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1.0 OBJECTIVES 
 
This chapter will help to you understand the: 

 Concepts of basic Mathematics useful in Machine learning and deep 
Learning 

 Basic concepts related scalar, vectors, matrix and tensor  

 Different types of matrix and its operations  

 Decomposition of matrix 
 
1.1 INTRODUCTION AND OVERVIEW OF APPLIED 
MATH AND MACHINE LEARNING BASICS 
 
This section of the book tells some basic mathematical concepts which 
helps to understand the deep Learning. Deep learning is a subdomain of 
machine learning which is concerned with algorithms, mathematical 
functions and artificial neural network.  
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1.2 LINEAR ALGEBRA  
 
Linear Algebra is one of the widely used branches of mathematics related 
with mathematical structures which is continuous rather than discrete 
mathematics. It includes operations like addition, scalar multiplication that 
helps to understand concepts like linear transformations, vector spaces, 
linear equations, matrices and determinants. A good knowledge of Linear 
Algebra is important to understand and working with many essential 
machine learning algorithms, especially algorithms related with deep 
learning. 
 
1.2.1 Scalars, Vectors, Matrices and Tensors: 
 
Let‟s start with some basic definitions: 

 
           (1.1) 
 Understanding of a scalar, a vector, a matrix, a tensor 
 
Scalar: A scalar is a single number represent 0th order tensor. Scalars are 
written in lowercase and italics. For Example: n. there is many different 
sets of numbers with interest in deep learning. The notation x ∈ ℝ 
represents x is a scalar belonging to a real values numbers i.e. ℝ. ℕ states 
the set of positive integers (1, 2, 3, …). ℤ  states the integers, which is 
combination of positive, negative and zero values. Rational numbers are 
representing by notation ℚ 
 
Python code to explains arithmetic operations on Scalars: 
 

Code: # In-Built Scalars 
a = 15 
b = 3 
print(type(a)) 
print(type(b)) 
print(a + b) 
print(a - b) 
print(a * b) 
print(a / b) 
Output: 
<class 'int'> 
<class 'int'> 
15 
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12 
45 
5 

 
# Python code snippet checks if the given variable is scalar or not. 
import numpy as np 
# Is Scalar Function 
def isscalar(num): 
    if isinstance(num, generic): 
        return True 
    else: 
        return False 
print(np.isscalar(2.4)) 
print(np.isscalar([4.1])) 
print(np.isscalar(False)) 
Output: 
True 
False 
True 

 
Vector: A vector is an ordered array of single numbers represent 1st order 
tensor. Vectors should be written in lowercase, bold, and italics. For 
Example: x. 

x =[x1 x2 x3 … xn]            or   x = [

  
  
 

  

]                                (1.2) 

 
Here, first element of x is x1, the next second element is x2 and so on 
element gets listed. To understand the necessary element of a vector index 
wise, the scalar element of a vector positioned ith is written as x[i]. 
Suppose S={1,2,4} then x1=1, x2=2, x4=4. The – sign to index is used to 
indicate the complement of a S, like for example x-1 is the vector 
consisting of all elements of x except x1, and x-s is the vector consist of all 
elements of x except x1 , x2 and x4 . Vectors are pieces of objects known as 
vector spaces, which can be considered as collection of all possible vectors 
of a particular dimension.  
 

#Python code demonstrating Vectors 
import numpy as np 
# Declaring Vectors 
x = [2, 4, 6] 
y = [3, 5, 1] 
print(type(x)) 
# Vector addition using Numpy 
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z = np.add(x, y) 
print(z) 
print(type(z)) 
Output: 
<class 'list'> 
[2, 4, 6, 3, 5, 1] 
[5 9 7] 
<class 'numpy.ndarray'> 

 
Matrix: Matrix is a 2-D rectangular array consisting of numbers 
represents 2nd order tensor. Matrices should be written in uppercase, 
bold and italics. For Example: X. If p and q are positive integers, that 
is p, q ∈ ℕ then the p×q matrix contains p*q numbers, with p rows 
and q columns 
 

A  = [

       
       
   

   
   
 

          

]              (1.3) 

 
Full matrix component can be express as follows: 
   A =                       (1.4) 
 
Some of the operations of matrices are as follows: 
 
 Matrix Addition: 

 
We can do addition of Matrices to scalars, vectors and other matrices. 
These precise techniques are often used in machine learning and deep 
learning. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Matrix-Matrix Addition: 
 
Z=X+Y 
 

# Python code for Matrix Addition  

import numpy as np 

x = np.matrix([[5, 3], [2, 6]]) 

sum = x.sum() 

print(sum) 

Output: 16 
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Here, when shapes of two matrices are equal addition is possible otherwise 
not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Matrix-Scalar Addition: 
 
Here, addition of given scalar with all elements of matrix takes place. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Matrix Scalar Multiplication: 

 
Here, Multiplication of scalar element with matrix element takes place 
 

# Python code for  Matrix Scalar Multiplication 
import numpy as np 
x = np.matrix([[2, 3], [3, 4]]) 
s_mul = x * 3 

# Python code for Matrix-Matrix Addition 

import numpy as np 

p = np.matrix([[1, 1], [2, 2]]) 

q = np.matrix([[3, 3], [4, 4]]) 

m_sum = np.add(p, q) 

print(m_sum) 

Output :  

[[ 4  4] 

[ 6  6]] 

# Python code for  Matrix-Scalar Addition 

import numpy as np 

x = np.matrix([[1, 1], [3, 3]]) 

s_sum = x + 1 

print(s_sum) 

Output: 

[[2 2] 

 [4 4]] 
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print(s_mul) 
Output: 
[[ 6  9] 
[9  12]] 

 
 Matrix Transpose: 

 
With transpose operation horizontal row vector can be converted into 
vertical column vector and vice versa. 
 
 
                    

(1.5) 
          
 
 
 
 
 
 
                   

(1.6) 
 
 
 
 
 
 
 
  A=           (1.7) 
 
AT =           
(1.8) 
 

#  Python code for Matrix Transpose 
import numpy as np 
a = np.array([[2, 3], [5, 7]]) 
print(a) 
a.transpose() 
print(a) 
Output: 
[[2 3] 
 [5 7]] 
array([[2, 5], 
       [3, 7]]) 
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Tensors: Sometimes we need an array with more than 2 axis; a tensor is 
an array of numbers arranged on a grid. It wraps scalar, vector and matrix.  
We can represent tensor name “A” as A. we can access element of A at 
coordinates (i, j, k) by writing        
 
1.2.2 Multiplying Matrices and Vectors: 
 
When A is a m × n matrix & B is a k × p matrix, AB is only possible if 
n=k. The result will be an m×p matrix.  
 
Simple to know we can perform A*B IF: Number of columns in A = 
Number of rows in B 
 
           
     A*B = 
 
 
 
Another example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The dot product operation is defined as: 
 
      =             =                            (1.9) 
 
Need to understand product of two matrices is not just a matrix having 
individual elements in that some operation are exist that called element 
wise product  or hadmard product which is denoted as A  B. 
 
Properties of the dot product: 
 
 Simplification of the matrix product 
- (AB)T=BTAT               (1.10) 
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 Matrix multiplication is NOT commutative means order of 
multiplication is important 

- AB≠BA              (1.11) 
 Matrix multiplication IS associative 
- A(BC)=(AB)C              (1.12) 
 
 Matrix multiplication IS distributive 
- A(B+C)=AB+AC                        (1.13) 

- (A+B)C=AC+BC             (1.14) 
 
1.2.3 Identity and Inverse Matrices: 
 
Identity Matrix: An identity matrix is a square matrix where value of 
diagonal elements is one and rest of matrix elements values are equal to 
zero. The product is the matrix A and identity matrix is matrix A itself. 
 
Another name for Identity Matrix is Unit Matrix or Elementary Matrix. 
Identity Matrix is denoted with the letter      n, where n  n represents the 
order of the matrix. 

 
IA = A and AI = A              (1.15) 
AI = IA = A               (1.16) 
 
One of the important properties of identity matrix is: A     = A, where A 
is any square matrix of order n  n 
 

   =   ,        =[  
  ],        =[

   
   
   

] 

 
Square matrix: A matrix with the same number of rows and columns is 
called a square matrix.  
 

Example:   [
   
   
   

]
   

 

 
Note: An identity matrix is a perpetually square matrix. 
 
 
Inverse Matrix: Let „A‟ be any square matrix. An inverse matrix of „A‟ is 
denoted by „A-1‟ and is such a matrix that AA-1=A-1A= n. if we get A-1 of 
Matrix „A‟ then it is known as invertible. Non-square matrices do not have 
inverses. It is not necessary all square matrices have inverses. If a square 
matrix has an inverse then it is known as invertible or non-singular 
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Example 
 
A= [  

  ] and its inverse A-1= [   
   ] 

 
A A-1= [  

  ] [   
   ]= [  

  ] 
 
A-1 A= [   

   ] [  
  ]= [  

  ] 
 
Here, we can say that [  

  ] and [   
   ]are inverses of each other. 

 
1.2.4 Linear Dependence and Span: 
 
Suppose we have Ax = b, to get A-1 here has exactly one solution for every 
value of b. There is a possibility, to have no solution or infinitely many 
solutions for the systems of values b. To understand and analyse what kind 
of different solutions the equation has we can consider columns of A 
which specifies different direction can travel from origin and determine 
number of ways reaching towards b.  
 
A linear combination of a list (  ⃗⃗⃗⃗     ⃗⃗⃗⃗        ) is some set of vector 
of the form which is given by multiplying each vector  ( ) by respective 
scalar coefficient and adding the results. 
       ( )

                                (1.17) 
 
Given a set of vectors {  ⃗⃗⃗⃗     ⃗⃗⃗⃗        } in a vector space V, any vector 
of the form 
 
v =     ⃗⃗⃗⃗      ⃗⃗⃗⃗          ⃗⃗⃗⃗  ⃗ for some scalars a1, a2, . . ., ak   is called a 
linear combination of v1, v1, . . . , vk. 
 
The set of all points obtainable by linear combination of the original 
vectors is called Span. In other words Span ((    ⃗⃗⃗⃗      ⃗⃗⃗⃗        ∈
 ℝ)  
 
Now determining Ax = b need to test whether b is in the span of columns 
of A, this particular span is known as column space or the range of A. 
 
Linear Independence: Given a set of vectors {  ⃗⃗⃗⃗     ⃗⃗⃗⃗        } in a 
vector space V, they are said to be linearly independent if the equation    
    ⃗⃗⃗⃗      ⃗⃗⃗⃗          ⃗⃗⃗⃗  ⃗ = 0 has only the trivial solution. 
If (  ⃗⃗⃗⃗     ⃗⃗⃗⃗        ) are not linearly independent they are linearly 
dependent. 
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1.2.5 Norms: 
 
Norm is a function that in return measures length/size of any vector 
(excluding zero vectors). In machine learning multiple times we measure 
the size of vectors by using norms. The norms are clubbed under p-norms 
or (lₚ-norms) family, where p is arbitrary number greater than or equal to 
1. 
 
The p-norm of vector x can be presented as 
 

                               (1.17) 
 
Every element of vector x is has the power p. Then their sum is raised to 
the power (  ⁄ ) 
 
Simply represented as, 

                         (1.18) 
 
Any norm function f should be satisfied following conditions: 
1. If norm of x is greater than Zero then x is not equal to 0 (Zero Vector) 

and if norm is equal to Zero then x is a zero vector. 
 
If f (x) > 0 then x   0 (1.19)  
If f (x) = 0 then x = 0  (1.20) 
 
2. For any scalar quantity, say K 
 
f (Kx) = K f(x)  (1.21) 
 
3. Suppose we have another vector y 
 
f (x + y)   f (x) + f (y)     (1.22) 
 
If above three properties are satisfied then function f is norm. 
 
 Manhattan Distance (1-norm): 

  
Manhattan distance also called 1 norm it measure the distance between 
two points that can travel along orthogonal blocks. 
 
Example:  
   = [2,4] 
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 Infinity-norm: 
The infinity-norm also called max-norm which returns absolute value in 
the given vector. 
 
Suppose, we want to find infinity-norm of another vector, like a 

   = [2,4,-5] 

       = 5 
 
 Euclidean Norm (2-norm): 
One of the most used Norms is 2-norm, used to calculate magnitude of 
vector. 

|   |
 
 = (     )  ⁄  

       = (    )  ⁄  

       = √   
 
1.2.6 Special Kinds of Matrices and Vectors: 
 
Some of the matrices: 
 
 Diagonal Matrix: Diagonal matrix is a matrix Denoted by D where 

diagonal element values are nonzero and other entries of matrix are 
zero. 

 
Example:  
 

D = [
   
   
   

] 

 
As a Vector it will be represented as, 
 
d= (d11, d22, d33)  
 
With scalar values it can be represented as follows:  
  
d = (1, 2, 3) 
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#Python code for  diagonal matrix 
from numpy import array 
from numpy import diag 
A = array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) 
print(A) 
# Print diagonal vector 
d = diag(A) 
print(d) 
# create diagonal matrix from vector 
D = diag(d) 
print(D) 
 
Output: 

[[1 2 3] 
 [1 2 3] 
 [1 2 3]] 
  
[1 2 3] 
  
[[1 0 0] 
 [0 2 0] 
 [0 0 3]] 

 
It is not compulsory diagonal matrix is square, there is possible to 
construct rectangular diagonal matrix as well. We can use Diagonal matrix 
in machine learning to obtain less expensive algorithm. 
 
 Triangular Matrix: A triangular matrix is a type of square matrix 

where values are filled in the upper-right or lower-left of the matrix 
with the remaining elements of the matrix are filled with zero values. A 
triangular matrix with filled some values which lie above the main 
diagonal is called an upper triangular matrix. Whereas, a triangular 
matrix with filled values which lie below the main diagonal is called a 
lower triangular matrix. 

 
Example of a 3×3 upper triangular matrix 
 

A = [
   
   
   

] 

 
Example of a 3×3 lower triangular matrix 
 

D = [
   
   
   

] 
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# Python code for triangular Matrices 
 
from numpy import array 
from numpy import tril 
from numpy import triu 
 
A = array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) 
 
print(A) 
lower = tril(A) 
print(lower) 
upper = triu(A) 
print(upper) 
 
Output: 
[[1 2 3] 
 [1 2 3] 
 [1 2 3]] 
  
[[1 0 0] 
 [1 2 0] 
 [1 2 3]] 
  
[[1 2 3] 
 [0 2 3] 
 [0 0 3]] 

 

 
 Symmetric Matrix: Symmetric matrix is a matrix where top-right 

triangle is the same as the bottom-left triangle. 
 
Example:  

A= 

[
 
 
 
 
   
   
   

  
  
  

   
   

  
  ]

 
 
 
 
  

 
Transpose of Symmetric Matrix is equal to original Symmetric Matrix. 
A= AT          (1.23) 
 
 Orthogonal Matrix: Orthogonal matrix is a matrix if a dot product of 

two vectors is equals to zero, and then is called Orthogonal. It is a type 
of square matrix whose columns and rows are orthonormal unit vectors, 
e.g. it is perpendicular and have a length or magnitude of One. Here 
rows are mutually orthonormal and columns are mutually orthonormal. 

 
            AT A = AAT = I                                                          (1.24) 
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# python code for orthogonal atrix 
from numpy import array 
from numpy.linalg  
import inv 
Q = array([[1, 0], [0, -1]]) 
print(Q) 
# inverse equivalence 
V = inv(Q) 
print(Q.T) 
print(V) 
# identity equivalence 
I = Q.dot(Q.T) 
print(I) 
 
Output: 
[[ 1  0] 
 [ 0 -1]] 
  
[[ 1  0] 
 [ 0 -1]] 
  
[[ 1.  0.] 
 [-0. -1.]] 
  
[[1 0] 
 [0 1]] 
 

 
1.2.7 Eigende composition: 
 
We usually used to see multiple mathematical structures which are 
complex to understand, so need to break it with some simplified form and 
understand useful properties for the same. We can decomposed integers 
with some prime factors, same way we can decompose matrix. 
 
To make complex operations into simple structure matrix decompositions 
are very useful. Matrix decomposition tools helps for reducing a matrix to 
their constituent parts.  
 
Eigende composition of a matrix is a widely used matrix decomposition 
which involves decomposition of a square matrix into a set of eigenvectors 
and eigenvalues. This kind of decomposition also helps in machine 
learning like Principal Component Analysis method. 
 
A vector is an eigenvector of a matrix if it fulfils the following equation. 
 
Av = λ  (λ=lambda)                                               (1.25) 
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The equation is called the eigenvalue equation, where A is the parent 
square matrix that we decompose, v is the non-zero eigenvector of the 
matrix, and lambda represents the eigenvalue scalar. We can also find left 
eigenvector like vTA = λ vT, but we normally use right eigenvector.  
 
It is possibility matrix can have one eigenvector and eigenvalue for each 
aspect of the parent matrix. Not necessary all square matrices can be 
decomposed into eigenvectors and eigenvalues, some may be decomposed 
in a way that requires complex numbers.  
 
The parent matrix would be presented as  to be a product of the 
eigenvectors and eigenvalues 
 
A = V diag(λ)V-1 (1.26)    

                              

Here, V is a matrix comprised of the eigenvectors, diag(λ) is a diagonal 
matrix comprised of the eigenvalues along the diagonal , V-1 is the inverse 
of the matrix comprised of the eigenvectors. 
 
Eigen is not a name it is pronounced as  “eye-gan”  is a German word that 
means “own”  as in belonging to the parent matrix. 
 
Decomposition does not mean compression of the matrix perhaps it breaks 
it down into constituent parts to make certain operations on the matrix 
easier to perform. 
 
The eigendecomposition of a matrix gives many useful facts about the 
matrix. If the eigen values are zero then the matrix is singular.  
 
Eigenvectors and Eigenvalues: Eigenvectors are unit vectors that mean 
their length or magnitude is equal to one. They are often known as right 
vectors, which simply mean a column vector (as opposed to a row vector 
or a left vector).  
 
A matrix contains only positive eigenvalues is known as a positive 
definite matrix, and if it contains all negative eigenvalues, it is known as 
a negative definite matrix. 
 
Eigendecomposition Calculation:  
 

# Python code for eigendecomposition 
from numpy import array 
from numpy.linalg import eig 
 
# Define matrix 
A = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 
print(A) 
# Calculate eigendecomposition 
val, vect = eig(A) 

mu
no
tes
.in



16 
 

print(val) 
print(vect) 
 
Output: 
[[1 2 3] 
 [4 5 6] 
 [7 8 9]] 
  
[  1.61168440e+01  -1.11684397e+00  -9.75918483e-16] 
  
[[-0.23197069 -0.78583024  0.40824829] 
 [-0.52532209 -0.08675134 -0.81649658] 
 [-0.8186735   0.61232756  0.40824829]] 

 
1.3 SUMMARY 
 
This chapter includes basic concepts and differentiation related to scalar, 
vector, matrix and tensor which is mostly used in machine learning as well 
as in deep learning. This chapter explain Linear Algebra concepts broadly. 
Different types of Matrix, Operation explain with python programs.  
 
Specifically learned: 
- Basic difference between scalar, vector, matrix and tensor. 

- Matrix types, different operations related with matrices in Python with 
NumPy. 

- Eigendecomposition and the role of eigenvectors and eigenvalues. 
 
UNIT END EXERCISES 
 
1. Differentiate between scalar and vector 
2. Explain Arithmetic operations on scalar with example. 
3. What is Matrix and explain matrices addition 
4. Explain Matrix transpose with an example. 
5. Write Properties of dot products. 
6. Explain Inverse matrix with an example 
7. Write a short note on Norms. 
8. Explain Eigenvectors and Eigenvalues. 
9. Compare Symmetric Matrix and Orthogonal Matrix 
10. Write a note on linear combination 
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2 
NUMERICAL COMPUTATION 

Unit Structure 
2.0  Objectives 
2.1  Introduction to Numerical Computation 
2.2  Overflow and Underflow 
2.3  Poor Conditioning 
2.4  Gradient Based Optimization 
2.5  Constraint optimization 
2.6  Summary 
       Unit End Exercises 
 Bibliography 
 
2.0 OBJECTIVES 
 
After going through this unit, you will be able to: 
 Define Overflow and Underflow techniques 
 Clear Concepts like Poor Conditioning, Gradient based optimization 
 Different ways of Constraint Optimization 
 
2.1 INTRODUCTION TO NUMERICAL COMPUTATION 
 
A lot amount of computation is needed in machine learning algorithms to 
solve complex and vital problems. Here need to follow iterative process 
where mathematical methods used to get best solutions. Numerical 
Computation needed large number of arithmetic calculation hence 
required efficient and fast computational devices. The approach is to 
formulate mathematical model and solve problems with arithmetic 
calculations..  
 
2.2 OVERFLOW AND UNDERFLOW 
 
Difficulties which are faced going from mathematics to computers are 
representing infinitely many real number on less or finite memory. This 
means that every calculations experience some approximation error. One 
of them is rounding error, where undergoes many operations, but  
algorithms which in work get failed due to not designing of minimum 
accumulation to the rounding error. In computers numbers are stored as 
discrete digits, so when we used to make arithmetic calculations which 
result in extra digits that result we cannot append into main result and face 
overflow or underflow error. 
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Underflow: Underflow is a situation it happens in a computer or similar 
devices when a result of mathematical operation is smaller than the device 
is capable of storing. It is kind of trickier to recognize because it has to 
work with precision in floating points. Here, cause of discrete nature of 
storage capacity in computers, we cannot store any small number either. 
The floating-point format comes up with some techniques to represent 
fractional numbers. When we implement these in calculations that result in 
a smaller number than our desire least value. This happens when numbers 
close to 0 are rounded to 0. 
 
Like, suppose we want to perform a calculation, 0.005×0.005. The answer 
to this is 0.000025, but we don’t have this many decimal places available. 
Here, we discard the least-significant bits and store 0.000, which is 
absolute an erroneous answer. Underflow is representational error and 
occurs mostly when dealing with decimal arithmetic. It also happens when 
two negative numbers are added and the result is out of range for the 
device to store 
 
Overflow: Overflow shows that we have done a calculation, the result of 
that is so larger than we can hold and represent. Like, the processor is 
running an operation as an increment but the operand having same 
capacity, it cannot hold the result. The whole issue is occurs cause of the 
memory size in computers. In mathematics, numbers are absolute and 
there’s no concept of precision. But in case of computers, due to hardware 
limitations and especially in memory size, real numbers are rounded to the 
nearest value.   
 
Suppose we have an integer stored in 1 byte. We can store greatest number 
that is 255 in one byte, i.e.  11111111. Now, Let’s add 2 to it to get 
00000010. The result is 257, which is 100000001. The result has 9 bits, 
whereas the integers we are working with consist of only 8. 
 
One of the function that must be stabilized against underflow and overflow 
name is the softmax function. The SoftMax Function is used to predict the 
probabilities associated with a Multinoulli Distribution 
 

                                        (2.1) 
 
If , then we can show that . But if we want to 
calculate the same value in computers numerically, depending on the value 
of  you could get different results.  
 
If  is a big positive number then  will be  overflow and the softmax will 
be undefined and return NaN. And if  is a big negative number  will be 
a underflow and softmax will become zero, resulting in “division by zero”. 
The solution to both of these problems is a technique called stabilization. 
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Unfortunately, stabilization is not a complete solution. It is used to solve 
mathematical problem analytically. As for the softmax given above, let’s 
define  as follow: 
 

                                              (2.2) 
 

 is a new vector where all the elements of  are subtracted by its biggest 
element. Doing so will result in a vector where at least one of its elements 
is zero ( ‘s biggest element). While analytically you can show 
that , the problem of overflow is solved 
as well. At the same time, the problem of underflow and division by zero 
is fixed too. That’s because at least one element of the denominator is one 
(the biggest element which is now zero). So there’s no way division by 
zero could happen now. This process is called stabilization. 
 
2.3 POOR CONDITIONING 
 
When function changes with respect to small changes in its inputs it’s 
called Conditioning. Functions that changes rapidly when their inputs are 
unsettle slightly can be problematic for scientific computation because 
rounding errors in the inputs can result in big changes in the output. 
 
