
1

Unit I

1
IMPLEMENTINGMICROSERVICES

Unit Structure :

1.0 Objectives
1.1 Introduction
1.2 An Overview

1.2.1 Client to Micro services Communication
1.2.2 Gateway Aggregation
1.2.3 Gateway Routing
1.2.4 Gateway Offloading
1.2.5 The API Gateway Pattern on Azure

1.3 Inter service Communication
1.4 Data Considerations
1.5 Securities

1.5.1 Top 5 Micro services Security Challenges
1.5.2 Deploy Security at Container Level
1.5.3 Create an API Gateway
1.5.4 Isolation
1.5.5 Don’t Show Sensitive Data As Plain Text
1.5.6 Automated Micro services Security with Next DAST

1.6 Monitoring
1.6.1 The Principles of Micro service Monitoring

1.7 Micro services Hosting Platform Options
1.7.1 Using a Container
1.7.2 Container Registry
1.7.3 Container
Let us Sum Up
List of References
Bibliography
Unit End Exercises

1.0 OBJECTIVES

Most companies traditionally start by their infrastructures equaling
a single monolith or several rigid, commonly dependent monolithic
applications. Those monolith applications give multiple functions for

mu
no
tes
.in

2

which the complete programming is prepared in an interconnected and
regular portion of the application code.

If the requirement occurs, detangling the application code is hard
as the code for these functions is joined as one. Any tries to edit or append
even a single character in the monolith application can interrupt the
complete code for the application, which provides development a long,
slow, and costly method.

This is why microservices architecture is preferred by many
companies those times as the system cuts the big monolith applications
into autonomous, smaller, and loosely coupled elements. Those little
elements are created to enhance effectiveness for separate tasks the
communication with other components occurs within the simple,
commonly available APIs.

This microservices architectural model is considered to be
predominantly perfect when there is a need for help for different platforms
and appliances, such as desktop, mobile, web, Internet of Things, etc. This
model is perfect when applications are big as it is simpler to control when
the architecture is broken down into tinier, independent modules that
operate in unity.

In microservices architecture, as each independent element
operates on a different method, it gives the IT teams a more decentralized
methodology in producing great software and also allows them to maintain
the separate component to be used, reproduced, rearranged, and controlled
independently.

1.1 INTRODUCTION

The fundamental intention behind microservices is that some kind
of applications become simpler to create and support during all are split
down into smaller, composable parts that operate collectively. Every
component is continuously improved and prepared, and the application is
then just the sum of its electing components. This is in reverse to a regular,
"monolithic" application which is all developed all in one piece.

Applications developed as a collection of modular components are
more obvious to understand, more comfortable to test, and most
importantly more informal to control across the life of the application. It
enables corporations to gain much more formidable activity and be ready
to greatly increase the time it takes to become effective changes to
production. This method has shown to be better, particularly for big
industry applications which are produced by teams of geographically and
culturally different developers.

mu
no
tes
.in

3

There are other advantages:
 Developer independence: Small organizations operate in
correspondence and can repeat quicker than big organizations.

 Isolation and resilience: If a component fails, you turn up another
while and the remainder of the application continues to function.

 Scalability: Smaller components take up fewer sources and can be
scaled to match the growing need of that component only.

 Lifecycle automation: Unique components are more comfortable to
fit into constant transmission pipelines and complicated deployment
situations not possible with monoliths.

 Business Relationship: Microservice architectures are divided on
business domain boundaries, increasing independence, and
understanding over the organization.

The common explanation of microservices depends on all
microservice providing an API endpoint, a stateless REST API that can be
obtained over HTTP(S) just similar to a standardweb page. This process
for obtaining microservices gives them simply for developers to use as
they only need tools and methods many developers are already familiar
with.

1.2 AN OVERVIEW

The idea of dividing applications into smaller pieces is nothing
new; other programming paradigms address this same idea, such as
Service Oriented Architecture (SOA). But, current technology
improvements linked with an increasing expectation of unified "digital
experiences" have provided rise to a new breed of development tools and
techniques used to meet the needs of modern business applications.
Microservices depend on the technology to help this thought, but an
organization has the experience and structures in position for expansion
teams capable of approving this model. Microservices are a band of a
larger group in IT departments towards a Dev Ops culture. The
development and services teams operate collectively to help an application
over its lifecycle or even constant discharge cycle rather than a more
conventional one.

Why is open source important for microservices?
When you compose your applications from the beginning up to be

modular and composable, it permits you to utilize drop-in components in
many areas where in the past you may have needed established solutions,
either because of the license for the components or functional
requirements. Many application components can be off-the-shelf open-
source tools, multiple open-source projects perform cross-cutting elements
of microservice architectures such as authentication, service discovery,
logging and monitoring, load balancing, scaling, and several more.

mu
no
tes
.in

4

It is easier for application developers to offer alternative interfaces
to their applications. If everything is an API, interactions within
application components become standardized. All components have to
make use of their application and data is to be able to verify and
communicate over those standard APIs. Allows both those inside and,
when relevant, outside your organization to simply generate new methods
to use your application's data and services.

1.2.1 CLIENT-TO-MICROSERVICE COMMUNICATION
If it happens to client-to-microservice communication, an

application's client calls all of the microservices straight utilizing the
public endpoint (https://serviceName.api.dineshonjava.name) of that
microservice. In the case of a clustered microservice, a URL would map
to the load balance of a microservice.

The following diagram shows client-to-microservice communication:

As you can observe in the above diagram, the mobile and browser
clients make requests to each of the services to recover order details.
This method has several difficulties and limitations.

Client-to microservices communication is one of the challenges of
the microservices architecture. In a microservices strategy, an application
is classified into shorter sets of loosely coupled services. The limits of
microservices are determined based on a decoupled applications domain
model, data, and context. The real challenge is how to recover data for a
business situation that requires requesting multiple microservices. An API
gateway is one of the recommended resolutions for managing this
challengeAPI Gateway In microservices architecture, each microservice
presents a set of fine-grained endpoints. Typically, because of the quality
of client applications, data required by a client includes the collection of
data from different microservices. As a shade in a client application may
want data from various microservices, a client application can relate to
multiple microservices independently, which may point to certain issues.
 If a client app is a server-side web application like ASP.NET MVC,
the communication to multiple microservices can be effective. With
mobile and SPA clients, chatty communication to multiple
microservices can make expenses due to network connectivity and the
performance of the mobile devices.

mu
no
tes
.in

5

 Due to the type of client applications, the data requirements of clients
can be very strange; for example, a desktop-based version of an
employee information page may give more than the mobile-based
version.

 Every microservice is accountable for cross-cutting matters like
authentication, authorization, logging, and throttling, which are
significant expenses from a study and development viewpoint. While
looking at these challenges, it can become a dream for a designer to
achieve a client application requesting various microservices. One of
the best feasible solutions to this difficulty is to execute an API
gateway solution. At the upper level, an API gateway is a starting
point service for a collection of microservices. It is very similar to the
facade pattern in object-oriented design. It is essential to highlight that
should a single custom API gateway service can be a danger if not
implemented accurately. The gateway service develops and results
based on the terms of the client apps. Finally, it can point to a situation
similar to a monolithic application. Therefore, it is suggested to divide
the API gateway within service categories; for example, one per client
app, form factor type, and so forth. API gateways should never
perform as a single aggregator for all internal microservices. It should
be separated based on business margins. API gateways can produce
various functions and characteristics, which can be arranged into the
following design patterns.

1.2.2 GATEWAY AGGREGATION
As described in Figure 1.2, this design decreases chattiness within

the client and the services. The gateway services become the entrance
point. They take client requests and deliver those requests to the different
backend microservices. The gateway including aggregates and joins the
effects and transfers them back to the requesting client. This design works
great if a client requires interfacing with various services for a particular
business scenario and information collection is expected from multiple
services. It also supports situations wherever the client is working on a
high-latency network, such as mobile phones.

Figure 1-2. Gateway aggregation

mu
no
tes
.in

6

The following points should be involved when executing this design.
 A gateway service should be placed near the back-end microservices
to decrease network latency. A gateway service should not mix with
services found over data centers.

 A gateway should not become a bottleneck. It should have the capacity
to balance on its individual to maintain the application load

 Situations in which one of the services times out and partial data
passed to the client application should be achieved correctly.

 Performance testing should create a gateway service that is not starting
significant delays.

 Divided tracing should be approved with the help of similarity IDs to
allow monitoring in case of negligence and for analysis.

1.2.3 GATEWAY ROUTING
As described in Figure 1.3, this design is similar to gateway

aggregation, where, essentially, the gateway only routes the applications to
multiple services applying a single endpoint. This design is helpful if you
want to show many services on a single endpoint and direction to the
appropriate service based on the client's request. In a situation where
service is terminated or consolidated with other services, the customer can
operate seamlessly except for an update as the intelligence of routing is
controlled by the gateway, and modifications are needed just at the
gateway level. In an industry situation, one use case for gateway routing is
to present on-premise APIs to the outside society on the Internet. In a
situation where you have to show an API to a companion, for a merchant
that is not attached to a corporate network, an API gateway can show a
public endpoint with the expected security and can internally route the
traffic to on-premise APIs. Azure Application Gateway is a successful run
load-balancing service that can perform a gateway routing pattern. To
maintain this pattern, layer 7 routing is managed by the gateway to route
the request to the relevant service. As gateways include a layer of
abstraction, a deployment and service update can be efficiently managed.
It also enables maintaining multiple services by adding a new route or by
routing the traffic within an earlier or a fresher service endpoint without
modifying the client.

Figure1.3. Gateway routing

mu
no
tes
.in

7

The following points should be executed while performing this pattern.
 The gateway service should be placed near the backend microservices
to overcome network latency. The gateway service should nevermore
associate with services placed over data centers.

 A gateway should nevermore grow a bottleneck. It should have the
capacity to estimate on its individual to hold the application load.

 Performance testing should be performed to make assured that the
gateway service is not including notable delays.

 A gateway route should help layer 7 routings. It can be based on the
IP, port, header, or URL.

1.2.4 GATEWAY OFFLOADING
As described in Figure 1.4, the gateway offloading pattern helps

offload the cross-cutting matters from unique microservices to the
gateway service. It explains the implementation of each microservice as it
combines cross-cutting interests into one-tier. With the guidance of
offloading, specific characteristics can be performed by a functional team
and at one basic tier. In conclusion, it can be used by each microservice.

Figure1.4. Gateway offloading
Most of the common cross-cutting concerns that can be efficiently

managed by the API gateway are
 Authentication and authorization
 Logging
 Throttling
 Service discovery
 SSL offloading
 Response caching
 Retry
 Load balancing

The following factors should be made while performing this
pattern.
 API gateways can include a single point of failure.
 The scaling of an API gateway is necessary, unless it can become a
bottleneck.

mu
no
tes
.in

8

 If a company purposes to perform the gateway on its own, preferably
with trained services like Azure API Gateway and APIM, it may want
specific sources, which can significantly improve improvement efforts.

1.2.5 THE API GATEWAY PATTERN ON AZURE
There are several possible API gateway implementations, such as

Kong and Mulesoft, and each gives a distinct subset of characteristics. We
will describe the choices available on Azure.

 Azure Application Gateway. Application Gateway is a distributed
load-balancing service that gives layer 7 routings and SSL end. It also
gives a web application firewall (WAF).

 Azure API Management. API Management allows publishing APIs to
external and internal customers. It provides specialties such as rate-
limiting, IP whitelisting, and authentication using Azure Active
Directory or other identity providers. Since API Management doesn’t
produce any load balancing, it should be used in combination with a
load balancer such as Application Gateway or a reversed proxy.

1.3 INTERSERVICE COMMUNICATION

Inter service Communication
A component can request another component as they are operating

in the same process, With monolithic applications, Also, the language
level constructs (like new class name ()) can be utilized to request methods
on another component. One of the challenges with microservices
architecture is managing inter service communication as the in-process
requests exchange to remote procedure requests. If a microservice is
requesting another microservice, it breaks the fundamental principle of
microservices. A basic principle of the microservices architecture is that
every microservice is independent and available to the client, yet if the
other services are sick or weak. There are various resolutions to this
problem. One solution is to accurately fix the boundary of each
microservice. This provides the microservice to be separated, autonomous,
and independent of other microservices. Communication within the
internal microservices should be minimum. If communication is needed,
asynchronous communication should take precedence over synchronous
communication because it decreases coupling within services. It also
raises responsiveness and various subscribers can subscribe to the
equivalent event. In asynchronous messaging, a microservice interacts
with different microservice by giving messages asynchronously. If a return
response is required, it appears as a separate message and the client
believes that the response will not be collected quickly, or there may not
be a reply at all. Asynchronous messaging and event-driven
communication are crucial when creating variations over various
microservices, and they are needed to obtain final agreement, as depicted
in Figure 1.5.

mu
no
tes
.in

9

Figure1.5. Asynchronous communication to achieve eventual consistency

Asynchronous messages are normally based on asynchronous
protocols such as AMQP. Message brokers are generally preferred for
these sorts of communications (e.g., Rabbit MQ, N Service Bus, Mass
Transit) or a scalable service bus in the cloud, like Azure Service Bus. If
there is a requirement to query real-time data (e.g., to update the UI),
usually, request/response communication with HTTP and REST is applied
to help these varieties of situations. In this set of patterns, the client
believes that the response will appear in a short time. If synchronous
communication is needed among services, you can get a profit from binary
format communication mechanisms (e.g., Service Fabric remoting or
WCF using TCP and a binary format). You can also take advantage of
caching using the cache-aside pattern. You should be careful of choosing
this pattern because having HTTP dependencies within microservices
gives them non-autonomous and appearance is affected as soon as one of
the services in the series does not perform well. This architecture can be
simply created and improved by applying technologies such as ASP.NET
Core Web API, as depicted in Figure 1.6

Figure1.6. HTTP request / response communication

1.4 DATA CONSIDERATION

Data Considerations
A fundamental principle of microservices is that all services should

control their data. All services should be liable for their data store, and

mu
no
tes
.in

10

other services should not obtain it directly. This limit coupling between
services and provides the services to estimate based on capacity
requirements. This principle also provides the services to manage various
database technologies if needed. Due to the divided way of managing data,
some challenges happen, similar to the repetition of data over data stores.
One of the main challenges in delivering the updates over services because
it is not possible to produce a database transaction over multiple services.
There are various solutions to this difficulty. One solution is to cover
ultimate consistency where possible; we should sharply separate use cases
where ACID transactions are needed and where eventual consistency is
acceptable. In situations where heavy consistency is required, one service
should express the source of fact for a given entity. In scenarios where
transactions are needed, patterns such as remunerating transactions can be
utilized to store data consistent over several services. Ultimately, a good
solution for this problem is to use final consistency within microservices
through event-driven communication. In this architecture style, a service
writes an event when there are changes to its public models or entities.
Interesting services can subscribe to these events.

Common Database Techniques and Patterns Indexed shows the
HRMS system client application that requires the appearance of
employee’s data along with payroll details, and there are two
microservices involved (i.e., employee and payroll services). As per the
primary principle, each microservice has its data, and the application reads
and writes the data only via well-defined interfaces. As employee data will
be required on almost all the screens of the client application, a
denormalized read-only table can be created to be used only for queries.
Since the view is generated in the improvement and includes denormalized
data, it helps effective querying. An essential point to note is that the data
in the indexed view is fully disposable because it can be completely
restored from the source databases. Another classic use case that can be
efficiently handled by this approach is replicating the master data that is
needed by almost all the microservices. Having an HTTP call over the
services or the database joins can be an ineffective approach from the
performance and dependence aspect; therefore, indexed opinions
efficiently resolve this problem. Here are some perfect reasons for
applying this technique

 Indexed views significantly develop query review for recording and
display needs.

 In cases where the reference data is ready in a normalized form and
needs complex queries, producing an indexed show eliminates
complexity while reading the data.

 It provides access to data based on privacy demands.
 It efficiently helps separate situations, in which the source database is
not always available.

mu
no
tes
.in

11

1.5 SECURITIES

1.5.1 Top 5 Microservices Security Challenges
The diagram here shows how microservices architecture includes

various elements, each with its vulnerabilities and protection risks. Let’s
evaluate the top 5 microservices challenges getting it hard to ensure
modern applications.

1. Infrastructure design and multi-cloud deployments
Microservices are divided over many data centers, cloud providers,

and host machines. Raising infrastructure over many cloud environments
improves the chance of missing control and clarity of the application
components.

2. Segmentation and isolation
Decoupled application components play their responsibility in co-

dependence with several other services. All these components build and
support communication channels across various infrastructure layers, so
usually, cross-service communication is bounded when examining for
security vulnerabilities, the outcome of this is significant publicity in the
interfaces between these services.
3. Identity management and access control

Microservices show different approach points to both internal and
external actors. Access controls require to be adapted for all objects,
whether legitimate or illegitimate. It is necessary to have an organizational
interface that can support you control users, applications, groups, devices,
and APIs from one primary location, providing real-time clarity into what
is occurring in the environment.

4. Data management
Data created in microservices architecture progress, changes, and

is continuously associated with data is also saved in separate places and
for different purposes. Buyers of data assets want insight into the life cycle
and the dynamics of data to avoid gaps.

Can you be assured that your data is secure?

mu
no
tes
.in

12

Data losses can happen carelessly of the communication channel’s
presentation. Malicious actors can chain vulnerabilities to crack through to
individual assets.

5. The rapid rate of application changes
Application improvement in modern SDLC makes the code base

and data stores increase across time. Improvement methodologies promote
iterative and incremental growth, setting microservices below the constant
workload. How can you identify at any time that new code getting through
the growing pipeline will not disclose your application to the new sets of
vulnerabilities and serious attack vectors? Protection examination must
store up with the movement of the SDLC, to improve Dev Sec Ops.

Decomposing applications into microservices improves the
application’s attack surface because of recently joined entry details and
relationships among instances that are now spread out across many
environments, because of that microservices protection needs non-trivial
and ready-made solutions.

1.5.2 DEPLOY SECURITY AT CONTAINER LEVEL
Microservices are based on container technology. The obvious

vulnerability of containers is that they are based on images, which may
contain vulnerabilities. Conduct regular scanning to use images that
contain security vulnerabilities or other security issues.

A container has both internal and external warning surfaces. A first
step to preserving containers at runtime is using the principle of shortest
privilege (POLP). This can include some or all of the following strategies:
 Limit support to the minimum wanted by each user or service role
 Never use privileged accounts to run services
 Control the use and available resources—for example, restrict a
container’s way to the owner operating system

 Never store secrets on the container, because anyone with access to the
container can see them

 Define isolation with proper rules for resources with various levels of
consciousness

1.5.3 CREATE AN API GATEWAY
Microservices often cross several different networks, utilizing a

change of technologies, interfaces, and protocols. An essential way to
guard microservices is to produce one entry point, which all clients and
systems obtain, and which can easily be secured.

This entry point is called an API gateway. You have to design your
system in such a way that all clients regularly join the API gateway, also
you can use it to perform authentication and filter requests to sensitive
devices. The API gateway authenticates users and service roles and
decides which microservices they are allowed to access, also provide
additional security capabilities like SSL termination, protocol conversion,
monitoring, routing, and caching of requests.

mu
no
tes
.in

13

1.5.4 ISOLATION
In a microservices architecture, each service is a separate, isolated

part of the application. You should be able to implement, maintain,
modify, extend and update microservices without influencing other nearby
microservices. Isolation should also be performed at other layers of the
support, such as the database. One microservice should not have entrance
to data relating to other microservices. By obtaining complete isolation at
all layers, criminals who compromise one microservice cannot perform the
lateral movement to attack other parts of the system.

1.5.5 DON’T SHOW SENSITIVE DATA AS PLAIN TEXT
The plaintext can be quickly read and copied by users and

machines. A primary step to guarding personally identifiable information
(PII) is to avoid exposing it in cleartext. All passwords

And usernames must be removed or hidden when saving accounts
or records. Adding TLS/HTTPS will not resolve the problem if data is
saved insecurely at rest. Also, you can try to encrypt logs, but this will
support attackers who can directly access system memory. Therefore the
only reliable way is to avoid persevering sensitive information in the first
place.

1.5.6 AUTOMATED MICROSERVICES SECURITY WITH
NEXDAST

Nex DAST integrates automated AI-powered Dynamic
Application Security Testing into the SDLC to examine applications made
at the top of the difficult microservices architecture every time the
application code is packaged to a functioning application and delivered to
the testing phase.

Nex DAST presents with real-time reports with zero false positives
in no time, where we can see reported vulnerabilities with a reproducible
proof-of-concept and ordered by the sharpness of the impression on an
application, that proves the overall strength and ability of an application to
control product runtime without being displayed to vulnerabilities,
careless of the field and the complexity of the underlying microservices
architecture mesh.

1.6 MONITORING

The requirement for microservices can be defined as speed. The
need to give more functionality and security faster has changed the way
developers build software. This change has created ripple impacts in
software management, including monitoring systems. Monitoring is a
crucial part of the control systems of microservices, as the more
complicated software gets, the more difficult it to understand its
performance and troubleshoot problems. The five principles of monitoring
microservices, as follows:
1. Monitor containers and what’s inside them.
2. Alert on service performance, not container performance.

mu
no
tes
.in

14

3. Monitor services that are elastic and multi-location.
4. Monitor APIs.
5. Map your monitoring to your organizational structure.

Leveraging these principles will enable you to build more efficient
monitoring as you produce your way towards microservices. Those
principles will support you to address both the technological changes
connected with microservices and the organizational changes related to
them.

1.6.1 THE PRINCIPLES OFMICROSERVICE MONITORING

1. Monitor Containers and what’s running Inside Them
The speed, portability, and isolation of containers created it simple

for developers to include a microservice model. Containers are black
boxes to most systems that exist around them. That is especially helpful
for development, allowing a high level of portability from development
through production, from developer system to cloud. But for operating,
monitoring, and troubleshooting services, black boxes make regular
activities harder, what’s running in the container? How is the
application/code performing? Is it ejecting out major custom metrics?

The ideal method for instrumentation in non-containerized
conditions — an assistant that exists in the user space of a host or VM —
does not operate well for containers, because containers profit from being
small, separated processes with as few dependencies as possible. And,
running thousands of monitoring agents for even a modestly-sized
deployment is a valuable method of resources and an orchestration vision.
Two possible resolutions stand for containers:
1) ask your developers to instrument their code directly, or
2) leverage a universal kernel-level instrumentation way to see all
application and container activity on the owners.

2. Leverage Orchestration Systems to Alert on Service Performance
Creating a feeling of operational data in a containerized

environment is a new challenge. The metrics of a single container have a
much smaller minimal value than the aggregate data from all the
containers that make up a service. Especially applies to application-level
information, like which queries have the most delayed response times or
which URLs are viewing the most mistakes, but also refers to

mu
no
tes
.in

15

infrastructure-level monitoring, such as which services’ containers are
using the most resources beyond their allocated CPU shares.

Frequently, software deployment needs an orchestration system to
“translate” a logical application design into physical containers. Popular
orchestration systems introduce Kubernetes, Mesosphere DC/OS, and
Docker Swarm. Companies adopt an orchestration system to (1) define
their microservices and (2) get the current state of each service in
deployment. The original containers are temporary — they involve only
for the short time they exist — while services concern for the life of their
usefulness. DevOps organizations should redefine warnings to concentrate
on characteristics that get as close to monitoring the experience of the
service as reasonable. These signals are the primary line of protection in
evaluating if something is changing the application. But learning to these
alarms is challenging, if not possible except your monitoring system is
container-native.

Container-native resolutions support orchestration metadata to
dynamically aggregate container and application data and determine
monitoring metrics on a per-service base. Depending on your orchestration
device, you force have several layers of a hierarchy that you like to drill in
it. For instance, Kubernetes, typically have a Namespace, Replica Sets,
Pods, and some containers. Aggregating at those different layers is
necessary for logical troubleshooting, although the natural deployment of
the containers that builds up the service.

3. Be Prepared for Services that are elastic and Multi-Location
Elastic services are not a new theory, but the velocity of innovation

is much quicker in container-native environments than in virtualized
environments. Quickly growing environments can wreak destruction on
crisp monitoring systems. Regularly monitoring legacy systems needed
manual tuning of metrics and checks based on singular deployments of
software. This tuning can be as precise as representing the unique metrics
to be achieved or configuring selection depend on what application is
working in an appropriate container. While that may be satisfactory on a
small scale, it would be unacceptable in anything. Microservice-focused
monitoring must be capable to easily develop and shorten in step with
elastic services, without human interference.

For instance, if the DevOps organization must manually determine
what service a container is involved in for monitoring persistence, they

mu
no
tes
.in

16

drop the ball as Kubernetes or Mesos rotates up new containers frequently
during the day. Likewise, if Ops were required to install a system stats
endpoint when new code is created and launched into production,
difficulties may appear as developers tend to base images from a Docker
registry.

In production, establish monitoring to a complicated deployment
that crosses multiple data centre’s or multiple clouds. Leveraging, for
instance, AWS CloudWatch will only take you so far if your services
cross your private data center as well as AWS. That points back to
performing a monitoring system that can cross those various locations and
perform in dynamic, container-native environments.

4. Monitor APIs
In microservice environments, APIs are the lingua franca. They are

the only components of a service that are presented to other organizations.
Acknowledgment and compatibility of the API may be the “internal
SLA”,
As a consequence, API monitoring is necessary. API monitoring can get
many forms but obviously, must go away with binary up/down controls.
For example, it’s worthwhile to know the most commonly utilized
endpoints as a use of time. This enables organizations to view if anything
notable has changed in the method of services, it is due to a design
modification or a user modification.

Lastly, the capacity to track service calls through the system
describes another crucial ability. While handled by developers, this type of
profiling will help you understand the overall user experience while
developing information down into infrastructure and application-based
views of your environment.

5. Map Monitoring to Your Organizational Structure
Conway’s law, suggests that the purpose of systems is determined

by the organizational structure of the organizations making them. The
appeal of creating faster, more flexible software has forced organizations
to study restructuring their development organization and the laws that
govern it.

mu
no
tes
.in

17

If an organization needs to profit from this software architecture
program, its organizations must reflect microservices themselves. It
intends smaller organizations, loosely coupled; that can take their direction
as long as it yet satisfies the poverty of the whole. In each organization,
there is more power than always above languages managed, how viruses
are checked, or even operational responsibilities.

DevOps organizations can allow a monitoring program that does
specifically this: enables each microservice organization to divide their
signals, metrics, and dashboards, while yet providing services a look into
the global system.

1.7 MICROSERVICES HOSTING PLATFORM OPTIONS

An essential section of the study is whether to host microservices
on virtual machines or containers. Both choices can be executed on-
premise and on cloud platforms like Microsoft Azure. On Azure, the
administration of an underlying infrastructure becomes very simple
because there are specific services ready, such as Azure Serve Fabric and
Azure Kubernetes Service (AKS). Utilizing containers to execute
microservices is the most selected choice, and it is necessary to know the
many causes behind it.

A virtual machine is an operating system installation on the
virtualization layer of the physical manager, as described in Figure 2-6.
Managing Virtual machines helps to optimize the hardware utilization by
allowing the physical manager to give a private environment for each
application. The warning is that for all virtual machines, an entire OS must
be installed individually. Hence, every virtual machine requires to boot up
and load OS files into its memory. This device consumes lots of
computing sources on the host operating system. Figure1.11. Shows
Virtual machine hosting

Figure1.11. Virtual machine host in

Therefore, every virtual machine needs to boot up and load OS files into
its memory. This mechanism dissipates lots of compute resources on the
host operating system.

mu
no
tes
.in

18

1.7.1 USING A CONTAINER
Containers are similar to virtual machines. They give an idea to

protect an application into its separate box utilizing namespace separation.
In this procedure, the host OS generates a namespace for all the devices
(e.g., disk, memory, running process, etc.) to create an environment that
looks as if applied to the container. Containers vary from virtual machines
in a few methods.

 Virtual machines hold an entire OS installation on the virtualization
layer of the physical host. It needs time to rise because it must boot the
complete OS and map OS files in the memory. Containers give the
same kernel, so there is no requirement to boot the OS and map files to
the memory (see Figure 1.12). Hence, a container step is small as
opposed to virtual machines, and they boot up in a much less time

Figure1.12. Containers sharing OS files and libraries

Beginning with Windows 2016, there was a choice to host
containers in Hyper-V mode, which divides the kernel of a container from
the host OS. It can be applied for extremely sensitive applications or
multitenant environments. Start-up capability decreases when opposed to
containers that utilize namespace isolation.

• As containers create the environment and resource using regular, it
becomes available for developers to operate the same application on
various systems without modification inability. By virtual machines,
still, applications can work separately in different environments.
Microservices divide a complete resolution into multiple services;
activity, scalability, and optimum resource utilization are the most
significant portions. After containers work much better than VMs for
such situations, they are an enterprise’s prime choice for a deployment
stage. Let’s glance at the fundamental components of a container
ecosystem.

• Container image
• Container registry
• Container
• Container Image

A container image is similar to a software installer file that
includes both the OS layer and the application layer, with all the

mu
no
tes
.in

19

dependencies to run the application (e.g., Windows Nano Server, SQL
Server). A container image can be utilized many times to install an
application.

1.7.2 CONTAINER REGISTRY
The container registry is the depository for the container models

that can be made available to the whole organization. Any approved user
in an organization can push or pull images from this container. It can be
performed as either public or private, depending on the demands.
Microsoft Container Registry is a public registry that hosts images for
public download. Azure Container Registry is utilized for keeping a
private registry. The command to download an image from a public
repository is docker pull mcr.microsoft.com/mssql/server:2017-latest Let’s
break down this command

• mcr.microsoft.com/mssql/server:2017-latest is the container image.
• mcr.microsoft.com/mssql/server is the container registry.
• 2017-latest is the tag.
• Docker pull – docker is the command line to pull an image from the
registry.

1.7.3 CONTAINER
The container is an example of a container image. Multiple

container cases can be formed from a single container image. If a SQL
Server container is formed from the image of the local container, it will
produce an example of SQL Server on an Ubuntu server. The practice is
like a virtual machine, where you can take in the OS layer, run commands,
and work with SQL Server from both inside and outside of the containers.
The selection of Orchestrators plays an important function in maintaining
a large number of containers or virtual machines. High availability,
scalability, and application activity are the most significant parts that
orchestrators are supposed to cover. The following are the most important
functionalities that an orchestrator should cover.

 Clustering of resources. This characteristic creates groups of VMs or
physical machines that look like a single resource. All the sources are
given by a single group. This serves to optimize resource utilization,
and even management becomes simple.

 Orchestration. These characteristic benefits perform all the elements
work collectively as a unit. Running containers, their scalability, load
balancing when a heavy load, and high availability while losers are
secured by this functionality.

 Management. Managing networking, storage, and services come below
the management functionalities of the orchestration agents. Here are a
few of the orchestration solutions prepared on the market.

 Azure Service Fabric
 Azure Kubernetes Service

mu
no
tes
.in

20

 Docker Swarm and Compose
 Mesos DC/OS

Let’s an overview of these solutions

Azure Service Fabric
Azure Service Fabric is an orchestration agent that can be used

both on-premises and on Microsoft Azure. This Microsoft resolution
maintains various services on Azure. Applications are used in the form of
services on Azure Service Fabric. Each service (stateless or stateful) has
three elements.

• Code
• Configuration
• Data

A Service Fabric cluster is established on a group of physical or
virtual machines named nodes. There are several services (e.g., failover
manager services, repair manager services, naming services, etc.) to
maintain high availability, health, and service description for Azure
Service Fabric. Apart from containers, services can be run as fellow
executables and dependable services by utilizing the local Service Fabric
SDK.

Azure Kubernetes Service
Kubernetes is an orchestration agent that can be used both on-

premise and on Microsoft Azure. On Azure, it is a controlled service
named Azure Kubernetes Service. On AKS, seeds run a single or a group
of containers. Services are the labels that point to multiple pods.
Kubernetes has a cluster master and cluster nodes to maintain a container
ecosystem.

Docker Swarm and Compose
Docker Swarm is the clustering agent for Docker; it can be used

both on-premise and on Microsoft Azure. Each node in the cluster
operates as a swarm agent, and one of the nodes runs a swarm manager. A
swarm manager is accountable for orchestrating and maintaining the
containers on the possible container’s host. Filters can be configured on
Docker Swarm to manage the hosting of containers. Docker Compose is a
command-based service to configure an application’s services. With a
single command, a complete application can be up and operating on the
swarm cluster.

Mesos DC/OS
The Apache Mesos orchestration resolution is created to manage a

large number of hosts to help different workloads. It can be run both on-
premise and on Microsoft Azure. This setup has a Mesos master to
orchestrate the tasks, and agent nodes to perform the tasks. Frameworks
coordinate with the master and plan tasks on agent nodes.

mu
no
tes
.in

21

LET US SUM UP

There is one, pure trigger event that accelerated the movement to
microservices: speed. Organizations wanted to give more abilities to their
clients in a shorter time. Once this happened, technology moved in, the
architecture movement to micro-services, and the underlying shift to
containers perform speed to follow. Anything that receives in the process
of this development series is working to become run over on the tracks. As
a consequence, the primary principles of monitoring require adapting to
the underlying technology and organizational settings that bring
microservices. Services organizations that understand this group can adapt
to microservices earlier and easier.

LIST OF REFERENCES

 https://www.jigsawacademy.com/blogs/cloud-computing/what-is-
microservices/

 https://opensource.com/resources/what-are-microservices
 Building Microservices Applications on Microsoft Azure Designing,
Developing, Deploying, and Monitoring — Harsh Chawla Hemant
Kathuri

 https://www.neuralegion.com/blog/microservices-security/
 https://thenewstack.io/five-principles-monitoring-microservices/

BIBLIOGRAPHY

 https://www.jigsawacademy.com/blogs/cloud-computing/what-is-
microservices/

 https://opensource.com/resources/what-are-microservices
 Building Microservices Applications on Microsoft Azure Designing,
Developing, Deploying, and Monitoring — Harsh Chawla Hemant
Kathuri

 https://www.neuralegion.com/blog/microservices-security/
 https://thenewstack.io/five-principles-monitoring-microservices/

UNIT AND EXERCISES

1. Why consider API Gateways instead of direct client-to-microservice
communication.

2. What is the API Gateway pattern?

3. Explain the features of API Gateways.

4. Write down the Drawbacks of the API Gateway pattern.

5. Which interface is used for inter-service communication?

6. What are the features of Microservices?

mu
no
tes
.in

22

7. What are the considerations of implementing Microservices?

8. How do you maintain data consistency across Microservices?

9. How would you implement security in Microservices?

10. Why are Container used in Microservices?

MCQs
I. What is a microservice?
a) Design used primarily in functional programming and object oriented
programming

b) A small program that represents discrete logic that executes within a
well-defined boundary on dedicated hardware

c) A style of design for enterprise systems based on a loosely coupled
component architecture

d) A very small piece of code that never gets any bigger than 10 lines

II. When would developers use microservices?
a) When they want to write cell phone applications that run quickly
b) When they work with ephemeral nano technology
c) When they need to create large, enterprise-level applications that are
subject to changes on a frequent basis

d) When they create applications specifically for scientific test equipment
III. Which of these concepts are essential to microservices security?
a) Manual human testing
b) Automation
c) Department siloing
d) Removing security policies from the development pipeline

IV. Which of these elements should be a part of your microservices
strategy?

a) Service mesh
b) Thorough access management
c) Threat detection in production
d) All of the above



mu
no
tes
.in

24

2
AZURE SERVICE FABRIC

Unit Structure :

2.0 Objectives
2.1 Introduction
2.2 An Overview

2.2.1 Core Concepts
2.2.1.1 Service Fabric Application Model
2.2.1.2 Scale by Increasing or Decreasing Stateless Service

Instances
2.2.1.3 Scale By Adding or Removing Named Services Instance

2.3 Supported Programming Models
2.4 Service Fabric Clusters
2.5 Develop and Deploy Applications of Service Fabric

Let us Sum Up
List of References
Bibliography
Unit End Exercises

2.0 OBJECTIVES

 Manage Azure Service Fabric to resolve infrastructure orchestration
challenges

 Study of software concepts related to Service Fabric, including
collections, the actor model, and stateful vs stateless services

 Use an application to a Service Fabric cluster

 Azure Service Fabric plans to give developers a very strong platform
that addresses several complexities that are associated with developing
cloud-based distributed applications.

 “By utilizing Service Fabric developers and administrators can bypass
resolving difficult infrastructure queries and concentrate preferably on
implementing mission-critical, requiring workloads understanding that
they are scalable, reliable, and manageable.” — Mark Fussel, principal
program manager at Microsoft

 Service Fabric allows microservices to fast and efficiently. Service
fabric-safe services are strong concepts, supporting both lifting and
shifting applications, allows scaling, disaster recovery, and resilience.

mu
no
tes
.in

25

2.1 INTRODUCTION

Azure Service Fabric is a distributed systems platform that enables
you to operate, maintain, and scale applications in a cluster of nodes,
utilizing any OS and any cloud. The Service Fabric SDK enables you to
implement service communication, scale, and service discovery models
efficiently. The SDK is ready for .NET and Java developers. You can
generate an application in any programming language and can use Service
Fabric to handle customer executables and containers. Service Fabric can
be expanded on the platform of your choice (i.e., Windows or Linux) and
can be extended on-premise, on Azure or AWS, or any other cloud
platform. In-Service Fabric, an application is a set of various services, and
every service has a specified purpose to perform. A service is described by
three components: code (binaries and executables), configuration, and data
(static data to be consumed by service). Every component is versioned and
can be upgraded separately. This is the important advantage of Service
Fabric—in a deployment failure, you can simply go back to an earlier
version of the service. Also, note that a deployment and version upgrade is
required even a simple modification to an application’s configuration is
done, in our knowledge, this is previously difficult for deployment
organizations because most companies have powerful deployment
methods, but it supports the matter of deployment crashes because you can
go back to any of the earlier versions by applying a single command.
Deployment methods are streamlined by using services like Azure
DevOps. Service Fabric also helps autoscaling. The autoscale
characteristic provides Service Fabric to dynamically scale your services
based on pointers like load, sources rule.

2.2 AN OVERVIEW

It is simple to package, deploy, and manage scalable and reliable
microservices and containers by using a distributed systems platform like
Azure Service Fabric. Service Fabric addresses the important challenges
in developing and managing cloud-native applications.

A fundamental differentiator of Service Fabric is its sharp focus on
creating stateful services. You can utilize the Service Fabric programming
model or run containerized stateful services written in any language or
code. You can generate Service Fabric clusters anywhere, including
Windows Server and Linux on-premises and other public clouds, along
with Azure.

Service Fabric controls many Microsoft services, including Azure
SQL Database, Azure Cosmos DB, Cortana, Microsoft Power BI,
Microsoft Intune, Azure Event Hubs, Azure IoT Hub, Dynamics 365,
Skype for Business, and many-core Azure services.

mu
no
tes
.in

26

Figure: 2-1. Azure Service Fabric [4]

CONTAINER ORCHESTRATION
Service Fabric is Microsoft's container orchestrator for deploying

and managing microservices over a cluster of machines, profiting from the
models studied working Microsoft services at a massive scale. Service
Fabric can deploy applications in seconds, at high mass with hundreds or
thousands of applications or containers per machine. Using Service Fabric,
you can join both services in rules and services in containers in the
corresponding application.

STATELESS AND STATEFUL MICROSERVICES
Service Fabric gives a modern, lightweight runtime that helps

stateless and stateful microservices. An important differentiator of Service
Fabric is its strong support for creating stateful services, either with
Service Fabric built-in programming models or containerized stateful
services.

APPLICATION LIFECYCLE MANAGEMENT
Service Fabric gives help for the full application lifecycle and

CI/CD of cloud applications including containers: development for
deployment, daily monitoring, management, and maintenance, to final
decommissioning. Service Fabric is combined with CI/CD agents such
as Azure Pipelines, Jenkins, and Octopus Deploy and can be applied with
any other current CICD tool.

ANY OS, ANY CLOUD
We can build clusters for Service Fabric in various environments,

including Azure or on-premises, on Windows Server or Linux. We can
also build clusters on other public clouds. The development environment
in the Service Fabric SDK is equal to the product environment, with no
emulators included. For Windows development, the Service Fabric .NET
SDK is combined with Visual Studio and PowerShell. For Linux
development, the Service Fabric Java SDK is mixed with Eclipse, and

mu
no
tes
.in

27

Yeoman is used to making templates for Java, .NET Core, and container
applications.

2.2.1 CORE CONCEPTS
In this segment, we explain core Services Fabric concepts, such as

the application model, scaling techniques, supported programming
models, and types of Service Fabric clusters.

2.2.1.1 Service Fabric Application Model
In-Service Fabric, an application is a set of services where each

service and application is determined utilizing a visible file. All service in
an application is described by a service package, and the package has three
components (code, configuration, and data), as represented in Figure 2-2.
The code element includes the real executables, binaries of the service, or
signals to the container images in container closets so as ACR and Docker
Hub. The configuration element includes the configuration approaches
needed by the service; it’s very related to the web. config in ASP.NET
applications, and if required, you can hold various configuration files. The
information component includes static data to be handled by the service.
Service Fabric is not very accurate concerning the data form; it can be
JSON, XML files, and so forth. Every component is versioned and can be
upgraded separately. And, the service package is regularly used as a
collection, which means if you need to create two containers worked
together on the related node, you can hold two code packages (pointing to
the respective containers) in the same service package

Figure: 2-2. Service Fabric application model

While using an application on Service Fabric, an Application Type
gets created to represent an application and a Service Type gets created to
describe all services in a Service Fabric cluster. Similarly, on successful
deployment, an example of Application Type and Service type gets
produced. We can have many examples of an Application type to maintain
various versions of the related application and can have various instances
of service type to support the higher load and high availability.

2.2.1.2 Scale by Increasing or Decreasing Stateless Service Instances
During generating a service instance, you can define the instance

count, which determines the quantity of Service Fabric cluster nodes
where the service is hosted. The resulting command defines the count to
two, which indicates that the service is hosted only on two nodes, yet the

mu
no
tes
.in

28

number of nodes in the Service Fabric is bigger than two (see Figure 2-3).
sfctl service create –-name fabric:/a/s1 –-stateless –instance count

Figure: 2.3. Service Fabric Cluster: :two nodes utilized

Service Fabric also provides to renew the instance count. You can
set the count to –1 to notify Service Fabric to continue the service on all
possible nodes, as depicted in Figure 2-4. If new nodes are joined to the
cluster, Service Fabric assured that service is received on the newly added
nodes too. sfctl service update –-service-id a/s1 –-stateless –instance
count -1

Figure: 2-4. Service Fabric cluster: all nodes utilized

2.2.1.3 Scale By Adding or Removing Named Services Instance

Order by Adding or Removing Named Services Instances In
situations wherever the node ability is underutilized, we can direct Service
Fabric to scale up by building another named service instance and use the
corresponding code package on all the possible nodes, but with various
uncommon names (see Figure 2-5). sfctl service update –-service-id a/s2 –
-stateless –instance count –

mu
no
tes
.in

29

Figure: 2.5. Service Fabric Cluster: named service instances

2.3 SUPPORTED PROGRAMMINGMODELS

Service Fabric supports the programming models shown in Figure 2-6.

Figure: 2-6. Service Fabric cluster: supported programming models

Containers
One of the programming models offered by Service Fabric enables

orchestration and use of applications utilizing both Windows and Linux
containers. Service Fabric helps the deployment of Docker containers on
Linux and Windows server containers (including Hyper-V isolation) on
Windows Server 2016. Service Fabric can eliminate the container images
from container repositories like Docker HUB and Azure Container
Registry. Using an application as a container does not need any
modifications to the application and has no Service Fabric SDK
dependence.

Although you can use services using various programming models
(guest executables, stateless or stateful services), there are several
situations where containers are more proper.

Monolithic Applications
If a monolithic application is generated utilizing ASP.NET web

forms and has a dependence on technologies like IIS, you can package
those applications as container models and use them on Service Fabric for

mu
no
tes
.in

30

efficient scaling and deployment management. In this method, you have
no mandate on Service Fabric SDKs; you can use an application as it is.
An application can also be produced in a programming language.

Application Isolation
If a higher level of separation of different applications working on

the same host is needed, containers are a highly viable alternative because
they give separation efficiently. Also, Windows Containers Hyper-V mode
uses isolation to various levels because the core OS kernel is not given
between containers. Service Fabric also gives resource governance
abilities to reduce the devices that can be managed by a service on a host

Reliable Services
Good services enable you to write services utilizing the Service

Fabric SDK framework. Service Fabric supports to control the life cycle of
your services, it is a lightweight framework. It further supports the
services to communicate with the Service Fabric runtime. With SDK, you
can get profit from highlights such as notifications on code or
configuration modifications and communicating with other services

2.4 SERVICE FABRIC CLUSTERS

Service Fabric Clusters
Service Fabric supports you to use microservices on a cluster,

those are the set of virtual or physical machines that are connected by a
network. Every machine within the cluster is named a node. A cluster can
build up thousands of nodes, based on the source requirements of your
application. Every node in a cluster has a Windows service named
FabricHost.exe, which makes assured that the other two executables
(Fabric. exe and FabricGateway.exe) are regularly operating on the cluster
nodes. Service Fabric clusters can be generated utilizing virtual machines
or physical machines operating on Windows or Linux. The Service Fabric
cluster can run on-premise, on Azure, or any cloud (e.g., AWS). We want
to have at least five nodes to run a Service Fabric cluster for production
workloads.

Service Fabric has some system services to provide the platform
capabilities that are as follows.

Naming Service
A naming service determines the service name to a location. For

applications in a cluster that can transfer from one node to another, a
naming service gives the real port and IP address of the machine where the
service is running.

Image Store Service
When implementing a deployment, the application packages are

uploaded to an image store, and then an application type is recorded for
the uploaded application package

mu
no
tes
.in

31

Failover Manager Service
As the name implies, the failover manager service is effective for

the high availability and appropriateness of services. It orchestrates
application and cluster upgrades.

Repair Manager Service
The repair manager service is an elective service to perform repair

operations on silver and gold durability Azure Service Fabric clusters.

Cluster on Azure
By the Azure portal or by utilizing a source template a Service

Fabric cluster on Azure can be generated. A Service Fabric cluster can be
quickly generated by applying the Azure portal user interface. As the
cluster and its components are similar to any other resource manager
source, we can efficiently track access, cost, and billing. There are two
important advantages of hosting a Service Fabric cluster on Azure.

 It appears with autoscaling functionality.
 It helps the installation of Service Fabric clusters on Linux
machines.

Standalone Cluster or Any Cloud Provider
Deployment on-premise or on any cloud provider is much related.

Service Fabric clusters can be generated utilizing the Windows Server
2012 R2 and Windows Server 2016 operating systems. Standalone clusters
are helpful in situations where you can’t hold your applications hosted on
the cloud due to regulative or agreement constraints.

2.5 DEVELOP AND DEPLOY APPLICATION OF
SERVICE FABRIC

Till now, we have reviewed Service Fabric and its programming
models and studied that it can be installed on the cloud or on-premise.
Now build some units to better explain that how we produce and use
applications on Service Fabric. Here two samples will be cover.

 Situation 1. Express developing an ASP.NET Core stateless web
app interacting with an ASP.NET Core stateful API.

 Situation 2. Express developing a Java Spring Boot application
adopting Visual Studio Code and use it on Service Fabric as a
visitor executable or as a container.

Develop an ASP.NET Core Stateless Web App
We will produce a simple ASP.NET MVC–based application to

control operators. The ASP.NET MVC front end communicates with the
ASP.NET API to execute CRUD operations. Inside, the Web API utilizes
strong groups to save operator data.

