


iii

CONTENTS
 Chapter No. Title Page No.

Unit 1

 1. Matrices ............................................................................................................... 01

 2. Complex Numbers ............................................................................................... 32

Unit 2

 3. Equation of The First Order and of the First Degree .......................................... 64

	 4.	 Differential	Equation	of	the	First	Order	of	A	Degree	Higher	Than	The	First ..... 89

	 5.	 Linear	Differential	Equations	with	Constant	Coefficients ................................. 103

Unit 3

 6. The Laplace Transform ..................................................................................... 122

 7. Inverse Laplace Transform ................................................................................ 142

Unit 4

 8. Multiple Integrals .............................................................................................. 176

	 9.	 Applications	of	Integration ................................................................................ 199

Unit 5

 10. Beta and Gamma Functions .............................................................................. 217

	 11.	 Differentiation	Under	the	Integral	Sign	(	Duis	)	&	Error	Functions ................. 245

m
unotes.in



iv

  

S.Y.B.SC (I.T)
SEMESTER - III

Quantitative Techniques

APPLIED MATHEMATICS 

12 
 

 B. Sc. (Information Technology) Semester – III 
Course Name: Applied Mathematics Course Code: USIT305 
Periods per week (1 Period is 50 minutes) 5 
Credits 2 
 Hours Marks 
Evaluation System Theory Examination 2½  75 

Internal -- 25 
 

Unit Details Lectures 
I Matrices: Inverse of a matrix, Properties of matrices, Elementary 

Transformation, Rank of Matrix, Echelon or Normal Matrix, Inverse of 
matrix, Linear equations, Linear dependence and linear independence 
of vectors, Linear transformation, Characteristics roots and 
characteristics vectors, Properties of characteristic vectors, Caley-
Hamilton Theorem, Similarity of matrices, Reduction of matrix to a 
diagonal	matrix	which	has	elements	as	characteristics	values. 
Complex Numbers: Complex number, Equality of complex numbers, 
Graphical representation of complex number(Argand’s Diagram), Polar 
form of complex numbers, Polar form of x+iy for different signs of x,y, 
Exponential	 form	of	complex	numbers,	Mathematical	operation	with	
complex numbers and their representation on Argand’s Diagram, 
Circular functions of complex angles, Definition of hyperbolic 
function,	Relations	between	circular	and	hyperbolic	functions,	Inverse	
hyperbolic functions, Differentiation and Integration, Graphs of the 
hyperbolic functions, Logarithms of complex quality, j(=i)as an 
operator(Electrical circuits)   

12 

II Equation of the first order and of the first degree: Separation of 
variables, Equations homogeneous in x and y, Non-homogeneous linear 
equations, Exact differential Equation, Integrating Factor, Linear 
Equation and equation reducible to this form, Method of substitution. 
Differential equation of the first order of a degree higher than the 
first: Introduction, Solvable for p (or the method of factors), Solve for 
y, Solve for x, Clairaut’s form of the equation, Methods of Substitution, 
Method of Substitution. 
Linear Differential Equations with Constant Coefficients: 
Introduction, The Differential Operator, Linear Differential Equation 
f(D) y = 0, Different cases depending on the nature of the root of the 
equation f(D) = 0, Linear differential equation f(D) y = X, The 
complimentary Function, The inverse operator 1/f(D) and the symbolic 
expiration for the particular integral 1/f(D) X; the general methods, 
Particular integral : Short methods, Particular integral : Other methods, 
Differential	equations	reducible	to	the	linear	differential	equations	with	
constant coefficients.      

12 

III The Laplace Transform: Introduction, Definition of the Laplace 
Transform, Table of Elementary Laplace Transforms, Theorems on 
Important Properties of Laplace Transformation, First Shifting 

12 

m
unotes.in



v

12 
 

 B. Sc. (Information Technology) Semester – III 
Course Name: Applied Mathematics Course Code: USIT305 
Periods per week (1 Period is 50 minutes) 5 
Credits 2 
 Hours Marks 
Evaluation System Theory Examination 2½  75 

Internal -- 25 
 

Unit Details Lectures 
I Matrices: Inverse of a matrix, Properties of matrices, Elementary 

Transformation, Rank of Matrix, Echelon or Normal Matrix, Inverse of 
matrix, Linear equations, Linear dependence and linear independence 
of vectors, Linear transformation, Characteristics roots and 
characteristics vectors, Properties of characteristic vectors, Caley-
Hamilton Theorem, Similarity of matrices, Reduction of matrix to a 
diagonal	matrix	which	has	elements	as	characteristics	values. 
Complex Numbers: Complex number, Equality of complex numbers, 
Graphical representation of complex number(Argand’s Diagram), Polar 
form of complex numbers, Polar form of x+iy for different signs of x,y, 
Exponential	 form	of	complex	numbers,	Mathematical	operation	with	
complex numbers and their representation on Argand’s Diagram, 
Circular functions of complex angles, Definition of hyperbolic 
function,	Relations	between	circular	and	hyperbolic	functions,	Inverse	
hyperbolic functions, Differentiation and Integration, Graphs of the 
hyperbolic functions, Logarithms of complex quality, j(=i)as an 
operator(Electrical circuits)   

12 

II Equation of the first order and of the first degree: Separation of 
variables, Equations homogeneous in x and y, Non-homogeneous linear 
equations, Exact differential Equation, Integrating Factor, Linear 
Equation and equation reducible to this form, Method of substitution. 
Differential equation of the first order of a degree higher than the 
first: Introduction, Solvable for p (or the method of factors), Solve for 
y, Solve for x, Clairaut’s form of the equation, Methods of Substitution, 
Method of Substitution. 
Linear Differential Equations with Constant Coefficients: 
Introduction, The Differential Operator, Linear Differential Equation 
f(D) y = 0, Different cases depending on the nature of the root of the 
equation f(D) = 0, Linear differential equation f(D) y = X, The 
complimentary Function, The inverse operator 1/f(D) and the symbolic 
expiration for the particular integral 1/f(D) X; the general methods, 
Particular integral : Short methods, Particular integral : Other methods, 
Differential	equations	reducible	to	the	linear	differential	equations	with	
constant coefficients.      

12 

III The Laplace Transform: Introduction, Definition of the Laplace 
Transform, Table of Elementary Laplace Transforms, Theorems on 
Important Properties of Laplace Transformation, First Shifting 

12 

13 
 

Theorem, Second Shifting Theorem, The Convolution Theorem, 
Laplace Transform of an Integral, Laplace Transform of Derivatives, 
Inverse Laplace Transform: Shifting Theorem, Partial fraction 
Methods, Use of Convolution Theorem, Solution of Ordinary Linear 
Differential	 Equations	 with	 Constant	 Coefficients,	 Solution	 of	
Simultaneous Ordinary Differential Equations, Laplace Transformation 
of Special Function, Periodic Functions, Heaviside Unit Step Function,  
Dirac-delta Function(Unit Impulse Function),  

IV Multiple Integrals: Double Integral, Change of the order of the 
integration, Double integral in polar co-ordinates, Triple integrals. 
Applications of integration: Areas, Volumes of solids.  

12 

V Beta and Gamma Functions – Definitions, Properties and Problems. 
Duplication formula.   
Differentiation Under the Integral Sign 
Error Functions 

12 

 
Books and References:  
Sr. No. Title Author/s Publisher Edition Year 

1.  A text book of Applied 
Mathematics Vol I 

P. N. Wartikar 
and J. N. 
Wartikar 

Pune 
Vidyathi 
Graha 

  

2.  Applied Mathematics II P. N. Wartikar 
and J. N. 
Wartikar 

Pune 
Vidyathi 
Graha 

  

3.  Higher Engineering 
Mathematics 

Dr.	B.	S.	Grewal Khanna 
Publications 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

m
unotes.in



1

Unit I 

1 
MATRICES 
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 APPLIED MATHEMATICS

1.0 Objectives 

 After going through this chapter, students will able to learn  

• Concept of adjoint of a matrix.  

• Perform the matrix operations of addition, multiplication and express a 
system of simultaneous linear equations in matrix form. 

• Determine whether or not a given matrix is invertible and if it is, find its 
inverse 

• Rank of a matrix and methods finding these 

• Solve a system of linear equations by row-reducing its augmented form 

• Characteristics roots and characteristics vectors 

• Reduction of matrix to a diagonal matrix 

1.1 Introduction 

A matrix is a rectangular arrangement of numbers into rows and columns. 
Matrices provide a method of organizing, storing, and working with mathematical 
information. We shall mostly be concerned with matrices having real numbers as 
entries. The horizontal arrays of a matrix are called its rows and the vertical arrays 
are called its columns. A matrix having m rows and n columns is said to have the 
order m × n. 

The numbers in a matrix can represent data, and they can also represent 
mathematical equations. Matrices have an abundance of applications and use in the 
real world. Matrices have wide applications in engineering, physics, economics, 
and statistics as well as in various branches of mathematics. In computer science, 
matrix mathematics lies behind animation of images in movies and video games. 
Matrices provide a useful tool for working with models based on systems of linear 
equations.  

Definitions: A system of m x n numbers arranged in the form of an ordered set of 
m horizontal lines called rows & n vertical lines called columns is called an m x n 
matrix.  
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Chapter 1: Matrices

A matrix A of order m × n can be represented in the following form 

                 

[
 
 
 
 𝑎𝑎11 𝑎𝑎12………… . 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22………… . 𝑎𝑎2𝑛𝑛
…… …………… . . ……
…… ……………… …… .
𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2……… . . 𝑎𝑎𝑎𝑎𝑛𝑛]

 
 
 
 
 

where aij is the entry at the intersection of the ith row and jth column 

Matrices are generally denoted by capital letters and the elements are generally 
denoted by corresponding small letters. 

1.2  Types of Matrices 

1. Transpose of Matrix: Let A be an (m x n) matrix. Then, the matrix obtained 
by interchanging the rows and columns of A is called the transpose of A, 
denoted by A’ or AT. Thus, if A = [ aij ]m x n then A’ = [aij]n x m 

 eg. If A = [ 2 −4 8
−3 5 9] then A’ = [

2 −3
−4 5
8 9

] 

 Note:  1.  If A is any matrix, then (A’)’ = A 

 2.  If A is any matrix and k is scalar, then (kA)’ =k A’ 

 3.  If A and B are two matrices of same order then (A + B)’ = A’ + B’ 

2. Determinant of a square matrix: Corresponding to each square matrix 

 A = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13……… 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23……… 𝑎𝑎2𝑛𝑛
…… …… …………… ……
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 𝑎𝑎3𝑛𝑛 ……… 𝑎𝑎𝑛𝑛𝑛𝑛

] 

 There is associated an expression, called the determinant of A, denoted by 
det A or |𝐴𝐴|, written as 

 det A = |𝐴𝐴| =  |
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13……… 𝑎𝑎14
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23……… 𝑎𝑎24
…… …… …………… ……
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 𝑎𝑎𝑛𝑛3……… 𝑎𝑎𝑛𝑛𝑛𝑛

| 

 A matrix is an arrangement of numbers and so it has no fixed value, while 
each determinant has a fixed value. A determinant having n rows and n 
columns is known as a determinant of order n.  The determinants of non-
square matrices are not defined. 
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 APPLIED MATHEMATICS

 Value of a determinant of order 1: The value of a determinant of a (1 x 1) 
matrix [a] is defined as |𝑎𝑎|=a. 

 Value of a determinant of order 2:  |𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22| = (a11.a22 x a21.a12) 

 Value of a determinant of order 3 or more: For Finding the value of an 
order 3 or more, we need following definitions. 

 Minor of aij in |𝑨𝑨 |:  Minor of aij in |𝐴𝐴 |defined as the value of the 
determinant obtained by deleting the ith row and jth column of |𝐴𝐴 | is denoted 
by Mij. 

  Cofactor of aij in |𝑨𝑨 |:  The cofactor Cij of an element aij is defined as 

  Cij = (-1)i+ j . Mij 

 Eg. 1 Find the minor and cofactor of each element of A = |
1 −3 2
4 −1 2
3 5 2

| 

 Sol: The minors of the elements of A are given by, 

 M11 = |−1 2
5 2|= -2-10= -12 M12 = |4 2

3 2|= 8-6= 2  

 M13 = |4 −1
3 5 |= 20 +3= 23 M21 = |−3 2

5 2|= -6-10= -16 

 M22 = |1 2
3 2|= 2- 6= -4  M23 = |1 −3

3 5 |= 5+9= 14 

 M31 = |−3 2
−1 2|= -6+2= -4 M32 = |1 2

4 2|= 2-8= -6 

 M33 = |1 −3
4 −1|= -1+12= 11 

 SO, the cofactors of the corresponding elements of A are, 

 C11 = (-1)1+1 .M11 = M11 = -12; C12 = (-1)1+2 .M12 = -M12 = -2; 

 C13 = (-1)1+3 .M13 = M13 = 23; C21 = (-1)2+1 .M21 = -M21 = 16; 

 C22 = (-1)2+2 .M22 = M22 = -4; C23 = (-1)2+3 .M23 = -M23 = -1; 

 C31 = (-1)3+1 .M31 = M31 = 4; C32 = (-1)3+2 .M32 = -M32 = 6; 

 C33 = (-1)3+3 .M33 = M33 = 11; 

 Value of Determinant: The value of determinant is the sum of the products 
of elements of a row (or a column) with their corresponding cofactors.  

 We may expand a determinant by any arbitrarily chosen row or column. 
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 Expansion of a Determinant: Expanding the given determinant by 1st row, we 
have 

  |
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

| = a11. (its cofactor) + a12. (its cofactor) + a13. (its cofactor)  

    = a11. C11 + a12. C12 + a13. C13 

   = a11. M11 - a12. M12 + a13. M13                [∵ C12 = - M12] 

 Eg. Evaluate A =  |
3 4 5
−6 2 −3
8 1 7

| 

 Sol: Expanding the given determinant by 1st row, we get 

   A = 3. |2 −3
1 7 | – 4 |−6 −3

8 7 | + 5 |−6 2
8 1| 

       = 3 (14 +3) -4. (-42+24) + 5 (-6-16)  

 = 3 (17) + 4(18) - 5(22) = 51 +72-110 = 13 

3.   Adjoint of Matrix: Let A = [aij] be a square matrix of order n and let Aij 
denote the cofactor of aij in |𝐴𝐴|. Then, the adjoint of A, denoted by adj A, is 
defined as adj A=[aji]n x n 

 Thus, adj A is the transpose of the matrix of the corresponding cofactors of 
elements of |𝐴𝐴|. 

 If A=[
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] then Adj A = [
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

] ′  

              = [
𝐴𝐴11 𝐴𝐴21 𝐴𝐴31
𝐴𝐴12 𝐴𝐴22 𝐴𝐴32
𝐴𝐴13 𝐴𝐴23 𝐴𝐴33

], Where Aij denotes the cofactor of aij in |𝐴𝐴|. 

 Eg. 1.  If A = [
1 −2 4
0 2 1
−4 5 3

] find adj A 

 Sol: |𝐴𝐴|= |
1 −2 4
0 2 1
−4 5 3

| 

 The cofactors of the elements of the |𝐴𝐴|are given by, 

 A11 = |2 1
5 3| =1;   A12 =| 0 1

−4 3| = -4;   A13 = | 0 2
−4 5|= 8; 

 A21 = |−2 4
5 3| =-26;  A22 =| 1 4

−4 3| = 19;  A23 =| 1 −2
−4 5 |= 3; 
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 A31 = |−2 4
2 1| =-10;  A32 =||1 4

0 1|| = -1;   A33 =|1 −2
0 2 |= 2 

 ∴ adj A =  [
1 −4 8

−26 19 3
−10 −1 2

] ′ = [
1 −26 −10

−4 19 −1
8 3 2

] 

1.3 Operations on Matrices:  

1. Addition of Matrices: Let A and B be two comparable matrices, each of 
order (m x n). Then their sum (A + B) is a matrix of order (m x n), obtained 
by adding the corresponding elements of A and B.  

 Eg. Let A = [6 1 −7
5 4 2 ] and B = [5 −3 −6

1 −3 0 ] 

 Here, Matrix A and Matrix B both are 2 x 3 matrices. 

 ∴ A and B are comparable matrices.   ∴ A + B is defined. 

 A + B = [6 + 5 1 + (−3) (−7) + (−6)
5 + 1 4 + (−3) 2 + 0 ] = [11 −2 −13

6 1 2 ] 

Properties of Addition of Matrices: 

The basic properties of addition for real numbers also hold true for matrices. 

Let A, B and C be m x n matrices. 

1. Matrix addition is commutative. i.e. A + B = B +A for all comparable 

matrices A and B. 

2. Matrix addition is commutative. i.e. (A + B) + C = A + (B + C) 

3. If O is an m x n null matrix, then A + O = O + A = A 

Students can solve proof of these properties as exercise. 

2. Scalar Multiplication: If A be a matrix and k be a number then the matrix 
obtained by multiplying each element of A by k is called the scalar multiple 
of A by k, denoted by kA. 

 If A is an (m X n) matrix then kA is also an (m X n) matrix. 

 If A = [
5 6
3 −2

−5 4
], Find i) 4A,  ii) 12  𝐴𝐴,  iii) -3A 

 Sol: 4A =[
20 24
12 −8

−20 16
],  ii) 12  𝐴𝐴 =

[
 
 
 
 

5
2 3
3
2 −1

−5
2 2 ]

 
 
 
 
 ,   iii) -3A= [

−15 −18
−9 6
15 −12

] 
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3. Multiplication of Matrices: For two given matrices A and B, multiplication 

of two matrices AB exists only when number of rows in A is equals the 

number of columns in B.  

 Let A = [aij]m x n and B = [bjk]n x p be two matrices such that the number of 

columns in A equals the number of rows in B.  

 Then, AB exists and it is an (m x p) matrix, given by 

 AB = [ Cik] m x p where Cik = (ai1b1k + ai2b2k + …. + aimbmk) = ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛
𝑗𝑗=1  

                   = sum of the products of corresponding elements of ith row of A and 

kth column of B. 

Properties of Matrix Multiplication: 

1. Matrix multiplication is not commutative in general. 

Let A and B be two matrices. 

a. If AB exists then it is quite possible that BA may not exist. 

b. Similarly, if BA exists then AB may not exist. 

c. If AB and BA both exist, they may not be comparable. 

2. Associative Law: For any matrices A, B, C for which(AB)C and A(BC) 

both exist, we have (AB)C = A(BC) 

3. Distributive laws of multiplication over addition:  

i) A. (B + C) = (AB + AC) 

ii) (A + B).C = (AC + BC) 

4. The product of two non-zero matrices can be a zero matrix. 

5. If A is a square matrix and I is an identity matrix of same order as A 

then we have A.I = I.A = A. 

6. If A is a square matrix and 0 is an identity matrix of same order as A 

then we have A.0 = 0.A = 0. 

Exercise: 

Ex 1. If A = [5 4
2 3] and B = [3 5 1

6 8 4], find AB and BA whichever exists. 

Ex 2. If A = [
1 −1 2
3 2 0
−2 0 1

] , B =[
3 1
0 2
−2 5

] and C = [2 1 −3
3 0 −1] 

Verify (AB)C = A(BC) 
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1.4 Elementary Transformation: 

Following are three row operations and three column operations on a matrix, which 
are called Elementary operations or transformations.  

Equivalent Matrices: Two matrices are said to be Equivalent if one is obtained 
from the other by one or more elementary operations and we, A~ B. 

Three Elementary Row Operations: 

i. Interchange of any two rows: The interchange of ith and jth rows is denoted 
by Ri ↔ Rj.  

 Eg. Let A = [
5 9 3
−8 13 6
−2 7 8

]  Applying R1↔ R2, we get [
−8 13 6
5 9 3
−2 7 8

] 

ii. Multiplication of the elements of a row by a nonzero number: Suppose 
each element of ith row of a given matrix is multiplied by a nonzero number 
k. Then, we denote it by Ri ⟶kRi 

 Eg. Let A = [
5 9 3
−8 13 6
−2 7 8

] Applying R3⟶ 2R3, we get [
5 9 3
−8 13 6
−4 14 16

] 

iii. Multiplying each element of a row by a nonzero number and then adding 
them to the corresponding elements of another row: Suppose each 
element of jth row of a matrix A is multiplied by a nonzero number k and 
then added to the corresponding elements of ith row.  

 We denote it by Ri ⟶ Ri + k Rj  

 Eg. Let A = [
5 9 3
−2 1 3
−2 7 8

] Applying R1⟶ R1+3R2, we get [
−1 12 12
−2 1 3
−2 7 8

]  

Three Elementary Column Operations: 

i. Interchange of any two columns: The interchange of ith and jth columns is 
denoted by Ci ↔ Cj.  

 Eg. Let A = [
4 9 3
−6 1 6
−2 7 9

]  Applying C2↔ C3, we get [
4 3 9
−6 6 1
−2 9 7

] 
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ii. Multiplying each element of a column by a nonzero number: Suppose 
each element of ith column of a given matrix is multiplied by a nonzero 
number k.  Then, we denote it by Ci ⟶kCi 

 Eg. Let A = [
2 7 2

−3 3 6
2 5 8

]  Applying C2⟶ 2C2, we get [
2 14 2

−3 6 6
2 10 8

] 

iii. Multiplying each element of a column by a nonzero number and then 
adding them to the corresponding elements of another column: Suppose 
each element of jth column of a matrix A is multiplied by a nonzero number 
k and then added to the corresponding elements of ith column.  

 We denote it by Ci ⟶ Ci + k Cj  

 Eg. Let A = [
5 2 3

−2 1 3
−2 4 8

] Applying C1⟶ C1+2C2, we get [
9 2 3
0 1 3
6 4 8

]  

1.5 Inverse of Matrix: 

Invertible Matrices: A square matrix A of order n is said to be invertible if there 
exists a square matrix B of order n such that AB = BA = I  

Also, then B is called the inverse of A and we write, A-1 = B 

 Eg. Let A = [3 5
1 2] and B = [ 2 −5

−1 3 ] then 

 AB = [3 5
1 2]. [ 2 −5

−1 3 ]=[6 − 5 −15 + 15
2 − 2 −5 + 6 ]= [1 0

0 1] =I 

 BA= [ 2 −5
−1 3 ] [3 5

1 2] = [ 6 − 5 10 − 10
−3 + 3 −5 + 6 ]= [1 0

0 1]=I 

 ∴ AB = BA = I  Hence A-1 = B. 

Singular and Non-singular Matrices: A square A is said to be singular if |𝐴𝐴|= 0 
and non-singular if  |𝐴𝐴| ≠ 0. 

 Eg. Let A = [1 2
4 8] then |𝐴𝐴| = |1 2

4 8| = (8 – 8) = 0 ∴ A is singular 

 Let B = [1 2
3 8] then |𝐴𝐴| = |1 2

4 8| = (8 – 6) = 2 ≠ 0  ∴ A is non-singular. 

Note 1: Uniqueness of Inverse: Every invertible square matrix has a unique 
inverse.  

Note 2: A square matrix A is invertible if and only if A is non-singular, 

 i.e. A is invertible ⇔ |𝐴𝐴| ≠ 0 
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1.5.1 Inverse of matrix by Elementary Row Operations:  

Let A be a square matrix of order n. 

 We can write, A = I.A ………………….. (i) 

Now, let a sequence of elementary row operations reduce A on LHS of (i) to 
I and I on RHS of (i) to a matrix B. 

 Then, I =BA  ⟹ I.A-1= (BA) A-1 = B (A A-1) = BI ⟹ A-1 = B 

 We can write above method as given below. 

1. Write A = I A 

2. By using elementary row operations on A, transform it into a unit matrix. 

3. In the same order we apply elementary operations on I to convert it into a 
matrix B. 

4. Then, A-1 = B   

Ex. 1.  By using elementary row operations, find the inverse of the matrix  

  A=  [
1 3 −2
−3 0 −5
2 5 0

] 

Sol:           [
1 3 −2
−3 0 −5
2 5 0

] =[
1 0 0
0 1 0
0 0 1

]. A 

  R2 ⟶ R2 – 3R1, R3 ⟶ R3 – 2R1 ⟹ [
1 3 −2
0 9 −11
0 −1 4

] =[
1 0 0
3 1 0
−2 0 1

]. A 

  R2 ↔R3 ⟹ [
1 3 −2
0 −1 4
0 9 −11

] = [
1 0 0
−2 0 1
3 1 0

]. A 

  R1 ⟶ R1 +3R2, R3 ⟶ R3 + 9R2 ⟹ [
1 0 10
0 −1 4
0 9 25

] = [
−5 0 3
−2 0 1
−15 1 9

]. A 

  R2 ⟶ (-1). R2 ⟹ [
1 0 10
0 1 −4
0 0 25

] = [
−5 0 3
2 0 −1

−15 1 9
]. A 

  R3 ⟶ ( 125) R3 ⟹  [
1 0 10
0 1 −4
0 0 1

] = [
−5 0 3
2 0 −1
−3
5

1
25

9
25

]. A 
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  R1 ⟶ R1 -10R3,  R2 ⟶ R2 + 4R3 ⟹ [
1 0 0
0 1 0
0 0 1

] = 

[
 
 
 
 1 −2

5
−3
5

−2
5

4
25

11
25

−3
5

1
25

9
25]

 
 
 
 
. A 

  Hence, A-1 = 

[
 
 
 
 1 −2

5
−3
5

−2
5

4
25

11
25

−3
5

1
25

9
25]

 
 
 
 
 

1.5.2 Inverse of matrix by Formula: 

 Formula for finding A-1:  

 Let A be a square matrix such that |𝐴𝐴| ≠0. Then, A-1 = 𝟏𝟏
|𝐴𝐴|. (adj A) 

 Ex.1. Find the inverse of the matrix [
3 −10 −1

−2 8 2
2 −4 −2

] 

 Sol: Let A = [
3 −10 −1

−2 8 2
2 −4 −2

] ⟹  |𝐴𝐴|= |
3 −10 −1

−2 8 2
2 −4 −2

| 

 C1 ⟶ C1 +3C3 and C2 ⟶ C2 - 10C3 

 |𝐴𝐴|= |
0 0 −1
4 −12 2

−4 16 −2
| = (-1). (64-48) = - 16 ≠ 0 

  As |𝐴𝐴| ≠ 0 therefore A-1 exists.  

 The cofactors of the elements of |𝐴𝐴| are given by, 

 A11 = | 8 2
−4 −2|= -8; A12 = |−2 2

2 −2|= 0; A13 = |−2 8
2 −4|= -8 

 A21 = |−10 −1
−4 −2|= -16; A22 = |3 −1

2 −2|= -4 A23 = |3 −10
2 −4 |= -8 

 A31 = |−10 −1
8 2 |= -12; A32 = | 3 −1

−2 2 |= -4 A33 = | 3 −10
−2 8 |= 4 

 ∴ (Adj A) = [
−8 0 −8
−16 −4 −8
−12 −4 4

] ′ = [
−8 −16 −12
0 −4 −4

−8 −8 4
] 

 Hence A-1 = 1
|𝐴𝐴| . adj A 
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                  = 1
−16 [

−8 −16 −12
0 −4 −4

−8 −8 4
] = 

[
 
 
 
 
1
2 1 3

4
0 1

4
1
4

1
2

1
2 − 1

4]
 
 
 
 
 

Ex. 2 If A = [3 2
7 5],  B=  [6 7

8 9], verify that (AB)-1 = B-1A-1 

 Sol. We have |𝐴𝐴| = |3 2
7 5|=15-14 = 1 ≠  0 

 Cofactors of the elements of |𝐴𝐴| are  

 A11 = 5, A12 = -7, A21 = -2, A22= 3  

 ∴ adj A= [3 2
7 5] ′ = [3 7

2 5] 

 Hence, A-1 = 1
|𝐴𝐴| adj A = [3 7

2 5]                [ ∵ |𝐴𝐴|=1] 

 |𝐵𝐵|=  |6 7
8 9|=54-56 = -2 ≠  0 

 Cofactors of the elements of |𝐵𝐵| are  

 B11 = 9, B12 = -8, B21 = -7, A22= 6  

 ∴ adj A= [ 9 −8
−7 6 ] ′ = [ 9 −8

−7 6 ] 

 Hence, B-1 = 1
|𝐵𝐵| adj B = − 12 [3 7

2 5]              [ ∵ |𝐵𝐵|= - 2] 

 Now, |𝐴𝐴𝐵𝐵| = |𝐴𝐴||𝐵𝐵| = 1 x -2 = -2 ≠  0 

 adj AB = adj B. adj A 

            = [ 9 −8
−7 6 ] [3 7

2 5] = [ 94 −39
−82 34 ] 

 AB)-1 = 1
|𝐴𝐴𝐵𝐵| adj AB = − 12 [ 94 −39

−82 34 ] 

 B-1 A-1   =  − 12 [3 7
2 5] [3 7

2 5] = − 12 [ 94 −39
−82 34 ] 

 (AB)-1 = B-1 A-1    

Exercise:  

1) Find the adjoint of given matrix verify A. (adj A)= (adj A)A = |𝐴𝐴|.I  

  1) [ 3 −5
−1 2 ]    2) [

1 −1 2
3 1 −2
1 0 3

] 3)[
4 5 3
0 1 6
2 7 9

] 
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                       [Ans: 1 .[2 5
1 3],  2. [

3 3 0
−11 1 8
−1 −1 4

] , 3. [
−42 −24 30

3 30 −21
7 −18 −5

]] 

2)  If A =[
−4 −3 −3
1 0 1
4 4 3

], show that adj A = A 

3)  If A =[
−4 −3 −3
1 0 1
4 4 3

], show that adj A = 3A’ 

1.6 Rank of Matrix 

The maximum number of its linearly independent rows (or columns) of a 
matrix A is called the rank of Matrix A. If we have a chance of solving a system of 
linear equations, when the rank is equals the number of variables, we may be able to find 
a unique solution. Rank of a matrix A is denoted by ρ (A) or R (A) 

Note:   

a. The rank of a matrix cannot exceed the number of its rows or columns.  

b. The rank of a null matrix is zero. 

c. Rank of a matrix Am×n , ρ(Am×n ) ≤ Min(m, n) 

d. ρ(In) = n where In = unit matrix of order n 

e. If ρ (A) = m and ρ (B) = n then ρ (AB) ≤ min(m, n) 

1.6.1 Echelon or Normal Matrix: a matrix is said to be echelon form if 

a. There exists any zero row, they should be placed below the non- zero row 

b. Number of zeros before a non – zero element in a row should increase 
according with row number. 

 Eg. A = [
1 4 5
0 5 4
0 0 1

]           ∴ ρ(A)= 3 = number of non – zero row 

            B =[
1 6 5 4
0 5 4 6
0 0 4 3
0 0 0 0

]     ∴ ρ(B)= 3 = number of non – zero row 

Note: To reduce a matrix into its echelon form only elementary row transformations 
are applied. 
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Computing the Rank of a matrix: A common approach for finding the rank of a 
matrix is to reduce it to a simpler form, generally row echelon form by elementary 
row operations. Row operations do not change the row rank 

Ex 1. Find the rank of the matrix A = [
1 3 4
2 −1 3
−2 8 2

] 

Sol: We have, A = [
1 3 4
2 −1 3
−2 8 2

] 

To find the rank of a matrix, we will transform the matrix into its echelon form by 
row transformation. Then determine the rank by the number of non-zero rows 

 R2 = R2- 2R1, R3 = R3 +2R1  A = [
1 3 4
0 −7 −5
0 14 10

] 

 R3 = R3 +2R2   A = [
1 3 4
0 −7 −5
0 0 0

] 

Number of non-zero rows in matrix A = 2 ∴ Rank of matrix A, ρ(A)= 2 

Exercise:  

Ex 1. Find the rank of the following matrices  

1. A = [
1 2 1
2 3 1
1 1 2

];  2.  A = [
2 −1 3
1 0 1
0 2 −1
1 1 4

] 

1.7 Linear Equations 

To find the solution to the system of equations is a matrix method. The steps to be 
followed are: 

• All the variables in the equations should be written in the appropriate order. 

• The variables, their coefficients and constants are to be written on the 
respective sides. 

There are two types of system of equations. 

1. Consistent system of Equations: A given system of equations is said to be 
consistent if it has one or more solutions. 

2. Inconsistent system of Equations: A given system of equations is said to 
be inconsistent if it has no solution. 
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 Consider the system of equations. 

 a1x + b1y + c1z = d1;  a2x + b2y + c2z = d2;  a3x + b3y + c3z = d3 

 Let A = [
a1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2 𝑏𝑏2 𝑐𝑐2
𝑐𝑐1 𝑐𝑐2 𝑐𝑐3

], X= [
𝑥𝑥
𝑦𝑦
𝑧𝑧
] and B = [

𝑑𝑑1
𝑑𝑑2
𝑑𝑑3

] 

 Then the given system can be written as  

 [
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2 𝑏𝑏2 𝑐𝑐2
𝑎𝑎3 𝑏𝑏3 𝑐𝑐3

] [
𝑥𝑥
𝑦𝑦
𝑧𝑧
] =  [

𝑑𝑑1
𝑑𝑑2
𝑑𝑑3

] 

 ∴ AX = B 

Case1: when |𝐴𝐴| ≠ 0 ,  In this case, A-1 exists. 

 ∴ AX = B ⇒ A-1(AX)= A-1B   [multiplying both the sides by A-1] 

                      ⇒ (A-1A)X= A-1B    [By associative law] 

           ⇒ I.X = A-1B     ⇒ X= A-1B    

Since A-1 is unique, the given system has a unique solution. 

Thus, when |𝐴𝐴| ≠ 0, then the given system is consistent and it has a unique 
solution. 

Case 2: |𝐴𝐴| = 0 and (adj A) B ≠ 0 

 In this case, the given system has no solution and hence it is inconsistent. 

Case 3: |𝐴𝐴| = 0 and (adj A) B = 0 

 In this case, the given system has infinitely many solutions. 

Ex.1 Use matrix method to show that the system of equations 

  2x + 5y = 7, 6x + 15y = 13 is inconsistent 

Sol: The given equations are  2x + 5y = 7; 6x + 15y = 13 

 Let A =[2 5
6 15], X= [𝑥𝑥𝑦𝑦] and   B= [ 713] 

 Then the given system in matrix form is AX = B 

  Now, |𝐴𝐴|= |2 5
6 15|= 30 – 30 = 0 

 The system will be inconsistent if (adj A) B ≠ 0 

 The minors of the elements of |𝐴𝐴| are M11 = 15, M12 = 6, M21= 5, M22 = 2 

 The cofactors of the elements of |𝐴𝐴| are A11 = 15, A12 = -6, A21= -5, A22 = 2 
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 Adj A = [15 −6
−5 2 ] ′ = [15 −5

−6 2 ] 

 ⇒ (adj A) B = [15 −5
−6 2 ] [ 7

13] = [105 − 65
−42 + 26]= [ 40

−16] ≠ 0 

 |𝐴𝐴|=0, (adj A) B ≠ 0. Hence, the given system of equations is inconsistent. 

Ex.2  Show that the following system of equations is consistent and solve it 

 2x + 5y = 1, 3x + 2y = 7 

Sol:  The given equations are  

   2x + 5y = 1;  3x + 2y = 7 

 Let A =[2 5
3 2], X= [𝑥𝑥

𝑦𝑦] and   B= [1
7] 

 Then the given system in matrix form is AX = B 

  Now, |𝐴𝐴|= [2 5
3 2]= 4 - 15 = -11≠ 0 

 Hence the given system has a unique solution. 

 The minors of the elements of |𝐴𝐴| are M11 = 2, M12 = 3, M21= 5, M22 = 2 

 The cofactors of the elements of |𝐴𝐴| are A11 = 2, A12 = -3, A21= -5, A22 = 2 

 Adj A = [ 2 −3
−5 2 ] ′ = [ 2 −5

−3 2 ] 

 ⇒ A-1 = 1
|𝐴𝐴| adj A = −1

11 [ 2 −5
−3 2 ] =[

−2
11

5
11

3
11

−2
11

] 

 X = A-1 B  

  [𝑥𝑥
𝑦𝑦]  = [

−2
11

5
11

3
11

−2
11

] [1
7] = [

−2
11 +  35

11
3

11 − 14
11

] = [ 3
−1]   ⇒ x = 3 and y = -1 

Exercise: 

1) Use matrix method to solve the following system of equations 

 3x + 4y +2z = 8;  2y – 3z = 3; x-2y+6z = -2        [ Ans: x= -2, y = 3 and z = 1] 

1.8 Linear dependence and linear independence of vectors 

A collection of vectors is either linearly independent or linearly dependent. The 
vectors v1, v2 ……vk are linearly independent if the equation involving linear 
combination. In the theory of vector spaces, a set of vectors is said to be linearly 

m
unotes.in



17

Chapter 1: Matrices

dependent if there is a nontrivial linear combination of the vectors that equals the 
zero vector. If no such linear combination exists, then the vectors are said to be 
linearly independent.  

A sequence of vectors v1, v2, …….. , vk from a vector space V is said to be linearly 
dependent, if there exist scalars a1, a2, ….., ak not all zero, such that  

a1v1+a2v2+…. + akvk = 0, where 0 denotes the zero vector. 

Ex. 1 State whether following set of vectors are linearly dependent or linearly 
independent. If dependent find the relation between them. 

 X1 = (1, 2, 3), X2 = (3, -2, 1), X3 = (1, -6, 5)  

Sol:  Here, there are three vectors. For three vectors are take 3 scalars. 

 Let 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 be three scalars. 

 Consider 𝜆𝜆1 X1 + 𝜆𝜆2 X2 + 𝜆𝜆3 X3 = 0 ……………….. (1) 

 𝜆𝜆1(1, 2, 3) + 𝜆𝜆2 (3, -2, 1) + 𝜆𝜆3(1, -6, 5) = 0 

From these we make three simultaneous equations. 

 𝜆𝜆1 + 3𝜆𝜆2 + 𝜆𝜆3 = 0; 2𝜆𝜆1 - 2𝜆𝜆2 - 6𝜆𝜆3 = 0; 3𝜆𝜆1 + 𝜆𝜆2 + 5𝜆𝜆3 = 0 

 Put them in matrix form 

 [
1 3 1
2 −2 −6
3 1 5

] [
𝜆𝜆1
𝜆𝜆2
𝜆𝜆3

] = [
0
0
0

] 

 A 𝜆𝜆 = B ……………………………………… (2) 

 Now augmented matrix, 

 C = [A: B] ⇒     = [
1 3 1 0
2 −2 −6 0
3 1 5 0

] 

Reduced this matrix in echelon  matrix by row transformation 

 R2 = R2 – 2R1;  R3 = R3 – 3R1 ⟹ C =  [
1 3 1 0
0 −8 −8 0
0 −8 2 0

] 

 R3 = R3 –R2, C =  [
1 3 1 0
0 −8 −8 0
0 0 10 0

] 

  Here we cannot further reduce. 

 From (2),  [
1 3 1
0 −8 −8
0 0 10

] [
𝜆𝜆1
𝜆𝜆2
𝜆𝜆3

] = [
0
0
0

] 
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 From matrix multiplication, 

 𝜆𝜆1 + 3𝜆𝜆2 + 𝜆𝜆3 = 0     ………………… (3) 

 -8𝜆𝜆2 - 8𝜆𝜆3 = 0    ………………………(4) 

 ∴ 𝜆𝜆3 = 0  

 Put  𝜆𝜆3 = 0 in (4)  ∴ 𝜆𝜆2= 0   

 Put  𝜆𝜆2,  𝜆𝜆3  (3)  ∴ 𝜆𝜆1= 0   

 ∵ 𝜆𝜆1= 𝜆𝜆2= 𝜆𝜆3= 0   i.e all three scalars are 0. 

 ∴ The given vectors are linearly independent and there exists no relationship. 

Ex. 2 Test the linear dependency and find the relationship between if it exists for 

 X1 = (1, 1, 1, 3), X2 = (1, 2, 3, 4), X3 = (2, 3, 4, 7)  

 Sol:  Here, there are three vectors.  For three vectors are take 3 scalars. 

 Let 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 be three scalars. 

 Consider 𝜆𝜆1 X1 + 𝜆𝜆2 X2 + 𝜆𝜆3 X3 = 0 ……………….. (1) 

 𝜆𝜆1(1, 1, 1, 3) + 𝜆𝜆2 (1, 2, 3, 4) + 𝜆𝜆3(2,3,4,7) = 0 

 From these we make simultaneous equations. 

 𝜆𝜆1 + 𝜆𝜆2 + 2𝜆𝜆3 = 0; 𝜆𝜆1 + 2𝜆𝜆2 + 3𝜆𝜆3 = 0; 𝜆𝜆1 + 3𝜆𝜆2 + 4𝜆𝜆3 = 0; 3𝜆𝜆1 + 4𝜆𝜆2 + 7𝜆𝜆3 = 0 

 Put them in matrix form 

 [
1 1 2
1 2 3
1 3 4
3 4 7

] [
𝜆𝜆1
𝜆𝜆2
𝜆𝜆3

] = [
0
0
0
0

] 

 A 𝜆𝜆 = B ……………………………………… (2) 

 Now augmented matrix, C = [A: B] 

   = [
1 1 2 0
1 2 3 0
1 3 4 0
3 4 7 0

] 

Reduced this matrix in echelon (upper triangular) matrix by row transformation 

 R2 = R2 – R1 ,  R3 = R3 – R1,  R4 = R4 – 3R1  

 C =  [
1 1 2 0
0 1 1 0
0 2 2 0
0 1 1 0

] 

m
unotes.in



19

Chapter 1: Matrices

 R3 = R3 –2R2,  R4 = R4 – R2 ⟹ C =  [
1 1 2 0
0 1 1 0
0 0 0 0
0 0 0 0

] 

  from (2),  [
1 1 2 0
0 1 1 0
0 0 0 0
0 0 0 0

] [
𝜆𝜆1
𝜆𝜆2
𝜆𝜆3

] = [
0
0
0

] 

 From matrix multiplication, 

 𝜆𝜆1 + 𝜆𝜆2 + 2𝜆𝜆3 = 0     ………………… (3) 

 𝜆𝜆2 + 𝜆𝜆3 = 0  ⇒ 𝜆𝜆2 = - 𝜆𝜆3       ………………………(4) 

 Consider 𝜆𝜆3 = k where k is non zero constant.  ∴ 𝜆𝜆2 =-k   

 Put  𝜆𝜆2,  𝜆𝜆3  in equation (3) ∴ 𝜆𝜆1-k +2k = 0  ⇒ ∴ 𝜆𝜆1+k = 0  ∴ 𝜆𝜆1 = -k   

 All the scalars are non-zero. 

 ∴ The given vectors are linearly dependent and there exists some relationship. 

 Now we find relationship between them. 

 We have,  𝜆𝜆1 X1 + 𝜆𝜆2 X2 + 𝜆𝜆3 X3 = 0  ⇒  −𝑘𝑘 X1 -k X2 + 𝑘𝑘 X3 = 0 

 Divide equation by -k , X1 + X2 - X3 = 0   

 This is the required relationship. 

1.9 Linear Transformation  

Let U(F) and V(F) be two vector spaces. 

A mapping f: U → V is called Linear Transformation of U into V if  

i)  f (x + y) = f(x) + f(y) 

ii)  f (ax) = a f(x) where x, y 𝜖𝜖 V, a 𝜖𝜖 F, f (x), f (y) 𝜖𝜖 V. 

Sometimes linear transformation is also called vector space homomorphism.  

Ex. 1 V3 is a vector. A mapping is given as T.V3(R) → V2(R) by T(x1, x2, x3) = 
(x1- x2) , (x1+ x3). Check whether this is linear transformation.  

Sol: Let (x1, x2, x3) = x 𝜖𝜖 V3 and let (y1, y2, y3) = y 𝜖𝜖 V3(R) 

T (x + y) = T [(x1, x2, x3) + (y1, y2, y3)] = T [(x1 + y1, x2 + y2, x3 + y3)] 

       = T [(x1 + y1- x2 - y2, x1 + y1+ x3 + y3)]  

       = T [(x1 - x2 + y1- y2, x1 + x3 + y1+ y3)] 
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       = T [ (x1, x2, x3)] + T [(y1, y2, y3)]  = T (x) + T (y) 

T (ax) = T [a (x1, x2, x3)]  = T [ (ax1, ax2, ax3)] = (ax1 - ax2, ax1 + ax3) 

   = a [ (x1 - x2), (x1 + x2)] 

 T (ax) =a T (x) = T (x)  

Both the condition of linear transformation are satisfy.   

∴ T is linear transformation. 

1.9.1 Matrix representation of Linear Transformation:  

 Let U(F) and V(F) be two vector spaces over F.  

 T: U → V be a Linear Transformation 

 Let B = {u1, u2, u3, ……….. ….. , un} and  

 B’ = {v1, v2, v3, …………….. , vm} 

 Are two ordered bases for U and V respectively. 

 Now, if any 𝛼𝛼 𝜖𝜖 U ⇒ T(𝛼𝛼) 𝜖𝜖 V 

 Also T(𝛼𝛼) can be represented by B’ 

 T(u1) = B1 = a11v1 + a12v2 +a13v3+…………..+ A1mvm 

 T(u2) = B2 = a21v1 + a22v2 +a23v3+…………..+ A2mvm 

 ………………………………………………………. 

 T(un) = Bn = an1v1 + an2v2 +an3v3+…………..+ Anmvm 

 

[
 
 
 
 T(u1)
T(u2)

.

.
T(un)]

 
 
 
 
  = 

[
 
 
 
 𝑎𝑎11 𝑎𝑎12………… . 𝑎𝑎1𝑚𝑚
𝑎𝑎21 𝑎𝑎22………… . 𝑎𝑎2𝑚𝑚
…… …………… . . ……
…… ……………… …… .
𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2……… . . 𝑎𝑎𝑎𝑎𝑚𝑚]

 
 
 
 

[
 
 
 
 𝑣𝑣1
v2
.
.

vn]
 
 
 
 
 

 

[
 
 
 
 𝑎𝑎11 𝑎𝑎12………… . 𝑎𝑎1𝑚𝑚
𝑎𝑎21 𝑎𝑎22………… . 𝑎𝑎2𝑚𝑚
…… …………… . . ……
…… ……………… …… .
𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2……… . . 𝑎𝑎𝑎𝑎𝑚𝑚]

 
 
 
 
  = [ T: B:B’] 

 This is matrix of Linear Transformation.  

 If we have Linear Transformation T: U(F)  → V(F) 

 then matrix form is [T: B], [T]B 

 For any n dimensions vector spaces,  
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 standard basis for v2(R)= {(1, 0), (1, 0)}, v3(R)= {(1, 0, 0),  

 (0, 1, 0), (0, 0,1)}, v3(R)= {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0,1, 0), (0, 0, 0, 1)} 

1.10 Characteristics roots and characteristics vectors 

Characteristic vector or Eigen vector of a matrix A is a vector represented by a 
matrix X such that when X is multiplied with matrix A, then the direction of the 
resultant matrix remains same as vector X. 

Let A be a square matrix of order n x n, then a number 𝜆𝜆 is said to be eigen value 
of a matrix A if there exists a column matrix X of order n x 1 such that AX =  𝜆𝜆X, 
where A is any arbitrary matrix, 𝜆𝜆 are eigen values and X is an eigen vector 
corresponding to each eigen value.  

 ⇒ AX - 𝜆𝜆X = 0   ⇒ (A- 𝜆𝜆𝜆𝜆)X = 0 ……………………….(1) 

Equation (1) is called characteristics equation of the matrix. 

The roots of the characteristic equation are the eigen values of the matrix A. 

Ex.1 Find the eigen value (characteristics roots) and eigen vector (characteristics 

vector) for the matrix A = [ 1 −2
−5 4 ]. 

Sol: The characteristic equation for matrix A is, 

 |𝐴𝐴 −   λ I| = 0  ⟹ |1 −   λ −2
−5 4 −   λ| = 0 

 ⟹ (1 − λ). (4 − λ) − (−5). (−2)= 0  ⟹ 4 - λ – 4 λ + λ2 – 10 = 0 

 ⟹ λ2 – 5 λ −6 = 0  ⟹ (λ − 6). (λ + 1)  = 0  ⟹  λ = 6, λ =  −1  

 ∴ Eigen value of A are 6 and -1. 

Case I: X1 = [𝑋𝑋
𝑌𝑌] be the eigen vector of A corresponding to λ = 6 

 Then (A − λI)X1 = 0 

 i.e. [1 −   λ −2
−5 4 −   λ] . [𝑋𝑋

𝑌𝑌] = 0,    [1 −   6 −2
−5 4 −   6] . [𝑋𝑋

𝑌𝑌] = 0   , λ = 6 

       [−5 −2
−5 − 2] . [𝑋𝑋

𝑌𝑌] = 0      

By row transformation,  

 R2 = R2 – R1     [−5 −2
0 0 ] . [𝑋𝑋

𝑌𝑌] = 0  

 -5X – 2Y = 0   ⟹ - 5X = 2Y 
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 𝑋𝑋
2 = 𝑌𝑌

−5 = k (say) 

 X = 2k, Y = -5k             for k=1 

 ∴ Eigen vector X1 = [ 2
−5] 

 Case II:  Let X2 = [𝑋𝑋
𝑌𝑌] be the eigen vector of A corresponding to λ = -1 

 Then (A − λI)X2 = 0 

 i.e. [1 −   λ −2
−5 4 −   λ] . [𝑋𝑋

𝑌𝑌] = 0  

 [1 −  (−1)  −2
−5 4 − (−1)] . [𝑋𝑋

𝑌𝑌] = 0         , λ = -1 

 [ 2 −2
−5 5 ] . [𝑋𝑋

𝑌𝑌] = 0      

 By row transformation,  

 R2 = R2 + 52 R1    ⟹  [2 −2
0 0 ] . [𝑋𝑋

𝑌𝑌] = 0  

 2X – 2Y = 0  ⟹  2X = 2Y 

 𝑋𝑋
1 = 𝑌𝑌1 = k (say) ⟹ X = k, Y = k             for k=1 

 ∴ Eigen vector X2= [1
1] 

1.11 Properties of characteristic vectors (eigen vector) 

Following are the properties of Eigen vector: 

1. Corresponding one eigen vector there exists one eigen value. 

Let 𝜆𝜆1 and 𝜆𝜆2 are two eigen values of A with one eigen vector X ≠ 0. 

By condition of eigen values,  

AX =  𝜆𝜆1X and AX =  𝜆𝜆2X 

⟹ 𝜆𝜆1X = 𝜆𝜆2X ⟹ (𝜆𝜆1- 𝜆𝜆2) X = 0 

 As X ≠ 0,  (𝜆𝜆1- 𝜆𝜆2) = 0 ∴ 𝝀𝝀1 =  𝝀𝝀2 

 So there exists one eigen value for one eigen vector  

2. If 𝜆𝜆 is eigen value of the matrix A of order n x n. 

a) 𝜆𝜆2 is an eigen value of A2 
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 AX =  𝜆𝜆X 

 Multiplying by A, A2X =  𝜆𝜆AX = 𝜆𝜆 𝜆𝜆X = 𝜆𝜆2X 

 ∴ 𝜆𝜆2 is an eigen value of A2 

b) 𝜆𝜆k is an eigen value of Ak, k is positive integer. 

c) f (𝜆𝜆) = a0 𝜆𝜆 + a1 𝜆𝜆2+……………. + an 𝜆𝜆n 

 is an eigen value of F (A) = a0I + a1A+……………. + anAn 

d) 𝑒𝑒𝜆𝜆, log 𝜆𝜆, sin 𝜆𝜆 are eigen values of 𝑒𝑒𝐴𝐴, log A, sin 𝐴𝐴 respectively. 

e) |𝐴𝐴|
𝜆𝜆  is an eigen value of adj A.  

 As AX =  𝜆𝜆X 

 Let 𝜆𝜆1 is eigen value of adj A 

 adj AX = adj 𝜆𝜆1X 

 Multiplying by A, A adj AX =  𝜆𝜆1AX 

    |𝐴𝐴| IX = 𝜆𝜆1 𝜆𝜆X                 [ adj A =   |𝐴𝐴| I] 

 ( |𝐴𝐴| - 𝜆𝜆1 𝜆𝜆) X = 0  

 As X ≠ 0, |𝐴𝐴| - 𝜆𝜆1 𝜆𝜆 = 0  ⟹ |𝐴𝐴| = 𝜆𝜆1 𝜆𝜆    ⟹ 𝜆𝜆1 = |𝐴𝐴|
𝜆𝜆  

1.12 Caley Hamilton Theorem: 

Consider A - 𝜆𝜆I = [
2 − 𝜆𝜆 1 1

0 1 − 𝜆𝜆 0
0 0 2 − 𝜆𝜆

] ←characteristic matrix, Where A is a 

square matrix  

Characteristic polynomial: If we put characteristic matrix in determinant form 
and solved then we get polynomial that is called characteristic polynomial.  

 |A −  𝜆𝜆I | = |
2 − 𝜆𝜆 1 1

0 1 − 𝜆𝜆 0
0 0 2 − 𝜆𝜆

| 

 |A −  𝜆𝜆I | = 0 

 |
2 − 𝜆𝜆 1 1

0 1 − 𝜆𝜆 0
0 0 2 − 𝜆𝜆

| = 0 

 (2 − 𝜆𝜆 ) [ (1 − 𝜆𝜆)(2 − 𝜆𝜆) – 0] – 1 [0] + 1[0 - 1 − 𝜆𝜆] = 0 

 (2 − 𝜆𝜆 ) [ (2-λ-2λ+ λ2)] - 1 + 𝜆𝜆 = 0 
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 (2 − 𝜆𝜆 ) [ (2-3λ+ λ2)] - 1 + 𝜆𝜆 = 0 

 4 - 6 𝜆𝜆 + 2 λ2 - 2λ +3 λ2 - λ3 – 1 + λ = 0 

 - λ3 + 5 λ2 - 7λ + 3 = 0 

 λ3 - 5 λ2 + 7λ - 3 = 0 

 This is called characteristic equation. 

Characteristic Roots (𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐞𝐞𝐯𝐯) : Roots of characteristic equation is called 
characteristic roots.  

State and Prove Caley Hamilton Theorem 

Statement: Every square matrix A satisfy its own characteristic equation. 

Proof: Let A = [aij]n x n be any square matrix and P (𝜆𝜆) = |𝐴𝐴 − 𝜆𝜆𝜆𝜆| be a 
characteristic equation where 𝜆𝜆 be any constant, I is an identity matrix.  

 Show that |𝐴𝐴 − 𝜆𝜆𝜆𝜆| = 0  

 |
𝑎𝑎11 − 𝜆𝜆 𝑎𝑎12 𝑎𝑎13 … … … 𝑎𝑎1𝑛𝑛

𝑎𝑎21 𝑎𝑎21 − 𝜆𝜆 𝑎𝑎23 … … … 𝑎𝑎2𝑛𝑛
… … … … … … … … … …
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 𝑎𝑎𝑛𝑛3 … … … 𝑎𝑎𝑛𝑛𝑛𝑛 − 𝜆𝜆

|= 0 

 a0 +a1 𝜆𝜆 + a2 𝜆𝜆2+ a3 𝜆𝜆3……………. + an 𝜆𝜆n  

          [ Matrix is n x n order therefore polynomial is of order n] 

If we put matrix A in place of 𝜆𝜆 then  

 a0 +a1A + a2A2+ a3A3 +…………. + an An 

We know that, A adj A = |𝐴𝐴|I 

 (A - 𝜆𝜆I) adj (A - 𝜆𝜆I) = |A −  𝜆𝜆I |.I        [A = |A −  𝜆𝜆I |] 

Now each element in (A - 𝜆𝜆I) is a polynomial of degree almost 1. 

Hence adj (A - 𝜆𝜆I) has polynomial of degree n-1. 

 adj (A - 𝜆𝜆I) = B0 +B1 𝜆𝜆 + B2 𝜆𝜆2+ B3 𝜆𝜆3……………. + Bn-1 𝜆𝜆n-1 

 (A - 𝜆𝜆I) adj (A - 𝜆𝜆I) = (A - 𝜆𝜆I) [B0 +B1 𝜆𝜆 + B2 𝜆𝜆2+ …………. + Bn-1 𝜆𝜆n-1] 

     = AB0 + AB1 𝜆𝜆 + AB2 𝜆𝜆2+ …………. + ABn-1 𝜆𝜆n-1 -  

    B0𝜆𝜆 - B1 𝜆𝜆2 - B2 𝜆𝜆3-  …………- Bn-1 𝜆𝜆n 

     = AB0 + (AB1-Bo) 𝜆𝜆 + (AB2-B1) 𝜆𝜆2+ …….-  Bn-1 𝜆𝜆n 

 Now (A - 𝜆𝜆I) adj (A - 𝜆𝜆I) = |A −  𝜆𝜆I | 
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 AB0 + (AB1-Bo) 𝜆𝜆 + (AB2-B1) 𝜆𝜆2+  

 …….-  Bn-1 𝜆𝜆n = a0 +a1 𝜆𝜆 + a2 𝜆𝜆2+ a3 𝜆𝜆3………… + an 𝜆𝜆n 

Compare coefficient of equal power of 𝜆𝜆 

 AB0 = a0 

 AB1-Bo = a1 

 AB2-B1 = a2 

 ……… 

 ABn-1-Bn-2 = an-1 

 -Bn-1 = an 

 Multiplying with I, A, A2, ………, An and then add 

 AB0 = a0I 

 A2B1-Bo = a1A 

 A3B2-B1 = a2 A2 

 ……… 

 AnBn-1-A n-1Bn-2 = an-1An-1 

 -AnBn-1 = an An 

 Hence a0 +a1A + a2A2+ a3A3 +…………. + an An =0 

 Hence proved. 

Ex 1. Show that the matrix A = [
8 −8 −2
4 −3 −2
3 −4 1

] 

satisfies its characteristic equation and hence determine A-1. 

Sol: The characteristic matrix of A is,  

 |
8 − 𝜆𝜆 −8 −2

4 −3 − 𝜆𝜆 −2
3 −4 1 − 𝜆𝜆

| = 0 

 Characteristic equation is given by |𝐴𝐴 −  𝜆𝜆𝜆𝜆| = 0 

OR 

If there is 2 x 2 matrix then 𝜆𝜆2 -s1 𝜆𝜆 +  |𝐴𝐴| = 0 

If there is 3 x 3 matrix then 𝜆𝜆3 - s1 𝜆𝜆2 + s2 𝜆𝜆 -  |𝐴𝐴| = 0 

Where s1= sum of diagonal element of matrix A 
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And s2= sum of minors of diagonal element of matrix A 

Here matrix A is 3 x 3  

So Characteristic equation is given by 

 𝜆𝜆3 - s1 𝜆𝜆2 + s2 𝜆𝜆 -  |𝐴𝐴| = 0 

 s1 = sum of diagonal element of matrix A = 8 – 3 + 1 = 6 

 s2 = sum of minors of diagonal element of matrix A 

   = |−3 −2
−4 1 | + |8 −2

3 1 | + |8 −8
4 −3| 

 = ( -3 - 8 ) + (8 + 6) + (-24 + 32) = (-11) + 14 + 8 = 11 

 Now |𝐴𝐴| = |
8 −8 −2
4 −3 −2
3 −4 1

| 

 = 8 (-3 – 8) - (-8) (4 +6) + (-2) (-16+9) = 8(-11)+80 +14 = 6 

 𝜆𝜆3 -6 𝜆𝜆2 + 11 𝜆𝜆 – 6 = 0 

Now, in LHS we replace 𝜆𝜆 by A, we get 
 𝐴𝐴3 -6 𝐴𝐴2 + 11 𝐴𝐴 – 6I 

 𝐴𝐴2 = [
8 −8 −2
4 −3 −2
3 −4 1

] [
8 −8 −2
4 −3 −2
3 −4 1

] = [
26 −32 −2
14 −15 −4
11 −16 3

] 

 𝐴𝐴3 = A 𝐴𝐴2 = [
8 −8 −2
4 −3 −2
3 −4 1

] [
26 −32 −2
14 −15 −4
11 −16 3

]  = [
74 −104 10
40 −51 −2
33 −52 13

] 

 𝐴𝐴3 -6 𝐴𝐴2+ 11 𝐴𝐴 – 6I = 

  [
74 −104 10
40 −51 −2
33 −52 13

] – 6 [
26 −32 −2
14 −15 −4
11 −16 3

] +11[
8 −8 −2
4 −3 −2
3 −4 1

]- 6 [
1 0 0
0 1 0
0 0 1

] 

  = [
74 −104 10
40 −51 −2
33 −52 13

] - [
156 −192 −12
84 −90 −24
66 −96 18

] +  

     [
88 −88 −22
44 −33 −22
33 −44 11

]- [
6 0 0
0 6 0
0 0 6

]   = [
0 0 0
0 0 0
0 0 0

] 

           ∴ 𝐴𝐴3 -6 𝐴𝐴2+ 11 𝐴𝐴 – 6I = 0 ………. (1) 

Thus, A satisfy its characteristic equation.  

To find A-1, multiply equation (1) by A-1 
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 𝐴𝐴3 A-1 -6 𝐴𝐴2 A-1+ 11 𝐴𝐴 A-1 – 6 I A-1 = 0 
 𝐴𝐴2 -6 𝐴𝐴+ 11 𝐼𝐼 – 6 A-1 = 0  …………………    [A A-1 = I, I = 1] 

 ⟹ 6 A-1 = 𝐴𝐴2 - 6 𝐴𝐴+ 11 𝐼𝐼 

         = [
26 −32 −2
14 −15 −4
11 −16 3

] – 6 [
8 −8 −2
4 −3 −2
3 −4 1

] + 11 [
1 0 0
0 1 0
0 0 1

]  = 

   [
−11 16 10
−10 14 8
−7 8 8

] A-1 = 16 [
−11 16 10
−10 14 8
−7 8 8

] 

1.13 Similarity of matrices:  

Matrix A and B of order n x n are said to be similar to each other if there exists an 
invertible n x n matrix P, such that AP = PB i.e. B = P-1AP  

For Similar matrices A, B, we have  

i. |𝐴𝐴| = |𝐵𝐵| 
Since A and B are similar, we have B = P-1AP 

  |B|  = |𝑃𝑃−1AP|         [ Taking determinant of both the side] 

 = |𝑃𝑃−1||A| |P| ⟹ = |𝑃𝑃−1𝑃𝑃||A| ⟹  = |𝐼𝐼||A| ⟹  = |A|          [ As |𝐼𝐼| = 1] 

∴ |𝐴𝐴| = |𝐵𝐵| 
ii. Characteristic equation for A and B are same. 

 If A and B are similar to each other then 

 |𝐴𝐴 − 𝜆𝜆𝐼𝐼| = |𝐵𝐵 − 𝜆𝜆𝐼𝐼|, for all real numbers 𝜆𝜆. 

 |𝐵𝐵 − 𝜆𝜆𝐼𝐼| = |𝑃𝑃−1AP − 𝜆𝜆𝐼𝐼|    [As B = P-1AP] 

       = |𝑃𝑃−1AP − 𝜆𝜆𝑃𝑃−1IP|  = |𝑃𝑃−1(A − 𝜆𝜆I)P|  = |𝑃𝑃−1||(A − 𝜆𝜆I)||P| 

            = |𝑃𝑃−1𝑃𝑃||(A − 𝜆𝜆I)| = |I||(A − 𝜆𝜆I)|   = |(A − 𝜆𝜆I)| 

Since |𝐵𝐵 − 𝜆𝜆𝐼𝐼| = |(A − 𝜆𝜆I)|, the similar matrices A and B have same characteristic 
equation. 

1.14 Reduction of matrix to a diagonal matrix which has elements 
as characteristics values 

If a square matrix A of order n has n linearly independent eigen vectors, then a 
matrix P can be found such that P-1AP is a diagonal matrix.  

Proof: Let A be a square matrix of order 3.  
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 Let 𝜆𝜆1 , 𝜆𝜆2 , 𝜆𝜆3 be its eigen values and  

 X1 = [
𝑥𝑥1
𝑦𝑦1
𝑧𝑧1

], X2 = [
𝑥𝑥2
𝑦𝑦2
𝑧𝑧2

], X3 = [
𝑥𝑥3
𝑦𝑦3
𝑧𝑧3

] be the corresponding eigen vectors. 

 Denoting the square matrix [X1, X2, X3] by P. 

 P = [
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
𝑦𝑦1 𝑦𝑦1 𝑦𝑦3
𝑧𝑧1 𝑧𝑧2 𝑧𝑧3

] 

 AP = A [X1, X2, X3] = [AX1, AX2, AX3] 

 We know that, AX = 𝜆𝜆X 

 ∴ AX1 = 𝜆𝜆1X1, AX2 = 𝜆𝜆2X2, AX3 = 𝜆𝜆3X3 

 AP = [𝜆𝜆1X1, 𝜆𝜆2X2, 𝜆𝜆3X3] 

       =[
𝜆𝜆1𝑥𝑥1 𝜆𝜆2𝑥𝑥2 𝜆𝜆3𝑥𝑥3
𝜆𝜆1𝑦𝑦1 𝜆𝜆2𝑦𝑦1 𝜆𝜆3𝑦𝑦3
𝜆𝜆1𝑧𝑧1 𝜆𝜆2𝑧𝑧2 𝜆𝜆3𝑧𝑧3

]  

      = [
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3
𝑧𝑧1 𝑧𝑧2 𝑧𝑧3

] x [
𝜆𝜆1 0 0
0 𝜆𝜆2 0
0 0 𝜆𝜆3

] 

      = P D, where D is diagonal matrix. 

 ∴ P-1AP = P-1PD  ⇒ P-1AP = D 

P constitute eigen vectors of A and is called Modal matrix of A. 

D has eigen values as its diagonal elements and is called special matrix of A.  

Ex. 1 Reduce the matrix A = [
11 −4 −7
7 −2 −5

10 −4 −6
] into a diagonal matrix. 

Sol: We know that,  D = P-1AP 

The characteristic equation of A is |𝐴𝐴 −  𝜆𝜆𝜆𝜆 |= 0 

 [
11 −  𝜆𝜆 −4 −7

7 −2 − 𝜆𝜆 −5
10 −4 −6 − 𝜆𝜆

] = 0 

 Here matrix A is 3 x 3  

 So Characteristic equation is given by 𝜆𝜆3 - s1 𝜆𝜆2 + s2 𝜆𝜆 -  |𝐴𝐴| = 0 

 After solving for s1, s2 and |𝐴𝐴| , we get characteristic equation as,  

  𝜆𝜆3 - 3 𝜆𝜆2 + 2 𝜆𝜆 = 0 ⇒ 𝜆𝜆( 𝜆𝜆 − 1) ( 𝜆𝜆 − 2) = 0 
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 ⇒ 𝜆𝜆 = 0,  𝜆𝜆 = 1 and  𝜆𝜆 = 2 are the eigen values. 

Now consider [A - 𝜆𝜆𝜆𝜆] [ X ]= [ 0 ] 

 [
11 −  𝜆𝜆 −4 −7

7 −2 − 𝜆𝜆 −5
10 −4 −6 − 𝜆𝜆

] [
𝑥𝑥
𝑦𝑦
𝑧𝑧

]=[
0
0
0

] 

 (11 −  𝜆𝜆) x – 4y - 7z = 0; 7x + (-2− 𝜆𝜆)y - 5z = 0; 10x - 4y + (-6− 𝜆𝜆)z = 0 

Case i:  𝜆𝜆1= 0 in above equations  

 11x - 4y – 7z = 0 ⇒ 7x -2y – 5z = 0 ⇒ 10x -4y -6z = 0 

Now take any two equations. By rule of cross multiplication,  

 𝑥𝑥
20−14 = −𝑦𝑦

−55+49 = 𝑧𝑧
−22+28 ⇒  𝑥𝑥

6 = −𝑦𝑦
−6= 𝑧𝑧

6  ⇒ 𝑥𝑥1 = −𝑦𝑦
−1= 𝑧𝑧

1 

 X1 = (1, 1, 1)’ eigen vector corresponding to 𝜆𝜆1 = 0 

Case ii:  𝜆𝜆2= 1 in main equations  

 10x - 4y – 7z = 0 ⇒ 7x -3y – 5z = 0 10x -4y -7z = 0 

 Now take any two equations. By rule of cross multiplication,  

 𝑥𝑥
20−21 = −𝑦𝑦

−50+49 = 𝑧𝑧
−30+28 ⇒ 𝑥𝑥

−1 = −𝑦𝑦
−1= 𝑧𝑧

−2 

          Divide by -1 , X2 = (1, -1, 2)’ eigen vector corresponding to 𝜆𝜆2= 1 

Case iii:  𝜆𝜆3 = 2 in main equations  

 9x - 4y – 7z = 0 ⇒ 7x -4y – 5z = 0 ⇒ 10x -4y -8z = 0 

 Now take any two equations. By rule of cross multiplication,  

 𝑥𝑥
−8 = −𝑦𝑦

4  = 𝑧𝑧
−8  

 Divide by -4,  ⇒ 𝑥𝑥2 = 𝑦𝑦1= 𝑧𝑧
2 

 Take -1 common 

 X3 = (2, 1, 2)’ eigen vector corresponding to 𝜆𝜆3= 2 

 P = [
1 1 2
1 −1 1
1 2 2

] 

 Now for P-1  

 We know that,  P-1= 1
|𝑃𝑃| adj P 

 We know how to calculate P-1 and adj P. 

m
unotes.in



30

 APPLIED MATHEMATICS

 After calculation we get P-1 = 1 and adj P = [
−4 2 3
−1 0 1
3 −1 −2

] 

 P-1= 11 [
−4 2 3
−1 0 1
3 −1 −2

] 

 D = P-1AP 

      = [
−4 2 3
−1 0 1
3 −1 −2

] [
11 −4 −7
7 −2 −5
10 −4 −6

] [
1 1 2
1 −1 1
1 2 2

]  

   = [
−4 2 3
−1 0 1
3 −1 −2

] [
0 1 4
0 −1 2
0 2 4

] ⇒ D = [
0 0 0
0 1 0
0 0 2

] 

Whatever the eigen values is appear in the diagonal matrix. 

1.15 Summary 

In this chapter, we learned about types of matrices, matrix operations and a system 
of simultaneous linear equations in matrix form. We now understand what is 
adjoint of a matrix, invertible matrix and rank of a matrix and methods finding 
these. Students can solve a system of linear equations by row-reducing its 
augmented form. Students differentiated between Characteristics roots and 
characteristics vectors also able to reduce a matrix to a diagonal matrix.  

 1.16 References 

1.  Applied Mathematics II by P. N. Wartikar and J. N. Wartikar 

2.  Higher Engineering Mathematics by Dr. B. S. Grewal   

3.  Fundamentals of Matrix Computation by David S. Watkins 

 

1.17 Exercise 

Ex 1. If A = [ 3 −5
−4 2 ] Show that A2 – 5A – 14I = 0 

Ex 2. A = [
4 −1 −4
3 0 −4
3 −1 −3

], show that A2 = I 
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Ex 3. Show that AB ≠ BA in each of the following cases. 

a. A = [5 −1
6 7 ] and B = [2 1

3 4] b. A = [
1 2 3
0 1 0
1 1 0

] and B = [
−1 1 0
0 −1 1
2 3 4

] 

Ex 4. Find the inverse of given matrices 

 1) [4 1
2 3]    2) [

1 2 5
1 −1 −1
2 3 −1

] 3)[
2 −3 3
2 2 3
3 −2 2

] 

Ex 5.  If A = [2 3
5 −2], show that A-1 =  119 A 

Ex 6.  If A = [2 3
5 −2], show that A2 +3A +I = 0 and hence find A-1. 

Ex 7. Find the rank of the following matrices  

1.  A = [
2 −1 3
1 0 1
0 2 −1
1 1 4

];   2.  A = [
1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

] 

Ex 8.  If A = [
1 2 −3
2 3 2
3 3 −4

] , find A-1 and hence solve the system of linear equations:  

 x + 2y - 3z = -4;  2x + 3y +2z = 2;  3x -3y - 4z = 1 [ Ans: x= 3, y = -2 , z = 1] 

Ex 9. Use matrix method to show that the following system of equations is 
inconsistent: 3x - y +2z = 3:2x + y +3z = 5; x -2y - z = 1  

Ex 10. Show that the matrix A = [
6 −2 2
−2 3 −1
2 −1 3

] 

satisfies its characteristic equation and hence determine A-1. 

Ex 11. Show that the matrix A = [
4 −3 −3
3 −2 −3
−1 1 2

] 

satisfies its characteristic equation and hence determine A-1. 

Ex 12. Reduce the matrix A = [−1 3
−2 4] into a diagonal matrix. [ Ans: D =[1 0

0 2] ] 

Ex 13. Reduce matrix A = [−19 7
−42 16] into a diagonal matrix.[Ans: D = [2 0

0 −5] 

 

❖❖❖❖❖❖❖ 
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2.0 Objective 

After going through this chapter, students will able to  

• Compute sums, products, quotients, conjugate, modulus and argument of 
complex numbers. 

• Understand the graphical representation of complex numbers 

• Write the complex numbers in polar form, exponential form  

• Learn about circular, hyperbolic function, inverse hyperbolic function 

• Obtain relations between circular and hyperbolic functions 

• Learn about graphs of the hyperbolic functions and logarithms of complex 
quality 

2.1 Introduction:  

This chapter is concerned with the representation and manipulation of complex 
numbers. It has some introductory ideas associated with complex numbers, their 
algebra and geometry, algebraic properties of complex numbers, Argand plane and 
polar representation of complex numbers, exponential form of complex numbers, 
mathematical operation with complex numbers and their representation on 
Argand’s diagram, circular functions of complex angles, hyperbolic functions, 
relations between circular and hyperbolic functions, Inverse hyperbolic functions, 
graphs of the hyperbolic functions. This includes how complex numbers add and 
multiply, and how they can be represented graphically. Finally, we look the 
logarithms of complex quality and application of complex number in electrical 
circuit. 

2.2  Complex number:    

Imaginary Numbers: If the square of a given number is negative then such a 
number is called an imaginary number.  

 Eg. √−1, √−2 are imaginary numbers. 

 We denote √−1 as i. 

 Thus, √−4 = 2i, √−9 = 3i and √−5 = i √5 

 Powers of i: 

 i0 = 1, i1 = i, i2 = -1, i3 = i2 x i= (-1) x i = -i, i4 = i2 x i2 = (-1) x (-1) =1  
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 Thus,   

 
Complex Numbers: The numbers of the form (a + ib), where a and b are real 
numbers and i = √−1, are known as complex numbers. The set of all complex 
numbers is denoted by C.  

 ∴ C = {(a + ib):a , b ∈ 𝑅𝑅} 

 Eg. Each of the numbers (5 + 6i), (-4 + √3 i), and (3
4  - 57 i)  

 is a complex number.  

 For a complex number, z = (a + ib), 

 a = real part of z, written as Re (z) and b = imaginary part of z,  

 written as Im (z). 

 If z = (5 + 6i) then Re(z) = 5 and Im(z) = 9. 

Purely Real and Purely Imaginary Numbers: 

A complex numbers z is said to be  

i. Purely real, if Im(z) = 0 

ii. Purely imaginary, if Re(z) = 0 

Thus, each of the numbers 2, -8, √4 is purely real and 3i, (√5  i), - 57 i is purely 

imaginary. 

Conjugate of a Complex Number: 

Conjugate of a complex number z = (a + ib) is defined as, 𝑧𝑧̅ = (a - ib). 

Eg, (3 +  7i )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = (3 - 7i) 

Modulus of Complex Number: 

Modulus of complex number Z = (a + ib), denoted by |𝑧𝑧| = √𝑎𝑎2 + 𝑏𝑏2. 

Eg. If z = (2 + 3i) then |𝑧𝑧| = √22 + 32 = √13 

       If z = (-5 - 4i) then |𝑧𝑧| = √(−5)2 + ( − 4 )2 = √41 

2.3 Equality of Complex Number:  

If z1 = a1 +ib1 and z2 = a2 +ib2 then  z1 = z2 ⇔ a1 = a2 and b1 = b2. 

Ex. If 2y + (3x - y) i = (5 - 2i), find the values of x and y. 

i0 = 1, i1 = i,  i2 = -1, i3 = -i, i4=1 
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Sol: Equating the real and imaginary parts, we get 

 2y + (3x - y) i = (5 - 2i) ⟺ 2y = 5 and 3x – y = -2 

 ⟺ y= 52 and 3x - 52 = -2 ⟺ y= 52 and x =  16  

 Hence x = 16 and y= 52 

Sum and Difference of Complex Number:  

If z1 = (a1 +ib1) and z2 = (a2 +ib2) then  

i. z1 + z2 = (a1 + a2) + i (b1 + b2)  ii. z1 - z2 = (a1 - a2) + i (b1 - b2) 

Ex. i. z1 = (3 + 5i) and z2 = (- 5 + 2i) then 

 z1 + z2 = {(3 + (-5)} + i (5 + 2) = (-2 + 7i)  

 z1 - z2 = {(3 - (-5)} + i (5 - 2) = (8 + 3i) 

Properties of Addition of Complex Numbers: 

i. Closure Property: The sum of two complex numbers is always a complex 
number. 

ii. Commutative Law:  Addition of two complex numbers is commutative. 

  For any two complex numbers z1 and z2,  z1 + z2 = z2 + z1, for all z1, z2 ∈ C 

iii. Associative Law: Addition of three complex numbers is associative.  

 For any complex numbers z1, z2 and z3,  

 (z1 + z2) + z3 =z1 + (z2 + z3) for all z1, z2, z3 ∈ C 

iv. Existence of Additive Identity: For any complex numbers z,  

 z + 0 = 0 + z = z ,0 is the additive identity for complex number. 

v. Existence of Additive Identity: For any complex numbers z,  

 z + (-z) = (-z) + z = 0 

Thus, every complex number z has (-z) as its additive inverse. 

Multiplication of Complex Numbers:  

Let z1 = (a1 +ib1) and z2 = (a2 +ib2) then  z1 z2  = (a1 +ib1) (a2 +ib2) 

 = (a1 a2 - b1b2) + i (a1b2 +b1a2) 

 ∴ z1 z2 = {Re(z1). Re(z2) - Im(z1). Im(z2)}+ i{Re(z1).  

 Im(z2) -    Im(z1). Re(z2)} 

Ex. 1.  Let z1 = (4 + 2i) and z2 = (6 + 3i) then 
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        z1 z2= (4.6 – 2.3) + i (4.3 + 6.2) = (24 - 6) + i (12 + 12) = 18 + 24i 

Properties of Multiplication of Complex Numbers: 

a. Closure Property: The product of two complex numbers is always a 
complex number. 

b. Commutative Law:  Multiplication of two complex numbers is 
commutative.  

 For any two complex numbers z1 and z2,  

 z1.z2 = z2.z1, for all z1, z2 ∈ C 

c. Associative Law: Multiplication of three complex numbers is associative.  

 For any complex numbers z1, z2 and z3,  

 (z1.z2). z3 =z1. (z2.z3) for all z1, z2, z3 ∈ C 

d. Existence of Multiplicative Identity: the complex number  

 (1 + i0) is multiplicative identity in C. 

 Let z = (a + ib) then  

 z x 1 = (a + ib). (1 + i0)  = {(a.1 -b.0) + i(a.0 + b.1)} = (a +ib) = z 

 Similarly, z x 1 = 1x z = z for all z ∈ C 

 Hence, the complex number 1 = (1 + i0) is the multiplicative identity. 

e. Existence of multiplicative Identity:  

 Let z = (a + ib) then  

 z-1 = 1𝑧𝑧 = 1
(a + ib)  =  1

(a + ib) x  (a −  ib) 
(a − ib)   = (a − ib)

𝑎𝑎2+ 𝑏𝑏2   

 Clearly, z x z-1 = z-1 x z = 1 

 Thus, every z = (a + ib) has its multiplicative inverse, given by,  

 z-1 = 1𝑧𝑧 = (a − ib)
𝑎𝑎2+ 𝑏𝑏2  = �̅�𝑧

|𝑧𝑧|2  ∴ zz-1 = |𝑧𝑧|2 

 Points to remember: 

1. z = (a + ib) ⇒ 𝑧𝑧̅ = (a - ib) and |𝑧𝑧|2 = (𝑎𝑎2 +  𝑏𝑏2) 

2. z = (a + ib) ⇒ z-1 = �̅�𝑧
|𝑧𝑧|2  = (a − ib)

𝑎𝑎2+ 𝑏𝑏2   

f. Distributive Laws: For any complex numbers z1, z2 and z3,  

 z1. (z2+ z3) = z1z2 + z1z3  

 (z1 + z2).z3 = z1z3 + z2z3 for all z1, z2, z3 ∈ C 
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Division of Complex Numbers:  

Let z1 and z2 be complex numbers such that z2 ≠ 0 then 
z1
z2 = z1. 1

z2 = z1. z2-1. 

Eg. Find 𝑧𝑧1
𝑧𝑧2 when z1 = (6+3i) and z2 = (3 – i) 

Sol:  We have z1
z2 = z1. z2-1. 

 z2-1= 𝑧𝑧2̅̅̅̅
|𝑧𝑧2|2 = (3−𝑖𝑖)̅̅ ̅̅ ̅̅ ̅̅

⌈32+ (−𝑖𝑖)2 ⌉ = (3+ i)
10  

 z1
z2 = z1. z2-1 

         = (6+3i). (3+ i)
10  = (6+3i).(3+i).  

10  = (6.3−3.1)+i(6.1+3.3).
10  = (15+15i).

10   = 15(1+i).
10  = 3(1+i).

2  

Some Identities on Complex Numbers: 

For any complex numbers z1 and z2,  

i. (z1 + z2)2= z12 + z22 + 2 z1z2   

ii. (z1 - z2)2= z12 + z22 - 2 z1z2 

iii. (z12 - z22) = (z1 + z2) (z1 - z2) 

iv. (z1 + z2)3= z13 + z23 + 3 z1z2(z1 + z2) 

v. (z1 + z2)3= z13 - z23 - 3 z1z2(z1 - z2) 

Students can solve these identities as exercise.  

2.4  Graphical representation of Complex Number  
(Argand’s Diagram):  

Complex Plane or Argand Plane: 

Let X’OX and YOY’ be the mutually perpendicular lines, known as the x axis and 
the y axis respectively. The complex number (x + iy) corresponds to the ordered 
pair (x, y) and it can be represented by the point P(x, y) in the x-y plane. The x-y 
plane is known as the complex plane or Argand plane. X axis is called the real axis 
and y axis is called the imaginary axis.  
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Note that every number on the x axis is a real number, while each on the y axis is 
an imaginary number. 

The complex numbers represented geometrically in the above diagram are  

(2 + 4i), (-3 + 2i), (-4 -3i), (3 - 4i), (5 + 0i), (-4 + 0i), (0 + 3i), (0 - 3i)  

Represented by the points, A (2,4), B (-3, 2), C (-4, -3), D (3, -4), E (6,0),  

F (-3, 0), G (0, 2) and H (0, -3) respectively. 

2.5 Polar form of a Complex Number: 

Let the complex number z = x + iy be represented by the point P (x, y) in the 
complex plane. Let ∠ XOP = 𝜃𝜃 and |𝑂𝑂𝑂𝑂|= r > 0.  

Then, P (r, 𝜃𝜃) are called the polar coordinates of P. 

We call the origin O as pole. 

Clearly, x = r cos𝜃𝜃 and y = r sin𝜃𝜃 

We have, z = x + iy  = r cos𝜃𝜃 + i r sin𝜃𝜃  

       = r (cos𝜃𝜃 + i sin𝜃𝜃). 

This is called the polar form, or trigonometric form, or modulus-amplitude form, 
of z. 
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Here, r = √𝑥𝑥2 + 𝑦𝑦2 =  |𝑧𝑧| is called the modulus of z.  

And 𝜃𝜃 is called the argument, or amplitude of z, written as arg (z), or amp (z). 

The value of 𝜃𝜃 such that -𝜋𝜋 < 𝜃𝜃 ≤  𝜋𝜋 is called the principal argument of z. 

2.5.1 Polar form of x + iy for different signs of x, y: - 

Method for finding the Principal Argument of a Complex Number  

Case I When z = (x +iy) lies on one of the axes:  

I. When z is purely real. In this case, z lies on the x axis. 

i. If z lies on positive side of the x axis, then 𝜃𝜃 = 0. 

ii. If z lies on negative side of the x axis, then 𝜃𝜃 = 𝜋𝜋. 

II. When z is purely imaginary. In this case, z lies on the y axis. 

i. If z lies on the y axis and above the x axis then 𝜃𝜃 = 𝜋𝜋2. 

ii. If z lies on the y axis and above the x axis then 𝜃𝜃 = 𝜋𝜋2. 

Case II When z = (x +iy) does not lies on any axes:  

Step 1. Find the acute angle 𝛼𝛼 by tan 𝛼𝛼 = |𝐼𝐼𝐼𝐼 (z) 
𝑅𝑅𝑅𝑅 (z) |. 

Step 2. Find the quadrant in which P (x, y) lies.  