Consider the function on vector x: 
 

                                                             (2.3) 
 
Assuming: 
 

                                                           (2.4) 
 
Has eigenvalue decomposition, its condition number is: 

   (2.5) 
                    
This ratio is the magnitude of the largest and smallest eigenvalues. When 
this number is big, matrix inversion is particularly sensitive to error in the 
input. 
 
2.4 GRADIENT BASED OPTIMIZATION 
 
Most Machine learning, deep learning algorithms involve optimization, 
Optimization presents to the task of either minimizing or maximizing 
some function f(x) by altering x. The function which needs to optimize is 
the Objective Function, sometimes called the Criterion. 
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We denote the value that minimizes or maximizes a function with a 
superscript *. 
 
For a single variable function: 

                                            (2.6) 
 
For a multi variable function: 

                                           (2.7) 
 
• Minimize/maximize a function f (x) by altering x 
– Usually stated a minimization 
– Maximization accomplished by minimizing –f(x) 
• f (x) referred to as objective function or criterion 
– In minimization also referred to as loss function cost, or error 

– Example is linear least squares     
– Denote optimum value by x*=arg min f (x) 
 
Calculus in Optimization: 
 
Suppose function y=f (x), x, y real numbers, Derivative of function 
denoted: f’(x) or as dy/dx 

•  Derivative f’(x) gives the slope of f (x) at point x 

•  It specifies how to scale a small change in input to obtaina 
corresponding change in the output: f (x + ε) ≈ f (x) + ε f’ (x) 
–  It tells how you make a small change in input to make a small 

improvement in y 
–  We know that f (x - ε sign (f’(x))) is less than f (x) for small ε. Thus 

we can reduce f (x) by moving x in small steps with opposite sign of 
derivative, this technique is called gradient descent 

 
Gradient Descent Illustrated: 
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Figure1: An illustration of how the gradient descent algorithm uses the 
derivatives of a function can be used to follow the function downhill to a 
minimum 
 
Source: Ian Goodfellow, Yoshua Bengio, Aaron Courvile “Deep 
Learning”,1st edition 2016 
 
For x>0, f(x) increases with x and f’(x)>0 

•  For x<0, f(x) is decreases with x and f’(x)<0 

•  Use f’(x) to follow function downhill 

•  Reduce f(x) by going in direction opposite sign of derivative f’(x) 
 
Stationary points, Local Optima: 
 
Here, When f’(x)=0 derivative provides no information about direction of 
move.  
 
Points where f’(x)=0 are known as stationary or critical points.  

–  Local minimum/maximum: a point where f(x) lower/higher than all its 
neighbours 

–  Some critical points are neither maxima nor minima. These are known 
as saddle points 

 

 
Figure 2: Minimum, Maximum, Saddle Point 

 
Source: Ian Goodfellow, Yoshua Bengio, Aaron Courvile “Deep 
Learning”,1st edition 2016 
 
Optimization algorithms may fail to find global minimum 
• Generally accept such solutions 
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Figure 3: Local minimum 

 
Source: Ian Goodfellow, Yoshua Bengio, Aaron Courvile “Deep 
Learning”,1st edition 2016 
 
We often minimize functions with multiple inputs: f: 𝑅 →R. For 
minimization to make sense there must still be only one (scalar) output. 
Here , we need partial derivatives డ

డೣ
 f(x) measures how f changes as only 

variable 𝑥 increases at point x 

•  Gradient generalizes notion of derivative where derivative is wrt a 
vector 

•  Gradient is vector containing all of the partial derivatives denoted ∇௫ 
f(x) 

–  Element i of the gradient is the partial derivative of f wrt 𝑥 
–  Critical points are where every element of the gradient is equal to zero 
 
Directional Derivative: 
 
The directional derivate in direction u, a unit vector, is the slope of the 
function f in direction u. It’s the derivative of the function f(x + au) with 
respect to a 
 

                                (2.8) 
 
It is used to minimize f, we would like to find the direction in which f 
decreases the fastest., we can do this using the directional derivative: 
 

                                     (2.9) 
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(2.10) 
 
Where theta is the angle between u and the gradient. 
 
Where ||u||2 = 1 and ignoring all things dependent on u we get:  

 
 
The gradient points directly uphill, and the negative gradient points 
directly downhill 

• Thus we can decrease f by moving in the direction of the negative 
gradient 

– This is known as the method of steepest descent or gradient 
descent 

•  Steepest descent proposes a new point 

                                                   (2.11) 
–  Where ε is the learning rate, a positive scalar. Set to a small 

constant. 
 
Here, We can choose ε in several different ways like follows 

•  Popular approach: set ε to a small constant 

•  Another approach is called line search: 

•  Evaluate for several values of ε and choose the one 
that results in smallest objective function value. 

 
Steepest descent converges when every element of the gradient is zero 

–  In practice, very close to zero 

•  We may be able to avoid iterative algorithm and jump to the critical 

point by solving the equation  for x.  
 
Gradient descent is limited to continuous spaces 

•  Concept of repeatedly making the best small move can be generalized 
to discrete spaces 

•  Ascending an objective function of discrete parameters is called hill 
climbing. 

 
Beyond Gradient: Jacobian and Hessian matrices: 
 
Sometimes we need to find all derivatives of a function whose input and 
output are both vectors 
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•  If we have function f: 𝑅 →𝑅 then the matrix of partial derivatives is 
known 

as the Jacobian matrix J defined as  
We are also sometimes interested in a derivative of a derivative.  
• For a function f: 𝑅 →R the derivative wrt 𝑥 of the derivative of f wrt 𝑥  
 

is denoted as  

•  In a single dimension we can denote  by f’’(x) 
•  Tells us how the first derivative will change as we vary the input 
•  This important as it tells us whether a gradient step will cause as much 

of an improvement as based on gradient alone. 
 

 
Figure 4: Quadratic functions with different curvatures 

Source: https://cedar.buffalo.edu/~srihari/CSE676/ 
 
2.5 CONSTRAINT OPTIMIZATION 
 
We may wish to optimize f(x) when the solution x is constrained to lie in 
set S 

–  Such values of x are feasible solutions 

•  Often we want a solution that is small, such as||x||≤1 

•  Simple approach: modify gradient descent taking constraint into 
account (using Lagrangian formulation) 

 
Least squares with Lagrangian: 

We wish to minimize  

•  Subject to constraint 𝑥்x ≤ 1 
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•  We introduce the Lagrangian  

– And solve the problem  

•  For the unconstrained problem (no Lagrangian) 
the smallest norm solution is x=A+b 

–  If this solution is not feasible, differentiate 

Lagrangian wrt x to obtain 𝐴்Ax-𝐴்b+2λx=0 

–  Solution takes the form x = (𝐴்A+2λI)-1𝐴்b 
–  Choosing λ: continue solving linear equation and increasing λ until x 

has the correct norm. 
 
Karush-Kuhn-Tucker is a very general solution to constrained 
optimization 

•  While Lagrangian allows equality constraints, KKT allows both 
equality and inequality constraints 

•  To define a generalized Lagrangian we need to describe S in terms of 
equalities and inequalities. 

 
Generalized Lagrangian: Set S is described in terms of m functions g(i) 
and n functions h(j) so that 
 

                      
 (2.12) 

–  Functions of g are equality constraints and functions of h are inequality 
constraints 

•  Introduce new variables λi and αj for each constraint (called KKT 
multipliers) giving the generalized Lagrangian and here We can now 
solve the unconstrained optimization problem 

 
2.6 SUMMARY 
 
This chapter is focused on need of Numerical computation. We faced 
many problems while calculations with respect to memory, multiple errors 
we faced like Overflow and Underflow, We can use softmax function to 
resolved problems. Use of Gradient Based Optimization and Constraint 
optimization explain well for better calculations. 
 

UNIT END EXERCISES 
 
1. Compare Overflow and Underflow 
2. Explain Softmax function in detail 
3. Write note on Poor Conditioning 
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4. What is a need of Gradient Optimization and Explain in detail. 
5. Define Minimum, Maximum and Saddle point 
6. Define Local minimum 
7. Explain Constraint Optimization ways. 
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3.0 OBJECTIVES 
 
After going through this unit, you will be able to: 
 Define Deep feedforward network and techniques 
 State the characteristics in Deep feedforward network 
 Describe the basic concept of Regularization for deep learning and its 

types. 
 Explain Optimization for Training deep models 
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3.1 INTRODUCTION 
 
A deep neural network (DNN) is an artificial neural network (ANN) with 
multiple layers between the input and output layers. There are different 
types of neural networks but they always consist of the same components: 
neurons, synapses, weights, biases, and functions. These components 
functioning similar to the human brains and can be trained like any other 
ML algorithm. 
Deep learning is part of a broader family of machine learning methods 
based on artificial neural networks with representation learning. Learning 
can be supervised, semi-supervised or unsupervised. 
For example, a DNN that is trained to recognize dog breeds will go over 
the given image and calculate the probability that the dog in the image is a 
certain breed. The user can review the results and select which 
probabilities the network should display (above a certain threshold, etc.) 
and return the proposed label. Each mathematical manipulation as such is 
considered a layer, and complex DNN have many layers, hence the name 
"deep" networks. 
DNNs can model complex non-linear relationships. DNN architectures 
generate compositional models where the object is expressed as a layered 
composition of primitives. The extra layers enable composition of features 
from lower layers, potentially modeling complex data with fewer units 
than a similarly performing shallow network. For instance, it was proved 
that sparse multivariate polynomials are exponentially easier to 
approximate with DNNs than with shallow networks. 
Deep architectures include many variants of a few basic approaches. Each 
architecture has found success in specific domains. It is not always 
possible to compare the performance of multiple architectures, unless they 
have been evaluated on the same data sets. 
 
3.2 DEEP FEEDFORWARD NETWORK  
 
Multi-layered Network of neurons is composed of many sigmoid neurons. 
MLNs are capable of handling the non-linearly separable data. The layers 
present between the input and output layers are called hidden layers. The 
hidden layers are used to handle the complex non-linearly separable 
relations between input and the output. 
Deep feedforward networks, also often called feedforward neural 
networks, or multilayer perceptrons (MLPs), are the quintessential deep 
learning models. The goal of a feedforward network is to approximate 
some function f∗. For example, for a classifier, y = f∗(x) maps an input x 
to a category y. A feedforward network defines a mapping y = f (x; θ) and 
learns the value of the parameters θ that result in the best function 
approximation. 
These models are called feedforward because information flows through 
the function being evaluated from x, through the intermediate 
computations used to define f, and finally to the output y. There are no 
feedback connections in which outputs of the model are fed back into 
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itself.  When feedforward neural networks are extended to include 
feedback connections, they are called recurrent neural networks. 
Feedforward networks are of extreme importance to machine learning 
practitioners. They form the basis of many important commercial 
applications.  
 
3.2.1 Simple Deep Neural Network: 
 
In simple neural network to solve complex non-linear decision boundaries. 
For example of a mobile phone like/dislike predictor with two variables: 
screen size, and the cost. It has a complex decision boundary as 
shown below, 

 
Fig. 1 Mobile phone Predictor 

 
Decision Boundary: 
 
In single sigmoid neuron, it is impossible to obtain this kind of non-linear 
decision boundary. Regardless of how we vary the sigmoid neuron 
parameters w and b. Now change the situation and use a simple network 
of neurons for the same problem and see how it handles. 

 
Fig. 2 Simple Neural Network 
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Simple Neural Network: 
 
Here inputs x₁   -  screen size and x₂  - price going into the network along 
with the bias b₁  and b₂ . In break down the model neuron by neuron to 
understand. We have our first neuron (leftmost) in the first layer which is 
connected to inputs x₁  and x₂  with the weights w₁ ₁  and w₁ ₂  and the 
bias b₁  and b₂ . The output of that neuron represented as h₁ , which is a 
function of x₁  and x₂  with parameters w₁ ₁  and w₁ ₂ . 
 

h1 = f1 (x1, x2) 
 
Output of the first Neuron: 
 
If we apply the sigmoid function to the inputs x₁  and x₂  with the 
appropriate weights w₁ ₁ , w₁ ₂  and bias b₁  we would get an output h₁ , 
which would be some real value between 0 and 1. The sigmoid output for 
the first neuron h₁  will be given by the following equation, 
 

 
 
Output Sigmoid for First Neuron: 
 
Next up, we have another neuron in the first layer which is connected to 
inputs x₁  and x₂  with the weights w₁ ₃  and w₁ ₄  along with the bias 
b₃  and b₄ . The output of the second neuron represented as h₂ . 
 

H2 = f2 (x1, x2) 
 
Output of the second Neuron: 
 
Similarly, the sigmoid output for the second neuron h₂  will be given by 
the following equation, 
 

 
 
So far we have seen the neurons present in the first layer but we also have 
another output neuron which takes h₁  and h₂  as the input as opposed to 
the previous neurons. The output from this neuron will be the final 
predicted output, which is a function of h₁  and h₂ . The predicted output 
is given by the following equation, 
 

 

mu
no
tes
.in



32 
 

 
 
We can adjust only w₁ , w₂  and b - parameters of a single sigmoid 
neuron. Now we can adjust the 9 parameters (w₁ ₁ , w₁ ₂ , w₁ ₃ , w₁ ₄ , 
w₂ ₁ , w₂ ₂ , b₁ , b₂ , b₃ ), which allows the handling of much complex 
decision boundary. By trying out the different configurations for these 
parameters we would be able to find the optimal surface where output for 
the entire middle area (red points) is one and everywhere else is zero, what 
we desire. 

 
Fig. 3 Decision Boundary from Network 

 
3.2.2 Generic Deep Neural Network: 
 
Previously, we have seen the neural network for a specific task, now we 
will check about the neural network in generic form. 

 
Fig. 4 Generic Network without Connections 
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In network of neurons with two hidden layers (in blue but there can more 
than 2 layers if needed) and each hidden layer has 3 sigmoid neurons there 
can be more neurons. In three inputs going into the network and there are 
two neurons in the output layer. We will take this network as it is and 
understand the intricacies of the deep neural network. 
 
The terminology then we will go into how these neurons interact with each 
other. For each of these neurons, two things will happen 
 
1. Pre-activation represented by ‘a’: It is a weighted sum of inputs plus 

the bias. 
2. Activation represented by ‘h’: Activation function is Sigmoid 

function. 

 
Fig. 5 Generic Network with Connections 

 
Let’s understand the network neuron by neuron. Consider the first neuron 
present in the first hidden layer. The first neuron is connected to each of 
the inputs by weight W₁ . 
 
Going forward I will be using this format of the indices to represent the 
weights and biases associated with a particular neuron, 
 
W₁ ₁ ₁ — Weight associated with the first neuron present in the first 
hidden layer connected to the first input. 

W₁ ₁ ₂ — Weight associated with the first neuron present in the first 
hidden layer connected to the second input. 

b₁ ₁  — Bias associated with the first neuron present in the first 
hidden layer. 

b₁ ₂  — Bias associated with the second neuron present in the first 
hidden layer. 
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Here W₁  a weight matrix containing the individual weights associated 
with the respective inputs. The pre-activation at each layer is the weighted 
sum of the inputs from the previous layer plus bias. The mathematical 
equation for pre-activation at each layer ‘i’ is given by, 
 

ai (x) = Wi hi-1 (x) +bi 
 
Pre-activation Function: 
 
The activation at each layer is equal to applying the sigmoid function to 
the output of pre-activation of that layer. The mathematical equation for 
the activation at each layer ‘i’ is given by, 
 

hi (x) = g(ai(x))  
 
where ‘g’ is called activation Function. 
 
Finally, we can get the predicted output of the neural network by applying 
some kind of activation function (could be softmax depending on the task) 
to the pre-activation output of the previous layer. The equation for the 
predicted output is shown below, 
 

f (x) = hL = O(aL) 
 
Where ‘O’ is called as the output activation function. 
 
3.2.3 Computations in Deep Neural Network: 
 
Consider that you have 100 inputs and 10 neurons in the first and second 
hidden layers. Each of the 100 inputs will be connected to the neurons will 
be The weight matrix of the first neuron W₁  will have a total of 10 x 
100 weights. 
 

 
 
Weight Matrix: 
 
Remember, we are following a very specific format for the indices of the 
weight and bias variable as shown below, 
 
W(Layer number)(Neuron number in the layer)(Input number) 
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b(Layer number)(Bias number associated for that input) 
 
Now let’s see how we can compute the pre-activation for the first neuron 
of the first layer a₁ ₁ . We know that pre-activation is nothing but the 
weighted sum of inputs plus bias. In other words, it is the dot product 
between the first row of the weight matrix W₁  and the input matrix X 
plus bias b₁ ₁ . 
 

 
 
Similarly the pre-activation for other 9 neurons in the first layer given by, 
 

 
 
In short, the overall pre-activation of the first layer is given by, 
 
a1 = W1 * x + b1 
 
Where, 
 
W₁  is a matrix containing the individual weights associated with the 
corresponding inputs and b₁  is a vector containing(b₁ ₁ , b₁ ₂ , 
b₁ ₃ ,….,b₁ ₀ ) the individual bias associated with the sigmoid neurons. 
The activation for the first layer is given by, 
 
h1 = g(a1) 
 
Where ‘g’ represents the sigmoid function. 
 
Remember that a₁  is a vector of 10 pre-activation values, here we are 
applying the element-wise sigmoid function on all these 10 values and 
storing them in another vector represented as h₁ . Similarly, we can 
compute the pre-activation and activation values for ’n’ number of hidden 
layers present in the network. 
 
Output Layer of DNN: 
 
So far we have talked about the computations in the hidden layer. Now we 
will talk about the computations in the output layer. 

mu
no
tes
.in



36 
 

 
Fig. 6 The output Activation function is chosen depending on the task at hand, can 

be softmax or linear. 
 
Softmax Function: 
 
We will use the Softmax function as the output activation function. The 
most frequently used activation function in deep learning for classification 
problems. 
 

 
 
Softmax Function: 
 
In the Softmax function, the output is always positive, irrespective of 
the input. 

 
Fig. 6 Softmax Fubction. 
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Now, let us illustrate the Softmax function on the above-shown network 
with 4 output neurons. The output of all these 4 neurons is represented in a 
vector ‘a’. To this vector, we will apply our softmax activation function to 
get the predicted probability distribution as shown below, 
 

 
 
By applying the softmax function we would get a predicted probability 
distribution and our true output is also a probability distribution, we can 
compare these two distributions to compute the loss of the network. 
 
Loss Function: 
 
In this section, we will talk about the loss function for binary and multi-
class classification. The purpose of the loss function is to tell the model 
that some correction needs to be done in the learning process. 
In general, the number of neurons in the output layer would be equal to the 
number of classes. But in the case of binary classification, we can use only 
one sigmoid neuron which outputs the probability P(Y=1) therefore we 
can obtain P(Y=0) = 1-P(Y=1). In the case of classification, We will use 
the cross-entropy loss to compare the predicted probability distribution 
and the true probability distribution. 
 
Cross-entropy loss for binary classification is given by, 
 

 
 
Cross-entropy loss for multi-class classification is given by, 
 

 
 
3.2.4 Gradient-Based Learning: 
 
Designing and training a neural network is not much diff erent from 
training any other machine learning model with gradient descent. The 
largest diff erence between the linear models we have seen so far and neural 
networks is that the nonlinearity of a neural network causes most 
interesting loss functions to become non-convex. This means that neural 
networks are usually trained by using iterative, gradient-based optimizers 
that merely drive the cost function to a very low value, rather than the 
linear equation solvers used to train linear regression models or the convex 
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optimization algorithms with global convergence guarantees used to train 
logistic regression or SVMs. 
 

 
Fig 7. Ball diagram depicting the visualisation of how gradient based learning occur. 
 
As we can see at right of figure 7, an analogy of a ball dropped in a deep 
valley and it settle downs at the bottom of the valley. Similarly we want 
our cost function to get minimize and get to the minimum value possible. 
When we move the ball a small amount Δv1 in the v1 direction, and a 
small amount Δv2 in the v2 direction. Calculus tells us that C changes as 
follows: 
 

 
 
Change of the v1 and v2 such that the change in cost is negative is 
desirable. We can also denote ΔC≈∇C⋅Δv. where ∇C is, 
 

 
and Δv is, 
 

 
 
Indeed, there’s even a sense in which gradient descent is the optimal 
strategy for searching for a minimum. Let’s suppose that we’re trying to 
make a move Δv in position so as to decrease C as much as possible. We’ll 
constrain the size of the move so that ǁΔvǁ=ϵ for some small fixed ϵ>0. In 
other words, we want a move that is a small step of a fixed size, and we’re 
trying to find the movement direction which decreases C as much as 
possible. It can be proved that the choice of Δv which minimizes ∇C⋅Δv is 
Δv=−η∇C, where η=ϵ/ǁ∇Cǁ is determined by the size constraint ǁΔvǁ=ϵ. So 
gradient descent can be viewed as a way of taking small steps in the 
direction which does the most to immediately decrease C. Now that the 
gradient vector ∇C has corresponding components ∂C/∂w𝑘 and ∂C/∂bℓ. 
Writing out the gradient descent update rule in terms of components, we 
have 
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Now there are many challenges in training gradient based learning. But for 
now I just want to mention one problem. When the number of training 
inputs is very large this can take a long time, and learning thus occurs 
slowly. An idea called stochastic gradient descent can be used to speed up 
learning. To make these ideas more precise, stochastic gradient descent 
works by randomly picking out a small number m of randomly chosen 
training inputs. We’ll label those random training inputs X1,X2,…,Xm and 
refer to them as a mini-batch. Provided the sample size mm is large enough 
we expect that the average value of the ∇CXj will be roughly equal to the 
average over all ∇Cx, that is, 
 

 
 
This modification helps us in reducing a good amount of computational 
load. Stochastic gradient descent applied to non-convex loss functions has 
no such convergence guarantee, and is sensitive to the values of the initial 
parameters. For feedforward neural networks, it is important to initialize all 
weights to small random values. The biases may be initialized to zero or to 
small positive values. 
 
3.3 Regularization for deep learning 
 
Regularization is a set of strategies used in Machine Learning to reduce 
the generalization error. Most models, after training, perform very well on 
a specific subset of the overall population but fail to generalize well. This 
is also known as overfitting. Regularization strategies aim to reduce 
overfitting and keep, at the same time, the training error as low as 
possible. 
ResNet CNN architecture were originally proposed in 2015. A recent 
paper called “Revisiting ResNets: Improved Training and Scaling 
Strategies” applied modern regularization methods and achieved more 
than 3% test set accuracy on Imagenet. If the test set consists of 100K 
images, this means that 3K more images were classified correctly! 
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Fig. 8 Revisiting ResNets: Improved Training and Scaling Strategies 

 
In the context of deep learning, most regularization strategies are based on 
regularizing estimators. Regularization of an estimator works by trading 
increased bias for reduced variance. An eff ective regularizer is one that 
makes a profitabletrade, reducing variance significantly while not overly 
increasing the bias. 
 
In simple terms, regularization results in simpler models. And as the 
Occam’s razor principle argues: the simplest models are the most likely to 
perform better. Actually, we constrain the model to a smaller set of 
possible solutions by introducing different techniques. 
 
To get a better insight you need to understand the famous bias-variance 
tradeoff. 
 
The bias-variance tradeoff: overfitting and underfitting 
 

First, let’s clarify that bias-variance tradeoff and overfitting-underfitting 
are equivalent. 
 
Overfitting refers to the phenomenon where a neural network models the 
training data very well but fails when it sees new data from the same 
problem domain. Overfitting is caused by noise in the training data that the 
neural network picks up during training and learns it as an underlying 
concept of the data. 

 
Fig. 9 Underfitting and overfitting 
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The bias error is an error from wrong assumptions in the learning 
algorithm. High bias can cause an algorithm to miss the relevant relations 
between features and target outputs. This is called underfitting. 
 
The variance is an error from sensitivity to small fluctuations in the 
training set. High variance may result in modeling the random noise in the 
training data. This is called overfitting. 
 
