
1

UNIT I

1

INTRODUCTION TO BIG DATA

Unit Structure

1.0 Objectives

1.1 Introduction to Big Data

1.2 Characteristics of Data and Big Data

1.3 Evolution of Big Data

1.4 Definition of Big Data

1.5 Challenges with big data

1.6 Why Big data?

1.7 Data Warehouse environment

1.8 Traditional Business Intelligence versus Big Data

1.9 State of Practice in Analytics

1.10 Key roles for New Big Data Ecosystems

1.11 Examples of big Data Analytics
Summary
Review Questions

1.0 OBJECTIVES

Irrespective of the size of the enterprise whether it is big or small,

data continues to be a precious and irreplaceable asset. Data is present in
homogeneous sources as well as in heterogeneous sources. The need of
the hour is to understand, manage, process, and take the data for analysis
to draw valuable insights. Digital data can be structured, semi-structured
or unstructured data.

Data generates information and from information we can draw
valuable insight. As depicted in Figure 1.1, digital data can be broadly
classified into structured, semi-structured, and unstructured data.

1. Unstructured data: This is the data which does not conform to a data
model or is not in a form which can be used easily by a computer
program. About 80% data of an organization is in this format; for
example, memos, chat rooms, PowerPoint presentations, images, videos,
letters. researches, white papers, body of an email, etc.

mu
no
tes
.in

2

Figure 1.1 classification of digital data(Big Data and Analytics)

2. Semi-structured data: Semi-structured data is also referred to as self-
describing structure. This is the data which does not conform to a data
model but has some structure. However, it is not in a form which can be
used easily by a computer program. About 10% data of an organization is
in this format; for example, HTML, XML, JSON, email data etc.
Figure 1.1 classification of digital data

3. Structured data: When data follows a pre-defined schema/structure
we say it is structured data. This is the data which is in an organized
form (e.g., in rows and columns) and be easily used by a computer
program. Relationships exist between entities of data, such as classes
and their objects. About 10% data of an organization is in this format.
Data stored in databases is an example of structured data.

1.1 INTRODUCTION TO BIG DATA

The "Internet of Things" and its widely ultra-connected nature are
leading to a burgeoning rise in big data. There is no dearth of data for
today's enterprise. On the contrary, they are mired in data and quite deep
at that. That brings us to the following questions:

1. Why is it that we cannot forego big data?

2. How has it come to assume such magnanimous importance in
running business?

3. How does it compare with the traditional Business Intelligence (BI)
environment?

4. Is it here to replace the traditional, relational database management
system and data warehouse environment or is it likely to complement
their existence?"

Data is widely available. What is scarce is the ability to draw valuable
insight.

Some examples of Big Data:

• There are some examples of Big Data Analytics in different areas
such as retail, IT infrastructure, and social media.

• Retail: As mentioned earlier, Big Data presents many opportunities to

Unstructured data

semi-structured
data

Structured data

mu
no
tes
.in

3

improve sales and marketing analytics.

• An example of this is the U.S. retailer Target. After analyzing
consumer purchasing behavior, Target's statisticians determined that
the retailer made a great deal of money from three main life-event
situations.

• Marriage, when people tend to buy many new products

• Divorce, when people buy new products and change their spending
habits

• Pregnancy, when people have many new things to buy and have an
urgency to buy them. The analysis target to manage its inventory,
knowing that there would be demand for specific products and it
would likely vary by month over the coming nine- to ten-month
cycles

• IT infrastructure: MapReduce paradigm is an ideal technical
framework for many Big Data projects, which rely on large data sets
with unconventional data structures.

• One of the main benefits of Hadoop is that it employs a distributed
file system, meaning it can use a distributed cluster of servers and
commodity hardware to process large amounts of data.

Some of the most common examples of Hadoop implementations

are in the social media space, where Hadoop can manage transactions,
give textual updates, and develop social graphs among millions of users.

Twitter and Facebook generate massive amounts of unstructured
data and use Hadoop and its ecosystem of tools to manage this high
volume.

Social media: It represents a tremendous opportunity to leverage social
and professional interactions to derive new insights.

LinkedIn represents a company in which data itself is the product.
Early on, Linkedln founder Reid Hoffman saw the opportunity to create a
social network for working professionals.

As of 2014, Linkedln has more than 250 million user accounts
and has added many additional features and data-related products, such as
recruiting, job seeker tools, advertising, and lnMaps, which show a social
graph of a user's professional network.

1.2 CHARACTERISTICS OF DATA

As depicted in Figure 1.2, data has three key characteristics:

1. Composition: The composition of data deals with the structure of
data, that is, the sources of data, the granularity, the types, and the
nature of data as to whether it is static or real-time streaming.

mu
no
tes
.in

4

Composition

Data Condition

Context

2. Condition: The condition of data deals with the state of data, that is,
"Can one use this data as is foranalysis?" or "Does it require cleansing
for further enhancement and enrichment?"

3. Context: The context of data deals with "Where has this data been
generated?" "Why was this datagenerated?" How sensitive is this
data?"

"What are the events associated with this data?" and so on.
Small data (data as it existed prior to the big data revolution) is about
certainty. It is about known datasources; it is about no major changes to
the composition or context of data.

Figure 1.2 Characteristics of data (Big Data and Analytics)

Most often we have answers to queries like why this data was
generated, where and when it was generated, exactly how we would like
to use it, what questions will this data be able to answer, and so on. Big
data is about complexity. Complexity in terms of multiple and unknown
datasets, in terms of exploding volume, in terms of speed at which the
data is being generated and the speed at which it needs to be processed
and in terms of the variety of data (internal or external, behavioural or
social) that is being generated.

1.3 EVOLUTION OF BIG DATA

1970s and before was the era of mainframes. The data was
essentially primitive and structured. Relational databases evolved in
1980s and 1990s. The era was of data intensive applications. The World
Wide Web (WWW) and the Internet of Things (IOT) have led to an
onslaught of structured, unstructured, and multimedia data. Refer Table
1.1.

Table 1.1 The evolution of big data (Big Data and Analytics)

mu
no
tes
.in

5

1.4 DEFINITION OF BIG DATA

• Big data is high-velocity and high-variety information assets that

demand cost effective, innovative forms of information processing for
enhanced insight and decision making.

• Big data refers to datasets whose size is typically beyond the storage
capacity of and also complex for traditional database software tools

• Big data is anything beyond the human & technical infrastructure
needed to support storage, processing and analysis.

• It is data that is big in volume, velocity and variety. Refer to figure
1.3

Variety: Data can be structured data, semi-structured data and
unstructured data. Data stored in a database is an example of structured
data.HTML data, XML data, email data,

Figure 1.3 Data: Big in volume, variety, and Velocity (Big Data and Analytics)

CSV files are the examples of semi-structured data. Power point
presentation, images, videos, researches, white papers, body of email etc
are the examples of unstructured data.
Velocity: Velocity essentially refers to the speed at which data is being
created in real- time. We have moved from simple desktop applications
like payroll application to real- time processing applications.

Volume: Volume can be in Terabytes or Petabytes or Zettabytes.
Gartner Glossary Big data is high-volume, high-velocity and/or high-
variety information assets that demand cost-effective, innovative forms of
information processing that enable enhanced insight and decision making.

For the sake of easy comprehension, we will look at the definition in
three parts. Refer Figure 1.4.

Part I of the definition: "Big data is high-volume, high-velocity, and
high-variety information assets" talks about voluminous data
(humongous data) that may have great variety (a good mix of

mu
no
tes
.in

6

structured, semi-structured. and unstructured data) and will require a
good speed/pace for storage, preparation, processing and analysis.

Part II of the definition: "cost effective, innovative forms of information
processing" talks about embracing new techniques and technologies to
capture (ingest), store, process, persist, integrate and visualize the high-
volume, high-velocity, and high-variety data.

Part III of the definition: "enhanced insight and decision making" talks
about deriving deeper, richer and meaningful insights and then using
these insights to make faster and better decisions to gain business value
and thus a competitive edge.
Data —> Information —> Actionable intelligence —> Better decisions —
>Enhanced business value

Figure 1.4 Definition of big data – Gartner (Big Data and Analytics)

mu
no
tes
.in

7

1.5 CHALLENGES WITH BIG DATA

Refer figure 1.5. Following are a few challenges with big data:

Figure 1.5 Challenges with big data (Big Data and Analytics)

Data volume: Data today is growing at an exponential rate. This high
tide of data will continue to rise continuously. The key questions are –

“will all this data be useful for analysis?”,

“Do we work with all this data or subset of it?”,

“How will we separate the knowledge from the noise?” etc.

Storage: Cloud computing is the answer to managing infrastructure for
big data as far as cost-efficiency, elasticity and easy upgrading /
downgrading is concerned. This further complicates the decision to host
big data solutions outside the enterprise.

Data retention: How long should one retain this data? Some data may
require for log-term decision, but some data may quickly become
irrelevant and obsolete.

Skilled professionals: In order to develop, manage and run those
applications that generate insights, organizations need professionals who
possess a high-level proficiency in data sciences.

Other challenges: Other challenges of big data are with respect to
capture, storage, search, analysis, transfer and security of big data.

Visualization: Big data refers to datasets whose size is typically beyond
the storage capacity of traditional database software tools. There is no
explicit definition of how big the data set should be for it to be considered
bigdata. Data visualization(computer graphics) is becoming popular as a
separate discipline. There are very few data visualization experts.

mu
no
tes
.in

8

1.6 WHY BIG DATA?

The more data we have for analysis, the greater will be the
analytical accuracy and the greater would be the confidence in our
decisions based on these analytical findings. The analytical accuracy will
lead a greater positive impact in terms of enhancing operational
efficiencies, reducing cost and time, and originating new products, new
services, and optimizing existing services. Refer Figure 1.6.

