same variable name 

twice, change the name of one of the variables. This avoids confusion later 

when we drop the quantifiers. Thus, we have 

∀ x [∃ y Animal (y) ∧¬Loves(x, y)] ∨ [∃ z Loves(z, x)]  

4. Skolemize:  

Skolemization is the process of removing existential quantifiers by 

elimination. In the simple case, it is just like the Existential Instantiation 

rule: translate ∃x P(x) into P(A), where A is a new constant. However, we 

can’t apply Existential Instantiation to our sentence above because it 

doesn’t match the pattern ∃x P(x); only parts of the sentence match the 

pattern. 

Thus, we want the Skolem entities to depend on x and z: 

∀ x [Animal (F(x)) ∧¬Loves(x, F(x))] ∨ Loves(G(z), x)  

Here F and G are Skolem functions. The general rule is that the arguments 

of the Skolem function are all the universally quantified variables in 

whose scope the existential quantifier appears.  

5. Drop universal quantifiers:  

At this point, all remaining variables must be universally quantified and 

the previous sentence is equivalent to one in which all the universal 

quantifiers have been moved to the left. We can now drop the universal 

quantifiers: 

[Animal (F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x)  

6. Distribute ∨ over ∧: 

[Animal (F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)]  

This step may require flattening out nested conjunctions and disjunctions. 

The sentence is now in CNF and consists of two clauses.  
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The resolution rule for first-order clauses is simply a lifted version of the 

propositional resolution rule. Resolution can resolve two clauses if they 

contain complementary literals, which are assumed to be standardized 

apart so that they share no variables. 

Propositional literals are complementary if one is the negation of the other. 

First-order literals are complementary if one unifies with the negation of 

the other. Thus, we have 

 

Where, UNIFY( ,¬ )=θ.  

For example, we can resolve the two clauses 

[Animal (F(x)) ∨ Loves(G(x), x)] and [¬Loves(u, v) ∨ ¬Kills(u, v)] 

by eliminating the complementary literals Loves(G(x), x) and ¬Loves(u, 

v), with unifier 

θ={u/G(x), v/x}, to produce the resolvent clause 

[Animal (F(x)) ∨ ¬Kills(G(x), x)]  

This rule is called the binary resolution rule because it resolves exactly 

two literals.  

Steps for Resolution: 

1. Conversion of facts into first-order logic. 

2. Convert First-Order logic statements into CNF. 

3. Negate the statement which needs to prove (proof by contradiction). 

4. Draw resolution graph (unification). 

8.5.3 Example Proof: 

We will consider an example in which we will apply resolution.  

a. John likes all kind of food. 

b. Apple and vegetable are food 

c. Anything anyone eats and not killed is food. 

d. Anil eats peanuts and still alive 

e. Harry eats everything that Anil eats. 

Prove by resolution that: 

f. John likes peanuts. 

Step-1: Conversion of Facts into First-Order Logic 

In the first step we will convert all the given statements into its first order 
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logic. 

 

Step-2: Conversion of First-Order logic into CNF 

In First order logic resolution, it is required to convert the First-Order 

logic into CNF as CNF form makes easier for resolution proofs. 

i. Eliminate all implication (→) and rewrite 

a. ∀x ¬ food(x) V likes(John, x) 

b. food(Apple) Λ food(vegetables) 

c. ∀x ∀y ¬ [eats(x, y) Λ ¬ killed(x)] V food(y) 

d. eats (Anil, Peanuts) Λ alive(Anil) 

e. ∀x ¬ eats(Anil, x) V eats(Harry, x) 

f. ∀x¬ [¬ killed(x) ] V alive(x) 

g. ∀x ¬ alive(x) V ¬ killed(x) 

h. likes(John, Peanuts) 

ii. Move negation(¬) inwards and rewrite 

a. ∀x ¬ food(x) V likes(John, x) 

b. food(Apple) Λ food(vegetables) 

c. ∀x ∀y ¬ eats(x, y) V killed(x) V food(y) 

d. eats (Anil, Peanuts) Λ alive(Anil) 

e. ∀x ¬ eats(Anil, x) V eats(Harry, x) 

f. ∀x ¬killed(x) ] V alive(x) 

g. ∀x ¬ alive(x) V ¬ killed(x) 

h. likes(John, Peanuts) 
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a. ∀x ¬ food(x) V likes(John, x) 

b. food(Apple) Λ food(vegetables) 

c. ∀y ∀z ¬ eats(y, z) V killed(y) V food(z) 

d. eats (Anil, Peanuts) Λ alive(Anil) 

e. ∀w¬ eats(Anil, w) V eats(Harry, w) 

f. ∀g ¬killed(g) ] V alive(g) 

g. ∀k ¬ alive(k) V ¬ killed(k) 

h. likes(John, Peanuts) 

iv. Eliminate existential instantiation quantifier by elimination. 