The bias-variance tradeoff is a term to describe the fact that we can 
reduce the variance by increasing the bias. Good regularization techniques 
strive to simultaneously minimize the two sources of error. Hence, 
achieving better generalization. 
 
3.3.1 L2 regularization: 
 
The L2 regularization is the most common type of all regularization 
techniques and is also commonly known as weight decay or Ride 
Regression. 
 
The mathematical derivation of this regularization, as well as the 
mathematical explanation of why this method works at reducing 
overfitting, is quite long and complex. Since this is a very practical article I 
don’t want to focus on mathematics more than it is required. Instead, I want 
to convey the intuition behind this technique and most importantly how to 
implement it so you can address the overfitting problem during your deep 
learning projects. 
 
During the L2 regularization the loss function of the neural network as 
extended by a so-called regularization term, which is called here Ω. 
 
The L2 regularizer will have a big impact on the directions of the weight 
vector that don’t “contribute” much to the loss function. On the other 
hand, it will have a relatively small effect on the directions that contribute 
to the loss function. As a result, we reduce the variance of our model, 
which makes it easier to generalize on unseen data. 
 
The regularization term Ω is defined as the Euclidean Norm (or L2 norm) 
of the weight matrices, which is the sum over all squared weight values of 
a weight matrix. The regularization term is weighted by the scalar alpha 
divided by two and added to the regular loss function that is chosen for the 
current task. This leads to a new expression for the loss function: 
 

 
Eq 2. Regularization loss during L2 regularization. 
 
Alpha is sometimes called as the regularization rate and is an additional 
hyperparameter we introduce into the neural network. Simply speaking 
alpha determines how much we regularize our model. 
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In the next step we can compute the gradient of the new loss function and 
put the gradient into the update rule for the weights: 
 

 
 

 
 
Eq. 3 Gradient Descent during L2 Regularization. 
 
Some reformulations of the update rule lead to the expression which very 
much looks like the update rule for the weights during regular gradient 
descent: 
 

 
 
Eq.4 Gradient Descent during L2 Regularization. 
 
The only difference is that by adding the regularization term we introduce 
an additional subtraction from the current weights (first term in the 
equation). 
 
In other words independent of the gradient of the loss function we are 
making our weights a little bit smaller each time an update is performed. 
 
3.3.2 L1 regularization: 
 
In the case of L1 regularization (also knows as Lasso regression), we 
simply use another regularization term Ω. This term is the sum of the 
absolute values of the weight parameters in a weight matrix: 
 
Eq.5 Regularization Term for L1 Regularization. 
 
As in the previous case, we multiply the regularization term by alpha and 
add the entire thing to the loss function. 
 

 
 
Eq.6 Loss function during L1 Regularization. 
 
The derivative of the new loss function leads to the following expression, 
which the sum of the gradient of the old loss function and sign of a weight 
value times alpha. 
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Eq. 7 Gradient of the loss function during L1 Regularization. 
 
As we can see, the regularization term does not scale linearly, contrary to 
L2 regularization, but it’s a constant factor with an alternating sign. How 
does this affect the overall training? 
 
The L1 regularizer introduces sparsity in the weights by forcing more 
weights to be zero instead of reducing the average magnitude of all 
weights ( as the L2 regularizer does). In other words, L1 suggests that 
some features should be discarded whatsoever from the training process. 
 
Elastic net: 
 

Elastic net is a method that linearly combines L1 and L2 regularization 
with the goal to acquire the best of both worlds. More specifically the 
penalty term is as follows. 
 
\Omega(\theta) = \lambda_1 ||w||_1 + \lambda_2||w||^2_2Ω(θ)=λ1∣∣w∣∣1
+λ2∣∣w∣∣22 
 
Elastic Net regularization reduces the effect of certain features, as L1 does, 
but at the same time, it does not eliminate them. So it combines feature 
elimination from L1 and feature coefficient reduction from the L2. 
 
What does Regularization achieve?: 

 
 Performing L2 regularization encourages the weight values towards 

zero (but not exactly zero) 
 
 Performing L1 regularization encourages the weight values to be zero 
 
Intuitively speaking smaller weights reduce the impact of the hidden 
neurons. In that case, those hidden neurons become neglectable and the 
overall complexity of the neural network gets reduced. 
 
As mentioned earlier less complex models typically avoid modeling noise 
in the data, and therefore, there is no overfitting. 
 
But you have to be careful. When choosing the regularization term α. The 
goal is to strike the right balance between low complexity of the model and 
accuracy 
 
 If your alpha value is too high, your model will be simple, but you run 

the risk of underfitting your data. Your model won’t learn enough 
about the training data to make useful predictions. 

 
 If your alpha value is too low, your model will be more complex, and 

you run the risk of overfitting your data. Your model will learn too 
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much about the particularities of the training data, and won’t be able to 
generalize to new data. 

 
L2 & L1 regularizatio: 
 
L1 and L2 are the most common types of regularization. These update the 
general cost function by adding another term known as the regularization 
term. 
 
Cost function = Loss (say, binary cross entropy) + Regularization term 
 
Due to the addition of this regularization term, the values of weight 
matrices decrease because it assumes that a neural network with smaller 
weight matrices leads to simpler models. Therefore, it will also reduce 
overfitting to quite an extent. 
 
However, this regularization term differs in L1 and L2. 
 
In L2, we have: 
 

 
 
Here, lambda is the regularization parameter. It is the hyperparameter 
whose value is optimized for better results. L2 regularization is also 
known as weight decay as it forces the weights to decay towards zero (but 
not exactly zero). 
 
In L1, we have: 
 

 
 
In this, we penalize the absolute value of the weights. Unlike L2, the 
weights may be reduced to zero here. Hence, it is very useful when we are 
trying to compress our model. Otherwise, we usually prefer L2 over it. 
Similarly, we can also apply L1 regularization. 
 
3.3.3 Entropy Regularization: 
 
Entropy regularization is another norm penalty method that applies to 
probabilistic models. It has also been used in different Reinforcement 
Learning techniques such as A3C and policy optimization techniques. 
Similarly to the previous methods, we add a penalty term to the loss 
function. 
 
The term “Entropy” has been taken from information theory and 
represents the average level of "information" inherent in the variable's 
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possible outcomes. An equivalent definition of entropy is the expected 
value of the information of a variable. 
 
One very simple explanation of why it works is that it forces the 
probability distribution towards the uniform distribution to reduce 
variance. 
 
In the context of Reinforcement Learning, one can say that the entropy 
term added to the loss, promotes action diversity and allows better 
exploration of the environment.  
 
3.3.4 Dropout: 
 
In addition to the L2 and L1 regularization, another famous and powerful 
regularization technique is called the dropout regularization. The procedure 
behind dropout regularization is quite simple. 
 
In a nutshell, dropout means that during training with some probability P a 
neuron of the neural network gets turned off during training.  
 
Another strategy to regularize deep neural networks is dropout. Dropout 
falls into noise injection techniques and can be seen as noise injection into 
the hidden units of the network. 
 
In practice, during training, some number of layer outputs are randomly 
ignored (dropped out) with probability pp. 
 
During test time, all units are present, but they have been scaled down 
by pp. This is happening because after dropout, the next layers will receive 
lower values. In the test phase though, we are keeping all units so the 
values will be a lot higher than expected. That’s why we need to scale 
them down. 
 
By using dropout, the same layer will alter its connectivity and will search 
for alternative paths to convey the information in the next layer. As a 
result, each update to a layer during training is performed with a different 
“view” of the configured layer. Conceptually, it approximates training a 
large number of neural networks with different architectures in parallel. 
 
"Dropping" values means temporarily removing them from the network 
for the current forward pass, along with all its incoming and outgoing 
connections. Dropout has the effect of making the training process noisy. 
The choice of the probability pp depends on the architecture. 
 
Other Dropout variations: 
There are many more variations of Dropout that have been proposed over 
the years. To keep this article relatively digestible, I won’t go into many 
details for each one. But I will briefly mention a few of them.  
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1. Inverted dropout: also randomly drops some units with a 
probability pp. The difference with traditional dropout is: During 
training, it also scales the activations by the inverse of the keep 
probability 1-p1−p. The reason behind this is: to prevent the 
activations from becoming too large thus the need to modify the 
network during the testing phase. The end result will be similar to the 
traditional dropout. 
 

2. Gaussian dropout: instead of dropping units during training, is 
injecting noise to the weights of each unit. The noise is, more often 
than not ,Gaussian. This results in: 
 
1. A reduction in the computational effort during testing time. 

 
2. No weight scaling is required. 

 
3. Faster training overall 

 
3. DropConnect follows a slightly different approach. Instead of 

zeroing out random activations (units), it zeros random weights 
during each forward pass. The weights are dropped with a 
probability of 1-p1−p. This essentially transforms a fully connected 
layer to a sparsely connected layer. Mathematically we can represent 
DropConnect as: r = a \left(\left(M * 
W\right){v}\right)r=a((M∗W)v) where rr is the layers’ output, vv the 
input, WW the weights and MM a binary matrix. MM is a mask that 
instantiates a different connectivity pattern from each data sample. 
Usually, the mask is derived from each training 
example. DropConnect can be seen as a generalization of Dropout to 
the full-connection structure of a layer. 
 

4. Variational Dropout: we use the same dropout mask on each 
timestep. This means that we will drop the same network units each 
time.  
 

5. Attention Dropout: popular over the past years because of the rapid 
advancements of attention-based models like Transformers. As you 
may have guessed, we randomly dropped certain attention units with a 
probability pp. 
 

6. Adaptive Dropout: a technique that extends dropout by allowing the 
dropout probability to be different for different units. The intuition is 
that there may be hidden units that can individually make confident 
predictions for the presence or absence of an important feature or 
combination of features. 
 

7. Embedding Dropout: a strategy that performs dropout on the 
embedding matrix and is used for a full forward and backward pass. 
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8. DropBlock: is used in Convolutional Neural networks and it discards 
all units in a continuous region of the feature map. 
 

Stochastic Depth: 
 
Stochastic depth goes a step further. It drops entire network blocks while 
keeping the model intact during testing. The most popular application is in 
large ResNets where we bypass certain blocks through their skip 
connections. 
 
In particular, Stochastic depth drops out each layer in the network that has 
residual connections around it. It does so with a specified 
probability pp that is a function of the layer depth. 

 

 
Fig. 10 Deep Networks with Stochastic Depth 

 
Early stopping: 
 
Early stopping is one of the most commonly used strategies because it is 
very simple and quite effective. It refers to the process of stopping the 
training when the training error is no longer decreasing but the validation 
error is starting to rise. 
 

 
Fig. 11 Process of Early Stopping. 

 
This implies that we store the trainable parameters periodically and track 
the validation error. After the training stopped, we return the trainable 
parameters to the exact point where the validation error started to rise, 
instead of the last ones. 
 
A different way to think of early stopping is as a very efficient 
hyperparameter selection algorithm, which sets the number of epochs to 
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the absolute best. It essentially restricts the optimization procedure to a 
small volume of the trainable parameters space close to the initial 
parameters. 
 
It can also be proven that in the case of a simple linear model with a 
quadratic error function and simple gradient descent, early stopping is 
equivalent to L2 regularization. 
 
Parameter sharing: 
 
Parameter sharing follows a different approach. Instead of penalizing 
model parameters, it forces a group of parameters to be equal. This can 
be seen as a way to apply our previous domain knowledge to the training 
process. Various approaches have been proposed over the years but the 
most popular one is by far Convolutional Neural Networks. 
 
Convolutional Neural Networks take advantage of the spatial structure of 
images by sharing parameters across different locations in the input. Since 
each kernel is convoluted with different blocks of the input image, the 
weight is shared among the blocks instead of having separate ones. 
 
Batch normalization: 
 
Batch normalization (BN) can also be used as a form of regularization. 
Batch normalization fixes the means and variances of the input by 
bringing the feature in the same range. More specifically, we concentrate 
the features in a compact Gaussian-like space. 
 
Visually this can be represented as: 
 

 
Fig. 12 Batch Normalization 
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Batch normalization can implicitly regularize the model and in many 
cases, it is preferred over Dropout. 
 
One can think of batch normalization as a similar process with dropout 
because it essentially injects noise. Instead of multiplying each hidden unit 
with a random value, it multiplies them with the deviation of all the hidden 
units in the minibatch. It also subtracts a random value  from each hidden 
unit at each step. 
 
3.3.5 Data augmentation: 
 
Data augmentation is the final strategy that we need to mention. Although 
not strictly a regularization method, it sure has its place here. 
 
Data augmentation refers to the process of generating new training 
examples to our dataset. More training data means lower model’s 
variance, a.k.a lower generalization error. Simple as that. It can also be 
seen as a form of noise injection in the training dataset. 
 
Data augmentation can be achieved in many different ways. Let’s explore 
some of them. 
 
1. Basic Data Manipulations: The first simple thing to do is to perform 

geometric transformations on data. Most notably, if we’re talking 
about images we have solutions such as: Image flipping, cropping, 
rotations, translations, image color modification, image mixing 
etc. Cutout is a commonly used idea where we remove certain image 
regions. Another idea, called Mixup, is the process of blending two 
images from the dataset into one image. 

 
2. Feature Space Augmentation: Instead of transforming data in the 

input space as above, we can apply transformations on the feature 
space. For example, an autoencoder might be used to extract the latent 
representation. Noise can then be added in the latent representation 
which results in a transformation of the original data point. 

 
3. GAN-based Augmentation: Generative Adversarial Networks have 

been proven to work extremely well on data generation so they are a 
natural choice for data augmentation. 

 
4. Meta-Learning: In meta-learning, we use neural networks to 

optimize other neural networks by tuning their hyperparameters, 
improving their layout, and more. A similar approach can also be 
applied in data augmentation. In simple terms, we use a classification 
network to tune an augmentation network into generating better 
images. Example: We feed random images to an Augmentation 
Network (most likely a GAN), which will generate augmented 
images. Both the augmented image and the original are passed into a 
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second network, which compares them and tells us how good the 
augmented image is. After repeating the process the augmentation 
network becomes better and better at producing new images. 
 

Regularization is an integral part of training Deep Neural Networks. In all 
the aforementioned strategies fall into two different high-level categories. 
They either penalize the trainable parameters or they inject noise 
somewhere along the training lifecycle. Whether this is on the training 
data, the network architecture, the trainable parameters or the target labels. 
 
3.4 OPTIMIZATION FOR TRAINING DEEP MODELS 
 
Deep learning algorithms involve optimization in many contexts. For 
example, performing inference in models such as PCA involves solving an 
optimization problem. We often use analytical optimization to write proofs 
or design algorithms. Of all of the many optimization problems involved 
in deep learning, the most difficult is neural network training. It is quite 
common to invest days to months of time on hundreds of machines in 
order to solve even a single instance of the neural network training 
problem. Because this problem is so important and so expensive, a 
specialized set of optimization techniques have been developed for solving 
it.  
 
3.4.1 How Learning Differs from Pure Optimization: 
 
Optimization algorithms used for training of deep models differ from 
traditional optimization algorithms in several ways. Machine learning 
usually acts indirectly. In most machine learning scenarios, we care about 
some performance measure P, that is defined with respect to the test set and 
may also be intractable. We therefore optimize P only indirectly. We 
reduce a different cost function J(θ) in the hope that doing so will improve 
P . This is in contrast to pure optimization, where minimizing J is a goal in 
and of itself. Optimization algorithms for training deep models also 
typically include some specialization on the specific structure of machine 
learning objective functions. In Machine Learning (ML), we care about a 
certain performance measure (say P, for e.g. accuracy) defined w.r.t the test 
set and optimize J(θ) (for e.g. cross-entropy loss) with the hope that it 
improves P as well. In pure optimization, optimizing J(θ) is the final goal. 
 
 The expected generalization error (risk) is taken over the true data-

generating distribution p_data. If we do have that, it becomes an 
optimization problem. 

 
Notice how the expectation is taken over the true data generating 
distribution. 
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When we don’t have p_data but a finite training set, we have a ML 
problem. The latter can be converted back to an optimization problem by 
replacing p_data with the empirical distribution with p̂_data obtained from 
the training set, thereby reducing the empirical risk. This is 
called empirical risk minimization (ERM): 

 
Notice the change in distribution over which the expectation is taken. 
 
Although this might look relatively similar to optimization, there are two 
main problems. Firstly, ERM is prone to overfitting with the possibility of 
the dataset being learned by high capacity models (models with the ability 
to learn extremely complex functions). Secondly, ERM might not be 
feasible. Most optimization algorithms now are based on Gradient 
Descent (GD) which requires a derivative calculation and hence, may not 
work with certain loss functions like the 0–1 loss (as it is not 
differentiable). 
 
 It is for the reasons mentioned above that a surrogate loss 

function (SLF) is used instead, that acts as a proxy. For e.g. 
the negative log-likelihood of the true class is used as a surrogate for 
0–1 loss. I’ve added a code snippet below that would help you 
understand why 0–1 loss won’t work for Gradient Descent but cross-
entropy, being a smooth function, would. 

 

 
Fig. 13 Comparison of Zero-one loss and cross - entropy loss. 

 
It can be seen that the 0–1 loss is a non-differentiable function and hence, 
not compatible with gradient-based algorithms like Gradient Descent. 
Cross-entropy is a smooth approximation of the 0–1 loss. 
 
Using a SLF might even turn out to be beneficial as you can keep 
continuing to obtain a better test error by pushing the classes even further 
apart to get a more reliable classifier. By this, I mean that suppose we were 
using a 0–1 loss with a threshold of, say, 0.5 to assign each class. Here, in 
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case the true class is 1, our model would have no motivation to push the 
prediction score close to 1 once it’s able to get it above 0.5. However, using 
cross-entropy, since we are using the raw prediction scores, the model 
keeps trying to push the prediction closer to the true class. 
 
 Another common difference is that training might be halted following 

some convergence criterion based on Early Stopping to prevent 
overfitting, when the derivative of the surrogate loss function might 
still be large. This is different from pure optimization which is halted 
only when the derivative becomes very small.  

 
 In ML optimization algorithms, the objective function decomposes as 

a sum over the examples and we can perform updates by randomly 
sampling a batch of examples and taking the average over the 
examples in that batch. If we consider n random variables, each having 
the true mean given by μ, the Standard Error (S.E.) of the 
mean estimated from those n random variables is given as follows: 

 

 
This indicates that as we include more examples for making an update, 
the returns of additional examples in improving the error is less than 
linear. Thus, if we use 100 and 10000 examples separately to make an 
update, the latter takes 100 times more compute, but reduces the error only 
by a factor of 10. Thus, it’s better to compute rapid approximate 
updates rather than a slow exact update. 
 
 There are 3 types of sampling based algorithms — batch gradient 

descent (BGD), where the entire training set is used to make a single 
update, stochastic gradient descent (SGD), where a single example is 
used to make a weight update and mini-batch gradient descent 
(MBGD), where a batch (not to be confused with BGD) of examples is 
randomly sampled from the entire training set and is used to make an 
update. Mini-batch GD is nowadays commonly referred to as 
Stochastic GD. 
 

It is a common practise to use batch sizes of powers of 2 to offer better run-
time with certain hardware. Small batches tend to have a regularizing effect 
because of the noise they inject as each update is made by seeing only a 
very small portion of the entire training set. 
 
 The mini-batches should be selected randomly. It is sufficient to 

shuffle the dataset once and iterate over it multiple times. In the first 
epoch, the network sees each example for the first time and hence, the 
estimate of gradient is an unbiased estimate of the gradient of the true 
generalization error. However, from the second epoch onward, the 
estimate becomes biased as it is re-sampling from data that it has 
already seen. Such a sampling algorithm is called Random Reshuffling 
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and although their analysis even for generalized linear models, which 
are strongly convex, is an open problem till date, reasonable efforts 
have been made to show that this biased estimate of the gradient is 
decent enough. 
 

3.4.2 Challenges in Neural Network Optimization: 
 
Optimization in general is an extremely difficult task. Traditionally, 
machine learning has avoided the difficulty of general optimization by 
carefully designing the objective function and constraints to ensure that the 
optimization problem is convex. When training neural networks, we must 
confront the general non-convex case. Even convex optimization is not 
without its complications.  The optimization problem for training neural 
networks is generally non-convex. Some of the challenges faced are 
mentioned below: 
 
3.4.2.1 Ill-conditioning of the Hessian Matrix:  

 
Some challenges arise even when optimizing convex functions. Of these, 
the most prominent is ill-conditioning of the Hessian matrix H. This is a 
very general problem in most numerical optimization. For the sake of 
completion, the Hessian matrix H of a function f with a vector-valued 
input x is given as: 
 

 
 

 
 
Ill-conditioning: is said to happen when the first term exceeds the second 
term as then the cost would be increasing. In many cases, the gradient 
might be large leading to a large gradient norm (i.e. g’g). 
However, g’Hg might be even larger than the gradient norm. This would 
lead to slower learning as we would need to reduce the learning rate to 
make the first term lower than the second. To clarify more on this, since the 
first term contains the 2nd power of ϵ, and ϵ being less than 1, ϵ² < ϵ. So, to 
prevent ill-conditioning, the first term should be lower than the second, but 
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given that g’Hg > g’g, this can be achieved only by reducing the learning 
rate, leading to slower learning. Thus, although ideally the gradient norm 
should decrease during training (since our primary aim is to reach a global 
minima where the gradient is 0), we can still get successful training even 
with the gradient norm increasing as shown below: 
 

 
Fig 14 Gradient norm 

 
Figure 14 Gradient descent often does not arrive at a critical point of any 
kind. In this example, the gradient norm increases throughout training of a 
convolutional network used for object detection. (Left)A scatterplot 
showing how the norms of individual gradient evaluations are distributed 
over time. To improve legibility, only one gradient norm is plotted per 
epoch. The running average of all gradient norms is plotted as a solid 
curve. The gradient norm clearly increases over time, rather than 
decreasing as we would expect if the training process converged to a 
critical point. (Right)Despite the increasing gradient, the training process is 
reasonably successful. The validation set classification error decreases to a 
low level. 
 
3.4.2.2 Local minima: 
 
One of the most prominent features of a convex optimization problem is 
that it can be reduced to the problem of finding a local minimum. Any local 
minimum is guaranteed to be a global minimum. Some convex functions 
have a flat region at the bottom rather than a single global minimum point, 
but any point within such a flat region is an acceptable solution. When 
optimizing a convex function, we know that we have reached a good 
solution if we find a critical point of any kind. With non-convex functions, 
such as neural nets, it is possible to have many local minima. Indeed, 
nearly any deep model is essentially guaranteed to have an extremely large 
number of local minima. However, as we will see, this is not necessarily a 
major problem. Neural networks and any models with multiple 
equivalently parametrized latent variables all have multiple local minima 
because of the model identifiability problem. A model is said to be 
identifiable if a sufficiently large training set can rule out all but one setting 
of the model’s parameters. Models with latent variables are often not 
identifiable because we can obtain equivalent models by exchanging latent 
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variables with each other. For example, we could take a neural network and 
modify layer 1 by swapping the incoming weight vector for unit i with the 
incoming weight vector for unit j, then doing the same for the outgoing 
weight vectors. If we have m layers with n units each, then there are n!m 
ways of arranging the hidden units. This kind of non-identifiability is 
known as weight space symmetry. Nearly any Deep Learning (DL ) model 
is guaranteed to have an extremely large number of local minima (LM) 
arising due to the model identifiability problem. 
 
A model is said to be identifiable if a sufficiently large training set can rule 
out all but one setting of the model parameters. In case of neural networks, 
we can obtain equivalent models by swapping the position of the neurons. 
Thus, they are not identifiable. 
 

 
(a) 
 

 
 
(b) 

Fig. 15 Local Minima 
 
Swapping the two hidden nodes leads to equivalent models. Thus, even 
after having a sufficiently large training set, there is not a unique setting of 
parameters. This is the model identifiability problem that neural networks 
suffer from. 
 
