

CONTENTS

Chapter No. Title Page No.
Unit 1
1. INtroducing INET........cciiiiiiiieiieeeeee ettt eb e ebeesseesbeennas 01
2. The CH LaNZUAZEvecvveeieeiieiieieeie ettt ettt esre e beesbessbeesbeessessseesseessessseennas 20
3. Types, Objects, and NAMESPACESccvveerreerrierrieieerieerieesreesreereeseesseeseeseesseesnes 47
Unit 2
4. Web Form Fundamentals............cooioiiiiieiiiiiiiiieeeeeeeeeeeeeiee e 84
5. Form Controlsoouiiiiiiiie et 101
Unit 3
6. Error Handling, Logging and Tracing..........ccccecvvveviieeciieiiiieeiie e 130
7. State ManageImMENTeeeiuiiriieniiiriee ettt ettt ettt sttt 153
8. Styles, Themes and Master Pagescccccooiiiiiiiiiiiiniiiieceeeceee e 163
Unit 4
9. ADO.NET Fundamentalscccoecierienienieesieeieeieeie e eie e eee e 173
10. Data BiNdIngcccoouerieieieniinieeesietee et 197
11. Data COMIOLS. ...c.eeuiiiieiieieietee ettt 212
Unit 5
12. Extensible Markup Language (XML)......ccccocvevieviieriieiieieeieeie e 242

T.Y.B.SC (L.T)
SEMESTER -V

ADVANCED WEB PROGRAMMING

Unit

Details

Lectures

Introducing .NET: The .NET Framework, C#, VB, and the NET
Languages, The Common Language Runtime, The .NET Class Library.
The C# Language: C# Language Basics, Variables and Data Types,
Variable Operations, Object-Based Manipulation, Conditional Logic,
Loops, Methods.

Types, Objects, and Namespaces: The Basics About Classes,
Building a Basic Class, Value Types and Reference Types,
Understanding Namespaces and Assemblies, Advanced Class
Programming.

12

11

Web Form Fundamentals: Writing Code, Using the Code-Behind
Class, Adding Event Handlers, Understanding the Anatomy of an
ASP.NET Application, Introducing Server Controls, Using the Page
Class, Using Application Events, Configuring an ASP.NET
Application.

Form Controls: Stepping Up to Web Controls, Web Control Classes,
List Controls, Table Controls, Web Control Events and AutoPostBack,
Validation, Understanding Validation, Using the Validation Controls,
Rich Controls, The Calendar, The AdRotator, Pages with Multiple
Views, User Controls and Graphics, User Controls, Dynamic Graphics,
The Chart Control, Website Navigation: Site Maps, URL Mapping and
Routing, The SiteMapPath Control, The TreeView Control, The Menu
Control.

12

111

Error Handling, Logging, and Tracing: Avoiding Common Errors,
Understanding Exception Handling, Handling Exceptions, Throwing
Your Own Exceptions, Using Page Tracing

State Management: Understanding the Problem of State, Using View
State, Transferring Information Between Pages, Using Cookies,
Managing Session State, Configuring Session State, Using Application
State, Comparing State Management Options

Styles, Themes, and Master Pages: Styles, Themes, Master Page
Basics, Advanced Master Pages,

12

v

ADO.NET Fundamentals: Understanding Databases, Configuring
Your Database, Understanding SQL Basics, Understanding the Data
Provider Model, Using Direct Data Access, Using Disconnected Data
Access.

Data Binding: Introducing Data Binding, Using Single-Value Data
Binding, Using Repeated-Value Data Binding, Working with Data
Source Controls,

12

The Data Controls: The GridView, Formatting the GridView,
selecting a GridView Row, Editing with the GridView, Sorting and
Paging the GridView, Using GridView Templates, The DetailsView
and FormView

XML: XML Explained, The XML Classes, XML Validation, XML
Display and Transforms.

Security Fundamentals: Understanding Security Requirements,
Authentication and Authorization, Forms Authentication, Windows

L 12
Authentication.
ASP.NET AJAX: Understanding Ajax, Using Partial Refreshes, Using
Progress Notification, Implementing Timed Refreshes, Working with
the ASP.NET AJAX Control Toolkit.
Books and References:
Sr. No. Title Author/s Publisher | Edition | Year
1. | Beginning ASP.NET Matthew MacDonald | Apress 2012
4.5 in C#
2. | C#2015 Anne Bohem and Murach Third 2016
Joel Murach
3. | Murach’s ASP.NET 4.6 | Mary Delamater and | SPD Sixth 2016
Web Programming in Anne Bohem
C#2015
4. | ASP.NET 4.0 J. Kanjilal Tata 2011
programming McGraw-
Hill
5. | Programming ASP.NET | D.Esposito Microsoft 2011
Press
(Dreamtech)
6. | Beginning Visual C# K. Watson, C. Nagel, | Wrox 2010
2010 J.H Padderson, J.D. (Wiley)
Reid, M.Skinner

INTRODUCING .NET

Unit Structure
1.0 Objectives

1.1

Introducing .NET

1.1.1 C#, VB, and the .NET Languages

1.1.2 Intermediate Language

1.1.3 Components of .Net Framework

1.1.4 Common Language Runtime (CLR)
1.1.5 The .NET Class Library

1.1.6 Common Type System (CTS)

1.1.7 Meta Data in .NET

1.1.8 Common Language Specification (CLS)

1.5 Example Programs

1.6 Summary

1.7 Exercise

1.8 Reference

1.0 OBJECTIVE

After going through this unit you will be able to,

1.
2.
3.
4,

Create and Console Application with basics code.
Create the Application using different types of statements and loops.
Know about namespaces and assemblies and how to create the same.

Create console application using delegates and methods.

1.1 THE .NET FRAMEWORK

Microsoft NET is much more than XML Web services.

At the heart of Microsoft .NET is the .NET Framework, consisting
of the common language runtime and the class libraries.

These two components provide the execution engine and
programming APIs for building .NET applications.

Applications compiled for the .NET Framework are not compiled
directly to native code. Instead, they are compiled into an

Advanced Web
Programming

intermediate language called Microsoft Intermediate Language
(MSIL).

When an application is run for the first time, the common language
runtime just-in-time compiler compiles the MSIL code into native
code before it is executed.

The common language runtime is more than a simple JIT compiler;
it 1s also responsible for providing low-level execution services,
such as

J garbage collection,

. exception handling,

. security services, and

o Run time type-safety checking.

Because of the common language runtime's role in managing
execution, programs that target the NET Framework are sometimes
called "managed" applications.

The .NET Framework also includes a set of classes for building
applications that run on the common language runtime.

These class libraries provide rich support for a wide range of tasks,
including data access, security, file 10, XML manipulation,
messaging, class reflection, XML Web services, user-interface
construction, text processing, ASP.NET, and Microsoft Windows
services.

The most unique attribute of the .NET Framework is its support for
multiple languages.

It provides support for over 20 programming languages including
Perl, Python, and COBOL.

Relying on the common language runtime, code compiled with these
compilers can interoperate.

The .NET Framework is composed of the four extended applications
named as four blue boxes—representing

1 ASP.NET,

2. Windows Forms,

3. ADO.NET and

4 XML, and subcomponents.

r
Introducing .NET

CH JScript
Common Language Specification

ASP.NET Windows
Web Forms Web Services Forms

ADONET & XML

Base Class Library

Common Language Runtime

Operating System

This book uses the Visual Basic language, which enables you to create
readable, modern code. The .NET version of VB is similar in syntax to
older flavors of VB that you may have encountered, including “classic”
VB 6 and the Visual Basic for Applications (VBA) language often used to
write macros in Microsoft Office programs.

1.1.1 C#, VB, and the .NET Languages

. This book uses the Visual Basic language, which enables you to
create readable, modern code. The .NET version of VB is similar in
syntax to older flavors of VB that you may have encountered,
including “classic” VB 6 and the Visual Basic for Applications
(VBA) language often used to write macros in Microsoft Office
programs such as Word and Excel. However, you cannot convert
classic VB into the .NET flavor of Visual Basic, just as you cannot
convert C++ into C#.

. This book uses C#, Microsoft’s .NET language of preference. C#
resembles Java, JavaScript, and C++ in syntax, so programmers who
have coded in one of these languages will quickly feel at home.
Interestingly, VB and C# are quite similar. Though the syntax is
different, both VB and C# use the .NET class library and are
supported by the CLR. In fact, almost any block of C# code can be
translated, line by line, into an equivalent block of VB code (and
vice versa). An occasional language difference pops up, but for the
most part, a developer who has learned one .NET language can
move quickly and efficiently to another.

Advanced Web
Programming

There are even software tools that translate C# and VB code
automatically (see http://converter.telerik.com or
http://tangiblesoftwaresolutions.com for examples).

In short, both VB and C# are elegant, modern languages that are
ideal for creating the next generation of web applications.

1.1.2 Intermediate Language

All the .NET languages are compiled into another lower-level
language before the code is executed. This lower level language is
the Common Intermediate Language (CIL, or just IL).

The CLR, the engine of .NET, uses only IL code. Because all .NET
languages are based on IL, they all have profound similarities. This
is the reason that the VB and C# languages provide essentially the
same features and performance.

In fact, the languages are so compatible that a web page written with
C# can use a VB component in the same way it uses a C#
component, and vice versa.

The .NET Framework formalizes this compatibility with something
called the Common Language Specification (CLS).

Essentially, the CLS is a contract that, if respected, guarantees that a
component written in one .NET language can be used in all the
others.

One part of the CLS is the common type system (CTS), which
defines the rules for data types such as strings, numbers, and arrays
that are shared in all NET languages.

The CLS also defines object-oriented ingredients such as classes,
methods, events, and quite a bit more.

For the most part, NET developers don’t need to think about how
the CLS works, even though they rely on it every day.

Following Figure shows how the .NET languages are compiled to
IL.

Every EXE or DLL file that you build with a .NET language
contains IL code.

This is the file you deploy to other computers. In the case of a web
application, you deploy your compiled code to a live web server.

Source Code in

Source Code in C#

Source Code in Another

VB 2006 MET Languane
l Y l
Fo ™, ™,
VB 2006 Compiler Ca#t Compiler Appropriate
b ee) [GSC.ENR) Compiler
e vy vy
Y
DLL or EXE Filein IL
—————————— 3 (Intermediate Language)
Code
Thea Comman
¥ Language
Y\ Auntime

AT (dust-in-Time)
Compiler

Wative Machine
Code

¥

Execute

Language compilation in .NET

1.1.3 Components of .NET Framework

Common Language Runtime:
It is built around CTS.

The following pointers describe the components of the .Net

framework 3.5 and the job they perform:

It performs runtime tasks like memory

management and garbage collection.

Base Class Libraries:

It is a rich set of functional base classes.

Introducing NET

Advanced Web
Programming

Extended Class Libraries:

o Extended from base class libraries and designed to make it easier
and faster to develop a specific application.

CLS: (Common Language Specification)

. It defines requirements for .net languages. It contains the
specifications for the .Net supported languages and implementation
of language integration.

CTS: (Common Type System)

o It provides guidelines for declaring, using and managing types at
runtime and cross-language communication.

Metadata and Assemblies:

. Metadata is the binary information describing the program, which is
either stored in a portable executable file(PE) or in the memory.

J Assembly is a logical unit consisting of the assembly manifest, type
metadata, IL code and a set of resources like image files.

Multiple programming languages:
J It provides unified programming model for several languages.

Visual Studio .net:

J It is the IDE for coding with .net framework that spans the entire .net
framework.

Windows & COM+ services:

. Today’s requirements for today’s .net framework SDK is Windows
and COM+ services which provides facility to access the lower level
system functionality.

. The class framework encapsulates the following functionality:

o Data Access

o Thread management

. Interoperability with unmanaged code

. Network protocol support

. XML support

o Web services support and Windows Forms support Access

to assembly meta data

1.1.4 Common Language Runtime Introducing .NET

o The CLR provides a rich level of support that simplifies application
development and provides for better code reuse.

. The CLR provides a broad set of runtime services, including
compilation, garbage collection and memory management.

° The CLR is built around the CTS, which defines standard, object-
oriented data types that are used across all .NET programming
languages.

J Code that runs under the control of the CLR is called managed code.
Managed code allows the CLR to do the following.

J Read meta data that describes the component interfaces and
types

J walk the code stack
o handle exceptions
J retrieve security information
Design Goals of the CLR:
1. Simplify Development
. Define standards that promote code reuse

. provide a broad range of services, including memory
management and garbage collection

2. Simplify application deployment
J Components use meta data instead of registration
o support side-by-side, multiple component versions
. command-line deployment (Xcopy) and uninstall(DEL)
3. support development languages
. provide rich base classes for developer tools and languages
4. support multiple languages
. define CTS that are used by all .NET languages
5. enable convergence of programming models

. Build languages and tools on a common framework. For
example, ASP .NET, VB .NET, and C# have access to the
same base classes.

Advanced Web
Programming

Structure of the CLR:

Base Class Library Support

Thread Support COM Marshaller

Type Checker Exception Manager

Security Engine Debug Engine

IL to native | Code Manager GC
Compilers

Class Loader

1.1.5 The .NET Class Library

The .NET class library is a giant repository of classes that provide
prefabricated functionality for everything from reading an XML file
to sending an e-mail message.

If you’ve had any exposure to Java, you may already be familiar
with the idea of a class library. However, the .NET class library is
more ambitious and comprehensive than just about any other
programming framework.

Any NET language can use the .NET class library’s features by
interacting with the right objects.

This helps encourage consistency among different .NET languages
and removes the need to install numerous components on your
computer or web server.

Some parts of the class library include features you’ll never need to
use in web applications (such as the classes used to create desktop
applications with Windows interfaces). Other parts of the class
library are targeted directly at web development.

Still more classes can be used in various programming scenarios and
aren’t specific to web or Windows development.

These include the base set of classes that define common variable
types and the classes for data access, to name just a few.

1.1.6 Common Type System

CTS defines standard, object oriented types and value types that are
supported by all NET programming languages.

The CTS standards are what allow .NET to provide a unified
programming model, and to support multiple languages.

CTS is the first prerequisite for allowing languages to interoperate.

This is easy to understand, if you consider that languages can only
interoperate if they are based on the same system of types.

In the past, type discrepancies have caused many interoperability
problems, particularly for VB developers.

So, CTS is an important new feature in the .NET framework. The
CTS must support a range of languages, some of which are object-
oriented, and some of which are not. Much has been made of the
fact that COBOL is now a first class .NET language. COBOL is a
procedural language, not an object-oriented one.

The CTS provides two main types:
o Value Types

. Reference Types
Value types are further classified into
e Built-in types
. User defined types

Reference types are further classified into

° Pointers
. Objects
° Interfaces

Value types are simple data types that roughly correspond to simple
bit patterns like integers and floats.

In .NET, a value type derives from the System.Object namespace,
and supports an interface that provides information about the kind of
data that is stored, as well as the data value.

They are useful for representing simple data types, and nay not-
object user defined type, including enumerations.

They are known as exact types which mean that they fully describe
the value they hold.

Reference types are also derived from the system.
Object namespace, and may hold object references.

They are self typing, which means that they describe their own
interface.

They are very specific to the type of object you are assigning.

Once the reference is assigned, you expect to query the object
reference according to what its interface provides.

Introducing NET

Advanced Web
Programming

10

Some of the primitive data types are:

Bool

Char

int 8

int 16

float 32

float 64
unsigned int8

unsigned int16

Type Safety:

The CTS promotes type safety, which in turn improves code
stability.

In NET, type safety means that type definitions are completely
known, and cannot be compromised.

The CTS ensures that object references are strongly typed.

It checks whether the array index out of range or not, whether the
arithmetic exceptions are handled properly or not etc.

1.1.7 Metadata in NET

Meta Data is organized information that the CLR uses to provide compile
time and runtime services, including:

Loading of class files

Memory Management
Debugging

Object Browsing

MSIL translation no Native Code

NET components are self describing, because the Meta Data is
stored as part of the compiled component known in .NET as an
assembly.

Combine this with the fact that NET components do not require
windows registry entries, and you can immediately appreciate why
deployments are so much easier in .NET.

The figure below illustrates different Meta Data Consumers:

w debugger
Proxy generator

Meta Data

serialization

CONTENTS OF META DATA

Description of the assembly (the deployment unit)

identity: name, version and culture

dependencies (other assemblies)

security permission that the assembly requires to run
Description of the Types

Base classes and interfaces

Custom attributes

defined by the User

defined by the Compiler

defined by the Framework

1.1.8 Common Language Specification(CLS)

The purpose of the NET framework is to define standards that makes
it easier to write robust, secure and reusable code.

The NET framework extends this concept by allowing any language
to participate in the framework; so long as it conforms to the
specifications embodied by the common Type System and the
Common Language Specification.

Introducing NET

11

Advanced Web
Programming

12

. The common language Specification (CLS) defines conventions that
languages must support in order to be interoperable within .NET.

o The CLS defines rules that range from naming conventions for
interface members, to rules governing method overloading.

o In order to provide interoperation, a CLS-compliant language must
obey the following conventions:

° Public identifiers are case- sensitive.

o Language must be able to resolve identifiers that are equivalent to
their keywords.

J Stricter overloading rules; a given method name may refer to any
number of methods, as long as each one differs in the number of
parameters, or argument types.

J Properties and events must follow strict naming rules.

J All pointers must be managed, and reference must be typed;
otherwise, they cannot be verified.