In this step, we will eliminate existential quantifier ∃, and this process is 

known as Skolemization. But in this example problem since there is no 

existential quantifier so all the statements will remain same in this step. 

v. Drop Universal quantifiers 

In this step we will drop all universal quantifier since all the statements are 

not implicitly quantified so we don't need it. 

a. ¬ food(x) V likes(John, x) 

b. food(Apple) 

c. food(vegetables) 

d. ¬ eats(y, z) V killed(y) V food(z) 

e. eats (Anil, Peanuts) 

f. alive(Anil) 

g. ¬ eats(Anil, w) V eats(Harry, w) 

h. killed(g) V alive(g) 

i. ¬ alive(k) V ¬ killed(k) 

j. likes(John, Peanuts) 

vi. Distribute conjunction ∧ over disjunction V: 

This step will not make any change in this problem. 

Step-3: Negate the statement to be proved: 

In this step, we will apply negation to the conclusion statement, which will 

be written as 

¬likes(John, Peanuts) 
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Step-4: Draw Resolution graph: 

Now in this step, we will solve the problem by resolution tree using 

substitution. For the above problem, it will be given as follows: 

                            

Hence, the negation of the conclusion has been proved as a complete 

contradiction with the given set of statements. 

Explanation of Resolution graph: 

a. In the first step of resolution graph, ¬likes(John, Peanuts) , and 

likes(John, x) get resolved(cancelled) by substitution of {Peanuts/x}, 

and we are left with ¬ food(Peanuts). 

b. In the second step of the resolution graph, ¬ food(Peanuts) , and 

food(z) get resolved (cancelled) by substitution of { Peanuts/z}, and 

we are left with ¬ eats(y, Peanuts) V killed(y). 

c. In the third step of the resolution graph, ¬ eats(y, Peanuts) and eats 

(Anil, Peanuts) get resolved by substitution {Anil/y}, and we are left 

with Killed(Anil) . 

d. In the fourth step of the resolution graph, Killed(Anil) and ¬ killed(k) 

get resolve by substitution {Anil/k}, and we are left with ¬ 

alive(Anil). 

e. In the last step of the resolution graph ¬ alive(Anil) and alive(Anil) 

get resolved. 
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8.5.4 Equality: 

None of the inference methods described so far handle an assertion of the 

form x = y. Three distinct approaches can be taken. The first approach is 

to write down sentences about the equality relation in the knowledge base. 

Equality is reflexive, symmetric, and transitive and we can substitute 

equals for equals in any predicate or function. So, we need three basic 

axioms, and then one for each predicate and function: 

∀x x=x 

∀ x, y x=y ⇒ y =x 

∀ x, y, z x=y ∧ y =z ⇒ x=z 

∀ x, y x=y ⇒ (P1(x) ⇔ P1(y)) 

∀ x, y x=y ⇒ (P2(x) ⇔ P2(y)) 

... 

∀ w, x, y, z w =y ∧ x=z ⇒ (F1(w, x)= F1(y, z)) 

∀ w, x, y, z w =y ∧ x=z ⇒ (F2(w, x)= F2(y, z)) 

... 

Given these sentences, a standard inference procedure such as resolution 

can perform tasks requiring equality reasoning, such as solving 

mathematical equations. However, these axioms will generate a lot of 

conclusions, most of them will not be helpful to a proof. So there has been 

a search for more efficient ways of handling equality. One alternative is to 

add inference rules rather than axioms.  

The simplest rule, demodulation, takes a unit clause x=y and some clause 

α that contains the term x, and yields a new clause formed by substituting 

y for x within α. It works if the term within α unifies with x; it need not be 

exactly equal to x. 

Note that demodulation is directional; given x = y, the x always gets 

replaced with y, never vice versa.  

Example: 

Given, 

Father (Father (x)) = PaternalGrandfather (x) 

Birthdate(Father (Father (Bella)), 1926) 

we can conclude by demodulation 

Birthdate(PaternalGrandfather (Bella), 1926) . 

m
unotes.in



   

 158 

Inference in First-Order  

Logic 

 

1. Demodulation: For any terms x, y, and z, w here z appears  

somewhere in literal  and where UNIFY(x, z) = θ, 

 

Where, SUBST is the usual substitution of a binding list, and SUB(x, y,m) 

means to replace x with y everywhere that x occurs within m. 