However, all the local minima caused due to this have the same value of 
the cost function, thus not being a problem. However, if local minima with 
high cost are common, it becomes a serious problem as shown above. 
Many points other than local minima can lead to low gradients. Nowadays, 
it’s common to aim for a low but not minimal cost value. 
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3.4.2.3 Plateaus, Saddle Points and Other Flat Regions: 
 
Saddle point (SP) is another type of point with zero gradient where some 
points around it have higher value and the others have lower. Intuitively, 
this means that a saddle point acts as both a local minima for some 
neighbors and a local maxima for the others. Thus, Hessian at SP has both 
positive and negative eigenvalues for a function to curve upwards or 
downwards around a point as in the case of local minima and local 
maxima, the eigenvalues should have the same sign, positive for local 
minima and negative for local maxima. 
 

 
Fig. 16 Saddle Point 

 
It’s called a saddle point as it looks like the saddle of a horse. For many 
classes of random functions, saddle points become more common at high 
dimensions with the ratio of number of SPs to LMs growing exponentially 
with n for an n-dimensional space. Many random functions have an 
amazing property that near points with low cost, the Hessian tends to take 
up mostly positive eigenvalues. SGD empirically tends to rapidly avoid 
encountering a high-cost saddle point. 
 

 
Fig 17 Position of Plateau 

 
It is problematic to get stuck in a plateau where the value of the cost 
function is high. 
 
 Cliffs and Exploding Gradients: Neural Networks (NNs) might 

sometimes have extremely steep regions resembling cliffs due to the 
repeated multiplication of weights. Suppose we use a 3-layer (input-
hidden-output) neural network with all the activation functions as 
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linear. We choose the same number of input, hidden and output 
neurons, thus, using the same weight W for each layer. The output 
layer y = W*h where h = W*x represents the hidden layer, finally 
giving y = W*W x. So, deep neural networks involve multiplication of 
a large number of parameters leading to sharp non-linearities in the 
parameter space. These non-linearities give rise to high gradients in 
some places. At the edge of such a cliff, an update step might throw 
the parameters extremely far. 
 

 
Fig. 18 Cliffs and Exploding Gradients 

 
Image depicting the problem of exploding gradients when approaching a 
cliff. 1) Usual training going on with the parameters moving towards the 
lower cost region. 2) The gradient at the bottom left-most point pointed 
downwards (correct direction) but the step-size was too large, which 
caused the parameters to land at a point having large cost value. 3) The 
gradient at this new point moved the parameters in a completely different 
position undoing most of the training done until that point. 
 
It can be taken care of by using Gradient Clipping (GC). The gradient 
indicates only the direction in which to make the update. If the GD update 
proposes making a very large step, GC intervenes to reduce the step size. 
 
 Long-Term Dependencies: This problem is encountered when the 

NN becomes sufficiently deep. For example, if the same weight 
matrix W is used in each layer, after t steps, we’d get W *W * W … 
(t times). Using the eigendecomposition of W: 

 

 
 
Here, V is an orthonormal matrix, i.e. V V’ = I 
 
Thus, any eigenvalues not near an absolute value of one would either 
explode or vanish leading to the Vanishing and Exploding 
Gradient problem. The use of the same weight matrix is especially the case 
in Recurrent NNs (RNNs), where this is a serious problem. 
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 Inexact Gradients: Most optimization algorithms use a noisy/biased 
estimate of the gradient in cases where the estimate is based on 
sampling, or in cases where the true gradient is intractable for e.g. in 
the case of training a Restricted Boltzmann Machine (RBM), an 
approximation of the gradient is used. For RBM, the contrastive 
divergence algorithm gives a technique for approximating the gradient 
of its intractable log-likelihood. 
 

 Neural Networks might not end up at any critical point at all and such 
critical points might not even necessarily exist. A lot of the problems 
might be avoided if there exists a space connected reasonably directly 
to the solution by a path that local descent can follow and if we are 
able to initialize learning within that well-behaved space. Thus, 
choosing good initial points should be studied. 

 
Stochastic Gradient Descent: 
 
This has already been described before but there are certain things that 
should be kept in mind regarding SGD. The learning rate ϵ is a very 
important parameter for SGD. ϵ should be reduced after each epoch in 
general. This is due to the fact that the random sampling of batches acts as 
a source of noise which might make SGD keep oscillating around the 
minima without actually reaching it. This is shown below: 
 

 
Fig. 19 Stochastic Gradient Descent 

 
The true gradient of the total cost function (involving the entire 
dataset) actually becomes 0 when we reach the minimum. Hence, BGD can 
use a fixed learning rate. The following conditions guarantee convergence 
under convexity assumptions in case of SGD: 
 

(∈) =  ∞
ஶ

ୀଵ

 

 

(∈ 𝑘ଶ) =  ∞
ஶ

ୀଵ

 

 
Setting it too low makes the training proceed slowly which might lead to 
the algorithm being stuck at a high cost value. Setting it too high would 
lead to large oscillations which might even push the learning outside the 
optimal region. The best way is to monitor the first several iterations and 
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set the learning rate to be higher than the best performing one, but not too 
high to cause instability. 
 

 
Fig. 20 Learning Rate 

 
A big advantage of SGD is that the time taken to compute a weight update 
doesn’t grow with the number of training examples as each update is 
computed after observing a batch of samples which is independent of the 
total number of training examples. Theoretically, for a convex problem, 
BGD makes the error rate O(1/k) after k iterations whereas SGD makes 
it O(1/√k). However, SGD compensates for this with its advantages after a 
few iterations along with the ability to make rapid updates in the case of a 
large training set. 
 
 Momentum: The momentum algorithm accumulates the exponentially 

decaying moving average of past gradients (called as velocity) and 
uses it as the direction in which to take the next step. Momentum is 
given by mass times velocity, which is equal to velocity if we’re using 
unit mass. The momentum update is given by: 
 

 
 
Momentum weight update 
 
The step size (earlier equal to learning rate * gradient) now depends on 
how large and aligned the sequence of gradients are. If the gradients at 
each iteration point in the same direction (say g), it will lead to a higher 
value of the step size as they just keep accumulating. Once it reaches a 
constant (terminal) velocity, the step size becomes ϵ || g|| / (1 — α). Thus, 
using α as 0.9 makes the speed 10 times. Common values of α are 0.5, 0.9 
and 0.99. 
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Fig. 21 Momentum 

 
Momentum aims primarily to solve two problems: poor conditioning of the 
Hessian matrix and variance in the stochastic gradient. Here, we illustrate 
how momentum overcomes the first of these two problems. The contour 
lines depict a quadratic loss function with a poorly conditioned Hessian 
matrix. The red path cutting across the contours indicates the path followed 
by the momentum learning rule as it minimizes this function. At each step 
along the way, we draw an arrow indicating the step that gradient descent 
would take at that point. We can see that a poorly conditioned quadratic 
objective looks like a long, narrow valley or canyon with steep sides. 
Momentum correctly traverses the canyon lengthwise, while gradient steps 
waste time moving back and forth across the narrow axis of the canyon.  
Viewing it as the Newtonian dynamics of a particle sliding down a hill, the 
momentum algorithm consists of solving a set of differential equations via 
numerical simulation. There are two kinds of forces involved as shown 
below: 

 
Fig. 22 Momentum (forces) 

 
Momentum can be seen as two forces operating together. 1) Proportional 
to the negative of the gradient such that whenever it descends a steep part 
of the surface, it gathers speed and continues sliding in that direction until 
it goes uphill again. 2) A viscous drag force (friction) proportional to -
v(t) without the presence of which the particle would keep oscillating back 
and forth as the negative of the gradient would keep forcing it to move 
downhill . Viscous force is suitable as it is weak enough to allow the 
gradient to cause motion and strong enough to resist any motion if the 
gradient doesn’t justify moving 
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 Nesterov Momentum: This is a slight modification of the usual 
momentum equation. Here, the gradient is calculated after applying the 
current velocity to the parameters, which can be viewed as adding a 
correction factor: 

 
 
Nesterov momentum weight update 
 
The intuition behind Nesterov momentum is that upon being at a point θ in 
the parameter space, the momentum update is going to shift the point 
by αv. So, we are soon going to end up in the vicinity of (θ + αv). Thus, it 
might be better to compute the gradient from that point onward. The figure 
below describes this visually: 
 

 
Fig. 23  Nesterov momentum weight update 

 
3.5 SUMMARY 
 
Feedforward networks continue to have unfulfilled potential. In the future, 
we expect they will be applied to many more tasks, and that advances in 
optimization algorithms and model design will improve their performance 
even further. In This unit, firstly described the neural network family of 
models. This module introduced the basic concepts of generalization, 
underfitting, overfitting, bias, variance and regularization. In Second part, 
we describe regularization in more detail, focusing on regularization 
strategies for deep models or models that may be used as building blocks to 
form deep models. In second part described most of the general strategies 
used to regularize neural networks. In third part begin with a description of 
how optimization used as a training algorithm for a machine learning task 
differs from pure optimization. We then define several practical algorithms, 
including both optimization algorithms themselves and strategies for 
initializing the parameters. We have now described the basic family of 
neural network models and how to regularize and optimize them. In the 
chapters ahead, we turn to specializations of the neural network family, that 
allow neural networks to scale to very large sizes and process input data 
that has special structure. The optimization methods discussed in this 
chapter are often directly applicable to these specialized architectures with 
little or no modification. 
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UNIT END EXERCISES 
 

 Define and explain Deep Networks with example? 
 Describe Deep feedforward network with its types. 
 What Simple Deep Neural Network? Explain with Example. 
 How to compute Deep Neural Network. Explain. 
 Explain Gradient-Based Learning? 
 Define Regularizaion wit example? 
 Compare L1 Regularization and L2 Regularization? 
 Define Underfitting and overfitting. 
 What is Dropout. Explain in details? 
 Define and Explain Data Augmentation. 
 Explain Local Minima with Diagram. 
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 Explain Momentum. Give details. 
 Define Plateaus, Saddle Points and Other Flat Regions. Explain 

with Diagram. 
 Explain Challenges in Neural Network Optimization. 
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UNIT III 

4 
CONVOLUTIONAL NEURAL NETWORK 

Unit Structure 
4.0  Objectives 
4.1  Introduction 
4.2  What is Convolutional Neural Network 
4.3  Why ConvNets over Feed-Forward Neural Nets? 
4.4  Convolutional Operation 
4.5  Pooling 
4.6  Data Types 
4.7  Convolution Algorithms 
4.8  Relation of Convolutional Network with Deep Learning 
4.9  Difference between CNN and RNN 
4.10 Conclusion 

Exercise 
 
4.0  OBJECTIVES: 
 
In this chapter the student will learn about: 
 Convolution concept 
 Convolution Operations 
 Convents over Feed-Forward Neural Nets 
 Examples 
 Applications 
 
4.1 INTRODUCTION 
 
Artificial Intelligence has been witnessing a monumental growth in 
bridging the gap between the capabilities of humans and machines. 
Researchers and enthusiasts alike, work on numerous aspects of the field to 
make amazing things happen. One of many such areas is the domain of 
Computer Vision. A Convolutional Neural Network (ConvNet/CNN) is 
a Deep Learning algorithm which can take in an input image, assign 
importance (learnable weights and biases) to various aspects/objects in the 
image and be able to differentiate one from the other. The pre-processing 
required in a ConvNet is much lower as compared to other classification 
algorithms. While in primitive methods filters are hand-engineered, with 
enough training, ConvNets can learn these filters/characteristics. 
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4.2 WHAT IS CONVOLUTIONAL NEURAL NETWORK? 
 
Convolutional Neural Network is one of the main categories to do image 
classification and image recognition in neural networks. Scene labelling, 
objects detections, and face recognition, etc., are some of the areas where 
convolutional neural networks are widely used. 
 
As shown in fig. 4.1, CNN takes an image as input, which is classified and 
process under a certain category such as car, truck, van, etc. The computer 
sees an image as an array of pixels and depends on the resolution of the 
image. Based on image resolution, it will see as h * w * d, where h= height 
w= width and d= dimension. For example, An RGB image is 6 * 6 * 
3 array of the matrix, and the grayscale image is 4 * 4 * 1 array of the 
matrix. 

 
Fig. 4.1: Convolution Neural Network 

 
In CNN, each input image will pass through a sequence of convolution 
layers along with pooling, fully connected layers, filters (Also known as 
kernels). After that, we will apply the Soft-max function to classify an 
object with probabilistic values 0 and 1. 
 
4.2.1 Convolution Layer: 
 
Convolution layer is the first layer to extract features from an input image. 
By learning image features using a small square of input data, the 
convolutional layer preserves the relationship between pixels. It is a 
mathematical operation which takes two inputs such as image matrix and a 
kernel or filter. 
 
o The dimension of the image matrix is h×w×d. 
o The dimension of the filter is fh×fw×d. 
o The dimension of the output is (h-fh+1)×(w-fw+1)×1. 
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Let's start with consideration a 5*5 image whose pixel values are 0, 1, and 
filter matrix 3*3 as: 
 

 
 
The convolution of 5*5 image matrix multiplies with 3*3 filter matrix is 
called "Features Map" and show as an output. 
 

 
 
Convolution of an image with different filters can perform an operation 
such as blur, sharpen, and edge detection by applying filters. 
 
4.2.2 STRIDES 
 
Stride is the number of pixels which are shift over the input matrix. When 
the stride is equalled to 1, then we move the filters to 1 pixel at a time and 
similarly, if the stride is equalled to 2, then we move the filters to 2 pixels 
at a time. The following figure shows that the convolution would work 
with a stride of 2. 

mu
no
tes
.in



67 
 

 
Fig. 4.2: Convolutional Strides 

 
4.2.3 Padding 
 
Padding plays a crucial role in building the convolutional neural network. 
If the image will get shrink and if we will take a neural network with 100's 
of layers on it, it will give us a small image after filtered in the end. 
If we take a three by three filter on top of a grayscale image and do the 
convolving then what will happen? 
 

 
Fig. 4.3: Convolutional Padding 

 
It is clear from the above picture that the pixel in the corner will only get 
covers one time, but the middle pixel will get covered more than once. It 
means that we have more information on that middle pixel, so there are 
two downsides: 
 
o Shrinking outputs 
o Losing information on the corner of the image. 
 
To overcome this, we have introduced padding to an image. "Padding is 
an additional layer which can add to the border of an image." 
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4.3 WHY CONVNETS OVER FEED-FORWARD 
NEURAL NETS? 
 
The architecture of a ConvNet is inspired by the organisation of the Visual 
Cortex and is akin to the connectivity pattern of Neurons in the Human 
Brain. Individual neurons can only respond to stimuli in a small area of the 
visual field called the Receptive Field. A group of similar fields will 
encompass the full visual region if they overlap. 

 
Fig 4.4: Flattening of a 3x3 image matrix into a 9x1 vector 

 
An image is nothing, but a matrix of pixel values as shown in fig. 4.4. In 
cases of extremely basic binary images, the method might show an average 
precision score while performing prediction of classes but would have little 
to no accuracy when it comes to complex images having pixel 
dependencies throughout. 
 
A ConvNet is able to successfully capture the Spatial and Temporal 
dependencies in an image through the application of relevant filters. The 
architecture performs a better fitting to the image dataset due to the 
reduction in the number of parameters involved and reusability of weights. 
In other words, the network can be trained to understand the sophistication 
of the image better. 

 
Fig 4.5: 4x4x3 RGB Image 
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In the figure 4.5, there is an RGB image which has been separated by its 
three color planes — Red, Green, and Blue. There are several such color 
spaces in which images exist — Grayscale, RGB, HSV, CMYK, etc. You 
can imagine how computationally hard things will get once the photos 
exceed 8K (76804320) dimensions. The ConvNet's job is to compress the 
images into a format that is easier to process while preserving elements that 
are important for obtaining a decent prediction. This is critical for 
designing an architecture that is capable of learning features while also 
being scalable to large datasets. 
 
4.4 CONVOLUTIONAL OPERATION 
 
Convolution is a specialized kind of linear operation. Convolution is an 
operation on two functions of a real- valued argument. To motivate the 
definition of convolution, we start with examples of two functions we 
might use. Convnets are simply neural networks that use convolution in 
place of general matrix multiplication in at least one of their layers. 
 
4.4.1 Convolution Kernels: 
 
A kernel is a small 2D matrix whose contents are based upon the 
operations to be performed. A kernel maps on the input image by simple 
matrix multiplication and addition, the output obtained is of lower 
dimensions and therefore easier to work with. 
 

 
Fig 4.6:  Kernel types 

 
To smoothen the image before processing, Sharpen image(enhance the 
depth of edges) and edge detection the above example shown in fig 4.6. 
The shape of a kernel is heavily dependent on the input shape of the image 
and architecture of the entire network, mostly the size of kernels 
is (MxM) i.e a square matrix. The movement of a kernel is always from 
left to right and top to bottom. 
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Fig. 4.7: Kernel Movement 

 
As discussed above the stride defines for example, a stride of 1 causes the 
kernel to slide by one row/column at a time, whereas a stride of 2 causes 
the kernel to slide by two rows/columns. 
 

 
 
the input matrix has shape 4x4x1 and the kernel is of size 3x3 since the 
shape of input is larger than the kernel, we are able to implement a sliding 
window protocol and apply the kernel over entire input. First entry in the 
convoluted result is calculated as: 
45*0 + 12*(-1) + 5*0 + 22*(-1) + 10*5 + 35*(-1) + 88*0 + 26*(-1) + 
51*0 = -45 
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4.4.2 Sliding window protocol: 
 
1. The kernel gets into position at the top-left corner of the input matrix. 
2. Then it starts moving left to right, calculating the dot product and 

saving it to a new matrix until it has reached the last column. 
3. Next, kernel resets its position at first column but now it slides one row 

to the bottom. Thus following the fashion left-right and top-bottom. 
4. Steps 2 and 3 are repeated till the entire input has been processed. 

 
The kernel will move from front to back, left to right, and top to bottom for 
a 3D input matrix. You should have a fundamental knowledge of the 
Convolution operation, which is the heart of a Convolutional Neural 
Network by now. 
 
4.5 POOLING 
 
Pooling layer plays an important role in pre-processing of an image. 
Pooling layer reduces the number of parameters when the images are too 
large. Pooling is "downscaling" of the image obtained from the previous 
layers. It can be compared to shrinking an image to reduce its pixel density. 
Spatial pooling is also called downsampling or subsampling, which reduces 
the dimensionality of each map but retains the important information. 
There are the following types of spatial pooling: 
 
Max Pooling: 
 
Max pooling is a sample-based discretization process. Its main objective 
is to downscale an input representation, reducing its dimensionality and 
allowing for the assumption to be made about features contained in the sub-
region binned. 
 
Max pooling is done by applying a max filter to non-overlapping sub-
regions of the initial representation. 
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Average Pooling: 
 
Down-scaling will perform through average pooling by dividing the input 
into rectangular pooling regions and computing the average values of each 
region. 
 
layer = averagePooling2dLayer(poolSize) 
 
layer = averagePooling2dLayer(poolSize,Name,Value) 
 
Sum Pooling: 
 
The sub-region for sum pooling or mean pooling are set exactly the same 
as for max-pooling but instead of using the max function we use sum or 
mean. 
 
4.6 DATA TYPES 
 
The data used with a convolutional network usually consist of several 
channels, each channel being the observation of a different quantity at 
some point in space or time. One advantage to convolutional networks is 
that they can also process inputs with varying spatial extents. These kinds 
of input simply cannot be represented by traditional, matrix multiplication-
based neural networks. This provides a compelling reason to use 
convolutional networks even when computational cost and overfitting are 
not significant issues. For example, consider a collection of images in 
which each image has a different width and height. It is unclear how to 
model such inputs with a weight matrix of fixed size. Convolution is 
straightforward to apply; the kernel is simply applied a different number of 
times depending on the size of the input, and the output of the convolution 
operation scales accordingly. Convolution may be viewed as matrix 
multiplication; the same convolution kernel induces a different size of 
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doubly block circulant matrix for each size of input. Sometimes the output 
of the network as well as the input is allowed to have variable size, for 
example, if we want to assign a class label to each pixel of the input. In 
this case, no further design work is necessary. In other cases, the network 
must produce some fixed-size output, for example, if we want to assign a 
single class label to the entire image. In this case, we must make some 
additional design steps, like inserting a pooling layer whose pooling 
regions scale in size proportional to the size of the input, to maintain a 
fixed number of pooled outputs. 
 
 Single channel Multichannel 
1-D Audio waveform: The axis 

we convolve over 
corresponds to time. We 
discretize time and measure 
the amplitude of the 
waveform once per time step. 

Skeleton animation data: 
Animations of 3-D computer-
rendered characters are generated 
by altering the pose of a 
“skeleton” over time. At each 
point in time, the pose of the 
character is described by a 
specification of the angles of each 
of the joints in the character’s 
skeleton 

2-D Audio data that has been pre-
processed with a Fourier 
transform: We can transform 
the audio waveform into a 2-
D tensor with different rows 
corresponding to different 
frequencies and different 
columns corresponding to 
different points in time. Using 
convolution in the time 
makes the model equivariant 
to shifts in time. 

Color image data: One channel 
contains the red pixels, one the 
green pixels, and one the blue 
pixels. The convolution kernel 
moves over both the horizontal 
and the vertical axes of the 
image, conferring translation 
equivariance in both directions 

3-D Volumetric data: A common 
source of this kind of data is 
medical imaging technology, 
such as CT 

Color video data: One axis 
corresponds to time, one to the 
height of the video frame, and 
one to the width of the video 
frame. 

 
4.7 CONVOLUTION ALGORITHMS: 
 
Convolution is equivalent to converting both the input and the kernel to the 
frequency domain using a Fourier transform, performing point-wise 
multiplication of the two signals, and converting back to the time domain 
using an inverse Fourier transform. For some problem sizes, this can be 
faster than the naive implementation of discrete convolution. When a d-
dimensional kernel can be expressed as the outer product of d vectors, one 
vector per dimension, the kernel is called separable. When the kernel is 
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separable, naive convolution is inefficient. It is equivalent to compose d 
one-dimensional convolutions with each of these vectors. The composed 
approach is significantly faster than performing one d-dimensional 
convolution with their outer product. The kernel also takes fewer 
parameters to represent as vectors. If the kernel is w elements wide in each 
dimension, then naive multidimensional convolution requires O(wd ) 
runtime and parameter storage space, while separable convolution requires 
O(w × d) runtime and parameter storage space. 
 
4.8 RELATION OF CONVOLUTIONAL NETWORK 
WITH DEEP LEARNING 
 
A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning 
algorithm which can take in an input image, assign importance (learnable 
weights and biases) to various aspects/objects in the image and be able to 
differentiate one from the other. The pre-processing required in a ConvNet 
is much lower as compared to other classification algorithms. While in 
primitive methods filters are hand-engineered, with enough training, 
ConvNets can learn these filters/characteristics. The architecture of a 
ConvNet is analogous to that of the connectivity pattern of Neurons in the 
Human Brain and was inspired by the organization of the Visual Cortex. 
Individual neurons respond to stimuli only in a restricted region of the 
visual field known as the Receptive Field. A collection of such fields 
overlaps to cover the entire visual area. 
 
4.9 DIFFERENCE BETWEEN CNN AND RNN 
 

S.no CNN RNN 

1 CNN stands 
for Convolutional Neural 
Network. 

RNN stands for Recurrent 
Neural Network. 

2 CNN is more potent than 
RNN. 

RNN includes less feature 
compatibility when compared 
to CNN. 

3 CNN is ideal for images and 
video processing. 

RNN is ideal for text and 
speech Analysis. 

4 It is suitable for spatial data 
like images. 

RNN is used for temporal data, 
also called sequential data. 

5 The network takes fixed-size 
inputs and generates fixed 
size outputs. 

RNN can handle arbitrary 
input/ output lengths. 
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6 CNN is a type of feed-
forward artificial neural 
network with variations of 
multilayer perceptron's 
designed to use minimal 
amounts of pre-processing. 

RNN, unlike feed-forward 
neural networks- can use their 
internal memory to process 
arbitrary sequences of inputs. 