Figure 1.6: Why big data? (Big Data and Analytics)

1.7 DATA WAREHOUSE ENVIRONMENT

The data from these sources may differ in format.
Operational or transactional or day-to-day business data is gathered from
Enterprise Resource Planning (ERP) systems, Customer Relationship
Management (CRM), Legacy systems, and several third-party
applications.

The data from these sources may differ in format.

This data is then integrated, cleaned up, transformed, and
standardized through the process of Extraction, Transformation, and
Loading (ETL).

The transformed data is then loaded into the enterprise data
warehouse (available at the enterprise level) or data marts (available at the
business unit/ functional unit or business process level).

Business intelligence and analytics tools are then used to enable
decision making from the use of ad-hoc queries, SQL, enterprise
dashboards, data mining, Online Analytical Processing etc. Refer Figure

Figure 1.7: Data Warehouse Environment (Big Data and Analytics)

mu
no
tes
.in

9

1.8 TRADITIONAL BUSINESS INTELLIGENCE (BI)
VERSUS BIG DATA

Following are the differences that one encounters dealing with
traditional Bl and big data.

In traditional BI environment, all the enterprise's data is housed in
a central server whereas in a big data environment data resides in a
distributed file system. The distributed file system scales by scaling
in(decrease) or out(increase) horizontally as compared to typical database
server that scales vertically.

In traditional BI, data is generally analysed in an offline mode
whereas in big data, it is analysed in both real-time streaming as well as in
offline mode.

Traditional Bl is about structured data and it is here that data is
taken to processing functions (move data to code) whereas big data is
about variety: Structured, semi- structured, and unstructured data and
here the processing functions are taken to the data (move code to data).

1.9 STATE OF THE PRACTICE IN ANALYTICS

Current business problems provide many opportunities for
organizations to become more analytical and data driven, as shown in
Table 1 ·2.

Business Driver Examples

Optimize business operations Sales, pricing, profitability,
efficiency

Identify business risk Customer churn, fraud, default

Predict new business opportunities Upsell, cross-sell, best new
customer prospects

Comply with laws or regulatory
Requirements

Anti-Money Laundering, Fair
Lending,

TABLE 1.2 Business Drivers for Advanced Analytics
(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

The first three examples do not represent new problems.

Organizations have been trying to reduce customer churn, increase sales,
and cross-sell customers for many years.

What is new is the opportunity to fuse advanced analytical techniques
with Big Data to produce more impactful analyses for these traditional
problems.

The last example portrays emerging regulatory requirements.
Many compliance and regulatory laws have been in existence for

mu
no
tes
.in

10

decades, but additional requirements are added every year, which
represent additional complexity and data requirements for organizations.

Laws related to anti-money laundering (AML) and fraud prevention
require advanced analytical techniques to comply with and manage
properly.

Different types of analytics:

1.9.1 BI Versus Data Science

1.9.2 Current Analytical Architecture (data flow)

1.9.3 Drivers of Big Data

1.9.4 Emerging Big Data Ecosystem and a New Approach to Analytics

1.9.5 BI Versus Data Science: Refer figure 1.8 for comparing BI with
Data Science

Figure 1.8 Comparing BI with Data Science

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

Tables – 1.3 and 1.4 explain the comparison between BI and Data
Science.

Predictive Analytics and Data Mining (Data Science)
Typical Techniques and
Data Types

• Optimization. predictive modelling,
forecasting. statistical analysis

• Structured/unstructured data, many types of
sources, very large datasets

Common Questions • What if ... ?
• What's the optimal scenario for our business?
• What will happen next? What if these trends

continue? Why is this happening?
Table 1.3: Data Science (Data Science & Big Data Analytics: Discovering, Analyzing,
Visualizing and Presenting Data)

mu
no
tes
.in

11

Business Intelligence
Typical Techniques and
Data Types

• Standard and ad hoc reporting, dashboards,
alerts, queries, details on demand

• Structured data. traditional sources.
manageable datasets

Common Questions • What happened last quarter?
• How many units sold?
• Where is the problem? Hey in which

situation?
Table 1.4: BI

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

1.9.1 Current Analytical Architecture: Figure 1.9 explains a typical
analytical architecture.

Figure 1.9:Typical Analytical Architecture

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

1. For data sources to be loaded into the data warehouse, data needs to
be well understood, structured and normalized with the appropriate
data type definitions.

2. As a result of this level of control on the EDW(enterprise data
warehouse-on server or on cloud), additional local systems may
emerge in the form of departmental warehouses and local data marts
that business users create to accommodate their need for flexible
analysis. However, these local systems reside in isolation, often are
not synchronized or integrated with other data stores and may not be
backed up.

3. In the data warehouse, data is read by additional applications across
the enterprise for Bl and reporting purposes.

4. At the end of this workflow, analysts get data from server. Because
users generally are not allowed to run custom or intensive analytics on
production databases, analysts create data extracts from the EDW to
analyze data offline in R or other local analytical tools to store and
process critical data, supporting enterprise applications and enabling
corporate reporting activities.

mu
no
tes
.in

12

Although reports and dashboards are still important for
organizations, most traditional data architectures prevent data exploration
and more sophisticated analysis.

1.9.3 Drivers of Big Data:

As shown in Figure 1.10, in the 1990s the volume of information
was often measured in terabytes. Most organizations analyzed structured
data in rows and columns and used relational databases and data
warehouses to manage large amount of enterprise information.

Figure 1.10: Data Evolution and the Rise of Big Data Sources

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

The following decade (2000) saw different kinds of data sources-
mainly productivity and publishing tools such as content management
repositories and networked attached storage systems-to manage this kind
of information, and the data began to increase in size and started to be
measured at petabyte scales.

In the 2010s, the information that organizations try to manage has
broadened to include many other kinds of data. In this era, everyone and
everything is leaving a digital footprint. These applications, which
generate data volumes that can be measured in exabyte scale, provide
opportunities for new analytics and driving new value for organizations.
The data now comes from multiple sources, like Medical information,
Photos and video footage, Video surveillance, Mobile devices, Smart
devices, Nontraditional IT devices etc.

mu
no
tes
.in

13

1.9.4 Emerging Big Data Ecosystem and a New Approach to
Analytics

Figure 1.11 – Emerging Big Data Ecosystem

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

As the new ecosystem takes shape, there are four main groups of players
within this interconnected web. These are shown in Figure 1.11.

1. Data devices and the "Sensornet” gather data from multiple locations

and continuously generate new data about this data. For each
gigabyte of new data created, an additional petabyte of data is created
about that data.

For example, consider someone playing an online video game
through a PC, game console, or smartphone. In this case, the video game
provider captures data about the skill and levels attained by the player.
Intelligent systems monitor and log how and when the user plays the
game. As a consequence, the game provider can fine-tune the difficulty of
the game, suggest other related games that would most likely interest the
user, and offer additional equipment and enhancements for the character
based on the user's age, gender, and interests. This information may get
stored locally or uploaded to the game provider's cloud to analyze the
gaming habits and opportunities for upsell and cross-sell and identify
typical profiles of specific kinds of users.

Smartphones provide another rich source of data. In addition to
messaging and basic phone usage, they store and transmit data about
Internet usage, SMS usage, and real- time location. This metadata can be
used for analyzing traffic patterns by scanning the density of smartphones
in locations to track the speed of cars or the relative traffic congestion on
busy roads. In this way, GPS devices in cars can give drivers real-time
updates and offer alternative routes to avoid traffic delays.

Retail shopping loyalty cards record not just the amount an
individual spends, but the locations of stores that person visits, the kinds
of products purchased, the stores where goods are purchased most often,

mu
no
tes
.in

14

and the combinations of products purchased together. Collecting this data
provides insights into shopping and travel habits and the likelihood of
successful advertisement targeting for certain types of retail promotions.

2. Data collectors include sample entities that collect data from the
device and users.

Data results from a cable TV provider tracking the shows a person
watches, which TV channels someone will and will not pay for to
watch on demand, and the prices someone is willing to pay for
premium TV content

Retail stores tracking the path a customer takes through their store
while pushing a shopping cart with an RFID chip so they can gauge
which products get the most foot traffic using geospatial data collected
from the RFID chips

3. Data aggregators make sense of the data collected from the various

entities from the "SensorNet" or the "Internet of Things." These
organizations compile data from the devices and usage patterns
collected by government agencies, retail stores and websites. ln turn,
they can choose to transform and package the data as products to sell
to list brokers, who may want to generate marketing lists of people
who may be good targets for specific ad campaigns.

4. Data users / buyers: These groups directly benefit from the data
collected and aggregated by others within the data value chain. Retail
banks, acting as a data buyer, may want to know which customers
have the highest likelihood to apply for a second mortgage or a home
equity line of credit.

To provide input for this analysis, retail banks may purchase data
from a data aggregator. This kind of data may include demographic
information about people living in specific locations; people who appear
to have a specific level of debt, yet still have solid credit scores (or other
characteristics such as paying bills on time and having savings accounts)
that can be used to infer credit worthiness; and those who are searching
the web for information about paying off debts or doing home
remodeling projects. Obtaining data from these various sources and
aggregators will enable a more targeted marketing campaign, which
would have been more challenging before Big Data due to the lack of
information or high-performing technologies.

Using technologies such as Hadoop to perform natural language
processing on unstructured, textual data from social media websites, users
can gauge the reaction to events such as presidential campaigns. People
may, for example, want to determine public sentiments toward a
candidate by analyzing related blogs and online comments. Similarly,
data users may want to track and prepare for natural disasters by
identifying which areas a hurricane affects first and how it moves, based

mu
no
tes
.in

15

on which geographic areas are tweeting about it or discussing it via social
media.

1.10 KEY ROLES FOR THE NEW BIG DATA
ECOSYSTEM

Refer figure 1.12 for Key roles of the new big data ecosystems.