The rule can also be extended to handle non-unit clauses in which an 

equality literal appears. 

3. Paramodulation: For any terms x, y, and z, where z appears 

somewhere in literal  , 

and where UNIFY(x, z) = θ, 

 

For example, from 

P(F(x,B), x) ∨ Q(x) and F(A, y)= y ∨ R(y) 

we have θ =UNIFY(F(A, y), F(x,B))= {x/A, y/B}, and we can conclude by 

paramodulation the sentence 

P(B,A) ∨ Q(A) ∨ R(B)  

Paramodulation yields a complete inference procedure for first-order logic 

with equality. 

3. Equational unification: 

A third approach handles equality reasoning entirely within an extended 

unification algorithm. That is, terms are unifiable if they are provably 

equal under some substitution, where “provably” allows for equality 

reasoning. For example, the terms 1 + 2 and 2 + 1 normally are not 

unifiable, but a unification algorithm that knows that x + y=y + x could 

unify them with the empty substitution. Equational unification of this kind 

can be done with efficient algorithms designed for the particular axioms 

using commutativity, associativity, and so on rather than through explicit 

inference with those axioms.  

8.5.5 Resolution Strategies: 

We know that repeated applications of the resolution inference rule will 

eventually find a proof if one exists. In this subsection, we examine 

strategies that help find proofs efficiently. 

1. Unit preference:  

This strategy prefers to do resolutions where one of the sentences is a 
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that we are trying to produce an empty clause, so it might be a good idea 

to prefer inferences that produce shorter clauses. Resolving a unit sentence 

(such as P) with any other sentence (such as ¬P ∨¬Q∨R) always yields a 

clause (in this case, ¬Q ∨ R) that is shorter than the other clause. This 

strategy leads to a dramatic speedup, making it feasible to prove theorems 

that could not be handled without the preference. Unit resolution is a 

restricted form of resolution in which every resolution step must involve a 

unit clause. Unit resolution is incomplete in general, but complete for 

Horn clauses.  

2. Set of support:  

Preferences that try certain resolutions first are helpful, but in general it is 

more effective to try to eliminate some potential resolutions altogether. 

For example, we can insist that every resolution step involve at least one 

element of a special set of clauses called the set of support. The resolvent 

is then added into the set of support. If the set of support is small relative 

to the whole knowledge base, the search space will be reduced. The set-of-

support strategy has the additional advantage of generating goal-directed 

proof trees that are often easy for humans to understand. 

3. Input resolution:  

In this strategy, every resolution combines one of the input sentences 

(from the KB or the query) with some other sentence. The space of proof 

trees of this shape is smaller than the space of all proof graphs. Linear 

resolution is complete. 

4. Subsumption:  

The subsumption method eliminates all sentences that are subsumed by 

(that is, more specific than) an existing sentence in the KB. For example, 

if P(x) is in the KB, then there is no sense in adding P(A) and even less 

sense in adding P(A) ∨ Q(B). Subsumption helps keep the KB small and 

thus helps keep the search space small. 

8.5.6 Practical Uses Of Resolution Theorem Provers: 

1. Theorem provers can be applied to the problems involved in the 

synthesis and verification of both hardware and software. Thus, 

theorem-proving research is carried out in the fields of hardware 

design, programming languages, and software engineering not just in 

AI. 

2. In the case of hardware, the axioms describe the interactions between 

signals and circuit elements. Logical reasoners designed specially for 

verification have been able to verify entire CPUs, including their 

timing properties.  

3. The AURA theorem prover has been applied to design circuits that 

are more compact than any previous design. 
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4. In the case of software, reasoning about programs is quite similar to 

reasoning about actions, axioms describe the preconditions and effects 

of each statement. 

5. Similar techniques are now being applied to software verification by 

systems such as the SPIN model checker. For example, the Remote 

Agent spacecraft control program was verified before and after flight. 

6. The RSA public key encryption algorithm and the Boyer–Moore 

string-matching algorithm have been verified this way. 

8.6 SUMMARY 

 In this chapter we analyzed logical inference in first-order logic. 

 Inference rules (universal instantiation and existential instantiation) 

can be used to propositionalize the inference problem.  

 The use of unification to identify appropriate substitutions for 

variables eliminates the instantiation step in first-order proofs, making 

the process more efficient. 

 A lifted version of Modus Ponens uses unification to provide a natural 

and powerful inference rule, generalized Modus Ponens.  

 The forward-chaining and backward chaining algorithms can be used 

for inference. 

 The generalized resolution inference rule provides a complete proof 

system for first-order logic, using knowledge bases in conjunctive 

normal form. 