 
4.10 CONCLUSION 
 
In this chapter we learned about the fundamental concept of neural network 
with its application for classifying the image. A Convolutional Neural 
Network (ConvNet/CNN) is a Deep Learning algorithm which can take in 
an input image, assign importance (learnable weights and biases) to various 
aspects/objects in the image and be able to differentiate one from the other. 
Pooling layer reduces the number of parameters when the images are too 
large. Convolution is straightforward to apply; the kernel is simply applied 
a different number of times depending on the size of the input, and the 
output of the convolution operation scales accordingly. Convolution may 
be viewed as matrix multiplication; the same convolution kernel induces a 
different size of doubly block circulant matrix for each size of input. CNN 
is a type of feed-forward artificial neural network with variations of 
multilayer perceptron's designed to use minimal amounts of pre-processing. 
RNN, unlike feed-forward neural networks- can use their internal memory 
to process arbitrary sequences of inputs. 
 
EXERCISE 
 
1.  What is convolution neural network? How it is different from neural 

network. 
2.  Explain the mechanism of convolution neural network. 
3.  What is Pooling? Explain the role of pooling. 
4.  Explain the working of MAX and Average Pooling. 
4.  Explain different types of data types. 
6.  Write a note on Convolution algorithm. 
7.  Give comparison between recurrent neural network and convolutional 

neural network. 
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5 
SEQUENCE MODELLING 

Unit Structure 
5.0 Objectives 
5.1 Introduction 
5.2 Auto-Completion 

5.2.1 Parts of Speech Tagging 
5.2.2 Sequence Classification 

5.3 Unfolding Computational Graphs 
5.4 Recurrent Neural Networks 
5.5 Types of RNNs 
5.6 Natural Language Processing and Word Embeddings 

5.6.1 Introduction to Word Embeddings 
5.6.2 Learning Word Embeddings: Word2vec 
5.6.3 Applications using Word Embeddings 

5.7 Conclusion 
Unit End Exercise  

 
5.0 OBJECTIVES  
 
In this chapter the student will learn about: 
 Recurrent neural networks 
 Use of Sequence modelling 
 Applications of sequence modelling 
 
5.1 INTRODUCTION 
 
Having a solid grasp on deep learning techniques feels like acquiring a 
super power these days. From classifying images and translating 
languages to building a self-driving car, all these tasks are being driven by 
computers rather than manual human effort. Deep learning has penetrated 
multiple and diverse industries, and it continues to break new ground on 
an almost weekly basis. Sequence Modelling is the task of predicting what 
word/letter comes next. Unlike the FNN and CNN, in sequence modelling, 
the current output is dependent on the previous input and the length of the 
input is not fixed. The ability to predict what comes next in a sequence is 
fascinating. Sequence models, in supervised learning, can be used to 
address a variety of applications including financial time series prediction, 
speech recognition, music generation, sentiment classification, machine 
translation and video activity recognition. The obvious question that 
always pop-ups that, Why not a standard network?. We can say that 
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Traditional feedforward neural networks do not share features across 
different positions of the network. In other words, these models assume 
that all inputs (and outputs) are independent of each other. This model 
would not work in sequence prediction since the previous inputs are 
inherently important in predicting the next output. For example, if you 
were predicting the next word in a stream of text, you would want to know 
at least a couple of words before the target word. 

 
5.2 AUTO-COMPLETION 
 
Auto-completion is a feature for predicting the rest of a query a user is 
typing, which can improve the user search experience and accelerate the 
shopping process before checkout. It can also improve the search response 
quality and thus create higher revenue by providing well-formatted 
queries. 
 
5.2.1 Parts of Speech Tagging: 
 
Part-of-Speech tagging is a well-known task in Natural Language 
Processing. It refers to the process of classifying words into their parts of 
speech (also known as words classes or lexical categories). This is a 
supervised learning approach. Parts of speech tags are the properties of the 
words, which define their main context, functions, and usage in a sentence. 
Some of the commonly used parts of speech tags are  
 
Nouns: Which defines any object or entity 
 
Verbs: That defines some action. 
 
Adjectives and Adverbs: This acts as a modifier, quantifier, or intensifier 
in any sentence. 
 

 
 
Further, Has and purchased belong to the verb indicating that they are the 
actions. The Laptop and Apple store are the nouns. New is the adjective 
whose role is to modify the context of the laptop. Parts of speech tags are 
defined by the relationship of words with the other words in the sentence.  
 
5.2.2 Sequence Classification: 
 
Sequence classification is a predictive modeling problem where you have 
some sequence of inputs over space or time and the task is to predict a 
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category for the sequence. Few examples where sequence models are used 
in real-world scenarios. 
 
Speech recognition: 
 
Here, the input is an audio clip and the model has to produce the text 
transcript. The audio is considered a sequence as it plays over time. Also, 
the transcript is a sequence of words. 

 
 
Sentiment Classification: 
 
Another popular application of sequence models. We pass a text sentence 
as input and the model has to predict the sentiment of the sentence 
(positive, negative, angry, elated, etc.). The output can also be in the form 
of ratings or stars. 
 

 
 
DNA sequence analysis: 
 
Given a DNA sequence as input, we want our model to predict which part 
of the DNA belongs to which protein. 
 

 
 
Machine Translation: 
 
We input a sentence in one language, say French, and we want our model 
to convert it into another language, say English. Here, both the input and 
the output are sequences: 
 

 
Video activity recognition: 
 
This is actually a very upcoming (and current trending) use of sequence 
models. The model predicts what activity is going on in a given video. 
Here, the input is a sequence of frames. 

 
Modelling Sequence Learning Problems  
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5.3 UNFOLDING COMPUTATIONAL GRAPHS 
 
A computational graph is a way to formalize the structure of a set of 
computations, such as those involved in mapping inputs and 
parameters to outputs and loss. we explain the idea of unfolding a 
recursive or recurrent computation into a computational graph that 
has a repetitive structure, typically corresponding to a chain of 
events. Unfolding this graph results in the sharing of parameters 
across a deep network structure. 
 

 
 
• Each node represents the state at some time t, and the function f maps 

the state at t to the state at t+ 1.  

• The same parameters (the same value of θ used to parametrize f) are 
used for all time steps. 

• These cycles represent the influence of the present value of a variable 
on its own value at a future time step. Such computational graphs 
allow us to define recurrent neural networks. We then describe many 
different ways to construct, train, and use recurrent neural networks. 
A computational graph is a way to formalize the structure of a set of 
computations, such as those involved in mapping inputs and 
parameters to outputs and loss.  

• We explain the idea of unfolding a recursive or recurrent computation 
into a computational graph that has a repetitive structure, typically 
corresponding to a chain of events.  

• Unfolding this graph results in the sharing of parameters across a deep 
network structure.  

 
A recurrent network with no outputs. This recurrent network just processes 
information from the input x by incorporating it into the state h that is 
passed forward through time. (Left) Circuit diagram. The black square 
indicates a delay of a single time step.  (Right) The same  network seen as 
an  unfolded computational graph,  where each node is now associated 
with one particular time instance. Recurrent neural networks can be built 
in many diff erent ways. Much as almost any function can be considered a 
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feedforward neural network, essentially any function involving recurrence 
can be considered a recurrent neural network. When the recurrent network 
is trained to perform a task that requires predicting the future from the 
past, the network typically learns to use h(t) as a kind of lossy summary of 
the task-relevant aspects of the past sequence of inputs up to t. 
 
5.4 RECURRENT NEURAL NETWORKS 
 
Recurrent Neural Networks are used to learn mapping from X to Y, when 
either X or Y, or both X and Y, are some sequences. But it is not use as a 
standard neural network for these sequence problems? Some examples of 
important design patterns for recurrent neural networks include the 
following:  Recurrent networks that produce an output at each time step 
and have recurrent connections between hidden units, illustrated in figure 
 

 
 
There are primarily two problems with this: 

1 Inputs and outputs do not have a fixed length, i.e., some input 
sentences can be of 10 words while others could be <> 10. The same 
is true for the eventual output 

2 We will not be able to share features learned across different positions 
of text if we use a standard neural network 

 
We need a representation that will help us to parse through different 
sentence lengths as well as reduce the number of parameters in the model. 
This is where we use a recurrent neural network. This is how a typical 
RNN looks like: 
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A RNN takes the first word (x<1>) and feeds it into a neural network layer 
which predicts an output (y’<1>). This process is repeated until the last 
time step x<Tx> which generates the last output y’<Ty>. This is the 
network where the number of words in input as well as the output are 
same. The RNN scans through the data in a left to right sequence. Note 
that the parameters that the RNN uses for each time step are shared. We 
will have parameters shared between each input and hidden layer (Wax), 
every timestep (Waa) and between the hidden layer and the output (Wya). 
So if we are making predictions for x<3>, we will also have information 
about x<1> and x<2>. A potential weakness of RNN is that it only takes 
information from the previous timesteps and not from the ones that come 
later. This problem can be solved using bi-directional RNNs which we 
will discuss later. For now, let’s look at forward propagation steps in a 
RNN model: 
 
a<0> is a vector of all zeros and we calculate the further activations 
similar to that of a standard neural network: 
 a<0> = 0 
 a<1> = g(Waa * a<0> + Wax * x<1> + ba) 
 y<1> = g’(Wya * a<1> + by) 
 
Similarly, we can calculate the output at each time step. The generalized 
form of these formulae can be written as: 

 
 
We horizontally stack Waa and Wya to get Wa. a<t-1> and x<t> are stacked 
vertically. Rather than carrying around 2 parameter matrices, we now have 
just 1 matrix. And that, in a nutshell, is how forward propagation works 
for recurrent neural networks.  
 
5.5  TYPES OF RNNS 
 
We can have different types of RNNs to deal with use cases where the 
sequence length differs. These problems can be classified into the 
following categories: 
 
Many-to-many: 
 
The name entity recognition examples we saw earlier fall under this 
category. We have a sequence of words, and for each word, we have to 
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predict whether it is a name or not. The RNN architecture for such a 
problem looks like this: 
 

 
 
For every input word, we predict a corresponding output word. 
 
Many-to-one: 
 
Consider the sentiment classification problem. We pass a sentence to the 
model and it returns the sentiment or rating corresponding to that sentence. 
This is a many-to-one problem where the input sequence can have varied 
length, whereas there will only be a single output. The RNN architecture 
for such problems will look something like this: 

 
 
Here, we get a single output at the end of the sentence. 
 
One-to-many: 
 
Consider the example of music generation where we want to predict the 
lyrics using the music as input. In such scenarios, the input is just a single 
word (or a single integer), and the output can be of varied length. The 
RNN architecture for this type of problems looks like the below: 
 

 
 
There is one more type of RNN which is popularly used in the industry. 
Consider the machine translation application where we take an input 
sentence in one language and translate it into another language. It is a 
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many-to-many problem but the length of the input sequence might or 
might not be equal to the length of output sequence. 
 
In such cases, we have an encoder part and a decoder part. The encoder 
part reads the input sentence and the decoder translates it to the output 
sentence: 
 

 
 
5.6 NATURAL LANGUAGE PROCESSING AND 
WORD EMBEDDINGS 
 
Natural language processing with deep learning is an important 
combination. Using word vector representations and embedding layers you 
can train recurrent neural networks with outstanding performances in a 
wide variety of industries. Examples of applications are sentiment 
analysis, named entity recognition and machine translation. 
 
5.6.1 Introduction to Word Embeddings: 
 
Word Representation: 

 One of the weaknesses of one-hot representation is that it treats each 
word as a thing unto itself, and it doesn't allow an algorithm to easily 
generalize across words. 

o Because the any product between any two different one-hot vector is 
zero. 

o It doesn't know that somehow apple and orange are much more 
similar than king and orange or queen and orange. 

 Instead we can learn a futurized representation. 

o But by a lot of the features of apple and orange are actually the same, 
or take on very similar values. And so, this increases the odds of the 
learning algorithm that has figured out that orange juice is a thing, to 
also quickly figure out that apple juice is a thing. 

o The features we'll end up learning, won't have a easy to interpret 
interpretation like that component one is gender, component two is 
royal, component three is age and so on. What they're representing 
will be a bit harder to figure out. 

o But nonetheless, the featurized representations we will learn, will 
allow an algorithm to quickly figure out that apple and orange are 
more similar than say, king and orange or queen and orange. 
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features\
words Man (5391) Woman 

(9853) 
King 

(4914) 
Queen 
(7157) 

Apple 
(456) 

Orange 
(6257) 

Gender -1 1 -0.95 0.97 0.00 0.01 
Royal 0.01 0.02 0.93 0.95 -0.01 0.00 
Age 

(adult?) 0.03 0.02 0.7 0.69 0.03 -0.02 

Food 0.09 0.01 0.02 0.01 0.95 0.97 
Size ... ... ... ... ... ... 
... ... ... ... ... ... ... 

 
Using word embeddings: 
 
Word embeddings tend to make the biggest difference when the task 
you're trying to carry out has a relatively smaller training set. 
 Useful for NLP standard tasks. 
 Named entity recognition 
 Text summarization 
 Co-reference 

 Parsing 
 
5.6.2 Learning Word Embeddings: Word2vec: 
 
Learning word embeddings: 
 In the history of deep learning as applied to learning word 

embeddings, people actually started off with relatively complex 
algorithms. And then over time, researchers discovered they can use 
simpler and simpler and simpler algorithms and still get very good 
results especially for a large dataset. 

 A more complex algorithm: a neural language model, by Yoshua 
Bengio, Rejean Ducharme, Pascals Vincent, and Christian Jauvin: A 
Neural Probabilistic Language Model. 
o Let's start to build a neural network to predict the next word in the 

sequence below. 
o  I     want   a   glass   of    orange    ______. 
o 4343   9665   1   3852   6163    6257  
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o If we have a fixed historical window of 4 words (4 is a 
hyperparameter), then we take the four embedding vectors and 
stack them together, and feed them into a neural network, and 
then feed this neural network output to a softmax, and the 
softmax classifies among the 10,000 possible outputs in the vocab 
for the final word we're trying to predict. These two layers have 
their own parameters W1,b1 and W2, b2. 

o This is one of the earlier and pretty successful algorithms for 
learning word embeddings. 

 A more generalized algorithm. 

o We have a longer sentence: I want a glass of orange juice to go along with 
my cereal. The task is to predict the word juice in the middle. 

o If it goes to build a language model then is natural for the context to be 
a few words right before the target word. But if your goal isn't to learn 
the language model per se, then you can choose other contexts. 

o Contexts: 

 Last 4 words: descibed previously. 

 4 words on left & right: a glass of orange ___ to go along with 

 Last 1 word: orange, much more simpler context. 

 Nearby 1 word: glass. This is the idea of a Skip-Gram model, which works 
surprisingly well. 

o If your main goal is really to learn a word embedding, then you can use all 
of these other contexts and they will result in very meaningful work 
embeddings as well. 

 
5.6.3 Applications using Word Embeddings: 
 
Sentiment Classification: 
 

Comments Stars 
The dessert is excellent. 4 

Service was quite slow. 2 

Good for a quick meal, but nothing special. 3 

Completely lacking in good taste, good service, and good ambience. 1 
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A simple sentiment classification model: 
 

 
 
 So one of the challenges of sentiment classification is you might not have a 

huge label data set. 
 If this was trained on a very large data set, like a hundred billion words, then 

this allows you to take a lot of knowledge even from infrequent words and 
apply them to your problem, even words that weren't in your labeled training 
set. 

 Notice that by using the average operation here, this particular algorithm 
works for reviews that are short or long because even if a review that is 100 
words long, you can just sum or average all the feature vectors for all 
hundred words and so that gives you a representation, a 300-dimensional 
feature representation, that you can then pass into your sentiment classifier. 

 One of the problems with this algorithm is it ignores word order. 
o "Completely lacking in good taste, good service, and good ambiance". 
o This is a very negative review. But the word good appears a lot. 

 
A more sophisticated model: 
 

 
 
 Instead of just summing all of your word embeddings, you can instead use a 

RNN for sentiment classification. 
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o In the graph, the one-hot vector representation is skipped. 
o This is an example of a many-to-one RNN architecture. 

Debiasing word embeddings: 
Word embeddings maybe have the bias problem such as gender bias, 
ethnicity bias and so on. As word embeddings can learn analogies like 
man is to woman like king to queen. The paper shows that a learned word 
embedding might output: 
Man: Computer_Programmer as Woman: Homemaker 
Learning algorithms are making very important decisions and so I think 
it's important that we try to change learning algorithms to diminish as 
much as is possible, or, ideally, eliminate these types of undesirable 
biases. 
 Identify bias direction: 
o The first thing we're going to do is to identify the direction corresponding to 

a particular bias we want to reduce or eliminate. 
o And take a few of these differences and basically average them. And this 

will allow you to figure out in this case that what looks like this direction is 
the gender direction, or the bias direction. Suppose we have a 50-
dimensional word embedding. 

 g1 = eshe - ehe 
 g2 = egirl - eboy 
 g3 = emother - efather 
 g4 = ewoman - eman 

o g = g1 + g2 + g3 + g4 + ... for gender vector. 
o Then we have 

 cosine_similarity(sophie, g)) = 0.318687898594 
 cosine_similarity(john, g)) = -0.23163356146 
 to see male names tend to have positive similarity with gender vector 

whereas female names tend to have a negative similarity. This is acceptable. 
o But we also have 

 cosine_similarity(computer, g)) = -0.103303588739 
 cosine_similarity(singer, g)) = 0.185005181365 
 It is astonishing how these results reflect certain unhealthy gender 

stereotypes. 
o The bias direction can be higher than 1-dimensional. Rather than taking 

an average, SVD (singular value decomposition) and PCA might help. 

 Neutralize 
o For every word that is not definitional, project to get rid of bias. 
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5.7 CONCLUSION 
 
Recurrent neural networks, or RNNs are a family of neural 
networks for processing sequential data. A computational graph is a 
way to formalize the structure of a set of computations, such as 
those involved in mapping inputs and parameters to outputs and 
loss. Traditional neural networks require the input and output 
sequence lengths to be constant across all predictions.Recurrent 
neural networks can be built in many diff erent ways. When the 
recurrent network is trained to perform a task that requires 
predicting the future from the past. Natural language processing 
with deep learning is an important combination. Using word vector 
representations and embedding layers you can train recurrent neural 
networks with outstanding performances in a wide variety of 
industries.   
 
UNIT END EXERCISE 
 
1.  What is sequence modelling? State its applications. 

2.  Explain the mechanism of sequence modelling. 

3.  Write a note on Parts of Speech. 

4.  Explain the classification process using sequence modelling. 

5.  Explain the architecture of RNN. 

5.  What is word embedding? 

7.  Explain different types of RNN. 
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6.0 OBJECTIVES 
 
In this chapter the student will learn about: 

 how to use deep learning to solve applications in computer vision, 
speech recognition, natural language processing, and other 
application areas of commercial interest. 

 
6.1 INTRODUCTION 
 
Deep learning is based on the philosophy of connectionism. Deep 
Learning is a field of Artificial Intelligence (AI) that aims to imbibe 
human brain function in data processing machines. The way the human 
brain works serves as the foundation of deep learning which is also called 
deep neural learning. Deep learning (DL) has achieved promising results 
on a wide spectrum of AI application domains ranging from computer 
vision. Data processing is a significant field and deep learning helps in 
processing vast amounts of data with the help of identified and verified 
patterns established by the human brain. A revolutionary technique of 
machine learning, deep learning has helped the field of technology 
advance manifold. The rise of deep learning in AI has helped the digital 
domain excel and evolve unstoppably. Numerous applications and 
advantages of deep learning can further be used to understand the concept 
in a better manner.  
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6.2 LARGE-SCALE DEEP LEARNING 
 
Deep learning (DL) has achieved promising results on a wide spectrum of 
AI application domains ranging from computer vision, natural language 
processing and machine translation, information retrieval and many others. 
The scale is the main driver behind the rise of DL. Larger datasets and 
neural networks consistently yield better performance across all tasks that 
generally require more computation and longer training time. Therefore, 
recent years have witnessed a surge of interests from both academia and 
industry in scaling up DL with distributed training on a large cluster of 
devices such as TPUs and GPUs with higher computation capability and 
memory limit. Data parallelism has become a dominant practice for 
distributed training. It distributes a large batch to multiple devices, where 
each device holds an identical model replica, computes the gradient of a 
local batch, and finally gathers the gradients at each iteration for 
synchronous parameter update. With recent optimization techniques, it is 
now able to train very large batches on thousands of GPU devices. 
However, training at such scales requires overcoming both algorithmic 
and systems related challenges. One of the main challenges is the 
degradation of model accuracy with large batch size beyond a certain point 
(e.g., 32k). Naively increasing the batch size typically results in 
degradation of generalization performance and reduces computational 
benefits. Additionally, we cannot always improve the training speed by 
just using more processors as the communication cost is a non-negligible 
overhead. Intuitively multiple processors collaboratively training one task 
can reduce the overall training time, but the corresponding communication 
cost between processors is heavy and limits the model scalibility. Worse 
still, models with tens of billions to trillions of parameters clearly do not 
fit into memory of a single device, and simply adding more devices will 
not help scale the training.  
 
6.2.2 Fast CPU Implementations: 
 
Traditionally, neural networks were trained using the CPU of a single 
machine. Today, this approach is generally considered insufficient. We 
now mostly use GPU computing or the CPUs of many machines 
networked together. Before moving to these expensive setups, researchers 
worked hard to demonstrate that CPUs could not manage the high 
computational workload required by neural networks. Each new model of 
CPU has different performance characteristics, so sometimes floating-
point implementations can be faster too. The important principle is that 
careful specialization of numerical computation routines can yield a large 
payoff. 
 
6.2.3 GPU Implementations: 
 
Graphics processing units (GPUs) are specialized hardware components 
that were originally developed for graphics applications. The consumer 
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market for video gaming systems spurred development of graphics 
processing hardware. The performance characteristics needed for good 
video gaming systems turn out to be beneficial for neural networks as 
well. GPU hardware was originally so specialized that it could only be 
used for graphics tasks. Over time, GPU hardware became more flexible, 
allowing custom subroutines to be used to transform the coordinates of 
vertices or assign colors to pixels. 
 
6.2.4 Large-Scale Distributed Implementations: 
 
Distributing inference is simple, because each input example we want to 
process can be run by a separate machine. This is known as data 
parallelism. It is also possible to get model parallelism, where multiple 
machines work together on a single datapoint, with each machine running 
a different part of the model. This is feasible for both inference and 
training. Data parallelism during training is somewhat harder. We can 
increase the size of the minibatch used for a single SGD step, but usually 
we get less than linear returns in terms of optimization performance. It 
would be better to allow multiple machines to compute multiple gradient 
descent steps in parallel. 
 
 6.3 COMPUTER VISION 
 
Computer vision is a very broad field encompassing a wide variety of 
ways of processing images, and an amazing diversity of applications. 
Applications of computer vision range from reproducing human visual 
abilities, such as recognizing faces, to creating entirely new categories of 
visual abilities. As an example of the latter category, one recent computer 
vision application is to recognize sound waves from the vibrations they 
induce in objects visible in a video. Most deep learning research on 
computer vision has not focused on such exotic applications that expand 
the realm of what is possible with imagery but rather a small core of AI 
goals aimed at replicating human abilities. Most deep learning for 
computer vision is used for object recognition or detection of some form, 
whether this means reporting which object is present in an image, 
annotating an image with bounding boxes around each object, transcribing 
a sequence of symbols from an image, or labelling each pixel in an image 
with the identity of the object it belongs to. 
 
6.3.1 Preprocessing: 
 
Computer vision usually requires relatively little of this kind of pre-
processing. The images should be standardized so that their pixels all lie in 
the same, reasonable range, like [0,1] or [-1, 1]. Mixing images that lie in 
[0,1] with images that lie in [0, 255] will usually result in failure. 
Formatting images to have the same scale is the only kind of pre-
processing that is strictly necessary. Many computer vision architectures 
require images of a standard size, so images must be cropped or scaled to 
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fit that size. Even this rescaling is not always strictly necessary. Some 
convolutional models accept variably sized inputs and dynamically adjust 
the size of their pooling regions to keep the output size constant. Dataset 
augmentation is an excellent way to reduce the generalization error of 
most computer vision models. A related idea applicable at test time is to 
show the model many different versions of the same input (for example, 
the same image cropped at slightly different locations) and have the 
different instantiations of the model vote to determine the output. 
 