Figure 1.12 – Key roles of the new big data ecosystems

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

1. Deep Analytical Talent is technically savvy, with strong analytical
skills. Members possess a combination of skills to handle raw,
unstructured data and to apply complex analytical techniques at
massive scales.

2. This group has advanced training in quantitative disciplines, such as

mathematics, statistics, and machine learning. To do their jobs,
members need access to a robust analytic sandbox or workspace
where they can perform large-scale analytical data experiments.

Examples of current professions fitting into this group include
statisticians, economists, mathematicians, and the new role of the Data
Scientist.

3. Data Savvy Professionals-has less technical depth but has a basic

knowledge of statistics or machine learning and can define key
questions that can be answered using advanced analytics.

These people tend to have a base knowledge of working with data, or
an appreciation for some of the work being performed by data
scientists and others with deep analytical talent.

mu
no
tes
.in

16

Examples of data savvy professionals include financial analysts,
market research analysts, life scientists, operations managers, and
business and functional managers.

4. Technology and Data Enablers- This group represents people
providing technical expertise to support analytical projects, such as
provisioning and administrating analytical sandboxes, and managing
large-scale data architectures that enable widespread analytics within
companies and other organizations.

This role requires skills related to computer engineering,
programming, and database administration.

These three groups must work together closely to solve complex Big
Data challenges.
Most organizations are familiar with people in the latter two groups
mentioned, but the first group, Deep Analytical Talent, tends to be the
newest role for most and the least understood.

For simplicity, this discussion focuses on the emerging role of the
Data Scientist. It describes the kinds of activities that role performs
and provides a more detailed view of the skills needed to fulfill that
role.

Activities of data scientist:

There are three recurring sets of activities that data scientists
perform:

Reframe business challenges as analytics challenges. Specifically,
this is a skill to diagnose business problems, consider the core of a given
problem, and determine which kinds of analytical methods can be applied
to solve it.

Design, implement, and deploy statistical models and data mining
techniques on Big Data. This set of activities is mainly what people think
about when they consider the role of the Data Scientist: namely, applying
complex or advanced analytical methods to a variety of business problems
using data.

Develop insights that lead to actionable recommendations. It is
critical to note that applying advanced methods to data problems does not
necessarily drive new business value. Instead, it is important to learn how
to draw insights out of the data and communicate them effectively.

Profile of a data scientist:

Data scientists are generally thought of as having five main sets of
skills and behavioral characteristics, as shown in Figure 1-13:

Quantitative skill: such as mathematics or statistics

mu
no
tes
.in

17

Figure 1.13 - Data scientist

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

Technical aptitude: namely, software engineering, machine learning,
and programming skills

Skeptical mind-set and critical thinking: It is important that data
scientists can examine their work critically rather than in a one-sided way.
Curious and creative: Data scientists are passionate about data and
finding creative ways to solve problems and portray information.

Communicative and collaborative: Data scientists must be able to
understand the business value in a clear way and collaboratively work
with other groups, including project sponsors and key stakeholders.

Data scientists are generally comfortable using this blend of skills to
acquire, manage, analyze, and visualize data and tell compelling stories
about it.

1.11 EXAMPLES OF BIG DATA ANALYTICS

There are three examples of Big Data Analytics in different areas: retail,
IT infrastructure, and social media.

1. Retail: As mentioned earlier, Big Data presents many opportunities to
improve sales and marketing analytics.

mu
no
tes
.in

18

An example of this is the U.S. retailer Target. After analyzing consumer
purchasing behavior, Target's statisticians determined that the retailer
made a great deal of money from three main life-event situations.

• Marriage, when people tend to buy many new products.

• Divorce, when people buy new products and change their spending
habits.

• Pregnancy, when people have many new things to buy and have an
urgency to buy them. The analysis target to manage its inventory,
knowing that there would be demand for specific products and it
would likely vary by month over the coming nine- to ten-month
cycles.

2. IT infrastructure: MapReduce paradigm is an ideal technical
framework for many Big Data projects, which rely on large data sets
with unusual data structures.

One of the main benefits of Hadoop is that it employs a distributed file
system, meaning it can use a distributed cluster of servers and
commodity hardware to process large amounts of data.

Some of the most common examples of Hadoop implementations are
in the social media space, where Hadoop can manage transactions,
give textual updates, and develop social graphs among millions of
users.

Twitter and Facebook generate massive amounts of unstructured data
and use Hadoop and its ecosystem of tools to manage this high
volume.

3. Social media: It represents a tremendous opportunity to leverage

social and professional interactions to derive new insights.

LinkedIn represents a company in which data itself is the product.
Early on, Linkedln founder Reid Hoffman saw the opportunity to
create a social network for working professionals.

As of 2014, Linkedln has more than 250 million user accounts and has
added many additional features and data-related products, such as
recruiting, job seeker tools, advertising, and ln Maps, which show a
social graph of a user's professional network.

SUMMARY

In this chapter you have learnt about What is big, its
Characteristics, when it got evolved its definition, challenges. Also, Data
Warehouse environment, what are the differences between Traditional
Business Intelligence and Big Data, State of Practice in Analytics, Key

mu
no
tes
.in

19

roles for New Big Data Ecosystems and some examples of big Data
Analytics.

REVIEW QUESTIONS

1. Define big data. Why is big data required? How does traditional BI

environment differ from big data environment?

2. What are the challenges with big data?

3. Define big data. Why is big data required? Write a note on data
warehouse environment.

4. What are the three characteristics of big data? Explain the
differences between Bl and Data Science.

5. Describe the current analytical architecture for data scientists.

6. What are the key roles for the New Big Data Ecosystem?

7. What are key skill sets and behavioral characteristics of a data
scientist?

RFERENCES

• (n.d.). In S. A. Subhashini Chellappan, Big Data and Analytics
(First ed.). Wiley.

• (n.d.). In Data Science & Big Data Analytics: Discovering,
Analyzing, Visualizing and Presenting Data. Manufactured in the
United States of America: John Wiley & Sons, Inc.

.

***** mu
no
tes
.in

20

2

BIG DATA ANALYTICS

Unit Structure

2.0 Objectives

2.1 Introduction to big data analytics

2.2 Classification of Analytics

2.3 Challenges of Big Data

2.4 Importance of Big Data

2.5 Big Data Technologies

2.6 Data Science

2.7 Responsibilities

2.8 Soft state eventual consistency

2.9 Data Analytics Life Cycle

Summary
Review Questions

2.0 OBJECTIVES

Big Data is creating significant new opportunities for
organizations to derive new value and create competitive advantage from
their most valuable asset: information. For businesses, Big Data helps
drive efficiency, quality, and personalized products and services,
producing improved levels of customer satisfaction and profit. For
scientific efforts, Big Data analytics enable new avenues of investigation
with potentially richer results and deeper insights than previously
available. In many cases, Big Data analytics integrate structured and
unstructured data with Realtime feeds and queries, opening new paths to
innovation and insight.

2.1 INTRODUCTION TO BIG DATA ANALYTICS

Big Data Analytics is...

1 Technology-enabled analytics: Quite a few data analytics and
visualization tools are available in the market today from leading
vendors such as IBM, Tableau, SAS, R Analytics, Statistica, World
Programming Systems (WPS), etc. to help process and analyze your big
data.

2. About gaining a meaningful, deeper, and richer insight into your
business to steer it in the right direction. understanding the customer's
demographics to cross-sell and up- sell to them, better leveraging the
services of your vendors and suppliers, etc.

mu
no
tes
.in

21

3. About a competitive edge over your competitors by enabling you
with findings that allow quicker and better decision-making.

4. A tight handshake between three communities: IT, business users,

and data scientists. Refer Figure 3.3.

5. Working with datasets whose volume and variety exceed the current

storage and processing capabilities and infrastructure of your
enterprise.

About moving code to data. This makes perfect sense as the program for
distributed processing is tiny (just a few KBs) compared to the data
(Terabytes or Petabytes today and likely to be Exabytes or Zettabytes in
the near future).

2.2 CLASSIFICATION OF ANALYTICS

There are basically two schools of thought:

1 Those that classify analytics into basic, operationalized, advanced and
Monetized.

2 Those that classify analytics into analytics 1.0, analytics 2.0, and
analytics 3.0.

2.2.1. First School of Thought

It includes Basic analytics, Operationalized analytics, Advanced
analytics and Monetized analytics.

Basic analytics: This primarily is slicing and dicing of data to help with
basic business insights. This is about reporting on historical data, basic
visualization, etc.

(Big Data and Analytics)

mu
no
tes
.in

22

Operationalized analytics: It is operationalized analytics if it gets
woven into the enterprises business processes.

Advanced analytics: This largely is about forecasting for the future by
way of predictive and prescriptive modelling.

Monetized analytics: This is analytics in use to derive direct business
revenue.

2.2.2 Second School of Thought:

Let us take a closer look at analytics 1.0, analytics 2.0, and analytics
3.0. Refer Table 2.1. Figure 2.1 shows the subtle growth of analytics
from Descriptive Diagnostic Predictive Perspective analytics.

Analytics 1.0 Analytics 2.0 Analytics 3.0

Era: mid 1990s to 2005 to 2012
Descriptive statistics
predictive statistics (use
data from the past to
make predictions for the
future)

2012 to present
2009 Descriptive Descriptive + predictive

+
statistics (report on prescriptive statistics (use
events, occurrences, etc.
of the past)

data from the past to
make

 prophecies for the future
 and at the same time

make
 recommendations to
 leverage the situation to
 one's advantage)
key questions asked: key questions asked: Key questions asked:
What happened? What happened? What will happen?
Why did it happen? Why will it happen? When will it happen?
 Why will it happen?
 What should be the

action
 taken to take advantage

of
 what will happen?
Data from legacy Big data A blend of big data and
systems. ERP, CRM, and
3rd party applications.

 data from legacy systems,
ERP, CRM, and 3rd party
applications.