1.5 EXAMPLE PROGRAMS

Command Line Arguments

using System;
class Program

{

public static void Main(string[] args)
{
Console.WriteLine("Enter The Name =");
string name = Console.ReadLine();
Console.WriteLine("Enter The Roll No.=");
int rollno = Int32.Parse (Console.ReadLine()); // Convert.Tolnt32()
Console.WriteLine("Enter The Percentage :");
double per = Double.Parse(Console.ReadLine());
/I Convert. ToDouble()
/I Console.WriteLine("Name=" + name);
/I Console.WriteLine("Roll No.=" + rollno);
/I Console.WriteLine("Percentage =" + per);

Console.WriteLine("name={0} \t rollno={1} \t Percentage={2}",
name, rollno, per);

Console.ReadKey(); // To hold the output

Boxing and Unboxing

using System;
class Program

{

public static void Main(string[] args)

{
inta=10; // Value Type
object obj =a; // Refence Type
Console.WriteLine("a={0} ", a);
Console.WriteLine("obj={0}", obj);
int b = (int) obyj ;
Console.WriteLine("b={0}", b);
Console.ReadKey(); // To hold the output

h

}

Conditional Operator ?:

using System;
class Program

{

public static void Main(string[] args)

{

Console.WriteLine("Enter The FOUR Numbers=");
int a = Convert.ToInt32(Console.ReadLine());
int b = Convert.ToInt32(Console.ReadLine());
int ¢ = Convert.ToInt32(Console.ReadLine());
int d = Convert.Tolnt32(Console.ReadLine());

int large=a>b?a:b;

int larger = large > ¢ ? large : c;

int largest = larger > d ? larger : d;
Console.WriteLine("Large={0}", largest);
Console.ReadKey(); // To hold the output

Introducing NET

13

Advanced Web
Programming

14

WAP to accept a number from the user and check whether it is positive,
negative or zero.

using System;
class Program

{

public static void Main(string[] args)
{
Console.WriteLine("Enter The Number");
int num = Convert.ToInt32(Console.ReadLine());

if (num > 0)

{

Console.WriteLine("Positive Number");
}
if (num < 0)
{

Console.WriteLine("Negative Number");
}
if (num == 0)
{

Console.WriteLine("Number is ZERO");

h
Console.ReadKey(); // To hold the output

WAP to accept a number from the user and check whether it is even or
odd.

using System;
class Program

{

public static void Main(string[] args)

{

Console.WriteLine("Enter The Number");
int num = Convert.ToInt32(Console.ReadLine());

if (num % 2 == 0)

Console.WriteLine("Even Number");

}

else

{
Console.WriteLine("Odd Number");

}
Console.ReadKey(); // To hold the output

Fall-through in Switch

using System;
class Program

{

public static void Main(string[] args)
{
Console.WriteLine("Enter The Option");
int opt = Convert.Tolnt32(Console.ReadLine());

switch (opt)
{
case 1:
Console.WriteLine("ONE");
goto case 3;
case 2:
Console.WriteLine("TWO");
break;
case 3:
Console.WriteLine("THREE");
break;
case 4:
Console.WriteLine("FOUR");
break;
default :
Console.WriteLine("Invalid Option");

Introducing NET

15

Advanced Web
Programming

16

break;

}
Console.ReadKey(); // To hold the output

While Loop

using System;
class Program

{

public static void Main(string[] args)
{
Console.WriteLine("Incremented Loop");
nti=1;
while (1 <= 10)
{
Console. Write(i + "\t");
i++;
}
Console.WriteLine("\nDecremented Loop");
intj=10;
while (j >=1)
{
Console.Write(j + "\t");
J==s
¥
Console.ReadKey();

do while Loop

mti=1;
do
{
Console.Write(i + "\t");
i++;

} while (i <= 10);

intj=10;

do

{
Console. Write(j + "\t");

j==s
' while (j > 0);

For Loop

Console.WriteLine("Incremented Loop");
for (inti=1; i <= 10; i++)
{
Console. Write(i + "\t");
}
Console.WriteLine ("Decremented Loop")
for(int j=10;>=1;j--)
{
Console.Write (j+"\t");

Foreach Loop

int[num={ 1,2,3,4,5,6,7,8,9, 10 \;

for (int1=0; 1< 10; i++)
{

Console.Write(num[i] + "\t");

}

foreach(int s in num)

{

Console.Write(s + "\t");

1.6 SUMMARY

This chapter 1 gives the basic syntax of C#. It discusses about variables,
keywords, data types, creation of arrays, operators, control structures,
methods debugging and few example programs. After learning the above
topics, you can write many useful programs and built a strong foundation

for larger programming projects.

Introducing NET

17

Advanced Web
Programming

18

1.7 EXERCISE: REVIEW QUESTIONS

Chapter 1

1) Write a note on .NET Framework.

2) Explain the data types in C#.

3) Explain the various operators in C#.

4) Discuss the various looping structures in C#.

5) Explain how arrays are created in C#.

6) What is a method? Explain its components.

7) How is debugging done in C#?

Program

1) WAP to accept a character from the user and check whether it is
vowel or not.

2) WAP to accept two numbers from the user and display the greater
number using if...else.

3) WAP to accept three numbers from the user and display the greater
number.

4) WAP to accept a year from the user and display whether it is leap
year or not.

5) WAP to accept a number from the user and display the factorial.

6) WAP to accept a number from the user and display sum of digits and
reverse of that number.

7) WAP to accept a number from the user and check whether it is
palindrom number or not.

8) WAP to accept a number from the user and check whether it is
armstrong number or not.

9) WAP to accept a number from the user and check whether it is
prime number or not.

10) WAP to accept two numbers from the user and display the GCD and
LCM of that numbers.

11) WAP to accept a number from the user and check whether it is

perfect number or not?

a. Example:6->1+2+3=6 28=1+2+4+7+14=28

12) WAP to display all the prime numbers between 1 to 1000?
13) WAP to display all the armstrong numbers between 1 to 1000?
14) WAP to display the following output :

Numbers Factorials
1 1
2 2
3 6
4 24
5 120
6 720

1.8 REFERENCE

1) The Complete Reference: C#
2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/
ke e o o ke ke sk

Introducing NET

19

Advanced Web
Programming

20

THE C# LANGUAGE

Unit Structure

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

2.10

211

The C# Language
Introduction

The .NET Languages

C# Language Basics
Variables and Data Types
Variables Operations
Keywords in C#
Object-Based Manipulation
2.7.1 The String Type
2.7.2 The Date Time and Time Span Types
2.7.3 The Array Type
Conditional Logic

2.8.1 Conditional Statements
Loops in C#

2.9.1 The for Loop

2.9.2 The foreach Loop
2.9.3 The While Loop
Methods in C#

2.10.1 Parameters

2.10.2 Method Overloading
Delegates

2.12 Summary
2.13 Questions
2.14 References

2.1 INTRODUCTION

Before you can create an ASP.NET application, you need to choose
a .NET language in which to program it.

Both VB and C# are powerful, modern languages, and you won’t go
wrong using either of them to code your web pages.

Often the choice is simply a matter of personal preference or your
work environment. For example, if you’ve already programmed in a

language that uses C-like syntax (for example, Java), you’ll probably
be most comfortable with C#. Or if you’ve spent a few hours writing

Microsoft Excel macros in VBA, you might prefer the natural style
of Visual Basic. Many developers become fluent in both. This
chapter presents an overview of the C# language.

. You’ll learn about the data types you can use, the operations you can
perform, and the code you’ll need to define functions, loops, and
conditional logic.

o This chapter assumes that you have programmed before and are
already familiar with most of these concepts—you just need to see
how they’re implemented in C#. If you’ve programmed with a
similar language such as Java, you might find that the most
beneficial way to use this chapter is to browse through it without
reading every section.

o This approach will give you a general overview of C#.

o You can then return to this chapter later as a reference when needed.
But remember, though you can program an ASP.NET application
without mastering all the language details, this deep knowledge is
often what separates the casual programmer from the true
programming guru.

2.2 THE .NET LANGUAGES

o The .NET Framework ships with two core languages that are
commonly used for building ASP.NET applications: C# and VB.

o These languages are, to a large degree, functionally equivalent.
Microsoft has worked hard to eliminate language conflicts in the
.NET Framework.

o These battles slow down adoption, distract from the core framework
features, and makes it difficult for the developer community to solve
problems together and share solutions.

o According to Microsoft, choosing to program in C# instead of VB is
just a lifestyle choice and won’t affect the performance,
interoperability, feature set, or development time of your
applications.

o Surprisingly, this ambitious claim is essentially true.

o NET also allows other third-party developers to release languages
that are just as feature-rich as C# or VB.

o These languages (which include Eiffel, Pascal, and even COBOL)
“snap in” to the NET Framework effortlessly.

o In fact, if you want to install another .NET language, all you need to
do is copy the compiler to your computer and add a line to register it
in a configuration file.

The C# Language

21

Advanced Web
Programming

22

Typically, a setup program would perform these steps for you
automatically.

Once installed, the new compiler can transform your code creations
into a sequence of Intermediate Language (IL) instructions, just as
the VB and C# compilers do with VB and C# code.

IL is the only language that the Common Language Runtime (CLR)
recognizes.

When you create the code for an ASP.NET web form, it’s changed
into IL using the C# compiler (csc.exe) or the VB compiler ().
Although you can perform the compilation manually, you’re more
likely to let ASP.NET handle it automatically when a web page is
requested.

2.3 THE C# LANGUAGE

New C# programmers are sometimes intimidated by the quirky
syntax of the language, which includes special characters such as
semicolons (;), curly braces ({}), and backward slashes (\).

Fortunately, once you get accustomed to C#, these details will
quickly melt into the background.

In the following sections, you’ll learn about four general principles
you need to know about C# before you learn any other concepts.

Case Sensitivity

Some languages are case-sensitive, while others are not. Java, C,
C++, and C# are all examples of case-sensitive languages.

VB is not. This difference can frustrate former VB programmers
who don’t realize that keywords, variables, and functions must be
entered with the proper case.

For example, if you try to create a conditional statement in C# by
entering If instead of if, your code will not be recognized, and the
compiler will flag it with an error when you try to build your
application.

Commenting

Comments are lines of descriptive text that are ignored by the
compiler. C# provides two basic types of comments.

The first type is the single-line comment. In this case, the comment
starts with two forward slashes and continues for the entire current
line:

/I A single-line C# comment.

Optionally, C# programmers can use /* and */ comment brackets to
indicate multiple-line comments:

/* A multiple-line
C# comment. */

This way, the code won’t be executed, but it will still remain in your
source code file if you need to refer to it or use it later.

Statement Termination

C# uses a semicolon (;) as a statement-termination character.

Every statement in C# code must end with this semicolon, except
when you’re defining a block structure. (Examples of such
statements include methods, conditional statements, and loops,
which are three types of code ingredients that you’ll learn about later
in this chapter.) By omitting the semicolon, you can easily split a
statement of code over multiple physical lines.

You just need to remember to put the semicolon at the end of the last
line to end the statement.

The following code snippet demonstrates four equivalent ways to
perform the same operation (adding three numbers together):

/I A code statement on a single line.
myValue = myValuel + myValue2 + myValue3;
/I A code statement split over two lines.
myValue = myValuel + myValue2 +
myValue3;

/I A code statement split over three lines.
myValue = myValuel +

myValue2 +

myValue3;

// Two code statements in a row.
myValue = myValuel + myValue2;
myValue = myValue + myValue3;

Blocks

The C#, Java, and C languages all rely heavily on curly braces—
parentheses with a little more attitude: {}.

You can find the curly braces to the right of most keyboards (next to
the P key); they share a key with the square brackets: [].

Curly braces group multiple code statements together. Typically,
you’ll group code statements because you want them to be repeated
in a loop, executed conditionally, or grouped into a function. These
are all block structures, and you’ll see all these techniques in this
chapter.

The C# Language

23

Advanced Web
Programming

24

But in each case, the curly braces play the same role, which makes
C# simpler and more concise than other languages that need a
different syntax for each type of block structure.

{

/I Code statements go here.

}

2.4 VARIABLES AND DATA TYPES

Variables

As with all programming languages, you keep track of data in C# by
using variables.

Variables can store numbers, text, dates, and times, and they can
even point to full-fledged objects.

When you declare a variable, you give it a name and specify the type
of data it will store.

To declare a local variable, you start the line with the data type,
followed by the name you want to use. A final semicolon ends the
statement.

I/l Declare an integer variable named errorCode.
int errorCode;
// Declare a string variable named myName.

string myName;

The variables in C#, are categorized into the following types:

Value types
Reference types
Object types

Value Type

Value type variables can be assigned a value directly. They are
derived from the class System.ValueType.

The value types directly contain data. Some examples are int, char,
and float, which stores numbers, alphabets, and floating point
numbers, respectively. When you declare an int type, the system
allocates memory to store the value.

For example if you type

Console.WriteLine(sizeof(int)),

you will get the output as 4, the bytes occupied by an integer.

Reference Type
o The reference types do not contain the actual data stored in a
variable, but they contain a reference to the variables.

o In other words, they refer to a memory location. Using multiple
variables, the reference types can refer to a memory location. If the
data in the memory location is changed by one of the variables, the
other variable automatically reflects this change in value.

o Example of built-in reference types are:
o object,
o dynamic, and
. string.
Object Type
o The Object Type is the ultimate base class for all data types in C#

Common Type System (CTS). Object is an alias for System.Object
class.

o The object types can be assigned values of any other types, value
types, reference types, predefined or user-defined types.

o However, before assigning values, it needs type conversion.
Data Types
o The types of data that a variable contain is called Datatype. A

Datatype is a classification of things that share similar type of
qualities or characteristics or behaviour .

o C# is strongly typed language so every variable and object must
have a type.

o These are two types of data type in C#.

Primitive types or predefined
o Eg:-byte, short, int, float, double, long, char, bool, DateTime, string
object etc.

Non-primitive types or user defined
o Eg:- class, struct, enum, interface, delegate, array.

Strings and Escaped Characters

o C# treats text a little differently than other languages such as VB. It
interprets any embedded backslash (\) as the start of a special
character sequence.

o For example, \n means add a new line (carriage return).
. The most useful character literals are as follows:

o \" (double quote)

The C# Language

25

Advanced Web
Programming

26

o \n (new line)
o \t (horizontal tab)
o \\ (backward slash)

You can also insert a special character based on its hex code by using the

syntax \x250. This inserts a single character with hex value 250 (which is

a character that looks like an upside-down letter a).

o Note that in order to specify the backslash character (for example, in
a directory name), you require two slashes. Here’s an example:

/I A C# variable holding the path c:\MyApp\MyFiles
string path = ""c:\\MyApp\MyFiles";

Alternatively, you can turn off C# escaping by preceding a string with an
@ symbol, as shown here: string path = @"'c:\MyApp\MyFiles™;

2.5 VARIABLES OPERATIONS

int number;
number =4 + 2 * 3;// number will be 10.

number = (4 +2) * 3;

/I number will be 18.

o You can use all the standard types of variable operations in C#.

. When working with numbers, you can use various math symbols, as
listed in Table below C# follows the conventional order of
operations, performing exponentiation first, followed by
multiplication and division and then addition and subtraction. You
can also control order by grouping sub expressions with parentheses:

Operator Description Example

+ Addition1+1=2

- Subtraction5-2=3

* Multiplication 2 * 5 =10

/ Division5.0/2=25

% Gets the remainder left after integer division 7% 3 =1

o The operators above are designed for manipulating numbers.
However, C# also allows you to use the addition operator (+) to
join two strings:

/I Join three strings together.

myName = firstName + " ** + lastName;

In addition, C# provides special shorthand assignment operators.
Here are a few examples:

/I Add 10 to myValue. This is the same as myValue = myValue + 10;
myValue += 10;

/I Multiple myValue by 3. This is the same as myValue = myValue * 3;
myValue *= 3;

/I Divide myValue by 12. This is the same as myValue = myValue / 12;
myValue /= 12;

2.6 KEYWORDS IN C#

o Keywords are predefined, reserved identifiers that have special
meanings to the compiler.

o They cannot be used as identifiers in your program unless they
include @ as a prefix. There are 77 keywords.

o Some of them are: is, base, checked, decimal, delegate, event,
explicit, extern, fixed, for each, implicit, in, internal, is, lock ,object ,
override, params, read only, ref, sealed, stack, alloc, unchecked,
unsafe, using.

Type Conversions
o Converting information from one data type to another is a fairly
common programming task.

o For example, you might retrieve a user’s text input that contains the
number you want to use for a calculation.

o Or, you might need to take a calculated value and transform it into
text you can display in a web page. Conversions are of two types:
widening and narrowing. Widening conversions always succeed.

o For example, you can always convert a 32-bit integer into a 64-bit
integer. You won’t need any special code:

int mySmallValue;
long myLargeValue;
/I Get the largest possible value that can be stored as a 32-bit integer.

/I NET provides a constant named Int32.MaxValue that provides this
number.

mySmallValue = Int32.MaxValue;

/I This always succeeds. No matter how large mySmallValue is,
/[it can be contained in myLargeValue.

myLargeValue = mySmallValue;

The C# Language

27

Advanced Web
Programming

28

On the other hand, narrowing conversions may or may not succeed,
depending on the data.

If you’re converting a 32-bit integer to a 16-bit integer, you could
encounter an error if the 32-bit number is larger than the maximum
value that can be stored in the 16-bit data type.

All narrowing conversions must be performed explicitly. C# uses an
elegant method for explicit type conversion.

To convert a variable, you simply need to specify the type in
parentheses before the expression you’re converting.

The following code shows how to change a 32-bit integer to a 16-bit

integer:

int count32 = 1000;

short count16;

/I Convert the 32-bit integer to a 16-bit integer.

/I If count32 is too large to fit, .NET will discard some of the

/I information you need, and the resulting number will be
incorrect.

countl6 = (short)count32;

This process is called as Casting.

2.7 OBJECT-BASED MANIPULATION

.NET is object-oriented to the core. In fact, even ordinary variables
are really full-fledged objects in disguise.

This means that common data types have the built-in smarts to
handle basic operations (such as counting the number of characters
in a string).

Even better, it means you can manipulate strings, dates, and numbers
in the same way in C# and in VB.

You’ll learn far more about objects in Chapter 3. But even now it’s
worth taking a peek at the object underpinnings in seemingly
ordinary data types.

For example, every type in the .NET class library includes a
ToString() method.

The default implementation of this method returns the class name.

In simple variables, a more useful result is returned: the string
representation of the given variable.

The following code snippet demonstrates how to use the ToString()
method with an integer:

string myString;

int mylInteger = 100;

/I Convert a number to a string. myString will have the contents
lllooll.

myString = mylInteger.ToString();

2.7.1 The String Type

One of the best examples of how class members can replace built-in
functions is found with strings.

In the past, every language has defined its own specialized functions
for string manipulation.

In .NET, however, you use the methods of the String class, which
ensures consistency between all .NET languages.

The following code snippet shows several ways to manipulate a
string by using its object nature:

string myString = ""This is a test string **;

myString = myString. Trim(); // =" This is a test string™
myString = myString.Substring(0, 4); // = " This"
myString = myString. ToUpper(); // = "THIS"

myString = myString.Replace(*'1S™, "AT"); // = "THAT"

int length = myString.Length; // =4

The first few statements use built-in methods, such as Trim(),
Substring(), ToUpper(), and Replace().

These methods generate new strings, and each of these statements
replaces the current myString with the new string object.

The final statement uses a built-in Length property, which returns an
integer that represents the number of characters in the string.

Note that the Substring() method requires a starting offset and a
character length.

Strings use zero-based counting. This means that the first letter is in
position 0, the second letter is in position 1, and so on.

The C# Language

29

Advanced Web
Programming

30

o You’ll find this standard of zero-based counting throughout .NET
Framework for the sake of consistency.

Methods in System.String Class
Length() Returns the number of characters in the string (as an integer).
ToUpper() and ToLower()

Returns a copy of the string with all the characters changed to uppercase
or lowercase characters.

Trim(), TrimEnd(), and TrimStart()

Removes spaces (or the characters you specify) from either end (or both
ends) of a string.

PadLeft() and PadRight()

Adds the specified character to the appropriate side of a string as many
times as necessary to make the total length of the string equal to the
number you specify. For example, "Hi".PadLeft(5, '@") returns the string
@@@Hi.

Insert()

Puts another string inside a string at a specified (zero-based) index
position. For example, Insert(1, "pre") adds the string pre after the first
character of the current string.

Remove()

Removes a specified number of characters from a specified position. For
example, Remove(0, 1) removes the first character.

Replace()

Replaces a specified substring with another string. For example,
Replace("a", "b™) changes all a characters in a string into b characters.

Substring()

Extracts a portion of a string of the specified length at the specified
location (as a new string). For example, Substring(0, 2) retrieves the first
two characters.

StartsWith() and EndsWith()

Determines whether a string starts or ends with a specified substring. For
example, StartsWith("pre™) will return either true or false, depending on
whether the string begins with the letters pre in lowercase.

2.7.2 The DateTime and TimeSpan Types

The DateTime and TimeSpan data types also have built-in methods
and properties.

These class members allow you to perform three useful tasks:

Extract a part of a DateTime (for example, just the year) or
convert a TimeSpan to a specific representation (such as the
total number of days or total number of minutes).

Easily perform date calculations.