 Several strategies exist for reducing the search space of a resolution 

system without compromising completeness. One of the most 

important issues is dealing with equality; we studied how 

demodulation and paramodulation can be used. 

 Efficient resolution-based theorem provers have been designed to 

prove interesting mathematical theorems and to verify and synthesize 

software and hardware. 

8.7 UNIT END QUESTIONS 

1. What is Unification? Explain in brief about Unification. 

2. Explain Conjunctive Normal Form (CNF) in First-Order logic. 

3. Give the outline of simple forward chaining algorithm. 

4. Explain in detail backward chaining algorithm. 

5. Give comparison between forward chaining and backward chaining. 

6. What is Resolution? Explain resolution steps with example. 
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8. From “Horses are animals,” it follows that “The head of a horse is the 

head of an animal.” Demonstrate that this inference is valid by 

carrying out the following steps: 

a. Translate the premise and the conclusion into the language of first-

order logic. Use three predicates: HeadOf (h, x) (meaning “h is the 

head of x”), Horse(x), and Animal (x). 

b. Negate the conclusion, and convert the premise and the negated 

conclusion into conjunctive normal form. 

c. Use resolution to show that the conclusion follows from the premise. 
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UNIT V 

9 
PLANNING 

Unit Structure  

9.0  Definition of Classical Planning 

 9.0.1 Planning assumptions 

9.1 Algorithms for planning as State Space Search 

9.1.1 Forward State Space 

9.1.2 Backward State Space 

9.2  Planning Graphs 

9.2.1 Algorithm to build a plan graph 

9.3  Other Classical Planning Approaches 

9.4 Analysis of planning approaches 

9.5 Time, schedules and resources 

9.5.1 Representing Temporal and resource constraints 

9.5.2 Aggregation 

9.5.3 Solving Scheduling Problems 

9.6  Hierarchical Planning 

       9.6.1 Hierarchical Task Network (HTN) 

9.6.2 Partial Order Planning (POP) 

9.6.3 POP one level planner 

9.7  Planning and acting in Nondeterministic Domains 

        9.7.1 Some strategies are listed below 

 9.8  Multiagent planning 

9.9 Summary 

9.10 Unit End Questions 

9.11 References 

9.0 DEFINITION OF CLASSICAL PLANNING 

1. How to reach goal from initial state is nothing but planning. 

2. In order to achieve goal a sequence of actions is needed such kind of 

behaviour is called as planning. 

3. During the execution after planning the agent will need to do 

prediction of the future so that it can move accordingly. 

4. In simple words we can call planning as decision making system that 

tries to achieve its goal. 

5. The agent can be any machine which is intelligent in nature. 
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GOAL, observations, actions, deterministic nature, events etc. 

9.1 ALGORITHMS FOR PLANNING AS STATE SPACE 

SEARCH 

1. Information is needed to predict something; all these information is 

given by state. 

2. This information is used to apply actions and decision can be made if 

the state is a goal state. 

3. There are 3 state space for a problem: 

a. Initial state: The first state from which the action is applied and 

begins  

b. Goal state: Here the objective is satisfied 

c. Solution: Target is achieved here 

4. There are 2 types of state space search. 

a. Forward state space 

b. Backward state space. 

9.1.1 Forward State Space: 

1. In this type of planning the agent will start from initial state and will go 

till the final i.e., target state. 

2. The aim is to find the final path or full path which will give the target. 

3. In the below example if you will notice then according to the forward 

state space, the initial state is Train is at Mumbai, now when the train 

moves it is getting two states after the action, one is train is in 

Rajasthan and another state is the train is at Delhi. 

4. Imagine the goal is to reach Delhi then we can say that the target 

reached from initial till goal with the help of Forward state space. 

 

9.1.2 Backward State Space: 

1. Backward state space planning is opposite to forward state space 

planning. 
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2. In this state space planning the state will start from the goal state the it 

will go towards the initial state. 

3. In the below example if the target is Delhi, then the first state from 

which it will start is Train is at Delhi then it will move towards the 

initial state i.e., Train is at Mumbai. 

 

9.2 PLANNING GRAPHS 

1.  This a technique in which plan is represented graphically to make 

work easy and to get the better an accurate planning. 

2.  All planning methods that is done can be rechecked or can be 

converted into planning graphs and checked. 

3. There are many algorithms available which can be utilized to create 

this plan graph. One of the algorithms is called as GRAPHPLAN 

algorithm which is used in creation of notion and actions of the graph.  