Small and structured data
sources. Data stored in
enterprise data
warehouses or data marts.

Big data is being taken up
seriously. Data is mainly
unstructured, arriving at a
much higher pace. This
fast flow of data entailed
that the influx of big
volume data had to be
stored and processed
rapidly, often on massive
parallel servers running
Hadoop.

A blend of big data and
traditional analytics to
yield insights and
offerings with speed and
impact.

Data was internally
sourced.

Data was often
externally sourced.

Data is both being
internally and externally
sourced.

mu
no
tes
.in

23

Relational databases Database appliances,
Hadoop clusters, SQL to
Hadoop environments,
etc.

In memory analytics, in
database processing, agile
analytical methods,
machine
learning techniques etc.

Table 2.1Analytics 1.0, 2.0 and 3.0 (Big Data and Analytics)

2.3 CHALLENGES OF BIG DATA

There are mainly seven challenges of big data: scale, security,

schema, Continuous availability, Consistency, Partition tolerant and data
quality.

Scale: Storage (RDBMS (Relational Database Management System) or
NoSQL (Not only SQL)) is one major concern that needs to be addressed
to handle the need for scaling rapidly and elastically. The need of the hour
is a storage that can best withstand the attack of large volume, velocity
and variety of big data. Should you scale vertically or should you scale
horizontally?

Security: Most of the NoSQL big data platforms have poor security
mechanisms (lack of proper authentication and authorization
mechanisms) when it comes to safeguarding big data. A spot that cannot
be ignored given that big data carries credit card information, personal
information and other sensitive data.

schema: Rigid schemas have no place. We want the technology to be
able to fit our big data and not the other way around. The need of the
hour is dynamic schema. Static (pre-defined schemas) are obsolete.

Continuous availability: The big question here is how to provide 24/7
support because almost all RDBMS and NoSQL big data platforms have a
certain amount of downtime built in.

Consistency: Should one opt for consistency or eventual consistency?
Partition tolerant: How to build partition tolerant systems that can take
care of both hardware and software failures?

Data quality: How to maintain data quality- data accuracy,
completeness, timeliness, etc.? Do we have appropriate metadata in place?

2.4 IMPORTANCE OF BIG DATA

Let us study the various approaches to analysis of data and what it

leads to.

Reactive-Business Intelligence: What does Business Intelligence (BI)
help us with? It allows the businesses to make faster and better decisions
by providing the right information to the right person at the right time in

mu
no
tes
.in

24

the right format. It is about analysis of the past or historical data and then
displaying the findings of the analysis or reports in the form of enterprise
dashboards, alerts, notifications, etc. It has support for both pre-specified
reports as well as ad hoc querying.

Reactive - Big Data Analytics: Here the analysis is done on huge
datasets but the approach is still reactive as it is still based on static data.

Proactive - Analytics: This is to support futuristic decision making by
use of data mining predictive modelling, text mining, and statistical
analysis on. This analysis is not on big data as it still the traditional
database management practices on big data and therefore has severe
limitations on the storage capacity and the processing capability.

Proactive - Big Data Analytics: This is filtering through terabytes,
petabytes, exabytes of information to filter out the relevant data to
analyze. This also includes high performance analytics to gain rapid
insights from big data and the ability to solve complex problems using
more data.

2.5 BIG DATA TECHNOLOGIES

Following are the requirements of technologies to meet challenges of big
data:

• The first requirement is of cheap and ample storage.

• We need faster processors to help with quicker processing of big data.
Affordable open source distributed big data platforms, such as
Hadoop.

• Parallel processing, clustering, virtualization, large grid environments
(to distribute processing to a number of machines), high connectivity,
and high throughputs(rate at which something is processed).

• Cloud computing and other flexible resource allocation arrangements.

2.6 DATA SCIENCE

Data science is the science of extracting knowledge from data. In

other words, it is a science of drawing out hidden patterns amongst data
using statistical and mathematical techniques.

It employs techniques and theories drawn from many fields from
the broad areas of mathematics, statistics, information technology
including machine learning, data engineering, probability models,
statistical learning, pattern recognition and learning, etc.

Data Scientist works on massive datasets for weather predictions,
oil drillings, earthquake prediction, financial frauds, terrorist network and

mu
no
tes
.in

25

activities, global economic impacts, sensor logs, social media analytics,
customer churn, collaborative filtering(prediction about interest on users),
regression analysis, etc. Data science is multi-disciplinary. Refer to
Figure 2.2.

 Figure 2.2 Data Scientist (Big Data and Analytics)

2.6.1 Business Acumen(expertise) Skills:

A data scientist should have following ability to play the role of data
scientist.

• Understanding of domain

• Business strategy

• Problem solving

• Communication

• Presentation

• Keenness

2.6.2 Technology Expertise:

Following skills required as far as technical expertise is concerned.

• Good database knowledge such as RDBMS.

• Good NoSQL database knowledge such as MongoDB, Cassandra,
HBase, etc.

• Programming languages such as Java. Python, C++, etc.

• Open-source tools such as Hadoop.

• Data warehousing.

• Data mining

• Visualization such as Tableau, Flare, Google visualization APIs, etc.

mu
no
tes
.in

26

2.6.3 Mathematics Expertise:

The following are the key skills that a data scientist will have to have to
comprehend data, interpret it and analyze.

• Mathematics.

• Statistics.

• Artificial Intelligence (AI).

• Algorithms.

• Machine learning.

• Pattern recognition.

• Natural Language Processing.

• To sum it up, the data science process is

• Collecting raw data from multiple different data sources.

• Processing the data.

• Integrating the data and preparing clean datasets.

• Engaging in explorative data analysis using model and algorithms.

• Preparing presentations using data visualizations.

• Communicating the findings to all stakeholders.

• Making faster and better decisions.

2.7 RESPONSIBILITIES

Refer figure 2.3 to understand the responsibilities of a data scientist.

Data Management: A data scientist employs several approaches to
develop the relevant datasets for analysis. Raw data is just "RAW",
unsuitable for analysis. The data scientist works on it to prepare to reflect
the relationships and contexts. This data then becomes useful for
processing and further analysis.

Analytical Techniques: Depending on the business questions which we
are trying to find answers to and the type of data available at hand, the
data scientist employs a blend of analytical techniques to develop models
and algorithms to understand the data, interpret relationships, spot trends,
and reveal patterns.

Business Analysis: A data scientist is a business analyst who
distinguishes cool facts from insights and is able to apply his business
expertise and domain knowledge to see the results in the business context.

mu
no
tes
.in

27

v t

Figure 2.3 Data scientist: your new best friend!!!
(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

Communicator: He is a good presenter and communicator who is able
to communicate the results of his findings in a language that is
understood by the different business stakeholders.

2.8 SOFT STATE EVENTUAL CONSISTENCY

ACID property in RDBMS:

Atomicity: Either the task (or all tasks) within a transaction are
performed or none of them are. This is the all-or-none principle. If one
element of a transaction fails the entire transaction fails.

Consistency: The transaction must meet all protocols or rules defined by
the system at all times. The transaction does not isolate those protocols
and the database must remain in a consistent state at the beginning and
end of a transaction; there are never any half-completed transactions.

Isolation: No transaction has access to any other transaction that is in an
intermediate or unfinished state. Thus, each transaction is independent
unto itself. This is required for both performance and consistency of
transactions within a database.

Durability: Once the transaction is complete, it will persist as complete

mu
no
tes
.in

28

and cannot be undone; it will survive system failure, power loss and
other types of system breakdowns.

BASE (Basically Available, Soft state, Eventual consistency). In a
system where BASE is the prime requirement for reliability, the
activity/potential (p) of the data (H) changes;
it essentially slows down.

Basically Available: This constraint states that the system does
guarantee the availability of the data as regards CAP Theorem; there will
be a response to any request. But, that response could still be ‘failure’ to
obtain the requested data or the data may be in an inconsistent or
changing state, much like waiting for a check to clear in your bank
account.

Eventual consistency: The system will eventually become consistent
once it stops receiving input. The data will propagate to everywhere it
should sooner or later, but the system will continue to receive input and
is not checking the consistency of every transaction before it moves onto
the next one. Werner Vogel’s article “Eventually Consistent – Revisited”
covers this topic is much greater detail.

Soft state: The state of the system could change over time, so even
during times without input there may be changes going on due to
‘eventual consistency,’ thus the state of the system is always ‘soft.’

2.9 DATA ANALYTICS LIFE CYCLE

Here is a brief overview of the main phases of the Data Analytics:

Phase 1- Discovery: In Phase 1, the team learns the business domain,
including relevant history such as whether the organization or business
unit has attempted similar projects in the past from which they can learn.
The team assesses the resources available to support the project in terms
of people, technology, time and data. Important activities in this phase
include framing the business problem as an analytics challenge that can
be addressed in subsequent phases and formulating initial hypotheses
(IHs) to test and begin learning the data.

Phase 2- Data preparation: Phase 2 requires the presence of an analytic
sandbox, in which the team can work with data and perform analytics for
the duration of the project. The team needs to execute extract, load, and
transform (ELT) or extract, transform and load (ETL) to get data into the
sandbox. The ELT and ETL are sometimes abbreviated as ETLT. Data
should be transformed in the ETLT process so the team can work with it
and analyze it. In this phase, the team also needs to familiarize itself with
the data thoroughly and take steps to condition the data.

Phase 3-Model planning: Phase 3 is model planning, where the team

mu
no
tes
.in

29

determines the methods, techniques and workflow it intends to follow for
the subsequent model building phase. The team explores the data to learn
about the relationships between variables and subsequently selects key
variables and the most suitable models.