Then,  𝜃𝜃 = arg (z) may be obtained as under. 

i. When z lies in quad I; Then, 𝜃𝜃 = 𝛼𝛼 ⇒ arg (z) = 𝛼𝛼 
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ii. When z lies in quad II; Then, 𝜃𝜃 = (𝜋𝜋 −  𝛼𝛼 ) ⇒ arg (z) = (𝜋𝜋 −  𝛼𝛼 ) 

iii. When z lies in quad III; Then, 𝜃𝜃 = (𝛼𝛼 −  𝜋𝜋)𝑜𝑜𝑜𝑜 (𝜋𝜋 + 𝛼𝛼 ) ⇒ arg (z) = 
(𝛼𝛼 −  𝜋𝜋) 𝑜𝑜𝑜𝑜 (𝜋𝜋 + 𝛼𝛼 ) 

iv. When z lies in quad IV; Then, 𝜃𝜃 = −𝛼𝛼 ⇒ arg (z) = - 𝛼𝛼 

 
Ex. 1. For following complex numbers find the polar form. 

i. z = (1+i√3)   ii. z = (-1- i√3)   

 Sol. i.  Let z = (1+i√3)  i.e. x=1 and y = √3 

 We know that, Polar form = r (cos 𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃) 

 We have to find e and 𝜃𝜃 

 We know that, r = √𝑥𝑥2 + 𝑦𝑦2 = = √1 + 3 = 2 

 ∴ r = 2 

 Let tan 𝛼𝛼 = |𝐼𝐼𝐼𝐼 (z)
𝑅𝑅𝑅𝑅 (z)| = |𝑦𝑦

𝑥𝑥| = |√3
1 | = √3 

 tan 𝛼𝛼 = tan 𝜋𝜋
3            [∵ tan 60 = √3, tan 60 = tan 𝜋𝜋

3 . 𝜋𝜋 = 180] 

 𝛼𝛼 = 𝜋𝜋
3 

 ∵ points (1, √3) lies in I quad, ∴ 𝜃𝜃 = 𝛼𝛼  ∴ 𝜃𝜃 = 𝜋𝜋3 

 ∴  Polar form of z = 2 (cos 𝜋𝜋3 + i sin 𝜋𝜋3 ) 

 ii.   Let z = (-1- i√3)  i.e. x= - 1 and y = - √3 

 Sol: We know that, Polar form = r (cos 𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃) 
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 We have to find e and 𝜃𝜃 

 We know that, r = √𝑥𝑥2 + 𝑦𝑦2 = = √1 + 3 = 2  ∴ r = 2 

 Let tan 𝛼𝛼 = |𝐼𝐼𝐼𝐼 (z)
𝑅𝑅𝑅𝑅 (z)|  = |𝑦𝑦

𝑥𝑥| = |−√3
− 1 |  = √3 

 tan 𝛼𝛼 = tan 𝜋𝜋
3            [∵ tan 60 = √3, tan 60 = tan 𝜋𝜋

3 . 𝜋𝜋 = 180] 

 𝛼𝛼 = 𝜋𝜋
3 

 ∵ points (- 1, - √3) lies in III quad, ∴ 𝜃𝜃 = 𝛼𝛼 −  𝜋𝜋 

 ∴ 𝜃𝜃 = 𝜋𝜋3 – 𝜋𝜋 = 𝜋𝜋−3𝜋𝜋
3  = −2𝜋𝜋

3  

 ∴  Polar form of z = 2 (cos −2𝜋𝜋
3  + i sin −2𝜋𝜋

3  ) 

Exercise:  

Ex 1.  If z is a non-zero complex number, such that 2iz2 = 𝑧𝑧̅ the find |𝑧𝑧|  
 [Ans: |𝑧𝑧|=1/2] 

Ex. 2 If | z | = 1, then find the value of 1+𝑧𝑧
1+ �̅�𝑧.    

 [Ans: z] 

2.6 Exponential form of Complex Numbers: 

We know that if x is a real number, then 

𝑒𝑒𝑥𝑥= 1 + x + 𝑥𝑥
2

2 ! +  𝑥𝑥
3

3 !  +  𝑥𝑥
4

4 ! + ………………….. (1) 

Assuming this is true for all values of x (real or complex) 

Let substitute i𝜃𝜃 for x in equation (1) 

 𝑒𝑒i𝜃𝜃= 1 + i𝜃𝜃 + 𝑖𝑖
2𝜃𝜃2

2 !  +  𝑖𝑖
3𝜃𝜃3

3 !   +  𝑖𝑖
4𝜃𝜃4

4 ! + …………………… 

 Put i2 = -1 

 𝑒𝑒i𝜃𝜃= 1 + i𝜃𝜃 - 𝜃𝜃
2

2 ! -  
𝑖𝑖𝜃𝜃3

3 !   +  𝜃𝜃
4

4 !+ …………………… 

 𝑒𝑒i𝜃𝜃  = (1 - 𝜃𝜃
2

2 !  +  𝜃𝜃
4

4 ! - 
𝜃𝜃6

6 !……) + i ( 𝜃𝜃  -  𝑖𝑖𝜃𝜃3

3 !   +  𝜃𝜃
5

5 ! - 
𝜃𝜃5

7 !………) 

We know that,  

 sin 𝜃𝜃 = 𝜃𝜃  -  𝑖𝑖𝜃𝜃3

3 !   +  𝜃𝜃
5

5 ! - 
𝜃𝜃5

7 !……  and cos 𝜃𝜃 = 1 - 𝜃𝜃
2

2 !  +  𝜃𝜃
4

4 ! - 
𝜃𝜃6

6 !………… 

  ∴ 𝑒𝑒i𝜃𝜃  = (cos𝜃𝜃 + i sin𝜃𝜃) 
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 ∴ Complex number z = x +iy        (cartesian form) 

   = r (cos𝜃𝜃 + i sin𝜃𝜃) (Polar form) 

   = r 𝑒𝑒i𝜃𝜃   (Exponential form) 

Exponential form of x + iy = r 𝒆𝒆𝐢𝐢𝜽𝜽 

 𝑒𝑒i𝜃𝜃  = (cos𝜃𝜃 + i sin𝜃𝜃) and 𝑒𝑒−i𝜃𝜃  = (cos𝜃𝜃 - i sin𝜃𝜃) 

2.7 Mathematical operation with complex numbers and their 
representation on Argand’s Diagram: 

1.  Addition of Complex Numbers: 
 Let z1 and z2 be two complex numbers. 
 z1= (x1 +iy1) and z2= (x2 +iy2)  
 z1 + z2 = (x1 + x2) + i (y1 + y2) 
 Graphical representation (Argand’s diagram): 
 Represent the complex numbers z1 and z2 by vectors OP1⃗⃗⃗⃗⃗⃗ ⃗⃗   and OP2⃗⃗⃗⃗⃗⃗ ⃗⃗  

respectively.  

 
 Now complete the parallelogram OP1P3P2. 
 By properties of parallelograms, opposite sides of parallelogram are equal 

and diagonals of parallelogram bisect each other. 

 ∴ 0 (0,0) and P (𝑥𝑥1+𝑥𝑥2
2 , 𝑦𝑦1+𝑦𝑦2

2 ) 

 We can calculate coordinates of P3. 
 Let consider P3(X, Y) 
 ∴ coordinates of P3,  

  𝑋𝑋+0
2 =  𝑥𝑥1+𝑥𝑥2

2   ⇒ X = (x1 + x2) 

 𝑌𝑌+0
2 =  𝑦𝑦1+𝑦𝑦2

2   ⇒ Y = (y1 + y2) 
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 ∴ coordinates of P3(x1 + x2, y1 + y2) 
 If we represent P3 in complex number as z3 
 z3 = (x1 + x2) + i (y1 + y2) 
  = x1 + iy1 + x2 + iy2 
 z3 = z1 + z2            [∵ z1= (x1 +iy1) and z2= (x2 +iy2)] 
2.  Subtraction of Complex Numbers: 
 Let z1 and z2 be two complex numbers. 
 z1= (x1 +iy1) and z2= (x2 +iy2)  
 z1 - z2 = (x1 - x2) + i (y1 - y2) 
 Graphical representation (Argand’s diagram): 
 Represent the complex numbers z1 and z2 by vectors OP1⃗⃗⃗⃗⃗⃗ ⃗⃗   and OP2⃗⃗⃗⃗⃗⃗ ⃗⃗  

respectively.  

 
 Take negative of complex number of z2 
 Now complete the parallelogram OP3P4 P1. 
 By properties of parallelograms, opposite sides of parallelogram are equal 

and diagonals of parallelogram bisect each other. 

 ∴ o (0,0) and P (𝑥𝑥1−𝑥𝑥2
2 , 𝑦𝑦1−𝑦𝑦2

2 ) 

 We can calculate coordinates of P4. 
 Let consider P4(X, Y) 
 ∴ coordinates of P4,  

  𝑋𝑋+0
2 =  𝑥𝑥1−𝑥𝑥2

2   ⇒ X = (x1 - x2) 

 𝑌𝑌+0
2 =  𝑦𝑦1−𝑦𝑦2

2   ⇒ Y = (y1 - y2) 

 ∴ coordinates of P3(x1 - x2, y1 - y2) 
 If we represent P4 in complex number as z4 
 Z4 = (x1 - x2) + i (y1 - y2) 
      = (x1 +iy1) - (x2 + iy2) 
 Z4 = z1 - z2            [∵ z1= (x1 +iy1) and z2= (x2 +iy2)] 
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3. Multiplication of Complex Numbers: 

 Let z1 and z2 be two complex numbers. 
 z1= (x1 +iy1) and z2= (x2 +iy2)  
 z1.z2 = (x1 - x2). i (y1 - y2) 
                 = x1x2 +ix1y2+ix2y1 - y1y2           [as i2 = -1] 
                = (x1x2 - y1y2) +i (x1y2+x2y1) 
 Let consider the complex numbers in polar form. 
 Let z1 = (x1 +iy1) = r1(cos𝜃𝜃 1+ i sin𝜃𝜃 1) = r1 𝑒𝑒𝑖𝑖𝑖𝑖1 
             z2 = (x2 +iy2) = r2(cos𝜃𝜃 2+ i sin𝜃𝜃 2) = r2 𝑒𝑒𝑖𝑖𝑖𝑖2 

 Then z1. z2 = r1 𝑒𝑒𝑖𝑖𝑖𝑖1. r2 𝑒𝑒𝑖𝑖𝑖𝑖2 

                          = r1r2𝑒𝑒𝑖𝑖(𝑖𝑖1+𝑖𝑖2) 
         = r1r2 [cos(𝜃𝜃1 + 𝜃𝜃2) + i sin(𝜃𝜃1 + 𝜃𝜃2)] 
 The product of the complex numbers is a complex number whose modulus 

is the product of their moduli and whose amplitude is the sum of their 
amplitudes. 

 Graphical representation (Argand’s diagram): 
 Let P1 represent z1 = r1(cos𝜃𝜃1+ i sin𝜃𝜃1),  
      P2 represent z2 = r2(cos𝜃𝜃2+ i sin𝜃𝜃2) and OM = 1 unit 

 
 We get Δ OP1M. 
 Construct the Δ OP3P2 similar to Δ OP1M. 

 For modulus, 𝑂𝑂𝑂𝑂3
𝑂𝑂𝑂𝑂1 = 𝑂𝑂𝑂𝑂2

𝑂𝑂𝑂𝑂  ⇒  𝑂𝑂𝑂𝑂3
𝑟𝑟1  = 𝑟𝑟2

1  ⇒ OP3 = r1r2 

 To calculate argument,  
  ∠XOP3 = ∠XOP2 + ∠P2OP3 = 𝜃𝜃2 + 𝜃𝜃1   = 𝜃𝜃1 + 𝜃𝜃2 
 P1(r1, 𝜃𝜃1) represents the complex number r1(cos𝜃𝜃1+ i sin𝜃𝜃1) and  
 P2(r2, 𝜃𝜃2) represents the complex number r2(cos𝜃𝜃2+ i sin𝜃𝜃2). 
 Similarly, P3(r1r2, 𝜃𝜃1+ 𝜃𝜃2) represents r1r2 [cos(𝜃𝜃1 + 𝜃𝜃2) + i sin(𝜃𝜃1 + 𝜃𝜃2)] 

whose modulus is the product of their moduli and whose amplitude is the 
sum of their amplitudes. 

m
unotes.in



45

Chapter 2: Complex Numbers

  Hence z1. z2 giving simple graphical construction for a product.   

4. Quotient of Complex Numbers: 

 The product of two conjugate complex numbers is a real number i.e (x +iy) 
(x - iy)= x2 + y2 leads to the following method of division, where the 
denomination is always expressed as a real number.  

 Let z1 and z2 be two complex numbers. 
 z1= (x1 +iy1) and z2= (x2 +iy2)  
  

 Thus, x1 +iy1
x2 +iy2  = x1 +iy1

x2 +iy2 . x2−iy2
x2−iy2 

    =  (x1.x2+y1.y2)+i(x2.y1−x1.y2)
𝑥𝑥22+ 𝑦𝑦22  

    =  (x1.x2+y1.y2)
𝑥𝑥22+ 𝑦𝑦22  + i(x2.y1−x1.y2)

𝑥𝑥22+ 𝑦𝑦22  

 But it is more convenient to divide the complex numbers in their polar 
forms or better in exponential form. 

 x1 +iy1
x2 +iy2 = r1 𝑒𝑒𝑖𝑖𝑖𝑖1

r2 𝑒𝑒𝑖𝑖𝑖𝑖2 = r1 
r2  𝑒𝑒

𝑖𝑖(𝜃𝜃1−𝜃𝜃2) 

 x1 +iy1
x2 +iy2 = r1 𝑒𝑒𝑖𝑖𝑖𝑖1

r2 𝑒𝑒𝑖𝑖𝑖𝑖2 = r1 
r2  {cos(𝜃𝜃1 − 𝜃𝜃2) − 𝑖𝑖 𝑠𝑠𝑖𝑖𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2)} 

 ∴ The modulus of the quotient of two complex numbers is the quotient of 
their moduli and amplitude of the quotient is the difference of their 
amplitudes.  

 Graphical representation (Argand’s diagram): 
 Let 𝜃𝜃1 > 𝜃𝜃2 
 Let P1 represent z1 = r1(cos𝜃𝜃1+ i sin𝜃𝜃1),  
      P2 represent z2 = r2(cos𝜃𝜃2+ i sin𝜃𝜃2) and OM = 1 unit along X axis. 
 Construct Δ OP1 P2 similar to Δ OP3M. 

 𝑂𝑂𝑂𝑂1
𝑂𝑂𝑂𝑂3 = 𝑂𝑂𝑂𝑂2

𝑂𝑂𝑂𝑂  ⇒  𝑟𝑟1
𝑂𝑂𝑂𝑂3 = 𝑟𝑟2

1  ⇒ OP3 = 𝑟𝑟1
𝑟𝑟2 

 ∠XOP3 = ∠XOP1 - ∠XOP2  = 𝜃𝜃1 - 𝜃𝜃2 
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 P1(r1, 𝜃𝜃1) represents the complex number r1(cos𝜃𝜃1+ i sin𝜃𝜃1) and  
 P2(r2, 𝜃𝜃2) represents the complex number r2(cos𝜃𝜃2+ i sin𝜃𝜃2). 

 We get, P3 = ( 𝑟𝑟1
𝑟𝑟2 , (𝜃𝜃1- 𝜃𝜃2) gives complex number 

  𝑟𝑟1
𝑟𝑟2  [cos(𝜃𝜃1- 𝜃𝜃2) – i sin (𝜃𝜃1 − 𝜃𝜃2)] which is equal to 𝑧𝑧1

𝑧𝑧2.  

 ∴ |𝑧𝑧1
𝑧𝑧2| = |𝑧𝑧1|

|𝑧𝑧2|  and arg 𝑧𝑧1
𝑧𝑧2 = arg z1 -arg z2 

5. Powers of Complex Numbers DeMoivre’s Theorem: 

 Statement: If n is any real number, one of the values of (cos𝜃𝜃+ i sin𝜃𝜃)n is 
cos𝑛𝑛𝜃𝜃+ i sin𝑛𝑛𝜃𝜃. 

 Proof: Here we consider three cases. 

i.        n is positive integer   ii. n is negative integer and iii. n is a fraction 

i. Let n is positive integer:  
(cos𝜃𝜃+ i sin𝜃𝜃)n = (cos𝜃𝜃+ i sin𝜃𝜃) (cos𝜃𝜃+ i sin𝜃𝜃)……..n times 

       = cos [ 𝜃𝜃 + 𝜃𝜃 + ……. n times] + i sin [ 𝜃𝜃 + 𝜃𝜃 +   ……. n times] 
       = cos𝑛𝑛𝜃𝜃+ i sin𝑛𝑛𝜃𝜃  

ii. Let n is negative integer:  
 Let n = -m, where m is a positive integer 

           (cos𝜃𝜃+ i sin𝜃𝜃)n = (cos𝜃𝜃+ i sin𝜃𝜃)-m   

                                    = 1
(cos𝜃𝜃+ i sin𝜃𝜃)m      [∵ a -m = 1

𝑎𝑎𝑚𝑚 ] 

                                    = 1
cosm𝜃𝜃+ i sinm𝜃𝜃       [ from ( i)] 

                                    = 1
cosm𝜃𝜃+ i sinm𝜃𝜃 . cosm𝜃𝜃− i sinm𝜃𝜃

cosm𝜃𝜃−i sinm𝜃𝜃  

                                    = cosm𝜃𝜃− i sinm𝜃𝜃
𝑐𝑐𝑐𝑐𝑐𝑐2 𝑚𝑚𝜃𝜃+ 𝑐𝑐𝑠𝑠𝑠𝑠2 𝑚𝑚𝜃𝜃        [∵ i2 = - 1] 

                                    = cosm𝜃𝜃 −  i sinm𝜃𝜃             [ ∵ 𝑐𝑐𝑐𝑐𝑐𝑐2 𝑚𝑚𝜃𝜃 + 𝑐𝑐𝑠𝑠𝑛𝑛2 𝑚𝑚𝜃𝜃 = 1] 
                                   = cos(−m)𝜃𝜃 +  i sin(−m)𝜃𝜃   
                                   = cos 𝑛𝑛 𝜃𝜃 +  i sin 𝑛𝑛 𝜃𝜃   

iii. Let n be a fraction: 
 n = 𝒑𝒑𝒒𝒒 , where p and q are + ve or -ve integer. 

 from (i) and (ii) we have,  

 (cos 𝜃𝜃𝑞𝑞+ i sin 𝜃𝜃𝑞𝑞)q = cos𝜃𝜃+ i sin𝜃𝜃 

 ∵ (cos𝜃𝜃 +  i sin𝜃𝜃)
1
𝑞𝑞 = cos𝜃𝜃

𝑞𝑞+ i sin𝜃𝜃
𝑞𝑞  

 (cos𝜃𝜃 +  i sin𝜃𝜃)𝑠𝑠 = (cos𝜃𝜃 +  i sin𝜃𝜃)
𝑝𝑝
𝑞𝑞        [∵ n = 𝒑𝒑𝒒𝒒 ] 
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    = [ (cos𝜃𝜃 +  i sin𝜃𝜃)
1
𝑞𝑞]p  = [cos𝜃𝜃

𝑞𝑞 + i sin𝜃𝜃
𝑞𝑞]p  

    = cos𝑝𝑝
𝑞𝑞  𝜃𝜃+ i sin𝑝𝑝

𝑞𝑞 𝜃𝜃 

             (cos𝜃𝜃 +  i sin𝜃𝜃)𝑛𝑛 = cos 𝑛𝑛𝜃𝜃+ i sin n𝜃𝜃 
Ex 1. Express sin 3θ and cos 3θ in terms of powers of cos θ and sin θ.  
 Sol: Using de Moivre’s theorem,  
 cos 3θ + i sin 3θ = (cos θ + isin θ) 3  
          = (cos3 θ − 3 cos θ sin2 θ) + i(3 sin θ cos2 θ − sin3 θ) 
  We can equate the real and imaginary coefficients separately, 
  i.e. cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ  
       sin 3θ = 3 sin θ cos2 θ − sin3 θ = 3 sin θ − 4 sin3 θ 

Ex 2. If z = (cos θ + isin θ), show that zn + 1
𝑧𝑧𝑛𝑛 = 2 cos n θ and zn - 1

𝑧𝑧𝑛𝑛 = 2 isin n θ 

 Sol: Let z = (cos θ + isin θ) 
 By de Moivre’s theorem,  
 zn = (cos θ + isin θ) n = cos nθ + isin nθ 

 1
𝑧𝑧𝑛𝑛 = z-n = cos nθ – isin nθ 

 zn + 1
𝑧𝑧𝑛𝑛 = (cos nθ + i sin nθ ) + (cos nθ – isin nθ) = 2 cos nθ 

 Also,  zn -  1
𝑧𝑧𝑛𝑛 = (cos nθ + i sin nθ ) - (cos nθ – isin nθ) = 2 sin nθ 

Ex 3 Simplify ( 1 + cos 2θ + isin2θ
1 + cos 2θ− isin2θ  )30 

 Sol: Let Z = cos 2θ + i sin 2θ 

 As |𝑧𝑧| = |𝑧𝑧|2 = z𝑧𝑧̅ = 1, we get 𝑧𝑧̅ = 1𝑧𝑧 cos 2θ - i sin 2θ 

 ∴ 1 + cos 2θ + isin2θ
1 + cos 2θ− isin2θ  = 1+𝑧𝑧 

1+ 1𝑧𝑧
 = (1+𝑧𝑧)𝑧𝑧

𝑧𝑧+1  = z 

 ∴ ( 1 + cos 2θ + isin2θ
1 + cos 2θ− isin2θ  )30 = Z30 = (cos 2θ + i sin 2θ)30  = cos 60θ + i sin 60θ 

Ex 4. Simplify (1+ i)18 
 Sol: Let 1 +i = r (cos θ + i sin θ) then we get 

 r = √12 + 22 = √2 ; 𝛼𝛼 = tan -1 = ( 11) = 𝜋𝜋4  
 θ = 𝛼𝛼 =  𝜋𝜋4     [ ∵ 1 + i lies in the first quadrant] 

 ∴ (1+ i) = √2 (cos 𝜋𝜋4 + i sin 𝜋𝜋4) 

 Raising to power 18 on both sides 
 (1+ i)18 = [√2 (cos 𝜋𝜋4 + i sin 𝜋𝜋4)]18 = √2 18(cos 𝜋𝜋4 + i sin 𝜋𝜋4)18 

 By de Moivre’s theorem,  

 (1+ i)18 = 29 (cos 18𝜋𝜋
4  + i sin 18 𝜋𝜋

4 ) = 29 (cos 9𝜋𝜋
2  + i sin 9 𝜋𝜋

2 ) 

           = 29 (cos [4𝜋𝜋 +  𝜋𝜋2 ]+ i sin [4𝜋𝜋 +  𝜋𝜋
2 ]) = 29 (cos  𝜋𝜋2 + i sin  𝜋𝜋2 ) = 29i =  
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Ex 5. Find cube root of unity. 
 Sol: we have to find 11/3 
 Let z = 11/3  i.e. z3 = 1 
 In polar form, z3 = 1 can be written as  
 z3 = cos (0 + 2k 𝜋𝜋) + i sin (0 + 2k 𝜋𝜋) = 𝑒𝑒𝑖𝑖2𝑘𝑘π , k = 0, 1, 2,... 

 z = (cos 2𝑘𝑘𝑘𝑘
3  + i sin 2𝑘𝑘𝑘𝑘

3 ) = 𝑒𝑒𝑖𝑖2𝑘𝑘𝜋𝜋
3 , k = 0, 1, 2 

 Taking k = 0, 1, 2 we get, 
 k = 0, z = (cos 0+ i sin 0) = 1 

 k = 1, z = (cos 2𝑘𝑘
3  + i sin 2𝑘𝑘

3 ) = (cos (𝜋𝜋 −  𝑘𝑘
3 ) + i sin (𝜋𝜋 −  𝑘𝑘

3 ) ) 

          = - cos 𝑘𝑘3  + i sin  𝑘𝑘3 = - 12 + i √3
2  

 k = 2, z = (cos 4𝑘𝑘
3  + i sin 4𝑘𝑘

3 ) = (cos (𝜋𝜋 +  𝑘𝑘
3 ) + i sin (𝜋𝜋 + 𝑘𝑘

3 ) ) 

              = - cos 𝑘𝑘3  - i sin  𝑘𝑘3 = - 12 - i √3
2  

 ∴ The cube root of unity are 1,  −1+𝑖𝑖√3
2 , −1− 𝑖𝑖√3

2  

Exercise: 

Ex. 1  Simplify   (−√3 + 3𝑖𝑖)    [Ans: 2 √3 (cos 2𝑘𝑘
3  + i sin 2𝑘𝑘

3 ) 

Ex. 2  Simplify   (sin 𝑘𝑘
6 + 𝑖𝑖 cos 𝑘𝑘

6 )18     [ Ans: 1] 

2.8 Circular functions of complex angles:  

We know that,  

𝑒𝑒i𝑥𝑥  = (cos 𝑥𝑥+ i sin 𝑥𝑥) and 𝑒𝑒−i𝑥𝑥  = (cos 𝑥𝑥 - i sin 𝑥𝑥) 

∴ 𝑒𝑒i𝑥𝑥  + 𝑒𝑒−i𝑥𝑥 = (cos 𝑥𝑥+ i sin 𝑥𝑥)+ (cos 𝑥𝑥 - i sin 𝑥𝑥) = 2 cos 𝑥𝑥 

And 𝑒𝑒i𝑥𝑥  -  𝑒𝑒−i𝑥𝑥 = (cos 𝑥𝑥+ i sin 𝑥𝑥) - (cos 𝑥𝑥 - i sin 𝑥𝑥) = 2 i sin 𝑥𝑥 

∴ cos 𝑥𝑥 = 𝒆𝒆
𝐢𝐢𝒙𝒙  + 𝒆𝒆−𝐢𝐢𝒙𝒙

𝟐𝟐  and    sin 𝑥𝑥 =  𝒆𝒆𝐢𝐢𝒙𝒙 − 𝒆𝒆−𝐢𝐢𝒙𝒙

𝟐𝟐 𝒊𝒊  

These are known as exponential values of the sine and cosine.  

For any non-real quantity z, where the geometrical definitions of sin z, cos z no 
longer have a meaning, we may regard them as defined as above so that,  

𝐬𝐬𝐢𝐢𝐬𝐬 𝒛𝒛 =  𝒆𝒆𝐢𝐢𝒛𝒛 − 𝒆𝒆−𝐢𝐢𝒛𝒛

𝟐𝟐 𝒊𝒊  ;   𝐜𝐜𝐜𝐜𝐬𝐬 𝒛𝒛  = 𝒆𝒆
𝐢𝐢𝒛𝒛  + 𝒆𝒆−𝐢𝐢𝒛𝒛

𝟐𝟐   

𝐭𝐭𝐭𝐭𝐬𝐬 𝒛𝒛 = 𝒔𝒔𝒊𝒊𝒔𝒔 𝒛𝒛
𝒄𝒄𝒄𝒄𝒔𝒔 𝒛𝒛 = 𝒆𝒆𝐢𝐢𝒛𝒛 − 𝒆𝒆−𝐢𝐢𝒛𝒛

𝒊𝒊(𝒆𝒆𝐢𝐢𝒛𝒛+ 𝒆𝒆−𝐢𝐢𝒛𝒛);  𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐜𝐜 𝒛𝒛 = 𝟏𝟏
𝐬𝐬𝐢𝐢𝐬𝐬 𝒛𝒛 = 𝟐𝟐 𝒊𝒊

𝒆𝒆𝐢𝐢𝒛𝒛 − 𝒆𝒆−𝐢𝐢𝒛𝒛  
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𝐬𝐬𝐬𝐬𝐬𝐬 𝒛𝒛 = 𝟏𝟏
𝐬𝐬𝐜𝐜𝐬𝐬 𝒛𝒛 = 𝟐𝟐 

𝒆𝒆𝐢𝐢𝒛𝒛 + 𝒆𝒆−𝐢𝐢𝒛𝒛;  𝐬𝐬𝐜𝐜𝐜𝐜 𝒛𝒛 = 𝟏𝟏
𝐜𝐜𝐭𝐭𝐭𝐭 𝒛𝒛 = 𝒊𝒊( 𝒆𝒆𝐢𝐢𝒛𝒛+ 𝒆𝒆−𝐢𝐢𝒛𝒛)

𝒆𝒆𝐢𝐢𝒛𝒛 − 𝒆𝒆−𝐢𝐢𝒛𝒛  

2.9 Definition of Hyperbolic Function: 

Hyperbolic Functions: The hyperbolic functions are the complex analogues of the 
trigonometric functions. The analogy may not be immediately apparent and their 
definitions may appear at first to be somewhat arbitrary. However, careful 
examination of their properties reveals the purpose of the definitions. For example, 
their close relationship with the trigonometric functions, both in their identities and 
their calculus, means that many of the familiar properties of trigonometric functions 
can also be applied to the hyperbolic functions. 

Definitions: The two fundamental hyperbolic functions are cosh x and sinh x, 
which, as their names suggest, are the hyperbolic equivalents of cos x and sin x. 
They are defined by the following relations.  

 Hyperbolic cosine of x, cosh 𝑥𝑥 = 𝑒𝑒
𝑥𝑥  + 𝑒𝑒−𝑥𝑥

2   

Hyperbolic sine of x, sinh 𝑥𝑥  = 𝑒𝑒
𝑥𝑥  − 𝑒𝑒−𝑥𝑥

2  

cosh 𝑥𝑥 is an even function and sinh 𝑥𝑥  is an odd function. By analogy with the 
trigonometric functions, the remaining hyperbolic functions are,  

tanh 𝑥𝑥  = sinh 𝑥𝑥
cosh 𝑥𝑥 = ( 𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)

( 𝑒𝑒𝑥𝑥  + 𝑒𝑒−𝑥𝑥) ;   sech 𝑥𝑥 = 1
cosh 𝑥𝑥 = 2

( 𝑒𝑒𝑥𝑥  + 𝑒𝑒−𝑥𝑥) 

cosech 𝑥𝑥 = 1
sinh 𝑥𝑥 = 2

( 𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥) ;  coth 𝑥𝑥 = 1
tanh 𝑥𝑥 = ( 𝑒𝑒𝑥𝑥  + 𝑒𝑒−𝑥𝑥)

( 𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)  

Identities of Hyperbolic function: 

1. sinh(−𝑥𝑥) = - sinh 𝑥𝑥  2. cosh(−𝑥𝑥) =  cosh 𝑥𝑥 

3.       tanh(−𝑥𝑥) = - tanh 𝑥𝑥    4. 1 - tanh2 𝑥𝑥 = sech2 𝑥𝑥 

5.       cosh2 𝑥𝑥 - sinh2 𝑥𝑥 =1     6. sinh(x + y) = sinh 𝑥𝑥 cosh y + cosh 𝑥𝑥 sinh y  

7.       cosh(x + y) = cosh 𝑥𝑥 cosh y + sinh 𝑥𝑥 sinh y  

Now, we prove identity 5, rest of the identities can solve by students as exercise. 
Prove that cosh2 𝑥𝑥 - sinh2 𝑥𝑥 =1 
Proof:  L. H. S. = cosh2 𝑥𝑥 – sinh2 𝑥𝑥 

   = [ 𝑒𝑒
𝑥𝑥  + 𝑒𝑒−𝑥𝑥

2 ]2 - [ 𝑒𝑒
𝑥𝑥 −  𝑒𝑒−𝑥𝑥

2 ]2 

   = 𝑒𝑒
2𝑥𝑥  +2.𝑒𝑒𝑥𝑥 𝑒𝑒−𝑥𝑥+𝑒𝑒−2𝑥𝑥

4  - 𝑒𝑒
2𝑥𝑥 −2.𝑒𝑒𝑥𝑥 𝑒𝑒−𝑥𝑥+𝑒𝑒−2𝑥𝑥

4  
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   = 14 [𝑒𝑒2𝑥𝑥   + 2 + 𝑒𝑒−2𝑥𝑥 − 𝑒𝑒2𝑥𝑥 + 2 − 𝑒𝑒−2𝑥𝑥] 

   = 14 [4]  = 1= R.H.S 

Prove that 1 - tanh2 𝑥𝑥 = sech2 𝑥𝑥 
Proof: Just now we proved, cosh2 𝑥𝑥 - sinh2 𝑥𝑥 =1 
Divide by cosh2 𝑥𝑥  
cosh2 𝑥𝑥
cosh2 𝑥𝑥 - sinh2 𝑥𝑥

cosh2 𝑥𝑥 = 1
cosh2 𝑥𝑥 

1 - tanh2 𝑥𝑥 = sech2 𝑥𝑥 

2.10 Relations between Circular and Hyperbolic Functions: 
By definitions of sin z and cos z,  

sin 𝑧𝑧 =  𝑒𝑒i𝑧𝑧 − 𝑒𝑒−i𝑧𝑧

2 𝑖𝑖  and cos 𝑧𝑧  = 𝑒𝑒
i𝑧𝑧  + 𝑒𝑒−i𝑧𝑧

2   

Put z = ix 

sin(ix) =  𝑒𝑒i(ix)  − 𝑒𝑒−i(ix)

2 𝑖𝑖  

             = 𝑒𝑒
−x − 𝑒𝑒x

2 𝑖𝑖                         [∵i2 = -1] 

             = −1
𝑖𝑖  [ 𝑒𝑒

x − 𝑒𝑒−x

2  ]   = 𝑖𝑖
2

𝑖𝑖  [ 𝑒𝑒
x − 𝑒𝑒−x

2  ]  = i sinh 𝑥𝑥 

cos(ix) =  𝑒𝑒i(ix)+ 𝑒𝑒−i(ix)

2    = 𝑒𝑒
−x+ 𝑒𝑒x

2      =  cosh 𝑥𝑥 

Thus, we have,  

sin(ix) = i sinh 𝑥𝑥;  cos(ix) = cosh 𝑥𝑥;  tan(ix) = i tanh 𝑥𝑥 

These definitions enable us to deduce the properties of hyperbolic functions from 
those of circular functions.  

I. cos2 𝑧𝑧 + sin2 𝑧𝑧 = 1. 

 cos2 𝑧𝑧 + sin2 𝑧𝑧 = (𝑒𝑒i𝑧𝑧  + 𝑒𝑒−i𝑧𝑧

2  )2 + (𝑒𝑒i𝑧𝑧 − 𝑒𝑒−i𝑧𝑧

2𝑖𝑖  )2 

                         = (𝑒𝑒2iz +2 + 𝑒𝑒−2i𝑧𝑧

4  ) - (𝑒𝑒2i𝑧𝑧 −2 + 𝑒𝑒−2i𝑧𝑧

4  )  =  44  = 1   [∵i2 = -1] 

II. cosh2 𝑥𝑥 - sinh2 𝑥𝑥 = 1. 

 Put z = ix in I 

 cos2(ix) + sin2(ix) =1  ⇒ cosh2 𝑥𝑥 +  (i 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝑥𝑥)2 =1 

 ⇒ cosh2 𝑥𝑥 +  i2sinh2 𝑥𝑥 =1 ⇒ cosh2 𝑥𝑥 -  sinh2 𝑥𝑥 =1            [∵i2 = -1] 

III. sin (z1 ± z2) = sin z1.cos z2 ± cos z1. sin z2 
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 Put z1 = ix and z2 = iy 

 sin i (x ± y) = sin (ix). cos (iy) ± cos (ix). sin (iy) 

 sinh (x ± y) = sinh x. cosh y ± cosh x. sinh y 

 Similarly, from the expansion of cos (z1 ± z2), we get,  

 cosh (x ± y) = cosh x. cosh y ± sinh x. sinh y 

We have following formulae for hyperbolic function which can be deduced from 
those of circular functions by similar methods as illustrated above. 

a. tanh (x ± y) = tanh 𝑥𝑥 ±tanh 𝑦𝑦
1 ±tanh 𝑥𝑥 tanh 𝑦𝑦 

b. sinh x + sinh y = 2 sinh 𝑥𝑥+𝑦𝑦
2  . cosh 𝑥𝑥+𝑦𝑦

2  

 sinh x - sinh y = 2 sinh 𝑥𝑥− 𝑦𝑦
2  . cosh 𝑥𝑥− 𝑦𝑦

2  

 cosh x + cosh y = 2 cosh 𝑥𝑥+𝑦𝑦
2  . cosh 𝑥𝑥+𝑦𝑦

2  

 cosh x - cosh y = 2 sinh 𝑥𝑥+𝑦𝑦
2  . sinh 𝑥𝑥+𝑦𝑦

2  

c. cosh2 𝑥𝑥 = 12 (1 + cosh 2x) and sinh2 𝑥𝑥 = 12 (cosh 2x -1) 

2.11 Inverse Hyperbolic Functions: 

Let x and y be two complex numbers.  

If  sinh 𝑦𝑦 = x then y is called the inverse hyperbolic sin of x and is written as y = 
sinh−1 𝑥𝑥.  

sinh−1 𝑥𝑥, cosh−1 𝑥𝑥, tanh−1 𝑥𝑥 etc are called inverse hyperbolic function. 

1. Prove that sinh−1 𝑥𝑥 = log (x + √𝑥𝑥2 + 1 ) 

 Proof: Let sinh y = x then y = sinh−1 𝑥𝑥 

           sinh y = x ………………..     (1) 

           sinh2 y = x2 ……………….   (squaring both the sides) 

           sinh2 y + 1 = x2 +1 ………...  (adding 1 toboth the sides) 

           cosh2 y = x2 +1 …………....   ( ∵cosh2𝜃𝜃 – sinnh2 𝜃𝜃=1) 

   cosh y = √𝑥𝑥2 + 1…………(2) (Take square root ) 

 Add (1) and (2) 

 sinh y + cosh y = x + √𝑥𝑥2 + 1 
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 If x is real, we have, cosh y = 𝑒𝑒
y  + 𝑒𝑒−y

2   and sinh y = 𝑒𝑒
y − 𝑒𝑒−y

2    

 ∴ 𝑒𝑒
y − 𝑒𝑒−y

2  + 𝑒𝑒
y+ 𝑒𝑒−y

2  = x + √𝑥𝑥2 + 1   ⟹  𝑒𝑒
y − 𝑒𝑒−y+ 𝑒𝑒y + 𝑒𝑒−y

2  = x + √𝑥𝑥2 + 1 

 2 𝑒𝑒y 
2  = x + √𝑥𝑥2 + 1 ⟹  𝑒𝑒y = (x + √𝑥𝑥2 + 1 ) = y = log (x + √𝑥𝑥2 + 1 ) 

        sinh−1 𝑥𝑥 = log (x + √𝑥𝑥2 + 1 ) ……… (∵ y = sinh−1 𝑥𝑥 ) 

2. Prove that cosh−1 𝑥𝑥 = log (x + √𝑥𝑥2 − 1 ) 

 Proof: Let cosh y = x then y = cosh−1 𝑥𝑥 

 cosh y = x ………………..  (1) 

  cosh2 y = x2 ………………. (squaring both the sides) 

  cosh2 y - 1 = x2 -1 ………... (subtracting 1 from both the sides) 

  sinh2 y = x2 -1 …………....   ( ∵cosh2𝜃𝜃 – sinnh2 𝜃𝜃=1) 

 sinh y = √𝑥𝑥2 − 1…………(2) (Take square root ) 

 Add (1) and (2) 

 cosh y + sinh y = x + √𝑥𝑥2 − 1 

 If x is real, we have, cosh y = 𝑒𝑒
y  + 𝑒𝑒−y

2   and sinh y = 𝑒𝑒
y − 𝑒𝑒−y

2    

 ∴ 𝑒𝑒
y  + 𝑒𝑒−y

2  + 𝑒𝑒
y − 𝑒𝑒−y

2  = x + √𝑥𝑥2 − 1 

  𝑒𝑒
y  + 𝑒𝑒−y+ 𝑒𝑒y − 𝑒𝑒−y

2  = x + √𝑥𝑥2 − 1 

 2 𝑒𝑒y 
2  = x + √𝑥𝑥2 − 1      ⟹  𝑒𝑒y = (x + √𝑥𝑥2 − 1 ) 

 y = log (x + √𝑥𝑥2 − 1 )  

          cosh−1 𝑥𝑥 = log (x + √𝑥𝑥2 − 1 ) ……… (∵ y = cosh−1 𝑥𝑥 ) 

3.  Prove that tanh−1 𝑥𝑥 = 1
2  log 1+𝑥𝑥

1−𝑥𝑥 

 Proof: Let tanh y = x then y = tanh−1 𝑥𝑥 

 tanh y = x 

 𝑒𝑒y − 𝑒𝑒−y

𝑒𝑒y+ 𝑒𝑒−y  = x ………………. ( tan x= 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
cos 𝑥𝑥 ) 

 𝑒𝑒y+𝑒𝑒−y

𝑒𝑒y− 𝑒𝑒−y = 1
𝑥𝑥 

 𝑒𝑒y+𝑒𝑒−y+𝑒𝑒y− 𝑒𝑒−y

𝑒𝑒y+ 𝑒𝑒−y−𝑒𝑒y− 𝑒𝑒−y  = 1+𝑥𝑥
1−𝑦𝑦…….. (if 𝑥𝑥

𝑦𝑦 = 𝑎𝑎𝑏𝑏 then 𝑥𝑥+𝑦𝑦
𝑥𝑥−𝑦𝑦 = 𝑎𝑎+𝑏𝑏

𝑎𝑎−𝑏𝑏) 
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 𝑒𝑒y+𝑒𝑒y

 𝑒𝑒−y+ 𝑒𝑒−y  = 1+𝑥𝑥
1−𝑦𝑦    

  2𝑒𝑒y

 2𝑒𝑒−y  = 1+𝑥𝑥
1−𝑦𝑦 

  𝑒𝑒𝑦𝑦. 𝑒𝑒𝑦𝑦= 1+𝑥𝑥
1−𝑦𝑦 

  𝑒𝑒2𝑦𝑦= 1+𝑥𝑥
1−𝑦𝑦 

  2y =log  1+𝑥𝑥
1−𝑦𝑦 

   y = 12 log  1+𝑥𝑥
1−𝑦𝑦 

 tanh−1 𝑥𝑥  = 12 log  1+𝑥𝑥
1−𝑦𝑦 …………. (y = tanh−1 𝑥𝑥) 

2.12 Differentiation and Integration:  

a. y = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑥𝑥,    𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑠𝑠𝑠𝑠ℎ 𝑥𝑥,        ∴ ∫ 𝑐𝑐𝑠𝑠𝑠𝑠ℎ 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑥𝑥  

b. y = 𝑐𝑐𝑠𝑠𝑠𝑠ℎ 𝑥𝑥,    𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑥𝑥,        ∴ ∫ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑠𝑠𝑠𝑠ℎ 𝑥𝑥 

c. y = 𝑡𝑡𝑡𝑡𝑠𝑠ℎ 𝑥𝑥,   𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 = sech2 𝑥𝑥,        ∴ ∫ sech2 𝑥𝑥  𝑑𝑑𝑥𝑥 = 𝑡𝑡𝑡𝑡𝑠𝑠ℎ 𝑥𝑥 

d. y = sinh−1 𝑥𝑥
𝑎𝑎 ,   𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥 1
√𝑎𝑎2+𝑥𝑥2 ,              ∴ ∫ 𝑑𝑑𝑥𝑥

√𝑎𝑎2+𝑥𝑥2 = sinh−1 𝑥𝑥
𝑎𝑎 

e. y = cosh−1 𝑥𝑥
𝑎𝑎 ,   𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥 1
√𝑥𝑥2+𝑎𝑎2 ,               ∴ ∫ 𝑑𝑑𝑥𝑥

√𝑥𝑥2+𝑎𝑎2 = cosh−1 𝑥𝑥
𝑎𝑎 

f. y = tanh−1 𝑥𝑥
𝑎𝑎 ,   𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥 𝑎𝑎
𝑎𝑎2− 𝑥𝑥2 ,                   ∴ ∫ 𝑑𝑑𝑥𝑥

𝑎𝑎2− 𝑥𝑥2 =  1
𝑎𝑎 tanh−1 𝑥𝑥

𝑎𝑎 

g. y = cosech−1 𝑥𝑥
𝑎𝑎 ,   𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥 −𝑎𝑎
𝑥𝑥 √𝑎𝑎2+𝑥𝑥2  ,         ∴ ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥 √𝑎𝑎2+𝑥𝑥2 =  − 1
𝑎𝑎 cosech−1 𝑥𝑥

𝑎𝑎 

h. y = sech−1 𝑥𝑥
𝑎𝑎 ,   𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥 −𝑎𝑎
𝑥𝑥 √𝑎𝑎2+𝑥𝑥2 ,              ∴ ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥 √𝑎𝑎2+𝑥𝑥2 =  − 1
𝑎𝑎 sech−1 𝑥𝑥

𝑎𝑎 

         Series for cosh x and sinh x :-  

 𝑒𝑒𝑥𝑥 = 1 + x + 𝑥𝑥
2

2!  + 𝑥𝑥
3

3!  + ……………….. 

 𝑒𝑒−𝑥𝑥 = 1 - x + 𝑥𝑥
2

2!  - 
𝑥𝑥3

3!  + ……………….. 

 cosh x = 12 ( 𝑒𝑒𝑥𝑥 +  𝑒𝑒−𝑥𝑥) =  1 + 𝑥𝑥
2

2!  + 𝑥𝑥
4

4!  + ……………….. 

 sinh x = 12 ( 𝑒𝑒𝑥𝑥 −  𝑒𝑒−𝑥𝑥) = x + 𝑥𝑥
3

3!  + 𝑥𝑥
5

5!  + ……………….. 

        tanh x = 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑥𝑥
𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝑥𝑥 = x -  1

3! 𝑥𝑥
3 +  2

15  𝑥𝑥5+ ……………….. 
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2.13 Graphs of the hyperbolic functions: 

First, we draw the graphs of 𝑒𝑒𝑥𝑥, 𝑒𝑒−𝑥𝑥 and - 𝑒𝑒−𝑥𝑥 

 

 

 

 

 

 

 

We know that, 

 cosh 𝑥𝑥 = 𝑒𝑒
𝑥𝑥  + 𝑒𝑒−𝑥𝑥

2  , sinh 𝑥𝑥  = 𝑒𝑒
𝑥𝑥  − 𝑒𝑒−𝑥𝑥

2  and tanh 𝑥𝑥  = 𝑒𝑒
𝑥𝑥  − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥  

 For cosh 𝑥𝑥,        cosh 𝑥𝑥 = 𝑒𝑒
𝑥𝑥  + 𝑒𝑒−𝑥𝑥

2  = 𝑒𝑒
𝑥𝑥

2  + 𝑒𝑒
−𝑥𝑥

2   

 

Note: cosh 𝑥𝑥 is an EVEN function. It is symmetric about Y axis and cosh (-𝑥𝑥) = 
cosh 𝑥𝑥 

 Domain: { x 𝜖𝜖 𝑅𝑅} and Range: {y 𝜖𝜖 𝑅𝑅 / y≥ 1} 

 x→ - ∞ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 cosh 𝑥𝑥  → ∞ and  

 x→ ∞ then cosh 𝑥𝑥 → ∞ 

For sinh 𝑥𝑥,   

 sinh 𝑥𝑥  = 𝑒𝑒
𝑥𝑥  − 𝑒𝑒−𝑥𝑥

2  = 𝑒𝑒
𝑥𝑥

2  - 𝑒𝑒
−𝑥𝑥

2  
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Note: sinh 𝑥𝑥 is an ODD function and sinh (-𝑥𝑥) = − sinh 𝑥𝑥 

 Domain: { x 𝜖𝜖 𝑅𝑅} and Range: {y 𝜖𝜖 𝑅𝑅} 

 x→ - ∞ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 sinh 𝑥𝑥  → - ∞ and  

 x→ ∞ then sinh 𝑥𝑥 → ∞ 

For tanh 𝑥𝑥,   

 tanh 𝑥𝑥  = 𝑒𝑒
𝑥𝑥  − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥   =  sinh 𝑥𝑥
cosh 𝑥𝑥  

 

Note: tanh 𝑥𝑥 is an ODD function. It is symmetric about origin and tanh (-𝑥𝑥) = 
− tanhh 𝑥𝑥 

 Domain: { x 𝜖𝜖 𝑅𝑅} and Range: {y 𝜖𝜖 R / -1 < y < 1} 

 x→ - ∞ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 tanh 𝑥𝑥  → - 1and x→ ∞ then tanh 𝑥𝑥 → 1 

The values of sinh x, cosh x and tanh x for x = - ∞, 0 and + ∞ from definition are 
as follows 
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x sinh x cosh x tanh x 

− ∞ − ∞ + ∞ -1 

0             0              1 0 

+ ∞ + ∞ + ∞ 1 

2.14 Logarithms of complex quality:  

Let z = x + iy  

Expressing the complex number in general polar form,  

z = r (cos𝜃𝜃 + sin 𝜃𝜃) 

x + iy = r (cos𝜃𝜃 + sin 𝜃𝜃)………….. (A) 

Equating real and imaginary parts, 

 x = r cos𝜃𝜃………………. (1) 

 y = r sin 𝜃𝜃……………….. (2) 

 Eq (1)2+ Eq(2)2 

 x2 + y2 = r2cos2 𝜃𝜃 + r2 sin2 𝜃𝜃 

 x2 + y2 = r2 …………………..              [ cos2 𝜃𝜃 + sin2 𝜃𝜃 = 1] 

 ∴ r = √𝑥𝑥2 + 𝑦𝑦2 

      Eq (2) / Eq (1) 

  r sin 𝜃𝜃
r cos𝜃𝜃 = 𝑦𝑦𝑥𝑥 

  tan 𝜃𝜃  = 𝑦𝑦𝑥𝑥 

   𝜃𝜃 =  tan−1 𝑦𝑦
𝑥𝑥 

   Take a log of Eq (A) 

   log (x + iy) = log r (cos𝜃𝜃 + sin 𝜃𝜃)   = log r 𝑒𝑒𝑖𝑖𝜃𝜃  = log r + log 𝑒𝑒𝑖𝑖𝜃𝜃 

         = log r + i 𝜃𝜃                            [log e = 1] 

  log (x + iy) = log √𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐  + i 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 𝒚𝒚
𝒙𝒙 

1.  Prove that log (x + iy) = log √𝑥𝑥2 + 𝑦𝑦2  + i tan−1 𝑦𝑦
𝑥𝑥 + 2n𝜋𝜋 i 

 Proof: Let z = x + iy  
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 Expressing the complex number in general polar form,  

 z = r (cos𝜃𝜃 + sin 𝜃𝜃) 

 x + iy = r (cos𝜃𝜃 + sin 𝜃𝜃)………….. (A) 

 Equating real and imaginary parts, 

 x = r cos𝜃𝜃………………. (1) 

 y = r sin 𝜃𝜃……………….. (2) 

 Eq (1)2+ Eq(2)2 

 x2 + y2 = r2cos2 𝜃𝜃 + r2 sin2 𝜃𝜃 

 x2 + y2 = r2 …………………..             (cos2 𝜃𝜃 + sin2 𝜃𝜃 = 1) 

 ∴ r = √𝑥𝑥2 + 𝑦𝑦2 

 Eq (2) / Eq (1) 

  r sin 𝜃𝜃
r cos𝜃𝜃 = 𝑦𝑦𝑥𝑥 

 tan 𝜃𝜃  = 𝑦𝑦𝑥𝑥 

 𝜃𝜃 =  tan−1 𝑦𝑦
𝑥𝑥 

  Take a Log of Eq (A) 

  Log (x + iy) = Log r (cos𝜃𝜃 + sin 𝜃𝜃) 

 (Take general value of Log) 

 = log r {cos (2n𝜋𝜋 + 𝜃𝜃) + i sin (2n𝜋𝜋 + 𝜃𝜃)} 

  = log r 𝑒𝑒𝑖𝑖(2n𝜋𝜋+𝜃𝜃)  

  = log r + log 𝑒𝑒𝑖𝑖(2n𝜋𝜋+𝜃𝜃)  [∵ log mn=log m + log n]  

  = log √𝑥𝑥2 + 𝑦𝑦2 + i(2n𝜋𝜋 + 𝜃𝜃) log e           [∵log mn=n log m] 

 Log (x + iy)   = log √𝑥𝑥2 + 𝑦𝑦2 + i (2n𝜋𝜋 + tan−1 𝑦𝑦
𝑥𝑥)               [∵ log e=1] 

This shows that for different value of n, the logarithm of a complex quantity x + iy 
is multivalued  

Ex. 1. Prove that Log (1 + i) = 12 log 2 + i(2n𝜋𝜋 + 𝜋𝜋
4) 

Sol: we know that,  

Log (x + iy) = log √𝑥𝑥2 + 𝑦𝑦2 + i(2n𝜋𝜋 + tan−1 𝑦𝑦
𝑥𝑥) 
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L. H. S. = Log (1 + i) 

             = log √𝟏𝟏𝟐𝟐 + 𝟏𝟏𝟐𝟐 + i(2n𝜋𝜋 + tan−1 1
1) 

            = log √𝟐𝟐 + i(2n𝜋𝜋 + 𝜋𝜋
4)                (∵ tan−11 =  𝜋𝜋

4) 

            = log (2
1
2)+ i(2n𝜋𝜋 + 𝜋𝜋

4)   

             = 1
2  log (2) + i(2n𝜋𝜋 + 𝜋𝜋

4)   

   = R. H. S. 

Ex. 2. Prove that Log (-5) =  log 5 + i(2n𝜋𝜋 + 𝜋𝜋) 

Sol: we know that,  

Log (x + iy) = log √𝑥𝑥2 + 𝑦𝑦2 + i(2n𝜋𝜋 + tan−1 𝑦𝑦
𝑥𝑥) 

L. H. S. = Log (-5) 

             = log (-5) + 2n𝜋𝜋 i 

             = log 5(-1) + 2n𝜋𝜋 i 

             = log 5 +log (-1) + 2n𝜋𝜋 i 

            = log 5 +log (cos 𝜋𝜋 + i sin 𝜋𝜋) + 2n𝜋𝜋 i (∵ cos𝜋𝜋 +  isin 𝜋𝜋 = 1) 

            = log 5 +log 𝑒𝑒𝑖𝑖𝜋𝜋 + 2n𝜋𝜋 i 

            = log 5 +i 𝜋𝜋log e + 2n𝜋𝜋 i 

            = log 5 + i (2n𝜋𝜋 + 𝜋𝜋 )  

            = R.H.S 

Exercise:  

Ex1. Prove that log (𝑎𝑎+𝑖𝑖𝑖𝑖
𝑎𝑎−𝑖𝑖𝑖𝑖 ) = 2i tan-1(𝑥𝑥

𝑦𝑦) 

Ex. 2 Show that log (1 +  𝑒𝑒𝑖𝑖𝜃𝜃) = log (2 cos 𝜃𝜃2) + 12 i𝜃𝜃, if - 𝜋𝜋 < 𝜃𝜃 <  𝜋𝜋 

2.15 j(=i) as an operator (Electrical circuits) 

j operator is a mathematical operator which when multiplied with any vector, rotate 
that vector by 900 in anti-clock wise direction.  
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j operator has assigned a value of √−1. Thus, it is an imaginary number.  

When operator j is operated on vector A, will get new vector jA. This new vector 
is displaced from displaced the original vector by 900 in anti-clockwise direction. 
the magnitude of vector is remains unchanged when the vector is operated by j.  

If the j is applied on the vector jA, the new vector j2A will be the 1800 in anti-
clockwise direction. The new vector j2A is in opposite to the original vector A. 
Hence j2A= -A. 

Similarly, when j2A is operated with j, the new vector so produced j3A will 2700 
ahead of the A. Hence, j3A =-jA. In the same way j4A= A 

From above, we can say that, 

j2 = -1;  j3= j2.j = -j;  j2 = j2 j2= 1;  (1/j) = -j 

 

We know that from Euler’s Formula, 

𝑒𝑒i𝑥𝑥  = (cos 𝑥𝑥+ i sin 𝑥𝑥) 
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Substitute x = 𝜋𝜋2 since cos 𝜋𝜋2 = 0, sin 𝜋𝜋2 = 1, we get, 𝑒𝑒𝑖𝑖𝜋𝜋2   = i 

If we take a radius vector of length ‘a’ along a horizontal line then  

ai = a 𝑒𝑒𝑖𝑖𝜋𝜋2  = ia;  ai2 = a 𝑒𝑒𝑖𝑖𝜋𝜋 = -a;  ai3 = a 𝑒𝑒𝑖𝑖3𝜋𝜋
2  = -ia;  ai4 = a 𝑒𝑒𝑖𝑖2𝜋𝜋 = a 

Thus, if we take a radius vector of length ‘a’ along a horizontal line the effect of 
raising i to a power n is equivalent to turning this radius vector through an angle 
n𝜋𝜋

2.  

 

 

i. Operation of j (=i) on a sin pt: 

 A sin pt is the projection of vector 𝑂𝑂𝑂𝑂⃗⃗⃗⃗  ⃗ (= a) on the horizontal line, where pt 
is an angle made by it with vertical, as shown in the fig.  

 

 Then j (a sin pt) represents the projection of 𝑂𝑂𝑂𝑂′⃗⃗⃗⃗⃗⃗  ⃗ (= a) on the horizontal line, 
when 𝑂𝑂𝑂𝑂⃗⃗⃗⃗  ⃗ is turned through 𝜋𝜋2. 

 ∴ j (a sin pt) = Projection of 𝑂𝑂𝑂𝑂′ on XOX’ = a cos pt 

 ∴ j (a sin pt) = a cos pt 

ii. Operation of (a + jb) on a sin pt: 

 (a + jb) sin pt = a sin pt + jb sin pt 

           = a sin pt + b cos pt         [from (i)] 

 ∴ (a + jb) sin pt = √𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 (sin pt + 𝜶𝜶),        Where tan 𝛼𝛼 = 𝑏𝑏𝑎𝑎 

 Operation of (a - jb) on a sin pt: 

 (a - jb) sin pt = a sin pt - jb sin pt 

           = a sin pt - b cos pt         [from (i)] 
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 ∴ (a - jb) sin pt = √𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 (sin pt - 𝜶𝜶),    Where tan 𝛼𝛼 = 𝑏𝑏𝑎𝑎 

iii. Operation of 1
a + jb on a sin pt: 

 1
a + jb sin pt = a − jb

𝑎𝑎2+𝑏𝑏2 sin pt 

        = 1
𝑎𝑎2+𝑏𝑏2 √𝑎𝑎2 + 𝑏𝑏2 (sin pt - 𝛼𝛼),  Where tan 𝛼𝛼 = 𝑏𝑏𝑎𝑎       [from (ii)] 

 ∴ 1
a + jb sin pt = 1

√𝑎𝑎2+𝑏𝑏2  (sin pt - 𝛼𝛼) 

 Similarly,  

 ∴ 1
a − jb sin pt = 1

√𝑎𝑎2+𝑏𝑏2  (sin pt + 𝛼𝛼) 

In electrical engineering, j operator has a great significance and application. You 
will encounter this operator often in electrical machine, power system, AC Network 
etc.  

We know that impedance of a circuit is a complex quantity i.e. it is having real part 
and imaginary part. Real part signifies resistive portion whereas imaginary part 
denotes reactance part of the impedance.  

In an electric circuit containing resistance R, inductance L and capacity C in series. 
We know that, if current I flow through the circuit at any time due to applied 
hormonic E. M. F. E0 sin pt, we have, 

ER = RI in phase with I 

EL = LpI in quadrature with I (leading) 

EC = 𝐼𝐼
Cp in quaduture with I (lagging) 

Where ER, EL and EC are voltage drops across R, L and C respectively. 
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As current through reactance either lags or lead the voltage by 900. Therefore, this 
reactance is represented by using j operator. The current through resistance remain 
in phase with the voltage, hence resistance is taken as reference and reactance (say 
E) is rotated with respect to this reference when operated with j operator.  

The total impendence which impedes the circuit in AC circuit given by addition of 
these vectors.  

Hence impendence Z is written as Z = (R ± jE). It may be noted that the capacitive 
and inductive reactance are (-j/𝐶𝐶𝐶𝐶) and jLp.  

∴ z  = R + jLp + (−𝑗𝑗
Cp) 

 = R + j (Lp - 1
Cp) 

 

If E0 sin pt be applied voltage, the current I in the circuit is given by,  

 E0 sin pt
I  = z 

 ∴ I = E0 sin pt
z  

 ∴ I = E0 
R + j (Lp − 1

Cp)
 sin pt 

 = E0 

√𝑅𝑅2+(Lp − 1
Cp)2

 sin (pt – 𝛼𝛼), where 𝛼𝛼 = tan -1 
(Lp − 1

Cp
𝑅𝑅  

     [ ∵ 1
a + jb sin pt = 1

√𝑎𝑎2+𝑏𝑏2  (sin pt - 𝛼𝛼)] 

2.16 Summary: 

Complex Numbers can be presented in rectangular, polar or exponential form with 
the conversion between each complex number algebra form including addition, 
subtracting, multiplication and division. We learned about introductory ideas 
associated with complex numbers, their algebra and geometry, algebraic properties 
of complex numbers, Argand plane and polar representation of complex numbers, 
mathematical operation with complex numbers and their representation on 
Argand’s Diagram, circular functions of complex angles, hyperbolic functions, 
relations between circular and hyperbolic functions, inverse hyperbolic functions, 
graphs of the hyperbolic functions. Finally, we looked the Logarithms of complex 
quality and application of complex number in electrical circuit.  
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2.17 References:  

1. Applied Mathematics II by P. N. Wartikar and J. N. Wartikar 

2. Higher Engineering Mathematics by Dr. B. S. Grewal 

 3.  Complex numbers from A to Z by Titu Andreescu and Dorin Andrica 

2.17 Exercise:  

Ex. 1 If | z1 | = 1, | z2 | = 2, | z3 | = 3 and | 9z1 z2 + 4z1 z3 + z2 z3 | = 12, then 
find the value of | z1 + z2 + z3 |.        [ 
Ans: | z1 + z2 + z3 | = 2] 

Ex.2  z1, z2, and z3 are complex numbers such that z1 + z2 + z3 = 0 and 
| z1 | =| z2 | =| z3 | = 1 then find z12 + z22 + z33     

 [Ans: 0] 

Ex. 3  Find the fourth roots of unity  [Ans: 1, i, -1, -i] 

Ex. 4  Find all cube root of (√3 + 𝑖𝑖)  

[Ans: 21/3 (cos 𝜋𝜋
18 + i sin 𝜋𝜋

18), 21/3 (cos 13𝜋𝜋
18  + i sin 7𝜋𝜋

8 ), 21/3 (cos 25𝜋𝜋
18  + i sin 25𝜋𝜋

18 )] 

Ex. 5 Simplify ( 1+ √3𝑖𝑖
1− √3𝑖𝑖)

10                                       [Ans: (cos 2𝜋𝜋
3  + i sin 2𝜋𝜋

3 )] 

Ex 6 Prove that Log i = log i +2n 𝜋𝜋 i 

Ex 7 Prove that i log (𝑥𝑥−𝑖𝑖
𝑥𝑥+𝑖𝑖 ) = 𝜋𝜋 - 2 tan-1x  

Ex 8 Show that tan ( i log 𝑎𝑎+𝑖𝑖𝑖𝑖
𝑎𝑎−𝑖𝑖𝑖𝑖 ) = 2𝑎𝑎𝑖𝑖 

𝑎𝑎2 + 𝑖𝑖2   

❖❖❖❖❖❖❖ 
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Unit 2 

3 
DIFFERENTIAL EQUATION 

EQUATION OF THE FIRST ORDER AND OF THE FIRST DEGREE 

Unit Structure 

3.1 Objectives 

 Introduction 

3.3 Ordinary Differential Equation 

 Separable Variables - Differential Equation  

 Equations reducible to homogeneous forms 

3.6 Existence of a solution for a differential equation 

3.7 Homogeneous polynomial 

3.7.1 Homogeneous function 

3.7.2 Homogeneous Differential Equation 

3.7.3 Non Homogeneous Differential Equation 

3.8 Exact Differential Equation 

3.9   Integrating Factors 

3.10 Integrating Factor of a homogeneous equation 

3.11 Linear Equation and equation reducible to homogeneous form 

3.12 Partial Differential Equation-An Overview 

3.13 Summary 

3.14 References 

3.15 Questions 

3.1 Objectives  

- recognize and solve problems in ordinary differential equations 

- Understand the application of differential equation in physics and 
engineering branches such as electronics, electrical, mechatronics etc.  

- Evaluate first order differential equations including separable, 
homogeneous, non-homogeneous exact, and linear and partial 
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- Identify research problems where differential equations can be used to 
model the system 

- Analyze mathematical models to solve application problems such as 
circuits, population modeling, orthogonal trajectories, and slopes 

3.2 Introduction 

In an equation constituting of dependent and independent variable, when the 
derivatives of the former can be represented with respect to one or more 
independent variables such equations are called Differential Equation. Some of 
the differential equations that can be solved by standard procedures are as 
follows: 

- Differential equation in which variables are separable 

- Homogeneous differential equations 

- Non homogeneous differential equations which can be reduced 
homogeneous differential equations 

- Linear differential equations 

- Bernoulli’s differential equations that are nonlinear and can be reduced to 
linear form.  

- Exact differential equations 

A first order differential equation is an equation that can be represented in the 
form  

F (t, y, dy/dt) = 0 or in other words F(t, y, y′)                        
Equation 1 

where y′ is the first order derivative of y 

This equation can also be represented as 

F(t, f(t), f′(t))  =  0   for every value of t                                      
Equation 2 

and is function of three variables (t, y, y′).  
A differential equation’s order is determined by the highest-order derivative 
whereas the degree is the highest power to which a variable is raised within an 
equation. The higher the order of the differential equation, the more arbitrary 
constants need to be added to the general solution. Below are a few examples that 
depict different scenarios 

Examples   y′′′ + y′′ + y′ + c =  0   Equation 3 

   y′ − y =  4     Equation 4 
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3.3. Ordinary Differential Equation 

Ordinary Differential Equation (ODE) is described as the relation having an 
independent variable x,a dependent variable y and associated derivatives of y. 
The order of the ordinary differential equation is the order of the highest 
derivative in that equation. Few examples of ordinary differential equation are as 
follows:  

Equation Order Degree  

y3 +  x3dy/dx = 0 1 3 Equation 5 

y3 +  x3d2y/dx2  = 0 2 4 Equation  6 

 

Example 1 

∂y/ ∂x =  4y − 2     ∂y/4y-2 = ∂x 

∫ 𝜕𝜕𝜕𝜕/(4𝜕𝜕 − 2 ) =  𝜕𝜕𝜕𝜕 

1/4  log | 4y − 2|  = x +c 

log | 4y − 2|  =  4x + 4c 

4y − 2 =(+−)𝑒𝑒4𝑥𝑥+4𝑐𝑐 

4y = (+−)𝑒𝑒4𝑥𝑥+4𝑐𝑐+ 2 

y = 1/4(+−)𝑒𝑒4𝑥𝑥+4𝑐𝑐+ 1/2 

y = (+-)1/4exp(4(x + c)) + 1/2 

Let C = 1/4exp(4c) 

y(x) =Ce4x +1/2 
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 =4Ce4x 

4y-2 =4Ce4x 

4y = 4Ce4x +2 

Substituting for y in the above         

4(Ce4x +1/2) = 4Ce4x +2  

The two equations are proved equal. 

With y(2) where x = 2  and y(2) = 4 the proof is as follows : 

y(2) = 1 then 

Ce8 + 1/2 = 1 

Ce8 = 1/2 or C = 1/2(e-8) 

4(1/2e-8 .e8 +2) = 4(1/2e-8.. e8) + 2 = 4  Ans 
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Example 2 

= ∂y/ ∂x =  7y2x3     and     y(2) = 3 

= ∂y/7y2  =  x3dx 

=1/7∫ 𝜕𝜕 𝑦𝑦/y2  = ∫ 𝑥𝑥3 𝑑𝑑𝑥𝑥 

= − 1
7 y−2+1 =  𝑥𝑥

4

4  +c 

= (−1)y−1  =  7x4+c 

y = −1/(7/4(x4)+c)  = −𝟏𝟏
𝟕𝟕
𝟒𝟒𝒙𝒙𝟒𝟒  +𝒄𝒄

 

Putting x =2 

3 = (−1)/(7/4(16) + c) 

3 = −1/28 + c 

c= −85/3 

y = ( −𝟏𝟏)
(𝟕𝟕

𝟒𝟒)𝐱𝐱𝟒𝟒 − 𝟖𝟖𝟖𝟖
𝟑𝟑

   Ans   

∂y
∂x = 𝜕𝜕

𝜕𝜕𝑥𝑥 ( −𝟏𝟏
𝟕𝟕
𝟒𝟒𝒙𝒙𝟒𝟒  +𝒄𝒄

) = 7𝑥𝑥3

(7
4𝑥𝑥4 +𝑐𝑐)2  =   7x3 ×  y2   where y = −1

7
4𝑥𝑥4  +𝑐𝑐

 

3.4  Separable Variables - Differential Equation  

Variables are said to be separable when all the similar terms are on the same side 
i.e.  x and dx on one side and y and dy on the other side. The general 
representation of the equation is as follows : 

f(x)dx = g(y)dy (or) f(x)dx + g(y)dy = 0                Equation 7 

Consider an example as follows: 

(𝑦𝑦2+1)∂y +  (x2  + 3) ∂x = 0 

∫(𝑦𝑦2 + 1) ∂y + ∫  (x2  + 3) ∂x = 0   
𝒚𝒚𝟑𝟑

𝟑𝟑  +y + 𝒙𝒙
𝟑𝟑

𝟑𝟑  +3x = c 
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Examples 

a) 

 

b) ∂y/ ∂x = ex−y +𝑥𝑥2𝑒𝑒−𝑦𝑦 = 𝑒𝑒−𝑦𝑦(𝑒𝑒𝑥𝑥 + 𝑥𝑥2) 

 = ∂y/𝑒𝑒−𝑦𝑦 = (𝑒𝑒𝑥𝑥 + 𝑥𝑥2) ∂x 

 = ∫ 𝑒𝑒𝑦𝑦 𝜕𝜕𝜕𝜕 = ∫ 𝑒𝑒𝑥𝑥𝜕𝜕𝑥𝑥 + ∫ 𝑥𝑥2𝜕𝜕𝑥𝑥   

 = 𝑒𝑒𝑦𝑦  = 𝑒𝑒𝑥𝑥+𝑥𝑥3

3  +c Ans 

c) y - x dy/dx = a(y2  +dy/dx) 

 = y - xdy/dx = ay2 + ady/dx 

 = y - ay2 = dy/dx(x+a) = dx/(x+a) = dy/y-ay2  

 ∫ 𝐝𝐝𝐝𝐝/(𝐝𝐝 + 𝐚𝐚) =∫ 𝒅𝒅𝒅𝒅/𝒅𝒅 − 𝒂𝒂𝒅𝒅𝟐𝟐  

 Let  1
y(1−ay)  =  A

y + B
1−ay 

 1 = A (1-ay) +By 

 1 = A- a(Ay) + By 

1-A = -y(aA -B)  

1-A = -y or y = A-1  

 B-aA= 1-A if A= 1 then B- a = 0 or B=a 

∫ dx/(x + a) =∫ 𝑑𝑑𝜕𝜕/𝜕𝜕 − 𝑎𝑎𝜕𝜕2  

1/y(1-ay) = A/y +B/1-ay        

Upon integrating it is  

log y +a(-1/a)log(1-ay) = log y - log(1-ay) = log(y/1-ay) +c 

log (x+a) = log(y/1-ay) +c 

log(x+a) -log(y) +log(1-ay) =log  c  

log(x+a)(1-ay)/log y = log c 

(x+a)(1-ay) = cy  Ans 
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Example 

y(1 + x)dx + x(1 + y)dy =  0 

(1+x)dx = -x(1+y)dy 

(1+x)dx/x = -(1+y)dy 

∫ 𝑑𝑑𝑑𝑑
𝑑𝑑  + ∫ 𝑑𝑑𝑑𝑑 =  − ∫ 𝑑𝑑𝑑𝑑

𝑑𝑑  − ∫ 𝑑𝑑𝑑𝑑 

=log x +  x =  −log y − y 

= log |x |+log |y| +x+y = c 

=log| xy|  + x + y = c 

3.5  Equations reducible to homogeneous forms 

A function f(x,y) is called Homogeneous of degree n if  

),(),( yxftyxf n=                                                       
 Equation 8 

and where t is a nonzero real number. Thus  









+
+

y
xand

yx
yxxy sin..., 22

1010

                                     
Equation 9 are homogeneous function of degree 1, 8 and 0 respectively 

A first order differential equation of the form 
),( yxf

dx
dy

=
  is said to be 

homogeneous if the function f depends  only on ratio  of (y/x).Thus first order 
homogeneous  equation are of the form    







=

x
yg

dx
dy

                                                                                           
Equation 10 

and is transformed into an  equation that is separable by  substituting y = vx and 







+=

dx
dvxv

dx
dy

                    Equation 11 

and 

g(v) = v +x(dv/dx) and ∫ dv/(v-g(v) = − ∫ 𝒅𝒅𝒅𝒅/𝒅𝒅  

                               Equation 12 
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a) (x-y)𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 = x+3y 

 𝑥𝑥+3𝑦𝑦
𝑥𝑥−𝑦𝑦  = 𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥   let y = hx; 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥  = h +x𝜕𝜕ℎ

𝜕𝜕𝑥𝑥  = 𝑥𝑥+3𝑣𝑣𝑥𝑥
𝑥𝑥−𝑣𝑣𝑥𝑥   = 1+3ℎ

1−ℎ  

 = x𝜕𝜕ℎ
𝜕𝜕𝑥𝑥 = 1+3ℎ

1−ℎ  - h = 1+3h−h +h2 

1−ℎ  = 1+2ℎ +ℎ2

1−ℎ   

 = 𝜕𝜕𝑥𝑥
𝑥𝑥  = (1−ℎ)

(1+ℎ)2   = log|x|  + c =  ∫ 1−h
(1+h)2 ∂h 

 Putting m = 1+h   

 = ∫ 2−𝑚𝑚
𝑚𝑚2 𝑑𝑑𝑑𝑑 = 2 ∫ 𝜕𝜕𝑚𝑚

𝑚𝑚2  -∫ 𝜕𝜕𝑚𝑚
𝑚𝑚 = - log|m| -  2

𝑚𝑚 = −2
(1+ℎ) 𝑙𝑙𝑙𝑙𝑙𝑙|1 + ℎ| 

 = −2
(1+ℎ) 𝑙𝑙𝑙𝑙𝑙𝑙|1 + ℎ|   

 = log|x|  + c  = −2
1+𝑦𝑦

𝑥𝑥
 -  log|1+𝑦𝑦

𝑥𝑥|  = log|x|  + c + 2𝑥𝑥
𝑥𝑥+𝑦𝑦 + log|𝑥𝑥+𝑦𝑦

𝑥𝑥  | = 0 

 = log|x+y| + 2𝑥𝑥
𝑥𝑥+𝑦𝑦 = c Ans 

b) Solve : (x + 9y − 7)dx =  (2x + 3y − 6)dy  

dy
dx =  (x + 9y − 7)

(2x + 3y − 6) 

 = 𝑑𝑑𝑦𝑦
𝑥𝑥+9𝑦𝑦−7   = 𝑑𝑑𝑥𝑥

2𝑥𝑥+3𝑦𝑦 −6 

 Let x =  X + h , y =  Y +  k  here h and k can be solved for their values 

 Equations to be considered are as follows: 

 (ℎ + 9𝑘𝑘 − 7)  and (2ℎ + 3𝑘𝑘 − 6) that are solved to get h = 11
5  and k = 8

15 

 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 = X+9Y+(h+9k−7)

2X+3Y+(2h+3k−6)   
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 = Let Y =  hX then ∂y 

∂x   = h +  X ∂h
∂x   i.e.equal to 

 𝑋𝑋+9𝑌𝑌
2𝑋𝑋+3𝑌𝑌 = h + X ∂v

∂x  = 𝑋𝑋+9ℎ𝑋𝑋
2𝑋𝑋+3ℎ𝑋𝑋 = 1+9ℎ

2+3ℎ  i.e. X ∂v
∂x  = 1+9ℎ

2+3ℎ  - h = 1+7𝑣𝑣−3𝑣𝑣2

2+3𝑣𝑣  = X ∂v
∂x  

2 + 3𝑣𝑣
1 + 7𝑣𝑣 −  3𝑣𝑣2 𝜕𝜕𝑣𝑣 =  𝜕𝜕𝜕𝜕

𝜕𝜕  

∫ 2 + 3𝑣𝑣
1 + 7𝑣𝑣 − 3𝑣𝑣2 𝜕𝜕𝑣𝑣 =  𝑙𝑙𝑙𝑙𝑙𝑙|𝜕𝜕|  + 𝑐𝑐 

 2 ∫ 𝜕𝜕𝑣𝑣
1+7𝑣𝑣−3𝑣𝑣2 +3 ∫ 𝑣𝑣𝜕𝜕𝑣𝑣

1+7𝑣𝑣−3𝑣𝑣2 = 𝑙𝑙𝑙𝑙𝑙𝑙|𝜕𝜕|  + 𝑐𝑐 

 2log (1 + 7v − 3v2) +3vlog(1 + 7v − 3v2) + 3
(1+7𝑣𝑣−3𝑣𝑣2)

𝑣𝑣2

(2)   = 𝑙𝑙𝑙𝑙𝑙𝑙|𝜕𝜕|  + 𝑐𝑐 
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𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝟕𝟕 𝐘𝐘  
𝐗𝐗  - 3(𝐘𝐘  

𝐗𝐗 )2   + 3(𝒀𝒀
𝑿𝑿)log(1+7(𝒀𝒀

𝑿𝑿) - 3(𝐘𝐘  
𝐗𝐗 )2  + 𝟑𝟑( 𝒚𝒚𝒙𝒙)𝟐𝟐

(𝟏𝟏+𝟕𝟕(𝒚𝒚
𝒙𝒙)−𝟑𝟑(𝒚𝒚

𝒙𝒙) 𝟐𝟐)(𝟐𝟐)
  =  𝒍𝒍𝒍𝒍𝒍𝒍|𝑿𝑿|  +

𝒄𝒄 Ans 

Example 

 𝑠𝑠𝑠𝑠𝑠𝑠2 x tan y ∂x  + sec2y tan x∂y =  0 

 𝑠𝑠𝑠𝑠𝑠𝑠2 x ∂x = - sec2y tan x ∂y
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = - 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜕𝜕𝑡𝑡

𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡𝜕𝜕𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =- 𝜕𝜕𝑡𝑡

𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝜕𝜕𝑡𝑡
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 

 Upon integrating 

 ∫ 𝜕𝜕𝑡𝑡
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = − ∫ 𝜕𝜕𝑡𝑡

𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡  + log|c|  = ∫ (𝑠𝑠𝑠𝑠𝑡𝑡2  𝑡𝑡 +𝑠𝑠𝑠𝑠𝑠𝑠2 𝑡𝑡)𝜕𝜕𝑡𝑡
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡   

 = − ∫ (𝑠𝑠𝑠𝑠𝑡𝑡2𝑡𝑡+𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡)𝜕𝜕𝑡𝑡
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡   + c = 0 

 ∫ 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 𝜕𝜕𝜕𝜕+∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡

𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 𝜕𝜕𝜕𝜕+∫ 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 𝜕𝜕𝜕𝜕 +∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡

𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 𝜕𝜕𝜕𝜕=c 

 = log (secx) + log (sinx) +log (secy)+log(sin y) = log(c) 

 =log (tanx)+log(tany) = log(c) 

 =log (tanxtany) = log(c) 

 = tan x tan y = c Ans 

Example 

The cost of producing x socks is  6 + 10x − 6x2 . The total cost of producing a pair 
is INR 100. Find the function representing total and average cost. 

Cost = 6 + 10x − 6x2 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

  = 6 + 10x − 6x2 = ∫ 𝜕𝜕𝑠𝑠  =  ∫(6 + 10x − 6x2 )∂x  + k 

C = 6x +10𝑡𝑡2

2  - 6𝑡𝑡3

3  + k = C = 6x +5x2 - 2x3 +k  

When x = 2 and C = 100 then K = 84 

Hence Average Cost if there are x units of socks is  𝟔𝟔𝟔𝟔+𝟓𝟓𝟔𝟔𝟐𝟐 − 𝟐𝟐𝟔𝟔𝟑𝟑 + 𝟖𝟖𝟖𝟖
𝒙𝒙   Ans 

Example 

A curve passes through points (1, 2) and lines to the curve  pass through the point 
(1,0).  Formulate the equation of the curve using differential equation 

Slope of a line given by y = mx + c 

∂y/dx =  m = y2  − y1
𝑡𝑡2−𝑡𝑡1   = 𝑡𝑡−0

𝑡𝑡−1  = ∂y
𝑡𝑡   = ∂x

𝑡𝑡−1 
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Slope of a normal at any given point P(x, y) is represented by   − ∂x
∂y  = 𝑦𝑦−0

𝑥𝑥−1   

= ∫ 𝑦𝑦𝑦𝑦𝑦𝑦 = − ∫(𝑥𝑥 − 1)𝑦𝑦𝑥𝑥 + 𝑐𝑐 =- 𝑥𝑥
2

2  + x +c 

= 𝑦𝑦
2

2  = - x
2

2  + x +c 

Passing through points (1, 2) we have c = 52 - 1 = 32 

Putting c = 32  = 𝑦𝑦
2

2   + x
2

2  -x -  32  = y2 + x2 - 2x - 3 = y2   = 2x - x2 + 3 Ans 

Example  

A sum of INR 4,000 is compounded at a 10% per annum rate of interest. In how 
many years will the amount be double the original principal? (loge 2 = 0.69) 

Principal = P, Rate of Interest = 10 percent per annum, Sum = P+ P*( 10
100) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕   =  10

100 P = ∫ 𝜕𝜕𝜕𝜕
𝜕𝜕  = 1

10 ∫ 𝑦𝑦𝜕𝜕 +  𝑐𝑐 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒|𝑃𝑃|  = (0.1 𝜕𝜕)  + 𝑐𝑐 = 𝑃𝑃 =   𝑒𝑒.1𝜕𝜕 𝑒𝑒𝑐𝑐  = 

c’ 𝑒𝑒.1𝜕𝜕 = 4000 = c’ when t = 0 and e = 1, = 8000 = 4000e.1t, 2 = e.1t, t/10 = log 2   

.69 = t/10, t = 6.9 years. Ans 

3.6 Existence of a solution for a differential equation 

The general solution of the equation dy/dx = h(x, y) and has the form f(x, y, C) = 
0, C being a constant. Below is the theorem that presents the scenario : 

A general solution of dy/dx = h(x, y) exists over a region S of points (x, y) based 
on certain conditions 

a)  h(x, y) is continuous and single-valued over S 

b)  ∂g/∂y exists and is continuous at all points of S 

The general solution f(x, y, C) = 0 of a differential equation dy/dx = h(x, y) over 
some region S consists of set of curves, where each curve represents a particular 
solution, such that through each point in S there passes one and only one curve 
for different values of C. 

The differential equation associates with each point (x0, y0) in the region S a 
direction that is given by 

m = 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥|x,y   = h(x,y)  

The direction at each point of S is the tangent to that curve of the family f(x, y, C) 
= 0 that passes through the point. 
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A region S in which a direction is associated with each point is called a direction 
field. For an equation such as y = x2 +c the direction would be 2x. The curves  or 
parabolas can be represented as shown in the diagram 

 

 

3.7 Homogeneous polynomial 

A polynomial whose terms sum to the same degree with respect to all the 
variables taken together. Thus 

             m2 + 2mn - 2n2             degree 2 homogeneity 

            2m3n + 3 m2n2 + 5n4     degree 4 homogeneity 

            2m + 5n                        degree 1 homogeneity 

3.7.1 Homogeneous function 

A function is said to be homogeneous when we can take a function: f(x, y) and 
multiply each of the variable so that the function is of the form n: f (nx,ny) and 
represent it in the form zn f(x, y).Thus 

            2m2 ln(𝑚𝑚𝑛𝑛 )+ 4n2          is homogeneous of degree 2 

            m2 n + n3 sin (𝑚𝑚𝑛𝑛 )        is homogeneous of degree 3 

 

 

3.7.2 Homogeneous Differential Equation 

A homogeneous equation is a differential equation of the form 

M(p, q) dp + N(p, q) dq = 0                                                                           
Equation 13 
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where  M(p, q) and N(p, q) are homogeneous functions of the same degree.Here 
variables can be separated by substitution by introducing a  new variable  p = sq 
(or q = sp), where s is a new variable. 

Note. Differentiating p = sq gives dp = s dq + q ds, a quantity that must be 
substituted for dp when sq is substituted for p. 

Example  

Solve the equation 

(x2 -y2)dx + 2xy dy = 0 

Solution Separation of variables though not possible the can be represented as 
homogeneous function as follows. Substituting 

y = vx             and      dy = v dx + x dv 

we get  

(x2   - v2x2)dx  +2x(vx)(vdx+xdv) = 0 

x2dx - v2x2dx +2v2x2dx + 2x3vdv = 0 

x2dx+v2x2dx + 2x3vdv = 0 

(1+v2)x2dx = -2x3vdv 

dx/x  = -2v dv/(1+v2) 

 Upon integrating    

 ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑  = -2∫ 𝑣𝑣𝑑𝑑𝑣𝑣

(1+𝑣𝑣2)  

 = -log (x)+ log C = log(1+v2)  

 =x(1+v2) = C 

 Since y = vx 

 =x(1+(𝑦𝑦
𝑑𝑑)2) = C 

 =x((𝑑𝑑2 + 𝑦𝑦2 

𝑑𝑑2 ) = C 

 = x2 + y2 = C Ans    

3.7.3 Non Homogeneous Differential Equation 

 These can be represented in the form as follows: 

 𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑 = 𝑝𝑝𝑑𝑑+𝑞𝑞𝑦𝑦 +𝑟𝑟

𝑝𝑝′𝑑𝑑 +𝑞𝑞′𝑦𝑦 +𝑟𝑟′                                                           Equation 14 
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We can now replace x = X + h and y = Y + k  
𝑝𝑝(𝑋𝑋+ℎ)+𝑞𝑞(𝑌𝑌+𝑘𝑘) +𝑟𝑟

𝑝𝑝′(𝑋𝑋+ℎ) +𝑞𝑞′(𝑌𝑌+𝑘𝑘) +𝑟𝑟′   =   p(X)+p(h)+q(Y) + q(k) +r
p′(X)+p′(h) +q′(Y)+q′(k) +r′  = 𝑝𝑝(𝑋𝑋) +𝑞𝑞(𝑌𝑌) +𝑝𝑝ℎ+𝑞𝑞𝑘𝑘+𝑟𝑟

𝑝𝑝′(𝑋𝑋) +𝑞𝑞′(𝑌𝑌) + 𝑝𝑝′ℎ + 𝑞𝑞′𝑘𝑘 +𝑟𝑟′ 

ph + qk + r =0; p′h +  q′k + r′ = 0;  ph + qk =-r; p′h +  q′k = - r′ ; 

h = 𝒓𝒓′𝒒𝒒−𝒓𝒓𝒒𝒒′
𝒑𝒑𝒒𝒒′ −𝒑𝒑′𝒒𝒒  and    𝐤𝐤 =  𝐩𝐩′𝐫𝐫−𝐩𝐩𝐫𝐫′

𝐩𝐩𝐩𝐩′ − 𝐩𝐩′𝐩𝐩  and subject to the condition that the term pq’ - 

p’q ≠ 0 the equation takes the form as follows: 

𝜕𝜕𝑌𝑌
𝜕𝜕𝑋𝑋 = 𝑝𝑝𝑋𝑋 +𝑞𝑞𝑌𝑌

𝑝𝑝′𝑋𝑋 +𝑞𝑞′𝑌𝑌   that is transformed into a homogeneous equation. 