Determine the current date and time and other information
(such as the day of the week or whether the date occurs in a
leap year)

For example, the following block of code creates a DateTime object,
sets it to the current date and time, and adds a number of days.

It then creates a string that indicates the year that the new date falls
in (for example, 2012).

DateTime myDate = DateTime.Now;
myDate = myDate.AddDays(100);

string dateString = myDate.Year.ToString();

The next example shows how you can use a TimeSpan object to find
the total number of minutes between two DateTime objects:

DateTime myDatel = DateTime.Now;

DateTime myDate2 = DateTime.Now.AddHours(3000);
TimeSpan difference;

difference = myDate2.Subtract(myDatel);

double numberOfMinutes;

numberOfMinutes = difference. TotalMinutes;

The DateTime and TimeSpan classes also support the + and —
arithmetic operators, which do the same work as the built-in
methods. That means you can rewrite the example shown earlier like

this:

The C# Language

31

Advanced Web
Programming

32

/I Adding a TimeSpan to a DateTime creates a new DateTime.
DateTime myDatel = DateTime.Now;

TimeSpan interval = TimeSpan.FromHours(3000);

DateTime myDate2 = myDatel + interval;

/I Subtracting one DateTime object from another produces a
TimeSpan.

TimeSpan difference;

difference = myDate2 - myDatel;

Now : Gets the current date and time.
Today: Gets the current date and leaves time set to 00:00:00.
Year, Date, Month, Hour, Minute, Second, and Millisecond

Returns one part of the DateTime object as an integer. For example,
Month will return 12 for any day in December.

Add() and Subtract()

Adds or subtracts a TimeSpan from the DateTime. For convenience, these
operations are mapped to the + and — operators, so you can use them
instead when performing calculations with dates.

AddYears(), AddMonths(), AddDays(), AddHours(), AddMinutes(),
AddSeconds(), AddMilliseconds()

Adds an integer that represents a number of years, months, and so on, and
returns a new DateTime. You can use a negative integer to perform a date
subtraction.

IsLeapYear()

Returns true or false depending on whether the specified year is a leap
year.

ToString()

Returns a string representation of the current DateTime object. You can
also use an overloaded version of this method that allows you to specify a
parameter with a format string.

2.7.3 The Array Type

o Arrays also behave like objects in the world of .NET. (Technically,
every array is an instance of the System.Array type.)

o For example, if you want to find out the size of a one-dimensional
array, you can use the Length property or the GetLength() method,
both of which return the total number of elements in an array:

int[] myArray ={1, 2, 3, 4, 5};
int numberOfElements;
numberOfElements = myArray.Length; // numberOfElements = 5

o You can also use the GetUpperBound() method to find the highest
index number in an array. When calling GetUpperBound(), you
supply a number that indicates what dimension you want to check.

o In the case of a one-dimensional array, you must always specify 0 to
get the index number from the first dimension.

o In a two dimensional array, you can also use 1 for the second bound;
in a three-dimensional array, you can also use 2 for the third bound,;
and so on.

The following code snippet shows GetUpperBound() in action:
int[] myArray ={1, 2, 3, 4, 5};

int bound;

Il Zero represents the first dimension of an array.

bound = myArray. GetUpperBound(0); // bound = 4

o On a one-dimensional array, GetUpperBound() always returns a
number that’s one less than the length. That’s because the first index
number is 0.

o For example, the following code snippet uses GetUpperBound() to
find the total number of rows and the total number of columns in a
two-dimensional array:

Il Create a 4x2 array (a grid with four rows and two columns).
int[,] intArray = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};

int rows = intArray.GetUpperBound(0) + 1; // rows = 4

int columns = intArray.GetUpperBound(1) + 1; // columns = 2

Length

Returns an integer that represents the total number of elements in all
dimensions of an array. For example, a 3 x 3 array has a length of 9.

GetLowerBound() and GetUpperBound()

Determines the dimensions of an array. As with just about everything
in.NET, you start counting at zero (which represents the first dimension).

Clear()

Empties part or all of an array’s contents, depending on the index values
that you supply. The elements revert to their initial empty values (such as
0 for numbers).

IndexOf () and LastIndexOf ()

Searches a one-dimensional array for a specified value and returns the
index number. You cannot use this with multidimensional arrays.

Sort()

Sorts a one-dimensional array made up of comparable data such as strings
or numbers.

The C# Language

33

Advanced Web
Programming

34

Reverse ()

Reverses a one-dimensional array so that its elements are backward, from
last to first.

2.8 CONDITIONAL LOGIC

Conditional logic means deciding which action to take based on user
input, external conditions, or other information—is the heart of
programming.

All conditional logic starts with a condition: a simple expression that
can be evaluated to true or false.

Your code can then make a decision to execute different logic
depending on the outcome of the condition.

To build a condition, you can use any combination of literal values
or variables along with logical operators. Table below lists the basic
logical operators.

Operator Desceription

1=

Equal to,

Mot equal to.

Lessthan.

Greater than.

Lessthan ar equal to.
Greater than or equal to.

Logical and {evaluates to true only if both expressions are true]. If the first expression is false,
the second expression is not evaluated.

Logical or {evaluates to true if either expression is true). Ifthe frst expression is true, the
second expressionis not evaluated.

You can use all the comparison operators with any numeric types.
With string data types, you can use only the equality operators (==
and !=). C# doesn’t support other types of string comparison
operators.

int result;

result = String.Compare("*apple™, "attach™); // result = -1
result = String.Compare(**apple™, ""all'"); // result =1
result = String.Compare(*'apple™, ""apple'); // result =0
/I Another way to perform string comparisons.

string word = ""apple™’;

result = word.CompareTo("attach™); // result = -1

2.8.1 Conditional Statements
The if Statement

The if statement is the
powerhouse of conditional
logic, able to evaluate any
combination of conditions
and deal with multiple and
different pieces of data.

Here’s an example with an if

if (myNumber > 10)

{
/I Do something.

}
else if (myString == "hello™)

{

The C# Language

statement that features two

else conditions: /I Do something.

o An if block can have any }
number of conditions. If you | else
test only a single condition, {
you don’t need to include any

else blocks. /I Do something.

}

o Keep in mind that the if construct matches one condition at most.

o For example, if myNumber is greater than 10, the first condition will
be met.

. That means the code in the first conditional block will run, and no
other conditions will be evaluated.

o Whether my String contains the text hello becomes irrelevant,
because that condition will not be evaluated. If you want to check
both conditions, don’t use an else block—instead, you need two if
blocks back-to-back, as shown here:

if (myNumber > 10)

{
/I Do something.

}
if (myString == ""hello"")

{
/I Do something.

}

The switch Statement

o C# also provides a switch statement that you can use to evaluate a
single variable or expression for multiple possible values. The only
limitation is that the variable you’re evaluating must be an integer-
based data type, a bool, a char, a string, or a value from an
enumeration. Other data types aren’t supported.

35

Advanced Web
Programming

36

o In the following code, each case examines the myNumber variable
and tests whether it’s equal to a specific integer:

switch (myNumber)
{
case 1:

/I Do something.
break;

case 2:

/I Do something.
break;

default:

/I Do something.

break;

}

You’ll notice that the C# syntax
inherits the convention of C/C++
programming, which requires that
every branch in a switch statement be
ended by a special break keyword.

If you omit this keyword, the
compiler will alert you and refuse to
build your application.

The only exception is if you choose to
stack multiple case statements directly
on top of each other with no
intervening code.

This allows you to write one segment
of code that handles more than one
case. Here’s an example:

switch (myNumber)
{
case 1:
case 2:

/[This code
myNumber is 1 or 2.

executes

break;

default:

/I Do something.
break;

}

if

. Unlike the if statement, the

° However, it

switch statement is limited to
evaluating a single piece of
information at a time.

provides a
cleaner, clearer syntax than
the if statement when you
need to test a single variable.

2.8 LOOPS IN C#

Introduction

o Loops allow you to repeat a segment of code multiple times. C# has
three basic types of loops. You choose the type of loop based on the
type of task you need to perform. Your choices are as follows:

You can loop a set number of times with a for loop.

You can loop through all the items in a collection of data by using a
foreach loop.

You can loop while a certain condition holds true with a while or
do...while loop.

The for and foreach loops are ideal for chewing through sets of data
that have known, fixed sizes.

The while loop is a more flexible construct that allows you to
continue processing until a complex condition is met. The while
loop is often used with repetitive tasks or calculations that don’t
have a set number of iterations.

2.8.1 The for Loop

The for loop is a basic ingredient in many programs. It allows you to
repeat a block of code a set number of times, using a built-in
counter.

To create a for loop, you need to specify a starting value, an ending

for (inti=0;i<10; i++)

{

// This code executes ten times.
System.Diagnostics.Debug.Write(i};

}

value, and the amount to increment with each pass. Here’s one
example:

You’ll notice that the for loop starts with parentheses that indicate
three important pieces of information. The first portion (int i = 0)
creates the counter variable (i) and sets its initial value (0).

The third portion (i++) increments the counter variable. In this
example, the counter is incremented by 1 after each pass.

That means i will be equal to 0 for the first pass, equal to 1 for the
second pass, and so on. However, you could adjust this statement so
that it decrements the counter (or performs any other operation you
want).

string[] stringArray = {"'one"", ""'two"", "'three"};
for (inti=0; i <stringArray.Length; i++)

{
System.Diagnostics.Debug.Write(stringArray[i] + ™ ™'); }

The C# Language

37

Advanced Web
Programming

38

The middle portion (i < 10) specifies the condition that must be met
for the loop to continue. This condition is tested at the start of every
pass through the block. If i is greater than or equal to 10, the
condition will evaluate to false, and the loop will end.

2.8.2 The foreach Loop

C# also provides a foreach loop that allows you to loop through the
items in a set of data.

With a foreach loop, you don’t need to create an explicit counter
variable.

Instead, you create a variable that represents the type of data for
which you’re looking. Your code will then loop until you’ve had a
chance to process each piece of data in the set.

The foreach loop is particularly useful for traversing the data in
collections and arrays.

For example, the next code segment loops through the items in an
array by using foreach.

string[] stringArray = {"'one", ""two", ""three"'};
foreach (string element in stringArray)

{

/I This code loops three times, with the element variable set
to

/l ""one", then ""two"", and then ""three"".

System.Diagnostics.Debug.Write(element + ' ™);

This code has exactly the same effect as the example in the previous
section, but it’s a little simpler:

In this case, the foreach loop examines each item in the array and
tries to convert it to a string. Thus, the foreach loop defines a string
variable named element.

If you used a different data type, you’d receive an error.
The foreach loop has one key limitation: it’s read-only.

For example, if you wanted to loop through an array and change the
values in that array at the same time, foreach code wouldn’t work.

int[] intArray = {1,2,3};

foreach (int num in intArray)

Here’s an example of some flawed code:

2.8.3 The While Loop

Finally, C# supports a while loop that tests a specific condition
before or after each pass through the loop.

When this condition evaluates to false, the loop is exited. Here’s an
example that loops ten times.

At the beginning of each pass, the code evaluates whether the
counter (i) is less than some upper limit (in this case, 10). If it is, the
loop performs iteration.

inti=0;
while (i < 10)
{

i+=1;

/I This code executes ten times. }

You can also place the condition at the end of the loop by using the
do...while syntax. In this case, the condition is tested at the end of
each pass through the loop:

inti=0;

do

{

i +=1;

// This code executes ten times.

}
while (i < 10);

The C# Language

39

Advanced Web
Programming

40

2.9 METHODS IN C#

Methods are the most basic building block you can use to organize
your code.

Essentially, a method is a named grouping of one or more lines of
code.

Ideally, each method will perform a distinct, logical task.

By breaking down your code into methods, you not only simplify
your life, but also make it easier to organize your code into classes
and step into the world of object-oriented programming.

When you declare a method in C#, the first part of the declaration
specifies the data type of the return value, and the second part
indicates the method name.

If your method doesn’t return any information, you should use the
void keyword instead of a data type at the beginning of the
declaration.

// This method doesn’t return any information.
void MyMethodNoReturnedData()

{
/I Code goes here.

}

/I This method returns an integer.

int MyMethodReturnsData()

{

/I As an example, return the number 10.

return 10;

}

Notice that the method name is always followed by parentheses.
This allows the compiler to recognize that it’s a method.

In this example, the methods don’t specify their accessibility. This is
just a common C# convention. You’re free to add an accessibility
keyword (such as public or private), as shown here:

The C# Language

private void MyMethodNoReturnedData()

{
// Code goes here.

}

o The accessibility determines how different classes in your code can
interact.

o Private methods are hidden from view and are available only locally,
whereas public methods can be called by all the other classes in your
application.

. To really understand what this means, you’ll need to read the next
chapter, which discusses accessibility in more detail.

o Invoking your methods is straightforward—you simply type the
name of the method, followed by parentheses.

o If your method returns data, you have the option of using the data it
returns or just ignoring it:

/I This call is allowed.
MyMethodNoReturnedData();

/I This call is allowed.
MyMethodReturnsData();

/I This call is allowed.

int myNumber;

myNumber = MyMethodReturnsData();

// This call isn’t allowed.

/I MyMethodNoReturnedData() does not return any
information.

myNumber = MyMethodNoReturnedData();

2.9.1 Parameters

o Methods can also accept information through parameters.
Parameters are declared in a similar way to variables.

o By convention, parameter names always begin with a lowercase
letter in any language.

41

Advanced Web J Here’s how you might create a function that accepts two parameters
Programming and returns their sum:

private int AddNumbers(int number1, int number2)

{

return numberl + number?;

o When calling a method, you specify any required parameters in
parentheses or use an empty set of parentheses if no parameters are
required:

/I Call a method with no parameters.
MyMethodNoReturnedData();

/I Call a method that requires two integer parameters.
MyMethodNoReturnedData2(10, 20);

/[Call a method with two integer parameters and an
integer return value.

int returnValue = AddNumbers(10, 10);

2.9.2 Method Overloading

o C# supports method overloading, which allows you to create more
than one method with the same name but with a different set of
parameters.

o When you call the method, the CLR automatically chooses the
correct version by examining the parameters you supply.

. This technique allows you to collect different versions of several
methods together.

o For example, you might allow a database search that returns an array
of Product objects representing records in the database.

o Rather than create three methods with different names depending on
the criteria, such as GetAllProducts(), GetProductsinCategory(), and
GetActiveProducts(), you could create three versions of the
GetProducts() method.

o Each method would have the same name but a different signature,
meaning it would require different parameters.

o This example provides two overloaded versions for the
GetProductPrice() method:

42

private decimal GetProductPrice(int ID)

{
/I Code here.

}

private decimal GetProductPrice(string name)

{
/I Code here.

}
// And so on...

Now you can look up product prices based on the unique product ID
or the full product name, depending on whether you supply an
integer or string argument:

decimal price;
/I Get price by product ID (the first version).
price = GetProductPrice(1001);

/I Get price by product name (the second version).
price = GetProductPrice(""DVD Player™);

You cannot overload a method with versions that have the same
signature that is, the same number of parameters and parameter data
types because the CLR will not be able to distinguish them from
each other.

When you call an overloaded method, the version that matches the
parameter list you supply is used. If no version matches, an error
occurs.

Optional and Named Parameters

Method overloading is a time-honored technique for making
methods more flexible, so you can call them in a variety of ways.

C# also has another feature that supports the same goal: optional
parameters.

An optional parameter is any parameter that has a default value.

If your method has normal parameters and optional parameters, the
optional parameters must be placed at the end of the parameter list.

Here’s an example of a method that has a single optional parameter:

The C# Language

43

Advanced Web 2.11 DELEGATES

Programming

. Delegates allow you to create a variable that “points” to a method.
You can then use this variable at any time to invoke the method.

o Delegates help you write flexible code that can be reused in many
situations.

o They’re also the basis for events, an important .NET concept that
you’ll consider in the next chapter.

o The first step when using a delegate is to define its signature.

o The signature is a combination of several pieces of information
about a method: its return type, the number of parameters it has, and
the data type of each parameter.

private string GetUserName(int ID, bool useShortForm = false)

{
// Code here.

}

/I Explicitly set the useShortForm parameter.

name = GetUserName(401, true);

/I Don't set the useShortForm parameter, and use the default
value (false).

name = GetUserName(401);

. A delegate variable can point only to a method that matches its
specific signature.

. In other words, the method must have the same return type, the same
number of parameters, and the same data type for each parameter as
the delegate.

o For example, if you have a method that accepts a single string
parameter and another method that accepts two string parameters,
you’ll need to use a separate delegate type for each method.

o To consider how this works in practice, assume that your program
has the following method:

private string TranslateEnglishToFrench(string english)

{
/I Code goes here.

}

44

o This method accepts a single string argument and returns a string.

o With those two details in mind, you can define a delegate that
matches this signature. Here’s how you would do it:

o Notice that the name you choose for the parameters and the name of
the delegate don’t matter.

private delegate string StringFunction(string inputString);

The only requirement is that the data types for the return value and
parameters match exactly.

o Once you’ve defined a type of delegate, you can create and assign a
delegate variable at any time. Using the String Function delegate
type, you could create a delegate variable like this:

o Using your delegate variable, you can point to any method that has
the matching signature. In this example, the StringFunction delegate
type requires one string parameter and returns a string. Thus, you
can use the functionReference variable to store a reference to the
TranslateEnglishToFrench() method

string frenchString;

frenchString = functionReference(*'"Hello™);

o Now that you have a delegate variable that references a method, you
can invoke the method through the delegate. To do this, you just use
the delegate name as though it were the method name:

o In the previous code example, the method that the function
Reference delegate points to will be invoked with the parameter
value "Hello", and the return value will be stored in the French
String variable.

StringFunction functionReference;
functionReference = TranslateEnglishToFrench;

o The following code shows all these steps—creating a delegate
variable, assigning a method, and calling the method—from start to
finish:

2.12 SUMMARY::

This chapter 2 gives the basic syntax of OOP in C#. It discusses about
class, methods, constructors, destructor, method overloading and few
example programs. After learning the above topics, you can write many
useful programs and built a strong foundation for larger programming
projects.

The C# Language

45

Advanced Web
Programming

46

2.13 QUESTIONS

1)
2)
3)
4)
5)
6)
7)
8)
9)

Explain OOP in C#.

Explain class and its member in C#.

Explain the methods in C#.

Explain constructor with example in C#.

Explain method overloading with example in C#.
Explain properties and indexer in C#?

Explain inheritance with example.

Explain method overriding with example.
Explain abstract class.

10) Explain Interface with example.

11) Explain structure with example.

2.14 REFERENCES:

1)
2)
3)

The Complete Reference: C#

Visual C# 2012: How to program.

https://docs.microsoft.com/en-us/dotnet/csharp/

ek kR

https://docs.microsoft.com/en-us/dotnet/csharp/

3

TYPES, OBJECTS, AND NAMESPACES

Unit Structure

3.0
3.1
3.2

3.3

3.4
3.5

3.6

Types, Objects, and Namespaces
Introduction

The Basics about Classes

3.2.1 Objects in C#

3.2.2 Constructors

3.2.3 Destructors

Building a Basic Class

3.3.1 Static Data Members and Member Functions
3.3.2 this Object in C#

3.3.3 Access Specifier

3.3.4 Adding Properties in Class

Value Types and Reference Types
Understanding Namespaces and Assemblies
3.5.1 using Keyword

3.5.2 Nested Namespace

3.5.3 Assemblies in C#

Advanced Class Programming

3.6.1 Inheritance in C#

3.6.2 Interfaces in C#

3.6.3 Delegates in C#

3.7 Summary
3.8 Questions
3.9 References

3.1 INTRODUCTION

In this chapter, you’ll learn how objects are defined and how you
manipulate them in your code. Taken together, these concepts are
the basics of what’s commonly called object-oriented programming.