Setting up the Development Environment
1. Install Visual Studio 2017.
2. Install the Microsoft Azure Service Fabric SDK.

mu
no
tes
.in

32

3. Make assured that the Service Fabric local cluster is running. Secure
this by browsing
HTTP:// localhost:19080/Explorer/index.html#/
or by right-clicking the Service Fabric icon in the system tray, as shown in
Figure 2-7

Figure: 2-7. Service Fabric status [3]

Create a ASP.NET Core Web API Using Reliable Collections
Following are the levels.
1. Launch Visual Studio 2017 as an administrator.
2. Create a project by selecting File➤New➤Project.
3. In the New Project dialog, choose Cloud➤Service Fabric Application.
4. Name the Service Fabric application Employee (as depicted in Figure 2-
8) and click OK.

Figure: 2-8. New Service Fabric application [3]

mu
no
tes
.in

33

5. Choose Stateful ASP.NET Core, as depicted in Figure 2-9

Figure:2-9. New Stateful ASP.NET Core API [3]

6. You see a screen that looks like Figure 2-10. Click OK

Figure: 2-10. Choose API using (ASP.NET Core 2.1) [3]

7. Right-click the Controller folder in the Employee Data API project and
select Add ➤ New Controller, as shown in Figure 2-11. Select API
Controller and name the controller Employee Controller

mu
no
tes
.in

34

Figure:2-11. New API controller [3]

8. Make sure that the Nu Get packages shown in Figure 2-12 are installed.

Figure: 2-12. NuGet Packages [3]

9. Replace the file content with the following and compile the changes[3].

using Microsoft.AspNetCore.Mvc;

using Microsoft.ServiceFabric.Data;
using Microsoft.ServiceFabric.Data.Collections;

using System.Collections.Generic;

using System.Threading;

using System.Threading.Tasks;

mu
no
tes
.in

35

namespace EmployeeDataAPI.Controllers

{

[Route("api/[controller]")]

[ApiController]

public class EmployeeController : ControllerBase

{

private readonly IReliableStateManager stateManager;

public EmployeeController(IReliableStateManager stateManager)

{

this.stateManager = stateManager;

}

[HttpGet]

public async Task<ActionResult<List>>GetAll()

{

CancellationToken ct = new CancellationToken();

IReliableDictionary employees = await
this.stateManager.GetOrAddAsync>("employees");

List employeesList = new List();

using (ITransaction tx = this.stateManager. CreateTransaction())

{

Microsoft.ServiceFabric.Data.IAsyncEnumerable<KeyValuePair> list =
await employees.CreateEnumerableAsync(tx);

Microsoft.ServiceFabric.Data.IAsyncEnumerator<KeyValuePair>
enumerator = list.GetAsyncEnumerator();

while (await enumerator.MoveNextAsync(ct))

{

employeesList.Add(enumerator.Current.Value);

}

}

return new ObjectResult(employeesList);

}

[HttpGet("{id}")] public async Task<ActionResult>GetEmployee(string
id)

{

IReliableDictionary employees = await
this.stateManager.GetOrAddAsync>("employees"); Employee employee =
null;

mu
no
tes
.in

36

using (ITransaction tx = this.stateManager. CreateTransaction())

{

ConditionalValue currentEmployee = await
employees.TryGetValueAsync(tx, id);

if (currentEmployee.HasValue)

{

employee = currentEmployee.Value;

}

}

return new OkObjectResult(employee);

}

[HttpPost]

public async Task Post(Employee employee)

{

IReliableDictionary employees = await
this.stateManager.GetOrAddAsync>("employees"); using (ITransaction tx
= this.stateManager. CreateTransaction())

{

ConditionalValue currentEmployee = await
employees.TryGetValueAsync(tx, employee. Id.ToString());

if (currentEmployee.HasValue)

{

await employees.SetAsync(tx, employee. Id.ToString(), employee);

}

Else

{

await employees.AddAsync(tx, employee. Id.ToString(), employee);

}

await tx.CommitAsync();

}

return new OkResult();

}

[HttpDelete("{id}")]

public async Task Delete(string id)

{

mu
no
tes
.in

37

IReliableDictionary employees = await
this.stateManager.GetOrAddAsync>("employees"); using (ITransaction tx
= this.stateManager. CreateTransaction())

{

if (await employees.ContainsKeyAsync(tx, id))

{

await employees.TryRemoveAsync(tx, id);

await tx.CommitAsync();

return new OkResult();

}

else

{

return new NotFoundResult();

}

}

}

public class Employee

{

public string Name{ get; set; }

public string Mobile { get; set; }

public long Id { get; set;}

public string Designation { get; set; }

}

}

Service Fabric gives a substantial quantity in the form of reliable
lines and a reliable dictionary. By utilizing these classes, Service Fabric
secures the state is partitioned, replicated, and transacted in a partition.
Moreover, all the operations in a reliable dictionary object need a
transaction object. By default, the Visual Studio template utilizes range
partitioning; these details can be seen in Application Manifest.xml, which
remains in the Application Package Root folder of the Employee project.
By default, the partition count is set to one. The replica count is set to
three, which involves a copy of the service code, and data will be
deployed on three nodes. Only one copy is active, named as the primary,
and the other two are inactive and utilized only in case of failure.

Debugging the Application
By performing all the actions in the preceding segment, our growth

is consummate. Here are the steps that debug the application to build an

mu
no
tes
.in

38

employee recording in the Service Fabric reliable collection that uses the
advanced web interface and data API.

1. Right-click the Employee project and set the Application URL to
“http://localhost:19080/ Explorer”. By default, Service Fabric Explorer
runs on 19080. This assures the successful deployment of the service
to a local cluster. It drives Service Fabric Explorer.

2. Make assured that the Employee project is established at startup.
3. Click F5. It uses our Service Fabric application to the local
development cluster.

4. In Service Fabric Explorer, click Application. Click fabric://Employee,
fabric://Employee/ Employe Web, Partition ID, and Node ID. Follow
the value of the endpoint. (In our case, Employee Web is hosted at
http://localhost:8780.)

5. You can also get the Employee Web port number from Service
Manifest.xml.

6. Browse the http://localhost:8780/ URL to observe the web interface.
Record employee information and click Create to create an employee
record. The original data is protected by the Employee Data API in the
Service Fabric’s substantial collection, rather than an external database
like Azure SQL

LET US SUM UP

Azure Service Fabric is a distributed systems platform that makes
it simple to package, deploy, and manage scalable and reliable
microservices and containers. We can build Service Fabric clusters
everywhere, including Windows Server and Linux on-premises and other
public clouds, along with Azure.

LIST OF REFERENCES

 https://cloudacademy.com/course/creating-an-app-on-azure-service-
fabric/what-is-service-fabric/

 https://medium.com/@prasanna_vasan/azure-service-fabric-intro-
41e1dc319a66

 Building Microservices Applications on Microsoft Azure Designing,
Developing, Deploying, and Monitoring — Harsh Chawla Hemant
Kathuri

 https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
overview

BIBLIOGRAPHY

 https://cloudacademy.com/course/creating-an-app-on-azure-service-
fabric/what-is-service-fabric/

mu
no
tes
.in

39

 https://medium.com/@prasanna_vasan/azure-service-fabric-intro-
41e1dc319a66

 Building Microservices Applications on Microsoft Azure Designing,
Developing, Deploying, and Monitoring — Harsh Chawla Hemant
Kathuri

 https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
overview

UNIT END EXERCISES

1. Define Azure Service Fabric.
2. Describe the importance of application instances in Azure Service
Fabric.

3. Define cluster in Azure Fabric Service
4. Define node in Azure Fabric Service
5. Define Service type in Azure Service Fabric.
6. Define Service instance in Azure Service Fabric.
7. Explain Micro Service
8. What are Micro services in Azure?
9. How does Azure service fabric work?
10. Describe different types of Micro Services.
11. Define Application type in Azure Service Fabric.
12. Brief about Programming models available in Azure Service Fabric.
13. What is a Container?
14. Explain the advantages of the container over virtual machines.
15. Which two metrics affect resource governance that is supported in
Service Fabric?

MCQs
I. Which service in Azure is used to manage resources in Azure?
A. Application Insights
B. Azure Resource Manager
C. Azure Portal
D. Log Analytics

II. A _________ role is a virtual machine instance running
Microsoft IIS Web server that can accept and respond to
HTTP or HTTPS requests.

A. Web
B. Server
C. Worker
D. Client



mu
no
tes
.in

41

3
MONITORING AZURE SERVICE FABRIC

CLUSTERS
Unit Structure :

3.0 Objectives
3.1 Introduction
3.2 An Overview

3.2.1 Azure application
3.3 Resource Manager Template
3.4 Adding Application Monitoring to a Stateless Service Using

Application Insights
3.5 Cluster monitoring
3.6 Infrastructure monitoring

Let us Sum Up
List of References
Bibliography
Unit End Exercises

3.0 OBJECTIVES

1) Azure Service Fabric is a distributed systems platform that creates it
simple to package, use, and maintain scalable and reliable
microservices and containers.

2) Service Fabric also marks the important challenges in developing and
maintaining cloud-native applications.

3.1 INTRODUCTION

In any cloud environment, monitoring and diagnostics are crucial
to testing, developing, and deploying workloads. For instance, we can
trace how our applications are utilized, the activities conducted by the
Service Fabric platform, our source utilization with performance counters,
and the overall strength of the cluster. We can handle this information to
diagnose and correct issues and restrict them from happening in the future.

Application monitoring
Application monitoring traces that how the characteristics and

elements of our application are being utilized. We need to monitor our
applications to make assured problems that affect users are found. The
ability of application monitoring is on the users forming an application

mu
no
tes
.in

42

and its services since it is unusual to the business logic of the application.
Monitoring applications can be helpful in the following situations:

 How much traffic is my application experiencing? - Do we want to
scale services to satisfy user requirements or approach a potential
bottleneck in the application?

 Are my service to service calls successful and tracked?
 What actions are driven by the users of my application? - Collecting
telemetry can manage coming feature growth and more reliable
diagnostics for application errors

 Is my application driving unhandled exceptions?
 What is occurring within the services working inside my containers?

The excellent element of application monitoring is that developers
can utilize whatever tools and framework they had like as it exists in the
context of the application.

Platform (Cluster) monitoring
One of Service Fabric's aims is to have applications flexible to

hardware crashes. This aim is obtained by the platform's system services'
capacity to identify infrastructure problems and quickly failover
workloads to other nodes in the cluster. But in this example, what if the
system services themselves hold issues? Or if in trying to use or drive a
workload, controls for the placement of services are violated? Service
Fabric gives diagnostics for those and more to make assured that you are
informed about exercise taking place in the cluster. Some example
situations for cluster monitoring include:

Service Fabric gives a complete set of functions remarkable.
These Service Fabric events can be obtained by the Event Store or the
operational channel (event channel exposed by the platform).

Service Fabric event channels - On Windows, Service Fabric
events are obtainable of a single ETW provider by a set of related log
Level Keyword Filters utilized to choose among Operational and Data &
Messaging channels - that is how we divide outgoing Service Fabric
events to be clarified on as required. On Linux, Service Fabric events
occur in LTTng and are placed into one Storage table, from wherever they
can be clarified as wanted. Those channels contain curated, structured
events that can be utilized to properly explain the state of the cluster.
Diagnostics are allowed by default at the cluster production time, which
generates an Azure Storage table wherever the events from those channels
are posted for you to doubt in the future.

· EventStore - The EventStore is a characteristic given by the platform
that produces Service Fabric platform events possible in the Service Fabric
Explorer and through REST API. We can view a snapshot view of what is
running on in the cluster for all entity e.g. node, service, application, and
query based on the time of the event.

mu
no
tes
.in

43

The diagnostics given are in the pattern of a complete set of events
remarkable. Certain Service Fabric events represent activities performed
by the platform on various entities such as Nodes, Applications, Services,
Partitions, etc. In the current situation earlier, if a node were to go below,
the platform would release a Node Down event that could be informed
quickly by our monitoring tool of preference. Other typical cases involve
Application Upgrade Rollback Started or Partition Reconfigured while a
failover. Similar events are possible on both Windows and Linux clusters.
The events are transmitted within standard channels on both Windows and
Linux and can be read by any monitoring tool that supports these. The
Azure Monitor solution is Azure Monitor logs. Azure Monitor logs
integration involves a system operational dashboard for the cluster and
some example questions which can generate alerts. More cluster
monitoring concepts are possible at Platform level event and log
generation.

Health monitoring
The Service Fabric platform adds a health model, which gives

extensible health reporting for the status of entities in a cluster. Each node,
application, service, partition, replica, or instance, has a continuously
updatable health status. The health status can either be "OK", "Warning",
or "Error". Study of Service Fabric events as verbs done by the cluster to
different entities and health as an identifier for each entity. Every time the
health of the appropriate entity transitions, an event will also be released.
In this process, we can set up doubts and alerts for health events in the
monitoring tool of preference, like any other event.

If the application is running by a grade and you have validation
tests missing, we can write to Service Fabric Health utilizing the Health
API to intimate the application is no healthier, and Service Fabric will
automatically roll back the upgrade!

mu
no
tes
.in

44

Watchdogs
Usually, a watchdog is a separate service that watches health and

load over services, pings endpoints, and reports sudden health events in
the cluster. It can support stop errors that may not identify based on the
appearance of a single service. Watchdogs are also a great place to host
code that executes corrective procedures that do not need user
communication, such as washing up log files in storage at certain time
pauses. If you require a completely executed, open-source SF watchdog
service that involves a simple-to-use watchdog extensibility model and
that operates in both Windows and Linux clusters. Fabric Observer is
production-ready software. We help to use Fabric Observer to our test and
production clusters and increase it to satisfy the requirements either by its
plug-in model or by forking it and writing your built-in observers. The
former (plug-ins) is the suggested approach.

Infrastructure (performance) monitoring
Monitoring the infrastructure is an important part of learning the

state of the cluster and resource utilization. Measuring system execution
depends on various circumstances that can be biased depending on the
workloads. Those circumstances are typically covered by performance
counters. These performance counters can arise from a variety of
resources including the operating system, the .NET framework, or the
Service Fabric platform itself. Some situations where they would be
helpful are

 Am I using my hardware efficiently? Do you require to utilize your
hardware at 90% CPU or 10% CPU? This arrives in handy when
comparing the cluster, or optimizing the application's processes.

 Can I divine infrastructure problems proactively? - various issues are
introduced by sudden changes (drops) in execution, so you can handle
performance counters such as network I/O and CPU utilization to the
divine and diagnose the issues proactively.

A record of performance counters that should be received at the
infrastructure level can be seen at Performance metrics. Service Fabric
also gives a set of performance counters for the Reliable Services and
Actors programming models. If we are utilizing either of those models,
those performance counters can report assuring that our actors are
spinning up and down perfectly, or that our good service requests are
being managed quickly enough.

The Azure Monitor solution to get these is Azure Monitor logs just
like platform level monitoring. We should accept the Log Analytics
agent to get the proper performance counters and see them in Azure
Monitor logs.

mu
no
tes
.in

45

3.2 AN OVERVIEW

Service Fabric-managed clusters are a growth of the Azure Service
Fabric cluster resource model that streamlines our deployment and cluster
management practice.

The Azure Resource Model (ARM) template for regular Service
Fabric clusters needs you to determine a cluster resource beside various
helping resources, all of which must be "wired up" perfectly (upon
deployment and during the lifecycle of the cluster) for the cluster and the
services to operate correctly. In opposition, the encapsulation model for
Service Fabric-managed clusters consists of a single, Service Fabric-
managed cluster resource. All of the underlying resources for the cluster
are separated away and maintained by Azure on your behalf.

Service Fabric traditional cluster model

Service Fabric managed cluster model

In terms of size and complexity, the ARM template for a Service
Fabric managed cluster is about 100 lines of JSON, versus some 1000
lines needed to determine a distinctive Service Fabric cluster:

Service Fabric resources Service Fabric managed cluster resources
Service Fabric cluster Service Fabric managed cluster
Virtual machine scale set(s)
Load balancer
Public IP address
Storage account(s)
Virtual network

mu
no
tes
.in

46

Service Fabric managed clusters supply many advantages over traditional
clusters:

Simplified cluster deployment and management
 Use and manage a single Azure resource
 Certificate management and autorotation
 Reduced scaling operations

Prevent operational errors
 Prevent configuration mismatches with underlying resources
 Block risky operations (such as removing a roots node)

Best habits by default
Simplified security and stability settings

There is no extra cost for Service Fabric-managed clusters
exceeding the cost of underlying resources needed for the cluster, and the
same Service Fabric SLA uses for managed clusters.

Service Fabric managed cluster SKUs
Service Fabric managed clusters are accessible in both Basic and Standard
SKUs.

Feature Basic Standard
Network resource (SKU for Load
Balancer, Public IP)

Basic Standard

Min node (VM instance) count 3 5
Max node count per node type 100 100
Max node type count 1 20
Add/remove node types No Yes
Zone redundancy No Yes

Azure Application Insights
Application Insights is an extensible application performance

management (APM) service for web developers on various platforms. It
controls live web applications and automatically identifies performance
irregularities. It also holds powerful analytics tools to support you
diagnose problems and learning what users do with the application.

3.3 RESOURCE MANAGER TEMPLATE

Resource Manager Template
The Azure Resource Manager template enables us to use, monitor,

and control resolution sources as a group on Azure. Here include three
areas for Service Fabric monitoring as following.

 Application monitoring
 Cluster monitoring
 Infrastructure monitoring

mu
no
tes
.in

47

Application Monitoring
Application monitoring explains the methods of the application’s

characteristics and elements, which supports determine their influence on
the users. Application monitoring also informs debug and privilege logs,
which are fundamental for diagnosing and solving a problem once the
application is expanded. It is the duty of the developer's to add proper
monitoring. You can utilize any modern instrumentation framework to add
application monitoring, yet some of the recommended options are
Application Insights SDK, Event Source, and ASP.NET Core Logging
Framework.

3.4 ADDING APPLICATION MONITORING TO A
STATELESS SERVICE USING APPLICATION
INSIGHTS

Computing Application Monitoring to a Stateless Service Utilizing
Application Insights We will produce an easy ASP.NET MVC–based API
to handle employees. In this instance, we will save the employee data in
an Azure SQL database rather than a good collection so that we can
explain how to control query messages in Azure Application Insights. To
display the monitoring of a REST API call, we are creating a call to the
Translator Text API in Azure to transliterate the first name of an employee
in the Hindi (Devanagari) script. We can restore the call with any other
REST call, as the intention here is to display the monitoring of remote
calls in Azure Application Insights. In Azure subscription, we can
generate a Translator Text API using the Free tier to perform this unit

Setting up the Development Environment
Let’s set up.
1. Install Visual Studio 2017.
2. Install the Microsoft Azure Service Fabric SDK.
3. Build the Translator Text API in Azure subscription and create a
record of the access key.

4. Generate a blank Azure SQL Database and hold the connection string
with SQL Authentication helpful.

5. Make assured that the Service Fabric local cluster on Windows is
working.

6. Make assured that the Service Fabric Azure cluster on Windows is
working.

Create an ASP.NET Core Web AP
Now let’s begin the API.
1. Start Visual Studio 2017 as an administrator.
2. Design a project by selecting File➤New➤Project.
3. In the New Project dialog, choose Cloud➤Service Fabric Application.
4. Name the Service Fabric application Employee App (as seen in Figure
3-1) and click OK

mu
no
tes
.in

48

Figure: 3-1. Create Service Fabric application [3]

5. Name the stateless ASP.NET Core service Employee. Stateless.Api (as
seen in Figure 3-2) and click OK.

Figure:3-2. Stateless ASP.NET Core [3]

6. Choose the API and click OK. Make sure that ASP.NET Core 2.2 is
selected, as shown in Figure 3-3.

Figure: 3-3. API with ASP.NET Core 2.2[3]

mu
no
tes
.in

49

7. Right-click the employee.stateless.api project and select Add ➤
Connected Service, as seen in Figure 3-4

Figure: 3-4. Add connected service [3]

8. Choose Monitoring with Application Insights, as seen in Figure 3-5.

Figure 3-5. Monitoring with Application Insights [3]

9. Click Get Started, as seen in Figure 3-6

Figure: 3-6. Get started [3]

10. Choose the right Azure subscription and Application Insights resource.
Once done, click Register, as seen in Figure 3-7

mu
no
tes
.in

50

Figure 3-7. Choose Azure subscription [3]

It takes a few minutes to create the Application Insights resource in your
Azure subscription. During the registration process, you see the screen
shown in Figure 3-8

Figure 3-8. Registration process [3]

11. Once the Application Insights configuration is complete, you see the
status as 100%. If you see the Add SDK button (as shown in Figure 3-9),
click it to achieve 100% status, as seen in Figure 3-10.

Figure: 3-9. Add SDK [3]

mu
no
tes
.in

51

Figure: 3-10. Application Insights SDK installation complete [3]

12. To approve the Application Insights configuration, check the
instrumentation key in appsettings.json.

13. Right-click the employee.stateless.api project to add provinces for the
following NuGet packages.
a. Microsoft.EntityFrameworkCore.SqlServer
b. Microsoft.ApplicationInsights.ServiceFabric.Native
c. Microsoft.ApplicationInsights.AspNetCore

We have done with the configuration. Now let’s join Employee
Controller, which is effective for implementing CRUD operations on
Azure SQL Database.

1. Right-click the employee.stateless.api project and attach a folder called
Models. Attach the following classes from the resources folder.
a. AppSettings.cs b. Employee.cs c. Sample Context.cs d. Translation
Response.cs

2. Right-click the employee.stateless.api project and attach a file named
DbInitializer.cs. Substitute that content with the following content.

using employee.stateless.api.Models;

namespace employee.stateless.api

{

/// /// Class to initialize database ///

public class DbInitializer

{

private SampleContext _context = null;

public DbInitializer (Sample Context context)

{

_context = context;

}

mu
no
tes
.in

52

public void Initialize()

{

_context.Database.EnsureCreated();

}

}

}

3. Open Api.cs and replace the contents of the Create Service Instance
Listeners method with the following content.
return new Service Instance Listener[]
{
new Service Instance Listener(service Context => new Kestrel
Communication Listener(service Context, "Service Endpoint", (url,
listener) =>
{
Service Event Source.Current. Service Message (service Context,
$"Starting Kestrel on {url}"); return new Web Host Builder() .Use
Kestrel()
//Add the below code to
read appsettings.json .Configure App Configuration ((builder Context,
config) =>
{
config.AddJsonFile ("appsettings.json", optional: false, reloadOnChange:
true);
}) .Configure Services(services => services .AddSingleton (service
Context)
//Make sure the below line exists for application insights integration .Add
Singleton ((service Provider) => Fabric Telemetry Initializer Extension.
Create Fabric Telemetry Initializer (service Context)))
.Use Content Root (Directory. Get Current Directory()) .Use Startup()
.Use Application Insights() .Use Service Fabric Integration (listener,
Service Fabric Integration Options.None) .Use Urls(url) .Build();
}))
};
Make sure that you have the following namespaces imported on top of the
Api.cs file.
using System.Collections.Generic;
using System.Fabric;
using System.IO;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.ServiceFabric.Services.Communication. AspNetCore;
using Microsoft.ServiceFabric.Services.Communication.Runtime;
using Microsoft.ServiceFabric.Services.Runtime;
using Microsoft.Extensions.Configuration;
using Microsoft.ApplicationInsights.Extensibility;
using Microsoft.ApplicationInsights.ServiceFabric;

mu
no
tes
.in

53

4. Open Startup.cs and replace the contents of the Configure Services
method with the following content.
services.Add Db Context(options => //registring the use of SQL server
options.Use Sql Serve r(Configuration.Get Connection String ("Default
Connection"))); services.AddSingleton();
services.AddHttpClient();
services.Configure(Configuration. GetSection("AppSettings"));
var serviceProvider = services.BuildServiceProvider();
var dbInitializer = serviceProvider.GetRequiredService ();
dbInitializer.Initialize();
services.Add Mvc().Set Compatibility Version (Compatibility Version.
Version_2_2);
5. Right-click the controller folder in the employee. stateless.api project
and add a controller called Employee Controller.cs. Replace that content
with the following content.
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using employee.stateless.api.Models;
using Microsoft.AspNet Core.Mvc;
using Microsoft.Entity FrameworkCore;
using Microsoft.Extensions.Options;
using Newtonsoft.Json;
using Newtonsoft.Json.Linq;
namespace employee.stateless.api.Controllers
{
[Route("api/[controller]")] [Api Controller] public class
EmployeeController :
ControllerBase { /// /// Context ///[3]

3.5 CLUSTERMONITORING

Cluster Monitoring
One of the notable characteristics of an Azure Service Fabric

cluster is producing applications flexible to hardware crashes. For
instance, if Service Fabric system services are becoming issues in using
workloads, or services not capable to support placement laws, Service
Fabric provides diagnostic logs to control those situations. Service Fabric
shows many structured platform events for effective diagnosis. On Azure,
for windows clusters, it’s recommended to utilize Diagnostic Agents and
Azure Monitor Logs. Azure Monitor Logs is also recommended for Linux
workloads but among various configurations.

Diagnostic Agents
The Windows Azure Diagnostic expansion enables you to

assemble all the logs from all the cluster nodes to a middle location. The
prime location can be Azure Storage, and it can give the logs to Azure
Application Insights or Event Hubs. Diagnostic agents can be used during

mu
no
tes
.in

54

the Azure portal when generating a Service Fabric cluster. We can also
utilize the Resource Manager template to add a diagnostic agent to a
current Service Fabric cluster if it was not attached when building the
cluster. Figure 3-20 shows the diagnostics options when creating a Service
Fabric cluster.

Figure: 3-20. Configure diagnostics agent [3]

Azure Monitor Logs
Microsoft supports utilizing Azure Monitor Logs to control cluster-

level events in a Service Fabric cluster. To manage the decision, the
diagnostic logs for the Service Fabric cluster must be allowed. Setting up
Azure Monitor Logs is achieved through Azure Resource Manager, Power
Shell, or Azure Marketplace. Here we support the Azure Marketplace
route because it is user-friendly and simple to learn.

1. Select New in the left navigation menu of the Azure portal.
2. Search for Service Fabric Analytics. Select the resource that appears.
3. Select Create, as seen in Figure 3-21

Figure: 3-21. Create Service Fabric analytics [3]

mu
no
tes
.in

55

1. Make a new Log Analytics workspace, as seen in Figure 3-22. Once it
is created, you requirejoining it to your Azure Service Fabric cluster

Figure: 3-22. Create log analytics [3]

2. Go to the source group where you built the Service Fabric analytics
solution. Select Service Fabric and go to its Overview page.

3. Choose Storage Account Logs under the Workspace Data Sources
option.

4. Click Add, as seen in Figure 3-23

Figure: 3-23. Add storage account logs [3]

5. Select the storage account generated with the Service Fabric cluster.
The default name for the Service Fabric cluster storage account begins
with sfdg.

6. Choose Service Fabric Events as the data type.
7. Make assured that the resource is set to WAD Service Fabric *Event
Table, as seen in Figure 3-24

mu
no
tes
.in

56

Figure 3-24. WAD Service Fabric *Event Table [3]

Once completed, on the Overview page, we can see a summary of Service
Fabric events. Please remark that it may use 10 to 15 minutes for data to

arrive in this view, as seen in Figure 3-
25

Figure 3-25. Overview of Service Fabric events [3]

8. Click the Service Fabric tile to see more reported information about the
cluster events, as seen in Figure 3-26

Figure 3-26. Cluster event details [3]

3.6 INFRASTRUCTURE MONITORING

Infrastructure Monitoring
Azure Monitor Logs is approved for controlling support

parameters such as CPU utilization, .NET performance counters, and
Service Fabric performance counters (e.g., the number of objections from
a secure service). To make the infrastructure logs, you are needed to attach
a Log Analytics agent as a virtual machine scale set extension to the Azure
Service Fabric cluster. Observe those actions to do this.

mu
no
tes
.in

57

1. Go to the source group in which you built the Service Fabric Analytics
resolution. Select Service Fabric and go to its Overview page. Select
Log Analytics Workspace and click Advanced Settings under Settings.

2. Select Windows Servers. Create a note of the workspace ID and
primary key, as seen in Figure 3-27

Figure 3-27. Windows Server details [3]

3. Open the Cloud Shell from the Azure portal to execute the command in
the next step. The alternative is possible in the top-right corner of the
Azure portal, as seen in Figure 3-28

Figure 3-28. Cloud shell [3]

4. Execute the following command to add the monitoring agent.
az vmss extension set --name Microsoft Monitoring Agent --publisher
Microsoft. Enterprise Cloud. Monitoring --resourcegroup --vmss-name
--settings "{'workspaceId':''}" --protected-settings "{'workspace
Key':''}"

5. Replace the workspace ID and workspace key obtained from the
preceding step. Name Of Node Type is the name of the virtual
machine system set resource that was automatically generated with
your Service Fabric cluster. This command needs about 15 minutes to
attach the log analytics agents on all the scale set nodes.

6. Go to the source group in which you built the Service Fabric Analytics
solution. Choose Service Fabric and go to its Overview page. Choose
Log Analytics Workspace and click Advanced Settings under Settings.

7. Select Data and Windows Execution Counters. Click Add the chosen
performance counters. (For this sample exercise, we select the default
performance counters, but you can select custom performance counters
in real-world applications, as seen in Figure 3-29.)

mu
no
tes
.in

58

Figure 3-29. Windows performance counters [3]

8. Click Save.
9. Go to the source group in which you built the Service Fabric Analytics
solution. Choose Service Fabric and go to its Overview page. Click the
title for the Summary of Service Fabric events.

10. You see data for the chosen performance counters, like disk usage
(MB). Click the chart to get more information, as seen in Figure 3-30.
Please remark that it needs time to return the data in this section.

Figure 3-30. Disk usage details [3]

LET US SUM UP

Here we studied how to control a Service Fabric cluster and the
applications used on it. We incorporated application monitoring, cluster
monitoring, and infrastructure monitoring. Application Insights is a very
efficient method of monitoring used applications because it efficiently
controls remote HTTP and database calls with no extra energy. We also
incorporated how you can use Diagnostic Agents and Azure Monitor Logs
to control a Service Fabric cluster and infrastructure

LIST OF REFERENCES

 https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
diagnostics-overview

 https://docs.microsoft.com/en-us/azure/service-fabric/overview-
managed-cluster

mu
no
tes
.in

59

 Building Microservices Applications on Microsoft Azure Designing,
Developing, Deploying, and Monitoring — Harsh Chawla Hemant
Kathuri

BIBLIOGRAPHY

 https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
diagnostics-overview

 https://docs.microsoft.com/en-us/azure/service-fabric/overview-
managed-cluster

 Building Microservices Applications on Microsoft Azure Designing,
Developing, Deploying, and Monitoring — Harsh Chawla Hemant
Kathuri

UNIT END EXERCISES

1. Define Service Fabric Cluster.
2. Define cluster in Azure Fabric Service
3. Does a cluster have any minimum size limit? If yes, what and why?
4. How many nodes can be maintained on a service fabric cluster?
5. What is Azure Service Fabric cluster?
6. What is the maximum limit of Azure service fabric cluster in test
environment?

7. How do you set up a service in fabric local cluster?
8. Which is the most important application of Microsoft Azure?
9. What are Azure applications?
10. What does a resource manager template consist of?
11. What is the purpose of Azure Resource Manager template?


mu
no
tes
.in

60

Unit II

4
AZURE KUBERNETES SERVICE (AKS)

AND MONITORING AKS
Unit Structure :

4.0 Objectives
4.1 Introduction

4.1.1 What is Kubernetes?
4.1.2 What Kubernetes provides you with?

4.2 Microsoft Azure Kubernetes Services (AKS)
4.3 Azure Kubernetes Service Features
4.4 Advantages of AKS
4.5 Kubernetes Components
4.6 Develop on Azure Kubernetes Service (AKS) with Helm

4.6.1 Create an AKS cluster
4.6.2 Connect to your AKS cluster

4.7 Monitoring Azure Kubernetes Service (AKS) with Azure Monitor
Summary
Questions
References

4.0 OBJECTIVES

After going through this unit, you will be able to:
 Learn to Deploy applications on AKS.
 Learn to monitoring AKS clusters

4.1 INTRODUCTION

4.1.1 What is Kubernetes
Kubernetes is a portable, extensible, open source orchestrator for

deploying containerized applications. It was originally developed by
Google, inspired by a decade of experience deploying scalable, reliable
systems in containers via application-oriented APIs. Since its introduction
in 2014, Kubernetes has grown to be one of the largest and most popular
open source projects in the world. It has become the standard API for
building cloud-native applications, present in nearly every public cloud.
Kubernetes is a proven infrastructure for distributed systems that is
suitable for cloud-native developers of all scales, from a cluster of
Raspberry Pi computers to a warehouse full of the latest machines. It

mu
no
tes
.in

61

provides the software necessary to successfully build and deploy reliable,
scalable distributed systems.

Let's take a look at why Kubernetes is so useful by going back in
time. There are various deployment models that can be used to deploy a
software. These include Bare Metal, Virtual Machines, Container-based
Infrastructure and Serverless Computing.

Bare Metal
• A bare metal deployment is essentially deploying to an actual
computer. It is used to install a software directly on the target
computer as shown in figure 4.1.

• In this method, software can directly access the operating system and
the hardware.

• It is useful for situations requiring access to specialized hardware, or
for High Performance Computing (HPC) applications.

• It is now used as infrastructure to host virtualization and cloud
frameworks.

Figure 4.1 Bare Metal

Virtual Machines (VMs)
• Virtual machines share the resources of the host as Show in figure
4.2. It is like a computer within the computer and has its own
computing power, network interfaces, and storage.

• Hypervisor is software that creates and manages VMs.
• VMs run on top of a hypervisor that provides VMs with simulated
hardware, or with controlled access to underlying physical
hardware.

mu
no
tes
.in

62

Figure 4.2 Virtual Machines

Container-based infrastructure
• Containers were designed to provide the same benefits as VMs, such
as workload isolation and the ability to run multiple workloads on a
single machine but are designed to start up quickly as shown in figure
4.3.

• Containers share resources of the host including the kernel.
• A container shares the operating system of the host machine and uses
container-specific binaries and libraries.

Containers have become popular because they provide extra
benefits, such as:

 Agile application creation and deployment: increased ease and
efficiency of container image creation compared to VM image use.

 Continuous development, integration, and deployment: provides for
reliable and frequent container image build and deployment with quick
and efficient rollbacks (due to image immutability).

 Dev and Ops separation of concerns: create application container
images at build/release time rather than deployment time, thereby
decoupling applications from infrastructure.

 Observability: not only surfaces OS-level information and metrics, but
also application health and other signals.

 Environmental consistency across development, testing, and
production: Runs the same on a laptop as it does in the cloud.

 Cloud and OS distribution portability: Runs on Ubuntu, RHEL,
CoreOS, on-premises, on major public clouds, and anywhere else.

 Application-centric management: Raises the level of abstraction from
running an OS on virtual hardware to running an application on an OS
using logical resources.

 Loosely coupled, distributed, elastic, liberated micro-services:
applications are broken into smaller, independent pieces and can be

mu
no
tes
.in

63

deployed and managed dynamically – not a monolithic stack running
on one big single-purpose machine.

 Resource isolation: predictable application performance.

 Resource utilization: high efficiency and density.

Figure 4.3 Container-based infrastructure

Containers are a good way to bundle and run your applications. In
a production environment, you need to manage the containers that run the
applications and ensure that there is no downtime. For example, if a
container goes down, another container needs to start. Wouldn't it be
easier if this behaviour was handled by a system?

That's how Kubernetes comes to the rescue! Kubernetes provides
you with a framework to run distributed systems resiliently. It takes care
of scaling and failover for your application, provides deployment patterns,
and more. For example, Kubernetes can easily manage a canary
deployment for your system.

4.1.2 What Kubernetes provides you with:
 Service discovery and load balancing Kubernetes can expose a
container using the DNS name or using their own IP address. If traffic
to a container is high, Kubernetes is able to load balance and distribute
the network traffic so that the deployment is stable.

 Storage orchestration Kubernetes allows you to automatically mount
a storage system of your choice, such as local storages, public cloud
providers, and more.

 Automated rollouts and rollbacks You can describe the desired state
for your deployed containers using Kubernetes, and it can change the
actual state to the desired state at a controlled rate. For example, you
can automate Kubernetes to create new containers for your
deployment, remove existing containers and adopt all their resources
to the new container.

 Automatic bin packing You provide Kubernetes with a cluster of
nodes that it can use to run containerized tasks. You tell Kubernetes

mu
no
tes
.in

64

how much CPU and memory (RAM) each container needs. Kubernetes
can fit containers onto your nodes to make the best use of your
resources.

 Self-healing Kubernetes restarts containers that fail, replaces
containers, kills containers that don't respond to your user-defined
health check, and doesn't advertise them to clients until they are ready
to serve.

 Secret and configuration management Kubernetes lets you store and
manage sensitive information, such as passwords, OAuth tokens, and
SSH keys. You can deploy and update secrets and application
configuration without rebuilding your container images, and without
exposing secrets in your stack configuration.

4.2 MICROSOFT AZURE KUBERNETES
SERVICES (AKS):

AKS is an open-source fully managed container orchestration
service and is available on the Microsoft Azure public cloud that can be
used to deploy, scale, and manage Docker containers and container-based
applications in a cluster environment.

Microsoft Azure Kubernetes Service offers to provision, scaling, and
upgrades of resources as per requirement or demand without any
downtime in the Kubernetes cluster and the best thing about AKS is that
you do not require deep knowledge and expertise in container
orchestration to manage AKS.

AKS is certainly an ideal platform for developers to develop their
modern applications using Kubernetes on the Azure architecture where
Azure Container Instances are the pretty right choice to deploy containers
on the public cloud. The Azure Container Instances help in reducing the
stress on developers to deploy and run their applications on Kubernetes
architecture.

So why use Azure AKS solutions:
 Hosts your Kubernetes environment.
 Easy integration with Azure services such as Load balancing,
Azure Blob Storage, Azure Active Directory, Application
Gateway, Azure Traffic Manager etc.

 Quick and easy to deploy.
 Hosted control plane.
 Easy and secure containerized applications management.
 Continuous Integration by adopting Azure Pipeline concept
for Docker images creation for faster deployments and
reliability.

 Create resources and infrastructure inside the Azure
Kubernetes cluster through Deployments and services
manifest files.

mu
no
tes
.in

65

 AKS management service is free of charge in Microsoft
Azure.

4.3 AZURE KUBERNETES SERVICE FEATURES:

 Microsoft Azure offers Azure Kubernetes Service that simplifies
managed Kubernetes cluster deployment in the public cloud
environment and manages health and monitoring of managed
Kubernetes service.

 Customers can create AKS clusters using the Azure portal or Azure
CLI and can manage the agent nodes.

 Some additional features such as advanced networking, monitoring,
and Azure AD integration can also be configured.

 Features that Azure Kubernetes Service (AKS) offers are as follows:

Nodes and clusters:
In AKS, apps, and support, services are run on Kubernetes nodes

and the AKS cluster is a combination of one or more than one node. And
these AKS nodes are run on Azure Virtual Machines. Nodes that are
configured with the same configuration are grouped together called node
pools. Nodes in the Kubernetes cluster are scaled-up and scaled-down
according to the resources are required in the cluster. So, nodes, clusters,
and node pools are the most prominent components of your Azure
Kubernetes environment.

Role-based access control (RBAC):
AKS easily integrates with Azure Active Directory (AD) to

provide role-based access, security, and monitoring of Kubernetes
architecture based on identity and group membership. You can also
monitor the performance of your AKS and the apps.

Integration of development tools:
Another important feature of AKS is the development tools such as

Helm and Draft are seamlessly integrated with AKS where Azure Dev
Spaces can provide a quicker and iterative Kubernetes development
experience to the developers. Containers can be run and debugged directly
in the Azure Kubernetes environment with less stress on the configuration.

AKS also offers support for Docker image format and can also
integrate with Azure Container Registry (ACR) to provide private storage
for Docker images. And regular compliance with the industry standards
such as System and Organization Controls (SOC), Payment Card Industry
Data Security Standard (PCI DSS), Health Insurance Portability and
Accountability Act (HIPAA), and ISO make AKS more reliable across the
various business.

Running any workload in Microsoft Azure Kubernetes
Services:

You can orchestrate any type of workload running in the AKS
environment. You can move .NET apps to Windows Server containers,

mu
no
tes
.in

66

modernize Java apps in Linux containers, or run microservices in Azure
Kubernetes Service. AKS will run any type of workload in the cluster
environment.

Removes complexities:
AKS removes your implementation, installation, maintenance, and

security complexities in Azure cloud architecture. It also reduces
substantial costs where no per-cluster charges are being imposed on you.

4.4 ADVANTAGES OF AKS:

 Deploy your applications quickly and predictably and easily
coordinate deployments of your system.

 Constraint communications between containers.
 Continuously monitors and manages your containers.
 Improves reliability and availability.
 Scales your application to handle changes in load on the fly as needed.
 Better use of infrastructure resources.
 Cybersecurity is one of the most important aspects of modern
applications and businesses. AKS integrates with Azure Active
Directory (AD) and offers on-demand access to the users to greatly
reduce threats and risks.

 AKS is also completely compliant with the standards and regulatory
requirements such as System and Organization Controls (SOC),
HIPAA, ISO, and PCI DSS.

4.5 KUBERNETES COMPONENTS

 When you deploy Kubernetes, you get a cluster.
 A Kubernetes cluster consists of a set of worker machines,
called nodes that run containerized applications. Every cluster has at
least one worker node.

 The worker node(s) host the Pods that are the components of the
application workload. The control plane manages the worker nodes
and the Pods in the cluster. In production environments, the control
plane usually runs across multiple computers and a cluster usually runs
multiple nodes, providing fault-tolerance and high availability.

 This document outlines the various components you need to have a
complete and working Kubernetes cluster.

 Here's the figure 4.1 of a Kubernetes cluster with all the components
tied together.

mu
no
tes
.in

67

Figure 4.1 Kubernetes cluster

Control Plane Components
The control plane's components make global decisions about the

cluster (for example, scheduling), as well as detecting and responding to
cluster events (for example, starting up a new pod when a
deployment's replicas field is unsatisfied).

Control plane components can be run on any machine in the
cluster. However, for simplicity, set up scripts typically start all control
plane components on the same machine, and do not run user containers on
this machine. See Creating Highly Available clusters with kubeadm for an
example control plane setup that runs across multiple VMs.

kube-apiserver
The API server is a component of the Kubernetes control

plane that exposes the Kubernetes API. The API server is the front end for
the Kubernetes control plane.

The main implementation of a Kubernetes API server is kube-
apiserver. kube-apiserver is designed to scale horizontally—that is, it
scales by deploying more instances. You can run several instances of
kube-apiserver and balance traffic between those instances.

etcd
Consistent and highly-available key value store used as

Kubernetes' backing store for all cluster data.

If your Kubernetes cluster uses etcd as its backing store, make sure
you have a back up plan for those data.

You can find in-depth information about etcd in the
official documentation.

kube-scheduler
Control plane component that watches for newly created Pods with

no assigned node, and selects a node for them to run on.

mu
no
tes
.in

68

Factors taken into account for scheduling decisions include:
individual and collective resource requirements, hardware/software/policy
constraints, affinity and anti-affinity specifications, data locality, inter-
workload interference, and deadlines.

kube-controller-manager
Control plane component that runs controller processes.

Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single
process.

Some types of these controllers are:
 Node controller: Responsible for noticing and responding when nodes
go down.

 Job controller: Watches for Job objects that represent one-off tasks,
then creates Pods to run those tasks to completion.

 Endpoints controller: Populates the Endpoints object (that is, joins
Services & Pods).

 Service Account & Token controllers: Create default accounts and API
access tokens for new namespaces.

cloud-controller-manager
A Kubernetes control plane component that embeds cloud-specific

control logic. The cloud controller manager lets you link your cluster into
your cloud provider's API, and separates out the components that interact
with that cloud platform from components that only interact with your
cluster.

The cloud-controller-manager only runs controllers that are
specific to your cloud provider. If you are running Kubernetes on your
own premises, or in a learning environment inside your own PC, the
cluster does not have a cloud controller manager.

As with the kube-controller-manager, the cloud-controller-manager
combines several logically independent control loops into a single binary
that you run as a single process. You can scale horizontally (run more than
one copy) to improve performance or to help tolerate failures.

The following controllers can have cloud provider dependencies:
 Node controller: For checking the cloud provider to determine if a
node has been deleted in the cloud after it stops responding

 Route controller: For setting up routes in the underlying cloud
infrastructure

 Service controller: For creating, updating and deleting cloud provider
load balancers

Node Components
Node components run on every node, maintaining running pods

and providing the Kubernetes runtime environment.

mu
no
tes
.in

69

kubelet
An agent that runs on each node in the cluster. It makes sure

that containers are running in a Pod.

The kubelet takes a set of PodSpecs that are provided through
various mechanisms and ensures that the containers described in those
PodSpecs are running and healthy. The kubelet doesn't manage containers
which were not created by Kubernetes.

kube-proxy
kube-proxy is a network proxy that runs on each node in your

cluster, implementing part of the Kubernetes Service concept.kube-
proxy maintains network rules on nodes. These network rules allow
network communication to your Pods from network sessions inside or
outside of your cluster.kube-proxy uses the operating system packet
filtering layer if there is one and it's available. Otherwise, kube-proxy
forwards the traffic itself.
Container runtime

The container runtime is the software that is responsible for
running containers.

Kubernetes supports several container runtimes : Docker,
containerd, CRI-O, and any implementation of the Kubernetes CRI
(Container Runtime Interface).

Addons
Addons use Kubernetes resources (Daemon Set, Deployment, etc)

to implement cluster features. Because these are providing cluster-level
features, namespaced resources for addons belong within the kube-
system namespace.

DNS
While the other addons are not strictly required, all Kubernetes

clusters should have cluster DNS, as many examples rely on it. Cluster
DNS is a DNS server, in addition to the other DNS server(s) in your
environment, which serves DNS records for Kubernetes services.
Containers started by Kubernetes automatically include this DNS server in
their DNS searches.

Web UI (Dashboard)
Dashboard is a general purpose, web-based UI for Kubernetes

clusters. It allows users to manage and troubleshoot applications running
in the cluster, as well as the cluster itself.

Container Resource Monitoring
Container Resource Monitoring records generic time-series metrics

about containers in a central database, and provides a UI for browsing that
data.

mu
no
tes
.in

70

Cluster-level Logging
A cluster-level logging mechanism is responsible for saving

container logs to a central log store with search/browsing interface

4.6 DEVELOP ON AZURE KUBERNETES SERVICE
(AKS) WITH HELM

Helm is an open-source packaging tool that helps you install and
manage the lifecycle of Kubernetes applications. Similar to Linux package
managers like APT and Yum, Helm manages Kubernetes charts, which are
packages of pre-configured Kubernetes resources.

Prerequisites

 An Azure subscription. If you don't have an Azure subscription, you
can create a free account.

 Azure CLI installed.

 Helm v3 installed.

 Create an Azure Container Registry
 You'll need to store your container images in an Azure Container Registry

(ACR) to run your application in your AKS cluster using Helm. Provide your
own registry name unique within Azure and containing 5-50 alphanumeric
characters. The Basic SKU is a cost-optimized entry point for development
purposes that provides a balance of storage and throughput.