If  pq′ −  p′q =  0  

then the  values of h and k are infinite  and the method is not suitable to find the solution   

of a non homogeneous differential equation.  If  pq′ −  p′q =  0 then 
𝑝𝑝
𝑝𝑝′  =  𝑞𝑞

𝑞𝑞′  =  1
𝑛𝑛   i.e. p’ = np and q’ = nq  and the differential equation becomes  

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 = 𝑝𝑝𝑥𝑥+𝑞𝑞𝑦𝑦 +𝑟𝑟

𝑝𝑝′𝑥𝑥 +𝑞𝑞′𝑦𝑦 +𝑟𝑟′    = 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 = 𝑝𝑝𝑥𝑥+𝑞𝑞𝑦𝑦+𝑟𝑟

𝑛𝑛𝑝𝑝𝑥𝑥+𝑛𝑛𝑞𝑞𝑦𝑦+𝑟𝑟′ = 𝑝𝑝𝑥𝑥+𝑞𝑞𝑦𝑦+𝑟𝑟
𝑛𝑛(𝑝𝑝𝑥𝑥+𝑞𝑞𝑦𝑦)+𝑟𝑟′ 

v =  px +  qy = ∂v
∂x = p +q 𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥   = 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 =  

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − p)

𝑞𝑞    =   𝑣𝑣 + 𝑐𝑐 
𝑛𝑛𝑣𝑣 +𝑐𝑐′ = F(v)   = ∂x =

 ∂v
p +q (F(v))     that which can be integrated. 

Example 

 (6x −  4y + 1) ∂y
∂x  = (3x − 2y + 1) = 𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥 = 3x−2y   +   1
2(3x−2y) + 1  

  Following the above transformation let v = 3x − 2y,  𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥  = 3 −  2 ∂y

∂x  = 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥  

 = 
3 −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
2   = 𝑣𝑣 + 1

2𝑣𝑣 + 1 = 3 − ∂v
∂x = 2𝑣𝑣 + 2

2𝑣𝑣 + 1 = 3 - 2𝑣𝑣 + 2
2𝑣𝑣 + 1 =   6v + 3 −2v +1

2v+1 =  ∂v
∂x  =  4v+4

2v+1 

 = ∂x =  (2v+1)
4v+4  ∂v  

 = 12{v + 14 log (4v +1)} = x + c’  

 = {v +1
2 log (4v +1)} = 2x + 2c 

 = {v +1
2 log (4v +1)} = 2x +c’ where c’ = 2c, v + 12log (4v + 1) = 2x + c’ 

 = 3x - 2y = v and substituting for v in terms of x and y we get value of c’ 

 = 3x-2y +  12 log {4(3x - 2y) +1} = 2x +c’ 

 = x -2y +  𝟏𝟏𝟐𝟐 log {4(3x - 2y) +1}  = c’ Ans 
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3.8 Exact Differential Equation 

The total differential of a function u(x, y) is, by definition 

      Equation 15 

The exact differential is given as follows: 

 = 0       Equation 16 

or 

M (x, y) dx + N (x, y) dy = 0 
For example to see if this equation is exact or not  

(3x2y - y)dx + (x3 - x + 2y)dy = 0 

(M)                     (N) 

𝝏𝝏𝑴𝑴
𝝏𝝏𝒚𝒚   = 3x2 - 1  𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏  = 3x2 - 1 Ans 

In the above the left hand side is an exact differential of the right side of the 
equation hence the differential is said to be an exact differential or in other words 
a relevant factor u(x, y) known as integrating factor has been appended to the 
given differential equation. 

∫ (x3 −  x +  2y)dy  = x3 y − xy + y2  upon differentiating with respect to x 
gives  3x2 y − y which is the left side of the equation . Here the integrating 
factor is y. 

Similarly considering another example 

2ydx + xdy = 0 This cannot be considered as an exact differential equation  but if 
it multiplied by x then it gets transformed into an exact equation 

= (2xy) dx + (x2) dy = 0 = M (x, y) dx + N (x, y) dy = 0 

= 𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕   = 2x and 𝜕𝜕𝜕𝜕 

𝜕𝜕𝜕𝜕   = 2x and also 

∫ 𝑥𝑥2 ∂y = 𝑥𝑥2 y +
 c  whose differential is the equation in the left half i. e. (2xy)dx ,here “y” is 
again an integrating factor. 

Few more examples to showcase whether the differential equations are 
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 exact or not     =  (2xy − 3x2) ∂x + (  x2  −  2y) ∂y  With respect to y and  

x= ∂M
∂y  =  2x and ∂N

∂x   =  2x  they are exact .  

Now there exists there is a function u(x, y)of which the left hand side  is 

 exactly the total differential. To find this function we integrate  as follows  

 without terms in x ∫ N ∂yand that is [-y2]. ∫ 𝑀𝑀𝑀𝑀𝑀𝑀  = ∫(2xy − 3x2)𝑀𝑀𝑀𝑀   

The final result is as follows : x𝐲𝐲𝟐𝟐-x3 - y2 = c the general solution 

Example 

 = (xy2   +  x) ∂x + (yx2) dy =  0    

 = M = (xy2   +  x), N = yx2,       

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕   = 2xy,𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕  = 2xy  Hence they are exact      

Integrating M ∂x and N ∂y  we get  

 =∫ 𝑀𝑀 𝜕𝜕𝑀𝑀 = 𝑦𝑦2 𝑀𝑀2/2 +  𝑥𝑥2
2
+ c(y) ,    

 Differentiating with respect to y this previous equation  

 f(x,y) = x2y +dc/dy and dc/dy = 0  

 Hence the generalized equation becomes x2 y2 +x2 = c is the general 
solution. 

Example 

 (ycosx + siny + y )
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +𝑥𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝜕𝜕+𝑥𝑥)   = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥  

 M =ycosx +siny +y,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  = cosx +cosy +1 

 N = sinx + xcosy + x,𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥  = cosx+cos y +1 hence the equations are exact 

 = ∫(ycosx + siny + y) ∂x + ∫(terms of N not containing x) ∂y =  c  

 =  ysinx +(siny +y)x = c  Ans 

Example  

 = (1+2xycosx2 - 2xy) dx +(sinx2 - x2)dy = 0 

 =𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥= 2xcosx2 - 2x I.e. equation is exact  

=∫(𝟏𝟏 + 𝟐𝟐𝟐𝟐𝐲𝐲𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐  −  𝟐𝟐𝐲𝐲))𝛛𝛛𝟐𝟐 + ∫(𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝟐𝟐 𝟐𝟐𝐨𝐨 𝐍𝐍 𝐧𝐧𝟐𝟐𝐭𝐭 𝟐𝟐𝟐𝟐𝐧𝐧𝐭𝐭𝐜𝐜𝐜𝐜𝐧𝐧𝐜𝐜𝐧𝐧𝐜𝐜 𝟐𝟐) =  𝟐𝟐 Ans 
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Example 

 2xydx +  ( x2  + 3y2 )dy =  0 

 M =  2xy, N =  x2  + 3y2 , ∂M
∂y  = 2x and  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕  = 2x  

 Hence these equations are exact 

 Now to find function u(x, y) we have ∫ 𝑀𝑀𝑀𝑀𝑀𝑀  =  𝑀𝑀2𝑦𝑦 + 𝑐𝑐(𝑦𝑦) and    

 Substituting the expression for u(x, y) in the 2nd equation  

 We have u(x, y) = 𝜕𝜕
𝜕𝜕𝜕𝜕(𝑀𝑀2𝑦𝑦 + 𝑐𝑐(𝑦𝑦) ) i.e. x2 +c’(y) = x2 + 3y2 .  

 Hence c’(y) = 3y2 

 Hence the integral of last equation in the above is given as ∫ 3𝑦𝑦2𝑀𝑀𝑦𝑦  = y3  

 The final form is 𝒙𝒙𝟐𝟐𝒚𝒚 + y3 = C Ans 

Example 

 (6x2 - y +3) dx +(3y2 - x -2)∂x 

 =𝜕𝜕𝑀𝑀
𝜕𝜕𝜕𝜕  = -1 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕  = -1    Hence the equations are exact 

 Now to find function u(x, y) we have ∫ 𝐌𝐌𝐌𝐌𝐌𝐌  = 2x3 -xy + 3x2 +k(y) .  

 Now 𝐌𝐌f/𝐌𝐌y = -k(y) + (-x) = 3y2 - x -2 

 So the final equation becomes: 2x3 -xy +3x+3y2 - 2 = c 

Example 

 (3x2 +4xy)dx +(2x2 + 2y)dy = Mdx + Ndy = 0 

 dM/dy = 4x, dN/dx = 4x and hence the equations are exact 

 Integrating M(x,y)dx = ∫(3𝑀𝑀2+4xy)∂x = x3 +2x2y +k(y) = f(x,y)  

 Differentiating with respect to y   

 df/dy = 2x2 +∂/∂y(k(y) = 2x2 + ∂k/∂y = 2x2 + 2y  

 So ∂k/∂y = 2y Upon integrating k(y) = y2 +c’ 

 f(x,y) =x3 + 2x2y +y2 +c’  = c” = x3 + 2x2y +y2 = c is the general solution. 
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3.9 Integrating Factors 

The equation  P ∂x +  Q ∂y  cannot be represented as an exact differential 
equation, then there exists a multiplying factor μ  that is a function of x and y that 
makes the equation exact. This factor is otherwise known as the Integrating 
Factor.     

A given differential equation assumes the form as follows; 
𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  +M(x)y = N(x)                                                                                                                                 

Equation 17 

then the integrating factor μ is defined as follows: 

𝛍𝛍 =  𝐞𝐞∫ 𝐌𝐌(𝐱𝐱)𝛛𝛛𝐱𝐱                                                                                                                                          
Equation 18 

Where M(x) (the function of x) is a multiple of y and μ denotes integrating factor. 

OR  

  𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  + P(y) = Q 

 𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  𝑒𝑒∫ 𝑃𝑃𝑃𝑃𝑃𝑃 +y(𝑒𝑒∫ 𝑃𝑃𝑃𝑃𝑃𝑃P) = Q𝑒𝑒∫ 𝑃𝑃𝑃𝑃𝑃𝑃 

Upon integration 

y𝐞𝐞∫ 𝐏𝐏𝛛𝛛𝐱𝐱  =  ∫ 𝑸𝑸𝑸𝑸∫ 𝑷𝑷𝝏𝝏𝒙𝒙 dx +c                                   
Equation 19 

For example consider the function  

(𝐱𝐱 − 𝐲𝐲)𝛛𝛛𝐱𝐱 + 𝐱𝐱𝛛𝛛𝐲𝐲  = 0 or  𝐱𝐱𝛛𝛛𝐲𝐲 = −(𝐱𝐱 − 𝐲𝐲)𝛛𝛛𝐱𝐱    or  𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  = 𝒚𝒚−𝒙𝒙

𝒙𝒙   where 𝒚𝒚−𝒙𝒙
𝒙𝒙  is 

considered as M.  

The steps for the integrating factor are as follows :The differential equation is 
represented in the above form and the value of M(x) is found out. The integration 
factor needs to be calculated i.e. μ.The equation at the next step needs to be 
represented as follows: 

μ𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  + μM(x)y = μN(x) 

On the left-hand side of the equation, a particular differential is obtained as 
follows:  

𝝏𝝏
𝝏𝝏𝒙𝒙 (𝝁𝝁, 𝒚𝒚) = 𝝁𝝁𝝁𝝁(𝒙𝒙) 
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In the end, integration of the expression needs to follow and the required solution 
to the given equation is represented as: μ y = ∫μN(x) + C.  
Now considering this equation (x − y) ∂x + x ∂y = 0 here M = x-y and N = x 

hence 𝝏𝝏𝑴𝑴
𝝏𝝏𝒚𝒚  = -1 and 𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏  = 1 and the equations are not exact.  

In order to make the equations exact the 𝝁𝝁 should be such that 𝝏𝝏𝑴𝑴
𝝏𝝏𝒚𝒚  should be equal 

to 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏  . 

Hence if we multiply M and N with  𝟏𝟏
𝝏𝝏𝟐𝟐   then 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕   = 𝝏𝝏−𝒚𝒚
𝝏𝝏𝟐𝟐  and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕  = 𝟏𝟏
𝝏𝝏   then 

differentiating M and N gives us the results as follows: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕   = - 1

𝜕𝜕2  and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕   =  -  1

𝜕𝜕2  

hence μ = - 𝟏𝟏
𝐱𝐱𝟐𝟐 and this becomes the integrating factor. 

Example 
 Solve the equation: (xy2 − 2y3)dx + (3 − 2xy2)dy = 0. 
 The given equation is not exact, because 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  = 2xy - 6𝑦𝑦2,𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕  = 2y2 and the equations are not exact 

We try to find the general solution of the equation using an 

integrating factor. Calculate the difference i.e. 𝝏𝝏𝑴𝑴
𝝏𝝏𝒚𝒚  - 𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏 = 2xy -4y2  

 𝟏𝟏
𝑴𝑴( 𝝏𝝏𝑴𝑴

𝝏𝝏𝒚𝒚  - 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 ) = 𝟐𝟐𝐱𝐱𝟐𝟐 −𝟒𝟒𝟐𝟐𝟐𝟐

𝐱𝐱𝟐𝟐𝟐𝟐−𝟐𝟐𝟐𝟐𝟑𝟑   = 𝟐𝟐𝒚𝒚  

 and the integrating factor is μ that is dependent on y. 

 μ =  𝟐𝟐𝒚𝒚 ,  𝝏𝝏𝛍𝛍 
𝝏𝝏𝒚𝒚  = -2𝒚𝒚𝟐𝟐, 𝟏𝟏𝛍𝛍( 𝝏𝝏𝛍𝛍 

𝝏𝝏𝒚𝒚) = - 𝟐𝟐𝒚𝒚   

 Upon integrating 

 -2 ∫ 𝝏𝝏𝒚𝒚
𝒚𝒚  = ln|y| = μ =( +-) 𝟏𝟏

𝒚𝒚𝟐𝟐 

 Now the exact equation is got i.e. 

 (xy2 − 2y3)/y2 ∂x + (3 − 2xy2)/y2 ∂y = (x − 2y) ∂x + ( 3
y2 −2x) = 0  

 𝝏𝝏𝑴𝑴
𝝏𝝏𝒚𝒚  = -2,  𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏 = -2. Now to find u from the above 

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 = x-2y and 𝝏𝝏𝝏𝝏

𝝏𝝏𝒚𝒚 = 𝟑𝟑
𝟐𝟐𝟐𝟐 −2x ,u(x,y) = ∫  (x − 2y)dx = 𝑥𝑥2 - 2yx + (this is from 

the first equation and from the second equation  

 𝜕𝜕
𝜕𝜕𝜕𝜕(  𝑥𝑥2 - 2yx +∅) = 3

y2 −2x = -2x + ∅'(y) = 3
y2 −2x and ∅'(y) =  3

y2 , ∅(y) 

  = ∫ 3
y2  ∂y = - 3

𝜕𝜕 

Hence the final equation becomes 𝝏𝝏𝟐𝟐 - 2yx -  𝟑𝟑𝒚𝒚 = c with y = 0 Ans 
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Example 

 y(log y )∂x + (x-log y)∂y = 0 

 ∂x/∂y +x/(y log y) = 1/y which is a leibnitz’s equation in x 

 Integrating Factor =  𝑒𝑒∫ 1 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑦𝑦𝑦𝑦 𝜕𝜕   = 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦) = log y 

 Thus the solution is as follows: x (I.F.) =  ∫ 1
𝑦𝑦(Integrating Factor)∂y + c 

 = x log y = ∫ 1
𝑦𝑦(Integrating Factor)∂y + c = (1/2) (log y)2  + c 

 = x = (1/2) log y + c/log y Ans 

Example  

 Solve (x + 1)𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏  - ye3x(x+1)2  

 𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕   - y/(x+1) = e3x(x+1) here P = -  1/(x+1) and ∫ 𝑃𝑃𝑃𝑃𝑃𝑃  

 = − ∫ ∂x
x+1 = -log (x+1) 

 Here integrating factor is as follows:𝑒𝑒∫ 𝑃𝑃𝜕𝜕𝜕𝜕 =  𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙(𝜕𝜕+1)1−1 = 1/x+1 

As per the above equation y. (Integrating Factor) =   

∫ 𝑒𝑒3𝜕𝜕(x+1)(Integrating factor).∂x + c 

 y(1/(x+1) = ∫ 𝒆𝒆𝟑𝟑𝝏𝝏 𝛛𝛛𝛛𝛛 +c  or y = (x+1)(c+1/3𝒆𝒆𝟑𝟑𝝏𝝏)  

 Integrating Factor found by Inspection  

Example 

 y (2xy +ex)dy +2xy2 dx = 0 

 Dividing by 1/y2 that is the Integrating Factor then equation becomes 

 ∫ M ∂x + ∫(terms of N not containing x)  =  c  

 = 𝒆𝒆
𝝏𝝏

𝝏𝝏  + x2 = c Ans 

3.10 Integrating Factor of a homogeneous equation 

If Mdx +Ndy =0 be a homogeneous equation then its integrating factor is 
1/(Mx+Ny) and Mx+Ny ≠ 0 
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Example 

(x2y - 2xy2)dx - (x3 -3x2y)dy  = 0 .  

It is in the  homogeneous form Integrating Factor = 1/x2y2 

Multiplying the equation with IF, the equation becomes exact in the form 
(1/y-2/x)dx - (x/y2- 3/y)dy =0 and is exact 

 Applying ∫ M ∂x + ∫(terms of N not containing x)  =  c  

 = x/y -2logx +3logy = c Ans 

3.11 Linear Equation and equation reducible to homogeneous 
form 

A differential equation is said to be linear if its differential coefficient occur in the 
first degree and is not multiplied together and is represented as follows: 

 𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  + P(y) = Q where P and Q are functions of x. 

Here when Q = 0 then 𝜕𝜕𝑦𝑦
𝑦𝑦  + P 𝜕𝜕x = 0 

Upon integration ∫ 𝝏𝝏𝒚𝒚
𝒚𝒚   + P ∫ 𝝏𝝏𝒙𝒙 = log y +P∫ 𝝏𝝏𝒙𝒙  = log c or y/c = - P∫ 𝝏𝝏𝒙𝒙  = y/c = 

𝒆𝒆− ∫ 𝑷𝑷𝝏𝝏𝒙𝒙 and the rest is the same as the liebnitz equation. 

Bernoulli Equation can be represented as follows: 

 𝝏𝝏𝒚𝒚
𝝏𝝏𝒙𝒙  + P(y) = Q yn     where P and Q are functions of x and upon solving gives  

𝝏𝝏𝒛𝒛
𝝏𝝏𝒙𝒙  +(1-n)Pz   =  (1-n)Q 

Another equation that can be linear in the form is f’(y)∂y/ ∂x +Pf(y) = Q  

Then dz/dx + P(z )= Q  where f(y) = z 

Example  

 Solve 

 ( ) 02 22 =++ dyxxyy  
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2 2
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dy +
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 )3(3 += ycyx         Ans 

Example 

 Solve (2x-5y )dx +(4x-y)dy = 0 

 dy/dx = 2𝑥𝑥−5𝑦𝑦4𝑥𝑥−𝑦𝑦  
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Example 

 Solve x𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + y = x3y6  

 = Dividing by xy6 we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕y-6  + y-5 = x2 

 Let y-5 = z = =5y-6 = dz/dx or -dz/dx -(5/x)z = -5x2 which is linear in z 

 Applying Integration Factor  

        i.e. 𝒆𝒆∫−𝟓𝟓
𝒙𝒙 𝝏𝝏𝒙𝒙 = e-5logx = x-5  

       = z * (Integrating Factor) = c +Q(Integrating factor ) dx 

 = z* x-5 = ∫(−5𝑥𝑥2x-5dx +c 

 = y-5 x-5 = -5x-2/(-2) +c  Ans 

Example 

 tan y(𝛛𝛛y/𝛛𝛛𝛛𝛛) +tan x = cos y cos2x 

 Dividing by cos y it gives 

 secy tan y(∂y/∂x)+secy tanx = cos2x 

 Let sec y = z then ∂z/ ∂x = secy tan y ∂y/∂x 

 ∂z/∂x + z tan x = cos2x  

 It is in the linear form hence the integrating factor I.F 
 𝑒𝑒∫ 𝑡𝑡𝑡𝑡𝑡𝑡𝜕𝜕𝜕𝜕𝜕𝜕  = 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜕𝜕 = sec x 

 So z * (Integrating Factor) = c +Q (Integrating factor ) dx 

 = z*(sec x) = c+ (cos2xsecx) dx 

 =z*(sec x) = c+ Integration of (cosx) dx 

 secy secx = c+ sin x 

 secy = (c+sinx)cosx  Ans 

 The DE is not homogeneous.  

 0)()( 222111 =+++++ dycybxadxcybxa  
 It can be reduced to homogeneous form  

Type-1   If       2

1

2

1

b
b

a
a


 

 then the transformation is as follows:  x = X + h, y = Y + k 

 0)(
)(

22222

11111

=+++++
++++

dYckbhaYbXa
dXckbhaYbXa
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Type 2 

 If 2

1

2

1

b
b

a
a

=
 

then put ybxaz 11 += and the given equation will reduce to a 
separable equation.  

Example 

 Solve      dy/dx = (2x+y+1)/(x-2y+3) 
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Ans 

Example 

Solve dy/dx  = 3x-4y-2/3x-4y-3 
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3.12 Partial Differential Equation - An overview 

A differential equation that constitutes of partial derivatives is known as a partial 
differential equation. The differential equation presented below is a partial 
differential equation since a derivative can result with respect to both x and y.   

Example Consider an equation of the form F(x,y).A partial differential equation 
that can be represented is as follows : 

d/dx(F(x, y) with respect to x otherwise written as 𝐹𝐹𝑥𝑥(x,y) or  ∂f/ ∂x where x is 
allowed to vary. 

Upon finding the derivative of the same function with respect to y the 
representation is as follows: 

𝐹𝐹𝑥𝑥𝑥𝑥(x,y) i.e. ∂/ ∂y(∂f/ ∂x) which is equivalent to 𝜕𝜕2f/∂y ∂x.Few examples  of the 
partial differential equation are as follows for ready reference and a basic 
understanding: 

∂/ ∂x(∂u/ ∂x) + ∂/ ∂y(∂u/ ∂y)  =  0                                          Equation 20 

∂/ ∂x(∂u/ ∂x) + ∂/ ∂y(∂u/ ∂y)  + (∂/ ∂x(∂u/ ∂y) = x2  +  y2                                             
Equation 21 

3.13 Summary  

 This chapter discusses on the concepts of differential equation and their  solving 
methodologies,  as differential equation formulation and representation with 
respect to heat conduction, oscillation in mechanical and electrical systems and 
circuitry take a centre stage in all modern scientific and engineering studies. In 
applied mathematics generally, the study of differential equation constitutes of 
modelling the equation, solving the equation using different criterion and 
conduction  as rules of separation, reduction, multiplication by a certain 
integration factor to make it exact. Here even mechanisms to find certain 
integrating factors by inspection or of a homogeneous equation or represented in 
a complex format to find a general solution to the real world problems. This 
chapter introduces the students to the fundamental problem solving in the 
segment of first order and first degree equations that are moderately complex to 
model and solve. 
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3.14 References 

1. Higher Engineering Mathematics  B.S. Grewal,43rd Edition,Khanna 
Publishers 

2. Differential Equation, Shepley L Ross Wiley Publications, 3rd Edition 

3. https://byjus.com/maths/differential-equation/ 

4. https://abdullahsurati.github.io/bscit 

5. ISC Mathematics, O.P. Malhotra, S. Chand Publications 

3.15 Questions 

1. Given the differential equation dp/dq=p4−q4(p2+q2)pq the degree of 
differential equation. 

2. Solve (m2 + n2 + m) dm + mndn = 0. 

3.  Solve the following equations by the method of inspection 

 a) y(3yx + ex) dx - ex dy = 0 

 b) ydx-xdy+lnxdx=O fr all x,y>O.  

 c) (xy - 2y2) dx - (x2 - 3xy)dy = 0. 

4. Solve the homogeneous equation : Solve (x2y - 2xy2) dx - (x3 - 3x2y) dy = 0 
using Integrating Factor. 

5. Solve (p4+y4)dp - py3dy = 0. (Hint When bp - ay # 0 and the different 
equation a(p,y) dy +  b(p,y) dp = 0 can be written in the form qf,(p y)dp + 
pf,(p,y)dy = 0  with I as an integrating factor). 

6. Check for exactness of the equation :  

Solve y(x2y2 + 2) dx + x(2 - 2x2 y2) dy = 0 

7. Solve  for exactness and find the integrating factor  

(3x2y4+2xy) dx + (2xY3-x2) dy = 0. 

❖❖❖❖❖❖❖ 
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Unit 2 

4 
DIFFERENTIAL EQUATION  
OF THE FIRST ORDER OF  

A DEGREE HIGHER THAN THE FIRST 
Unit Structure 

4.0   Objectives 

4.1    Introduction 

 4.1.1 Equations solvable for x 

 4.1.2 Equations solvable for y  

4.2    Equations not containing dependent/independent variable 

4.3   Clairaut’s Form of the Equation 

 4.3.1 Equations reducible to Clairaut’s form 

4.4 Summary 

4.5 References 

4.6 Questions 

Please note two conventions of differentials have been used (𝛛𝛛𝐲𝐲𝛛𝛛𝐱𝐱,dy/dx) 

4.0 Objectives 

Here nonlinear equations are considered where the derivatives are of first order 
and of higher degree. The equations are not solvable by any structured 
methodology. Here, some typical types of equations are considered to describe 
the techniques of solution of such equations. One will able to solve differential 
equation of first order and higher degree solvable for solvable for x, solvable for y 
and the Clairaut’s form of the equation. Also obtain the solution of the differential 
equations in which x or y is absent 

4.1 Introduction 

 Isaac Newton (1642-1727), the English mathematician and scientist, classified 
differential equations of the first order then known as fluxional equation which 
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was   published in 1736. Then Count Jacopo Riccati (1676-1754), an Italian 
mathematician, contributed towards advancing the theory of differential equations 
with reduction of  an equation of the second order in y to an equation of first 
order in p. In 1723, he exhibited the solution of an equation to which the name of 
Riccati is attached. Later the French mathematician Alexis Claude Clairaut (1713-
1765) pioneered the idea of differentiating a given differential equations in a 
specific form to solve them.  

These equations are described as equations constituting of dependent and 
independent variable, that are solvable using the following : equations that are 
solvable for p,y,x and the Clairaut’s form, the techniques and methodologies of 
which are described in the succeeding section. 

Equations that are solvable for p    

( 𝐩𝐩 = 𝛛𝛛𝐲𝐲
𝛛𝛛𝐱𝐱 ) and for y : y = f (x, p) and for x = f (y,p ) 

For Clauriat’s form of equation it is a follows : y = p(x) + f (p ) 

The equations that are solvable for p of the first order and the nth degree is 
represented as follows: 

= pn  + f1(x,y)pn-1  + f2(x,y)pn-2 +f3(x,y)pn-3 +……+ fn-1(x,y)p  +fn(x,y) = 0 

Now the left hand side of the above equation is split up into n linear 
representative equations as follows : 

[p - 𝜽𝜽𝟏𝟏(x,y)],[p - 𝜽𝜽𝟐𝟐(x,y)]………[p - 𝜽𝜽𝒏𝒏(x,y)] and these are of first order and first 
degree. Each individual solution to the above can be represented in the form as 
follows :f1(x1,y1,c) = f2(x2,y2,c)….fn(xn,yn,c) = 0 and these together form the 
solution for the above equation as follows. 

Example   

 Solve m2 +m (𝑒𝑒𝑥𝑥 + 1
𝑒𝑒𝑥𝑥  ) + 1 = 0 

 = m (m+𝑒𝑒𝑥𝑥 ) + 1
𝑒𝑒𝑥𝑥 (m + 𝑒𝑒𝑥𝑥 ) = 0 

 = (m+𝑒𝑒𝑥𝑥 ) (m+ 1
𝑒𝑒𝑥𝑥) = 0 

 = y + 𝑒𝑒𝑥𝑥 + k’ = 0, y+𝑒𝑒−𝑥𝑥  +k” = 0  Ans 

Here   k’ and k”   can be replaced by k and the final equation constitutes of 
first degree and first order representation. 

 =(y + 𝒆𝒆𝒙𝒙 +k)(y+𝒆𝒆−𝒙𝒙  +k) = 0 Ans  
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Example 

 Solve    𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  - 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑  = 𝑑𝑑𝑑𝑑 - 𝑑𝑑𝑑𝑑  

 = q -  1
𝑞𝑞   =  𝑑𝑑𝑑𝑑 - 𝑑𝑑𝑑𝑑  

 = q2 - 1 = q( 𝑑𝑑𝑑𝑑 - 𝑑𝑑𝑑𝑑 ) 

 = q2 - 1 - q( 𝑑𝑑𝑑𝑑 - 𝑑𝑑𝑑𝑑 ) = 0 

 = q(q - 𝑑𝑑𝑑𝑑 ) + 𝑑𝑑𝑑𝑑  (q - 𝑑𝑑𝑑𝑑) = 0   

 = (q - 𝑑𝑑𝑑𝑑  )(q - 𝑑𝑑𝑑𝑑 ) =0 

 = q =  - 𝒙𝒙
𝒑𝒑,  𝒑𝒑𝒙𝒙 

 = q = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑   = -x/p , Upon integrating  ∫ 𝑝𝑝𝑝𝑝𝑝𝑝 =  ∫ −𝑥𝑥𝑝𝑝𝑥𝑥   

 = 𝒑𝒑
𝟐𝟐

𝟐𝟐  + 𝒙𝒙
𝟐𝟐

𝟐𝟐  = c i.e. p2 + x2 = c is the first solution 

 When q =   px 

 Then  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  -   px  = 0                                     

 = 𝑑𝑑𝑑𝑑
𝑑𝑑    -  dx

x  = 0 

 = ln(p) - ln(x) = 0 

 =ln(p/x) =  ln (c), p = xc  is the required solution 

Example 

 Solve p2 + 2 py cot x = y2 

 The square root of p will be equal to 

 =(-b(+-)square root of ((b2 -4ac))/2a 

 =(1/2)(-2ycotx (+-)√4𝑦𝑦2 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 − 4𝑦𝑦2 

 = −y cot x ± y cosec x 

 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑 = -ycotx +ycosecx 

 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑  = y(cosecx - cotx) 

 = 𝜕𝜕𝜕𝜕
𝜕𝜕   = (cosecx-cotx)𝜕𝜕𝑥𝑥 
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 =∫ 𝜕𝜕𝜕𝜕
𝜕𝜕  =∫(cosecx − cotx)𝜕𝜕𝜕𝜕 

 = log y = log tanx(𝑥𝑥
2) - log(sinx) +log(c) 

 = y (1+cosx) = c 

Similarly for the equation  

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 = -ycotx - ycosecx 

 = y (1− cos x) = c 

 = y (1(+-) cosx) = c Ans 

Example  

 Solve xyp3 + +(x 2 −2y 2 )p  −2xyp = 0 

 = p [xyp2 + (x2 - 2y2)p -2xy]  = 0 

 = p (xp- 2y)(yp+x) = 0 

 = ( p = 0 , y-c = 0),(xp - 2y = 0), (yp +x = 0) 

 = (xp- 2y) = 0, let p = 𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥  = x  𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥  = 2y, or 𝑑𝑑𝜕𝜕
𝜕𝜕  = 2 𝑑𝑑𝑥𝑥

𝑥𝑥  , y = cx2 

 = yp + x = 0, with p =  𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥 , ydy +xdx = 0, x2 +y2 - 2c = 0 

 So the final equation becomes (y-c)(y-cx2)(x2 + y2 - 2c) = 0  Ans 

4.1.1  Equations solvable for x 

Let there be equation of the form x= f(y,p) 

Differentiating with respect to y it can be represented as follows: 

= 1/p = dx/dy = θ(y,p,dp/dx) 

The solution that can be deduced is as follows: F(y,p,c) = 0 that can be shown 
through the following example. 

Example 

 Solve x = 4(p+p2) 

 dx/dy  =  1/p =  pdx = dy  Differentiating with respect to y  

 = 1/p =4(1 +2p)dp/dy 

 = dy = 4p(1 + 2p)dp 

 Integrating we have  

 ∫ 𝑑𝑑𝑑𝑑 =  ∫ 4𝑝𝑝(1 + 2𝑝𝑝)𝑑𝑑𝑝𝑝  

 = y = 2p2 + (8/3)p3 +c Ans 
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Example  

 Solve  y = 2 px + y2 p3 

 = y - y2p3 =  2px 

 = y − y2p3 
2𝑝𝑝  = x 

 = y/2p - y2p2/2 = x 
 Differentiating the above with respect to y  

 The first component is  1
𝑝𝑝  =  

2𝑝𝑝 − 2𝑦𝑦𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

4𝑝𝑝2      

 and the second component is  
2𝑦𝑦𝑝𝑝2+𝑦𝑦22𝑝𝑝𝑑𝑑𝜕𝜕

𝑑𝑑𝜕𝜕
2   

 = 0 =  
2𝑝𝑝 − 2𝑦𝑦𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
4𝑝𝑝2  - 

2𝑦𝑦𝑝𝑝2+𝑦𝑦22𝑝𝑝𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

2  - 1
𝑝𝑝   

 =0 = (y ∂p
∂y  + p)(yp + 1

2𝑝𝑝2) = 0 

 = (y ∂p
∂y  + p) = c = log(py) = logc 

 = py = c 
 Eliminating p from the main equation 
 We have y2 = 2cx +c3 as the solution 
Example 
 Solve: y2p 2 −3xp + y = 0.  
  The differential equation is of the form x = f (y,p),  
 where f (y,p) = (1/3)(y/p+y 2p). 
 Differentiating with respect to y we get 

 dx
dy(3)  = 3(1/p) 

   = (1/p) -(y/p2)(dp/dy) +2yp +y2(dp/dy) 
 Simplifying we get  
 2p +y(dp/dy) = 0 so (dp/p) +2(dy/y) = 0 

 = p = 𝑐𝑐
𝑦𝑦2 

 Hence y3 - 2cx + c2 = 0  x then becomes  p +1/p 
  (dx/dy) =  (dp/dy) - (1/p2)(dp/dy) 
 Integrating  
 ∫(p − 1/p)dp = ∫(p − 1/p)  +c 
 = y = (p2/2) - log p +c and x = p +1/p Ans 
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Example 

 Solve y2p2  - 3xp + y = 0 

 The equation can be represented in the form  

 x = f(y,p) = p = tan-1(p + 𝒑𝒑
𝟏𝟏+𝒑𝒑𝟐𝟐 ) 

 = 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 = 1

𝑝𝑝 = ( 1
1 + 𝑝𝑝2) 𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕  + 1 +𝑝𝑝2 − 2𝑝𝑝2

(1 +𝑝𝑝2)12  

 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝 = 2𝑝𝑝

(1+𝑝𝑝2)12 

 Upon integration  

 y = c (1 +p2) - 1 from where y cannot be removed. Ans 

4.1.2 Equations solvable for y 

A differential equation of first order and higher degree takes the form y = f (x, p).  

Differentiating the equation w.r.t x , we have p = 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑, =  θ(y,p.dp/dx). The solution 

for the same will be in the form of : F(x,p,c) = 0. Now taking into consideration y 
= f(x, p) and  solution being F(x, p, c) the (x, y) variables in the equation can be 
represented as  x = F1(p, c) and y = F2(p, c) respectively as the solution. 

Example 

 Solve y = p x +a p(1-p) 

 We differentiate the above with respect to x. 

 dy/dx = p + x dp /dx + a(dp/dx) - a(2p)dp/dx 

 dy/dx = p + dp/dx[x +a -2ap] 

 p = p + dp/dx[x +a -2ap] 

 0 = dp/dx[x  +a -2ap]  

 Here p is a constant hence the equation becomes p  = 1/2a(x +a) 

 y = (1/2a)(x + a)[x + a(1/2a(x + a))(1-(1/2a)(x + a)) 

Example 

 Solve  x+ 2(xp - y) + p2  

 The equation to be represented as  y = f(x, p) and hence is solvable for y  

Representing in the form with y  on the left hand side the equation takes the 

form = y= 𝑑𝑑2 + xp + 𝑝𝑝
2

2   
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 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = p = 12  + p + x𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑  + p 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 = (x + p)𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 12  = 0 

 Let (x + p) = u , 1 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑, 2𝑑𝑑
2𝑑𝑑 − 1  ∂u= ∂x 

 =  ∫(1 + 1
2𝑑𝑑−1 ) ∂u  =  ∫ 𝜕𝜕𝜕𝜕 + c = 0 

 = u + 12 log (2u -1 ) = x+ c 

 Replacing p with x + u we have  

 = 2p + 12log (2(x+p) - 1) = x + c 

 = 2x + 2p - 1  

 =  e2p - c  = x = (𝟏𝟏
𝟐𝟐)𝒆𝒆𝟐𝟐𝟐𝟐 −𝒄𝒄  + 1 - p and y =   𝒙𝒙𝟐𝟐 + xp + 𝟐𝟐

𝟐𝟐

𝟐𝟐  Ans 

Example 

 Solve p2 - py +x 

 = y = (x + p2)/p 

 = x/p + p 

 = xp-1 + p 

 =dp/dx +1/p - xp-2(dp/dx) = p = dy/dx  

 Solving this equation 

 =  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑑𝑑

(𝑑𝑑+1)𝑑𝑑(𝑑𝑑−1) = 𝑑𝑑
𝑑𝑑2−1 

 The integrating factor is 

𝑒𝑒∫ 𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝2−1   =   𝑒𝑒∫[ 1

2(𝑝𝑝−1) + 1
2(𝑝𝑝+1) −1

𝑝𝑝]𝑑𝑑𝑑𝑑 

 =𝑒𝑒∫𝑙𝑙𝑙𝑙[(𝑝𝑝+1)(𝑝𝑝−1)
1
2

𝑝𝑝  = (𝑑𝑑2−1)
1
2

𝑑𝑑  

Hence the final solution is   

x((𝑑𝑑2−1)
1
2

𝑑𝑑  ) = ∫ 𝑑𝑑
𝑑𝑑2−1

(𝑑𝑑2−1)
1
2

𝑑𝑑 dp = ∫ 𝑑𝑑𝑑𝑑
√𝑑𝑑2−1

  = c +cosh-1 p 

= x = p(c + cosh-1p) (p2 -1)1/2   Ans 

Example 

 Solve y = 2px +pn 

 Differentiating with respect to x 

 p = 2p +2x(dp/dx) +npn-1(dp/dx) 
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 0 = p + 2x(dp/dx) +npn-1(dp/dx) 

 0 = p +2x(dp/dx) +(np/p)(dp/dx) 

 -p =(dp/dx)(2x ) +npn-1(dp/dx) 

 = -  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑[p] = 2x +npn-1 

 0= 𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑[p] + [2x] +[𝑑𝑑𝑛𝑛

𝑑𝑑2] 

 Integrating factor 𝑒𝑒2𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 = p2 

 Solution is 

 xp2 = -  ∫ 𝑛𝑛𝑛𝑛𝑛𝑛 𝜕𝜕𝑛𝑛 +c  

 = xp2 =  - n 𝑑𝑑
𝑛𝑛+1

𝑛𝑛+1  +c 

 = x = - n pn+1-2  + cp-2 

 = x  = -npn-1   +cp2 

 Then substitute for y in the given equation  

 y = 2px +pn and the solution is as follows : 

 y  = 𝟐𝟐𝟐𝟐
𝒑𝒑  +𝟏𝟏+𝒏𝒏

𝟏𝟏−𝒏𝒏 𝒑𝒑𝒏𝒏 Ans 

4.2 Equations not containing dependent/independent variable 

Sometimes the equations do not contain dependent/independent variable and 
either it contains y or x and not both such equations can be represented in the 

form as follows: f(x,p) = 0 or f(y,p) = 0. For example y = 1
1+𝑑𝑑2  is one of form of 

equation where the x is missing as an independent variable from the equation. 

Type I 

In the former scenario equations do not contain independent variable 

This equation can be represented as follows after differentiating with respect to x 
as follows : 

 p = dy/dx = θ(y)  

 In order to seek clarity lets consider the below example 

 y = 3p +6p2 This equation is already in the form y = f(p) 

 p = 3 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ) + 12p𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 
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 p = (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑) (3 + 12 p) 

 dx = (3 + 12p)/p (dp) 

 =x = 3 ln(p) +12p +c  and y =  3p +6p2  Ans 

Example 

 Solve  y2 = a2 (1 +p2) 

 The above equation is in y and p only.It can be written as follows : 

 = p2 = 𝒚𝒚𝟐𝟐

𝒂𝒂𝟐𝟐 - 1  

 = p =( +-)√𝑦𝑦2

𝑎𝑎2 - 1 

 = 𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑  = √𝑦𝑦2− 𝑎𝑎2

𝑎𝑎  

 = a ln | y + √y2 -a2| = x +c 

 = a ln  | y + √y2 -a2| (-+)x-c  Ans 

Type II 

 Equations not containing a “y” as the dependent variable 

 Let the equation be as follows: 

 x= 1
1+ 𝑑𝑑2 

 = 1/p = (1 +p2)-1 

 = 1/p = (1+p)-2(-2p)(dp/dy) 

 = dy = −2𝑑𝑑
(1+𝑑𝑑)2 

 = ∫ 𝜕𝜕𝜕𝜕 = ∫ −2𝑑𝑑2

(1+𝑑𝑑2)2 𝑑𝑑𝑑𝑑 

 = ∫ 𝜕𝜕𝜕𝜕 = ∫ 2[ −1
(1+𝑑𝑑2) + ∫ 1

(1+𝑑𝑑2)2] dp 

 = y = tan-1 p + 2  

We will use the substitution x=tanθ, implying that dx=sec2θdθ: 

I=∫sec2θ dθ(1+tan2θ)2 

Note that 1+tan2θ=sec2θ: 
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Integrating Factor=∫sec2θdθsec4θ=∫dθsec2θ=∫cos2θdθ 

Recall that cos2θ=2cos2θ−1, so cos2θ=1/2cos2θ+1/2. 

Integrating Factor=1/2∫cos2θdθ+∫1/2(dθ) 

Integrating Factor=1/4sin2θ+1/2θ+C 

From x=tanθ we see that θ=arctanx. 

 We see that 1/4sin2θ=(1/2)sinθcosθ. 

Also, since tanθ=x, for a right angle triangle with the side opposite θ being x, the 
adjacent side being 1, and the hypotenuse  √1+x2. 
Thus, sinθ=x/√1+x2 and cosθ=1/√1+x2: 

Integrating Factor =1/2(sinθcosθ)+1/2(arctanx)+C 

Integrating Factor=1/2(x/√1+x2)(1/√1+x2)+arc tanx/2+c 

Integrating Factor =x/2(1+x2)+arctanx/2+c Ans 

4.3 Clairaut’s Form of the Equation 

When an equation is of first degree in x and y, it is solvable for both independent 
and dependent x and y variables both and hence it can be put in the following 
forms: 

 y = xf1(p) +f2(p)   or  

x = yg1(p) + g2(p)  and these can be solved normally.  

But if  f1(p) = p then it takes the Clairaut’s form as follows : y = xp + f(p) and 
these equations can be non linear in nature. Here f(p) is a known function that 
does not contain an x or y. 

Instances ,  like y = px + p2 and y = x + eq are  examples of Clairaut’s  equation 
whereas equations y = xy2 + p or y - x2p2 + yp2 are not of the Clairaut's form. 

Let there be an equation of the form y = px + f(p) where y is the dependent 
variable  and  (p,x)  are the independent variable. 

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  = p +x𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 +f’(p)𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

= p = p +x𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +f’(p)𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 

= 0 = x𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +f’(p)𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 

Now with dp
dx  = 0  and p =  c  we have y = cx + f (c)  which is the general solution 

of Clairaut’s equation. 
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Example  

Solve y = mx + 𝑎𝑎𝑚𝑚    Since the said equation is exactly in the form of a 

Clairaut’s  representation hence there is no need to solve it further. 

Example  

 Solve  q  = log(qx - y ) 

 eq  =  qx -y 

y = qx - eq  Replacing q with c the equation becomes 

y = cx - ec  and  this equation is in the required Clairaut’s form. 

Example  

 Solve y = xy’ +(y’ )2       

  let y’  = p 

 y = x (p) + (p)2 

  p (dx)  = x (dp) + p(dx) + 2pdp 

 0= x(dp) +2pdp 

 = dp(x + 2p) = 0 

 = dp =0; p = c ; x = -2p; p = c 

 = x = -2p; y = xp + p2 

 = p =  - 𝒙𝒙𝟐𝟐 = - 𝒙𝒙
𝟐𝟐

𝟒𝟒   (Eliminating p )Ans 

Example 

 Solve  y = xy’  + √(𝐲𝐲′𝟐𝟐) + 𝟏𝟏    

 Let y’ = q   

 y = xq + √(q2) + 1    

 dy =  xdq + qdx  +  𝑞𝑞𝑞𝑞𝑞𝑞
√𝑞𝑞2+1

      

 0= xdq + qdq
√q2+1

     

 Now dq = 0 and p =c 

 So y = cx + √(𝐜𝐜𝟐𝟐) + 𝟏𝟏   
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 The  other equation is as follows : 

 x =   −𝒒𝒒
√𝒒𝒒𝟐𝟐 +𝟏𝟏

  and y = ( −𝒒𝒒
√𝒒𝒒𝟐𝟐 +𝟏𝟏

)x + √(𝐪𝐪𝟐𝟐) + 𝟏𝟏   

  y = 𝟏𝟏
√𝒒𝒒𝟐𝟐+𝟏𝟏

 

Elimination of p happens by putting the equation in the form of x2+ y2 = 1 Ans 

Example  

 Solve: e4x(p −1)+e2ypp2 = 0.  

 The differential equation is not in  the Clairaut’s form, but by taking 
e2x = u and e2y = v and can be converted it into Clairaut’s form. 

  v = u dv/ du + (dv/du)2  and now this is in the Clairaut’s form 

 dv/ du = c =⇒ v = uc +c 2 =⇒ e 2y = ce2x +c 2  is the  general solution. 

4.2.1 Equations reducible to Clairaut’s form 

Many differential equations of the first order but of the higher degree can be 
reduced to Clairaut’s form with substitutions.  

Example 

Transform and solve the following equation i.e. x2(y-px) = p2y is transformed into 
Clairaut’s  form  

Here x2 and y2 can be considered as u and v respectively i.e.2xdx = du,2ydy = dv 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =  (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)/(𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) .  

 Let p = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = (𝑑𝑑

𝑑𝑑)1/2𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 = (u)(v1/2 - (𝑑𝑑
𝑑𝑑)1/2(u)1/2𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑) = 𝑑𝑑𝑑𝑑( 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑)2(v)1/2 

 = v = u𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 +(𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅)2  Ans 

Example 

 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑) + 4x ( 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 ) - 4y = 0 

 Let  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = p then p +4xp -4y = 0 

 Or y = (p +4xp)/4 and this is in the Clairaut’s  Equation 

 Differentiating with respect to x  

 p = p +p’(x) +(p/2)p’ 

= 0 = p’(x) +(p/2)(p’) 

Assuming p =c  , y = cx +(c2/4) 

Eliminating p we have y(x) = -x2 as it satisfies y = (p +4xp)/4 
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4.4 Summary 

There are equations where the left-hand side of the equation can be resolved into 
rational factors of the first degree and also there are equations where the left-hand 
side of the equations   cannot be factorized. Equations that cannot be factorized in 
addition to exact and homogeneous are summarized below.Differential equations 
of the first order but of a higher degree can be solved by one or more of the 
following four methods : 

- Equations solvable for p ,  i.e. p = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 where the general solution can be 

represented as p - fi (x,y) = 0 and Fi(x,y,c) = 0 

- Equations solvable for y  i.e. y = f ( x,p ), solution for the same can be 
represented  as f(x,p,c) and the elimination of p if not possible then x = 
f1(p,c) and y = f2(p,c) are combined to form the solutions. 

- Equations solvable for x  i .e. x = f ( y,p ), solution for the same can be 
represented  as f(y,p,c) and the elimination of p if not possible then x = 
f’1(p,c) and y = f’2(p,c) are combined to form the solutions. 

 Clairaut’s equation  takes the form  y = px + f(p) .The general solution for 
the same is obtained by replacing p by c . Some complex differential 
equations can be reduced to Clairaut’s form with the help of appropriate 
substitutions. 

4.5 References 

1. Differential equations with Application and Programs. S. Balachandra Rao 
and H. R. Anuradha, University Press (India) Limited 1996. 

2. Lecture notes on Differential Equation by Dr. B. Patel,Department of 
Mathematics,Gujarat University 

4.6 Problems                                                                                                                                                                           

Find for the below problems whether they are solvable for x,y and p 

1. py2 - 2pyx(tan2θ) + (y2sec2θ - x2tan2θ) = 0 

2. Given p3 −4xyp + 8y2 = where  p = dy/dx 

3. Given y = p tan p + log(cos p) 

4. Given y = px + (1− p)1/2 
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5. xp2 - 2yp + x+ 2y = 0 

6. y =  x +ctan-1q 

7. x = tan-1q  + q/(1+q2) 

8. yq2 + (x-y)q -x = Hint [((x-y+c)(x2 + y2 +constant) = 0) the r.h.s of the 
equation is the answer Ans] 

9. Represent in the Clairaut’s form and solve the following : 

a) y = 2px + 6y2 p2 ( y = v3) 

b) sin qx cosy = cos qx siny +q 

c) e4x(p-1) +e2yp2  = 0 

❖❖❖❖❖❖❖ 
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5 
LINEAR DIFFERENTIAL EQUATIONS WITH 

CONSTANT COEFFICIENTS 
Unit Structure 
5.0 Objectives 
5.1  Introduction 
5.2  The Differential Operator 
5.3  Linear Differential Equation f (D) y = 0 
 5.3.1 Solution of f (D) y = 0: 
5.4  Different cases depending on the nature of the root of the equation f(D) = 0 
5.5  Linear differential equation f (D) y = X 
5.6  The complimentary Function 
5.7  The inverse operator 1/f(D) and the symbolic expiration for the particular 

integral 1/f(D) X; the general methods 
5.8  Particular integral: Short methods 
5.9  Particular integral: Other methods  
5.10 Differential equations reducible to the linear differential equations with 

constant coefficients 
5.11  Summary 
5.12  References 
5.13  Questions 

5.0 Objectives 
After going through this chapter, students will able to learn  
• The Differential Operator  
• Properties of operators  
• Linear Differential Equation f(D) y = 0 and solution Of f(D) y = 0 
• Different cases depending on the nature of the root of the equation f(D) = 0 
• Linear differential equation f(D) y = X 
• The complimentary Function 
• The inverse operator 1/f(D)  
• Particular Integral 
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5.1 Introduction 

A linear equation or polynomial, with more than one term, constituting of the 
derivatives of the dependent variable with regard to one or more than one 
independent variable is known as a linear differential equation.  

A differential equation which comprises of the differential coefficients and the 
dependent variable in the first degree, that does not include the product of a 
derivative with another derivative or with dependent variable, and in which the 
coefficients are as constants is called a linear differential equation with constant 
coefficients. 

 The general form of such a differential equation of order "n" is 

 b0
  𝑑𝑑𝑛𝑛𝑦𝑦
𝑑𝑑𝑑𝑑𝑛𝑛  + b1

  𝑑𝑑𝑛𝑛−1𝑦𝑦
𝑑𝑑𝑑𝑑𝑛𝑛−1  + b2

  𝑑𝑑𝑛𝑛−2𝑦𝑦
𝑑𝑑𝑑𝑑𝑛𝑛−2  + ………. + bn-1

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑  + b2y = X ………………… 

(Equation) 

Here b0, b1, b2 … are constants. Above equation is a nth order linear differential 
equation with constant coefficients. 

E.g. when  n = 3 is put in the  equation  we get 

 b0
  𝑑𝑑3𝑦𝑦
𝑑𝑑𝑑𝑑3  + b1

  𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2  + b2

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑 + b3y = X 

which is a 3rd order linear differential equation with constant coefficients. 

Using the differential operator D as 𝑑𝑑
𝑑𝑑𝑑𝑑 i.e. Dy = 𝑑𝑑𝑦𝑦

𝑑𝑑𝑑𝑑; D2 y =  𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2 , …… Dn y =   𝑑𝑑

𝑛𝑛𝑦𝑦
𝑑𝑑𝑑𝑑𝑛𝑛  , 

 the above equation will take the form  

b0 Dn y + b1 Dn–1 y + b2 Dn–2 y + … + bn–1 Dy + bn y = X  

OR 

(b0 Dn  + b1 Dn–1  + b2 Dn–2 + … + bn–1 D + bn)y = X   
…………………………..(Equation) 

 in which each term in the parenthesis is multiplied to y and the results are added 
to form the equation. 

Let f(D) ≡ b0 Dn  + b1 Dn–1  + b2 Dn–2 + … + bn–1 D + bn 

f (D) is called as nth order polynomial in D. 

∴ Then the above equation can be written as f(D) y = f(x) … (Equation) 

If in equation (1), if b0, b1, b2 … … bn are functions of x then it is called nth order 
linear differential equation. 
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5.2 The Differential Operator D 

It is appropriate to present the symbol D to denote the operation of differentiation 
with respect to x. 

D2 designate differentiation twice.  

D3 designate differentiation three times.  

In general, let Dk designate differentiation k times. 

i.e. D ≡ 𝑑𝑑
𝑑𝑑𝑑𝑑 , so that  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = Dy;    𝑑𝑑

2𝑑𝑑
𝑑𝑑𝑑𝑑2  = D2y;   𝑑𝑑

3𝑑𝑑
𝑑𝑑𝑑𝑑3  = D3y; ……;   𝑑𝑑

𝑛𝑛𝑑𝑑
𝑑𝑑𝑑𝑑𝑛𝑛  = Dn y 

and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + ay = (D + a) y  

The differential operator D or (Dn) correlates to the algebraic laws. 

Properties of the operator D 

Suppose y1 and y2 are differentiable functions of x and "b" is a constant and p, q 
are positive integer then the following holds true 

a. Dp (Dq ) y = Dq (Dp ) y = Dp+q y  

b. (D – p1) (D – p2) y = (D – p2) (D – p1) y  

c. (D – p1) (D – p2) y = [D2 – (p1 + p2) D + p1 p2] y  

d. D (bu) = b · D(u); Dn (bu) = b · Dn (u) 

e. D (y1 + y2) = D (y1) + D (y2); Dn (y1 + y2) = Dn (y1) + Dn (y2). 

5.3 Linear Differential Equation f(D) y = 0  

Consider f (D) y = 0 …………………… (Equation)  

where, f(D) = b0 Dn  + b1 Dn–1  + b2 Dn–2 + … + bn–1 D +……… bn 

is nth order polynomial in D and D obeys the laws of algebra,  f(D) can be 
factorized into  n linear factors as follows : 

f(D) = (D – p1 ) (D – p2 ) (D – p3 ) … (D – pn) where p1 , p2 , p3 , … pn are the 
roots of the algebraic equation f(D) = 0  

Therefor the equation can be written as follows: 

f(D) y = (D – p1 ) (D – p2 ) (D – p3 ) … (D – pn) y = 0 … (Equation)  

The equation f (D) = 0 is called as an auxiliary equation for  the above equations.  
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e.g.   𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑑𝑑2   +𝐷𝐷 + 12y = 0 

By using operator D for  𝑑𝑑
𝑑𝑑𝑑𝑑 ,  

we have (D2 + D = 12) y = 0  

∴ f (D) = D2 +(4D -3D) -12 = 0 is an auxiliary equation. 

∴ (D2 + D - 12) y = (D + 4) (D -3) y =0 

5.3.1 Solution of f(D) y = 0 

Being nth order Differential Equation, the above equations will have exactly n 
constants in its general solution.  

The equation (5) will be satisfied by the solution of the equation  

(D – pn) y = 0  

i.e. 𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑 – pn y = 0  

On solving this first order and first degree differential equation by separating 
variables, we get y = cn epnx, where, cn is an arbitrary constant.  

Similarly, since the factors in equation can be taken in any order, the equation 
will be satisfied by independently solving each of these equations (D – p1) y = 0, 
(D – p2 ) y = 0 … etc., that is by y = c1 e p1x , y = c2 e p2x ………… etc.  

It can, therefore, easily be proved that the sum of these individual solutions is the 
sum of n arbitrary constants, i.e. y = c1 e p1x + c2 e p2x + … + cn e pnx … where the 
original equation is of terms containing till the nth order and so also are the 
constants for the above said equations. 

∴ The general solution of the equation f (D) y = 0 is, 

 y = c1 e p1x + c2 e p2x + … + cn e pnx  

where p1 , p2 , … pn are the roots of the auxiliary equation f(D) = 0. 

Example :  

 Solve   𝑑𝑑
3𝑦𝑦

𝑑𝑑𝑑𝑑3  - 6  𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2  + 11𝑑𝑑𝑦𝑦

𝑑𝑑𝑑𝑑  - 6y = 0 

 Solution: Let D stand for 𝑑𝑑
𝑑𝑑𝑑𝑑 and the given equation can be written as  

 (D3 – 6D2 + 11D – 6) y = 0. 

 Here auxiliary equation is D3 – 6D2 + 11D – 6 = 0  

 i.e. (D – 1) (D – 2) (D – 3) = 0  

⇒ p1 = 1, p2 = 2, p3 = 3, are roots of auxiliary equation.  

∴ The general solution is y = c1 e x + c2 e 2x + c3 e3x 
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5.4 Different cases depending on the nature of the root of the 
equation f(D) = 0 

a. The Case of Real and Different Roots 

 If roots of f (D) = 0 be p1, p2, p3 ….… pn, all are real and different, then the 
solution of f (D) y = 0 will be 

  y = c1 e p1x + c2 e p2x + … + cn epnx  

b. The Case of Real and Repeated Roots  

 Let p1 , p2, p3 , p4 … pn be the roots of f(D) = 0, then the part of solution 
corresponding to p1 and p2 will look like c1 e p1x + c2 e p1x (p1 = p2 )  

 = (c1 + c2) ep1x = c'ep1x  

 But this means that number of arbitrary constants now in the solution will 
be n – 1 if 2 p’s are the same. Hence it is no longer the general solution. The 
rectification of the anomaly is done as follows: 

 Pertaining to p1 = p2, the part of the equation will be (D – p1 ) (D – p1 ) y = 
0  

 Put (D – p1) y = t, then we have 

 (D – p1) t = 0  

∴ t = c1 ep1x  

 Hence putting value of t in (D – p1) y = t,  

 we have (D – p1 ) y = c1 e p1x  

 or ( 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 – p1) y = c1 e p1x which is a linear differential equation.  

 Its I.F. = e – ∫ p1dx = e – p1x and hence solution is  

 y (e – p1x) = ∫ c1 e p1x · e –p1x dx + c2 = c1 x + c2  

∴ y = (c1 x + c2) ep1x  

 If p1 = p2 are real, and the remaining roots p3, p4, p5,  ….., pn are real and 
different then solution of f(D) y = 0 is 

 y = (c1 x + c2) ep1x + c3 e p3x + c4 e p4x + … + cn e pnx  

 Similarly, when three roots are repeated.  

 i.e. if p1 = p2 = p3 are real, and the remaining roots p4 , p5 , … pn are real and 
different then solution of f(D) y = 0 is  

 y = (c1 x2 + c2 x + c3) ep1x + c4 e p4x + … + cn e pnx  
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 If p1 = p2 = p3 = … = pn  

 i.e. n roots are real and equal then solution of f(D) y = 0 is  

 y = (c1 xn–1 + c2 xn–2 + … + cn–1 x + cn) ep1x  

Example  

 For (D2 – 6D + 9) y = 0  

 Auxiliary Equation = (D – 3)2 y= 0  

and solution takes the form (c1x +c2)e3x  

and the final representation is as follows: 

 y = (c1 x + c2) e3x Ans 

Example   

 For (D – 1)3 (D + 1) y = 0  

 solution is y = (c1 x2 + c2 x + c3 ) ex + c4 e –x  where p1 = p2 =p3 

Example   

 For (D – 1)2 (D + 1)2 y = 0 where p1  = p2 = p3 = p4 

 solution is y = (c1 x + c2 ) ex + (c3 x + c4 ) e–x. 

c. The Case of Imaginary or the Complex Roots 

 The coefficients of the auxiliary equation that are real will have the 
imaginary roots that will occur in conjugate pairs.  

 Let α ± iβ be one such pair.  

∴ p1 = α + iβ, p2 = α – iβ  

 Then the solution of the equation f(D) y = 0  takes the form as follows : 

 y = Pe (α + iβ) x + Q e (α – iβ) x  

   = eαx [P e iβx + Qe –iβx] 

    = eαx [P (cos βx + i sin βx) + Q(cos βx – i sin βx)]  

    = eαx [(P + Q) cos βx + i (P – Q) sin βx]  

 y = eαx [c1 cos βx + c2 sin βx] 

 where, c1 = P + Q and c2 = i (P – Q) are arbitrary constants. 

 y = C eαx cos (βx + θ) where C, θ are arbitrary constants,  

 using c1 = C cos θ, c2 = – sin θ 
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Example:  

 Solve (D2 + 2D + 5) y = 0.  

 Solution: The auxiliary equation is D2 + 2D + 5 = 0  

 whose roots are D = – 1 ± 2i which are both imaginary.  

 Here α = – 1, β = 2.  

 Hence the solution is y = e–x [P cos 2x + Q sin 2x]  

Example:  

 Solve   𝑑𝑑
4𝑦𝑦

𝑑𝑑𝑑𝑑4  - 5  𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2  + 12 𝑑𝑑𝑦𝑦

𝑑𝑑𝑑𝑑 + 28y = 0 

 Solution: The auxiliary equation is D4 – 5D2 + 12D + 28 = 0  

 Roots are D = – 2, –2, 2 ± √3 i.  

 (Here α = 2, β = 3). Hence the solution is  

 y = (c1 x + c2) e–2x + e2x [P cos √3 x + Q sin √3 x]  

Example:  

 Solve For (D2 + 4) y = 0, D = 0 ± 2i (Here α = 0, β = 2)  

⇒ y = P cos 2x + Q sin 2x.  

d.  The Case of Repeated Imaginary Roots  

If the imaginary roots p1 = α + iβ and p2 = α – iβ occur twice, then the part 
of solution of f (D) y = 0 will be  

 y = (P x + Q) ep1x + (Rx + S) ep2x … (by using case 2)  

   = (P x + Q) e(α + iβ) x + (Rx + S) e(α – iβ) x  

    = eαx [(P x + Q) eiβx + (Rx + S) e–iβx ] 

    = eαx [(P x + Q) {cos βx + i sin βx} + (Rx + S) {cos βx – i sin βx}]   

  = eαx [(P x + Q+ Rx + S) cos βx + i (Px + Q– Rx – S) sin βx]  

 y = eαx [(c1 x + c2) cos βx + (c3 x + c4 ) sin βx] with  

 constants as  c1 , c2 , c3 and c4 . 

Example:  

 Solve  𝑑𝑑6𝑦𝑦
𝑑𝑑𝑑𝑑6  + 6  𝑑𝑑4𝑦𝑦

𝑑𝑑𝑑𝑑4  + 9   𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑑𝑑2  = 0 

 Solution : The auxiliary equation D6 + 6D4 + 9D2 = 0 has roots  
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D = 0, 0, ± i √3 , ± i √3 where the imaginary roots ± i √3 are  seen  to 
occur in a recurrent manner.  

 Hence the solution is 

 y = c1 x + c2 + (c3 x + c4) cos √3 x + (c5 x + c6) sin √3 x  

Example:  

 Solve  (D4 + 2D2 + 1) y = 0.  

Solution: The auxiliary equation D4 + 2D2 + 1 = 0 has roots  

D = ± i, ± i, recurring imaginary roots. Hence the solution is 

 y = (c1x + c2) cos x + (c3x + c4) sin x. 

 Summary of four cases 

Case 1: Real & Distinct Roots:  

 Auxiliary Equation ⇒ (D – p1) (D – p2) (D – p3) … (D – pn) = 0  

∴ Solution is y = c1 e p1x + c2 e p2x + c3 e p3x + … + cn e pnx  

Case 2: Repeated Real Roots 

 For p1 = p2 ⇒ Auxiliary Equation ⇒  

 (D – p1) (D – p2) (D – p3) … (D – pn) = 0  

 Solution is y = (c1 x + c2) e p1x + c3 e p3x + … + cn e pnx  

 For p1 = p2 = p3 ⇒ A.E. ⇒ (D – p1) (D – p1) (D – p1) (D – p4) … (D – pn) = 
0 

 Solution is y = (c1 x2 + c2 x + c3) ep1x + c4 e p4x + … + cn e pnx  

Case 3: Imaginary Roots 

 For D = α ± i β 

 Solution is y = eαx [c1 cos βx + c2 sin βx]  

Case 4: Repeated Imaginary Roots 

 For D = α ± iβ be repeated twice  

 Solution is y = eαx [(c1 x + c2) cos βx + (c3 x + c4) sin βx] 

5.5 Linear differential equation f (D) y = X 

The general solution of the equation f (D)y = X can be represented as   

y = Yc +Yp 
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i.e. General solution = Complementary function + Particular integral  

Yc is the solution of the given equation with X = 0 that is of equation f (D)y = 0 
and is called the complementary function. It involves n arbitrary constants and is 
denoted by Complementary function (C.F).  

By definition of Yc, f(D) Yc = 0. 

Yp is any function of s, which satisfies the equation f(D)y = X, so that f(D) Yp = 
X. Yp is called the particular integral and is denoted by  particular integral(P.I). It 
does not contain any arbitrary constants. 

Thus, on substituting y = Yc +Yp in f (D) y, we have 

f(D) [Yc +Yp ] = f(D) Yc + f(D) Yp  

                         = 0 + X     …………… [by definition of Yc and Yp ] 

                           = X 

∴ y = Yc +Yp satisfies the equation f (D)y = X and it contains n arbitrary 
constants, is the general (or complete) solution of the equation.  

5.6 The Complimentary Function 

The solution where the order of the differential equation matches the number of 
arbitrary constants  is called the complementary function (C.F.) of a Differential 
equation. 

Method of Finding Complementary Function (C.F)  

Step I: Find auxiliary equation (Auxiliary .Equation.)  

Step II: Find the roots of the equation. i.e. values of p. Let the roots are p1, 
p2,…… , pn .  

Step III: Required C.F. is obtained as per the roots stated below.  

Rules of finding C.F 

If all roots p1, p2 ,…… , pn are real and distinct of auxiliary equation then 
complementary function will be c1 e p1x + c2 e p2x + … + cn epnx . 

If p1 = p2, but other roots are real and distinct then complementary function will 
be (c1 x + c2) c1ep1x + c3 e p3x + c4 e p4x + … + cn e pnx. 

If  roots are imaginary (α ± i β) then complementary function will be eαx [c1 cos 
βx + c2 sin βx].  
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If roots are imaginary and repeated twice then complementary function will be  
eαx [(c1 x + c2) cos βx + (c3 x + c4) sin βx] 

Example  

 Solve (D2- 3D - 4) y = 0.  

 Solution: Here Auxiliary equation is (D2- 3D - 4) = 0.  

 D2- 3D - 4 = 0 

 (D - 4). (D +1) = 0  

 D = 4, -1  

 Hence roots are 4 and -1, real and different 

∴ Complementary Function is    y = c1𝑒𝑒 4𝑥𝑥 + c2𝑒𝑒 – 𝑥𝑥 

Example  

 Solve (D3 - 8) y = 0.  

 Solution: Here Auxiliary equation is (D3 - 8) = 0.  

 D3 - 8 = 0. 

 (D - 2). (D2 + 2D + 4) = 0 

 D = 2, D = -1± i√3  

 Hence roots are 2, and -1± i√3,  

 one is real and the rest is a pair of imaginary roots.  

∴ Complementary Function is,  

 y = c1 e2x + e-x (c2 cos √3x + c3 sin√3x)  

5.7 The inverse operator 1/f(D) and the symbolic expiration for 
the particular integral 1/f(D) X  

To find the Particular Integral, it is essential to specify the inverse operator  
1

f(D) .So If X is any function of x, then  1
f(D)  X is that function of x that is free from 

arbitrary constant which when operated by f (D) gives the function X. 

The order of operator f (D) and 1
f(D)  can be interchanged.  

f (D) { 1
f(D)  X} =  1

f(D)  f (D) X = X 

General Method of finding the Particular Integral  
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Factor Method 

To evaluate 1
f(D)  X, where X is a function of x, resolve f (D) into factors of the 

type (D - a), then operate on X successively by the reciprocal of these factor in 
any order using the formula  

1
(D−a)  X = 𝑒𝑒𝑎𝑎𝑎𝑎 ∫ 𝑋𝑋𝑒𝑒−𝑎𝑎𝑎𝑎dx  

If X = 𝑒𝑒𝑎𝑎𝑎𝑎  
1

f(D)  𝑒𝑒
𝑎𝑎𝑎𝑎 =  𝑒𝑒𝑎𝑎𝑎𝑎

f(a)  ;  f(a) ≠ 0 

  =  𝑎𝑎 𝑒𝑒𝑎𝑎𝑎𝑎

f′(a)  ; f ’(a) ≠ 0  =   𝑎𝑎
2𝑒𝑒𝑎𝑎𝑎𝑎

f′′(a)  ; f ’’(a) ≠ 0 and so on 

Same formula is applicable for sin(ax +b) and cos(ax +b) 

Similarly when there are functions like 1
f(D)  𝑒𝑒

𝑎𝑎𝑎𝑎 √𝑥𝑥   = 𝑒𝑒𝑎𝑎𝑎𝑎 1
f(D+a) √𝑥𝑥 we can use 

the above methodology 

Method of partial fractions 

Resolve 1
f(D)  into partial fractions and then operate on X by each of these 

fractions. 

To find the value of   1
f(D)  𝑥𝑥

𝑝𝑝, p is any positive integer, then  

1
f(D)  𝑥𝑥

𝑝𝑝 = [f (D)]-1𝑥𝑥𝑝𝑝 

Since D is an operator, which can be manipulated as expanding [f (D)]-1 by the 

Binomial theorem in ascending power of D as far as the result of expanding Dp+1 
on 𝑥𝑥𝑝𝑝 is 0.Then operating upon 𝑥𝑥𝑝𝑝 with each term of the expansion. 

Examples 

Example :  

 Solve   𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑎𝑎2  - y = 3 + 6x 

 Solution: Auxiliary equation is D2 – 1 =0  

∴ Roots are 1 and -1 and  

∴ C.F. is,  

 Yc= C1 𝑒𝑒𝑎𝑎 + C2 𝑒𝑒−𝑎𝑎 

 The P. I of the equation is given by, 

 1
(𝐷𝐷2−1) [3 +6x] = 12  {   1

𝐷𝐷−1 -  1
𝐷𝐷+1 } [3 +6x] 

m
unotes.in



114

 APPLIED MATHEMATICS

          = 12  {   1
𝐷𝐷−1 [3 +6x] -  1

𝐷𝐷+1  [3+6x]} 

 = 12  {𝑒𝑒𝑥𝑥 ∫ 𝑒𝑒−𝑥𝑥  [3 +6x] dx -  𝑒𝑒−𝑥𝑥 ∫ 𝑒𝑒𝑥𝑥  [3 +6x] dx} 

 = 12 [- 6 – 12x] 

 = -3 – 6x =-3[1-2x]. 

∴ P. I. is, Yp = - 3[1– 2x] 

 The complete solution of the equation is 

 Y = Yc + Yp 

 Y = C1 𝑒𝑒𝑥𝑥 + C2 𝑒𝑒−𝑥𝑥 - 3 – 6 

5.8 Particular integral  

Short method for finding Particular integral (P.I.): 

If X ≠ 0, in equation a0
  𝑑𝑑𝑛𝑛𝑦𝑦
𝑑𝑑𝑥𝑥𝑛𝑛  + a1

  𝑑𝑑𝑛𝑛−1𝑦𝑦
𝑑𝑑𝑥𝑥𝑛𝑛−1  + a2

  𝑑𝑑𝑛𝑛−2𝑦𝑦
𝑑𝑑𝑥𝑥𝑛𝑛−2  + ………. + an-1

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 + a2y = X 

then P.I. = 1
𝑓𝑓(D)   X 

Following are the methods for finding particular integral 

Rules for finding Particular Integral : 

Types of function What to do Corresponding P.I. 

X = 𝑒𝑒𝑎𝑎𝑥𝑥 Put D = a in f(D) 1
𝑓𝑓(D)   𝑒𝑒

𝑎𝑎𝑥𝑥, provided f(a) ≠ 0. 

If f(a) = 0 then (D-a) is one 
of the factor of f(D).This 
factor is solved by using the 

formula 1
(D−a)  X = 𝑒𝑒𝑎𝑎𝑥𝑥  ∫ 

𝑒𝑒−𝑎𝑎𝑥𝑥 𝑋𝑋𝑋𝑋𝑋𝑋. 

And rest is solved by the 
above method given here. 

X = 𝑋𝑋𝑚𝑚 Put [f(D)]- 1𝑋𝑋𝑚𝑚 Expand [f(D)]-1 using 
binomial expansions and if 
(D-a) remains in the 
denominator then take 
rationalization of 
denominator and place D in 
the numerator as derivative 
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of the corresponding 
function. 

X = = 𝑒𝑒𝑎𝑎𝑎𝑎v First operate on  𝑒𝑒𝑎𝑎𝑎𝑎 on 
1

𝑓𝑓(D)   then operate 
𝑒𝑒𝑎𝑎𝑎𝑎 1

𝑓𝑓(D+a) v, then solve for 

v by above method 

X = sin ax (or cos ax) Put D2= -a2 in f(D) 1
f(−𝑎𝑎2 )  sin ax (or cos ax) , 

provided 1
f(−𝑎𝑎2 )  ≠  0 or 

otherwise use following 

formula: 1
𝐷𝐷2+𝑎𝑎2  sin ax = - 

1
2a   cos ax or 1

𝐷𝐷2+𝑎𝑎2 cos ax = 
𝑎𝑎

2a   sin ax 

  

Example:  

 Solve (D2+ 4D+3)y = 𝑒𝑒−2𝑎𝑎  

 Solution: Here auxiliary equation is (D2+ 4D+3) = 0  

 D2+ 4D+3 = 0 

 (D+3) (D+1) = 0 

 D = -3,-1  

Hence roots are -3 and -1, real and different.  

 Therefore C.F. is 

 C.F = C1𝑒𝑒-3x C2𝑒𝑒 –x 

 Now to find P.I: 

 P.I = 1
𝑓𝑓(D)   X 

      =  1
𝑓𝑓(D)   X 

      = 1
D2+ 4D+3    𝑒𝑒

−2𝑎𝑎 

 Here X =   𝑒𝑒𝑎𝑎𝑎𝑎 therefore put D = a = -2 

      = 1
(−2)2+4 (−2)+3  𝑒𝑒−2𝑎𝑎 

  P. I.    = - 𝑒𝑒−2𝑎𝑎 

 Hence the general solution is y = C.F.+ P.I. 

 Y = C1𝑒𝑒-3x C2𝑒𝑒 –x - 𝑒𝑒−2𝑎𝑎 
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5.9 Particular Integral: Other methods  

Method of Variation by Parameters  

The method of Variation of Parameters is a generalized method that can be used 
in many more cases. However, there are two disadvantages to the method. First, 
the complementary solution is required to solve the problem. Secondly, in order 
to complete the method a couple of integrals need to be solved. 

 In some cases we may not be able to actually find the solutions if the integrals 
are too difficult or if we are unable to find the complementary solution. 

Example:  

 Solve by Method of Variation by Parameters [D2 + 4] = tan 2x 

 Solution: The Auxiliary Equation is p2 + 4 = 0  

 p2 = - 4  

 p = ± 2i 

 Complimentary Function is represented as follows : 

 Yc= C1 cos 2𝑥𝑥 + C2 sin 2𝑥𝑥 

 Particular Integral = - y1 ∫ 𝑦𝑦2 𝑋𝑋
𝑊𝑊  dx + y2 ∫ 𝑦𝑦1 𝑋𝑋

𝑊𝑊  dx 

 y1 = cos2x, y2 = sin2x; X = tan 2x  

 and for W, by Wronskian determinant,  

 W  = | 𝑦𝑦1 𝑦𝑦2
𝑦𝑦1′ 𝑦𝑦2′|  

 = | 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥
− 2 𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥 2𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥| 

 = 2cos22x + 2 sin2 2x 

 = 2 [cos22x + sin2 2x] 

 = 2 

 Particular Integral  = - cos2x ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥.𝑡𝑡𝑡𝑡𝑠𝑠2𝑥𝑥
2  dx + sin2x ∫ 𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥.𝑡𝑡𝑡𝑡𝑠𝑠2𝑥𝑥

2  dx 

 = - cos2x ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2 2𝑥𝑥
2𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥 dx + sin2x ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥

2  dx              [ tanx = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥.
cos 𝑥𝑥2 ] 

 = - cos2x ∫ 1−𝑐𝑐𝑐𝑐𝑠𝑠2 2𝑥𝑥
2𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥  dx + 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥

2   [−𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥
2  ] 

 = - 𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥
2  {∫ 1

𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥 dx -  ∫  𝑐𝑐𝑐𝑐𝑠𝑠2 2𝑥𝑥
𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥  dx} + [ 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥

2   −𝑐𝑐𝑐𝑐𝑠𝑠2𝑥𝑥
2  ] 
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 = - 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥
2  {∫ 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 dx -  ∫  𝑠𝑠𝑐𝑐𝑠𝑠2𝑥𝑥  𝑑𝑑𝑥𝑥 } - 𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥

4  

 = - 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥
2  { log[𝑐𝑐𝑠𝑠𝑐𝑐2𝑥𝑥+tan 2𝑥𝑥]

2  -  𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥
2  } - 𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥

4  

 = - 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥
4   log[𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 + tan 2𝑥𝑥] +  𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥

4   - 𝑐𝑐𝑠𝑠𝑠𝑠2𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥
4  

 Particular I ntegral= - 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥
4   log[𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 + tan 2𝑥𝑥] 

 The complete solution of the equation is 

 Y = Yc + Yp 

 Y = C1 cos 2𝑥𝑥 + C2 sin 2𝑥𝑥 - 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥
4   log[𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 + tan 2𝑥𝑥] 

 By the method of variation of parameters,  

 solve the following differential equation: 

 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2 + 4y = 4tan2x 

 = y “+4y = 0 

 = p2 + 4 = 0 

 = p (+−)2 = 0 

 =p1 = - 2 ; p2 =  2 

 =yc = c1cos2x + c2sin2x 

 Now let y1 = cos2x and y2 = sin2x 

 y1’ = - 2sin2x and y2’ = 2cos2x 

 W = y1 * y2’ - y2 *y1’ = 2[cos2x +sin2x] = 2 

  A’ =−𝑦𝑦2 ∗ 4𝑡𝑡𝑡𝑡𝑠𝑠2𝑥𝑥           
𝑊𝑊  

 B’ =𝑦𝑦1 ∗ 4𝑡𝑡𝑡𝑡𝑠𝑠2𝑥𝑥           
𝑊𝑊  

 A = ∫ −2𝑐𝑐𝑠𝑠𝑠𝑠22𝑥𝑥
𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 ∂x          

               B  = ∫ 2sin2x ∂x         
      

 = A = -log (sec2x +tan 2x) +sin2x +c1,B  = -cos2x +c2 

 = y = Acos2x +Bsin2x , we put A  and B in this equation  

 and get the final result.               
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 5.10 Differential equations reducible to the linear differential 
equations with constant coefficients 

Linear differential Equation: 

X Linear: 
dx
dy+ P(y).x = Q(y) 

Integrating Factor (I. F.) = e∫ p(y)dy 

x. IF = ∫ IF Q(y)dy + c 

 Y Linear: 
dy
dx+ P(x).y = Q(x) 

Integrating Factor (I. F.) = e∫ p(x)dx 

y. IF = ∫ IF Q(x)dx + c 

Example:  

Ex 1: (1 + y2) + (x - tan−1 y) dy
dx = 0  

Sol: Multiply by dx
dy 

 (1 + y2) dx
dy + x - tan−1 y = 0 

(1 + y2) dx
dy + x =  tan−1 y 

dx
dy + x

(1 + y2)   =   tan−1 y
(1 +y2 )   , 

 P = 1
(1 + y2)  and Q = tan−1 y

(1 + y2)  

IF  =  e∫ p(y)dy 

 =  e∫ 1
(1 + y2) dy 

         =   etan−1 y 

x. IF = ∫ IF Q(y)dy + c 

x. etan−1 y  = ∫ etan−1 y tan−1 y
(1 + y2)   dy + c 

Let tan−1 y = t 
1

(1 + y2) dy = dt 

x. et = ∫ et t dt   + c 
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 = ∫ et t dt   + c  

 = t et- et + c 

Put t = tan−1 y 

x. etan−1 y =  tan−1 y etan−1 y- etan−1 y + c 

Reducible to Linear differential Equation 
dy
dx+ P(x). y = Q(x) y n 

Dividing by y n 
1

yn  dy
dx+ P(x) 1

yn−1  = Q(x) ……….. (1) 

Let 1
yn−1 = t 

Differentiating. with respect to y 

(-n+1) 1
yn  dy

dx = dt
dx 

1
yn  dy

dx =  1
1−n  dt

dx 

Eq (1) becomes 
1

1−n  dt
dx + P(x) t  = Q(x) 

This is a linear equation in t. 

Example: 

Ex1. dy
dx -  y tan x = - y 2 sec x 

Sol:  dy
dx - y tan x = - y 2 sec x 

Dividing by y2 
1

y2  dy
dx -  1y tan x = - sec x 

Let  1y = t  

− 1
y2  dy

dx = dt
dx  

 

− dt
dx  - t tan x  = - sec x 

dt
dx  + t tan x  = sec x 

This is a linear equation in t 
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 P = tan x and Q = sec x 

IF  =  e∫ tan x dx 

 =  elog sec x  

 = sec x  

t. IF  = ∫ IF Q (x)dx   + c 

t. sec x = ∫ sec2 xdx   + c 

Ans: 
1
y sec x = tan x + c   

5.11 Summary  
This chapter provides the students with an understanding of linear differential 
equation of higher order and degree with constant coefficients and goes on to 
explain the concepts of complimentary functions and integral values and their 
usage in solving the problems that constitute the above. Students are made to  use 
the concept of inverse operator and the case of real, repeated and imaginary roots 
to solve complex differential equations of the higher order and higher degree. The 
techniques of using substitution methods to solve the differential equations by 
using the concept of reduction is also dealt with in this chapter. 

5.12 References 
“Higher Engineering Mathematics” by B.V.Raamna,Tata McGraw-Hill 
Publication, New Delhi. 

a. “Schaum’s Outline of Differential Equations” by Richard Bronson and 
Gabriel Costa. 

b. Applied Mathematics II by P. N. Wartikar and J. N. Wartikar. 

c. https://www.library.gscgandhinagar.in/assets/admin/images/MAT-
102(UNIT1,2).pdf 

d. http://www.math.utah.edu/~zwick/Classes/Fall2013_2280/Lectures/Lecture
6_with_Examples.pdf 

e. http://www.rahulandmaths.com/bsc-students/differential-equations 

5.13 Questions 

Solve   d
2y

dx2  + 4y = 0 

Solve   d
4y

dx4  - 16y = 0 
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Solve (D2- 3D - 4) y = 0. 

Solve (D3 - 8) y = 0 

Solve (D2-3D+2)y=e5x 

Solve(D3-3D2+4)y=e3x 

3.  d3 y
 dx3 − y = e2x 

4.  (D2-2D+1)y = e3x 

5.  (D2-2D+1)y = ex 

6.  Assuming that the rate of growth of any organism is directly proportional to  
N(t) present at time t, so to find the value of N(t) given that N(0) = 100 and 
after (t+1 with t = 0), the size of the organism  has grown to 200.  

Solution :  

 In this case t = 0, N(0) = 100. The solution of the problem is given by 

  N(t) = 100 exp (kt), t >=0  

  Determine m from the additional condition  

 N(l) = 200 (N(1) = size of  I at time t = 1).  

 Hence 200 = 100 exp (k) ,k = 1n2  

 Hence the solution is  

 N(t) = 100 exp (t ln2) = 100 exp (ln2t) or N(t) = (100) 2t . So the equation 
can be represented as shown here.  

 Applications -  Electrical circuits 

  E= Ldi
dt + Ri 

a.      A resistance of 50Ω and an inductance of 0.1H are connected in series with 
battery of 10V. Find current in circuit at any time ‘t’. 

b.      In a network circuit of R-L series R=50Ω and L=10H, a constant voltage 
150V is applied at t=0 by closing the switch. Find the current in the circuit 
at t=0.10sec. 

❖❖❖❖❖❖❖ 
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Unit 3 

6 
THE LAPLACE TRANSFORM  

 

Unit Structure 

6.0 Objectives 

6.1 Introduction 

6.2 Definition 

6.3 Table of Elementary Laplace Transform 

6.4 Theorems on Important Properties of Laplace Transformation 

 6.4.1 Flow Chart of Gamma Function 

 6.4.2 Beta Function 

 6.4.3 Properties of Beta Function:  

 6.4.4 Problem based on Beta Function 

 6.4.5 Duplication Formula of Gamma Functions 

6.5 Additional Problems 

6.6 Exercise 

6.7 Summary 

6.8 References 

6.0 Objectives 
After going through this unit, you will be able to:  

• Understand the concept of Laplace Transformation, Theorems on Important 
Properties of Laplace Transformation  

•    Solve the problem based on Elementary Laplace Transforms with its type. 