6.3.2 Dataset Augmentation:  
 
It is an excellent way to reduce the generalization error of most computer 
vision models. A related idea applicable at test time is to show the model 
many different versions of the same input (for example, the same image 
cropped at slightly different locations) and have the different instantiations 
of the model vote to determine the output. Object recognition is a 
classification task that is especially amenable to this form of dataset 
augmentation because the class is invariant to so many transformations 
and the input can be easily transformed with many geometric operations. 
As described before, classifiers can benefit from random translations, 
rotations, and in some cases, flips of the input to augment the dataset. In 
specialized computer vision applications, more advanced transformations 
are commonly used for dataset augmentation. 
 
6.4 SPEECH RECOGNITION 
 
The task of speech recognition is to map an acoustic signal containing a 
spoken natural language utterance into the corresponding sequence of 
words intended by the speaker. Let X = (x(1), x(2) , . . . , x(T) ) denote the 
sequence of acoustic input vectors (traditionally produced by splitting the 
audio into 20ms frames). Most speech recognition systems pre-process the 
input using specialized hand-designed features, but some deep learning 
systems learn features from raw input. Let y = (y1, y2, . . ., yN ) denote the 
target output sequence (usually a sequence of words or characters). The 
automatic speech recognition (ASR) task consists of creating a function f ∗ 
ASR that computes the most probable linguistic sequence y given the 
acoustic sequence X:  
 

f∗ ASR(X) = arg max y P ∗ (y | X = X) 
 
where P∗ is the true conditional distribution relating the inputs X to the 
targets y. 
 
6.5 NATURAL LANGUAGE PROCESSING 
 
Natural language processing (NLP) is the use of human languages, such as 
English or French, by a computer. Computer programs typically read and 
emit specialized languages designed to allow efficient and unambiguous 
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parsing by simple programs. More naturally occurring languages are often 
ambiguous and defy formal description. Natural language processing 
includes applications such as machine translation, in which the learner 
must read a sentence in one human language and emit an equivalent 
sentence in another human language. Many NLP applications are based on 
language models that define a probability distribution over sequences of 
words, characters or bytes in a natural language. 
 
6.5.1 n-grams’: 
 
An n-gram is a sequence of n tokens. Models based on n-grams define the 
conditional probability of the n-th token given the preceding n − 1 tokens. 
The model uses products of these conditional distributions to define the 
probability distribution over longer sequences: 

 
 
This decomposition is justified by the chain rule of probability. The 
probability distribution over the initial sequenceP (x1, . . . , xn−1) may be 
modeled by a different model with a smaller value of n. Training n-gram 
models is straightforward because the maximum likelihood estimate can 
be computed simply by counting how many times each possible n gram 
occurs in the training set. 
 
6.5.2 Hierarchical Softmax: 

 
A classical approach (Goodman, 2001) to reducing the computational 
burden of high-dimensional output layers over large vocabulary sets V is 
to decompose probabilities hierarchically. Instead of necessitating a 
number of computations proportional to |V| (and also proportional to the 
number of hidden units, nh), the |V| factor can be reduced to as low as log 
|V|. To predict the conditional probabilities required at each node of the 
tree, we typically use a logistic regression model at each node of the tree, 
and provide the same context C as input to all of these models. Because 
the correct output is encoded in the training set, we can use supervised 
learning to train the logistic regression models. 
 
6.6 OTHER APPLICATIONS 
 
The types of applications of deep learning that are different from the 
standard object recognition, speech recognition and natural language 
processing tasks discussed above. 
 
6.6.1  Recommender Systems: 

 
One of the major families of applications of machine learning in the 
information technology sector is the ability to make recommendations of 
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items to potential users or customers. Two major types of applications can 
be distinguished: online advertising and item recommendations. Both rely 
on predicting the association between a user and an item, either to predict 
the probability of some action or the expected gain. If an ad is shown or a 
recommendation is made regarding that product to that user. Companies 
including Amazon and eBay use machine learning, including deep 
learning, for their product recommendations. 
 
6.6.2 Exploration Versus Exploitation: 
 
Many recommendation problems are most accurately described 
theoretically as contextual bandits. The issue is that when we use the 
recommendation system to collect data, we get a biased and incomplete 
view of the preferences of users: we only see the responses of users to the 
items they were recommended and not to the other items. This would be 
like training a classifier by picking one class yˆ for each training example 
x (typically the class with the highest probability according to the model) 
and then only getting as feedback whether this was the correct class or not. 
The bandit problem is easier in the sense that the learner knows which 
reward is associated with which action. In the general reinforcement 
learning scenario, a high reward or a low reward might have been caused 
by a recent action or by an action in the distant past. 
 
6.6.3 Knowledge Representation, Reasoning and Question Answering: 

 
Deep learning approaches have been very successful in language 
modeling, machine translation and natural language processing due to the 
use of embeddings for symbols and words. These embeddings represent 
semantic knowledge about individual words and concepts. 
 
6.7 SUMMARY 
 
Deep learning has been applied to many other applications besides the 
ones described here, and will surely be applied to even more after this 
writing. Given larger datasets and bigger models consistently yielding 
significant improvements in accuracy, large-scale deep learning has 
become an inevitable trend. As datasets increase in size and DNNs in 
complexity, the computational intensity, communication cost and memory 
demands of deep learning increase proportionally.  Recent years have 
witnessed a surge of interests from both academia and industry in scaling 
up DL with distributed training on a large cluster of devices such as TPUs 
and GPUs with higher computation capability and memory limit. 
Eventually, knowledge of relations combined with a reasoning process and 
understanding of natural language could allow us to build a general 
question answering system. 
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UNIT END EXERCISE 
 
1.  Explain deep learning application with reference to Natural Language 

Processing 
2.  Explain deep learning role in speech recognition. 
3.  Write a note on large scale deep learning. 
4.  Write a note on computer vision. 
5.  Give comparison between Exploration and Exploitation. 
6.  Explain in brief about recommender system. 
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UNIT IV  

7 
DEEP LEARNING RESEARCH 

Unit Structure 
7.0 Objectives 
7.1  Introduction 
7.2  Linear Factor Models 

7.2.1 Probabilistic PCA (Principal Component Analysis) 
7.2.2 Factor Analysis 
7.2.3 ICA (Independent Component Analysis) 
7.2.4 SFA (Slow feature analysis) 
7.2.5 Sparse coding 
7.2.6 Manifold Interpretation of PCA 

7.3  Autoencoders  
7.3.1 Undercomplete Autoencoders 
7.3.2 Regularized Autoencoders 
7.3.3 Denoising Autoencoders 
7.3.4 Applications of Autoencoders 

7.4  Representation learning 
7.5 Summary 

Questions 
References 

 
7.0 OBJECTIVES 
 
After going through this unit, you will be able to: 
 Understand and classify Linear factor Models. 

 Understand significance of Autoencoders  

 Understand representation learning and its use in deep learning 
models. 

 
7.1 INTRODUCTION 
 
In the earlier units we have studied about supervised learning algorithms 
and other models. We understand that a good accuracy can be achieved 
with a good amount of labeled data, which at times doesn’t seem to exist. 
Quality of data used in supervised learning algorithms is always 
questionable. Thus, we look ahead for developing general models in deep 
learning which can work better in absence of labeled data or supervised 
data. This will also help in good applicability and achieve higher accuracy. 
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In this chapter we shall focus on unsupervised learning. Though 
unsupervised learning doesn’t solve the problem as supervised learning 
does, but a lot can be explored and researched. A major problem with 
unsupervised learning is the high dimensionality of the problem which 
eventually generates other problems like computations, statistical 
calculations etc. Many of this can be handled with proper design and other 
approaches. Let us have a look at existing unsupervised learning 
approaches in the following part. 
 
7.2 LINEAR FACTOR MODELS 
 
Probabilistic models use probabilistic inference to predict variables using 
other given variables. A linear factor model is a probabilistic model where 
X is obtained by using a linear decoder function. This linear decoder 
function is created by combining linear transformation(Wh+b) with noise. 
X=Wh+b+noise 
 
Where, 
 h is the latent variable, 
W is the weight matrix 
b denotes bias    
noise , is normally distributed or diagonal. 
In linear factor model, h is an explanatory factor obtained from a factorial 
distribution. 
h~p(h),  where,  p(h)=∏ 𝑝(ℎ𝑖)  
here all hi’s are independent. 
 
Graphically  relation between xi’s and hi’s can be represented as follows, 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.1: relation between xi’s and hi’s 

 
We can see above how the observed variables xi are obtained from hidden 
variables hi. 
 
The  probabilistic PCA(principal component analysis), factor analysis and 
ICA(Independent component analysis) models are typically the variations 

h1 
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h3 
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of Linear factor models with different choices of noise and the distribution 
of latent variable. 
 
7.2.1 Probabilistic PCA:  
 
Principal component analysis (PCA) is a popular technique used in 
variable selection, the concept of PCA is to find the set of axes which 
communicate the most information of the data set, thus reducing the 
dimensions to work with. As we know variance corresponds to 
information, the process in PCA is to find vectors with maximum variance 
and keep repeating it till we find the vectors equal to the dimension of the 
dataset. We select m vectors (axes) for a dataset with dimension d, such 
that m<d. These m axes store maximum information. 
 
PCA is been widely used for dimensionality reduction but it fails to 
capture information if the relationships are nonlinear. We have 
probabilistic Principal component analysis which takes advantage of the 
observations that most variations in the data can be captured by the latent 
variables with residual error 𝜎ଶ.As 𝜎ଶ 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 0  the probabilistic PCA 
becomes PCA. 
 
In probabilistic PCA, noise is considered to be drawn from a diagonal 
covariance Gaussian distribution, where the 
covariance matrix is a diagonal matrix of equal variances. 
Covariance matrix=diag(𝜎ଶ) 
 
Where 𝜎ଶ = [𝜎 

ଶ, 𝜎 
ଶ, 𝜎 

ଶ, … … … … , 𝜎 
ଶ]், a  variance vector. 

In this case h captures, the dependencies between variables x. 
 
Thus we have 
ℎ ∼N(h;0,I) 
𝑥 ∼N(x;b,WWT+𝜎ଶ𝐼) 
Thus, x=Wh+b+ 𝜎𝑧, where z is Gaussian noise. 
 
7.2.2 Factor Analysis: 
 
In contrast to PCA factor analysis focusses on locating independent 
variables. Considering the Linear factor models discussed above in Factor 
analysis linear model, the latent variable h is unit variance Gaussian and 
the variable x are assumed to be conditionally dependent such that h is 
given. 
 
In Factor analysis noise is considered to be drawn from a diagonal 
covariance Gaussian distribution, where the covariance matrix is a 
diagonal matrix of variances. 
Covariance matrix=diag(𝜎ଶ) 
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Where 𝜎ଶ = [𝜎ଵ
ଶ, 𝜎ଶ

ଶ, 𝜎ଷ
ଶ, … … … … 𝜎

ଶ]், a  variance vector. 
 
In this case h captures the dependencies between variable x. 
 
Thus we have 
ℎ ∼N(h;0,I) 
𝑥 ∼N(x;b,WWT+diag(𝜎ଶ)) 
 
7.2.3 Independent Component Analysis (ICA): 
 
ICA deals with separating an observed signal into the underlying signals 
which are scaled and added together to form observed data. These signals 
are supposed to be independent. 
 
For example, separating speech signal of people talking simultaneously 
 

 
Figure 7.2: Algorithm separates speech signal 

 
In this model the prior distribution p(h) from which h is generated, is fixed 
well before. 
 
Thus,  
x=Wh 
 
This Model can be trained using Maximum likelihood. 
If p(h) is independent, then we can obtain underlying factors that are likely 
to be independent. 
 
For example, if we have n microphones placed in different locations such 
that xi is an observation of mixed signals, 
hi is an estimate of original independent signal 
ICA can help separation of signals i.e. each hi contains only one person 
speaking clearly. 
 
Many variants of ICA are possible. And all these variants require p(h) to 
be non-Gaussian. 
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7.2.4 Slow Feature Analysis (SFA): 
 
Slow Feature Analysis is based on slowness principle; it is applied to any 
model trained with gradient descent. In slow feature analysis the 
information is extracted from time signals. It’s an unsupervised learning 
algorithm which helps in extracting slowly varying features from a quick 
varying signal.  
 
For example, in video frame of moving zebra, a zebra moves from left to 
right, an individual pixel will quickly change from black to white and back 
again as the zebra’s stripes pass over the pixel. But the feature indicating 
whether a zebra is in the image will not change, and the feature describing 
the zebra’s position will change slowly.  
 
Slow feature analysis is efficient because it is used in linear feature 
extractor. It is possible theoretically to predict the feature SFA will learn.  
 
7.2.5 Sparse coding: 
 
Sparse coding is a class of unsupervised learning methods for learning sets 
to represent data efficiently. This is the most used Linear factor model 
from the unsupervised feature learning. It helps in deciding the value of 
latent variable in the model. 
In this model also, x is obtained using decoder and reconstructions. 
X=Wh+b+noise 
 
The model assumes that linear factor model has Gaussian noise with 
isotropic precision β. 
p(x|h)=N(x;Wh+b,(1/ β)I) 
 
7.2.6 Manifold Interpretation of PCA: 
 
Linear factor models can be explained as a manifold. We know that 
Principal Component analysis helps in dimensionality reduction, but it 
works well when the data has linear relationship. Problem arises when 
data has nonlinear relationships. These problems can be handled using 
manifold learning. Manifold learning describes the high dimensional 
datasets into low dimensional manifolds. Probabilistic PCA can be viewed 
as a region of the shape of a thin pancake with high probability. PCA can 
be interpreted as aligning this pancake with a linear manifold in a higher-
dimensional space. 
 
7.3 AUTOENCODERS 
 
Autoencoder neural network is trained using unsupervised learning. 
Autoencoders are feedforward NN having outpust same as input.The input 
is compressed and then reconstructed using Autoencoders. 
 

Input-->Encoder-->code-->Decoder-->Output (same as input) 
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An auto encoder has 3 components: 

1. Encoder: The encoder compresses the input and produces the code. 
This is done with the help of an encoding method. 

2. Code: it is the latent representation of the code 

3. Decoder: input is reconstructed by the decoder. This is done with the 
help of a decoding method. 

 
Autoencoders is mainly used in dimensionality reduction, but they also 
exhibit other properties. 
 
They are Data-specific. Autoencoders are lossy they don’t yield the exact 
same ouput as the input, it can be a degraded representation. To train an 
autoencoder we need the raw input data. Autoencoders generate their own 
labels from the training data and therefore they are termed as self-
supervised or unsupervised algorithms. 
 
7.3.1 Undercomplete Autoencoders: 
 
An autoencoder whose code dimension is less than the input dimension is 
called undercomplete. Learning an undercomplete representation pushes 
the autoencoder to capture the most significant features of the training 
data. Thus, to obtain main features from the autoencoder is by constraining 
h to have smaller dimension than x. 
 
7.3.2 Regularized Autoencoders:  
 
We have seen above that, Undercomplete autoencoders, with code 
dimension less than the input dimension, can learn the most salient 
features of the data distribution. Also, autoencoders fail to learn anything 
useful if the encoder and decoder are given too much amount of data. 
Possibly, one can train any architecture of autoencoder by taking the code 
dimension and the capacity of the encoder and decoder based on the 
complexity of distribution to be modeled. This can be achieved with 
Regularized autoencoders. Instead of limiting the model capacity, 
regularized autoencoders use a loss function that promotes the model to 
have other properties apart from copying its input to its output. These 
properties include: 

1. sparseness of the representation 
2. compactness of the derivative of the representation 
3. robustness to noise / missing inputs.  
 
A regularized autoencoder can be nonlinear and overcomplete however it 
can still learn something important about the data distribution. 
 
Typically, sparse autoencoders are used to learn features for a different 
job, such as classification. Instead of just operating as an identity function, 
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an autoencoder that has been regularized to be sparse must respond to 
unique statistical properties of the dataset it has been trained on. In this 
sense, using a sparsity penalty to train a model to execute a copying task 
can result in a model that has learnt important features as a side effect. 
 
Autoencoders with Denoising Rather than adding a penalty to the cost 
function, we can change the reconstruction error term of the cost function 
to obtain an autoencoder that learns anything meaningful. Instead, a 
denoising autoencoder, minimizes L(x, g(f(x~ )), where x~ is a duplicate of 
x that has been distorted by noise. Instead of just copying their input, 
denoising autoencoders must repair the damage. 
 
Autoencoders are frequently learned using just a single layer encoder and 
decoder. This is not, however, a must. Deep encoders and decoders 
provide numerous benefits. Remember that depth in a feedforward 
network has a lot of advantages. These benefits also apply to autoencoders 
because they are feedforward networks. Furthermore, because the encoder 
and decoder are both feedforward networks, each of these autoencoder 
components can benefit from depth on its own. The universal 
approximator theorem implies that a feedforward neural network with at 
least one hidden layer can achieve non-trivial depth. 
 
Given enough hidden units, a deep autoencoder with at least one extra 
hidden layer inside the encoder can approximate any mapping from input 
to code arbitrarily accurately. The computational cost of modelling some 
functions can be reduced by an order of magnitude when using depth. 
Depth can also reduce the quantity of training data required to learn some 
functions tremendously. Because greedily pretraining the deep architecture 
by training a stack of shallow autoencoders is a typical technique for 
training a deep autoencoder, we frequently meet shallow autoencoders, 
even when the end goal is to train a deep autoencoder. 
 
7.3.3 Denoising Autoencoders: 
 
An alternate way to make the autoencoder to learn some important 
features is by adding random noise to the input. Because the input contains 
random noise,it wont be possible for an autoencoder to replicate the input 
to the output.  
Thus the input can be decoded by removing the noise, this process is 
called denoising autoencoder. 
 
Autoencoder is expected to generate the input image even if it not actually 
seeing that input. 
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Figure 7.3 Autoencoder 

 
7.3.4 Applications of Autoencoders: 

 Autoencoders have been effectively used in dimensionality reduction 
and information retrieval tasks.  

 Autoencoders are good at denoising of images. 

 Autoencoders are used in Feature Extraction, they help to learn 
important hidden features of the input data. 

 Variational Autoencoder (VAE), is used to generate images. 

 Autoencoders are used in Sequence-to-Sequence Prediction. 

 Deep Autoencoders can be used in recommending movies, books, or 
other items.  

 
7.4 REPRESENTATION LEARNING 
 
Representation learning is learning representations of input data typically 
by transforming it or extracting features from it (by some means), that 
makes it easier to perform a task like classification or prediction. 
Representation makes subsequent learning easier. 
 
Information processing tasks can be easy or difficult depending on how 
the information is represented and viewed. Thus, a representation is said to 
be good if it makes the subsequent learning tasks easier, and the choice of 
representation depends on what is the successive task. This determines if 
the representation is good or bad. For example, it will be easy for a person 
to divide 670 by 6 using long division method, but once we change the 
representation of numbers to other forms like hexadecimal or roman then 
it becomes difficult. Thus representation matters. 
 
Feedforward networks taught by supervised learning can be thought of as 
doing a sort of representation learning. A linear classifier, such as a 
SoftMax regression classifier, is often used as the network's final layer. 
The rest of the network learns to give this classifier a representation. The 
representation at every hidden layer takes on qualities that make the 
classification task easier when trained with a supervised criterion. 
 
We frequently have a lot of unlabeled training data and a small amount of 
annotated training data. On the labelled subset, supervised learning 
techniques often result in significant overfitting. Semi-supervised learning 
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can help overcome the overfitting problem by learning from unlabeled 
data as well. We can develop good unlabeled data representations and then 
use these representations to perform the supervised learning challenge. 
 
The procedure to train a deep supervised network without requiring 
architectural specializations like convolution or recurrence is termed 
as greedy layer wise unsupervised pretraining. This process shows how a 
representation is learned for one task can be useful for another task. 
 
Greedy layer-wise pretraining gets its name from the fact that it's a greedy 
algorithm, which means it optimizes each piece of the solution separately, 
one at a time, rather than all at once. Layer-wise refers to the independent 
elements that make up the network's layers. Because each layer is trained 
with an unsupervised representation learning algorithm, it is called 
unsupervised. 
 
Other unsupervised learning techniques, such as deep autoencoders and 
probabilistic models with multiple layers of latent variables, can benefit 
from greedy layer-wise unsupervised pretraining. 
 
5.6 SUMMARY 
 
 Linear factor models are the simplest generative models. 

 Probabilistic PCA, Factor models, independent component Analysis 
are all obtained with variations in Linear factor models. 

 Slow Feature Analysis is based on slowness principle and is used in 
important feature extraction. 

 Autoencoders are feedforward neural networks where the input is 
same as the output. 

 An autoencoder has 3 components: Encoder, Code & Decoder. 

 Significant features can be learnt using undercomplete, regularized 
and denoised autoencoders. 

 The concept of representation learning links together all the many 
forms of deep learning. Feedforward and recurrent networks, 
autoencoders and probabilistic models all learn and develop 
representations.  

 
QUESTIONS 
 
1.  What are Linear factor Models. 

2.  Explain the concept of Probabilistic PCA 

3.  Compare Factor Analysis & Independent Component Analysis 
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4.  Write short note on Slow feature analysis 

5.  What is Sparse coding? 

7.  What is Manifold Interpretation of PCA? 

7.  What are Autoencoders? 

8.  How do we obtain Undercomplete Autoencoders & Regularized 
Autoencoders? 

9.  What is the significance of Denoising Autoencoders 

10.  List Applications of Autoencoders 

11.  Write a short not on importance of Representation learning in deep 
learning. 
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UNIT V  

8 
APPROXIMATE INFERENCE 

  
Unit Structure 
8.0  Objectives 
8.1  Introduction to Approximate Inference 
8.2   Approximate Inference in machine learning 
8.3  Approximate Inference in deep learning 
8.4.  Inference as Optimization 
8.5  Expectation Maximization 

8.5.1 Algorithm of Expectation Maximization 
8.6 Maximum a Posteriori (MAP) 
8.9   Variational Inference and Learning  
8.8  Discrete Latent Variables 
8.9  Summary 
 
8.0 OBJECTIVES 
 
This chapter would make you understand the following concepts:  

 Fundamentals of approximate inference  

 Algorithm and working of Expectation Maximization 

 
8.1 INTRODUCTION 
 
Approximate inference methods useful to learn realistic models from large 
dataset (image or video or textual or any other.) by falling computation 
time for accuracy. 
 
Exact inference is carried out with the posterior probability of the 
parameters. However, we often do not have access to that posterior — it 
may be difficult to compute, sample, or both! In those cases, if we can find 
a — necessarily biased, but simpler — approximation to the posterior, we 
can use that approximation to carry out inference. 
 
8.1.1 Posterior Probability Definition: 
 
● A posterior probability, in Bayesian statistics, is the revised or 

updated probability of an event occurring after taking into 
consideration new information. 
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● The posterior probability is calculated by updating the prior 
probability using Bayes' theorem. 

● In statistical terms, the posterior probability is the probability of event 
A occurring given that event B has occurred. 

 
Bayes' Theorem Formula: 
 
The formula to calculate a posterior probability of A occurring given 
that B occurred: 

𝑃(𝐴 ∣ 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=

𝑃(𝐴) × 𝑃(𝐴)
𝑃(𝐵)

 

Remark: 
 
A, B = events 
P (B∣A) = the probability of B occurring given that Ais true 
P (B) and P(B) = the probabilities of A occurring and B occurring 
independently of each other  
 
Bayes' theorem can be used in many applications, such as economics, 
medicine, and finance. In finance, Bayes' theorem can be used to update a 
previous belief once new information is obtained.  
 
Prior probability represents what is originally believed before new 
evidence is introduced, and posterior probability takes this new 
information into account. 
 