4.  There is also parallelism which is supported by plan graph it is used to 

represent many states and how the particular state runs independently 

is represented 

5.  In the below graph you will come across 3 categories 

a. Action level nodes: The actions that can be executed in that 

particular period 

b. State level nodes: The state that can be true in that particular 

period 

c.  Edge: The pre-condition which is applied in it and the effect 

6.  In the below example S0 is the initial state 

7.  Every state will have its associated actions that can be true in that 

particular period. 

8.  If any conflict occurs anywhere then that can be represented using 

mutual exclusion links. 

9.  The level A0 contains all the actions that can happed after the state S0 

10.  The small box that is present above the edges represents facts. 

11.  Fact is nothing but it says that the literals that is getting used will not 

be modified. 
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9.2.1 Algorithm to build a plan graph: 

1. Start at S0 

2. Initialize the variable 

3. Find the all-possible actions (A)that can be applied in that particular 

state, by incrementing it A++ 

4. Check if there is any mutex present anywhere. 

5. Move ahead with next State by incrementing it S++ 

6. If mutex is present then compute that as well  

7. If solution found then return success and exit. 

8. If no solution found or possible then return failure 

9.3 OTHER CLASSICAL PLANNING APPROACHES 

1. Classical planning as Boolean satisfiability 

 Boolean satisfiability is also called as propositional satisfiability 

problem 

 It will check and let you know whether the plan is satisfying or not 

satisfying. 

 As the name is Boolean it uses two values i.e. true or false so by using 

this approach if it returns true then we can say that the plan is 

satisfying otherwise not. 

 It is also called as SAT. 

2. Planning as constraint satisfaction 

 In this mathematical query are applied for a set of objects and its state 

should agree with the constraints. 

 Constraint Satisfaction Problem (CSP) 

 It is a planning where it ignores the fact of partially ordered plan 

where many problems are not dependent. 
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 It searches through space not through state of the plan. 

3. Planning as first order logical deduction: situation calculus 

 The language called as PDDL (Planning Domain Definition 

Language) is used to balance and tackle by operating the high 

complex algorithm. 

 The stating state is called as situation then action is applied on this 

situation. After applying particular set of action result is achieved. 

Even the result is regarded as situation. 

 Fluent is the one which occurs when the relation is different from the 

situation 

 On the basis of precondition, the action is executed. 

9.4 ANALYSIS OF PLANNING APPROACHES 

 Planning = Search + Logic 

 From the above formula we can say that planning is a combination of 

searching and logic. 

 Planner is a program that helps us to find the solution. 

 GRAPHPLAN can be used as it will save or it will help in finding the 

difficult interactions which are due to mostly by mutex 

 Even SATPLAN deals with the same kind of mutex relations. 

 Subgoal is another task which is used to reach goal. 

9.5 TIME, SCHEDULES AND RESOURCES 

 Planning is done first, scheduling is done later 

 With the help of planning the different types of actions that can be 

applied is decided again with the help of these set of actions that was 

decided during planning, out of this a suitable action is chosen and that 

action is scheduled to get the result. 

 According the need of action resources are provided to it. 

9.5.1 Representing Temporal and resource constraints: 

 Job Shop Scheduling (JSS) or Job Sop Problem is used to do 

operational research and get the optimized results out of it. 

 The main role of Job Shop Scheduling is to assign a job to the 

particular resource in that particular period of time. 

 It has a particular section each section has its particular task 

associated with it. 
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work at a time. 

 It follows non-pre-emptive approach i.e., if the job starts with one task 

then it has to complete fully, it can’t stop in between. 

 In the below example J1, J2 and J3 represents job and at the left end 

Machines are present with a number line starting at zero and going till 

7. 

 So, from the diagrammatic representation we can say that it takes 

around 7 for all the jobs to finish. 

 It should be noted that the values by this is not always optimal in 

nature it may vary on the basis of machine, resource, kind of job etc.  

 

9.5.2 Aggregation: 

 Aggregation is one in which the variable represented in the following 

manner like Man(3) instead of Man(l1), Man(l2) and Man(l3). 

 The main aim of aggregation is nothing but groupism i.e., it may 

happen that there is a need of whole object to be used together in such 

scenarios we may use aggregation instead of calling each object 

individually. 

9.5.3 Solving Scheduling Problems: 

 In order to lower the time duration of planning phase we must start 

the plan and actions at the earliest so that it can be considered on the 

basis of ordering of the constraints and move on. 

 With the help of directed graph, the orders of your plan and actions 

can be analysed. 