• Understand the concept of First shifting and Second shifting theorem  

• Understand Convolution Theorem Laplace Transform of an Integral and 
Derivatives  

m
unotes.in



123

Chapter 6: The Laplace Transform

6.1 Introduction 

In mathematics, the Laplace transform, named after its inventor Pierre-Simon 
Laplace, is an integral transform that converts a function of a real variable t  
(often time) to a function of a complex variable s. It is an essential part of 
mathematical background required of engineers and scientists. This method has 
advantage of directly giving the solution of differential equations with given 
boundary values without the necessity of finding the general solution and then 
evaluating from it the arbitrary constants. It also provide ready tables of Laplace 
transforms which reduce the problem of solving differential equations to plain 
algebraic manipulations. 

Whenever a mathematical operator works on a function, the function is changed 
or transformed into another function. For example when the differential operator  

𝐷𝐷  ( 𝑑𝑑
𝑑𝑑𝑑𝑑) works on f(x) = tan,x , 

it produces a new function  𝜙𝜙(𝑥𝑥) ≡ 𝐷𝐷 𝑓𝑓(𝑥𝑥) =  𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. 

6. 2 Definition  

Laplace transform is yet another operational tool for solving constant coefficients 
linear differential equations. The process of solution consists of three main steps: 

i)  The given “hard" problem is transformed into a “simple" equation. 

ii)  This simple equation is solved by purely algebraic manipulations. 

iii) The solution of the simple equation is transformed back to obtain the 
solution of the given problem. 

In this way the Laplace transformation reduces the problem of solving a 
differential equation to an algebraic problem. The third step is made easier by 
tables, whose role is similar to that of integral tables in integration. 

 

If 𝑓𝑓(𝑡𝑡) is  a function of  𝑡𝑡 , then the definite integral ∫ e−st 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 ,   
∞

0

 

if it exists, will be a function of the parameter  𝑠𝑠 , and is denoted by  𝑓𝑓(𝑠𝑠). 

There is a one to one correspondence between  𝑓𝑓(𝑡𝑡) and 𝑓𝑓 ̅(𝑠𝑠),   
and the relation transforms 𝑓𝑓(𝑡𝑡),   
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a function of  𝑡𝑡  into a new function 𝑓𝑓(𝑠𝑠), which is a function of another variable  𝑠𝑠.  
𝑓𝑓(𝑡𝑡)  is  called the object function , which is defined for 𝑡𝑡  

≥ 0,    𝑓𝑓 ̅(𝑠𝑠)  is the resultant  
or image function , 𝑠𝑠 is the parameter of the the transform, which should be 
sufficiently large to make the integral convergent.  

The relation between 𝑓𝑓(𝑡𝑡) and 𝑓𝑓(𝑠𝑠), 𝒇𝒇(𝒔𝒔 ) =  ∫ 𝐞𝐞−𝐬𝐬𝐬𝐬 [ 𝒇𝒇(𝒕𝒕)]𝒅𝒅𝒕𝒕
∞

𝟎𝟎
    − − − − − (𝟏𝟏)  

symbolically  it is  written as ℒ {𝑓𝑓(𝑡𝑡)} = 𝑓𝑓(𝑠𝑠), 𝑎𝑎𝑎𝑎𝑎𝑎  𝑓𝑓(̅𝑠𝑠) is called the Laplace 
transform of f(t). 

  ℒ { 𝐴𝐴𝐹𝐹1(t) +  𝐵𝐵𝐹𝐹2(t)} = 𝐴𝐴ℒ {𝐹𝐹1(𝑡𝑡)} +
 𝐵𝐵ℒ {𝐹𝐹2(𝑡𝑡)}       Laplace Linear Transformation 

6. 3 Table of Elementary Laplace Transform  

f(t) f(s) 

1 
𝟏𝟏
𝒔𝒔 

𝒆𝒆𝒂𝒂𝒕𝒕 
𝟏𝟏

𝒔𝒔 − 𝒂𝒂 , 𝒔𝒔 > 𝑎𝑎 

Sin at 
𝒂𝒂

𝒔𝒔𝟐𝟐 + 𝒂𝒂𝟐𝟐 

Cos at 
𝒔𝒔

𝒔𝒔𝟐𝟐 − 𝒂𝒂𝟐𝟐 

sinh at 
𝒂𝒂

𝒔𝒔𝟐𝟐 − 𝒂𝒂𝟐𝟐 

cosh at 
𝒔𝒔

𝒔𝒔𝟐𝟐 − 𝒂𝒂𝟐𝟐 

𝒕𝒕
𝟐𝟐𝒂𝒂  𝒔𝒔𝒔𝒔𝒔𝒔 𝒂𝒂𝒕𝒕 

𝒔𝒔
(𝒔𝒔𝟐𝟐 + 𝒂𝒂𝟐𝟐)𝟐𝟐 

𝟏𝟏
𝟐𝟐𝒂𝒂𝟑𝟑 ( 𝒔𝒔𝒔𝒔𝒔𝒔 𝒂𝒂𝒕𝒕 − 𝒂𝒂𝒕𝒕 𝒄𝒄𝒄𝒄𝒔𝒔 𝒂𝒂𝒕𝒕 ) 

𝟏𝟏
(𝒔𝒔𝟐𝟐 + 𝒂𝒂𝟐𝟐)𝟐𝟐 

𝒕𝒕𝒔𝒔 
(𝒔𝒔 + 𝟏𝟏)!

𝒔𝒔𝒔𝒔+𝟏𝟏  

6.4 Theorems on Important Properties of Laplace 
Transformation 

𝐈𝐈. 𝐋𝐋𝐋𝐋𝐋𝐋𝐞𝐞𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝐋𝐋 𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐞𝐞𝐋𝐋𝐬𝐬𝐋𝐋 ∶ 

If a, b, c be any constants and f, g, h  any functions of t , then 

L {af(t) +  bg(t) −  ch(t)} = aL {f(t)} +  b{g(t)} − cL {h(t)}, 
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L is called linear operator  

𝐈𝐈𝐈𝐈. 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝐒𝐒𝐒𝐒𝐅𝐅𝐒𝐒𝐅𝐅𝐅𝐅𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐓𝐓𝐓𝐓𝐅𝐅𝐓𝐓𝐓𝐓 ∶ 

If ℒ {𝑓𝑓(𝑡𝑡)} = 𝑓𝑓(̅𝑠𝑠), then ℒ {𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(𝑡𝑡)} =   𝑓𝑓(̅𝑠𝑠 + 𝑎𝑎)    

Proof ∶   ℒ {𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(𝑡𝑡)} =  ∫ 𝑒𝑒−𝑠𝑠𝑎𝑎 {𝑒𝑒−𝑎𝑎𝑎𝑎 𝑓𝑓(𝑡𝑡)} 𝑑𝑑𝑡𝑡 
∞

0
 

= ∫ 𝑒𝑒−(𝑠𝑠+𝑎𝑎)𝑎𝑎 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡 
∞

 0
 

  = ∫ 𝑒𝑒−𝑝𝑝𝑎𝑎 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡  ( 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝 = 𝑠𝑠 + 𝑎𝑎)    = 𝑓𝑓(𝑝𝑝) =  𝑓𝑓̅
∞

0

(𝑠𝑠 + 𝑎𝑎)    

 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏: 𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑎𝑎𝑝𝑝𝑙𝑙𝑎𝑎𝑙𝑙𝑒𝑒 𝑡𝑡𝑒𝑒𝑎𝑎𝐹𝐹𝑠𝑠𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡 𝑡𝑡𝑓𝑓 𝐹𝐹) 𝑒𝑒−𝑏𝑏𝑎𝑎 𝑙𝑙𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡 

 𝐒𝐒𝐓𝐓𝐒𝐒𝐒𝐒𝐅𝐅𝐅𝐅𝐓𝐓𝐒𝐒 ∶ We know  ℒ(cos 𝑎𝑎𝑡𝑡 ) =  𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2 

ℒ{ 𝑒𝑒−𝑏𝑏𝑎𝑎 𝑙𝑙𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡} = 𝑠𝑠 + 𝑏𝑏
(𝑠𝑠 + 𝑏𝑏)2 +  𝑎𝑎2  

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟐𝟐: 𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑎𝑎𝑝𝑝𝑙𝑙𝑎𝑎𝑙𝑙𝑒𝑒 𝑡𝑡𝑒𝑒𝑎𝑎𝐹𝐹𝑠𝑠𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡 𝑡𝑡𝑓𝑓 𝐹𝐹) 𝑡𝑡2  𝑒𝑒3𝑎𝑎 

𝐒𝐒𝐓𝐓𝐒𝐒𝐒𝐒𝐅𝐅𝐅𝐅𝐓𝐓𝐒𝐒 ∶ We know  ℒ(𝑡𝑡2) = 2!
𝑠𝑠3 

ℒ{  𝑡𝑡2  𝑒𝑒3𝑎𝑎} = 2!
(𝑠𝑠 − 3)2 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟑𝟑: 𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑎𝑎𝑝𝑝𝑙𝑙𝑎𝑎𝑙𝑙𝑒𝑒 𝑡𝑡𝑒𝑒𝑎𝑎𝐹𝐹𝑠𝑠𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡 𝑡𝑡𝑓𝑓 𝐹𝐹) sin 2𝑡𝑡 sin 3𝑡𝑡  𝐹𝐹𝐹𝐹)𝑙𝑙𝑡𝑡𝑠𝑠22𝑡𝑡  𝐹𝐹𝐹𝐹𝐹𝐹) 𝑠𝑠𝐹𝐹𝐹𝐹32𝑡𝑡 

 𝐒𝐒𝐓𝐓𝐒𝐒𝐒𝐒𝐅𝐅𝐅𝐅𝐓𝐓𝐒𝐒 ∶ 

i) since 𝑠𝑠𝐹𝐹𝐹𝐹 2𝑡𝑡 𝑠𝑠𝐹𝐹𝐹𝐹 3𝑡𝑡 =  1
2 [cos  t − cos 5t]  

∴  ℒ {sin 2𝑡𝑡 sin 3𝑡𝑡 } =  1
2 [ℒ(cos  t) − ℒ(cos 5t) ] 

= 1
2 [ s

s2 + 12 −  s
s2 + 52] 

=  12s
(s2 + 1)(s2 + 25) 

ii) since 𝑙𝑙𝑡𝑡𝑠𝑠22𝑡𝑡 = 1
2 (1 +  𝑙𝑙𝑡𝑡𝑠𝑠4𝑡𝑡 ) 
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∴  ℒ { 𝑐𝑐𝑐𝑐𝑐𝑐22𝑡𝑡} = 1
2 [ℒ(1) +  ℒ (cos 4𝑡𝑡 )] = 1

2 (1
𝑐𝑐 + 𝑐𝑐

𝑐𝑐2 +  16) 

iii) since sin 6t = 3 sin 2𝑡𝑡 − 4 𝑐𝑐𝑠𝑠𝑠𝑠32𝑡𝑡  𝑐𝑐𝑜𝑜  𝑐𝑐𝑠𝑠𝑠𝑠32𝑡𝑡 = 3
4 sin 2𝑡𝑡 − 1

4 sin 6𝑡𝑡  

∴  ℒ { 𝑐𝑐𝑠𝑠𝑠𝑠32𝑡𝑡} = 3
4 [ℒ(sin 2𝑡𝑡 ) − 1

4  ℒ (sin 6𝑡𝑡 )]  

= 3
4 . 2

𝑐𝑐2 + 22 − 1
4 . 2

𝑐𝑐2 + 62 

=  48
(𝑐𝑐2 +  4) (𝑐𝑐2 +  36 ) 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟒𝟒: 𝐹𝐹𝑠𝑠𝑠𝑠𝐹𝐹 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑒𝑒 𝑡𝑡𝑜𝑜𝑙𝑙𝑠𝑠𝑐𝑐𝑡𝑡𝑐𝑐𝑜𝑜𝑡𝑡 𝑐𝑐𝑡𝑡 

                                    𝑠𝑠) e−3t( 2 cos 5t − 3 sin 5t )   𝑠𝑠𝑠𝑠)  𝑒𝑒2𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ i) ℒ {e−3t( 2 cos 5t − 3 sin 5t )  } 

= 2ℒ (e−3tcos 5t) − 3ℒ(e−3t sin 5t) 

= 2. s + 3
(s + 3)2 + 52 − 3. 5

(s + 3)2 + 52 

=  2s − 9
s2 +  6s + 34  

ii) Since ℒ {𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡} = 1
2 ℒ(1 + cos 2𝑡𝑡 ) = 1

2 {1
𝑐𝑐 + 𝑐𝑐

𝑐𝑐2 + 4}  

∴ By shifting property , we get ℒ{e2t  𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡} = 1
2 { 1

𝑐𝑐 − 2 + 𝑐𝑐 − 2
(𝑐𝑐 − 2)2 + 4} 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟓𝟓: 𝐼𝐼𝑡𝑡 ℒ {𝑡𝑡(𝑡𝑡)} = 𝑡𝑡(̅𝑐𝑐) 𝑐𝑐ℎ𝑐𝑐𝑜𝑜 𝑡𝑡ℎ𝑙𝑙𝑡𝑡  

                             𝑠𝑠) ℒ [(sinh 𝑙𝑙𝑡𝑡)𝑡𝑡(𝑡𝑡)] = 1
2 [𝑡𝑡(̅𝑐𝑐 − 𝑙𝑙) − 𝑡𝑡(̅𝑐𝑐 + 𝑙𝑙)] 

                            𝑠𝑠𝑠𝑠) ℒ [(cosh 𝑙𝑙𝑡𝑡)𝑡𝑡(𝑡𝑡)] = 1
2 [𝑡𝑡(̅𝑐𝑐 − 𝑙𝑙) + 𝑡𝑡(̅𝑐𝑐 + 𝑙𝑙)] 

𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡𝑒𝑒(𝑠𝑠) sinh 2𝑡𝑡 sin 3𝑡𝑡 (𝑠𝑠𝑠𝑠) cosh 3𝑡𝑡 cos 2𝑡𝑡  

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒: We have  ℒ {(sinh 𝑙𝑙𝑡𝑡) 𝑡𝑡(𝑡𝑡)} =  ℒ {1
2 ( 𝑒𝑒𝑎𝑎𝑡𝑡 −  𝑒𝑒−𝑎𝑎𝑡𝑡)𝑡𝑡(𝑡𝑡)  } 

= 1
2 [ℒ{𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡(𝑡𝑡)} − ℒ{𝑒𝑒−𝑎𝑎𝑡𝑡𝑡𝑡(𝑡𝑡)}] 

= 1
2 [𝑡𝑡(̅𝑐𝑐 − 𝑙𝑙) − 𝑡𝑡(̅𝑐𝑐 + 𝑙𝑙)], 𝑏𝑏𝑏𝑏 𝑐𝑐ℎ𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖 𝑙𝑙𝑜𝑜𝑐𝑐𝑙𝑙𝑒𝑒𝑜𝑜𝑡𝑡𝑏𝑏  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℒ {(cosh 𝑆𝑆𝑎𝑎) 𝑓𝑓(𝑎𝑎)} = 1
2 [ℒ{𝑒𝑒𝑎𝑎𝑎𝑎𝑓𝑓(𝑎𝑎)} + ℒ{𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(𝑎𝑎)}] 

    = 1
2 [𝑓𝑓(̅𝑠𝑠 − 𝑆𝑆) + 𝑓𝑓(̅𝑠𝑠 + 𝑆𝑆)], 𝑏𝑏𝑆𝑆 𝑠𝑠ℎ𝑆𝑆𝑓𝑓𝑎𝑎𝑆𝑆𝑖𝑖𝑖𝑖 𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑒𝑒𝑆𝑆𝑎𝑎𝑆𝑆  

(𝑆𝑆)𝑤𝑤𝑒𝑒 ℎ𝑆𝑆𝑎𝑎𝑒𝑒 ℒ (sin 3𝑎𝑎) = 3
𝑠𝑠2 + 32  

ℒ (sinh 2𝑎𝑎 sin 3𝑎𝑎 ) = 1
2 { 3

(𝑠𝑠 − 2)2 + 32 − 3
(𝑠𝑠 + 2)2 + 32} 

                                 = 12𝑠𝑠
𝑠𝑠4+ 10 𝑠𝑠2 + 169 

(𝑆𝑆𝑆𝑆)  𝑤𝑤𝑒𝑒 ℎ𝑆𝑆𝑎𝑎𝑒𝑒 ℒ (cos 2𝑎𝑎) = 𝑠𝑠
𝑠𝑠2 + 22   

ℒ (cosh 3𝑎𝑎 cos 2𝑎𝑎 ) = 1
2 { 𝑠𝑠 − 3

(𝑠𝑠 − 3)2 + 22 +  𝑠𝑠 + 3
(𝑠𝑠 + 3)2 + 22} 

                                    = 2𝑠𝑠(𝑠𝑠2 − 5)
𝑠𝑠4− 10 𝑠𝑠2 + 169 

𝟔𝟔. 𝟒𝟒. 𝟐𝟐 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐓𝐓𝐒𝐒𝐓𝐓 

𝐈𝐈𝐈𝐈𝐈𝐈. 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐓𝐓𝐒𝐒𝐓𝐓 ∶ 

If ℒ {𝑓𝑓(𝑎𝑎)} = 𝑓𝑓(̅𝑠𝑠) and F(t) = {  0             𝑎𝑎<𝑎𝑎 
𝑓𝑓(𝑎𝑎−𝑎𝑎)   𝑎𝑎>𝑎𝑎 then ℒ {𝐹𝐹(𝑎𝑎)} =  𝑒𝑒−𝑎𝑎𝑎𝑎 𝑓𝑓(̅𝑠𝑠) 

Proof ∶   ℒ {𝐹𝐹(𝑎𝑎)} =  ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎𝐹𝐹(𝑎𝑎)𝑑𝑑𝑎𝑎 
∞

0
 

= ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 𝐹𝐹(𝑎𝑎) 𝑑𝑑𝑎𝑎 +  ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 𝐹𝐹(𝑎𝑎) 𝑑𝑑𝑎𝑎  
∞

𝑎𝑎
 

𝑎𝑎

0
 

 =  ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎(0)𝑑𝑑𝑎𝑎 
𝑎𝑎

0
+ ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 𝑓𝑓(𝑎𝑎 − 𝑆𝑆) 𝑑𝑑𝑎𝑎  

∞

𝑎𝑎
 

=  ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 𝑓𝑓(𝑎𝑎 − 𝑆𝑆) 𝑑𝑑𝑎𝑎  
∞

𝑎𝑎
 

= ∫ 𝑒𝑒−𝑎𝑎(𝑢𝑢+𝑎𝑎) 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑢𝑢,        [ 𝑢𝑢 = 𝑎𝑎 − 𝑆𝑆 ]  
∞

0
 

= 𝑒𝑒−𝑎𝑎𝑎𝑎 ∫ 𝑒𝑒−𝑎𝑎𝑢𝑢 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑢𝑢 =  
∞

0
𝑒𝑒−𝑎𝑎𝑎𝑎 𝑓𝑓(̅𝑠𝑠) 

𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉, 𝓛𝓛 {𝑭𝑭(𝒕𝒕)} = 𝒉𝒉−𝒂𝒂𝒂𝒂 �̅�𝒇(𝒂𝒂). 𝒘𝒘𝒉𝒉𝒉𝒉𝒘𝒘𝒉𝒉  𝐅𝐅(𝐒𝐒) = {  𝟎𝟎             𝒕𝒕<𝑎𝑎 
𝒇𝒇(𝒕𝒕−𝒂𝒂)   𝒕𝒕>𝑎𝑎   

𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬𝑬𝑬𝒉𝒉 𝟔𝟔: 𝐹𝐹𝑆𝑆𝑖𝑖𝑑𝑑 ℒ {𝐹𝐹(𝑎𝑎)} 𝑓𝑓𝑝𝑝𝑆𝑆   F(t) = {  𝟎𝟎          𝟎𝟎<  𝑎𝑎 <1 
(𝒕𝒕−𝟏𝟏)𝟑𝟑   𝒕𝒕>1  

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ Here 𝑓𝑓(𝑎𝑎) = 𝑎𝑎3  , hence 𝑓𝑓(̅𝑠𝑠) = 3!
𝑠𝑠4 

m
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𝐵𝐵𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒 𝑎𝑎𝑎𝑎 𝑎𝑎 = 1, ℒ{𝐹𝐹(𝑡𝑡)} = 3! 𝑎𝑎−𝑠𝑠

𝑎𝑎4  

𝐈𝐈𝐈𝐈 . 𝐈𝐈𝐈𝐈 𝓛𝓛 {𝒇𝒇(𝒕𝒕)} =  �̅�𝒇(𝐬𝐬), 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  𝓛𝓛 {𝒕𝒕𝒏𝒏 𝒇𝒇(𝒕𝒕)} =  (−𝟏𝟏)𝒏𝒏 𝒅𝒅𝒏𝒏

𝒅𝒅𝒅𝒅𝒏𝒏 �̅�𝒇(𝒅𝒅)   , 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒏𝒏
= 𝟏𝟏, 𝟐𝟐, 𝟑𝟑 … 

𝑻𝑻𝒘𝒘𝑻𝑻𝒅𝒅 𝑻𝑻𝒅𝒅 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒘𝒘𝒅𝒅 𝒎𝒎𝒎𝒎𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒄𝒄𝑻𝑻𝒄𝒄𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒏𝒏 𝒃𝒃𝒃𝒃 𝒕𝒕𝒏𝒏 

 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂. 𝐓𝐓𝐭𝐭𝐭𝐭 𝐂𝐂𝐭𝐭𝐬𝐬𝐫𝐫𝐫𝐫𝐭𝐭𝐈𝐈𝐈𝐈 𝓛𝓛 {𝒕𝒕 𝒇𝒇(𝒕𝒕)} = − 𝒅𝒅
𝒅𝒅𝒅𝒅 �̅�𝒇(𝒅𝒅) =  −𝒇𝒇′(𝒅𝒅)  

𝒕𝒕𝒘𝒘𝒘𝒘 𝒅𝒅𝑻𝑻𝒇𝒇𝒇𝒇𝒘𝒘𝒘𝒘𝒘𝒘𝒏𝒏𝒕𝒕𝑻𝑻𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒏𝒏 𝒎𝒎𝒇𝒇 𝒕𝒕𝒘𝒘𝒘𝒘 𝒕𝒕𝒘𝒘𝒄𝒄𝒏𝒏𝒅𝒅𝒇𝒇𝒎𝒎𝒘𝒘𝒎𝒎 𝒎𝒎𝒇𝒇 𝒄𝒄 𝒇𝒇𝒎𝒎𝒏𝒏𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒏𝒏 𝒄𝒄𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘𝒅𝒅𝒎𝒎𝒎𝒎𝒏𝒏𝒅𝒅𝒅𝒅 𝒕𝒕𝒎𝒎  
𝒕𝒕𝒘𝒘𝒘𝒘 𝒎𝒎𝒎𝒎𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒄𝒄𝑻𝑻𝒄𝒄𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒏𝒏 𝒎𝒎𝒇𝒇 𝒕𝒕𝒘𝒘𝒘𝒘 𝒇𝒇𝒎𝒎𝒏𝒏𝒄𝒄𝒕𝒕𝑻𝑻𝒎𝒎𝒏𝒏 𝒃𝒃𝒃𝒃 − 𝒕𝒕  

𝑬𝑬𝑬𝑬𝒄𝒄𝒎𝒎𝒎𝒎𝒄𝒄𝒘𝒘 𝟕𝟕: 𝐹𝐹𝐹𝐹𝑛𝑛𝑑𝑑 ℒ {𝐹𝐹(𝑡𝑡)} 𝑓𝑓𝑎𝑎𝑒𝑒  (𝐹𝐹) 𝑡𝑡
2𝑎𝑎  𝑎𝑎𝐹𝐹𝑛𝑛ℎ 𝑎𝑎𝑡𝑡  (𝐹𝐹𝐹𝐹)𝑡𝑡2 cos 𝑎𝑎𝑡𝑡  

𝐒𝐒𝐂𝐂𝐫𝐫𝐫𝐫𝐭𝐭𝐒𝐒𝐂𝐂𝐭𝐭 ∶ (𝐹𝐹)𝑓𝑓(𝑡𝑡) =  sinh 𝑎𝑎𝑡𝑡 
2𝑎𝑎  , 𝑓𝑓(𝑎𝑎) =  1

2  1
𝑎𝑎2 −  𝑎𝑎2 

  ∴  ℒ {𝑡𝑡 1
2𝑎𝑎 sinh 𝑎𝑎𝑡𝑡} = (−1) 𝑑𝑑

𝑑𝑑𝑎𝑎 {1
2 . 1

𝑎𝑎2 − 𝑎𝑎2 } 

                                      = (−1) 1
2 −2𝑎𝑎

(𝑎𝑎2 − 𝑎𝑎2)2 

                                      =   𝑎𝑎
(𝑎𝑎2 −  𝑎𝑎2)2 

 

(𝐹𝐹𝐹𝐹)𝑓𝑓(𝑡𝑡) = cos 𝑎𝑎𝑡𝑡 , �̅�𝒇(𝐬𝐬) = 𝑎𝑎
𝑎𝑎2 +  𝑎𝑎2 

  ∴  ℒ {𝑡𝑡2 cos 𝑎𝑎𝑡𝑡} = (−1)2 𝑑𝑑2

𝑑𝑑𝑎𝑎2 { 𝑎𝑎
𝑎𝑎2 + 𝑎𝑎2 } 

                               =  2𝑎𝑎 (𝑎𝑎2 − 3𝑎𝑎2)
(𝑎𝑎2 + 𝑎𝑎2)3   

 

𝑬𝑬𝑬𝑬𝒄𝒄𝒎𝒎𝒎𝒎𝒄𝒄𝒘𝒘 𝟖𝟖: 𝐹𝐹𝐹𝐹𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑎𝑎 𝐿𝐿𝑎𝑎𝐿𝐿𝐿𝐿𝑎𝑎𝐿𝐿𝑎𝑎 𝑡𝑡𝑒𝑒𝑎𝑎𝑛𝑛𝑎𝑎𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 𝑎𝑎𝑓𝑓    
                           (𝐹𝐹)𝑡𝑡  cos 𝑎𝑎𝑡𝑡   (𝐹𝐹𝐹𝐹)𝑡𝑡2 sin 𝑎𝑎𝑡𝑡   (𝐹𝐹𝐹𝐹𝐹𝐹)𝑡𝑡3𝑎𝑎−3𝑡𝑡  (𝐹𝐹𝑎𝑎)𝑡𝑡𝑎𝑎−𝑡𝑡 sin 3𝑡𝑡  

𝑺𝑺𝒎𝒎𝒄𝒄𝒎𝒎𝒕𝒕𝑻𝑻𝒎𝒎𝒏𝒏 ∶   (𝐹𝐹) 𝑆𝑆𝐹𝐹𝑛𝑛𝐿𝐿𝑎𝑎 , ℒ(cos 𝑎𝑎𝑡𝑡 ) =  𝑎𝑎
𝑎𝑎2 +  𝑎𝑎2   

                                 ℒ(t cos 𝑎𝑎𝑡𝑡 ) =  − 𝑑𝑑
𝑑𝑑𝑎𝑎 ( 𝑎𝑎

𝑎𝑎2 +  𝑎𝑎2) =  − (𝑎𝑎2 + 𝑎𝑎2 − 𝑎𝑎. 2𝑎𝑎)
(𝑎𝑎2 + 𝑎𝑎2)  
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                                 =  − ( 𝑎𝑎2 − 𝑠𝑠2)
(𝑠𝑠2 + 𝑎𝑎2) =  ( 𝑠𝑠2 − 𝑎𝑎2)

(𝑠𝑠2 +  𝑎𝑎2) 

                   (𝑖𝑖𝑖𝑖) 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , ℒ(sin 𝑎𝑎𝑎𝑎 ) =  𝑎𝑎
𝑠𝑠2 +  𝑎𝑎2   

                         ℒ(t 2sin 𝑎𝑎𝑎𝑎 ) = (−1)2 𝑑𝑑2

𝑑𝑑𝑠𝑠2 ( 𝑎𝑎
𝑠𝑠2 + 𝑎𝑎2) 

 

                                 = 𝑑𝑑
𝑑𝑑𝑠𝑠 { −2𝑎𝑎𝑠𝑠

(𝑠𝑠2 +  𝑎𝑎2)2} = 2𝑎𝑎 (3𝑠𝑠2 −  𝑎𝑎2)
(𝑠𝑠2 +  𝑎𝑎2)3  

                   (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , ℒ(𝑆𝑆−3𝑡𝑡) = 1
𝑠𝑠 + 3   

                         ℒ(t 3 𝑆𝑆−3𝑡𝑡 ) = (−1)3 𝑑𝑑3

𝑑𝑑𝑠𝑠3 ( 1
𝑠𝑠 + 3) =

(−1)3. 3!
(𝑠𝑠 + 3)3+1 = 6

(𝑠𝑠 + 3)4  

                   (𝑖𝑖𝑖𝑖) 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , ℒ(sin 3𝑎𝑎) = 3
𝑠𝑠2 + 32   

 

                            ℒ(𝑎𝑎 sin 3𝑎𝑎) = − 𝑑𝑑
𝑑𝑑𝑠𝑠 ( 𝑠𝑠

𝑠𝑠2 +  32) =  6𝑠𝑠
(𝑠𝑠2 + 9)2  

                         𝑈𝑈𝑠𝑠𝑖𝑖𝑆𝑆𝑈𝑈 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑆𝑆𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝, 𝑤𝑤𝑆𝑆 𝑈𝑈𝑆𝑆𝑎𝑎  

                            ℒ(𝑆𝑆−𝑡𝑡𝑎𝑎 sin 3𝑎𝑎) =  6(𝑠𝑠 + 1)
[(𝑠𝑠 + 1)2 + 9]2 =  6(𝑠𝑠 + 1)

(𝑠𝑠2 + 2𝑠𝑠 + 10)2 

𝐕𝐕 . 𝐈𝐈𝐈𝐈 𝓛𝓛 {𝒇𝒇(𝒕𝒕)} =  �̅�𝒇(𝐬𝐬), 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  𝓛𝓛 { 𝒇𝒇(𝒕𝒕)
𝒕𝒕 }

= ∫ �̅�𝒇(𝒔𝒔)𝒅𝒅𝒔𝒔
∞

𝒔𝒔

, 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒅𝒅𝒑𝒑𝒅𝒅 𝐥𝐥𝐥𝐥𝐥𝐥
𝒕𝒕→+𝟎𝟎

𝒇𝒇(𝒕𝒕)
𝒕𝒕  𝒑𝒑𝒆𝒆𝒑𝒑𝒔𝒔𝒕𝒕𝒔𝒔  

 𝑻𝑻𝑻𝑻𝒑𝒑𝒔𝒔 𝒑𝒑𝒔𝒔 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒑𝒑𝒅𝒅 𝒅𝒅𝒑𝒑𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑𝒅𝒅 𝒃𝒃𝒃𝒃 𝒕𝒕  

𝑬𝑬𝒆𝒆𝒄𝒄𝑬𝑬𝒑𝒑𝒄𝒄𝒑𝒑 𝟗𝟗: 𝐹𝐹𝑖𝑖𝑆𝑆𝑑𝑑 𝑎𝑎ℎ𝑆𝑆 𝐿𝐿𝑎𝑎𝑝𝑝𝐿𝐿𝑎𝑎𝑆𝑆𝑆𝑆 𝑎𝑎𝑝𝑝𝑎𝑎𝑆𝑆𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠 𝑝𝑝𝑖𝑖    

                    (𝑖𝑖)  (1 − 𝑆𝑆𝑡𝑡)
𝑎𝑎                    (𝑖𝑖𝑖𝑖) cos 𝑎𝑎𝑎𝑎 − cos 𝑏𝑏𝑎𝑎 

𝑎𝑎 +  𝑎𝑎 sin 𝑎𝑎𝑎𝑎  

𝑺𝑺𝒑𝒑𝒄𝒄𝑺𝑺𝒕𝒕𝒑𝒑𝒑𝒑𝒅𝒅 ∶   (𝑖𝑖) 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , ℒ(1 − 𝑆𝑆𝑡𝑡) =  ℒ(1) − ℒ(𝑆𝑆𝑡𝑡) =  1
𝑠𝑠 − 1

𝑠𝑠 − 1 

                         ℒ (1 − 𝑆𝑆𝑡𝑡

𝑎𝑎 ) =  ∫ (1
𝑠𝑠 − 1

𝑠𝑠 − 1)  𝑑𝑑𝑠𝑠 =  |log 𝑠𝑠 − log(𝑠𝑠 − 1)|0
∞

∞

𝑠𝑠
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                =  |log ( 𝑠𝑠
𝑠𝑠 − 1)|0

∞
= − log [ 1

1 − (1 𝑠𝑠)⁄ ] = log (𝑠𝑠 − 1𝑠𝑠 )  

 

                 (𝑖𝑖𝑖𝑖) 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , ℒ(cos 𝑎𝑎𝑎𝑎 − cos 𝑏𝑏𝑎𝑎 ) =  𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2 − 

𝑠𝑠
𝑠𝑠2 + 𝑏𝑏2  

                      𝑎𝑎𝑆𝑆𝑎𝑎  ℒ(sin 𝑎𝑎𝑎𝑎 ) =  𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2  

                      ∴  ℒ (cos 𝑎𝑎𝑎𝑎 − cos 𝑏𝑏𝑎𝑎 𝑎𝑎 ) +  ℒ(t sin 𝑎𝑎𝑎𝑎 ) 

                     = ∫ ( 𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2 − 

𝑠𝑠
𝑠𝑠2 + 𝑏𝑏2) 𝑎𝑎𝑠𝑠

∞

s

− d
ds (

𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2) 

                     = |12 log(𝑠𝑠
2 + 𝑎𝑎2) − 12 log(𝑠𝑠

2 + 𝑏𝑏2)|
s

∞
− a ( −2𝑠𝑠

(𝑠𝑠2 + 𝑎𝑎2)2) 

                     = 12 lims→∞ log
𝑠𝑠2 + 𝑎𝑎2
𝑠𝑠2 + 𝑏𝑏2 −

1
2 log

𝑠𝑠2 + 𝑎𝑎2
𝑠𝑠2 + 𝑏𝑏2 + 

2𝑎𝑎𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2 

                       = 12 log (
1 + 0
1 + 0) −

1
2 log (

𝑠𝑠2 + 𝑎𝑎2
𝑠𝑠2 + 𝑏𝑏2) + 

2𝑎𝑎𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2 

                       = log (𝑠𝑠
2 + 𝑎𝑎2
𝑠𝑠2 + 𝑏𝑏2)

1 2⁄
+ 2𝑎𝑎𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2                  − − − − − −

− (log 1 = 0 ) 
𝐕𝐕𝐕𝐕 . 𝐕𝐕𝐈𝐈 𝓛𝓛 {𝒇𝒇(𝒕𝒕)} =  �̅�𝒇(𝐬𝐬), 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  𝓛𝓛 {𝒇𝒇(𝒂𝒂𝒕𝒕)}

= 𝟏𝟏
𝒂𝒂 �̅�𝒇 (

𝒔𝒔
𝒂𝒂)    ( 𝑪𝑪𝑪𝑪𝑪𝑪𝒂𝒂𝑪𝑪𝑪𝑪 𝒐𝒐𝒇𝒇 𝒔𝒔𝒔𝒔𝒂𝒂𝒔𝒔𝑪𝑪 𝑷𝑷𝑷𝑷𝒐𝒐𝑷𝑷𝑪𝑪𝑷𝑷𝒕𝒕𝑷𝑷 ) 

𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑷𝑷𝒔𝒔𝑪𝑪 𝟏𝟏𝟏𝟏: 𝐼𝐼𝐼𝐼 ℒ {𝐼𝐼(𝑎𝑎)} = 8 + 12𝑠𝑠 − 2𝑠𝑠
2

(𝑠𝑠2 + 4)2 , 𝐼𝐼𝑖𝑖𝑆𝑆𝑎𝑎 ℒ {𝐼𝐼(2𝑎𝑎)}  

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐭𝐭𝐒𝐒𝐒𝐒𝐭𝐭: From above result ,  

ℒ {𝐼𝐼(2𝑎𝑎)} = 12
{
 

 8 + 12 (𝑠𝑠2) − 2 (
𝑠𝑠
2)

2

((𝑠𝑠2)
2
+ 4)

2

}
 

 
 

                   = 4(16 + 12𝑠𝑠 − 𝑠𝑠
2)

(𝑠𝑠2 + 16)2    

𝐕𝐕𝐕𝐕𝐕𝐕 . 𝐓𝐓𝐓𝐓𝐓𝐓𝐭𝐭𝐬𝐬𝐈𝐈𝐒𝐒𝐓𝐓𝐓𝐓 𝐒𝐒𝐈𝐈 𝐄𝐄𝐓𝐓𝐓𝐓𝐒𝐒𝐓𝐓 𝐅𝐅𝐒𝐒𝐭𝐭𝐅𝐅𝐭𝐭𝐒𝐒𝐒𝐒𝐭𝐭  

𝑊𝑊𝑆𝑆 𝑘𝑘𝑆𝑆𝑘𝑘𝑘𝑘 𝑆𝑆𝑒𝑒𝐼𝐼(√𝑥𝑥) =
2
√𝜋𝜋
 ∫ 𝑆𝑆−𝑡𝑡2 𝑎𝑎𝑎𝑎
√𝑥𝑥

𝑜𝑜
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      ℒ{𝑒𝑒𝑒𝑒𝑒𝑒(√𝑡𝑡)} = 1
𝑠𝑠√𝑠𝑠 − 1

    

 

𝟔𝟔. 𝟒𝟒. 𝟑𝟑 𝐓𝐓𝐓𝐓𝐓𝐓 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐓𝐓𝐓𝐓𝐓𝐓𝐜𝐜𝐫𝐫𝐓𝐓𝐞𝐞  

𝐕𝐕𝐕𝐕𝐕𝐕. 𝐓𝐓𝐓𝐓𝐓𝐓 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐓𝐓𝐓𝐓𝐓𝐓𝐜𝐜𝐫𝐫𝐓𝐓𝐞𝐞 ∶
This theorem is useful to find a function F(t) whose   

transform F̅(s)is not the transform of a known function , by expressing F̅(s) as the     

products of two functions of each of which is the transform of aknown function. i. e. 

F̅(s) =  𝑒𝑒1(𝑠𝑠) 𝑒𝑒2(𝑠𝑠) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒1̅(𝑠𝑠) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒2̅(𝑠𝑠) 𝑎𝑎𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑠𝑠 𝑡𝑡𝑒𝑒 𝑘𝑘𝑎𝑎𝑡𝑡𝑤𝑤𝑎𝑎 𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑎𝑎𝑠𝑠 𝑒𝑒1(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒2(𝑡𝑡) 

𝑇𝑇ℎ𝑒𝑒  𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑡𝑡  

𝓛𝓛 {∫ 𝒇𝒇𝟏𝟏 (𝒕𝒕 − 𝒖𝒖)𝒇𝒇𝟐𝟐(𝒖𝒖)𝒅𝒅𝒖𝒖
𝒕𝒕

𝟎𝟎

} = 𝒇𝒇𝟏𝟏(𝒔𝒔)𝒇𝒇𝟐𝟐(𝒔𝒔) = 𝒇𝒇𝟏𝟏̅̅ ̅(𝒔𝒔)𝒇𝒇𝟐𝟐̅̅ ̅(𝒔𝒔)

=  𝓛𝓛 [∫ 𝒇𝒇𝟏𝟏 (𝒖𝒖)𝒇𝒇𝟐𝟐(𝒕𝒕 − 𝒖𝒖)𝒅𝒅𝒖𝒖
𝒕𝒕

𝟎𝟎

]  

𝑇𝑇ℎ𝑓𝑓𝑠𝑠 𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡 𝑓𝑓𝑠𝑠 𝑓𝑓𝑠𝑠𝑒𝑒𝑒𝑒𝑓𝑓𝑢𝑢 𝑡𝑡𝑡𝑡 𝑒𝑒𝑓𝑓𝑎𝑎𝑎𝑎 𝑓𝑓𝑎𝑎𝑖𝑖𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 𝑡𝑡𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡𝑎𝑎. 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏: 𝑉𝑉𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒𝑉𝑉 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡𝑢𝑢𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑎𝑎 𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 𝑒𝑒𝑡𝑡𝑒𝑒 ℎ𝑒𝑒 𝑝𝑝𝑎𝑎𝑓𝑓𝑒𝑒 𝑡𝑡𝑒𝑒 𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑎𝑎𝑠𝑠 

                      𝑒𝑒1(𝑡𝑡) = 𝑡𝑡, 𝑒𝑒2(𝑡𝑡) =  𝑒𝑒𝑎𝑎𝑎𝑎 

𝑺𝑺𝑺𝑺𝑬𝑬𝒖𝒖𝒕𝒕𝑺𝑺𝑺𝑺𝑺𝑺: 𝑒𝑒1̅(𝑠𝑠) = 1
𝑠𝑠2 , 𝑒𝑒2̅(𝑠𝑠) = 1

𝑠𝑠 − 𝑎𝑎  

            ∴  𝑒𝑒1̅(𝑠𝑠)𝑒𝑒2̅(𝑠𝑠) = 1
𝑠𝑠2(𝑠𝑠 − 𝑎𝑎) 

𝑁𝑁𝑡𝑡𝑤𝑤, ∫ 𝑒𝑒1 (𝑓𝑓)𝑒𝑒2(𝑡𝑡 − 𝑓𝑓)𝑎𝑎𝑓𝑓
𝑎𝑎

0

=  ∫ 𝑓𝑓. 𝑒𝑒𝑎𝑎(𝑎𝑎−𝑢𝑢)𝑎𝑎𝑓𝑓 
𝑎𝑎

0

 

= [− 𝑓𝑓
𝑎𝑎  𝑒𝑒𝑎𝑎(𝑎𝑎−𝑢𝑢) − 1

𝑎𝑎2 𝑒𝑒𝑎𝑎(𝑎𝑎−𝑢𝑢)]
0

𝑎𝑎
 

= 1
𝑎𝑎2 [𝑒𝑒𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑡𝑡 − 1] 

∴ 𝓛𝓛 {∫ 𝑒𝑒1 (𝑓𝑓)𝑒𝑒2(𝑡𝑡 − 𝑓𝑓)𝑎𝑎𝑓𝑓
𝑎𝑎

0

} =  𝓛𝓛 { 1
𝑎𝑎2 [𝑒𝑒𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑡𝑡 − 1]} 

m
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=  1
𝑎𝑎2 [ 1

𝑠𝑠 − 𝑎𝑎 − 𝑎𝑎
𝑠𝑠2 − 1

𝑠𝑠] 

=  1
𝑠𝑠2(𝑠𝑠 − 𝑎𝑎) =  𝑓𝑓1̅(𝑠𝑠)𝑓𝑓2̅(𝑠𝑠) 

𝟔𝟔. 𝟒𝟒. 𝟒𝟒 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑻𝑻𝑻𝑻𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑻𝑻𝑻𝑻 𝑳𝑳𝑻𝑻 𝑰𝑰𝑻𝑻𝑰𝑰𝑳𝑳𝑰𝑰𝑻𝑻𝑳𝑳𝑳𝑳 

𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 

𝓛𝓛 {∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

} =  ∫ 𝑑𝑑−𝑠𝑠𝑡𝑡 [∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

] 
∞

0

𝑑𝑑𝑑𝑑                 − − − − − − − − − (𝑑𝑑 ) 

𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑 𝑑𝑑
𝑑𝑑𝑑𝑑 [∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢

𝑡𝑡

0

] = 𝑓𝑓(𝑑𝑑), 

𝑤𝑤𝑑𝑑 𝑔𝑔𝑑𝑑𝑑𝑑 𝑏𝑏𝐵𝐵 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 𝑏𝑏𝐵𝐵 𝑝𝑝𝑎𝑎𝑖𝑖𝑑𝑑𝑠𝑠 , 𝑑𝑑ℎ𝑑𝑑 𝑖𝑖𝑑𝑑𝑠𝑠𝑢𝑢𝑟𝑟𝑑𝑑 (𝑑𝑑)𝑎𝑎𝑠𝑠  

ℒ {∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

} = [− 1
𝑠𝑠  𝑑𝑑−𝑠𝑠𝑡𝑡 ∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢

𝑡𝑡

0

]
𝟎𝟎

∞

+ 1𝑠𝑠 ∫ 𝑑𝑑−𝑠𝑠𝑡𝑡𝑓𝑓 (𝑑𝑑)𝑑𝑑𝑑𝑑
∞

0

  

                             = 1
𝑠𝑠 𝑓𝑓(̅𝑠𝑠)  

𝑇𝑇ℎ𝑢𝑢𝑠𝑠 , 𝓛𝓛 {∫ 𝑻𝑻 (𝒖𝒖)𝒅𝒅𝒖𝒖
𝑰𝑰

𝟎𝟎

} = 𝟏𝟏
𝑻𝑻 �̅�𝑻(𝑻𝑻) 

𝑑𝑑. 𝑑𝑑. 𝑓𝑓𝑢𝑢𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑖𝑖𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖 ( 0, 𝑑𝑑)𝑑𝑑ℎ𝑑𝑑 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑𝑠𝑠𝑓𝑓𝑑𝑑𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑔𝑔 𝑑𝑑𝑓𝑓 𝑑𝑑ℎ𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑖𝑖𝑎𝑎𝑟𝑟 𝑑𝑑𝑠𝑠   
𝑑𝑑𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝐵𝐵 𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 𝑑𝑑ℎ𝑑𝑑 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑𝑠𝑠𝑓𝑓𝑑𝑑𝑖𝑖𝑡𝑡 𝑑𝑑𝑓𝑓 𝑑𝑑ℎ𝑑𝑑 𝑓𝑓𝑢𝑢𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝐵𝐵 𝑠𝑠 . 
 

𝑶𝑶𝑶𝑶 

 𝐼𝐼𝑓𝑓 ℒ(𝑑𝑑) =  𝑓𝑓(̅𝑠𝑠), 𝑑𝑑ℎ𝑑𝑑𝑑𝑑 ℒ {∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

} = 1
𝑠𝑠 𝑓𝑓(̅𝑠𝑠),  

𝐿𝐿𝑑𝑑𝑑𝑑 ∅(𝑑𝑑) = ∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

, 𝑑𝑑ℎ𝑑𝑑𝑑𝑑 ∅′(𝑑𝑑) =  𝑓𝑓(𝑑𝑑)𝑎𝑎𝑑𝑑𝑑𝑑 ∅(0) = 0 

∴  ℒ{∅′(𝑑𝑑)} = 𝑠𝑠 ∅̅(𝑠𝑠) −  ∅(0)  

𝑂𝑂𝑖𝑖 ∅̅(𝑠𝑠) = 1
𝑠𝑠 ℒ{∅′(𝑑𝑑)}   𝑑𝑑. 𝑑𝑑. ℒ {∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢

𝑡𝑡

0

} =  1
𝑠𝑠 𝑓𝑓(̅𝑠𝑠)   

m
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𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   ℒ {∫ 𝑢𝑢2 𝑉𝑉−𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0

} =  1
𝑠𝑠 𝓛𝓛{𝑡𝑡2 𝑉𝑉−𝑡𝑡} 

𝑺𝑺𝑺𝑺𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺: ∫ 𝑢𝑢2 𝑉𝑉−𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0

=  [−(𝑢𝑢2 + 2𝑢𝑢 + 2)𝑉𝑉−𝑢𝑢]𝟎𝟎
𝑺𝑺  

                                           = 2 −  (𝑡𝑡2 + 2𝑡𝑡 + 2)𝑉𝑉−𝑡𝑡 

∴ ℒ {∫ 𝑢𝑢2 𝑉𝑉−𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0

}

= 𝓛𝓛{2 − (𝑡𝑡2 + 2𝑡𝑡 + 2)𝑉𝑉−𝑡𝑡}                − − − − − − − − − −(𝑺𝑺) 

ℒ(𝑡𝑡2𝑉𝑉−𝑡𝑡) = (−1)2 𝑑𝑑2

𝑑𝑑𝑠𝑠2 ( 1
𝑠𝑠 + 1) = 2

(𝑠𝑠 + 1)3 

 

ℒ(2𝑡𝑡𝑉𝑉−𝑡𝑡) = 2. (−1) 𝑑𝑑
𝑑𝑑𝑠𝑠 ( 1

𝑠𝑠 + 1) = 2
(𝑠𝑠 + 1)2 

∴ From (i), we get  

ℒ {∫ 𝑢𝑢2 𝑉𝑉−𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0

} = 2
𝑠𝑠 − [ 2

(𝑠𝑠 + 1)3 + 2
(𝑠𝑠 + 1)2 + 2

(𝑠𝑠 + 1)1] 

= 2
𝑠𝑠(𝑠𝑠 + 1)3 = 1

𝑠𝑠 ℒ{𝑡𝑡2𝑉𝑉−𝑡𝑡} 

 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝑡𝑡𝑉𝑉 𝑡𝑡ℎ𝑉𝑉 𝑉𝑉𝑓𝑓𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑉𝑉𝑓𝑓𝑓𝑓: 

(𝑉𝑉) ∫ 𝑡𝑡𝑉𝑉−3𝑡𝑡 sin 𝑡𝑡 𝑑𝑑𝑡𝑡                               (𝑉𝑉𝑉𝑉)
∞

0

 ∫ sin 𝑚𝑚𝑡𝑡 
𝑡𝑡  𝑑𝑑𝑡𝑡 

∞

0

 

(𝑉𝑉𝑉𝑉𝑉𝑉) ∫ 𝑉𝑉𝑡𝑡  (cos 𝐸𝐸𝑡𝑡 − cos 𝑏𝑏𝑡𝑡 
𝑡𝑡 )  𝑑𝑑𝑡𝑡    

∞

0

  (𝑉𝑉𝐸𝐸)ℒ {∫ e−t sin 𝑡𝑡 
𝑡𝑡  𝑑𝑑𝑡𝑡 

𝑡𝑡

0

}  

𝑺𝑺𝑺𝑺𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∶ (𝑉𝑉) ∫ 𝑡𝑡𝑉𝑉−3𝑡𝑡 sin 𝑡𝑡 𝑑𝑑𝑡𝑡 =    ∫ 𝑡𝑡𝑉𝑉−𝑠𝑠𝑡𝑡(𝑡𝑡 sin 𝑡𝑡) 𝑑𝑑𝑡𝑡      𝑓𝑓ℎ𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠 = 3    
∞

0

∞

0

 

                                               =  ℒ(𝑡𝑡 𝑠𝑠𝑉𝑉𝑓𝑓𝑡𝑡 ), 𝑏𝑏𝑉𝑉 𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉𝑡𝑡𝑉𝑉𝑓𝑓𝑓𝑓 

                                               = (−1) 𝑑𝑑
𝑑𝑑𝑠𝑠 ( 1

𝑠𝑠2 + 1) 

m
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                                               = 2𝑠𝑠
(𝑠𝑠2 + 1)2 =  2 × 3

(32 + 1)2 = 3
50 

                   (𝑖𝑖𝑖𝑖)  ∫ sin 𝑚𝑚𝑚𝑚 
𝑚𝑚  𝑑𝑑𝑚𝑚 

∞

0

 

                         ℒ(sin 𝑚𝑚𝑚𝑚 ) =  𝑚𝑚
(𝑠𝑠2 + 𝑚𝑚2) = 𝑓𝑓(𝑠𝑠) ,   ( 𝑠𝑠𝑠𝑠𝑠𝑠 ) 

                         ℒ (sin 𝑚𝑚𝑚𝑚 
𝑚𝑚 ) =  ∫ 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠 =  ∫ 𝑚𝑚 𝑑𝑑𝑠𝑠 

𝑠𝑠2 + 𝑚𝑚2

∞

𝑠𝑠

∞

𝑠𝑠

=  |𝑚𝑚𝑠𝑠𝑡𝑡 −1  𝑠𝑠
𝑚𝑚|

𝑠𝑠

∞
 

  𝑶𝑶𝑶𝑶              𝑏𝑏𝑠𝑠 𝑑𝑑𝑑𝑑𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑑𝑑𝑡𝑡 ∫ 𝑑𝑑−𝑠𝑠𝑠𝑠 sin 𝑚𝑚𝑚𝑚 
𝑚𝑚  𝑑𝑑𝑚𝑚 

∞

0

=  𝝅𝝅
𝟐𝟐 − 𝑚𝑚𝑠𝑠𝑡𝑡 −1  𝑠𝑠

𝑚𝑚 

                      𝑁𝑁𝑑𝑑𝑁𝑁 , lim
𝑠𝑠→0

𝑚𝑚𝑠𝑠𝑡𝑡 −1(𝑠𝑠 𝑚𝑚) = 0 𝑖𝑖𝑓𝑓  𝑚𝑚 > 0 𝑑𝑑𝑜𝑜 𝜋𝜋 𝑖𝑖𝑓𝑓 𝑚𝑚 < 0⁄   
                     𝑇𝑇ℎ𝑢𝑢𝑠𝑠 𝑚𝑚𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 𝑠𝑠𝑠𝑠 𝑠𝑠 → 0, 𝑁𝑁𝑑𝑑 𝑡𝑡𝑑𝑑𝑚𝑚  

                    ∫ sin 𝑚𝑚𝑚𝑚 
𝑚𝑚  𝑑𝑑𝑚𝑚 = 𝜋𝜋

2 
∞

0

 𝑖𝑖𝑓𝑓 𝑚𝑚 > 0 𝑑𝑑𝑜𝑜 − 𝜋𝜋 2 𝑖𝑖𝑓𝑓 𝑚𝑚 < 0⁄   

                  (𝑖𝑖𝑖𝑖𝑖𝑖) ∫ 𝑑𝑑𝑠𝑠  (cos 𝑠𝑠𝑚𝑚 − cos 𝑏𝑏𝑚𝑚 
𝑚𝑚 )  𝑑𝑑𝑚𝑚    

∞

0

   

                        𝑊𝑊𝑑𝑑 𝑡𝑡𝑡𝑡𝑑𝑑𝑁𝑁 𝑚𝑚ℎ𝑠𝑠𝑚𝑚 ℒ(cos 𝑠𝑠𝑚𝑚 ) =  𝑠𝑠
(𝑠𝑠2 +  𝑠𝑠2) , ℒ(cos 𝑏𝑏𝑚𝑚 ) =  𝑠𝑠

(𝑠𝑠2 + 𝑏𝑏2)   

                        ℒ (cos 𝑠𝑠𝑚𝑚 − cos 𝑏𝑏𝑚𝑚 
𝑚𝑚 ) = ∫ ( 𝑠𝑠

(𝑠𝑠2 +  𝑠𝑠2) −  𝑠𝑠
(𝑠𝑠2 +  𝑏𝑏2))

∞

𝑠𝑠

 𝑑𝑑𝑠𝑠   

                                                            = 1
2 {𝑙𝑙𝑑𝑑𝑡𝑡 (𝑠𝑠2 +  𝑠𝑠2

𝑠𝑠2 +  𝑏𝑏2)}
𝑠𝑠

∞
=  1

2 𝑙𝑙𝑑𝑑𝑡𝑡 (𝑠𝑠2 +  𝑏𝑏2

𝑠𝑠2 +  𝑠𝑠2)  

                   𝑇𝑇ℎ𝑖𝑖𝑠𝑠 𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑖𝑖𝑑𝑑𝑠𝑠 ∫ 𝑑𝑑−𝑠𝑠𝑠𝑠
∞

0

(cos 𝑠𝑠𝑚𝑚 − cos 𝑏𝑏𝑚𝑚 
𝑚𝑚 )  𝑑𝑑𝑚𝑚 =  1

2 𝑙𝑙𝑑𝑑𝑡𝑡 (𝑠𝑠2 + 𝑏𝑏2

𝑠𝑠2 + 𝑠𝑠2)  

                   𝑇𝑇𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 𝑠𝑠 = 1 , 𝑁𝑁𝑑𝑑 𝑡𝑡𝑑𝑑𝑚𝑚  ∫ 𝑑𝑑−𝑠𝑠
∞

0

(cos 𝑠𝑠𝑚𝑚 − cos 𝑏𝑏𝑚𝑚 
𝑚𝑚 )  𝑑𝑑𝑚𝑚

=  1
2 𝑙𝑙𝑑𝑑𝑡𝑡 (1 +  𝑏𝑏2

1 + 𝑠𝑠2)  

                   (𝑖𝑖𝑖𝑖)ℒ {∫ e−t sin 𝑚𝑚 
𝑚𝑚  𝑑𝑑𝑚𝑚 

𝑠𝑠

0

} 

                   𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆𝑑𝑑  ℒ ( sin 𝑚𝑚 
𝑚𝑚 ) =  ∫ 𝑑𝑑𝑠𝑠

𝑠𝑠2 + 1

∞

0

 =  𝑚𝑚𝑠𝑠𝑡𝑡−1 𝑠𝑠 = 𝜋𝜋
2 −  𝑚𝑚𝑠𝑠𝑡𝑡−1 𝑠𝑠 = 𝑆𝑆𝑑𝑑𝑚𝑚 −1𝑠𝑠 

m
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                   ℒ {𝑒𝑒𝑡𝑡 (sin 𝑡𝑡 
𝑡𝑡 )}

=  𝑐𝑐𝑐𝑐𝑡𝑡 −1(𝑠𝑠 − 1)            − − − − − 𝑏𝑏𝑏𝑏 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑏𝑏  

                   ℒ [∫ {𝑒𝑒𝑡𝑡 (sin 𝑡𝑡 
𝑡𝑡 )}  𝑑𝑑𝑡𝑡 

𝑡𝑡

0

] = 1
𝑠𝑠 𝑐𝑐𝑐𝑐𝑡𝑡 −1(𝑠𝑠 − 1)            

 
 𝟔𝟔. 𝟒𝟒. 𝟓𝟓 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑻𝑻𝑻𝑻𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑻𝑻𝑻𝑻 𝑫𝑫𝑳𝑳𝑻𝑻𝑫𝑫𝑫𝑫𝑳𝑳𝑫𝑫𝑫𝑫𝑫𝑫𝑳𝑳 
We can express the transform of any derivative of the function f(t)interms of  
the function itself and in term of the values of the lower order derivative of 
the function at t = 0
( i. e. values approached by the derivatives as t → 0 from positive values).
If ℒ [𝑖𝑖(𝑡𝑡)] = 𝑖𝑖(̅s)and f(t)is continuous and is of exponential order s0    
[𝑖𝑖. 𝑒𝑒. lim

𝑚𝑚→∞
𝑒𝑒−𝑚𝑚𝑚𝑚 𝑖𝑖(𝑚𝑚) = 0 , 𝑖𝑖𝑐𝑐𝑝𝑝 𝑠𝑠 >  s0  ] , 𝑡𝑡ℎ𝑒𝑒𝑖𝑖 𝓛𝓛 {𝑻𝑻′(𝑫𝑫)} = 𝑻𝑻�̅�𝑻(𝑻𝑻) −  𝑻𝑻(𝟎𝟎) 

𝑊𝑊ℎ𝑒𝑒𝑝𝑝𝑒𝑒 𝑖𝑖(0)𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒 𝑐𝑐𝑖𝑖 𝑖𝑖(𝑡𝑡) 𝑣𝑣𝑡𝑡 𝑡𝑡 = 0. 
𝓛𝓛 {𝑻𝑻′(𝑫𝑫)} = 𝑻𝑻�̅�𝑻(𝑻𝑻) −  𝑻𝑻(𝟎𝟎)   − − − − − − − − − − − (𝑰𝑰 ) 
𝑪𝑪𝑻𝑻𝑻𝑻𝑻𝑻𝑳𝑳𝑳𝑳𝑳𝑳𝑻𝑻𝑪𝑪 ∶ − 

𝐼𝐼𝑖𝑖 ℒ {𝑖𝑖(𝑡𝑡)} = 𝑖𝑖(̅𝑠𝑠) 𝑡𝑡ℎ𝑒𝑒𝑖𝑖  ℒ {𝑖𝑖′′(𝑡𝑡)} = 𝑠𝑠2𝑖𝑖(̅𝑠𝑠) − 𝑠𝑠𝑖𝑖(0) −  𝑖𝑖′(0) 
𝐿𝐿𝑒𝑒𝑡𝑡 𝐹𝐹(𝑡𝑡) = 𝑖𝑖′(𝑡𝑡) 𝑡𝑡ℎ𝑒𝑒𝑖𝑖 
ℒ {𝑖𝑖′′(𝑡𝑡)} =  ℒ {𝐹𝐹′(𝑡𝑡)} 
                   = 𝑠𝑠 ℒ {𝐹𝐹(𝑡𝑡)} − 𝐹𝐹(0)          − − − − − −𝑏𝑏𝑏𝑏 (𝑰𝑰 ) 
                   = 𝑠𝑠 ℒ {𝑖𝑖′(𝑡𝑡)} − 𝑖𝑖′(0)   
                   = 𝑠𝑠 [ 𝑖𝑖(̅𝑠𝑠) − 𝑖𝑖(0)] − 𝑖𝑖′(0)    − − − − − −𝑏𝑏𝑏𝑏 (𝑰𝑰 ) 

                   = 𝑠𝑠2 𝑖𝑖(̅𝑠𝑠) −  𝑠𝑠𝑖𝑖(0)– 𝑖𝑖′(0)    − − − − − −𝑏𝑏𝑏𝑏 (𝑰𝑰 ) 
𝐵𝐵𝑏𝑏 𝑣𝑣𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑣𝑣𝑡𝑡ℎ𝑒𝑒𝑚𝑚𝑣𝑣𝑡𝑡𝑖𝑖𝑐𝑐𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑑𝑑𝑣𝑣𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖 , 𝑤𝑤𝑒𝑒 𝑐𝑐𝑣𝑣𝑖𝑖 𝑠𝑠ℎ𝑐𝑐𝑤𝑤 𝑡𝑡ℎ𝑣𝑣𝑡𝑡   

 

 

6.5 Additional Problems 

𝑬𝑬𝑬𝑬𝑳𝑳𝑻𝑻𝑳𝑳𝑳𝑳𝑳𝑳 𝟏𝟏𝟒𝟒: 𝐹𝐹𝑖𝑖𝑖𝑖𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑣𝑣𝑐𝑐𝑒𝑒 𝑡𝑡𝑝𝑝𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖𝑐𝑐𝑝𝑝𝑚𝑚 𝑐𝑐𝑖𝑖 𝑒𝑒𝑣𝑣𝑐𝑐ℎ 𝑐𝑐𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑐𝑐𝑣𝑣𝑣𝑣𝑐𝑐𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑣𝑣𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠  
                   (𝑖𝑖) cos 𝑡𝑡 cos 2𝑡𝑡  (𝑖𝑖𝑖𝑖) 𝑡𝑡2 − 3𝑡𝑡 + 5  (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑡𝑡2 sin 𝑣𝑣𝑡𝑡   (𝑖𝑖𝑣𝑣)𝑒𝑒4𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠ℎ 5𝑡𝑡     

𝑺𝑺𝑻𝑻𝑳𝑳𝑺𝑺𝑫𝑫𝑫𝑫𝑻𝑻𝑻𝑻 ∶   (𝑖𝑖) ℒ {cos 𝑡𝑡 cos 2𝑡𝑡}    = ℒ {1
2 (cos 3𝑡𝑡 + cos 𝑡𝑡 )} 

                                                             =  1
2 {ℒ (cos 3𝑡𝑡 ) + ℒ (cos 𝑡𝑡 )} 

m
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 APPLIED MATHEMATICS

                                                             =  1
2 { 𝑠𝑠

𝑠𝑠2 + (3)2 +  𝑠𝑠
𝑠𝑠2 + (1)2} 

                                                             =  { 𝑠𝑠 ( 𝑠𝑠2 +  5 )
(𝑠𝑠2 + 1) (𝑠𝑠2 + 9)} 

                        (𝑖𝑖𝑖𝑖) ℒ { 𝑡𝑡2 − 3𝑡𝑡 + 5 }  

                                 𝑊𝑊𝑊𝑊 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,      ℒ{𝑡𝑡𝑛𝑛−1} =
(𝑘𝑘 − 1)!

𝑠𝑠𝑛𝑛                               

                                 ℒ{𝑡𝑡2} = 2!
𝑠𝑠3 = 2

𝑠𝑠3         , 𝑘𝑘 = 3                      

                                 ℒ{𝑡𝑡} = 1!
𝑠𝑠2 = 1

𝑠𝑠2         , 𝑘𝑘 = 2                      

                                 ℒ{𝑡𝑡2} = 1
𝑠𝑠                  , 𝑘𝑘 = 1            

                        ∴ ℒ { 𝑡𝑡2 − 3𝑡𝑡 + 5 }  =   ℒ (𝑡𝑡2) −  3ℒ(𝑡𝑡) + 5ℒ(1)        

                                                             =      2
𝑠𝑠3   − 3

𝑠𝑠2 +   5𝑠𝑠 = 5𝑠𝑠2 − 3𝑠𝑠 + 2
𝑠𝑠3  

                        (𝑖𝑖𝑖𝑖𝑖𝑖)  𝑡𝑡2 sin 𝑎𝑎𝑡𝑡    

                              ℒ {𝑡𝑡2 sin 𝑎𝑎𝑡𝑡     }  =  (−12)  𝑑𝑑2

𝑑𝑑𝑠𝑠2  . { 𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2} =  2𝑎𝑎(3𝑠𝑠2 − 𝑎𝑎2)

(𝑠𝑠2 +  𝑎𝑎2)3       

                        (𝑖𝑖𝑖𝑖)  𝑊𝑊4𝑡𝑡𝑐𝑐𝑘𝑘𝑠𝑠ℎ 5𝑡𝑡 

                              ℒ {𝑊𝑊4𝑡𝑡𝑐𝑐𝑘𝑘𝑠𝑠ℎ 5𝑡𝑡  }  =   𝑠𝑠 − 4
(𝑠𝑠 − 4)2 − 52 = 𝑠𝑠 − 4

𝑠𝑠2 − 8𝑠𝑠 − 9       

 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏: 𝐹𝐹𝑖𝑖𝑘𝑘𝑑𝑑 ℒ{𝑓𝑓(𝑡𝑡)}, 𝑖𝑖𝑓𝑓 𝑓𝑓(𝑡𝑡) = {        0                  ,< 𝛼𝛼
cos(𝑡𝑡−𝛼𝛼)    ,     𝑡𝑡>𝛼𝛼  

𝑺𝑺𝑺𝑺𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∶   𝐵𝐵𝐵𝐵 𝑑𝑑𝑊𝑊𝑓𝑓𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖𝑘𝑘𝑘𝑘 ,  

                     ℒ{𝑓𝑓(𝑡𝑡)} =  ∫ 𝑊𝑊−𝑠𝑠𝑡𝑡 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 
∞

0

  

                                      = ∫ 𝑊𝑊−𝑠𝑠𝑡𝑡 (0)𝑑𝑑𝑡𝑡 + ∫ 𝑊𝑊−𝑠𝑠𝑡𝑡 cos  ( 𝑡𝑡 − 𝛼𝛼) 𝑑𝑑𝑡𝑡  
∞

𝛼𝛼

  
𝛼𝛼

0

 

                                      = ∫ 𝑊𝑊−𝑠𝑠(𝑢𝑢+ 𝛼𝛼)  cos  𝑢𝑢 𝑑𝑑𝑢𝑢        [ 𝑘𝑘ℎ𝑊𝑊𝑒𝑒𝑊𝑊  (𝑢𝑢 =   𝑡𝑡 − 𝛼𝛼)] 
∞

0

 

                                      =  𝑊𝑊−𝛼𝛼𝑠𝑠 ∫ 𝑊𝑊−𝑠𝑠𝑢𝑢  cos  𝑢𝑢 𝑑𝑑𝑢𝑢        
∞

0

 

                                      =  𝑊𝑊−𝛼𝛼𝛼𝛼 ℒ{cos 𝑢𝑢} =  𝑊𝑊−𝑠𝑠𝛼𝛼 𝑠𝑠
𝑠𝑠2 + 1  

m
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𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏: 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒕𝒕𝒕𝒕𝑬𝑬 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒍𝒍𝑬𝑬 𝒕𝒕𝒕𝒕𝑬𝑬𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑬𝑬 𝒕𝒕𝒕𝒕 𝑬𝑬𝑬𝑬𝒍𝒍𝒕𝒕 𝒕𝒕𝒕𝒕 𝒕𝒕𝒕𝒕𝑬𝑬  

𝒕𝒕𝒕𝒕𝑬𝑬𝑬𝑬𝒕𝒕𝒇𝒇𝑭𝑭𝑭𝑭𝒇𝒇 𝒕𝒕𝒇𝒇𝑭𝑭𝒍𝒍𝒕𝒕𝑭𝑭𝒕𝒕𝑭𝑭𝒕𝒕   

                     (𝑖𝑖) 𝑡𝑡5 2 ⁄ (𝑖𝑖𝑖𝑖) 𝑒𝑒−3𝑡𝑡𝑡𝑡−1 2⁄   (𝑖𝑖𝑖𝑖𝑖𝑖) erf √𝑡𝑡 

𝑺𝑺𝒕𝒕𝑬𝑬𝒇𝒇𝒕𝒕𝑭𝑭𝒕𝒕𝑭𝑭 ∶   (𝑖𝑖) 𝑡𝑡5 2 ⁄     

                                𝑤𝑤𝑒𝑒 ℎ𝑎𝑎𝑎𝑎𝑒𝑒 ℒ(𝑡𝑡𝑛𝑛) =
(𝑛𝑛 + 1)!

𝑠𝑠𝑛𝑛+1   

                               ℒ(𝑡𝑡5 2 ⁄ ) =
(7 2⁄ )!

𝑠𝑠7 2⁄
=  15

8  
(1 2⁄ )!

𝑠𝑠7 2⁄
= 15

8 √ 𝜋𝜋
𝑠𝑠7 

                     (𝑖𝑖𝑖𝑖) 𝑒𝑒−3𝑡𝑡𝑡𝑡−1 2⁄     

                               ℒ(𝑡𝑡−1 2 ⁄ ) =
(1 2⁄ )!

𝑠𝑠1 2⁄ =  √𝜋𝜋
𝑠𝑠  

                               ∴ ℒ(𝑒𝑒−3𝑡𝑡𝑡𝑡−1 2⁄ ) =  √ 𝜋𝜋
𝑠𝑠 + 3                      

                     (𝑖𝑖𝑖𝑖𝑖𝑖)  erf √𝑡𝑡 

                                  𝐵𝐵𝐵𝐵 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑑𝑑𝑛𝑛 𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒 𝑑𝑑𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑑𝑑𝑛𝑛     

                                  𝑒𝑒𝑒𝑒𝑑𝑑(√𝑡𝑡) = 2
√𝜋𝜋

 ∫ 𝑒𝑒−𝑥𝑥2 𝑑𝑑𝑑𝑑
√𝑡𝑡

𝑜𝑜

    

                                                   = 1
√𝜋𝜋

 ∫ 𝑓𝑓−1 2⁄  𝑒𝑒−𝑢𝑢 𝑑𝑑𝑓𝑓                [ 𝑑𝑑2 = 𝑓𝑓  ]
𝑡𝑡

0

 

                                  ℒ{𝑒𝑒𝑒𝑒𝑑𝑑(√𝑡𝑡)} = 1
√𝜋𝜋

 ℒ {∫ 𝑓𝑓−1 2⁄  𝑒𝑒−𝑢𝑢 𝑑𝑑𝑓𝑓                
𝑡𝑡

0

}    

                                                          

= 1
√𝜋𝜋

 1𝑠𝑠  ℒ {𝑓𝑓−1 2⁄  𝑒𝑒−𝑢𝑢 𝑑𝑑𝑓𝑓 }        − 𝐿𝐿𝑎𝑎𝐿𝐿. 𝑇𝑇𝑒𝑒𝑎𝑎. 𝑑𝑑𝑛𝑛 𝐼𝐼𝑛𝑛𝑡𝑡𝑒𝑒𝐼𝐼𝑒𝑒𝑎𝑎𝐼𝐼𝑠𝑠  

                                                          = 1
√𝜋𝜋

 1𝑠𝑠  
(1 2⁄ )!

(𝑠𝑠 − 1)1 2⁄ = 1
𝑠𝑠√𝑠𝑠 − 1

 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 17: 𝐺𝐺𝑖𝑖𝑎𝑎𝑒𝑒𝑛𝑛  ℒ {2√𝑡𝑡
𝜋𝜋 } = 1

𝑠𝑠3 2⁄
 𝑠𝑠ℎ𝑑𝑑𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 ℒ { 1

√𝜋𝜋𝑡𝑡
} = 1

√𝑠𝑠
  

m
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𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∶ 𝐿𝐿𝐿𝐿𝐿𝐿  𝑓𝑓(𝐿𝐿) =  2√𝐿𝐿
𝜋𝜋 

                    ∴ 𝐹𝐹′(𝐿𝐿) = 2
√𝜋𝜋

1
2 𝐿𝐿−1 2⁄ =  1

√𝜋𝜋𝐿𝐿
                      

                    ∴ ℒ(𝑓𝑓′(𝐿𝐿)) = ℒ 1
√𝜋𝜋

=  𝑠𝑠 𝑓𝑓(̅𝑠𝑠) −  𝑓𝑓(0)     − − − −𝐿𝐿𝐿𝐿𝐿𝐿. 𝑇𝑇𝑇𝑇𝐿𝐿. 𝑜𝑜𝑜𝑜 𝐷𝐷𝐿𝐿𝑇𝑇𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐿𝐿𝑠𝑠             

                                      = 𝑠𝑠ℒ {2√𝐿𝐿
𝜋𝜋}  = 𝑠𝑠. 1

𝑠𝑠3 2⁄ =
  1

√𝑠𝑠
       

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑺𝑺𝑬𝑬 18: 𝐸𝐸𝐷𝐷𝐿𝐿𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 ∫ 𝐿𝐿 𝐿𝐿−3𝑡𝑡 sin 𝐿𝐿 𝑑𝑑𝐿𝐿 
∞

0

 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∶  ∫ 𝐿𝐿 𝐿𝐿−3𝑡𝑡 sin 𝐿𝐿 𝑑𝑑𝐿𝐿 =   ∫  𝐿𝐿−𝑠𝑠𝑡𝑡 ( 𝐿𝐿 sin 𝐿𝐿 )  𝑑𝑑𝐿𝐿             ( 
∞

0

 
∞

0

𝑤𝑤ℎ𝐿𝐿𝑇𝑇𝐿𝐿 𝑠𝑠 =  3 )  

                                                      =  ℒ { 𝐿𝐿 sin 𝐿𝐿 }              − 𝑏𝑏𝑏𝑏 𝑑𝑑𝐿𝐿𝑓𝑓𝐷𝐷𝑜𝑜𝐷𝐷𝐿𝐿𝐷𝐷𝑜𝑜𝑜𝑜  

                                                      = (−1) 𝑑𝑑
𝑑𝑑𝑠𝑠 { 1

𝑠𝑠2 + 1}               

                                                      =  2𝑠𝑠
(𝑠𝑠2 + 1)2             

                                                      =  2 ∗ 3
((3)2 + 1)2 = 3

50     [ 𝑇𝑇𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿𝑟𝑟𝐷𝐷𝑜𝑜𝑟𝑟 𝑠𝑠 = 3 ]             

6.6 Exercise 

1. Obtain the Laplace Transform of each of the following functions:  

  (𝐷𝐷)(𝐿𝐿2 + 1)2                                                    ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  s4 +  4s2 + 24
s5  )   

 (ii)( t + 1)2𝐿𝐿𝑡𝑡                                                  ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  s2 + 1
(s − 1)3 )  

 (𝐷𝐷𝐷𝐷𝐷𝐷)𝐿𝐿2 cos 𝑘𝑘𝐿𝐿                                                    ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  2s (s2 −  3k2)
(s2 + k2)3  )   

 (iv) 𝑠𝑠𝐷𝐷𝑜𝑜3𝐿𝐿                                                         ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  6
(s2 + 1)(s2 + 9)  ) 

m
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 (𝑣𝑣) cos 𝑎𝑎𝑎𝑎 sinh 𝑎𝑎𝑎𝑎                                          ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  a (s2 −  2a2)
s4 + 4a4  )   

(vi)(sin 2𝑎𝑎 − cos 2𝑎𝑎) 2                                    ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 𝟏𝟏
𝐀𝐀 −  4

(s2 + 16)  ) 

 

2. BY using fundamental definition , find the Laplace transform of 𝑓𝑓(𝑎𝑎), where 

  (𝑖𝑖)  𝑓𝑓(𝑎𝑎) = {5 ,      t>4
t ,     0<t<4                                  ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  a(1 −  e−bs)

s )    

  (𝑖𝑖𝑖𝑖)  𝑓𝑓(𝑎𝑎) = {0 ,      t>b
a ,     0<t<b                                ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 1

s2 + (1
s − 1

s2) e−4s)    

  (𝑖𝑖𝑖𝑖𝑖𝑖)  𝑓𝑓(𝑎𝑎) = {0            ,    0<t<1 
(t−1)2 ,     t>1                         ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  2e−s

s3 )    

3. Find the Laplace transform of 𝑓𝑓(𝑎𝑎): 

  (𝑖𝑖) 1𝑎𝑎 (1 − cos 𝑎𝑎𝑎𝑎 )                                       ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 1
2 log [s2 + a2

s2 ])    

  (𝑖𝑖𝑖𝑖)  1𝑎𝑎 (cos 𝑎𝑎𝑎𝑎 − cos 𝑏𝑏𝑎𝑎  )                           ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  1
2 log [s2 + b2

s2 + a2])    

  (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝑎𝑎 
𝑎𝑎                                                   ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  1

2 log [s + 1
s − 1])    

  (𝑖𝑖𝑣𝑣) ∫ 𝑒𝑒𝑡𝑡
𝑡𝑡

0

sin 𝑎𝑎 
𝑎𝑎  𝑑𝑑𝑎𝑎                                     ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  1

s cot−1(s − 1))    

4. If ℒ𝑓𝑓(𝑎𝑎) = 𝑠𝑠2 − 𝑠𝑠 + 1 
(2𝑠𝑠 + 1)2 ( 𝑠𝑠 − 1) , 𝑓𝑓𝑖𝑖𝑠𝑠𝑑𝑑 ℒ(2𝑎𝑎)        ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶   𝑠𝑠2 − 2𝑠𝑠 + 4 

4(𝑠𝑠 + 1)2 ( 𝑠𝑠 − 2)) 

5. Evaluate: 

(i)     ∫ 𝑎𝑎3𝑒𝑒−𝑡𝑡
∞

0

sin 𝑎𝑎  𝑑𝑑𝑎𝑎                             ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶  0)  

(i)     ∫ 𝑒𝑒−2𝑡𝑡
∞

0

sin3 𝑎𝑎  𝑑𝑑𝑎𝑎                             ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 6
65)  

(i)     ∫ 𝑎𝑎𝑒𝑒−3𝑡𝑡
∞

0

sin 𝑎𝑎  𝑑𝑑𝑎𝑎                            ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 3
50) 

m
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6.7 Summary 

In this unit we learn Laplace Transform definition, Elementary Laplace 
Transforms, Theorems on Important Properties of Laplace Transformation  

𝒇𝒇(𝒔𝒔 ) =  ∫ 𝐞𝐞−𝐬𝐬𝐬𝐬 [ 𝒇𝒇(𝒕𝒕)]𝒅𝒅𝒕𝒕
∞

𝟎𝟎

 , ℒ {𝑓𝑓(𝑡𝑡)}

= 𝑓𝑓(𝑠𝑠), 𝑎𝑎𝑎𝑎𝑎𝑎  𝑓𝑓(̅𝑠𝑠) is called the Laplace transform of 𝑓𝑓(𝑡𝑡) 

ℒ { 𝐴𝐴𝐹𝐹1(t) +  𝐵𝐵𝐹𝐹2(t)}
= 𝐴𝐴ℒ {𝐹𝐹1(𝑡𝑡)} +  𝐵𝐵ℒ {𝐹𝐹2(𝑡𝑡)}       Laplace Linear Transformation 

 

Table of Elementary Laplace Transform 

 

f(t) f(s) 

1 
1
𝑠𝑠 

𝑒𝑒𝑎𝑎𝑎𝑎 
1

𝑠𝑠 − 𝑎𝑎 , 𝑠𝑠 > 𝑎𝑎 

Sin at 
𝑎𝑎

𝑠𝑠2 + 𝑎𝑎2 

Cos at 
𝑠𝑠

𝑠𝑠2 − 𝑎𝑎2 

sinh at 
𝑎𝑎

𝑠𝑠2 − 𝑎𝑎2 

cosh at 
𝑠𝑠

𝑠𝑠2 − 𝑎𝑎2 

𝑡𝑡
2𝑎𝑎  𝑠𝑠𝑠𝑠𝑎𝑎 𝑎𝑎𝑡𝑡 

𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2 

1
2𝑎𝑎3 ( 𝑠𝑠𝑠𝑠𝑎𝑎 𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 ) 

1
(𝑠𝑠2 + 𝑎𝑎2)2 

𝑡𝑡𝑛𝑛 
(𝑎𝑎 + 1)!

𝑠𝑠𝑛𝑛+1  

 

𝐅𝐅𝐅𝐅𝐅𝐅𝐬𝐬𝐬𝐬 𝐒𝐒𝐒𝐒𝐅𝐅𝐒𝐒𝐬𝐬𝐅𝐅𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐞𝐞𝐓𝐓𝐅𝐅𝐞𝐞𝐓𝐓 ∶  If ℒ {𝑓𝑓(𝑡𝑡)} = 𝑓𝑓(̅𝑠𝑠), then ℒ {𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(𝑡𝑡)}
=   𝑓𝑓(̅𝑠𝑠 + 𝑎𝑎)  

𝐒𝐒𝐞𝐞𝐒𝐒𝐓𝐓𝐒𝐒𝐒𝐒 𝐒𝐒𝐒𝐒𝐅𝐅𝐒𝐒𝐬𝐬𝐅𝐅𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐞𝐞𝐓𝐓𝐅𝐅𝐞𝐞𝐓𝐓 ∶  If ℒ {𝑓𝑓(𝑡𝑡)} = 𝑓𝑓(̅𝑠𝑠) and F(t)
= {  0             𝑎𝑎<𝑎𝑎 

𝑓𝑓(𝑎𝑎−𝑎𝑎)   𝑎𝑎>𝑎𝑎 then ℒ {𝐹𝐹(𝑡𝑡)} =  𝑒𝑒−𝑎𝑎𝑎𝑎 𝑓𝑓(̅𝑠𝑠) 

If ℒ {𝑓𝑓(𝑡𝑡)} =  𝑓𝑓(̅s), then  ℒ {𝑡𝑡𝑛𝑛 𝑓𝑓(𝑡𝑡)} =  (−1)𝑛𝑛 𝑎𝑎𝑛𝑛

𝑎𝑎𝑠𝑠𝑛𝑛 𝑓𝑓(̅𝑠𝑠)   , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 = 1,2,3 … 

m
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𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑻𝑻𝑻𝑻 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒎𝒎𝒄𝒄𝒎𝒎𝑻𝑻𝒎𝒎𝒄𝒄𝑻𝑻𝒄𝒄𝒄𝒄𝒎𝒎𝑻𝑻𝒎𝒎𝒎𝒎 𝒃𝒃𝒃𝒃 𝒎𝒎𝒎𝒎 

If ℒ {𝑓𝑓(𝑡𝑡)} =  𝑓𝑓(̅s), then  ℒ { 𝑓𝑓(𝑡𝑡)
𝑡𝑡 } = ∫ 𝑓𝑓(̅𝑠𝑠)𝑑𝑑𝑠𝑠

∞

𝑠𝑠

, 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑 lim
𝑡𝑡→+0

𝑓𝑓(𝑡𝑡)
𝑡𝑡  𝑜𝑜𝑒𝑒𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠  

 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑻𝑻𝑻𝑻 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝑻𝑻𝒅𝒅𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎 𝒃𝒃𝒃𝒃 𝒎𝒎  

If ℒ {𝑓𝑓(𝑡𝑡)} =  𝑓𝑓(̅s), then  ℒ {𝑓𝑓(𝑎𝑎𝑡𝑡)}

= 1
𝑎𝑎 𝑓𝑓̅ (𝑠𝑠

𝑎𝑎)    ( 𝑪𝑪𝑻𝑻𝒎𝒎𝒄𝒄𝑪𝑪𝒄𝒄 𝒎𝒎𝒐𝒐 𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎𝒄𝒄𝑷𝑷𝒎𝒎𝒃𝒃 ) 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐓𝐓𝐓𝐓 𝐄𝐄𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐅𝐅𝐅𝐅𝐓𝐓𝐅𝐅𝐅𝐅𝐅𝐅𝐓𝐓𝐓𝐓 ∶  ℒ{𝑜𝑜𝑝𝑝𝑓𝑓(√𝑡𝑡)} = 1
𝑠𝑠√𝑠𝑠 − 1

   

𝐓𝐓𝐓𝐓𝐓𝐓 𝐅𝐅𝐓𝐓𝐓𝐓𝐜𝐜𝐓𝐓𝐜𝐜𝐅𝐅𝐅𝐅𝐅𝐅𝐓𝐓𝐓𝐓 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: 

ℒ {∫ 𝑓𝑓1 (𝑡𝑡 − 𝑢𝑢)𝑓𝑓2(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

} = 𝑓𝑓1(𝑠𝑠)𝑓𝑓2(𝑠𝑠) = 𝑓𝑓1̅(𝑠𝑠)𝑓𝑓2̅(𝑠𝑠)

=  ℒ [∫ 𝑓𝑓1 (𝑢𝑢)𝑓𝑓2(𝑡𝑡 − 𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

] 

𝑳𝑳𝒄𝒄𝒎𝒎𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑻𝑻𝑷𝑷𝒄𝒄𝒎𝒎𝑻𝑻𝒐𝒐𝒎𝒎𝑷𝑷𝒎𝒎 𝒎𝒎𝒐𝒐 𝒄𝒄𝒎𝒎 𝑰𝑰𝒎𝒎𝒎𝒎𝒄𝒄𝑪𝑪𝑷𝑷𝒄𝒄𝒄𝒄:  ℒ {∫ 𝑓𝑓 (𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

} = 1
𝑠𝑠 𝑓𝑓(̅𝑠𝑠) 

 

𝑳𝑳𝒄𝒄𝒎𝒎𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑻𝑻𝑷𝑷𝒄𝒄𝒎𝒎𝑻𝑻𝒐𝒐𝒎𝒎𝑷𝑷𝒎𝒎 𝒎𝒎𝒐𝒐 𝑫𝑫𝒄𝒄𝑷𝑷𝑻𝑻𝒅𝒅𝒄𝒄𝒎𝒎𝑻𝑻𝒅𝒅𝒄𝒄 ∶  ℒ {𝑓𝑓′(𝑡𝑡)} = 𝑠𝑠𝑓𝑓(̅𝑠𝑠) −  𝑓𝑓(0) 

 

6.8 References 

1.  A Text Book of Applied Mathematics Vol I - P. N. Wartikar and J. N. 
Wartikar 

2.  Applied Mathematics II - P. N. Wartikar and J. N. Wartikar 

3.  Higher Engineering Mathematics - Dr. B. S. Grewal  
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Unit 3 

7 
 

INVERSE LAPLACE TRANSFORM  
 

Unit Structure 

7.0 OBJECTIVES 

7.1 Introduction: Inverse Laplace Transform 

 7.1.1 Shifting Theorem  

 7.1.2 Partial fraction Methods  

 7.1.3 Use of Convolution Theorem  

7.2 Exercise 

7.3 Summary 

7.4 References 

7.0 Objectives 
After going through this unit, you will be able to:  

• Understand the concept of Inverse Laplace Transformation, shifting 
theorem and use of Convolution Theorem   

• Solve the problem based on Ordinary Linear Differential Equations with 
Constant Coefficients  

• Understand the concept Solution of Simultaneous Ordinary Differential 
Equations,  

• Understand Laplace Transformation of Special Function, Periodic  
Functions,  Heaviside Unit Step Function, Dirac-delta Function 

7.1 Introduction: Inverse Laplace Transform  
Having find the Laplace Transforms of few functions, let us now determine the 
inverse transforms of given functions. We are now in a position to find the Laplace 
transform 𝑓𝑓 ̅(𝑠𝑠)for the given object function 𝑓𝑓(𝑡𝑡).   
We shall now consider the inverse problem, i.e. given 
𝑓𝑓 ̅(𝑠𝑠), to find the object function 𝑓𝑓(𝑡𝑡) of which 𝑓𝑓(𝑠𝑠) is the Laplace Transform. 
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Definition:  If ℒ {𝑓𝑓(𝑡𝑡)} = 𝑓𝑓 (𝑠𝑠), then 𝑓𝑓(𝑡𝑡) is called the inverse Laplace Transform 
of 𝑓𝑓 ̅(𝑠𝑠) and this inverse relation is deonted by. 