This chapter explains objects from the point of view of the .NET
Framework.

It doesn’t rehash the typical object-oriented theory, because
countless excellent programming books cover the subject. Instead,
you’ll see the types of objects .NET allows, how they are
constructed, and how they fit into the larger framework of
namespaces and assemblies.

47

Advanced Web
Programming

48

3.2 THE BASICS ABOUT CLASSES

Class and Objectare the basic concepts of Object-Oriented
Programming which revolve around the real-life entities.

A class is a user-defined blueprint or prototype from which objects
are created.

Basically, a class combines the fields and methods (member
function which defines actions) into a single unit.

In C#, classes support polymorphism, inheritance and also provide
the concept of derived classes and base classes.

Generally, a class declaration contains only keyword class, followed
by an identifier(name) of the class.

But there are some optional attributes that can be used with class
declaration according to the application requirement.

In general, class declarations can include these components, in
order:

Modifiers: A class can be public or internal etc. By default modifier of
class is internal.

Keyword class: A class keyword is used to declare the type class.

Class Identifier: The variable of type class is provided. The identifier(or
name of class) should begin with an initial letter which should be
capitalized by convention.

Base class or Super class: The name of the class’s parent (superclass), if
any, preceded by the : (colon). This is optional.

Interfaces: A comma-separated list of interfaces implemented by the
class, if any, preceded by the : (colon). A class can implement more than
one interface. This is optional.

Body: The class body is surrounded by { } (curly braces).

Note:

Constructors in class are used for initializing new objects.
Fields are variables that provide the state of the class and its
objects, and methods are used to implement the behavior of
the class and its objects.

Syntax :
/l[access modifier] - [class] - [identifier]
public class Customer

}

/I Fields, properties, methods and events go here...

3.2.1 Objects in C#

It is a basic unit of Object-Oriented Programming and represents the
real-life entities.

A typical C# program creates many objects, which as you know,
interact by invoking methods. An object consists of :

State: It is represented by attributes of an object. It also reflects the
properties of an object.

Behavior: It is represented by methods of an object. It also reflects the
response of an object with other objects.

Identity: It gives a unique name to an object and enables one object to
interact with other objects.

Consider Dog as an object and see the below diagram for its identity,
state, and behavior.

Objects correspond to things found in the real world. For example, a
graphics program may have objects such as “circle”, “square”,
“menu”.

An online shopping system might have objects such as “shopping

cart”, “customer”, and “product”.

Declaring Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be
instantiated.

All the instances share the attributes and the behaviour of the class.
But the values of those attributes, i.e. the state are unique for each
object. A single class may have any number of instances.

Types, Objects, And
Namespaces

49

Advanced Web
Programming

50

Syntax:

Classname objectname = new classname();

Example 1:

using System;
public class Student
{
int id;//data member (also instance variable)
String name;//data member(also instance variable)
public static void Main(string[] args)
{

Student s1 = new Student();//creating an object of Student

sl.id = 101;

sl.name = "Sonoo Jaiswal";

Console.WriteLine(s1.id);

Console.WriteLine(s1.name);

F}

Example 2: Initialize and Display data through method

using System;
public class Student
{
public int id;
public String name;
public void insert(int i, String n)
{
id=1i;
name = n;
}
public void display()

{

Console.WriteLine(id + " " + name);

}
class TestStudent{

public static void Main(string[] args) Types, Objects, And
Namespaces
{
Student s1 = new Student();
Student s2 = new Student();
sl.insert(101, "Ajeet™);
s2.insert(102, "Tom");
sl.display();
s2.display();

F}

3.2.2 Constructors

o Constructors are methods that are called when the object is first
created. To create an object, the constructor call is preceded by the
keyword “new”.

o The process of doing this is called instantiation.

o An object is then referred to as an instance of its class. They are
often used to initialize the data of an object.

o A constructor has the same name as the name of its type (name of
class).

o Its method signature includes only the method name and its
parameter list; it does not include a return type.

o Obijects are allocated on the heap (a memory region allocated for the
program).

o Objects must be created with new Eg. Stack stk = new Stack(50);

o If you don't provide a constructor for your class, C# creates one by
default that instantiates the object and sets member variables to the
default values.

o If a constructor was declared, no default constructor is generated.

How constructors are different from a normal member function?

o A constructor is different from normal functions in following ways:
o Constructor has same name as the class itself

o Constructors don’t have return type

o A constructor is automatically called when an object is created.

o It must be placed in public section of class.

o If we do not specify a constructor, C++ compiler generates a default
constructor for object (expects no parameters and has an empty
body).

51

Advanced Web
Programming

52

In C#, constructors can be divided into 5 types

1) Default Constructor

2) Parameterized Constructor
3) Copy Constructor

4) Static Constructor

5) Private Constructor

1) Default Constructor in C#

o A constructor without any parameters is called a default constructor;
in other words, this type of constructor does not take parameters.

o The drawback of a default constructor is that every instance of the
class will be initialized to the same values and it is not possible to
initialize each instance of the class with different values.

. The default constructor initializes:

All numeric fields in the class to zero.
All string and object fields to null.

using System;
namespace DefaultConstructor

{

class addition
{
int a, b;
public addition() //default constructor
{
a=100;
b =175;
}
public static void Main()

{

addition obj = new addition(); //an object is created |,
constructor is called

Console.WriteLine(obj.a);
Console.WriteLine(obj.b);
Console.Read();

2) Parameterized Constructor in C#
o A constructor with at least one parameter is called a parameterized
constructor.

o The advantage of a parameterized constructor is that you can
initialize each instance of the class with a different value.

using System;
namespace Constructor

{

class paraconstrctor
{
public int a, b;

public paraconstrctor(int x, int y) // declaring Parameterized
Constructor with int x, y parameter

{
a=x;

b=y;

}

class MainClass

{

static void Main()

{

paraconstrctor v = new paraconstrctor(100, 175); // Creating
object of Parameterized Constructor and int values

Console.WriteLine(*"----------- parameterized constructor
example by vithal wadje--------------- ™);

Console.WriteLine(*"\t"");
Console.WriteLine(*"'value of a="" + v.a);
Console.WriteLine(*"value of b="" + v.b);
Console.Read();

Types, Objects, And
Namespaces

53

Advanced Web
Programming

54

3)

Copy Constructor in C#

The constructor which creates an object by copying variables from
another object is called a copy constructor.

The purpose of a copy constructor is to initialize a new instance to
the values of an existing instance.

public employee(employee emp)

{

}

name=emp.name;

age=emp.age;

The copy constructor is invoked by instantiating an object of type
employee and bypassing it the object to be copied. Example

employee empl=new employee (emp2);

using System;

namespace copyConstructor

{

class employee
{
private string name;
private int age;
public employee(employee emp) // declaring Copy constructor.
{
name = emp.name;
age = emp.age;
}
public employee(string name, int age) // Instance constructor.
{
this.name = name;
this.age = age;
}
public string Details // Get details of employee

{

get

{
return " The age of " + name +" is "'+ age. ToString();
}
}
}
class empdetail
{
static void Main()
{

employee empl = new employee(*"Vithal™, 23); // Create a new
employee object.

employee emp2 = new employee(empl); /Il here is empl
details is copied to emp2.

Console.WriteLine(emp2.Details);
Console.ReadL.ine();

1}

4) Static Constructor in C#

o When a constructor is created using a static keyword, it will be
invoked only once for all of the instances of the class and it is
invoked during the creation of the first instance of the class or the
first reference to a static member in the class.

. A static constructor is used to initialize static fields of the class and
to write the code that needs to be executed only once.

Some key points of a static constructor are:
. A static constructor does not take access modifiers or have
parameters.

o A static constructor is called automatically to initialize the class
before the first instance is created or any static members are
referenced.

o A static constructor cannot be called directly.

° The user has no control over when the static constructor is executed
in the program.

o A typical use of static constructors is when the class is using a log
file and the constructor is used to write entries to this file.

Types, Objects, And
Namespaces

55

Advanced Web
Programming

56

using System;
namespace staticConstructor

{

public class employee

{

static employee() // Static constructor
declaration{Console.WriteLine(*'The static constructor "');

}
public static void Salary()

{
Console.WriteLine();

Console.WriteLine(""The Salary method™);

}

class details

{

static void Main()

{

Console.WriteLine(*"---------- Static constructor example by vithal

Console.WriteLine();
employee.Salary();
Console.ReadLine();

5) Private Constructor in C#

o When a constructor is created with a private specifier, it is not
possible for other classes to derive from this class, neither is it
possible to create an instance of this class.

o They are usually used in classes that contain static members only.
Some key points of a private constructor are:

o One use of a private constructor is when we have only static
members.

o It provides an implementation of a singleton class pattern

o Once we provide a constructor that is either private or public or any,
the compiler will not add the parameter-less public constructor to the
class.

using System;
namespace defaultConstructor

{

public class Counter

{
private Counter() //private constructor declaration
{
}

public static int currentView;
public static int visitedCount()
{

return ++ currentView;

}

class viewCountedetails

{

static void Main()
{
/I Counter aCounter = new Counter(); // Error

Console.WriteLine("------- Private constructor example by
vithal wadje---------- ");

Console.WriteLine();
Counter.currentView = 500;
Counter.visitedCount();

Console.WriteLine(""Now the view count is: {0}",
Counter.currentView);

Console.ReadL.ine();

Types, Objects, And
Namespaces

57

Advanced Web 3.2.3 Destructors

Programming °

Destructors in C# are methods inside the class used to destroy
instances of that class when they are no longer needed.

The Destructor is called implicitly by the .NET Framework’s
Garbage collector and therefore programmer has no control as
when to invoke the destructor.

An instance variable or an object is eligible for destruction when it
is no longer reachable.

Important Points:

A Destructor is unique to its class i.e. there cannot be more than
one destructor in a class.

A Destructor has no return type and has exactly the same name as
the class name (Including the same case).

It is distinguished apart from a constructor because of the Tilde
symbol (~) prefixed to its name.

A Destructor does not accept any parameters and modifiers.
It cannot be defined in Structures. It is only used with classes.
It cannot be overloaded or inherited.

It is called when the program exits.

Internally, Destructor called the Finalize method on the base class
of object.

class Example

// Rest of the class

// members and methods.

/I Destructor

~Example()
{

/l Your code

3.2.4 Static Data Members and Member Functions

58

We can define class members as static using the static keyword.

When we declare a member of a class as static, it means no matter
how many objects of the class are created, there is only one copy of
the static member.

The keyword static implies that only one instance of the member
exists for a class. Static variables are used for defining constants
because their values can be retrieved by invoking the class without
creating an instance of it.

Static variables can be initialized outside the member function or
class definition. You can also initialize static variables inside the
class definition.

using System;

namespace StaticVarApplication {
class StaticVar {

public static int num;

}

public void count() {

}

num-++;

public int getNum() {

}

return num;

class StaticTester {
static void Main(string[] args) {

StaticVar s1 = new StaticVar();

StaticVar s2 = new StaticVar();

s1.count();

s1.count();

s1.count();

s2.count();

s2.count();

s2.count();

Console.WriteLine(**Variable num for s1: {0}", s1.getNum());
Console.WriteLine(**Variable num for s2: {0}", s2.getNum());
Console.ReadKey();

Types, Objects, And
Namespaces

59

Advanced Web Static Method
Programming

o A static method in C# is a method that keeps only one copy of the
method at the Type level, not the object level.

o That means, all instances of the class share the same copy of the
method and its data. The last updated value of the method is shared
among all objects of that Type.

o Static methods are called by using the class name, not the instance of
the class.

class StaticDemo
{
public static void withoutObj()

{
Console.WriteLine(""Hello™);

}

static void Main()

{
Program. withoutObj();

Console.ReadKey/();

}

Using Static Method

. Usually we define a set of data members for a class and then every
object of that class will have a separate copy of each of those data
members.

class Program
{
public int myVar; //a non-static field
static void Main()

{
StaticDemo p1 = new StaticDemo(); //an object of class
pl.myVar = 10;
pl.withoutObj();
Console.WriteLine(pl.myVar);
Console.ReadKey();

60

3.3.2 this Object in C#

. The “this” keyword in C# is used to refer to the current instance of
the class. It is also used to differentiate between the method

parameters and class fields if they both have the same name.

. Another usage of “this” keyword is to call another constructor from

a constructor in the same class.

o Here, for an example, we are showing a record of Students i.e: id,
Name, Age, and Subject. To refer to the fields of the current class,

we have used the “this” keyword in C#.

public Student(int id, String name, int age, String subject) {
this.id = id;
this.name = name;
this.subject = subject;
this.age = age;

}

using System.l10O;
using System;

class Student {
public int id, age;
public String name, subject;

public Student(int id, String name, int age, String subject) {
this.id = id;
this.name = name;
this.subject = subject;
this.age = age;
}
public void showInfo() {
Console.WriteLine(id + ** ' + name+"" "'+age+ " ""+subject);

}
}

class StudentDetails {
public static void Main(string[] args) {
Student std1 = new Student(001, ""Jack™, 23, ""Maths"");

Types, Objects, And

Namespaces

61

Advanced Web
Programming

62

"Programming');

Student std2 = new Student(002, ""Harry"", 27, "'Science™);
Student std3 = new Student(003, ''Steve"™, 23,

Student std4 = new Student(004, ""David", 27, ""English"");

std1.showlnfo();
std2.showInfo();
std3.showlnfo();
std4.showlnfo();

3.3.3 Access Specifier
Keyword Accessibility
public Can be accessed by any class
private Can be accessed only by members inside the current class
internal Can be accessed by members in any of the classes in the current assembly (the file
with the compiled code)
protected Can be accessed by members in the current class or in any class that inherits from
this class
protected internal Can be accessed by members in the current application {as with internal) and by the
members in any class that inherits from this class
3.3.4 Adding Properties in Class

Property in C# is a member of a class that provides a flexible
mechanism for classes to expose private fields. Internally, C#
properties are special methods called accessors.

A C# property have two accessors, get property accessor and set
property accessor.

A get accessor returns a property value, and a set accessor assigns a
new value. The value keyword represents the value of a property.

Properties in C# and .NET have various access levels that is defined
by an access modifier.

Properties can be read-write, read-only, or write-only. The read-
write property implements both, a get and a set accessor.

A write-only property implements a set accessor, but no get
accessor. A read-only property implements a get accessor, but no set
accessor.

class Person

{

private string name; // field

public string Name // property

{
get { return name; } // get method
set { name = value; } // set method

}
k

Example:

class Person
{
private string name; // field
public string Name // property
{
get { return name; }
set { name = value; }

}
}

class Program

{

static void Main(string[] args)

{

Person myObj = new Person();
myObj.Name = "'Liam"";

Console.WriteLine(myObj.Name);

}
}

3.4 VALUE TYPES AND REFERENCE TYPES

o In C#, these data types are categorized based on how they store their
value in the memory. C# includes the following categories of data

types:
o Value type
° Reference type

Types, Objects, And
Namespaces

63

Advanced Web
Programming

64

Value Type

o A data type is a value type if it holds a data value within its own
memory space. It means the variables of these data types directly
contain values.

o For example, consider integer variable int i = 100;

o The system stores 100 in the memory space allocated for the
variable i.

o The following image illustrates how 100 is stored at some
hypothetical location in the memory (0x239110) for 'i*:

.
r‘.rl
.

T
int 1 = 108; | / 100

T
RAM

The following data types are all of value type:

° bool

. byte

) char

o decimal
° double

) enum

) float

. int

. long etc.

Passing Value Type Variables

. When you pass a value-type variable from one method to another,
the system creates a separate copy of a variable in another method.

o If value got changed in the one method, it wouldn't affect the
variable in another method

static void ChangeValue(int x)

{
x = 200;
Console.WriteLine(x);

}

static void Main(string[] args)

{
inti=100;
Console.WriteLine(i);
ChangeValue(i);
Console.WriteLine(i);

}

Reference Type Types, Objects, And
e Unlike value types, a reference type doesn't store its value directly. Namespaces
Instead, it stores the address where the value is being stored.

o In other words, a reference type contains a pointer to another
memory location that holds the data.

J For example, consider the following string variable:
string s = "Hello World!!";

o The following image shows how the system allocates the memory
for the above string variable.

string s = "Hello World!!";

% - L
LY - W

*y - A RAM
L:E:Hﬂr: Il M 100000
D:-:EDDEJDE] Hello World!!
I T
Reference type variable Actualvalue

contains addresswhere the
valueisstored

o As you can see in the above image, the system selects a random
location in memory (0x803200) for the variable s.

o The value of a variable s is 0x600000, which is the memory address
of the actual data value.

o Thus, reference type stores the address of the location where the
actual value is stored instead of the value itself.

The followings are reference type data types:

String

Arrays (even if their elements are value types)

Class

Delegate

Passing Reference Type Variables

o When you pass a reference type variable from one method to
another, it doesn't create a new copy; instead, it passes the variable's
address.

o So, If we change the value of a variable in a method, it will also be
reflected in the calling method.

65

Advanced Web
Programming

66

static void ChangeReferenceType(Student std2)

{

}

static void Main(string[] args)

{

}

std2.StudentName = "'Steve'";

Student std1 = new Student();
std1.StudentName = "Bill'";
ChangeReferenceType(stdl);
Console.WriteLine(std1.StudentName);

3.5 UNDERSTANDING NAMESPACES AND ASSEMBLIES

Namespaces in C#

Namespaces are used to organize the classes.
It helps to control the scope of methods and classes in larger .Net
programming projects.

The biggest advantage of using namespace is that the class names
which are declared in one namespace will not clash with the same
class names declared in another namespace.

It is also referred as named group of classes having common
features.

The members of a namespace can be namespaces, interfaces,
structures, and delegates.

There are two types of namespaces.
1. User Defined Namespace
2. Build in Namespaces.

Defining a User-Defined Namespace

To define a namespace in C#, we will use the namespace keyword
followed by the name of the namespace and curly braces containing
the body of the namespace as follows:

Example:

Il defining the namespace namel
namespace namel

{

}

/I C1 is the class in the namespace namel
class C1

/I class code

using System;
namespace first_space {
class namespace_cl {
public void func() {
Console.WriteLine(*'Inside first_space™);

}
}
}

namespace second_space {
class namespace_cl {
public void func() {
Console.WriteLine("'Inside second_space');

}
}
}

class TestClass {
static void Main(string[] args) {
first_space.namespace_cl fc = new first_space.namespace_cl();

second_space.namespace_cl sC = new
second_space.namespace_cl();

fc.func();
sc.func();
Console.ReadKey();

}
}

When the above code is compiled and executed, it produces the
following result -

Inside first_space
Inside second_space

3.5.1 The Using Keyword

o The using keyword states that the program is using the names in the
given namespace. For example, we are using the System namespace
in our programs. The class Console is defined there. We just write -

Console.WriteLine (*"Hello there™);

We could have written the fully qualified name as -

System.Console.WriteLine(**Hello there™);

o You can also avoid prepending of namespaces with the using
namespace directive.