 For efficient use of the above graph, CPM which stands for Critical 

Path Method can be applied to get the possible outcome for where to 

start and end. 
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9.6 HIERARCHICAL PLANNING 

 

 In Hierarchical planning the importance is given to goal by ignoring 

all other actions that is also possible along with it. 

 It is also known as plan decomposition 

 The main plus point of hierarchical planning is that it’s giving more 

important to the final target-based goal and ignoring the other things. 

 Initially at the abstract level a plan is taken and applied by considering 

it. 

 Then a particular solution on the basis of abstract consideration is 

applied and achieved and moved ahead by taking it as an input. 

 Also, the abstract level can be single or multiple levels based on the 

need the selection and the process is done. 

 Hierarchical planning involves to methods such as HTN also called as 

Hierarchical Task Network and POP called as Partial Order Planning. 

 We will look at each types below: 

9.6.1 Hierarchical Task Network (HTN): 

 In the higher-level a less selection of actions is done and level by 

level it gets lessen at the lower level. 

 HTN is regarded as an act of selecting the goal using a particular 

actions, to do this a proper selection of action is done at the top level 

this is called as ACT, then implementation of this act is followed in 

the lower level as well until the goal is achieved. 

 When it comes to HTN, the first plan is regarded as very big level as 

many planning and actions has to be considered at this phase. 

 As soon as the action is chosen and applied in that particular level, the 

decomposition of the level takes place into a partial one and this 

partial one is called as lower level. 
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 In this the planning and action is done at the partial level i.e.; we will 

go little deeper in our scenario and try to achieve the goal. 

 POP doesn’t follows the action sequences, if you have 2 action then 

any of the one will be chosen and executed the main aim is to reach 

the goal. 

 To understand POP let’s take an example of colouring a flower which 

has a stem and petals 

 So, imagine we coloured the petal first, then we coloured the stem. 

 At the end the goal is achieved called as colouring. 

 

9.6.3 POP one level planner: 

 As the name is suggesting one level it does the same when it comes to 

application i.e., it will plan level by level. 

 Let’s take an example and understand this, so if you want to go travel 

to a particular destination then the first thing that you will do is 

buying a ticket so to do that you need to go to ticket counter stand in 

queue then wait for your turn to come then fill the ticket slip, submit 

id proof and at the end you will get the ticket. Such kind of planning 

and achieving the goal is nothing but one level planner. 

9.7 PLANNING AND ACTING IN NONDETERMINISTIC 

DOMAINS 

 Nondeterministic domains are those in which nothing is known prior. 
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 In this plan has to be done with very less or no details 

 Because of unknown details uncertainty occurs 

 As the environment is less available or not available at all in this case 

perception is the best useful way to handle the situation, so that if the 

agent faces any sudden situation or need to do something in this case 

it can use the perception that was done earlier to apply particular 

action in that situation. 

 The good solution to these kinds of problems is nothing but strategies. 

 Knowledge is the key for every situation. 

9.7.1 Some strategies are listed below: 

 Sensor less planning 

 In this there will be partial observability or no observability at all 

 The agent as to use belief state which means that the agent needs to 

believe that something is present and move accordingly. 

 It is also called as conformant planning 

 It is not done on the basis of any perception. 

 The only moto of this strategy is to reach goal 

 Contingent Planning: 

 It is also called as conditional planning 

 On the basis of condition, the agent makes the plan, applies the action 

and executes it to reach the goal. 

 The plan made on the basis of environment which can be partially 

observable or fully observable is appropriate. 

 The variable which is used in contingent should be existential 

quantifier in nature. 

 In this it can also use belief state if needed but this belief state must 

satisfy the condition, it may use formula for the same. 

 Online replanning: 

 In this particular technique a continuous checking is done which is 

nothing but the monitoring. 

 Replanning is done by execution of it and a new plan is created. 

 It is not always necessary that the whole plan has to be replanned, 

sometimes replanning may be done in particular part as well 

according to the need. 
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Artificial Intelligence  In the below figure P is nothing but the plan that has been applied 

using this plan the agent will move ahead and side by side it will also 

observe the whole execution and once it gets to know that in the 

particular state say E the execution or the action that has been applied 

is not according to the need to reach the goal it will change the plan 

which is nothing but replanning or we can also call it as repairing. 

Now after replanning again the new actions are applied and executed 

to reach the goal in a very efficient manner. 

 3 monitoring are supported  

1. Action monitoring: here the agent will check whether the actions are 

according to the precondition. 

2. Plan monitoring: In this before running the action the agent will verify 

if it is according to the plan and whether it will give success. 

3. Goal monitoring: Betterment of the goal is checked here by checking 

it. 