𝓛𝓛−𝟏𝟏{�̅�𝒇 (𝒔𝒔)} =  𝒇𝒇(𝒕𝒕)  

ℒ−1 [1
𝑠𝑠] = 1 ℒ−1 [ 1

𝑠𝑠 − 𝑎𝑎] = 𝑒𝑒𝑎𝑎𝑎𝑎 

ℒ−1 [ 1
𝑠𝑠𝑛𝑛] = 𝑡𝑡𝑛𝑛−1

(𝑛𝑛 − 1)! , 𝑛𝑛 = 1,2,3.. ℒ−1 [ 1
(𝑠𝑠 − 𝑎𝑎)𝑛𝑛] =  𝑒𝑒𝑎𝑎𝑎𝑎 𝑡𝑡𝑛𝑛−1

(𝑛𝑛 − 1)! 

ℒ−1 [ 1
𝑠𝑠2 + 𝑎𝑎2] = 1

𝑎𝑎  𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 ℒ−1 [ 𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2] =  𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 

ℒ−1 [ 1
𝑠𝑠2 − 𝑎𝑎2] =  𝑆𝑆𝑆𝑆𝑛𝑛ℎ 𝑎𝑎𝑡𝑡 ℒ−1 [ 𝑠𝑠

𝑠𝑠2 − 𝑎𝑎2] =  𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝑎𝑎𝑡𝑡 

ℒ−1 [ 1
(𝑠𝑠 − 𝑎𝑎)2 + 𝑏𝑏2] = 1

𝑏𝑏 𝑒𝑒𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑛𝑛 𝑏𝑏𝑡𝑡 ℒ−1 [ 𝑠𝑠 − 𝑎𝑎
(𝑠𝑠 − 𝑎𝑎)2 + 𝑏𝑏2] =  𝑒𝑒𝑎𝑎𝑎𝑎𝐶𝐶𝑐𝑐𝑠𝑠 𝑏𝑏𝑡𝑡 

ℒ−1 [ 𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2] = 1

2𝑎𝑎 𝑡𝑡 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡  

ℒ−1 [ 1
(𝑠𝑠2 + 𝑎𝑎2)2] = 1

2𝑎𝑎3 ( 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡) 

 

ℒ−1 [ 1
(𝑠𝑠2 + 𝑎𝑎2)2] = 1

2𝑎𝑎 𝑡𝑡 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 

ℒ(𝑡𝑡 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡) =  2𝑎𝑎𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2    𝑎𝑎𝑛𝑛𝑎𝑎 ℒ(𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡) =  𝑠𝑠2 − 𝑎𝑎2

(𝑠𝑠2 + 𝑎𝑎2)2  

∴ 𝑡𝑡 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 =  2𝑎𝑎ℒ−1 [ 𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2]   𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒  ℒ−1 [ 1

(𝑠𝑠2 + 𝑎𝑎2)2] = 1
2𝑎𝑎 𝑡𝑡 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 

𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 =  ℒ−1 [ 𝑠𝑠2 − 𝑎𝑎2

(𝑠𝑠2 + 𝑎𝑎2)2] = ℒ−1 [(𝑠𝑠2 + 𝑎𝑎2) − 2𝑎𝑎2

(𝑠𝑠2 + 𝑎𝑎2)2 ] 

                                    𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡  = ℒ−1 [ 1
(𝑠𝑠2 + 𝑎𝑎2)] − 2𝑎𝑎2ℒ−1 [ 1

(𝑠𝑠2 + 𝑎𝑎2)2]  

                                     𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 = 1
𝑎𝑎  𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 − 2𝑎𝑎2ℒ−1 [ 1

(𝑠𝑠2 + 𝑎𝑎2)2] 

∴  ℒ−1 [ 1
(𝑠𝑠2 + 𝑎𝑎2)2] = 1

2𝑎𝑎3 ( 𝑆𝑆𝑆𝑆𝑛𝑛 𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡) 
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𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏: Find the inverse transforms of (𝑖𝑖) 1
𝑠𝑠 + 4 (𝑖𝑖𝑖𝑖) 2𝑠𝑠 + 6

𝑠𝑠2 + 4 

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  (𝑖𝑖) 1
𝑠𝑠 + 4 ,   ℒ−1 [ 1

𝑠𝑠 + 4] = 𝑒𝑒−4𝑡𝑡 , 𝑶𝑶𝑶𝑶   𝑓𝑓(𝑡𝑡) =  𝑒𝑒−4𝑡𝑡 

                        (𝑖𝑖𝑖𝑖) 2𝑠𝑠 + 6
𝑠𝑠2 + 4 =  2𝑠𝑠

𝑠𝑠2 + 4 +  6
𝑠𝑠2 + 4 =   2 𝑠𝑠

𝑠𝑠2 + 4 + 3 2
𝑠𝑠2 + 4 

                        We know ℒ(cos 2𝑡𝑡 ) =  𝑠𝑠
𝑠𝑠2 + 4 , ℒ(sin 2𝑡𝑡) = 2

𝑠𝑠2 + 4

                          ∴  ℒ−1 [2𝑠𝑠 + 6
𝑠𝑠2 + 4] = 2ℒ−1 { 𝑠𝑠

𝑠𝑠2 + 4} + 3ℒ−1 { 2
𝑠𝑠2 + 4} 

                                                   = 2 cos 2𝑡𝑡 + 3 sin 2𝑡𝑡 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟐𝟐: Find the inverse transforms of (𝑖𝑖) 𝑠𝑠2 − 3𝑠𝑠 + 4 
𝑠𝑠3  (𝑖𝑖𝑖𝑖) 𝑠𝑠 + 2

𝑠𝑠2 − 4𝑠𝑠 + 13 

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  (𝑖𝑖) 𝑠𝑠2 − 3𝑠𝑠 + 4 
𝑠𝑠3  ,  

                           ℒ−1 [𝑠𝑠2 − 3𝑠𝑠 + 4 
𝑠𝑠3 ] = ℒ−1 [1 

𝑠𝑠 ] − 3ℒ−1 [1 
𝑠𝑠2] + 4ℒ−1 [1 

𝑠𝑠3] 

                                                                 = 1 − 3𝑡𝑡 + 4. 𝑡𝑡2

2! = 1 − 3𝑡𝑡 + 2𝑡𝑡2 

                        (𝑖𝑖𝑖𝑖) 𝑠𝑠 + 2
𝑠𝑠2 − 4𝑠𝑠 + 13, 

                             ℒ−1 [ 𝑠𝑠 + 2
𝑠𝑠2 − 4𝑠𝑠 + 13] = ℒ−1 [ 𝑠𝑠 + 2

(𝑠𝑠 − 2)2 + 9]

=  ℒ−1 [ 𝑠𝑠 − 2 + 4
(𝑠𝑠 − 2)2 + 32] 

                                                                  

= ℒ−1 [ 𝑠𝑠 − 2
(𝑠𝑠 − 2)2 + 32] + 4 ℒ−1 [ 1

(𝑠𝑠 − 2)2 + 32] 

                                                                  = 𝑒𝑒2𝑡𝑡 cos 3𝑡𝑡 + 4
3 𝑒𝑒2𝑡𝑡 sin 3𝑡𝑡 

There are different methods to find inverse Laplace transform by using the
 known Laplace transforms of elementary functions. 
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𝟕𝟕. 𝟏𝟏. 𝟏𝟏 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓   

 (𝑰𝑰) 𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ℒ−1 {𝐼𝐼(̅𝑠𝑠 − 𝑎𝑎)} = 𝑒𝑒𝑎𝑎𝑎𝑎 𝐼𝐼(𝑡𝑡) = 𝑒𝑒𝑎𝑎𝑎𝑎 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} 

(𝑰𝑰𝑰𝑰)𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡)𝑎𝑎𝑒𝑒𝑎𝑎 𝐼𝐼(0) = 0, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ℒ−1 {𝑠𝑠𝐼𝐼(̅𝑠𝑠)} = 𝑎𝑎
𝑎𝑎𝑡𝑡 {𝐼𝐼(𝑡𝑡)} = 𝐼𝐼′(𝑡𝑡) 

                                    𝑖𝑖. 𝑒𝑒. if known standard transform 𝐼𝐼(̅𝑠𝑠)is multiplied by 𝑠𝑠 , 

                                 the inverse transform is the differentiation of 𝐼𝐼(𝑡𝑡)  

In general , ℒ−1 {𝑠𝑠𝑛𝑛𝐼𝐼(̅𝑠𝑠)} == 𝑎𝑎𝑛𝑛

𝑎𝑎𝑡𝑡𝑛𝑛 {𝐼𝐼(𝑡𝑡)} , provided 𝐼𝐼(0) = 𝐼𝐼′(0) = ⋯
= 𝐼𝐼𝑛𝑛−1(0) = 0 

Sometimes along with the above result we require  to use following 

ℒ{𝑡𝑡𝑛𝑛𝐼𝐼(𝑡𝑡)} = (−1)𝑛𝑛 𝑎𝑎𝑛𝑛

𝑎𝑎𝑠𝑠𝑛𝑛 𝐼𝐼(̅𝑠𝑠) = (−1)𝑛𝑛 𝐼𝐼̅(𝑛𝑛)(𝑠𝑠) which can be expressed as 

ℒ−1{𝐼𝐼(𝑛𝑛)(𝑠𝑠)} = (−1)𝑛𝑛𝑡𝑡𝑛𝑛𝐼𝐼(𝑡𝑡) 

(𝑰𝑰𝑰𝑰𝑰𝑰)𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒   ℒ−1  {𝐼𝐼(̅𝑠𝑠)
𝑠𝑠 } = ∫ 𝐼𝐼(𝑡𝑡)𝑎𝑎𝑡𝑡 

𝑎𝑎

0

 

                                       𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴    ℒ−1  {𝐼𝐼(̅𝑠𝑠)
𝑠𝑠2 } = ∫  

𝑎𝑎

0

{∫ 𝐼𝐼(𝑡𝑡)𝑎𝑎𝑡𝑡 
𝑎𝑎

0

}  𝑎𝑎𝑡𝑡 

                                                    ℒ−1  {𝐼𝐼(̅𝑠𝑠)
𝑠𝑠2 }

= ∫  
𝑎𝑎

0

{∫   (∫ 𝐼𝐼(𝑡𝑡) 
𝑎𝑎

0

𝑎𝑎𝑡𝑡)
𝑎𝑎

0

 𝑎𝑎𝑡𝑡} 𝑎𝑎𝑡𝑡   and so on. 

(𝑰𝑰𝑰𝑰)𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡) then   𝑡𝑡𝐼𝐼(𝑡𝑡) = ℒ−1  {– 𝑎𝑎
𝑎𝑎𝑠𝑠 [𝐼𝐼 ̅(𝑠𝑠)]},  

                                                  it follows from ℒ(𝑡𝑡𝐼𝐼(𝑡𝑡) ) =– 𝑎𝑎
𝑎𝑎𝑠𝑠 [𝐼𝐼 ̅(𝑠𝑠)] 

(𝑰𝑰)ℒ (𝐼𝐼(𝑡𝑡)
𝑡𝑡  ) =  ∫ 𝐼𝐼 ̅(𝑠𝑠) 𝑎𝑎𝑠𝑠, This is useful in finding 𝐼𝐼(𝑡𝑡)when 𝐼𝐼(𝑠𝑠) is given ,

∞

𝑠𝑠

 

 provided inverse transform of ∫ 𝐼𝐼 ̅(𝑠𝑠) can be conveniently calculated 
∞

𝑠𝑠
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𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟑𝟑: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓(𝑡𝑡), 𝐹𝐹𝑓𝑓 𝑓𝑓 ̅(𝑠𝑠) =  𝑠𝑠 + 7
𝑠𝑠2 + 2𝑠𝑠 + 5 

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒
∶  We complete a square with the first two term in the denominator, thus   

                             𝑠𝑠2 + 2𝑠𝑠 + 5 = (𝑠𝑠 + 1)2 + (2)2 

                   Hence , 𝑓𝑓 ̅(𝑠𝑠) =  𝑠𝑠 + 7
𝑠𝑠2 + 2𝑠𝑠 + 5 =  (𝑠𝑠 + 1)

(𝑠𝑠 + 1)2 + (2)2 + 3 2
(𝑠𝑠 + 1)2 + (2)2 

                    We know ℒ(cos 2𝑡𝑡 ) =  𝑠𝑠
𝑠𝑠2 + (2)2 , ℒ(sin 2𝑡𝑡) = 2

𝑠𝑠2 + (2)2 

                    Hence by shifting theorem we have ,  

 

                                         ℒ−1  {
(𝑠𝑠 + 1)

(𝑠𝑠 + 1)2 + (2)2} =  𝑒𝑒−𝑡𝑡 cos  2𝑡𝑡  

                                         ℒ−1  { 2
(𝑠𝑠 + 1)2 + (2)2} =  𝑒𝑒−𝑡𝑡 sin 2𝑡𝑡 

                                ∴ 𝑓𝑓(𝑡𝑡) =   ℒ−1  { 𝑠𝑠 + 7
𝑠𝑠2 + 2𝑠𝑠 + 5} 

                                            =   ℒ−1  { (𝑠𝑠 + 1)
(𝑠𝑠 + 1)2 + (2)2}  +  3 ℒ−1  { 2

(𝑠𝑠 + 1)2 + (2)2} 

                                            =  𝑒𝑒−𝑡𝑡 cos  2𝑡𝑡 + 3𝑒𝑒−𝑡𝑡 sin 2𝑡𝑡
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟒𝟒: Find the inverse laplace transforms of the following:  

                                      (i) 𝑠𝑠2

(𝑠𝑠 − 2)3                              (𝐹𝐹𝐹𝐹)  (𝑠𝑠 + 2)2

(𝑠𝑠2 + 4𝑠𝑠 + 8)2  

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶     (𝐹𝐹) 𝑠𝑠2 = (𝑠𝑠 − 2)2 + 4(𝑠𝑠 − 2) + 4 

               ∴                𝑠𝑠2

(𝑠𝑠 − 2)3 = 1
(𝑠𝑠 − 2) + 4

(𝑠𝑠 − 2)2 + 4
(𝑠𝑠 − 2)3 

               ∴               ℒ−1  { 𝑠𝑠2

(𝑠𝑠 − 2)3}

=  ℒ−1 { 1
(𝑠𝑠 − 2)} + 4 ℒ−1 { 1

(𝑠𝑠 − 2)2} +  4ℒ−1 { 1
(𝑠𝑠 − 2)3} 

                                                                 
= 𝑒𝑒2𝑡𝑡 + 4𝑒𝑒2𝑡𝑡𝑡𝑡 + 2𝑒𝑒2𝑡𝑡𝑡𝑡2              ( Using Shifting property ) 
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                            (𝑖𝑖𝑖𝑖)  ℒ−1  {
(𝑠𝑠 + 2)2

(𝑠𝑠2 + 4𝑠𝑠 + 8)2} 

                                    =   ℒ−1  { (𝑠𝑠 + 2)2

(𝑠𝑠2 + 4𝑠𝑠 + 4 + 4)2} 

                                    =   ℒ−1  {
(𝑠𝑠 + 2)2

((𝑠𝑠 + 2)2 + 4)2}  

                                    = 𝑒𝑒−2𝑡𝑡  ℒ−1  { 𝑠𝑠2

(𝑠𝑠2 + 4)2}  = 𝑒𝑒−2𝑡𝑡  ℒ−1  {𝑠𝑠2 + 4 − 4
(𝑠𝑠2 + 4)2 } 

                                    = 𝑒𝑒−2𝑡𝑡  ℒ−1  { 1
(𝑠𝑠2 + 4) − 4

(𝑠𝑠2 + 4)2} 

                                    = 𝑒𝑒−2𝑡𝑡 sin 2𝑡𝑡
𝑡𝑡 − 4𝑒𝑒−2𝑡𝑡  {1

4 (sin 2𝑡𝑡
4 − 𝑡𝑡 cos 2𝑡𝑡 

2 )} 

                                    = 𝑒𝑒−2𝑡𝑡 {sin 2𝑡𝑡
2 − sin 2𝑡𝑡

4 + 𝑡𝑡 cos 2𝑡𝑡 
2 } 

                                    = 𝑒𝑒−2𝑡𝑡 {sin 2𝑡𝑡
4 + 𝑡𝑡 cos 2𝑡𝑡 

2 } 

𝟕𝟕. 𝟏𝟏. 𝟐𝟐 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐟𝐟𝐏𝐏𝐏𝐏𝐟𝐟𝐏𝐏𝐏𝐏𝐟𝐟𝐟𝐟 𝐌𝐌𝐌𝐌𝐏𝐏𝐌𝐌𝐟𝐟𝐌𝐌𝐌𝐌 

Generally in many problems 𝑓𝑓(̅𝑠𝑠)is a rational fraction 𝐹𝐹 ̅(𝑠𝑠)
�̅�𝐺(𝑠𝑠)  with degree

 of 𝐹𝐹 ̅(𝑠𝑠)less than that of  �̅�𝐺(𝑠𝑠)and this fraction can be expressed as sum 
on partial fractions of the type 

𝐴𝐴
(𝑎𝑎𝑠𝑠 + 𝑏𝑏)𝑟𝑟,  

𝐴𝐴
(𝑎𝑎𝑠𝑠2 + 𝑏𝑏𝑠𝑠 + 𝑏𝑏)𝑟𝑟   ( 𝑟𝑟 = 1,2, … )  

and finding the Laplace transform of each of the partial 
 fractions , we find  ℒ−1 {𝑓𝑓 ̅(𝑠𝑠)}  

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟒𝟒: Find the inverse Laplace transform of each the following functions:  

    (i) 2𝑠𝑠2 − 6𝑠𝑠 + 5
𝑠𝑠3 − 6𝑠𝑠2 + 11𝑠𝑠 − 6                             (𝑖𝑖𝑖𝑖)  4𝑠𝑠 + 5

(𝑠𝑠 − 1)2(𝑠𝑠 + 2)  

   (iii) 6𝑠𝑠3 − 21𝑠𝑠2 + 20𝑠𝑠 − 7
(𝑠𝑠 + 1)(𝑠𝑠 − 2)3                        (𝑖𝑖𝑖𝑖) 𝑠𝑠2 + 2𝑠𝑠 − 4

(𝑠𝑠2 + 2𝑠𝑠 + 5)(𝑠𝑠2 + 2𝑠𝑠 + 2) 
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶     (𝑖𝑖) 2𝑠𝑠2 − 6𝑠𝑠 + 5
𝑠𝑠3 − 6𝑠𝑠2 + 11𝑠𝑠 − 6 , here the deniominator is 𝑠𝑠3 − 6𝑠𝑠2

+ 11𝑠𝑠 − 6  

                                 here the deniominator is 𝑠𝑠3 − 6𝑠𝑠2 + 11𝑠𝑠 − 6
=  (𝑠𝑠 − 1)(𝑠𝑠 − 2)(𝑠𝑠 − 3)  

                             2𝑠𝑠2 − 6𝑠𝑠 + 5
𝑠𝑠3 − 6𝑠𝑠2 + 11𝑠𝑠 − 6  = 2𝑠𝑠2 − 6𝑠𝑠 + 5

(𝑠𝑠 − 1)(𝑠𝑠 − 2)(𝑠𝑠 − 3)

= 𝐴𝐴
(𝑠𝑠 − 1) − 𝐵𝐵

(𝑠𝑠 − 2) + 𝐶𝐶
(𝑠𝑠 − 3) 

                                𝐴𝐴 =
[2 ∗ 12 − 6 ∗ 1 + 5]

(1 − 2)(1 − 3) = 1
2 

                               𝐵𝐵 =
[2 ∗ 22 − 6 ∗ 2 + 5]

(2 − 1)(2 − 3) = −1 

                               𝐶𝐶 =
[2 ∗ 32 − 6 ∗ 3 + 5]

(3 − 1)(3 − 2) = 5
2 

                           ∴   2𝑠𝑠2 − 6𝑠𝑠 + 5
𝑠𝑠3 − 6𝑠𝑠2 + 11𝑠𝑠 − 6  =  

1 2⁄
(𝑠𝑠 − 1) − 1

(𝑠𝑠 − 2) +
5 2⁄

(𝑠𝑠 − 3) 

                         We have  ℒ−1  { 1
(𝑠𝑠 − 1)} = 𝑒𝑒𝑡𝑡,  ℒ−1  { 1

(𝑠𝑠 − 2)}

= 𝑒𝑒2𝑡𝑡,  ℒ−1  { 1
(𝑠𝑠 − 3)} = 𝑒𝑒3𝑡𝑡  

                           ∴ 𝑓𝑓(𝑡𝑡) =  ℒ−1  { 2𝑠𝑠2 − 6𝑠𝑠 + 5
(𝑠𝑠 − 1)(𝑠𝑠 − 2)(𝑠𝑠 − 3)} 

                                      = 1
2  ℒ−1   { 1

(𝑠𝑠 − 1)} −  ℒ−1  { 1
(𝑠𝑠 − 2)} + 5

2  ℒ−1  { 1
(𝑠𝑠 − 3)} 

                                     = 1
2 𝑒𝑒𝑡𝑡 − 𝑒𝑒2𝑡𝑡 + 5

2 𝑒𝑒3𝑡𝑡 

    (𝑖𝑖𝑖𝑖) 4𝑠𝑠 + 5
(𝑠𝑠 − 1)2(𝑠𝑠 + 2) , here the deniominator is (𝑠𝑠 − 1)2(𝑠𝑠 + 2) 

                𝐿𝐿𝑒𝑒𝑡𝑡 4𝑠𝑠 + 5
(𝑠𝑠 − 1)2(𝑠𝑠 + 2) = 𝐴𝐴

(𝑠𝑠 − 1) + 𝐵𝐵
(𝑠𝑠 − 1)2 + 4(−2) + 5

(−2 − 1)2(𝑠𝑠 + 2) 

             Multiplying both sides by (𝑠𝑠 − 1)2(𝑠𝑠 + 2), we get 
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             (𝑠𝑠 − 1)2(𝑠𝑠 + 2) (4𝑠𝑠 + 5) =  𝐴𝐴(𝑠𝑠 − 1)(𝑠𝑠 + 2) + 𝐵𝐵(𝑠𝑠 + 2) − 1
3 (𝑠𝑠 − 1)2 

            Put 𝑠𝑠 = 1 in above equation , we get, 9 = 3𝐵𝐵, ∴ B = 3 

            Equating the coefficients of 𝑠𝑠2 from both the sides, 0 = 𝐴𝐴 − 1
3 ,

∴ A = 1
3 

            ∴   ℒ−1  { 4𝑠𝑠 + 5
(𝑠𝑠 − 1)2(𝑠𝑠 + 2)}

= 1
3  ℒ−1 ( 1

(𝑠𝑠 − 1)) + 3 ℒ−1 [ 1
(𝑠𝑠 − 1)2] − 1

3  ℒ−1 [ 1
(𝑠𝑠 + 2)] 

                                                           = 1
3 𝑒𝑒𝑡𝑡 + 3𝑡𝑡𝑒𝑒𝑡𝑡 − 1

3 𝑒𝑒−2𝑡𝑡 

    (𝑖𝑖𝑖𝑖𝑖𝑖) 6𝑠𝑠3 − 21𝑠𝑠2 + 20𝑠𝑠 − 7
(𝑠𝑠 + 1)(𝑠𝑠 − 2)3 =  2

(𝑠𝑠 + 1) + 4
(𝑠𝑠 − 2) + 3

(𝑠𝑠 − 2)2 − 1
(𝑠𝑠 − 2)3 

                         We have  ℒ−1  { 1
(𝑠𝑠 − 𝑎𝑎)𝑛𝑛}

= 𝑡𝑡𝑛𝑛−1

(𝑛𝑛 − 1)! 𝑒𝑒3𝑡𝑡   , Using tbale and shifting theorm 

                         Hence, 𝑓𝑓(𝑡𝑡) =  ℒ−1  {6𝑠𝑠3 − 21𝑠𝑠2 + 20𝑠𝑠 − 7
(𝑠𝑠 + 1)(𝑠𝑠 − 2)3 } 

                                                

=  2ℒ−1  { 1
(𝑠𝑠 + 1)} +  4ℒ−1  { 1

(𝑠𝑠 − 2)} +  3ℒ−1  { 1
(𝑠𝑠 − 2)2}

−  ℒ−1  { 1
(𝑠𝑠 − 2)3} 

                                                = 2𝑒𝑒−𝑡𝑡 + 4𝑒𝑒2𝑡𝑡 + 3𝑡𝑡𝑒𝑒2𝑡𝑡 − 𝑡𝑡2

2! 𝑒𝑒2𝑡𝑡 

                                                = 2𝑒𝑒−𝑡𝑡 + (4 + 3𝑡𝑡 − 1
2 𝑡𝑡2)𝑒𝑒2𝑡𝑡 

    (𝑖𝑖𝑖𝑖) 𝑠𝑠2 + 2𝑠𝑠 − 4
(𝑠𝑠2 + 2𝑠𝑠 + 5)(𝑠𝑠2 + 2𝑠𝑠 + 2),  

𝑞𝑞𝑞𝑞𝑎𝑎𝑞𝑞𝑞𝑞𝑎𝑎𝑡𝑡𝑖𝑖𝑞𝑞 𝑓𝑓𝑎𝑎𝑞𝑞𝑡𝑡𝑓𝑓𝑞𝑞𝑠𝑠 𝑞𝑞𝑎𝑎𝑛𝑛𝑛𝑛𝑓𝑓𝑡𝑡 𝑏𝑏𝑒𝑒 𝑞𝑞𝑒𝑒𝑠𝑠𝑓𝑓𝑟𝑟𝑖𝑖𝑒𝑒𝑞𝑞 𝑖𝑖𝑛𝑛𝑡𝑡𝑓𝑓 𝑞𝑞𝑒𝑒𝑎𝑎𝑟𝑟 𝑓𝑓𝑎𝑎𝑞𝑞𝑡𝑡𝑓𝑓𝑞𝑞𝑠𝑠 𝑤𝑤𝑖𝑖𝑡𝑡ℎ  

𝑞𝑞𝑒𝑒𝑎𝑎𝑟𝑟 𝑛𝑛𝑞𝑞𝑛𝑛𝑏𝑏𝑒𝑒𝑞𝑞𝑠𝑠, ℎ𝑒𝑒𝑛𝑛𝑞𝑞𝑒𝑒  
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              𝑠𝑠2 + 2𝑠𝑠 − 4
(𝑠𝑠2 + 2𝑠𝑠 + 5)(𝑠𝑠2 + 2𝑠𝑠 + 2) = 3

(𝑠𝑠2 + 2𝑠𝑠 + 5) − 4
(𝑠𝑠2 + 2𝑠𝑠 + 2) 

                                                                  =
(3

2) . 2
(𝑠𝑠 + 1)2 + (2)2 − 2

(𝑠𝑠 + 1)2 + (1)2 

              Using shifting theorem, 𝑓𝑓(𝑡𝑡) =  ℒ−1  { 𝑠𝑠2 + 2𝑠𝑠 − 4
(𝑠𝑠2 + 2𝑠𝑠 + 5)(𝑠𝑠2 + 2𝑠𝑠 + 2)} 

                                                                        

= 3
2 ℒ−1  { 2

(𝑠𝑠 + 1)2 + (2)2} − 2ℒ−1  { 1
(𝑠𝑠 + 1)2 + (1)2} 

                                                                        = 3
2 𝑒𝑒−𝑡𝑡 sin 2𝑡𝑡 − 2𝑒𝑒−𝑡𝑡 sin 𝑡𝑡 

(𝑰𝑰𝑰𝑰)𝐼𝐼𝑓𝑓 ℒ−1 {𝑓𝑓 ̅(𝑠𝑠)} = 𝑓𝑓(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(0) = 0, 𝑡𝑡ℎ𝑒𝑒𝑎𝑎 𝓛𝓛−𝟏𝟏 {𝒔𝒔�̅�𝒇(𝒔𝒔)} = 𝒅𝒅
𝒅𝒅𝒅𝒅 {𝒇𝒇(𝒅𝒅)} = 𝒇𝒇′(𝒅𝒅) 

                                    𝑖𝑖. 𝑒𝑒. if known standard transform 𝑓𝑓(̅𝑠𝑠)is multiplied by 𝑠𝑠 , 
                                 the inverse transform is the differentiation of 𝑓𝑓(𝑡𝑡)  

𝐼𝐼𝑎𝑎 𝑔𝑔𝑒𝑒𝑎𝑎𝑒𝑒𝑔𝑔𝑎𝑎𝑔𝑔 , ℒ−1 {𝑠𝑠𝑛𝑛𝑓𝑓(̅𝑠𝑠)} == 𝑎𝑎𝑛𝑛

𝑎𝑎𝑡𝑡𝑛𝑛 {𝑓𝑓(𝑡𝑡)} , 

 𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎 𝑓𝑓(0) = 𝑓𝑓′(0) = ⋯ = 𝑓𝑓𝑛𝑛−1(0) = 0 

𝑆𝑆𝑝𝑝𝑆𝑆𝑒𝑒𝑡𝑡𝑖𝑖𝑆𝑆𝑒𝑒𝑠𝑠 𝑎𝑎𝑔𝑔𝑝𝑝𝑎𝑎𝑔𝑔 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑒𝑒 𝑔𝑔𝑒𝑒𝑠𝑠𝑠𝑠𝑔𝑔𝑡𝑡 𝑤𝑤𝑒𝑒 𝑔𝑔𝑒𝑒𝑟𝑟𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒  𝑡𝑡𝑝𝑝 𝑠𝑠𝑠𝑠𝑒𝑒 𝑓𝑓𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑤𝑤𝑖𝑖𝑎𝑎𝑔𝑔 

ℒ{𝑡𝑡𝑛𝑛𝑓𝑓(𝑡𝑡)} = (−1)𝑛𝑛 𝑎𝑎𝑛𝑛

𝑎𝑎𝑠𝑠𝑛𝑛 𝑓𝑓(̅𝑠𝑠) = (−1)𝑛𝑛 𝑓𝑓̅(𝑛𝑛)(𝑠𝑠) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒 𝑒𝑒𝑒𝑒𝑝𝑝𝑔𝑔𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑎𝑎 𝑎𝑎𝑠𝑠 

𝓛𝓛−𝟏𝟏{𝒇𝒇(𝒏𝒏)(𝒔𝒔)} = (−𝟏𝟏)𝒏𝒏𝒅𝒅𝒏𝒏𝒇𝒇(𝒅𝒅) 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟓𝟓: Find the inverse Laplace transform of each the following functions: 

                                (i) 𝑠𝑠2

(𝑠𝑠2+𝑎𝑎2)2                              (𝑖𝑖𝑖𝑖) 𝑠𝑠2

(𝑠𝑠 + 𝑎𝑎)3  

                               (iii) 𝑔𝑔𝑝𝑝𝑔𝑔 (1 + 𝑎𝑎2

𝑠𝑠2)                     (𝑖𝑖𝑝𝑝) 𝑡𝑡𝑎𝑎𝑎𝑎−1 ( 2
𝑠𝑠2) 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐭𝐭𝐢𝐢𝐒𝐒𝐢𝐢 ∶     (𝑖𝑖) 𝑓𝑓(̅s) =  1
𝑠𝑠2+𝑎𝑎2   ∴  ℒ−1 ( 1

𝑠𝑠2+𝑎𝑎2) = 1
𝑎𝑎 sin 𝑎𝑎𝑡𝑡 = 𝑓𝑓(𝑡𝑡) 

                              𝑁𝑁𝑝𝑝𝑤𝑤, 𝑓𝑓̅′(s) =  −2𝑠𝑠
(𝑠𝑠2+𝑎𝑎2)2 , 𝑈𝑈𝑠𝑠𝑖𝑖𝑎𝑎𝑔𝑔 𝓛𝓛−𝟏𝟏{𝒇𝒇(𝒏𝒏)(𝒔𝒔)}

= (−𝟏𝟏)𝒏𝒏𝒅𝒅𝒏𝒏𝒇𝒇(𝒅𝒅) 𝑤𝑤𝑒𝑒 𝑔𝑔𝑒𝑒𝑡𝑡 
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                              ℒ−1  { −2𝑠𝑠
(𝑠𝑠2+𝑎𝑎2)2} = (−1)(1)𝑡𝑡1 1

𝑎𝑎 sin 𝑎𝑎𝑡𝑡 

                             ∴  ℒ−1  { 𝑠𝑠
(𝑠𝑠2+𝑎𝑎2)} = 1

2𝑎𝑎 t sin 𝑎𝑎𝑡𝑡 

                              𝑵𝑵𝑵𝑵𝑵𝑵, 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝓛𝓛−𝟏𝟏 {𝑼𝑼𝑼𝑼�̅�𝒇(𝑼𝑼)} = 𝒅𝒅𝑼𝑼

𝒅𝒅𝒅𝒅𝑼𝑼 {𝒇𝒇(𝒅𝒅)} , 𝑵𝑵𝒘𝒘 𝒉𝒉𝒉𝒉𝒉𝒉𝒘𝒘 

                              ℒ−1  { 𝑠𝑠2

(𝑠𝑠2+𝑎𝑎2)2} = ℒ−1  {𝑠𝑠. 𝑠𝑠2

(𝑠𝑠2+𝑎𝑎2)2} 

                                                               = 𝑑𝑑
𝑑𝑑𝑡𝑡  { 1

2𝑎𝑎 t sin 𝑎𝑎𝑡𝑡} =  1
2𝑎𝑎 (𝑎𝑎 t cos at + sin 𝑎𝑎𝑡𝑡) 

                               (𝑖𝑖𝑖𝑖) 𝑠𝑠2

(𝑠𝑠 + 𝑎𝑎)3 

                              𝑁𝑁𝑁𝑁𝑁𝑁, 𝑓𝑓(̅s) = 1
(𝑠𝑠 + 𝑎𝑎)     ,   𝑓𝑓(𝑡𝑡) =  𝑒𝑒−𝑎𝑎𝑎𝑎 

                              𝑁𝑁𝑁𝑁𝑁𝑁, 𝑓𝑓̅′(s) = 1
(𝑠𝑠 + 𝑎𝑎)2   ,   𝑓𝑓̅′′(s) = 2

(𝑠𝑠 + 𝑎𝑎)3 

                             𝑈𝑈𝑠𝑠𝑖𝑖𝑈𝑈𝑈𝑈 𝓛𝓛−𝟏𝟏{𝒇𝒇(𝑼𝑼)(𝑼𝑼)} = (−𝟏𝟏)𝑼𝑼𝒅𝒅𝑼𝑼𝒇𝒇(𝒅𝒅) 𝑁𝑁𝑒𝑒 𝑈𝑈𝑒𝑒𝑡𝑡 

                           ℒ−1 { 2
(𝑠𝑠 + 𝑎𝑎)2} = (−1)2𝑡𝑡2𝑒𝑒−𝑎𝑎𝑎𝑎 

                         ∴   ℒ−1 { 1
(𝑠𝑠 + 𝑎𝑎)3} = 1

2 𝑡𝑡2𝑒𝑒−𝑎𝑎𝑎𝑎 

                              𝑵𝑵𝑵𝑵𝑵𝑵, 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝓛𝓛−𝟏𝟏 {𝑼𝑼𝑼𝑼�̅�𝒇(𝑼𝑼)} = 𝒅𝒅𝑼𝑼

𝒅𝒅𝒅𝒅𝑼𝑼 {𝒇𝒇(𝒅𝒅)} , 𝑵𝑵𝒘𝒘 𝒉𝒉𝒉𝒉𝒉𝒉𝒘𝒘 

                         ∴   ℒ−1 { 𝑠𝑠2

(𝑠𝑠 + 𝑎𝑎)3} =  𝑑𝑑2

𝑑𝑑𝑡𝑡2 {1
2 𝑡𝑡2𝑒𝑒−𝑎𝑎𝑎𝑎} = 1

2 [𝑎𝑎2𝑡𝑡2 − 4𝑎𝑎𝑡𝑡 + 2]𝑒𝑒−𝑎𝑎𝑎𝑎 

                              (iii) 𝑓𝑓(𝑠𝑠) = 𝑙𝑙𝑁𝑁𝑈𝑈 (1 + 𝑎𝑎2

𝑠𝑠2) = log(𝑠𝑠2 + 𝑎𝑎2) − 2 log 𝑠𝑠 

                                       𝑓𝑓 ̅′(𝑠𝑠) =    2𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2 − 2

𝑠𝑠 = 𝐹𝐹(𝑠𝑠)      

                             𝑈𝑈𝑠𝑠𝑖𝑖𝑈𝑈𝑈𝑈 𝓛𝓛−𝟏𝟏{𝒇𝒇(𝑼𝑼)(𝑼𝑼)} = (−𝟏𝟏)𝑼𝑼𝒅𝒅𝑼𝑼𝒇𝒇(𝒅𝒅) 𝑁𝑁𝑒𝑒 𝑈𝑈𝑒𝑒𝑡𝑡       

                         ∴   ℒ−1𝑓𝑓 ̅′(𝑠𝑠) = 29 cos 𝑎𝑎𝑡𝑡 − 1) =  −𝑡𝑡 𝑓𝑓(𝑡𝑡)               

                                     ∴    𝑓𝑓(𝑡𝑡) = 2
𝑡𝑡 (1 − cos 𝑎𝑎𝑡𝑡)               
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                              (𝑖𝑖𝑖𝑖) 𝑡𝑡𝑡𝑡𝑡𝑡−1 ( 2
𝑠𝑠2) 

                                   𝑓𝑓(𝑠𝑠) = 𝑡𝑡𝑡𝑡𝑡𝑡−1 ( 2
𝑠𝑠2)  , 

                                   𝑓𝑓 ̅′(𝑠𝑠) = 1
1 + 4

𝑠𝑠4

(− 4
𝑠𝑠3) =  − 4𝑠𝑠

𝑠𝑠4 + 4 

                                      = − 4𝑠𝑠
(𝑠𝑠2 − 2𝑠𝑠 + 2) (𝑠𝑠2 + 2𝑠𝑠 + 2) 

                                      = − [ 1
(𝑠𝑠2 − 2𝑠𝑠 + 2) – 1

(𝑠𝑠2 + 2𝑠𝑠 + 2)] 

                                      = − [ 1
(𝑠𝑠 − 1)2 + 1 – 1

(𝑠𝑠 + 1)2 + 1] 

                         ∴   ℒ−1𝑓𝑓 ̅′(𝑠𝑠) = −[𝑒𝑒𝑡𝑡 sin 𝑡𝑡 − 𝑒𝑒−𝑡𝑡 sin 𝑡𝑡]               

                                                = − [𝑒𝑒𝑡𝑡 − 𝑒𝑒−𝑡𝑡

2 ]  2 sin 𝑡𝑡 = −2 sin 𝑡𝑡 sinh 𝑡𝑡              

                         ∴   ℒ−1𝑓𝑓′̅(𝑠𝑠) = −𝑡𝑡 𝑓𝑓(𝑡𝑡) =  −2 sin 𝑡𝑡 sinh 𝑡𝑡               

                         ∴   ℒ−1𝑡𝑡𝑡𝑡𝑡𝑡−1 ( 2
𝑠𝑠2) =  𝑓𝑓(𝑡𝑡) = 2

𝑡𝑡 sin 𝑡𝑡 sinh 𝑡𝑡               

𝟕𝟕. 𝟏𝟏. 𝟑𝟑 𝐔𝐔𝐔𝐔𝐔𝐔 𝐨𝐨𝐨𝐨 𝐂𝐂𝐨𝐨𝐂𝐂𝐂𝐂𝐨𝐨𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐨𝐨𝐂𝐂 𝐓𝐓𝐓𝐓𝐔𝐔𝐨𝐨𝐓𝐓𝐔𝐔𝐓𝐓  

 If the function 𝑓𝑓 ̅(𝑠𝑠), whose inverse transform is required, can be expressed  

 as a product of  𝐹𝐹 ̅(𝑠𝑠)
∗ �̅�𝐺(𝑠𝑠), where inverse transforms �̅�𝐹(𝑠𝑠) and 𝐺𝐺 ̅(𝑠𝑠) are known, 

 we  use convolution theorem  

𝐈𝐈𝐨𝐨 𝓛𝓛−𝟏𝟏�̅�𝐅 (𝒔𝒔) = 𝑭𝑭(𝒕𝒕), 𝓛𝓛−𝟏𝟏𝐆𝐆 (𝒔𝒔) = 𝑮𝑮(𝒕𝒕) 𝒂𝒂𝒂𝒂𝒂𝒂 𝒇𝒇 ̅(𝒔𝒔) = 𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)         𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂 

 {𝓛𝓛−𝟏𝟏�̅�𝒇 (𝒔𝒔)} =  𝓛𝓛−𝟏𝟏{𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)} = ∫ 𝑭𝑭(𝒕𝒕 − 𝒖𝒖) 𝑮𝑮(𝒖𝒖) 𝒂𝒂𝒖𝒖
𝒕𝒕

𝟎𝟎

  

Corollary:  Since 𝓛𝓛−𝟏𝟏 (𝟏𝟏
𝒔𝒔) = 𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝓛𝓛−𝟏𝟏�̅�𝒇(𝒔𝒔) = 𝒇𝒇(𝒕𝒕) 

𝐿𝐿𝑒𝑒𝑡𝑡 𝐹𝐹 ̅(𝑠𝑠) = 1
s  and �̅�𝐺(𝑠𝑠) =  𝑓𝑓 ̅(𝑠𝑠), ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑒𝑒 𝑓𝑓𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟𝑡𝑡 𝑤𝑤𝑒𝑒 𝑔𝑔𝑒𝑒𝑡𝑡, 

𝓛𝓛−𝟏𝟏 {𝒇𝒇(𝒔𝒔)
𝒔𝒔 } = ∫ 𝟏𝟏. 𝒇𝒇(𝒖𝒖)𝒂𝒂𝒖𝒖

𝒕𝒕

𝟎𝟎

          𝑵𝑵𝑵𝑵𝒕𝒕𝒕𝒕: 𝐹𝐹(𝑡𝑡)𝑡𝑡𝑡𝑡𝑎𝑎 𝐺𝐺(𝑡𝑡)𝑡𝑡𝑓𝑓𝑒𝑒 𝑖𝑖𝑡𝑡𝑡𝑡𝑒𝑒𝑓𝑓𝑒𝑒ℎ𝑡𝑡𝑡𝑡𝑔𝑔𝑒𝑒𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒

m
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Chapter 7: Inverse Laplace Transform

  𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟔𝟔: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂ℎ𝑒𝑒 𝑂𝑂𝑂𝑂𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒 𝐿𝐿𝑂𝑂𝐿𝐿𝐿𝐿𝑂𝑂𝐿𝐿𝑒𝑒 𝑂𝑂𝑖𝑖𝑂𝑂𝑂𝑂𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 𝑡𝑡𝑡𝑡 𝑂𝑂ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡𝑓𝑓𝑂𝑂𝑂𝑂𝑓𝑓: 

                      (𝒊𝒊) 𝟏𝟏
𝒔𝒔𝟐𝟐(𝒔𝒔 + 𝟏𝟏)𝟐𝟐                        (𝒊𝒊𝒊𝒊) 𝒔𝒔

(𝒔𝒔𝟐𝟐 + 𝑬𝑬𝟐𝟐)𝟐𝟐 

𝑺𝑺𝑺𝑺𝑬𝑬𝑺𝑺𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺:  (𝑂𝑂) 1
𝑖𝑖2(𝑖𝑖 + 1)2 =  1

𝑖𝑖2   1
(𝑖𝑖 + 1)2 

                           ℒ−1 { 1
𝑖𝑖2} = 𝑂𝑂 = 𝐹𝐹(𝑂𝑂)  𝑂𝑂𝑂𝑂𝑎𝑎 ℒ−1 { 1

(𝑖𝑖 + 1)2} = 𝑂𝑂𝑒𝑒−𝑡𝑡 = 𝐺𝐺(𝑂𝑂)  

                          𝑈𝑈𝑖𝑖𝑂𝑂𝑂𝑂𝑓𝑓, {𝓛𝓛−𝟏𝟏�̅�𝒇 (𝒔𝒔)} =  𝓛𝓛−𝟏𝟏{𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)} = ∫ 𝑭𝑭(𝑺𝑺 − 𝑺𝑺) 𝑮𝑮(𝑺𝑺) 𝒅𝒅𝑺𝑺
𝑺𝑺

𝟎𝟎

 

                       ℒ−1 { 1
𝑖𝑖2(𝑖𝑖 + 1)2} = ∫(𝑂𝑂 − 𝑢𝑢) 𝑢𝑢 𝑒𝑒−𝑢𝑢 𝑎𝑎𝑢𝑢

𝑡𝑡

0

  

                                                       = [−(𝑢𝑢𝑂𝑂 − 𝑢𝑢2) 𝑒𝑒−𝑢𝑢 −  (𝑂𝑂 − 2𝑢𝑢)𝑒𝑒−𝑢𝑢 − (−2) 𝑒𝑒−𝑢𝑢]0
𝑡𝑡  

                                                       = 𝑂𝑂 𝑒𝑒−𝑡𝑡 +  2𝑒𝑒−𝑡𝑡 + 𝑂𝑂 − 2 

                      𝓛𝓛−𝟏𝟏 {𝒇𝒇(𝒔𝒔)
𝒔𝒔 } = ∫ 𝟏𝟏. 𝒇𝒇(𝑺𝑺)𝒅𝒅𝑺𝑺

𝑺𝑺

𝟎𝟎

, 𝑢𝑢𝑖𝑖𝑂𝑂𝑂𝑂𝑓𝑓 𝑖𝑖𝑒𝑒𝐿𝐿𝑒𝑒𝑂𝑂𝑂𝑂𝑒𝑒𝑎𝑎𝐿𝐿𝑦𝑦 ,   ℒ−1 { 1
(𝑖𝑖 + 1)2}

= 𝑂𝑂 𝑒𝑒−𝑡𝑡 = 𝑡𝑡(𝑂𝑂) 

                              ℒ−1 { 1
𝑖𝑖2   1

(𝑖𝑖 + 1)2}

=  ∫ 𝑢𝑢 𝑒𝑒−𝑢𝑢 𝑎𝑎𝑢𝑢 = [−𝑢𝑢 𝑒𝑒−𝑢𝑢 − 𝑒𝑒−𝑢𝑢]0
𝑡𝑡 = 1 − (𝑂𝑂 + 1)𝑒𝑒−𝑡𝑡

𝑡𝑡

0

 

                                  ℒ−1 { 1
𝑖𝑖2(𝑖𝑖 + 1)2} = ℒ−1 { 1

𝑖𝑖2   1
(𝑖𝑖 + 1)2}  

=  ∫[1 − (𝑢𝑢 + 1) 𝑒𝑒−𝑢𝑢]𝑎𝑎𝑢𝑢
𝑺𝑺

𝟎𝟎

 

                                      =  [𝑢𝑢 + (𝑢𝑢 + 1) 𝑒𝑒−𝑢𝑢 + 𝑒𝑒−𝑢𝑢 ]0
𝑡𝑡 = 𝑂𝑂𝑒𝑒−𝑡𝑡 + 2𝑒𝑒−𝑡𝑡 + 𝑂𝑂 − 2 

                      (𝒊𝒊𝒊𝒊) 𝑖𝑖
(𝑖𝑖2 + 𝑂𝑂2)2 = 1

𝑖𝑖2 + 𝑂𝑂2  . 𝑖𝑖
𝑖𝑖2 + 𝑂𝑂2 

                                      ℒ−1 { 𝑖𝑖
𝑖𝑖2 + 𝑂𝑂2} = 𝐿𝐿𝑡𝑡𝑖𝑖 𝑂𝑂𝑂𝑂 = 𝐹𝐹 (𝑂𝑂) 
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                                      ℒ−1 { 1
𝑠𝑠2 + 𝑎𝑎2} = sin 𝑎𝑎𝑎𝑎 

𝑎𝑎 = 𝐺𝐺 (𝑎𝑎) 

                               𝐈𝐈𝐈𝐈 𝓛𝓛−𝟏𝟏�̅�𝐅 (𝒔𝒔) = 𝑭𝑭(𝒕𝒕), 𝓛𝓛−𝟏𝟏𝐆𝐆 (𝒔𝒔) = 𝑮𝑮(𝒕𝒕) 𝒂𝒂𝒂𝒂𝒂𝒂 𝒇𝒇 ̅(𝒔𝒔)
= 𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)         𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂 

                                                      {𝓛𝓛−𝟏𝟏�̅�𝒇 (𝒔𝒔)} =  𝓛𝓛−𝟏𝟏{𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)}

= ∫ 𝑭𝑭(𝒕𝒕 − 𝒖𝒖) 𝑮𝑮(𝒖𝒖) 𝒂𝒂𝒖𝒖
𝒕𝒕

𝟎𝟎

 

                        ℒ−1 { 𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2} =  ℒ−1 { 1

(𝑠𝑠2 + 𝑎𝑎2) . 𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)}  

                                                       =  ∫ cos 𝑎𝑎 ( 𝑎𝑎 − 𝑢𝑢) sin 𝑎𝑎𝑢𝑢 
𝑎𝑎  𝑑𝑑𝑢𝑢

𝑡𝑡

0

 

                                                       = 1
2𝑎𝑎 ∫[sin 𝑎𝑎𝑎𝑎 + sin( 2𝑎𝑎𝑢𝑢 − 𝑎𝑎𝑎𝑎 )] 𝑑𝑑𝑢𝑢

𝑡𝑡

0

 

                                                       = 1
2𝑎𝑎 [𝑢𝑢 sin 𝑎𝑎𝑎𝑎 − 1

2𝑎𝑎 cos( 2𝑎𝑎𝑢𝑢 − 𝑎𝑎𝑎𝑎 )]
0

𝑡𝑡
 

                                                       = 1
2𝑎𝑎  𝑎𝑎 sin 𝑎𝑎𝑎𝑎 

𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬𝑬𝑬𝒕𝒕 𝟕𝟕: Find  the inverse  transform of the following: 

                      (𝑖𝑖) 1
(𝑠𝑠 − 2)4 (𝑠𝑠 + 3)     

𝑺𝑺𝑺𝑺𝑬𝑬𝒖𝒖𝒕𝒕𝑺𝑺𝑺𝑺𝒂𝒂: (𝑖𝑖) ℒ−1  { 1
(𝑠𝑠 − 2)4 (𝑠𝑠 + 3)} =  ℒ−1  { 1

(𝑠𝑠 − 2)4 (𝑠𝑠 − 2 + 5)}  

= 𝑒𝑒2𝑡𝑡 ℒ−1  { 1
𝑠𝑠4 (𝑠𝑠 + 5)} 

                          By convolution theorem ∶  ℒ−1  { 1
𝑠𝑠4} = 𝑎𝑎3

3!   , ℒ−1  { 1
𝑠𝑠 + 5} = 𝑒𝑒−5𝑡𝑡 

                           ∴  ℒ−1  { 1
𝑠𝑠4 (𝑠𝑠 + 5)} = ∫ 𝑢𝑢3

6  𝑒𝑒−5(𝑡𝑡−𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

=  𝑒𝑒−5𝑡𝑡

6 ∫ 𝑢𝑢3 𝑒𝑒5𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0

  

                                                          =  𝑒𝑒−5𝑡𝑡

6 [(1
5 𝑢𝑢3 − 3

25 𝑢𝑢2 + 6
125 𝑢𝑢 − 6

125) 𝑒𝑒5𝑢𝑢𝑑𝑑𝑢𝑢]
0

𝑡𝑡
 

                                                          =  1
6 (1

5 𝑎𝑎3 − 3
25 𝑎𝑎2 + 6

125 𝑎𝑎 − 6
125)  −  𝑒𝑒

−5𝑡𝑡

625  
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7.2 Solution of Ordinary Linear Differential Equations with 
Constant Coefficients  

The Laplace transform method of solving differential equations yields particular 
solution without the necessity of first finding the general solution and then 
evaluating the arbitrary constant. 

This is specially useful for solving linear differential equations with constant 
coefficients. 

Procedure to solve a Linear Differential Equations with Constant Coefficients by 
transform method. 

1. Take the Laplace transform of both sides of the differential equation using 
Laplace Transform of derivative (From Previous chapter) and the given 
initial conditions  

2. Transpose the terms with minus signs to the right. 

3. Divide by the coefficient of y ̅, getting y ̅  as a known function of s 

4. Resolve this function of s into partial fractions and take the inverse 
transforms of both sides. 

This gives y  as a function of t  which is the desired solution satisfying the given 
conditions. 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟖𝟖:  Solve by the method of transforms, the equation 

   𝑦𝑦′′′ +  2𝑦𝑦′′ − 𝑦𝑦′ − 2𝑦𝑦 = 0 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑦𝑦(0) = 𝑦𝑦′(0) = 0 𝑎𝑎𝑔𝑔𝑎𝑎 𝑦𝑦′′(0) = 6              

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  
    

Let take the Laplace transform of both sides for   𝑦𝑦
′′′ +  2𝑦𝑦′′ − 𝑦𝑦′ − 2𝑦𝑦 = 0  

 [𝑠𝑠3𝑦𝑦 ̅ − 𝑠𝑠2𝑦𝑦(0) − 𝑠𝑠𝑦𝑦′(0) − 𝑦𝑦′′(0)] + 2[𝑠𝑠2�̅�𝑦 − 𝑠𝑠𝑦𝑦(0) − 𝑦𝑦′(0)] − [𝑠𝑠𝑦𝑦 ̅ − 𝑦𝑦(0)] − 2𝑦𝑦 ̅ =  0  

                      Using the given conditions, it reduces to 

                      (𝑠𝑠3 +  2𝑠𝑠2 − 𝑠𝑠 − 2)�̅�𝑦 = 6 

                     ∴  �̅�𝑦 = 6 
(𝑠𝑠3 +  2𝑠𝑠2 − 𝑠𝑠 − 2)  

                            = 6 
(𝑠𝑠 − 1)(𝑠𝑠 + 1)(𝑠𝑠 + 2) = 6 

(𝑠𝑠 − 1) + 6 
(𝑠𝑠 + 1) + 6 

(𝑠𝑠 + 2)  
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                            = 6 
(𝑠𝑠 − 1)(6) + 6 

(−2)(𝑠𝑠 + 1) + 6 
3(𝑠𝑠 + 2)  

                            On inversion , we get  𝑦𝑦

=  ℒ−1 ( 1
(𝑠𝑠 − 1) ) − 3ℒ−1 ( 1 

(𝑠𝑠 + 1) ) + 2ℒ−1 ( 1 
(𝑠𝑠 + 2) ) 

                            𝑂𝑂𝑂𝑂  𝑦𝑦 =  𝑒𝑒𝑡𝑡 − 3𝑒𝑒−𝑡𝑡 + 2𝑒𝑒−2𝑡𝑡 which is the desired result.  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟗𝟗:  Use transform method to solve 

                       𝑑𝑑
2𝑥𝑥

𝑑𝑑𝑡𝑡2 − 2 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 +  𝑥𝑥 = 𝑒𝑒𝑡𝑡 𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝑥𝑥 = 2, 𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡 =  −1 𝑎𝑎𝑡𝑡 𝑡𝑡 = 0           

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒: 

 
   

 Let take the Laplace transform of both sides for   
 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 − 2 𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡 +  𝑥𝑥 = 𝑒𝑒𝑡𝑡  

                          [𝑠𝑠2�̅�𝑥 −  𝑠𝑠𝑥𝑥(0) − 𝑥𝑥′(0)] −  2(𝑠𝑠�̅�𝑥 − 𝑥𝑥(0)) +  �̅�𝑥 = 1
𝑠𝑠 − 1 

                          using the given conditions, it reduces to  

                          (𝑠𝑠2 − 2𝑠𝑠 + 1)�̅�𝑥  =  1
𝑠𝑠 − 1 +  2𝑠𝑠 − 5 =  2𝑠𝑠2 − 7𝑠𝑠 + 6

𝑠𝑠 − 1    

                     ∴  �̅�𝑥 =  2𝑠𝑠2 − 7𝑠𝑠 + 6
(𝑠𝑠 − 1)(𝑠𝑠2 − 2𝑠𝑠 + 1) =  2𝑠𝑠2 − 7𝑠𝑠 + 6

(𝑠𝑠 − 1)(𝑠𝑠 − 1)2 =  2𝑠𝑠2 − 7𝑠𝑠 + 6
(𝑠𝑠 − 1)3  

                     ∴  �̅�𝑥 = 2
𝑠𝑠 − 1 − 3

(𝑠𝑠 − 1)2 + 1
(𝑠𝑠 − 1)3  on breaking into partial  fractions 

                     On inversion , we get 𝑥𝑥

=  2ℒ−1 ( 1 
𝑠𝑠 − 1) − 3ℒ−1 ( 1 

(𝑠𝑠 − 1)2) + ℒ−1 ( 1 
(𝑠𝑠 − 1)3)  

                        =  2𝑒𝑒𝑡𝑡 − 3𝑒𝑒𝑡𝑡. 𝑡𝑡
1! + 𝑒𝑒𝑡𝑡. 𝑡𝑡2

2! = 2𝑒𝑒𝑡𝑡 −  3𝑡𝑡𝑒𝑒𝑡𝑡 + 1
2 𝑡𝑡2𝑒𝑒𝑡𝑡 
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𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏 ∶   Solve (𝐷𝐷2 +  𝑛𝑛2)𝑥𝑥 = 𝑎𝑎 𝑠𝑠𝑠𝑠𝑛𝑛 (𝑛𝑛𝑛𝑛 +  𝛼𝛼 ) , 𝑥𝑥 =  𝐷𝐷𝑥𝑥 = 0 at 𝑛𝑛 = 0 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒: 
 

   Let take the Laplace transform of both sides for   
            

                      (𝐷𝐷2 +  𝑛𝑛2)𝑥𝑥 = 𝑎𝑎 𝑠𝑠𝑠𝑠𝑛𝑛 (𝑛𝑛𝑛𝑛 +  𝛼𝛼 ) 

                    [𝑠𝑠2�̅�𝑥 −  𝑠𝑠𝑥𝑥(0) − 𝑥𝑥′(0)] + 𝑛𝑛2�̅�𝑥 = 𝑎𝑎 ℒ{sin 𝑛𝑛𝑛𝑛 . cos 𝛼𝛼 + cos 𝑛𝑛𝑛𝑛 . sin 𝛼𝛼} 

                    on using the given conditions 

                    (𝑠𝑠2 +  𝑛𝑛2)�̅�𝑥 = 𝑎𝑎 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼. 𝑛𝑛
𝑠𝑠2 +  𝑛𝑛2 +  𝑎𝑎 sin 𝛼𝛼. 𝑠𝑠

𝑠𝑠2 + 𝑛𝑛2 

                    ∴ �̅�𝑥 = 𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼. 1
(𝑠𝑠2 + 𝑛𝑛2)2 +  𝑎𝑎 sin 𝛼𝛼. 𝑠𝑠

(𝑠𝑠2 + 𝑛𝑛2)2 

                    On inversion, we obtain  

                    𝑥𝑥 =  𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼. 1
2𝑛𝑛3 (sin 𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 cos 𝑛𝑛𝑛𝑛) + 𝑎𝑎 sin 𝛼𝛼. 𝑛𝑛

2𝑛𝑛 sin 𝑛𝑛𝑛𝑛  

                       =  𝑎𝑎
{sin 𝑛𝑛𝑛𝑛 cos 𝛼𝛼 − 𝑛𝑛𝑛𝑛 cos(𝑛𝑛𝑛𝑛 + 𝛼𝛼)}

2𝑛𝑛2  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏 ∶ Solve (𝐷𝐷3 − 3𝐷𝐷2 +  3𝐷𝐷 − 1)𝑦𝑦 = 𝑛𝑛2𝑒𝑒𝑡𝑡 given  that  
                            𝑦𝑦(0) = 1, 𝑦𝑦′(0) = 0, 𝑦𝑦′′(0) = −2 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:     Let take the Laplace transform of both sides  , we ge𝑛𝑛     
    [𝑠𝑠3�̅�𝑦 −  𝑠𝑠2𝑦𝑦(0) − 𝑠𝑠𝑦𝑦′(0) − 𝑦𝑦′′(0)] − 3 [𝑠𝑠2�̅�𝑦 − 𝑠𝑠𝑦𝑦(0) − 𝑦𝑦′(0)] + 3[𝑠𝑠�̅�𝑦 − 𝑦𝑦(0)] − �̅�𝑦 

              = 2
(𝑠𝑠 − 1)3 

                    On using given conditions, it reduces to   

                    �̅�𝑦 = 𝑠𝑠2 − 3𝑠𝑠 + 1
(𝑠𝑠 − 1)3 + 2

(𝑠𝑠 − 1)6 = (𝑠𝑠 − 1)2 − (𝑠𝑠 − 1) − 1
(𝑠𝑠 − 1)3 + 2

(𝑠𝑠 − 1)6 

                    �̅�𝑦 = 1
(𝑠𝑠 − 1) + 1

(𝑠𝑠 − 1)2 − 1
(𝑠𝑠 − 1)3 + 2

(𝑠𝑠 − 1)6 

                    On inversion, we obtain 

 ℒ−1{�̅�𝑦} = ℒ−1 { 1
(𝑠𝑠 − 1)} + ℒ−1 { 1

(𝑠𝑠 − 1)2} − ℒ−1 { 1
(𝑠𝑠 − 1)3} + 2ℒ−1 { 1

(𝑠𝑠 − 1)6} 

                   𝑦𝑦 = 𝑒𝑒𝑡𝑡 (1 − 𝑛𝑛 − 1
2 𝑛𝑛2 + 1

60 𝑛𝑛5) 
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𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏 ∶   Solve 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 9𝑥𝑥 = cos 2𝑡𝑡 , 𝑖𝑖𝑖𝑖 𝑥𝑥(0) = 1 , 𝑥𝑥 (𝜋𝜋

2) =  −1 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:    Since 𝑥𝑥′(0)is not given, we assume    𝑥𝑥′(0) = 𝑎𝑎  

      Taking the Laplace transform of both sides  of the equation 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 9𝑥𝑥

= cos 2t , we have  

 ℒ(𝑥𝑥′′) + 9ℒ(𝑥𝑥) =  ℒ (cos 2𝑡𝑡)       , 𝑖𝑖. 𝑒𝑒. [𝑠𝑠2�̅�𝑥 − 𝑠𝑠𝑥𝑥(0) − 𝑥𝑥′(0)] + 9�̅�𝑥 = 𝑠𝑠
𝑠𝑠2 + 4  

                         (𝑠𝑠2 + 9)�̅�𝑥 =  𝑠𝑠 + 𝑎𝑎 + 𝑠𝑠
𝑠𝑠2 + 4        𝑶𝑶𝑶𝑶   �̅�𝑥 = 𝑠𝑠 + 𝑎𝑎

(𝑠𝑠2 + 9) + 𝑠𝑠
(𝑠𝑠2 + 4) (𝑠𝑠2 + 9) 

       𝑶𝑶𝑶𝑶   �̅�𝑥 = 𝑠𝑠 + 𝑎𝑎
(𝑠𝑠2 + 9) + 𝑠𝑠

(𝑠𝑠2 + 4) (𝑠𝑠2 + 9) 

                        𝑶𝑶𝑶𝑶  �̅�𝑥 = 𝑎𝑎
(𝑠𝑠2 + 9) + 1

5 . 𝑠𝑠
(𝑠𝑠2 + 4) + 4

5 . 𝑠𝑠
 (𝑠𝑠2 + 9) 

                    On inversion, we obtain 

                      ℒ−1 {�̅�𝑥} = ℒ−1 { 𝑎𝑎
(𝑠𝑠2 + 9)} + 1

5 . ℒ−1 { 𝑠𝑠
(𝑠𝑠2 + 4) } + 4

5 . ℒ−1 { 𝑠𝑠
 (𝑠𝑠2 + 9)} 

                       𝑥𝑥 = 𝑎𝑎
3 𝑠𝑠𝑖𝑖𝑠𝑠 3𝑡𝑡 + 1

5 𝑐𝑐𝑐𝑐𝑠𝑠 2𝑡𝑡 + 4
5 𝑐𝑐𝑐𝑐𝑠𝑠 3𝑡𝑡  

  𝑊𝑊ℎ𝑒𝑒𝑠𝑠 𝑡𝑡 =  (𝜋𝜋
2) , −1 = − 𝑎𝑎

3 − 1
5    𝑂𝑂𝑂𝑂 𝑎𝑎

3 = 4
5              𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑒𝑒 𝑥𝑥 (𝜋𝜋

2) = −1 

                         Here the solution is 𝑥𝑥 = 1
5 (cos 2𝑡𝑡 + 4 sin 3𝑡𝑡 + 4 cos  3𝑡𝑡 ) 

 

𝟕𝟕. 𝟑𝟑 𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐒𝐒𝐨𝐨 𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐄𝐄𝐒𝐒𝐄𝐄𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒 𝐎𝐎𝐎𝐎𝐎𝐎𝐒𝐒𝐒𝐒𝐄𝐄𝐎𝐎𝐎𝐎 𝐃𝐃𝐒𝐒𝐨𝐨𝐨𝐨𝐄𝐄𝐎𝐎𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐄𝐄𝐄𝐄 𝐄𝐄𝐄𝐄𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒  

The Laplace transform method is applicable to solve two or more 
simultaneous ordinary differential equations. 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟑𝟑 ∶   Solve the simultaneous equations  

    𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 + 5𝑥𝑥 − 2𝑦𝑦 = 𝑡𝑡, 𝑑𝑑𝑦𝑦

𝑑𝑑𝑡𝑡 + 2𝑥𝑥 + 𝑦𝑦 = 0 𝑏𝑏𝑒𝑒𝑖𝑖𝑠𝑠𝑏𝑏 𝑏𝑏𝑖𝑖𝑔𝑔𝑒𝑒𝑠𝑠 𝑥𝑥 = 𝑦𝑦 = 0 𝑤𝑤ℎ𝑒𝑒𝑠𝑠 𝑡𝑡 = 0. 

 

 

m
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:    Taking the Laplace transforms of the given equations,  

                       𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 5𝑑𝑑 − 2𝑦𝑦 = 𝑑𝑑, 𝑑𝑑𝑦𝑦

𝑑𝑑𝑑𝑑 + 2𝑑𝑑 + 𝑦𝑦 = 0 , 𝑤𝑤𝑤𝑤  𝑔𝑔𝑤𝑤𝑑𝑑 

                      [ 𝑠𝑠�̅�𝑑 𝑑𝑑(0)] +  5�̅�𝑑 − 2�̅�𝑦 = 1
𝑠𝑠2                                      [∵    𝑑𝑑(0) = 0 ]

 

 
 

                       𝑖𝑖. 𝑤𝑤. (𝑠𝑠 + 5)�̅�𝑑 − 2�̅�𝑦 = 1
𝑠𝑠2             − − − − − (𝑖𝑖) 

                      [ 𝑠𝑠�̅�𝑦 −  𝑦𝑦(0)] + 2�̅�𝑑 + �̅�𝑦 = 0                                     [∵    𝑦𝑦(0) = 0 ]
 

 
 

                       𝑖𝑖. 𝑤𝑤. 2�̅�𝑑 + (𝑠𝑠 + 1)�̅�𝑦 = 0            − − − − − (𝑖𝑖𝑖𝑖) 

                    Solving (𝑖𝑖) 𝑎𝑎𝑎𝑎𝑑𝑑 (𝑖𝑖𝑖𝑖)𝑓𝑓𝑓𝑓𝑓𝑓    , 𝑤𝑤𝑤𝑤 𝑔𝑔𝑤𝑤𝑑𝑑 

                      �̅�𝑑 =  |1 𝑠𝑠2⁄ −2
0 𝑠𝑠 + 1| + |𝑠𝑠 + 5 −2

2 𝑠𝑠 + 1| 

                     �̅�𝑑  = 𝑠𝑠 + 1
𝑠𝑠2 (𝑠𝑠 + 3)2 

                     �̅�𝑑 = 1
27 𝑠𝑠 + 1

9 𝑠𝑠2 − 1
27(𝑠𝑠 + 3) − 2

9 (𝑠𝑠 + 3)2 

                          Substituting the value of  �̅�𝑑  in (𝑖𝑖𝑖𝑖), we get  

                         �̅�𝑦  = − 2
𝑠𝑠2 (𝑠𝑠 + 3)2 =  4

27 𝑠𝑠 − 2
9𝑠𝑠2 − 4

27(𝑠𝑠 + 3) − 2
9 (𝑠𝑠 + 3)2 

                        On inversion , we get  

𝑑𝑑 = 1
27 + 𝑑𝑑

9 − 1
27 𝑤𝑤−3𝑡𝑡 − 2

9 𝑑𝑑𝑤𝑤−3𝑡𝑡   , 𝑎𝑎𝑎𝑎𝑑𝑑   𝑦𝑦 =  4
27 − 2𝑑𝑑

9 − 4
27 𝑤𝑤−3𝑡𝑡 − 2

9 𝑑𝑑𝑤𝑤−3𝑡𝑡 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐒𝐒𝐄𝐄 𝟏𝟏𝟏𝟏 ∶   The coordinators (𝑑𝑑, 𝑦𝑦)of a particle moving along a place curve at any  

time t are given by 𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑 + 2𝑑𝑑 = 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑑𝑑, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 − 2𝑦𝑦 = 𝑐𝑐𝑓𝑓𝑠𝑠 2𝑑𝑑 , ( 𝑑𝑑 > 0).    

If at 𝑑𝑑 = 0, 𝑑𝑑 = 1 and 𝑦𝑦 = 0 , show by transforms, that the particle  

moves along the curve 4𝑑𝑑2 +  4𝑑𝑑𝑦𝑦 + 5𝑦𝑦2 = 4  

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:    𝑇𝑇𝑎𝑎𝑇𝑇𝑖𝑖𝑎𝑎𝑔𝑔 𝑑𝑑ℎ𝑤𝑤 𝐿𝐿𝑎𝑎𝐿𝐿𝐿𝐿𝑎𝑎𝑐𝑐𝑤𝑤 𝑑𝑑𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠 𝑓𝑓𝑓𝑓 𝑑𝑑ℎ𝑤𝑤 𝑔𝑔𝑖𝑖𝑔𝑔𝑤𝑤𝑎𝑎 𝑤𝑤𝑒𝑒𝑒𝑒𝑎𝑎𝑑𝑑𝑖𝑖𝑓𝑓𝑎𝑎𝑠𝑠,  

                    𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎𝑓𝑓𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔 𝑑𝑑ℎ𝑎𝑎𝑑𝑑 𝑦𝑦(0) = 0 , 𝑑𝑑(0) = 1 , 𝑤𝑤𝑤𝑤 𝑔𝑔𝑤𝑤𝑑𝑑  

m
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 APPLIED MATHEMATICS

                      [ 𝑠𝑠𝑦𝑦 ̅– 𝑦𝑦(0)] +  2�̅�𝑥 = 2
𝑠𝑠2 + 22    𝑜𝑜𝑜𝑜  2�̅�𝑥 +  𝑠𝑠�̅�𝑦 = 2

𝑠𝑠2 + 4 

 
 𝑎𝑎𝑎𝑎𝑎𝑎 − (𝑖𝑖) 

                       [ 𝑠𝑠𝑥𝑥 ̅– 𝑥𝑥(0)] −  2�̅�𝑦 = 2
𝑠𝑠2+22    𝑜𝑜𝑜𝑜 𝑠𝑠�̅�𝑥 − 2�̅�𝑦 = 2

𝑠𝑠2+4 

 
+ 1   − − − (𝑖𝑖𝑖𝑖)

                    Multiplying (𝑖𝑖)𝑏𝑏𝑦𝑦 𝑠𝑠 and (𝑖𝑖𝑖𝑖)𝑏𝑏𝑦𝑦 2 and substracting , we get 

                       (𝑠𝑠2 + 4)�̅�𝑦 =  −2  𝑜𝑜𝑜𝑜 �̅�𝑦 =  − 2
(𝑠𝑠2 + 4) 

                    On inversion,     𝑦𝑦 =  −2ℒ−1 [ 1
(𝑠𝑠2 + 4)] =  − sin 2𝑡𝑡  

                    From the given first equation,  

                   2𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 − 𝑎𝑎𝑦𝑦
𝑎𝑎𝑡𝑡 = 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 − 𝑎𝑎

𝑎𝑎𝑡𝑡 (−𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡) 

                  𝑜𝑜𝑜𝑜  2𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 + 2 𝑐𝑐𝑜𝑜𝑠𝑠 2𝑡𝑡  𝑜𝑜𝑜𝑜   4𝑥𝑥2

= (𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 + 2 𝑐𝑐𝑜𝑜𝑠𝑠 2𝑡𝑡 )2    − − − − − − − − − − (𝑖𝑖𝑖𝑖𝑖𝑖) 

𝐴𝐴𝐴𝐴𝑠𝑠𝑜𝑜       4𝑥𝑥𝑦𝑦 = (𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 + 2 𝑐𝑐𝑜𝑜𝑠𝑠 2𝑡𝑡)( −2 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡)
=  −2 ( 𝑠𝑠𝑖𝑖𝑎𝑎22𝑡𝑡 + 2 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 𝑐𝑐𝑜𝑜𝑠𝑠 2𝑡𝑡 ) − − − − − − (𝑖𝑖𝑖𝑖) 

𝑎𝑎𝑎𝑎𝑎𝑎       5𝑦𝑦2 = 5 𝑠𝑠𝑖𝑖𝑎𝑎2 2𝑡𝑡                                                − − − − − −(𝑖𝑖𝑖𝑖) 

                𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖𝑖𝑖), (𝑖𝑖𝑖𝑖), 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖), 𝑤𝑤𝑤𝑤 𝑜𝑜𝑏𝑏𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎  

                 4𝑥𝑥2 +  4𝑥𝑥𝑦𝑦 + 5𝑦𝑦2 

                         = 𝑠𝑠𝑖𝑖𝑎𝑎2 2𝑡𝑡 + 4 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 𝑐𝑐𝑜𝑜𝑠𝑠 2𝑡𝑡 + 4 𝑐𝑐𝑜𝑜𝑠𝑠22𝑡𝑡 − 2 𝑠𝑠𝑖𝑖𝑎𝑎22𝑡𝑡
− 4 𝑠𝑠𝑖𝑖𝑎𝑎 2𝑡𝑡 𝑐𝑐𝑜𝑜𝑠𝑠 2𝑡𝑡 + 5 𝑠𝑠𝑖𝑖𝑎𝑎22𝑡𝑡 

                         = 4 𝑠𝑠𝑖𝑖𝑎𝑎2 2𝑡𝑡 + 4 𝑐𝑐𝑜𝑜𝑠𝑠22𝑡𝑡 = 4 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏 ∶   The small oscillations of a certain system with two degrees of freedom 

are given by  equations 𝐷𝐷2𝑥𝑥 + 3𝑥𝑥 − 2𝑦𝑦 = 0, 𝐷𝐷2𝑥𝑥 + 𝐷𝐷2𝑦𝑦 + 3𝑥𝑥 + 5𝑦𝑦 = 0 
where D=d/dt.  

 If  𝑥𝑥 = 0, 𝑦𝑦 = 0 , 𝑥𝑥 = 3 , 𝑦𝑦 = 2 when 𝑡𝑡 = 0 , find 𝑥𝑥 and 𝑦𝑦 when 𝑡𝑡 = 1
2 . 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:    Taking the Laplace transforms of the given equations,  

                    [𝑠𝑠2�̅�𝑥 − 𝑠𝑠𝑥𝑥(0) −  𝑥𝑥′(0)] +  3𝑥𝑥 ̅ − 2�̅�𝑦  =  0    

                     𝑖𝑖. 𝑤𝑤. , ( 𝑠𝑠2 + 3)𝑥𝑥 ̅ − 2𝑦𝑦 ̅ = 3      − − − − − − − − − −(𝑖𝑖)  

            𝑎𝑎𝑎𝑎𝑎𝑎  [𝑠𝑠2�̅�𝑥 − 𝑠𝑠𝑥𝑥(0) −  𝑥𝑥′(0)] +  [𝑠𝑠2�̅�𝑦 − 𝑠𝑠𝑦𝑦(0) −  𝑦𝑦′(0)] − 3�̅�𝑥 +  5�̅�𝑦 = 0  
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Chapter 7: Inverse Laplace Transform

   𝑖𝑖. 𝑒𝑒. , ( 𝑠𝑠2 − 3)𝑥𝑥 ̅ − ( 𝑠𝑠2 + 5)𝑦𝑦 ̅ = 5      − − − − − − − (𝑖𝑖𝑖𝑖) 

                        𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆 (𝑖𝑖) 𝑎𝑎𝑆𝑆𝑎𝑎 (𝑖𝑖𝑖𝑖)𝑓𝑓𝑆𝑆𝑓𝑓 �̅�𝑥 𝑎𝑎𝑆𝑆𝑎𝑎 �̅�𝑦 , 𝑤𝑤𝑒𝑒 𝑆𝑆𝑒𝑒𝑔𝑔   

                 �̅�𝑥 =  |3 −2
5 𝑠𝑠2 + 5| +  |𝑠𝑠

2 + 3 −2
𝑠𝑠2 − 3 𝑠𝑠2 + 5| =  3𝑠𝑠2 + 25

(𝑠𝑠2 + 1) (𝑠𝑠2 + 9) 

                 �̅�𝑥 = 11
4 . 1

𝑠𝑠2 + 1 + 1
4 . 1

 (𝑠𝑠2 + 9) 

                �̅�𝑦 =  |𝑠𝑠
2 + 3 3

𝑠𝑠2 − 3 5| +  |𝑠𝑠
2 + 3 −2

𝑠𝑠2 − 3 𝑠𝑠2 + 5| =  2𝑠𝑠2 + 24
(𝑠𝑠2 + 1) (𝑠𝑠2 + 9) 

                 �̅�𝑦 = 11
4 . 1

𝑠𝑠2 + 1 + 3
4 . 1

 (𝑠𝑠2 + 9) 

                 𝑂𝑂𝑆𝑆 𝑖𝑖𝑆𝑆𝑆𝑆𝑒𝑒𝑓𝑓𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆 , 𝑤𝑤𝑒𝑒 𝑆𝑆𝑒𝑒𝑔𝑔 

                 𝑥𝑥 = 11
4 sin 𝑔𝑔 + 1

12 sin 3𝑔𝑔      ,    𝑦𝑦 = 11
4 sin 𝑔𝑔 −  14 sin 3𝑔𝑔  

𝟕𝟕. 𝟒𝟒  𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐓𝐓𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐓𝐓𝐓𝐓 𝐒𝐒𝐋𝐋𝐋𝐋𝐋𝐋𝐓𝐓𝐋𝐋𝐋𝐋 𝐅𝐅𝐅𝐅𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓  

In some physical and engineering problems, it is required to find the solution of a 
differential equation of the system which it is acted on by∶

(i) a periodic force or periodic voltage 
(ii) a impulsive force or voltage acting instantaneously at a certain time, or a 

concentrated load acting at a point, 
(iii)  a force acting on a part of the system or voltage acting for finite interval 

of time 
•  

• 𝐏𝐏𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏𝐓𝐓𝐋𝐋 𝐅𝐅𝐅𝐅𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 
• 𝐇𝐇𝐋𝐋𝐋𝐋𝐇𝐇𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏𝐋𝐋 𝐔𝐔𝐓𝐓𝐓𝐓𝐓𝐓 𝐒𝐒𝐓𝐓𝐋𝐋𝐋𝐋 𝐅𝐅𝐅𝐅𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 
• 𝐃𝐃𝐓𝐓𝐓𝐓𝐋𝐋𝐋𝐋 − 𝐏𝐏𝐋𝐋𝐋𝐋𝐓𝐓𝐋𝐋 𝐅𝐅𝐅𝐅𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐔𝐔𝐓𝐓𝐓𝐓𝐓𝐓 𝐈𝐈𝐓𝐓𝐋𝐋𝐅𝐅𝐋𝐋𝐓𝐓𝐋𝐋 𝐅𝐅𝐅𝐅𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓) 

𝟕𝟕. 𝟒𝟒. 𝟏𝟏 𝐏𝐏𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏𝐓𝐓𝐋𝐋 𝐅𝐅𝐅𝐅𝐓𝐓𝐋𝐋𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 

The perodic function 𝑓𝑓(𝑔𝑔) of period 𝑇𝑇  is defined as   

                         𝑓𝑓(𝑔𝑔 + 𝑇𝑇) = 𝑓𝑓(𝑔𝑔), 𝑇𝑇 > 0  − − − − − − − −(𝐼𝐼) 

 For e. g. (i) 𝑓𝑓(𝑔𝑔) = sin 𝑔𝑔  is a periodic function of period  𝑇𝑇 = 2π, as                      

                         𝑓𝑓(𝑔𝑔 + 𝑇𝑇) = sin( 𝑔𝑔 + 2π) = sin t = f(t)   

                         𝑓𝑓(𝑔𝑔 + 𝑇𝑇) = 𝑠𝑠𝑖𝑖𝑆𝑆( 𝑔𝑔 + 2𝜋𝜋) = 𝑠𝑠𝑖𝑖𝑆𝑆 𝑔𝑔 = 𝑓𝑓(𝑔𝑔)   
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 APPLIED MATHEMATICS

  For e. g. (ii) Square Wave Function  

  𝑓𝑓(𝑡𝑡) = 1, 0 ≤ 1 < 𝑎𝑎
                 =  −1 , 𝑎𝑎 < 𝑡𝑡 < 2𝑎𝑎      𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝 2𝑎𝑎  

  The Laplace transform of a periodic function 𝑓𝑓(𝑡𝑡)𝑝𝑝𝑝𝑝𝑓𝑓𝑤𝑤𝑑𝑑𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 (𝐼𝐼) 𝑤𝑤𝑖𝑖 𝑔𝑔𝑤𝑤𝑔𝑔𝑝𝑝𝑑𝑑 𝑏𝑏𝑏𝑏 

𝑓𝑓(̅𝑖𝑖) =  ℒ{𝑓𝑓(𝑡𝑡)}  

= ∫ 𝑝𝑝−𝑠𝑠𝑠𝑠 𝑓𝑓(𝑡𝑡)𝑝𝑝𝑡𝑡
∞

0

= 1
1 − 𝑝𝑝−𝑠𝑠𝑠𝑠 ∫ 𝑝𝑝−𝑠𝑠𝑠𝑠𝑓𝑓(𝑢𝑢)𝑝𝑝𝑢𝑢 − − − − − −(𝐼𝐼𝐼𝐼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝 𝑇𝑇

𝑠𝑠

0

 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏 ∶  The " Square Wave Function " of period 2𝑎𝑎  is defined by  

                      𝑓𝑓(𝑡𝑡) = 1, 0 ≤ 𝑡𝑡 < 𝑎𝑎
               =       −1 , 𝑎𝑎 < 𝑡𝑡 < 2𝑎𝑎       

                              Find the Laplace transform of f(t) 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:   𝑓𝑓(̅𝑖𝑖) =  ℒ{𝑓𝑓(𝑡𝑡)} =  ∫ 𝑝𝑝−𝑠𝑠𝑠𝑠 𝑓𝑓(𝑡𝑡)𝑝𝑝𝑡𝑡
∞

0

,  

                                      = 1
1 − 𝑝𝑝−𝑠𝑠𝑠𝑠 ∫ 𝑝𝑝−𝑠𝑠𝑠𝑠𝑓𝑓(𝑢𝑢)𝑝𝑝𝑢𝑢 − − − − − − 𝑓𝑓𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝 𝑇𝑇 

𝑠𝑠

0

 

              ℒ{𝑓𝑓(𝑡𝑡)} =  1
1 − 𝑝𝑝−2𝑎𝑎 ∫ 𝑝𝑝−𝑠𝑠𝑠𝑠𝑓𝑓(𝑢𝑢)𝑝𝑝𝑢𝑢 − − − − − − 𝑓𝑓𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝 𝑇𝑇 = 2𝑎𝑎 

2𝑎𝑎

0

 

                               =  1
1 − 𝑝𝑝−2𝑎𝑎 [∫ 𝑝𝑝−𝑠𝑠𝑠𝑠1. 𝑝𝑝𝑢𝑢 +  ∫ 𝑝𝑝−𝑠𝑠𝑠𝑠(−1). 𝑝𝑝𝑢𝑢  

2𝑎𝑎

0

𝑎𝑎

0

] 

                               =  1
𝑖𝑖

(1 − 𝑝𝑝−𝑎𝑎𝑠𝑠)2

(1 − 𝑝𝑝−2𝑎𝑎𝑠𝑠) = (1 − 𝑝𝑝−𝑎𝑎𝑠𝑠)
(1 + 𝑝𝑝−𝑎𝑎𝑠𝑠) = 1

s 𝑡𝑡𝑎𝑎𝑑𝑑ℎ 𝑎𝑎𝑖𝑖
2  
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𝟕𝟕. 𝟒𝟒. 𝟐𝟐 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐔𝐔𝐔𝐔𝐇𝐇𝐔𝐔 𝐒𝐒𝐔𝐔𝐇𝐇𝐒𝐒 𝐅𝐅𝐅𝐅𝐔𝐔𝐅𝐅𝐔𝐔𝐇𝐇𝐅𝐅𝐔𝐔  

There are some fractions of which the inverse transform can not be determined 
from the formulae so far derived.To over come the such cases,the Unit Step 
Function ( Heaviside′s Unit Function ) is introduce. 