 The below example uses azacr create to create an ACR
named MyHelmACR in MyResourceGroup with the Basic SKU.
Azure CLI

az group create --name MyResourceGroup --location eastus
azacr create --resource-group MyResourceGroup --name MyHelmACR --
sku Basic

Output will be similar to the following example. Take note of
your loginServer value for your ACR since you'll use it in a later step.
In the below example, myhelmacr.azurecr.io is
the loginServer for MyHelmACR.

Console

{

"adminUserEnabled": false,

"creationDate": "2019-06-11T13:35:17.998425+00:00",

"id":
"/subscriptions/<ID>/resourceGroups/MyResourceGroup/providers/Micro
soft.ContainerRegistry/registries/MyHelmACR",

"location": "eastus",

mu
no
tes
.in

71

"loginServer": "myhelmacr.azurecr.io",

"name": "MyHelmACR",

"networkRuleSet": null,

"provisioningState": "Succeeded",

"resourceGroup": "MyResourceGroup",

"sku": {

"name": "Basic",

"tier": "Basic"

},

"status": null,

"storageAccount": null,

"tags": {},

"type": "Microsoft.ContainerRegistry/registries"

}

4.6.1 Create an AKS cluster
Your new AKS cluster needs access to your ACR to pull the

container images and run them. Use the following command to:
 Create an AKS cluster called MyAKS and attach MyHelmACR.
 Grant theMyAKS cluster access to your MyHelmACR ACR.

Azure CLI
azaks create -g MyResourceGroup -n MyAKS --location eastus --attach-
acrMyHelmACR --generate-ssh-keys

4.6.2 Connect to your AKS cluster
To connect a Kubernetes cluster locally, use the Kubernetes

command-line client, kubectl. kubectl is already installed if you use Azure
Cloud Shell.
1. Install kubectl locally using the azaks install-cli command:
azaks install-cli

2. Configure kubectl to connect to your Kubernetes cluster using
the azaks get-credentials command. The following command example
gets credentials for the AKS cluster named MyAKS in
theMyResourceGroup:
azaks get-credentials --resource-groupMyResourceGroup--nameMyAKS

4.7 BUILD AND PUSH THE SAMPLE APPLICATION
TO THE ACR

Using the preceding Dockerfile, run the azacr build command to
build and push an image to the registry. The . at the end of the command
sets the location of the Dockerfile (in this case, the current directory).

mu
no
tes
.in

72

azacr build --image azure-vote-front:v1 \
--registry MyHelmACR \
--file Dockerfile .

Create your Helm chart

Generate your Helm chart using the helm create command.

Console

helm create azure-vote-front

Update azure-vote-front/Chart.yaml to add a dependency for
the redis chart from the https://charts.bitnami.com/bitnami chart repository
and update appVersion to v1. For example:

Yml

apiVersion: v2
name: azure-vote-front
description: A Helm chart for Kubernetes

dependencies:
- name: redis
version: 14.7.1
repository: https://charts.bitnami.com/bitnami

...
This is the version number of the application being deployed. This
version number should be
incremented each time you make changes to the application.
appVersion: v1
Update your helm chart dependencies using helm dependency update:

Console

helm dependency update azure-vote-front

Update azure-vote-front/values.yaml:
 Add a redis section to set the image details, container port, and
deployment name.

 Add a backendName for connecting the frontend portion to
the redis deployment.

 Change image.repository to <loginServer>/azure-vote-front.
 Change image.tag to v1.
 Change service.type to LoadBalancer.

For example:

yml

mu
no
tes
.in

73

Default values for azure-vote-front.

This is a YAML-formatted file.

Declare variables to be passed into your templates.

replicaCount:1
backendName:azure-vote-backend-master
redis:
image:
registry:mcr.microsoft.com

repository:oss/bitnami/redis
tag:6.0.8

fullnameOverride:azure-vote-backend
auth:
enabled:false

image:
repository:myhelmacr.azurecr.io/azure-vote-front
pullPolicy:IfNotPresent
tag:"v1"
...
service:
type:LoadBalancer
port:80
...
Add an env section to azure-vote-front/templates/deployment.yaml for
passing the name of the redis deployment.
yml
...
containers:
- name:{{.Chart.Name}}

securityContext:
{{-toYaml.Values.securityContext| nindent 12 }}

image:"{{ .Values.image.repository }}:{{ .Values.image.tag |
default .Chart.AppVersion }}"
imagePullPolicy:{{.Values.image.pullPolicy}}

env:
- name:REDIS
value:{{.Values.backendName}}

...
Run your Helm chart
Install your application using your Helm chart using the helm
install command.

mu
no
tes
.in

74

Console
helm install azure-vote-front azure-vote-front/

It takes a few minutes for the service to return a public IP address.
Monitor progress using the kubectl get service command with the --
watch argument.

Console
$kubectl get service azure-vote-front --watch
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
azure-vote-front LoadBalancer 10.0.18.228 <pending>
80:32021/TCP 6s
...
azure-vote-front LoadBalancer 10.0.18.228 52.188.140.81
80:32021/TCP 2m6s
Navigate to your application's load balancer in a browser using
the <EXTERNAL-IP> to see the sample application.

4.8 MONITORING AZURE KUBERNETES SERVICE
(AKS) WITH AZURE MONITOR

This scenario describes how to use Azure Monitor to monitor the
health and performance of Azure Kubernetes Service (AKS). It includes
collection of telemetry critical for monitoring, analysis and visualization
of collected data to identify trends, and how to configure alerting to be
proactively notified of critical issues.

Scope of the scenario
This scenario is intended for customers using Azure Monitor to

monitor AKS. It does not include the following, although this content may
be added in subsequent updates to the scenario.
 Monitoring of Kubernetes clusters outside of Azure except for
referring to existing content for Azure Arc enabled Kubernetes.

 Monitoring of AKS with tools other than Azure Monitor except to
fill gaps in Azure Monitor and Container Insights.

AKS generates platform metrics and resource logs, like any other
Azure resource, that you can use to monitor its basic health and
performance. Enable Container insights to expand on this monitoring.
Container insights is a feature in Azure Monitor that monitors the health
and performance of managed Kubernetes clusters hosted on AKS in
addition to other cluster configurations. Container insights provides
interactive views and workbooks that analyze collected data for a variety
of monitoring scenarios.

Prometheus and Grafana are CNCF backed widely popular open
source tools for kubernetes monitoring. AKS exposes many metrics in
Prometheus format which makes Prometheus a popular choice for
monitoring. Container insights has native integration with AKS, collecting

mu
no
tes
.in

75

critical metrics and logs, alerting on identified issues, and providing
visualization with workbooks. It also collects certain Prometheus metrics,
and many native Azure Monitor insights are built-up on top of
Prometheus metrics. Container insights complements and completes E2E
monitoring of AKS including log collection which Prometheus as stand-
alone tool doesn’t provide. Many customers use Prometheus integration
and Azure Monitor together for E2E monitoring.

4.8.1 Configure monitoring
The following sections describe the steps required to configure full
monitoring of your AKS cluster using Azure Monitor.

Create Log Analytics workspace
You require at least one Log Analytics workspace to support

Container insights and to collect and analyze other telemetry about your
AKS cluster. There is no cost for the workspace, but you do incur
ingestion and retention costs when you collect data.

If you're just getting started with Azure Monitor, then start with a
single workspace and consider creating additional workspaces as your
requirements evolve. Many environments will use a single workspace for
all the Azure resources they monitor. You can even share a workspace
used by Azure Security Center and Azure Sentinel, although many
customers choose to segregate their availability and performance telemetry
from security data.

Enable container insights
When you enable Container insights for your AKS cluster, it

deploys a containerized version of the Log Analytics agent that sends data
to Azure Monitor. There are multiple methods to enable it depending
whether you're working with a new or existing AKS cluster.

Configure collection from Prometheus
Container insights allows you to collect certain Prometheus metrics

in your Log Analytics workspace without requiring a Prometheus server.
You can analyze this data using Azure Monitor features along with other
data collected by Container insights.

Collect resource logs
The logs for AKS control plane components are implemented in

Azure as resource logs. Container insights doesn't currently use these logs,
so you do need to create your own log queries to view and analyze them.
You need to create a diagnostic setting to collect resource logs. Create
multiple diagnostic settings to send different sets of logs to different
locations. There is a cost for sending resource logs to a workspace, so you
should only collect those log categories that you intend to use. Send logs
to an Azure storage account to reduce costs if you need to retain the
information but don't require it to be readily available for analysis. If
you're unsure about which resource logs to initially enable, use the

mu
no
tes
.in

76

recommendations in the following table 4.1 which are based on the most
common customer requirements. Enable the other categories if you later
find that you require this information.

Table 4.1 Resource Logs
Category Enable? Destination
cluster-autoscaler Enable if autoscale is

enabled
Log Analytics workspace

guard Enable if Azure
Active Directory is
enabled

Log Analytics workspace

kube-apiserver Enable Log Analytics workspace
kube-audit Enable Azure storage. This keeps

costs to a minimum yet
retains the audit logs if
they're required by an
auditor.

kube-audit-admin Enable Log Analytics workspace

kube-controller-
manager

Enable Log Analytics workspace

kube-scheduler Disable
AllMetrics Enable Log Analytics workspace

Access Azure Monitor features
Access Azure Monitor features for all AKS clusters in your

subscription from theMonitoring menu in the Azure portal or for a single
AKS cluster from theMonitor section of the Kubernetes services menu.
The screenshot figure 4.1 below shows the cluster monitor
menu.

Figurer 4.1 Cluster monitor Menu

mu
no
tes
.in

77

Menu option Description
Insights Opens container insights for the current cluster.

Select Containers from theMonitor menu to open
container insights for all clusters.

Alerts Views alerts for the current cluster.
Metrics Open metrics explorer with the scope set to the current

cluster.
Diagnostic
settings

Create diagnostic settings for the cluster to collect
resource logs.

Advisor recommendations Recommendations for the current
cluster from Azure Advisor.

Logs Open Log Analytics with the scope set to the current
cluster to analyze log data and access prebuilt queries.

Workbooks Open workbook gallery for Kubernetes service.

Prometheus
Prometheus is free and an open-source event monitoring tool for

containers or microservices. Prometheus collects numerical data based on time
series. The Prometheus server works on the principle of scraping. This invokes
the metric endpoint of the various nodes that have been configured to monitor.
These metrics are collected in regular timestamps and stored locally. The
endpoint that was used to discard is exposed on the node.

1.Prometheus Data Retention
Prometheus data retention time is 15 days by default. The lowest

retention period is 2hour. If you retain the data for the highest period more
disk space will be used as there will be more data. The lowest retention period
can be used when configuring remote storage for Prometheus.

2. Prometheus with Grafana
Grafana is a multi-platform visualization software that provides us a

graph, the chart for a web connected to the data source. Prometheus has it’s
own built-in browser expression but Grafana is the industry's most powerful
visualization software. Grafana has out of the box integration with
Prometheus.

Grafana
Grafana is a multi-platform visualization software available since

2014. Grafana provides us a graph, the chart for a web-connected to the data
source. It can query or visualize your data source, it doesn’t matter where they
are stored.

1. Visualize
Swift and extensible client-side graphs with a number of options.

There are many plugins for many different ways to visualize metrics and logs.
You will use custom kubernetes metrics to plot them in the graph we will see
that in the latter section

mu
no
tes
.in

78

2. ExploreMetrics
In this article, the Kube state metric list to visually see in the Grafana

graph. Split view and compare different time ranges, queries, and data sources

3. Explore Logs
Experience the magic of switching from metrics to logs with preserved

label filters. Quickly search through all your logs or stream them live.

SUMMARY

Kubernetes was created by Google based on lessons learned
running containers at scale for many years. It was donated to the
community as an open-source project and is now the industry standard
API for deploying and managing cloud-native applications. It runs on any
cloud or on-premises data center and abstracts the underlying
infrastructure. This allows you to build hybrid clouds, as well as migrate
easily between cloud platforms. It’s open-sourced under the Apache 2.0
license and lives within the Cloud Native Computing Foundation (CNCF).
Kubernetes is a fast-moving project under active development. But don’t
let this put you off – embrace it. Change is the new normal.

QUESTION BANK

1. What is Kubernetes?
2. What Kubernetes provides you with?
3. What is Microsoft Azure Kubernetes Services ?
4. What are the Azure Kubernetes Service Features?
5. What is the Advantages of AKS?
6. What are the Kubernetes Components?
7. How to Develop on Azure Kubernetes Service (AKS) with Helm

REFERENCE

1) https://github.com/indrabasak/Books/blob/master/Kubernetes%20in%
20Action.pdf

2) https://github.com/Leverege/kubernetes-
book/blob/master/An%20Introduction%20to%20Kubernetes%20%5B
Feb%202019%5D.pdf

3) https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pd
f/products/pivotal/vmware-demystifying-kubernetes-overcoming-
misconceptions-whitepaper.pdf
https://www.kasten.io/kubernetes/resources/white-papers/5-
kubernetes-backup-best-practices



mu
no
tes
.in

79

5
SECURINGMICROSERVICE

Unit Structure :

5.0 Objectives
5.1 Introduction

5.1.1 Monolithic Application Authentication and Authorization
5.2 Microservices authentication and authorization problems
5.3 Microservices authentication and authorization technical solutions
5.4 Implementing your API Gateways with Ocelot
5.5 Securing APIs with Azure AD

5.5.1 Register an application in Azure AD to represent the API
5.6 Configure a JWT validation policy to pre-authorize requests

Summary
Questions
References

5.0 OBJECTIVES

After going through this unit, you will be able to:
 Authentication in microservices
 Implenting security using API gateway pattern
 Creating application using Ocrlot and
 Securing APIs with Azure AD

5.1 INTRODUCTION

5.1.1 Monolithic Application Authentication and Authorization
It has been confusing to differentiate between authentication and

authorization. In fact, it is very simple.
 Authentication: Refers to verify who you are, so you need to use
username and password for authentication.

 Authorization: Refers to what you can do, for example access, edit or
delete permissions to some documents, and this happens after
verification passes.

In the monolithic architecture as show in figure 5.1, the entire
application is a process. In the application, a security module is generally
used to implement user authentication and authorization.

When the user logs in, the security module of the application
authenticates the identity of the user. After verifying that the user is
legitimate, a session is created for the user, and a unique session ID is

mu
no
tes
.in

80

associated with the session. A session stores login user information such
as User name, Role, and Permission. The server returns the Session Id to
the client. The client records the Session Id as a cookie and sends it to the
application in subsequent requests. The application can then use the
Session Id to verify the user’s identity, without having to enter a user
name and password for authentication each time.

Figure 5.1Monolithic application user login authentication diagram

When the client accesses the application as shown in figure 5.2,
Session Id is sent to the application along with the HTTP request. The
security module generally processes all received client requests through an
authorization interceptor. This interceptor first determines whether the
Session Id exists. If the Session Id exists, it knows that the user has logged
in. Then, by querying the user rights, it is determined whether the user can
execute the request or not.
mu
no
tes
.in

81

Figure 5.2 Monolithic application user request authorization diagram

5.2 MICROSERVICES AUTHENTICATION AND
AUTHORIZATION PROBLEMS

Under the microservice architecture, an application is split into
multiple microservice processes, and each microservice implements the
business logic of one module in the original single application. After the
application is split, the access request for each microservice needs to be
authenticated and authorized. If you reference to the implementation of
Monolithic application, you will encounter the following problems:
 Authentication and authorization logic needs to be handled in each
microservice, and this part of the global logic needs to be implemented
repeatedly in each microservice. Although we can use the code base to
reuse part of the code, this will in turn cause all micro services to have
a dependency on a particular code base and its version, affecting the
flexibility of the microservice language/framework selection.

 Microservices should follow the principle of single responsibility. A
microservice only handles a single business logic. The global logic of
authentication and authorization should not be placed in the
microservice implementation.

 HTTP is a stateless protocol. For the server, each time the user’s
HTTP request is independent. Stateless means that the server can send
client requests to any node in the cluster as needed. The stateless
design of HTTP has obvious benefits for load balancing. Because there
is no state, user requests can be distributed to any server. For services

mu
no
tes
.in

82

that do not require authentication, such as browsing news pages, there
is no problem. However, many services, such as online shopping and
enterprise management systems, need to authenticate the user’s
identity. Therefore, it is necessary to save the user’s login status in a
manner based on the HTTP protocol so as to prevent the user from
needing to perform verification for each request. The traditional way is
to use a session on the server side to save the user state. Because the
server is stateful, it affects the horizontal expansion of the server.

 The authentication and authorization in the microservices architecture
involves scenarios that are more complex, involving users accessing
microservice applications, third-party applications accessing
microservice applications, and multiple microservice applications
accessing each other, and in each scenario, The following
authentication and authorization schemes need to be considered to
ensure the security of the application.

5.3MICROSERVICES AUTHENTICATION AND
AUTHORIZATION TECHNICAL SOLUTIONS

1) Distributed Session Management
In order to make full use of benefits of the microservice

architecture and to achieve the scalability and resiliency of the
microservices, the microservices are preferably to be stateless.

This solution can be applied through different ways like:

Sticky Session
Which ensures that all requests from a specific user will be sent to

the same server who handled the first request corresponding to that user,
thus ensuring that session data is always correct for a certain user.
However, this solution depends on the load balancer, and it can only meet
the horizontally expanded cluster scenario, but when the load balancer is
forced suddenly for any reason to shift users to a different server, all of the
user’s session data will be lost.

Session Replication
Means that each instance saves all session data, and synchronizes

through the network. Synchronizing session data causes network
bandwidth overhead. As long as the session data changes, the data needs
to be synchronized to all other machines. The more instances, the more
network bandwidth the synchronization brings.

Centralized Session Storage
Means that when a user accesses a microservice, user data can be

obtained from shared session storage, ensuring that all microservices can
read the same session data. In some scenarios, this scheme is very good,
and the user login status is opaque. It is also a highly available and
scalable solution. But the disadvantage of this solution is that shared

mu
no
tes
.in

83

session storage requires a certain protection mechanism and therefore
needs to be accessed through a secure way.

Figure 5.3 Distrubted Session Management

2. Client Token
The traditional way is to use a session on the server side to save the

user state. Because the server is stateful, it has an impact on the horizontal
expansion of the server. It is recommended to use Token to record user
login status in the microservice architecture.

The main difference between Token and Session is where the
storage is different. Sessions are stored centrally in the server; Tokens are
held by the user themselves and are typically stored in the browser in the
form of cookies. The Token holds the user’s identity information, and each
time the request is sent to the server, the server can therefore determine the
identity of the visitor and determine whether it has access to the requested
resource.

The Token is used to indicate the user’s identity. Therefore, the
content of the Token needs to be encrypted to avoid falsification by the
requester or the third party. JWT (Json Web Token) is an open standard
(RFC 7519) that defines the Token format, defines the Token content,
encrypts it, and provides lib for various languages.

The structure of JWT Token is very simple and consists of three parts:
 Header
header contains type, fixed value JWT. Then the Hash algorithm used
by JWT.

{
"typ": "JWT",
"alg": "HS256"
}
 Payload
includes standard information such as the user id, expiration date, and
user name. It can also add user roles and user-defined information.

{
"id": 123,

mu
no
tes
.in

84

"name": "Mena Meseha",
"is_admin": true,
"expire": 1558213420
}

 Signature
Token’s signature is used by the client to verify the Token’s identity
and also to verify the message wasn’t changed along the way.

HMACSHA256(
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
secret
)

These three parts are combined using Base64 encoding and become
Token strings that are eventually returned to the client, separated by “.”,
The token formed by the above example will be like this:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6MTIzLCJuYW1lIjoiT
WVuYSBNZXNlaGEiLCJpc19hZG1pbiI6dHJ1ZSwiZXhwaXJlIjoxNTU4Mj
EzNDIwfQ.Kmy_2WCPbpg-aKQmiLaKFLxb5d3rOC71DHexncH_AcQ

By using token for user authentication, the server does not save the
user status. The client needs to send the token to the server for
authentication every time the client requests it.

The basic flow of user authentication in token mode is as the
following figure 5.4:

Figure 5.4 Client Token
3. Single sign-on

The idea of single sign-on is simple, that is, users only need to log
in to the application once,and then they can access all the microservices in
the application. This solution means that each user-oriented service must
interact with the authentication service like the following figure 5.4:

mu
no
tes
.in

85

Figure 5.5 Single sign-on

This can result in a lot of very trivial network traffic, repeated
work, and it may cause single point of failure. When there are dozens of
micro-applications, the drawbacks of this solution will become more
apparent.

4. Client Token with API Gateway
The authentication process of the user is similar to the basic process

of token authentication. The difference is that the API Gateway is added as
the entrance of the external request. This scenario means that all requests
go through the API gateway, effectively hiding the microservices. On
request, the API gateway translates the original user token into an opaque
token that only itself can resolve like the following figure 5.6:

Figure 5.6Client Token with API Gateway solution

mu
no
tes
.in

86

In this case, logging off is not a problem because the API gateway
can revoke the user’s token when it logs out and also it adds an extra
protection to Auth Token from being decrypted by hiding it from the client.

5. Third-party application access

1. API Token
The third party uses an application-issued API Token to access the

application’s data. The Token is generated by the user in the application
and provided for use by third-party applications. In this case, generally
only third-party applications are allowed to access the user’s own data of
the Token, but not other users’ sensitive private data.

For example, Github provides the Personal API Token function.
Users can create a Token in Github’s developer settings interface, and then
use the Token to access the Github API. When creating a Token, you can
set which data the Token can access to the user, such as viewing Repo
information, deleting Repo, viewing user information, updating user
information, and so on.

Using the API Token to Access the Github API is like the following
command:

curl-u menameseha:f3kdfvf8e882424ed0f3bavmvdl88c01acd34eec
https://api.github.com/user

The advantage of using the API Token instead of using the
username/password directly to access the API is to reduce the risk of
exposing the user’s password, and to reclaim the token’s permissions at
any time without having to change the password.

2. OAuth
Some third-party applications need to access data from different

users, or integrate data from multiple users. You may consider using
OAuth. With OAuth, when a third-party application accesses a service, the
application prompts the user to authorize a third-party application to use
the corresponding access authority and generates a token for access
according to the user’s permissions.

In Github, for example, some third-party applications such as
GitBook or Travis CI, are integrated via OAuth and Github. OAuth has
different authentication processes for different scenarios. A typical
authentication process is shown in the following figure5.7:

mu
no
tes
.in

87

Figure 5.7OAuth authentication process

Someone may wonder why an Authorization Code is used to
request Access Token, rather than returning the Access Token to the client
directly from the authorization server. The reason why OAuth is designed
in this way is to pass through the user agent (browser) during the process
of redirecting to the client’s Callback URL. If the Access Token is passed
directly, there is a risk of being stolen.

By using the authorization code, the client directly interacts with
the authorization server when applying for the access token, and the
authorization server also authorize the client when processing the client’s
token request, so it’s prevent others from forging the client’s identity to
use the authentication code.

When implementing user authentication of the microservice itself,
OAuth may also be used to delegate user authentication of the microservice
to a third-party authentication service provider.

The purpose of using OAuth for user authorization of third-party
application access and microservices is different. The former is to
authorize private data access rights of users in microservices to third-party
applications. Microservices are authorization and resource servers in the
OAuth architecture. The purpose of the latter is to integrate and utilize the
OAuth authentication service provided by a well-known authentication
provider, which simplifies the cumbersome registration operation, in this
case the microservice act the role of the client in the OAuthArchitecture.
Therefore, we need to distinguish between these two different scenarios so
as to avoid misunderstandings.

6. Mutual Authentication
In addition to vertical traffic from users and third parties, there is a

large amount of horizontal traffic between microservices. These traffic may
be in the same local area network or across different data centers. Traffic

mu
no
tes
.in

88

between these microservices exists by third parties. The danger of sniffing
and attacking also requires security controls.

Through mutual SSL, mutual authentication between microservices
can be achieved, and data transmission between microservices can be
encrypted through TLS. A certificate needs to be generated for each
microservice, and the microservices are authenticated with each other’s
certificates. In the microservice operating environment, there may be a
large number of microservice instances, and the microservice instances
often change dynamically, such as adding service instances as the level
expands. In this case, creating and distributing certificates for each service
becomes very difficult. We can create a private certificate center (Internal
PKI/CA) to provide certificate management for various microservices such
as issuing, revoking, and updating.

5.4 IMPLEMENTING YOUR API GATEWAYS WITH
OCELOT

Ocelot is a .NET API Gateway. This project is aimed at people
using .NET running a microservices / service-oriented architecture that
need a unified point of entry into their system. However, it will work with
anything that speaks HTTP and run on any platform that ASP.NET Core
supports.

Ocelot is a bunch of middleware in a specific order.
Ocelot manipulates the HttpRequest object into a state specified by

its configuration until it reaches a request builder middleware where it
creates a HttpRequestMessage object which is used to make a request to a
downstream service. The middleware that makes the request is the last
thing in the Ocelot pipeline. It does not call the next middleware. The
response from the downstream service is retrieved as the requests goes
back up the Ocelot pipeline. There is a piece of middleware that maps the
HttpResponseMessage onto the HttpResponse object and that is returned
to the client. That is basically it with a bunch of other features!

Features
 Routing
 Request Aggregation
 Service Discovery with Consul & Eureka
 Service Fabric
 Kubernetes
 WebSockets
 Authentication
 Authorization
 Rate Limiting
 Caching
 Retry policies / QoS
 Load Balancing
 Logging / Tracing / Correlation

mu
no
tes
.in

89

 Headers / Method / Query String / Claims Transformation
 Custom Middleware / Delegating Handlers
 Configuration / Administration REST API
 Platform / Cloud Agnostic

The following are configurations that you use when deploying Ocelot.

Basic Implementation

With Identity Server

mu
no
tes
.in

90

Multiple Instances

With Consul

With Service Fabricmu
no
tes
.in

91

5.5 SECURING APIS WITH AZURE AD.

Microsoft Azure Active Directory (AD) is PaaS service available
to every Azure subscription, this service is used to store information about
users and organizational structure. We’ll use this service as
our Authority service which will be responsible to secure our Resource
(Web API) and issue access tokens and refresh tokens using OAuth 2
Code flow grant. The resource (Web API) should be consumed by
a Client, so the client will be requesting the data from the resource (Web
API), but in order for this request to be accepted by the resource, the client
must send a valid access token obtained from the Authority service (Azure
AD) with each request.

5.5.1 Register an application in Azure AD to represent the API
To protect an API with Azure AD, first register an application in

Azure AD that represents the API. The following steps use the Azure
portal to register the application.

Go to the Azure portal to register your application. Search for and
select App registrations.

1. Select New registration.
2. When the Register an application page appears, enter your
application's registration information:
o In the Name section, enter a meaningful application name that will
be displayed to users of the app, such as backend-app.

o In the Supported account types section, select an option that suits
your scenario.

3. Leave the Redirect URI section empty.
4. Select Register to create the application.
5. On the app Overview page, find the Application (client) ID value and
record it for later.

6. Select Expose an API and set the Application ID URI with the
default value. Record this value for later.

7. Select the Add a scope button to display the Add a scope page. Then
create a new scope that's supported by the API (for example, Files.
Read).

8. Select the Add scope button to create the scope. Repeat this step to
add all scopes supported by your API.

9. When the scopes are created, make a note of them for use in a
subsequent step.

5.5.2 Register another application in Azure AD to represent a client
application

Every client application that calls the API needs to be registered as
an application in Azure AD. In this example, the client application is
the Developer Console in the API Management developer portal.

mu
no
tes
.in

92

To register another application in Azure AD to represent the
Developer Console:
1. Go to the Azure portal to register your application.
2. Search for and select App registrations.
3. Select New registration.
4. When the Register an application page appears, enter your
application's registration information:
o In the Name section, enter a meaningful application name that will
be displayed to users of the app, such as client-app.

o In the Supported account types section, select Accounts in any
organizational directory (Any Azure AD directory -
Multitenant).

5. In the Redirect URI section, select Web and leave the URL field
empty for now.

6. Select Register to create the application.
7. On the app Overview page, find the Application (client) ID value and
record it for later.

8. Create a client secret for this application to use in a subsequent step.
o From the list of pages for your client app, select Certificates &
secrets, and select New client secret.

o Under Add a client secret, provide a Description. Choose when
the key should expire, and select Add.

When the secret is created, note the key value for use in a subsequent step.

5.5.3 Grant permissions in Azure AD
Now that you have registered two applications to represent the API

and the Developer Console, grant permissions to allow the client-app to
call the backend-app.
1. Go to the Azure portal to grant permissions to your client application.
Search for and select App registrations.

2. Choose your client app. Then in the list of pages for the app,
select API permissions.

3. Select Add a Permission.
4. Under Select an API, selectMy APIs, and then find and select your
backend-app.

5. Under Delegated Permissions, select the appropriate permissions to
your backend-app, then select Add permissions.

6. Optionally, on the API permissions page, select Grant admin
consent for <your-tenant-name> to grant consent on behalf of all
users in this directory.

5.5.4 Enable OAuth 2.0 user authorization in the Developer Console
At this point, you have created your applications in Azure AD, and

have granted proper permissions to allow the client-app to call the
backend-app.

mu
no
tes
.in

93

In this example, the Developer Console is the client-app. The
following steps describe how to enable OAuth 2.0 user authorization in the
Developer Console.

1. In Azure portal, browse to your API Management instance.

2. Select OAuth 2.0 > Add.
3. Provide a Display name and Description.
4. For the Client registration page URL, enter a placeholder value, such
as http://localhost. The Client registration page URL points to a page
that users can use to create and configure their own accounts for
OAuth 2.0 providers that support this. In this example, users do not
create and configure their own accounts, so you use a placeholder
instead.

5. For Authorization grant types, select Authorization code.
6. Specify the Authorization endpoint URL and Token endpoint URL.
Retrieve these values from the Endpoints page in your Azure AD
tenant. Browse to the App registrations page again, and
select Endpoints.

7. Copy the OAuth 2.0 Authorization Endpoint, and paste it into
the Authorization endpoint URL text box. Select POST under
Authorization request method.

8. Copy the OAuth 2.0 Token Endpoint, and paste it into the Token
endpoint URL text box.
Important Note
Use either v1 or v2 endpoints. However, depending on which version
you choose, the below step will be different. We recommend using v2
endpoints.

9. If you use v1 endpoints, add a body parameter named resource. For
the value of this parameter, use Application ID of the back-end app.

10. If you use v2 endpoints, use the scope you created for the backend-app
in the Default scope field. Also, make sure to set the value for
the accessTokenAcceptedVersion property to 2 in your application
manifest.

11. Next, specify the client credentials. These are the credentials for the
client-app.

12. For Client ID, use the Application ID of the client-app.
13. For Client secret, use the key you created for the client-app earlier.
14. Immediately following the client secret is the redirect_url for the
authorization code grant type. Make a note of this URL.

15. Select Create.
16. Go back to your client-app registration in Azure Active Directory and
select Authentication.

mu
no
tes
.in

94

17. Under Platform configurations click on Add a platform, and select
the type asWeb, paste the redirect_url under Redirect URI, and then
click on Configure button to save.

Now that you have configured an OAuth 2.0 authorization server,
the Developer Console can obtain access tokens from Azure AD.

The next step is to enable OAuth 2.0 user authorization for your
API. This enables the Developer Console to know that it needs to obtain
an access token on behalf of the user, before making calls to your API.

1. Browse to your API Management instance, and go to APIs.
2. Select the API you want to protect. For example, Echo API.
3. Go to Settings.
4. Under Security, choose OAuth 2.0, and select the OAuth 2.0 server
you configured earlier.

5. Select Save.
Successfully call the API from the developer portal

Note
This section does not apply to the Consumption tier, which does not

support the developer portal.

Now that the OAuth 2.0 user authorization is enabled on your API,
the Developer Console will obtain an access token on behalf of the user,
before calling the API.

1. Browse to any operation under the API in the developer portal, and
select Try it. This brings you to the Developer Console.

2. Note a new item in the Authorization section, corresponding to the
authorization server you just added.

3. Select Authorization code from the authorization drop-down list, and
you are prompted to sign in to the Azure AD tenant. If you are already
signed in with the account, you might not be prompted.

4. After successful sign-in, an Authorization header is added to the
request, with an access token from Azure AD. The following is a
sample token (Base64 encoded):

Authorization:
Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IlNTUWRoSTFjS3ZoUUVE
U0p4RTJnR1lzNDBRMCIsImtpZCI6IlNTUWRoSTFjS3ZoUUVEU0p4RTJnR1lzN
DBRMCJ9.eyJhdWQiOiIxYzg2ZWVmNC1jMjZkLTRiNGUtODEzNy0wYjBiZTE
yM2NhMGMiLCJpc3MiOiJodHRwczovL3N0cy53aW5kb3dzLm5ldC80NDc4ODk
yMC05Yjk3LTRmOGItODIwYS0yMTFiMTMzZDk1MzgvIiwiaWF0IjoxNTIxMT
UyNjMzLCJuYmYiOjE1MjExNTI2MzMsImV4cCI6MTUyMTE1NjUzMywiYWN
yIjoiMSIsImFpbyI6IkFWUUFxLzhHQUFBQUptVzkzTFd6dVArcGF4ZzJPeGE1c
Gp2V1NXV1ZSVnd1ZXZ5QU5yMlNkc0tkQmFWNnNjcHZsbUpmT1dDOThscUJ
JMDhXdlB6cDdlenpJdzJLai9MdWdXWWdydHhkM1lmaDlYSGpXeFVaWk9JPSI
sImFtciI6WyJyc2EiXSwiYXBwaWQiOiJhYTY5ODM1OC0yMWEzLTRhYTQtYjI
3OC1mMzI2NTMzMDUzZTkiLCJhcHBpZGFjciI6IjEiLCJlbWFpbCI6Im1pamlhb
mdAbWljcm9zb2Z0LmNvbSIsImZhbWlseV9uYW1lIjoiSmlhbmciLCJnaXZlbl9uY
W1lIjoiTWlhbyIsImlkcCI6Imh0dHBzOi8vc3RzLndpbmRvd3MubmV0LzcyZjk4O

mu
no
tes
.in

95

GJmLTg2ZjEtNDFhZi05MWFiLTJkN2NkMDExZGI0Ny8iLCJpcGFkZHIiOiIxMz
EuMTA3LjE3NC4xNDAiLCJuYW1lIjoiTWlhbyBKaWFuZyIsIm9pZCI6IjhiMTU4
ZDEwLWVmZGItNDUxMS1iOTQzLTczOWZkYjMxNzAyZSIsInNjcCI6InVzZXJ
faW1wZXJzb25hdGlvbiIsInN1YiI6IkFGaWtvWFk1TEV1LTNkbk1pa3Z3MUJzQU
x4SGIybV9IaVJjaHVfSEM1aGciLCJ0aWQiOiI0NDc4ODkyMC05Yjk3LTRmOGIt
ODIwYS0yMTFiMTMzZDk1MzgiLCJ1bmlxdWVfbmFtZSI6Im1pamlhbmdAbWlj
cm9zb2Z0LmNvbSIsInV0aSI6ImFQaTJxOVZ6ODBXdHNsYjRBMzBCQUEiLCJ2
ZXIiOiIxLjAifQ.agGfaegYRnGj6DM_-
N_eYulnQdXHhrsus45QDuApirETDR2P2aMRxRioOCR2YVwn8pmpQ1LoAhddc
YMWisrw_qhaQr0AYsDPWRtJ6x0hDk5teUgbix3gazb7F-
TVcC1gXpc9y7j77Ujxcq9z0r5lF65Y9bpNSefn9Te6GZYG7BgKEixqC4W6Lqjtcju
OuW-
ouy6LSSox71Fj4Ni3zkGfxX1T_jiOvQTd6BBltSrShDm0bTMefoyX8oqfMEA2ziKj
wvBFrOjO0uK4rJLgLYH4qvkR0bdF9etdstqKMo5gecarWHNzWi_tghQu9aE3Z3E
ZdYNI_ZGM-Bbe3pkCfvEOyA

5. Select Send to call the API successfully.

5.6 CONFIGURE A JWT VALIDATION POLICY TO
PRE-AUTHORIZE REQUESTS

At this point, when a user tries to make a call from the Developer
Console, the user is prompted to sign in. The Developer Console obtains
an access token on behalf of the user, and includes the token in the request
made to the API.

However, what if someone calls your API without a token or with
an invalid token? For example, try to call the API without
the Authorization header, the call will still go through. The reason is that
API Management does not validate the access token at this point. It simply
passes the Authorization header to the back-end API.

Use the Validate JWT policy to pre-authorize requests in API
Management, by validating the access tokens of each incoming request. If
a request does not have a valid token, API Management blocks it. For
example, add the following policy to the <inbound> policy section of
the Echo API. It checks the audience claim in an access token, and returns
an error message if the token is not valid.

xml
<validate-jwt header-name="Authorization" failed-validation-
httpcode="401" failed-validation-error-message="Unauthorized. Access
token is missing or invalid.">
<openid-config url="https://login.microsoftonline.com/{aad-
tenant}/.well-known/openid-configuration" />
<required-claims>
<claim name="aud">
<value>{Application ID of backend-app}</value>
</claim>
</required-claims>
</validate-jwt>

mu
no
tes
.in

96

SUMMARY

At its core, Azure replaces or supplements your on-premise
infrastructure. However, it delivers a vast range of other services that
improve the functioning of several departments in your organization and
help you resolve critical business problems. For instance, you can get big
data insights with Azure analytics, and manage your billions of IoT
devices on a unified Azure platform, you can interact with your users with
AI bots through various platforms, and get a secure and scalable cloud
data storage. You can also automate your development, testing, and
deployment with DevOps, and deliver content across the globe without
facing any latency issues. These services are only a glimpse of what Azure
can do for your business. Many enterprises across the globe are utilizing
the capabilities of Microsoft Azure applications to optimize their business
models as it revolutionizes overall infrastructure and application
performance.

QUESTION BANK

1) Explain the Importance of the role and how many types of roles are
available in Windows Azure?
2) Which service in Azure is used to manage resources in Azure?
3) What are virtual machine scale sets in Azure?
4) Why is Azure Active Directory used?
5) Name and explain some important applications of Microsoft Azure
6) How to Implementing your API Gateways with Ocelot
7) How to Securing APIs with Azure AD

REFERENCE

1) https://download.microsoft.com/DOWNLOAD/2/C/A/2CA4DC8E-
021C-4D56-8529-DF4F71FF4A1B/9780735697225.PDF

2) https://ptgmedia.pearsoncmg.com/images/9780735697225/samplepage
s/9780735697225.pdf

3) https://docs.microsoft.com/en-in/azure/guides/developer/azure-
developer-guide



mu
no
tes
.in

97

6
DATABASE DESIGN FOR

MICROSERVICES
&

BUILDINGMICROSERVICES ON
AZURE STACK

Unit Structure :

6.0 Objectives
6.1 Introduction

6.1.1 Monolithic Architecture
6.1.2 Example for Monolithic Approach
6.1.3 Benefits and Drawbacks of Monolithic Architecture.

6.2 Types of Databases on Azure

6.2.1 Microservices Architecture
6.3 Azure Stack
6.4 Purpose of Azure Stack
6.5 Benefits of Azure Stack
6.6 Azure Services for On-Premises
6.7 Azure Stack IaaS

Summary
Questions
References

6.0 OBJECTIVES

After going through this unit, you will be able to:
1) Understand difference between monolithic approach and
Microservices approach

2) Understand different database options on MS Azure
3) Understand Azure stack, Offering IaaS,
4) Understand PaaS on-premises simplified and SaaS on Azure

6.1 INTRODUCTION

6.1.1 Monolithic Architecture
Monolith means composed all in one piece. The Monolithic

application describes a single-tiered software application in which
different components combined into a single program from a single
platform. Components can be:
 Authorization — responsible for authorizing a user
 Presentation — responsible for handling HTTP requests and
responding with either HTML or JSON/XML (for web services
APIs).

mu
no
tes
.in

98

 Business logic — the application’s business logic.
 Database layer — data access objects responsible for accessing the
database.

 Application integration — integration with other services (e.g. via
messaging or REST API). Or integration with any other Data
sources.

 Notification module — responsible for sending email notifications
whenever needed.

6.1.2 Example for Monolithic Approach
Consider an example of Ecommerce application, that authorizes

customer, takes an order, check products inventory, authorize payment
and ships ordered products. This application consists of several
components including e-Store User interface for customers (Store web
view) along with some backend services to check products inventory,
authorize and charge payments and shipping orders.

Despite having different components/modules/services, the
application is built and deployed as one Application for all platforms
(i.e. desktop, mobile and tablet) using RDBMS as a data source.

6.1.3 Benefits and Drawbacks of Monolithic Architecture.

Benefits:
 Simple to develop — At the beginning of a project it is much
easier to go with Monolithic Architecture.

 Simple to test. For example, you can implement end-to-end testing
by simply launching the application and testing the UI with
Selenium.

 Simple to deploy. You have to copy the packaged application to a
server.

 Simple to scale horizontally by running multiple copies behind a
load balancer.

Drawbacks:
 Maintenance — If Application is too large and complex to
understand entirely, it is challenging to make changes fast and
correctly.

 The size of the application can slow down the start-up time.
 You must redeploy the entire application on each update.
 Monolithic applications can also be challenging to scale when
different modules have conflicting resource requirements.

 Reliability — Bug in any module (e.g. memory leak) can
potentially bring down the entire process. Moreover, since all

mu
no
tes
.in

99

instances of the application are identical, that bug impact the
availability of the entire application

 Regardless of how easy the initial stages may seem, Monolithic
applications have difficulty to adopting new and advance
technologies. Since changes in languages or frameworks affect an
entire application, it requires efforts to thoroughly work with the
app details, hence it is costly considering both time and efforts.

6.1.4Microservices Architecture

Micro services are an approach to application development in
which a large application is built as a suite of modular services (i.e.
loosely coupled modules/components). Each module supports a specific
business goal and uses a simple, well-defined interface to communicate
with other sets of services.

Instead of sharing a single database as in Monolithic
application, each micro service has its own database. Having a database
per service is essential if you want to benefit from micro services,
because it ensures loose coupling. Each of the services has its own
database. Moreover, a service can use a type of database that is best
suited to its needs.

Consider the same example of the e-commerce application,
which consists of several components/modules. Define each
component/module as a separate loosely coupled service depending on
the requirement, which may collaborate with each other based on the
scenario. We can have following services for a complete application:
 Authorization Service — Responsible for authorizing customer.
 Order Service — takes an order and process it.
 Catalog Service — Manage products and check products
inventory.

 Cart Service — Manage user cart, this service can utilize Catalog
service as a data source.

 Payment Service — Manage and Authorize payments.
 Shipping Service — Ships ordered products.mu

no
tes
.in

100

6.1.5 Benefits and Drawbacks of Monolithic Architecture.
Benefits:
 Microservices Enables the continuous delivery and deployment of
large, complex applications.

 Better testability — services are smaller and faster to test.

 Better deployability — services can be deployed independently.

 It enables you to organize the development effort around multiple
teams. Each team is responsible for one or more single service.
Each team can develop, deploy and scale their services
independently of all of the other teams.

 Each microservice is relatively small

 Comfortable for a developer to understand

 The IDE is faster making developers more productive

 The application starts faster, which makes developers more
productive, and speeds up deployments

 Improved fault isolation. For example, if there is a memory leak in
one service then only that service is affected. The other services
continue to handle requests. In comparison, one misbehaving
component of a monolithic architecture can bring down the entire
system.

 Microservices Eliminates any long-term commitment to a
technology stack. When developing a new service you can pick a
new technology stack. Similarly, when making major changes to
an existing service you can rewrite it using a new technology stack.

Drawbacks:
 Developers must deal with the additional complexity of creating a
distributed system.

 Developer tools/IDEs are oriented on building monolithic
applications and don’t provide explicit support for developing
distributed applications.

 Testing is more difficult as compared to Monolith applications.

 Developers must implement the inter-service communication
mechanism.

 Implementing use cases that span multiple services without using
distributed transactions is difficult.

 Implementing use cases that span multiple services requires careful
coordination between the teams.

 Deployment complexity. In production, there is also the
operational complexity of deploying and managing a system
comprised of many different service types.

 Increased memory consumption. The microservice architecture
replaces N monolithic application instances with NxM services
instances. If each service runs in its Container, which is usually
necessary to isolate the instances, then there is the overhead of M
times as many Containers.

mu
no
tes
.in

101

6.2 TYPES OF DATABASES ON AZURE

Azure offers a choice of fully managed relational, NoSQL and
in-memory databases, spanning proprietary and open-source engines,
to fit the needs of modern app developers. Infrastructure
management—including scalability, availability and security—is
automated, saving you time and money. Focus on building applications
while Azure managed databases make your job simpler by surfacing
performance insights through embedded intelligence, scaling without
limits and managing security threats.

6.2.1 Find the database product you need

IF YOU WANT TO USE THIS

Managed, intelligent SQL in the cloud Azure SQL
Database

Managed, always up-to-date SQL instance in the
cloud

Azure SQL
Managed Instance

Migrate your SQL workloads to Azure while
maintaining complete SQL Server compatibility
and operating system-level access

SQL Server on
Virtual Machines

Build scalable, secure and fully managed
enterprise-ready apps on open-source
PostgreSQL, scale out single-node PostgreSQL
with high performance or migrate PostgreSQL
and Oracle workloads to the cloud

Azure Database
for PostgreSQL

Deliver high availability and elastic scaling to
open-source mobile and web apps with a
managed community MySQL database service or
migrate MySQL workloads to the cloud

Azure Database
for MySQL

Deliver high availability and elastic scaling to
open-source mobile and web apps with a
managed community MariaDB database service

Azure Database
for MariaDB

Build applications with guaranteed low latency Azure Cosmos

mu
no
tes
.in

102

and high availability anywhere, at any scale or
migrate Cassandra, MongoDB and other NoSQL
workloads to the cloud

DB

Power fast, scalable applications with an open-
source-compatible in-memory data store

Azure Cache for
Redis

Accelerate your transition to the cloud using a
simple, self-guided migration process

Azure Database
Migration Service

Modernize existing Cassandra data clusters and
apps, and enjoy flexibility and freedom with
managed instance service

Azure Managed
Instance for
Apache
Cassandra

mu
no
tes
.in

103

Not available Azure SQL
Database

Azure
SQL
Managed
Instance

SQL
Server on
Virtual
Machines

Azure
Database for
PostgreSQL

Azure
Database
for
MySQL

Azure
Database
for
MariaDB

Azure
Cosmos DB

Azure
Cache
for Redis

Relational
Database Available Available Available Available Available Available Not

available
Not
available

Non-Relational
Database (NoSQL)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available Available Not

available

In-Memory
Database

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available Available

Data Models Relational Relational Relational Relational Relational Relational

Multi-
Model:
Document
Wide-
column Key-
Value Graph

Key-
Value

Hybrid Available Available Available Available
(Hyperscale)

Not
available

Not
available

Not
available

Not
available

Serverless
Compute Available Not

available
Not
available

Not
available

Not
available

Not
available Available Not

available

mu
no
tes
.in

104

Storage Scale Out Available
(Hyperscale)

Not
available

Not
available

Available
(Hyperscale)

Not
available

Not
available Available Available

Compute Scale
Out

Available
(Hyperscale
- read-only)

Not
available

Not
available

Available
(Hyperscale)

Not
available

Not
available Available Available

Distributed Multi-
Master Writes
(Write data to
different regions)

Not
available

Not
available

Not
available

Not
available

Not
available

Not
available Available

Available
(Coming
Soon)

OSS Based Service
(Community
edition and open
extension support)

Not
available

Not
available

Not
available Available Available Available Not

available Available

HTAP
(Available with
Azure Synapse
Link)

Available
(Coming
Soon)

Not
available

Not
available

Available
(Coming
Soon)

Not
available

Not
availablemu

no
tes
.in

105

6.3 AZURE STACK

Microsoft Azure Stack is a true hybrid cloud computing
solution which is an extension of Azure allowing organizations to
provide Azure services using their own on-premises data centers. The
data centers convert into a Public Cloud that runs Microsoft’s Azure
Cloud platform. The basic principle of the Azure Stack is to enable
organizations to hold sensitive data and information with their own
data centers while giving the ability to reach the public cloud of Azure.
Similar to Azure, Azure Stack services run on top of Microsoft Hyper-
V on Windows and uses Microsoft’s Networking and storage solution
to function seamlessly.