8.2 APPROXIMATE INFERENCE IN MACHINE 
LEARNING 
 
From a probabilistic perspective, we can frame the problem of learning as 
an inference problem. We have a model 𝑀 which is parameterized by a set 
of variables𝜃. We also have access to some observed data 𝐷 = {𝑥}ୀଵ

ே  and 
that can include labels or anything else. Our goal in learning is to find a 
setting for θ such that our model is useful. In the language of probability, 
we are looking for a posterior distribution over the parameters, and Bayes 
theorem tells us exactly what to do: 
 

𝑝(𝜃|𝐷, 𝑀) =
𝑝(𝜃, 𝑀)𝑝(𝑀)

𝑝(𝐷|𝑀)
 

 
where 𝑝(𝑥|𝜃, 𝑀), 𝑝(𝜃|𝑀) are the likelihood and prior distribution 
(respectively) and are specified by 𝑀.  
 
The simplicity of the Bayes theorem has complexities that in most cases 
we cannot exactly solve the inference problem. In most cases, 𝑝(𝐷|𝑀) is 
completely intractable, and we cannot really do anything with that 
equation.  
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The notion of approximate inference addresses the above issue: so we can 
approximately solve Bayes theorem for complex cases, ie. We scale up 
Bayesian learning to the types of interesting, high-dimensional datasets 
that we want to deal with today’s Machine Learning.  
We can roughly divide approximate inference schemes into two 
categories: deterministic and stochastic. Stochastic methods are based on 
the idea of Monte-Carlo sampling i.e., we can approximate any 
expectation w.r.t. a distribution as a mean of samples from it: 

𝐸𝑝(𝑥)[𝑓(𝑥)] ≈
1
𝐿

 𝑓(𝑥)


ୀଵ

 𝑤𝑖𝑡ℎ 𝑥 ∼ 𝑝(𝑥) 

The problem of inference can be converted into sampling from the 
posterior distribution. Happily, there are many cases where the posterior is 
intractable, but we can still sample from it. Here, Markov-Chain Monte 
Carlo algorithms dominate the landscape. 
 
Deterministic methods substitute the problem of inference with 
optimization. We can parameterize the approximation with 
some variational parameters, and then minimize a probabilistic divergence 
w.r.t. the variational parameters. We then use the trained approximate 
distribution instead of the true, intractable one.  
 
8.3 APPROXIMATE INFERENCE IN DEEP LEARNING 
 
In the context of deep learning, we usually have a set of visible 
variables 𝑣 and a set of latent variables ℎ. The challenge of inference 
usually refers to the difficult problem of computing 𝑝(ℎ | 𝑣) or taking 
expectations with respect to it. Such operations are often necessary for 
tasks like maximum likelihood learning. 
 
In most graphical models with multiple layers of hidden variables have 
intractable posterior distributions. Exact inference requires an exponential 
amount of time in these models. Even some models with only a single 
layer, such as sparse coding, have the same problem. 
 
Intractable inference problems in deep learning usually arise from 
interactions between latent variables in a structured graphical model. (Ex. 
Refer Figure No 8.1) 
 
Intractable inference problems in deep learning are usually the result of 
interactions between latent variables in a structured graphical model. 
These interactions can be due to edges directly connecting one latent 
variable to another or longer paths that are activated when the child of a 
V-structure is observed. 
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Figure No 8.1: Sample fully connected Network 

 
● (Left part of Figure No 8.1) A semi-restricted Boltzmann machine 

with connections between hidden units. These direct connections 
between latent variables make the posterior distribution intractable 
because of the large cliques of latent variables.  

● (Center part of Figure No 8.1)A deep Boltzmann machine, organized 
into layers of variables without intra-layer connections, still has an 
intractable posterior distribution because of the connections between 
layers.  

● (Right part of Figure No 8.1)This directed model has interactions 
between latent variables when the visible variables are observed 
because every two latent variables are coparents.  

● Some probabilistic models are able to provide tractable inference over 
the latent variables despite having one of the graph structures depicted 
above. 

 
8.4 INFERENCE AS OPTIMIZATION 
 
Approximate inference algorithms may then be derived by approximating 
the underlying optimization problem. 
 
To compute the log-probability of the observed data, 𝑙𝑜𝑔 𝑝(𝑣;  𝜃). we can 
compute a lower bound 𝐿(𝑣, 𝜃, 𝑞) on 𝑙𝑜𝑔 𝑝(𝑣; 𝜃). This bound is called the 
evidence lower bound (ELBO). Another commonly used name for this 
lower bound is the negative variational free energy. 
 
The evidence lower bound is defined to be 

𝐿(𝑣, 𝜃, 𝑞) =  𝑙𝑜𝑔 𝑝(𝑣;  𝜃) −  𝐷 (𝑞(ℎ |𝑣) ||  𝑝(ℎ | 𝑣;  𝜃)) 
 
Remark: 
 
Observed variables 𝑣 
Latent variables ℎ 
𝑞 is an arbitrary probability distribution over ℎ. 
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The difference between 𝑙𝑜𝑔 𝑝(𝑣) and 𝐿(𝑣, 𝜃, 𝑞) is given by the 𝐾𝐿 
divergence, and because the 𝐾𝐿 divergence is always nonnegative, we can 
see that 𝐿 always has at most the same value as the desired log probability. 
The two are equal if and only if 𝑞 is the same distribution as 𝑝(ℎ | 𝑣). 
 
The canonical definition of the evidence lower bound 

𝐿(𝑣, 𝜃, 𝑞)  =  𝐸∼ [𝑙𝑜𝑔 𝑝(ℎ, 𝑣)]  +  𝐻(𝑞). 
 
For an appropriate choice of 𝑞, 𝐿 is tractable to compute. For any choice 
of 𝑞, 𝐿 provides a lower bound on the likelihood. For 𝑞(ℎ | 𝑣) that are 
better approximations of 𝑝(ℎ | 𝑣), the lower bound L will be tighter, in 
other words, closer to 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑝(𝑣) . When 𝑞(ℎ | 𝑣)  =  𝑝(ℎ | 𝑣), the 
approximation is perfect, and 𝐿(𝑣, 𝜃, 𝑞) =𝑙𝑜𝑔 𝑙𝑜𝑔 𝑝(𝑣;  𝜃) . 
 
The procedure for finding the 𝑞 that maximizes 𝐿. Exact inference 
maximizes 𝐿 perfectly by searching over a family of functions q that 
includes 𝑝(ℎ | 𝑣).  
 
To derive different forms of approximate inference from approximate 
optimization to find 𝑞.  
 
It can make the optimization procedure less expensive but approximate by 
restricting the family of distributions 𝑞 that the optimization is allowed to 
search over or by using an imperfect optimization procedure that may not 
completely maximize 𝐿 
but may merely increase it by a significant amount. No matter what choice 
of q we use, L is a lower bound. It can get tighter or looser bounds that are 
cheaper or more expensive to compute depending on how it chooses to 
approach this optimization problem.  
 
It can obtain a poorly matched 𝑞 but reduce the computational cost by 
using an imperfect optimization procedure, or by using a perfect 
optimization procedure over a restricted family of 𝑞 distributions. 
 
8.5 EXPECTATION MAXIMIZATION 
 
An expectation-maximization algorithm is an approach for performing 
maximum likelihood estimation in the presence of latent variables. It does 
this by first estimating the values for the latent variables, then optimizing 
the model, then repeating these two steps until convergence. It is an 
effective and general approach and is most commonly used for density 
estimation with missing data, such as clustering algorithms like the 
Gaussian Mixture Model. 
 
The EM algorithm is an iterative approach that cycles between two modes. 
The first mode attempts to estimate the missing or latent variables called 
the estimation-step or E-step. The second mode attempts to optimize the 
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parameters of the model to best explain the data called the maximization-
step or M-step. 

● E-Step. Estimate the missing variables in the dataset. 

● M-Step. Maximize the parameters of the model in the presence of the 
data. 

 
The E-step (expectation step): 
 
Let θ(0) denote the value of the parameters at the beginning of the step.  
 
Set 𝑞(ℎ(𝑖) | 𝑣)  =  𝑝(ℎ(𝑖) | 𝑣(𝑖);  𝜃(0)) for all indices i of the training 
examples v(i) ;  to train on (both batch and minibatch variants are valid).  
 
q is defined in terms of the current parameter value of θ(0); if we vary θ, 
then 𝑝(ℎ | 𝑣; 𝜃) will change, but q(h | v) will remain equal to 
𝑝(ℎ | 𝑣;  𝜃(0)). 
 
The M-step (maximization step): 
 
Completely or partially maximize 

 L(v(), θ, q)


 

with respect to θ using any optimization algorithm can be used. 
  
8.5.1 Algorithm of Expectation Maximization: 
 
1. Given a set of incomplete data, consider a set of starting parameters. 

2. Expectation step (E – step): Using the observed available data of the 
dataset, estimate (guess) the values of the missing data. 

3. Maximization step (M – step): Complete data generated after the 
expectation (E) step is used in order to update the parameters. 

4. Repeat Step 2 to 3 until convergence 
 
The EM algorithm is useful for discovering the values of latent variables. 
It can be used for the purpose of estimating the parameters of the Hidden 
Markov Model (HMM). It can be used to fill the missing data in a sample. 
It can be used as the basis of unsupervised learning of clusters. 
 
The E-step and M-step are often pretty easy for many problems in terms of 
implementation. 
 
It is always guaranteed that likelihood will increase with every iteration. 
Solutions to the M-steps often exist in the closed-form. 
 
EM algorithm has slow convergence. It makes convergence to the local 
optima only. It requires both the probabilities, forward and backward 
(numerical optimization requires only forward probability). 
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8.6 MAXIMUM A POSTERIORI (MAP) 
 
The term inference is referring to computing the probability distribution 
over one set of variables given another. When training probabilistic 
models with latent variables, we are usually interested in computing 
𝑝(ℎ | 𝑣). An alternative form of inference is to compute the single most 
likely value of the missing variables, rather than to infer the entire 
distribution over their possible values. In the context of latent variable 
models, this means computing  

ℎ∗  =  𝑎𝑟𝑔 𝑚𝑎𝑥  (𝑝(ℎ | 𝑣)) 
                                                                                   ℎ 
This is known as maximum a posteriori (MAP) inference. 
Bayes theorem provides a principled way of calculating conditional 
probability. 
 
It involves calculating the conditional probability of one outcome given 
another outcome, using the inverse of this relationship, stated as follows: 

𝑃(𝐴 | 𝐵)  =  (𝑃(𝐵 | 𝐴)  ∗  𝑃(𝐴)) / 𝑃(𝐵) 
 
The quantity that we are calculating is typically referred to as the posterior 
probability of A given B and 𝑃(𝐴) is referred to as the prior probability of 
A.  The normalizing constant of 𝑃(𝐵) can be removed, and the posterior 
can be shown to be proportional to the probability of B given A multiplied 
by the prior. 
 
𝑃(𝐴 | 𝐵) is proportional to 𝑃(𝐵 | 𝐴)  ∗  𝑃(𝐴) 
 
Or, simply: 

𝑃(𝐴 | 𝐵)  =  𝑃(𝐵 | 𝐴)  ∗  𝑃(𝐴) 
 
This is a helpful simplification as we are not interested in estimating a 
probability, but instead in optimizing a quantity. A proportional quantity is 
good enough for this purpose. 
 
We can now relate this calculation to our desire to estimate a distribution 
and parameters (theta) that best explains our dataset (X), 

𝑃(𝑡ℎ𝑒𝑡𝑎 | 𝑋)  =  𝑃(𝑋 | 𝑡ℎ𝑒𝑡𝑎)  ∗  𝑃(𝑡ℎ𝑒𝑡𝑎) 
 
Maximizing this quantity over a range of theta solves an optimization 
problem for estimating the central tendency of the posterior probability 
(e.g. the model of the distribution). 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃(𝑋 | 𝑡ℎ𝑒𝑡𝑎)  ∗  𝑃(𝑡ℎ𝑒𝑡𝑎) 
 
In machine learning, Maximum a Posteriori optimization provides a 
Bayesian probability framework for fitting model parameters to training 
data and an alternative and sibling to the perhaps more common Maximum 
Likelihood Estimation framework. 
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8.7 VARIATIONAL INFERENCE AND LEARNING  
 
The evidence lower bound 𝐿(𝑣, 𝜃, 𝑞) is a lower bound on 𝑙𝑜𝑔 𝑝(𝑣; 𝜃), 
how inference can be viewed as maximizing 𝐿 with respect to 𝑞, and how 
learning can be viewed as maximizing 𝐿 with respect to 𝜃. The EM 
algorithm enables us to make large learning steps with a fixed 𝑞 and that 
learning algorithms based on MAP inference enable us to learn using a 
point estimate of 𝑝(ℎ | 𝑣) rather than inferring the entire distribution. 
 
The core idea behind variational learning is that we can maximize 𝐿 over a 
restricted family of distributions q. This family should be chosen so that it 
is easy to compute 𝐸𝑞 𝑙𝑜𝑔 𝑝(ℎ, 𝑣). A typical way to do this is to introduce 
assumptions about how q factorizes. A common approach to variational 
learning is to impose the restriction that 𝑞 is a factorial distribution: 

𝑞(ℎ | 𝑣)  =  ෑ 𝑞(ℎ𝑖 | 𝑣)


 

 
This is called the mean-field approach. More generally, we can impose 
any graphical model structure we choose on q, to flexibly determine how 
many interactions we want our approximation to capture. This fully 
general graphical model approach is called structured variational 
inference 
 
The beauty of the variational approach is that we do not need to specify a 
specific parametric form for 𝑞. 
 

8.8 DISCRETE LATENT VARIABLES 
 
Variational inference with discrete latent variables is relatively 
straightforward. We define a distribution 𝑞, typically one where each 
factor of 𝑞 is just defined by a lookup table over discrete states. In the 
simplest case, ℎ is binary and we make the mean-field assumption that q 
factorizes over each individual ℎ. In this case, we can parametrize 𝑞 with 
a vector ℎ   whose entries are probabilities. Then 𝑞(ℎ  =  1 | 𝑣)  =  ℎప  
 
After determining how to represent q, we simply optimize its parameters. 
With discrete latent variables, this is just a standard optimization problem. 
In principle, the selection of q could be done with any optimization 
algorithm, such as gradient descent. 
 
Because this optimization must occur in the inner loop of a learning 
algorithm, it must be very fast. To achieve this speed, we typically use 
special optimization algorithms that are designed to solve comparatively 
small and simple problems in few iterations. A popular choice is to iterate 
fixed-point equations, in other words, to solve  
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𝜕
𝜕ℎ𝑖 𝐿 = 0 

 
for ℎ𝑖 . We repeatedly update different elements of ℎ   until we satisfy a 
convergence criterion. 
 
8.9 SUMMARY 
 
 Approximate inference methods useful to learn realistic models from 

large dataset  
 approximate inference schemes into two categories: deterministic and 

stochastic.  
 The challenge of inference usually refers to the difficult problem of 

computing p(h | v) or taking expectations with respect to it.  
 The optimization procedure less expensive than approximate  
 An expectation-maximization algorithm is an approach for performing 

maximum likelihood estimation in the presence of latent variables.  
 Maximum a Posteriori optimization provides a Bayesian probability 

framework for fitting model parameters to training data 
 
Experiment Practice: 
● Implement Bayes' Theorem Formula. 
● Implement Bayesian-Neural-Networks 
● Implement Expectation-Maximization Algorithm 
● Implement MAP Algorithm 
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MODEL QUESTIONS 
 

1. Explain how approximate Inference works machine learning 

2. Explain relationship between approximate Inference deep learning 

3. Define Posterior Probability  

4. Explain Expectation Maximization algorithm 

5. Write Expectation Maximization algorithm 

6. Write Maximum a Posteriori (MAP) algorithm 

8. Compare Supervised and Unsupervised Learning 

 
 
 

***** 
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9 
DEEP GENERATIVE MODELS 

  
Unit Structure 
9.0  Objectives 
9.1  Introduction 
9.2  Deep Generative Models 
9.3   Generative Adversarial Networks 
9.4  GANs as a Two Player Game 
9.5.  Boltzmann Machines 
9.6   Restricted Boltzmann Machines 
9.7 Deep Belief Networks 
9.8 Summary 
 Experiment Practice 
 
9.0 OBJECTIVES 
 
This chapter would make you understand the following concepts 
 Fundamentals of Deep Generative Models 
 Algorithm and working of Restricted Boltzmann Machines 
 Algorithm and working of Deep Belief Networks 
 
9.1 INTRODUCTION 
 
A generative model includes the distribution of the data itself, and tells us 
how likely a given examples are. For example, models that predict the 
next word in a sequence are typically generative models (usually much 
simpler than GANs) because they can assign a probability to a sequence of 
words. 
 
Some applications are as follows: 
 
Generate Examples for Image Datasets,  
Generate Realistic Photographs 
Image-to-Image Translation,  
Face Frontal View Generation 
Generate Photographs of Human Faces 
Photos to Emojis 
Photograph Editing 
Face Aging 
Photo Blending 
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Super Resolution 
Photo Inpainting 
Generate Cartoon Characters 
Text-to-Image Translation 
Semantic-Image-to-Photo Translation 
Generate New Human Poses 
Clothing Translation 
Video Prediction 
3D Object Generation 
 
9.1 DEEP GENERATIVE MODELS 
 
Deep generative models (DGM) are neural networks with many hidden 
layers trained to approximate complicated, high-dimensional probability 
distributions using a large number of samples. When trained successfully, 
we can use the DGMs to estimate the likelihood of each observation and to 
create new samples from the underlying distribution. Applications of deep 
generative models (DGM), such as creating fake portraits from celebrity 
images are quite popular. 
 
The ambitious goal in DGM training is to learn an unknown or intractable 
probability distribution from a typically small number of independent and 
identically distributed samples. When trained successfully, we can use the 
DGM to estimate the likelihood of a given sample and to create new 
samples that are similar to samples from the unknown distribution. These 
problems have been at the core of probability and statistics for decades but 
remain computationally challenging to solve, particularly in high 
dimensions.  
 
Three key mathematical challenges in DGM: 

1.  DGM training is an ill-posed problem since uniquely identifying a 
probability distribution from a finite number of samples is impossible. 
Hence, the performance of the DGM will depend heavily on so-called 
hyper-parameters, which include the design of the network, the choice 
of training objective, regularization, and training algorithms. 

2.  Training the generator requires a way to quantify its samples’ 
similarity to those from the intractable distribution. In the approaches 
considered here, this either requires the inversion of the generator or 
comparing the distribution of generated samples to the given dataset. 
Both of these avenues have their distinct challenges. Inverting the 
generator is complicated in most cases, particularly when it is 
modeled by a neural network that is nonlinear by design. Quantifying 
the similarity of two probability distributions from samples leads to 
two-sample test problems, which are especially difficult without prior 
assumptions on the distributions. 
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3.  Most common approaches for training DGMs assume that we can 
approximate the intractable distribution by transforming a known and 
much simpler probability distribution (for instance, a Gaussian) in a 
latent space of a known dimension. In most practical cases, 
determining the latent space dimension is impossible and is left as a 
hyper-parameter that the user needs to choose. This choice is both 
difficult and important. With an overly conservative estimate, the 
generator may not approximate the data well enough, and an 
overestimate can render the generator non-injective, which 
complicates the training. 

 
9.1.1 Supervised vs. Unsupervised Learning: 
 
A typical machine learning problem involves using a model to make a 
prediction, e.g. predictive modeling. 
 
This requires a training dataset that is used to train a model, comprised of 
multiple examples, called samples, each with input variables (X) and 
output class labels (y). A model is trained by showing examples of inputs, 
having it predict outputs, and correcting the model to make the outputs 
more like the expected outputs. 
 
In the predictive or supervised learning approach, the goal is to learn a 
mapping from inputs x to outputs y, given a labeled set of input-output 
pairs. 
 
Examples of supervised learning problems include classification and 
regression, and examples of supervised learning algorithms include 
logistic regression and random forest. 
 
There is another paradigm of learning where the model is only given the 
input variables (X) and the problem does not have any output variables 
(y). A model is constructed by extracting or summarizing the patterns in 
the input data. There is no correction of the model, as the model is not 
predicting anything. 
 

 
Figure 9.1 Example of Supervised Learning 
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The second main type of machine learning is the descriptive or 
unsupervised learning approach. Here we are only given inputs, and the 
goal is to find “interesting patterns” in the data. […] This is a much less 
well-defined problem, since we are not told what kinds of patterns to look 
for, and there is no obvious error metric to use (unlike supervised learning, 
where we can compare our prediction of y for a given x to the observed 
value). This lack of correction is generally referred to as an unsupervised 
form of learning or unsupervised learning. 
 

 
Figure 9.2 Unsupervised Learning 

 
Example of Unsupervised Learning: 
 
Examples of unsupervised learning problems include clustering and 
generative modeling, and examples of unsupervised learning algorithms 
are K-means and Generative Adversarial Networks. 
 
9.1.2 Discriminative vs. Generative Modeling: 
 
In supervised learning, we may be interested in developing a model to 
predict a class label given an example of input variables.  
 
This predictive modeling task is called classification. 
 
Classification is also traditionally referred to as discriminative modeling. 
We use the training data to find a discriminant function f(x) that maps 
each x directly onto a class label, thereby combining the inference and 
decision stages into a single learning problem. 
 
This is because a model must discriminate examples of input variables 
across classes; it must choose or make a decision as to what class a given 
example belongs to. 

 
Figure 9.3 Example of Discriminative Modeling 
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Alternately, unsupervised models that summarize the distribution of input 
variables may be able to be used to create or generate new examples in the 
input distribution. As such, these types of models are referred to as 
generative models. 

 
Figure 9.4 Example of Generative Modeling 

 
For example, a single variable may have a known data distribution, such 
as a Gaussian distribution, or bell shape. A generative model may be able 
to sufficiently summarize this data distribution, and then be used to 
generate new variables that plausibly fit into the distribution of the input 
variable. 
 
Approaches that explicitly or implicitly model the distribution of inputs, as 
well as outputs, are known as generative models because by sampling 
from them it is possible to generate synthetic data points in the input 
space. 
 
In fact, a really good generative model may be able to generate new 
examples that are not just plausible, but indistinguishable from real 
examples from the problem domain. 
Examples of Generative Models 
 
Naive Bayes is an example of a generative model that is more often used 
as a discriminative model. 
 
For example, Naive Bayes works by summarizing the probability 
distribution of each input variable and the output class. When a prediction 
is made, the probability for each possible outcome is calculated for each 
variable, the independent probabilities are combined, and the most likely 
outcome is predicted. Used in reverse, the probability distributions for 
each variable can be sampled to generate newly plausible (independent) 
feature values. 
 
Other examples of generative models include Latent Dirichlet Allocation, 
or LDA, and the Gaussian Mixture Model, or GMM. 
 
Deep learning methods can be used as generative models. Two popular 
examples include the Restricted Boltzmann Machine, or RBM, and the 
Deep Belief Network, or DBN. 
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Two modern examples of deep learning generative modeling algorithms 
include the Variational Autoencoder, or VAE, and the Generative 
Adversarial Network, or GAN. 
 
9.2 GENERATIVE ADVERSARIAL NETWORKS 
 
Generative Adversarial Networks, or GANs, are a deep-learning-based 
generative model. 
 
More generally, GANs are a model architecture for training a generative 
model, and it is most common to use deep learning models in this 
architecture. 
 
The GAN architecture was first described in the 2014 paper by Ian 
Goodfellow, et al. titled “Generative Adversarial Networks.” 
A standardized approach called Deep Convolutional Generative 
Adversarial Networks, or DCGAN, that led to more stable models was 
later formalized by Alec Radford, et al. in the 2015 paper titled 
“Unsupervised Representation Learning with Deep Convolutional 
Generative Adversarial Networks“. 
 
The GAN model architecture involves two sub-models: a generator model 
for generating new examples and a discriminator model for classifying 
whether generated examples are real, from the domain, or fake, generated 
by the generator model. 
 
1. Generator. The model is used to generate new plausible examples 

from the problem domain. 
2. Discriminator. The model that is used to classify examples as real 

(from the domain) or fake (generated). 
 
The generator network directly produces samples. Its adversary, the 
discriminator network, attempts to distinguish between samples drawn 
from the training data and samples drawn from the generator. 
 