𝟏𝟏. 𝐔𝐔𝐔𝐔𝐇𝐇𝐔𝐔 𝐒𝐒𝐔𝐔𝐇𝐇𝐒𝐒 𝐅𝐅𝐅𝐅𝐔𝐔𝐅𝐅𝐔𝐔𝐇𝐇𝐅𝐅𝐔𝐔 ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇′𝐇𝐇  𝐔𝐔𝐔𝐔𝐇𝐇𝐔𝐔 𝐅𝐅𝐅𝐅𝐔𝐔𝐅𝐅𝐔𝐔𝐇𝐇𝐅𝐅𝐔𝐔 )  

Definiton ∶ 
                      The unit step function 𝑢𝑢(𝑡𝑡 − 𝑎𝑎) is defined as follows: 
  
                                𝑢𝑢(𝑡𝑡 − 𝑎𝑎) = {0 for t < 𝑎𝑎

1 for t ≥ a 
                 where , 𝑎𝑎  is always positive . It is also denoted as 𝐻𝐻(𝑡𝑡 − 𝑎𝑎). 
  

 

 
Fig (Unit Step Function ) 

 

𝟐𝟐)𝐓𝐓𝐓𝐓𝐇𝐇𝐔𝐔𝐇𝐇𝐓𝐓𝐅𝐅𝐓𝐓𝐓𝐓 𝐅𝐅𝐓𝐓 𝐅𝐅𝐔𝐔𝐇𝐇𝐔𝐔 𝐓𝐓𝐅𝐅𝐔𝐔𝐅𝐅𝐔𝐔𝐇𝐇𝐅𝐅𝐔𝐔. 

               ℒ{𝑢𝑢 (𝑡𝑡 − 𝑎𝑎)} =  ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)𝑑𝑑𝑡𝑡 =
∞

0

 

                                        = ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠 .0 𝑑𝑑𝑡𝑡 + ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠 .1𝑑𝑑𝑡𝑡 =
∞

𝑎𝑎

𝑎𝑎

0

 0 + |𝑒𝑒
−𝑠𝑠𝑠𝑠

−𝑠𝑠 |
𝑎𝑎

∞
 

                       Thus  ℒ{𝑢𝑢 (𝑡𝑡 − 𝑎𝑎)} =  𝑒𝑒−𝑎𝑎𝑠𝑠

−𝑠𝑠  

                       The product 𝑓𝑓(𝑡𝑡) 𝑢𝑢(𝑡𝑡 − 𝑎𝑎) =  {0        𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 <  𝑎𝑎
𝑓𝑓(𝑡𝑡)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≥  𝑎𝑎  

The function 𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎) represents the graph of 𝑓𝑓(𝑡𝑡)shifted through a  

              distance  𝒂𝒂 to the right and is of  special importance  
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐬𝐬𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐒𝐒𝐡𝐡 𝐩𝐩𝐩𝐩𝐒𝐒𝐩𝐩𝐒𝐒𝐩𝐩𝐡𝐡𝐩𝐩 

                        If ℒ{𝑓𝑓(𝑡𝑡)} =  𝑓𝑓(̅𝑠𝑠), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ℒ{𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)} =  𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(̅𝑠𝑠)    

               ℒ{𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)} =  ∫ 𝑒𝑒−𝑎𝑎𝑠𝑠 𝑓𝑓(𝑡𝑡 − 𝑎𝑎) 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)𝑑𝑑𝑡𝑡 
∞

0

           

        =  ∫ 𝑒𝑒−𝑎𝑎𝑠𝑠 𝑓𝑓(𝑡𝑡 − 𝑎𝑎) (0)𝑑𝑑𝑡𝑡 
𝑎𝑎

0

+ ∫ 𝑒𝑒−𝑎𝑎𝑠𝑠 𝑓𝑓(𝑡𝑡 − 𝑎𝑎) 𝑑𝑑𝑡𝑡 
∞

𝑎𝑎

        [Put 𝑡𝑡 − 𝑎𝑎 = 𝑢𝑢]        

              =  ∫ 𝑒𝑒−𝑎𝑎(𝑢𝑢+𝑎𝑎) 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑢𝑢 
∞

0

= 𝑒𝑒−𝑎𝑎𝑎𝑎  ∫ 𝑒𝑒−𝑎𝑎𝑢𝑢 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑢𝑢 
∞

0

   =   𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(̅𝑠𝑠)       

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐄𝐄𝐒𝐒 Express the following function ( From the below figure) in terms of  
                   unit step function and find its Laplace transform  

 
 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐡𝐡𝐡𝐡𝐒𝐒𝐒𝐒:   We have    

                                      𝑓𝑓(𝑡𝑡) =  {
0 ,            0 < 𝑡𝑡 < 1
𝑡𝑡 − 1,     1 < 𝑡𝑡 < 2 
0 ,                    𝑡𝑡 > 2

  

                              𝐎𝐎𝐎𝐎  𝑓𝑓(𝑡𝑡) = (𝑡𝑡 − 1)[𝑢𝑢(𝑡𝑡 − 1) − 𝑢𝑢(𝑡𝑡 − 2)] + 𝑢𝑢(𝑡𝑡 − 2) 

                                                = (𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) − (𝑡𝑡 − 2)𝑢𝑢(𝑡𝑡 − 2) 

         By second shifting property  , ℒ{𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)} = 𝑒𝑒−𝑎𝑎𝑎𝑎ℒ{𝑓𝑓(𝑡𝑡)} 

          𝐀𝐀𝐄𝐄𝐬𝐬𝐒𝐒 ℒ{𝑓𝑓(𝑡𝑡)} =  ℒ(𝑡𝑡) = 1
𝑠𝑠2  

          ∴  ℒ{(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1)} = 𝑒𝑒−𝑎𝑎  1
𝑠𝑠2   𝑎𝑎𝑒𝑒𝑑𝑑  ℒ{(𝑡𝑡 − 2)𝑢𝑢(𝑡𝑡 − 2)} = 𝑒𝑒−2𝑎𝑎  1

𝑠𝑠2   

         𝐇𝐇𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒  ℒ{𝑓𝑓(𝑡𝑡)} =   ℒ{(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) − (𝑡𝑡 − 2)𝑢𝑢(𝑡𝑡 − 2)} = 𝑒𝑒−𝑎𝑎 − 𝑒𝑒−2𝑎𝑎

𝑠𝑠2   
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𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏 ∶  Using unit step function , find the Laplace transform of  

                                      𝑓𝑓(𝑡𝑡) =  {
sin 𝑡𝑡  ,            0 ≤ 𝑡𝑡 < 𝜋𝜋

sin 2𝑡𝑡 , 𝜋𝜋 ≤ 𝑡𝑡 < 2𝜋𝜋 
    sin 3𝑡𝑡          𝑡𝑡 ≥ 2𝜋𝜋  ,        

 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ 

           𝑓𝑓(𝑡𝑡) = sin 𝑡𝑡 [𝑢𝑢(𝑡𝑡 − 0) − 𝑢𝑢(𝑡𝑡 − 𝜋𝜋)]
+ sin 2𝑡𝑡 [𝑢𝑢(𝑡𝑡 − 𝜋𝜋) − 𝑢𝑢(𝑡𝑡 − 2𝜋𝜋)] + sin 3𝑡𝑡 . 𝑢𝑢(𝑡𝑡 − 2𝜋𝜋) 

                   = sin 𝑡𝑡 + (sin 2𝑡𝑡 − sin 𝑡𝑡 ) 𝑢𝑢(𝑡𝑡 − 𝜋𝜋) + (sin 3𝑡𝑡 − sin 2𝑡𝑡) 𝑢𝑢(𝑡𝑡 − 2𝜋𝜋) 

                   Since ℒ[𝑓𝑓(𝑡𝑡 − 𝑎𝑎)𝑢𝑢(𝑡𝑡 − 𝑎𝑎)] = 𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(̅𝑠𝑠)   and ℒ[sin 𝑎𝑎𝑡𝑡] = 𝑎𝑎
𝑠𝑠2 + 𝑎𝑎2  

           ℒ[𝑓𝑓(𝑡𝑡)] = ℒ[sin 𝑡𝑡] + ℒ[(sin 2𝑡𝑡 − sin 𝑡𝑡). 𝑢𝑢(𝑡𝑡 − 𝜋𝜋)]
+  ℒ[(sin 3𝑡𝑡 − sin 2𝑡𝑡). 𝑢𝑢(𝑡𝑡 − 2𝜋𝜋)] 

                         = 1
𝑠𝑠2 + 1 + 𝑒𝑒−𝜋𝜋𝑎𝑎 ( 2

𝑠𝑠2 + 4 − 1
𝑠𝑠2 + 1) +  𝑒𝑒−2𝜋𝜋𝑎𝑎 ( 3

𝑠𝑠2 + 9 −  2
𝑠𝑠2 + 4) 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏𝟏𝟏  (𝐒𝐒)   Express the following function ( From the below figure)  

in terms of  unit step function and find its Laplace transform. 

                           (𝐒𝐒𝐒𝐒)Obtain the Laplace transform of 𝑒𝑒−𝑡𝑡[1 − 𝑢𝑢(𝑡𝑡 − 2)]. 

 
 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ (𝐒𝐒) We have                                    

                          𝑓𝑓(𝑡𝑡) =  { 𝑡𝑡 − 1,   1 < 𝑡𝑡 < 2
3 − 𝑡𝑡 ,   2 < 𝑡𝑡 < 3 

  𝐎𝐎𝐎𝐎  𝑓𝑓(𝑡𝑡) = (𝑡𝑡 − 1){𝑢𝑢(𝑡𝑡 − 1) − 𝑢𝑢(𝑡𝑡 − 2)} + (3 − 𝑡𝑡){𝑢𝑢(𝑡𝑡 − 2) − 𝑢𝑢(𝑡𝑡 − 3)} 

                                          
= (𝑡𝑡 − 1) 𝑢𝑢(𝑡𝑡 − 1) − 2(𝑡𝑡 − 2)𝑢𝑢(𝑡𝑡 − 2) + (𝑡𝑡 − 3)𝑢𝑢(𝑡𝑡 − 3) 

                     Since ℒ{𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)} = 𝑒𝑒−𝑎𝑎𝑎𝑎𝑓𝑓(̅𝑠𝑠) 

m
unotes.in



166

 APPLIED MATHEMATICS

                       ∴ ℒ{𝑓𝑓(𝑡𝑡)} = 𝑒𝑒−𝑠𝑠. 1
𝑠𝑠2 − 2𝑒𝑒−2𝑠𝑠. 1

𝑠𝑠2 + 𝑒𝑒−3𝑠𝑠. 1
𝑠𝑠2               [∵ 𝑓𝑓(𝑡𝑡) = 𝑡𝑡 ] 

                                            = 𝑒𝑒−𝑠𝑠(1 − 𝑒𝑒−𝑠𝑠)2

𝑠𝑠2  

                         (𝐢𝐢𝐢𝐢) ℒ{𝑒𝑒−𝑡𝑡[1 − 𝑢𝑢(𝑡𝑡 − 2)]} =  ℒ{𝑒𝑒−𝑡𝑡} − ℒ{𝑒𝑒−𝑡𝑡 𝑢𝑢(𝑡𝑡 − 2)} 

                               = 1
𝑠𝑠 + 1 −  𝑒𝑒−2ℒ{𝑒𝑒−(𝑡𝑡−2)𝑢𝑢(𝑡𝑡 − 2)} 

                                   Taking 𝑓𝑓(𝑡𝑡) = 𝑒𝑒−𝑡𝑡 , 𝑓𝑓 ̅(𝑠𝑠) = 1
𝑠𝑠 + 1  

                                    and using ℒ{𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎)} = 𝑒𝑒−𝑎𝑎𝑠𝑠𝑓𝑓(̅𝑠𝑠)  

                                ℒ{𝑒𝑒−(𝑡𝑡−2)𝑢𝑢(𝑡𝑡 − 2)} = 𝑒𝑒−2𝑠𝑠. 1
𝑠𝑠 + 1 

                                Hence,   ℒ𝑒𝑒−𝑡𝑡{1 − 𝑢𝑢(𝑡𝑡 − 2)} = {1 − 𝑒𝑒−2(𝑠𝑠+1)}
𝑠𝑠 + 1  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐𝟐𝟐 ∶ Using Laplace Transform , evaluate the following  

                             ∫ 𝑒𝑒𝑡𝑡(1 + 2𝑡𝑡 − 𝑡𝑡2 + 𝑡𝑡3)𝐻𝐻(𝑡𝑡 − 1)𝑑𝑑𝑡𝑡
∞

0

 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐢𝐢𝐒𝐒𝐒𝐒 ∶ We have  ℒ{(1 + 2𝑡𝑡 − 𝑡𝑡2 + 𝑡𝑡3)𝐻𝐻(𝑡𝑡 − 1)} 

                                    = 𝑒𝑒−𝑠𝑠  ℒ{1 + 2(𝑡𝑡 + 1) − (𝑡𝑡 + 1)2 + (𝑡𝑡 + 1)3} 

                                    =  𝑒𝑒−𝑠𝑠 ℒ{3 + 3𝑡𝑡 + 2𝑡𝑡2 + 𝑡𝑡3} 

                                    =  𝑒𝑒−𝑠𝑠  (3. 1
𝑠𝑠 +  3. 1

𝑠𝑠2 + 2. 2!
𝑠𝑠3 +  3!

𝑠𝑠4) 

                                    =  𝑒𝑒−𝑠𝑠  (3
𝑠𝑠 + 3

𝑠𝑠2 + 4
𝑠𝑠3 + 6

𝑠𝑠4) 

                By Definition, this implies that 

                       ∫ 𝑒𝑒−𝑠𝑠𝑡𝑡(1 + 2𝑡𝑡 − 𝑡𝑡2 + 𝑡𝑡3)𝐻𝐻(𝑡𝑡 − 1)𝑑𝑑𝑡𝑡
∞

0

=  𝑒𝑒−𝑠𝑠  (3
𝑠𝑠 + 3

𝑠𝑠2 + 4
𝑠𝑠3 +  6

𝑠𝑠4) 

                  Taking s = 1 , we obtain   

m
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                     ∫ 𝑒𝑒𝑡𝑡(1 + 2𝑡𝑡 − 𝑡𝑡2 + 𝑡𝑡3)𝐻𝐻(𝑡𝑡 − 1)𝑑𝑑𝑡𝑡
∞

0

=  𝑒𝑒−1 (3 + 3 + 4 + 6) = 16
𝑒𝑒  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐𝟐𝟐 ∶ Evaluate (i) ℒ−1 {𝑒𝑒−𝑠𝑠 − 3𝑒𝑒3−𝑠𝑠

𝑠𝑠2 }  (ii) ℒ−1 { 𝑠𝑠𝑒𝑒−𝑎𝑎𝑠𝑠

𝑠𝑠2 − 𝜔𝜔2} ,   𝑎𝑎 > 0

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒     ∶     ℒ−1 {𝑒𝑒−𝑠𝑠. 1
𝑠𝑠2} =  {𝑡𝑡 − 1, 𝑡𝑡 > 1

0,           𝑡𝑡 < 1   } = (𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) 

                           ℒ−1 {𝑒𝑒−3𝑠𝑠. 1
𝑠𝑠2} =  {𝑡𝑡 − 3, 𝑡𝑡 > 3

0,           𝑡𝑡 < 3   } = (𝑡𝑡 − 3)𝑢𝑢(𝑡𝑡 − 3) 

                               ∴  (i)ℒ−1 {𝑒𝑒−𝑠𝑠 − 3𝑒𝑒3−𝑠𝑠

𝑠𝑠2 } =  ℒ−1 {𝑒𝑒−𝑠𝑠

𝑠𝑠2 } − 3ℒ−1 {𝑒𝑒−3𝑠𝑠

𝑠𝑠2 } 

                                                 = (𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) − 3(𝑡𝑡 − 3)𝑢𝑢(𝑡𝑡 − 3) 

                            (ii) ℒ−1 { 𝑠𝑠𝑒𝑒−𝑎𝑎𝑠𝑠

𝑠𝑠2 − 𝜔𝜔2} , we know  ℒ−1 { 𝑠𝑠
𝑠𝑠2 − 𝜔𝜔2} = 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝜔𝜔𝑡𝑡  

                               ∴   ℒ−1 { 𝑠𝑠𝑒𝑒−𝑎𝑎𝑠𝑠

𝑠𝑠2 − 𝜔𝜔2} =  {𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝜔𝜔(𝑡𝑡 − 𝑎𝑎),   𝑡𝑡 > 𝑎𝑎
0,                         𝑡𝑡 < 𝑎𝑎  

                                                                  
= 𝑐𝑐𝑐𝑐𝑠𝑠ℎ ω(𝑡𝑡 − 𝑎𝑎)  𝑢𝑢 (𝑡𝑡 − 𝑎𝑎), by second shifting property 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐𝟐𝟐 ∶ Find the inverse Laplace transform of ∶  

                         (i) 𝑠𝑠𝑒𝑒−𝑠𝑠 2⁄ + 𝜋𝜋𝑒𝑒−𝑠𝑠

𝑠𝑠2 + 𝜋𝜋2   (ii) 𝑒𝑒−𝑐𝑐𝑠𝑠

𝑠𝑠2(𝑠𝑠 + 𝑎𝑎)   , ( 𝑐𝑐 > 0)

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒     ∶    (𝐒𝐒) ℒ−1 { 𝑠𝑠
𝑠𝑠2 + 𝜋𝜋2} = 𝑐𝑐𝑐𝑐𝑠𝑠 𝜋𝜋𝑡𝑡 , ℒ−1 { 𝜋𝜋

𝑠𝑠2 + 𝜋𝜋2} = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝑡𝑡  

                                   and  ℒ−1{𝑒𝑒−𝑎𝑎𝑠𝑠𝑓𝑓(̅𝑠𝑠)} = 𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎) 

                                    ∴   ℒ−1 {𝑠𝑠𝑒𝑒−𝑠𝑠 2⁄ + 𝜋𝜋𝑒𝑒−𝑠𝑠

𝑠𝑠2 + 𝜋𝜋2 }

=  ℒ−1 {𝑒𝑒−𝑠𝑠 2⁄ . 𝑠𝑠
𝑠𝑠2 + 𝜋𝜋2} +   ℒ−1 {𝑒𝑒−𝑠𝑠. 𝜋𝜋

𝑠𝑠2 + 𝜋𝜋2} 

                                             = cos 𝜋𝜋 (𝑡𝑡 − 1
2) . 𝑢𝑢 (𝑡𝑡 − 1

2) + sin 𝜋𝜋(𝑡𝑡 − 1). 𝑢𝑢(𝑡𝑡 − 1) 

                                             = sin 𝜋𝜋𝑡𝑡 . 𝑢𝑢 (𝑡𝑡 − 1
2) − sin 𝜋𝜋𝑡𝑡. 𝑢𝑢(𝑡𝑡 − 1) 

                                             = {𝑢𝑢 (𝑡𝑡 − 1
2) −  𝑢𝑢(𝑡𝑡 − 1)} sin 𝜋𝜋𝑡𝑡 
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   (𝐢𝐢𝐢𝐢) ℒ−1 { 𝑒𝑒−𝑐𝑐𝑐𝑐

𝑠𝑠2(𝑠𝑠 + 𝑎𝑎)} = ℒ−1 {𝑒𝑒−𝑐𝑐𝑐𝑐  (− 1
𝑎𝑎2 . 1

𝑠𝑠 + 1
𝑎𝑎 . 1

𝑠𝑠2 + 1
𝑎𝑎2 . 1

𝑠𝑠 + 𝑎𝑎)}  

                                               Using ℒ−1{𝑒𝑒−𝑎𝑎𝑐𝑐𝑓𝑓(̅𝑠𝑠)} = 𝑓𝑓(𝑡𝑡 − 𝑎𝑎). 𝑢𝑢(𝑡𝑡 − 𝑎𝑎) 

                           ℒ−1 { 𝑒𝑒−𝑐𝑐𝑐𝑐

𝑠𝑠2(𝑠𝑠 + 𝑎𝑎)}  

   =  − 1
𝑎𝑎2 {1. 𝑢𝑢(𝑡𝑡 − 𝑐𝑐)} + 1

𝑎𝑎 {(𝑡𝑡 − 𝑐𝑐). 𝑢𝑢(𝑡𝑡 − 𝑐𝑐)} + 1
𝑎𝑎2 {𝑒𝑒−𝑎𝑎(𝑡𝑡−𝑐𝑐). 𝑢𝑢(𝑡𝑡 − 𝑐𝑐)} 

                                      =  1
𝑎𝑎2 {𝑎𝑎(𝑡𝑡 − 𝑐𝑐) − 1 + 𝑒𝑒−𝑎𝑎(𝑡𝑡−𝑐𝑐)} 𝑢𝑢(𝑡𝑡 − 𝑐𝑐) 

𝟕𝟕. 𝟒𝟒. 𝟑𝟑 𝐃𝐃𝐢𝐢𝐃𝐃𝐃𝐃𝐃𝐃 − 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐃𝐃 𝐅𝐅𝐅𝐅𝐅𝐅𝐃𝐃𝐝𝐝𝐢𝐢𝐅𝐅𝐅𝐅(𝐔𝐔𝐅𝐅𝐢𝐢𝐝𝐝 𝐈𝐈𝐈𝐈𝐈𝐈𝐅𝐅𝐝𝐝𝐬𝐬𝐝𝐝 𝐅𝐅𝐅𝐅𝐅𝐅𝐃𝐃𝐝𝐝𝐢𝐢𝐅𝐅𝐅𝐅) 

The idea of a very large force acting for a very short time is of frequent 
occurrence in mechanics. This Unit impulse ( Dirac Delta)  function is useful in 
this case. 

 
 

𝟏𝟏. 𝐔𝐔𝐅𝐅𝐢𝐢𝐝𝐝 𝐢𝐢𝐈𝐈𝐈𝐈𝐅𝐅𝐝𝐝𝐬𝐬𝐝𝐝 ( 𝐃𝐃𝐢𝐢𝐃𝐃𝐃𝐃𝐃𝐃 𝐃𝐃𝐝𝐝𝐝𝐝𝐝𝐝𝐃𝐃) function is considered as the limiting form 

 of the function  

                    𝛿𝛿ɛ(𝑡𝑡 − 𝑎𝑎)   =  1 ɛ⁄  , 𝒂𝒂 ≤ 𝒕𝒕 ≤ 𝒂𝒂 + ɛ
=    0,                  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒  

as  ɛ → 0. It is clear from above figure that as ɛ → 0 , the height of the  

strip increases indefinitely and the width decreases in such a way that  

its area is always unity. 

Thus the unit impulse function 𝛿𝛿(𝑡𝑡 − 𝑎𝑎) is defined as follows: 

𝛿𝛿(𝑡𝑡 − 𝑎𝑎) =  ∞  for  𝑡𝑡 = 𝑎𝑎 ; = 0 for  𝑡𝑡 ≠ 𝑎𝑎 ,  
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Such that ∫ 𝛿𝛿(𝑡𝑡 − 𝑎𝑎)
∞

0

𝑑𝑑𝑡𝑡 = 1  ( 𝑎𝑎 ≥ 0) 

As an illustration, a load 𝑤𝑤0  acting at the point 𝑥𝑥 = 𝑎𝑎 of the beam may be considered as the  

limiting case of  uniform loading 𝑤𝑤0 ɛ per unit length over the portion of the beam between  ⁄     

    𝑥𝑥 = 𝑎𝑎 and 𝑥𝑥 = 𝑎𝑎 + ɛ. Thus 

             𝑤𝑤(𝑥𝑥)     =  𝑤𝑤0 ɛ⁄  , 𝒂𝒂 < 𝒙𝒙 < 𝒂𝒂 + ɛ
 =      0,                  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒  

 𝑒𝑒. 𝑒𝑒.       𝑤𝑤(𝑥𝑥) =  𝑤𝑤0  𝛿𝛿(𝑥𝑥 + 𝑎𝑎)    

𝟐𝟐. 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐓𝐓𝐓𝐓 𝐮𝐮𝐓𝐓𝐮𝐮𝐮𝐮 𝐮𝐮𝐓𝐓𝐢𝐢𝐮𝐮𝐢𝐢𝐓𝐓𝐢𝐢 ( 𝐃𝐃𝐮𝐮𝐓𝐓𝐓𝐓𝐃𝐃 𝐃𝐃𝐢𝐢𝐢𝐢𝐮𝐮𝐓𝐓) 𝐓𝐓𝐮𝐮𝐓𝐓𝐃𝐃𝐮𝐮𝐮𝐮𝐓𝐓𝐓𝐓.  

       If 𝑓𝑓(𝑡𝑡) be a function of  𝑡𝑡  at 𝑡𝑡 = 𝑎𝑎 , then  

       ∫ 𝑓𝑓(𝑡𝑡)
∞

0

𝛿𝛿ɛ(𝑡𝑡 − 𝑎𝑎). 𝑑𝑑𝑡𝑡 =  ∫ 𝑓𝑓(𝑡𝑡) 
a+ɛ

0

𝟏𝟏
ɛ  . 𝑑𝑑𝑡𝑡 

   = (𝑎𝑎 + ɛ − 𝑎𝑎)𝑓𝑓(𝜂𝜂) 1
ɛ = 𝑓𝑓(𝜂𝜂),      𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 < 𝜂𝜂 < 𝑎𝑎 + ɛ , by Mean Value theorem for integrals 

As ɛ → 𝟎𝟎, 𝒘𝒘𝒘𝒘 𝒈𝒈𝒘𝒘𝒈𝒈  ∫ 𝑓𝑓(𝑡𝑡)
∞

0

 𝛿𝛿(𝑡𝑡 − 𝑎𝑎)𝑑𝑑𝑡𝑡 = 𝑓𝑓(𝑎𝑎). 

In particular, when 𝑓𝑓(𝑡𝑡) = 𝑒𝑒−𝑠𝑠𝑠𝑠, we have ℒ{𝛿𝛿(𝑡𝑡 − 𝑎𝑎)} = 𝑒𝑒−𝑎𝑎𝑠𝑠  

 
       Mean value Theorem  ,    𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
= 𝑓𝑓′(𝑐𝑐)  ( for some 𝑐𝑐, 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 ) 

    Provided that 𝑓𝑓 is differentiable on 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏,
and continuous 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏    
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𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐𝟐𝟐: Evaluate   (i) ∫ 𝑠𝑠𝑠𝑠𝑠𝑠 2𝑡𝑡 
∞

0

𝛿𝛿(𝑡𝑡 − 𝜋𝜋 4 )⁄  𝑑𝑑𝑡𝑡 (ii) ℒ {1
𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑎𝑎)} 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  (i) We know that  ∫ 𝑓𝑓(𝑡𝑡) 𝛿𝛿(𝑡𝑡 − 𝑎𝑎)𝑑𝑑𝑡𝑡 = 𝑓𝑓(𝑎𝑎)
∞

0

   

                     ∴  ∫ 𝑠𝑠𝑠𝑠𝑠𝑠 2𝑡𝑡 
∞

0

𝛿𝛿(𝑡𝑡 − 𝜋𝜋 4 )⁄  𝑑𝑑𝑡𝑡 = sin(2. 𝜋𝜋 4 )⁄ = sin(𝜋𝜋 2 )⁄ = 1  

                   (ii) We know that  ℒ{𝛿𝛿(𝑡𝑡 − 𝑎𝑎)} = 𝑒𝑒−𝑎𝑎𝑎𝑎  

                     ∴  ℒ {1
𝑡𝑡 𝛿𝛿(𝑡𝑡 − 𝑎𝑎)} =  ∫ ℒ {𝛿𝛿(𝑡𝑡 − 𝑎𝑎)}

∞

𝑎𝑎

 𝑑𝑑𝑠𝑠 =  ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 𝑑𝑑𝑠𝑠
∞

𝑎𝑎

 

                         =  |𝑒𝑒
−𝑎𝑎𝑎𝑎

−𝑎𝑎 |
𝑎𝑎

∞
= 1

𝑎𝑎 𝑒𝑒−𝑎𝑎𝑎𝑎 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐𝟐𝟐: An impulsive voltage 𝐸𝐸𝛿𝛿(𝑡𝑡) is applied to a circuit consisting of 
 𝐿𝐿, 𝑅𝑅, 𝐶𝐶 in series with zero  initial conditions. If 𝑠𝑠 be the current at any 

 subsequent time 𝑡𝑡 find the limit of i as t → 0 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  The equation of the circuit governing the current 𝑠𝑠 is  

                         𝐿𝐿 𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡 +  𝑅𝑅𝑠𝑠 + 1

𝐶𝐶 ∫ 𝑠𝑠 𝑑𝑑𝑡𝑡 =  𝐸𝐸𝛿𝛿(𝑡𝑡)  where 𝑠𝑠 = 0, when 𝑡𝑡 = 0 
𝑡𝑡

0

 

                     Taking Laplace transform of both sides, we get  

  𝐿𝐿 [𝑠𝑠 𝑖𝑖̅ − 𝑠𝑠(0)] +  𝑅𝑅𝑖𝑖̅ + 1
𝐶𝐶

1
𝑠𝑠  𝑖𝑖̅ = 𝐸𝐸    (Using transform of derivative and integrals) 

                    𝐎𝐎𝐎𝐎 (𝑠𝑠2 + 𝑅𝑅
𝐿𝐿 𝑠𝑠 + 1

𝐶𝐶𝐿𝐿) 𝑖𝑖̅ = 𝐸𝐸
𝐿𝐿 𝑠𝑠   𝐎𝐎𝐎𝐎  (𝑠𝑠2 + 2𝑎𝑎𝑠𝑠 + 𝑎𝑎2 + 𝑏𝑏2)𝑖𝑖̅ = 𝐸𝐸

𝐿𝐿 𝑠𝑠   

                                                                           where 𝑅𝑅
𝐿𝐿 = 2𝑎𝑎 and 1

𝐶𝐶𝐿𝐿 = 𝑎𝑎2 + 𝑏𝑏2    

                    𝐎𝐎𝐎𝐎 𝑖𝑖̅ = 𝐸𝐸
𝐿𝐿  

(𝑠𝑠 + 𝑎𝑎) − 𝑎𝑎
(𝑠𝑠 + 𝑎𝑎)2 + 𝑏𝑏2 = 𝐸𝐸

𝐿𝐿 {
(𝑠𝑠 + 𝑎𝑎)

(𝑠𝑠 + 𝑎𝑎)2 + 𝑏𝑏2 − 𝑎𝑎 1
(𝑠𝑠 + 𝑎𝑎)2 + 𝑏𝑏2 }   

                    On inversion , we get  

                                        𝑖𝑖̅ = 𝐸𝐸
𝐿𝐿  {𝑒𝑒−𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑏𝑏𝑡𝑡 − 𝑎𝑎

𝑏𝑏 𝑒𝑒−𝑎𝑎𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑡𝑡}  

                    Taking limit as 𝑡𝑡 → 0 , 𝑠𝑠 →  𝐸𝐸 𝐿𝐿⁄  
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 Although the current 𝑖𝑖 = 0 initially,  

  yet a large current will develop instantaneously due to impulsive voltage applied  

  at  𝑡𝑡 = 0. In fact the limit of this current which is 𝐸𝐸/𝐿𝐿 

7.5 Exercise 
 
1. Find the Inverse Laplace Transform of each of the following functions:  

  (𝑖𝑖) 1
(𝑠𝑠 − 1)5                                              ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

24 𝑡𝑡4𝑒𝑒−𝑡𝑡 )   

 (𝑖𝑖𝑖𝑖)  4𝑠𝑠 + 15
16𝑠𝑠2 − 25                                        ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

4 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 5
4 𝑡𝑡 + 3

4 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 5
4 𝑡𝑡)  

 (𝑖𝑖𝑖𝑖𝑖𝑖) 3(𝑠𝑠2 − 1) 2
2𝑠𝑠5                                      ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 3

2 − 3
2 𝑡𝑡2 + 1

16 𝑡𝑡4 )   

 (𝑖𝑖𝑖𝑖) 1
𝑠𝑠3 2⁄                                                   ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶   2√𝑡𝑡

𝜋𝜋 ) 

 (𝑖𝑖) 1
√2𝑠𝑠 + 3

                                            ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶  1
√2𝜋𝜋𝑡𝑡 

 𝑒𝑒−3𝑡𝑡 2⁄  )    

 
2. Find the Inverse Laplace Transform of each of the following functions:  

  (𝑖𝑖)  4𝑠𝑠 + 12
𝑠𝑠2 + 8𝑠𝑠 + 16                                  ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶  4𝑒𝑒−4𝑡𝑡 (1 − 𝑡𝑡))    

  (𝑖𝑖𝑖𝑖)  3𝑠𝑠 + 7
𝑠𝑠2 − 2𝑠𝑠 − 3                                    ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 4𝑒𝑒3𝑡𝑡 −  𝑒𝑒−𝑡𝑡)    

  (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑠𝑠2 + 1
𝑠𝑠3 + 3𝑠𝑠2 + 2𝑠𝑠                              ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

2 − 2𝑒𝑒−𝑡𝑡 + 5
2 𝑒𝑒−2𝑡𝑡)    

  (𝑖𝑖𝑖𝑖) 𝑠𝑠 + 29
(𝑠𝑠 + 4)(𝑠𝑠2 + 9)                           ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 𝑒𝑒−4𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑠𝑠 3𝑡𝑡 + 5

3 𝑠𝑠𝑖𝑖𝑠𝑠 3𝑡𝑡 )    

  (𝑖𝑖) 𝑠𝑠 + 2
𝑠𝑠3(𝑠𝑠 − 1)2                                       ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ (3𝑡𝑡 − 8) 𝑒𝑒𝑡𝑡 + 𝑡𝑡2 + 5𝑡𝑡 + 8)    

  (𝑖𝑖𝑖𝑖) 1
𝑠𝑠3(𝑠𝑠2 + 1)                                    ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

2 𝑡𝑡2 + 𝑐𝑐𝑐𝑐𝑠𝑠 𝑡𝑡 − 1)    

  (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑠𝑠2 − 𝑎𝑎2

(𝑠𝑠2 + 𝑎𝑎2)2                                  ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡)    

  (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  𝑠𝑠
(𝑠𝑠2 + 1)(𝑠𝑠2 + 4)                   ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

3 (𝑐𝑐𝑐𝑐𝑠𝑠 𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑠𝑠 2𝑡𝑡 ))    

  (𝑖𝑖𝑖𝑖) 1
(𝑠𝑠2 + 𝑎𝑎2)2                                  ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

2𝑎𝑎3  (𝑠𝑠𝑖𝑖𝑠𝑠 𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 ))    

  (𝑖𝑖) 𝑠𝑠
𝑠𝑠4 + 4𝑎𝑎4                                       ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶ 1

2𝑎𝑎2  (𝑠𝑠𝑖𝑖𝑠𝑠 𝑎𝑎𝑡𝑡 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝑎𝑎𝑡𝑡)    
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3. Use convolution theorem to obtain inverse Laplace 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡
 𝑒𝑒𝑡𝑡𝑒𝑒ℎ 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓 
  (𝑓𝑓) 𝑡𝑡

𝑡𝑡(𝑡𝑡 − 𝑡𝑡)                                       ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ eat − 1)    

  (𝑓𝑓𝑓𝑓)  1
𝑡𝑡(𝑡𝑡2 + 𝑡𝑡2)                                 ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶  1

𝑡𝑡2  (1 − 𝑒𝑒𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 ))    

 (𝑓𝑓𝑓𝑓𝑓𝑓) 1
𝑡𝑡 √𝑡𝑡 + 4

                                      ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶  1
2 erf( 2 √𝑡𝑡))  

 (𝑓𝑓𝑖𝑖) 1
𝑡𝑡 𝑓𝑓𝑡𝑡𝑓𝑓  

(𝑡𝑡 + 3)
(𝑡𝑡 + 2)                            ( 𝑨𝑨𝑨𝑨𝑨𝑨 ∶  ∫ 𝑒𝑒−2𝑥𝑥 −  𝑒𝑒−3𝑥𝑥

𝑥𝑥

𝑡𝑡

0

 𝑑𝑑𝑥𝑥) 

 
4. Solve the following differential equations ( t > 0)𝑓𝑓𝑓𝑓𝑡𝑡ℎ 𝑓𝑓𝑓𝑓𝑖𝑖𝑒𝑒𝑡𝑡 𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓 𝑖𝑖𝑡𝑡𝑓𝑓𝑣𝑣𝑒𝑒𝑡𝑡  
 

  (𝑓𝑓) (𝐷𝐷 + 1)2𝑦𝑦 = sin 𝑡𝑡  , 𝑓𝑓𝑓𝑓𝑡𝑡ℎ   𝑦𝑦 = 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 𝑡𝑡 = 0                                         

                                               ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ y = 5
2 t e−t + 3

2 e−t − 1
2 cos t ) 

  (𝑓𝑓𝑓𝑓) (𝐷𝐷 + 1)2𝑦𝑦 = sin 𝑡𝑡  , 𝑓𝑓𝑓𝑓𝑡𝑡ℎ   𝑦𝑦 = 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 𝑡𝑡 = 0                                         

                                               ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ y = 5
2 t e−t + 3

2 e−t − 1
2 cos t ) 

  (𝑓𝑓𝑓𝑓) (𝐷𝐷2 + 4𝐷𝐷 + 8)𝑦𝑦 = 1 , 𝑓𝑓𝑓𝑓𝑡𝑡ℎ   𝑦𝑦 = 0, 𝐷𝐷𝑦𝑦 = 1 𝑡𝑡𝑡𝑡 𝑡𝑡
= 0                                         

                                               ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ y = 1
8 (1 − e−2t cos 2t − 3 e−2t sin 2t)) 

(𝑓𝑓𝑓𝑓𝑓𝑓) (𝐷𝐷 + 1)𝑦𝑦 = 𝑡𝑡2𝑒𝑒−𝑡𝑡, 𝑓𝑓𝑓𝑓𝑖𝑖𝑒𝑒𝑡𝑡 𝑦𝑦 = 3 𝑓𝑓ℎ𝑒𝑒𝑡𝑡 𝑡𝑡 = 0  ,       

                                              ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ y (t) =  e−t (t3

3 + 3)) 

(𝑓𝑓𝑖𝑖) 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑦𝑦

𝑑𝑑𝑡𝑡 − 6𝑦𝑦 = 2  𝑓𝑓𝑓𝑓𝑡𝑡ℎ  𝑦𝑦(0) = 1 𝑦𝑦′(0) = 0  ,       

                                              ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ y =  − 1
3 + 8

15 e3t + 4
5 e−2t ) 

(𝑖𝑖) 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2 + 𝑦𝑦 = sin 𝑡𝑡   𝑓𝑓𝑓𝑓𝑡𝑡ℎ  𝑦𝑦(0) = 1 𝑦𝑦′(0) = − 1

2  ,       

                                              ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ y =  (1 − t
2) cos t ) 

5. 𝑆𝑆𝑡𝑡𝑓𝑓𝑖𝑖𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑓𝑓𝑡𝑡𝑣𝑣𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑣𝑣𝑡𝑡 𝑒𝑒𝑒𝑒𝑣𝑣𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡   
 

(𝑓𝑓)   
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 = 2𝑥𝑥 − 3𝑦𝑦
𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 = 𝑦𝑦 − 2𝑥𝑥

} 𝑡𝑡𝑣𝑣𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑡𝑡 𝑡𝑡𝑡𝑡 𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡   𝑥𝑥(0) = 8 , 𝑦𝑦(0) = 3  ,       

                                              ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 𝑥𝑥 = 5𝑒𝑒−𝑡𝑡 + 3𝑒𝑒4𝑡𝑡  , 𝑦𝑦 =  5𝑒𝑒−𝑡𝑡 − 2𝑒𝑒4𝑡𝑡) 
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(𝑖𝑖𝑖𝑖) }      
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  −  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  +   2𝑑𝑑 =  cos 2𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑   −   2𝑑𝑑 =  sin 2𝑑𝑑

} 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 𝑑𝑑𝑡𝑡 𝑠𝑠𝑡𝑡𝑐𝑐𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑡𝑡𝑐𝑐𝑠𝑠  𝑑𝑑(0) = 0 , 𝑑𝑑(0)

= −1  ,       
                 ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 𝑑𝑑 = 12 𝑠𝑠

𝑡𝑡(cos 𝑑𝑑 + sin 𝑑𝑑) − 12 cos 2𝑑𝑑 , 𝑑𝑑

=  −𝑠𝑠𝑡𝑡(cos 𝑑𝑑 − sin 𝑑𝑑) − sin 2𝑑𝑑 ) 

(𝑖𝑖𝑖𝑖)   
 𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2   +  𝑑𝑑 +  𝑑𝑑 =  0 

4 𝑑𝑑
2𝑑𝑑
𝑑𝑑𝑑𝑑2   −  𝑑𝑑  =  0 }

 

 
𝑑𝑑(0) = −2𝑎𝑎 , 𝑑𝑑(0) = 𝑎𝑎  ,

𝑑𝑑′(0) = 2𝑠𝑠 , 𝑑𝑑′(0) = −𝑠𝑠     
                                             ( 𝐀𝐀𝐀𝐀𝐀𝐀 ∶ 𝑑𝑑 = 2𝑎𝑎 cos 𝑑𝑑

√2
+  2√2 𝑠𝑠 sin 𝑑𝑑

√2
) 

 
 

7.6 Summary 
 
In this unit we learn Inverse Laplace Transform definition, Shifting Theorem, 
Partial fraction Methods, Use of Convolution Theorem. 
  
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 ∶  𝓛𝓛−𝟏𝟏{�̅�𝒇 (𝑰𝑰)} =  𝒇𝒇(𝒕𝒕)  

ℒ−1 [1𝑠𝑠] = 1 ℒ−1 [ 1
𝑠𝑠 − 𝑎𝑎] = 𝑠𝑠

𝑎𝑎𝑡𝑡 

ℒ−1 [ 1𝑠𝑠𝑛𝑛] =
𝑑𝑑𝑛𝑛−1

(𝑐𝑐 − 1)! , 𝑐𝑐 = 1,2,3.. ℒ−1 [ 1
(𝑠𝑠 − 𝑎𝑎)𝑛𝑛] =  

𝑠𝑠𝑎𝑎𝑡𝑡 𝑑𝑑𝑛𝑛−1
(𝑐𝑐 − 1)! 

ℒ−1 [ 1
𝑠𝑠2 + 𝑎𝑎2] =

1
𝑎𝑎  𝑆𝑆𝑖𝑖𝑐𝑐 𝑎𝑎𝑑𝑑 

ℒ−1 [ 𝑠𝑠
𝑠𝑠2 + 𝑎𝑎2] =  𝑠𝑠𝑡𝑡𝑠𝑠 𝑎𝑎𝑑𝑑 

ℒ−1 [ 1
𝑠𝑠2 − 𝑎𝑎2] =  𝑆𝑆𝑖𝑖𝑐𝑐ℎ 𝑎𝑎𝑑𝑑 

ℒ−1 [ 𝑠𝑠
𝑠𝑠2 − 𝑎𝑎2] =  𝑠𝑠𝑡𝑡𝑠𝑠ℎ 𝑎𝑎𝑑𝑑 

ℒ−1 [ 1
(𝑠𝑠 − 𝑎𝑎)2 + 𝑠𝑠2] =

1
𝑠𝑠 𝑠𝑠

𝑎𝑎𝑡𝑡𝑆𝑆𝑖𝑖𝑐𝑐 𝑠𝑠𝑑𝑑 ℒ−1 [ 𝑠𝑠 − 𝑎𝑎
(𝑠𝑠 − 𝑎𝑎)2 + 𝑠𝑠2]

=  𝑠𝑠𝑎𝑎𝑡𝑡𝐶𝐶𝑡𝑡𝑠𝑠 𝑠𝑠𝑑𝑑 

ℒ−1 [ 𝑠𝑠
(𝑠𝑠2 + 𝑎𝑎2)2] =

1
2𝑎𝑎 𝑑𝑑 𝑆𝑆𝑖𝑖𝑐𝑐 𝑎𝑎𝑑𝑑  

ℒ−1 [ 1
(𝑠𝑠2 + 𝑎𝑎2)2] =

1
2𝑎𝑎3 ( 𝑆𝑆𝑖𝑖𝑐𝑐 𝑎𝑎𝑑𝑑 − 𝑎𝑎𝑑𝑑 𝑠𝑠𝑡𝑡𝑠𝑠 𝑎𝑎𝑑𝑑)
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐓𝐓𝐒𝐒𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓:  
 
(𝑰𝑰) 𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ℒ−1 {𝐼𝐼(̅𝑠𝑠 − 𝑎𝑎)} = 𝑒𝑒𝑎𝑎𝑎𝑎 𝐼𝐼(𝑡𝑡) = 𝑒𝑒𝑎𝑎𝑎𝑎 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} 

(𝑰𝑰𝑰𝑰)𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡)𝑎𝑎𝑒𝑒𝑎𝑎 𝐼𝐼(0) = 0, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ℒ−1 {𝑠𝑠𝐼𝐼(̅𝑠𝑠)} = 𝑎𝑎
𝑎𝑎𝑡𝑡 {𝐼𝐼(𝑡𝑡)}

= 𝐼𝐼′(𝑡𝑡) 

(𝑰𝑰𝑰𝑰𝑰𝑰)𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒   ℒ−1  {𝐼𝐼(̅𝑠𝑠)
𝑠𝑠 } = ∫ 𝐼𝐼(𝑡𝑡)𝑎𝑎𝑡𝑡 

𝑎𝑎

0

 

(𝑰𝑰𝑰𝑰)𝐼𝐼𝐼𝐼 ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)} = 𝐼𝐼(𝑡𝑡) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒   𝑡𝑡𝐼𝐼(𝑡𝑡) = ℒ−1  {– 𝑎𝑎
𝑎𝑎𝑠𝑠 [𝐼𝐼 ̅(𝑠𝑠)]} 

(𝑰𝑰)ℒ (𝐼𝐼(𝑡𝑡)
𝑡𝑡  ) =  ∫ 𝐼𝐼 ̅(𝑠𝑠) 𝑎𝑎𝑠𝑠  

∞

𝑠𝑠

 

𝐏𝐏𝐏𝐏𝐓𝐓𝐒𝐒𝐒𝐒𝐏𝐏𝐏𝐏 𝐒𝐒𝐓𝐓𝐏𝐏𝐟𝐟𝐒𝐒𝐒𝐒𝐓𝐓𝐒𝐒 𝐌𝐌𝐓𝐓𝐒𝐒𝐒𝐒𝐓𝐓𝐌𝐌𝐌𝐌 

Generally in many problems 𝐼𝐼(̅𝑠𝑠)is a rational fraction 𝐹𝐹 ̅(𝑠𝑠)
�̅�𝐺(𝑠𝑠)  with 

 degree of 𝐹𝐹 ̅(𝑠𝑠)less than that of  �̅�𝐺(𝑠𝑠)and this fraction can be expressed  
as sum on partial fractions of the type 

𝐴𝐴
(𝑎𝑎𝑠𝑠 + 𝑏𝑏)𝑟𝑟,  

𝐴𝐴
(𝑎𝑎𝑠𝑠2 + 𝑏𝑏𝑠𝑠 + 𝑏𝑏)𝑟𝑟   ( 𝑟𝑟 = 1,2, … )  

and finding the Laplace transform of each of the  partial fractions , we find  ℒ−1 {𝐼𝐼 ̅(𝑠𝑠)}  
 

ℒ−1 {𝑠𝑠𝑛𝑛𝐼𝐼(̅𝑠𝑠)} == 𝑎𝑎𝑛𝑛

𝑎𝑎𝑡𝑡𝑛𝑛 {𝐼𝐼(𝑡𝑡)} , 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑒𝑒𝑎𝑎 𝐼𝐼(0) = 𝐼𝐼′(0) = ⋯ = 𝐼𝐼𝑛𝑛−1(0) = 0 

ℒ{𝑡𝑡𝑛𝑛𝐼𝐼(𝑡𝑡)} = (−1)𝑛𝑛 𝑎𝑎𝑛𝑛

𝑎𝑎𝑠𝑠𝑛𝑛 𝐼𝐼(̅𝑠𝑠) = (−1)𝑛𝑛 𝐼𝐼̅(𝑛𝑛)(𝑠𝑠) 𝑤𝑤ℎ𝑝𝑝𝑖𝑖ℎ 𝑖𝑖𝑎𝑎𝑒𝑒 𝑏𝑏𝑒𝑒 𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑎𝑎 𝑎𝑎𝑠𝑠 

𝓛𝓛−𝟏𝟏{𝒇𝒇(𝒏𝒏)(𝒔𝒔)} = (−𝟏𝟏)𝒏𝒏𝒕𝒕𝒏𝒏𝒇𝒇(𝒕𝒕) 

 

𝐔𝐔𝐌𝐌𝐓𝐓 𝐓𝐓𝐒𝐒 𝐂𝐂𝐓𝐓𝐒𝐒𝐂𝐂𝐓𝐓𝐏𝐏𝐂𝐂𝐒𝐒𝐒𝐒𝐓𝐓𝐒𝐒 𝐓𝐓𝐒𝐒𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 

𝐈𝐈𝐒𝐒 𝓛𝓛−𝟏𝟏�̅�𝐅 (𝒔𝒔) = 𝑭𝑭(𝒕𝒕), 𝓛𝓛−𝟏𝟏𝐆𝐆 (𝒔𝒔) = 𝑮𝑮(𝒕𝒕) 𝒂𝒂𝒏𝒏𝒂𝒂 𝒇𝒇 ̅(𝒔𝒔) = 𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)         𝒕𝒕𝒕𝒕𝒕𝒕𝒏𝒏 

 {𝓛𝓛−𝟏𝟏�̅�𝒇 (𝒔𝒔)} =  𝓛𝓛−𝟏𝟏{𝑭𝑭 ̅(𝒔𝒔) ∗ �̅�𝑮(𝒔𝒔)} = ∫ 𝑭𝑭(𝒕𝒕 − 𝒖𝒖) 𝑮𝑮(𝒖𝒖) 𝒂𝒂𝒖𝒖
𝒕𝒕

𝟎𝟎

 

Corollary:  Since 𝓛𝓛−𝟏𝟏 (𝟏𝟏
𝒔𝒔) = 𝟏𝟏 𝒂𝒂𝒏𝒏𝒂𝒂 𝓛𝓛−𝟏𝟏�̅�𝒇(𝒔𝒔) = 𝒇𝒇(𝒕𝒕) 

𝓛𝓛−𝟏𝟏 {𝒇𝒇(𝒔𝒔)
𝒔𝒔 } = ∫ 𝟏𝟏. 𝒇𝒇(𝒖𝒖)𝒂𝒂𝒖𝒖

𝒕𝒕

𝟎𝟎

      

 

 𝐋𝐋𝐏𝐏𝐋𝐋𝐏𝐏𝐏𝐏𝐟𝐟𝐓𝐓 𝐓𝐓𝐓𝐓𝐏𝐏𝐒𝐒𝐌𝐌𝐒𝐒𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏𝐒𝐒𝐒𝐒𝐓𝐓𝐒𝐒 𝐓𝐓𝐒𝐒 𝐒𝐒𝐋𝐋𝐓𝐓𝐟𝐟𝐒𝐒𝐏𝐏𝐏𝐏 𝐅𝐅𝐂𝐂𝐒𝐒𝐟𝐟𝐒𝐒𝐒𝐒𝐓𝐓𝐒𝐒 
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• 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮𝐮𝐮 
• 𝐇𝐇𝐏𝐏𝐇𝐇𝐇𝐇𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐏𝐏 𝐔𝐔𝐮𝐮𝐏𝐏𝐮𝐮 𝐒𝐒𝐮𝐮𝐏𝐏𝐒𝐒 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮  
• 𝐃𝐃𝐏𝐏𝐏𝐏𝐇𝐇𝐏𝐏 −

𝐏𝐏𝐏𝐏𝐝𝐝𝐮𝐮𝐇𝐇 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮(𝐔𝐔𝐮𝐮𝐏𝐏𝐮𝐮 𝐈𝐈𝐈𝐈𝐒𝐒𝐮𝐮𝐝𝐝𝐮𝐮𝐏𝐏 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮) 
 
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮𝐮𝐮 

 
The perodic function 𝑓𝑓(𝑡𝑡) of period 𝑇𝑇  is defined as   
                         𝑓𝑓(𝑡𝑡 + 𝑇𝑇) = 𝑓𝑓(𝑡𝑡), 𝑇𝑇 > 0   
𝑓𝑓(̅𝑠𝑠) =  ℒ{𝑓𝑓(𝑡𝑡)}

=   ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

0

= 1
1 − 𝑒𝑒−𝑠𝑠𝑠𝑠 ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢 − − − − −  𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑒𝑒𝑓𝑓𝑝𝑝𝑓𝑓𝑑𝑑 𝑇𝑇

𝑠𝑠

0

 

 
𝐇𝐇𝐏𝐏𝐇𝐇𝐇𝐇𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐏𝐏 𝐔𝐔𝐮𝐮𝐏𝐏𝐮𝐮 𝐒𝐒𝐮𝐮𝐏𝐏𝐒𝐒 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮  
The unit step function 𝑢𝑢(𝑡𝑡 − 𝑎𝑎) is defined as follows: 
  
                                𝑢𝑢(𝑡𝑡 − 𝑎𝑎) = {0 for t < 𝑎𝑎

1 for t ≥ a 
                 where , 𝑎𝑎  is always positive . It is also denoted as 𝐻𝐻(𝑡𝑡 − 𝑎𝑎). 
 
 
𝐃𝐃𝐏𝐏𝐏𝐏𝐇𝐇𝐏𝐏 − 𝐏𝐏𝐏𝐏𝐝𝐝𝐮𝐮𝐇𝐇 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮(𝐔𝐔𝐮𝐮𝐏𝐏𝐮𝐮 𝐈𝐈𝐈𝐈𝐒𝐒𝐮𝐮𝐝𝐝𝐮𝐮𝐏𝐏 𝐅𝐅𝐮𝐮𝐮𝐮𝐏𝐏𝐮𝐮𝐏𝐏𝐏𝐏𝐮𝐮) 
𝐔𝐔𝐮𝐮𝐏𝐏𝐮𝐮 𝐏𝐏𝐈𝐈𝐒𝐒𝐮𝐮𝐝𝐝𝐮𝐮𝐏𝐏 ( 𝐃𝐃𝐏𝐏𝐏𝐏𝐇𝐇𝐏𝐏 𝐃𝐃𝐏𝐏𝐝𝐝𝐮𝐮𝐇𝐇) 

 function is considered as the limiting form of the function  

                    𝛿𝛿ɛ(𝑡𝑡 − 𝑎𝑎)   =  1 ɛ⁄  , 𝒂𝒂 ≤ 𝒕𝒕 ≤ 𝒂𝒂 + ɛ
=    0,                  𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒  

as  ɛ → 0. It is clear from above figure that as ɛ → 0 , the height of the strip increases  
indefinitely and the width decreases in such a way that its area is always unity. 

7.7 References 
1.  A Text Book of Applied Mathematics Vol I - P. N. Wartikar and  
     J. N. Wartikar 
2.  Applied Mathematics II - P. N. Wartikar and J. N. Wartikar 
3.  Higher Engineering Mathematics - Dr. B. S. Grewal  
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Unit 4 

8 
MULTIPLE INTEGRALS 

Unit Structure 

8.0  Objectives 

8.1  Double Integral: Introduction and Notation 

8.2  Change of the order of the integration  

8.3  Double integral in polar co-ordinates 

8.4  Triple integrals 

8.5  Summary 

8.6  Exercises 

8.7  References 

8.0 Objectives 
  After reading this chapter, you should be able to: 

1. Understand double integrals & notations. 

2. Solve problems based on double integrals. 

3. Understand  double integral in polar co-ordinates, 

4. Know the concept of triple integrals, 

8.1 Double Integral: Introduction and Notation 
It is presumed that the students are familiar with “ the limit of a sum as an integer.” 
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  lim
𝛿𝛿𝛿𝛿→0

∑ 𝑦𝑦𝑦𝑦𝑦𝑦 
𝛿𝛿=𝑏𝑏

𝛿𝛿=𝑎𝑎
      and this is expressed as       ∫ 𝑦𝑦 𝑑𝑑𝑦𝑦 

𝑏𝑏

𝑎𝑎

 

Thus  

lim
𝛿𝛿𝛿𝛿→0

∑ 𝑦𝑦𝑦𝑦𝑦𝑦
𝛿𝛿=𝑏𝑏

𝛿𝛿=𝑎𝑎
=  ∫ 𝑦𝑦 𝑑𝑑𝑦𝑦 

𝑏𝑏

𝑎𝑎

 

Let us now consider the integration of a function of two variables over a given 
area.   

 

To make the idea clear, we shall consider a plane lamina in the xOy plane, the 
surface density 𝜎𝜎 of which is a function of the position of the point P(𝑦𝑦, 𝑦𝑦). Thus 
surface density 𝜎𝜎 = 𝑓𝑓(𝑦𝑦, 𝑦𝑦). 

To find the mass of the lamina, we shall take a small area 𝑦𝑦A   about the point 
P(𝑦𝑦, 𝑦𝑦). 

The mass of this elementary area is 𝑓𝑓(𝑦𝑦, 𝑦𝑦) 𝑦𝑦A. To find the total mass of the lamina, 
we shall find out expressions such as (𝑦𝑦, 𝑦𝑦) 𝑦𝑦A, all over the lamina, form the sum 
∑ 𝑓𝑓(𝑦𝑦, 𝑦𝑦) 𝑦𝑦A, and to be more accurate, 𝑦𝑦A must be taken a small as possible.  

That is  

The mass of the lamina = lim
𝛿𝛿A →0

 ∑ 𝑓𝑓(𝑦𝑦, 𝑦𝑦) 𝑦𝑦A         …             …                     (8.1) 

where summation extends all over the lamina. 

Let us take 𝑦𝑦A in a more convenient way so that the summation in (8.1) can be 
carried out. 
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Divide the lamina by a system of straight lines parallel to the x and y axis into a 
mesh of elementary rectangles. Take the rectangle with one corner at P(x,y). 

Then the area of  rectangle PQRS 𝛿𝛿A= 𝛿𝛿𝛿𝛿 . 𝛿𝛿𝛿𝛿 

And the mass of the elementary rectangle = 𝑓𝑓(𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿.    

By (8.1) the mass of the lamina M is 

 
M =  lim

𝛿𝛿x →0
𝛿𝛿𝛿𝛿 →0

 ∑∑𝑓𝑓(𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿             …                      …                   (8.2) 

We shall evaluate the expression on the R.H.S. of the (8.2) in a systematic way. 

Taking the sum of 𝑓𝑓(𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   over the strip ABCD, we have for the mass of 
the elementary strip ABCD 

=  lim
𝛿𝛿𝛿𝛿 →0

 ∑ 𝑓𝑓(𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 
D

A
            …                      …                   (8.3) 

Where in this summation we note that x and 𝛿𝛿𝛿𝛿 are constants. We can therefore 
write (8.3) as  

= 𝛿𝛿𝛿𝛿 lim
𝛿𝛿𝛿𝛿 →0

 ∑ 𝑓𝑓(𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝛿𝛿 
𝛿𝛿D

𝛿𝛿A

            …                    …                   (8.4) 

And by introductory remarks on the limit of the sum as an integral we write (8.4) 
as 

= 𝛿𝛿𝛿𝛿  ∫ 𝑓𝑓(𝛿𝛿, 𝛿𝛿) 𝑑𝑑𝛿𝛿
𝛿𝛿2(𝑥𝑥)

𝛿𝛿1(𝑥𝑥)

                  …                    …                   (8.5) 
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Where y1(x) and y2(x) are the values of y at A and D and both depend on the 
position of the ordinate, that is on x. 

It is to be remembered in the integral of  (8.5) that x is to be regarded as a 
constant in the integration w.r.t. y and since the limits of the integral are the 
functions of x, 

So ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑦𝑦
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

will be some function of 𝑥𝑥, say ∅(𝑥𝑥). We thus say that let 

  ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑦𝑦
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

 =  ∅(𝑥𝑥)         …                    …                   (8.6) 

So that from (8.5) , we can write the mass of the elementary strip ABCD as 
[∅(𝑥𝑥). 𝛿𝛿𝑥𝑥 ] 

Next taking the mass of each strip such as ABCD parallel to the y - axis ,over the 
area of the lamina, we have 

Mass of the lamina =  lim
𝛿𝛿𝑥𝑥 →0

 ∑ ∅(𝑥𝑥) 𝛿𝛿𝑥𝑥.
𝑥𝑥=𝑏𝑏

𝑥𝑥=𝑎𝑎
            

 = ∫ ∅(𝑥𝑥)𝑑𝑑𝑥𝑥.
𝑥𝑥=𝑏𝑏

𝑥𝑥=𝑎𝑎

                    …                                                      (8.7) 

Substituting for  ∅(𝑥𝑥) from (8.6) in (8.7), we get 

Mass of the lamina  = ∫ { ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑦𝑦
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

}  𝑑𝑑𝑥𝑥
𝑥𝑥=𝑏𝑏

𝑥𝑥=𝑎𝑎

       …    (8.8) 

The expression on the R.H.S. of the equation (8.8) is called a double integral for 
obvious reason and is written in various ways as follows 

∫ 𝑠𝑠
𝑏𝑏

𝑎𝑎

∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑦𝑦 𝑑𝑑𝑥𝑥.
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

                      …                                 (8.9𝑎𝑎) 

or 

∫ 𝑠𝑠
𝑏𝑏

𝑎𝑎

∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦.
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

                      …                                (8.9𝑏𝑏) 

Where the integral signs are written in order of integration taken from the right, 
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or                    ∫ 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

∫ 𝑓𝑓(𝑑𝑑, 𝑦𝑦)  𝑑𝑑𝑦𝑦.
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

                    …                     (8.9𝑐𝑐) 

 

This last way of writing the integral is more convenient, as it expresses clearly the 
order in which the integration is performed i.e. we first integrate w.r.t. y considering 
x as a constant and then we integrate w.r.t. x. It may also be noted that when we 
take the elementary strips parallel to the y-axis, we first integrate w.r.t. y. 

    If instead of taking the elementary strip parallel to the y-axis we take it parallel 
to the x-axis such as EFGH shown in the adjacent figure, we have by a similar 
reasoning to the above 

Mass of the lamina  = ∫ 𝑑𝑑𝑦𝑦
𝑓𝑓

𝑒𝑒

∫ 𝑓𝑓(𝑑𝑑, 𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑥𝑥2(𝑦𝑦)

𝑥𝑥1(𝑦𝑦)

              …                  (8.10) 

 

In which we have to first integrate w.r.t. x and then w.r.t. y, thus changing the order 
of the integration. Both the integrals (8.9) and (8.10) represent the mass of the 
lamina and so are equal. The total area of the lamina is known as the region of 
integration. 

The function f(x,y) was considered as the surface density of the lamina, just for the 
sake of understanding clearly the idea of double integral. However f(x,y) may be 
any function of the position of a point in the loop-area, and the double integral of 
this function over the area of the loop is given by (8.9) or (8.10) that is   
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… (8.11) 

 

 

8.2 Change of the order of integration; Evaluation of Double 
integrals 

The method of evaluating the double integrals (8.11) is actually clear from the 
theory developed in the previous section. We note that in the evaluation of the 
double integrals, we integrate first w.r.t. one variable (y or x depending upon the 
limits, and the elementary strip) and considering the other variable as constant and 
then integrate with respect to the remaining variable. 

 

If the limits of integration are the constants such as in the region of integration 
being a rectangle, then the change in the order of integration does not require 
change of the limits of integration. 

Thus from the adjacent figure, we see that 

∫ 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

∫ 𝑓𝑓(𝑑𝑑, 𝑦𝑦) 𝑑𝑑𝑦𝑦
𝑑𝑑

𝑐𝑐

 = ∫ 𝑑𝑑𝑦𝑦
𝑑𝑑

𝑐𝑐

∫ 𝑓𝑓(𝑑𝑑, 𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

                     …                     (8.12) 

But if the limits be the variable as in the general case taken in section 8.1 then in 
changing the order of integration a corresponding change is to be made in the limits 
of integration as seen from (8.11). Sometimes in changing the order of integration 
we are required to split up the region of integration and the new integral is 
expressed as a sum of a number of double integrals. The examples solved below 
make this ideas clear. The change of the order of integration is sometimes 
convenient in the evaluation of the double integrals. This is also illustrated in 
problems solved below. In changing the order of integration, it is convenient to 

∫ 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

∫ 𝑓𝑓(𝑑𝑑, 𝑦𝑦) 𝑑𝑑𝑦𝑦
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)
 𝒐𝒐𝒐𝒐 ∫ 𝑑𝑑𝑦𝑦

𝑓𝑓

𝑒𝑒

∫ 𝑓𝑓(𝑑𝑑, 𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑥𝑥2(𝑦𝑦)

𝑥𝑥1(𝑦𝑦)
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draw rough sketch of the region of integration, which will help to fix up the new 
limits of integration. 

Example 1. Evaluate ∫(𝑥𝑥2 − 𝑦𝑦2 ) 𝑑𝑑𝑑𝑑  over the area of the triangle whose vertices 
are the points (0,1),(1,1) and (1,2). 

The equations of the sides of the triangle whose vertices are at A(0,1), B(1,1), 
C(1,2) are x = 1, y = 1 and x = y -1     …            (i)  as shown in the figure 6. 

 

If we take an elementary strip parallel to the x-axis, we will be integrating the given 
function with respect to x. The ends of this strip are bounded by the lines x = y - 1 
and   x = 1, so that these are the limits of integration with respect to x. Next we 
integrate w.r.t. y from y = 1 to y = 2, which then covers the whole area of the 
triangle ABC. 

Thus if  I = ∫(𝑥𝑥2 − 𝑦𝑦2 ) 𝑑𝑑𝑑𝑑  taken over the area of the triangle ABC 

Then, 

I = ∫ 𝑑𝑑𝑦𝑦
2

1

∫ (𝑥𝑥2 − 𝑦𝑦2) 𝑑𝑑𝑥𝑥
1

𝑦𝑦−1

             . .                  . .                         (ii) 

To evaluate the first integral, we regard y as a constant, 

    I = ∫ 𝑑𝑑𝑦𝑦  
2

1

[𝑥𝑥3

3 −  𝑦𝑦2𝑥𝑥]
𝑦𝑦−1

1
 

       = ∫ {1
3 − 𝑦𝑦2 −  (𝑦𝑦 − 1)3

3 +  𝑦𝑦2(𝑦𝑦 − 1) }  𝑑𝑑𝑦𝑦  
2

1
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       = ∫ {1
3 − 2𝑦𝑦2 − (𝑦𝑦 − 1)3

3 + 𝑦𝑦3 }  𝑑𝑑𝑦𝑦  
2

1

 

       =  [𝑦𝑦
3 − 2𝑦𝑦3

3 − (𝑦𝑦 − 1)4

12 + 𝑦𝑦4

4   ]
1

2
  

       = [ 23 − 16
3 − 1

12 + 4 −  13  + 2
3 − 1

4 ] 

       =  − 2
3 

It will be interesting to try the above example by taking strips parallel to the y-axis, 
which is left to the students as an exercise leading to the same result as above. 

Example 2.  Evaluate 

∫ 𝑑𝑑𝑦𝑦
𝑎𝑎

0

∫ 𝑥𝑥𝑦𝑦 log(𝑥𝑥 + 𝑎𝑎)
(𝑥𝑥 −  𝑎𝑎)2  𝑑𝑑𝑥𝑥

𝑎𝑎−√𝑎𝑎2−𝑦𝑦2

0

 

In the integral as it stands, the integration is first w.r.t. x and this integration, as is 
clear is complicated. As integration w.r.t. y is simple, we therefore change the 
order of integration, for which sake we find out the region of integration for the 
given problem. 

In the given Interval where the integration is first w.r.t. x, the elementary strips are 
parallel to the x-axis and these strips extend from x = 0 (i.e. the y – axis) to 

 x = 𝑎𝑎 − √𝑎𝑎2 − 𝑦𝑦2 i.e. to the boundary of the circle (𝑥𝑥 −  𝑎𝑎)2 +  𝑦𝑦2 = 𝑎𝑎2. 

Moreover as x = a minus √𝑎𝑎2 − 𝑦𝑦2, it extends upto the side (i) of the circle and 

not upto (ii) for which x = a plus √𝑎𝑎2 − 𝑦𝑦2.  
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An elementary strip such as this is shown in the figure 7 by AB. Next we integrate 
w.r.t. y from y = 0 to y = a and so the strips such as AB, bounded on one side by 
the y-axis and on the other by the circumference of the circle are taken from y = 0 
to y = a. Thus the region of integration is the shaded part in the figure. 

If we change the order of integration, integrating first w.r.t. y then the elementary 
strip is parallel to the y-axis, such as BC in the figure which extends from 
circumference of the circle (𝑥𝑥 −  𝑎𝑎)2 +  𝑦𝑦2 = 𝑎𝑎2  i.e. 𝑦𝑦 = √2𝑎𝑎𝑥𝑥 − 𝑥𝑥2 to the  
line y = a. These are therefore the limits of integration w.r.t. y. To have same region 
of integration as in the given integral. We must take such strips from x = 0 to 
 x = a, which are the limits of integration w.r.t. x. Thus changing the order of 
integration, the given integral say I, can be written as  

I = ∫ 𝑑𝑑𝑥𝑥
𝑎𝑎

0

∫ 𝑥𝑥𝑦𝑦 log(𝑥𝑥 + 𝑎𝑎)
(𝑥𝑥 −  𝑎𝑎)2  𝑑𝑑𝑦𝑦

𝑎𝑎

√2𝑎𝑎𝑎𝑎−𝑎𝑎2

 

Integrating w.r.t. y considering x as constant, we have 

I = ∫ 𝑑𝑑𝑥𝑥
𝑎𝑎

0

 𝑥𝑥 log(𝑥𝑥 + 𝑎𝑎)
(𝑥𝑥 −  𝑎𝑎)2 [𝑦𝑦2

2 ]
√2𝑎𝑎𝑎𝑎−𝑎𝑎2

𝑎𝑎
 

= 1
2 ∫ 𝑑𝑑𝑥𝑥

𝑎𝑎

0

 𝑥𝑥 log(𝑥𝑥 + 𝑎𝑎)
(𝑥𝑥 −  𝑎𝑎)2  [𝑎𝑎2 − 2𝑎𝑎𝑥𝑥 + 𝑥𝑥2] 

= 1
2 ∫ 𝑥𝑥 log(𝑥𝑥 + 𝑎𝑎) 𝑑𝑑𝑥𝑥

𝑎𝑎

0

  

This can be integrated by parts, with log (x + a) as a part to be differentiated 
which gives 

I = 𝑎𝑎2

𝜃𝜃 [2 log 𝑎𝑎 + 1] 

Example 3. Change the order of Integration in  

∫ 𝑠𝑠
2𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
√2𝑎𝑎𝑎𝑎

√2𝑎𝑎𝑎𝑎−𝑎𝑎2

 

The order of integration in the given integral is first w.r.t. y and then w.r.t. x  

  The elementary strips here are parallel to the y-axis (such as A B) and extend from 
y = √2𝑎𝑎𝑥𝑥 − 𝑥𝑥2,  [ i.e. the circle 𝑥𝑥2 +  𝑦𝑦2 − 2𝑎𝑎𝑥𝑥 = 0. with centre at (a,0) and radius 
a] to y = √2𝑎𝑎𝑥𝑥 [i.e. the parabola 𝑦𝑦2 = 2𝑎𝑎𝑥𝑥] and such strips are taken from x = 0 to 
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x = 2a. The shaded area between the parabola and the circle is therefore the region 
of integration. 

In changing the order of integration, we integrate first w.r.t. x, with elementary 
strips parallel to the x-axis, such as CD. In covering the same region as above, the 
ends of these strips extend to different curves. We therefore divide the region by 
the line y = a into three parts (I),(II),(III) as shown in the figure. 

 

For the region (I), the strip extend from the parabola 𝑦𝑦2 = 2𝑎𝑎𝑎𝑎 i.e. 𝑎𝑎 = 𝑦𝑦2

2𝑎𝑎 to the 

straight line 

 x = 2a, so these are the limits of integration w.r.t. x. Such strips are to be taken 
from y = a to y = 2a, to cover the region (I) completely. So the part of the integral 
in this region I1 is 

I1 = ∫ 𝑑𝑑𝑦𝑦
2𝑎𝑎

𝑎𝑎

∫ 𝑓𝑓(𝑎𝑎, 𝑦𝑦) 𝑑𝑑𝑎𝑎
2𝑎𝑎

𝑦𝑦2
2𝑎𝑎

              . .          . .                              (i) 

From the region (II), the strips extend from the parabola 𝑦𝑦2 = 2𝑎𝑎𝑎𝑎 i.e.  𝑎𝑎 = 𝑦𝑦2

2𝑎𝑎 to 

the circle 

 𝑎𝑎2 + 𝑦𝑦2 −  2𝑎𝑎𝑎𝑎 = 0 i.e. x = a ±√𝑎𝑎2 − 𝑦𝑦2 in which we take the negative sign 
with the radical as is obvious from the figure, so the limits of integration w.r.t. x 

are 𝑎𝑎 = 𝑦𝑦2

2𝑎𝑎 to x = a − √𝑎𝑎2 − 𝑦𝑦2  and such strips are taken from y = 0 to y = a, to 

cover this region completely. The contribution to the integral from this region I2 
is therefore                    
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I2 = ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑑𝑑) 𝑑𝑑𝑥𝑥
a − √𝑎𝑎2−𝑦𝑦2  

𝑦𝑦2
2𝑎𝑎

              . .          . .                 (ii)   

For the region (III), the strips extend from the circle 𝑥𝑥2 + 𝑑𝑑2 −  2𝑎𝑎𝑥𝑥 = 0  

[i.e. x = a ±√𝑎𝑎2 − 𝑑𝑑2; in this we have to take the positive sign with the radical as 
is clear from the figure] to the line x=2a, so that the limits of integration w.r.t x 

are x = a +√𝑎𝑎2 − 𝑑𝑑2 to x=2a; and such strips are to be taken from y = 0 to y = a, 
which covers in the integration the region (III) Denoting this part of integral by I3, 
we have 

I3 = ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑑𝑑) 𝑑𝑑𝑥𝑥
2a 

a + √𝑎𝑎2−𝑦𝑦2

              . .          . .                 (iii) 

Thus if we change the order of integration, we have to divide the region of 
integration, and the given integral is equal to I1 + I2 + I3 or from (i), (ii), (iii) 

∫ 𝑑𝑑𝑥𝑥
2𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑑𝑑) 𝑑𝑑𝑑𝑑
√2𝑎𝑎𝑎𝑎  

√2𝑎𝑎𝑎𝑎−𝑎𝑎2

=  ∫ 𝑑𝑑𝑑𝑑
2𝑎𝑎

𝑎𝑎

∫ 𝑓𝑓(𝑥𝑥, 𝑑𝑑) 𝑑𝑑𝑥𝑥
2𝑎𝑎  

𝑦𝑦2
2𝑎𝑎

+ ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑑𝑑) 𝑑𝑑𝑥𝑥
a − √𝑎𝑎2−𝑦𝑦2  

𝑦𝑦2
2𝑎𝑎

 

+ ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑑𝑑) 𝑑𝑑𝑥𝑥
2𝑎𝑎

a+ √𝑎𝑎2−𝑦𝑦2  

   

This example illustrates that in changing the order of integration sometimes not 
only limits are to be changed, but it is necessary to split up the region of 
integration.  

Example 4. Change the order of integration for the integral 

∫ 𝑠𝑠
𝑎𝑎

0

∫ 𝑥𝑥𝑑𝑑 𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
2𝑎𝑎−𝑎𝑎

𝑎𝑎2
𝑎𝑎

 

and evaluate the same with reversed order of integration. 

The given integral is  

∫ 𝑑𝑑𝑥𝑥
𝑎𝑎

0

∫ 𝑑𝑑 𝑑𝑑𝑑𝑑
2𝑎𝑎−𝑎𝑎

𝑎𝑎2
𝑎𝑎

            . .                          . .                             (𝑖𝑖) 
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In this the integration is first w.r.t. y with strips such as AB, parallel to the y-axis 

with extremities lying on the parabola  𝑦𝑦 = 𝑥𝑥2

𝑎𝑎  and the straight line y = 2a – x. These 

strips are taken from x = 0 to x = a, that gives the region of integration, the 
curvilinear triangle OPQ, shaded in the figure 9. 

In changing the order of integration, the integration is to be taken first w.r.t. x with 
elementary strip parallel to x axis, such as CD, and that needs dividing the region 
of integration by the line y = a, i.e. the line PR, into two parts the triangle PQR and 
the curvilinear triangle OPR denoted in the figure by (I) and (II) respectively. 

For the region (I), the limits of integration w.r.t. x are x = 0 to x = 2a – y and the 
limits of the next integration w.r.t. y are y = a to y = 2a, so the contribution to the 
given integral from region (I) is 

I1 = ∫ 𝑑𝑑𝑦𝑦
2𝑎𝑎

𝑎𝑎

∫ 𝑥𝑥𝑦𝑦 𝑑𝑑𝑥𝑥
2a − 𝑦𝑦   

0

              . .          . .                 (ii)   

 For the region (II), the limits of integration w.r.t. x are x = 0 to x = √𝑎𝑎𝑦𝑦 and 
those w.r.t. y are y = 0 to y = a, so the contribution to the given integral from the 
region (II) is 

I2 = ∫ 𝑑𝑑𝑦𝑦
𝑎𝑎

0

∫ 𝑥𝑥𝑦𝑦 𝑑𝑑𝑥𝑥
√𝑎𝑎𝑦𝑦   

0

              . .          . .                 (iii) 

Hence, reversing the order of integration, from (i), (ii) and (iii), 
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∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑥𝑥 = 
2𝑎𝑎−𝑥𝑥

𝑥𝑥2
𝑎𝑎

∫ 𝑑𝑑𝑥𝑥
2𝑎𝑎

𝑎𝑎

∫ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
2a − 𝑦𝑦   

0

+  ∫ 𝑑𝑑𝑥𝑥
𝑎𝑎

0

∫ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
√𝑎𝑎𝑦𝑦   

0

          . .               . .                     (iv) 

Now, with usual method of evaluating the double integral 

∫ 𝑑𝑑𝑥𝑥
2𝑎𝑎

𝑎𝑎

∫ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
2a − 𝑦𝑦   

0

=  ∫ 𝑑𝑑𝑥𝑥. 𝑥𝑥
2𝑎𝑎

𝑎𝑎

 [𝑑𝑑2

2 ]
0

2𝑎𝑎−𝑦𝑦
=  1

2 ∫ 𝑥𝑥(2𝑎𝑎 − 𝑥𝑥)2𝑑𝑑𝑥𝑥
2𝑎𝑎

0

 

=  5
24 𝑎𝑎4        . .           . .        (v) 

and   

∫ 𝑑𝑑𝑥𝑥
𝑎𝑎

0

∫ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
√𝑎𝑎𝑦𝑦  

0

=  ∫ 𝑑𝑑𝑥𝑥. 𝑥𝑥
𝑎𝑎

0

 [𝑑𝑑2

2 ]
0

√𝑎𝑎𝑦𝑦
=  1

2 ∫ 𝑎𝑎𝑥𝑥2𝑑𝑑𝑥𝑥
𝑎𝑎

0

 

=  1
6 𝑎𝑎4                             . .              . .         (vi) 

From (iv), (v) and (vi), 

∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑
2a − 𝑥𝑥  

𝑥𝑥2
𝑎𝑎

=  5
24 𝑎𝑎4 + 1

6 𝑎𝑎4 =  3
8 𝑎𝑎4 

8.3 Double integral in polar co-ordinates 
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In case we use polar co-ordinates,  divide the region of integration by curves 
 r = const. (which are circles) and η = const. (which are straight- lines) 

This gives a mesh of the form shown, where the elementary area is 𝛿𝛿𝛿𝛿. 𝛿𝛿 𝛿𝛿𝛿𝛿 

Thus if  f (r, 𝛿𝛿) be a function of position, we have over the wedge PQ, the sum as 

lim
𝛿𝛿𝛿𝛿 →0

𝛿𝛿𝛿𝛿 ∑ 𝑓𝑓 (𝛿𝛿, 𝛿𝛿). 𝛿𝛿 𝛿𝛿𝛿𝛿 
𝑄𝑄

𝑃𝑃

=  𝛿𝛿𝛿𝛿 ∫ 𝑓𝑓 (𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝑟𝑟𝛿𝛿 
𝛿𝛿2(𝜃𝜃)

𝛿𝛿1(𝜃𝜃)

                    …             …             (8.13) 

Where 𝛿𝛿1(𝛿𝛿) and 𝛿𝛿2(𝛿𝛿) are equations of the two parts of curves where θ is kept 
constant, while integrating w.r.t. r. Finally summing for all the wedges between 
θ = ∝ and θ =  β, we get 

Lim
𝛿𝛿θ →0

∑ 𝛿𝛿θ ∑ 𝑓𝑓 (𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝑟𝑟𝛿𝛿
𝛿𝛿2(𝜃𝜃)

𝛿𝛿1(𝜃𝜃)
  

𝛽𝛽

𝛼𝛼

=  ∫ 𝑟𝑟𝛿𝛿 
𝛽𝛽

𝛼𝛼

∫ 𝑓𝑓 (𝛿𝛿, 𝛿𝛿) 𝛿𝛿𝑟𝑟𝛿𝛿 
𝛿𝛿2(𝜃𝜃)

𝛿𝛿1(𝜃𝜃)

                    …        …              (8.14) 

The order of integration may be changed with appropriate changes in the limits. 

Example 1. Evaluate 

∬ 𝛿𝛿𝑟𝑟𝛿𝛿𝑟𝑟θ
√𝑎𝑎2 + 𝛿𝛿2  

 

  over one loop of the lemniscate 𝛿𝛿2 =  𝑎𝑎2cos 2θ 
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I = ∫ 𝑑𝑑θ

𝜋𝜋
4

−𝜋𝜋
4

∫ 𝑟𝑟 𝑑𝑑𝑟𝑟
√𝑎𝑎2 + 𝑟𝑟2

√𝑐𝑐𝑐𝑐𝑐𝑐2θ  

0

               

  = ∫ 𝑑𝑑θ

𝜋𝜋
4

−𝜋𝜋
4

  [√𝑎𝑎2 + 𝑟𝑟2]
0

𝑎𝑎 √𝑐𝑐𝑐𝑐𝑐𝑐2θ
            

  = ∫ 𝑑𝑑θ

𝜋𝜋
4

−𝜋𝜋
4

 {𝑎𝑎 √1 + 𝑐𝑐𝑐𝑐𝑐𝑐2θ|− 𝑎𝑎}            

  =  𝑎𝑎 ∫[√2 | cos θ − 1]𝑑𝑑θ

𝜋𝜋
4

−𝜋𝜋
4

           

   =  𝑎𝑎 [√2 | Sin θ −  θ]−𝜋𝜋
4

𝜋𝜋
4  

    = 𝑎𝑎 [2 − 𝜋𝜋
2] = 2𝑎𝑎 [1 − 𝜋𝜋

4]  

Example 2 . Evaluate 

∫ 𝑑𝑑x
𝑎𝑎

0

∫ 𝑑𝑑𝑑𝑑
√𝑎𝑎2 − 𝑥𝑥2 − 𝑑𝑑2

√𝑎𝑎2−𝑥𝑥2  

√𝑎𝑎𝑥𝑥−𝑥𝑥2

, 

by changing to polar coordinates. 

 

Here the elementary strips, such as AB are parallel to the y axis and extend from  

y = √𝑎𝑎𝑥𝑥 − 𝑥𝑥2 

m
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[which is the circle 𝑥𝑥2 + 𝑦𝑦2 −  𝑎𝑎𝑥𝑥 = 0, 

with centre at (𝑎𝑎
2  ,0) and radius 𝑎𝑎2 ] to 

y = √𝑎𝑎2 − 𝑥𝑥2 [ i.e. the circle 𝑥𝑥2 + 𝑦𝑦2 =  𝑎𝑎2 , with  center at the origin and radius 
a.] such strips are taken from 𝑥𝑥 = 0 to 𝑥𝑥 = a, and so the area between the two circles, 
is the region of integration. 

To change the given integral to polar coordinates, we substitute 𝑥𝑥 = 𝑟𝑟 cosθ, 𝑦𝑦 = 𝑟𝑟 
sinθ, and 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 by its equivalent elementary area in polar coordinates 𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑θ. The 
equations of the circle in polar coordinates are 𝑟𝑟 = 𝑎𝑎 cosθ and 𝑟𝑟 = 𝑎𝑎 and the ends 
of the elementary wedge, such as CD along the radius vector lies on these circles 
and so give the limits of integration w.r.t. 𝑟𝑟 and to cover the same region of 
integration as in given integral. 0 varies from 0 to 𝜋𝜋2.  

Thus the transformed integral I is 

𝐼𝐼 = ∫ 𝑑𝑑θ

𝜋𝜋
2

0

∫ 𝑟𝑟
√𝑎𝑎2 − 𝑟𝑟2

a  

𝑎𝑎 cosθ

 𝑑𝑑𝑟𝑟 

   = ∫ 𝑑𝑑θ

𝜋𝜋
2

0

 [−√𝑎𝑎2 − 𝑟𝑟2]
𝑎𝑎 cosθ

𝑎𝑎
 

   = ∫ 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠θ 𝑑𝑑θ = 𝑎𝑎

𝜋𝜋
2

0

  

8.4 Triple integrals :- 
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Let 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) be any function of the position of a point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) in space [say the 
density of the body]. Divide the body by a system of planes into small rectangular 
blocks. The element of volume at P (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is then dx𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧. 