Figure 2.4 - Overview of Data Analytical Lifecycle

(Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data)

Phase 4-Model building: In Phase 4, the team develops data sets for
testing, training, and production purposes. In addition, in this phase the
team builds and executes models based on the work done in the model
planning phase. The team also considers whether its existing tools will
suffice for running the models, or if it will need a more robust
environment for executing models and workflows (for example, fast
hardware and parallel processing, if applicable).

Phase 5-Communicate results: In Phase 5, the team, in collaboration
with major stakeholders, determines if the results of the project are a
success or a failure based on the criteria developed in Phase 1. The team
should identify key findings, quantify the business value, and develop a
narrative to summarize and convey findings to stakeholders.

Phase 6-0perationalize: In Phase 6, the team delivers final reports,
briefings, code and technical documents. In addition, the team may run a
pilot project to implement the models in a production environment.

SUMMARY

In this chapter you have learnt about What is big data analytics, its
classification, challenges, and importance of Big Data. Also, Big Data
Technologies, What is Data Science, the responsibilities of a data

mu
no
tes
.in

30

scientist, soft state eventual consistency and Data Analytics Life Cycle.

REVIEW QUESTIONS

1. What is big data analytics? Explain in detail with its example.

2. Write a short note on Classification of Analytics.

3. Describe the Challenges of Big Data.

4. Write a short note on data science and data science process.

5. Write a short note on soft state eventual consistency.

6. What are different phases of the Data Analytics Lifecycle? Explain
each in detail.

REFERENCES

• (n.d.). In S. A. Subhashini Chellappan, Big Data and Analytics (First ed.).
Wiley.

• (n.d.). In Data Science & Big Data Analytics: Discovering, Analyzing,
Visualizing and Presenting Data. Manufactured in the United States of
America: John Wiley & Sons, Inc.

.

 mu
no
tes
.in

31

UNIT II

3

OVERVIEW OF CLUSTERING

Unit Structure

3.1 Analytical Theory and Methods

3.2 Clustering and Associated Algorithms

3.3 Association Rules

3.4 Apriori Algorithm

3.5 Candidate Rules

3.6 Applications of Association Rules

3.7 Validation and Testing

3.8 Diagnostics

3.1 OVERVIEW OF CLUSTERING

In general, clustering is the use of unsupervised techniques for
grouping similar objects. In machine learning, unsupervised refers to the
problem of finding hidden structure within unlabeled data. Clustering
techniques are unsupervised in the sense that the data scientist does not
determine, in advance, the labels to apply to the clusters. The structure of
the data describes the objects of interest and determines how best to group
the objects.

For example, based on customers’ personal income, it is straightforward to
divide the customers into three groups depending on arbitrarily selected
values. The customers could be divided into three groups as follows:

Earn less than $10,000, Earn between $10,000 and $99,999 Earn $100,000
or more

In this case, the income levels were chosen somewhat subjectively based
on easy-to communicate points of delineation. However, such groupings
do not indicate a natural affinity of the customers within each group. In
other words, there is no inherent reason to believe that the customer
making $90,000 will behave any differently than the customer making
$110,000. As additional dimensions are introduced by adding more
variables about the customers, the task of finding meaningful groupings
becomes more complex. For instance, suppose variables such as age, years
of education, household size, and annual purchase expenditures were
considered along with the personal income variable. What are the natural
occurring groupings of customers? This is the type of question that
clustering analysis can help answer.

mu
no
tes
.in

32

Clustering is a method often used for exploratory analysis of the
data. In clustering, there are no predictions made. Rather, clustering
methods find the similarities between objects according to the object
attributes and group the similar objects into clusters. Clustering techniques
are utilized in marketing, economics, and various branches of science. A
popular clustering method is k-means.

3.2-K-MEANS

Given a collection of objects each with n measurable attributes, k-
means is an analytical technique that, for a chosen value of k, identifies k
clusters of objects based on the objects' proximity to the center of the k
groups. The center is determined as the arithmetic average (mean) of each
cluster's n-dimensional vector of attributes. Below figure illustrates three
dusters of objects with two attributes. Each object in the dataset is
represented by a small dot color-coded to the closest large dot, the mean of
the cluster.

Figure 3.1 Possible K-means clusters for k=3

3.2.1-Use Cases:

Clustering is often used as a lead-in to classification. Once the
clusters are identified, labels can be applied to each cluster to classify each
group based on its characteristics. Some specific applications of k-means
are image processing, medical and customer segmentation.

mu
no
tes
.in

33

Image Processing:

Video is one example of the growing volumes of unstructured data
being collected. Within each frame of a video, k-means analysis can be
used to identify objects in the video. For each frame, the task is to deter-
mine which pixels are most similar to each other. The attributes of each
pixel can include brightness, color, and location, the x and y coordinates in
the frame. With security video images, for example, successive frames are
examined to identify any changes to the clusters. These newly identified
dusters may indicate unauthorized access to a facility.

Medical:

Patient attributes such as age, height, weight, systolic and diastolic
blood pressures, cholesterol level, and other attributes can identify
naturally occurring clusters. These dusters could be used to target
individuals for specific preventive measures or clinical trial participation.
Clustering, in general, is useful in biology for the classification of plants
and animals as well as in the field of human genetics.

Customer Segmentation:

Marketing and sales groups use k-means to better identify
customers who have similar behaviors and spending patterns. For
example, a wireless provider may look at the following customer
attributes: monthly bill, number of text messages, data volume consumed,
minutes used during various daily periods, and years as a customer. The
wireless company could then look at the naturally occurring clusters and
consider tactics to increase sales or reduce the customer churn rate, the
proportion of customers who end their relationship with a particular
company.

3.2.2 Overview of the Method:

To illustrate the method to find k clusters from a collection of M
objects with n attributes, the two-dimensional case (n = 2) is examined. It
is much easier to visualize the k-means method in two dimensions.

Because each object in this example has two attributes, it is useful
to consider each object corresponding to the point (xi, yi), where x and y
denote the two attributes and i = 1, 2 ... M. For a given cluster of m points
(m ≤ M), the point that corresponds to the cluster's mean is called a
centroid.

The k-means algorithm to find k dusters can be described in the following
four steps.

1. Choose the value of k and the k initial guesses for the centroids.
In this example, k = 3, and the initial centroids are indicated by the
points shaded in red, green, and blue in figure 2.2.

mu
no
tes
.in

34

2. Compute the distance from each data point (xi ,yi) to each centroid.
Assign each point to the closest centroid. This association defines the
first k dusters.

In two dimensions, the distance, d, between any two points, (x1,y1) and
(x2,y2), in the Cartesian plane is typically expressed by using the
Euclidean distance measure provided in Equation.

d=

In figure 3.2, the points closest to a centroid are shaded the corresponding
color.

3.2 Initial starting points for the centroids

3.3 Points are assigned to the closest centroid

3. Compute the centroid, the center of mass, of each newly defined

cluster from Step 2.

In Figure 2-4, the computed centroids in Step 3 are the lightly
shaded points of the corresponding color. In two dimensions, the centroid
(xc,yc) of the m points in a k-means duster is calculated as follows in

mu
no
tes
.in

35

Equation.

() 1 1P , ,

m m

i ii i
X Y

Xc Yc
m m
= =

 =

∑ ∑

Thus, (xc,yc) is the ordered pair of the arithmetic means of the
coordinates of the m points in the cluster. In this step, a centroid is
computed for each of the k clusters.

3.4a Compute the mean of each cluster

4. Repeat Steps 2 and 3 until the algorithm converges to an answer

a. Assign each point to the closest centroid computed in Step 3.

b. Compute the centroid of newly defined clusters.

c. Repeat until the algorithm reaches the final answer.

3.2.3 Determining the Number of Clusters:

In k-means, k clusters can be identified in a given dataset, but what
value of k should be selected? The value of k can be chosen based on a
reasonable guess or some predefined requirement. However, even then, it
would be good to know how much better or worse having k clusters versus
k-1 or k+1 cluster would be in explaining the structure of the data. Next, a
heuristic using the Within Sum of Squares (WSS) metric is examined to
determine a reasonably optimal value of k. Using the distance function,
WSS is defined as shown below.

() ()
2 2

1
1 1 1

,
i

M M n
i l

i
i i i

WSS d p q p q
= = =

= = −∑ ∑ ∑

In other words, WSS is the sum of the squares of the distances
between each data point and the closest centroid. The term q(i) indicates
the closest centroid that is associated with the ith point. If the points are

mu
no
tes
.in

36

relatively close to their respective centroids, the WSS is relatively small.
Thus, if k +1 clusters do not greatly reduce the value of WSS from the
case with only k clusters, there may be little benefit to adding another
cluster.

3.2.4 Diagnostics:

The heuristic using WSS can provide at least several possible k
values to consider. When the number of attributes is relatively small, a
common approach to further refine the choice of k is to plot the data to
determine how distinct the identified clusters are from each other. In
general, the following questions should be considered.

• Are the dusters well separated from each other?

• Do any of the dusters have only a few points?

• Do any of the centroids appear to be too close to each other?

In the first case, ideally the plot would look like the one shown in below
figure, when n = 2.

Figure: 3.4b Example of distinct clusters

The clusters are well defined, with considerable space between the
four identified clusters. However, in other cases, such as in below figure,
the clusters may be close to each other, and the distinction may not be so
Obvious
mu
no
tes
.in

37

.Figure 3.5 Example of less obvious cluster

3.2.5 Reasons to Choose and Cautions:

K-means is a simple and straightforward method for defining
clusters. Once clusters and their associated centroids are identified, it is
easy to assign new objects (for example, new customers) to a cluster based
on the object's distance from the closest centroid. Because the method is
unsupervised, using k-means helps to eliminate subjectivity from the
analysis.