 

9.8 MULTIAGENT PLANNING 

 In multiagent each agent has its own goal 

 A agent’s main role is to plan, act and sense 

  When there are multiagent in the environment each agent has its own 

goal and planning which leads to problem. 

Categories: 

 Multieffector planning: An agent having multiple effector associated 

with it is called as multieffector planning agent. To understand this, 

consider the following example: A person can sing and dance at the 

same time 

 If these effectors are divided then we will get multibody. 
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Planning with multiple simultaneous actions: 

 Multiactor: We will consider all multiagent, multibody and 

multieffector as one. So by doing this we are going to call all these as 

multiactor. 

 Here the actor is pointing to agents, models and body. 

 In this case the action is not always individual, over here the joint 

action is decided by all or many agents. 

 Given by joint action(a1, a2, ….an) 

 Cooperation and Coordination: The problem that arise is, as we 

say that joint decision has to be made then if there is any decision arises 

through any of the agent then each agent should agree with it. Achieving 

such agreement by every agent is what the main problem is. For this the 

agents should cooperate and coordinate with each other. 

 The one solution that is possible is convention. 

 If convention is not present then the substitution to it is 

communication between the agents. 

 For example, the person who wants someone to play with them can 

call them and make team join in there team e.g.: “Join my team, 

John!” 

 With evolution convention can arise 

 One of the good examples of cooperative process is fish school where 

the group of fish swim together in particular fashion.       

9.9 SUMMARY 

 In this chapter how are what kind of planning has to be implemented 

to achieve goal is getting explained in a very brief manner. 

 In forward chaining a initial phase is considered and it will move 

further till the final state whereas in backward chaining vice a versa is 

applied. 

 Graphical representation of plan is done using GRAPHPLAN 

 Decomposition of plan is done to get the other solutions that is 

possible in the graph such a way of finding the solution is called as 

hierarchical plan approach. 

 Planning in nondeterministic approach is the one in which the details 

like environment or data are not known prior. 

 Online planning is the one in which continuous monitoring is 

emphasised and replanning is made again to fine the most apt 

solution. 
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Artificial Intelligence 9.10 UNIT END QUESTIONS 

 Explain replanning in detail. 

 What do you mean by subgoals? 

 What are nondeterministic domains? Explain planning adaption for 

non-deterministic domains 

 Explain general characteristics of uncertain environments. 

 Write a short note on conditional planning or contingency planning 

 Explain online replanning in detail. 

 Write a short note on how planning is done with Multiple 

simultaneous actions. 

 Write a short note one sensorless planning or conformant planning 

       

9.11 REFERENCES 

 Artificial Intelligence: A modern approach by Stuart Russel and peter 

Norvig  

Publisher: Pearson 3
rd

 edition year is 2015 

 A first course in artificial intelligence by Deepak Khemani, TMH 

publisher frist edition 217 

 Artificial intelligence: A ration approach by Rahul Deva, Shroff 

publishers, 1
st
 edition with the year as 2018 

 Artificial Intelligence by Elaine Rich, Kevin Knight and Shivashankar 

Nair 3
rd

 edition 2018 

 Artificial Intelligence and soft computing for beginners by Anandita 

das Bhattacharjee   

 

 

***** 

 

m
unotes.in



 174 
 

10 
KNOWLEDGE REPRESENTATION 

Unit Structure  

10.0 Categories and Objects 

10.1 Events 

10.2 Mental events and mental objects 

10.3 Reasoning systems for categories 

 10.3.1 Semantic networks 

10.3.2.1.1 Description logics 

10.4 Reasoning with default information 

10.4.1 Circumscription and default logic 

10.5 Internet shopping world 

10.5.1 Following links 

10.6 Summary 

10.7 Unit End Questions 

10.8 References 

10.0 CATEGORIES AND OBJECTS 

 Facts are nothing but objects. 

 Pink colour pen falls under object property. 

 In this way many properties of an object can be grouped together and 

we can make them fall under categories. 

 All dogs are mammals so these mammals can be called as category. 

 With the help of inheritance, we can make it easy by using categories. 

 We can show categories in two ways: 

 One is using objects and predicates of FOL 

Eg: Dog(x) 

 Second way is by transforming the proposition into objects. 

 Next important thing to consider is Subclass, subcategory. 

 To understand subcategory let’s understand the following example: 

Let’s take football, this football falls under category Ball, so now we can 

say that football is subcategory of ball. 