The mass of the elementary cuboid at P = 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 𝑑𝑑x𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 

Then 

lim
𝑑𝑑𝑑𝑑 →0

∑ 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑑𝑑x𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 
𝑑𝑑2

𝑑𝑑1

=  𝑑𝑑x𝑑𝑑𝑦𝑦 ∫ 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑧𝑧 
𝑑𝑑2(𝑥𝑥.𝑦𝑦)

𝑑𝑑1(𝑥𝑥,𝑦𝑦)

      …         …           (8.15) 

where 𝑧𝑧1(𝑥𝑥, 𝑦𝑦) and 𝑧𝑧2(𝑥𝑥. 𝑦𝑦) are the equations of the lower and upper surfaces of 
the bounding volume. The result (8.15) gives the mass of the elementary column 
on 𝑑𝑑x𝑑𝑑𝑦𝑦 in the xOy plane as the base. In the integral (8.15), x, y are constants. 

We now have to sum for all the columns standing on the area in the xOy plane 
vertically below the surface. Taking first all the columns in a slice parallel to the 
y-z plane which means integration w.r.t. y while keeping x constant, we get 

[  ∫ 𝑠𝑠
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)
{ ∫ 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑧𝑧 

𝑑𝑑2(𝑥𝑥.𝑦𝑦)

𝑑𝑑1(𝑥𝑥,𝑦𝑦)
}   𝑑𝑑𝑦𝑦 ]  𝑑𝑑𝑥𝑥        …                  …             (8.16) 

and finally summing for all the slices from x = a to x = b, we have 

 

    

…                      (8.17)  

The evaluation of a space or volume integral involves three successive integration 
and so is called a triple integral. The order of integration may be changed with 
appropriate changes in the limits. 

In polar co-ordinates the volume of an elementary cuboid  

dv =  r2 sin θ 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑∅ 

and the integral (8.17) takes the form                     

                       ∭ 𝑓𝑓(𝑑𝑑, 𝑑𝑑, ∅)𝑑𝑑 2sin𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑∅  

∫ 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑑𝑑 = ∫ 𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 ∫ 𝑑𝑑𝑦𝑦
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

∫ 𝑓𝑓 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑧𝑧
𝑑𝑑2(𝑥𝑥.𝑦𝑦)

𝑑𝑑1(𝑥𝑥,𝑦𝑦)

𝑜𝑜

𝑣𝑣
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And in cylindrical co-ordinates , the elementary volume is  

                                   dv = 𝜌𝜌 𝑑𝑑𝜌𝜌 𝑑𝑑∅ 𝑑𝑑𝑑𝑑 

and the integral (8.17) takes the from 

                                

∭ 𝑓𝑓(𝜌𝜌, ∅, 𝑑𝑑)𝜌𝜌 𝑑𝑑𝜌𝜌 𝑑𝑑∅ 𝑑𝑑𝑑𝑑 

with appropriate limits. 

    Example  1.  Show that the volume bounded by the cylinder y2 = z , y = x2 

And the planes z = 0 , x + y +z = 2 is equal to  

∫ 𝑠𝑠
1

0

∫ 𝑠𝑠
√𝑥𝑥

𝑥𝑥2

∫  𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
2−𝑥𝑥−𝑦𝑦

 0

𝑑𝑑𝑑𝑑 

and evaluate it. 

 

The cylinder stands on the area common to the parabolas with generators parallel 
to the z-axis, and the volume required is the portion of this cylinder cut-off by the 
planes z = 0 and x+y+z=2  i.e. z = 2 – x - y 

     Integrating first w.r.t. z we obtain the volume of the elementary column,  
on dx dy  as the base, where limits for z are z = 0 to z = 2- x- y. 
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Thus the volume of elementary column on the dxdy as the base is  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑                     
2−𝑥𝑥−𝑦𝑦

0

         . .                   . .                       (i) 

Taking  a slice parallel to the yOx plane , of all such columns, leads on the 
integration w.r.t. y from y = x2  to y = √𝑑𝑑 ( ref. fig.14), we thus have the volume of 
an elementary slice parallel to the yOz plane as 

                             

dx ∫ 𝑑𝑑𝑑𝑑
√𝑥𝑥

𝑥𝑥2

 ∫ 𝑑𝑑𝑑𝑑
2−𝑥𝑥−𝑦𝑦

0

                      …                    …                  (ii) 

    

Summing the volumes of such slices, bounded by the curves y = x2, y = √𝑑𝑑  , from  
x = 0 to x = 1, gives the total volume of the cylinder in question and is  

                                                         

∫ 𝑑𝑑𝑑𝑑
1

0

∫ 𝑑𝑑𝑑𝑑
√𝑥𝑥   

𝑥𝑥2

∫ 𝑑𝑑𝑑𝑑
2−𝑥𝑥−𝑦𝑦

0

               …                     …               (iii) 

        

which is the same as the given integral. To evaluate it we use the same principles 
as used in the evaluation of a double integral. Thus 

∫ 𝑑𝑑𝑑𝑑
1

0

∫ 𝑑𝑑𝑑𝑑
√𝑥𝑥   

𝑥𝑥2

∫ 𝑑𝑑𝑑𝑑
2−𝑥𝑥−𝑦𝑦

0

 =   ∫ 𝑑𝑑𝑑𝑑
1

0

∫ 𝑑𝑑𝑑𝑑
√𝑥𝑥   

𝑥𝑥2

 [𝑑𝑑]0
2−𝑥𝑥−𝑦𝑦 

                                                    

= ∫ 𝑑𝑑𝑑𝑑
1

0

∫ (2 − 𝑑𝑑 − 𝑑𝑑)𝑑𝑑𝑑𝑑
√𝑥𝑥   

𝑥𝑥2

 

            

= ∫ 𝑑𝑑𝑑𝑑
1

0

[(2 − 𝑑𝑑)𝑑𝑑 − 𝑑𝑑2

2 ]
𝑥𝑥2

√𝑥𝑥

 

                                                         

= ∫ {(2 − 𝑑𝑑 )√𝑑𝑑 − 𝑑𝑑
2 − (2 − 𝑑𝑑)𝑑𝑑2 + 𝑑𝑑4

2 }  𝑑𝑑𝑑𝑑
1

0

 

m
unotes.in



195

Chapter 8: Multiple Integrals

                                         

  = [𝟒𝟒𝒙𝒙
𝟑𝟑
𝟐𝟐

𝟑𝟑 − 𝟐𝟐𝒙𝒙
𝟓𝟓
𝟐𝟐

𝟓𝟓 − 𝒙𝒙𝟐𝟐

𝟒𝟒 − 𝟐𝟐𝒙𝒙𝟑𝟑

𝟑𝟑 +  𝒙𝒙𝟒𝟒

𝟒𝟒 + 𝒙𝒙𝟓𝟓

𝟏𝟏𝟏𝟏]
𝟏𝟏

𝟏𝟏

=  𝟏𝟏𝟏𝟏
𝟑𝟑𝟏𝟏 

8.5 Summary 

The eight chapter of this book introduces the students with concepts of double 
integral, evaluation of double integrals: change of the order of the integration and 
double integral in polar co-ordinates with notations, which is important in 
understanding, implementation in application areas of integrals. Triple integrals is 
also explained with solved problems and illustrations. 

8.6 Exercises 

Evaluate the following Integrals  

1.  ∬ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  over 

      i) the area bounded by 𝑦𝑦 =  𝑦𝑦2 and 𝑦𝑦 +  𝑦𝑦 =  2 
     ii) the area bounded by x = 0, y = x2 and x + y = 2 in the first quadrant. 

2.  ∬ 𝑦𝑦𝑦𝑦(𝑦𝑦 + 𝑦𝑦) 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 over the area bounded by the parabola 𝑦𝑦2 =  𝑦𝑦 𝑎𝑎𝑎𝑎𝑦𝑦 𝑦𝑦2

= – 𝑦𝑦.

3.   i) ∬(𝑦𝑦2 + 𝑦𝑦2)𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

      ii) ∬ 𝑦𝑦2 𝑦𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 over the area in the positive quadrant of ellipse 

              𝑦𝑦
2

𝑎𝑎2 + 𝑦𝑦2

𝑏𝑏2 = 1. 

4.   ∬ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑦𝑦4 + 𝑦𝑦2 where  𝑦𝑦 >  1 and 𝑦𝑦 >  𝑦𝑦2 

Change the order of integrals and evaluate 

5.  ∫ 𝑠𝑠
2

0

∫ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑥𝑥2
4

0

                                            

m
unotes.in



196

 APPLIED MATHEMATICS

6.   ∫ 𝑠𝑠
1

0

∫ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
√𝑦𝑦

𝑦𝑦

 

7.  ∫ 𝑠𝑠
𝑎𝑎

0

∫ (𝑥𝑥2 + 𝑥𝑥2)𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

√𝑥𝑥
𝑎𝑎

𝑥𝑥
𝑎𝑎

                               

8.   ∫ 𝑥𝑥𝑥𝑥
1

0

∫ 𝑥𝑥
√𝑥𝑥2 + 𝑥𝑥2

√2−𝑥𝑥2

𝑥𝑥

− 𝑥𝑥𝑥𝑥 

Answers  

1.  i) 36
5  ii) 16

5    2.  114
420 3.  i) 𝜋𝜋𝜋𝜋𝜋𝜋

16 (𝜋𝜋2𝜋𝜋2)   ii) 𝜋𝜋
4𝜋𝜋2

24    4.  𝜋𝜋
4 

5.    1
3 6.   1

24   7.   𝑎𝑎
4  [𝑎𝑎2

7 + 1
5]       8.  [1 − 1

√2] 
 

 

Show the region of integration and change the order of integration 

9.  ∫ 𝑠𝑠
𝑎𝑎

−𝑎𝑎

∫ 𝑓𝑓(𝑥𝑥, 𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑦𝑦2
𝑎𝑎

0

                                     10.   ∫ 𝑠𝑠
1

−2

∫ 𝑓𝑓(𝑥𝑥, 𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
2−𝑥𝑥

𝑥𝑥2

 

11.  ∫ 𝑥𝑥𝑥𝑥
𝑎𝑎

0

∫ 𝑓𝑓(𝑥𝑥, 𝑥𝑥)𝑥𝑥𝑥𝑥
𝑦𝑦+𝑎𝑎

√𝑎𝑎2−𝑦𝑦2

                              12.   ∫ 𝑥𝑥𝑥𝑥
𝑏𝑏

𝑎𝑎

∫ 𝑓𝑓(𝑥𝑥, 𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑐𝑐2
𝑥𝑥

0

 

 

Evaluate 

13.   ∬ 𝑟𝑟𝑥𝑥𝑟𝑟𝑥𝑥θ  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 over the cardioide 𝑟𝑟 = 1 + cos θ  

14.   ∬ 𝑟𝑟3𝑥𝑥𝑟𝑟𝑥𝑥θ  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 over the area included between the circles 𝑟𝑟

= 2 sin θ  and  𝑟𝑟 = 4 sin θ 

15.   ∬ 𝑟𝑟4𝑐𝑐𝑐𝑐𝑠𝑠3θ𝑥𝑥𝑟𝑟𝑥𝑥θ  over the interior of circle  𝑟𝑟 = 2a cos θ  
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Express the following integrals in polar coordinates, showing the region of 
integration and evaluate. 

16. ∫ 𝑠𝑠
𝑎𝑎

0

∫ 𝑦𝑦2√𝑥𝑥2 + 𝑦𝑦2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
√𝑎𝑎2−𝑦𝑦2

0

                              

17.   ∫ 𝑠𝑠
4𝑎𝑎

0

∫ 𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
𝑦𝑦

𝑦𝑦2
4𝑎𝑎

 

18. ∫ 𝑠𝑠
2

0

∫ 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
(𝑥𝑥2 + 𝑦𝑦2)2

1+√2𝑥𝑥−𝑥𝑥2

1−√2𝑥𝑥−𝑥𝑥2

                                    

 19.   ∫ 𝑠𝑠
𝑎𝑎

0

∫ 𝑥𝑥 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
𝑥𝑥2 + 𝑦𝑦2

𝑎𝑎

𝑦𝑦

 

Change to polar coordinates and evaluate 

20.  ∬ 𝑥𝑥2 − 𝑦𝑦2

(𝑥𝑥2 + 𝑦𝑦2)
3
2

 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 over the region of the circle 𝑥𝑥2 + 𝑦𝑦2 = 2𝑎𝑎𝑥𝑥   

 in the first quadrant. 

21. ∬ 𝑦𝑦2  𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 over the area which lies outside the circle 𝑥𝑥2 + 𝑦𝑦2 − 𝑎𝑎𝑥𝑥 = 0    

 but inside circle 𝑥𝑥2 + 𝑦𝑦2 − 2𝑎𝑎𝑥𝑥 = 0.    

22.  Evaluate ∬ 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
(1 + 𝑥𝑥2 + 𝑦𝑦2)3   over one loop of the lemniscate 

       (𝑥𝑥2 + 𝑦𝑦2)2 = 𝑥𝑥2 − 𝑦𝑦2  
Answers  

13.  3𝜋𝜋
2   14.  45𝜋𝜋

2  15.  7𝜋𝜋
4 𝑎𝑎5   16.  𝜋𝜋𝑎𝑎5

20  17.  8𝑎𝑎2 (𝜋𝜋
2 − 5

3) 

18.   𝜋𝜋   19.   𝜋𝜋𝑎𝑎
4    20.   2𝑎𝑎

3  21.   15𝜋𝜋
64 𝑎𝑎4   22.   𝜋𝜋−2

4  

23. Show that ∭ 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑
(𝑥𝑥 + 𝑦𝑦 + 𝑑𝑑 + 1)2 = 1

2 (log 2 − 5
8) , integration 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑎𝑎𝑡𝑡𝑏𝑏𝑏𝑏   

 throughout the volume of the tetrahedran bounded by the coordinate planes and the   
plane 𝑥𝑥 + 𝑦𝑦 + 𝑑𝑑 + 1 = 1   

m
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Unit 4 

9 
APPLICATIONS OF INTEGRATION 

Unit Structure 

9.0 Objectives 

9.1 Introduction  

9.2 Areas 

9.3 Volumes of solids 

9.4 Summary 

9.5 Exercises 

9.6 References 

9.0 Objectives 

After reading this chapter, you should be able to: 

1. Know the concept Areas & volume of solids. 

2. Formulae of these in terms of integrals. 

3. Single & multiple integrals & their use in examples 

4. Solve problems based on area & volume integrals 

9.1 Introduction  

In this chapter we shall study the applications of integral calculus to the problems 
involving areas, volumes and surface of solids, centre of gravity, hydrostatic centre 
of pressure, moment of inertia, mean and root mean square values etc. Formulae 
for these in terms of integrals, single and multiple are developed and their use in 
the example on these topics is illustrated. 
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9.2 Areas 

 

     The area A, included by the curve y = f(x) the x-axis and the ordinates x = a 
and x = b is given by  

                                    

Similarly the area A', included by the curve y = f(x), the y-axis, y = c and y = d is  

A′ = ∫ 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐                         …                       …                         (9.2) 

 

In case of a loop as shown in figure 2, the area of an elementary rectangle at 
 P (x , y) is dxdy and so the area of the loop is given by 

       

                          

 

 

Area of the loop = ∫ 𝑠𝑠 
𝑏𝑏

𝑎𝑎

∫ 𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑
𝑦𝑦2(𝑥𝑥)

𝑦𝑦1(𝑥𝑥)

 

 

…..    (9.1) 
 

…..    (9.3) 
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If the equation of curve is given in polar coordinates by r = f (θ), then as 𝛿𝛿θ → 0, 

the area of the elementary triangle OPQ is 1
2 𝑟𝑟2 𝛿𝛿θ [ for dropping PR 

perpendicular to OQ, PQ = 𝑟𝑟𝛿𝛿θ can be taken as the base of the ∆ OPR of which 

the height is r, and its area is 12 𝑟𝑟2 𝛿𝛿θ ; as 𝛿𝛿θ → 0, 

 ∆ OPR →  ∆ OPQ ] and so 

 

       …     (9.4) 

 

Example 1. Trace the curve 𝑦𝑦2𝑎𝑎4 =  𝑥𝑥5(2𝑎𝑎 − 𝑥𝑥) and show that its area is equal 

to 5𝜋𝜋
4 𝑎𝑎2. 

 

The tracing done by the methods of curve-tracing gives the curve as a 
symmetrical loop on the x – axis between x = 0 and x = 2a. 

∫ 𝑦𝑦𝑦𝑦𝑥𝑥2𝑎𝑎
0  gives the area of the upper half of the loop and so the area A of the loop 

is  

Area of the sector OAB =  1
2 ∫ 𝑟𝑟2 𝑦𝑦θ

𝛽𝛽

𝛼𝛼

 

 

m
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            A = 2 ∫ 𝑦𝑦𝑦𝑦𝑦𝑦2𝑎𝑎
0                                                                   …                    (𝑖𝑖) 

From the equation of the curve 𝑦𝑦 = 𝑥𝑥
5
2 (2𝑎𝑎−𝑥𝑥)

1
2

𝑎𝑎2 , substituting this in (i), 

𝐴𝐴 = 2 ∫ 𝑦𝑦
5
2 (2𝑎𝑎 − 𝑦𝑦)

1
2

𝑎𝑎2 𝑦𝑦𝑦𝑦
2

0

                             …                    …                    (𝑖𝑖𝑖𝑖) 

For integration, we put 𝑦𝑦 = 2𝑎𝑎 sin2θ, so that 𝑦𝑦𝑦𝑦 = 4𝑎𝑎 𝑠𝑠𝑖𝑖𝑠𝑠 θ cos θ  𝑦𝑦θ and  
when x = 0, θ = 0 and when 𝑦𝑦 = 2𝑎𝑎, θ = 𝜋𝜋

2. 

∴   𝐴𝐴 = 64𝑎𝑎2. ∫ sin6θ cos2θ 𝑦𝑦θ

𝜋𝜋
2

0

                         …                 …              (𝑖𝑖𝑖𝑖𝑖𝑖) 

By the reduction formulae, we can write the value of this integral, so 

∴   𝐴𝐴 = 64𝑎𝑎2.
(5.3.1). (1)

8.6.4.2  𝜋𝜋2 = 5𝜋𝜋
4 𝑎𝑎2                       

Example 2. Trace the curve 𝑎𝑎2𝑦𝑦2 = 𝑦𝑦3(2𝑎𝑎 − 𝑦𝑦) and show that its area is equal 
to 𝜋𝜋𝑎𝑎2. 

 

Here the loop is on the y-axis, and so we use the formula (9.2) for the area.  
Thus the area of the loop is 

A = 2 ∫ 𝑦𝑦𝑦𝑦𝑦𝑦
2𝑎𝑎

0

 

A = 2 ∫ 𝑦𝑦
3
2(2𝑎𝑎 − 𝑦𝑦)

1
2

𝑎𝑎  
2𝑎𝑎

0

𝑦𝑦𝑦𝑦 
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Substituting   𝑦𝑦 = 2𝑎𝑎 sin2θ,

A =  32𝑎𝑎2 ∫ sin4θ cos2θ 𝑑𝑑θ 

𝜋𝜋
2

0

                                        

= 32 𝑎𝑎2.
(3.1). (1)

6.4.2  𝜋𝜋2 = 𝜋𝜋𝑎𝑎2. 

Example 3. Prove that the area of the loop of the curve 

 𝑥𝑥5 + 𝑦𝑦5 =  5𝑎𝑎𝑥𝑥2𝑦𝑦2    is    5
2 𝑎𝑎2.   

 

From the equation of the curve, it is clear that the loop does not lie on the x or y 
axis and so is inclined to them. In case of inclined loop, we change the equation 
to polar co-ordinates with  𝑥𝑥 = 𝑟𝑟 cos θ , 𝑦𝑦 = 𝑟𝑟 sin θ. 

The equation of the curve in polar coordinates is  

                                            𝑟𝑟 =  5𝑎𝑎 sin2θ cos2θ 
sin5θ+cos5θ                                               …         (i) 

r is zero when θ = 0 and 𝜋𝜋
2 , so the loop of the curve lies between these two 

limits. Using formula (9.4), the area A of the loop is 

A = 1
2 ∫ 𝑟𝑟2𝑑𝑑θ

𝜋𝜋
2 

0

                             …                    …                    (𝑖𝑖𝑖𝑖) 

Substituting for r from (i) in (ii), 

A = 25𝑎𝑎2

2 ∫  sin4θ cos4θ 
 (sin5θ + cos5θ)2  𝑑𝑑θ

𝜋𝜋
2 

0

 

Dividing the numerator and denominator by  cos10θ , 

m
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A = 25𝑎𝑎2

2 ∫  sec2θ . tan4θ 
 (1 + tan5θ)2 . 𝑑𝑑θ

𝜋𝜋
2 

0

 

Put z  = 1+ tan5θ, dz = 5  sec2θ tan4θ 𝑑𝑑θ. When θ = 0, z = 1 and  

when θ = 𝜋𝜋
2, z = ∞ , 

∴   A = 5𝑎𝑎2

2 ∫ 𝑑𝑑𝑑𝑑
 𝑑𝑑2    =     5𝑎𝑎2

2 [− 1
𝑑𝑑]

1

∞
  =       5𝑎𝑎2

2  
∞ 

1

. 

Example 4. In the cycloid 𝑥𝑥 = 𝑎𝑎 (θ + sin θ), y = 𝑎𝑎(1 − cos θ) find the area 
between its base and portion of the curve from cusp to cusp. 

 

The sketch of the curve is shown in the figure with cusps at P and Q and the  
base PQ. 

The area required is that of the curvilinear figure POQ. 

               Required Area  A = 2 ∫ 𝑥𝑥𝑑𝑑𝑥𝑥     

= 2 ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥
𝑑𝑑θ  𝑑𝑑θ     

𝜋𝜋

0

                            …                    …         (𝑖𝑖) 

From the equation of the cycloid 𝑥𝑥 = 𝑎𝑎 (θ + sin θ), 𝑑𝑑𝑑𝑑
𝑑𝑑θ = 𝑎𝑎 sin θ substituting  

in                                                                                                              (i) 

             A = 2 ∫ 𝑎𝑎2 (θ + sin θ) sin θ 𝑑𝑑θ
𝜋𝜋

0

                     

  = 2𝑎𝑎2 ∫[θ sin θ + sin2 θ]
𝜋𝜋

0

 𝑑𝑑θ                    …                …         (𝑖𝑖𝑖𝑖) 
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  Now ∫ θ sin θ 
𝜋𝜋

0

𝑑𝑑θ  =  [−θ cos θ + sin θ  ]0
𝜋𝜋        

=      𝜋𝜋                  …                           …         (𝑖𝑖𝑖𝑖𝑖𝑖) 

  and ∫ sin2 θ
𝜋𝜋

0

𝑑𝑑θ  =  2 ∫ sin2 θ𝑑𝑑θ

𝜋𝜋
2

0

  =    2.  𝜋𝜋
4    

=        𝜋𝜋
2              …                           …         (𝑖𝑖𝑖𝑖) 

Substituting these values of the integrals in (ii) 

   A =  2𝑎𝑎2  [𝜋𝜋 + 𝜋𝜋
2] =   3𝜋𝜋𝑎𝑎2. 

Example 5. Find the area between 𝑦𝑦2 = 𝑥𝑥3

𝑎𝑎−𝑥𝑥 and its asymptote. The nature of the 

curve is shown in the figure with asymptote x = a [Asymptote is the line to which 
the curve approaches] 

 

 

The required area A is : 

A  =  2 ∫ 𝑦𝑦𝑑𝑑𝑦𝑦
𝑎𝑎

0
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  =  2 ∫ 𝑥𝑥
3
2

(𝑎𝑎 − 𝑥𝑥)
1
2

𝑑𝑑𝑥𝑥
𝑎𝑎

0

    

with  𝑥𝑥 =  𝑎𝑎 sin2 θ, 

A  =  4𝑎𝑎2 ∫ sin4 θ 𝑑𝑑

𝜋𝜋
2

0

θ    

  =  4𝑎𝑎2  .  34  .  12  𝜋𝜋2  =  3
4  𝜋𝜋𝑎𝑎2. 

Example 6.   Find the area of the loop of the curve 

𝑟𝑟 = 𝑎𝑎 cos 3θ + 𝑏𝑏 sin 3θ. 

Let ∝ =  tan−1 𝑎𝑎
𝑏𝑏 , so that  a =  √𝑎𝑎2 + 𝑏𝑏2 sin 𝛼𝛼, 

 b =  √𝑎𝑎2 + 𝑏𝑏2 cos 𝛼𝛼 so that the equation of the curve can be written as     
r =  √𝑎𝑎2 + 𝑏𝑏2(sin 𝛼𝛼 cos 3θ + cos 𝛼𝛼 sin 3θ). 

 or               r =  √𝑎𝑎2 + 𝑏𝑏2 sin(3θ + 𝛼𝛼)                 …                         …                      (i) 

To find the position of the loop, we have when r = 0, 3θ +  𝛼𝛼 = 𝑛𝑛𝜋𝜋  
(where n is an integer). 

Taking consecutive values of n as 0 and 1,  

one of the loop lie between θ = − 𝛼𝛼
3 and θ = 𝜋𝜋−𝛼𝛼

3 . 

         ∴  The area of the loop = A  =  1
2 ∫ 𝑟𝑟2𝑑𝑑θ

𝜋𝜋−𝛼𝛼
3

−𝛼𝛼
3

           …                  …        (ii) 

Substituting for r from (i)  

A  =  (𝑎𝑎2 + 𝑏𝑏2)
2 ∫ sin2(3θ + 𝛼𝛼)

𝜋𝜋−𝛼𝛼
3

−𝛼𝛼
3

𝑑𝑑θ    

In this put ∅ = 3θ + 𝛼𝛼 ; so that 

A  =  (𝑎𝑎2 + 𝑏𝑏2)
6 ∫ sin2 ∅

𝜋𝜋

0

𝑑𝑑∅    
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  =  (𝑎𝑎2 + 𝑏𝑏2)
3 ∫ sin2 ∅

𝜋𝜋
2

0

𝑑𝑑∅    

                      =  (𝑎𝑎2 + 𝑏𝑏2)
3 . 1

2 . 𝜋𝜋
2   =   𝜋𝜋

12 (𝑎𝑎2 + 𝑏𝑏2). 

Example 7.  Find by double integration the area included between the curves  
𝑦𝑦 = 3𝑥𝑥2 − 𝑥𝑥 − 3   

and 𝑦𝑦 = −2𝑥𝑥2 + 4𝑥𝑥 + 7. 

 
The abscissa of the points of intersection of the two parabolas, a rough sketch of 
which is given in the adjacent diagram are given by 

3𝑥𝑥2 − 𝑥𝑥 − 3 =  −2𝑥𝑥2 + 4𝑥𝑥 + 7 

i. e.  𝑥𝑥2 − 𝑥𝑥 − 2 = 0                      
∴    𝑥𝑥 = −1, 2.                                    

   Taking the elementary strip parallel to the y-axis, such as AB, bounded by the 
two parabolas we integrate first w.r.t. y, and then integrating w.r.t. x from x = -1 
to x = 2, gives for the area A required. 

A = ∫ 𝑠𝑠
2

−1

∫ 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
−2𝑥𝑥2+4𝑥𝑥+7

3𝑥𝑥2−𝑥𝑥−3

 

 

             = ∫ 𝑠𝑠
2

−1

𝑑𝑑𝑥𝑥 [𝑦𝑦]3𝑥𝑥2−𝑥𝑥−3
−2𝑥𝑥2+4𝑥𝑥+7        = 5 ∫(−𝑥𝑥2 + 𝑥𝑥 + 2) 𝑑𝑑𝑥𝑥

2

−1
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= 5 [− 𝑥𝑥3

3 + 𝑥𝑥2

2 + 2𝑥𝑥]
−1

2
 

               = 5 {− 8
3 + 4

2 + 4 − (1
3 + 1

2 − 2)} 

= 5
2 .                                       

Example 8. Find by double integration the area included between the curve 
 𝑟𝑟 =  𝑎𝑎(sec θ + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) and its asympotote r = a sec θ. 

 
By transforming the equations to cartesian, coordinates, the curves are easily 
traced, as shown in figure.  
Taking a wedge such as AB, its extremities lie on the curve r = a sec𝑐𝑐  
and 𝑟𝑟 = 𝑎𝑎(sec θ + cos θ ) and to get the area between the asymptote and the 
curve, θ varies from -𝜋𝜋

2  𝑡𝑡𝑐𝑐 𝜋𝜋
2 ; or by symmetry the area A required is : 

A = 2 ∫ 𝑐𝑐

𝜋𝜋
2

0

∫ 𝑟𝑟 𝑑𝑑𝑟𝑟 𝑑𝑑𝑐𝑐
 𝑎𝑎(sec𝜃𝜃+𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 )

𝑎𝑎 𝑐𝑐𝑠𝑠𝑐𝑐𝜃𝜃
 

                                                                    

   = ∫ 𝑐𝑐[𝑟𝑟2]𝑎𝑎 secθ
𝑎𝑎(sec𝜃𝜃+𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 )

𝜋𝜋
2

0

𝑑𝑑𝑐𝑐 

                                                                                        

=  𝑎𝑎2 ∫ 𝑐𝑐

𝜋𝜋
2

0

{(sec θ + cos θ)2 − sec2θ } 𝑑𝑑𝑐𝑐 =    𝑎𝑎2 ∫[2 + cos2θ ]

𝜋𝜋
2

0

𝑑𝑑𝑐𝑐 

                                                                       

 =    𝑎𝑎2 [𝜋𝜋 + 𝜋𝜋
4]     = 5𝜋𝜋

4 𝑎𝑎2
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9.3 VOLUMES  OF  SOLIDS 

 
Let z = f(x,y) be the equation of the surface, of which the orthogonal projection in 
the xOy plane is the contour PQR, whose equation is f(x,y) = 0. The volume of an 
elementary parallellopiped on dxdy bounded by the surface, z= f(x,y) and sides 
parallel to the z axis is   

zdxdy = f(x,y) dx dy. 

The summation of all such terms over the area of closed curve PQR gives the 
volume of the solid cylinder bounded by the given surface and the plane xOy with 
generators parallel to the z- axis as  

  

Volume = ∬ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦         …                  …                 (9.6) 

to be taken on the area of the contour PQR. 

       To express the volume of a solid as a triple integral, we note that the volume 
of an elementary cuboid is dx dy dz ; and so the volume of the solid is given by  

Volume =  ∭ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑑𝑑           …                        …               (9.7) 

  Where the limits of  integration w.r.t. z (if we integrate first w.r.t. z) are z1 and z2 

obtained from its equations to the top and bottom of the given surface and then 
the double integration is w.r.t. x  and y is performed over the area of projection of 
the given solid on the xOy plane. 

If  𝜌𝜌 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑑𝑑) is the density of the solid at the point P( x,y,z), then the mass of 
the solid is  

∭ 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑑𝑑) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑑𝑑                    …                 …              (9.8) 

with appropriate  limits of integrations. 
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Example 1. Find by double integration the volume of the sphere 
 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2 cut off by the plane 𝑧𝑧 = 0 and the cylinder 𝑥𝑥2 + 𝑦𝑦2 = 𝑎𝑎𝑥𝑥. 

Taking the polar co-ordinate in the xOy plane, elementary area at P (𝑟𝑟, 𝜃𝜃) is 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟θ. If the line at P drawn parallel to the z – axis has length z, the volume of 
the elementary parallelopiped at P zrdrdθ, and the volume of the cylinder on the 
circle 𝑥𝑥2 + 𝑦𝑦2 = 𝑎𝑎𝑥𝑥, z = 0 bounded at the top by the surface of the sphere 
 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2 is with proper limits of integration. 

∬ 𝑧𝑧 𝑟𝑟 𝑟𝑟𝑟𝑟 𝑟𝑟θ                         …                    …                                (i) 

 

As 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2 so the equation of the sphere is 𝑧𝑧2 + 𝑟𝑟2 = 𝑎𝑎2 or 𝑧𝑧 = √𝑎𝑎2 − 𝑟𝑟2. 
The region of integration is the circle 𝑥𝑥2 + 𝑦𝑦2 − 𝑎𝑎𝑥𝑥 = 0 which has its center at 

(𝑎𝑎
2 , 0,0) and radius is 𝑎𝑎

2. Its polar equation is 𝑟𝑟 = 𝑎𝑎 cos θ. So the limits of 

integration w.r.t. r are 0 and 𝑎𝑎 cos θ and w.r.t. θ are − 𝜋𝜋
2  𝑎𝑎𝑎𝑎𝑟𝑟 𝜋𝜋

2. With these 

considerations and using (i), the volume V required is (by symmetry) 

V = 2 ∫ 𝑟𝑟θ

𝜋𝜋
2

0

∫ √𝑎𝑎2 − 𝑟𝑟2
𝑎𝑎 cos θ

0

 | 𝑟𝑟𝑟𝑟𝑟𝑟       …              …                      (ii) 

To evaluate the first integral put 𝑡𝑡2 = 𝑎𝑎2 − 𝑟𝑟2, so we have 

∫ √𝑎𝑎2 − 𝑟𝑟2 | 𝑟𝑟𝑟𝑟𝑟𝑟
𝑎𝑎 cos θ

0

=  − ∫ 𝑡𝑡2𝑟𝑟𝑡𝑡
𝑎𝑎 sin θ

𝑎𝑎

 =  − [𝑡𝑡3

3 ]
𝑎𝑎

𝑎𝑎 sin θ
  

= 1
3 𝑎𝑎3[1 − sin2θ]                          …            …        (iii) 
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Using this in (ii), the volume required is  

V = 2𝑎𝑎3

3 ∫[1 − sin2θ]𝑑𝑑θ 

𝜋𝜋
2

0

=  𝑎𝑎3

1 (3𝜋𝜋 − 4) 

Example 2. Find the volume bounded by the cylinder 𝑥𝑥2 + 𝑦𝑦2 = 4 and the planes 
𝑦𝑦 + 𝑧𝑧 = 4 and 𝑧𝑧 = 0. 

 

From Fig. 14 it is self-evident that 𝑧𝑧 = 4 − 𝑦𝑦 is to be integrated over the circle 
𝑥𝑥2 + 𝑦𝑦2 = 4 in the xy - plane.  

To cover the shaded half of this circle,  x varies from 0 to √(4 − 𝑦𝑦2) and y varies 
from -2 to 2. 

∴ Required Volume 

= 2 ∫ 𝑠𝑠
2

−2

∫ 𝑧𝑧 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
 √(4−𝑦𝑦2)

0
    = 2 ∫ 𝑠𝑠

2

−2

∫ (4 − 𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
 √(4−𝑦𝑦2)

0
 

= 2 ∫ (4 − 𝑦𝑦) [𝑥𝑥]0
√(4−𝑦𝑦2)𝑑𝑑𝑦𝑦

 2

−2
    = 2 ∫ (4 − 𝑦𝑦) √(4 − 𝑦𝑦2) 𝑑𝑑𝑦𝑦

 2

−2
 

= 2 ∫ 4√(4 − 𝑦𝑦2) 𝑑𝑑𝑦𝑦
 2

−2
  −  2 ∫ 𝑦𝑦 √(4 − 𝑦𝑦2) 𝑑𝑑𝑦𝑦

 2

−2
 

= 8 ∫ √(4 − 𝑦𝑦2) 𝑑𝑑𝑦𝑦
 2

−2
  

 

              =  8 [𝑦𝑦 √(4−𝑦𝑦2)
2 + 4

2 Sin−1 𝑦𝑦
2]

−2

2
   =    16 π. 

[The second term vanishes as 
the integrand is an odd 
function]  
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𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟑𝟑.  Find the volume of ellipsoid  𝑥𝑥2

𝑎𝑎2 + 𝑥𝑥2

𝑏𝑏2 + 𝑥𝑥2

𝑐𝑐2 = 1. 

 

Let OABC be the positive octant of the given ellipsoid which is bounded by the 
planes OAB (z = 0), OBC (x = 0), OCA (y = 0),  and the surface ABC, i.e. 

𝑥𝑥2

𝑎𝑎2 + 𝑦𝑦2

𝑏𝑏 + 𝑧𝑧2

𝑐𝑐2 = 1. 

Divide this region R into rectangular parallelopipeds of volume 𝛿𝛿𝑥𝑥𝛿𝛿𝑦𝑦𝛿𝛿𝑧𝑧. Consider 
such an element at P(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (Fig. 15) 

∴ the required volume =  8 ∭ 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 𝑑𝑑𝑧𝑧
𝑠𝑠

𝑅𝑅
 

In this region R, 

(i) z varies from 0 to MN, where 

MN = 𝑐𝑐√1 − 𝑥𝑥2

𝑎𝑎2 − 𝑦𝑦2

𝑏𝑏2 

(ii) y varies from 0 to EF, where  

EF = 𝑏𝑏√1 − 𝑥𝑥2

𝑎𝑎2 

         from the equation of the ellipse OAB, i. e.  𝑥𝑥2

𝑎𝑎2 + 𝑦𝑦2

𝑏𝑏2 = 1. 

(iii) x varies from 0 to OA = a. 
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Hence the volume of the whole ellipsoid 

= 8 ∫ 𝑠𝑠
𝑎𝑎

0

∫ 𝑠𝑠

𝑏𝑏√1−𝑥𝑥2
𝑎𝑎2

0

∫ 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑐𝑐√1−𝑥𝑥2
𝑎𝑎2−𝑦𝑦2

𝑏𝑏2

0

   = 8 ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ 𝑑𝑑𝑑𝑑

𝑏𝑏√1−𝑥𝑥2
𝑎𝑎2

0

[𝑑𝑑]0
𝑐𝑐√1−𝑥𝑥2

𝑎𝑎2−𝑦𝑦2
𝑏𝑏2  

= 8𝑐𝑐 ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎

0

∫ √(1 − 𝑑𝑑2

𝑎𝑎2 − 𝑑𝑑2

𝑏𝑏2) 𝑑𝑑𝑑𝑑

𝑏𝑏√1−𝑥𝑥2
𝑎𝑎2

0

 

= 8𝑐𝑐
𝑏𝑏 ∫ 𝑑𝑑𝑑𝑑

𝑎𝑎

0

∫ √(𝜌𝜌2 − 𝑑𝑑2) 𝑑𝑑𝑑𝑑
𝜌𝜌

0

 when 𝜌𝜌 = 𝑏𝑏√1 − 𝑑𝑑2

𝑎𝑎2 

               = 8𝑐𝑐
𝑏𝑏 ∫ 𝑑𝑑𝑑𝑑

𝑎𝑎

0

[𝑑𝑑√(𝜌𝜌2 − 𝑑𝑑2) 
2 + 𝜌𝜌2

2 sin−1 𝑑𝑑
𝜌𝜌]

0

𝜌𝜌

   =  8𝑐𝑐
𝑏𝑏 ∫ 𝑏𝑏2

2 (1 − 𝑑𝑑2

𝑎𝑎2) 𝜋𝜋
2 𝑑𝑑𝑑𝑑

𝑎𝑎

0

 

= 2𝜋𝜋𝑏𝑏𝑐𝑐 ∫ (1 − 𝑑𝑑2

𝑎𝑎2) 𝑑𝑑𝑑𝑑
𝑎𝑎

0

 =   2𝜋𝜋𝑏𝑏𝑐𝑐 [𝑑𝑑 − 𝑑𝑑3

3𝑎𝑎2]
0

𝑎𝑎
 

= 4𝜋𝜋𝑎𝑎𝑏𝑏𝑐𝑐
3 . 

9.4 Summary 

The ninth chapter of this book discusses the applications of integral calculus to the 
problems involving areas, volumes and surface of solids. Formulae of these 
concepts in single and multiple integrals are developed and their use in the 
examples are illustrated with diagrams. At the end, unsolved problems as exercise 
are left to students for practice.  

9.5 Exercises 

1.     Find the area enclosed by the curves bounded by 

  𝑑𝑑2 = 4𝑎𝑎𝑑𝑑 and 𝑑𝑑2 + 4𝑎𝑎2 = 8𝑎𝑎3

𝑦𝑦  

2.    Find the whole area between the curve 𝑑𝑑2𝑑𝑑2

= 𝑎𝑎2(𝑑𝑑2 − 𝑑𝑑2) and its asymptote. 

3.   Find by double integration the area between the curve 
     𝑑𝑑2 = 𝑑𝑑2 − 6𝑑𝑑 + 3 and 𝑑𝑑 = 2𝑑𝑑 − 9 
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4.   Find by double integration the area between the curve 𝑦𝑦2

= 4𝑎𝑎2(2𝑎𝑎 − 𝑥𝑥)
𝑥𝑥  and its asmptote 

5.   Find the area between the curve 𝑦𝑦2 − 4𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 2𝑥𝑥 − 3𝑦𝑦 +  12 = 0. 

6.    Find the area included between the curves  
    9𝑥𝑥𝑦𝑦 = 4 𝑎𝑎𝑎𝑎𝑎𝑎  2𝑥𝑥 + 𝑦𝑦 = 2  by double integration. 

7.    Find the area common to the ellipse 𝑥𝑥2

𝑎𝑎2 + 𝑦𝑦2

𝑏𝑏2 = 1 𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥2

𝑏𝑏2 + 𝑦𝑦2

𝑎𝑎2 = 1.   

8.    Find the double integration area included between the curves   
𝑦𝑦2 = 4𝑎𝑎(𝑥𝑥 + 𝑎𝑎) and  𝑦𝑦2 = 4𝑏𝑏(𝑏𝑏 − 𝑥𝑥).  

9.    Show that the area of  a loop of the curve 𝑟𝑟 =
        𝑎𝑎 cosn𝜃𝜃 is π𝑎𝑎2

4𝑛𝑛  and the state total 
𝑎𝑎 𝑎𝑎 𝜃𝜃. 

 𝑎𝑎 𝜃𝜃
𝑎𝑎

𝑎𝑎  𝜃𝜃 𝑎𝑎 > 𝑏𝑏.

𝑟𝑟2 =  𝑎𝑎2 cos2 𝜃𝜃.

13.   Show that the area of the loop of the curve 
𝑦𝑦2(𝑎𝑎 + 𝑥𝑥) =  𝑥𝑥2(3𝑎𝑎 − 𝑥𝑥) is equal to the area between the curve and its   
asymptot 

14.  Show by double integration that the area between the parabola 

       𝑦𝑦2 = 4𝑎𝑎𝑥𝑥 and 𝑥𝑥2 = 4𝑎𝑎𝑦𝑦 𝑖𝑖𝑖𝑖 16
3 𝑎𝑎2

15.  Show that  the area enclosed by the curves 𝑥𝑥 𝑦𝑦2 =  𝑎𝑎2(𝑎𝑎 − x)  and 
         (𝑎𝑎 − x)  𝑦𝑦2 = 𝑎𝑎2𝑥𝑥   𝑖𝑖𝑖𝑖   (π − 2)  𝑎𝑎2.      

16.  Prove that the area of the part of the  ellipse   
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        𝑥𝑥
2

𝑎𝑎2 + 𝑥𝑥2

𝑏𝑏2 = 1 , (a > 𝑏𝑏) which is within the parabola 

       𝑏𝑏2𝑥𝑥2 = (𝑎𝑎2 − 𝑏𝑏2)𝑎𝑎𝑎𝑎  is given by 1
3 𝑏𝑏2𝑒𝑒 +  𝑠𝑠𝑠𝑠𝑠𝑠−1𝑒𝑒   

(i) r cos 𝜃𝜃 =  acos2 𝜃𝜃 is 𝑎𝑎2(4 − π) 
2  .

(ii) r  =  a 𝜃𝜃 cos 𝜃𝜃 is π𝑎𝑎2 
96 (π2 − 6) .

r2(2c2cos𝜃𝜃 − 2𝑎𝑎c sin𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 + 𝑎𝑎 2sin2𝜃𝜃) =  𝑎𝑎2c2 is π  𝑎𝑎c

Answers 

1.  2𝑎𝑎2

3 (3𝜋𝜋 − 2)          2.  4𝑎𝑎2                  3.  10 2
3                       4.  4𝜋𝜋𝑎𝑎2 

5.  1
2           6.   1

3 − 4
9  𝑙𝑙𝑐𝑐𝑙𝑙2           7.  4𝑎𝑎𝑏𝑏 𝑡𝑡𝑎𝑎𝑠𝑠−1 𝑏𝑏

𝑎𝑎          8.    8
3 ( 𝑎𝑎 + 𝑏𝑏)√𝑎𝑎𝑏𝑏 

9. n − odd.  π𝑎𝑎2

4 ;  n − even π𝑎𝑎2

2 , 3
4   π𝑎𝑎2                 10.  𝑎𝑎2(π

3 + √3
2 ) 

11.  π (𝑎𝑎2 +  1
2  𝑏𝑏2).              12.  a2 

19.    If the density at a point varies as the square of the distance of the point from 
the xy- plane, find the mass of the volume common to the sphere 
𝑥𝑥2 + 𝑎𝑎2 + 𝑧𝑧2 = 𝑎𝑎2 and  cylinder 𝑥𝑥2 + 𝑎𝑎2 = 𝑎𝑎𝑥𝑥. 

20.  Find the  volume bounded by the surface  z =  c (1 − 𝑥𝑥
𝑎𝑎 ) (1 − 𝑎𝑎

𝑏𝑏 )  

      and the positive quadrant of the elliptic cylinder 𝑥𝑥2

𝑎𝑎2 + 𝑥𝑥2

𝑏𝑏2 = 1 , 𝑧𝑧 =  0 

21.  Find the volume of the solid bounded  by the surfaces z 

=  4 −  𝑥𝑥2 −   1
2 𝑎𝑎2     and  z =  3𝑥𝑥2 +  12 𝑎𝑎2. 

22.  Find the volume common to the right circular cylinders  𝑥𝑥2 + 𝑎𝑎2

= 𝑎𝑎2,    𝑥𝑥2 + 𝑧𝑧2 = 𝑎𝑎2. 
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23.    A right circular cylindar  of radius 𝑎𝑎 
2  and height 𝑎𝑎 is formed  

         by the plane 𝑧𝑧 = 0, = 𝑎𝑎.  and the surface 𝑥𝑥2 + 𝑦𝑦2 = 𝑎𝑎𝑥𝑥.   
         Find the volume of the portion of the cylinder inside 
         the  cone  𝑥𝑥2 + 𝑦𝑦2 = 𝑧𝑧2. 
 Answers 

19.  2𝑎𝑎5 
15 (π − 16

15)  20.  abc 
4 (π − 13

6 )         21.  4√2 π           22.  16 
3 𝑎𝑎3

 

23.  𝑎𝑎3 
36 (9π − 16) 
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Unit 5 

10 
BETA AND GAMMA FUNCTIONS 

Unit Structure 

10.0 OBJECTIVES 

10.1 Introduction 

10.2 Gamma Functions 

10.3 Applications of  Gamma Functions: 

10.4 Properties of Gamma Functions: 

10.5 Flow Chart of Gamma Function 

10.6 Beta Function 

10.7 Properties of Beta Function :  

10.8 Problem based on Beta Function 

10.9 Duplication Formula of Gamma Functions 

10.10 Exercise 

10.11 Summary 

10.12 References 

10.0 Objectives 

After going through this unit, you will be able to:  

• Understand the concept of Gamma function , properties of Gamma function  

• Solve the problem based on Gamma function with its type. 

• Understand the concept of Beta function , properties of Beta function  

• Understand the relation between Gamma and Beta Function 

• Know the concept of Duplication formula 

 

 

m
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10.1 Introduction 

At this stage students are well versed with elementary methods of integration and 
evaluation of real definite integrals. In this chapter we introduce some advanced 
techniques. Beta and Gamma  integrals or typically called Beta and Gamma 
functions are the special kind of integrals which find their applications in theory of 
probability, integral transforms, fluid mechanics and so on. Certain kind of  real 
definite integrals can be evaluated by using Beta and Gamma Functions. Their use 
is prominent in evaluation of multiple integrals. In this chapter we shall discuss 
some properties of Beta and Gamma Functions and Duplication formula. 

    Leonhard Euler 

 

Historically, the idea of extending the 
factorial to non-integers was considered 
by Daniel Bernoulli and Christian 
Goldbach in the 1720s.It was solved by 
Leonhard Euler at the end of the same 
decade. 
Euler discovered many interesting 
properties, such as its reflection formula:. 

Γ(𝑥𝑥 )Γ(1 − 𝑥𝑥) = 𝜋𝜋
sin (𝜋𝜋 − 𝑥𝑥) 

James Stirling, contemporary of Euler, 
also tried to extend thefactorial and came 
up with the Stirling formula, which gives 
a good approximation of n! but it is not 
exact. Later on, Carl Gauss, the prince of 
mathematics, introduced the Gamma 
function for complex numbers using the 
Pochhammer factorial. In the early 1810s, 
it was Adrien Legendre who first used the 
Γ symbol and named the Gamma 
function. 

10. 2 Gamma Functions 

Consider the definite integral   ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥𝑛𝑛−1𝑑𝑑𝑥𝑥∞
0    it is denoted by the symbols  Γ(n)   

[ we read is as  Gamma ‘n’ ] and is called as Gamma Function of  n. Thus  

 
Γ(n)   = ∫ 𝒆𝒆−𝒙𝒙𝒙𝒙𝒏𝒏−𝟏𝟏𝒅𝒅𝒙𝒙∞

𝟎𝟎    ( n > 0) 
 

 
------------------------------(1) 
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Gamma Function is also called as Euler’s Integral of the second kind. It defines a 
function of n for positive values of n. 

10.3 Applications of  Gamma Functions: 

In a Gamma distribution, the gamma function is used to determine time based 
occurrences such as  

1. The time between occurrences of earthquakes . 

2. Life length of electronic component. 

3. Waiting time between any two consecutive events. 

4. Gamma function arises in various probability distribution function. 

10.4 Properties of Gamma Functions: 

1. Γ(n)   = 𝟐𝟐 ∫ 𝒆𝒆−𝒙𝒙𝟐𝟐𝒙𝒙𝟐𝟐𝟐𝟐−𝟏𝟏𝒅𝒅𝒙𝒙∞
𝟎𝟎     

Proof:  Γ(n)   = ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥𝑛𝑛−1𝑑𝑑𝑥𝑥∞
0       Put x = t2 , dx = 2t dt  

                      = ∫ 𝑒𝑒−𝑡𝑡2𝑡𝑡2𝑛𝑛−2 2𝑡𝑡 𝑑𝑑𝑡𝑡 ∞
0                                 

              

                      = 2 ∫ 𝑒𝑒−𝑡𝑡2𝑡𝑡2𝑛𝑛−1  𝑑𝑑𝑡𝑡 ∞
0  

 
Γ(n)   = 𝟐𝟐 ∫ 𝒆𝒆−𝒕𝒕𝟐𝟐𝒕𝒕𝟐𝟐𝟐𝟐−𝟏𝟏  𝒅𝒅𝒕𝒕 ∞

𝟎𝟎  
 

 
----------------------------------(2) 

  

[ It may be borne in mind that variable of integration is immaterial in a definite 
integral ] 

Relations (1)  and (2)  are both considered as definitions of Gamma functions. 

2. Γ(1) = 1 

Proof: By definition , Γ(n)   = ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥𝑛𝑛−1𝑑𝑑𝑥𝑥∞
0     put n =1 

Γ(1)   = ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥0𝑑𝑑𝑥𝑥∞
0   =  ∫ 𝑒𝑒−𝑥𝑥  𝑑𝑑𝑥𝑥 =∞

0 [−𝑒𝑒𝑥𝑥]0
∞=(-e∞ + e0 ) = 0 + 1 = 1 

        
Γ(1)   = 1 

 

 
 

 

x 0 ∞ 
t 0 ∞ 

m
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3. Reduction Formulae for Gamma Function : 

      Γ(n+1) = n Γ(n)  

 Proof:   By definition , Γ(n)   = ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥𝑛𝑛−1𝑑𝑑𝑥𝑥∞
0     Replace n by n+1 

                                      Γ(n+1 )   = ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥𝑛𝑛𝑑𝑑𝑥𝑥∞
0  

Now, integrating by parts 

  

                                      Γ(n+1 )   = [𝑥𝑥𝑛𝑛(−𝑒𝑒𝑥𝑥)]0
∞ − ∫ 𝑛𝑛𝑥𝑥𝑛𝑛−1(𝑒𝑒−𝑥𝑥)𝑑𝑑𝑥𝑥∞

0  

Now, 

lim
𝑥𝑥 →∞

𝑥𝑥𝑛𝑛

𝑒𝑒𝑥𝑥 = 0, also  if  n > 0 , 𝑥𝑥𝑛𝑛

𝑒𝑒𝑥𝑥 = 0 for 𝑥𝑥 = 0 ∴  [ 𝑥𝑥
𝑛𝑛

𝑒𝑒𝑥𝑥]
0

∞
= 0 

                                      Γ(n+1 )   = 0 + n ∫ 𝑒𝑒−𝑥𝑥𝑥𝑥𝑛𝑛−1 𝑑𝑑𝑥𝑥∞
0  = n Γ(n) 

         
Γ(n+1)   = n Γ(n)    

 

 
 

 If n is a  positive integer , 

             Γ(n+1 ) = n (n-1) Γ(n-1 )                         ∵  Γ(n) = (n-1) Γ(n-1 ) 

                          = n (n-1) (n-2) Γ(n-2 ) 

                         = n (n-1) (n-2) (n-3) (n -4 ) ……………..3.2.1.Γ(1 ) 

                         = n (n-1) (n-2) (n-3) (n -4 ) ……………..3.2.1       ∵  Γ(1) = 1               

                         = n! 

   Γ(n+1 ) =  n!   if n is a positive integer 

    

Γ(n+1)   = n Γ(n)  in general , n is rational  number  
               =  n!   if n is a positive integer 
   

 
 

4.  

Γ(0)   = ∞      ∵  Γ(n ) = Γ(n+1)
𝑛𝑛     , Γ(0 ) = Γ(1)

0 =  1
0 = ∞ 

 
5.  Γ(1

2 ) = √𝜋𝜋 
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6. ∵ Γ(n+1)   = n! 
 
∴  Γ(5) = Γ(4+1)  ------- (Γ(n+1) ) 
           = 4!       ----- n is positive integer  
           = 24 
 
Γ ( 32 ) = Γ ( 12 +  1 )     ------- (Γ(n+1) ) 

          =  12 Γ( 12 )      -----( n is rational number ) 

          = 12 √𝜋𝜋           ------    ∵  Γ(1
2 ) = √𝜋𝜋 

 
     
Γ ( 52 ) =  Γ ( 32 +  1) 

           = ( 32) Γ ( 32) 

           = ( 32) Γ ( 12 +  1) 

           = ( 32) ( 12) Γ ( 12)  = ( 34) √𝜋𝜋 
 
Γ ( 11

2  ) = ( 92) ( 72)( 52) ( 32) ( 12) √𝜋𝜋  
 For negative fraction  n , we use 
 
Γ(n ) = Γ(n+1)

𝑛𝑛  

Γ (− 5
3 ) = 

Γ( − 53+1)
− 53

  =  (− 3
5 ) Γ (− 2

3 ) =  (− 3
5 ) 

Γ( − 23+1)
− 23

  = 

(− 3
5 )(− 3

2 ) Γ ( 13 ) 

                                                                                           = ( 9
10 ) Γ ( 13 ) 

10.5 Flow Chart of Gamma Function 

 

m
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Type I – ∫ 𝒆𝒆−𝒂𝒂𝒂𝒂𝒎𝒎∞
𝟎𝟎 𝒅𝒅𝒂𝒂 

Method of Solving: , Put axm=t ,   then differentiate, check limit points, reduces 
the given integral as gamma function, then we can solve by using definition of 
gamma function. 

Example 1: Evaluate  ∫ 𝑥𝑥7𝑒𝑒−2𝑥𝑥2∞
0 𝑑𝑑𝑥𝑥 

Solution :   Let  I= ∫ 𝑥𝑥7𝑒𝑒−2𝑥𝑥2∞
0 𝑑𝑑𝑥𝑥 ---------------------------(A) 

 Put  2x2 = t  or  x2 = t /2 

𝑥𝑥2 = 𝑡𝑡
2  − − − − − − − − − − − (𝑖𝑖) 

 ∴ 𝑥𝑥 = √𝑡𝑡
2  = 𝑡𝑡

1
2

√2
− − − − − − − (𝑖𝑖𝑖𝑖) 

Differentiating w.r.t. ‘ t’  we get  

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑  = 1 

√2 1
2 𝑡𝑡

−1
2  = 1 

2√2 𝑡𝑡
−1
2  

𝑑𝑑𝑥𝑥 =  1 

2√2
 𝑡𝑡

−1
2 𝑑𝑑𝑡𝑡 

Now limit point from (i) or (ii) 

Let x=0  =>  0 = 𝑑𝑑
2  => t= 0   i.e. x=0, =>  t= 0 

And  x =∞ => ∞= 𝑑𝑑
2 => t =∞  ∴  

x o ∞ 

t 0 ∞ 

∴ ( A)  becomes 

𝐼𝐼 =  ∫( 𝑡𝑡
1
2

√2
)7 1 

2√2
 𝑡𝑡

−1
2 𝑒𝑒−𝑑𝑑

∞

0

𝑑𝑑𝑡𝑡  

      

= ∫ 𝑡𝑡
7
2

(21 2⁄ )7

 
1 

2√2
 𝑡𝑡

−1
2 𝑒𝑒−𝑑𝑑

∞

0

𝑑𝑑𝑡𝑡  

= 1
27 2⁄

1
(2)21 2⁄ ∫ 𝑡𝑡7 2⁄  𝑡𝑡

−1
2 𝑒𝑒−𝑑𝑑

∞

0

𝑑𝑑𝑡𝑡 
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= 1
27 2⁄

1
23 2⁄ ∫ 𝑡𝑡3 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
2(7+3) 2⁄ ∫ 𝑡𝑡3 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
25 ∫ 𝑡𝑡4−1 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
32 ∫  𝑒𝑒−𝑡𝑡

∞

0

𝑡𝑡4−1𝑑𝑑𝑡𝑡 

Now using definition of gamma function   

 

Γ(n)   = ∫ 𝒆𝒆−𝒙𝒙𝒙𝒙𝒏𝒏−𝟏𝟏𝒅𝒅𝒙𝒙∞
𝟎𝟎    ( n > 

0) 

 

 

 

(∵ n= 4 , variable is ‘t’) 

∴= 1
32 ∫  𝑒𝑒−𝑡𝑡

∞

0
𝑡𝑡4−1𝑑𝑑𝑡𝑡 =  1

32  Γ(4) =  1
32 . 3! = 6

32 = 3
16 

∴ I = ∫ 𝑥𝑥7𝑒𝑒−2𝑥𝑥2
∞

0
𝑑𝑑𝑥𝑥 = 3

16 

Example2:  Evaluate  I = ∫ 𝑥𝑥9𝑒𝑒−2𝑥𝑥2∞
0 𝑑𝑑𝑥𝑥 

Solution: Let  I= ∫ 𝑥𝑥9𝑒𝑒−2𝑥𝑥2∞
0 𝑑𝑑𝑥𝑥---------------------------(A) 

 Put  2x2 = t  or  x2 = t /2 

𝑥𝑥2 = 𝑡𝑡
2  − − − − − − − − − − − (𝑖𝑖) 

 ∴ 𝑥𝑥 = √𝑡𝑡
2  = 𝑡𝑡

1
2

√2
 

Differentiating w.r.t. ‘ t’  we get  

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = 1 

√2
 12 𝑡𝑡

−1
2 = 1 

2√2
 𝑡𝑡

−1
2  
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𝑑𝑑𝑑𝑑 =  1 

2√2
 𝑡𝑡

−1
2 𝑑𝑑𝑡𝑡 

Now limit point from (i) Let x=0  =>  0 = 𝑡𝑡
2  => t= 0   i.e. x=0, =>  t= 0 

And  x =∞ => ∞= 𝑡𝑡
2 => t =∞  ∴  

x o ∞ 

t 0 ∞ 

∴ Integral Solution ( A)  becomes 

𝐼𝐼 =  ∫( 𝑡𝑡
1
2

√2
)9 1 

2√2
 𝑡𝑡

−1
2 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡  

      

= ∫ 1
(√2)9

 1 

2√2
𝑡𝑡9 2⁄  𝑡𝑡

−1
2 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡  

= 1
(√2)9

 1 

2√2
∫ 𝑡𝑡9 2⁄  𝑡𝑡

−1
2 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
29 2⁄

1
(2)21 2⁄ ∫ 𝑡𝑡9 2⁄  𝑡𝑡

−1
2 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
29 2⁄

1
(2)21 2⁄ ∫ 𝑡𝑡4 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
(2)25 ∫ 𝑡𝑡4 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
64 ∫ 𝑡𝑡5−1 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝑡𝑡 

= 1
64  Γ(5) ∵  by definition )

= 1
64  4! =  3

8

∴ I = ∫ 𝑑𝑑9𝑒𝑒−2𝑑𝑑2
∞

0
𝑑𝑑𝑑𝑑 = 3

8 
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Example3:  Evaluate  

I = ∫ 𝑥𝑥2𝑒𝑒−𝑘𝑘2𝑥𝑥
2∞

0
𝑑𝑑𝑥𝑥 

Solution: 

𝐿𝐿𝑒𝑒𝐿𝐿 𝐼𝐼 =  ∫ 𝑥𝑥2𝑒𝑒−𝑘𝑘2𝑥𝑥2
∞

0

𝑑𝑑𝑥𝑥 − − − − − − − − − − − −(𝐴𝐴)  

Put  h2 x2 = t  or  x2 = t / k2 

𝑥𝑥2 = 𝐿𝐿
𝑘𝑘2  − − − − − − − − − − − (𝑖𝑖) 

 ∴ 𝑥𝑥 = √ 𝐿𝐿
𝑘𝑘2  = √𝐿𝐿

𝑘𝑘  

Differentiating w.r.t. ‘ t’  we get  

𝑑𝑑𝑥𝑥
𝑑𝑑𝐿𝐿  = 1 

𝑘𝑘  12 𝐿𝐿−1 2⁄ = 1 

2𝑘𝑘  𝐿𝐿
−1
2  

𝑑𝑑𝑥𝑥 =  1 

2𝑘𝑘  𝐿𝐿
−1
2 𝑑𝑑𝐿𝐿 

Now limit point from (i) Let x=0  =>  0 = 𝑡𝑡
𝑘𝑘2  => t= 0   i.e. x=0, =>  t= 0 

And  x =∞ => ∞= 𝑡𝑡
𝑘𝑘2 => t =∞  ∴  

x o ∞ 

t 0 ∞ 

∴ Integral Solution ( A)  becomes 

𝐼𝐼 =  ∫(√𝐿𝐿
𝑘𝑘 )2 1 

2𝑘𝑘  𝐿𝐿
−1
2 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝐿𝐿 

 =  ∫ 𝐿𝐿
𝑘𝑘2

 1 

2𝑘𝑘  𝐿𝐿
−1
2 𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝐿𝐿 

=  1
2𝑘𝑘3 ∫  𝐿𝐿

1
2𝑒𝑒−𝑡𝑡

∞

0

𝑑𝑑𝐿𝐿 
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=  1
2𝑘𝑘3 ∫  𝑒𝑒−𝑡𝑡 𝑡𝑡

3
2−1 

∞

0

𝑑𝑑𝑡𝑡 

=  1
2𝑘𝑘3  Γ (3

2)        ( by definition ) 

=  1
2𝑘𝑘3

1
2  Γ (1

2)        

=  1
4𝑘𝑘3 √π                      ∵    Γ (1

2) = √π   ,

Γ(n + 1) =  n Γ(n) , if n is rational number   

Example 4:  Evaluate  
 

Solution: 

𝐿𝐿𝑒𝑒𝑡𝑡 I = ∫ √𝑥𝑥4 𝑒𝑒−√𝑥𝑥
∞

0
𝑑𝑑𝑥𝑥 = ∫ 𝑥𝑥1 4⁄ 𝑒𝑒−𝑥𝑥1 2⁄

∞

0
𝑑𝑑𝑥𝑥 − − − −(𝐴𝐴)  

Put  x1/2  = t  or  x = t2  ( Squaring on both sides ) 

x =  t2    − − − − − − − − − − − (𝑖𝑖) 

Differentiating w.r.t. ‘ t’  we get  

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = 2𝑡𝑡  ∴  𝑑𝑑𝑥𝑥 =  2𝑡𝑡 𝑑𝑑𝑡𝑡 

Now limit point from (i) Let x=0  =>  t = 0   i.e. x=0, =>  t= 0 

And  x = ∞ => t =∞  ∴  

x o ∞ 

t 0 ∞ 

∴ Integral Solution ( A)  becomes 

𝐼𝐼 =  ∫(𝑡𝑡2) 1 4⁄  𝑒𝑒−𝑡𝑡
∞

0

 2𝑡𝑡 𝑑𝑑𝑡𝑡 

 =  ∫ 𝑡𝑡1 2⁄  2𝑡𝑡  𝑒𝑒−𝑡𝑡
∞

0

  𝑑𝑑𝑡𝑡 

=  2 ∫ 𝑡𝑡3 2⁄    𝑒𝑒−𝑡𝑡
∞

0

  𝑑𝑑𝑡𝑡 

m
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=  2 ∫  𝑒𝑒−𝑡𝑡 𝑡𝑡3 2⁄
∞

0

𝑑𝑑𝑡𝑡 

=  2 ∫  𝑒𝑒−𝑡𝑡 𝑡𝑡
5
2−1 

∞

0

𝑑𝑑𝑡𝑡 

=  2 Γ (5
2)        ( by definition  of gamma function ) 

=  2 Γ (5
2 + 1)  =  2 (3

2) Γ (3
2)   =  2 (3

2) (1
2) Γ (1

2) 

=   3 (1
2) √π = (3

2) √π  

 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐈𝐈𝐈𝐈 = ∫ 𝒅𝒅𝒅𝒅
𝒂𝒂𝒅𝒅

∞

𝟎𝟎

 

Method of solving  put 𝑎𝑎𝑥𝑥 =  𝑒𝑒𝑡𝑡  

Take log on both sides  log  𝑎𝑎𝑥𝑥 = log  𝑒𝑒𝑡𝑡 ⇒  𝑥𝑥 log  𝑎𝑎 = 𝑡𝑡 log  𝑒𝑒 

𝑥𝑥 = 𝑡𝑡
log 𝑎𝑎   ∵ log  𝑒𝑒 = 1 

Differentiating  w.r.t. ‘t’ we get  

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = 1

log 𝑎𝑎   ∴  𝑑𝑑𝑥𝑥 =  𝑑𝑑𝑡𝑡
log 𝑎𝑎 

- Then checking limit points 

- Substitution given integral ( becomes ) reduces to gamma function. 

 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐓𝐓𝐄𝐄:  Evaluate I = ∫ 𝑥𝑥3

3𝑥𝑥

∞

0

𝑑𝑑𝑥𝑥 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  Let  I = ∫ 𝑥𝑥3

3𝑥𝑥

∞

0

𝑑𝑑𝑥𝑥 

put  3𝑥𝑥 =  𝑒𝑒𝑡𝑡 , Taking log on both sides   

𝑙𝑙𝑙𝑙𝑙𝑙 3𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑡𝑡 , ⇒ 𝑥𝑥 log 3 = 𝑡𝑡 log 𝑒𝑒   

𝑥𝑥 =  𝑡𝑡
log 3   − − − − − − − −(𝑖𝑖)      ∵ log e = 1 
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Differentiating w.r.t. ‘t’ we get  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =  1

log 3   ⇒ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
log 3  

 Now limits points from (i) 

When     𝑑𝑑 = 0 ⇒ t = 0 and    𝑑𝑑 = ∞ ⇒ t = ∞ 

x o ∞ 

t 0 ∞ 

 I = ∫ 𝑑𝑑3

3𝑥𝑥

∞

0

𝑑𝑑𝑑𝑑 =  ∫ [ 𝑑𝑑
log 3]

 

3∞

0

1
𝑒𝑒𝑡𝑡  𝑑𝑑𝑑𝑑

log 3 

=  ∫ 𝑑𝑑3

(log3)4  

∞

0

𝑒𝑒−𝑡𝑡 𝑑𝑑𝑑𝑑    =  ∫ 𝑑𝑑4−1

(log3)4  

∞

0

𝑒𝑒−𝑡𝑡 𝑑𝑑𝑑𝑑 = 1
(log3)4   ∫ 𝑑𝑑4−1

∞

0

𝑒𝑒−𝑡𝑡 𝑑𝑑𝑑𝑑 

=  1
(log3)4   Γ(4)    =  3!

(log3)4  = 6
(log3)4    

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐:  Evaluate I = ∫ 𝑑𝑑4

4𝑥𝑥

∞

0

𝑑𝑑𝑑𝑑 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  Let  I = ∫ 𝑑𝑑4

4𝑥𝑥

∞

0

𝑑𝑑𝑑𝑑 

put  4𝑥𝑥 =  𝑒𝑒𝑡𝑡 , Taking log on both sides   

𝑙𝑙𝑙𝑙𝑙𝑙 4𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑡𝑡 , ⇒ 𝑑𝑑 log 4 = 𝑑𝑑 log 𝑒𝑒   

𝑑𝑑 =  𝑑𝑑
log 4   − − − − − − − −(𝑖𝑖)      ∵ log e = 1 

Differentiating w.r.t. ‘t’ we get  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =  1

log 4   ⇒ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
log 4  

 Now limits points from (i) 

When     𝑑𝑑 = 0 ⇒ t = 0 and    𝑑𝑑 = ∞ ⇒ t = ∞ 

x o ∞ 

t 0 ∞ 

m
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 I = ∫ 𝑥𝑥4

4𝑥𝑥

∞

0

𝑑𝑑𝑥𝑥 =  ∫ [ 𝑡𝑡
log 4]

 

4∞

0

1
𝑒𝑒𝑡𝑡  𝑑𝑑𝑡𝑡

log 4 

=  ∫ 𝑡𝑡4

(log4)5  

∞

0

𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡    =  ∫ 𝑡𝑡5−1

(log4)5  

∞

0

𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡 = 1
(log4)5   ∫ 𝑡𝑡5−1

∞

0

𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡 

=  1
(log4)5   Γ(5)    =  4!

(log4)5  = 24
(log4)5    

 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐈𝐈𝐈𝐈𝐈𝐈 = ∫ log (1
𝑥𝑥

𝟏𝟏

𝟎𝟎

) 𝑑𝑑𝑥𝑥    𝑶𝑶𝑶𝑶 ∫(−𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥
𝟏𝟏

𝟎𝟎

) 𝑑𝑑𝑥𝑥     

Method of solving ∶   put 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑥𝑥 =  𝑡𝑡   𝑶𝑶𝑶𝑶 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 =  −𝑡𝑡  𝑶𝑶𝑶𝑶 𝑥𝑥

=  𝑒𝑒−𝑡𝑡 − − − −(𝑖𝑖) 

Differentiating  w.r.t. ‘t’ we get  

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = −𝑒𝑒−𝑡𝑡   ∴  𝑑𝑑𝑥𝑥 =  −𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡  

- Then checking limit points 

Now limits points from (i) 

When     𝑥𝑥 = 0 ⇒ 𝑒𝑒−𝑡𝑡 = 0 , t = ∞   

When    𝑥𝑥 = 1  ⇒ 𝑒𝑒−𝑡𝑡 = 1 , t = 0  

x o 1 

t ∞ 0 

 

- Substitution given integral ( becomes ) reduces to gamma function. 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐓𝐓 𝟏𝟏:  Evaluate I = ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥 

√𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑥𝑥

1

0

 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  Let I = ∫ 𝑥𝑥 𝑑𝑑𝑥𝑥 

√𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑥𝑥

1

0

− − − − − − − − − − − (𝐴𝐴) 

m
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Let log 1
𝑥𝑥 = 𝑡𝑡   𝑶𝑶𝑶𝑶 1

𝑥𝑥 = 𝑒𝑒𝑡𝑡 𝑶𝑶𝑶𝑶    𝑥𝑥 =  𝑒𝑒−𝑡𝑡  

  𝑥𝑥 =  𝑒𝑒−𝑡𝑡    − − − − − − − − − (𝑖𝑖) 

 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = −𝑒𝑒−𝑡𝑡   ∴  𝑑𝑑𝑥𝑥 =  −𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡  

Now limits points from (i) 

When     𝑥𝑥 = 0 ⇒ 𝑒𝑒−𝑡𝑡 = 0 , t = ∞   

When    𝑥𝑥 = 1  ⇒ 𝑒𝑒−𝑡𝑡 = 1 , t = 0  

x o 1 

t ∞ 0 

∴ Integral (A) becomes = ∫ 𝑒𝑒−𝑡𝑡 (−𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡) 
√𝑡𝑡

= ∫ −𝑒𝑒−2𝑡𝑡 𝑡𝑡−1 2⁄  
0

∞

𝑑𝑑𝑡𝑡 
0

∞

 

𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝐵𝐵 𝑝𝑝𝑜𝑜 𝑖𝑖𝑢𝑢𝑡𝑡𝑒𝑒𝑢𝑢𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑢𝑢, = ∫ 𝑒𝑒−2𝑡𝑡 𝑡𝑡−1 2⁄  
∞

0

𝑑𝑑𝑡𝑡 = ∫ 𝑒𝑒−2𝑡𝑡 𝑡𝑡 −12
1  

∞

0

𝑑𝑑𝑡𝑡 

𝑈𝑈𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘 𝐵𝐵𝑛𝑛−1 
∞

0

𝑑𝑑𝐵𝐵 =  Γ(n)
𝑘𝑘𝑛𝑛  

∴ ∫ 𝑒𝑒−2𝑡𝑡 𝑡𝑡 −12
1  

∞

0
𝑑𝑑𝑡𝑡 =

 Γ (1
2)

2
1
2

=  √𝜋𝜋
√2 = √𝜋𝜋

2 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐:  Evaluate I = ∫  𝑑𝑑𝑥𝑥 
√𝑥𝑥 𝑙𝑙𝑝𝑝𝑢𝑢𝑥𝑥

1

0

 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:  Let I = ∫  𝑑𝑑𝑥𝑥 
√𝑥𝑥 𝑙𝑙𝑝𝑝𝑢𝑢𝑥𝑥

1

0

− − − − − − − − − − − (𝐴𝐴) 

Let log 1
𝑥𝑥 = 𝑡𝑡   𝑶𝑶𝑶𝑶 1

𝑥𝑥 = 𝑒𝑒𝑡𝑡 𝑶𝑶𝑶𝑶    𝑥𝑥 =  𝑒𝑒−𝑡𝑡  

  𝑥𝑥 =  𝑒𝑒−𝑡𝑡    − − − − − − − − − (𝑖𝑖) 

 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = −𝑒𝑒−𝑡𝑡   ∴  𝑑𝑑𝑥𝑥 =  −𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡  

Now we check  limits points from (i) 

When     𝑥𝑥 = 0 ⇒ 𝑒𝑒−𝑡𝑡 = 0 , t = ∞   

m
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When    𝑥𝑥 = 1  ⇒ 𝑒𝑒−𝑡𝑡 = 1 , t = 0  

x o 1 

t ∞ 0 

∴ Integral (A) becomes = ∫ −𝑑𝑑𝑑𝑑 𝑒𝑒−𝑡𝑡  
√𝑒𝑒−𝑡𝑡  𝑑𝑑

=  − ∫  𝑒𝑒𝑡𝑡 2⁄  𝑑𝑑−1 2⁄
0

∞

𝑑𝑑𝑑𝑑 
0

∞

𝑒𝑒−𝑡𝑡 

𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑑𝑑𝐵𝐵 𝑝𝑝𝑜𝑜 𝑢𝑢𝑢𝑢𝑑𝑑𝑒𝑒𝑢𝑢𝑝𝑝𝑖𝑖𝑑𝑑𝑢𝑢𝑝𝑝𝑢𝑢, = ∫  𝑒𝑒−𝑡𝑡 2⁄  𝑑𝑑−1 2⁄
∞

0

𝑑𝑑𝑑𝑑   

𝑈𝑈𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘 𝐵𝐵𝑛𝑛−1 
∞

0

𝑑𝑑𝐵𝐵 =  Γ(n)
𝑘𝑘𝑛𝑛  

∴ ∫ 𝑒𝑒−𝑡𝑡 2⁄   𝑑𝑑 −12
1  

∞

0

𝑑𝑑𝑑𝑑   ( 𝐻𝐻𝑒𝑒𝑝𝑝𝑒𝑒, 𝑢𝑢 =  1 2 ⁄  , k = 1 2 ⁄ ) ⇒  =
 Γ (1

2)

(1 2⁄ )
1
2

=  √𝜋𝜋

√1 2⁄

= √2𝜋𝜋 

 

10.6 Beta Function 
Beta Function: The definite integral  ∫  𝑥𝑥𝑚𝑚−1 (1 − 𝑥𝑥)𝑛𝑛−11

0  𝑑𝑑𝑥𝑥 , 𝑚𝑚 >  0, 𝑢𝑢 > 0   
is a function of m  and  n  called Beta Function , denoted by B(m,n)  ( we read it 
as Beta (m,n)) 

𝐁𝐁(𝐦𝐦, 𝐧𝐧) =  ∫  𝒙𝒙𝒎𝒎−𝟏𝟏 (𝟏𝟏 − 𝒙𝒙)𝒏𝒏−𝟏𝟏
𝟏𝟏

𝟎𝟎

 𝒅𝒅𝒙𝒙 , 𝒎𝒎 >  0, 𝑢𝑢 > 0  

The Beta function is also called as Euler’s integral of the first kind.  Beta 
function of negative numbers is not defined. 

E. g. 1 ) B (3, 3
2) =  ∫  𝑥𝑥2 (1 − 𝑥𝑥)1 2⁄

1

0

 𝑑𝑑𝑥𝑥 ,

2 )  B (5, 5
2) =  ∫  𝑑𝑑4 (1 − 𝑑𝑑)3 2⁄

1

0

 𝑑𝑑𝑑𝑑  

 

m
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10.7 Properties of Beta Function : 
 
𝟏𝟏.  B(m, n) = B(n , m ) 

   Proof: B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1 (1 − 𝑥𝑥)𝑛𝑛−11
0  𝑑𝑑𝑥𝑥 , 𝑚𝑚 >  0, 𝑛𝑛 > 0 

 =  ∫  (1 − 𝑥𝑥)𝑚𝑚−1 (1 − (1 − 𝑥𝑥)𝑛𝑛−1
1

0

 𝑑𝑑𝑥𝑥 ,

∵  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑎𝑎 − 𝑥𝑥)𝑑𝑑𝑥𝑥 
𝑎𝑎

0

 
𝑎𝑎

0

, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑎𝑎 = 1 

∴ B(m, n) =  ∫  (1 − 𝑥𝑥)𝑚𝑚−1 . 𝑥𝑥𝑛𝑛−1
1

0
 𝑑𝑑𝑥𝑥 = 1 ∫  𝑥𝑥𝑛𝑛−1 (1 − 𝑥𝑥)𝑚𝑚−1

1

0
 𝑑𝑑𝑥𝑥 = 𝐵𝐵(𝑛𝑛, 𝑚𝑚) 

  

B( m, n ) = B( n, m ) 

𝟐𝟐.  ∫  𝑥𝑥𝑚𝑚 (1 − 𝑥𝑥)𝑛𝑛
1

0
 𝑑𝑑𝑥𝑥 = 𝐵𝐵(𝑚𝑚 + 1, 𝑛𝑛 + 1) 

𝟑𝟑.  B(m, n) = 2 ∫  𝑠𝑠𝑠𝑠𝑛𝑛2𝑚𝑚−1 𝜃𝜃
𝜋𝜋/2

0
   𝑐𝑐𝑐𝑐𝑠𝑠2𝑛𝑛−1 𝜃𝜃 𝑑𝑑𝜃𝜃 

Proof: B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1 (1 − 𝑥𝑥)𝑛𝑛−1
1

0

 𝑑𝑑𝑥𝑥 , 𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 =  𝑠𝑠𝑠𝑠𝑛𝑛2 𝜃𝜃, 𝑑𝑑𝑥𝑥

= 2 sin 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 𝑑𝑑𝜃𝜃  

x o 1 

θ 0 π/2 

                      =  ∫  𝑠𝑠𝑠𝑠𝑛𝑛2𝑚𝑚−2 𝜃𝜃
𝜋𝜋/2

0

  (1 −  𝑠𝑠𝑠𝑠𝑛𝑛2 𝜃𝜃)𝑛𝑛−1  2𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 𝑑𝑑𝜃𝜃 

  B(m, n) = 2 ∫  𝑠𝑠𝑠𝑠𝑛𝑛2𝑚𝑚−1 𝜃𝜃
𝜋𝜋/2

0
   𝑐𝑐𝑐𝑐𝑠𝑠2𝑛𝑛−1 𝜃𝜃 𝑑𝑑𝜃𝜃 

We consider this as a definition of Beta Function. 

Further , let   2m − 1 = p, 2n − 1 = q ∴ m =  
p + 1

2 , n = q + 1
2  then  

m
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  B (p + 1
2 , q + 1

2 ) = 2 ∫  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝜃𝜃
𝜋𝜋/2

0
 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃 

  Standard Formula ∶   ∫  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝜃𝜃
𝜋𝜋/2

0
 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃 =  1

2 B (p + 1
2 , q + 1

2 ) 

𝟒𝟒.  B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1

(1 + 𝑥𝑥)𝑚𝑚+𝑠𝑠

∞

0
 𝑑𝑑𝑥𝑥 

Proof: B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1 (1 − 𝑥𝑥)𝑛𝑛−1
1

0

 𝑑𝑑𝑥𝑥 , 𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 =  𝑝𝑝
1 + 𝑝𝑝  ( 𝑠𝑠. 𝑒𝑒. 𝑥𝑥(1 + 𝑝𝑝)

= 𝑝𝑝 , ∴ 𝑥𝑥 + 𝑥𝑥𝑝𝑝 = 𝑝𝑝) 

 ∴ 𝑥𝑥 = 𝑝𝑝 − 𝑥𝑥𝑝𝑝   𝑂𝑂𝑂𝑂  𝑝𝑝 =  𝑥𝑥
1 − 𝑥𝑥   ( 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑠𝑠𝑒𝑒  𝑁𝑁𝑐𝑐𝑝𝑝𝑒𝑒 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠) 

  ∴ when 𝑥𝑥 = 0,   𝑝𝑝 =  0
1 − 0    𝑃𝑃𝑠𝑠𝑑𝑑  when 𝑥𝑥 = 1, 𝑝𝑝 =  0

1 − 1  = 1
0 =  ∞ 

x 0 1 

t 0 ∞ 

Also 𝑑𝑑𝑥𝑥 =   
(1 + 𝑝𝑝)(1) − 𝑝𝑝(1)𝑝𝑝

(1 + 𝑝𝑝)2  𝑑𝑑𝑝𝑝 = 1
(1 + 𝑝𝑝)2  𝑑𝑑𝑝𝑝  

 B(m, n) =  ∫  
∞

0

 𝑝𝑝𝑚𝑚−1

(1 + 𝑝𝑝)𝑚𝑚−1 . (1 −
t

1 + t)
𝑛𝑛−1

. 𝑑𝑑𝑝𝑝
(1 + 𝑝𝑝)2   

              =  ∫  
∞

0

 𝑝𝑝𝑚𝑚−1 𝑑𝑑𝑝𝑝
 (𝑝𝑝 + 1)𝑚𝑚−1(1 + 𝑝𝑝)𝑛𝑛−1(1 + 𝑝𝑝)2 = 𝑝𝑝𝑚𝑚−1𝑑𝑑𝑝𝑝

(1 + 𝑝𝑝)𝑚𝑚+𝑛𝑛  

   B(m, n)  =  ∫  
∞

0

 𝑥𝑥𝑚𝑚−1 
(1 + 𝑥𝑥)𝑚𝑚+𝑛𝑛 𝑑𝑑𝑥𝑥 

 ( Note: We consider this result also as another definition of Beta Function) 

B(m + 1, n + 1) =  ∫  
∞

0

 𝑥𝑥𝑚𝑚(1 − 𝑥𝑥)𝑛𝑛 𝑑𝑑𝑥𝑥  

𝟓𝟓. Relationbetween Beta and Gamma Function,   B(m, n) =  Γ(m)Γ(n)
Γ(m + n) 

m
unotes.in
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𝟔𝟔. ∫  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝜃𝜃
𝜋𝜋/2

0
 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃 =  1

2 B (p + 1
2 , q + 1

2 ) =  
Γ (p + q

2 ) Γ(q + 1
2 )

Γ(p + q + 2
2 )

 

Put p = 0, q = 0  ∫  

𝜋𝜋
2

0
𝑑𝑑𝜃𝜃 =  1

2 
Γ (1

2) Γ (1
2)

Γ(1)  ⇒  𝜋𝜋 
2 = 1 

2  (Γ (1
2))

2

    ∴  Γ (1
2)

= √𝜋𝜋   

10.8 Problem based on  Beta Function 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐈𝐈 ∶ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐓𝐓𝐄𝐄 𝐛𝐛𝐄𝐄𝐄𝐄𝐓𝐓𝐛𝐛 𝐨𝐨𝐨𝐨  𝐛𝐛𝐓𝐓𝐝𝐝𝐝𝐝𝐨𝐨𝐝𝐝𝐝𝐝𝐝𝐝𝐨𝐨𝐨𝐨 𝐨𝐨𝐝𝐝 𝐁𝐁𝐓𝐓𝐝𝐝𝐄𝐄 𝐅𝐅𝐅𝐅𝐨𝐨𝐅𝐅𝐝𝐝𝐝𝐝𝐨𝐨𝐨𝐨    

  B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1 (1 − 𝑥𝑥)𝑛𝑛−1
1

0

 𝑑𝑑𝑥𝑥  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐓𝐓 𝟏𝟏: Evaluate    ∫  𝑥𝑥3 (1 − √𝑥𝑥)5
1

0

 𝑑𝑑𝑥𝑥 

𝐒𝐒𝐨𝐨𝐄𝐄𝐅𝐅𝐝𝐝𝐝𝐝𝐨𝐨𝐨𝐨: Let  I =    ∫  𝑥𝑥3 (1 − √𝑥𝑥)5
1

0

 𝑑𝑑𝑥𝑥 

 𝑝𝑝𝑝𝑝𝑝𝑝 √𝑥𝑥 =  𝑝𝑝 , ∴ 𝑥𝑥 =   𝑝𝑝2 𝐷𝐷𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑝𝑝𝑠𝑠𝐷𝐷𝑝𝑝𝑠𝑠𝑠𝑠𝐷𝐷 𝑤𝑤. 𝐷𝐷. 𝑝𝑝.′ 𝑝𝑝 ′ 𝑤𝑤𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝  ∴
𝑑𝑑𝑥𝑥
𝑑𝑑𝑝𝑝 = 2𝑝𝑝 ⇒ 𝑑𝑑𝑥𝑥

= 2𝑝𝑝 𝑑𝑑𝑝𝑝 

 Now checking limit point by using  𝑥𝑥 =   𝑝𝑝2    

  ∴ when 𝑥𝑥 = 0,   𝑝𝑝2 =  0   ⇒ t = 0 , 𝐷𝐷𝑠𝑠𝑑𝑑  when 𝑥𝑥 = 1, 𝑝𝑝2 =  1   ⇒ t = 1  

 

x 0 1 

t 0 1 

∴ the given integral I becomes   I =   ∫  (𝑝𝑝2)3 (1 − 𝑝𝑝)5
1

0

 2𝑝𝑝 𝑑𝑑𝑝𝑝  

∴    I =   ∫  (𝑝𝑝)6 (1 − 𝑝𝑝)5
1

0

 2𝑝𝑝 𝑑𝑑𝑝𝑝 = 2 ∫  𝑝𝑝7 (1 − 𝑝𝑝)5
1

0

  𝑑𝑑𝑝𝑝  

m
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∴    I =   ∫  𝑡𝑡8−1 (1 − 𝑡𝑡)6−1
1

0

  𝑑𝑑𝑡𝑡

= 2 𝐵𝐵 ( 8 ,6 ) − − − − − − − (𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷) 

Now using Relationbetween Beta and Gamma Function,   B(m, n) =  Γ(m)Γ(n)
Γ(m + n) 

∴    I = Γ(8)Γ(6)
Γ(8 + 6) = 2.