Types, Objects, And
Namespaces

67

Advanced Web e This directive tells the compiler that the subsequent code is making
Programming use of names in the specified namespace.

o The namespace is thus implied for the following code —

using System;
using first_space;
using second_space;

namespace first_space {
class abc {
public void func() {
Console.WriteLine("'Inside first_space™);

}
}
}

namespace second_space {
class efg {
public void func() {
Console.WriteLine(**Inside second_space");

}
}
}

class TestClass {
static void Main(string[] args) {
abc fc = new abc();
efg sc = new efg();
fc.func();
sc.func();
Console.ReadKey();

}
}

When the above code is compiled and executed, it produces the
following result -

Inside first_space
Inside second_space

68

3.5.2 Nested Namespace

You can define one namespace inside another namespace as follows -
namespace hamespace_namel {
I/ code declarations
namespace namespace_name2 {
/I code declarations

}
}

using System;
using first_space;
using first_space.second_space;
namespace first_space {
class abc {
public void func() {
Console.WriteLine("Inside first_space");
}
¥

namespace second_space {
class efg {
public void func() {
Console.WriteLine("Inside second_space™);
¥
}
}
}

class TestClass {
static void Main(string[] args) {
abc fc = new abc();
efg sc = new efg();
fc.func();
sc.func();
Console.ReadKey();

¥
k

When the above code is compiled and executed, it produces the following

result -
Inside first_space
Inside second_space

Types, Objects, And
Namespaces

69

Advanced Web
Programming

70

3.5.3 Assemblies in C#

An assembly is a collection of types and resources that are built to
work together and form a logical unit of functionality.

Assemblies take the form of executable (.exe) or dynamic link
library (. dll) files, and are the building blocks of .NET applications.

An Assembly is a basic building block of .Net Framework
applications. It is basically a compiled code that can be executed by
the CLR.

An assembly is a collection of types and resources that are built to
work together and form a logical unit of functionality. An Assembly
can be a DLL or exe depending upon the project that we choose.

Assemblies have the following properties:

Assemblies are implemented as .exe or .dll files.

For libraries that target the .NET Framework, you can share
assemblies between applications by putting them in the global
assembly cache (GAC). You must declare strong-name assemblies
before you can include them in the GAC.

Assemblies are only loaded into memory if they are required. If they
aren't used, they aren't loaded. This means that assemblies can be an
efficient way to manage resources in larger projects.

Assemblies are basically the following two types:

1.
2.

1.

Private Assembly
Shared Assembly

Private Assembly
It is an assembly that is being used by a single application only.

Suppose we have a project in which we refer to a DLL so when we
build that project that DLL will be copied to the bin folder of our
project.

That DLL becomes a private assembly within our project. Generally,
the DLLs that are meant for a specific project are private assemblies.

Shared Assembly

Assemblies that can be used in more than one project are known to
be a shared assembly.

Shared assemblies are generally installed in the GAC.

Assemblies that are installed in the GAC are made available to all
the .Net applications on that machine.

GAC(Global Assembly Cache)

GAC stands for Global Assembly Cache. It is a memory that is used
to store the assemblies that are meant to be used by various
applications.

Every computer that has CLR installed must have a GAC. GAC is a
location that can be seen at “C:\Windows\assembly” for .Net

applications with frameworks up to 3.5. For higher frameworks like
4 and 4.5 the GAC can be seen at:
“C:\Windows\Microsoft. NET\assembly\GAC_ MSIL”.

Components of Assembly:

A static assembly consist of 4 elements:-

1. The assembly manifest, which contains assembly metadata.

2. Type metadata

3. Microsoft Intermediate Language(MSIL) code that implement the
type.

4. A setof resources.

Assembly manifest :-

e Every assembly whether static or dynamic contain a collection of
data that describes how the element in assembly relates to each
other.

e It contains its assembly metadata such as assembly version
requirement & security identity & all metadata needed to define this
scope of the assembly & resolve references to resources & classes.

e It can be stored in either PE file(portable exe file) or .dll file with
Microsoft intermediate language(MSIL) code or in a standalone PE
file that contains only assembly manifest information.

The following illustration show the different ways to manifest can be
stored.

File1.dll
manifest Fil=2.dll Graphics.jpg ogo.bmp

L 4

manifest

The following table shows the information contain in the assembly
manifest.

Information |Description

Assembly A text string specifying the assembly name.

name

Version A major & minor version number & a revision & build
number number. The common language runtime uses this no. to

enforce version policy.

Types, Objects, And
Namespaces

71

Advanced Web
Programming

72

Culture Information on the culture or language the assembly

supports the information should be used only to
designate an assembly as a satellite assembly
containing culture or language specific information.

Strong name | The public key from the publisher if the assembly has
Information |been given a strong name.

3.6 ADVANCED CLASS PROGRAMMING

Part of the art of object-oriented programming is determining object
relations.

For example, you could create a Product object that contains a
ProductFamily object or a Car object that contains four Wheel
objects.

To create this sort of object relationship, all you need to do is define
the appropriate variable or properties in the class. This type of
relationship is called containment (or aggregation).

3.6.1 Inheritance in C#

One of the most important concepts in object-oriented programming
is inheritance.

Inheritance allows us to define a class in terms of another class,
which makes it easier to create and maintain an application.

This also provides an opportunity to reuse the code functionality and
speeds up implementation time.

The process of creating new class from an existing class is called as
inheritance.

When creating a class, instead of writing completely new data
members and member functions, the programmer can designate that
the new class should inherit the members of an existing class.

This existing class is called the base class, and the new class is
referred to as the derived class.

<acess-specifier> class <base_class> {

class <derived_class> : <base_class> {

Types, Objects, And
Namespaces

Types of Inheritance

—
Child Child1 Child1 Child2

Single Inheritance Multiple Hierarchical
Inheritance Inheritance
Multilevel
Inheritance

Hybrid Inheritance

2 Eo

Child1 Chitd2 Child1 Child2 l
T W

OOPs support the six different types of inheritance as given below :

Single inheritance
Multi-level inheritance

1

2

3. Multiple inheritance

4 Hierarchical Inheritance
5

Hybrid Inheritance
Single inheritance
. In this inheritance, a derived class is created from a single base

class.

o In the given example, Class A is the parent class and Class B is the
child class since Class B inherits the features and behavior of the
parent class A.

Multi-level inheritance

. In this inheritance, a derived class is created from another
derived class.

o In the given example, class c inherits the properties and behavior of
class B and class B inherits the properties and behavior of class B.
So, here A is the parent class of B and

73

Advanced Web
Programming

74

class B is the parent class of C. So, here class C implicitly inherits
the properties and behavior of class A along with Class B i.e there is
a multilevel of inheritance.

Multiple inheritance

In this inheritance, a derived class is created from more than one
base class. This inheritance is not supported by .NET Languages like
C#, F# etc. and Java Language.

In the given example, class c inherits the properties and behavior of
class B and class A at same level. So, here A and Class B both are
the parent classes for Class C.

Hierarchical Inheritance

In this inheritance, more than one derived classes are created from a
single base class and further child classes act as parent classes for
more than one child classes.

In the given example, class A has two children class B and class D.
Further, class B and class C both are having two children - class D
and E; class F and G respectively.

Hybrid inheritance

This is combination of more than one inheritance. Hence, it may be
a combination of Multilevel and Multiple inheritance or Hierarchical
etc.

Example Of Multilevel Inheritance

using System;

class A

{

}

public void displayA()

Console.WriteLine(*"Base Class Function™);

classB : A

{

public void displayB()

Console.WriteLine(*'Derived Class Function™);

https://www.dotnettricks.com/learn/netframework

classC:B

{
public void displayC()
{

Console.WriteLine(*'Derived Class Function™);

}

class Programs

{
public static void Main(string[] args)

{
C obj = new C();
obj.displayA();
obj.displayB();
obj.displayC();
Console.ReadKey();

Hierarchical Inheritance

using System;
class A

{
public void displayA()

{

Console.WriteLine("'Base Class Function™);

}
classB : A

{
public void displayB()

{

Console.WriteLine(*'Derived Class Function™);

}
classC: A

Types, Objects, And
Namespaces

75

Advanced Web
Programming

76

}

public void displayC()

Console.WriteLine(*'Derived Class Function™);

class Programs

{

public static void Main(string[] args)

B obj1 = new B();
C obj = new C();

obj.displayA();
obj.displayC();

obj1.displayA();
obj1.displayB();
Console.ReadKey();

3.6.2 Interfaces in C#

Interface is like a contract. In the human world, the contract between
the two or more humans binds them to act as per the contract.

In the same way, the interface includes the declaration of one or
more functionalities.

Entities that implement the interface must define functionalities
declared in the interface. In C#, a class or a struct can implement one
or more interfaces

In C# an interface can be defined using the interface keyword.

Interfaces can contain methods, properties, indexers, and events as
members.

You cannot use any access modifier for any member of an interface.
All the members by default are public members.

Implementing an Interface Types, Objects, And
Namespaces

A class or a Struct can implement one or more interfaces using colon (3).
Syntax: <Class or Struct Name> : <Interface Name>

using System;
interface Mylnterface

{
void display();

}

class Calllnterface : MyInterface

{
public void display()

{

Console.WriteLine("Interface is called™);

}

class Calllnterfacel : Mylnterface

{
public void display()

{
Console.WriteLine(""Interface Method"");

}

class Programs

{
public static void Main(string[] args)

{

Calllnterface obj = new Calllnterface();
Callinterfacel objl = new CallInterfacel();

obj.display();
objl.display();

Console.ReadKey();

77

Advanced Web using System;
Programming) L
interface Addition

{
void add(int n1, int n2);
}
interface Subtraction
{
void sub(int n1, int n2);
}
class Calllnterface : Addition,Subtraction
{
public void add(int n1, int n2)
{
Console.WriteLine("*Addition :"" + (n1 + n2));
}
public void sub(int n1, int n2)
{
Console.WriteLine(*'Subtraction :** + (nl - n2));
}
}
class Programs
{
public static void Main(string[] args)
{
Calllnterface obj = new Calllnterface();
obj.add(10,10);
obj.sub(100,10);
Console.ReadKey();
}
}

Explicit Interface Implementation

o Explicit implementation is useful when class is implementing
multiple interface thereby it is more readable and eliminates the
confusion.

o It is also useful if interfaces have same method name coincidently.

78

using System;
interface 11

{

void show();

}

interface 12

{

void show();

}

class Calllnterface : 11,12

{
void 11.show()

{
Console.WriteLine("'11 interface Method");

}
void 12.show()

{
Console.WriteLine("'12 Interface Method™);

}

class Programs

{
public static void Main(string[] args)

{
Calllnterface obj = new Calllnterface();
11i1 = (11) obj;
i1.show();
1212 = (12)obj;
i2.show();
Console.ReadKey();

}

3.6.3 Delegates in C#
o A function can have one or more parameters of different data types,
but what if you want to pass a function itself as a parameter?

. How does C# handle the callback functions or event handler? The
answer is - delegate.

Types, Objects, And
Namespaces

79

Advanced Web
Programming

80

o Delegate is like a pointer to a function.

o It is a reference type data type and it holds the reference of a
method.

o All the delegates are implicitly derived from System.Delegate class.

o A delegate can be declared using delegate keyword followed by a
function signature as shown below.

<accessmodifier>delegate<returntype><delegate name>(<parameters>);

Steps to used Delegate
1) Declaration of delegate

<accessmodifier> delegate
<delegate_name>(<paramets);

<returntype>

public delegate void show();
2) Delegate method declaration

class DelegateMethod

{
public void display()

{

Console.WriteLine("'Delegate is called™);

}

3) Delegate Instantiation(delegate object creation)
DelegateMethod dm = new DelegateMethod();
MyDelegate d = new MyDelegate(dm.display);

4) Calling Delegate

d();

Example

using System;

public delegate void MyDelegate(); // Stepl
class DelegateMethod

{
public void display()

{

Console.WriteLine("'Delegate is called™);

}
}

class Programs

{
public static void Main(string[] args)

{

DelegateMethod dm = new DelegateMethod();
MyDelegate d = new MyDelegate(dm.display);

d();

Console.ReadKey();

Types of Delegate
1) Simple Delegate

o When delegate uses only one method to execute on the behalf of the
delegate then it is called as simple delegate.

2) Multicast Delegate

o The delegate can points to multiple methods. A delegate that points
multiple methods is called a multicast delegate.

o The "+" operator adds a function to the delegate object and the "-"
operator removes an existing function from a delegate object.

using System;
public delegate void MathOptr(int nl, int n2);

class DelegateMethod

{
public void add(int n1, int n2)

{
Console.WriteLine(""Addition =" + (n1 + n2));

}
public void sub(int n1, int n2)

{

Console.WriteLine(*'Subtraction =" + (n1 - n2));

}
public void mult(int n1, int n2)

{
Console.WriteLine(""Mult =" + (nl1 * n2));

Types, Objects, And
Namespaces

81

Advanced Web
Programming

82

}
public void div(int n1, int n2)
{
Console.WriteLine("'Div =" + (n1/ n2));
}
}

class Programs

{
public static void Main(string[] args)

{

DelegateMethod dm = new DelegateMethod();

MathOptr d1 = new MathOptr(dm.add);
MathOptr d2 = new MathOptr(dm.sub);
MathOptr d3 = new MathOptr(dm.mult);
MathOptr d4 = new MathOptr(dm.div);

d1(10, 20);
d2(20, 10);
d3(10, 10);
d4(20, 5);

MathOptr d5 =d1 + d2 + d3 + d4;
d5(10,2);

Console.ReadKey();

}
}

3.7 SUMMARY:

This chapter 3 gives the basic syntax of exception handling in C#. It
discusses about exception, Assembly, Components of Assembly, Private
and Shared Assembly, Garbage Collector, JIT compiler, Namespaces and
few example programs. After learning the above topics, you can write
many useful programs and built a strong foundation for larger

programming projects.

3.8 QUESTIONS:

Write a short note on Assembly.
What is the significance of Assemblies in .NET?

List and Explain the Components of assemblies.
How Garbage collector works?
Explain JIT compiler.

© ks~ w D P

What is namespace? Explain System namespace.

3.9 REFERENCE:

1) The Complete Reference: C#
2) Visual C# 2012: How to program.
3) https://docs.microsoft.com/en-us/dotnet/csharp/

e ok ke ke

Types, Objects, And
Namespaces

83

Advanced Web

Programming 4

WEB FORM FUNDAMENTALS

4.0 Objectives
4.1 Introduction
4.2 An Overview
4.2.1 Writing Code
4.2.2 Using the Code-Behind Class
4.2.3 Adding Event Handlers
4.3 Understanding the Anatomy of an ASP.NET Application
4.3.1 ASP.NET File Types
4.3.2 ASP.NET Web Folders
4.3.3 Debugging
4.4 Introducing Server Controls
4.4.1 HTML Server Controls
4.4.2 View State
4.4.3 Using the Page Class
4.4.4 Using Application Events
4.4.5 Configuring an ASP.NET Application.
4.5 Questions
4.6 References

4.0 OBJECTIVES

After going through this unit, you will be able to:

o To gain knowledge about what is web form and why it is used.
o How to design a webform and its applications

o How to write a code in C#.

o Explain about the controls and its uses.

o Various elements of Navigation.

4.1 INTRODUCTION

Web Forms are web pages built on the ASP.NET Technology. It executes
on the server and generates output to the browser. It is compatible to any
browser to any language supported by .NET common language runtime. It

is flexible and allows us to create and add custom controls.

84

4.2 AN OVERVIEW AWP

4.2.1 Writing Code

To start with writing a code i.e. dynamic and operational coding we need
to switch to code-behind class. To switch up and down the code we use
View code or View Designer buttons which appears just above the
Solution Explorer window. Another approach is by double clicking either
on .aspx page in the solution explorer or .aspx.cs page. Here we will be
discussing C# code not the HTML code .

4.2.2 Using the Code-Behind class

Code-Behind class refers to the code that is written in separate class file
that has extension .aspx.cs or .aspx.vb depending on the language used.
When we switch to code view we will see the page class for our webpage.

For example when we create a webpage named SamplePage.aspx we will
see a code behind class looks like this :

Using System;

Using.System.Collection.Generic;

Using.System.Ling;

Using.System.Web;

Using.System.Web. U,
Using.System.Web.Ul.WebControls;

Public partial class SamplePage: System.Web.Ul.Page

{

Protected void Page_Load(object sender , EventArgs e)

{
¥
k

4.2.3 Adding Event Handlers

ASP.NET allows to implement event based model for our application.

To create an event handler in properties window we do the following

1) Double-click to create a new event handler for that event.

2) Type the name of the handler to create.

3) Inthe drop-down list select the name of existing handler.

For e.g:- The following diagram suggests that

Select the Button and right click and click on properties. In the properties

window click the yellow icon event -

Advanced Web Or simple double click the button it will show code behind file where we
Programming can write the code if the user click button what action has to be performed.

B Desigen ol Split | % Source |
public partialclass_EventHandlerDemo:System.Web.Ul.Page
{

protected void Page_Load(object sender, Event Args e)
{
¥
protected void Button_Click(object sender, EventArgs e)
{
}

}

Where object sender represents the object raising the event.

EventArgs represents the event arguments.

43 UNDERSTANDING THE ANATOMY OF AN
ASP.NET APPLICATION

ASP.NET pages are divided into multiple webpages. Every webpage
shares a common resource and configuration. Each webpage is executed in
separate application domain.

If error occurs in application domain it does not affect other applications
running on the same computer. Each web application is a combination of

86

files, pages, handlers, modules and executable code that can be invoked
from a virtual directory on the web server.

4.3.1 ASP.NET File Types

1) .aspx- This file is basically an extension of ASP.NET Web Pages. It
is used for web form pages.

2) .ascx — This extension is basically used for web form user controls.
The .ascx extension is often used for consistent parts of a website
like headers, footers etc.

3) .asmx — This extension is used for files that implement ASP.NET
Web Services.

4) .vb — This extension is used for VisualBasic.NET code modules.
These files are code-behind files and are used to separate code from
user interface.

5) .resx — These files are basically used for Windows Form Application
for storing resources such as text strings for internationalization of
applications.

6) Global.asax — These files are basically used to define Application-
and-Session level variables and start up procedures.
4.3.2 ASP.NET Web Folders

ASP.NET defines several special folders. These special folders can be
added to a Web site from Visual Studio menu system. We can add it by
right clicking the Website Application Project and selecting Add
ASP.NET folder.

The diagram shows the following :-

2 test1 - Microsoft Yisual Studio

Fe Edt Vew Webste Duld Debug Dats Took Test Anshoe Window Heb
3.l @ A b Detug - NET - ot 2R L B
b St Page COMactUsaspy ' Defad wspass Delak agpn

Chert Objects B Events v || o tvmrrs)

eipt (3] Buldweb Ste
| Pt Wb Ste
J -\«)ﬂ Powy [tecs
=) Add Exstiog Mg
4 New Polder
. Add ASP.NET Folder \\ »

#op_Code Add Reference

Ap0_Gobamoxces Add Web Refererce.
A0 _LocaResources Add Sarvce Reference. .
> | 200 WebRefororces | @3 View Class Disgran

Temetornd |

Ao _Lrowsers 5 cow Ske..
Enter your nata¢
Treme Rart Options.
Fuoter your exnad addres Set a5 Startlp Projest
€ Viewn trowser
Enter vowr messag Browse WiRN
T Rkt Fokder

A O

Revwove
§ Cpen Fokder n Windows Lxplorer
B Property Pages

[S %k | i Source eml> || ody> [amaiomt > | cdv>
x = A Run Code Anshyss on 'Web Ste

AWP

87

Advanced Web
Programming

88

ASP.Net folders are as follows:-

1)

2)

3)

4)

5)

6)

7)

8)

App_Browsers - ASP.net reserve this folder name for storing
browser definition files. These files are used to determine the client
browser capabilities and have .browser extension.