Although k-means is considered an unsupervised method, there are still
several decisions that the practitioner must make:

a. What object attributes should be included in the analysis?

b. What unit of measure (for example, miles or kilometers) should be
used for each attribute?

c. Do the attributes need to be rescaled so that one attribute does not have
a disproportionate effect on the results?

d. What other considerations might apply?

a. Object Attributes:

Regarding which object attributes (for example, age and income)
to use in the analysis, it is important to understand what attributes will be
known at the time a new object will be assigned to a cluster. For example,
information on existing customers' satisfaction or purchase frequency may
be available, but such information may not be available for potential
customers.

The Data Scientist may have a choice of a dozen or more attributes
to use in the clustering analysis. Whenever possible and based on the data,
it is best to reduce the number of attributes to the extent possible. Too

mu
no
tes
.in

38

many attributes can minimize the impact of the most important variables.
Also, the use of several similar attributes can place too much importance
on one type of attribute. For example, if five attributes related to personal
wealth are included in a clustering analysis, the wealth attributes dominate
the analysis and possibly mask the importance of other attributes, such as
age.

When dealing with the problem of too many attributes, one useful

approach is to identify any highly correlated attributes and use only one or
two of the correlated attributes in the clustering analysis.

Another option to reduce the number of attributes is to combine
several attributes into one measure. For example, instead of using two
attribute variables, one for Debt and one for Assets, a Debt to Asset ratio
could be used, This option also addresses the problem when the magnitude
of an attribute is not of real interest, but the relative magnitude is a more
important measure.

b. Units of Measure:

From a computational perspective, the k-means algorithm is
somewhat indifferent to the units of measure for a given attribute (for
example, meters or centimeters for a patient's height). However, the
algorithm will identify different clusters depending on the choice of the
units of measure.

For example, suppose that k-means is used to cluster patients based

on age in years and height in centimeters. For k=2, below figure illustrates
the two clusters that would be determined for a given dataset.

Figure 3.6. Cluster with height expressed in centimeters

But if the height was rescaled from centimeters to meters by

mu
no
tes
.in

39

dividing by 100, the resulting dusters would be slightly different, as
illustrated in below Figure.

Figure 3.7. Cluster with height expressed in meters

c. Rescaling:

Attributes that are expressed in dollars are common in clustering
analyses and can differ in magnitude from the other attributes. For
example, if personal income is expressed in dollars and age is expressed in
years, the income attribute, often exceeding 510,000, can easily dominate
the distance calculation with ages typically less than 100 years.

Although some adjustments could be made by expressing the
income in thousands of dollars (for example, 10 for 510,000), a more
straightforward method is to divide each attribute by the attribute's
standard deviation. The resulting attributes will each have a standard
deviation equal to 1 and will be without units.

Returning to the age and height example, the standard deviations
are 23.1 years and 36.4 cm, respectively. Dividing each attribute value by
the appropriate standard deviation and performing the k-means analysis
yields the result shown in Figure 3.8.

mu
no
tes
.in

40

Figure 3.8.Cluster with rescaled attributes

In many statistical analyses, it is common to transform typically

skewed data, such as income, with long tails by taking the logarithm of the
data. Such transformation can also be applied in k-means, but the Data
Scientist needs to be aware of what effect this transformation will have.

d. Additional Considerations:

The k-means algorithm is sensitive to the starting positions of the
initial centroid. Thus, it is important to rerun the k-means analysis several
times for a particular value of k to ensure the cluster results provide the
overall minimum WSS. As we know, this task is accomplished in R by
using the nstart option in the kmeans () function call.

K-means clustering is applicable to objects that can be described
by attributes that are numerical with a meaningful distance measure.
Interval and ratio attribute types can certainly be used. However, k-means
does not handle categorical variables well. For example, suppose a
clustering analysis is to be conducted on new car sales. Among other
attributes, such as the sale price, the color of the car is considered
important. Although one could assign numerical values to the color, such
as red = 1, yellow = 2, and green = 3, it is not useful to consider that
yellow is as close to red as yellow is to green from a clustering
perspective. In such cases, it may be necessary to use an alternative
clustering methodology.

3.3 ASSOCIATION RULES

An unsupervised learning method called association rules. This is a
descriptive, not predictive, method often used to discover interesting
relationships hidden in a large dataset. The disclosed relationships can be
represented as rules or frequent item sets. Association rules are commonly
used for mining transactions in databases.

mu
no
tes
.in

41

Here are some possible questions that association rules can answer:

• Which products tend to be purchased together?

• Of those customers who are similar to this person, what products do
they tend to buy?

• Of those customers who have purchased this product, what other
similar products do they tend to view or purchase?

3.3.1 Overview:

Below figure shows the general logic behind association rules.
Given a large collection of transactions (depicted as three stacks of
receipts in the figure), in which each transaction consists of one or more
items, association rules go through the items being purchased to see what
items are frequently bought together and to discover a list of rules that
describe the purchasing behavior. The goal with association rules is to
discover interesting relationships among the items. The relationships that
are interesting depend both on the business context and the nature of the
algorithm being used for the discovery.

Figure 3.9 The general logic behind association rules

Each of the uncovered rules is in the form X —> Y, meaning that when
item X is observed, item Y is also observed. In this case, the left-hand side
(LHS) of the rule is X, and the right-hand side (RH5) of the rule is Y.

Using association rules, patterns can be discovered from the data
that allow the association rule algorithms to disclose rules of related
product purchases. The uncovered rules are listed on the right side of
Figure. The first three rules suggest that when cereal is purchased, 90% of
the time milk is purchased also. When bread is purchased, 40% of the time
milk is purchased also. When milk is purchased, 23% of the time cereal is
also purchased.

In the example of a retail store, association rules are used over
transactions that consist of one or more items. In fact, because of their
popularity in mining customer transactions, association rules are

mu
no
tes
.in

42

sometimes referred to as market basket analysis. Each transaction can be
viewed as the shopping basket of a customer that contains one or more
items. This is also known as an itemset. The term itemset refers to a
collection of items or individual entities that contain some kind of
relationship. This could be a set of retail items purchased together in one
transaction, a set of hyperlinks clicked on by one user in a single session,
or a set of tasks done in one day. An itemset containing k items is called a
k-itemset denoted by {item1,item 2, . . . item k}.

3.3.2 Apriori Algorithm:

The Apriori algorithm takes a bottom-up iterative approach to
uncovering the frequent itemsets by first determining all the possible items
(or 1-itemsets, for example {bread}, {eggs}, {milk}, . . .) and then
identifying which among them are frequent.

Assuming the minimum support threshold (or the minimum
support criterion) is set at 0.5, the algorithm identifies and retains those
itemsets that appear in at least 50% of all transactions and discards (or
"prunes away") the itemsets that have a support less than 0.5 or appear in
fewer than 50% of the transactions.

In the next iteration of the Apriori algorithm, the identified
frequent 1-itemsets are paired into 2-itemsets (for example, {bread, eggs},
{bread, milk}, {eggs, milk},. . .) and again evaluated to identify the
frequent 2-itemsets among them.

At each iteration, the algorithm checks whether the support
criterion can be met; if it can, the algorithm grows the itemset, repeating
the process until it runs out of support or until the itemsets reach a
predefined length. Let variable Ck be the set of candidate k-itemsets and
variable Lk be the set of k-itemsets that satisfy the minimum support.
Given a transaction database D, a minimum support threshold �, and an
optional parameter N indicating the maximum length an itemset could
reach, Apriori iteratively computes frequent itemsets Lk+1 , based on Lk.

mu
no
tes
.in

43

3.3.3 Evaluation of Candidate Rules:

Frequent itemsets from the previous section can form candidate
rules such as X implies Y (X —> Y). Confidence is defined as the measure
of certainty or trustworthiness associated with each discovered rule.
Mathematically, confidence is the percent of transactions that contain both
X and Y out of all the transactions that contain X

()
()

()
Support X Y

Confidence X Y
Support X

Λ
→ =

For example, if {bread, eggs, milk} has a support of 0.15 and
{bread, eggs} also has a support of 0.15, the confidence of rule {bread,
eggs }->{ milk} is 1, which means 100% of the time a customer buys bread
and eggs, milk is bought as well. The rule is therefore correct for 100% of
the transactions containing bread and eggs.

A relationship may be thought of as interesting when the algorithm
identifies the relationship with a measure of confidence greater than or
equal to a predefined threshold. This predefined threshold is called the
minimum confidence. A higher confidence indicates that the rule (X —> Y)
is more interesting or more trustworthy, based on the sample dataset.

Even though confidence can identify the interesting rules from all
the candidate rules, it comes with a problem. Given rules in the form of X
-> Y, confidence considers only the antecedent (X) and the cooccurrence
of X and Y; it does not take the consequent of the rule (Y) into concern.
Therefore, confidence cannot tell if a rule contains true implication of the
relationship or if the rule is purely coincidental. X and Y can be
statistically independent yet still receive a high confidence score. Other
measures such as lift and leverage are designed to address this issue.

Lift measures how many times more often X and Y occur together
than expected if they are statistically independent of each other. Lift is a
measure of how X and Y are really related rather than coincidentally
happening together

()
()

() ()*

Support X Y
Lift X Y

Support X Support Y

Λ
→ =

Lift is 1 if X and Y are statistically independent of each other. In
contrast, a lift of X —> Y greater than 1 indicates that there is some
usefulness to the rule. A larger value of lift suggests a greater strength of
the association between X and Y.

Assuming 1,000 transactions, with (milk, eggs} appearing in 300

of them, {milk} appearing in 500, and {eggs} appearing in 400, then
Lift(milk—>eggs) = 0.3/(0.5*0.4) = 1.5. If {bread} appears in 400
transactions and {milk, bread} appears in 400, then Lift(milk —>bread) =
0.4/(0.5*0.4) = 2. Therefore it can be concluded that milk and bread have
a stronger association than milk and eggs.

mu
no
tes
.in

44

Leverage is a similar notion, but instead of using a ratio, leverage
uses the difference. Leverage measures the difference in the probability of
X and Y appearing together in the dataset compared to what would be
expected if X and Y were statistically independent of each other.