The Microsoft Azure Stack is an appliance built only for
specific server vendor’s hardware and is distributed by those vendors
to bring the Azure Cloud to organization’s on-premises data centers.
Today, most of the major hardware vendors such as Dell, Lenovo, HP,
Cisco, and Huawei support the Azure Stack with many more vendors
getting approved regularly.

Figure 2 Source: Microsoft Azure Stack Vendors

6.4 PURPOSE OF AZURE STACK

Most modern-day organization’s mandatory cloud requirement
is to deliver IT power, services, and resources that are flexible, highly
scalable and at the same time extremely cost effective. Implementing
such a cloud-adaptive environment requires a high start-up cost to
implement which also brings many challenges. On the other hand,
organizations that adopt the public cloud such as Azure or AWS to
overcome these problems also face difficulties of migrating the
workload seamlessly between the on-premises environment and the
cloud.

In the past, organizations overcame such scenarios by creating
a private cloud that connected to the public cloud, but these private
clouds require local development, configuration, and maintenance of a
complicated collection of software stacks. It makes the local data
center much more complex not guaranteeing that the system’s local
software stacks are compatible with the public and private clouds as
well as accessing and managing the data.

Microsoft Azure Stack can be implemented to overcome these
challenges. The Azure Stack platform seamlessly integrates with the
Azure environment extending to the local data center. It provides the
consistency required by developers to build and deploy a single
application for both the public and private cloud without building
separate applications for each platform.

mu
no
tes
.in

106

The Microsoft Azure Stack compromises with a wide variety of
Azure services that can be hosted on the on-premises data center such
as Azure App Services, Azure Virtual Machines, Azure Functions, and
also provides services like Azure Active Directory to manage Azure
Stack Identities.

6.5 BENEFITS OF AZURE STACK

Azure Stack along with Azure provides a variety of benefits
such as:

Consistent Application Development
The application developers can maximize productivity as there

is no need to develop separate applications for the public and private
clouds since the same DevOps approach is followed for the hybrid
cloud environment. This allows Azure Stack customers to

 Use powerful automation tools such as Azure PowerShell
extensions

 Embrace modern open-source tools and visual studio to make
advanced intelligent business applications

 Rapidly build, deploy, and operate cloud designed applications
that are portable and consistent among hybrid cloud
environments.

 Program in any programming language like Java, Python,
Node.js, PHP, and even use open-source application platforms.

6.6 AZURE SERVICES FOR ON-PREMISES

With Azure Services availability for on-premises, businesses
can adopt hybrid cloud computing and meet the businesses’ technical
requirements with the flexibility to choose the correct deployment that
suits the business. These Azure services provide:

 Azure IaaS services beyond any traditional virtualizations, such
as the use of VM scale sets that enables rapid deployments with
flexible scaling sets to run modern and complex workloads.

 Azure PaaS services to run highly productive Azure app
services and Azure functions in on-premises data centers.

 Common operational practices between Azure and Azure
Stack, therefore, no additional skills are needed to use the
Azure stack environment to easily deploy and operate Azure
IaaS and PaaS services as they function on Azure.

 Build future-proof applications as Microsoft delivers innovative
services to the Azure Stack like Azure Marketplace
applications within the Azure Stack.

mu
no
tes
.in

107

Figure 6 Source: Microsoft Azure Bootcamp 2018

Continuous Innovation
The Azure Stack is designed from the ground up to be

consistent with Azure. The Azure Stack has frequent updates to the
platform meaning that Microsoft prioritizes new features based on
customer and business needs and delivers those requirements as soon
as possible.

Updates
There are two types of updates for the Azure Stack;
1. Azure Capabilities to Azure Stack – Updates are released as
soon as they are ready and typically aren’t scheduled regularly.
These include marketplace content and updates to existing
Azure Services that are deployed on the Azure Stack

2. Azure Stack Infrastructure – Updates are released at regular
time intervals since these includes firmware, drivers, etc. The
infrastructure updates are usually to improve the operational
excellence of the Azure Stack.

6.7 AZURE STACK IAAS

The value in Azure Stack providing cloud-native capabilities to
their data enters. They see the opportunity to modernize their apps and
address the unique solutions Azure Stack can deliver, but they often
pause as they ponder where to begin. They wonder how to get value
from the investments they have in apps currently running on virtual
machines (VM). They wonder, “Does Azure Stack help me here? What
if I am not quite ready for Platform-as-a-Service?” These questions are
difficult, but the answers become more clear when they understand that
Azure Stack at its core is an IaaS platform.

Azure Stack allows customers to run their own instance of
Azure in their data center. Organizations pick Azure Stack as part of
their cloud strategy because it helps them handle situations when the
public cloud won’t work for them. The three most common reasons use
Azure Stack are because of poor network connectivity to the public
cloud, regulatory or contractual requirements, or backend systems that
cannot be exposed to the Internet.

Azure Stack has created a lot of excitement around new hybrid
application patterns, consistent Azure APIs to simplify DevOps
practices and processes, the extensive Azure ecosystem available
through the Marketplace, and the option to run Azure PaaS Services

mu
no
tes
.in

108

locally, such as App Services and IoT Hub. Underlying all of these are
some exciting IaaS capabilities and we are so exciting to be kicking off
a new blog series to show it off.

IaaS is more than virtual machines
People often think of IaaS as simply virtual machines, but IaaS

is more. When you deploy a VM in Azure or Azure Stack, the machine
comes with a software defined network including DNS, public IPs,
firewall rules (also called network security groups), and many other
capabilities. The VM deployment also creates disks for your VMs on
software defined storage running in Blob Storage. In the Azure Stack
portal image, you can see how this full software defined infrastructure
is displayed after you have deployed a VM:

IaaS is the foundation for PaaS Services
Did you know that the Azure PaaS services are powered by

IaaS VMs behind the scenes? As a user you don’t see these VMs, but
they deliver the capabilities like Event Hubs or Azure Kubernetes
Service (AKS). This same Azure IaaS is the foundation of PaaS in
Azure Stack. Not only can you use it to deliver your applications,
Azure PaaS services will use IaaS VMs to deliver solutions on Azure
Stack.

Take Event Hubs, currently in private preview, as an example.
An Azure Stack administrator downloads the Event Hubs resource
provider from the Marketplace and installs it. Installation creates a new
admin subscription and a set of IaaS resources. The administrator sees
things like virtual networks, DNS zones, and virtual machine scale sets
in the administration portal:

mu
no
tes
.in

109

SUMMARY

A monolithic architecture is the traditional unified model for
the design of a software program. Monolithic, in this context, means
composed all in one piece. ... In a tightly-coupled architecture, each
component and its associated components must be present in order for
code to be executed or compiled.

Microsoft Azure Stack is a true hybrid cloud computing
solution which is an extension of Azure allowing organizations to
provide Azure services using their own on-premises data centers. The
data centers convert into a Public Cloud that runs Microsoft’s Azure
Cloud platform.

QUESTION BANK

1. Explain Monolithic Architecture
2. What is Example for Monolithic Approach?
3. What are the Benefits and Drawbacks of Monolithic Architecture?
4. Explain the Microservices Architecture?
5. What are the different Types of Databases on Azure?
6. What is Azure Stack?
7. What is the Purpose of Azure Stack?
8. What are the Benefits of Azure Stack?
9. What are the Azure Services for On-Premises?
10. What is Azure Stack IaaS?

REFERENCE

1) https://download.microsoft.com/DOWNLOAD/2/C/A/2CA4DC8E
-021C-4D56-8529-DF4F71FF4A1B/9780735697225.PDF

2) https://ptgmedia.pearsoncmg.com/images/9780735697225/samplep
ages/9780735697225.pdf

3) https://dzone.com/articles/monolithic-vs-microservice-architecture
4) https://www.sherweb.com/blog/cloud-server/microsoft-azure-stack/



mu
no
tes
.in

110

Unit III

7
NET DEVOPS FOR AZURE

Unit Structure :

7.0 Objective
7.1 What is DevOps
7.2 DevOps Lifecycle

7.2.1 Development
7.2.2 Testing
7.2.3 Integration
7.2.4 Deployment
7.2.5 Monitoring

7.3 Reference Architecture of DevOps
7.3.1 Plan
7.3.2 Develop/Test
7.3.3 Deploy
7.3.4Operate

7.4 Components of DevOps
7.4.1 Continuous Integration
7.4.2 Continuous Testing
7.4.3 Continuous Delivery
7.4.4 Continuous Monitoring

7.5 Continuous customer feedback and optimization
7.6 DevOps Challenges and Problems

7.6.1 Work Culture Shift
7.6.2 Switch from Legacy Infrastructure To Microservices
7.6.3 Tool Issues
7.6.4 Different Standards and Metrics
7.6.5 Process-oriented Challenges

7.7 Solution of Problems on DevOps
7.7.1 Replace Legacy Infrastructure with IaaS and Microservices
7.7.2. Invest in a Bigger Development Team and Enhanced

Security Practices
7.7.3 Develop a Culture of Collaboration and Transparency

7.8 Software Tools for DevOps
Summary
Questions
References

mu
no
tes
.in

111

7.0 OBJECTIVE

After going through this chapter, you are able to understand
 DevOp (Development Operation) Concept and its process
 DevOp Lifecycle process
 Reference Architecture of DevOps and process involves in it.
 Components of DevOps and customer feedback mechanism
 DevOps Challenges and Problems and its solutions

7.1 WHAT IS DEVOPS?

DevOps is not a technology or tool, it is a concept of behaviour,
and it is an extension of Agile Methodology DevOps (Development
Operations) means an approach based on lean and agile principles in
which business owners and the development, operations, and quality
assurance department collaborate to deliver software in continuous manner
to grasp the business opportunities in markets and collect feedback from
customer from time to time. .

The DevOps is a set of practices designed to overcome the gap
between development, QA and Operations by effective communication
and collaboration, incorporating continuous integration process with
automated deployment. DevOps helps to increase an organization’s speed
to deliver applications and services. It allows organizations to serve their
customers better and compete more strongly in the market. There are four
basic continuous processes in DevOps:

Continuous Integration
 Continuous Delivery
 Continuous Testing
 Continuous Monitoring

7.1 DEVOPS LIFECYCLE

DevOps is deep integration between development and operations.
Understanding DevOps is not possible without knowing DevOps life
cycle. Here is brief information about the Continuous DevOps life-cycle:

7.1.1DevelopmentIn this DevOps stage the development of software takes
place constantly. In this phase, the entire development process is
separated into small development cycles. This benefits DevOps team to
speed up software development and delivery process.

7.1.2Testing QA team use tools like Selenium to identify and fix bugs in
the new piece of code.

mu
no
tes
.in

112

7.1.3IntegrationIn this stage, new functionality is integrated with the
prevailing code, and testing takes place. Continuous development is only
possible due to continuous integration and testing.

7.1.4Deployment In this phase, the deployment process takes place
continuously. It is performed in such a manner that any changes made any
time in the code, should not affect the functioning of high traffic
application.

7.1.5Monitoring In this phase, operation team will take care of the
inappropriate system behavior or bugs which are found in production.
In short we can say that Lifecycle of DevOps perform following operation

 The Dev writing code
 Building & deploying binaries in a QA environment
 Executing test cases and finally
 Deploying onto Production in one smooth integrated flow.

Obviously, this approach places a great emphasis on automation of
Build, Deployment, and Testing. Use of Continuous Integration (CI) tools,
Automation Testing tools become a norm in a DevOps cycle

7.2 REFERENCE ARCHITECTURE OF DEVOPS

Fig. 7.1 DevOps Architecture (Reference from IBM’s DevOps Dummies)

The DevOps reference architecture shown in above Figure
2 proposes the following four sets of adoption paths:

i. Plan
ii. Develop/Test
iii. Deploy
iv. Operate

7.2.1Plan
This adoption path consists of one practice that focuses on

establishing business goals and adjusting them based on customer
feedback: continuous business planning. Businesses today need to be

mu
no
tes
.in

113

agile and able to react quickly to customer feedback. Achieving this goal
centers on an organization’s ability to do things right. Information required
to plan and re-plan quickly, while maximizing the ability to deliver value,
is fragmented and inconsistent.

7.2.2 Develop/Test
This adoption path involves two practices: collaborative

development and continuous testing. As such, it forms the core of
development and quality assurance (QA) capabilities. Collaborative
development enables these practitioners to work together by providing a
common set of practices and a common platform they can use to create
and deliver software. For ex. software developers continuously or
frequently integrate their work with that of other members of the
development team with following advantages

1. Enable ongoing testing and verification of code
2. Validate that the code produced and integrated with that of other
developers and other components of the application functions and
performs as designed

3. Continuously test the application being developed

Continuous testing means testing earlier and continuously across
the life cycle, which results in reduced costs, shortened testing cycles, and
achieved continuous feedback on quality. This process is also known as
shift-left testing, which stresses integrating development and testing
activities to ensure quality is built-in as early in the life cycle as possible
and not something left to later.

7.2.3 Deploy
The Deploy adoption path is where most of the root capabilities of

DevOps originated. Continuous release and deployment take the concept of
continuous integration to the next step. This facilitates continuous
deployment of software to QA and then to production in an efficient,
automated manner. The goal of continuous release and deployment is to
release new features to customers and users as soon as possible.

7.2.4Operate
The Operate ad option path includes two practices that allow

businesses to monitor howre leased applications are performing in
production and to receive feedback from customers.

This data allows the businesses to reactinanagile manner and
change their business plans as necessary.

In a way, you may argue that to implement DevOps you need
tools. It is true but tools are only accelerators. But actually, it is about the
following 3 aspects:

mu
no
tes
.in

114

People: It is very important to train and have a highly motivated team of
people to be able to effectively communicate and collaborate through this
entire journey of cultural change.

Process: As we are talking about cultural change for DevOps
implementation it is very much a necessity to have practices and strategies
which provide value to the customer. A proper way of doing it would be to
do an AS-IS maturity assessment, look at gaps and propose a roadmap for
implementation of giving appropriate recommendations.

I will not be talking in-depth about how I have got about doing
these assessments but I will be glad to share any inputs on the same.

Tools: Finally, it is about using the accelerators by automating the process
using standard DevOps tools that are available today. It could be Open-
Source (Jenkins, Git etc.), Commercial (Microsoft TFS, VSTS, IBM
Rational, Jira etc.) or a mix of both.

7.3 COMPONENTS OF DEVOPS

Let’s now look at the following 4 components of DevOps which
form the core from an implementation point of view and also the
organizations have developed good automation frameworks around the
same offering it as a service to their clients.

 Continuous Integration
 Continuous Testing
 Continuous Delivery
 Continuous Monitoring

I have truly believed that if a developer has to work in this mode then
there should be an execution item like a Task or a Defect (In Agile it can
be a part of User Story) assigned to him to enable him to deliver the work
within the sprint timeframe. Let’s now take a look at each of these
components in detail.

7.3.1 Continuous Integration
As a developer, you work on the tasks or defects assigned to and

check-in the code to a shared repository multiple times in a day. Similarly
the other members of the team also check-in the code to the shared
repository. You will then actually integrate all the work done by the team
members in a common build server and perform an automated build.
Doing these integrations and automated builds on a regular basis is called
Continuous Integration. This practice helps to detect issues very early and
also ensures that all the modules which are integrated work as required. So
if you do not follow this approach then the integration of the team’s work
may happen once in a month which may be late to find and fix any
integration issues.

mu
no
tes
.in

115

Fig.7.2 Sample Continuous Integration workflow

7.3.2 Continuous Delivery
Continuous Delivery is the next step after Continuous integration.

The goal of Continuous Delivery is to push the application built into
production as quickly as possible. During this process, it goes through
various stages in the lifecycle of delivery i.e. QA, Staging, Production
environments etc. This process of regularly delivering the applications
built into various stages is known as Continuous Delivery.Continuous
delivery helps in quicker time to market when compared to traditional
methods, lesser risk, lowering the cost by encouraging more automation in
the release process and most importantly getting faster feedback from the
end users to produce a quality product.

Fig.7.3 Sample Continuous Delivery Workflow

In the above diagram, you can look at different environments
available and so this provisioning of the infrastructure for the
environments can also be automated during this continuous delivery
process.

7.3.3 Continuous Testing
From the above 2 practices, we came to know that CI and CD help

to deploy the application or changes to the production. This whole process
involves proper validation of code and its integration with all the
components involved in it to ensure that the application works as
envisaged and is free of bugs or defects. So Continuous Testing is the
process of running various types of automated tests starting with CI

mu
no
tes
.in

116

process till the time the application is finally deployed to production. You
can see from the previous diagram that in the Continuous Integration step
we integrate all of the developers work into a common build server and
also during this stage the developers would run a certain amount of unit
tests.

Once these integration and tests work without any errors, only then
the application or changes are deployed to the QA environment after
applying for these quality gates and approvals. In the QA environment, the
functional tests are run and again based on the approvals it would be
deployed to staging environment which would be on parity like the
production systems and acceptance tests run. Once this activity is
completed the application or the changes are finally deployed into the
production systems.

So one can note here that continuous testing as an activity starts
from the CI stage itself and is a very mandatory step throughout the
continuous delivery process.

Fig. 7.4 Sample Testing workflow in the continuous delivery process

7.3.4 Continuous Monitoring
As the application or changes are deployed to the production

environment the operations team will look to monitor the application and
environment from an up-time, stability, availability point of view. This
process is known as Continuous monitoring. The operations teams will
have their own software’s to monitor the environment but will also need to
play their part to monitor the applications deployed for any issues. For
this, they would need to work with the development teams in order to
build certain tools for analyzing the application issues.

So infrastructure, environment, and applications issues are all that
monitored in the process of continuous monitoring. Continuous
monitoring provides data and metrics to operations, QA, development,

mu
no
tes
.in

117

lines-of-business personnel, and other stake- holders about applications at
different stages of the delivery cycle.

7.4 CONTINUOUS CUSTOMER FEEDBACK AND
OPTIMIZATION

The two most important types of information that a software delivery
team can get are data about how customers use the application and
feedback that those customers provide upon using the application. New
technologies allow businesses to capture customer behavior and customer
pain points right as they use the application. This feedback allows
different stakeholders to take appropriate actions to improve the
applications and enhance customer experience. Lines of business may
adjust their business plans, development may adjust the capabilities it
delivers, and operations may enhance the environment in which the
application is deployed. This con- tenuous feedback loopisan essential
component of DevOps, allowing businesses to be moreagile and
responsive to customer needs.

7.5 DEVOPSCHALLENGESANDPROBLEMS

DevOps is a structured way of approaching software development.
Today, more and more IT organizations realize its benefits as their
irregular release cycles get replaced by streamlined continuous integration
and continuous delivery pipelines. The advancements in customer-centric
service delivery models demand streamlined business processes and
improved teams’ culture. DevOps helps automate the processes between
development and IT support functions. And, though, the journey from the
traditional, siloed IT workflows into a collaborative pipeline often offers
setbacks and failures. However, by overcoming challenges and leveraging
opportunities, DevOps organizations can move much faster than others.

DevOps has become mainstream, and with this comes the most
basic and evident questions, that are, what challenges will I face adopting
it? Despite the tremendous popularity of DevOps today, the myriad
surveys conducted show lack of awareness, knowledge, and governance
when it comes to establishing brand new and fresh application
environments. Some of the major challenges faced by the organizations
in DevOps adoption are as follows:

7.5.1Work Culture Shift
DevOps implementation leads to a large workplace culture

transformation. This is one of the toughest challenges that need to be dealt
with as the culture of the organization gets imbibed within the employees
of the place. Changing the culture of a particular place is a long-term
process. In this case, the focus should be on building a collaborative

mu
no
tes
.in

118

culture. The employees who are pro-DevOps have to instill and convince
the concepts and benefits of this culture among the rest of the co-workers.

7.5.2 Switch From Legacy Infrastructure To Microservices
There has to be a replacement of older, monolithic infrastructure as

it can spell stability issues. Making use of infrastructure-as-code along
with microservices will open the floodgates to quicker development along
with exquisite innovations. If your company is restricted to let changes in,
then it will soon be replaced, no matter what reputation it used to hold.
However, making a shift to microservices has its own set of problems as it
needs to have a foundation of automation, configure-management, and
continuous delivery to be able to manage additional operational workloads
which microservices brings in with itself.

7.5.3 Tool Issues
While switching to DevOps, people are tempted to make use of the

myriad tools available. The members become too much dependant on the
tools, even if they want to cater to the smallest issue. Due to momentary
attractive features, the organizations become addicted to tools with short-
term benefits instead of the ones with long-term benefits. However, if they
are not properly trained on the usage of a newly introduced tool, it can
lead to confusion amongst team members. Some of the tools are a Saa
S-based or open source and can be very easily adopted without any
authorization and may prove to be harmful to the organization’s health.
So, teams should be given a library of tools from which they can select
their preferred tools. This will also keep the leaders well-informed about
their activities.

7.5.4 Different Standards And Metrics
The Dev and the Ops departments separately have different tool

sets and metrics as they have totally different goals and working systems.
The collaboration of these two teams can prove to be very ambiguous and
inefficient. It becomes monotonous to sit together and integrate the tools,
hence, it can be a very tedious task. Both the teams should agree upon a
unanimously-decided metric system.

7.5.5Process-oriented Challenges
For the kind of people who are used to following rules blindly, it

might be pretty challenging for them to adopt DevOps since there is no
fixed framework which will assign the particular employee on how he/she
should progress with a project to achieve the desired goal. The teams have
to take their own call to decide the course of action. It is mostly in the
non-structured format. Basically, there are no central DevOps
teams operating which can choose the right tools and systems for the team
or a particular individual. Undoubtedly, such a structure gives employees a
lot of scope and space for innovation and exhibiting individual
responsibility. But at the same time, it can prove to be very challenging.
Different practice methods may lead to ambiguity amongst the team
members.

mu
no
tes
.in

119

These are the most basic challenges which every organization is
bound to face while they are preparing to make a switch to DevOps

It doesn’t matter whether you are in Cloud, Enterprise or Mobile.
For each one of you, stable software delivery on time is the key to your
business success. Some of the serious issues blocking your software
delivery are:

 Building and maintaining servers – Time consuming and
unproductive

 No environment management – Differences in development and
production environments

 Deployments are a blocker – Upgrade risk due to manual
management of multiple application configurations and versions –
Dependency on specific deployment engineer

 Hacking – Fixing directly in production (instead of a proper hotfix
process) and forgets to check-in into source control

7.6 SOLUTION OF PROBLEMS ON DEVOPS

7.6.1 Replace Legacy Infrastructure With IaaS and Microservices.
Utilizing outsourced Infrastructure-as-a-Service (IaaS) for the

latest hardware, server and data storage solutions is a cost-effective and
efficient way to propel your business processes into the 21st
century. Microservices can make your application much easier to build
and — even more importantly — easy to scale.

7.6.2 Invest in A Bigger Development Team and Enhanced Security
Practices.

To quote the classic line from the Jaws movie, “You’re going to
need a bigger boat.” If you expect to keep up with your competitors and
build next-generation solutions, you have to invest in experienced
developers who are knowledgeable of all the latest advancements in
technology. The good news is that it is easier than ever to grow your team
quickly and cost-effectively, thanks to the ability to hire dedicated
development teams that can be scaled up or down on demand.

Another area that is worthy of additional investment is security.
With so many stories in the news day after day of big name corporations
experiencing major security breaches, developing an application with
bullet-proof protection can be the one decision that causes a user to choose
your solution over a competitor’s.

7.6.3 Develop a Culture of Collaboration and Transparency
It’s important to change the mindset from individual developers

“doing their part” to one cohesive team that is responsible as a collective
whole for the outcome of the product. All members of your DevOps team
should know exactly what the others are doing at all times.

mu
no
tes
.in

120

Communication and transparency is key. This can be achieved through
communication tools such as Slack or simply with daily stand-up
meetings.

DevOps can be truly successful only when there is a clear focus on
and dedication to teamwork excellence as opposed to individual success.

7.7 SOFTWARE TOOLS FOR DEVOPS

Fig. 7.5 Software Tools for DevOps

As DevOps is the collaboration of Development, QA and
Operations, it is obvious that a single tool cannot be adequate for all the
needs. So there are multiple tools required in each stage to perform all the
operations successfully.

Popular Tool for DevOps Automation:
 Git : Version Control System tool
 Jenkins : Continuous Integration tool
 Selenium : Continuous Testing tool
 Puppet, Chef, Ansible : Configuration Management and
Deployment tools

 Nagios : Continuous Monitoring tool
 Docker : Containerization tool

How do all these tools work together?
This flow may vary from organization to organization as per the

requirement.
 Developers develop the code and this source code is managed by
Version Control System tools like Git etc.

 Developers send this code to the Git repository and any changes made
in the code is committed to this Repository.

 Jenkins pulls this code from the repository using the Git plugin and
builds it using tools like Ant or Maven.

mu
no
tes
.in

121

 Configuration management tools like puppet deploys & provisions
testing environment and then Jenkins releases this code on the test
environment on which testing is done using tools like selenium.

 Once the code is tested, Jenkins send it for deployment on the
production server (even production server is provisioned & maintained
by tools like puppet).

 After deployment It is continuously monitored by tools like Nagios.
 Docker containers provides testing environment to test the build
features

SUMMARY:
DevOps is not just about tools but it also includes a set of best
practices that enables to bridge the gap between the development and
operations teams in the areas of continuous integration and
deployment by using an integrated set of tools to automate the
software delivery. So the goal of DevOps is simply to help any
organization in the speed of delivering applications to the end-users
and enabling faster end-user feedback which is the need for any
business today.

REFERENCE

 DevOps For Dummies ® , 2nd IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com
 DevOps for Azure Applications
Suren Machiraju
Suraj Gaurav
Apress Publication

QUESTION FOR SELF-STUDY

Q1. What are the different DevOps tools available in market. Explain one
tool working

Q2. What do you mean by Microsoft Azure Platform.
Q3. What are the different components of DevOps. Explain each in brief.



mu
no
tes
.in

122

8
MULTIPLE PROJECT TRACKING

TEMPLATES
Unit Structure

8.0 Objective
8.1 Multiple Project Tracking Templates
8.2 Working with DevOps Tracking Process

8.2.1 Practice agile methodology
8.2.2 Continuously automate processes
8.2.3 Follow CI/CD best practices
8.2.4 Choose your DevOps tools wisely
8.2.5 Make your software observable
8.2.6 Shorten feedback loops
8.2.7 Transform culture and mind-sets
Summary
Questions
References

8.0 OBJECTIVE

After reading this chapter, you will read following concept.
 Various in-built Project Tracking Templates use in Development
Operations.

 Working with DevOps Tracking Process and its methodologies

In an active organization, you will likely manage multiple projects
(at different stages of completion) simultaneously. Download any of the
following free, customizable templates, available in Excel, Google Sheets,
and Smartsheet formats, to track the details of more than one project at a
time.

mu
no
tes
.in

123

8.1 MULTIPLE PROJECT TRACKING TEMPLATE

Fig. 8.1

Quickly gain an overview of task status across multiple projects.
This template highlights status, priority, and task deadlines, and whether
or not items are at risk. You can also track the percentage of tasks
completed, fixed costs, and estimated and actual hours spent. If you want,
you can also add a column for billed hours

Fig. 8.2

Manage the budget of multiple projects with this template.
Leverage the color-coding to see task status at a glance. Track labor and
materials costs, travel and office expenses, and compare your planned
budget vs. your actual spend. The template automatically indicates if you
are under or over budget.

mu
no
tes
.in

124

a.Multiple Project Task Tracking Template

Fig. 8.3

In order to manage a project effectively, you and your team need to
track the status of tasks that contribute to the project deliverables. Use this
project tracking template to record the task status and priority, deadline,
task owner, task description, percentage complete, and task cost.
Customize the template to track as many projects as you need.

b. Color-Coded To-do List Template

Fig. 8.4

If you have a small team or are responsible for resolving issues as
part of a larger project, a to-do list or task list may be the right form for
tracking work. This to-do list template provides space for the item name,
the status and priority, the assignee, the due date, and the deliverable.
Color-coding can help you differentiate high priority items and item status
at a glance.

mu
no
tes
.in

125

c. Excel Project Management Tracking Templates
Part of project management includes tracking the progress of tasks

towards final deliverables. However, you may also need to monitor other
aspects of project performance, such as project risks, KPIs, and overviews
of work and budgets.

Project Management Dashboard Template

Fig. 8.5

Dashboards offer a convenient summary of activities and status not
only for you, but also for your team and stakeholders. This dashboard
template is ready to use out of the box: List project tasks, the assignees,
the task priority, and the task status. The built-in Gantt chart updates as
you change the status of each task, and graphs automatically track overall
status, budget, and pending items.

d. Project Cost Tracking Templates
Costs form one of the triple constraints in project management.

Use the following project budget tracking templates available in Excel,
Google Sheets, and Smartsheet to stay on budget and to help anticipate
any risks of exceeding the budget.

mu
no
tes
.in

126

Fig. 8.6

e. Google Sheets Project Expense Tracking Template
Tracking project expenses is essential to maintaining a budget and

avoiding surprise shortfalls that could eat into potential revenue or
bonuses. The Google Sheets template offers a convenient online and
offline format that anyone with the right permissions can access. The other
formats of the template highlight planned and actual budget, and track
expenses by task, noting hourly labor rates, material unit costs, and fixed
rates.

f. Project Time Tracking Template

Fig. 8.7

mu
no
tes
.in

127

Project timelines summarize and visualize the structure of a
project. This customizable project time tracking template lists tasks and
subtasks, start and end dates, task duration, and status. As you enter and
update these details, changes are automatically reflected in the built-in
Gantt chart.

8.2 WORKINGWITH DEVOPS TRACKING PROCESS

The following points must be considered for Tracking Process.

8.2.1 Practice agile methodology
Agile project management is the first prerequisite for introducing

DevOps. Following the agile methodology, teams divide work into small
chunks. It allows them to deliver small but incremental features fast,
which lays the basis for DevOps’ continuous deployment practice.

Agile development teams implement adaptive planning and
welcome changing requirements at any stage. They are flexible enough to
handle unplanned work and respond to feedback coming from the
operations team. From the cultural point of view, Agile and DevOps share
a lot. Both of them embrace change and put the business value of the
software product in priority. DevOps builds upon Agile and extends its
principles beyond the development team by bringing them to the
operations team.

8.2.2 Continuously automate processes
Automation accelerates the development cycle by reducing the

amount of manual work. It helps you push code in production more
frequently and produce consistent, reliable, and safe software. You need a
good strategy and vision on what to automate and how because you don’t
want to make bad processes happen faster. You should start with
automated testing to remove manual processes from unit tests, integration
tests, and performance tests. Each test should and take a few minutes to
run. After the testing is automated, you can build DevOps pipelines to
automate the build - configure - deploy - test - release cycle. In parallel,
you can introduce automation in your infrastructure configuration
management and performance monitoring tasks. It will allow you to better
control software that is running in production.

8.2.3 Follow CI/CD best practices
Continuous integration and deployment best practices are at the

heart of the DevOps culture. Implementing them often requires the biggest
investment and effort. At the same time, it has the most sufficient impact
on the results if done following Martine Flower’s continuous integration
best practices:

 Maintain a single source repository

 Automate the build process

mu
no
tes
.in

128

 Make the build self-testing

 Commit to the mainline daily

 Trigger a build after every commit

 Test in a clone of the production environment

 Make fast feedback on quality available to everyone

 Make fixing broken builds a priority task

This list can be extended by several continuous delivery best
practices. By implementing those, you can make sure that your software
remains in a deployable state throughout its lifecycle. It means that you
can deploy your system to production on demand at any time.

 Build apps with loosely-coupled architecture

 Integrate security into the development and testing stages

 Fully automate the deployment process

 Use a version control system

When continuous delivery works well, for some projects, for
example, web apps, it may evolve into continuous deployment. At this
level, following continuous deployment best practices empowers your
team to deploy every code change to production as soon as possible.

8.2.4 Choose your DevOps tools wisely
DevOps tools represent a set of solutions that enable the

collaboration of development and operations teams across development,
testing, deployment, and performance monitoring. Your toolset may
include:

 Work planning and tracking (Jira, Confluence)

 Development environment (Kubernetes, Docker)

 Source control tools (Github, Gitlab, Bitbucket)

 Infrastructure provisioning IaC (Ansible, Puppet, Terraform)

 CI/CD pipelines (Jenkins, AWS Code Pipeline, CircleCI)

 Test automation, management, and orchestration (Mabl, Xray, Zephyr)

 Deployment automation (Code Deploy, Bitbucket Pipelines)

 Performance monitoring (Appdynamics, DataDog, SumoLogic)

 Change management and problem tracking (Jira Service Desk,
Opsgenie)

Choosing an optimal combination of tools provided by different
vendors often requires experimenting. When building your DevOps
toolchain, you’ll have to:

mu
no
tes
.in

129

 Decide between multi-purpose and single-purpose tools

 Choose among several similar solutions by different vendors

 Select tools that integrate seamlessly with each other

 Integrate legacy tools your company uses into the new ecosystem

With the variety of DevOps tools available, it’s easy to
accommodate too many of them and overcomplicate your processes. To
avoid this, you should prioritize processes over tools and refrain from
copying someone else’s automation solutions blindly.

8.2.5 Make your software observable
By giving preference to loosely coupled architectures, you ease the

deployment of new functionality on your developers. However, this causes
an additional burden on your operations team, which has to monitor a
complex and ever-changing system.

When working with distributed systems, your operations team will
have to cope with unpredicted patterns and properties. According to
monitoring and observability best practices, tracking the logs, traces, and
metrics is not enough anymore. You should create an own diagnostic
system to identify unknown unknowns, understand what causes problems
in your system and debug it quickly. For this, you should have:

 A black-box or a white-box monitoring system that allows connecting
data from all points of monitoring in one place.

 A symptom-based alerting system that will notify about possible
problems before they happen.

 Ability to quickly create monitoring dashboards to visualize metrics
that matter at this particular time.

The performance of your monitoring system should also be
measured. To know if it performs well, you should keep an eye on the
number of changes made to your monitoring configuration, the
adequateness of the alerts that your system sends, and the time it takes
your team to solve issues.

8.2.6 Shorten feedback loops
DevOps strives to reduce wasted effort not only through process

automation but also through information exchange between team
members. It strives to facilitate feedback on people’s work efficiency and
quality at all stages of the development cycle:

 Code test results become available to developers withing minutes
 Bugs and failures are reported immediately to be fixed right away
 User feedback and usage reports are communicated for every new
feature

mu
no
tes
.in

130

 Performance characteristics get displayed on visual management
boards

 Customer satisfaction metrics and feedback shared with the team

Sharing and implementation of customer feedback are often
overlooked. This best practice emphasizes the importance of doing this to
better address customer needs. This way you can make sure every new
feature is solving a real problem and is appreciated by your customers.

8.2.7 Transform culture and mindsets
DevOps is a culture, not a role. Adopting DevOps practices requires

creating an environment for cross-team communication and collaboration.
When introducing DevOps culture, you’ll work on:

 Building trust and transparency between development and operations
 Instilling an attitude of shared responsibility and ownership
 Promoting customer-centricity and empathy across teams

SUMMARY

This article defines operational and object limits placed on work
tracking operations and work tracking customization. In addition to the
specified hard limits on select objects, as you plan and track your project,
you'll find you may want to configure a feature or customize your
experience to meet your team's tracking needs. You configure teams and
team. Agile tools through the web portal administration context for Azure
Boards. The method you use to customize projects, which impacts all
teams, depends on the process model you use.

REFERENCE:

1. Agile Project Management with Azure DevOps: Concepts,
Templates, and Metrics 1st ed. Edition, by Joachim Rossberg,
Publisher: Apress
2.https://docs.microsoft.com/en-us/azure/devops/organizations/settings/work/

QUESTIONS FOR SELF-STUDY

Q1. What are the different steps involve DevOps tracking process.
Q2. Explain Software Development Lifecycle in Microsoft Azure
platform development.
Q3. Which point must be considered while customizing process and
publish on Azure.



mu
no
tes
.in

131

9
TRACKINGWORK AND CODE

Unit Structure :

9.0 Objective
9.1 Git - Basic Concepts
9.2 Advantages of Git
9.3 DVCS Terminologies
9.4 Azure DevOps Repository
9.5 Azure DevOps vs GitHub

Summary
Questions
References

9.0 OBJECTIVE:

After reading this chapter, you will covered following points
 Git basic concepts and advantages
 DVCS Terminologies
 Azure DevOps Repository
 Difference between Azure DevOps vs GitHub

9.1GIT - BASIC CONCEPTS

Version Control System
Version Control System (VCS) is a software that helps software

developers to work together and maintain a complete history of their
work.

Listed below are the functions of a VCS −
 Allows developers to work simultaneously.
 Does not allow overwriting each other’s changes.
 Maintains a history of every version.

Following are the types of VCS −
 Centralized version control system (CVCS).
 Distributed/Decentralized version control system (DVCS).

In this chapter, we will concentrate only on distributed version
control system and especially on Git. Git falls under distributed version
control system.

mu
no
tes
.in

132

Distributed Version Control System
Centralized version control system (CVCS) uses a central server to

store all files and enables team collaboration. But the major drawback of
CVCS is its single point of failure, i.e., failure of the central server.
Unfortunately, if the central server goes down for an hour, then during
that hour, no one can collaborate at all. And even in a worst case, if the
disk of the central server gets corrupted and proper backup has not been
taken, then you will lose the entire history of the project. Here, distributed
version control system (DVCS) comes into picture.

DVCS clients not only check out the latest snapshot of the
directory but they also fully mirror the repository. If the server goes
down, then the repository from any client can be copied back to the server
to restore it. Every checkout is a full backup of the repository. Git does
not rely on the central server and that is why you can perform many
operations when you are offline. You can commit changes, create
branches, view logs, and perform other operations when you are offline.
You require network connection only to publish your changes and take
the latest changes.

9.2 ADVANTAGES OF GIT

Free and open source
Git is released under GPL’s open source license. It is available

freely over the internet. You can use Git to manage property projects
without paying a single penny. As it is an open source, you can download
its source code and also perform changes according to your requirements.

Fast and small
As most of the operations are performed locally, it gives a huge

benefit in terms of speed. Git does not rely on the central server; that is
why, there is no need to interact with the remote server for every
operation. The core part of Git is written in C, which avoids runtime
overheads associated with other high-level languages. Though Git mirrors
entire repository, the size of the data on the client side is small. This
illustrates the efficiency of Git at compressing and storing data on the
client side.

Implicit backup
The chances of losing data are very rare when there are multiple

copies of it. Data present on any client side mirrors the repository, hence
it can be used in the event of a crash or disk corruption.

Security
Git uses a common cryptographic hash function called secure hash

function (SHA1), to name and identify objects within its database. Every
file and commit is check-summed and retrieved by its checksum at the
time of checkout. It implies that, it is impossible to change file, date, and

mu
no
tes
.in

133

commit message and any other data from the Git database without
knowing Git.

No need of powerful hardware
In case of CVCS, the central server needs to be powerful enough

to serve requests of the entire team. For smaller teams, it is not an issue,
but as the team size grows, the hardware limitations of the server can be a
performance bottleneck. In case of DVCS, developers don’t interact with
the server unless they need to push or pull changes. All the heavy lifting
happens on the client side, so the server hardware can be very simple
indeed.

Easier branching
CVCS uses cheap copy mechanism, If we create a new branch, it

will copy all the codes to the new branch, so it is time-consuming and not
efficient. Also, deletion and merging of branches in CVCS is complicated
and time-consuming. But branch management with Git is very simple. It
takes only a few seconds to create, delete, and merge branches.

9.3 DVCS TERMINOLOGIES

Local Repository
Every VCS tool provides a private workplace as a working copy.

Developers make changes in their private workplace and after commit,
these changes become a part of the repository. Git takes it one step further
by providing them a private copy of the whole repository. Users can
perform many operations with this repository such as add file, remove
file, rename file, move file, commit changes, and many more.

Working Directory and Staging Area or Index
The working directory is the place where files are checked out. In

other CVCS, developers generally make modifications and commit their
changes directly to the repository. But Git uses a different strategy. Git
doesn’t track each and every modified file. Whenever you do commit an
operation, Git looks for the files present in the staging area. Only those
files present in the staging area are considered for commit and not all the
modified files.

Let us see the basic workflow of Git.
Step 1 − You modify a file from the working directory.
Step 2 − You add these files to the staging area.
Step 3 − You perform commit operation that moves the files from the
staging area. After push operation, it stores the changes permanently to
the Git repository.

mu
no
tes
.in

134

Fig. 9.1 Git Repositories Diagram

9.4 AZURE DEVOPS REPOSITORY

Azure Repository is a set of version control tools that we can use
to manage our code. In case if we are entirely new to version control, then
version control enables us to track changes we make in our code over
time. There are so many software that is available in the market to enable
version control on our code. We can use the version control system to
keep track of each change done by each developer, safely merge them, test
the changes, and publish the change into production.

There are two types of version control in Azure Repos.
o Git: It is a distributed version control.
o Team Foundation Version Control: It is a centralized version
control.

Azure Repos Concepts
1. Repository: A repository is a location for our code, which is managed
by version control. It supports Git and TFVC so we can create multiple
repositories in a single project and various branches for each
repository.

2. Branch: A branch is a lightweight reference that keeps a history of
commits and provides a way to isolate changes for a feature or a bug
fix from our master branch and other work.

3. Branch policies: It is an essential part of the Git workflow. We use
them to help protect the critical branches is our development, as the
master.

4. Pull and Clone: Create a complete local copy of an existing Git repo
by cloning it. A pull command updates the code in our local repository
with the code that is in the remote repository.

mu
no
tes
.in

135

5. Push and Commit: A commit is a group of change saved to our local
repository. We can share these changes to the remote repository by
pushing.

6. Fork: A fork is a complete copy of a repository, including all file
commits, and (optionally) branches.

7. Git: Git is a distributed version control system. Our local copy of code
is a complete version control repository that makes it easy to work
offline or remotely.

8. Notification: Using notification, we will receive an email whenever
any changes occur to work items, code reviews, pull requests, source
control files and builds.

9. Projects: A project provides a place where a group of people can plan,
track progress, and collaborate on building software solutions.

10. Teams: A team corresponds to a selected set of project members. With
teams, organizations can subcategorize work to better focus on all of
the work they track within a project.

Fig.9.2 Azure Repository Diagram

9.5 AZURE DEVOPS VS GITHUB: WHAT ARE THE
DIFFERENCES?

What is Azure DevOps?
Services for teams to share code, track work, and ship software.

Azure DevOps provides unlimited private Git hosting, cloud build for
continuous integration, agile planning, and release management for
continuous delivery to the cloud and on-premises. Includes broad IDE
support.

What is GitHub? Powerful collaboration, review, and code management
for open source and private development projects. GitHub is the best place
to share code with friends, co-workers, classmates, and complete
strangers. Over three million people use GitHub to build amazing things
together.

Azure DevOps can be classified as a tool in the "Project
Management" category, while GitHub is grouped under "Code
Collaboration & Version Control".

mu
no
tes
.in

136

Some of the features offered by Azure DevOps are:
 Agile Tools: Kanban boards, backlogs, scrum boards
 Reporting: dashboards, widgets, Power BI
 Git: free private repositories, pull requests

On the other hand, GitHub provides the following key features:
 Command Instructions
 Source Browser
 Git Powered Wikis

SUMMARY

 GitHub is a website and cloud-based service that helps developers
store and manage their code, as well as track and control changes to
their code. Specifically, Git is a distributed version control system,
which means that the entire codebase and history is available on every
developer’s computer, which allows for easy branching and merging.
Azure Pipelines provides unlimited CI/CD minutes and 10 parallel
jobs to every GitHub open source project for free. All open source
projects run on the same infrastructure that our paying customers use.
That means you’ll have the same fast performance and high quality of
service. Many of the top open source projects are already using Azure
Pipelines for CI/CD, such as Atom, CPython, Pipenv, Tox, Visual
Studio Code, and TypeScript etc..

QUESTIONS

Q1.In Microsoft Azure tools, how project tracking operation and testing
are perform.

Q2.How you can use GitHub repository. Explain and demonstrate
yourself.

Q3.Explain the Git repository functions.

REFERENCES

1. DevOps for Azure Applications Deploy Web Application on Azure By
Suren Machiraja, Suraj Gaurav, Published by Apress publication

2. DevOps For Dummies ® , 2nd IBM Limited Edition By Sanjeev
Sharma , Bernie Coyne, Published by John Wiley & Sons, Inc.

3. https://azure.microsoft.com/en-in/services/devops/repos/



mu
no
tes
.in

137

Unit IV

10
BUILDING AND VALIDATING THE CODE

Unit Structure :

10.0 Objective
10.1 Introduction
10.2 Structure of a Build

10.2.1 Flow of a Build on a Feature Branch
10.2.2 Flow of a Build on a Master Branch
10.2.3 Steps of a Build

10.3 Using Builds with .NET Core and Azure Pipelines
10.3.1 Enabling Continuous Delivery’s Commit Stage

10.4 Strategy for Defect Detection
10.4.1. Strategy and Execution of Defect Detection
10.4.1.1 Static Analysis
10.4.1.2 Testing
10.4.1.3 Inspections
10.4.2 Code Validation in the DevOps Pipeline
10.4.3 Static Analysis
10.4.4 Testing
10.4.4.1 Unit Tests (L0)
10.4.4.2 Integration Tests (L1)
10.4.4.3 Full-System Tests (L2)
10.4.5 Inspections

10.5 Implementing Defect Detection
10.5.1 Static Analysis
10.5.2 Testing
10.5.2.1 Unit Tests
10.5.2.2 Integration Tests
10.5.2.3 Full-System Tests
10.5.3 Inspections
Summary
Review Questions
Theory Questions
Multiple Choice Questions
References

mu
no
tes
.in

138

10.0 OBJECTIVE

In this chapter you will learn the following concepts:
 How to build the code
 Difference in a private and integration build
 How to configure your CI build in Azure DevOps Services
 How to validate the code

10.1 INTRODUCTION

This chapter introduces the types of builds, flow of build on feature
and master branch. After we are through with this chapter, you will learn
how to implement a build on Azure Pipelines for a .NET core solution.
You will also learn the three of the critical defect removal methods which
covers static analysis, levels of testing, concept and implementation of
inspections.

10.2 STRUCTURE OF A BUILD

There are two types of Build:
1) Private Build
2) Integration Build

1) Private Build
Private Build runs only on the developer’s workstation and is a tool to
ensure that instant changes will not disrupt the stability of the
application.

2) Integration Build
The integrated build runs on a shared server and is owned by the team.
It builds code from many developers. As the branch model becomes
more and more popular, integrated build have been adapted to run on
feature branches and also the master branches.

10.2.1 Flow of a Build on a Feature Branch
The following figure10-1 shows the sequence of build operations

that occur when working on a functional branch.