App_Code — App_code folder can contain source code for utility
classes as well business objects (i.e .cs, .vb and .jsl files).The
Classes that are present in App_Code folder are automatically
compiled when your web application compiled.

App_Data - .App_Data folder is used by ASP.NET application for
storing ASP.NET application local database. App_Data is used to
store files that can be used as database files (.mdf and xml files).
Developers can also use this folder for storing data for their
ASP.NET Application.

App_GlobalResources - App_GlobalResources folder contains
resources (.resx and .resources files) that are compiled into
assemblies and have a global scope. These files are used to
externalize text and images from our application code. This also
helps us to support multiple languages and design-time changes
without recompilation of your source code. These files are strongly
typed and can be accessed programmatically.

App_LocalResources - App_LocalResources folder contains
resources (.resx and .resources files). These files are available to a
particular project, web page, master page or web user control.

App_Themes -These files contain subfolders that defines a specific
theme or look and feel for your Web site. These consist of files
(such as .skin, .css and image files) that defines the appearance of
Web pages and controls.

App_WebReferences — It contains Web references files (.wsdl,
xsd, .disco, and .discomap files) that define references to Web
Services.

Bin - Bin folder contains compiled assemblies (.dll files) for code
that we want to reference in our application. Assemblies in Bin
folder are automatically reference in our application.

4.3.3 Debugging

Debugging enables programmers to see how the Code works step-by-step,
how the variables values change, how objects are created and destroyed,
and so on. Debugging is the application’s method of inserting breakpoints.
Such breakpoints are used to pause running a program from running.

We start the debugging session using F5(Debug/Start Debugging). This
command starts our app with the debugger attached.

The Green arrow also starts the debugger

When running code in the debugger we often realize that we don’t need to
see what happens to a particular function. We use some commands to skip

through code

Keyboard Menu Description

Command Command

F10 Step Over If a current line contains a function
call, Step Over runs the code then
suspends execution at the first line of
code after the called function returns.

Shift+F11 Step Out Step Out continues running code and
suspends execution when the current
function returns.

Run to a specific location or function

These methods are useful when we know exactly what code we want to
inspect and where we want to start debugging.

Set breakpoints in the code :- To set a simple breakpoint in our
code, open the source file in the Visual Studio editor. Set the cursor
at the line of code where we want to suspend execution and then
right-click in the code window to see the context menu and choose
Breakpoint/Insert Breakpoint(or Press F9)

Run to the cursor location:- To run to the cursor location, place
the cursor on an executable line of code in a source window. On the
editors context menu, choose Run to Cursor.

Manually break into the code :- To break into the line of code in
an executing app, choose Debug, Break All
(Keyboard:Ctrl+Alt+Delete)

Run to a function on call stack :- In the Call Stack Window, select
the function, right-click and choose Run to Cursor.

When the site is executed for the first time, Visual Studio displays a
prompt asking whether it should be enabled for debugging:

Debugging Not Enabled l; i)

The page cannot be run in debug mode because debugging is not enabled in the Web.config
file. What would you like to do?

© Medify the Web.config file to enable debugging.
[\ Debugging should be disabled in the Web.config file before deploying the

Web site to 3 production environment.

Run without debugging. (Equivalent to Ctrd+F5)

[o Cancel

AWP

89

Advanced Web
Programming

90

4.4 INTRODUCTION TO SERVER CONTROLS

The server controls are the heart of ASP.NET pages which represents
dynamic elements that our user can interact with. Server controls are tags
that are understood by the server. There are three kinds of server controls

1) HTML Server Controls — Traditional HTML tags.
2) Web Server Controls — New ASP.NET tags.
3) Validation server Controls — For input validation.

Advantages of Server Controls
o ASP .NET Server Controls can detect the target browser's
capabilities and render themselves accordingly.

o Newer set of controls that can be used in the same manner as any
HTML control like Calender controls.

. ASP .NET Server Controls have an object model different from the
traditional HTML and even provide a set of properties and methods
that can change the outlook and behavior of the controls.

. ASP .NET Server Controls have higher level of abstraction.
4.4.1 HTML Server Controls :-

The HTML elements are considered as text in ASP.NET file. They cannot
be referred as server side code. These controls can be treated as server
control by adding runat=“server” attribute. The id attribute in the
element can be added as reference to the control. All the HTML server
controls are written in the <form> tag.

Some of the HTML Controls are as follows:-

° HtmlAnchor — Controls an <a> HTML element
. HtmIButton — Controls a <button> HTML element
° HtmlForm — Controls a <form> HTML element

o HtmlGeneric — Controls other HTML element not specified by a
specific HTML server control.

J Htmllimage — Controls an <image> HTML element

o HtmlInputButtonControl - The HtmlinputButton control is used to
control <input type= “button”>, <input type= “reset”> and
<input type= “submit”> elements.

o HTMIInputCheckbox control - The HtmlInputCheckBox control is
used to control as <input type="checkbox”> element.

o HtmlInputFile control - The HtmlInputFile control is used to control
an <input type= “file”> element.

o HtmlInputHidden control - The HtmlInputHidden control is sued to
control an <input type= “hidden”> element.

o HtmlInputRadioButton -The HtmlInputRadioButton control is used AWP
to control an <input type= “radio”> element.

. HtmliSelect control - The HtmlSelect control is used to
control <select> element.

° HtmITextArea control — The HtmlTextArea control is used to
control <textarea> element

. HtmITable control - The HtmlTable control is used to control
<table> element.

HTML Control Events

Events Controls

ServerClick HtmlAnchor, HtmIButton, HtmlInputButton,
HtmlInputimage, HtmlInputReset

ServerChange HtmlInputText, HtmlInputCheckBox,
HtmlInputRadioButton, HtmlInputHidden,
HtmlSelect, HtmITextArea

For example:- This example has one button and one textbox. When user
clicks the Button the result is shown in textbox

htmlcontrolsexample.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="html
controlsexample.aspx.cs"

Inherits="asp.netexample.htmlcontrolsexample™ %>
<IDOCTYPE html>

<html xmIns="http://www.w3.0rg/1999/xhtm|">
<head runat="server">

<title></title>

</head>

<body>

<form id="form1" runat="server">

<div>

<input id="Text1" type="text" runat="server"/>

<asp:Button ID="Buttonl1" runat="server" Text="Button" OnClick="Butto
nl_Click"/>

</body>

</html>

/I htmlcontrolsexample.aspx.cs
using System;

namespace asp.netexample

{ 91

Advanced Web
Programming

92

public partial class htmlcontrolsexample : System.Web.Ul.Page

{
protected void Page_Load(object sender, EventArgs e)
{
}
protected void Buttonl Click(object sender, EventArgs e)
{

string a = Request.Form["Text1"];

Response.Write(a);

}

}
}
OUTPUT :-

= a X
| http//localhost51070/htmi X +
€) locathost z% N~ C

* B8 ¥ KO O

When we click the button after entering text, it responses back to client.

= =] X
| hitp/Nocathost51070/htmi X +

| ~
€) locaihost 20 v C

*8 $ 0O G #- =

Somnath Chatarji
Somnath Chatarji Button

4.4.2 \View State

View State is used to store user data on page at the time of post back of
web page. It does not hold the controls, it holds the values of controls. It
does not restore the value to control after page post back.

View State can hold the value on single web page, if we go to other page
using response.redirect then View State will be null.

Syntax:-

Store the value in viewstate
ViewState[“name”]="ASP.NET Programming”;

Retrieve information from viewstate

string value=ViewState[“name”].ToString();

Example of viewstate

[laspprogramming.aspx

protected void Buttonl_click(Object sender,EventArgs e)
{

/Ivalue of Textbox1 and TextBox2 is assigned on Viewstate
Viewstate[“name”]=TextBox1.Text;

Viewstate[“password”|=TextBox2.Text;

/[after clicking on Button TextBox Value will be cleared
TextBox1.Text-TextBox2. Text=string.Empty;

}
protected void Button3_Click(object sender,EventArgs e)

{

/N Viewstate value is not null then value of viewstate is assign to TextB
If (Viewstate[“name™] = null)

{
TextBox1.Text=Viewstate[“name”]. ToString();
¥
If(Viewstate[“password’’] != null)
{

TextBox2.Text=Viewstate[“password”]. ToString();

¥
¥

Output:-

€ C A [localhost: 14993/ WebForm7.aspx

User Name:-|name

Password - |password

Submit f | Restore |

Click Submit Button

AWP

93

Advanced Web
Programming

94

User Name:-| E——

Password - |

| Submit |

After Click The Restore
Button Output Will be

4.4.3 Using Page Class

Every web Page is a custom class that inherits from the system.
web.Ul.Page control. By inheriting form this class, your page class
acquires a number of properties that our code can use. These include
properties for enabling caching, validation and tracing.

Some fundamental properties of page class are as follows:-

Properties Description

Application Instance of the HttpApplicationState class; represents
the state of the application. It is functionally
equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for
an ASP.NET application. More efficient and powerful
than Application, it supports item priority and
expiration.

Request Instance of the HttpRequest class; represents the
current HTTP request. It is functionally equivalent to
the ASP intrinsic Request object.

Response Instance of the HttpResponse class; sends HTTP
response data to the client. It is functionally equivalent
to the ASP intrinsic Response object.

Server Instance of the HttpServerUtility class; provides
helper methods for processing Web requests. It is
functionally equivalent to the ASP

intrinsic Server object.

Session Instance of the HttpSessionState class; manages user-
specific data. It is functionally equivalent to the ASP
intrinsic Session object

Trace Instance of the TraceContext class; performs tracing
on the page.

User the Principal object that represents the user making
the request.

IsPostBack Indicates whether the page is being loaded in response
to a client postback or whether it is being loaded for
the first time.

Sending the User to the New page

Sending the user to the new page means page navigation. It is the
technique to navigate between webforms in asp.net

1. Hyperlink control — It is used to navigate to another page. Using
hyperlink, you can navigate to another page within same application
or to an external website. The hyperlink control is rendered as an
HTML anchor<a> tag. The Hyperlink control does not expose server
side events, so when the user clicks on a hyperlink there is no server
side event to intercept the click.

Example:- Accounting

2. Response.Redirect - It provides a method Redirect() which is used
to redirects the user to another webpage which may or may not be on
the same server. It can redirect the user to an external website on
different server. This method updates the address bar and adds the
updated URL to the browser history.

Syntax:- Response.Redirect(path) Here the path is required which is
the location of the ASP file to which control should be transferred.

3. Server.Transfer — The Server object provides method Transfer()
which cause to quit current execution of web page and redirects the
user to another web page on the same server. It reduces the server
request and conserves server resources.

Synatx :- Server.Transfer(path) Here the path is required which is
the location of the ASP file to which control should be transferred.

4.4.4 Using Application Events

Application events are important in an ASP.NET application as the events
are fired by server controls, we use them to perform additional processing
tasks. For example, by using application events, we can write logging code
that runs every time a request is received, no matter what page is being
requested. Basic ASP.NET features such as session state and
authentication use application events to plug into the ASP.NET processing
pipeline.

Global.asax allows us to write event handlers that react to global events in
web applications. Global.asax files are never called directly by the user,
rather they are called automatically in response to application events.

AWP

95

Advanced Web
Programming

96

Some points to remember about global.asax:-

1. They do not contain any HTML or ASP.NET tags.
Contain methods with specific predefined names.
They defined methods for a single class, application class.

L

They are optional, but a web application has no more than one
global.asax file.

How to add global.asax file:

Select Website >>Add New Item (or Project >> Add New Item if you're
using the Visual Studio web project model) and choose the Global
Application Class template.

Add New Item - D:\Vishal Nayan\DOT 3.5\BLOG\ASP.NET\GlobalAsaxFile\

= =
Templates:

T T TR TR Pdal A g

S3)AJAX Client Library [T]AlAX Master Page 3| AJAX Web Form

fg AJAX-enabled V/CF Service D JBrowser Fie c#)Class

8] Class Diagram 2]Crystai Regort] Dataset

7/ Dynamic Data Feld %) Generic Handler P Global Application Class

@] HTML Page 8)35cript File 2\ LINQ to SQL Classes

& Report £ Report Wizard

B siverlight-enabled WCF Service (2] Site Map 2 Skin File

[J SQL Server Database A Style Sheat &) Text File

,";; F Service __;,’.‘.‘eb Configuration File qj \Web Service

2] XML e &) XML Schema ' XSLT File
My Templates

| Search Onine Tempiates...
. v
A dass for handing \Web Applcation events
Name: | Global . asax
Language: |Visual C= v|
[Add] [Cancel]

After you have added the global.asax file, you will find that Visual Studio
has added Application Event handlers:

The Event Handling Methods are as follows:-

Event Handling Method Description

Application_Start() This event is fired when the first instance
of the HTTP Application class is created.
It allows us to create objects that are
accessible by all HTTP Application
instances

Application_End() This event is fired when the last instance
of an HTTP Application class is
destroyed. It’s fired only once during an
application lifetime.

Application_BeginRequest() | This event is fired when an application
request is received. It’s first event fired
for a request which is often a page request

(URL) that a user enters

Application_EndRequest()

This is the last Event fired for an
application request

Session_Start()

This event is fired when a new user visits
the application Website

Session_End()

This event is fired when a user’s session
times out, ends, or they leave the
application website

Application_Error()

Application_Error() event occurs in
response to an unhandled error

4.4.5 Configuring in ASP.NET Application

A configuration file (web.config) is used to manage various settings that
define a website. The settings are stored in XML files that are separate
from your application code. In this way you can configure settings
independently from your code. Generally a website contains a single
Web.config file stored inside the application root directory. However there
can be many configuration files that manage settings at various levels

within an application.

There are number of important settings that can be stored in the
configuration file. Some of the most frequently used configurations, stored
conveniently inside Web.config file are:

° Database connections

o Caching settings
o Session States

o Error Handling
o Security

Configuration file looks like this

<configuration>
<connectionStrings>

<add name="myCon” connectionstring="server=MyServer;
database=apeksha;uid=apekshashirke;pwd=mydatal223" />

</connectionStrings>
</configuration/>

Different types of configuration files

1) Machin.config :- Server or machine-wide configuration file.
2) Web.config :- Application configuration files which deal with a

single application.

AWP

97

Advanced Web Example :- Program to display the number of visitors currently browsing
Programming your website

To Create a website and adding a webform to it

Adding a Global.asax to web applications
Add New Item>Global Application Class >Add

Add New Item - D:\Vishal Nayan\DOT 3.5\BLOG\ASP.NET\GlobalAsaxFile\
E|

TRy

5] AJAX Web Form

Fg AJax-enabled ViCF Service c#)Class
48] Class Diagram 3] Dataset
|2 ic Data Field P Global Application Class

Page INQ to SQL Classes
urce File

a

B ght-enabied WCF Service g
| J SQL Server Database 5] Style Sheat 5_1]
f'{é'.‘,‘CF Service i Web Configuration File i) Web Service

2] XML Fie 8] XML Schema (' ¥sLT File
My Templates
} Search Onine Templates...
A dass for handing \Web App’:cabon events
Name: | Global.asax

Language: Visual C= v

Global.asax

<%@ Application Language="C#" %>

<script runat=""server’>
void Application_Start(object sender, EventArgs €)
{

Application[“OnlineUsers’]=0; //application variable

}
void Application_End(object sender, EventArgs e)

{

/[Code that runs on application shutdown

¥
Void Application_Error(object sender, EventArgs €)

{

//Code that runs when an unhandled error occurs

}

Void Session_Start(object sender, EventArgs e)
{
Application.Lock();
Application[“OnlineUsers’|=(int) Application[“OnlineUsers’]-1;
Application.UnLock();
98

} AWP

</script>
Web.config

<?xml version="“1.0">
<configuration>
<system.web>
<sessionState mode="InProc” cookieless="false” timeout="1"/>
<compilation debug="true” targetFramework="4.5.2"/>
<httpruntime targetFramework="4,5.2"/>
</system.web>
</configuration>
Default.aspx

<% @ Page Language="C#” AutoEventWireup="true”
CodeFile="Default.aspx.cs” Inherits="_Default” %>

<html xmlIns=http://www.w3.0rg/1999/xhtmi>

<head runat=""server’>

<title></title>

</head>

<body>

<form id="form1” runat="server”>
<div>
Visitors Count :<%=Application[“OnlineUsers”].ToString()%>
</div>
</form>

</body>

</htmi>

Where

e Mode :- The mode setting supports three options : inproc, sqlserver

and stateserver. ASP.NET supports two modes : in process and out of
process.

o Cookieless :- The cookieless option for ASP.NET is configured with
this simple Boolean setting(true/false)

o Timeout :- This option controls the length of time a session is
considered valid. The session timeout is a sliding value, on each
request the timeout period is set to the current time plus the timeout
value.

99

http://www.w3.org/1999/xhtml

Advanced Web
Programming

100

4.5 QUESTIONS:-

What is Code behind class in ASP.Net?

How to add Event Handlers in ASP.Net?

What are different types of ASP.Net files?

What are ASP.Net Folders?

Write a short note on Debugging.

Explain in detail the concept of HTMLServer Controls.
What do you mean by View state?

What are the Properties of Page class?

What are Event handling methods in ASP.Net?
Explain in detail Web Control hierarchy.

© 0o N o gk~ whE

-
o

4.6 REFERENCES

https://developer.mozilla.org/en-US/docs/Learn/Forms/Your first form

https://www.oreilly.com/library/view/designing-web-
navigation/9780596528102/ch01.html

https://flylib.com/books/en/2.370.1.28/1/ (Anatomy of ASP.NET
application)

https://flylib.com/books/en/2.321.1.16/1/ (ASP.Net File Types)

https://www.c-sharpcorner.com/uploadfile/puranindia/special-folders-
in-asp-net/ (ASP.Net Web folders)

https://www.tutorialspoint.com/asp.net/asp.net debugging.htm
(Debugging)

https://www.wideskills.com/aspnet/html-server-controls

https://www.c-sharpcorner.com/UploadFile/225740/what-is-view-state-
and-how-it-works-in-Asp-Net53/

o e o o e e o

https://developer.mozilla.org/en-US/docs/Learn/Forms/Your_first_form
https://www.oreilly.com/library/view/designing-web-navigation/9780596528102/ch01.html
https://www.oreilly.com/library/view/designing-web-navigation/9780596528102/ch01.html
https://flylib.com/books/en/2.370.1.28/1/
https://flylib.com/books/en/2.321.1.16/1/
https://www.c-sharpcorner.com/uploadfile/puranindia/special-folders-in-asp-net/
https://www.c-sharpcorner.com/uploadfile/puranindia/special-folders-in-asp-net/
https://www.tutorialspoint.com/asp.net/asp.net_debugging.htm
https://www.wideskills.com/aspnet/html-server-controls
https://www.c-sharpcorner.com/UploadFile/225740/what-is-view-state-and-how-it-works-in-Asp-Net53/
https://www.c-sharpcorner.com/UploadFile/225740/what-is-view-state-and-how-it-works-in-Asp-Net53/

FORM CONTROLS

Unit Structure

5.0 Form Controls
5.1 Stepping Up to Web Controls
5.2 Web Control Classes
5.2.1 Units
5.2.2 Enumerations
5.2.3 Colors
5.2.4 Fonts
5.2.5 Default Button
5.3 List Controls
5.4 Table Controls
5.5 Web Control Events and AutoPostBack
5.6 Validation Controls
5.7 Rich Controls
5.7.1 The Calendar
5.7.2 The AdRotator
5.7.3 Pages with Multiple Views
5.8 User Controls and Graphics
5.8.1 User Controls
5.8.2 Dynamic Graphics
5.8.3 The Chart Control
5.9 Website Navigation
5.9.1 The SiteMapPath Control
5.9.2 The Menu Control
5.9.3 The TreeView Control
5.10 Questions
5.11 References

5.0 FORM CONTROLS

ASP.NET is Fully Based on Controls. the use of controls can easily make any
Application without any problem in Asp.Net.There are some Types of
controls which are used in Asp.Net.
1. Web Forms Standard controls.
2. Navigation Controls
101

http://www.msdotnet.co.in/2013/07/bindingnavigator-control-in-windows.html

Advanced Web 3. Validation Controls
Programming

4, Web Parts controls
5. HTML Controls

5.1 STEPPING UP TO WEB CONTROLS

Controls are building blocks in web form. Server controls are tags that are
understood by the server. Web server controls are special ASP.NET tags
understood by the server. Web server controls are also created on the
server and they require runat="server” attribute to work. Basic Web
control include additional methods, events and properties

5.2 WEB CONTROL CLASSES

Web control classes are the basic control classes used in ASP.Net. Web
control classes are defined in System.Web.Ul.WebControls namespace.