 It can be represented as Football is subset of Balls. 

m
unotes.in



 

 175 

Artificial Intelligence  One another thing is consider this, sentence1: if its cloudy then it will 

rain, sentence 2: If it’s raining then use umbrella, from these 2 

sentences we can say that if its cloudy then use umbrella. This kind of 

creating new sentences or predicting something using the given data is 

nothing but inheritance.  

10.1 EVENTS 

 In the above topic we saw that the things were working on the basis of 

situation, but in this topic the event is done on the basis of time. 

 It uses fluent and object to proceed further. 

 Fluent is something where the behaviour is changed according to the 

time. 

 We may represent fluent in this way: 

On(dress, flower pic) 

To show that the fluent is true in that particular time, The alphabet T is 

used as follows: 

T(On(dress, flower pic) 

 In the above manner each predicate can be represented in there own 

unique way on the basis of there facts, let’s see some example of the 

same: 

 When the fluent becomes true after some gap, we can call it as 

restoration, so we will represent this as follows:  

   Restored(f,i) 

Where f: fluent 

            i: interval 

 When the fluent is true particular time, it is represented as follows: 

T(f,t) 

Where, T: true 

             f: fluent 

             t: time 

 If it has to end then the word terminates is use to represent it, below is 

an example: 

   Terminates(e,f,t) 

   Where: e: Event 

                f: fluent 

                t: time 
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10.2 MENTAL EVENTS AND MENTAL OBJECTS     

 In this deducing of knowledge happens. 

 In our life also many times it happens that we want to know about 

something. We want to gain knowledge of something new. This new 

knowledge about something can be gained by asking a query from 

someone. 

 This kind of gaining knowledge from someone’s mind is called as 

mental objects and the way by changing these objects is called as 

mental events. 

10.3 REASONING SYSTEMS OF CATEGORIES 

 In order to apply reasoning in the categories we need to represent it in 

any of the one way from this; 

 Semantic network 

 Efficient algorithms 

10.3.1 Semantic networks: 

 It is also called as existential graphs. 

 It is made up of nodes and edges. 

 It uses propositional information to create graph so it is also called as 

propositional network. 

 It is 2d dimension 

 The 2d is on the basis of knowledge. 

 The graph is made up of nodes, links and labels. 

 Objects are represented by nodes. 

 Link represents the relationships. 

 Nodes can be represented using oval or circle symbol. 

 Directed link with “IS” or “has” etc representing the relationships 

Eg: Dog is mammal 

      Animals are mammal 
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10.5.2  Description logics: 

 It is an advance version of semantic network. 

 It represents the knowledge in a diagrammatic way. 

10.4  REASONING WITH DEFAULT INFORMATION 

 It is non monotonic in nature 

 Non monotonic is nothing but additional information that can get 

added in between and can lead to earlier conclusions. 

 Changed notion on the truth is applied. 

10.4.1 Circumscription and default logic: 

 The meaning of circumscription is restriction of anything within some 

limits. 

 A model may substitute by another if it has any unwanted or abnormal 

things inside it. 

 The rule looks like this: 

Dog(i): barks(i)/barks(i) 

 

 Based on the above rule we can say that the Dog(i) if true if it barks(i) . 

 Which is leading to barks(i). 
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 If any probability interferes in the rule then it may be replaced or 

substituted. 

10.5 INTERNET SHOPPING WORLD 

 Almost all the present shopping websites and applications are using 

artificial intelligence. 

 Using AI we can even judge which shopping website has the maximum 

visitors and accordingly ranking can be done. 

 Also, if a particular website has customers who visit frequently then a 

personalized offers can be given. 

 World wide web is the environment where the agent. 

 

10.5.1 Following links: 

 On all the modules of the website the links are added between the 

modules. 

 This module will be able to interact and make it work with each other 

easily 

 These re artificial intelligence based. 

 A categorization is also done under this. 

 All product details, customer details are available and stored. 

10.6 SUMMARY 

 In this chapter we saw that how the we categories the data. 

 There are subcategories that can be applied. It uses fluent and objects. 

 Knowledge gaining from someone else mind is explained in which 

mental object comes into picture. 

 Reasoning system of categories is of two types one is semantic 

network and second one is efficient algorithms both helps us to 

represent the facts and knowledges through graphs and algorithms.  
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Artificial Intelligence  Artificial Intelligence plays one of the important roles in internet 

shopping world as almost everything from creating the account till the 

product/service delivery requires intelligence.  

10.7 UNIT END  QUESTIONS 

1. What do you mean by classical language? 

2. What are categories with respect to Artificial Intelligence? 

3. Write a short note on Mental Events 

4. Write a short note on Events. 

5. With the help of example explain in detail about semantic networks. 

6. Explain briefly about internet shopping world 
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