Figure 10-1: The build process for code on a feature branch flows
across three environments

mu
no
tes
.in

139

Explanation:
 If you change the code, your private build will run at every breakpoint
to ensure your safety. If you accidentally broke something, you will
learn immediately.

 Since you work in Git (a decentralized version control system), you
will make a lot of short commits. This makes it very easy to undo
changes.

 At your perception, run the private build locally. If you decide to push
changes to the team’s Git server, CI Build will recognize the changes
and execute the integrated build process on the team's build server.

 If successful, the build will archive the generated artifacts, possibly in
Azure Artefacts (Azure Artifacts is an extension that allows you to
easily discover, install, and publish NuGet packages in Azure
DevOps), (NuGetrepository).

 Then an automated deployment script will activate and install those
built artifacts to an environment dedicated to the continuous
integration process. The environment is known as “TDD (Test Driven
Development) environment.”

 The purpose of this environment is to verify that (1) the new version of
the software can be installed and (2) the new version of the software
still passes all its acceptance tests.

 This requires a complete system acceptance test in your code base. If
you don’t do this, they are easy to start developing.

 After the acceptance test passes and you see that your changes are
complete, as a developer, create a pull request o that your team knows
that you trust the work on your branch is complete and that the code is
ready to be examined for inclusion in the master branch.

10.2.2 Flow of a Build on a Master Branch

The following figure 10-2 shows the life cycle of a master branch build

Figure 10-2. The build process for changes on master end with a new
release candidate

Explanation:
 After the pull request is approved, your branch is automatically
merged into master.

mu
no
tes
.in

140

 This applies whether you are using GitHub or Azure Repos. The CI
(Continuous Integration) build, which is monitoring for changes, will
start off.

 If successful, the build artifacts will be stored in Azure Artifacts as
NuGet packages. Then the build will be installed to the TDD
environment for verification of deploy ability and for the running of
the automated full-system acceptance tests.

 After successfully completing these acceptance tests, the builds
considered a valid release candidate.

 In other words, it is a numbering candidate for a potential release,
which can be further tested in a manual test environment (or even in
other automated test environments) and deployed along the pipeline
toward production.

10.2.3 Steps of a Build

 The private build runs on a developer workstation. The CI build runs
on shared team build infrastructure, whether it is on a full server or in
Azure Pipelines.

 Test-driven development (TDD) introduces the concept of Arrange,
Act, and Assert.

 The flow of Arrange, Act, and Assert is as follows:
1. Arrange: In any verification, whether an automated testing, a manual
testing, a static analysis run, or a CI build, the verification process is
responsible for setting up an environment that can run.

2. Act: In this step, you will execute the process, run the some code, start
a procedure, etc.

3. Assert: Finally you can see how it works. You check whether what
you expected has happened. If what happens is as expected, your
validation is successful. If it does not meet expectations, your
validation will fail.

The following figure 10-3 shows the types of activities that are
common in both private build and CI build.

mu
no
tes
.in

141

Figure 10-3. The private and CI build have many steps in common

Types of activities that are common in both private build and CI
build:

 Start: The private build is triggered at the request of the developer. CI
builds triggered by an observer on the Git repository- when a new
commit occurs.

 Clean: Any temporary directories or files will be deleted, and the rest
of the previous build will be deleted.

 Version: The build number is pushed into any areas of input needed
for the resulting executable software to be labelled with the version
number of the build. Private builds usually have a version coded as
0.0.0 or 9.9.9, so anyone looking at them can immediately tell that it is
from a private build. In Azure Pipelines, the build number will come in
from an environment variable, and the build script should push this

mu
no
tes
.in

142

number into appropriate places, for example, an Assembly Info. cs file
for .NET Framework or the dotnet.exe command line for .NET Core.
If this step is skipped, then the resulting .NET assemblies will not be
properly labelled with the build number.

 Migrate Database: This step represents everything environmental in
which the application needs in order to function. Most applications
store data, so you need to create a database and move it to the current
schema to prepare for the subsequent build steps.

 Compile: This step converts the source files into assemblies, and
performs any encoding, translation, reduction, etc., to convert the
source code into a form suitable for execution in the intended runtime
environment.

 Unit Tests: This is the first step that falls under the Assert category. It
executes classes and functions that do not call out of process. In .NET,
this is App Domain, which is a storage limit. Therefore, unit testing is
very fast.

 Integration Tests: These tests ensure that the various components of
the application can be integrated with each other. The most common is
that our data access code can be incorporated into the SQL Server
database architecture. The code run by these tests traverses the process
(.NET App Domain, through the network stack to the SQL Server
process) to test functionality. These tests are important, but they are
orders of magnitude slower than unit tests. As the application grows,
the ratio of unit testing to integration testing is expected to be
approximately 10:1.

 Private Build Success: Perform a private build after these steps.
Noneed to perform any other operations on the developer's
workstation.

 Static Code Analysis: Static code analysis should be included in a CI
build's list of validations. They're simple to run and can detect issues
that automated tests can't.

 Publish Test Results: The CI build has completed successfully and the build
artifacts must now be output. Each application type has a process that outputs
the artifacts in a packaging-ready format.

 Package: This is the process of compressing each deployable application
component, such as an ASP.NET web site, a database (SQL Server schema
migration assets), a BatchJob (Windows service, Azure Function, etc.) and
acceptance tests, into a named and versioned NuGet package. Azure Artifacts
will receive these NuGet packages. Although zip files can be used, NuGet is
the standard package format for.NET.

 Publish: This step involves uploading the packaged NuGet files to
Azure Artifacts and making them available via the NuGet feed.

 CI Build Success: The continuous integration build is now complete,
and we can report that it was successful.

mu
no
tes
.in

143

10.3 USING BUILDS WITH .NET CORE AND AZURE
PIPELINES

 Because of the compatibility and ease with which an automated
continuous delivery pipeline can be set up with a software application
located anywhere, Azure Pipelines is gaining popularity.

 Azure Pipelines may provide the build and deploy pipeline for GitHub
or Azure Repos, as well as your own Git repository.

 Continuous delivery has four steps. They are as follows:
1. Commit: The private build and continuous integration build are
included in this stage.

2. Automated acceptance tests: Your TDD environment, together
with the test suites that represent acceptance tests, are included in
the automated acceptance test stage.

3. Manual validations: The UAT environment, is the deployed
environment that can be used for manual validations.

4. Release: In this final stage, your marketplace provides feedback on
the value you created for them.

10.4 STRATEGY FOR DEFECT DETECTION

 Defect detection is one of the method which is used by software
developers to evaluate software applications for bugs and defects.

 Because an application defect causes a difference between intended
and actual results, it is important for a tester to track them down and
fix them from the application.

 DRE (defect removal efficiency) is a metric that has been used in
industry research for a long time.

 The three most important defect removal techniques are:
1. Static analysis
2. Testing
3. Inspections

Below table 10-4 shows the average defect potentials by phase of work
in a table.

Figure 10-4: Defects that should be expected by phase of work per 100
lines of resulting C# code

mu
no
tes
.in

144

10.4.1. Strategy and Execution of Defect Detection
 There are many defect detections techniques. We will cover the three
essential techniques. Let's take a look at each of the three main
approaches for removing defects.

1. Static Analysis
2. Testing
3. Inspections

10.4.1.1 Static Analysis
 The automatic evaluation of a source file in order to determine defects
is known as static analysis. Static analysis is being used as a
technique to documents and other artefacts as well as source code.

 Microsoft Word's spelling and grammar check is a very effective static
analyser. The static analyser in Microsoft Word is run multiple times,
often after every modification to the content,

 We’ll use a variety of static analysis tools to examine our source code.
As part of our DevOps pipeline, these will execute automatically.

 Warnings and errors will be generated by these tools. When mistakes
arise, we can opt to fail a step in our pipeline, or we can choose to fail
on new warnings.

10.4.1.2 Testing
 Testing is the process of assessing a system or its component(s) with
the goal of determining whether or not it meets the specified
requirements. Testing has always been an element of the software
development process.

 A programmer has always tested the written code to ensure that it
functions correctly.

 Test-driven development is a technique that allows developers to move
away from manual desk checking and custom test harnesses and
toward a standard pattern for building executable tests.

 The best approach for Scrum's acceptance criteria for a backlog item is
writing test scenario whose steps are coded into an automated test that
works the system

10.4.1.3 Inspections
 The most formal sort review is inspection, which is used during the
static testing phase.

 A trained moderator, who is not the author, usually leads the
inspection. The duty of the moderator is to conduct a peer review of a
document.

 Entry and exit criteria are used in this review procedure. Before the
meeting, the documents are prepared and checked thoroughly by the
reviewers. It involves peer review of the product.

 A different preparation is done during which the product is evaluated
and defects are detected. A logging list or issue log is used to keep
track of the faults discovered.

 The moderator conducts a formal follow-up by applying exit criteria.

mu
no
tes
.in

145

10.4.2 Code Validation in the DevOps Pipeline
 Work goes through our process in accordance with our swim lane.

Below figure 10-5 shows the standard swim lanes for a measurable
DevOps process

Figure 10-5 Standard swim lanes for a measurable DevOps process

 We will focus on just the following. These three stages of development
enclose the code and result in a release candidate that may be tested
further.

1. Test design
2. Development
3. Functional validation

Below figure 10-6 shows the part of our automated DevOps pipeline
that will be impacted by the implementation of our defect removal
methods.

Figure 10-6: validating the code starts a few steps before coding and
includes some critical steps after

10.4.3 Static Analysis
 In the DevOps development practice, it will occur in the create phases.
Once the code is written, a static code analyser should be run to look
over the code.

mu
no
tes
.in

146

 You'll configure the static analysis tools in the continuous integration
build once you've determined which ones to use.

 Any static analysis tool can be performed locally on demand, but you'll
want to make it a part of your pipeline that runs automatically.

 It's important to put it before the release candidate packaging. FxCop
has long been a.NET static analysis tool available in Visual Studio.
Roslyn-based analysers have started replacing FxCop as a result of
recent changes in the C# compiler and are now the recommended
technique. These analysers are integrated into the Visual Studio
solution and can run from both the IDE and the command line.

 There are many static analysis tools are available. Some popular
static analysis tools are:
1) ReSharper Command Line: For code style conventions
2) Ndepend: For code metrics, warnings, and high-level quality
grading

3) SonarQube: For code metrics, warnings, and high-level quality
grading

4) TSLint: For readability, maintainability, and functionality errors
5) WAVE: Web Accessibility Evaluation Tool for statically
analyzing web pages for screen reader compatibility errors

10.4.4 Testing
 Mainly testing can be categorized as 1. Manual Testing 2. Automated
Testing.

 For some validation, only a human eye can cover a defect that may
affect customers. The majority of system functionality can be covered
by forms of automated testing.

 We reduce the burden on manual testers by implementing stages of
automated testing and ensure that persons conducting usability testing
do not discover functional issues.

 Automated Testing can be categorised as
1) Unit tests
2) Integration tests
3) Full-system tests
4) Specialized tests

 Example, full-system tests are testing user scenarios with the fully
deployed system online. Each branch of business logic can be tested as
a unit test, and each branch of database or queue behaviour can be
tested with an integration test.

10.4.4.1 Unit Tests (L0)
 These tests are really quick. The call stack is kept in memory at all
times. The average execution time for these tests should be between 50
and 70 milliseconds.

mu
no
tes
.in

147

 Code with out-of-process dependencies is excluded as a result of these.
 These tests can cover a single method or a group of classes, but they
must cover a logical unit of programme logic.

 These tests should be able to execute on both the developer's computer
and the build server.

 These tests should be included alongside the production code in the
Visual Studio solution. Some anti-patterns for unit tests are
1) Use of global or threading resources like Mutexes, file I/O, registry and

so on
2) Any dependencies between a test and another
3) High consumption of CPU or memory for a single test
4) Including code that calls out of the current process

10.4.4.2 Integration Tests (L1)
 Integration testing is used to ensure that modules/components perform
as intended when they are combined, i.e. to ensure that modules that
work well separately do not cause problems when combined.The best
example of this is the database schema, the data layer, and the domain model
entities.

 According to Microsoft, L1 tests should take less than 2 seconds to
complete. The great majority of these tests should take less than a
second to complete.

 These tests should be included in the Visual Studio solution with the
production code. Some anti-patterns for integration tests are
1) Requirement for large amounts of data setup.
2) Any functional dependency on any other test.
3) Validating more than one logical behavior between layers (being too

large).
4) Requiring external test state or data setup: Every test is responsible for its

own setup.

10.4.4.3 Full-System Tests (L2)
 These tests are a subset of the specified test scenarios for each
produced feature, as well as the defect fix proofs created once the root
cause of a defect has been determined.

 To run full-system tests, you'll need a fully installed environment.
E.g.-Selenium can be used to enter in text boxes and push buttons on a
web page.

 These tests should run in the context of an identity and run the entire
application just as a normal user. These tests should be included in the
Visual Studio solution with the production code. Some anti-patterns
for integration tests are

1) Unnecessarily Slow: While these tests will be a few orders of
magnitude slower than unit tests, the aggregate of them will determine
the cycle time of a release branch.

2) Modify global state.

mu
no
tes
.in

148

3) The use of shared resources that prevent parallelization.
4) Requirement of third-party services that are outside of the team’s
control, that is, Office 365 login, PayPal, and the like.

10.4.5 Inspections
 Inspections are done by manually. However, it is not the same as
manual testing. An inspection is a standardised procedure in which a
human examines a work product using the same checklist and criteria
as all other work products.

 The checklist for this type of inspection might have high-level items to
verify completeness:
1) Feature includes conceptual definition and vision description along
with objectives.

2) Feature includes detailed user experience design such as wire
frames, screen mock-ups, and the like.

3) Feature includes changes to architecture layers, new libraries
needed, and other key technology decisions.

4) Feature includes written test scenarios complete with test steps
suitable for manual execution as well as test automation.

 A good implementation of an inspection would be connected with the
pull request process for the purpose of determining coding defects. A
pull request can manage and document the process of accepting
changes on the branch back into the master branch if every
feature/user stories is built on a feature branch.

 In Azure Repos or GitHub, the pull request experience is rich enough to
accommodate a formal, documented inspection.

 Because the inspection's goal is source code, a power user or product
owner would not be a qualified inspector for this type of inspection.
But a product owner/product manager would likely be very interested
in the results of the inspection, reports that they are happening, and the
number of defects that are found and fixed through executing
inspections.

 Along with other items, a pull request code inspection might have
steps from the following list:
1) The application works after a Git pull and private build.
2) The changes conform to the approved architecture of system.
3) The changes implement the design decisions called out in the
feature.

4) The changes conform to existing norms of the code base.
5) No unapproved packages or libraries were introduced to the code
base.

6) The code is accompanied by right balance of tests.
7) All test scenarios in acceptance criteria of the feature have been
implemented as full-system L2 tests.

8) Logging is implemented properly and of sufficient detail.

mu
no
tes
.in

149

9) Performance Considerations: Application specific.
10) Security Considerations: Application specific and conforming to
organizational standards.

11) Readability Considerations: Code is scannable – factored and
named so that it is self-documenting and quickly reveals what it
does.

10.5 IMPLEMENTING DEFECT DETECTION

 Let's look at how each of these defect detection technique looks
in.NET and how to implement those using Azure DevOps Services

10.5.1 Static Analysis
 After adding FxCopanalyzers to a .NET Framework application, we
can customize the built-in Microsoft rulesets right from within Visual
Studio.

Figure10-7 Visual Studio will save a project-specific ruleset file if you
modify any of the settings of the Microsoft ruleset
 In your build script, you can add the following command-line
arguments so that the analysers are run when you want them run.
Make sure to fail the build on a rule failure:
msbuild.exe

mu
no
tes
.in

150

/t:Clean`;Rebuild /v:m /maxcpucount:1 /nologo
/p:RunCodeAnalysis=true
/p:ActiveRulesets=MinimumRecommendedRules.ruleset
/p:Configuration=Release
src\MySolution.sln

 When you add the NuGet package “Microsoft. Code Analysis. FxCop
Analyzers” to your project in .NET Core, you’ll see the analyzers
appear in your Solution Explorer, and warnings will start to show
when you build your code inside Visual Studio, as shown in Figure 10-
8

Figure 10-8 Code analyzers are added to a .NET Core project through
NuGet

 There's no need to include a command-line arguments to your build
script's call to dotnet.exe. When you add analyzers to your project,
they will run automatically and generate the necessary warnings or
errors.

 Each static analysis product has its own set of instructions for
integrating it with your code, but to keep your Azure Pipelines build
settings simple, include your static analysis tools in your build script
so that the configuration is saved in your Git repository.

 You'll be keeping additional build logic in Git if you convert your
Azure Pipelines build to YAML.

mu
no
tes
.in

151

10.5.2 Testing
More specifically we will see following:
1) Unit Tests
2) Integration Tests
3) Full-System Tests

10.5.2.1 Unit Tests
 In our example application, we have an entity which serves as an
aggregate root, in domain-driven design terms. It has a number of
properties and methods. The code for this short class is as follows:

using System;
namespace Clear Measure. Onion DevOps Architecture. Core.Model
{
public class ExpenseReport
{
public Guid Id { get; set; }
public string Title { get; set; }
public string Description { get; set; }
public ExpenseReportStatus Status { get; set; }
public string Number { get; set; }
public ExpenseReport()
{
Status = ExpenseReportStatus.Draft;
Description = "";
Title = "";
}
public string FriendlyStatus
{
get { returnGetTextForStatus(); }
}
protected string GetTextForStatus()
{
return Status.ToString();
}
public override string ToString()
{
return "ExpenseReport " + Number;
}
protected bool Equals(ExpenseReport other)
{
return Id.Equals(other.Id);
}

mu
no
tes
.in

152

public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
if (ReferenceEquals(this, obj)) return true;
if (obj.GetType() != this.GetType()) return false;
return Equals((ExpenseReport) obj);
}
public override int GetHashCode()
{
return Id.GetHashCode();
}
}
}
 There's a lot of logic here that may go wrong. We can build some unit
tests because this functionality can be tested within a single memory
space without having to call out of process to any application
dependencies.

 Some methods are used by the base class library (BCL) in a code base
where entities are placed into collections, sorted, and compared, and
exhibit a reduced return on investment for explicit unit testing. These
methods are Equals() and Get Hash Code().

 Any entity in a domain model that does not implement these will force
additional logic to figure out which attribute represents its identity in
order to determine whether two objects represent the same record.

 Most of these objects have data that is pulled from a database of some
sort. Full coverage on Equals() and Get Hash Code() normally happens
automatically as tests of business logic are written.

 And some tools such as Jet Brains Re Sharper will generate these
methods automatically, so the likelihood of defects is low unless you
handwrite them.

A unit test class for Expense Report is shown here:

using System;
using ClearMeasure.OnionDevOpsArchitecture.Core.Model;
using NUnit.Framework;
namespace ClearMeasure.OnionDevOpsArchitecture.UnitTests
{
public class ExpenseReportTester
{
[Test]
public void PropertiesShouldInitializeToProperDefaults()
{
var report = new ExpenseReport();

mu
no
tes
.in

153

Assert.That(report.Id, Is.EqualTo(Guid.Empty));
Assert.That(report.Title, Is.EqualTo(string.Empty));
Assert.That(report.Description, Is.EqualTo(string.Empty));
Assert.That(report.Status, Is.EqualTo(ExpenseReportStatus.
Draft));
Assert.That(report.Number, Is.EqualTo(null));
}
[Test]
public void ToStringShouldReturnNumber()
{
var report = new ExpenseReport();
report.Number = "456";
Assert.That(report.ToString(), Is.EqualTo("ExpenseReport 456"));
}
[Test]
public void PropertiesShouldGetAndSetValuesProperly()
{
var report = new ExpenseReport();
Guidguid = Guid.NewGuid();
report.Id = guid;
report.Title = "Title";
report.Description = "Description";
report.Status = ExpenseReportStatus.Approved;
report.Number = "Number";
Assert.That(report.Id, Is.EqualTo(guid));
Assert.That(report.Title, Is.EqualTo("Title"));
Assert.That(report.Description, Is.EqualTo("Description"));
Assert.That(report.Status,
Is.EqualTo(ExpenseReportStatus.Approved));
Assert.That(report.Number, Is.EqualTo("Number"));
}
[Test]
public void ShouldShowFriendlyStatusValuesAsStrings()
{
var report = new ExpenseReport();
report.Status = ExpenseReportStatus.Submitted;
Assert.That(report.FriendlyStatus, Is.EqualTo("Submitted"));
}
}
}

mu
no
tes
.in

154

 As you read through this code file, you'll see that each test verifies that
a piece of logic functions correctly while keeping the rest of the code
running. Unit tests built in this manner run instantly, with thousands of
them running in seconds.

10.5.2.2 Integration Tests
• Our Expense Report object is persisted, through Entity Framework
Core, to a SQL Server database. In order to validate that the expense
report class can be hydrated from data inSQL Server, we need a test
that puts several layers together:

1) The domain model itself, containing the expense report class
2) The Entity Framework Core mapping configuration
3) The data access logic, specifying the query to run
4) The SQL Server schema, which contains the DDL (data definition
language) for the Expense Report table

• These tests are usually simple to construct, but they are extremely
critical. You will discover defects if you don't have them, and you will
waste time debugging through these four layers to find the problem.

• If all of your database-backed classesare equipped with persistence-
level integration tests, you will seldom find yourself in adebugging
session for a problem in this area.

• We have seen the expense report class. The next class to examine is
the Entity Framework Core mapping configuration, which is
comprised of the data context class and a mapping class. The data
context class is as follows:

using ClearMeasure.OnionDevOpsArchitecture.Core;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Diagnostics;
namespace
ClearMeasure.OnionDevOpsArchitecture.DataAccess.Mappings
{
public class DataContext :DbContext
{
private readonlyIDataConfiguration _config;
public DataContext(IDataConfiguration config)
{
_config = config;
}
protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
{
optionsBuilder.EnableSensitiveDataLogging();
var connectionString = _config.GetConnectionString();

mu
no
tes
.in

155

optionsBuilder
.UseSqlServer(connectionString)
.ConfigureWarnings(warnings =>
warnings.
Throw(RelationalEventId.QueryClientEvaluationWarning));
base.OnConfiguring(optionsBuilder);
}
protected override void OnModelCreating(ModelBuildermodelBuilder)
{
new ExpenseReportMap().Map(modelBuilder);
}
}
}

• In our example application, we have one aggregate root, so in our On
Model Creating class, we include one “Map” class. We use this pattern
so that as we accumulate hundreds mapped entities, each has its own
class rather than bloating the single Data Context class:

using System;
using ClearMeasure.OnionDevOpsArchitecture.Core.Model;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;
using Microsoft.EntityFrameworkCore.ValueGeneration;
namespace
ClearMeasure.OnionDevOpsArchitecture.DataAccess.Mappings
{
public class ExpenseReportMap :IEntityFrameworkMapping
{
public EntityTypeBuilderMap(ModelBuildermodelBuilder)
{
var mapping = modelBuilder.Entity<ExpenseReport>();
mapping.UsePropertyAccessMode(PropertyAccessMode.Field);
mapping.HasKey(x =>x.Id);
mapping.Property(x =>x.Id).IsRequired()
.HasValueGenerator<SequentialGuidValueGenerator>()
.ValueGeneratedOnAdd()
.HasDefaultValue(Guid.Empty);
mapping.Property(x =>x.Number).IsRequired().HasMaxLength(10);
mapping.Property(x =>x.Title).HasMaxLength(200);
mapping.Property(x =>x.Description).HasMaxLength(4000);
mapping.Property(x =>x.Status).HasMaxLength(3)

mu
no
tes
.in

156

.HasConversion(status =>status.Code
, s =>ExpenseReportStatus.FromCode(s));
return mapping;
}
}
}

• Rather than rely on defaults, which tend to change, our map class
specifies howto map each property. Choosing to be explicit in this
fashion also lowers the bar fordevelopers understanding what is going
on. Each developer will have a different level ofmemorization for what
Entity Framework Core’s default behavior is.

• Our ExpenseReport table looks like the following:

CREATE TABLE [dbo].[ExpenseReport] (
[Id] UNIQUEIDENTIFIER NOT NULL,
[Number] NVARCHAR (10) NOT NULL,
[Title] NVARCHAR (200) NULL,
[Description] NVARCHAR (4000) NULL,
[Status] NCHAR (3) NOT NULL
);

• With four different layers of code running across two different
processes, most of the time across a network on different servers, you
should see the importance of an automated test ensuring the stability of
the integration of these layers. Our integration test to validate
persistence logic is here:

using ClearMeasure.OnionDevOpsArchitecture.Core.Model;
using NUnit.Framework;
using Shouldly;
namespace
ClearMeasure.OnionDevOpsArchitecture.IntegrationTests.DataAccess.
Mappings
{
public class ExpenseReportMappingTester
{
[Test]
public void ShouldPersist()
{
new DatabaseTester().Clean();
var report = new ExpenseReport
{
Title = "TestExpense",
Description = "This is an expense",

mu
no
tes
.in

157

Number = "123",
Status = ExpenseReportStatus.Cancelled
};

using (var context = new StubbedDataContextFactory().
GetContext())
{
context.Add(report);
context.SaveChanges();
}
Expense Report rehydrated Expense Report;
using (var context = new Stubbed Data Context Factory().
Get Context())
{
rehydrated Expense Report = context
.Find<Expense Report>(report.Id);
}
rehydrated Expense Report.Title.Should Be (report.Title);
rehydrated Expense Report. Description. ShouldBe(report.
Description);
rehydratedExpenseReport.Number.ShouldBe(report.Number);
rehydratedExpenseReport.Status.ShouldBe(report.Status);
}
}
}

• This integration test technique can be applied to any class that has to
be persisted to a database using an object-relational mapper. The most
basic scenario is to send an object to the database via the ORM, clear
memory, and then query again to populate the object.

• The call to Database Tester. Clean() represents a helper that can
remove all records from all tables in the database in the order of
foreign key dependencies.

• In integration tests involving a database, each test is responsible for
putting the database in a known state. In many cases, it can be
appropriate to run a test starting with no records in the database.

10.5.2.3 Full-System Tests
 Full-system tests and acceptance criteria implementation should start
at the application's external interfaces.

 If the feature in question is a web service, the test should call the web
service and execute setup. The test should navigate to and use the user
interface screen if the interface is a user interface screen. The test
should create an Excel file and set it in the correct file directory to be

mu
no
tes
.in

158

processed if the interface is file ingestion of a bespoke Excel file for
data import.

 For a simple form-based login screen, a Selenium test might look
similar to the following:

[Test]
public void ShouldLoginAndLogOut()
{
Driver.Navigate().GoToUrl(AppUrl);
var login = Driver.FindElement(
By.XPath("//button[contains(text(), 'Log In')]"));
login.Click();
Driver.Title.ShouldStartWith("Home Page");
var logout = Driver.FindElement(By.LinkText("Logout"));
logout.Click();
Driver.Title.ShouldStartWith("Login");
}

 Driver is a property in this case that refers to the Selenium Driver
class, which wraps a model of the web page being seen by the browser.
These tests can run on any machine where the executing identity has
the ability to initiate and control a web browser instance.

 Because full-system tests must be conducted against a fully deployed
environment, the CI build process must package the test suite and
deploy it alongside the application components in the TDD
environment.

10.5.3 Inspections
 A pull request in Azure Repos or GitHub is ideal for facilitating a code
review.

 Here's an example of a flow in Azure Repos. We begin with a feature
branch that is ready to be merged. The pull request is created by the
developer.

 The developer must start the description with a markdown task list that
contains all of the inspection procedures. This can be retrieved from a
wiki or a markdown file stored on your computer.
mu
no
tes
.in

159

Figure10-9 Pull request that executes a multistep inspection

 As the items are inspected, the approver can check them off. When a
task fails, the comments can be used to deny the pull request.

 To fix the problem, more commits might be added to the branch. The
submitter can then request that the inspector take another look using
the comments in the pull request.

 The inspector authorises the pull request and merges the branch once it
fulfils all of the inspection criteria.

 In Azure Repos, the checklist, as well as the entire dialogue required
to fix any errors, is completely documented.

SUMMARY

In this chapter you learnt how to structure your code. You’ve learnt
how to set up each type, as well as the structure of a build. You've seen
how a build flow differs between a feature branch and a master branch.
You've also learned how to develop a.NET Core solution using Azure
Pipelines. You’ve also learned three of the industry's most effective
critical defect removal techniques. Static analysis, several levels of testing,
and the notion and execution of inspections have all been discussed.

mu
no
tes
.in

160

REVIEW QUESTIONS

THEORY QESTIONS

1. Explain the structure of build.

2. Explain flow of a build on feature branch.

3. Explain the flow of build on master branch.

OR
Explain life cycle of a master branch build.

4. Explain the various steps of build.

OR
Explain the types of activities that are common in both private and CI
build

5. Explain 4 steps of continuous delivery.

6. Explain 3 defect removal techniques.

OR
Explain any one defect removal technique

7. Explain standard swim lanes for a measurable DevOps process.

8. Explain Categories of automated testing.

9. Explain implementation defect detection of static analysis, testing and
inspection (Any one).

MULTIPLE CHOICE QESTIONS

1. _____ build runs only on the developer’s workstation.
a) Public b) Integration c) Private d) Protected

2. _____ build runs only on the shared server.
a) Public b) Integration c) Private d) Protected

3. After the pull request is approved, your branch is automatically
merged into _______.
a) Slave b) Centre c) Master d) User

4. Full form of CI is _______.
a) Continuous Integrated b) Continuous Integrating
c) Continuous Integrate d) Continuous Integration

5. ______ build runs on shared build infrastructure
a) Private b) CI c) Integration d) Public

mu
no
tes
.in

161

6. ______ step will execute the process, run the same code, start a
procedure etc.

a) Act b) Arrange c) Assert d) Action

7. ______ step converts the source file into assemblies and performs any
encoding, translation, reduction etc.

a) Start b) Unit Test c) Migrate Database d) Compile

8. ______ tests ensure that the various components of the application can
be integrated with each other.

a) Integration b) Unit c) Acceptance d)User Acceptance

9. In _____ stage, the private build and continuous integration build are
included.
a) Release b) Commit c) Compile d) Start

10. In _____ stage, your marketplace provides feedback on the value you
created for them.
a) Release b) Commit c) Compile d) Start

11. Full form of DRE is _________.
a) Debug Removal Efficiency
b) Defect Removal Efficiency
c) Debug Removal Efficient
d) Defect Removal Efficient

12.Which of the following is not a defect removal technique?
a) Testing b) Execution c) Static Analysis d) Inspection

13. The automatic evaluation of source file in order to determine defects is
known as _______.
a) Dynamic Analysis b) Parallel Analysis
c) Static Analysis d) Serial Analysis

14. _______ is the process of accessing a system or its components with
goal of determining whether or not it meets the specified requirements.
a) Execution b) Production c) Coding d) Testing

15. _______ tests are testing user scenarios with the fully deployed system
online.

a) Unit b) Integration c) Full System d) Specialized

16. The average execution time of unit tests should be between ___ And
____ milliseconds.
a) 50,60 b) 40,70 c) 50,70 d) 40,50

17. _____ tests should be able to execute on both the developer’s
computer and the build server.

a) Integration b) Unit c) Full System d) Specialized

mu
no
tes
.in

162

18. ______ testing is to ensure that modules/components perform as
intended when they are combined.

a) Unit b) Full System c) Integration d) Specialized

19.According to Microsoft, L1 test should take less than ___
second/seconds to complete.
a) 1 b) 3 c) 5 d) 2

20. _____ tests are subset of specified test scenarios for each product
feature.
a) Unit b) Full System c) Integration d) Specialized

21. _____ tests should run in the context of an identity and run the entire
application just as the normal user.
a) Unit b) Full System c) Integration d) Specialized

22. Inspections are done ____
a) Manually b) Automatically c) Serially d) Locally

23. _______ is a standardised procedure in which human examines a work
product using the same checklist and criteria as all other work
products.

a) Execution b) Inspection c) Coding d) Production

REFERENCES

 Duvall, P. M. (2007). Continuous Integration: Improving Software
Quality and Reducing Risk. Addison Wesley.

 Jeffrey Palermo. .NET DevOps for Azure a Developer’s Guide to
DevOps Architecture the Right Way, Apress (2019)

mu
no
tes
.in

163

11
RELEASE CANDIDATE CREATION

Unit Structure :

11.0 Objective
11.1 Introduction
11.2 Designing Your Release Candidate Architecture

11.2.1 Creating and Using Release Candidate Packages
11.2.2 Defining the Bounds of a Package

11.3 Azure Artifacts Workflow for Release Candidates
11.3.1 Specifying How Packages are created
11.3.2 Use Release Candidate Packages in Deployment
Summary
Review Questions
Theory Questions
Multiple Choice Questions
References

11.0 OBJECTIVE

In this chapter you will learn the following concepts:
 How to create and use release candidate packages
 Specifying how packages are created
 How to use release candidate packages in deployment

11.1 INTRODUCTION

Internally, a Release Candidate (RC) build is released to see if any
serious bugs were introduced into the code during the previous
development phase. Release candidates are strictly for testing reasons and
should not be used in production. This chapter focuses on the key
elements you'll need to create and configure to turn a build into a
versioned release candidate that can be deployed to downstream
environments. This chapter will also cover the principles involved, the
model and relationships of packages to the software architecture, and the
process for storing and using packages.

11.2 DESIGNING YOUR RELEASE CANDIDATE
ARCHITECTURE

You must examine the logical and physical layers of your 4+1
architecture (The 4+1 view model is used to "describe the structure of

mu
no
tes
.in

164

software-intensive systems using several, concurrent views.")and identify
the unit of deployment in order to establish the architecture for your
release candidate packages.

There are the following rules of thumb for release candidate
packages:
1. Build/package once, deploy many:
 If the continuous integration build succeeds, a set of release candidate
packages will be packaged. These packages should be able to be
deployed in any environment, including production.

 Do not configure branches or builds in such a way that each
environment is built independently.

 We compile and package once so that every subsequent action in our
DevOps pipeline verifies the release candidate's suitability for release
to our production environment users.

 When a defect is identified, the release candidate loses its ability to be
released.

 We can be confident that a release candidate has passed through our
entire pipeline and is ready for our users.

2. One package per runtime component:
 A release candidate is typically made up of a collection of packages
(For example, NuGet packages for our.NET apps).

 A package is made up of each runtime component in our physical
architectural layer. That is, our complete website is contained within a
NuGet package.

 Our SQL Server database schema and migration scripts, for example,
are packaged separately as a NuGet package.

3. Use the NuGet package format:
 While anyone can create a new package format, it's best to go with an
industry standard that includes tools like viewers.

 A.*.nupkg file is the.NET package format (pronounced NUPKEG).
 While you could technically use a.zip file to store your files, you're
better suited choosing a platform-specific format.

 Similarly, you would use the.*.npm package format if you were
developing a NodeJS application.

4. Embed the build number as the release candidate version:
 Build numbers are assigned automatically based on the format you
specify.

 Ensure that the build number is applied to each package in your release
candidate.

 If you're using build 3.4.352, all of the release candidate's NuGet
packages should be labelled 3.4.352.

 This ensures that you always know which release candidate is being
tested and which build created it, regardless of the environment.

mu
no
tes
.in

165

5. Package only application artifacts:
 Make sure you don't include any environment-specific files or
configuration in your package.

 Each application component package should contain content that is
suitable for deployment in any environment.

 Global configuration is appropriate, but any configuration that varies
by environment should be applied at deploy time instead of package
time.

11.2.1 Creating and Using Release Candidate Packages

The following figure 11-1 shows the sequence of events in our DevOps
Pipeline:

Explanation:

Figure 11-1: Release candidate packages are the bridge between a
build and deployment

 The CI build generates release candidate packages, which are then
used by the deployment configuration.

 Regardless of the number of runtime components in your application,
Azure Pipelines will provide you with a single continuous integration
build.

 You'll only have one build for a single Git repository containing a
Visual Studio solution. Upon completion of all stages, that build

mu
no
tes
.in

166

should package your application for deployment as a group of NuGet
packages.

 The build configuration should push the release candidate into Azure
Artifacts once it has been packaged.

 For your team, Azure Artifacts has a built-in NuGet package.
 The CI build finishes and reports success after the release candidate
packages have been pushed. The build should fail if the release
candidate cannot be packaged or stored.

 The deployment process will begin with the retrieval of the NuGet
packages for the release candidate in each of the downstream
environments (TDD, UAT, and Prod).

 This process will retrieve the packages from the NuGet feed hosted in
Azure Artifacts, extract them, and use the contents to deploy your
application.

 For deployment to each environment, the same packages that make up
a single release candidate should be used.

11.2.2 Defining the Bounds of a Package
There are multiple runtime components in most applications. As a

result, there should be more than one NuGet package in the set of
packages that make up a release candidate.

The following figure 11-2 shows that each part of your application that is
deployed a specific way should be packaged separately

Figure 11-2: Each runtime component of the application should have its
own package

mu
no
tes
.in

167

Explanation:

 Consider the following scenario: an application with three
deployable components.

1. The first component is an ASP.NET web application. It can be
installed on a web server or in Azure App Service.

2. The second component is an off-line job. A batch job or a handler
service listening to a queue, for example. These are common, and
they're typically deployed as Windows services, Azure Functions, or
WebJobs.

3. A SQL Server database is the third component. We must deploy
schema and global data modifications whether on-premises or in
Azure SQL.

 Because each of these three application components runs in its own
memory area and in its own process, they have different deployment
characteristics.

 The deployment location is not the same. As a result, each should be
packaged separately in a NuGet package.

 This allows each to be delivered to the most appropriate location while
maintaining flexibility.

 While all three components may technically be installed on the same
server, they could also be installed on different servers.

 In fact, the web application ASP.NET UI might be deployed over
several servers in a web farm or across multiple Azure regions.

 The structure of your release candidate packages should correspond to
the physical architecture of the application's running components,
disregarding the server environment's topology.

 You will always have some additional assets that go along with the
release candidate in addition to each application component. These
assets aren't meant to be used in production; they're only there to
verify the release candidate.

 “Acceptance Tests” are illustrated in above Figure11-2. This is
represented in Visual Studio as a project, most likely NUnit or another
testing framework.

 If the application is a web application, the Visual Studio project's tests
will always use Selenium to test the entire deployed application.
Because a fully deployed application is required, these tests are
attached to the application's version; as a result, they belong to a
specific release candidate and must be packaged and deployed with the
other components.

 The acceptance test package will be downloaded and installed on a
deployment server when the application has been properly deployed.

mu
no
tes
.in

168

 The tests are then executed against the deployed release candidate in
the TDD environment.

 In this way, we can packaged more assets to improve the robustness of
our DevOps pipeline, allowing it to detect a higher percentage of
errors before moving the release candidate to the next downstream
environment.

11.3 AZURE ARTIFACTS WORKFLOW FOR RELEASE
CANDIDATES

 You may develop and share npm, NuGet package feeds from public
and private sources with teams of any size using Azure Artifacts.

 With a single click, you can integrate fully integrated package
management into your continuous integration/continuous delivery
(CI/CD) pipelines.

 It is an extension to Azure DevOps Services and Azure DevOps Server

 Azure Artifacts is a stand-alone product that works in conjunction with
Azure Pipelines.

 It's the service that stores the release candidate components that the
continuous integration build generates.

 We'll be packaging an application with three deployable components
that are all developed and versioned together:

i. Web site user interface (UI)

ii. Off-line job

iii. Database

 This application also contains acceptance tests that will be packaged
and deployed in addition to these application components.

 We must package and save the version of the acceptance tests that
belong to this version of the application in order to execute them
against our application in the TDD environment. There must be a
match between the version numbers.

 Your code gets access to the right version number because it is now
encoded in every assembly.

 You'll use the version number to determine whether a defect or bug
existed in a previous or current version. You're flying blind without the
version number.

11.3.1 Specifying How Packages are created
The following figure 11-3 shows our Power Shell build script is

stored at the top of the Git repository and is named build.ps1

mu
no
tes
.in

169

 Packaging is not required when executing our private build on a local
workstation, but when this script is run as part of a CI build, packaging
is the last step before the build should succeed.

 This PowerShell function is responsible for creating NuGet packages
for the projects.

Function Pack{
Write-Output "Packaging nuget packages"
exec{
&dotnet publish $uiProjectPath -nologo --no-restore --no-build
-v $verbosity --configuration $projectConfig
}
exec{
& .\tools\octopack\Octo.exe pack --id "$projectName.UI"
--version $version
--basePath $uiProjectPath\bin\$projectConfig\$framework\publish
--outFolder $build_dir --overwrite
}
exec{
& .\tools\octopack\Octo.exe pack --id "$projectName.Database"
--version $version --basePath $databaseProjectPath
--outFolder $build_dir --overwrite
}
exec{
&dotnet publish $jobProjectPath -nologo --no-restore --no-build
-v $verbosity --configuration $projectConfig
}
exec{
& .\tools\octopack\Octo.exe pack --id "$projectName.Job"
--version $version
--basePath $jobProjectPath\bin\$projectConfig\$framework\publish
--outFolder $build_dir --overwrite
}

mu
no
tes
.in

170

 We have four NuGet packages because we have four components to
deploy. I’m using the Octo.exe tool, as you can see.

 The full name is OctoPack, and it's an open source wrapper for NuGet
that you can discover on GitHub.

 Before being adopted for application packaging, Nu Get was created
as a package format for library dependencies.

 We may configure Azure Pipelines using the preceding Power Shell in
our build script, as illustrated in following figure 11-4:

Figure 11-4 Azure Pipelines calls the build script stored in Git in order to
minimize the global step configuration

 In above figure 11-4 notice that in the build.ps1 file, you'll notice that
the "CIBuild" function is used. The following is the function:

Function CIBuild {
Init
MigrateDatabaseRemote
Compile
UnitTests
IntegrationTest
Pack

}
 The last function to be called is Pack. After that, our "NuGet push"
build step places the NuGet packages in the Azure Artifacts services,
making them available to any other process that accesses the NuGet
feed.

 We can perform the database migration process from whatever server
we want because we have the database migration tool and the full set
of scripts.

11.3.2 Use Release Candidate Packages in Deployment
The following Figure 11-5 shows how a build or release
configuration can obtain a NuGet package from Azure Artifacts.

mu
no
tes
.in

171

Figure 11-5 Review of how environment deployments call out to Azure
Artifacts to obtain packages

Explanation:

 If you're using TDD, you'll need to deploy the entire application first,
then pull and install the Acceptance Tests package to run the tests.

 Acceptance Tests is only found in the TDD environment. If you need
to run other forms of test suites in a fully deployed environment, you'll
follow the same approach of packaging them as a package, storing
them in Azure Artifacts, and retrieving them during deployment.

 The "Download Package" step makes it simple to get our set of NuGet
packages for any release candidate.

 This step fetches and extracts the NuGet package from the destination
directory of the server that is used as the agent, whether it is a hosted
agent or your own private agent, because a NuGet package is
essentially a.zip file with a manifest.

SUMMARY

You learnt how to package your application as a release candidate, which
consists of a collection of NuGet packages, in this chapter. Our rules of
thumb are:

 Build once, deploy many.
 Use the build number as the official version number throughout.
 For package format, use NuGet.
 Using Azure Artifacts, archive your release candidates.
 Test suites that must run in a deployed environment are packaged.
Package and publish shared libraries through Azure Artifacts.

mu
no
tes
.in

172

REVIEW QUESTIONS

THEORY QESTIONS

1. Explain the rules of thumb for release candidate packages.

2. How to create and use release candidate packages? Explain

OR
Explain the sequence of events in DevOps Pipeline.

3. How to define the bounds of a package? Explain

4. Explain Azure Artifacts Workflow for Release Candidates.

5. Explain how packages are created.

6. How a build or release configuration can obtain a NuGet package from
Azure Artifacts? Explain.

OR
How use release candidate package in deployment?

MULTIPLE CHOICE QESTIONS

1. _____ is typically made up of collection of packages.

a) Release Client b) Super User

c) Release Customer d) Release Candidate

2. A _____ file is a .NET package format

a) .* nupkg b) .nupkg c) * nupkg d) nupkg

3. ______ generates release candidate package, which are then used by
the deployment configuration

a) Private Build b) Public Build
c) CI Build d) Protected Build

4. Which of the following is not an application deployable component?

a) Oracle Server Database b) ASP.NET Web Application

c) Off-line Job d) SQL Server Database

5. ______ test is only found in the TDD environment

a) Integration b) Unit c) Acceptanced) Full-System

mu
no
tes
.in

173

REFERENCES

 Duvall, P. M. (2007). Continuous Integration: Improving Software
Quality and Reducing Risk. Addison Wesley.

 Jeffrey Palermo. .NET DevOps for Azure a Developer’s Guide to
DevOps Architecture the Right Way, Apress (2019)

 Retrieved from New Signature: https://newsignature.com/articles/all-
about-azure-artifacts/

 Retrieved from Azure Info Hub:
https://azureinfohub.azurewebsites.net/Service?serviceTitle=Azure%2
0Artifacts

 Retrieved from Tutorials Point:
https://www.tutorialspoint.com/software_testing_dictionary/release_ca
ndidate.htm



mu
no
tes
.in

174

12
DEPLOYING, OPERATING AND
MONITORING THE RELEASE

Unit Structure :

12.0 Objectives
12.1 Introduction
12.2 Designing Your Deployment Pipeline

12.2.1 Determining Environments
12.2.2 Assigning Validation Steps to Environments
12.2.3 Deploying Data Changes across Environments
12.2.4 Choosing Your Runtime Architecture

12.3 Implementing the Deployment in Azure Pipelines
12.3.1 Deploying an Application Component
12.3.2 Running Test Suites Using a Release Configuration
12.3.3 Differences in the UAT and Production Environments

12.4 Operating and Monitoring the Release
12.4.1 Principles
12.4.2 Architecture for Observability
12.4.3 Jumpstarting Observability
Summary
Review Questions
Theory Questions
Multiple Choice Questions
References

12.0 OBJECTIVES

In this chapter you will learn the following concepts:
 Deployment pipeline's design model
 The various types of environments that can be configured within.
 The various types of activities necessary during deployment.

12.1 INTRODUCTION

This chapter mainly introduces the model for designing your
deployment pipeline, the types of environments to configure within it, and
the types of activities required during deployment. You will also learn
about the many types of data that can be deployed or provisioned with a

mu
no
tes
.in

175

deployment, as well as the various Azure alternatives for running code in
Azure PaaS services or elsewhere. Finally, you will observe the many
touch points in the release configuration, such as the effect of variables on
the deployment steps' execution. It also focuses the entire DevOps process
on .NET for Azure.

12.2 DESIGNING YOUR DEPLOYMENT PIPELINE

 You must decide how many environments to configure and the
difference between them in order to define the proper structure of your
deployment pipeline.

 There are following some principles that will guide those decisions:

1. Build one, deploy many:
 Regardless of how many environments you have, you'll deploy the
same release candidate, which is generated from a single continuous
integration build, several times, at least once per environment type.

 Once a version has entered deployment processes, do not rebuild or
recompile from source.

 Consider the release candidate dead if there is an issue somewhere, fix
the problem, and switch to a different versioned release candidate.

2. Do nothing on production for the first time:
 Design the deployment pipeline so that each unique activity in your
deployment is tested in at least one pre-production environment before
being run in production.

 For example, if your production environment is based on a web farm
with multiple batch job servers and a huge SQL Server cluster, single-
server configurations in all pre-production settings are not
recommended.

 After the release candidate has been packaged by the continuous
integration build, no files destined for production should be generated
or altered.

 At the end of the CI build, put everything needed for production
deployment into the release candidate packages.