Leverage(X —> Y) = Support(X ˄Y) - Support(X)* Support(Y)

In theory, leverage is 0 when X and Y are statistically independent
of each other. If X and Y have some kind of relationship, the leverage
would be greater than zero. A larger leverage value indicates a stronger
relationship between X and Y. For the previous example, Leverage{milk
—> eggs) = 0.3-(0.5*0.4) = 0.1 and Leverage(milk -> bread)=0.4 - (0.5 *
0.4) = 0.2. It again confirms that milk and bread have a stronger
association than milk and eggs.

Confidence is able to identify trustworthy rules, but it cannot tell
whether a rule is coincidental.

3.3.4 Applications of Association Rules:

The term market basket analysis refers to a specific implementation of
association rules mining that many companies use for a variety of
purposes, including these:

• Broad-scale approaches to better merchandising—what products
should be included in or excluded from the inventory each month

• Cross-merchandising between products and high-margin or high-ticket
items

• Physical or logical placement of product within related categories of
products

• Promotional programs—multiple product purchase incentives
managed through a loyalty card program

Besides market basket analysis, association rules are commonly

used for recommender systems and clickstream analysis.

Many online service providers such as Amazon and Netflix use

recommender systems. Recommender systems can use association rules to
discover related products or identify customers who have similar interests.
For example, association rules may suggest that those customers who have
bought product A have also bought product B, or those customers who
have bought products A, B, and C are more similar to this customer. These
findings provide opportunities for retailers to cross-sell their products.

Clickstream analysis refers to the analytics on data related to web

browsing and user clicks, which is stored on the client or the server side.
Web usage log files generated on web servers contain huge amounts of
information, and association rules can potentially give useful knowledge
to web usage data analysts. For example, association rules may suggest
that website visitors who land on page X click on links A, B, and C much
more often than links D, E, and F. This observation provides valuable

mu
no
tes
.in

45

insight on how to better personalize and recommend the content to site
visitors.

3.3.5 Validation and Testing:

After gathering the output rules, it may become necessary to use
one or more methods to validate the results in the business context for the
sample dataset. The first approach can be established through statistical
measures such as confidence, lift, and leverage. Rules that involve
mutually independent items or cover few transactions are considered
uninteresting because they may capture spurious relationships.

Confidence measures the chance that X and Y appear together in
relation to the chance X appears. Confidence can be used to identify the
interestingness of the rules.

Lift and leverage both compare the support of X and Y against
their individual support. While mining data with association rules, some
rules generated could be purely coincidental. For example, if 95% of
customers buy X and 90% of customers buy Y, then X and Y would occur
together at least 85% of the time, even if there is no relationship between
the two.

Another set of criteria can be established through subjective
arguments. Even with a high confidence, a rule may be considered
subjectively uninteresting unless it reveals any unexpected profitable
actions. For example, rules like {paper}->{pencil} may not be
subjectively interesting or meaningful despite high support and confidence
values. In contrast, a rule like {diaper}->{beer} that satisfies both mini-
mum support and minimum confidence can be considered subjectively
interesting because this rule is unexpected and may suggest a cross-sell
opportunity for the retailer.

3.3.6 Diagnostics:

Although the Apriori algorithm is easy to understand and
implement, some of the rules generated are uninteresting or practically
useless. Additionally, some of the rules may be generated due to
coincidental relationships between the variables. Measures like
confidence, lift, and leverage should be used along with human insights to
address this problem.

Another problem with association rules is that, in Phase 3 and 4 of

the Data Analytics Lifecycle, the team must specify the minimum support
prior to the model execution, which may lead to too many or too few rules.
In related research, a variant of the algorithm can use a predefined target
range for the number of rules so that the algorithm can adjust the
minimum support accordingly.

mu
no
tes
.in

46

Apriori algorithm is one of the earliest and the most fundamental
algorithms for generating association rules. The Apriori algorithm reduces
the computational workload by only examining itemsets that meet the
specified minimum threshold. However, depending on the size of the
dataset, the Apriori algorithm can be computationally expensive. For each
level of support, the algorithm requires a scan of the entire database to
obtain the result. Accordingly, as the database grows, it takes more time to
compute in each run. Here are some approaches to improve Apriori's
efficiency:

• Partitioning: Any itemset that is potentially frequent in a transaction
database must be frequent in at least one of the partitions of the
transaction database.

• Sampling: This extracts a subset of the data with a lower support
threshold and uses the subset to perform association rule mining.

• Transaction reduction: A transaction that does not contain frequent
fc-itemsets is useless in subsequent scans and therefore can be ignored.

• Hash-based itemset counting: If the corresponding hashing bucket
count of a fc-itemset is below a certain threshold, the/c-itemset cannot
be frequent.

• Dynamic itemset counting: Only add new candidate itemsets when
all of their subsets are estimated to be frequent.

Summary

In above chapter we study the different concept About different
Analytical Theory and Methods taking the overview of methods k-means
clustering and Given a collection of objects each with n measurable
attributes Using R to Perform a K-means Analysis and algorithm we
study all these thing in detail with diagram.

Review Question

1. Explain Analytical Theory and Methods

2. Write in detail concept of K-means.

3. Write a short note on Diagnostics

4. Explain Units of Measure

5. What is mean by Additional Considerations

6. What are the Additional Algorithms

REFERENCES

• Big Data and Analytics, Subhashini Chellappan Seema Acharya,
Wiley First addition

mu
no
tes
.in

47

• Data Analytics with Hadoop, An Introduction for Data Scientists,
Benjamin Bengfort and Jenny KimO’Reilly 2016

• Big Data and Hadoop V.K Jain KhannaPublishing First 2018

• https://towardsdatascience.com

• Data Science & Big Data Analytics Discovering, Analyzing,
Visualizing and Presenting Data EMC Education Services Published
by John Wiley & Sons, Inc

mu
no
tes
.in

48

4

REGRESSION ANALYSIS

Unit Structure

4.0 Objectives

4.1 Linear Regression

4.1.1 Use Cases

4.1.2 Model Description

4.1.3 Diagnostics

4.2 Logistic Regression

4.2.1 Use Cases

4.2.2 Model Description

4.2.3 Diagnostics

4.3 Reasons to Choose And Cautions

 Unit End Questions

 References

4.0 OBJECTIVES

To Study and Understand the following concept

• Regression

• Linear Regression

• Logistic Regression

• Additional Regression Models.

Regression Analysis:

In general, regression analysis attempts to explain the influence
that a set of variables has on the outcome of another variable of interest.
Often, the outcome variable is called a dependent variable because the out-
come depends on the other variables. These additional variables are
sometimes called the input variables or the independent variables. Regression
analysis is useful for answering the following kinds of questions:

• What is a person's expected income?

• What is the probability that an applicant will default on a loan?

Linear regression is a useful tool for answering the first question,
and logistic regression is a popular method for addressing the second.

Regression analysis is a useful explanatory tool that can identify
the input variables that have the greatest statistical influence on the

mu
no
tes
.in

49

outcome. With such knowledge and insight, environmental changes can be
attempted to produce more favorable values of the input variables. For
example, if it is found that the reading level of 10-year-old students is an
excellent predictor of the students' success in high school and a factor in
their attending college, then additional emphasis on reading can be
considered, implemented, and evaluated to improve students' reading
levels at a younger age.

4.1 LINEAR REGRESSION

Linear regression is an analytical technique used to model the
relationship between several input variables and a continuous outcome
variable. A key assumption is that the relationship between an input
variable and the outcome variable is linear. Although this assumption may
appear restrictive, it is often possible to properly transform the input or
outcome variables to achieve a linear relationship between the modified
input and outcome variables.

A linear regression model is a probabilistic one that accounts for
the randomness that can affect any particular outcome. Based on known
input values, a linear regression model provides the expected value of the
outcome variable based on the values of the input variables, but some
uncertainty may remain in predicting any particular outcome.

4.1.1 Use Cases:

Linear regression is often used in business, government, and other
scenarios. Some common practical applications of linear regression in the
real world include the following:

• Real estate: A simple linear regression analysis can be used to model
residential home prices as a function of the home's living area. Such a
model helps set or evaluate the list price of a home on the market. The
model could be further improved by including other input variables such
as number of bathrooms, number of bedrooms, lot size, school district
rankings, crime statistics, and property taxes

• Demand forecasting: Businesses and governments can use linear
regression models to predict demand for goods and services. For example,
restaurant chains can appropriately prepare for the predicted type and
quantity of food that customers will consume based upon the weather, the
day of the week, whether an item is offered as a special, the time of day,
and the reservation volume. Similar models can be built to predict retail
sales, emergency room visits, and ambulance dispatches.

• Medical: A linear regression model can be used to analyze the effect
of a proposed radiation treatment on reducing tumor sizes. Input variables
might include duration of a single radiation treatment, frequency of
radiation treatment, and patient attributes such as age or weight.

mu
no
tes
.in

50

4.1.2 Model Description:

As the name of this technique suggests, the linear regression model
assumes that there is a linear relationship between the input variables and
the outcome variable. This relationship can be expressed as shown in
Equation

Y = β0 + β1x1 + β2 x 2………. + βp-1 x p-1 +
where:
y is the outcome variable
xj are the input variables, for j=1,2,...,p-1
β0 is the value of y when each xj equals zero
βj is the change in y based on a unit change in xj for j=1,2,...,p-1

 is a random error term that represents the difference in the linear model
and a particular observed value for y.

Suppose it is desired to build a linear regression model that
estimates a person's annual income as a function of two variables—age
and education—both expressed in years. In this case, income is the
outcome variable, and the input variables are age and education.

However, it is also obvious that there is considerable variation in
income levels for a group of people with identical ages and years of
education. This variation is represented by in the model. So, in this
example, the model would be expressed as shown in Equation.