9.2.1 The Generator Model: 
 
The generator model takes a fixed-length random vector as input and 
generates a sample in the domain.  
 
The vector is drawn randomly from a Gaussian distribution, and the vector 
is used to seed the generative process. After training, points in this 
multidimensional vector space will correspond to points in the problem 
domain, forming a compressed representation of the data distribution. 
 
This vector space is referred to as a latent space, or a vector space 
comprised of latent variables. Latent variables, or hidden variables, are 
those variables that are important for a domain but are not directly 
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observable. A latent variable is a random variable that we cannot observe 
directly. 
 
We often refer to latent variables, or a latent space, as a projection or 
compression of data distribution. That is, a latent space provides 
compression or high-level concepts of the observed raw data such as the 
input data distribution. In the case of GANs, the generator model applies 
meaning to points in a chosen latent space, such that new points drawn 
from the latent space can be provided to the generator model as input and 
used to generate new and different output examples. 
 
Machine-learning models can learn the statistical latent space of images, 
music, and stories, and they can then sample from this space, creating new 
artworks with characteristics similar to those the model has seen in its 
training data. 
 
After training, the generator model is kept and used to generate new 
samples. 

 
Figure 9.5 Example of the GAN Generator Model 

 
9.2.2 The Discriminator Model: 
 
The discriminator model takes an example from the domain as input (real 
or generated) and predicts a binary class label of real or fake (generated). 
 
The real example comes from the training dataset. The generated examples 
are output by the generator model. 
 
The discriminator is a normal (and well understood) classification model. 
After the training process, the discriminator model is discarded as we are 
interested in the generator. 
 
Sometimes, the generator can be repurposed as it has learned to effectively 
extract features from examples in the problem domain. Some or all of the 
feature extraction layers can be used in transfer learning applications using 
the same or similar input data. 
 
We propose that one way to build good image representations is by 
training Generative Adversarial Networks (GANs), and later reusing parts 
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of the generator and discriminator networks as feature extractors for 
supervised tasks 
 

 
Figure 9.6 Example of the GAN Discriminator Model 

 
9.3 GANS AS A TWO-PLAYER GAME 
 
Generative modeling is an unsupervised learning problem, as we discussed 
in the previous section, although a clever property of the GAN architecture 
is that the training of the generative model is framed as a supervised 
learning problem. 
 
The two models, the generator and discriminator, are trained together. The 
generator generates a batch of samples, and these, along with real 
examples from the domain, are provided to the discriminator and classified 
as real or fake. 
 
The discriminator is then updated to get better at discriminating real and 
fake samples in the next round, and importantly, the generator is updated 
based on how well, or not, the generated samples fooled the discriminator. 
We can think of the generator as being like a counterfeiter, trying to make 
fake money, and the discriminator as being like police, trying to allow 
legitimate money and catch counterfeit money. To succeed in this game, 
the counterfeiter must learn to make money that is indistinguishable from 
genuine money, and the generator network must learn to create samples 
that are drawn from the same distribution as the training data. 
 
In this way, the two models are competing against each other, they are 
adversarial in the game theory sense, and are playing a zero-sum game. 
 
Because the GAN framework can naturally be analyzed with the tools of 
game theory, we call GANs “adversarial”. 
 
In this case, zero-sum means that when the discriminator successfully 
identifies real and fake samples, it is rewarded or no change is needed to 
the model parameters, whereas the generator is penalized with large 
updates to model parameters. 
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Alternately, when the generator fools the discriminator, it is rewarded, or 
no change is needed to the model parameters, but the discriminator is 
penalized and its model parameters are updated. 
 
At a limit, the generator generates perfect replicas from the input domain 
every time, and the discriminator cannot tell the difference and predicts 
“unsure” (e.g. 50% for real and fake) in every case. This is just an example 
of an idealized case; we do not need to get to this point to arrive at a useful 
generator model. 
 

 
Figure 9.7 Example of the Generative Adversarial Network Model 

Architecture 
 
Training drives the discriminator to attempt to learn to correctly classify 
samples as real or fake. Simultaneously, the generator attempts to fool the 
classifier into believing its samples are real. At convergence, the 
generator’s samples are indistinguishable from real data, and the 
discriminator outputs 1/2 everywhere. The discriminator may then be 
discarded. 
 
9.3.1 GANs and Convolutional Neural Networks: 
 
GANs typically work with image data and use Convolutional Neural 
Networks, or CNNs, as the generator and discriminator models. 
 
The reason for this may be both because the first description of the 
technique was in the field of computer vision and used CNNs and image 
data, and because of the remarkable progress that has been seen in recent 
years using CNNs more generally to achieve state-of-the-art results on a 
suite of computer vision tasks such as object detection and face 
recognition. 
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Modeling image data means that the latent space, the input to the 
generator, provides a compressed representation of the set of images or 
photographs used to train the model. It also means that the generator 
generates new images or photographs, providing an output that can be 
easily viewed and assessed by developers or users of the model. 
It may be this fact above others, the ability to visually assess the quality of 
the generated output, that has both led to the focus of computer vision 
applications with CNNs and on the massive leaps in the capability of 
GANs as compared to other generative models, deep learning-based or 
otherwise. 
 
9.3.2 Conditional GANs: 
 
An important extension to the GAN is in its use for conditionally 
generating an output. 
 
The generative model can be trained to generate new examples from the 
input domain, where the input, the random vector from the latent space, is 
provided with (conditioned by) some additional input. 
 
The additional input could be a class value, such as male or female in the 
generation of photographs of people, or a digit, in the case of generating 
images of handwritten digits. 
 
Generative adversarial nets can be extended to a conditional model if both 
the generator and discriminator are conditioned on some extra information 
y. y could be any kind of auxiliary information, such as class labels or data 
from other modalities. We can perform the conditioning by feeding y into 
both the discriminator and generator as [an] additional input layer. 
 
The discriminator is also conditioned, meaning that it is provided both 
with an input image that is either real or fake and the additional input. In 
the case of a classification label type conditional input, the discriminator 
would then expect that the input would be of that class, in turn teaching 
the generator to generate examples of that class in order to fool the 
discriminator. 
 
In this way, a conditional GAN can be used to generate examples from a 
domain of a given type. 
 
Taken one step further, the GAN models can be conditioned on an 
example from the domain, such as an image. This allows for applications 
of GANs such as text-to-image translation, or image-to-image translation. 
This allows for some of the more impressive applications of GANs, such 
as style transfer, photo colorization, transforming photos from summer to 
winter or day to night, and so on. 
 
In the case of conditional GANs for image-to-image translation, such as 
transforming day to night, the discriminator is provided examples of real 
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and generated nighttime photos as well as (conditioned on) real daytime 
photos as input. The generator is provided with a random vector from the 
latent space as well as (conditioned on) real daytime photos as input. 
 

 
Figure 9.8 Example of a Conditional Generative Adversarial Network 

Model Architecture 
 
One of the many major advancements in the use of deep learning methods 
in domains such as computer vision is a technique called data 
augmentation. 
 
Data augmentation results in better-performing models, both increasing 
model skill and providing a regularizing effect, reducing generalization 
error. It works by creating new, artificial but plausible examples from the 
input problem domain on which the model is trained. 
 
The techniques are primitive in the case of image data, involving crops, 
flips, zooms, and other simple transforms of existing images in the training 
dataset. 
 
Successful generative modeling provides an alternative and potentially 
more domain-specific approach for data augmentation. In fact, data 
augmentation is a simplified version of generative modeling, although it is 
rarely described this way. 
 
In complex domains or domains with a limited amount of data, generative 
modeling provides a path towards more training for modeling. GANs have 
seen much success in this use case in domains such as deep reinforcement 
learning. 
 
Among these reasons, he highlights GANs’ successful ability to model 
high-dimensional data, handle missing data, and the capacity of GANs to 
provide multi-modal outputs or multiple plausible answers. 
 
Perhaps the most compelling application of GANs is in conditional GANs 
for tasks that require the generation of new examples. 

● Image Super-Resolution. The ability to generate high-resolution 
versions of input images. 
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● Creating Art. The ability to create new and artistic images, sketches, 
paintings, and more. 

● Image-to-Image Translation. The ability to translate photographs across 
domains, such as day to night, summer to winter, and more. 

 
Perhaps the most compelling reason that GANs are widely studied, 
developed, and used is because of their success. GANs have been able to 
generate photos so realistic that humans are unable to tell that they are of 
objects, scenes, and people that do not exist in real life. 
 
Astonishing is not a sufficient adjective for their capability and success. 
 
9.4 BOLTZMANN MACHINES 
 
Boltzmann Machines is an unsupervised DL model in which every node is 
connected to every other node. That is, unlike the ANNs, CNNs, RNNs, 
and SOMs, the Boltzmann Machines are undirected (or the connections 
are bidirectional). Boltzmann Machine is not a deterministic DL model but 
a stochastic or generative DL model. It is rather a representation of a 
certain system. There are two types of nodes in the Boltzmann Machine — 
Visible nodes — those nodes which we can and do measure, and the 
Hidden nodes – those nodes which we cannot or do not measure. Although 
the node types are different, the Boltzmann machine considers them as the 
same and everything works as one single system. The training data is fed 
into the Boltzmann Machine and the weights of the system are adjusted 
accordingly. Boltzmann machines help us understand abnormalities by 
learning about the working of the system in normal conditions. 
 

 
Figure 9.9 Boltzmann Machine 

 
Boltzmann Distribution is used in the sampling distribution of the 
Boltzmann Machine. The Boltzmann distribution is governed by the 
equation – 
Pi = e(-∈i/kT)/ ∑e(-∈j/kT)           
Pi - the probability of the system being in state i 
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∈i - Energy of system in state i 
T - Temperature of the system 
k - Boltzmann constant 
 
∑e(-∈j/kT) - Sum of values for all possible states of the system  

 
9.5 RESTRICTED BOLTZMANN MACHINES 
 
In a full Boltzmann machine, each node is connected to every other node 
and hence the connections grow exponentially. This is the reason we use 
RBMs. The restrictions in the node connections in RBMs are as follows – 

● Hidden nodes cannot be connected to one another. 

● Visible nodes connected to one another. 
 

 
Figure 9.10 Boltzmann Machine units structure 

 
9.5.1 Energy function example for Restricted Boltzmann Machine: 
 
E(v, h) = -∑ aivi - ∑ bjhj - ∑∑ viwi,jhj 
a, v - biases in the system - constants 
vi, hj - visible node, hidden node 
P(v, h) = Probability of being in a certain state 
P(v, h) = e(-E(v, h))/Z 
Z - sum if values for all possible states 
 
9.5.2 Features of Restricted Boltzmann Machine: 
 
● They use recurrent and symmetric structures. 
● RBMs in their learning process try to associate a high probability with 

low energy states and vice-versa. 
● There are no intralayer connections. 
● It is an unsupervised learning algorithm i.e, it makes inferences from 

input data without labeled responses. 
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9.5.3 Working of Restricted Boltzmann Machine:  

 
Figure 9.11 working of Restricted Boltzmann Machine 

 
The above image shows the first step in training an RBM with multiple 
inputs. The inputs are multiplied by the weights and then added to the bias. 
The result is then passed through a sigmoid activation function and the 
output determines if the hidden state gets activated or not. Weights will be 
a matrix with the number of input nodes as the number of rows and the 
number of hidden nodes as the number of columns. The first hidden node 
will receive the vector multiplication of the inputs multiplied by the first 
column of weights before the corresponding bias term is added to it. 
 
And if you are wondering what a sigmoid function is, here is the formula: 
 

 
So the equation that we get in this step would be, 
 

 
 

where h(1) and v(0) are the corresponding vectors (column matrices) for 
the hidden and the visible layers with the superscript as the iteration v(0) 
means the input that we provide to the network) and a is the hidden layer 
bias vector. (Note that we are dealing with vectors and matrices here and 
not one-dimensional values.) 
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Figure 9.12 reconstructions in Restricted Boltzmann Machine 

 
Now this image shows the reverse phase or the reconstruction phase. It is 
similar to the first pass but in the opposite direction. The equation comes 
out to be: 

 
 

where v(1) and h(1) are the corresponding vectors (column matrices) for 
the visible and the hidden layers with the superscript as the iteration and b 
is the visible layer bias vector. 
 
9.5.4 The learning process: 
 
Now, the difference v(0)−v(1) can be considered as the reconstruction 
error that we need to reduce in subsequent steps of the training process. So 
the weights are adjusted in each iteration so as to minimize this error and 
this is what the learning process essentially is. Now, let us try to 
understand this process in mathematical terms without going too deep into 
mathematics. In the forward pass, we are calculating the probability of 
output h(1) given the input v(0) and the weights W denoted by: 
 

 
And in the backward pass, while reconstructing the input, we are 
calculating the probability of output v(1) given the input h(1) and the 
weights W denoted by: 
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The weights used in both the forward and the backward pass are the same. 
Together, these two conditional probabilities lead us to the joint 
distribution of inputs and the activations: 

 
 

Reconstruction is different from regression or classification in that it 
estimates the probability distribution of the original input instead of 
associating a continuous/discrete value to an input example. This means it 
is trying to guess multiple values at the same time. This is known as 
generative learning as opposed to discriminative learning that happens in a 
classification problem (mapping input to labels). 
 
9.5.5Advantages and Disadvantages of RBM: 
 
9.5.5.1 Advantages: 
● Expressive enough to encode any distribution and computationally 

efficient. 

● Faster than traditional Boltzmann Machine due to the restrictions in 
terms of connections between nodes. 

● Activations of the hidden layer can be used as input to other models as 
useful features to improve performance 

 
9.5.5.1 Disadvantages: 
● Training is more difficult as it is difficult to calculate the Energy 

gradient function. 

● The CD-k algorithm used in RBMs is not as familiar as the 
backpropagation algorithm. 

● Weight Adjustment 
 
9.5.6 Applications of RBM: 
● Hand Written Digit Recognition 

● Real-time intrapulse recognition of radar 
 
9.5.7 Difference between Autoencoders & RBMs: 
 
Autoencoder is a simple 3-layer neural network where output units are 
directly connected back to input units. Typically, the number of hidden 
units is much less than the number of visible ones. The task of training is 
to minimize an error or reconstruction, i.e. find the most efficient compact 
representation for input data. 
 
RBM shares a similar idea, but it uses stochastic units with particular 
distribution instead of deterministic distribution. The task of training is to 
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find out how these two sets of variables are actually connected to each 
other. 
 
One aspect that distinguishes RBM from other autoencoders is that it has 
two biases. The hidden bias helps the RBM produce the activations on the 
forward pass, while the visible layer’s biases help the RBM learn the 
reconstructions on the backward pass. 
 
9.6 DEEP BELIEF NETWORKS 
 
Deep belief nets are probabilistic generative models that are composed of 
multiple layers of stochastic, latent variables. The latent variables typically 
have binary values and are often called hidden units or feature detectors. 
The top two layers have undirected, symmetric connections between them 
and form an associative memory. The lower layers receive top-down, 
directed connections from the layer above. The states of the units in the 
lowest layer represent a data vector. 
 
The two most significant properties of deep belief nets are: 
 
There is an efficient, layer-by-layer procedure for learning the top-down, 
generative weights that determine how the variables in one layer depend 
on the variables in the layer above. 
 
After learning, the values of the latent variables in every layer can be 
inferred by a single, bottom-up pass that starts with an observed data 
vector in the bottom layer and uses the generative weights in the reverse 
direction. 
 
Deep belief nets are learned one layer at a time by treating the values of 
the latent variables in one layer, when they are being inferred from data, as 
the data for training the next layer. This efficient, greedy learning can be 
followed by, or combined with, other learning procedures that fine-tune all 
of the weights to improve the generative or discriminative performance of 
the whole network. 
 
Discriminative fine-tuning can be performed by adding a final layer of 
variables that represent the desired outputs and backpropagating error 
derivatives. When networks with many hidden layers are applied to highly 
structured input data, such as images, backpropagation works much better 
if the feature detectors in the hidden layers are initialized by learning a 
deep belief net that models the structure in the input data 
 
Deep Belief Networks have two phases: 

● Pre-train Phase 

● Fine-tune Phase 
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The pre-train phase is nothing but multiple layers of RBNs, while Fine 
Tune Phase is a feed-forward neural network. Let us visualize both the 
steps:- 

 
Figure 9.13 Deep Belief Networks 

 
Algorithm for Training DBN: 
Input: Dataset  
Output: Trained network 
 
Step 1: Train the first layer as RBM that models the input 𝑎 =  ℎ()  as its 
visible layer. 
 
Step 2: By using the first layer obtain the representation of the input that 
will be used as  
 
input for the next layer 
 
𝑝൫ℎ() ൯ or 𝑝൫ℎ() ൯ 
 
Step 3: Train the second layer as an RBM 
Step 4: Repeat step 2 and step 3 for all the number of layers 
 
Steps to update the weight 
 
Input: Random Weight initialized 
Output: Wight updated based on the error rate 
 
Update the weight of Edge 
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Positive phase: 
Compute positive statistics for edge 𝐸𝑖𝑗 

 
Positive (𝑬𝒊𝒋)⇒ 𝒑(𝑯𝑱=1|v) 
 
The individual activation probabilities for the hidden layer is 

 
Negative Phase: 
 
Compute negative statistics for edge 𝐸𝑖𝑗 
 
Negative (𝑬𝒊𝒋)⇒ 𝑝(𝑣𝑖=1|H) 
 
The individual activation probabilities for visible layer is 
 

 
 
Deep belief networks can substitute for a deep feedforward network or, 
given more complex arrangements, even a convolutional neural network. 
They have the advantages that they are less computationally expensive 
(they grow linearly in computational complexity with the number of 
layers, instead of exponentially, as with feedforward neural networks); and 
that they are significantly less vulnerable to the vanishing gradients 
problem. 
 
However, because deep belief networks impart significant restrictions on 
their weight connections, they are also vastly less expressive than a deep 
neural network, which outperforms them on tasks for which sufficient 
input data is available. 
 
Even in their prime, deep belief networks were rarely used in direct 
application. They were instead used as a pretraining step: a deep belief 
network with the same overall architecture as a corresponding deep neural 
network is defined and trained. Its weights are then taken and placed into 
the corresponding deep neural network, which is then fine-tuned and put 
to application. 
 
Deep belief networks eventually fell out of favor in this application as 
well. For one thing, RBMs are just a special case of autoencoders, which 
were found to be more broadly flexible and useful both for pretraining and 
for other applications. For another thing, the introduction of ReLU 
activation and its further refinement into leaky ReLU, along with the 
introduction of more sophisticated optimizers, learning late schedulers, 
and dropout techniques, have worked to greatly alleviate the vanishing 
gradient problem in practice, at the same time that increased data volumes 
and computes power have made direct deep neural network applications to 
problems more tractable. 
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9.7 SUMMARY  
 
 We have discovered a large number of applications of Generative 

Adversarial Networks, or GANs. 
 Broad catagory of GAN are live supervised and unsupervised  
 The GAN model architecture involves two sub-models: a generator 

and discriminator 
 The generator model takes a fixed-length random vector as input and 

generates a sample in the domain 
 The discriminator model takes an example from the domain as input 

(real or generated) and predicts a binary class label of real or fake 
(generated). 

 Boltzmann Machines is an unsupervised DL model in which every 
node is connected to every other node.  

 Deep belief nets are probabilistic generative models that are 
composed of multiple layers of stochastic, latent variables. 
 

Experiment Practice: 
● Apply Restricted Boltzmann Machine implementation for 

Recommender System (Amazon product suggestions or Netflix 
movie) 

● Apply Deep Belief Networks implementation for Recommender 
System (Amazon product suggestions or Netflix movie) 

 
LIST OF REFERENCES 
 
[1]  Heskes, Tom & Albers, Kees & Kappen, Hilbert. (2012). 

Approximate Inference and Constrained Optimization. Proceedings 
of Uncertainty in AI. 

[2] Shin Kamada, Takumi Ichimura.: An adaptive learning method of 
Deep Belief Network by layer generation algorithm. IEEE Xplore. 
Nov 2016. 

[3 ] Shin Kamada, Takumi Ichimura.: An adaptive learning method of 
Deep Belief Network by layer generation algorithm. IEEE Xplore. 
Nov 2016. 

[4]  Mohamed A, Dahl G E, Hinton. G.: Acoustic modeling using deep 
belief networks[J]. Audio Speech and Language Processing IEEE 
Transactions an, vol. 20, no. 1, pp. 14-22, 2012 

[5]  Boureau Y, Cun L. Y.: Sparse feature learning for deep belief 
networks [C] //Advances in neural information processing systems. 
pp. 1185-1192, 2008 

[6]  Hinton. G.: A practical guide to training restricted Boltzmann 
machines[J]. Momentum, vol. 9, no. 1, pp. 926, 2010 

mu
no
tes
.in



136 
 

[7]  Bengio Y, Lamblin P, Popovici Det al.:Greedy layer-wise training of 
deep networks. Advances in neural information processing systems, 
vol. 19, pp. 153, 2007. 

[8]  Ranzato A M, Szummer M.: Semi-supervised learning of compact 
document representations with deep networks[C]//Proceedings of the 
25th international conference on Machine learning. ACM, pp. 792-
799, 2009. 

[9]  Neal R M, Hinton G. E.: A view of the EM algorithm that justifies 
incremental sparse and other variants[M]//Learning in graphical 
models. pp. 355-368, 1999. 

[10]  Hinton G E, Salakhutdinov R. R.: Reducing the dimensionality of 
data with neural networks[J]. Science, vol. 313, no. 5786, pp 504-
507, 2006. 
[11] Goodfellow and Bengio, “Deep learning ” 2016 

[12]  Goodfellow, Ian, et al. "Generative adversarial nets." Advances in 
neural information processing systems. 2014. 

[13]  Kingma, Diederik P., and Max Welling. "Auto-encoding variational 
bayes." arXiv preprint arXiv:1312.6114 (2013). 

[14]  Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised 
representation learning with deep convolutional generative 
adversarial networks." arXiv preprint arXiv:1511.06434 (2015). 

[15]  Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-GAN: 
Training generative neural samplers using variational divergence 

minimization." Advances in Neural Information Processing Systems. 
2016. 

[16] Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep 
Generative Image Models using a￼ Laplacian Pyramid of 
Adversarial Networks." 

Advances in neural information processing systems. 2015. 

[17]  Chen, Xi, et al. "Infogan: Interpretable representation learning by 
information maximizing generative adversarial nets." Advances in 
Neural 

Information Processing Systems. 2016. 

[18] Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based 
generative adversarial network." arXiv preprint arXiv:1609.03126 
(2016). 

[19]  Doersch, Carl. "Tutorial on variational autoencoders." arXiv preprint 
arXiv:1606.05908 (2016). 

[20]  Wang, K-C., and Richard Zemel. "classifying NBA offensive plays 
using neural networks." MIT Sloan Sports Analytics Conference, 
2016. 

[21]  Wikipedia “Kernel density estimation” 

mu
no
tes
.in



137 
 

[22]  Wikipedia “Principal component analysis” 

[23]  Wikipedia “Autoencoder 
 
MODEL QUESTIONS 
 

1. Explain how approximate Inference works machine learning 

2. Explain relationship between approximate Inference deep learning 

3. Define Posterior Probability  

4. Explain Expectation Maximization algorithm 

5. Write Expectation Maximization algorithm 

6. Write Maximum a Posteriori (MAP) algorithm 

7. Compare Supervised and Unsupervised Learning 

9. Compare Discriminative Generative Modeling 

9. Explain Generative Adversarial Networks in detail. 

9. Explain the Generator Model and the Discriminator Model of GAN 

11. Explain Conditional GANs 

12. Write short note on Boltzmann Machines 

13. Explain Restricted Boltzmann Machines 

14. Write Features of Restricted Boltzmann Machine 

15. Compare Boltzmann Machines and Restricted Boltzmann Machine 

16. Write Advantages and Disadvantages of RBM 

17. Write Applications of RBM also explain any one 

19. Explain Deep Belief Networks with its working. 

19. Write Algorithm for Training DBN 

20. Explain how weights are updated in DBN. 
 
 
 

***** 
 
 
 
 

mu
no
tes
.in