 If you notice that something is missing, stop the line, add the missing
element to the code base, and let the CI build package up a new release
candidate that includes everything.

3. Shift left on pipeline capabilities:
 Push logic into script files stored in the application's Git repository
when deploying application components and configuring settings and
data.

 While the CI build configuration and deployment stages allow for the
execution of scripts saved in any location, this strategy introduces
global and temporal dependencies.

 As many commands, scripts, and logic as possible should be sourced
from the Git repository and the packages that make up the release
candidate that is being deployed.

mu
no
tes
.in

176

12.2.1 Determining Environments
 Server environments are referred to by many different terms in our
industry. Everyone has the ability to produce. The following are some
other applications:

 Local
 Sandbox
 Dev
 Integration
 Test
 User
 UAT
 QA
 QC
 Acceptance
 Staging
 While no standard exists, development, testing, staging, and
production appear to be the most well-known pre-cloud services.

 In a DevOps environment, the team will always have at least three (3)
deployed environments.

 The following table shows the 3 different types of environments in a
DevOps Pipeline

 The above table shows the 3 types of environments that you will
require when designing your deployment pipeline.

 Production is something that everyone is familiar with. It exists for the
benefit of the people who benefit from your software.

mu
no
tes
.in

177

 Any form of manual testing should be done in the next environment
before production. We'll call it user acceptance testing (UAT) because
it's more about the users than the engineering team.

 Finally, we have a dedicated environment for all types of automated
verification. We call it the TDD environment, short for test-driven
development, to avoid confusion with other environment names that
have been used in the past.

 Humans are not permitted in the TDD environment. If a human
attempted to use this environment, they would discover that it was
being created and destroyed at a rate that made any useful use
impossible.

 Let's look at some examples of how to decide how many of each type
to choose.

 Production
You can either provide a dedicated production environment for each
customer or have all of your customers use a single production
environment in the case of production.

 UAT
If your company is tiny, you can have just single manual verification
environment. Alternatively, you may have several separate user or
stakeholder groups who would benefit from having their own dedicated
environment so that they may select when to accept the next release
candidate that is available.

 TDD
 This kind of environment is suitable for fully automated construction
and destruction.

 Every successful build should result in a new deployment to this
environment.

 Because you may have numerous feature branches active at the same
time, your CI build should be parallelizable - that is, multiple builds
should be running simultaneously, one for each active branch.

 Because each build triggers a deployment to this environment type,
you can construct numerous instances of it at once.

 If you and a colleague both commit changes to your feature branch at
the same time, for example, you want the build, packaging, and
deployment to your TDD environment to happen promptly without
having to wait on your colleague.

 This is accomplished by having the environment's name parameterized
by your build or branch, as well as establishing a TDD environment
object devoted to your build. The environment is then deleted after
your acceptance tests have completed (pass or fail).

12.2.2 Assigning Validation Steps to Environments
 You decide how many actual environments to include in your DevOps
pipeline.

mu
no
tes
.in

178

 You'll never have less than three, but you might have more depending
on how many of each type you choose.

 It is also up to you to decide which environments should be placed in
series and which should be placed in parallel.

 If two stakeholder groups, for example, require their separate unique
UAT (manual verification) environment, you can determine that they
can each receive the new release candidate at the same time and
validate it in parallel.

 In this case, you'd create two environments (or keep one around for a
permanently) and deploy to each of them at the same time.

 Before deploying to production, you would wait until each group had
validated the release candidate.

 The following table shows each environment type is built for different
deploy and validation steps

 We execute fewer steps as we go from automated validation (TDD) to
manual validation (UAT) to production.

 The flow through the environments is designed to front-load as many
validation checks as necessary in order to detect errors as quickly as
possible.

 “Shift left” is a value statement that has grown in popularity in the
DevOps community.

 The purpose of Shift Left is to create a process that finds as many
errors as possible early in the process.

 When you need to recreate the environment or reload test data, the
UAT environment includes certain on-demand options, but we'll
always need to deploy the new version of the application and migrate
the database.

mu
no
tes
.in

179

12.2.3 Deploying Data Changes across Environments
 In DevOps, the database provides some unique challenges.
 There is no state in application components. They are easily
destructible and reassembled.

 Data must be stored for years in storage components.
 The same concepts and principles apply to any data storage, whether
it's a relational database engine, blobs, tables, json collections, or
simply a directory of files on a network share, when we discuss about
"the database."

 This data must be protected and maintained across a large number of
application component deployments.

 While maintaining the database's integrity, the schema, or the structure
within which the data is organized, must be upgraded and updated on a
regular basis.

 The following figure 12-1shows different types of data to be managed
in DevOps environment:

Figure 12-1: Each of the four unique types of data is managed in
different ways

 All data and data concerns in a software system can be divided into
four categories. In our DevOps pipeline, we manage these categories
differently. They are as follows:

1. Schema
 The software system owns the schema, or data structure, and it should
be consistent across all environments.

 This contains stored procedures, views, indexes, functions, and other
SQL Server objects. Versioning and storing the schema with the
application code is recommended.

mu
no
tes
.in

180

2. Schema data
 This data is part of your schema's architecture and should be consistent
across environments.

 Standard lists, for example, fall within this category.
 These lists can be used to create drop-down boxes in your software.
Mr., Mrs., and other common name prefixes are a good example.
During the development process, these are defined.

 This schema data should be created and deployed concurrently with
schema updates, and it should be saved in the same version control
system as the application code.

3. Configuration data
 The environment owns the configuration data. It should not be saved
with the application code because it may vary depending on the
environment.

 Some of it, such as passwords, tokens, and credentials, may be
sensitive. An XML or JSON configuration file may contain some of
this configuration data. Other configuration information could be
saved in a database table.

 The data's nature does not change as a result of its storage location, nor
does it change from one environment to the next. As a result, it should
be deployed in the environment at the same time as the application and
database.

 Whether it's putting a string into an XML file or inserting a record into
a SQL Server database table, the automated deployment process
should handle the process of getting the configuration data for the
environment and properly deploying it.

4. Administrative data
 The organization that supports the environment owns the
administrative data.

 Top-level user accounts or customer header records are two examples
of this.

 In many applications, if there isn't even a single user account record,
the software won't be able to do anything. To enable functions to light
up, at the very least, a global administrator record may be required.

 Administrative data can, but does not have to, differ by environment.
 It may be the same in two environments but different in another since
it is determined by the organization that supports the environment.

 Because this data is likely to contain credentials, it should be deployed
to the environment automatically and not maintained with the
application code.

5. User data
 The users who create the data are the owners of the data. It differs
from one environment to another.

 This is the type of information with which you are most familiar. As
more people utilise the system, it continues to expand and change.

mu
no
tes
.in

181

 It should be maintained over from deployment to deployment. The
integrity of user data is secured by all automatic database migration
processes and tools.

12.2.4 Choosing Your Runtime Architecture

The logical architecture of application as shown in following figure
12-2:

Figure 12-2: The Logical Architecture of Application

 At its most basic level, our application consists of three logical
components, as well as an acceptance test suite that must be deployed
in some way in order to run against the application in a TDD
environment.

 When it comes to designing an appropriate environment with this
application, we have a lot of alternatives, as shown in the following
figure 12-3

mu
no
tes
.in

182

Figure 12-3: Each application can be deployed on a spectrum of
environment types

Explanation:

 As seen in above figure there are various options are available to
deploying our application. The left-hand side options provide us more
control, but they also come with more responsibility and maintenance.

 The options towards the right side limit the scope of computing
resources that we can manage, but they also relives us of more
responsibility and maintenance.

 We are responsible for less maintenance because we control less of the
computing environment.

 As the options move to the right, your application will have fewer
APIs and resources available.

 For example, if your web application, utilizes a custom font to display
a screen, it will be incompatible with Azure App Services, which do
not support font installation on the underlying servers. However, if
your application just uses APIs available in that environment, it's the
most low-maintenance option to run your web app and off-line job.

 We've already determined that we won't be installing physical servers
in a cabinet in our own data centre, but that option would work
perfectly for our application.

 We could work out a deal with a local hosting company to have some
virtual servers set up for us. We'd also set up several virtual machines
on Azure.

 We'd probably set up a few web servers, one or more servers for the
off-line task, and a SQL Server cluster for the database. While our
acceptance test suite is running, we can probably use any server to host
it.

 We can use containers or PaaS (Platform as a Service) in Azure if we
don't want to operate a server operating system. Windows containers
are developing, but they still have certain issues. If you're targeting
Linux with your.NET Core applications, Linux containers are a better
solution.

 PaaS services, such as Azure App Services, go even further than
containers. Web applications, off-line jobs, and a container image can
all be hosted on these servers.

mu
no
tes
.in

183

The following figure 12-4 shows the physical architecture has been
specified for our application:

Figure 12-4: Physical architecture has been specified for our application

Explanation:

 For the ASP.NET UI, which is a web application, we've used Azure
App Services.

 The off-line job will be hosted in App Services and delivered as an
Azure Function.

 Azure's SQL database service will host the SQL Server database.
 The acceptance tests will be deployed to the Azure Pipelines hosted
agent.
From there, the tests can execute.

12.3 IMPLEMENTING THE DEPLOYMENT IN AZURE
PIPELINES

In this topic we extend our pipeline from CI build and configure
deployments across 3 environments.

The following figure12-5 shows the overview after it has been
correctly configured.

mu
no
tes
.in

184

Figure 12-5: Our release configuration contains three environments and is
triggered from the CI build

There are 4 key parts to our pipeline’s release configuration. They are as
follows:

1. Artifacts:
The release must be aware of the artifacts that are available to it. The tool
has various options, but this is where you'll specify the build configuration
that represents your application's CI build. You'll set up the release to start
automatically whenever that build is completed.

2. TDD stage:
Multiple stages can be present in the release, which might be sequential,
parallel, or both. For any of your apps, this is the smallest, shortest
pipeline you'll have. The TDD stage corresponds to the fully automated
TDD environment where your automated full-system acceptance tests run.

3. UAT stage:
The deployment of the application to the UAT environment is represented
by the UAT stage.

4. Prod stage:
The deployment of the application to the Production environment is
represented by the Prod stage.

After that, we'll move over each of the screens that require some sort
of configuration.

mu
no
tes
.in

185

1. Artifact

Figure 12-6:Specify the CI build that will be triggering the release
 The settings needed to wire up a CI build with an auto-triggered
release are shown in above Figure 12-6.

 Use the default version of “Latest” to ensure that your release
configuration works with any build from any active branch.

 You can keep a single CI build setup and a single release configuration
this way.

 Two important settings can be found on the build artifact’s
property page:

1. Enable creating a release every time a new build is available.
2. Build branch filters setting: In that the drop-down menu appear, Put
the mouse pointer in it and type an asterisk (*). This ensures that
builds from all branches will cause the release to be triggered.

 This is required in order to perform acceptance tests and deploy the
pipeline to the TDD environment.

 As shown in the following Figure 12-7, each stage/environment also
includes branch filters to prevent branch-based release candidates from
proceeding further down the pipeline.

mu
no
tes
.in

186

Figure 12-7: Enable continuous deployment to automatically trigger the
release

2. TDD

 Leave all of the settings for the TDD environment at their defaults, and
ensure that it triggers automatically after release.

 You only need to change this setting. Leave the default alone unless
you have a reason to change them. Azure Pipelines contains filters and
distinct logic points in several places.

 Because our application contains three bundled components, you'll
need to configure the TDD environment in three sections. The website,
the offline job, and the SQL database are all in place.

 This section gets the NuGet package for the application component
you're installing. It correctly extracts and install that component before
moving on to the next.

 Finally, you run the health check, which calls the necessary URL or
API so that the application can run the built-in procedure that verifies
that everything is started and online.

Multiple "jobs" can be configured for each stage (think environment). As
shown in the following figure 12-8, our application has a full-system
acceptance test suite that uses Selenium to control a web browser.

mu
no
tes
.in

187

Figure 12-8: The second major task for the TDD environment is to run
the acceptance tests

12.3.1 Deploying an Application Component
In this topic we’ll focus on the most difficult component of most
applications in this part. This is the SQL database. To deploy the database,
we'll need all of the necessary assets on available, as well as the ability to
establish the database in the TDD environment.

The four steps as shown in the following Figure 12-9 are responsible for
on-demand SQL database provisioning and schema creation.

Figure 12-9:The four steps that make up a provisioning and deployment
of the SQL database

1. Download Package:
 The custom properties of the Download Package task.
 This job downloads and extends the contents of the specified NuGet
package from Azure Artifacts to the provided destination directory.

 We mention the complete name of the package: Onion Dev Ops
Architecture. Database in order to get the NuGet package for the
release candidate we want.

mu
no
tes
.in

188

 After that, we must specify the version we want to obtain. We have the
current $(Build. Build Number) available in this context, so we specify
that.

2. Create the database on (Resource Group Name):
 The next step in our database deployment is to create the Azure SQL
database in our TDD environment.

 We will specify the path to the ARM (Azure Resource Manager)
template file.

 The Onion Dev Ops Architecture. Database NuGet package extracted
this file for you, so you may use it.

 This ARM template is owned by the “Database” Visual Studio project
and is stored in the Git repository.

 Some variables have been externalised as parameters in this ARM
template so that the deployment process can control the settings. The
text area "Override template parameters" can be seen.

 To make the ARM template generic and reusable across other
applications that use an Azure SQL database, we specify several of
these variables. We may control the database edition, size, and other
parameters using these variables.

3. Capture created database variables:
 This step is used to create database. We have just created a new Azure
SQL database, but we have no idea how to access it.

 Any databases must be housed in a new SQL Server database, which
must have a distinct hostname.

 We loop through the outputs of the resource group deployment from
the execution of our ARM deployment and save them as variables that
may be used in further steps of our deployment.

 In this scenario, the result will be labelled "resource Group Unique
String." As a result, we now have the server name, which we can use
to run our schema migration tool.

 The following value is used to create the variable $ (Database Server):

Data base server $ (resource Group Unique String). database.
windows. net
 This pattern is used by Azure SQL for database server hostnames. We
may now access our newly created database server after capturing this
variable.

mu
no
tes
.in

189

4. Create database schema:

This shown in the following figure 12-10

Figure 12-10. The step of our database deployment that creates the full
database schema in the TDD environment

 We take the logic that needs to run and push it into our Visual Studio
solution in this Power Shell task, which is another example of "shift
left."

 We need to make the sensitive credential saved in the $(Database
Password) variable available in order to run it.

 Environment variables are not created automatically when variables
are marked as "secret."

 Our Power Shell snippet makes it available to the current process as an
environment variable. Other variables in plain text are provided as
environment variables by default.

 The working directory is another key setting for running Power Shell
scripts that are included in your release candidate's NuGet package.

 As a result, our script will work in all of the places and environments
where it may be executed.

 We specified the working directory to be the directory where our
NuGet package was extracted, as shown in above Figure. The
authoring and maintenance of the Power Shell script are easier as a
result of this.

 Our TDD environment now has a complete SQL Server database with
the whole schema and schema data loaded due to the execution of this

mu
no
tes
.in

190

command. We now have the full connection string, which is ready to
use.

 The other components of the application follow the same pattern:
 Retrieve NuGet package
 Extract NuGet package in a working directory
 Poke any configuration variables
 Provision server/cloud environment
 Install application component
 Start application component

12.3.2 Running Test Suites Using a Release Configuration
For running test suites, we use N Unit test framework with Selenium’s
web driver through the Google chrome browser. The listing of out test
code given as below:

using System;
using System.IO;
using System.Reflection;
using ClearMeasure.OnionDevOpsArchitecture.Core.Model;
using ClearMeasure.OnionDevOpsArchitecture.IntegrationTests;
using NUnit.Framework;
using OpenQA.Selenium;
using OpenQA.Selenium.Chrome;
using Shouldly;
namespace ClearMeasure.OnionDevOpsArchitecture.AcceptanceTests
{
public class GetAllExpenseReportsTester
{
private string _appUrl;
private IWebDriver _driver;
[OneTimeSetUp]
public void Setup()
{
_appUrl = new DataConfigurationStub().GetValue("AppUrl",
Assembly.GetExecutingAssembly());
_driver = new ChromeDriver(".");
new ZDataLoader().LoadLocalData();
}
[OneTimeTearDown]
public void Teardown()
{
_driver.Close();
_driver.Quit();
_driver.Dispose();
}
[TestCase("000001",

mu
no
tes
.in

191

TestName = "Should add new expense report numbered '000001'")]
[TestCase("000010",
TestName = "Should add new expense report numbered '000010'")]
[TestCase("000100",
TestName = "Should add new expense report numbered '000100'")]
[TestCase("001000",
TestName = "Should add new expense report numbered '001000'")]
[TestCase("010000",
TestName = "Should add new expense report numbered '010000'")]
[TestCase("100000",
TestName = "Should add new expense report numbered '100000'")]
public void ShouldBeAbleToAddNewExpenseReport(string
expenseReportNumber)
{
void ClickLink(string linkText)
{
_driver.FindElement(By.LinkText(linkText)).Click();
}
void TypeText(string elementName, string text)
{
var numberTextBox = _driver.FindElement(By.
Name(elementName));
numberTextBox.SendKeys(text);
}
Console.WriteLine($"Navigating to {_appUrl}");
_driver.Navigate().GoToUrl(_appUrl + "/");
_driver.Manage().Window.Maximize();
TakeScreenshot($"{expenseReportNumber}-Step1Arrange");
ClickLink("Add New");
TypeText(nameof(ExpenseReport.Number), expenseReportNumber);
TypeText(nameof(ExpenseReport.Title), "some title");
TypeText(nameof(ExpenseReport.Description), "some desc");
TakeScreenshot($"{expenseReportNumber}-Step2Act");
_driver.FindElement(By.TagName("form")).Submit();
TakeScreenshot($"{expenseReportNumber}-Step3Assert");
var numberCells = _driver.FindElements(
By.CssSelector(
$"td[data-expensereport-property=\"{nameof(ExpenseReport.
Number)}\"]
[data-value=\"{expenseReportNumber}\"]"));
numberCells.Count.ShouldBeGreaterThan(0);
numberCells[0].Text.ShouldBe(expenseReportNumber);
}
private void TakeScreenshot(string fileName)

mu
no
tes
.in

192

{
var chromeDriver = ((ChromeDriver) _driver);
chromeDriver.GetScreenshot().SaveAsFile($"{fileName}.png");
TestContext.AddTestAttachment($"{fileName}.png");
}
}
}

 In the TDD environment, we use a Data Configuration Stub() to clear
out the database and preload it with a few records.

 Six test cases are run using the same N Unit test. The steps in his test
progress are as follows:

1. Go to the home page.
2. Locate and click the "Add New" button.
3. Type a value into the Number text box.
4. Type a value into the Title text box.
5. Type a value into the Description text box.
6. Fill out the form and submit it.
7. Locate the table's row and the Number column.
8. Verify that the Number's value is the expected value.

 This test will open the local Chrome browser on the server and run
these steps as it runs. Let's have a look at how Azure Pipelines
configured this.

 After you've downloaded the NuGet package containing our
acceptance test suite, follow these steps:

1. On our Azure DevOps agent server, we extract the package to a
working path.

2. Configuration settings for ConnectionString and AppUrl are added to
the test suite's configuration file.

3. Our *AcceptanceTests.dll assembly, which contains our tests, is used
by the VSTest task.

4. There is no fourth step because we use VSTest, which means the test
output is automatically captured as a test run by Azure DevOps.

 Let's look at the NuGet package for our acceptance tests first, as
illustrated in the following Figure 12-11.

mu
no
tes
.in

193

Figure 12-11. The acceptance test package contains the Selenium driver
as well asthe test assemblies

 In above figure12-11 notice that the Chromedriver.exe, as well as the
test assemblies and config files that go with it, are all included in the
package.
 All test runs, tests, and their results are kept in Azure Test Plans.
Furthermore, each test that is run has the ability to archive any arbitrary
file attachment.
 One of the most valuable attachments for full-system acceptance tests
that run through a browser UI is a screenshot of every screen the test
views as it runs.
 Our C# test scenario includes calls to the Chrome Driver to capture a
screenshot, which we then save and connect to the Test Context.
 When VSTest performs these tests, it gathers all of the data and saves
it to Azure Test Plans.
 Let's take a step-by-step process to this. First, we can view the results
of our continuous integration build.
 On this build summary page, shown in the following Figure 12-12, we
can see that the build was successful, as well as the deployments to TDD
and UAT. We can also see that the Prod deployment is ready to go.

mu
no
tes
.in

194

Figure 12-12. The build summary page shows that this build has been
deployed across environments

 We can see information about the release and go into each
environment to see details about what happened if we click to our TDD
deployment from the build page, as shown in the following Figure 12-13.

Figure 12-13. The TDD release view shows the top-level details of the
TDD Deployment

mu
no
tes
.in

195

 The Tests tab gives us access to the acceptance tests that have run, in
addition to looking at the Logs of your deployment, which is crucial in
debugging it until it works properly.

 We have six tests in our case. Select and click the last test on the list,
"Should add new expense report numbered '100000'."

 When we select a test, it gives us more information about that test and
the run of it.

 The remaining deployments in your pipeline will follow suit once your
TDD environment has been created, configured, deployed, and tested.

 On the TDD environment, a 100% will appear next to the beaker icon.
This indicates that a test suite was run and that all tests were
successful. If any tests were skipped, the result would be less than
100%.

12.3.3 Differences in the UAT and Production Environments
 While the deployment process for the TDD environment should be
similar to that for UAT and Prod, there will be some major differences
in order to keep all of the trunk-based development branching
possibilities.

 User Acceptance Testing (UAT) is a term that refers to the process of
determining whether or not the term user acceptance testing (UAT)
refers to a user/client testing software to see if it can be accepted or
not.

 This is usually the final stage before the product goes live or before the
product is accepted for delivery. After the product has been completely
tested, UAT is performed.

 Data is moved to PROD Server after UAT is completed. Because it is
the environment that consumers directly interact with, the production
environment is often known as live, especially for servers. This is
where real-time data is kept.

 It is necessary to configure the UAT state deployment to ignore release
candidates created by feature branches.

 Only the master branch's release candidates should be deployed in the
UAT environment.

 Variable differences, not process differences, are the focus of the UAT
stage.

 We do not rebuild the database in the UAT environment. Rather, we
keep the database and data intact while updating it by running just the
*.sql files that haven't been run in that environment before. The value
"Update" represents this.

 When this is completed successfully, we can be confident that the data
will be maintained and the schema will be changed correctly when we
perform the same routine in production.

 Next, look at the various configuration options for the Production
deployment step.

 An individual, a group, or multiple individuals can approve a release
stage. There are various options available to you.

mu
no
tes
.in

196

 You can also enable the Gates feature, which allows you to bring in
some business logic to assess whether or not the deployment should be
permitted to proceed.

 If a prior release is in the approval queue, the new release will be held
up until it is approved.

 The status will auto-update on the screen after the production
deployment has been approved.

 If the deployment succeeds, it means that all components of the
application, as well as their dependencies, have been deployed and that
everything is online and working properly.

12.4 OPERATING ANDMONITORING THE RELEASE

 We've only just begun after our software improvements are deployed
and running in production. Consider our DevOps model.

 We'll need an operational strategy. Then we must continuously execute
that approach and measure to ensure that what we expect is occurring.

 Learning as a feedback into planning for future modifications is
emphasised in our DevOps cycle around the outside.

 By operating the software with real customers using it, we can
1. Verify that our customers can achieve their objectives.
2. Figure out what the best next change is.

Figure 12-14. Onion DevOps Architecture provides a model for a
complete DevOps Environment
 The release stage is just past the halfway point of the cycle around the
outside of the onion.

 We must operate software well after it is released to our clients, learn
how it performs, and then integrate that information back into future
plans.

mu
no
tes
.in

197

12.4.1 Principles
 A desired feature of a software system has been known as testability
in discussions about quality and testing.

 Observability is a desired property for a software system operating on
Azure, or any environment for that matter.

 Observability is tooling or a technical solution that allows teams to
actively debug their system. Observability is based on exploring
properties and patterns not defined in advance.

 The principles are as follows:

1. Know what your software is doing at all times

 It is insufficient to know that a server is operational or that a website is
accessible.

 A client is down if any system function no longer performs as
expected.

 We should consider our customers and their objectives.
 Customers are down if they are unable to complete tasks, even if the
technical aspects of our system are operational.

 With that Perspective, we might question ourselves, "What do we need
to know to be confident that our customers are up?"

2. Listen to what your system is saying
 You can have your software system emit and speak using many types
of telemetry.

 Pay attention to what the system is requesting. When presenting to the
Azure DevOps User Group, Eric Hexter, a visionary in DevOps
Diagnostics, said that the system might ask for non-functional features
or maintenance using telemetry.

 We can find out what work needs to be done on the system by looking
at the logs and metrics. This work may not appear in standard product
backlogs.

 Customers sending trouble tickets or problem reports is one evidence
that the system's observability sophistication is insufficient.

 Consider the work in this field as a form of insurance policy. In order
to be successful in this field, you must commit time, effort, and some
money in products.

 For the return on risk avoidance, an insurance policy contains a
premium that must be paid.

 If this is ignored, and the insurance premium is not paid, your
company will be responsible for the entire cost of a business
interruption.

 This is another example of the "Shift Left" way of thinking, where we
may build observability into the system to improve customer service.

mu
no
tes
.in

198

12.4.2 Architecture for Observability
 Observability helps developers understand multi-layered architectures:
what’s slow, what’s broken, and what needs to be done to improve
performance.

 There are 3 types of telemetry that should be emitted from software.
They are as follows:

1. Metrics/performance counters
 Many of these are incorporated into the Azure platform, but you'll
want to record queue length, for example, if you're using queues.

 Another valuable measure is the number of users by type who have
used your system in the last hour or day. Trends like these can be
utilised to set up alarms.

 If your normal usage suddenly reduces, for example, you may be
experiencing a technical issue that has to be investigated.

 A metric is a value that expresses some data about a system.
 These metrics are usually represented as counts or measures, and are
often aggregated or calculated over a period of time.

 A metric can tell you how much memory is being used by a process
out of the total, or the number of requests per second being handled by
a service.

2. Log messages/log files
 A system's every operation or transaction should be logged.
 Additionally, log files and log messages from different components
should be combined and centralised into a single repository that can be
queried as a whole to provide a complete picture of what the system is
doing.

 Logs are distinct records of “what happened” to or with a specific
system attribute at a specific time.

 They are typically easy to generate, difficult to extract meaning from,
and expensive to store.

3. Heartbeats
 Heartbeats can be generated externally or embedded directly into
application components.

 These are built-in health checks in the form of signals and fake
transactions.

 If a significant integration is between the application and a payment
processor, for example, it's important to verify that the payment
processor's connection is operational.

mu
no
tes
.in

199

The following figure 12-15 shows the architectural model for
observability in Azure.

Figure 10-2. Each application should send telemetry and diagnostics
information to a single Application Insights service

 Application Insights can collect a lot of data from every running
component of your application, including the DevOps pipeline itself.

 Collecting all available information in one place is one of the ways we
improve the observability of our software.

 This is something that Application Insights can help with. If you've
never used Application Insights (also known as AppInsights).

 We have a stable production environment, one or more UAT
environments, and a whole host of TDD environments that are
constantly generated and destroyed, as you can see in our DevOps
pipeline.

 The data in AppInsights should be able to resist changes in
environments.

 Consider the following environment architecture as shown in the
following figure 12-16:

mu
no
tes
.in

200

Figure 10-3. Each environment benefits from an AppInsights instance,
which can then be aggregated to Log Analytics or other analytics sink

 We may customise queries for each environment type to the audience
by giving an AppInsights instance for each environment type.

 Our TDD environment, for example, will have environments come and
go as new builds are made.

 We might be able to detect whether transaction runtimes change by
more than a particular percent by capturing performance metrics while
full-system acceptance tests run.

 This could indicate a performance decrease from one version to the
next. In addition, warnings should be configured on our production
AppInsights repository.

 The objective of AppInsights is for each application to have its own
AppInsights service.

 While custom tags can be added to telemetry to help filter out
environments in a single AppInsights instance, the service was not
built with that in mind.

 The service was created with the goal of collecting data from a single
application. That is, one versioned, completely operational software
unit.

 You can still use a single AppInsights service for the software system
in production if your software is split into multiple Git repositories
with multiple DevOps pipelines.

 We have multiple components in our sample application that will
provide telemetry to a single AppInsights instance for each
environment. AppInsights is divided into three services, one for each
environment.

mu
no
tes
.in

201

12.4.3 Jumpstarting Observability
 We want AppInsights to be durable while we're deleting and restoring
TDD environments – and UAT environments from time to time.

 As a result, we separate the AppInsights services from the
environments that may be deleted in a resource group.

 These services are stored in the “Onion-DevOps-Architecture-
diagnostic” resource group. In contrast to your pre-production
environments, this resource group will last a long period.

 After we've set up AppInsights, it's time to get the app ready to submit
telemetry. First, install the AppInsights NuGet packages to your
projects is visual studio.

 Then we will select the UI and Core. App Start-up projects to receive
the AppInsights dependency.

 Then select the NuGet package i.e Microsoft. Application Insights.
Asp Net Core. This package is suitable for Azure AppServices code,
including WebJobs and Azure Functions.

 Once you've installed the AppInsights NuGet package, you'll need to
locate an architecturally suitable location in your application to
observe transactions so that the data can be sent to AppInsights.

 Expense Report Controller is an ASP.NET MVC controller action that
contains the following code:

public IActionResultIndex()
{
var command = new ListExpenseReportsCommand();
ExpenseReport[] reports = _bus.Send(command);
var orderedReports = reports.OrderBy(report =>report.Number);
return View(orderedReports.ToArray());
}
//..//
public class ListExpenseReportsCommand :IRequest
{
}

 Also, make sure the appsettings. json file does not transfer
telemetry from a workstation to an environment's AppInsight instance.
 The following is an example of the appsettings.json file:
{
"Logging": {
"LogLevel": {
"Default": "Debug"
}
},
"AllowedHosts": “*”,
"ApplicationInsights": {
"InstrumentationKey": "bogus value" } }

 The Application Insights Search window, allows you to develop your
diagnostics capability locally without having to connect to Azure.

mu
no
tes
.in

202

 When you run the application in debug mode, you can look at not just
the telemetry you provide, but also the massive quantity of data that is
automatically collected for you.

 You added the Custom Event, but nothing else to capture the SQL
statement that was executed from the application to the SQL Server
database.

 To understand more about your application, use this view to search
across any number of attributes.

 You can use the command line to run your full suite of automated full-
system acceptance tests while recording the telemetry in a debug
session to explore further into:

dotnet vstest
.\ClearMeasure.OnionDevOpsArchitecture.AcceptanceTests.dll

 You can gather a lot of telemetry to search if you execute the above
command from the acceptance tests assembly’s folder.

 Application Insights does not capture any data, parameters, or
arguments automatically. As a result, you'll have to add code to do it
directly.

 When you do, be sure that any sensitive data fields are exported to a
monitoring system that may have different data security restrictions
than the production database.

 Then, after you're confident that your application has a relevant
iteration of telemetry, you can link it to the various environment-
specific AppInsights services in your Azure subscription.

 It's critical to know when new release candidates were promoted from
one environment to another for the execution of our deployment. Add
a Release Annotation task to your deployment steps to accomplish
this.

 This should be the initial job, so that even if the deployment fails,
Application Insights gets a notification that one was started.

 AppInsights records that a version started deploying in this way, even
if the deployment fails in the middle.

 You'll also add the appsettings.json file to the JSON variable
substitution text section in the "UI Deploy" phase so that your
variables are examined for JSON substitution.

 Your release configuration is ready to deploy once you've configured
this and included a correctly named variable per environment with the
Instrumentation Key.

 You'll be able to observe release markers and telemetry from each
environment when your next release runs.

 You may obtain full information about the release that deployed the
application that is responsible for the recorded telemetry by clicking
the release marker within the Azure portal.

mu
no
tes
.in

203

 The release marker provides links to the original release as well as the
Azure DevOps project for the telemetry-emitting application.

 You've now connected code written in Visual Studio and stored in Git
with live usage data recorded in Azure environments.

SUMMARY

You learned how to create your deployment pipeline in this
chapter, and you got hands-on experience executing a correctly built
release configuration. It's crucial to figure out the right quantity and type
of environments. You also assigned each environment validation stages,
including a built-in application health check. You learned about the many
forms of data that may be distributed or provisioned with a deployment, as
well as the various possibilities for running code in Azure PaaS services or
elsewhere. Finally, you observed the many touch points in the release
configuration, such as the effect of variables on the deployment phases'
execution. You also learnt how to incorporate a full-system acceptance
test suite into your TDD environment, for both feature branch and master
releases. You have also learned the entire DevOps process on .NET for
Azure

REVIEW QUESTIONS

THEORY QESTIONS
1. Explain the principles that decide how many environments to

configure and the difference between them to define the structure of
deployment pipeline.

2. Explain the 3 types of environments in a DevOps pipeline.
3. Explain the 4 categories in a software system.

OR
Explain the different types of data to be managed in DevOps environment.
4. Explain the logical operation of application.
5. Explain the physical architecture of application.
6. Explain the 4 key parts to our pipelines release configuration.

OR
Explain the implementation of deployment in Azure pipelines.
7. Explain the 4 steps of deploying an application component.

OR
Explain the 4 steps that make up a provisioning and deployment of the

SQL database.
8. How running test suites using a release configuration? Explain.
9. Write the difference in the UAT and production environment.
10. Explain Onion DevOps architecture.
11. What is observability? Write its principles.
12. Explain the architecture of observability.

OR
Explain 3 types of telemetry that should be emitted from software.
13. Explain the concept of jumpstarting observability.

mu
no
tes
.in

204

MULTIPLE CHOICE QESTIONS

1. In a DevOps environment, the team will always have at least
_______ deployed environments.

a) Two b) Three c) One d) Four

2. Full form of TDD is ______.

a) Test Driven Deployment

b) Test Drive Development

c) Test Driven Development

d) Test Drive Deployment

3. Full form of UAT is _______.

a) User Accept Testing

b) User Accepted Testing

c) User Accepting Testing

d) User Acceptance Testing

4. TDD Environment is suitable for _______ automated construction
and destruction.

a) Fully b) Partially c) Single d) Multiple

5. ______ is a value statement that has grown in popularity in the
DevOps community.

a) Shift Right b) Shift Up c) Shift Down d) Shift Left

6. The purpose of Shift Test is to ________ a process that finds as
many errors as possible early in the process.

a) Delete b) Create c) Move d) Update

7. Which of the following is not a unique type of data is managed?

a) Schema b) Production Data

c) Schema Date d) Configuration Data

8. The _______ system owns the data or schema structure, and it
should be consistent across all environments.

a) Server b) Software c) Cloud d) Network

9. At its most basic level, air application consists of _____ logical
components.

a) Two b) Three c) Four d) Five

10. Azure’s SQL Database service will host the _______ server
database.

a) MySQL b) SQL c) MongoDB d) Oracle

mu
no
tes
.in

205

11. Which of the following is not the key part to our pipeline’s release
configuration?

a) Artifacts b) Development Stage

c) TDD Stage d) UAT Stage

12. The deployment of the application to the production environment is
represented by the _______.

a) UAT Stage b) PROD Stage

c) TDD Stage d) Artifacts

13. Which of the following step is not responsible for on-demand SQL
database provisioning and schema creation?

a) Obtain database package

b) Create test database on $

c) Capture created database variable

d) Create table

14. _____ step is used to create database

a) Obtain database package

b) Create test database on $

c) Create database schema

d) Capture created database variable

15. For running test suits, we use _______ test framework with selenium
web driver through the google chrome browser.

a) Acceptance b) Integration c) Unit d) Back-Box

16. In TDD environment, we use a ______ to clear out the structure and
preload it with few records.

a) Data configuration Clear ()

b) Data configuration Delete ()

c) Data configuration Remove ()

d) Data configuration stub ()

17. After the product has been completely tested, ____ is performed.

a) Unit Testing b) Integration Testing

c) User Acceptance Testing d) Acceptance Testing

18. Data is moved to _____ server after UAT is completed.

a) PROD b) Database c) SQL d) Oracle

19. _____ stage is just past the halfway point of the cycle around the
outside of the onion.

a) Production b) UAT c) TDD d) Release

mu
no
tes
.in

206

20. The desired feature of a software system has been known as ____ in
a discussion about quality and testing.

a) Usability b) Testability c) Observability d) Capability

21. _____ is a tooling or technical solution that allows team to actively
debug their system.

a) Observability b) Testability c) Capability d) Measurability

22. There are _______ types of telemetry that should be emitted from
the software.

a) Two b) Three c) Four d) Five

23. _____ is a value that expresses some data about the system

b) Metric b) Metrix c) Count d) Unit

REFERENCES

 Jeffrey Palermo. .NET DevOps for Azure a Developer’s Guide to
DevOps Architecture the Right Way, Apress (2019)

 Retrieved from:
https://answers.sap.com/questions/12151930/production-and-uat-
server.html

 Retrieved from: https://cloud.google.com/architecture/devops/devops-
measurement-monitoring-and-observability

 Retrieved from: https://lightstep.com/observability/

mu
no
tes
.in

207

Unit V

13
INTRODUCTION TO APIS AND API
STRATEGY AND ARCHITECTURE

Unit Structure :

13.0 Objective
13.1 Introduction

13.1.1 Types of APIs
13.1.2 API Standards

13.2 Practical implementation of APIs
13.2.1 APIs based on language constructs
13.2.2 APIs as Systems exposing data and operations

13.3 API economy
13.4 APIs in public sector.

13.4.1 Government to Citizens
13.5: API Strategy

13.5.1 API strategy with respect to strategic aspects of a business
13.5.2 API strategy development stakeholders
13.5.3 AN API Strategy Use Case

13.6 API value chain
13.7 API architecture
13.8 API management.

Summary
References
Model Questions

13.0 OBJECTIVES

The objective of this chapter is to enable the student to understand
the basics of APIs with a practical explanation. This chapter also deals
with API economy and helps the students to understand how APIs are
used in the public sector.

This chapter also enables the student to in understanding API
Strategy and Architecture.

mu
no
tes
.in

208

13.1INTRODUCTION TO APIS

The following chapter gives an introduction to APIs. APIs or Ap-
plication Programming Interfaces are important tools for businesses across
all industries as they allow the functionalities of one software to be used
by another. They are a means by which two different programs are able to
communicate with each other. Figure 13.1 shows the functioning of an
API as an intermediate between various applications.

Fig 13.1 Source:https://apifriends.com/api-management/what-is-an-api/

A practical use of an API is when Ridesharing Applications like
OLA or UBER use Google maps for completing a ride. What is essentially
happening here is that an OLA or an UBER application is communicating
with the Google Maps application. Here one application is using the ser-
vices offered by another application. Another example of an API is when
Travel sites gather information about flight details from Airlines web sites.
Here the two applications are sharing data between them.

Application like GoIbibo and Trivago are able to offer competitive
discounts on travel and stay because they are able to aggregate information
from Airlines and Hotels etc. Without the use of an API this aggregation
of information would not have been possible for these applications.

Application developers can embed video players into their site, re-
produce reports, and access other helpful resources with the help of the
You Tube. This prevents them from reinventing the wheel by using the
functions of an existing application in their own application. This results
in reduction of development time and costs.

APIs have also been instrumental is driving innovation in Technol-
ogy and Science through collaboration and access to data. Research in Ge-
nomics got a shot in the arm when there was global collaboration and easy
access to data through applications like the Google Genomics [1].

In short APIs are useful in
 Searching, collecting and sharing of data between applications.
 Eliminating redundancy by allowing businesses to make use of exist-
ing applications in their ongoing application development.

 Streamlining and integrating data into one’s own systems, workflows,
websites and products.

mu
no
tes
.in

209

13.1.1 Types of APIs

APIs are of two types:
1. Internal/private APIs
These APIs are accessible to developers and users within an organiza-
tion. They are used to connect and easily integrate the different inter-
nal team processes.

2. External/open APIs
Open APIs help external developers to easily access and integrate in-
formation from a tool developed by another developer or organization.
External APIs save the developers time by allowing them to use previ-
ously existing tools within their applications, thus reducing the time
and cost for creating these tools.

13.1.2 API Standards
Much like other technologies, APIs have also got to adhere to cer-

tain standards. These standards are used to establish how data is fetched
and how APIs are accessed. The API standards are also called web service
protocols.

Majority of the open APIs use one of these two protocols.
There are essentially two standards of APIs or web service protocols:
1. SOAPor the Simple Object Access Protocol
2. REST, which stands for Representational State Transfer.

SOAP was used extensively until REST came into the scenario.
REST became popular because it offers a greater number of data formats.
REST is also easier for developers to access and offers faster load times
and better performance [1].

13.2 Practical implementation of APIs
APIs can be implemented in two different ways:
1. Based on language constructs or in the form of libraries/frameworks
2. As Systems exposing data and operations.[2]

13.2.1 APIs based on language constructs
While writing APIs programmers use language constructs like in-

terfaces which are called by external parties.

internal Interface ILogin{
Func<int>LogPageAsync(Page p);
}

One of the implementations for the above interface can be:
Implementation:

public class Loggingin : ILogin
{
public async Func<int>>LogPageAsync (Page p)

mu
no
tes
.in

210

{
Page.UserId = SessionProvider.GetUserID();
// rest of the code}

Here the interface is using its own way of getting the value of User
ID through a Session Provider as shown in bold in the above code. The
above code works because the implementation gets the User ID from the
Session Provider. This interface implementation is limited because the
service implementation is tightly coupled with the current execution con-
text [2].

But when other implementations want to use the same interface,
they may fail because they may not know how to get the value of User ID
or they may choose to acquire its value through a different way in that im-
plementation. More over if different clients or assemblies want to use this
implementation (Logging-in), each will have their own way of getting the
User ID. This will result in different implementations for getting each
User ID.

To prevent multiple implementations, it is advisable to implement
the acquiring of the User ID as a parameter in the method signature itself
as shown in the code below:

internal Interface ILogin{
Func<int>LogPageAsync(Page p,string UserId);
}

13.2.2 APIs as Systems exposing data and operations
In this type of API, there is data communication between different

systems or services. This data exchange is performed through the internet.
Hence the second type of API uses HTTP-based RESTful (Representa-
tional State Transfer) services with JSON (Java Script Object Notation) as
a lighter data exchange format.

REST is fully featured and is based on a stateless, client-server,
cacheable communications protocol. It uses the HTTP protocol to make
remote procedure calls between machines. REST mechanism is simpler
and more light weight when compared to other complex mechanisms like
COBRA, RPC for remote procedure calls and SOAP, WSDL for Web
Services.

RESTful applications use HTTP requests for all four CRUD (Cre-
ate/Read/Update/Delete) operations. RESTful applications use the light
weight JSON format for this. Code for reading and generating JSON data
can be written in any programming language. Hence it is the more popular
data format for data exchange on the Internet.

mu
no
tes
.in

211

13.3 API ECONOMY

When APIs are sold for monetary benefit, it is termed as API
economy. There are many instances where APIs are sold by Companies
commercially. For example, ride sharing Applications like OLA and
UBER use the Google Maps API in a pay-as-you-go model.

Businesses worldwide are competing with each other by develop-
ing new Applications using new technologies thus focusing on enhancing
the user experience. These companies focus on focus on creating new cus-
tomer experiences and find new opportunities to serve customers better
and more efficiently.

A wearable device which will monitor a patient’s vital signs can be
convey metrics like heartbeat, pulse rate to hospital via the hospital’s API.
This in turn will ensure that the patient gets critical care in case of an
emergency.

Food delivery applications use location-based searching allowing
their customers to order food from their local eateries. The Food delivery
application uses the APIs of Restaurants and other location-based searches
available from other providers to create a new customer experience, all
them benefit from this.

With innovations in the field of IOT and Sensors, one can think of
a smart appliance like a smart fridge which can sense that a meat packet
has expired and order for new packets through a mobile Application.
When the meat reaches its expiry date the sensor in the refrigerator senses
it and connects to the local grocery store API to reorder the meat. The
meat is delivered to the customer’s door step using location services like
Google maps, as shown in figure 13.2

mu
no
tes
.in

212

Fig 13.2 A smart fridge on cloud

Having a smart cloud and processing IoT sensor data will enable
the fridge manufacturer to have a competitive edge over his competitors
while giving his customers a value-added experience. The Supermarket
accepts orders via its API through the Internet. The fridge manufacturer
may even tie-up with multiple supermarkets charging them all in the proc-
ess. The Supermarket accepts payment via the payment gateway API using
a commission-based business model. Delivery can be done through other
utility service APIs like location service to complete the delivery. These
APIs can be either free or paid.

The above explains the different uses of different APIs for differ-
ent business models. There APIs for direct selling, APIs offering their cus-
tomers an improved customer experience and for creating an API ecosys-
tem. Some businesses also offer their APIs on a commission model for E-
commerce applications. All these types of API help to generate revenue
for their businesses.

13.4 APIS IN PUBLIC SECTOR

APIs are used in public sectors to help governments to share their
data and also to integrate their APIs with other public or private APIs.

Governments having been digitizing key government systems and
procedures via e-governance. This has made governance more transparent
and accessible to common man.

Payment gateway

Smart Fridge
cloud

Location
Services

Door step
Delivery

mu
no
tes
.in

213

There are three government service models[2].
•G2C: Government to Citizens
•G2B: Government to Business
•G2G: Government to Government

13.4.1 Government to Citizens
Governments all over the world are automating their services and

allowing their citizens to access these services easily online. Government
of India has given a unique identity to each and every citizen with the help
of an Adhar card. Every Citizen can register himself/herself on
https://uidai.gov.inportal and get an Adhar card. This portal is integrated
with other Government portals like the Government of India, Income tax
portal etc. and provides a whole some seamless digital experience to the
Citizens of India

Government India also has an application called Dig Locker where
Citizens can store all their electronic documents like their Adhar card,
PAN card and their educational certificates digitally. Here the Government
to Citizens model is being used.

The https://www.cowin.gov.in/home portal of Ministry of Health
and Family welfare portal of Government of India has many open APIs
like Public, Private and Vaccinator APIS for its users to register and get
vaccinated in India for the Covid 19 Virus. This portal has digitized the
process of user authentication, registering and getting vaccination slots
anywhere in India for its citizens

mu
no
tes
.in

214

Fig 13.3 Open APIs on Cowin porrtal

13.4.2 Government to Business
Governments are also providing services to Businesses to simplify

the ease of doing Business within India. A fine example is the portal
https:/www.india.gov.in/india-business-portal. This is the National Portal
of India, developed with an objective to enable a single window access to
information and services being provided by the various Indian Govern-
ment entities [3]. This Portal has been developed under the National E-
Governance Plan, to simplify the ease of doing Business in India.

Another example is the use of Adhar card for identification and
verification purpose for commercial purpose. When Customers apply for-
Sim cards, they can be verified through their Adhar card on the
https://uidai.gov.in government portal. Here the mobile service provider is
using the government API or services for its business purpose.

Government of India’s API setu portal provides Financial Verifica-
tion APIs for Banks and Insurance companies in India. These API allow
lenders use the financial data services to check credit worthiness of their
customers.

Another example of government to businesses is the Singapore
government’s Smart Nation portal. This portal
(https://www.smartnation.sg/resources/open-data), has numerous govern-
ment APIs and data endpoints that serve citizens and businesses [2].

Digitization of government APIs improves efficiency, and brings
new sources of revenue to governments. Also use of these APIs, gives
businesses access to government’s rules and regulations for establishing a
businesses, government’s taxation policies, business information, and
regulatory audits etc.