The following diagram shows the web control hierarchy

[System.Object |
|
System. UI.Web.Control

System.Web.UL.WebControls

[WebContzol BaseBoundControl

HLiteral DataBoundControl
I-{Placeholder | AdRotator
CompositeDataBoundControl |
H Calendar [DetailsView
XML | [FormView 1| [HierarchicalDataBoundControl
ImageButton | [ValidationSummary |
InageMap | [BaseValidator] - [ListControl]
-{BaseCompareValidator | CheckBoxList |+
[ListBox
- RegularExpressionValidator| [Bulletediist |
| [RequiredFieldvalidator

Webserver controls can be divided into following categories

1) Validation controls - These are used to validate user input and they
work by running client-side script.

2) Data source controls- These controls provides data binding to
different data sources.

3) Data view controls - These are various lists and tables, which can
bind to data from data sources for displaying.

4) Personalization controls - These are used for personalization of a
page according to the user preferences, based on user information.

102

5)
6)
7)

8)

Login and security controls- These controls provide user
authentication.

Master pages- These controls provide consistent layout and
interface throughout the application.

Navigation controls - These controls help in navigation. For
example, menus, tree view etc.

Rich controls - These controls implement special features. For
example, AdRotator, FileUpload, and Calendar control.

The syntax for creating web server control is:

<asp:control name id="some_id” runat="server” />
Example :-

<asp:Button id="btn1” Text="Click Here” runat="server”/>
Properties of web controls

1. AccessKey- Pressing this key with the Alt key moves focus to the
control.

2. BackColor, ForeColor — Used to change the color of the background
(BackColor) and text (ForeColor) of the control

3. BorderColor, BorderStyle, BorderWidth — Used to change the
border of control in the browser. Each of these three ASP.NET
properties maps directly to its CSS counterpart

4. CssClass — It is used to define the HTML class attribute for the
control in the browser.

5. Enabled - Indicates whether the control is grayed out.

6. Font — Used to define different font related settings such as Font-
Size, Font-Names and Font-Bold

7. Height, Width — It determines the height and width of the control in
the browser

8. TabIndex - Gets or sets the tab index of the Web server control.

9. ToolTip - Gets or sets the text displayed when the mouse pointer
hovers over the web server control.

10 Visible - It indicates whether a server control is visible.

11. UniquelD - Unique identifier.

12. SkinID - Gets or sets the skin to apply to the control.

13. Style - Gets a collection of text attributes that will be rendered as a
style attribute on the outer tag of the Web server control.

5.2.1 Units

Many properties of the controls use measurements such as Border width,
Height and Width. The values here requires the unit structure which
combines a numeric value with a type of measurement(pixels, percentage
and so on)

Example :- <asp:Label ID="Labell” runat="server” Height="10px”
Text="Label”> </asp:Label>

AWP

103

Advanced Web
Programming

104

5.2.2 Enumerations

Enumerations are used in heavily in the .NET class library to group a set
of related constants, which may use for collection type values for the
controls such as font names, colours or styles. For example, When you set
a controls BorderStyle property, we can choose one of the several
predefined values from the Borderstyle enumeration

Example :-

Buttonl1.BorderStyle=BorderStyle.Dashed; //C#

<asp:Label BorderStyle="Dashed” Text="Border Test” ID="Ibl”
runat="server” />

5.2.3 Colors

The color property refers to a color object from System.Drawing
namespace. we can create color objects in several ways:-

. ARGB(alpha,red,gren,blue) color value : we specify each value as
an integer from 0 to 255. The alpha component represents the
transparency of a color.

o predefined .NET color name : we choose the corresponding name
read-only property from color structure. These properties include the
140 HTML color names.

. HTML color name : we specify this value as a string by using the
ColorTranslator class.

Example :-
Labell.ForeColor=System.Drawing,Color.Red
Labell.ForeColor=System.Drawing.ColorTranslator.FromHtmlI(“#FF0000
")

Labell.ForeColor=Color.Red

Labell.ForeColor= ColorTranslator.FromHtml(“#FF0000"")
5.2.4 Fonts

The Font Property actually references a full Font Info Object which
defines in the System. Web. Ul. Web Controls namespace

Property Description

Name A String indicating the font name (such
as Verdana)

Names An array of strings with font names in
the order of preference. The browser will
use the first matching font that’s
installed on the user’s computer.

Size The size of the font as a FontUnit object.
This can represent an absolute or relative
size

Bold, Italic, Overline, | Boolean properties that apply the given

Strikeout, Underline style attribute.

5.2.5 Default Button AWP

Default Button property ensures that whenever user presses Enter key the
button that is set as default will be triggered. we can set the default button
at the form level meaning of all the buttons in the form the one that is set
as default will be triggered whenever user presses Enter key.

Example :-

<form id="form1" runat="server" defaultbutton="Button1'>

<asp:Button ID="Button1" runat="server" Text="Button"
OnClick = "Buttonl_Click™ />

<asp:Button ID="Button2" runat="server" Text="Button"
OnClick = "Button2_Click" />

<asp:Button ID="Button3" runat="server" Text="Button"
OnClick = "Button3_Click" />

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

</form>

5.3 LIST CONTROLS

These controls are used to display the list with some list items in the page.
These controls include List Box, Drop Down List, Check Box List, Radio
Button List and Bulleted List. To add items to the list we have to define
<asp:Listltem> elements between the opening and closing tags of the
control.

1. ListBox

We can select multiple items from ListBox at a time.
Basic syntax of list box control:

<asp:ListBox ID="ListBox1" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="ListBox1 SelectedIndexChanged">

</asp:ListBox>

2. DropDownL.ist

DropDownList control is used select single option from multiple listed
items.

Basic syntax of DropDown List :

<asp:DropDownL.ist ID="DropDownL.ist1" runat="server"
AutoPostBack="True"
OnSelectedIndexChanged="DropDownL.istl_SelectedIndexChanged">

</asp:DropDownL.ist>

105

Advanced Web
Programming

106

Common properties of List Box and Drop Down List are as follows

Properties Description

SelectedValue Get the value of the selected item from the
dropdown list.

SelectedIndex Gets the index of the selected item from the
dropdown box.

Selectedltem Gets the text of selected item from the list.

Items Gets the collection of items from the

dropdown list.

DataTextField Name of the data source field to supply the
text of the items. Generally this field came
from the data source.

DataValueField Name of the data source field to supply the
value of the items. This is not visible field
to list controls, but you can use it in the
code.

DataSourcelD ID of the data source control to provide
data.

Common properties of each list item objects:

. Text :- The text displayed for the item.
o Selected :- Indicates whether the item is selected.
. Value :- A string value associated with the item.

3. CheckBoxList

The CheckBox control allows the user to set true/false or yes/no type
options. The user can select or deselect it. When a check box is selected it
has the value True, and when it is cleared, it holds the value False.

Properties of CheckBox Control

Properties Description

Appearance Gets or sets a value determining the appearance of the
check box.

AutoCheck Gets or sets a value indicating whether the Checked or

CheckedState value and the appearance of the control
automatically change when the check box is selected.

CheckAlign Gets or sets the horizontal and vertical alignment of
the check mark on the check box.

Checked Gets or sets a value indicating whether the check box

is selected.

CheckState Gets or sets the state of a check box.
Text Gets or sets the caption of a check box.
ThreeState Gets or sets a value indicating whether or not a check

box should allow three check states rather than two.

4. RadioButtonL.ist

Radio Button List Control is same as Drop Down List but it displays a list
of radio buttons that can be arranged either horizontally or vertically. We
can select only one item from the given Radio Button List of options.

Properties of Radio Button List

Properties

Description

RepeatColumns

It displays the number of columns of radio
buttons.

RepeatDirection

It pacifies the direction in which the
controls to be repeated. The values
available are Horizontal and Vertical.
Default value is vertical.

RepeatLayout

Determines whether the radio buttons
display in an HTML table.

5. Bulleted List

The bulleted list control creates bulleted lists or numbered lists.

Properties

Description

Bulletstyle

Determines the type of list. We can choose from

Numbered(1,2,3 ...);Lower Alpha (a, b, c,...); Upper
Alpha(A,B,C,...);Lower Roman(i, ii, iii....)and Upper
Roman(l.11,111,...) and the bullet symbols Disc, Circle,
Square or Custom Image

BulletimageUrl

If the Bullet Style is set to Custom Image, this points
to the image that is placed to the left to each item as a
bullet.

FirstBulletNumber

In a ordered list (using (using Numbered, Lower
Alpha, Upper Alpha, Lower Roman and Upper
Roman) this sets the first value. For example if you
set First Bullet Number to 3, the list might read
34.5...

DisplayMode

It determines whether the text of each item is rendered
as a text or hyperlink

AWP

107

Advanced Web
Programming

108

5.4 TABLE CONTROLS

In .NET Framework the Table class enables us to build an HTML Table.
The System.Web.UI Controls namespace defines the Table class along
with other web controls

Control

Code

Description

Table

<asp:table>

Parent control for Table
Row controls.

The Rows property of
the Table object IS a
collection of Table
Row objects.

TableRow

<asp:TableRow>

Parent control for Table
Cell controls.

The Cells property of
the Table Row object
contains a collection of Table
Cell objects.

TableCell

<asp:TableCell>

Contains content to be
displayed. The Text property
contains HTML text.
The Controls collection can
contain other controls.

TableRow
Collection

<asp:TableRowCollection>

It encapsulates Table Row
Collection and is used to
manage a collection of table
or removing a row from it.

TableCell
Collection

<asp:TableCellCollection>

It manages collection of table
cells such as adding a cell to
a row or removing a cell
from it.

TableHeader
Collection

<asp:TableHeadercell>

It encapsulates a table header
cell.

Properties of Table class

Property

Description

BacklmageUrl

for the table

An URL to an image is used as background

Caption The caption of the table.

CaptionAlign The alignment of the caption text.
CellPadding The space between the cell walls and content.
CellSpacing The space between cells.

GridLines The gridline format in the Table.

Horizontal Align The horizontal alignment of the table in the page

Rows A collection of rows in the table

Runat Specifies that the control is a server control.

Must be set to “server”

5.5 WEB CONTROL EVENTS AND AUTO POST BACK

The following diagram shows the order of event in ASP.NET page
processing:

Web Page Request | ASP.NET creates page
i object from .aspx code

b

ASP.NET runs the
Page.Load event handler

|

Final page is renderad

‘HTML Qutput Returned

Page Postback
Web dlient g » ASIP.NET creates page
object from .aspx code

b

ASP.NET runs the
Page.Load event handler

b

ASP.NET runs any other
triggered event handler

!

Final page is rendered

‘HTML Qutput Returned

Sometimes we need to write the server code that will react immediately to
an event that occurs on the client. Some events, such as Click event of a
button take place immediately, because when clicked, the button posts
back the page. However, other actions do cause events but don’t trigger a
post back.

For example when user chooses a new item in a list (which triggers
SelectedindexChanged event) or changes the text in a text box (the
TextChangedevent). In these cases without post back your code has no
way to run.

ASP.NET handles this by giving you two options:

— To wait until the next post back to react to the event. For example
imagine you want to react to the SelectedIndexChanged event in a list. If
the user selects an item in a list, nothing happens immediately. But, if the
user clicks a button to post back the page, two events fire: ButtonClick
followed by ListBox.SelectedindexChanged. And if you have several

AWP

109

Advanced Web
Programming

110

controls, it’s quite possible for a single post back to result in several
change events, which fire one after the other, in an undetermined order.

— To use the automatic post back feature to force a control to post back the
page immediately when it detects a specific user action. In this scenario,
when the user clicks a new item in the list, the page is posted back, your
code executes, and a new version of the page is returned.

Event Web controls AlwaysPostBack
Click Button, ImageButton True
TextChanged TextBox False
CheckedChanged CheckBox, RadioButton | False
SelectedIndexChanged DropDownlList, ListBox, | False
CheckBoxList,
RadioButtonList

If you want to capture a change event (such as TextChanged,
CheckedChanged, or SelectedindexChanged) immediately, by setting the
control’s AutoPostBack property to true. This way the page will be
submitted automatically when the user interacts with the control.

When the page is posted back, ASP.NET examines the page, loads all the
current information, and then allows your code to perform some extra
processing before returning the page back to the user. The next picture
illustrates this:

Pages obhject is created from aspx
Files

Fage. Init evanl occurs

+*

Controla are repopulated with

infarmation Trom view: atale

L

Page.Load event ooours

+

Al other events ccour {like Click
and Shange ewvents)

-

Pags. PreRendesr sveant ooours

L

Controal information s storad in

Wi alate

+*

HTML for pags is rendersd (and
can no longer be changead)

+

Page.Unload event ooours

!

Fage abject ia ralaased Mrom
FrEFTIaFy

AutoPostBack in ASP.NET

o AutoPostback or Postback is nothing but submitting page to server.

o AutoPostback is webpage going to server, Server processes the
values and sends back to same page or redirects to different page

What is AutoPostBack Property in ASP.NET?

The web Pages with one or more web controls are configured to use
AutoPostBack, the ASP.NET adds a special JavaScript function to the
rendered HTML page. This function is named _doPostBack(). When
called, it triggers a PostBack sending data back to the web server.

The _doPostBack() function has the responsibility for setting these values
with the appropriate information about the event and submitting the form.
The _doPostBack() function is shown below:

<script language= “text/javascript’>
Function _doPostBack (event Target, event Argument)
{
If ("theForm.onsubmit || (theForm.onsubmit()!=false))
the Form._ EVENTTARGET .value=eventTarget;
theForm._EVENTTARGET.value=eventTarget;
theForm.submit();
}
</script>

ASP.NET generates the _doPostBack() function automatically provided
atleast one control on three page uses automatic postbacks.

Life Cycle of a Web Page

To work with ASP.NET web Controls events, we need to understand the
webpage lifecycle. The following actions will be taken place when a user
changes the control that has Auto Post Back property set to true:

1 On the client side the Javascript_doPostBack function is invoked
and the page is submitted to the server.

2. ASP.NET recreates the Page object using the .aspx file.

3. ASP.NET retrieves state information from the hidden view state
field and updates the control accordingly.

4. The Page Load event is fired.

5. The appropriate change event is fired for the control.

AWP

111

Advanced Web
Programming

112

6. The Page.PreRender event fired and the page is rendered.
7. Finally, the Page.Unload event is fired.

8. The new page is sent to the client.

5.5 VALIDATION CONTROLS

Validation controls are used to implement presentation logic, to validate
user input data and it is also used for data format, data type and data range.
Validation consist of two types client side and server side.

Client Side — Dependent on browser and scripting language support.

Sever Side — It is not dependent on browser and scripting language
support.

Validation controls in ASP.NET

There are six types of validation controls in ASP.NET
Required Field Validation Control

Compare Validator Control

Range Validator Control

Regular Expression Validator Control

Custom Validator Control

Validation Summary

RequiredFieldValidator Control

The RequiredFieldValidator control is simple validation control, which
checks to see if the data is entered for the input control. We can have a
RequiredFieldValidator control for each form element on which you wish
to enforce Mandatory Field rule.

o ok~ wbh e

Syntax:-

<asp:RequiredFieldValidator ID="RequiredFielsdValidator3”
runat="server” Style="top: 98px;left: 367px; position: absolute; height:
26px;width: 162px”

ErrorMessage="password required” ControlToValidate="TextBox2” >

</asp: RequiredFieldValidator>

Example:-

Your Name :

<asp:TextBox runat="server” id="txtName”/>

<asp:RequiredFieldValidator runat="server” 1d="reqName”
ForeColor="Red” controltovalidate”txtName” errormessage="Please enter
your name !”/>

2. CompareValidator Control

The CompareValidator control allows us to make comparison to compare
data entered in an input control with a constant value or a value in a
different control.

Syntax:-

<asp:RequiredFieldValidator ID="RequiredFieldValidator3”
runat="server” Style="top: 145px; left: 367px; position: absolute; height:
26px; width: 162px” ErrorMessage="password required”
ControlToValidate="TextBox3” ></asp: RequiredFieldValidator>
Example :-

Password:

<asp:TextBox runat="server” id="txt11” TextMode="Password”/>

ReEnter password :

<asp:TextBox runat="server” id="txt11” TextMode="Password”/>

<asp:CompareValidator runat="server” 1d="cmpNumbers”
ForeColor="Red” Controltovalidate="txt12” controltocompare="txt11”
operator="LessThan” type="Integer” errormessage="Password should
match !”> Password should match!</asp:CompareValidator>

3. RangeValidator Control

The RangeValidator control verifies that the input value falls within a
predetermined range.

Syntax:-

2

<asp:RangeValidatorID="rvclass” runat="server’
ControlToValidate="txtclass” Errormessage="Enter your class (6-12)”
Maximum Value="12” Minimum Value="6" Type="Integer”/>

Example:-
Enter age :

<asp:TextBox runat="server” 1d="txt1”/>

<asp:RangeValidator ID="RangeValidator2” Type="Integer”
runat="server” ForeColor="Red” ControlToValidate="txt1”
MinimumValue="18" MaximumValue="100" Error Message="Not valid
age”>Not valid age</asp:RangeValidator>

Property Description

Type It specifies the data type

ControlToCompare | It specifies the value of the input control to compare
with.

ValueToCompare | It specifies constant value to compare with.

Operator It specifies the comparison operator the available
values are Equal, NotEqual, GreaterThanEqual,
LessThan, LessThanEqual and DataTypeCheck.

AWP

113

Advanced Web
Programming

114

4. Regular Expression Validator Control

The RequiredExpressionValidator allows validating the input text by
matching against a pattern of regular expression. The regular expression is
set in the ValidationExpression property. The following table summarizes
the commonly used syntax construct for regular expressions.