(7!)(5!)
(13!) =  1

5148  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐: Evaluate    ∫ 𝑑𝑑𝑑𝑑
√1 − 𝑑𝑑33

1

0

  

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒: Let  I =    ∫ 𝑑𝑑𝑑𝑑
√1 − 𝑑𝑑33

1

0

 

𝑝𝑝𝑝𝑝𝑡𝑡 𝑑𝑑3 =  𝑡𝑡 , ∴ 𝑑𝑑 =   𝑡𝑡1 3 ⁄  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤. 𝐷𝐷. 𝑡𝑡.′ 𝑡𝑡 ′ 𝑤𝑤𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 ∴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 1

3 𝑡𝑡1
3−1 

= 1
3 𝑡𝑡−2 3⁄  

 ∴ dx = 1
3 𝑡𝑡−2 3⁄ 𝑑𝑑𝑡𝑡 , Now checking limit point by using  𝑑𝑑 =   𝑡𝑡1 3⁄   

  ∴ when 𝑑𝑑 = 0,
𝑡𝑡1 3⁄ =  0   ⇒ t = 0 , 𝐷𝐷𝐷𝐷𝑑𝑑  when 𝑑𝑑 = 1, 𝑡𝑡1 3⁄ =  1   ⇒ t = 1  

 

x 0 1 

t 0 1 

∴ the given integral I becomes   I =   ∫  
1
3 𝑡𝑡−2 3⁄  𝑑𝑑𝑡𝑡
(1 − 𝑡𝑡)1 3⁄

1

0

 

 

∴ I =  1
3 ∫  𝑡𝑡−2 3⁄  (1 − 𝑡𝑡)−1 3⁄  𝑑𝑑𝑡𝑡 = ∫  

1

0

 𝑡𝑡1
3−1  (1 − 𝑡𝑡)2

3−1 𝑑𝑑𝑡𝑡 
1

0

 

∴ I =  1
3  B (1

3 , 2
3) − − − − − −𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷 

 

m
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Now using Relationbetween Beta and Gamma Function,   B(m, n) =  Γ(m)Γ(n)
Γ(m + n) 

∴ I = 1
3 

 Γ (1
3) Γ (2

3)

Γ (1
3 + 2

3)
= 1

3 
 13

Γ(1) =  1
3 Γ (1

3) Γ (2
3)   ∵  Γ(1) = 1      

∴ I =  1
3 Γ (1

3) Γ (1 − 1
3)            o < 𝑝𝑝 < 1 , 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Γ(p)Γ(1 − p)      = 𝜋𝜋

𝑈𝑈𝑈𝑈𝑈𝑈𝑝𝑝𝜋𝜋 

 ∴ I = 1
3 𝜋𝜋

sin 𝜋𝜋
3

=  1
3 𝜋𝜋

√3
2

 =   2𝜋𝜋
3√3

 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐈𝐈𝐈𝐈 − 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐓𝐓𝐄𝐄 𝐁𝐁𝐄𝐄𝐄𝐄𝐓𝐓𝐁𝐁 𝐨𝐨𝐨𝐨  

 ∫  𝑈𝑈𝑈𝑈𝑈𝑈𝑝𝑝𝜃𝜃
𝜋𝜋/2

0
 𝑐𝑐𝑐𝑐𝑈𝑈𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃 =  1

2 B (p + 1
2 , q + 1

2 ) =  
Γ (p + q

2 ) Γ (q + 1
2 )

Γ (p + q + 2
2 )

 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐓𝐓 𝟏𝟏: Find    ∫  √𝑡𝑡𝑡𝑡𝑈𝑈𝜃𝜃  𝑑𝑑𝜃𝜃  𝜋𝜋/2
0    

𝐒𝐒𝐨𝐨𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐨𝐨𝐨𝐨:  Let I =   ∫  √𝑡𝑡𝑡𝑡𝑈𝑈𝜃𝜃 𝑑𝑑𝜃𝜃 =   ∫  √𝑈𝑈𝑈𝑈𝑈𝑈𝜃𝜃
𝑐𝑐𝑐𝑐𝑈𝑈𝜃𝜃   𝑑𝑑𝜃𝜃 

𝜋𝜋/2

0

  
𝜋𝜋/2

0

 

 ∴  I =   ∫    𝑈𝑈𝑈𝑈𝑈𝑈1 2⁄ 𝜃𝜃  𝑐𝑐𝑐𝑐𝑈𝑈−1 2⁄ 𝜃𝜃 𝑑𝑑𝜃𝜃 
𝜋𝜋/2

0

 

put p =  1 2⁄ , q =   −1 2⁄  Using result    ∫  𝑈𝑈𝑈𝑈𝑈𝑈𝑝𝑝𝜃𝜃

𝜋𝜋
2

0
 𝑐𝑐𝑐𝑐𝑈𝑈𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃

=  1
2 B (p + 1

2 , q + 1
2 ) 

∴  I =  1
2 B (

1
2 + 1

2 ,
−1
2 + 1

2 ) = 1
2 B (3

4 , 1
4) 

∴  I =  1
2

Γ (3
4) Γ (1

4)

Γ (3
4 + 1

4)
= 1

2
Γ (3

4) Γ (1
4)

Γ(1) = 1
2 Γ (3

4) Γ (1
4)   ∵  Γ(1) = 1

 

Using Γ(p)Γ(1 − p)      = 𝜋𝜋
𝑈𝑈𝑈𝑈𝑈𝑈𝑝𝑝𝜋𝜋 

m
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 ∴ I = 1
2 Γ (1 − 1

4) Γ (1
4) = 1

2 𝜋𝜋
sin 𝜋𝜋

4
=  1

2 𝜋𝜋
1

√2
 =   √2𝜋𝜋

2 = 𝜋𝜋
√2

 

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍: Similarly we can show    ∫  √𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑑𝑑𝑐𝑐 =  𝜋𝜋
√2

  
𝜋𝜋/2

0

 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍 𝟐𝟐: Find    ∫  √𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑑𝑑𝑐𝑐  𝜋𝜋/2
0    

𝐒𝐒𝐍𝐍𝐄𝐄𝐒𝐒𝐍𝐍𝐒𝐒𝐍𝐍𝐒𝐒:  Let I =   ∫  √𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐 𝑑𝑑𝑐𝑐 =   ∫  √𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐   𝑑𝑑𝑐𝑐 

𝜋𝜋/2

0

  
𝜋𝜋/2

0

 

 ∴  I =   ∫    𝑐𝑐𝑠𝑠𝑡𝑡−1 2⁄ 𝑐𝑐  𝑐𝑐𝑐𝑐𝑐𝑐1 2⁄ 𝑐𝑐 𝑑𝑑𝑐𝑐 
𝜋𝜋/2

0

 

put p =  −1 2⁄ , q =   1 2⁄  Using result    ∫  𝑐𝑐𝑠𝑠𝑡𝑡𝑝𝑝𝑐𝑐

𝜋𝜋
2

0
 𝑐𝑐𝑐𝑐𝑐𝑐𝑞𝑞𝑐𝑐 𝑑𝑑𝑐𝑐

=  1
2 B (p + 1

2 , q + 1
2 ) 

∴  I =  1
2 B (

−1
2 + 1

2 ,
1
2 + 1

2 ) = 1
2 B (1

4 , 3
4) 

∴  I =  1
2

Γ (3
4) Γ (1

4)

Γ (3
4 + 1

4)
= 1

2
Γ (3

4) Γ (1
4)

Γ(1) = 1
2 Γ (3

4) Γ (1
4)   ∵  Γ(1) = 1

 

Using Γ(p)Γ(1 − p)      = 𝜋𝜋
𝑐𝑐𝑠𝑠𝑡𝑡𝑝𝑝𝜋𝜋 

 ∴ I = 1
2 Γ (1 − 1

4) Γ (1
4) = 1

2 𝜋𝜋
sin 𝜋𝜋

4
=  1

2 𝜋𝜋
1

√2
 =   √2𝜋𝜋

2 = 𝜋𝜋
√2

 

𝐓𝐓𝐓𝐓𝐄𝐄𝐍𝐍 𝐈𝐈𝐈𝐈𝐈𝐈 −  Examples based on  B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1

(1 + 𝑥𝑥)𝑚𝑚+𝑡𝑡

∞

0
 𝑑𝑑𝑥𝑥 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍 𝟏𝟏: 𝐅𝐅𝐒𝐒𝐒𝐒𝐅𝐅  ∫  𝑥𝑥8− 𝑥𝑥14

(1 + 𝑥𝑥)24

∞

0
 𝑑𝑑𝑥𝑥 

m
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ Let I =  ∫  𝑥𝑥8− 𝑥𝑥14

(1 + 𝑥𝑥)24

∞

0
 𝑑𝑑𝑥𝑥 

=  ∫  𝑥𝑥8

(1 + 𝑥𝑥)24

∞

0
 𝑑𝑑𝑥𝑥 − ∫  𝑥𝑥14

(1 + 𝑥𝑥)24

∞

0
 𝑑𝑑𝑥𝑥  

=  ∫  𝑥𝑥9−1

(1 + 𝑥𝑥)9+15

∞

0
 𝑑𝑑𝑥𝑥 − ∫  𝑥𝑥15−1

(1 + 𝑥𝑥)15+9

∞

0
 𝑑𝑑𝑥𝑥 

=  B( 9, 15) −  𝐵𝐵( 15 , 9)   ∵ B(m, n) = B(m, n) 

∴  𝐼𝐼 = 0 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐒𝐒𝐄𝐄 ∶ 𝐅𝐅𝐒𝐒𝐒𝐒𝐅𝐅  ∫  𝑥𝑥
9(1 − 𝑥𝑥5)

(1 + 𝑥𝑥)25

∞

0
 𝑑𝑑𝑥𝑥 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ Let I =  ∫  𝑥𝑥
9(1 − 𝑥𝑥5)

(1 + 𝑥𝑥)25

∞

0
 𝑑𝑑𝑥𝑥 =  ∫  (𝑥𝑥9−𝑥𝑥14)

(1 + 𝑥𝑥)25

∞

0
 𝑑𝑑𝑥𝑥 

  = ∫  𝑥𝑥9

(1 + 𝑥𝑥)25

∞

0
 𝑑𝑑𝑥𝑥 − ∫  𝑥𝑥14

(1 + 𝑥𝑥)25

∞

0
 𝑑𝑑𝑥𝑥  

  = ∫  𝑥𝑥10−1

(1 + 𝑥𝑥)10+15

∞

0
 𝑑𝑑𝑥𝑥 − ∫  𝑥𝑥15−1

(1 + 𝑥𝑥)15+10

∞

0
 𝑑𝑑𝑥𝑥  

=  B( 10, 15) −  𝐵𝐵( 15 ,10)   ∵ B(m, n) = B(m, n) 

∴  𝐼𝐼 = 0 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐒𝐒𝐄𝐄 𝟑𝟑 ∶  𝐏𝐏𝐏𝐏𝐒𝐒𝐏𝐏𝐄𝐄 𝐒𝐒𝐭𝐭𝐄𝐄𝐒𝐒   ∫  𝑑𝑑𝑥𝑥
1 + 𝑥𝑥4

∞

0
=   𝜋𝜋

2√2 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  Let  I =   ∫  𝑑𝑑𝑥𝑥
1 + 𝑥𝑥4

∞

0
=  ∫  𝑑𝑑𝑥𝑥

1 + (𝑥𝑥2)2

∞

0
   

𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥2 = tan 𝜃𝜃  , ∴ 𝑥𝑥 =   √𝑝𝑝𝑡𝑡𝑡𝑡𝜃𝜃  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑝𝑝𝐷𝐷𝑡𝑡𝑝𝑝𝐷𝐷𝑡𝑡𝐷𝐷 𝑤𝑤. 𝐷𝐷. 𝑝𝑝.′ 𝑥𝑥 ′ 𝑤𝑤𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝  

∴ 2𝑥𝑥 𝑑𝑑𝑥𝑥
𝑑𝑑𝜃𝜃 = 𝑠𝑠𝐷𝐷𝑠𝑠2𝜃𝜃   ∴ 2𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑠𝑠𝐷𝐷𝑠𝑠2𝜃𝜃 𝑑𝑑𝜃𝜃  ∴ 𝑑𝑑𝑥𝑥 =  𝑠𝑠𝐷𝐷𝑠𝑠2𝜃𝜃 𝑑𝑑𝜃𝜃  

2𝑥𝑥 =  𝑠𝑠𝐷𝐷𝑠𝑠2𝜃𝜃 𝑑𝑑𝜃𝜃  
2√𝑝𝑝𝑡𝑡𝑡𝑡𝜃𝜃 

 

    

 ∴∴ 𝑑𝑑𝑥𝑥 =   𝑠𝑠𝐷𝐷𝑠𝑠2𝜃𝜃 𝑑𝑑𝜃𝜃  
2√𝑝𝑝𝑡𝑡𝑡𝑡𝜃𝜃 

 , Now checking limit point by using  𝑥𝑥2 = tan 𝜃𝜃  
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  ∴ when 𝑥𝑥 = 0,

0 = tan 𝜃𝜃   ⇒  𝜃𝜃 = 0 , 𝑎𝑎𝑎𝑎𝑎𝑎  when 𝑥𝑥 = ∞ , ⇒  𝜃𝜃 = π
2  ∵   𝑡𝑡𝑎𝑎𝑎𝑎 π

2
=  ∞  

 

x 0     1 

𝜃𝜃 0 𝜋𝜋/2 

 ∴  the given integral I becomes , =   ∫  
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 𝑎𝑎𝜃𝜃  
2√𝑡𝑡𝑎𝑎𝑎𝑎𝜃𝜃 

1 + 𝑡𝑡𝑎𝑎𝑎𝑎2𝜃𝜃 

𝜋𝜋/2

0
    

= 1
2  ∫  

𝜋𝜋/2

0
 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃
√𝑡𝑡𝑎𝑎𝑎𝑎𝜃𝜃 

 𝑎𝑎𝜃𝜃 
(𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃)  =  1

2 ∫  
𝜋𝜋/2

0
 1
√𝑡𝑡𝑎𝑎𝑎𝑎𝜃𝜃 

 𝑎𝑎𝜃𝜃  

= 1
2  ∫ √𝑠𝑠𝑐𝑐𝑡𝑡𝜃𝜃  

𝜋𝜋/2

0
 𝑎𝑎𝜃𝜃 =  ∫  𝑠𝑠𝑠𝑠𝑎𝑎−1 2⁄ 𝜃𝜃

𝜋𝜋
2

0
 𝑠𝑠𝑐𝑐𝑠𝑠1 2⁄ 𝜃𝜃 𝑎𝑎𝜃𝜃   

put p =  −1 2⁄ , q =   1 2⁄  Using result    ∫  𝑠𝑠𝑠𝑠𝑎𝑎𝑝𝑝𝜃𝜃

𝜋𝜋
2

0
 𝑠𝑠𝑐𝑐𝑠𝑠𝑞𝑞𝜃𝜃 𝑎𝑎𝜃𝜃

=  1
2 B (p + 1

2 , q + 1
2 ) 

∴  I = 1
2 12 B (

−1
2 + 1

2  ,
 12 + 1

2 ) = 1
4 B (1

4 , 3
4) 

∴  I =  1
4

Γ (3
4) Γ (1

4)

Γ (3
4 + 1

4)
= 1

4
Γ (3

4) Γ (1
4)

Γ(1) = 1
4 Γ (3

4) Γ (1
4)   ∵  Γ(1) = 1

 

Using Γ(p)Γ(1 − p)      = 𝜋𝜋
𝑠𝑠𝑠𝑠𝑎𝑎𝑝𝑝𝜋𝜋 

 ∴ I = 1
4 Γ (1 − 1

4) Γ (1
4) = 1

4 𝜋𝜋
sin 𝜋𝜋

4
=  1

4 𝜋𝜋
1

√2
 = 1

2√2√2
 𝜋𝜋

1
√2

  = 𝜋𝜋
2√2

 

(𝐍𝐍𝐍𝐍𝐍𝐍 𝐓𝐓𝐓𝐓𝐓𝐓𝐍𝐍 )𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐓𝐓𝐄𝐄𝐍𝐍 𝟒𝟒 ∶  𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍   ∫(𝑥𝑥 − 3)1 2⁄ (5 − 𝑥𝑥)1 2⁄ 𝑎𝑎𝑥𝑥 
5

3
 

m
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ Let I =     ∫(𝑥𝑥 − 3)1 2⁄ (5 − 𝑥𝑥)1 2⁄ 𝑑𝑑𝑥𝑥 
5

3
 

𝑝𝑝𝑝𝑝𝑝𝑝 (𝑥𝑥 − 3) = ( 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝 ) 𝑝𝑝 

∴ (𝑥𝑥 − 3) = ( 5 − 3) 𝑝𝑝    ∴ (x − 3) = 2𝑝𝑝  ∴ 𝑥𝑥 = (2𝑝𝑝 + 3) 

∴ 𝑑𝑑𝑥𝑥
𝑑𝑑𝑝𝑝 =   2  , ∴ 𝑑𝑑𝑥𝑥 = 2 𝑑𝑑𝑝𝑝   Now checking limit point by using  𝑥𝑥 = (2𝑝𝑝 + 3)   

 ∴ when 𝑥𝑥 = 3, 2𝑝𝑝 = 0  ⇒  𝑝𝑝 = 0 , 𝑎𝑎𝑎𝑎𝑑𝑑  when 𝑥𝑥 = 5 , ⇒ 5 = 2t + 3 ⇒  𝑝𝑝
= 1 

x 3 5 

t 0 1 

∴  I = ∫(2𝑝𝑝)1 2⁄ (5 − (2𝑝𝑝 + 3))1 2⁄  2𝑑𝑑𝑝𝑝  
1

0
 

= ∫  2 √2  𝑝𝑝1 2⁄ (2 − 2𝑝𝑝)1 2⁄  𝑑𝑑𝑝𝑝  
1

0

 

= 2 √2 ∫   𝑝𝑝1 2⁄  (2)1 2⁄ (1 − 𝑝𝑝)1 2⁄  𝑑𝑑𝑝𝑝  
1

0

 

= 2 √2  √2 ∫   𝑝𝑝1 2⁄  (1 − 𝑝𝑝)1 2⁄  𝑑𝑑𝑝𝑝  
1

0

 

= 4 ∫   𝑝𝑝 −12
3  (1 − 𝑝𝑝) −12

3  𝑑𝑑𝑝𝑝  
1

0

 

= 4𝐵𝐵(3
2 , 3

2 ) 

=  4 
Γ (3

2) Γ (3
2)

Γ (3
2 + 3

2)
= 4

Γ (3
2) Γ (3

2)
Γ(3) = 4

1
2 Γ (1

2) 1
2 Γ (1

2)
Γ(3)  

=  4 
2!

1
2 Γ(π) 12 Γ(π) =  π

2 

 

 

m
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10.9 Duplication Formula of Gamma Functions 
 

 𝚪𝚪(𝐦𝐦)𝚪𝚪 (𝐦𝐦 + 𝟏𝟏
𝟐𝟐) =  √𝛑𝛑 

𝟐𝟐𝟐𝟐𝐦𝐦−𝟏𝟏 𝚪𝚪(𝟐𝟐𝐦𝐦) 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏: Consider ,   1 
2

Γ (p + 1
2 ) Γ (q + 1

2 )

Γ (p + q + 2
2 )

=    ∫  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝜃𝜃

𝜋𝜋
2

0
 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃

=  1
2 B (p + 1

2 , q + 1
2 ) 

Put = = 2m − 1, q = q = 2m − 1    (i. e.  m = p + 1
2 , m =  q + 1

2  ) 

   1 
2

Γ(m)Γ(m)
Γ(2m) =    ∫  𝑠𝑠𝑠𝑠𝑠𝑠2𝑚𝑚−1𝜃𝜃

𝜋𝜋
2

0

 𝑐𝑐𝑐𝑐𝑠𝑠2𝑚𝑚−1𝜃𝜃 𝑑𝑑𝜃𝜃 

   Γ
(m)Γ(m)
Γ(2m) =    2 

22𝑚𝑚−1   ∫  

𝜋𝜋
2

0

(2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)2𝑚𝑚−1 𝑑𝑑𝜃𝜃 

                      =    2 
22𝑚𝑚−1   ∫  

𝜋𝜋
2

0

(𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃)2𝑚𝑚−1 𝑑𝑑𝜃𝜃    ,    𝑃𝑃𝑃𝑃𝑃𝑃 2𝜃𝜃 = 𝑃𝑃 , ∴   𝑑𝑑𝜃𝜃

=   1 
2 𝑑𝑑𝑃𝑃      

𝜃𝜃 0    𝜋𝜋/2  

t 0 𝜋𝜋 

       =    1 
22𝑚𝑚−1   ∫  

𝜋𝜋
2

0

(𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃)2𝑚𝑚−1 𝑑𝑑𝑃𝑃 =  1 
22𝑚𝑚−1  2 ∫  

𝜋𝜋
2

0

𝑠𝑠𝑠𝑠𝑠𝑠2𝑚𝑚−1 𝑃𝑃. 𝑑𝑑𝑃𝑃     [∵ 𝑓𝑓(𝜋𝜋 − 𝑃𝑃)

= 𝑓𝑓(𝑃𝑃)] 

       =    2
22𝑚𝑚−1    ∫  

𝜋𝜋
2

0

𝑠𝑠𝑠𝑠𝑠𝑠2𝑚𝑚−1 𝑃𝑃. 𝑐𝑐𝑐𝑐𝑠𝑠0 𝑃𝑃. 𝑑𝑑𝑃𝑃     
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       =  Γ(m)Γ(m)
Γ(2m)  = 2

22𝑚𝑚−1
1
2  

Γ (2m − 1 + 1
2 ) Γ (0 + 1

2 )

Γ (2m − 1 + 0 + 2
2 )

 

=  1
22𝑚𝑚−1  Γ(m)√π 

Γ (m + 1
2)

  

∴  𝚪𝚪(𝐦𝐦)𝚪𝚪 (𝐦𝐦 + 𝟏𝟏
𝟐𝟐) =  √𝛑𝛑 

𝟐𝟐𝟐𝟐𝐦𝐦−𝟏𝟏 𝚪𝚪(𝟐𝟐𝐦𝐦) 

 

10.10 Exercise 

1. Prove that  ∫ √𝑥𝑥 𝑒𝑒− √𝑥𝑥3  
∞

0

 𝑑𝑑𝑥𝑥 =  315
16 √𝜋𝜋           ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ 𝑥𝑥 = t3 )  

2. Prove that  ∫ 𝑥𝑥7 𝑒𝑒−2𝑥𝑥2
∞

0

 𝑑𝑑𝑥𝑥 =  3
16           ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ 2𝑥𝑥𝟐𝟐 = t  ) 

3. Prove that  ∫ 𝑥𝑥2 𝑒𝑒−ℎ2𝑥𝑥2 
∞

0

 𝑑𝑑𝑥𝑥 =  √𝜋𝜋
4ℎ3            ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶  ℎ2𝑥𝑥2 = t  ) 

4. Prove that  ∫ √𝑦𝑦  𝑒𝑒−𝑦𝑦3 
∞

0

 𝑑𝑑𝑦𝑦 =  √𝜋𝜋
3            ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ y3 = t  ) 

5. Prove that  ∫ 𝑑𝑑𝑥𝑥

√𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑥𝑥

 
1

0

 =  √2𝜋𝜋            ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ 𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑥𝑥 = t  ) 

6. Prove that  ∫ 𝑑𝑑𝑥𝑥
√−𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 

 
1

0

 =  √𝜋𝜋       ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ −𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 = 𝑡𝑡  ) 

7. Evaluate   ∫ 𝑥𝑥3 
1

0

(1 − √𝑥𝑥)5 𝑑𝑑𝑥𝑥           ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶  √𝐱𝐱 = 𝑡𝑡  )            𝑨𝑨𝑨𝑨𝑨𝑨: 1
5148 

8. Evaluate   ∫ 𝑛𝑛 
𝑛𝑛

0

(𝑛𝑛 − 𝑥𝑥)𝑝𝑝 𝑑𝑑𝑥𝑥           ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶   𝑥𝑥

= 𝑛𝑛𝑡𝑡  )          𝑨𝑨𝑨𝑨𝑨𝑨: 𝑛𝑛𝑛𝑛+𝑝𝑝+1𝐵𝐵(𝑛𝑛 + 1, 𝑝𝑝 + 1) 

           

m
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9. Prove that B(m, n)

=    ∫ 𝑥𝑥𝑛𝑛−1

(1 + 𝑥𝑥)𝑚𝑚+𝑛𝑛 
∞

0

 𝑑𝑑𝑥𝑥                                                                      

  ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ Put  𝑥𝑥      = 1
1 + 𝑡𝑡

 
 in the defnition of B(m, n))           

10. Show that   ∫ 𝑥𝑥 
2

0

(8 − 𝑥𝑥3)1 3⁄  𝑑𝑑𝑥𝑥 =    2𝜋𝜋
3√3

           

  ( 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 ∶ Put  𝑥𝑥3  = 𝑡𝑡, 𝑈𝑈𝑈𝑈𝑈𝑈 Γ(p)Γ(1 − p) =  𝜋𝜋
sin 𝑝𝑝𝜋𝜋  , 0 < 𝑝𝑝 < 1)           

10.12 Summary 
In this unit we learn Gamma and Beta Function and its Duplication Formula 

Gamma Function 

Γ(n)   = ∫ 𝑈𝑈−𝑥𝑥𝑥𝑥𝑛𝑛−1𝑑𝑑𝑥𝑥∞
0    ( n > 0)  

Γ(n)   = 2 ∫ 𝑈𝑈−𝑡𝑡2𝑡𝑡2𝑛𝑛−1  𝑑𝑑𝑡𝑡 ∞
0  

Γ(1) = 1   

Γ(n+1)   = n Γ(n)    

Γ(n+1)   = n Γ(n)  in general , n is rational  number  

               =  n!   if n is a positive integer 

Γ(0)   = ∞  , Γ(1
2 ) = √𝜋𝜋  , Γ(n+1)   = n! 

Type I – ∫ 𝑈𝑈−𝑎𝑎𝑥𝑥𝑚𝑚∞
0 𝑑𝑑𝑥𝑥 , Type II = ∫ 𝑑𝑑𝑥𝑥

𝑎𝑎𝑥𝑥
∞

0  , Type III =

∫ log (1
𝑥𝑥

1
0 ) 𝑑𝑑𝑥𝑥    𝑂𝑂𝑂𝑂 ∫ (−𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥1

0 ) 𝑑𝑑𝑥𝑥 

Beta Function 

B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1 (1 − 𝑥𝑥)𝑛𝑛−1
1

0

 𝑑𝑑𝑥𝑥 , 𝑚𝑚 >  0, 𝑛𝑛 > 0  

B(m, n) = B(n , m )  

∫  𝑥𝑥𝑚𝑚 (1 − 𝑥𝑥)𝑛𝑛
1

0

 𝑑𝑑𝑥𝑥 = 𝐵𝐵(𝑚𝑚 + 1, 𝑛𝑛 + 1) 

m
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B(m, n) = 2 ∫  𝑠𝑠𝑠𝑠𝑠𝑠2𝑚𝑚−1 𝜃𝜃
𝜋𝜋/2

0
   𝑐𝑐𝑐𝑐𝑠𝑠2𝑠𝑠−1 𝜃𝜃 𝑑𝑑𝜃𝜃 

  B(m, n) =  ∫  𝑥𝑥𝑚𝑚−1

(1 + 𝑥𝑥)𝑚𝑚+𝑠𝑠

∞

0
 𝑑𝑑𝑥𝑥 

B(m, n) =  Γ(m)Γ(n)
Γ(m + n) 

∫  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝜃𝜃

𝜋𝜋
2

0

 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞𝜃𝜃 𝑑𝑑𝜃𝜃 =  1
2 B (p + 1

2 ,
q + 1

2 ) =  
Γ (p + q

2 ) Γ (q + 1
2 )

Γ (p + q + 2
2 )

 

Duplication Formula 

Γ(m)Γ (m + 1
2) =  √π 

22m−1 Γ(2m) 
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Unit 5 

11 
DIFFERENTIATION UNDER THE INTEGRAL 

SIGN ( DUIS ) & ERROR FUNCTIONS 
Unit Structure 

11.0 OBJECTIVES 

11.1 Introduction 

11.2 Rule - I 

11.3 Rule - II 

11.4 Error Function:-Definition 

11.5 Properties of Error Functions 

11.6 Differentiation and Integration of Error function 

11.7 Exercise 

11.8 Summary 

11.9 References 

11.0 Objectives 

After going through this unit, you will be able to:  

• Understand the concept of Differential Under the integral sign ( DUIS) and 
Error Functions 

• Solve the problem based on Leibnitz’s Rule. 

• Know the concept of Differentiation and Integration of Error Function. 

11.1 Introduction 

Not all integrals can be evaluated using analytical techniques, such as integration 
by substitution, by parts or by partial fractions. People come up with different ways 
of solving the integrals and DUIS is one of them. It is an effective technique used 

in evaluation of real definite integrals. When a definite integral  𝐼𝐼 =  ∫ 𝑓𝑓(𝑥𝑥, 𝛼𝛼 )𝑑𝑑𝑥𝑥,𝑏𝑏
𝑎𝑎  

which is to be integrated w.r.t. variable x and contains parameter  , by using DUIS.  

m
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There are different rules when limits of integral are constants or functions of 
parameter 𝛼𝛼 When DUIS technique is used , the definite integral evaluation results 
into an ordinary differential equation, the solution of this equation results in the 
evaluation of definite integral. The technique is very useful in Laplace Transform. 
Error function integral is close to Probability Integral and is used in probability 
distribution. Complementary error functions are involved in finding inverse 
Laplace transforms of complicated functions. 

11.2 Rule I : Integral With Limits  ( a,b) as Constants 

 If  I(α) =  ∫ 𝑓𝑓(𝑥𝑥, 𝛼𝛼 )𝑑𝑑𝑥𝑥,𝑏𝑏
𝑎𝑎  Where a and b are constants , then 

       dI
dα =  ∫ 𝜕𝜕

𝜕𝜕𝛼𝛼 𝑓𝑓(𝑥𝑥, 𝛼𝛼 )𝑑𝑑𝑥𝑥 
𝑏𝑏

𝑎𝑎

 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏: dI
dα =   𝐥𝐥𝐥𝐥𝐥𝐥

𝛿𝛿𝛿𝛿→0
 𝐈𝐈((𝛼𝛼 + 𝛿𝛿𝛼𝛼) − 𝐼𝐼(𝛼𝛼)

𝛿𝛿𝛼𝛼    

                      =   𝐥𝐥𝐥𝐥𝐥𝐥
𝛿𝛿𝛿𝛿→0

 𝟏𝟏
𝛿𝛿𝛼𝛼 [∫ 𝑓𝑓(𝑥𝑥, 𝛼𝛼 + 𝛿𝛿𝛼𝛼 )𝑑𝑑𝑥𝑥 −  ∫ 𝑓𝑓(𝑥𝑥, 𝛼𝛼 )𝑑𝑑𝑥𝑥 

𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎

]   

                      =   𝐥𝐥𝐥𝐥𝐥𝐥 
𝛿𝛿𝛿𝛿→0

𝟏𝟏
𝛿𝛿𝛼𝛼   ∫[𝑓𝑓(𝑥𝑥, 𝛼𝛼 + 𝛿𝛿𝛼𝛼 ) −  𝑓𝑓(𝑥𝑥, 𝛼𝛼 )]𝑑𝑑𝑥𝑥 

𝑏𝑏

𝑎𝑎

 

                      =   𝐥𝐥𝐥𝐥𝐥𝐥 
𝛿𝛿𝛿𝛿→0

   ∫ [𝑓𝑓(𝑥𝑥, 𝛼𝛼 + 𝛿𝛿𝛼𝛼 )–  𝑓𝑓(𝑥𝑥, 𝛼𝛼 )
𝛿𝛿𝛼𝛼 ]

𝑏𝑏

𝑎𝑎

 𝑑𝑑𝑥𝑥 

                      =     ∫ 𝐥𝐥𝐥𝐥𝐥𝐥 
𝛿𝛿𝛿𝛿→0

 [𝑓𝑓(𝑥𝑥, 𝛼𝛼 + 𝛿𝛿𝛼𝛼 ) −  𝑓𝑓(𝑥𝑥, 𝛼𝛼 )
𝛿𝛿𝛼𝛼 ]

𝑏𝑏

𝑎𝑎

 𝑑𝑑𝑥𝑥 

    ∴     dI
dα    =     ∫ 𝜕𝜕

𝜕𝜕𝛼𝛼 𝑓𝑓(𝑥𝑥, 𝛼𝛼 )𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

      ( 𝑏𝑏𝑏𝑏 𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜 𝑑𝑑𝐷𝐷𝑜𝑜𝐷𝐷𝑑𝑑𝑜𝑜𝐷𝐷𝐷𝐷𝑑𝑑𝐷𝐷 ) 

 𝐑𝐑𝐑𝐑𝐥𝐥𝐑𝐑 − 𝐈𝐈 ∶ 𝐈𝐈𝐏𝐏 𝐈𝐈(𝛂𝛂) =  ∫ 𝒇𝒇(𝒙𝒙, 𝜶𝜶 )𝒅𝒅𝒙𝒙 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝒃𝒃

𝒂𝒂

   𝐝𝐝𝐈𝐈
𝐝𝐝𝛂𝛂 =     ∫ 𝝏𝝏

𝝏𝝏𝜶𝜶 𝒇𝒇(𝒙𝒙, 𝜶𝜶 )𝒅𝒅𝒙𝒙
𝒃𝒃

𝒂𝒂

       

It may be noted  that if integral involves two parameters  ‘x’  and ‘𝛼𝛼′  integration 
is to be carried out w.r.t variable ‘x’ treating 𝛼𝛼′ as constant. Rule (I ) gives method 
to differentiate integral w.r.t. parameter 𝛼𝛼  
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𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄:  Evaluate ∫ 𝑒𝑒−𝑥𝑥

𝑥𝑥 (1 − 𝑒𝑒−𝑎𝑎𝑥𝑥
∞

0

)𝑑𝑑𝑥𝑥  ( 𝑎𝑎 > −1) 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:   ϕ(a) =    ∫ 𝑒𝑒−𝑥𝑥

𝑥𝑥 (1 − 𝑒𝑒−𝑎𝑎𝑥𝑥
∞

0

)𝑑𝑑𝑥𝑥  

Differentiating w. r. t.  a, dϕ
da =    ∫ 𝜕𝜕

𝜕𝜕𝑎𝑎 [𝑒𝑒−𝑥𝑥

𝑥𝑥 (1 − 𝑒𝑒−𝑎𝑎𝑥𝑥)]
∞

0

𝑑𝑑𝑥𝑥 

                   dϕ
da =    ∫ 𝑒𝑒−𝑥𝑥

𝑥𝑥 (−𝑒𝑒−𝑎𝑎𝑥𝑥)(−𝑥𝑥)
∞

0

𝑑𝑑𝑥𝑥 

                          =    [ 𝑒𝑒−(𝑎𝑎+1)𝑥𝑥

−(𝑎𝑎 + 1)]
0

∞

=  𝑒𝑒−∞

−(𝑎𝑎 + 1) −  𝑒𝑒0

−(𝑎𝑎 + 1)   ∵ a + 1 > 0  𝑖𝑖 . 𝑒𝑒. 𝑎𝑎

>  −1    

                          =    𝟎𝟎 +   1
(𝑎𝑎 + 1) 

∴ dϕ =  𝑑𝑑𝑎𝑎
(𝑎𝑎 + 1) 

ϕ(𝑎𝑎) = log(𝑎𝑎 + 1) +  C 

To determine C, put  𝑎𝑎 = 0 ∴ ϕ(0) =   0 + C 

But  , ϕ(0) =  ∫ 𝑒𝑒−𝑥𝑥

𝑥𝑥 (1 − 1)(−𝑥𝑥)
∞

0

𝑑𝑑𝑥𝑥 = 0    ∴ C = 0 

𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻𝑒𝑒, ϕ(𝑎𝑎) = log(𝑎𝑎 + 1)   

 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 ∶ Prove that  Evaluate ∫ 𝑥𝑥𝑎𝑎 − 1
log 𝑥𝑥 

1

0

𝑑𝑑𝑥𝑥 = log( 1 + 𝑎𝑎) ;  𝑎𝑎  ≥ 0 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:   Let      ϕ(a) =    ∫ 𝑥𝑥𝑎𝑎 − 1
log 𝑥𝑥 

1

0

𝑑𝑑𝑥𝑥    

Differentiating w. r. t.  a, dϕ
da =    ∫ 𝜕𝜕

𝜕𝜕𝑎𝑎 [𝑥𝑥𝑎𝑎 − 1
log 𝑥𝑥 ]

1

0

𝑑𝑑𝑥𝑥 

                dϕ
da =    ∫ 1

log 𝑥𝑥   . 𝑥𝑥𝑎𝑎
1

0

 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 . 𝑑𝑑𝑥𝑥 
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                dϕ
da =    ∫ 𝑥𝑥𝑎𝑎

1

0

𝑑𝑑𝑥𝑥 =  [ 𝑥𝑥𝑎𝑎+1 

𝑎𝑎 + 1 ]0

1
      ∵    𝑎𝑎 ≥ 0    

. 

          ∴    dϕ =  1
(𝑎𝑎 + 1)  𝑑𝑑𝑎𝑎 

∴   ϕ(a) = log(𝑎𝑎 + 1) +  𝐶𝐶 

To determine C, put  𝑎𝑎 = 0 ∴ ϕ(0) =   0 + C 

But  , ϕ(0) =  ∫ 𝑥𝑥0 − 1
log 𝑥𝑥 

1

0

𝑑𝑑𝑥𝑥 = 0    ,    ∴ C = 0 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, ϕ(𝑎𝑎) = log(𝑎𝑎 + 1)   

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟑𝟑 ∶ Prove that  ∫ cos 𝜆𝜆𝑥𝑥
𝑥𝑥

∞

0

 (𝐻𝐻−𝑎𝑎𝑎𝑎 − 𝐻𝐻−𝑏𝑏𝑎𝑎)𝑑𝑑𝑥𝑥

= 1
2 log (𝑏𝑏2 + 𝜆𝜆2

𝑎𝑎2 + 𝜆𝜆2) ; 𝑎𝑎 > 0 , 𝑏𝑏 > 0 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:   Let      ϕ(a) =    ∫ cos 𝜆𝜆𝑥𝑥
𝑥𝑥

∞

0

 (𝐻𝐻−𝑎𝑎𝑎𝑎 −  𝐻𝐻−𝑏𝑏𝑎𝑎)𝑑𝑑𝑥𝑥    

Differentiating w. r. t.  a, dϕ
da =    ∫ 𝜕𝜕

𝜕𝜕𝑎𝑎 [  cos 𝜆𝜆𝑥𝑥
𝑥𝑥 (𝐻𝐻−𝑎𝑎𝑎𝑎 −  𝐻𝐻−𝑏𝑏𝑎𝑎)]

∞

0

𝑑𝑑𝑥𝑥 

    dϕ
da =    ∫  cos 𝜆𝜆𝑥𝑥

𝑥𝑥  [𝐻𝐻−𝑎𝑎𝑎𝑎(−𝑥𝑥) − 0]𝑑𝑑𝑥𝑥
∞

0

=  − ∫  𝐻𝐻−𝑎𝑎𝑎𝑎  cos 𝜆𝜆𝑥𝑥  𝑑𝑑𝑥𝑥
∞

0

  

          =  − [ 𝐻𝐻−𝑎𝑎𝑎𝑎

𝑎𝑎2 + 𝜆𝜆2  (−𝑎𝑎 𝐻𝐻𝑐𝑐𝑐𝑐𝜆𝜆𝑥𝑥 +   𝜆𝜆 𝑐𝑐𝑠𝑠𝐻𝐻𝜆𝜆𝑥𝑥)]
0

∞
 

By Using  , ∫ 𝐻𝐻𝑎𝑎𝑎𝑎 cos 𝑏𝑏𝑥𝑥 𝑑𝑑𝑥𝑥 =  𝐻𝐻𝑎𝑎𝑎𝑎

𝑎𝑎2 + 𝑏𝑏2  (𝑎𝑎 𝐻𝐻𝑐𝑐𝑐𝑐𝑏𝑏𝑥𝑥 +   𝑏𝑏 𝑐𝑐𝑠𝑠𝐻𝐻𝑏𝑏𝑥𝑥)  

    dϕ
da =    − [ 0 − 𝐻𝐻0

𝑎𝑎2 + 𝜆𝜆2 (−𝑎𝑎 + 0)] =  −𝑎𝑎
𝑎𝑎2 + 𝜆𝜆2  

    dϕ =   −𝑎𝑎
𝑎𝑎2 + 𝜆𝜆2  𝑑𝑑𝑎𝑎 

∴   ϕ(a) =  −1
2  ∫ 2𝑎𝑎

𝑎𝑎2 + 𝜆𝜆2  da   
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∴   ϕ(a) =  −1
2  [log (𝑎𝑎2 + 𝜆𝜆2)] +  C   

To determine C, put  𝑎𝑎 = b ∴ ϕ(b) =   −1
2  [log (𝑏𝑏2 + 𝜆𝜆2)] +  C     

ϕ(b) =  ∫ 𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑐𝑐
𝑐𝑐

∞

0
 (e−𝑏𝑏𝑏𝑏 − e−𝑏𝑏𝑏𝑏) 𝑑𝑑𝑐𝑐 +  C = 0     

∴   C =  12  log (𝑏𝑏2 + 𝜆𝜆2) 

∴   ϕ(a) = −  12  log (𝑎𝑎2 + 𝜆𝜆2) +  1
2  log (𝑏𝑏2 + 𝜆𝜆2) =  1

2 log (𝑏𝑏2 + 𝜆𝜆2

𝑎𝑎2 + 𝜆𝜆2)  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟒𝟒 ∶ Show that  ∫ 𝑡𝑡𝑎𝑎𝑡𝑡−1(𝑎𝑎𝑐𝑐)
𝑐𝑐(1 + 𝑐𝑐2)

∞

0

. 𝑑𝑑𝑐𝑐 = 𝜋𝜋
2 log(1 + 𝑎𝑎 ) 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:   Let      ϕ(a) =  ∫ 𝑡𝑡𝑎𝑎𝑡𝑡−1(𝑎𝑎𝑐𝑐)
𝑐𝑐(1 + 𝑐𝑐2)

∞

0

. 𝑑𝑑𝑐𝑐     

Differentiating w. r. t.  a, dϕ
da =    ∫ 𝜕𝜕

𝜕𝜕𝑎𝑎 [ 𝑡𝑡𝑎𝑎𝑡𝑡−1(𝑎𝑎𝑐𝑐)
𝑐𝑐(1 + 𝑐𝑐2)  ]

∞

0

𝑑𝑑𝑐𝑐 

           dϕ
da =    ∫  

∞

𝟎𝟎
 1. (𝑐𝑐)
(1 + 𝑎𝑎2𝑐𝑐2) . 1

𝑐𝑐(1 + 𝑐𝑐2)  𝑑𝑑𝑐𝑐 

           dϕ
da =    ∫  

∞

𝟎𝟎
 𝑑𝑑𝑐𝑐
(1 + 𝑎𝑎2𝑐𝑐2)(1 + 𝑐𝑐2) 

           dϕ
da =    ∫  

∞

𝟎𝟎
 (

1
(1 − 1 𝑎𝑎2⁄
1 + 𝑎𝑎2𝑐𝑐2 +  

1
1 − 𝑎𝑎2

1 + 𝑐𝑐2 )  𝑑𝑑𝑐𝑐 

           dϕ
da =  𝟏𝟏

1 − 𝑎𝑎2  [∫ 𝑑𝑑𝑐𝑐
1 + 𝑐𝑐2

∞

𝟎𝟎
 – ∫ 𝑎𝑎2

1 + 𝑎𝑎2𝑐𝑐2

∞

𝟎𝟎
 ] 𝑑𝑑𝑐𝑐  

           dϕ
da =  𝟏𝟏

1 − 𝑎𝑎2  [𝑡𝑡𝑎𝑎𝑡𝑡−1𝑐𝑐 −  𝑎𝑎 𝑡𝑡𝑎𝑎𝑡𝑡−1(𝑎𝑎𝑐𝑐)]𝟎𝟎
∞𝑑𝑑𝑐𝑐 

           =  1
1 − 𝑎𝑎2  [𝜋𝜋

2 − 𝑎𝑎. 𝜋𝜋
2] =  𝜋𝜋

2  (1 − 𝑎𝑎)
(1 − 𝑎𝑎)(1 + 𝑎𝑎) =  𝜋𝜋

2 . 1
(1 + 𝑎𝑎) 

 

           dϕ =  𝜋𝜋
2 . 𝑑𝑑𝑎𝑎

(1 + 𝑎𝑎)  ∴   ϕ(a) =   𝜋𝜋
2 log(1 + 𝑎𝑎) +  𝐶𝐶 

m
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           To determine C,we put a = 0 ∴   ϕ(0) =    𝐶𝐶 

 ∴   ϕ(0) =  ∫
𝑡𝑡𝑡𝑡𝑡𝑡−1(0)
𝑥𝑥(1 + 𝑥𝑥2)  𝑑𝑑𝑥𝑥 = 0  ∴ C = 0

   

∞

0
 

ϕ(a) =   𝜋𝜋2 log(1 + 𝑡𝑡) 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟓𝟓 ∶ Evaluate ∫ 𝑑𝑑𝑥𝑥
𝑡𝑡 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥

𝜋𝜋

0

 , 𝑡𝑡 > 0,   |𝑏𝑏| < 𝑡𝑡  𝑡𝑡𝑡𝑡𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓 

 ∫ 𝑑𝑑𝑥𝑥
(𝑡𝑡 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥)2

𝜋𝜋

0

=  𝜋𝜋𝑡𝑡
(𝑡𝑡2 − 𝑏𝑏2)3 2⁄   𝑡𝑡𝑡𝑡𝑑𝑑  ∫ 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥 𝑑𝑑𝑥𝑥

(𝑡𝑡 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥)2 = 
𝜋𝜋

0

−𝜋𝜋𝑏𝑏
(𝑡𝑡2 − 𝑏𝑏2)3 2⁄  

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒:   Let      I =  ∫ 𝑑𝑑𝑥𝑥
𝑡𝑡 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥

𝜋𝜋

0

 𝑃𝑃𝑑𝑑𝑡𝑡 𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥
2 , 𝑑𝑑𝑥𝑥 = 2𝑑𝑑𝑡𝑡

1 + 𝑡𝑡2  , 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥 =  1 − 𝑡𝑡2

1 + 𝑡𝑡2  

x 0 π 
t 0 ∞ 

  I =  ∫
2𝑑𝑑𝑡𝑡

1 + 𝑡𝑡2

𝑡𝑡 + 𝑏𝑏 1 − 𝑡𝑡2

1 + 𝑡𝑡2 

∞

0

 = 2∫ 𝑑𝑑𝑡𝑡
𝑡𝑡 + 𝑡𝑡𝑡𝑡2 + 𝑏𝑏 + 𝑏𝑏𝑡𝑡2

∞

0
 

  =  2∫ 𝑑𝑑𝑡𝑡
(𝑡𝑡 + 𝑏𝑏) + (𝑡𝑡 − 𝑏𝑏)𝑡𝑡2  =  2

(𝑡𝑡 − 𝑏𝑏) ∫
𝑑𝑑𝑡𝑡

(𝑡𝑡 + 𝑏𝑏)
(𝑡𝑡 − 𝑏𝑏) + 𝑡𝑡2

   
∞

0
 

∞

0
 

  =  2
(𝑡𝑡 − 𝑏𝑏) 

[
 
 
 1

√𝑡𝑡 + 𝑏𝑏
𝑡𝑡 − 𝑏𝑏

 𝑡𝑡𝑡𝑡𝑡𝑡−1 (√𝑡𝑡 − 𝑏𝑏
𝑡𝑡 + 𝑏𝑏    𝑡𝑡)

]
 
 
 

0

∞

 

= 2
√𝑡𝑡2 − 𝑏𝑏2

 ( 𝑡𝑡𝑡𝑡𝑡𝑡−1∞ −  𝑡𝑡𝑡𝑡𝑡𝑡−10) = 2
√𝑡𝑡2 − 𝑏𝑏2

 𝜋𝜋2 

 ∴  ∫ 𝑑𝑑𝑥𝑥
𝑡𝑡 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥

𝜋𝜋

0

= 𝜋𝜋
√𝑡𝑡2 − 𝑏𝑏2

− − − − − − − − − − − − − (1) 

Differentiating (1) both sides w.r.t. a 

∫ 𝜕𝜕
𝜕𝜕𝑡𝑡 [ 1

𝑡𝑡 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥]
𝜋𝜋

0

𝑑𝑑𝑥𝑥 =   𝜋𝜋2  (𝑡𝑡2 − 𝑏𝑏2)3 2⁄  .2𝑡𝑡  

∫ − 1
(𝑡𝑡 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥)2

𝜋𝜋

0

𝑑𝑑𝑥𝑥 =  −𝜋𝜋𝑡𝑡  (𝑡𝑡2 − 𝑏𝑏2)3 2⁄  
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∴  ∫ 1
(𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2

𝜋𝜋

0

𝑑𝑑𝑏𝑏 = 𝜋𝜋𝑎𝑎
(𝑎𝑎2 − 𝑏𝑏2)3 2⁄ − − − − − − − − − − − − − (2) 

Differentiating (1) both sides w.r.t. b 

∫ 𝜕𝜕
𝜕𝜕𝑎𝑎 [ 1

𝑎𝑎 + 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]
𝜋𝜋

0

𝑑𝑑𝑏𝑏 =   𝜋𝜋
2  (𝑎𝑎2 − 𝑏𝑏2)3 2⁄  . (−2𝑏𝑏)  

∫ −1. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
(𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2

𝜋𝜋

0

𝑑𝑑𝑏𝑏 =  𝜋𝜋𝑏𝑏
(𝑎𝑎2 − 𝑏𝑏2)3 2⁄  

𝑖𝑖. 𝑒𝑒.  ∫ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
(𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2

𝜋𝜋

0

𝑑𝑑𝑏𝑏 =  −𝜋𝜋𝑏𝑏
(𝑎𝑎2 − 𝑏𝑏2)3 2⁄ − − − − − − − − − (3) 

Hence (1), (2) , (3) are the  required results. 

11.3 Rule – II Integral With Limits as Functions of the Parameter 
: Leibnintz’s Rule 
If  I(α )

= ∫ 𝑓𝑓(𝑏𝑏, 𝛼𝛼)𝑑𝑑𝑏𝑏,
b(𝛼𝛼)

a(𝛼𝛼)
 where a and bare functions of the parameter 𝛼𝛼 , 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 , 

dI
dα = ∫ ∂

∂α {f(x, α)}dx + f(b, α) 
b(α)

a(α)

db
dα −  f(a, α) da

dα 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏: Since the parameter α enters into the function I( α)due to the interal  
f(x, α)and due to the limits a, b which are functions of  α, we express this by  
denoting I( α)as I( α) = ϕ( α, b, a), from  the below tree diagram, we get  
 

 

  

 

 

 

 

dI
dα = ∂I

∂α (I) + ∂I
∂b

db
dα + ∂I

∂a 
da
dα  − − − − − − − − − − − − − (I) 

I 

α b a 

α 

m
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Now, I(α) = ∫ 𝑓𝑓(𝑥𝑥, 𝛼𝛼)𝑑𝑑𝑥𝑥  𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑅𝑅𝑢𝑢𝑅𝑅𝑅𝑅 𝐼𝐼,
b(𝛼𝛼)

a(𝛼𝛼)

∂I
∂α (I) 

is obtained by treating a, b as constants, 

We have, ∂I
∂α = ∫ ∂

∂α  𝑓𝑓(𝑥𝑥, 𝛼𝛼)𝑑𝑑𝑥𝑥   
b(𝛼𝛼)

a(𝛼𝛼)
− − − − − − − − − − − − − − − −(II)  

Let the definite integral be representd as  ∫ f(x, α)dx = ψ (x, α),
   

i. e. ∂
∂x [ ψ (x, α)] = f(x, α) − − − − − − − − − − − − − − − − − (III) 

Hence ϕ( α, b, a) = I(α)

= ∫  𝑓𝑓(𝑥𝑥, 𝛼𝛼)𝑑𝑑𝑥𝑥 =  [ ψ (x, α)]a(𝛼𝛼)
b(𝛼𝛼) =  ψ (b, α) − ψ (a, α)

b(𝛼𝛼)

a(𝛼𝛼)
− −   

− − − − − − − − − − − − − − − − − − − − − −(𝐼𝐼𝐼𝐼) 

Hence  from IV , we get , 
∂I
∂b =  ∂ϕ

∂b = ∂
∂b ψ (b, α) = f(b, α)   (from III) − − − − − − − − − (V) 

∂I
∂a =  ∂ϕ

∂a =  − ∂
∂b ψ (a, α) = −f(a, α)   (from III) − − − − − − − (VI) 

Hence substituting from equations (II), (V), (VI)in (I)we get 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐈𝐈𝐈𝐈: dI
dα = d

dα ∫ f(x, α)dx 
b(α)

a(α)
= ∫ ∂

∂a f(x, α)dx + f(b, α) db
dα −  f(a, α) da

dα  
b(α)

a(α)
 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐑𝐑𝐑𝐑 𝟏𝟏
∶ Verify the rule of differentiation under integral sign for the integral 

 ∫ log( 𝑎𝑎𝑥𝑥)𝑑𝑑𝑥𝑥 
a2

a

  

 

𝐒𝐒𝐒𝐒𝐑𝐑𝐑𝐑𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶   ϕ(a) =  ∫ log( ax)dx 
a2

a
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dϕ
da =   ∫ ∂

∂a log( ax)dx 
a2

a

+  { d
da (a2)} log(a. a2) − { d

da (a)} . log a2 

       =   ∫ 1
ax . x. dx

a2

a

+  2𝑎𝑎. log(a3) − 2 log  a   

       =  [1
a x]

a

a2

+  6a. log(a) − 2 log  a   

       =  1
a (a2 − a) +  6a. log(a) − 2 log a 

       =  (a − 1) + 6a. log(a) − 2 log  a − − − − − − − − − − − − − − − −(1)   

ϕ(a) = ∫ log(ax) . 1. dx =  [log(ax) . x]a
a2 − 

a2

a

∫ 1
ax . a. x. dx

a2

a

  

          = a2 log a3 −  a log a2 − [x]a
a2 = 3a2 log a − 2a log a − ( a2 − a) 

  dϕ
da = 6a log  a + 3 a2. 1

a −  2 log  a − 2a . 1
a −  ( 2a − 1) 

  dϕ
da = 6a log  a − 2 log  a +  a − 1     − − − − − − − − − − − − − − − (2) 

From (1)and (2)the rule is verified  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐 ∶ 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐭𝐭𝐒𝐒𝐄𝐄𝐭𝐭  ϕ (a) =  ∫ sin ax
x  dx

π 2a⁄

π 6a⁄
 is independent of a  

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐭𝐭𝐒𝐒𝐒𝐒𝐒𝐒 ∶  To show that  ϕ (a)

=  ∫ sin ax
x  dx

π 2a⁄

π 6a⁄
 is independent of a, we find ϕ′(a)Using DUIS RuleII 

dϕ
da =  ∫  ∂

∂a (sin ax
x ) dx +  { d

da ( π
2a)}

π 2a⁄

π 6a⁄
.
sin (a ( π

2a))

( π
2a)

− { d
da ( π

6a)} .
sin (a ( π

6a))

( π
6a
 

)

   

dϕ
da =  ∫  cos ax. x. dx

x + (− π
2a2)

π 2a⁄

π 6a⁄
. 1
(π 2a)⁄ − ( π

6a2) . 1 2⁄
(π 6a)⁄    
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         =  [sin ax
a ]

π 6a⁄

π 2a⁄
− 1

a + 1
2a = 1

a  [sin π
2 − sin π

6] − 1
a + 1

2a 

         =  1
a − 1

2a + 1
2a − 1

a = 0 

Thus , dϕ
da = 0 implies that  ϕ(a)  independent of a 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟑𝟑: 

Verify the rule of differentiation under integral sign for the integral 

  ∫ tan−1 x
a  dx

a2

0

  

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  ϕ(a) =  ∫ tan−1 x
a  dx

a2

0

 

ϕ′(a) =  ∫ ∂
∂a (tan−1 x

a)  dx
a2

0

+ { d
da (a2)} tan−1 (a2

a ) − { d
dx (0)} tan−1(0) 

     =  ∫ 1

1 + x2

a2

( x
a2)  dx

a2

0

+ 2a tan−1(a) =  − ∫ x
a2 + x2  dx 

a2

0

+ 2a tan−1(a)  

     =  − 12  ∫ 2x . dx
a2 + x2 

a2

0

+ 2a tan−1a =  − 12 [log(a2 + x2)]0
a22a tan−1a  

     =  − 12   [log(a2 + a4) − log a2] + 2a tan−1a  

     =  − 12 log a2(1 + a2)
a2 +  2a tan−1a  

  ∴    ϕ′(a)   =  − 12 log(1 + a2) +  2a tan−1a         − − − − − − − − − − − (1) 

Next by integration by parts 

ϕ (a)   =  ∫ tan−1 (x
a) . 1. dx

a2

0
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         =  [tan−1 (x
a) (x)]

0

a2

−  ∫ 1

1 + x2

a2

. 1
a . x. dx

a2

0

 

         =  a2tan−1a − 0 − a ∫ x dx 
a2 + x2

a2

0

=  a2tan−1a −  a
2 [log(a2 + x2)]0

a2 

         =  a2tan−1a − a
2 log a2(1 + a2)

a2  =  a2tan−1a −  a
2 log( 1 + a2) 

ϕ (a)   = a2tan−1a −  a
2 log( 1 + a2) 

∴    ϕ′(a)   =  2a tan−1a + a2. 1
1 + a2 − 1

2 log(1 + a2) − a
2 ( 2a

1 + a2) 

∴    ϕ′(a)   =  2a tan−1a − 1
2 log(1 + a2) = − − − − − − − − − − − − −(2) 

From (1)and (2)the rule of differentiation under integral sign or  
the interal is verified. 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟒𝟒: If  y =   ∫ f(t) sin a (x − t)dt , show that  d2y
dx2 +  a2y = a f(x) dx

x

0

  

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  y =   ∫ f(t) sin a (x − t)dt ,    
x

0

 

Differentiating w. r. t. x, 

dy
dx =   ∫ ∂

∂x [f(t) sin a (x − t)] dt + { d
dx (x)} f(x) sin 0 − { d

dx (0)}  f(0) sin 0    
x

0

 

       =   ∫ a f(t) cos a (x − t)] dt + 0 − 0
x

0

 

Again differentiating w. r. t. x, 

d2y
dx2 =  ∫ ∂

∂x [a f(t) cos a (x − t)] dt +  [ d
dx (x)] a f(x) cos 0

x

0

−  d
dx (0). a f(0). cos 0 

 d
2y

dx2     =  ∫ a f(t)( − sin a (x − t)) . a . dt + a . f(x) − 0  
x

0
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     d
2y

dx2 =  −a2 ∫  f(t) sin a (x − t)dt + a . f(x) =   
x

0

− a2y + a f(x) 

     d
2y

dx2 + a2y =  a f(x) 

11.4 Error Function:-Definition 

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃:  Error function x  is defined as 

 2
√π

∫  e−u2du and is denoted by erf(x) .
x

0

 

 We write                                                    𝐃𝐃𝐞𝐞𝐃𝐃(𝐱𝐱)

=   𝟐𝟐
√𝛑𝛑

∫  𝐃𝐃−𝐮𝐮𝟐𝟐𝐝𝐝𝐮𝐮  − − − − − − − − − −(𝟏𝟏) 
𝐱𝐱

𝟎𝟎

 

This function or integral is also called Error Function integral or Probability 

 integral and is encounterd in many branches of Mathematics, 

 Physics or Engineering.  

𝐂𝐂𝐃𝐃𝐂𝐂𝐂𝐂𝐂𝐂𝐃𝐃𝐂𝐂𝐃𝐃𝐃𝐃𝐃𝐃𝐂𝐂𝐞𝐞𝐂𝐂 𝐄𝐄𝐞𝐞𝐞𝐞𝐃𝐃𝐞𝐞 𝐅𝐅𝐮𝐮𝐃𝐃𝐅𝐅𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃:   

Complementary  error function x  is defined  

as 2
√π

∫  e−u2du 
∞

x

and is denoted by erfc(x). 

We write                                                    𝐃𝐃𝐞𝐞𝐃𝐃 𝐅𝐅(𝐱𝐱)

=   𝟐𝟐
√𝛑𝛑

∫  𝐃𝐃−𝐮𝐮𝟐𝟐𝐝𝐝𝐮𝐮  − − − − − − − − − −(𝟐𝟐) 
∞

𝐱𝐱

 

𝐀𝐀𝐂𝐂𝐃𝐃𝐃𝐃𝐞𝐞𝐃𝐃𝐂𝐂𝐃𝐃𝐃𝐃 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 𝐃𝐃𝐃𝐃  𝐄𝐄𝐞𝐞𝐞𝐞𝐃𝐃𝐞𝐞 𝐅𝐅𝐮𝐮𝐃𝐃𝐅𝐅𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃: In integral of (1),

if we put  u2 = t, 2udu = dt or du = dt
2√t

 ;  

u 0 x 

t 0 x2 

erf(x) =   2
√π

∫  e−t dt
2√t

=    1
√π

∫  e−t t−1 2⁄  dt    
x2

0

   
x2

0
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𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱) =   𝟏𝟏
√𝛑𝛑

∫ 𝐞𝐞−𝐭𝐭 𝐭𝐭−𝟏𝟏 𝟐𝟐⁄  𝐝𝐝𝐭𝐭  − − − − − − − − − − − − − − − (𝟑𝟑)      
𝐱𝐱𝟐𝟐

𝟎𝟎

 

This is also considered as definition of Error function x and  

either (1) or (3) used  for erf(x) according to the need of the problem 

11.5 Properties of Error Functions  

𝟏𝟏.  erf(∞) =   2
√π

∫   e−u2du   − − − − − − − − − − − −      ( Put  u2 = y )      
∞

0

 

             =   2
√π

∫   e−y 1
2 y−1 2⁄ dy =    1

√π
∫   e−yy−1 2⁄ dy        
∞

0

    
∞

0

 

             =   1
√π

 √π = 1 

  𝐞𝐞𝐞𝐞𝐞𝐞(∞) =  𝟏𝟏                   − − − − − − − − − −(𝟒𝟒) 

  𝐞𝐞𝐞𝐞𝐞𝐞(∞) =  𝟏𝟏   

𝟐𝟐.  erf(0) =   2
√π

∫   e−u2du = 0        
0

0

 

  𝐞𝐞𝐞𝐞𝐞𝐞(𝟎𝟎) =  𝟎𝟎                   − − − − − − − − − −(𝟓𝟓) 

  𝐞𝐞𝐞𝐞𝐞𝐞(𝟎𝟎) =  𝟎𝟎   

𝟑𝟑.  erf(x) +  erfc(x) =   2
√π

[∫   e−u2du  + ∫   e−u2du  
∞

x

x

0

] =  2
√π

[∫   e−u2du  
∞

0

]

= erf(∞) = 1 

          𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱) +  𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱)  =  𝟏𝟏                   − − − − − − − − − (𝟔𝟔) 

  𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱) +  𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱)  =  𝟏𝟏  

𝟒𝟒 . 𝐄𝐄𝐞𝐞𝐞𝐞𝐄𝐄𝐞𝐞 𝐅𝐅𝐅𝐅𝐅𝐅𝐞𝐞𝐭𝐭𝐅𝐅𝐄𝐄𝐅𝐅 𝐅𝐅𝐢𝐢 𝐚𝐚𝐅𝐅 𝐄𝐄𝐝𝐝𝐝𝐝 𝐞𝐞𝐅𝐅𝐅𝐅𝐞𝐞𝐭𝐭𝐅𝐅𝐄𝐄𝐅𝐅 ∶      𝐞𝐞𝐞𝐞𝐞𝐞(−𝐱𝐱) =  − 𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱)   

  

𝐏𝐏𝐞𝐞𝐄𝐄𝐄𝐄𝐞𝐞:  erf(x) =    2
√π

[∫   e−u2du  
x

0

]            − − − − − − − −Replace x by − x 

∴     erf(−x) =    2
√π

[∫   e−u2du  
−x

0

]       put u =  −y ; du =  −dy   
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u 0 -x 

y 0 0 

∴     erf(−x) =    2
√π

[∫   e−y2(−dy)  
x

0

] = 2
√π

 ∫   e−y2(−dy)  
x

0

  

  𝐞𝐞𝐞𝐞𝐞𝐞(−𝐱𝐱) =  − 𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱)            − − − − − − − − − (𝟕𝟕) 

  𝐞𝐞𝐞𝐞𝐞𝐞(−𝐱𝐱) =  − 𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱)   

𝟓𝟓 . 𝐄𝐄𝐱𝐱𝐄𝐄𝐞𝐞𝐞𝐞𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐞𝐞𝐄𝐄𝐞𝐞 𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱)𝐄𝐄𝐄𝐄 𝐄𝐄𝐞𝐞𝐞𝐞𝐄𝐄𝐞𝐞𝐄𝐄 ∶  

𝐏𝐏𝐞𝐞𝐄𝐄𝐄𝐄𝐞𝐞:  erf(x) =    2
√π

 ∫   e−u2du  
x

0

 

SInce   e−t = t0

0! − t1

1! + t2

2! − t3

3! … … … … … . . = 1 − t + t2

2! −  t3

3! … … … … … ..  

∴     erf(x) =    2
√π

 ∫  [1 − u2 + u4

2! − u6

3! +  … … ] du    ( By putting t
x

0
= −u2 in e−t  ) 

                   =    2
√π

 [u − u3

3 + u5

10 − u7

42 + … … ]
0

x
 

  𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱) =  2
√π

[x − x3

3 + x5

10 − x7

42 +  … … ]           − −  − − − − − − − (𝟖𝟖) 

   𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱) =  𝟐𝟐
√𝛑𝛑

[𝐱𝐱 − 𝐱𝐱𝟑𝟑

𝟑𝟑 + 𝐱𝐱𝟓𝟓

𝟏𝟏𝟏𝟏 − 𝐱𝐱𝟕𝟕

𝟒𝟒𝟐𝟐 +  … … ]  

This series is uniformly convergent and hence erf(x) is a continuous function  

of x. Values of erf(x) can be tabulated using above series. 

𝟔𝟔 . 𝐀𝐀𝐀𝐀𝐀𝐀𝐞𝐞𝐞𝐞𝐀𝐀𝐄𝐄𝐀𝐀𝐀𝐀𝐞𝐞 𝐝𝐝𝐞𝐞𝐞𝐞𝐄𝐄𝐄𝐄𝐄𝐄𝐀𝐀𝐄𝐄𝐄𝐄𝐄𝐄 𝐄𝐄𝐞𝐞 𝐂𝐂𝐄𝐄𝐀𝐀𝐄𝐄𝐀𝐀𝐞𝐞𝐀𝐀𝐞𝐞𝐄𝐄𝐀𝐀𝐀𝐀𝐞𝐞𝐂𝐂 𝐞𝐞𝐞𝐞𝐞𝐞𝐄𝐄𝐞𝐞 𝐞𝐞𝐟𝐟𝐄𝐄𝐟𝐟𝐀𝐀𝐄𝐄𝐄𝐄𝐄𝐄 ∶  

By Result   erf(∞) =  1 , erf(∞) =   1
√π

∫  e−t t−1 2⁄  dt = 1  
∞

0

                  

This can be rewritten as , 1
√π

{∫  e−t t−1 2⁄  dt +  ∫  e−t t−1 2⁄  dt  
∞

x2

 
x2

0

} = 1 

m
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       1
√π

∫  e−t t−1 2⁄  dt +  1
√π

∫  e−t t−1 2⁄  dt  
∞

x2

 
x2

0
= 1    − − − − − − − − − − − (𝟗𝟗) 

Here first integral on L. H. S. of (9)is erf(x) and second integral 1
√π

∫  e−t t−1 2⁄  dt  
∞

x2

is defined as  

complementary error function x or written as erfc(x).    

∴  erfc(x) 1
√π

∫  e−t t−1 2⁄  dt  
∞

x2

− − − − − − − − − − − − − − − − − −

− (𝟏𝟏𝟏𝟏)  

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝐱𝐱) 𝟏𝟏
√𝛑𝛑

∫  𝐞𝐞−𝐭𝐭 𝐭𝐭−𝟏𝟏 𝟐𝟐⁄  𝐝𝐝𝐭𝐭  
∞

𝐱𝐱𝟐𝟐

 

Thus from (9), we note that , erf(x) +  erfc(x) = 1  

11.6  Differentiation and Integration of Error function 

Differentiation of Error function:  

  erf(x) =    2
√π

 ∫   e−u2du  
x

0

 

  erf(ax) =    2
√π

 ∫   e−u2du  
ax

0

 

Using second rule of differentitaion under the integral sign, and noting
 that integration is w. r. t. u and differentiation is carreid out w. r. t. x. 

  d
dx erf(ax) =    2

√π
 [∫  ∂

∂x e−u2du + { d
dx (ax)} e−a2x2 −  { d

dx (0)} e−0  
ax

0

]  

  d
dx erf(ax) =    2

√π
 [0 + a. e−a2x2 − 0] =  2a. e−a2x2

√π
  

  𝐝𝐝
𝐝𝐝𝐱𝐱 𝐞𝐞𝐞𝐞𝐞𝐞(𝐚𝐚𝐱𝐱) =   =  𝟐𝟐𝐚𝐚. 𝐞𝐞−𝐚𝐚𝟐𝟐𝐱𝐱𝟐𝟐

√𝛑𝛑
    − − − − − − − − − − − − − − − − − −(𝟏𝟏𝟏𝟏) 
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  𝐝𝐝
𝐝𝐝𝐝𝐝 𝐞𝐞𝐞𝐞𝐞𝐞(𝐚𝐚𝐝𝐝) =   =  𝟐𝟐𝐚𝐚. 𝐞𝐞−𝐚𝐚𝟐𝟐𝐝𝐝𝟐𝟐

√𝛑𝛑
 

Integration of Error function: 

∫ erf(ax)
t

0

 dx =  ∫ 1. erf(ax)dx
t

0

 

Integrating by parts  treating unity as second function  

and erf(ax) as first function 

    =  [erf(ax). x]0
t −  ∫ d

dx erf(ax). x. dx
t

0

  

    =  t . erf(at) −  0 −  ∫ 2a. e−a2x2

√π
. x. dx

t

0

      (∵   d
dx erf(ax) =   =  2a. e−a2x2

√π
)      

    =  t . erf(at) + 1
√π

. 1
a ∫ e−a2x2(−2a2 x dx )

t

0

   

    =  t . erf(at) + 1
a√π

 [e−a2x2]0
t    

    =  t . erf(at) + 1
a√π

 (e−a2t2 − 1)  = t . erf(at) +  1
a√π

 e−a2t2 − 1
a√π

  

 ∴   ∫ erf(ax)
t

0

 dx 

=  t . erf(at) +  1
a√π

 e−a2t2 − 1
a√π

     − − − − − − − − − (𝟏𝟏𝟐𝟐)   

∫ 𝐞𝐞𝐞𝐞𝐞𝐞(𝐚𝐚𝐝𝐝)
𝐭𝐭

𝟎𝟎

 𝐝𝐝𝐝𝐝 =  𝐭𝐭 . 𝐞𝐞𝐞𝐞𝐞𝐞(𝐚𝐚𝐭𝐭) +  𝟏𝟏
𝐚𝐚√𝛑𝛑

 𝐞𝐞−𝐚𝐚𝟐𝟐𝐭𝐭𝟐𝟐 − 𝟏𝟏
𝐚𝐚√𝛑𝛑

 

𝐄𝐄𝐝𝐝𝐚𝐚𝐄𝐄𝐄𝐄𝐄𝐄𝐞𝐞 𝟏𝟏:  Show that  ∫ erf(ax) dx +  ∫ erf c(ax) dx
t

0

 = t 
t

0

 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐭𝐭𝐒𝐒𝐒𝐒𝐒𝐒:    ∫ erf(ax) dx +   ∫ erf c(ax) dx
t

0

  
t

0
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                =     ∫ [erf(ax)  +  erf c(ax) ] dx    
t

0

 

                =     ∫(1). dx = [x]0
t = t              { ∵  erf(ax) +  erfc(ax) = 1   }

t

0

 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐: Prove that  erfc(−x) +  erfc(x) = 2 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  We have   erf(x) +  erfc(x) = 1 ,   Let replace x by − x 

           erf(−x) +  erfc(−x) = 1  

   erf(−x) +  erfc(−x) = 1  

 − erf(x) +  erfc(−x) = 1                { ∵  erf(−x) =  − erf(x) }     

    erfc(−x) = 1 + erf(x) 

   erfc(−x) + erfc(x) = 1 + erf (x) + erfc(x) 

    erfc(−x) + erfc(x) = 1 + 1 = 2 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟑𝟑 ∶  Prove that 1
x  d

da  erfc(ax) = − 1
a  d

dx erf (ax) 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶    erf c(ax) =    2
√π

 ∫   e−u2du  
∞

ax

 

  d
da  erf c(ax) =    2

√π
 { ∂

∂a ∫( e−u2). du +  d
da (∞). e−∞  − d

da (ax). e−a2x2
∞

ax

} 

                          =    2
√π

 {0 + 0 − xe−a2x2} =  − 2xe−a2x2

√π
 

  1x   d
da  erf c(ax)  =     − 2

√π
 e−a2x2         − − − − − − − − − − − − − (1) 

  d
dx  erf(ax)  =  2

√π
 { ∂

∂x ∫ ( e−u2). du +  d
da (ax). e−a2x2  −  d

dx (0). e0
ax

0

}     

                          =    2
√π

 {0 + a. e−a2x2 − 0} =   2ae−a2x2

√π
 

− 1a  d
dx  erf(ax)  =     − 2

√π
 e−a2x2              − − − − − − − − − − − − − −(2) 
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From (1)and (2), it is prove that 1
x  d

da  erfc(ax) = − 1
a  d

dx erf (ax) 

   

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟒𝟒: Show that  ∫ e−x2dx =  √π
2  [b

a  erf(b) −  erf(a) ] 

𝐒𝐒𝐒𝐒𝐄𝐄𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ By definition    erf(x) =    2
√π

 ∫   e−u2du  
x

0

 

 if x =  ∞ , then, erf(∞) =    2
√π

 ∫   e−u2du  
∞

0

 

∴   1 =    2
√π

 ∫   e−x2dx  
∞

0

     { ∵  erf(∞) = 1} 

Assuming  that b > a, we can write , 

  1 =    2
√π

{∫   e−x2dx  
a

0

+ ∫   e−x2dx  
b

a

+ ∫   e−x2dx  
∞

b

}       

  1 =    2
√π

∫   e−x2dx  
a

0

+ 2
√π

∫   e−x2dx  
b

a

+ 2
√π

∫   e−x2dx  
∞

b

       

  1 =   erf(a) + 2
√π

∫   e−x2dx  
b

a

+ erfc(b)     

  1 − erfc(b)     =   erf(a) + 2
√π

∫   e−x2dx  
b

a

 

 erf(b) − erf(a)     =   2
√π

∫   e−x2dx                   { ∵  erf(b) +  erfc(b) = 1}
b

a

 

∫   e−x2dx     =  √π
2  [

b

a

erf(b) − erf(a)]   

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟓𝟓: Show that  ∫ e−x2−2bx dx =  √π
2  . eb2 [

∞

0

 1 −  erf(b) ] 
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𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶ I =   ∫ e−x2−2bx dx
∞

0

=  ∫ e−x2−2bx−b2+b2dx
∞

0

=  eb2 ∫ e−(x+b)2 dx
∞

0

  

put x + b = u , dx = du   

x 0 ∞ 

u b ∞ 

I =  eb2  ∫  e−u2du  =  eb2 √π
2 . 2

√π
 ∫  e−u2du   

∞

b

∞

b

 

  =  √π
2  eb2. erfc(b) =  √π

2  eb2[1 − erf(b)]  

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐒𝐒𝐄𝐄 𝟔𝟔: If α(x) = √2
π  ∫ e

t2
−2dt  show that erf(x) =  α[x√2]

x

0

 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∶  α(x) = √2
π  ∫ e

t2
−2dt  

x

0

 

∴  α(x√2) = √2
π  ∫ e

t2
−2dt  

x√2

0

 

put t2 = 2u2 , 2t dt = 4u du , dt =  2u du
t =  2u du

√2 . u
=  √2 du 

t 0 x√2 

u 0 x 

= √2
π  ∫ e−u2√2. du  

x

0

 

= 2
√π

  ∫ e−u2√2. du = erf (x) 
x

0
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11.7 Exercise 

1. Prove that  ∫ 𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏

log 𝑥𝑥  
1

0

 𝑑𝑑𝑥𝑥 = log (𝑎𝑎 + 1
𝑏𝑏 + 1) ; 𝑎𝑎 > 0, 𝑏𝑏 > 0  

2. Assuming that ∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥  𝑑𝑑𝑥𝑥

∞

0
=  π

2 , evaluate   ∫ 1 − cos 𝑎𝑎𝑥𝑥
𝑥𝑥2  

∞

0

 𝑑𝑑𝑥𝑥 

3. Prove that ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 − 𝑒𝑒−𝑏𝑏𝑎𝑎

𝑥𝑥

∞

0

 𝑑𝑑𝑥𝑥 = log (𝑏𝑏
𝑎𝑎) ; 𝑎𝑎 > 0 , 𝑏𝑏 > 0 

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇: ϕ′(a) =  − 1
a  ∴ ϕ(a) =  − log  a + C, Put a = b, C = log  b  

4. Prove that ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 sin 𝑥𝑥 
𝑥𝑥2

∞

0

 𝑑𝑑𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐−1𝑎𝑎. 𝐷𝐷𝑒𝑒𝑑𝑑𝐷𝐷𝑐𝑐𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝑐𝑐 ∫ sin 𝑥𝑥
𝑥𝑥

∞

0

 𝑑𝑑𝑥𝑥 = 𝜋𝜋
2 

 5. Prove that ∫ 1 − cos 𝑎𝑎𝑥𝑥
𝑥𝑥2

∞

0

 𝑑𝑑𝑥𝑥 = 𝜋𝜋𝑎𝑎
2  

6. If f(x) =   ∫(x − t)2
x

a

 G(t)dt then show that  d3f
dx3 −  2 G(x) = 0 

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇: Here x is a parameter , f ′(x) =   ∫(2)(x − t)G(t)dt  
x

a

, f ′′(x) =   ∫ G(t)dt  
x

a

 

 f ′′′(x) = 2 [∫ ∂
∂x G(t)dt +  {dx

dx} G(x) −  {da
dx} G(a)  

x

a

]   

7. If  F(t) =   ∫ etx2dx,
t2

t

 then show that  dF
dt = 1

2t [5t2et5 − 3tet3 − F(t)] 

8. Show that d
da . ∫ cos ax2 dx

1 a⁄

√a

=  − ∫ x2 . sin ax2 dx – 1
a2 cos 1

a −  1
2√a

cos a2   
1 a⁄

√a
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9. If ϕ(a) =   ∫ sin ax
x dx , find dϕ

da    
a2

a

 

10. Verify the rule of differntiation under interal sign  

for the integral  ∫ 1
x + a dx   

a2

a

 

11. Find erf(0) , erf(∞) , erfc(0) 

12. d
dx  erfc(axn) 

13. d
dx  erfc(√x) 

14. Show that ∫ e−(x+a)2dx
∞

0
 =  √π

2  [1 − erf(a)] 

15. Define erf(x) , erfc(x),  erf(√t ),  erfc(√t).  

11.8 Summary  

 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈 ∶ 𝐈𝐈𝐈𝐈 𝐈𝐈(𝛂𝛂) =  ∫ 𝒇𝒇(𝒙𝒙, 𝜶𝜶 )𝒅𝒅𝒙𝒙 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝒃𝒃

𝒂𝒂

   𝐝𝐝𝐈𝐈
𝐝𝐝𝛂𝛂 =     ∫ 𝝏𝝏

𝝏𝝏𝜶𝜶 𝒇𝒇(𝒙𝒙, 𝜶𝜶 )𝒅𝒅𝒙𝒙
𝒃𝒃

𝒂𝒂

       

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈: (𝐋𝐋𝐋𝐋𝐈𝐈𝐋𝐋𝐋𝐋𝐈𝐈𝐋𝐋𝐋𝐋′𝐬𝐬 𝐑𝐑𝐑𝐑𝐋𝐋𝐋𝐋)        dI
dα = d

dα ∫ f(x, α)dx 
b(α)

a(α)
       

= ∫ ∂
∂a f(x, α)dx + f(b, α) db

dα −  f(a, α) da
dα  

b(α)

a(α)
 

𝐋𝐋𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐅𝐅𝐑𝐑𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐄𝐄𝐅𝐅 ∶  erf(x) =   2
√π

∫  e−u2du 
x

0

 

𝐂𝐂𝐄𝐄𝐂𝐂𝐂𝐂𝐑𝐑𝐑𝐑𝐂𝐂𝐑𝐑𝐅𝐅𝐅𝐅𝐂𝐂𝐄𝐄𝐂𝐂 𝐋𝐋𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐅𝐅𝐑𝐑𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐄𝐄𝐅𝐅 ∶   erf c(x) =   2
√π

∫  e−u2du   
∞

x

 

𝐀𝐀𝐑𝐑𝐅𝐅𝐑𝐑𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅𝐑𝐑 𝐃𝐃𝐑𝐑𝐈𝐈𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐄𝐄𝐅𝐅 𝐄𝐄𝐈𝐈  𝐋𝐋𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐅𝐅𝐑𝐑𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐄𝐄𝐅𝐅 ∶   erf(x) =   1
√π

∫ e−t t−1 2⁄  dt      
x2

0
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 APPLIED MATHEMATICS

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐏𝐏𝐨𝐨 𝐄𝐄𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐅𝐅𝐅𝐅𝐅𝐅𝐏𝐏𝐏𝐏𝐏𝐏𝐅𝐅 ∶   

  𝐏𝐏𝐏𝐏𝐨𝐨(∞) =  𝟏𝟏   

  𝐏𝐏𝐏𝐏𝐨𝐨(𝟎𝟎) =  𝟎𝟎   

  𝐏𝐏𝐏𝐏𝐨𝐨(𝐱𝐱) +  𝐏𝐏𝐏𝐏𝐨𝐨𝐅𝐅(𝐱𝐱)  =  𝟏𝟏 

  𝐏𝐏𝐏𝐏𝐨𝐨(−𝐱𝐱) =  − 𝐏𝐏𝐏𝐏𝐨𝐨(𝐱𝐱) 

  𝐏𝐏𝐏𝐏𝐨𝐨(𝐱𝐱) =  𝟐𝟐
√𝛑𝛑

[𝐱𝐱 − 𝐱𝐱𝟑𝟑

𝟑𝟑 + 𝐱𝐱𝟓𝟓

𝟏𝟏𝟎𝟎 − 𝐱𝐱𝟕𝟕

𝟒𝟒𝟐𝟐 + … … ] 

  𝐏𝐏𝐏𝐏𝐨𝐨𝐅𝐅(𝐱𝐱) =  𝟏𝟏
√𝛑𝛑

∫  𝐏𝐏−𝐏𝐏 𝐏𝐏−𝟏𝟏 𝟐𝟐⁄  𝐝𝐝𝐏𝐏  
∞

𝐱𝐱𝟐𝟐

 

Differentiation of Error function:   

  𝐝𝐝
𝐝𝐝𝐱𝐱 𝐏𝐏𝐏𝐏𝐨𝐨(𝐚𝐚𝐱𝐱) =   =  𝟐𝟐𝐚𝐚. 𝐏𝐏−𝐚𝐚𝟐𝟐𝐱𝐱𝟐𝟐

√𝛑𝛑
 

Integration of Error function: 

∫ 𝐏𝐏𝐏𝐏𝐨𝐨(𝐚𝐚𝐱𝐱)
𝐏𝐏

𝟎𝟎

 𝐝𝐝𝐱𝐱 =  𝐏𝐏 . 𝐏𝐏𝐏𝐏𝐨𝐨(𝐚𝐚𝐏𝐏) +  𝟏𝟏
𝐚𝐚√𝛑𝛑

 𝐏𝐏−𝐚𝐚𝟐𝟐𝐏𝐏𝟐𝟐 − 𝟏𝟏
𝐚𝐚√𝛑𝛑
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