13.4.3 Government to Government
Government to Government service models is when

mu
no
tes
.in

215

 Various public sector departments interact with each other for sharing
data or services or when state governments interact with the central /
Union government APIs for data sharing or consume the services of-
fered by the APIs of the central government.

 Other governments interact with the central / Union government APIs
for consuming the services and for data sharing.

The https://negd.gov.in/open-api portal of government of India
plans to implement a Policy Framework consisting of "Policy on Open
Standards for e-Governance” in India. Implementation of this API Gate-
way shall provide an enabling platform for proactive and open access to
the data generated by various ministries/departments/organizations of
Government of India [4]. This portal is an example of the Government to
Government service models integrating the various departments within a
government.

13.5API Strategy
The importance of APIs for businesses and the monetary gains

they bring has made the top most management get involved in the API
strategy and architecture. As already discussed there are two types of API-
private and public. The strategy to build as a private or public API is based
on factors such as security, monetization strategy, data trends, and regula-
tory standards [2].

It is imperative for business stake holders to get involved in strate-
gizing, creating so that they are aware of the data and operations API is
exposing. They also should be able to set the expectations, goals, and con-
straints for the operational environment. The stake holders should evaluate
different business models and work out an API strategy that will support
their business vision.

The API strategy thus worked out should be implemented to ensure
that the business goals are achieved. API architecture should integrate the
technical aspects into the identified API strategy to realize the company’s
business vision.

The top management of a business sets the vision for the API and
the technical team design and develop the API in order to realize the busi-
ness goals.

The process of business decision making involving the planning,
organization, or governance of an API is known as an API strategy [2].

To implement an API, it needs a lot of integration with other exist-
ing systems. The existing data flowing from legacy systems must be com-
patible across various domains used different API users.

For example, the Covid-19 pandemic and the ensuing lockdown
saw a trend of online grocery shopping. Hence Supermarkets and retailers

mu
no
tes
.in

216

have taken the decision to move their businesses online to ensure sustain-
ability and gain profits. They should be able to use an API that will help
them to expose their shopping lists online and attract customers. They
have to integrate their existing offline system with an online system in a
cost-effective way to ensure profits.

This means that they should start various development processes like:
 data cleansing,
 Using a common programming language
 Restructuring the source code of an existing application or legacy
software so as to improve operation without altering its functionality.

 Updating the software tools and frameworks.

All the above steps are not part considered part of the API imple-
mentation, but form an important part of ensuring that the project’s mis-
sion of improving the profitability of the business is accomplished.

13.5.1 API strategy with respect to strategic aspects of a business
The decision to implement APIs is undertaken taking into consid-

eration business aspects like innovation, business operations, integration,
and monetization [2].

The following are some of the strategic business aspects of an API
implementation [2]:

1. Business orientation: An API implementation strategy is based on the
business orientation of the organization and reveals the purpose of the
business operations.

For example:

a. When the offline operation of a supermarket is integrated with an
online operation, this will show the point of integration of the two sys-
tems. But in reality, it could be a high-level business strategy to two
merge these two systems to increase the outreach of the business and
to increase its profits.

b. When travel websites offer flight booking and bus travel bookings
along with hotel reservation, they do so to create and develop busi-
ness ecosystems.
c. When fulfilling a regulatory requirement, a health care service pro-
vider might expose certain trends in health data to government bodies.
This could be a mandatory requirement in some countries.

2. For technological innovation and changes: Sometimes Organiza-
tions expose their data and operations through APIs to outsiders to at-
tract new ideas, skills and innovations in their businesses. This will
benefit the researchers and scientists who will get access to large
amounts of data to conduct their research. Hence it becomes a win-win
situation for both the parties.

mu
no
tes
.in

217

3. Monetary Purposes: Organizations with valuable data and business
operations sell them directly via APIs [2].

a. Organizations having valuable data or operations sell them as APIs,
monetarily benefiting them. The users of these APIs pay some money to
the Organizations. For example, Taxi aggregators pay Google to use its
maps API.

b. To enable more business opportunities, Organizations may expose their
operations as APIs. This helps in greater flexibility for integration and
gives them the opportunity to be part of a business ecosystem.

Based on the above aspects of API business strategies it can be de-
cided whether an API is private or public. This also decides whether the
data and operations are to be exposed via APIs and its security and authen-
tication. This also determines their venue generation strategies, usage poli-
cies, and restrictions.

When businesses share their data through public API it results in
gain in revenue for the business and innovation in technology. Also, the
developers can embrace other technologies to make the APIs adapt to lat-
est technologies. However, when all data is publicly shared, it may lead to
the competitors accessing sensitive business data and technology of the
business. It will also raise security and privacy concerns. Hence the API
strategy and architecture should determine, govern, and implement the
correct exposure level of the correct data.

13.5.2 API strategy development stakeholders
To understand an API strategy development better, one need to

consider who is involved and what capabilities of an API they want to use.

The following are the stakeholders involved in the API strategy
development:

 Application developers: They consume the API. The application de-
veloper might work for the company that is exposing the API or work
for a business partner of that company. Or, this person might not have
any previous relationship with the organization that owns the API.

 API product manager: They person is responsible for defining various
facets of the API, including the roadmap, target audience, monetization
strategy, and lifecycle.

 API developer. They create the API and expose the IT assets of the
organization.

13.5.3AN API Strategy Use Case
Government of India web site API Setu offers several types of

APIs services like Adhar card, PAN card, driving license and Ration card
to Banks, Insurance Companies etc. to build a strong risk profile of their
customers.

mu
no
tes
.in

218

Loan agents can connect to these services while offering loans to
find the credit worthiness of the customers and then offer them loans. Be-
fore the government offered this citizen data to these financial institutions,
they were collecting hard copies of the Adhar card, PAN card, driving li-
cense and Ration card etc. and manually verifying the data.

Under the vision of Digital India, the Government of India aims to
make all the above Government services digitally accessible to citizens
through multiple channels, such as web, mobile and common service de-
livery outlets.

The purpose of offering services is to expose APIs to integrate with
banks and insurance companies, which are used to determine the credit
worthiness of their customers. This creates an ecosystem of APIs which is
employed to achieve smoother data flow.

The usage of 'Open APIs' is to promote software interoperability
for all e-Governance applications & systems and provide access to data
and services for promoting the participation of all stakeholders including
citizens [5].

13.6 API VALUE CHAIN

An API implementation involves different levels and layers of an
organization. Modern API implementations often include external stake-
holders and other value providers like partners, suppliers, customers, and
developers [2].

APIs integrate and digitize business flows by connecting different
stakeholders with organizational IT assets [2]. API value chain refers to
the entire ecosystem and the relationship between assets, API providers,
and API consumers.

Supposing a garment company retailer wants to sell his products
online. This decision was taken increase his outreach through online and
mobile based applications. The inventory management system, product
catalog system and the sales management systems have to be exposed via
an API with minimum cost.

These existing software systems will interact with the API layer.
And the API layer is utilized by a developer either for a web site or a mo-
bile Application. The developers will then publish the apps that consume
this API. Users of the apps then download and use them. Published apps
will create an app ecosystem. The app users are unaware of the above API
value chain. Figure 13.4 shows an API value chain.

mu
no
tes
.in

219

Fig 13.4
source:https://thenewtechnicalwriter.wordpress.com/2015/08/10/understan
ding-the-api-value-chain/

API should facilitate a developer community and deliver a proper
developer experience in order to maintain steady engagement with the de-
velopers [2]. There will be two types of developers for these APIs. some
developers are involved in the technical aspects like documentation, the on
boarding process, and SDKs. The other types of developers will create
content that will result in revenue generation for external developers. This
type of content includes content such as commission strategy and advertis-
ing policies. Examples of this could be advertisements inserted in online
games etc.

13.7 API ARCHITECTURE

APIs can be classified as two types depending on their capabilities
and functions.
 System APIs. These APIs expose core back-end systems capabilities.
They usually trigger generic, process-agnostic activities and tend to
target application developers who are internal to the organization.

 Interaction APIs. These APIs support more use-case-specific func-
tions. Their implementation often aggregates and filters calls to system
APIs. The interfaces are optimized for ease of consumption and tend to
target mobile devices or consumers who are outside the boundaries of
the organization.

The purpose and strategy for developing an API is decided by the
business stakeholders like Company CEOs, enterprise architects, data
stewards, and other organizational evangelists based on the effort, budget,
organizational context, and current model of IT assets needed to execute
API implementation. The actual implantation of the API is done by the
technical stakeholders. The implementation teams interacts with business
stake holders to understand the purpose, execution, and limitations of the
strategy.

mu
no
tes
.in

220

For example, the CEO of a retail garment store chain has the de-
vise ways of increasing the revenue for the company. Upon consulting his
sales team, he finds that the online sales are steadily increasing. He then
decides to create a mobile app for online retail selling to give an easy and
comfortable interface for his customers.

He then along with the API strategy stakeholders initiates a strat-
egy to develop an API. The technical stakeholders are responsible for cre-
ating and implementing the API. It is the job of the technical stakeholders
to decide on the API architecture and identify technical aspects.

API architecture has six important attributes [2] to be fulfilled.
Each of these attributes has its own risks and concerns which influences
the overall API design in a given business context.
 Developer experience: The success of an API implementation depends
on adoption by developers. Developers should be well versed with all
aspects of an API design with the help of developer portal, forums, de-
veloper tools, and trail API endpoints etc.

 Integration: Many enterprise-grade API implementations are integrated
with many systems. The majority of these systems are legacy systems.
The API directly interacts with an existing legacy system or connects
to them through a wrapper API.A common function of an API to first
combine results from different systems and performing some data op-
erations on them. Then the data is exposed through an API gateway.
Some API gateways have the tools to do basic data translation and
transformation capabilities.

 Performance: Responsiveness and availability are two performance
requirements of an API. Caching is a used to increase the responsive-
ness of APIs. Many-chained integrations and slow data translations
from legacy systems are responsible for performance degradation [2].

 Security: Security is a very important and critical attribute of an API. It
should take care of user authentication, authorization. It should also
prevent security risks like injection attacks, and DDoS attacks.
In business context there will be security issues concerning data. What
data and operations need to be exposed and how and whom to expose
them are important things to be concerned about during API strategy.
Exposing data and operations that reveal internal information about the
business could create an advantage for a competitor.

 Usage & Telemetry: Measuring usage and logging helps in under-
standing the usage and adoption of the API. Endpoint-based analysis
reveals patterns in how API endpoints are consumed and which end-
points are consumed together [2]. These details will help to continu-
ously optimize the API design. There a lot of tools available in the API
market for this.

mu
no
tes
.in

221

 Error handling: Error handling determines the behavior of an while
dealing with application-level errors and system failures. The applica-
tion-level errors or failures are addressed by the API architecture. Ap-
plication-level error handling should deal with error contracts, error
documentation, error contract information level, security, and certain
access limits. System failures are addressed by the system architecture.

13.8 API MANAGEMENT

API Management refers to a collection of tools used to design and
manage APIs. It also refers to both the standards and the tools used to im-
plement API architecture. Some of the API Management product vendors
are enterprise tools like Microsoft, AWS and IB and vendors like Apigee,
Sales force, and WSO2.

All these management tools offer the following solutions [2]:
API design: API design offers functionalities like importing an API from
specifications, creating API endpoints, defining service contracts and gen-
erating documentation.

API Gateway: An API gateway engine is used for manipulating requests
and responses, URL rewriting, caching, security enforcement and pre-
authentication and applying request-based security rules.

API analytics: API analytics which is usually configured as part of the
API gateway gives analysis of the API usage. API analytics is tracked and
monitored and provide usage, telemetry insights and reporting dashboards.

API catalog: An API catalog in vendor-specific. But a catalog usually
lists the available APIs and other access configurations. For example, one
API Management solution can have many APIs; some of these APIs may
be public, while the others could be private. Access to private API will be
usually associated with a certain authentication.

Further features like API documentation, API publishing, protocol
translation, data translations, data transformation, security capabilities, de-
veloper portals, caching, versioning, client SDK generation, usage and te-
lemetry monitoring, URL rewriting etc. [2] are all part of the above API
Management tools.

API Management and the tools have a huge market in the IT indus-
try. Many integration service providers offer API Management tools, and
enterprise usage of API triggers the demand for API Management solu-
tions [2].

mu
no
tes
.in

222

SUMMARY

This chapter focused on introducing the basics of API to the
learner. It also walks them through concepts related to a practical imple-
mentation of APIs based on language constructs and as Systems exposing
data and operations. It also introduced concepts related to API in economy
and public sector. It also takes the learner through API value chain which
refers to the entire ecosystem and the relationship between the assets, API
providers, and API consumers.

It introduces the six important attributes of API architecture. Some
of the API Management product vendors are enterprise tools like Micro-
soft, AWS and IB and vendors like Apigee, Sales force, and WSO2 and
the solutions they offered are mentioned.

REFERENCES:

1.https://www.wrike.com/blog/application-programming-interface-
api-
ex-
lained/#:~:text=Other%20examples%20of%20APIs%20that,constella
tion%20data%20for%20public%20use. By Andrew Slate, May 31,
2019
2. Practical API Architecture and Development with Azure and AWS-
Thurupathan Vijayakuma ,ISBN-13 (pbk): 978-1-4842-3554-6,ISBN-
13 (electronic): 978-1-4842-3555-3,https://doi.org/10.1007/978-1-
4842-3555-3 ,Library of Congress Control Number: 2018946567

3. https://www.india.gov.in/india-business-portal
4. https://negd.gov.in/open-api#features
5. https://apisetu.gov.in/api-policy.php

MODEL QUESTIONS

MULTIPLE CHOICE QUESTIONS

1. ___________save the developer’s time by allowing them to use previ-
ously existing tools within their applications, thus reducing the time
and cost for creating these tools.
A) External APIs B) internal APIs C) Database D) Search Engine

2. The API standards are also called_____________.
A) Frameworks B) web service protocols C) Gateways
D) Search Engine

3. REST, which stands for _________
A)Representational state transfer B) Resource efficient state transferC)
Reverse state transfer D) none

mu
no
tes
.in

223

4. When APIs are sold for monetary benefit, it is termed as API ______.
A) Gateway B) Economy C) E-Commerce D) management

5. There are _________ number of government service models for APIs
in public sector.
A) two B) threeC) one D) four

6. The ___________verb is used to get a single resource or list of re-
sources.
A) GET B) SET C) PUT D) DELETE

7. _____________ is an important API Development Considerations.
A) Frameworks B)Using Explicit Parameters C) Gateways
D) Search Engine

8. _________ is a way to handle API versioning standards.
A) View state B) Cookie C)Query string parameter
D) Session variable

9. ______is an Interface Description Language for describing RESTful
APIs,.
A) HTML B) XML C) Swagger D) Mango DB

10. __________ is an API implementation standard.
A) HTTP status codes B) XML Specification C) Document Type
Definition D) none

Answers to Multiple Choice Questions
1. A 2.B 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.A

Theory Questions
1. Explain the government service models for APIs in public sector?
2. Explain the strategic business aspects of an API implementation?
3. Who are the stakeholders in API strategy development?
4. Explain the API value chain?
5. State and explain the attributes of API architecture?
6. Explain API management?






mu
no
tes
.in

224

14
API DEVELOPMENT

Unit Structure :

14.0 Objective
14.1 API Development Considerations
14.2 Standards

14.2.1 HTTP verbs
14.2.2 HTTP status codes
14.2.3 Error handling
14.2.4 URI Syntax
14.2.5 Versioning

14.3 Kick-start API developments
14.3.1 Swagger tools and the Open API Specification for API de-

velopment
14.3.2 The ASP.NET Core implementation for a sample API
14.3.2.1 Setting-Up Swagger
14.3.2.2 Run the API and Swagger

14.4 Team orientation.
Summary
References
Model Questions

14.0 OBJECTIVE

This objective of this chapter is to give a basic understanding of
the standards involved in implementing APIs. It discusses details of the
API implementation standards such as URI, HTTP verbs, exceptions, de-
veloper experience, HTTP status codes and naming conventions.

14.1 API DEVELOPMENT CONSIDERATIONS

The purpose of an API is to lets the components of two applica-
tions talk to each other using a set of simple commands. Essentially, APIs
are messengers that deliver requests and return responses between applica-
tions. They are different from web applications and web services. APIs are
similar to a RESTful service implementation. But an API has more capa-
bilities than RESTful services. APIs with RESTful semantics can be con-
sidered to be RESTful services. But not all RESTful services are APIs.

mu
no
tes
.in

225

Usability and adaption of an API by various external callers are important
considerations which are critical to the success of an API implementation.
In order to develop a good API which can evolve over time the following
considerations need to be kept in mind:[1]:

1. Using Explicit Parameters
API implementations should receive parameters from external call-

ers and should not rely on any client-side, state-persistent models. Gener-
ally when a RESTful service is developed for a specific web application
where a single client will interact with the server, these services will ac-
cept data from client-side cookies. But if this RESTful service is used to
serve as an API for several consumers then accepting data from cookies is
not acceptable as it creates problems.

Hence API implementations should have explicit parameters and
accept data from URL parameters or HTTP headers or via HTTP request
body[1], instead of relying on cookies

2. Avoiding Consumer-Commanded Endpoints
APIs and their consumers send and receive messages using defined

service calls. Service calls can be defined by the API service or it can be-
defined by the API consumers. Both methods are correct. But the problem
with consumer-defined calls is that they are application specific. API ser-
vice calls on the other hand are based on entities and business operations
and are common to all applications.

However, it is best to avoid endpoints that serve consumer-
commanded data. Consumer commanded data is the service call defini-
tions which contain the specific application’s view model, Examples of
such service calls are various formatting of data, APIs exposing endpoints
for simple data aggregations and API responses containing visual styles
like color codes. This kind of service calls tightly couple the API imple-
mentation to a specific client and a specific application view and hence
should be avoided.

3 .Creating extensive documentation
While developing an APIs there should be extensive documenta-

tion about the used standards, version, URI syntax, and error codes [2].
This kind of documentation helps other developers to understand and im-
plement this API. To create documentation, tools like Swaggerand TRex-
can be used. Full-fledged API Management tools provide rich documenta-
tion and developer experience [2].

4. Incorporating Security
API security should not only take care of user authentication and authori-
zation, but also deal with data that is to be exposed via a service call. It
should also deal with how endpoints are consumed by the consumers.

mu
no
tes
.in

226

Usually when there is an error while sending a request, there is a
response which is returned with the appropriate error code and description
of the error containing a data property. This may help in rectifying the er-
ror by resending the request with the correct request parameters. But at the
same time it will create a security loop hole. This loophole can be ex-
ploited by a hacker to obtain some internal sensitive data. Hence it impor-
tant to have APIs having helpful responses to clients while not exposing
sensitive information. Public APIs should also implement security meas-
ures such as IP-based security, tracking the usage of the API key, or limit-
ing the call rate. Modern API Management tools offer these request based
security methods.

5. Creating further versions
APIs are software, and software evolves. API development should

consider the versioning; versioning of APIs cover two aspects, one is the
versioning of the URI and second is the versioning of the service contract.
There are many API versioning techniques available, and the proper tech-
nique should be chosen in the early stages of development. Prompt notifi-
cation to developers about new versions and especially the depreciation of
old versions are essential.

14.2 STANDARDS

This section explains the best standards to be followed while using
some key elements in HTTP communication like HTTP verbs, and status
codes. It also describes the standards to be followed for doing error han-
dling, the URI syntax standards and the API versioning standards.

14.2.1 HTTP verbs
APIs enable you to develop any kind of web application having all

possible CRUD (create, retrieve, update, delete) operations. These are the
methods used for HTTP communication between a client and a server.

Table 14.1lists the important HTTP verbs that are most commonly used in
API development. These methods are used to create, retrieve, update, de-
lete entities or resources through a client Request method sent to the
server.

Table 14.1HTTP verbs
HTTP
Verb

Usage CRUD Example

GET used to get
a single
resource or
list of re-
sources

Read HTTP GET
http://www.appdomain.com/us
ers?size=20&page=5

POST used to
create an
resource

Create HTTP POST
http://www.appdomain.com/us
ers/123/accounts

mu
no
tes
.in

227

PUT Replace an
resource

Update/
Replace

HTTP PUT
http://www.appdomain.com/us
ers/123

PATCH Update the
properties
of an re-
source

Update
/Modify

HTTP PATCH /users/1
[{ “op”: “replace”, “path”:
“/email”, “value”:
“new.email@example.org” }]

DELETE Delete an
resource

Delete HTTP DELETE
http://www.appdomain.com/us
ers/123

Each of the above verbs has specific functions. PUT and PATCH
methods even though appear to do the same, there is a basic difference be-
tween them both. The PATCH method was introduced to do partial re-
source modification. The PATCH request contains a set of instructions to
modify an existing resource on the server to produce a new version. The
PATCH method affects the resource identified by the Request-URI, and it
may also affect other resources; i.e., new resources may be created, or ex-
isting ones modified, by the application of a PATCH. The PUT request
however is used to replace an existing version o the resource on the server
with the new version.

14.2.2 HTTP status codes
HTTP status codes indicate the state of a response from the server,

got through the HTTP response object. Some API implementations have
their own HTTP status. When a client makes a request to an HTTP server
and the server successfully receives the request, the server must notify the
client if the request was successfully handled or not through status codes.
Table 14.2 shows some common HTTP status codes.

Table 14.2 HTTP status codes[3]
Status
Code
No.

Status of
the Request

Description of the status

200 OK The request was successfully completed.
201 Created A new resource was successfully created.
400 Bad Request The request was invalid.
401 Unauthor-

ized
The request did not include an authentication
token or the authentication token was expired.

403 Forbidden The client did not have permission to access the
requested resource.

404 Not Found The requested resource was not found.
405 Method Not

Allowed
The HTTP method in the request was not sup-
ported by the resource. For example, the
DELETE method cannot be used with the
Agent API.

409 Conflict The request could not be completed due to a
conflict. For example, POST Content Store

mu
no
tes
.in

228

Folder API cannot complete if the given file or
folder name already exists in the parent loca-
tion.

500 Internal
Server Error

The request was not completed due to an inter-
nal error on the server side.

503 Service Un-
available

The server was unavailable.

It is recommended to return a BAD Request error rather than re-
turning a Not Found error for the status code 404since the original re-
source is there one the server, but the client has sent a wrong resource
name.

Some API developers use their own status codes. But it is a rec-
ommended best practice to use the above response status codes with de-
scriptive error messages in the body especially when a status codes like
400 or 500 are returned.

14.2.3 Error handling
Error handling is an important way in dealing with incorrect Requests.

The best practice followed in API development while handling errors is by
returning an error response with at least three parameters. The following
three parameters should be usually returned in response to an error [2]:

1. Correct HTTP status code like status code number
2. API-specific error code
3. Human-friendly error message

Sample response message

"timestamp":"2019-09-16T22:14:45.624+0000",
"status":500,
"error":"Internal Server Error",
"message":"No message available",
"path":"/api/book/1"

API-specific error codes help in implementing the client logic eas-
ily, rather than processing the human-friendly string message. This also
helps in implementing good flow control logic in clients [1]. The error re-
sponse can contain details such as retry links, retry time interval, and addi-
tional helping parameters to modify the response object. Table 14.3 gives
the problem detail response object properties as defined in the RFC 7807
document. The response object can be extended with custom properties.

mu
no
tes
.in

229

Table 14.3 Error handling- Problem Detail Message as Specified in RFC
7807
Type String URI for the type of the error
Title String Short description of the error
Detail String Detailed description of the error
instance String Instance of the error

The following is a Sample Problem Detail Message as Specified in RFC
7807

{
"type": "https://example.com/probs/out-of-credit",
"title": "You do not have enough credit.",
"detail": "Your current balance is 30, but that costs 50.",
"instance": "/account/12345/msgs/abc","balance": 30
}

For example sending the current balance in the error response is an
important decision which should be weighed carefully while considering
its advantages and disadvantages. If the overall security is compromised
by these kinds of messages then the developer should refrain from return-
ing them.

14.2.4 URI Syntax
A request URI in a HTTP-based RESTful service sends parameters

in the request URI or HTTP headers, or in the request body. API develop-
ers decide what parameters are sent on which path. For simple parameter
passing a GET request method can be used to pass the parameters in URI.
But if there is a specific need to send complex search parameters then they
are sent in the request body rather than in the URI.

URI syntax can be either query string based or URI fragment
based. Modern API frameworks support both syntaxes. A query string
based URI syntax works fine if the specific naming convention like using
a “?” followed by name value pairs is used. URI fragment based syntax is
generally written as –“api/orders/1” .This syntax is preferred due to its
general semantic based approach [1]. Table 14.4 shows the syntax for both
query string based URI and URI fragment.

Table 14.4
Syntax Type of Syntax
api/orders?id=1 query string based URI syntax

api/orders/1 URI fragment

To make the URI syntax more readable one can also write the pa-
rameters in the middle as shown in Table 14.5

Table 14.5

mu
no
tes
.in

230

Syntax Type of Syntax
api /order/1/products URI fragment with parameter

in the middle as shown in
bold in the syntax

api / order / products? order Id = 1 URI fragment with parame-
ter`as shown in bold in the
syntax

URI fragments are not manageable in all scenarios. When used
with search/filter operations requiring a search endpoint with arbitrary pa-
rameters the URI fragments approach is not convenient.

For example if we are require a filter operation which takes two
parameters values color and size, we can introduce a search filter in the
following manner

api / products / filter / { color } / {size}

Here there are two parameters, one is the filter’s key parameter and
second property is the value of the parameter. In above example, color and
size are the two parameters which can take some value like “red” and
“medium”. But chaining a lot of parameters in a URI is restricted by the
URI length limitation.

When complex search operations are involved it is better to send a
GET request with the payload that defines properties, values, and filter
criteria in the request body. This can be accomplished as shown in the
code below [2]:

var request = new Http Request Message
{
Method = Http Method.Get,
RequestUri = new Uri("https://localhost:44341/api/auth"),
Content = new String Content (json, Encoding.UTF8, "applica-

tion/json")
};

Using the above URI segmented approach allows the URIs to be more
human friendly, and keeps the request URIs clean from characters like “?”,
“=”, and “#”[1].

14.2.5Versioning
API versioning standards are handled in the following three ways:

Table 14.6
SNO. Version type Format
1. As a API version in the URL

as a fragment (common
method)

http://api.example.com/v1

mu
no
tes
.in

231

2. As a query string parameter: http://api.example.com/ / prod-
ucts? api-version=1

3. As a custom HTTP header
(e.g. Accept-version)

Accept-version: v1

The easiest and simplest way of sending the version is having the
version in the URL as shown in Table 14.6.Whichever method is used,
APIs expect the version from the client as a parameter, and if the client
does not specify the version, the API either falls back to a default version
or throws an error [1].

The header key “api-version” is used to pass the version to the
server as shown in Table 14.6 in row 2.But developers can use their own
custom header keys or state the API version in the Accept header key. In
the third method in row3 of Table 14.6 a custom Header – “Accept-
version” was used to send the version information.

To state the API version in the Accept header key the following
method can be used:

Accept: application/vnd.example+json;version=1.0

The above header is used for content negotiation in a JSON-based
API with the version number at the last. Some APIs expect the version
number to be placed before “json” in the Header as follows:

Accept: application/vnd.example.v1+json

Regardless of the method used, implementation should be consis-
tent across all endpoints of the API. Also, one API can have more than one
method enabled in its implementation.

14.3 KICK-START API DEVELOPMENT

While discussing API development in this chapter the OAS speci-
fication is used along with the Swagger tools for implementing it. The next
section describes the tools and specification used for API development.

14.3.1 Swagger tools and the Open API Specification for API devel-
opment

Swagger is an Interface Description Language for describing
RESTful APIs, expressed using JSON.

Swagger is used together with a set of open-source software tools
to design, build, document, and use RESTful web services. It includes
both API specification and tools.

mu
no
tes
.in

232

The current version of swagger is called the Open API Specifica-
tion (OAS) specification.

Open API Specification (OAS) is the specification for machine-
readable interface files for describing, producing, consuming, and visualiz-
ing RESTful web services. It allows both humans and computers to dis-
cover and understand the capabilities of the service without access to its
source code.

The OAS specification has been made vendor neutral but the im-
plementation tools still go by the brand name- Swagger. While discussing
API development in this chapter the OAS specification is used along with
the Swagger tools for implementing it.

14.3.2 The ASP.NET Core implementation for a sample API
In this chapter theASP.NET Core which is the open-source version of
ASP.NET is used for developing a sample API called “my Sample API”.
To create a simple ASP.NET Core Web API in Visual Studio use the fol-
lowing steps:

 From the File menu, select New > Project.
 Select the ASP.NET Core Web API template and click Next.
 Name the project my Sample API and click Create.
 In the Create a new ASP.NET Core Web Application dialog, confirm
that .NET Core and ASP.NET Core 5.0 are selected. Select the
ASP.NET Core Web API template and click Create as shown in figure
14.1

Figure 14.1 Visual Studio dialog box for creating a ASP.NET Core web
API Project

mu
no
tes
.in

233

In the next step, create a new folder in the above project and name it
“Models.” Create the Product Model “Product.cs” in this folder.

Product.cs
public class Product

{
public int Id { get; set; }
public string Name { get; set; }
public DateTime? ModifiedDate { get; set; }
}

Next add another new folder “Errors.” This folder will contain all the
used classes .It will also contain enums to provide error handling imple-
mentation of our sample API as defined in the RFC 7807.

Create the following “Error.cs ” file in the “Errors” folder

ErrorCode.cs

public enumErrorCode
{
RequestContentMismatch = 18000,
EntityNotFound = 18500
}

The sample “ErrorCode” enumis not implemented according to
any general API standards. Its implementation is specific to this applica-
tion.

One has to keep in mind to make sure that the error codes are con-
sistent across the application and documentation, as API consumers should
make decisions and write code based on defined standards.

Now create an abstract class in the Errors folder, named “Error-
Message.cs,” with the base properties of the error contract, and implement
two specific Error Message concrete classes named “Request Content Er-
ror Message” and “Entity Not Found Error Message.”

ErrorMessage.cs

public abstract class ErrorMessage
{
public ErrorCode Code { get;set; }
public string Type { get; set; }
public string Title { get; set; }
public string Detail { get; set; }
public string Instance { get; set; }
public string Info { get; set; }
}

mu
no
tes
.in

234

public class RequestContentErrorMessage : ErrorMessage
{

public RequestContentErrorMessage()
{
Code = ErrorCode.RequestContentMismatch;
Type = $"https://massrover.com/doc/errors/#
{ErrorCode.RequestContentMismatch.ToString()}";
}

}
public class EntityNotFoundErrorMessage : ErrorMessage
{

public EntityNotFoundErrorMessage()
{
Code = ErrorCode.RequestContentMismatch;
Type = $https://massrover.com/doc/
errors/#{ErrorCode.EntityNotFound.ToString()};
}

}

Next create another class Error Service to return the correct Error
Message instance in the right context. This class simulates a service that
produces the correct Error Message instance. In a real-world implementa-
tion, this logic should be made part of the business logic.

ErrorService.cs

public static class ErrorService
{

public static ErrorMessage
GetRequestContentMismatchErrorMessage()

{
return new RequestContentErrorMessage
{
Title = $"Request content mismatch",
Detail = $"Error in the request context."
};

}
{
ErrorCode.RequestContentMismatch.ToString()}";
}

}
public class EntityNotFoundErrorMessage : ErrorMessage
{

mu
no
tes
.in

235

public EntityNotFoundErrorMessage()
{
Code = ErrorCode.RequestContentMismatch;
Type = $https://massrover.com/doc/
errors/#{ErrorCode.EntityNotFound.ToString()};
}

}
public static ErrorMessageGetEntityNotFoundErrorMessage(Type entity,
int id)
{
return new EntityNotFoundErrorMessage
{
Title = $"{entity.Name} not found",
Detail = $"No {entity.Name.ToLower()} found for
the supplied id - {id}"
};

}
}

In the next step, create an ASP.NET Core controller with the ac-
tions for the CRUD operations of Product entity. In order to do this, add
an empty Web API controller named “Products Controller” with the end-
points as listed in Table 14.7.

Table 14.7ProductsController Endpoints

Action Name HTTP Method Response Error Response
GetProducts GET 200 List of

Products
-

GetProductById GET 200 Products 404 - Entity Not
Found

CreateProduct POST 201 New Prod-
uct

-

UpdateProduct PUT 204 No Content 400 - Bad Re-
quest
404 - Entity Not
Found

DeleteProduct DELETE 204 No Content 404 - Entity Not
Found

.
To develop the code for Product Controller.cs, first add a product

collection in the controller as shown in the code below:

[Produces ("application/json")]
[Route ("api/products")]

public class Products Controller : Controller
{
private static List<Product> _products = new

mu
no
tes
.in

236

List<Product>
{
new Product {Id = 1, Name = "Lithim L2",
Modified Date = DateTime.UtcNow.AddDays(-2)},
new Product {Id = 2, Name = "SNU 61" }
};
}

Next, add two HTTP GET actions. “Get Products”, GET action
will be to retrieve all the products, and “Get Product ById” to retrieve a
product by its ID. Parameters for the above HTTP GET action are passed
via URI path. The Action methods like the GET, POST have proper at-
tributes for the HTTP method, route parameters, and response types. Each
action type has its own XML comments.

/// <summary>
/// Gets list of all Products
/// </summary>
/// <returns>List of Products</returns>
/// <response code="200">List of Products</response>
[HttpGet]
[Produces Response Type (type of (List<Product>), 200)]
public IAction Result Get Products()
{
return Ok(_products);
}
/// <summary>
/// Gets product by id
/// </summary>
/// <param name="id">Product id</param>
/// <returns>Product</returns>
/// <response code="200">Product</response>
/// <response code="404">No Product found for the
specified id</response>
[HttpGet("{id}")]
[ProducesResponseType(typeof(Product), 200)]
[ProducesResponseType(typeof(EntityNotFoundError
Message), 404)]
public IActionResultGetProductById(int id)
{
var product = _products.SingleOrDefault(p =>p.Id
== id);
if (product != null)
return Ok(product);
else
return NotFound
(ErrorService.GetEntityNotFoundErrorMessage
(typeof(Product), id));
}

mu
no
tes
.in

237

Next create an actionHTTP POST to create new products
/// <summary>
/// Creates new product
/// </summary>
/// <param name="product">New Product</param>
/// <returns>Product</returns>
/// <response code="201">Created Product for the
request</response>
[HttpPost]
[ProducesResponseType(typeof(Product), 201)]
public IActionResultCreateProduct([FromBody]Product
product)
{
product.Id = _products.Count + 1;
_products.Add(product);
return CreatedAtRoute(new { id = product.Id }, product);
}

Add the PUT method for replacing products with the specified ID.
This action requires two parameters:

The ID of the product to be replaced (this is passed as a path vari-
able) and the product to be replaced with the new values, which is passed
in the request body.

This action returns a NoContent response with the HTTP status
code 204 for the successful replacement of the product. Otherwise, it re-
sponds with two different error contracts. One is “400 Bad Request,” with
the request content mismatched when the ID value in the path does not
matchthe ID value of the product in the request body. The other is “404
Not Found,” when the requested entity with the specified ID is not found.

/// <summary>
/// Replaces a product
/// </summary>
/// <param name="id">New version of the Product</param>
/// <param name="product">New version of the
Product</param>
/// <returns></returns>
/// <response code="204">No Content</response>
/// <response code="400">Request mismatch</response>
/// <response code="404">No Product found for the
specified id</response>
[HttpPut("{id}")]
[ProducesResponseType(204)]
[ProducesResponseType(typeof(RequestContentError
Message),400)]
[ProducesResponseType(typeof(EntityNotFoundError
Message), 404)]
public IActionResultUpdateProduct(int id, [FromBody]

mu
no
tes
.in

238

Product product)
{
if (id != product.Id)
return BadRequest(ErrorService.GetRequest
ContentMismatchErrorMessage());
var existingProduct = _products.SingleOrDefault
(p =>p.Id == product.Id);
if (existingProduct != null)
{
existingProduct = product;
existingProduct.ModifiedDate = DateTime.UtcNow;
}
else
return NotFound
(ErrorService.GetEntityNotFoundErrorMessage
(typeof(Product), product.Id));
return NoContent();
}

Create a delete endpoint using the HTTP DELETE action.
/// <summary>
/// Deletes a product
/// </summary>
/// <param name="id">Product id</param>
/// <returns></returns>
/// <response code="204">No Content</response>
/// <response code="404">No Product found for the specified
id</response>
[HttpDelete("{id}")]
[ProducesResponseType(204)]
[ProducesResponseType(typeof(EntityNotFoundError Message), 404)]
public IActionResultDeleteProduct(int id)
{
var product = _products.
SingleOrDefault(p =>p.Id
== id);
if (product != null)
_products.Remove(product);
else
return NotFound
(ErrorService.GetEntityNotFoundErrorMessage
(typeof(Product), id));
return NoContent();
}

The next major step in this API development is to set up theSwag-
ger tools in ASP.NET Core and supply these tools with the required attrib-
ute elements.

mu
no
tes
.in

239

14.3.2.1Setting-Up Swagger
1. To setup Swagger follow the below steps:
First install the Swashbuckle. Asp Net Core package in the project
by executing the following command in the Package Manager
Console (PMC):

Install-Package Swashbuckle.AspNetCore
2. In the next step, set up the Startup.cs to activate Swagger tooling
and get the Swagger UI up and running in the project.

3. Next update the Configure Services method in the Startup.cs, file,
[1]as shown below:

public void Configure Services (I Service Collection services)
{
services.AddMvc();
services.AddSwaggerGen(c =>
{
c.SwaggerDoc("v1", new Info { Title = "MyAPI", Version = "v1" });
c.IncludeXmlComments
(Path.Combine (Platform Services.Default.
Application.ApplicationBasePath,
"MyAPI.QuickStartSample.xml"));
});
}

4. Update the name of the API (MyAPI) and the versionof the API (v1)
in the SwaggerDoc, and update the path for the XMLdocumentation
for Swagger to use via IncludeXmlComments.

5. In the “MyAPI.Quick Start Sample.xml” sample, install the package
Microsoft.Extensions.Platform Abstractions using PMC in order to
provide the XML path.

6. Execute the following commands:

Install-Package Microsoft.Extensions.PlatformAbstractions

7. Next update the Configure method as shown in the code below [1].
This will enable the Swagger UI and sets the endpoint of the Swagger
definition.

public void Configure (IApplicationBuilder app,
IHosting Environment env)
{
if (env.IsDevelopment())
{
app.UseDeveloperExceptionPage();
}
app.UseSwagger();
app.UseSwaggerUI(s =>
{
s.SwaggerEndpoint("/swagger/v1/swagger.json",

mu
no
tes
.in

240

"MassRover Open API");
});
app.UseMvc();
}

8. Instruct Visual Studio to generate XML documentation based on the
comments

For completing the documentation navigate to Project Properties,
then Build tab, and enable the XML documentation file.

14.3.2.2Run the API and Swagger

With the above installation complete, run the application. Navigate
to the URL http://{host}:{specified port}/swagger. Swagger’s UI uses
the XML documentation generated by Visual Studio and provides details
of the endpoints, parameters, response types, and response codes. Swagger
also provides a detailed description of the above components as described
in the XML comments.

14.4 PUTTING TOGETHER A TEAM FOR API
IMPLEMENTATION

API implementation strategy involves both technical skills as well
as knowledge about the business environment. Multiple teams work for an
API implementation. These teams have to work together to integrate dif-
ferent endpoints under a single API standard. This kind of team work is
commonly used during a commonly utilized in micro services-based archi-
tecture implementations.

For micro services-based architecture implementations, different
teams work on different services, thus creating APIs with different stan-
dards. But for a client accessing these micro services, there has to be a
single standardized API experience. API teams play a key role in standard-
izing multiple streams of services under one standard channel of API [1].

SUMMARY

This chapter discusses certain key point developers have to keep in
mind while doing API implantation. It also focuses on API implementa-
tion standards such as the following:

 URI format
 HTTP verbs
 Error handling
 HTTP status codes
 Versioning.
This chapter also talks about how to put a team together and start the

process of API development using ASP.NET Core and related Visual Stu-

mu
no
tes
.in

241

dio tools. It also shows how to produce documentation for an API specifi-
cation describing a RESTful API. Open API Specification (OAS) along
with certain other Swagger tools is used for this purpose.

REFERENCES

1. Practical API Architecture and Development with Azure and AWS-
Thurupathan Vijayakuma ,ISBN-13 (pbk): 978-1-4842-3554-6,ISBN-13
(electronic): 978-1-4842-3555-3,https://doi.org/10.1007/978-1-4842-
3555-3 ,Library of Congress Control Number: 2018946567

2.https://documentation.commvault.com/commvault/v11/article?p=45
599.htm

3.https://documentation.commvault.com/commvault/v11/article?p=45599.
htm

MODEL QUESTIONS

Multiple Choice Questions
1. When RESTful service is used to serve as an API for several consumers
then it should accept _____.
A) Explicit Parameters B) caching C) cookies D) none

2. While developing an APIs there should be extensive documentation
about the ________..
A) URI syntax B)Using Explicit Parameters C) Query string parameter
D) none

3.The _______ HTTP Verb is used to create an resource.
A) GET B) PUTC) POST D) none

4. The status code ______ indicates that the request was successfully
completed.
A) 404 B) 400 C) 200 D) 234

5. _________is an important way in dealing with incorrect Requests..
A) Error handling B) bandwidthC) Throttling D) none

Answers to Multiple Choice Questions
1. A 2.A 3.C 4.C 5.A

Theory Question
1. State and explain some of the most considerations for developing a
good API?

2. Write a short note on API standards?
3. Write a short note on Swagger tools and the OpenAPI Specification for
API development?



mu
no
tes
.in

242

15
API GATEWAYS & API Security

Unit Structure :

15.0 Objective
15.1 API Gateways in public cloud
15.2 Endpoint Mappings
15.3 Azure API Management

15.3.1Creating an Azure API Management Service
15.4 AWS API gateway

15.4.1Creating an AWS API Gateway Service
15.5 API Security
15.6 Request-based security

15.6.1 Request-based security in Azure API Management
15.6.1.1 Subscriptions and Subscription Keys
15.6.1.2 Request Rate Limits
15.6.1.3 Quota Limits
15.6.1.4 IP restrictions
15.6.2 Request-based security in AWS API Gateway
15.6.2.1 API Keys
15.6.2.2 Rate Limits

15.7 Authentication and authorization
15.7.1 API Keys
15.7.2 OpenID and OAuth standards
15.7.3 Securing APIs with Azure Active Directory V2
15.7.4 Issuing Custom JWT Tokens
15.7.5 Pre-Authentication in Azure API Management
15.7.6 Authorizers in AWS API Gateway
Summary
References
Model Questions

15.0 OBJECTIVE

This chapter deals with API Gateways in public cloud. It discusses
about how to manage the endpoint in an API. It then talks about two such

mu
no
tes
.in

243

popular API management services in public cloud-Microsoft Azure and
the Amazon based AWS. API Management and API Gateway are the re-
spective brand names of the API management services from Azure and
Amazon’s AWS. One should not confuse these names with the generic
terms API gateway and management.

It then discusses how security can be handled on a public cloud
through various security mechanisms like Request-based security and au-
thentication and authorization.

15.1 API GATEWAYS IN PUBLIC CLOUD

API gateways are like the CDNs which act as the front layer for
APIs. Their main function is to abstract the underlying API or service and
provide a uniform access point to consumers. They are the single point of
entry for the various Micro services offered by the API.

An API gateway accepts all API calls and then acts as a reverse
proxy, retrieving resources from backend applications on behalf of the cli-
ent application. An API gateway not only accepts API calls — it also han-
dles tasks related to API services like user authentication, rate limiting,
monitoring, and more. A client submits its request and the gateway can
break it down into multiple requests, route them to different backend ser-
vices, and return the response to the client in a single round-trip. An API
gateway therefore reduces the number of requests between the client and
server, improving latency and the user experience.

When an API consumer sends HTTP/HTTPS request to an API
service in a public cloud it is first received by the API gateway. The API
Gateway then performs certain actions on the inbound request and passes
the request to the backend service. It then performs actions on the out-
bound response. Figure 15.1 shows the scenario for an API Gateway for
Student Management. In Figure 15.1, consumers like mobile applications,
websites, IoT devices, other API services, and direct human consumers
make a request to a public API Gateway through the internet. This is then
passed on to the backend services after the gateway performs certain ac-
tion. The outbound Response from the backend is passed on to the gate-
way for performing appropriate actions. The gateway then sends the Re-
sponse to the consumer of the API. In the figure below the backend ser-
vices are transparent to the end user. The API gateway has full control
over the requests it receives, and has the same control over the response it
delivers to the consumer.

mu
no
tes
.in

244

Figure 15.1 An API Gateway for Student Management https://www.c-
sharpcorner.com/article/microservices-design-using-gateway-pattern/

APIs also perform other value-added functions like caching, secu-
rity, management, content negotiation, and policy management. A collec-
tion of these functions or services along with architecture components
such as developer experience, enterprise integration, telemetry, access and
request policies, and access control etc. forms the core of API manage-
ment. Most commercial API gateways are offered as a part of the API
management tools and services.

Figure 15.1shows a generic overview of a public cloud API. Internals of
implementation, configuring APIs, connecting backend services, and con-
figuring rules are vendor-specific.

15.2 ENDPOINT MAPPINGS

As discussed in the section 15.1 an API gateway is the single point
of contact between a consumer and the backend services and requests. In
this model, API gateways can have different mappings between backend
service endpoints and API gateway interface endpoints.

There are four possible mappings and patterns related to these endpoints.

1. One-to-One Mapping
In One-to-one mappings one backend service is mapped to one
API gateway interface endpoint. Figure 15.2shows a one-to-one
Mapping.

mu
no
tes
.in

245

Figure15.2. One-to-One Mapping[1]

2. One-to-Many Mapping
In this type of mapping one API gateway interface endpoint is mapped
to many different endpoints of the various backend services. In this
model a client can submits its request and the gateway can break it
down into multiple requests, route them to different backend services,
and return the response to the client in a single round-trip. An API
gateway therefore reduces the number of requests between the client
and server, improving latency and the user experience. In figure 15.3 a
single request call can service micro services.

Figure 15.3 One-to-Many Mapping source https://www.c-
sharpcorner.com/article/microservices-design-using-gateway-pattern/

3. Many-to-One Mapping
This mapping is used as a business strategy. This model involves con-
necting multiple API gateway interface endpoints to one backend ser-
vice endpoint. For example, an entity like a Product can have different
states. Each state change of this Product entity will be an update opera-
tion. According to business logic each state change of this Product en-

mu
no
tes
.in

246

tity can be a different operation in terms of the authorization and se-
mantic meaning. So each API gateway interface has different end-
points with a meaningful URL, but they are mapped to a one-update
endpoint of the backend service. Figure 15.4 shows this model.

Figure 15.4Many-to-one Mapping [1]

4. Many-to-many mapping
In this type of mapping, we can have many types of APIs mapped to
multiple backend services. This however is a business decision where
an organization might be offering a both a web application as well a
Mobile based application to its clients as shown in Figure 15.5. Split-
ting into multiple gateways based on the client app type is referred to
as "Backend for Front end" (BFF) pattern.

Figure15.5source:https://www.c-
sharpcorner.com/article/microservices-design-using-gateway-pattern/

5. One-to-None Mapping

mu
no
tes
.in

247

In this model shown in figure 15.6, a single API gateway interface is
will be capable of producing a response without contacting that backend
service. The API gateways here will be able handle requests, execute some
fixed logic and return a response without connecting to a backend service.
This kind of mapping is often done in mocking during development stage.
A mock API server is useful during development and testing when live
data is either unavailable or unreliable.