Character Escapes

Description

\b

Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.
\v Matches a vertical tab

\f Matches a form feed

\n Matches a new line

\ Escape character

Apart from single character match, class of characteristics could be
specified that can be matched called the meta characters.

Meta characters Description

. Matches any character except \n

[abcd] Matches any character in the set

[abcd] Excludes any character in the set

[2-7a-mA-M] Matches any character specified in the range

\w Matches any alphanumeric character and
underscore

\W Matches any non-word character

\s Matches whitespace characters like space, tab, new
line etc.

\S Matches any non-whitespace character

\d Matches any decimal character

\D Matches any non-decimal character

Syntax:-

<asp:RegularExpressio
ErrorMessage="string"

nValidator ID="string" runat="server"
ValidationExpression="string"

ValidationGroup="string">

</asp:RegularExpressionValidator>

Example :-

Email ID :

<asp:TextBox runat="server” id="txtnumber”/>

<asp:RegularExpressionvalidator ~ runat="server” ForeColor="Red”
1id="rexNumber” controlToValidate ="txtnumber” errormessage="Please
enter valid email address!”

ValidationExpression="\w=([-+.”\w+)*@\w+([-.]\w+)*\\w+(][-
J\w+)*”>Please enter valid email
address!</asp:regularExpressionValidator>

5. CustomValidator

The CustomValidator control allows writing application specific custom
validation routines for both the client side and the server side
validation. The client side validation routine should be written in a
scripting language, such as JavaScript or VBScript, which the browser can
understand. The server side validation routine must be called from the
control's ServerValidate event handler. The server side validation routine
should be written in any .Net language, like C# or VB.Net.

Syntax:-

<asp:CustomVaIidatom):"CustomVaIidatorl" runat="server"
ClientValidationFunction=.cvf_func.ErrorMessage="CustomValidator>
</asp:CustomValidator>

Example:-

Custom text :

<asp:TextBox runat="server” id="txtCustom’/>

<asp:CustomValidator id="CustomValidator1”
ControlToValidate="txtCustom”
ClientValidationFunction="ServerValidation” Display="Static”

ForeColor="Red” runat=""server”’/>

5.7 RICH CONTROLS

Rich controls are built with multiple HTML elements and contain rich
functionality. Examples of rich controls are the calendar control and
AdRotator.

5.7.1 The Calendar Control

The calendar control is used to display a calendar in the browser. This
control displays a one month calendar that allows the user to select dates
and move to the next and previous months. It is a functionality rich web
control which provides displaying one month at a time, selecting a day, a
week or a month, selecting a range of days moving from month to month
and controlling the display of the days programmatically.

Syntax:-

<asp:Calendar ID="Calendar1” runat=""server’>

</asp:Calendar>

AWP

115

mailto:*@/w+(%5b-.%5d/w+)*/./w+(%5b-.%5d/w+)*
mailto:*@/w+(%5b-.%5d/w+)*/./w+(%5b-.%5d/w+)*

Advanced Web
Programming

116

Properties and events of calendar control

Properties Description

Caption Gets or sets the caption for the calendar control.

CaptionAlign Gets or sets the alignment for the caption.

CellPadding Gets or sets the number of spaces between the
data and the cell border

CellSpacing Gets or sets the space between cells.

DayHeaderStyle Gets the style properties for the section that
displays the day of the week.

DayNameFormat Gets or sets format of days of the week.

DayStyle Gets the style properties for the days in the

displayed month.

FirstDayOfWeek

Gets or sets the day of week to display in the first
column.

NextMonthText Gets or sets the text for next month navigation
control. The default value is >.

NextPrevFormat Gets or sets the format of the next and previous
month navigation control.

OtherMonthDayStyle | Gets the style properties for the days on the
Calendar control that are not in the displayed
month.

PrevMonthText Gets or sets the text for previous month navigation

control. The default value is <.

SelectedDate

Gets or sets the selected date.

SelectedDates

Gets a collection of Date Time objects
representing the selected dates.

SelectedDayStyle

Gets the style properties for the selected dates.

SelectionMode

Gets or sets the selection mode that specifies
whether the user can select a single day, a week or
an entire month.

SelectMonthText

Gets or sets the text for the month selection
element in the selector column.

SelectorStyle

Gets the style properties for the week and month
selector column.

SelectWeekText

Gets or sets the text displayed for the week
selection element in the selector column.

ShowDayHeader

Gets or sets the value indicating whether the
heading for the days of the week is displayed.

ShowGridLines

Gets or sets the value indicating whether the
gridlines would be shown.

ShowNextPrevMonth

Gets or sets a value indicating whether next and
previous month navigation elements are shown in

the title section. AWP

ShowTitle Gets or sets a value indicating whether the title
section is displayed.

TitleFormat Gets or sets the format for the title section.

Titlestyle Get the style properties of the title heading for the
Calendar control.

TodayDayStyle Gets or sets the value for today's date.

UseAccessibleHeader | Gets or sets a value that indicates whether to
render the table header <th> HTML element for
the day headers instead of the table data <td>
HTML element.

VisibleDate Gets or sets the date that specifies the month to
display.

WeekendDayStyle Gets the style properties for the weekend dates on
the Calendar control.

The calendar control has the following three most important events that
allow the developers to program the calendar control. They are

Events Description

SelectionChanged It is raised when a day, a week or an entire month
is selected.

DayRender It is raised when each data cell of the calendar
control is rendered.

VisibleMonthChanged | It is raised when user changes a month.

5.7.2 The AdRotator

The AdRotator is to provide a graphic on a page that is chosen randomly
from a group of possible images. Every time the page is requested an
image is selected at random and displayed which is the “rotation”
indicated by the name Adrotator. One use of Adrotator is to show banner-
style advertisements on a page but we can use it any time we want to vary
an image randomly.

The Advertisment file

The AdRotator stores its list of image files in an XML file. This file uses
the format shown here:

<Advertisements>
<Ad>
<ImageUrl>proetech.jpg<imageUrl>

<NavigateUr|>http://www.prosetech.com<NavigateUrl>
<AlternateText><ProseTech Site</Alternate text>

<Impressions>1</Impressions>
117

Advanced Web
Programming

118

<Keyword>Computer</Keyword>
</Ad>
</Advertisements>

Advertisement File Elements

1. ImageUrl - The path of image that will be displayed.

2. NavigateUrl - The link that will be followed when the user clicks the
ad.

3. AlternateText - The text that will be displayed instead of the picture
if it cannot be displayed.

4. Keyword - Keyword identifying a group of advertisements. This is
used for filtering.

5. Impressions - The number indicating how often an advertisement
will appear.

The AdRotator class

The actual AdRotator class provides a limited set of properties

1. _blank :- The link opens a new unframed window.

2. _parent :- The link opens in the parent of the current frame.

3. _self :- The link opens in the current frame

4. _top :- The link opens in the topmost frame of the current window.

5.7.3 Pages with Multiple Views

MultiView and View controls allow you to divide the content of a page
into different groups, displaying only one group at a time. Each View
control manages one group of content and all the View controls are held
together in a MultiView control.

The MultiView control is responsible for displaying one View control at a
time. The View displayed is called the active view.

Syntax of Multiview

<asp:Multview ID="MultiView1” runat="server’”>
</asp:MultiView>

Syntax of View

<asp:View ID="“View1” runat="server’”>

</asp:View>
Properties of View and MultiView Controls

Both View and MultiView controls are derived from Control class and
inherit all its properties, methods, and events. The most important property
of the View control is Visible property of type Boolean, which sets the
visibility of a view.

The MultiView control has the following important properties:

Properties Description

Views Collection of View controls within the Multi View.

ActiveViewlIndex | A zero based index that denotes the active view. If
no view is active, then the index is -1.

The Command Name attribute of the button control associated with the
navigation of the MultiView control are associated with some related field
of the MultiView control. For example, if a button control with
CommandName value as NextView is associated with the navigation of
the multi view, it automatically navigates to the next view when the button
is clicked.

The following table shows the default command names of the above
properties:

Properties Description
NextViewCommandName Next View
PreviousViewCommandName Prev View

SwitchViewBylDCommandName Switch View By ID

SwitchViewByIndexCommandName | Switch View By Index

The important methods of the multi view control are:

Methods Description
SetActiveView Sets the active view
GetActiveView Retrieves the active view

Every time a view is changed, the page is posted back to the server and a
number of events are raised. Some important events are:

Events Description
ActiveViewChanged | Raised when a view is changed
Activate Raised by the active view
Deactivate Raised by the inactive view

5.8 USER CONTROLS AND GRAPHICS

User controls are used to have code which is used multiple times in an
application. The user control can then be reused across the application.
The user control needs to be registered on the ASP.Net page before it can
be used. To use user control across all pages in an application, register it
into the web.

5.8.1 User Controls

User controls behaves like a miniature ASP.NET pages and webforms
which could be used by many other pages. These are derived from the

AWP

119

Advanced Web
Programming

120

System.Web.Ul.UserControl Class. These controls have the following
characteristics:

o They have an .ascx extension.
o They may not contain any <html>, <body>, or <form> tags.
o They have a Control directive instead of a Page directive.

To understand the concept, let us create a simple user control, which will
work as footer for the web pages. To create and use the user control, take
the following steps:

. Create a new web application.

. Right click on the project folder on the Solution Explorer and choose

Add New Item.
-~ > Sciution Explorer - costo... -~ 2 >
> > EEIE e
== ic.u!u‘k:cn 'cus—tcrn—c-tntrc»!dﬁno‘
=3 Bu=sd
Rebuisd
Clean
Publich...
Convert to Web Application
& Check Accessibility...
id New hem... Add >
c:xd Bosting RRemn. Add Reference-..
=4 New Folder Add Web Reference...
Add ASP.NET Folder » Add Service Reference...
23 Component. =3 | View Clssz Diagram
g 4 CTlaszs<... Set as StactUp Project

Pebug >

. Select Web User Control from the Add New Item dialog box and
name it footer.ascx. Initially, the footer.ascx contains only a Control
directive.

footer.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="footer.ascx.cs" Inherits="customcontroldemo.footer" %>

<table>
<tr>
<td align="center"> Copyright ©2010 TutorialPoints Ltd.</td>
</tr>
<tr>
<td align="center"> Location: Hyderabad, A.P </td>
</tr>
</table>

To add the user control to your web page, you must add the Register
directive and an instance of the user control to the page. The following
code shows the content file:

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="customcontroldemo._Default"
%>

<%@ Register Src="~/footer.ascx" TagName="footer"
TagPrefix="Tfooter" %>

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0
Transitional//EN" "http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-
transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>
Untitled Page
<[title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Label ID="Labell" runat="server" Text="Welcome to
ASP.Net Tutorials "></asp:Label>

<asp:Button ID="Button1" runat="server"
onclick="Button1_Click" Text="Copyright Info" />
</div>
<footer:footer ID="footerl" runat="server" />
</form>
</body>
</html>

When executed, the page shows the footer and this control could be used
in all the pages of your website.

Welcome to ASP_Net Tutorials

[Copyright Info]
Copyright ©2010 TutorialPoints Ltd.
Location: Hyderabad, A P

5.8.2 Dynamic Graphics

Graphics device interface resides in System.Drawing.dll assembly.
Graphics classes are System.Drawing, System.Text, System.Printing,
System.Internal, System.imaging, System.Drawing2D and System.Design
name spaces.

AWP

121

Advanced Web
Programming

122

The Graphics Class

The Graphics class encapsulates Graphics Device interface drawing
surfaces. Before drawing any object we have to create surface using

Graphics class

Methods Description
DrawArc Draws an arc from the specified ellipse
DrawBeizer Draws a cubic beizer curve

DrawBeizers

Draws a series of cubic Beizer curves

DrawClosedCurve

Draw closed curve defined by array of points

DrawCurve Draws a curve defined by an array of points

DrawEllipse Draws an ellipse

Drawlmage Draws an Image

DrawLine Draws a line

DrawPath Draws the lines and curves defined by a
GraphicsPath

DrawPie Draws the outline of a pie section

FillEllipse Fills the interior of an ellipse defined by
bounding rectangle.

FillPath Fills the interior of a path

FillPie Fills the interior of a pie section

FillPolygon Fills the interior of a polygon defined by an
array of points.

FillRectangle Fills the interior of a series of rectangles with a
Brush

FillRegion Fills the interior of a Region

Graphics Objects

After creating a Graphics object, You can use it draw lines, fill shapes and
draw text so on, The major objects are as follows:-

Methods Description

Brush Used to fill enclosed surfaces with patterns, colors
or bitmaps

Pen Used to draw lines and polygons including
rectangles, arcs and pies

Font Used to describe the font to be used to render text

Color Used to describe the color used to render a

particular object

5.8.3 The Chart control

The chart control can create chart images of different types with many
formatting options and labels. It can create standard charts like area charts,
bar charts, column charts, line charts and pie charts along with more
specialized charts like stock charts with the provided data.

To fill the data for chart we can use datasource option for the database
values with the help of visual studio or we can provide the data from file
or collection.

The Chart.Series collection contains all data series(Series objects) in the
chart control. Each series is assigned the following:

o A chart type(the Series.ChartType property)

o A chart area(the Series.ChartArea property)

o A legend(the Series.Legend property),if applicable
o An X axis(the Series.XaxisType property)

o A'Y axis(the Series.XaxisType property)

Each series contains a collection of Datapoint objects(the Series.Points
collection property). Each data point contains :

o An X value(the DataPoint.Xvalue property)

o One or more Y values(the DataPoint.Yvalues property)

Chart Properties and Methods

o New Chart - Creates a new chart object and sets its width and height.
o AddTitle() — This method specifies the chart title

o AddSeries() — This method adds data to the chart

o chartType — This parameter defines the type of chart

o xValues — This parameter defines x-axis names

o yValues - This parameter defines the y-axis values

o Write() - method displays the chart

AWP

123

Advanced Web
Programming

124

5.9 WEBSITE NAVIGATION

Maintaining the menu of a large web site is difficult and time consuming.

In ASP.NET the menu can be stored in a file to make it easier to maintain.
This file is normally called web.sitemap, and is stored in the root
directory of the web.

Different Navigation Controls in ASP.NET
5.9.1 SiteMapPath Control:-

Site maps are XML files which are mainly used to describe the logical
structure of the web application. It defines the layout of all pages in web
application and how they relate to each other. Whenever you want you can
add or remove pages to your site map there by managing navigation of
website efficiently. Site map files are defined with .sitemap extension.
<sitemap> element is the root node of the sitemap file.

It has three attributes:

. Title: It provides textual description of the link.
. URL.: It provides the location of the valid physical file.
. Description: It is used for tooltip of the link.

Properties of SiteMapPath Control:
. PathSeparator: This property is to get or set the out separator text.

. NodeStyle: This property is used to set the style of all nodes that
will be displayed.

. RootNodeStyle: This property is used to set the style on the
absolute root node.

. PathDirection: This property is used to set the direction of the links
generated in the output.

. CurrentNodeStyle: This property is used to set the style on node
that represent the current page.

. ShowToolTips: This property is used to set the tooltip for the
control. Default value is true.

. PathSeparatorStyle: This property is used to set the style of path
separator.

. pathSeparator: This property is to get or set the out separator text.

. NodeStyle: This property is used to set the style of all nodes that
will be displayed.

. RootNodeStyle: This property is used to set the style on the
absolute root node.

. PathDirection: This property is used to set the direction of the links AWP
generated in the output.

. CurrentNodeStyle: This property is used to set the style on node
that represent the current page.

. ShowToolTips: This property is used to set the tooltip for the
control. Default value is true.

. PathSeparatorStyle: This property is used to set the style of path
separator.

Creation of Site Map

Below is the HTML Markup of the Master Page Main.Master that contains
the SiteMapPath control as well as the SiteMapDataSource control.

<asp:SiteMapDataSource ID="SiteMapDataSourcel" runat="server" Sho
wStartingNode="true" />

<asp:SiteMapPath ID="SiteMapPath1" runat="server" PathSeparator=">"
RenderCurrentNodeAsLink="false">

</asp:SiteMapPath>

<hr />

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>

Sitemap can be added using AddNewltemDialog of Visual Studio as
shown below.

Al -
Gaa| Site Map
: ;} Skin File

Web.sitermap

5.9.2 The Menu Control

The Menu control is used to create a menu of hierarchical data that can be
used to navigate through the pages. The Menu control conceptually
contains two types of items.

. StaticMenu that is always displayed on the page
. DynamicMenu that appears when opens the parent item.
Its properties like BackColor, ForeColor, BorderColor, BorderStyle,

BorderWidth, Height etc. are implemented through style properties of

<table, tr, td/> tag.
125

Advanced Web
Programming

126

Following are some

important properties that are very useful.

Properties Description

DataSourcelD Indicates the data source to be used (You can use
.Sitemap file as datasource).

Text Indicates the text to display in the menu.

Tooltip Indicates the tooltip of the menu item when you
mouse over.

Value Indicates the nondisplayed value (usually unique id to
use in server side events

NavigateUrl Indicates the target location to send the user when
menu item is clicked. If not set you can handle
MenultemClick event to decide what to do.

Target If NavigationUrl property is set, it indicates where to
open the target location (in new window or same
window).

Selectable true/false. If false, this item can't be selected. Usually
in case of this item has some child.

ImageUrl Indicates the image that appears next to the menu
item.

ImageToolTip Indicates the tooltip text to display for image next to
the item.

PopOutlmageUrl | Indicates the image that is displayed right to the
menu item when it has some subitems

Target If NavigationUrl property is set, it indicates where to
open the target location (in new window or same
window).

Styles of Menu Control

Properties

Description

StaticMenuStyle

Sets the style of the parent box in which all
menu items appears.

DynamicMenuStyle

Sets the style of the parent box in which
dynamic menu items appears.

StaticMenultemStyle Sets the style of the individual static menu items.

DynamicMenultemStyle | Sets the style of the individual dynamic menu AWP
items

StaticSelectedStyle Sets the style of the selected static items.

DynamicSelectedStyle Sets the style of the selected dynamic items.

StaticHoverStyle Sets the mouse hovering style of the static items.

DynamicHoverStyle Sets the mouse hovering style of the dynamic
items (subitems).

5.9.3 The Tree Control

The TreeView control is used to display hierarchical representations of
items similar to the ways the files and folders are displayed in the left pane
of the Windows Explorer. Each node may contain one or more child
nodes.

Let's click on a TreeView control from the Toolbox and place it on the
form.

e - 0o g 9 - p Start ~ Debug -~ AnyCPU -

Toolbox : s » 0 X Formlvb* Formivb [Design]* & X

Search Toolbox P~

Bl PictureBox A a' Forml o [E)
ED ProgressBar =
i PPN iy FASOeot | 3 K |
® RadicButton 5
8% RichTextBox |
TextBox : :
f= ToolTip ! ‘:‘
I = TreeView | : '
WebBrowser : Eé
4 Containers ; DO ey b
k Pointer .
i TreeView Control
& FlowLayoutPanel

"1 GroupBox

Now we have to set Data Source property of this control to
SiteMapdataSourcel.

Properties of Tree View Control

Properties Description
BackColor Gets or sets the background color for
the control.
Backgroundlmage Gets or set the background image for
the TreeView control.
127

Advanced Web
Programming

128

BackgroundlmagelLayout

Gets or sets the layout of the
background image for the TreeView
control.

BorderStyle Gets or sets the border style of the tree
view control.
CheckBoxes Gets or sets a value indicating whether

check boxes are displayed next to