Figure 15.6[1]
.

15.3 AZURE API MANAGEMENT

Microsoft Azure API Management (APIM) is a way to create con-
sistent and modern API gateways for existing back-end services. It helps
organizations publish APIs to external, partner, and internal developers to
unlock the potential of their data and services. Businesses everywhere are
looking to extend their operations as a digital platform, creating new
channels, finding new customers and driving deeper engagement with ex-
isting ones.

API Management provides the core competencies to ensure a suc-
cessful API program through developer engagement, business insights,
analytics, security, and protection. One can take any backend and add the
Azure API Management to launch a full-fledged API program based on it.

The Azure API Management system is made up of the following com-
ponents:
 The API gateway is the endpoint that:

o Accepts API calls and routes them to the back ends.
o Verifies API keys, JWT tokens, certificates, and other credentials.
o Enforces usage quotas and rate limits.
o Transforms API on the fly without code modifications.
o Caches backend responses where set up.
o Logs call metadata for analytics purposes.

 The Azure publisher portal is the administrative interface where one-
can set up their API program. The portal can be used to:
o Define or import API schema.

mu
no
tes
.in

248

o Package APIs into products.
o Set up policies like quotas or transformations on the APIs.
o Get insights from analytics.
o Manage users.

 The Developer portal serves as the main web presence for developers,
where they can:
o Read API documentation.
o Try out an API via the interactive console.
o Create an account and subscribe to get API keys.
o Access analytics on their own usage.

When creating an Azure API Management service instance, Azure
provides both a API gateway and a portal. API Gateway is the core engine,
receiving requests, processing them, connecting to the backend service,
and responding to requests.

The publisher portal provides an administration interface to con-
figure the API gateway and developer portal. The developer portal in-
cludes the interface and workflows for developer on boarding, API sub-
scriptions, and other developer experience–related features.

15.3.1Creating an Azure API Management Service
To create an Azure API Management Service, navigate to the Azure sub-
scription. If you don't have an Azure subscription, create a free ac-
count before you begin.

1.Sign in to the Azure portal.
2.From the Azure portal menu, select Create a resource.

Figure 15. 7 Create resource source:https://docs.microsoft.com/en-
us/azure/api-management/get-started-create-service-instance

3.On the New page, select Integration > API Management.
Now look for “API Management,”and select API Management to create a
service instance.

Figure 15. 8 New API Management Page
source:https://docs.microsoft.com/en-us/azure/api-management/get-
started-create-service-instance

mu
no
tes
.in

249

4. In the API Management service page, enter settings as shown in figure
15.9

Figure15.9 New Azure API Management service instance creation
Source:https://docs.microsoft.com/en-us/azure/api-management/get-
started-create-service-instance

In the Azure API Management creation window give a name. This
name sets the URL of the API gateway and portal, which will appear as
“newname.portal.azure-api.net”. Here new name is the name that has been

mu
no
tes
.in

250

set in the above dialog box. The DNS can be configured for this URL at a
later stage. The URL “newname.portal.azure-api.net/admin” will open the
publisher portal.

Next select the subscription and resource group (or create a new
resource group), and select the location. Then specify the organization
name. This name will appear in the developer portal as the organization
that publishes the API.

Now specify the email address of the administrator which will be
the emailed of the user who creates the service instance. The next step in
this process is to select the pricing tier. The Developer tier is the most
comprehensive offering, with sufficient request/response limitations in
dev/test scenarios. Once the process of filling the form is complete the
Azure API Management service instance will be created.

15.4 AWS API GATEWAY

API Gateway is the commercial name of the API management ser-
vice offered in AWS. Amazon API Gateway is a fully managed service
that makes it easy for developers to create, publish, maintain, monitor, and
secure APIs at any scale. Using API Gateway one can create a RESTful
API or a Web Socket API, which will enable real-time two-way commu-
nication applications. API Gateway handles all the tasks involved in ac-
cepting and processing up to hundreds of thousands of concurrent API
calls. It also performs traffic management. It manages security through
authorization and access control, throttling. It also performs monitoring,
and API version management.
The following are some of the features of AWS API Gateway:

 Caching
 Request control
 Authentications
 Mocking(connecting to the backend service)
 API publishing via AWS Marketplace.

AWS API Gateway is tightly coupled with other AWS services like
VPC and Lambda. It also allows client SDK generation for popular plat-
forms like IOS and Android.

15.4.1Creating an AWS API Gateway Service
To create an AWS API Gateway Service, one should have an AWS

account with IAM permission to perform actions. Otherwise, setup an ac-
count by visiting the page aws.amazon.com and choose “Create an AWS
Account”. Amazon recommends that one should create an AWS Identity
and Access Management (IAM) user with administrator permissions as a
best practice. For more information on how to create an IAM user refer
tohttps://docs.aws.amazon.com/IAM/latest/UserGuide/getting-
started_create-admin-group.html

mu
no
tes
.in

251

1. Next log in to the AWS API Gateway console at
https://console.aws.amazon.com/apigateway, and search for API Gateway
option as shown in15.10 below; click on it to create an AWS Gateway in-
stance as shown in figure 15.11 below.

Figure 15.11 Create a new API in Amazon API gateway source:[1]

2.In the above window, there are three options for creating an API. If there
is an existing API click on “Import from Swagger” and copy the Swagger

mu
no
tes
.in

252

definition of the target API in the panel as shown in figure15.10, or upload
from the definition file and click on Import to finish importing the file.
One can also use an example API implementation option in AWS.

3. In the Settings section, select the endpoint type. There are two types of
endpoints.

 Edge optimized: This is the default option, which enables the AWS
Cloud Front distribution and improves connection time. This is a good
choice in most cases. API requests from clients will be routed to the
nearest Cloud Front edge servers across AWS regions just like in
CDN.

 Regional: This option will route client requests to the region-specific
API gateway, bypassing CloudFront distribution. In normal requests a
request from the same region has the benefit of avoiding a round trip to
Cloud Front thereby increasing performance. But if the requests origi-
nate from other regions, then they may experience delay. Deploying
region-specific API gateways in target regions can solve this problem.

Once the API definition file is imported, the API will be visible in
the panel. AWS API Gateway structures APIs as resources and methods.
The API URI segment is a resource, and HTTP actions are referred to as
methods.

In a URI segment like api/products, API and products are two dif-
ferent resources. A resource can have other resources and methods, and
path parameters can also be added as resources. Curly braces are used to
indicate the path parameters as shown in figure 15.11.API resources are
organized in a resource tree according to the application logic as shown in
figure 15.11. Each API resource can expose one or more API methods that
have unique HTTP verbs supported by API Gateway.

Figure 15.12API gateway Resource Treemu
no
tes
.in

253

One can select a resource and add a resource or method to it using
the Actions drop-down menu on top. One needs to use curly braces when
adding a path parameter as a resource. Click on methods like GET, POST,
DELETE or PUT to configure it.

3. In the Resources pane as shown in figure 15.12, choose the resource
root, represented by a single forward slash (/), and then choose Create
Resource. For Resource Name, enter the name of the target API (Let’s
call it Sample API Proxy) being used.

4. In the next step create a GET method that enables the AWS service
proxy to interact with the AWS service.

 To create the GET method
1. In the Resources pane, choose /Sample API Proxy, and then
choose Create Method.

2. For the HTTP method, choose GET, and then save the choice.

5. In the next step we need to create the AWS service proxy execution
role. For this one has to create an IAM role that the AWS service proxy
uses to interact with the AWS service. We need to create an IAM role as
an AWS service proxy execution role. Without this role, API Gateway
cannot interact with the AWS service. To finish this step, sign in to the
AWS Management Console and open the IAM console at
https://console.aws.amazon.com/iam/ . Choose Policies, go to Welcome to
Managed Policies page, choose “Get Started”. A list of policies will ap-
pear. Choose the policies and then choose “Create Policy”.

5.Next choose JSON and then enter the following text.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Resource": [
"*"
],
"Action": [
"sns:ListTopics"
]
}
]
}

6.Now choose Review policy.
 Enter a name and description for the policy.
 Choose Create policy.

mu
no
tes
.in

254

7. Next choose Roles- Choose Create Role.
8. Choose AWS Service under Select type of trusted entity and then

choose API Gateway.
9. Choose Next: Permissions.
10. Choose Next: Tags.
11. Choose Next: Review.
12. For Role Name, enter a name for the execution role (for example,

API Gateway AWS Proxy Exec Role), optionally enter a description
for this role, and then choose Create role.

13. In the Roles list, choose the role you just created. You may need to
scroll down the list.

14. For the selected role, choose Attach policies.
15. Select the check box next to the policy you created earlier (for ex-

ample, API Gateway AWS Proxy Exec Policy) and choose Attach
policy.

16. The role you just created has the following trust relationship that en-
ables API Gateway assume to role for any actions permitted by the
attached policies:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "",
"Effect": "Allow",
"Principal": {
"Service": "apigateway.amazonaws.com"
},
"Action": "sts:AssumeRole"
}
]
}

17. For Role ARN, note of the Amazon Resource Name (ARN) for the
execution role. This will be required later. The ARN should look similar
to:
arn:aws:iam::123456789022:role/APIGatewayAWSProxyExecRole
where 123456789022 is the AWS account ID.

18. In this step, specify the settings for the GET method so that it can in-
teract with an AWS service through an AWS service proxy. Then test the
method.

To specify settings for the GET method and then test it
1. In the API Gateway console, in the Resources pane for the API

named Sample API Proxy, in / Sample API Proxy, choose GET.
2. Choose Integration Request, and then choose AWS Service.

mu
no
tes
.in

255

3. For AWS Region, choose the name of the AWS Region where you
want to get the Amazon SNS topics.

4. For AWS Service, choose SNS.
5. For HTTP method, choose GET.
6. For Action, enter List Topics.
7. For Execution Role, enter the ARN for the execution role.
8. Leave Path Override blank.
9. Choose Save.
10. In the Method Execution pane, in the Client box, choose TEST,

and then choose Test. If successful, Response Body displays a re-
sponse similar to the following:

{
"ListTopicsResponse": {
"ListTopicsResult": {
"NextToken": null,
"Topics": [
{
"TopicArn": "arn:aws:sns:us-east-

1:80398EXAMPLE:MySNSTopic-1"
},
{
"TopicArn": "arn:aws:sns:us-east-

1:80398EXAMPLE:MySNSTopic-2"
},
...
{
"TopicArn": "arn:aws:sns:us-east-

1:80398EXAMPLE:MySNSTopic-N"
}
]
},
"ResponseMetadata": {
"RequestId": "abc1de23-45fa-6789-b0c1-d2e345fa6b78"
}
}
}

19.Step 5: In the final step, deploy the API so that you can call it from out-
side of the API Gateway console. To do that, choose Deploy API in the
Resources pane.
1. For Deployment stage, choose test.
2. For Deployment description, enter Calling AWS service proxy
walkthrough.

3. Choose Deploy.

20. Test the API-To test go outside of the API Gateway console and use
AWS service proxy to interact with the Amazon SNS service.

mu
no
tes
.in

256

1. In the Stage Editor pane, next to Invoke URL, copy the URL to the
clipboard. The following is the URL:

https://my-api-id.execute-api.region-id.amazonaws.com/test

2. Paste the above URL into the address box of a new browser tab as
shown below:

https://my-api-id.execute-api.region-
id.amazonaws.com/test/mydemoawsproxy

3. When the URL is opened in the Browser, the following information
will be displayed:

{"ListTopicsResponse":{

15.5 API SECURITY

Security is a major consideration in Public APIs as they expose the
data and business operations to external consumers. As an API developer
one should protect APIs from unauthorized consumers as well as control
the consumption rate. They should incorporate mechanisms to protect the
data.

A consumer of the API will need a trusted environment with policies
for authentication and authorization. Some of the most common ways to
strengthen API security are:

 Using of tokens. Tokens are a great way to strength security. This
process involves establishing trusted identities and then controlling ac-
cess to services and resources by using tokens assigned to those identi-
ties.

 Using encryption and digital signatures. Another way to secure API
is to encrypt data using a method like TLS. Impose digital signatures
to ensure that the right users are decrypting and modifying data, and no
one else.

 Identifying vulnerabilities. Check the operating system, network,
drivers, and API components for any vulnerability. Any weak spots
that could be used to break into the APIs should be identified and
fixed. Lastly sniffers should be used to detect security issues and track
data leaks.

 Using quotas and throttling. To provide security quotas on how often
API can be called should be imposed and its usage should be con-
stantly monitored. More calls on an API may indicate that it is being
abused. It could also be a programming mistake such as calling the
API in an endless loop. Make rules for throttling to protect your APIs
from spikes and Denial-of-Service attacks.

mu
no
tes
.in

257

 Use an API gateway. API gateways act as the major point of en-
forcement for API traffic. A good gateway will allow you to authenti-
cate traffic as well as control and analyze how your APIs are used.

Implementing API security in public cloud is a very challenging
task and involves providing security at multiple levels of a system. There
two important ways of implementing API security:

 Request-based security implementations –This security implementa-
tion dictates the policies and constraints on API consumption. It lays
down the rules for API consumption like who can consume the API
and how much.

 Authentication- This states the policies and constraints on authentica-
tion and authorization like who the consumer is and what the consumer
can access.

This chapter focuses on how the above two aspects of API security
and how they are implemented in Microsoft Azure and Amazon’s AWS.

15.6 REQUEST-BASED SECURITY

Request-based security implementation is used to identify a con-
sumer and then apply some constraints on their consumption. This can be
achieved either by limiting the consumption rate or allowing or blocking
the consumer. Limiting the API consumption rate is important because
more calls on an API may indicate that it is being abused. It also protects
the APIs from a spike in usage and prevent Denial-of-Service attacks.
Sometimes excessive calls to an API may also be an indicator of a pro-
gramming mistake such as calling the API in an endless loop.

In Request-based security implementation, a consumer is identified
through a very simple mechanism like API keys and his consumption rate
is tracked. In the direct selling model of API economy, the consumption
rate of an API is a basic parameter in defining different API SKUs. Good
Cloud based API management services such as Azure API Management
and AWS API Gateway have built-in settings to configure and implement
request-based security rules.

15.6.1 Request-Based Securityin Azureapi Management
Azure API Management manages API security by configuring the

request-based security settings. The rules for configuring the request-based
security settings are applied using Azure API Management policies.

Request-based security in Azure API Management can be implemented
through:

 Subscriptions and Subscription Keys
 Request Rate Limits

mu
no
tes
.in

258

 Quota Limits
 IP restrictions

15.6.1.1Subscriptions and Subscription Keys
In Azure API Management, a consumer having a valid subscription

key associated with an Azure API Management product can only make a
successful request to that API product. API developers can request or
automatically retrieve (depending on the setting) subscription keys for
products in the developer portal.

A single subscription to a product provides two subscription keys:
A primary key and a secondary key. Having two subscription keys helps in
decreasing the downtime during key rollover. The secondary key can be
used to replace the primary key that has been compromised or is vulner-
able to compromise.

Usage is tracked at the subscription level regardless of which key
is used. Generally, subscription keys are used to track a consumer’s usage.
But Azure API Management allows developers to use other ways to con-
figure usage limits based on parameters like IP address or response codes
etc.

Subscription keys are sent to the API Azure API Management
gateway in the request header as ocp-apim-subscriptionkey.

15.6.1.2 Request Rate Limits

Request rate limit is another mechanism through which we can im-
plement security in Azure API Management.
To set the Request Rate Limits follow the steps below:

1. Navigate to the Azure API Management service and select the Az-
ure API Management product.

2. Then navigate to the policies section of the product and add the
rate-limiting policies.

Product-level policies are applied to all the endpoints in an aggre-
gated manner. If the rate is 10 requests per minute for a product and the
product has three such API endpoints, the consumer can make a maximum
of 10 requests per minute as a combined request rate. The consumer is not
allowed to make 10requests to each endpoint separately. Generally re-
quest-based policies are applied at the product level.

Endpoint-level policies can be applied to enforce such rules for rate-
limiting.

For example, for any given product the following policy statement in
the inbound section allows 4000calls in 90 seconds for the API endpoints
included in the specific product.

mu
no
tes
.in

259

<rate-limit calls="4000" renewal-period="90" />

If the caller exceeds this limit, Azure API Management will re-
spond with a 429 HTTP code which indicates “too many requests”. The
response body will contain the message and the retry time period. The
caller must wait for that time period before sending the next request.
Specifying the remaining time in response body will help in resending the
requests to gateway at specified retry time period rather than sending re-
quests at random intervals.

We can also control the request rate using an arbitrary key value.
By setting the key value to any variable like IP Address which is a vari-
able value in the request message sent to and which is accessed by Azure
API Management gateway, we can control or restrict the request rate. In
the example below, we can set the request rate limit by setting the IP ad-
dress in the counter-key which is some arbitrary key value.

<rate-limit-by-key calls="1200"renewal-period="90"
increment-condition="@(context.Response.StatusCode ==
200)"
counter-key="@(context.Request.IpAddress)"/>

The above policy allows a caller with a particular IP address to
make1200 requests. If the calls exceed this limit the user will have to wait
for 90 seconds before sending the next request.

15.6.1.3 Quota Limits
Having Quota Limits is another way to ensure security in Azure

API Management. Quota limits are enforced to control request quotas.
Applying Quota limits is a way to monetization. Here different SKUs can
have different quotas limits which can be applied through quota policies.
For example, in the below example we can have a quota policy based on
the number calls or the bandwidth. When the number of calls or the band-
width exceeds the specified limit (whichever limit exceeds first), there will
be a waiting period of
4800 before resending a request call.

<quota calls="120000" bandwidth="100000" renewal-period="4800"
/>

This policy tracks API usage based on the subscription key. Quota
limits are also based on arbitrary keys just like request rate limits.

15.6.1.4IP restrictions
This final section on security in Azure API Management is based

IP restrictions. Here IP-based restriction policies will be used to restrict
certain IP addresses.

mu
no
tes
.in

260

<ip-filter action="allow">
<address-range from="10.1.1.4" to="10.1.1.14" />
</ip-filter>

The above policy will admit IP addresses between 10.1.1.4 and 10.1.1.14.
15.6.2Request-based security in AWSAPIGateway
Request-basedsecurity in AWS API Gateway is implemented through the
following:

 API Keys
 Rate Limits
 Quota Limits

15.6.2.1 API Keys
Keys for the AWS APIs canbe auto generated by the AWS API Gateway
service or custom made as shown in figure 15.13. API usage plans for a
customer are tracked with the help of these API keys.

Figure 15.13. AWS API Gateway API Key Generation

One can customize how consumers send API keys to the AWS API
Gateway. API keys are sent in the HTTP request header
XAPIKEY_HEADER as shown below. They can also be sent through
configured custom authorizers. One can choose the API Key Source as
Header or as custom authorizers from the drop-down shown in figure
15.14.

API Keys in HTTP request header
{“api-key”:”9038-909-0998-9999”}

Figure 15.14 Settings

mu
no
tes
.in

261

The configuration of the API can be done under the Settings sec-
tion of the selected API as shown in figure 15.14

15.6.2.2 Rate Limits
The Requests to an API can be limited by setting the rate limit. We

can set the usage plans for a customer with the help of API Key associated
with an API user. These keys identify each user of the API, and allow the
API developer to control the set of services and service stages (environ-
ments such as test, beta, and production) that the key holder can access.
The rate limits can be set in the usage plans, and requests can be tracked
via the API keys associated with that customer. One usage plan can in-
clude many APIs, and all the APIs in a usage plan are constrained by the
rate limit.

In a usage plans the rate limit can be set via the following two parameters:
Throttling–Overall request rate (average requests per second) and a
burst capacity.
Quota- Number of requests that can be made per day, week, or
month.

To set the rate limits by creating a usage plan, follow the following steps:
 Navigate to the usage plan.
 Set values for Throttling and Quota as shown in Figure 15.14.

Figure 15-14 Usage Plan

.

mu
no
tes
.in

262

In the above usage plan, throttling has been enabled. The rate is set
to 50requests per second which means that this particular usage plan can
handle on an average 50 requests per second without any throttling. The
burst is 500 requests the usage plan can accommodate when the requests
arrive simultaneously.

The quota limit is set along with throttling while creating a usage
plan. In figure 15.14 above, the quota limit is20000 which is the number
of requests per month.

15.7 AUTHENTICATION AND AUTHORIZATION

All APIs implement authentication and authorization. Authentica-
tion identifies a caller of an API and authorization provides information on
whether the caller has the credentials to access to the secured resources or
not.

 Authentication is the verification of the credentials of the connec-
tion attempt. This process consists of sending the credentials from
the remote access client to the remote access server in an either
plaintext or encrypted form by using an authentication protocol [3].

 Authorization is the verification that the connection attempt is al-
lowed. Authorization occurs after successful authentication [3].
An API can implement authentication and authorization in many

different ways. One of the most basic ways to do this is to send the re-
quired security information as value in the request header to an API gate-
way. A special HTTP header containing the username and password can
be added in the request header. But it is very easy to retrieve this informa-
tion basic authentication. in a HTTP protocol; but can be sent securely
while using a SSL or TLS protocol.

There are many standards and protocols for securing an API. Some
of these standards and protocols are pretty common and are widely used.
Others are highly vendor specific.

This section will discuss the following most common cloud-based
API authentication and authorization standards. Some of these standards
are specific to Microsoft Azure and Amazon’s AWS.

 API Keys
 OpenID and OAuth
 Securing APIs with Azure Active Directory V2
 Issuing Custom JWT Tokens
 Pre-Authentication in Azure API Management
 Authorizers in AWS API Gateway

15.7.1API Keys
As discussed in the preceding sections, API key is a unique identi-

fier used to authenticate a user, developer, or calling program to an API.
However, they are typically used to authenticate a project with the API
rather than a human use. A developer involved in developing an API based

mu
no
tes
.in

263

project will register with the API provider or provide identity to an API
provider to obtain a key to access the API.

For example, developers using the Google Maps’ API have to
prove their identity via Google login. Post the verification of their Google
account, they receive the API key. This API key is a random string of
characters; each request should contain this key. The API key will identify
the caller of the API and determine the access limits. Generally, this kind
of authentication is used when we need to identify the API usage rather
than the API user as in the direct-selling API model.

The full key management of Public APIs is controlled by the API
or handled at the gateway service. In Azure API Management subscription
keys and AWS API Gateway API keys, the issuing and management of the
keys is handled at the gateway service, and the backend service is unaware
of the key. In the direct-selling API model, most keys do not expire, but
may be invalidated by the API due to too many requests, suspected re-
quest-based attacks, or missed payments. However, API consumers are not
allowed to recycle their keys for obvious security reasons

To get the API keys from a API provider, he needs to follow the
below steps:
1. First the developer requests an API key from the API/API provider.
This request may have preconditions, like certain validations or pay-
ments.

2. Next when the validations or payments are verified, the developer re-
ceives the key from the API/API provider

3. The developer stores this key in the application.
4. Finally when sending a request to the API, the application sends the key
to the API in the request string.

The same key can be used by the developer across different applications as
long as the key is valid in terms of usage conditions and limitations. In
Azure and AWS, the gateway service handles key management. This off-
loads the key management logic from the API implementation.

Open ID and OAuth standards
Open ID and OAuth are two security standards for authentication

and authorization in APIs security implementation. OpenID is for authen-
tication purpose and OAuth is for authorization.

When performing authorization, authentication is also done. This
means that in OAuth implementation, authentication has to be performed
through some other standard such as OpenID.

Both OpenID and OAuth are implemented via browser redirects
for example several web sites give new users the facility to login through
their preexisting Google or Facebook accounts, instead of creating a new
account on their web site. Google or Facebook will authenticate the user to

mu
no
tes
.in

264

this web site. This is possible because of OpenID standard and it facilitates
the user authentication from the same provider to multiple entities.

Sometimes Facebook may respond with a prompt, saying that
some website is trying to access a user’s email, photos, or some other in-
formation. Here the website which is trying to access user’s data on Face-
book, requests the user’s permission by prompting to allow access to data
stored in Facebook. By agreeing to this request the user is allowing web-
site to read his/her data. Facebook gives some access to this website to
make requests to its resources and if the permission is granted, future
communication can take place between to the website and Facebook based
on the allowed permissions. All this is OAuth implementation.

15.7.3 Securing APIs with Azure Active Directory V2
Azure Active Directory (AAD) is the common way to secure ser-

vices in Azure application development. Azure Active Directory (Azure
AD) is Microsoft’s cloud-based identity and access management service,
which helps employees sign in and access resources in:

 External resources, such as Microsoft 365, the Azure portal, and
thousands of other SaaS applications.

 Internal resources, such as apps on corporate network and intranet,
along with any cloud applications developed by an organization

This section focuses on how AAD is used by developers as a stan-
dards-based approach for adding single sign-on (SSO) to their application,
allowing it to work with a user's pre-existing credentials. The new version
of AAD known as AAD V2, is the revised version of AAD V1with some
significant changes.

AAD V2 is used for authenticating users of an API service. To au-
thenticate the identity of a user of an API an identity provider is used.

Whenever there a user wants to use the services of an API, the fol-
lowing steps are used:

1. The client first obtains a valid identity from the identity provider.
2. Next, the obtained identity is sent to the API in the request
3. API validates the identity and serves the request.

In order to validate the identity, the API should know the identity
provider and the mechanism used to validate the identity.

There are two major steps involved in authenticating the user of an API:
1. Mechanism for the client to obtain the token (the identity)
2. Mechanism for API to validate the token

First, create the setup for the client to request a token from the
AAD v2. The mechanism for the client to obtain the token is done via the

mu
no
tes
.in

265

AAD v2 OAuth authorize endpoint. The client must make a request to this
authorize endpoint, submit their credentials, and obtain the OpenID. For
example, in the URL below a request is sent with a registered client ID
and a configured redirect URI. The redirect URI is where the AAD will
redirect the requested response type.

https://login.microsoftonline.com/common/oauth2/v2.0/
authorize?client_id=[client id]&response_type=id_
token&redirect_uri=[redirect uri]&scope=user.readopenid
profile&nonce=3c9d2ab9-2d3b-4

In order to register a client application in AAD and set up the in-
formation, perform the following steps:
1. Go to https://apps.dev.microsoft.com/ (which is the endpoint to regis-
ter AAD v2 applications)

2. Sign in with a Microsoft account as shown in figure 15.15.

Figure 15.15 Microsoft sign-in window

3. Once signed –in navigate to the new Application Registration Portal
tab in the menu bar.

4. Create a new AAD v2 application, by specifying- the client ID, the
application platform as web and the redirect URL as shown in Figure
15.16 and 15.17.

Figure 15.16AAD V2 new Application Registration
mu
no
tes
.in

266

Figure 15.17 AAD V2 new Application Registration

The client should specify the client ID and the configured reply URL in
the request, as shown below:

https://login.microsoftonline.com/common/oauth2/v2.0/authorize?client_i
d=2d3b1531-9a51-4ec4-
e9351c26fa62&response_type=id_token&redirect_uri=https:// local-
host&scope=openid&nonce=3c9d2ab9-2d3b-4

The client ID and the redirect URI should match the values config-
uredin the AAD v2 application. When the above request is sent, the token
is sent to the redirect URI https://localhost. The scope is open because the
purpose of the request is to obtain the identity of the client.

The above request URL accepts any valid AAD authentication be-
cause the authorization URL points to the common endpoint. This applies
to both Microsoft accounts and organizational accounts. If only the organ-
izational authentication is acceptable, replace “common”
with“organizations” as below:

https://login.microsoftonline.com/organizations/oauth2/v2.0/authorize?clie
nt_id=2d3b1531-9a51-4ec4-
e9351c26fa62&response_type=id_token&redirect_uri=https://localhost&s
cope=opened &nonce=3c9d2ab9-2d3b-4

If designing a single-tenant application, which expects authentica-
tion from one AAD tenant, the tenant ID can be specified in the request
URL.

https://login.microsoftonline.com//[tenant
id]//oauth2/v2.0/authorize?client_id=2d3b1531-9a51-4ec4-
e9351c26fa62&response_type=id_token&redirect_uri=https://localhost&s
cope=opened &nonce=3c9d2ab9-2d3b-4

mu
no
tes
.in

267

Clients can make any one of the above requests, authenticate them-
selves with AAD credentials, and obtain the OpenID information. The
OpenID information will be in the id_token issued by the AAD v2 end-
point to the instructed redirect URL.

When URL below is tested for the first time a consent screen will
appear.

This is the request from AAD v2 to get consent from the user and
issue the OpenID information to the requesting client. Subsequent login
attempts will not ask for this consent.

Request URL
https://login.microsoftonline.com/common/oauth2/v2.0/authorize?client_i
d=2d3b1531-9a51-4ec4-
e9351c26fa62&response_type=id_token&redirect_uri=https://localhost&s
cope=opened &nonce=3c9d2ab9-2d3b-4

After successfully logging in and obtaining consent, AAD v2 will redirect
to the specified URL with the id_token, like below.

https://localhost/#id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUz
I1NiIsImtpZCI6IjFMVE16YWtpaGlSbGFfOHoyQkVKVlhlV01xbyJ9.eyJ2ZXI
iOiIyLjAiLCJpc3MiOiJodHRwczovL2xvZ2luLm1pY3Jvc29mdG9ubGluZS5jb
20vOTE4ODA0MGQtNmM2Ny00YzViLWIxMTItMzZhMzA0YjY2ZGFkL3YyLjAiL
CJz
dWIiOiJBQUFBQUFBQUFBQUFBQUFBQUFBQUFKNFk4NE56dWdlYl8yTFBWcFl
kbzN
jIiwiYXVkIjoiNzZkODg3NzktZDg4OC00MDFmLTg1NjUtMjMxYWVlMzg1YjE0Ii
wiZXhwIjoxNTIx-
NDY5NTE5LCJpYXQiOjE1MjEzODI4MTksIm5iZiI6MTUyMTM4M
jgxOSwidGlkI-
joiOTE4ODA0MGQtNmM2Ny00YzViLWIxMTItMzZhMzA0YjY2ZGFk
Iiwibm9uY2UiOiIzYzlkMmFiOS0yZDNiLTQiLCJhaW8iOiJEVEghayFwMzdNamh
jcE8qWkF6aTBKb3Z0b2x4RDhVZDk5R3Ria2RaSFAqbFRVU01wbUp1Q2h1IVVtbV
hzbEoqYkFkTWU3bEtTY2JYbjlIWTFNc0tUNUxBMEM5anJBdjBaTE1XV3oyZXVnS
mZSbGdRMGNZZWlnMHd5S0piakVldE13JCQifQ.HZbpQmkdi-2yOHtwtF-zFJhz7
RJe3_GIkcmS5u5EwIV7U_5x8S_2_o6JfQ0KBpnhzop5UijP99Rjan0dTtfat2Bs
TnWZloLbKy9X30XwJzrd-8WU2Nz7zwg24rMKEu0t6c8-
uR2ze-U1dhogGQZj6eu
rvnsedL4ET9eYehvPxV18U3AsSkZ2LAERpEiZeu16G0ORWpwGBI5NvogYhkRxzY
iZGlC5MsmkvZa4VdyVce_zJ-AnGrgwBvi5oL083RFGNMKUDevHDGpefO-UW3XOq
D3WiJmvdYx3g4ZPyamYH7UgyR0DIgOXnuLIoPXEop8AgrbJkPjJRbIkRVDMqjFAw
w

One can use any available JWT decoding tool to see the details.
http://calebb.net/ [1] is a good online tool used to view the internals of
JWT, and the above JWT is decoded as follows:

{
typ: "JWT",
alg: "RS256",
kid: "1LTMzakihiRla_8z2BEJVXeWMqo"

mu
no
tes
.in

268

}.
{
ver: "2.0",
iss: "https://login.microsoftonline.com/9188040d-6c67-4c5b-b112-
36a304b66dad/v2.0",
sub: "AAAAAAAAAAAAAAAAAAAAAJ4Y84Nzugeb_2LPVpYdo3c",
aud: "76d88779-d888-401f-8565-231aee385b14",
exp: 1521469519,
iat: 1521382819,
nbf: 1521382819,
tid: "9188040d-6c67-4c5b-b112-36a304b66dad",
nonce: "3c9d2ab9-2d3b-4",
aio: "DTH!k!p37MjhcpO*ZAzi0JovtolxD8Ud99GtbkdZHP*lTUSMpm
JuChu!UmmXslJ*bAdMe7lKScbXn9HY1MsKT5LA0C9jrAv0ZLMWW
z2eugJfRlgQ0
cYeig0wyKJbjEetMw$$"
}.

After obtaining the token, clients will send it to the API, which should be
able to validate the token and retrieve the information to be used in the
business logic.

In an ASP.NET Core application, one can use the following code [1] to
perform the token validation and query claims from the token.

private async Task<System.IdentityModel.Tokens.Jwt.
JwtSecurityToken>
ValidateAADIdTokenAsync(string idToken)
{
var stsDiscoveryEndpoint = "https://login.microsoftonline.
com/common/v2.0/.well-known/openid-configuration”;
var configRetriever = new Microsoft.IdentityModel.
Protocols.OpenIdConnect
.OpenIdConnectConfigurationRetriever();
var configManager = new Microsoft.IdentityModel.Protocols
.ConfigurationManager<OpenIdConnect
Configuration>
(stsDiscoveryEndpoint, configRetriever);
var config = await configManager.GetConfigurationAsync();
var tokenValidationParameters = new Microsoft.
IdentityModel.Tokens.TokenValidationParameters
{
IssuerSigningKeys = config.SigningKeys,
};
var tokenHandler = new JwtSecurityTokenHandler();
tokenHandler.ValidateToken(idToken,
tokenValidationParameters, out var validatedToken);
return validatedToken as JwtSecurityToken;
}

mu
no
tes
.in

269

The method receives the token as a string and obtains the tokensigning
keys from the provider (AAD v2) via the secure token serviceendpoint.

https://login.microsoftonline.com/common/v2.0/.wellknown/openid-
configuration

This URL will be used by Open Id Configuration in order to obtain
the signing information. You can change this URL by replacing “com-
mon” with “organizations” or “tenant id” as per the request URL pattern
discussed earlier.

The obtained signing keys and other validation settings are used to
create the Token Validation Parameters. Eventually the token is validated,
and the output will be converted to a Jwt Security Token, which contains
the claims in the token for programmatic access. The above code snippet
“Token Validation Parameters” has a minimum validation configuration,
meaning it checks whether the token is issued by the correct trusted entity
by validating the signing keys. In the case of a real-world implementation,
more complex validation rules would be used to perform the validation,
along with signing rules such as validating the issuer, audience, and expi-
ration.

In a practical implementation, the above token validation code
snippet would be a filter in the ASP.NET Core. Each request header from
the client would contain the id_token and be validated via the filter. Cer-
tain claims will be retrieved from the id_token in order to execute the
business logic.

Public identity providers like Google and Facebook can be used to
authenticate users. Most of the claims in the OpenID information cannot
be related to the custom business logic of a typical enterprise line of busi-
ness application, because the business logic deals mostly with application-
specific roles and permissions, which are outside the context of the men-
tioned identity providers.

To solve this, we can issue the custom token from the application
after validating the identity from the external providers (Google, Facebook
etc.). In this mode, we depend on external identity providers for authenti-
cation and issue custom tokens for the authorization. The next section ex-
plains the process of issuing custom tokens using custom JWT Tokens.

15.7.4 Issuing Custom JWT Tokens
As explained in the previous section on Securing APIs with Azure

Active Directory V2, there are certain cases where we need to create and
issue custom JWT tokens. For example, say you're developing a SaaS ap-
plication that relies on several identity providers. These identity providers
help users authenticate to the application with less friction, and OpenID
plays a key role in establishing a single sign-on experience, but once the
user is authenticated, the application should be aware of the authorization
information of the user, including roles and permissions.

mu
no
tes
.in

270

In simple terms, Google or Facebook cannot store a user’s details,
even if the user is an admin of your custom application. It is the responsi-
bility of the backend service/application to manage the authorization.

The previous section explains how to obtain a JWT token with
OpenID claims from AAD and validate it. This would help secure the API
using AAD from an authentication point of view, but once the user has
logged in, API has to determine the authorization of the user in order to
decide what the user can do inside the application i.e. the user specific
roles and permissions in the application have to be authorized.

The below code snippet [1] shows how to issue a custom JWT token using
a symmetric signing key.

private string IssueJwtToken(JwtSecurityTokenaadToken)
{
var msKey = GetTokenSignKey();
var msSigningCredentials = new Microsoft.IdentityModel.
Tokens.SigningCredentials
(msKey, SecurityAlgorithms.HmacSha256Signature);
var claimsIdentity = new ClaimsIdentity(new List<Claim>()
{
new Claim(ClaimTypes.NameIdentifier,
"thuru@massrover.com"),
new Claim(ClaimTypes.Role, "admin"),
}, "MassRover.Authentication");
var msSecurityTokenDescriptor = new Microsoft.
IdentityModel.Tokens
.SecurityTokenDescriptor()
{
Audience = "massrover.client",
Issuer = "massrover.authservice",
Subject = claimsIdentity,
Expires = DateTime.UtcNow.AddHours(8),
SigningCredentials = msSigningCredentials
};
var tokenHandler = new JwtSecurityTokenHandler();
var plainToken = tokenHandler.CreateToken(msSecurityToken
Descriptor);
var signedAndEncodedToken = tokenHandler.
WriteToken(plainToken);
return signedAndEncodedToken;
}
The above JWT issuing code obtains the signing key from this private-
method[2].
private Microsoft.IdentityModel.Tokens.SymmetricSecurityKey
GetTokenSignKey()
{
var plainTextSecurityKey = "massrover secret key";

mu
no
tes
.in

271

var msKey = new Microsoft.IdentityModel.Tokens.
SymmetricSecurityKey
(Encoding.UTF32.GetBytes(plainText
SecurityKey));
return msKey;
}

The token-issuing code uses Claims Identity to include application-
specific claims in the token subject. For the next step, “Microsoft. Identity
Model. Tokens. Security Token Descriptor” is used to construct a full
JWT token along with the custom claims in the subject.

This object is used to create the JWT token using the Create Token
method from JWT Security Token Handler, and the token is returned as a
string. When this custom token is issued, the API should be able to vali-
date the token as well, when it is returned from the callers in the requests.

The below code snippet [1] shows the token validation code.

public bool Validate Mass Rover Token (string token)
{
var token Validation Parameters = new Microsoft.IdentityModel.Tokens
.TokenValidationParameters()
{
ValidAudiences = new string[]
{
"massrover.client",
},
ValidIssuers = new string[]
{
"massrover.authservice",
},
ValidateLifetime = true,
IssuerSigningKey = GetSignTokenSignKey()
};
var tokenHandler = new JwtSecurityTokenHandler();
tokenHandler.ValidateToken(token,tokenValidationParameters,out var
validatedToken);
return true;
}

The code uses the “TokenValidation Parameters” object, which in-
cludes token validation logic along with signing keys (retrieved from the
sameprivate method used to issue the token). The “ValidateToken
method” from JWT “Security Token Handler” validates the token using
the constructed “Token Validation Parameters” object.

mu
no
tes
.in

272

Note that the above code snippets are not production ready, and
token flow in the production application requires software implementation
along with TLS support. The above pieces of code explain the fundamen-
tals of issuing and validating JWT tokens in ASP.NET Core. Once the
JWT token flow is in place, consumers will send the token in each request
to the API. In typical scenarios, tokens are sent in the Authorization
header. Backend services receive the token from the HTTP request and
validate and obtain information from them to coordinate the business logic
requirements. In some cases, tokens do not contain any information other
than an identifier, but backend services know to get the required informa-
tion using this identifier. These kinds of tokens are known as reference
tokens.

The next section will focus on how Azure API Management can be
used to pre-authenticate requests that contain a JWT token.

15.7.5 Pre-Authentication in Azure API Management
Examples in presiding sections explained how the Azure API

Management can process request and response information. Pre-
authentication at the gateway is a good practice to make the API secure.
This prevents requests from reaching the backend service of an API. Even
though the requests do not reach the backend it is still strongly recom-
mended to validate the token in the backend service and obtain the infor-
mation stored there. Validate JWT policy is used for this pre-
authentication step.

The code snippet [1] below shows a basic JWT validation policy
implementation.
<validate-jwt
header-name="Authorization" failed-validation-httpcode="401 "
failed-validation-error-message="Unauthorized"
require-expiration-time="true"
require-scheme="scheme"
require-signed-tokens="true">
<audiences>
<audience>76d88779-d888-401f-8565-231aee385b14</audience>
</audiences>
<required-claims>
<claim name="massrover-role" match="any">
<value>admin</value>
<value>user</value>
</claim>
</required-claims>
<openid-config url=" https://login.microsoftonline.com/
common/.well-known/openid-configuration" />
</validate-jwt>

In the above snippet, the open id-config URL and validation com-
parison of basic claims are provided [1]. The code also checks a custom

mu
no
tes
.in

273

claim called mass rover-role [1] and makes sure its presence in the JWT
token and the value it can take either admin or user. Also, it should be
noted that require-expiration-time is set to true. In order to pass this vali-
dation, the incoming JWT token should contain the exp claim. If the exp
claim is not present, validation will fail. The Azure API Management JWT
validation policy supports bothHS256 and RS256 signing algorithms. For
HS256, they should be provided in the policy itself as a base64 encoded
string, like below.

<issuer-signing-keys>
<key>base64 encoded key</key>
</issuer-signing-keys>

For RS256, the key must be provided via an OpenID configuration
end point, as shown in the sample policy above. One can add more valida-
tion rules to this policy, including validating
custom claims.

15.7.6 Authorizers in AWS API Gateway
Authorizers are set up in AWS API Gateway to authenticate in-

coming requests [1]. AWS API Gateway handles this with a Lambda func-
tion or AWS Cognito. Lambda is the server less platform of AWS, and
Cognito is the AWS-based access control service.

To set up an authorizer follow the steps below:
1. On API Gateway console left panel, choose the API and select ‘Au-
thorizers, as shown in figure 15.18.

Figure 15.18 Creating Authorizers for a selected API
source:https://jun711.github.io/aws/aws-api-gateway-access-control-with-
iam-cognito-lambda-custom-authorizer/

mu
no
tes
.in

274

2. In the Authorizers panel click Create New Authorizer tab as shown in
figure 15.19.

3. Provide a name for the authorizer and select the type as Lambda. This
is the name to which one can write the code to do the authentication
validation logic.

4. Next, select the Lambda function, which has the authorizer logic. To
do that,t here needs to bean existing Lambda function and implementa-
tion. If the function does not exist, provide a name for it in the textbox
as shown in figure 15.19.This Lambda function will be deployed later.
To learn to create and deploy Lambda functions the Reader can refer
to chapter 6 of the book Practical API Architecture and Development
with Azure and AWS by Thurupathan Vijayakumar.

5. Select a Token for the Lambda Event Payload; this ensures the token
will be present in the specified header.

6. Select Request if the token is present in the event payload request
body/header/query string with the specified value. Specify the corre-
sponding value of the token in the Token Source.

Figure 15-19Create AWS API Gateway Authorizer source: Practical API
Architecture and Development with Azure and AWS-Thurupathan Vijaya-
kuma

mu
no
tes
.in

275

The Lambda context will look for the token in the Authorization
header. The rule to look for the token in headers comes from Lambda
Event Payload type, and the value comes from Token Source. The same
rule will apply when the Request is selected as the Lambda Event Payload.
The lookup for the token will be happening in a range of places like the
headers, query string parameters, stage variables, and context parameters
for the specified Token Source key.

For doing Token Validation a Regular Expression validator can be
used in the Token Validation section. This will prevent errors messages
from coming up for Lambda having tokens that are not in the right format.
In the figure 15.19, Authorization caching when enabled indicates whether
to cache the authorization policy document or not. Authorization policy
documents are generated by the authorizer for the specified token. The
Authorization policy documents dictate whether AWS API Gateway has
access to specific AWS resources or not. The policy document is produced
based on the logic in the authorizer Lambda function.

The policy documents control access to AWS resources. The au-
thorizer Lambda should have the token validation logic for the application
business logic. Once the token validation is performed, the Lambda will
construct the policy document and return it to AWS API Gateway, which
will then cache the document for the determined period if caching is en-
abled.

The Lambda authorizer created above will be implementing in the
code below [1] which contains the logic for validating the token and gen-
erating the policy document.

public class Function
{
public Policy Function Handler (API Gateway Custom Authorizer
Request auth Request,
ILambda Context context)
{
var token = authRequest.AuthorizationToken;
Policy policy;
if (ValidateToken(token))
{
var statement = new Statement(Statement.
StatementEffect.Allow);
var policyStatements = new List<Statement> {
statement };
policy = new Policy("TokenValidationPassed",
policyStatements);
}
else
{
var statement = new Statement(Statement.

mu
no
tes
.in

276

StatementEffect.Deny);
var policyStatements = new List<Statement> {
statement };
policy = new Policy("TokenValidationFailed",
policyStatements);
}
return policy;
}
private bool ValidateToken(string token)
{
// JWT token validation here
return true;
}
}

The policy document written in the code above indicates whether
access to AWSresources is allowed or not. It does not contain any specific
access policy to any specific AWSresources.

SUMMARY

This chapter explained the concept related to the management of
API Gateways in public cloud.

It explained the following concepts:
 Endpoint mapping with different types of mappings between backend
service endpoints and API gateway interface endpoints.

 Implementing two popular API management services in public cloud-
Microsoft Azure and the Amazon based AWS.

 Implementing security on a public cloud through various security
mechanisms like Request-based security and Authentication and Au-
thorization.

 Implementation of these mechanisms in Azure and AWS.

BIBLIOGRAPHY:

1.https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-
api?view=aspnetcore-5.0&tabs=visual-studio
2.https://www.c-sharpcorner.com/article/microservices-design-using-
gateway-pattern/
3.Hubspot

REFERENCES

1. Practical API Architecture and Development with Azure and AWS-
Thurupathan Vijayakuma ,ISBN-13 (pbk): 978-1-4842-3554-6,ISBN-

mu
no
tes
.in

277

13 (electronic): 978-1-4842-3555-3,https://doi.org/10.1007/978-1-
4842-3555-3 ,Library of Congress Control Number: 2018946567

2. 1.https://www.wrike.com/blog/application-programming-
interface-api-
ex-
plained/#:~:text=Other%20examples%20of%20APIs%20that,con
stellation%20data%20for%20public%20use. By Andrew Slate,
May 31, 2019

3. https://blog.restcase.com/restful-api-authentication-basics/

MODEL QUESTIONS

Multiple Choice Questions

1.APIs perform value-added functions like_____.
A) storage B) caching C) cookies D) none

2. _______ is a function of an API gateway endpoint.
A) Verifying API keysB)Using Explicit Parameters C) Query string pa-
rameter D) none
3. Azure ___________portal is the administrative interface where one can
set up their API program.
A) Publisher B) DeveloperC)Gateway endpoint D) none

4. ______ are a great way to strength security in API.
A) passwords B) keys C) Tokens D) none

5. In an API usage plans the rate limit can be set via the ______ parameter.
A) HTTP status codes B) bandwidthC) Throttling D) none

Answers to Multiple Choice Questions
1. B 2.B 3.A 4.C 5.C

Theory Question
1. State and explain some of the most common ways to strengthen API
security

2. Write a short note on Authentication and authorization?
3. What is Request-based security in AWS API Gateway and what are the
various ways it can be implemented?

4. Write a short note on API Keys?
5. Write the steps for setting up Authorizers in AWS API Gateway?



mu
no
tes
.in

	Insert from: "COVER PAGE NEW English.pdf"
	Page 1