 Income = β0 + β1Age + β2Education +

Linear Regression Model (Ordinary Least Squares):

In the linear model, the β2s represent the unknown p parameters.
The estimates for these unknown parameters are chosen so that, on
average, the model provides a reasonable estimate of a person's income
based on age and education. In other words, the fitted model should
minimize the overall error between the linear model and the actual
observations. Ordinary Least Squares (OLS) is a common technique to
estimate the parameters.

To illustrate how OLS works, suppose there is only one input
variable, x, for an outcome variable y. Furthermore, n observations of (x,
y) are obtained and plotted in below Figure.

mu
no
tes
.in

51

Figure 4.1 Scatterplot of y versus x

The goal is to find the line that best approximates the relationship
between the outcome variable and the input variables. With OLS, the
objective is to find the line through these points that minimizes the sum of
the squares of the difference between each point and the line in the vertical
direction. In other words, find the values of β0 and β1, such that the
summation shown in Equation is minimized.

()
2

0 11

n

i ii
y xβ β

=
− + ∑

The n individual distances to be squared and then summed are

illustrated in below figure. The vertical lines represent the distance
between each observed y value and the line y = β0 + β1x1

Figure 4.2: Scatterplot of y versus x with vertical distance from the

observed points to a fitted line

Linear Regression Model (with Normally Distributed Errors):

In the normal model description, there were no assumptions made
about the error term; no additional assumptions were necessary for OLS to
provide estimates of the model parameters. However, in most linear
regression analyses, it is common to assume that the error term is a

mu
no
tes
.in

52

normally distributed random variable with mean equal to zero and
constant variance. Thus, the linear regression model is expressed as shown
in Equation.

Y = β0 + β1x1 + β2 x 2………. + βp-1 x p-1 +

where:
y is the outcome variable
xj are the input variables, for j=1,2,...,p-1
β0 is the value of y when each xj equals zero
βj is the change in y based on a unit change in xj for j=1,2,...,p-1

 ~N(0,σ2) and the s are independent of each other

This additional assumptions yields the following result about the
expected value of y, E(y) for given (x1,x2,…….xp-1):

() ()0 1 1 2 2 1 1....... p pE y E x x xβ β β β ε− −= + + + +

()0 1 1 2 2 1 1....... p px x x Eβ β β β ε− −= + + + +

0 1 1 2 2 1 1....... p px x xβ β β β − −= + + +

Because βi and xi are constants, the E(y) is the value of the linear
regression model for the given (x1, x2,... xp-1). Furthermore, the variance of
y, V(y), for given (x1, x2,... xp) is this.

() ()0 1 1 2 2 1 1p pV y V x x xβ β β β ε− −= + + + +

() 20 V ε σ= + =

Thus, for a given (x1, x2,... xp-1), y is normally distributed with
mean β0 + β1x1 + β2 x 2………. + βp-1 x p-1 and variance σ2. For a
regression model with just one input variable, below figure illustrates the
normality assumption on the error terms and the effect on the outcome
variable, y, for a given value of x.

Figure 4.3: Normal distribution about y for a given value of x

mu
no
tes
.in

53

4.1.3 Diagnostics:

The use of hypothesis tests, confidence intervals, and prediction
intervals is dependent on the model assumptions being true. Following are
Some tools and techniques that can be used to validate a fitted linear
regression model.

a. Evaluating the Linearity Assumption:

A major assumption in linear regression modeling is that the
relationship between the input variables and the outcome variable is linear.
The most fundamental way to evaluate such a relationship is to plot the
outcome variable against each input variable. If the relationship between
Age and Income is represented as illustrated in Figure 4.3, a linear model
would not apply.

Figure 4.3: Income as a quadratic function of Age

In such a case, it is often useful to do any of the following:

• Transform the outcome variable.

• Transform the input variables.

• Add extra input variables or terms to the regression model.

Common transformations include taking square roots or the
logarithm of the variables. Another option is to create a new input variable
such as the age squared and add it to the linear regression model to fit a
quadratic relationship between an input variable and the outcome.

b. Evaluating the Residuals:

As stated previously, it is assumed that the error terms in the linear
regression model are normally distributed with a mean of zero and a
constant variance. If this assumption does not hold, the various inferences
that were made with the hypothesis tests, confidence intervals, and
prediction intervals are suspect.

mu
no
tes
.in

54

c. Evaluating the Normality Assumption:

The residual plots are useful for confirming that the residuals were
centered on zero and have a constant variance. However, the normality
assumption still has to be validated.

d. N-Fold Cross-Validation:

To prevent overfitting a given dataset, a common practice is to
randomly split the entire dataset into a training set and a testing set. Once
the model is developed on the training set, the model is evaluated against
the testing set. When there is not enough data to create training and testing
sets, an N-fold cross-validation technique may be helpful to compare one
fitted model against another. In N-fold cross-validation, the following
occurs:

• The entire dataset is randomly split into N datasets of approximately
equal size.

• A model is trained against N - 1 of these datasets and tested against the
remaining dataset. A measure of the model error is obtained.

• This process is repeated a total of N times across the various
combinations of N datasets taken N - 1 at a time. Recall:

1

N
N

N

= −

• The observed N model errors are averaged over the N folds.

The averaged error from one mode! is compared against the
averaged error from another model. This technique can also help
determine whether adding more variables to an existing model is
beneficial or possibly overfitting the data.

4.2 LOGISTIC REGRESSION

In linear regression modeling, the outcome variable is a continuous
variable. When the outcome variable is categorical in nature, logistic
regression can be used to predict the likelihood of an outcome based on
the input variables. Although logistic regression can be applied to an
outcome variable that represents multiple values, but we will examine the
case in which the outcome variable represents two values such as
true/false, pass/fail, or yes/no.

For example, a logistic regression model can be built to determine
if a person will or will not purchase a new automobile in the next 12
months. The training set could include input variables for a person's age,
income, and gender as well as the age of an existing automobile. The
training set would also include the outcome variable on whether the
person purchased a new automobile over a 12-month period. The logistic
regression model provides the likelihood or probability of a person making
a purchase in the next 12 months.

mu
no
tes
.in

55

4.2.1 Use Cases:

The logistic regression model is applied to a variety of situations in
both the public and the private sector.

Some common ways that the logistic regression model is used include the
following:

• Medical: Develop a model to determine the likelihood of a patient's
successful response to a specific medical treatment or procedure. Input
variables could include age, weight, blood pressure, and cholesterol levels.

• Finance: Using a loan applicant's credit history and the details on the
loan, determine the probability that an applicant will default on the loan.
Based on the prediction, the loan can be approved or denied, or the terms
can be modified.

• Marketing: Determine a wireless customer's probability of switching
carriers (known as churning) based on age, number of family members on
the plan, months remaining on the existing contract, and social network
contacts. With such insight, target the high-probability customers with
appropriate offers to prevent churn.

• Engineering: Based on operating conditions and various diagnostic
measurements, determine the probability of a mechanical part
experiencing a malfunction or failure. With this, probability estimate,
schedule the appropriate preventive maintenance activity.

4.2.2 Model Description:

Logistic regression is based on the logistic function (y), as given by
following equation

 ()
1

r

r

e
f y for y

e
= − ∞ < < ∞

+
…………..(4.7)

Note that as y → ∞ , () 1f y → , and as y → −∞ , () 0f y → . So as

Figure 4.4 illustrates, the value of the logistic function(y) varies from 0 to
1 y increases,

Figure 4.4 The logistic function

mu
no
tes
.in

56

Because the range of f(y) is (0, 1), the logistic function appears to
be an appropriate function to model the probability of a particular outcome
occurring. As the value of y increases, the probability of the outcome
occurring increases. In any proposed model, to predict the likelihood of an
outcome, y needs to be a function of the input variables. In logistic
regression, y is expressed as a linear function of the input variables. In
other words, the formula shown in equation 4-8 applies

 0 1 1 2 2 1 1....... p py x x xβ β β β − −= + + + ………………4.8

Then based on the input variables (x1, x2,……. xp-1): the

probability of an event is shown in equation 4.9

()1 2 1(, ,.....,)
1

y

p y

e
p x x x f y

e
− = =

+
 for y−∞ < < ∞ …………4.9

Equation 4.8 is comparable to Equation 4.1 used in linear regression
modeling. However, one difference is that the values of y are not directly
observed. Only the value of f(y) in terms of success or failure (typically
expressed as 1 or 0, respectively) is observed.

Using p to denote f(y), Equation 6.9 can be written in the form

provided equation 6-10

In 0 1 1 2 2 1 1........
1

p p

p
y x x x

p
β β β β − −

= = + + + +

−
………….4.10

 The quantity in
1

p

p

−
, in equation 4.10 is known as log odds ratio

or logit of p. Techniques such as Maximum Likelihood Estimation (MLE)
are used to estimate the model parameters. MLE determines the values of
the model parameters that maximize the chances of observing the given
dataset.

Customer Churn Example:

A wireless telecommunications company wants to estimate the probability
that a customer will churn (switch to a different company) in the next six
months. With a reasonably accurate prediction of a person's likelihood of
churning, the sales and marketing groups can attempt to retain the
customer by offering various incentives. Data on 8,000 current and prior
customers was obtained. The variables collected for each customer follow:

• Age (years)

• Married(true/false)

• Duration as a customer (years)

• Churned_contacts(count)—Number of the customer's contacts that
have churned (count)

• churned (true/false)—Whether the customer churned

mu
no
tes
.in

57

After analyzing the data and fitting a logistic regression model, Age and
Churned_contacts were selected as the best predictor variables. Equation
6-11 provides the estimated model parameters.

y = 3.50 - 0.16 * Age + 0.38 * Churned _ contacts (6.11)

Using the fitted model from Equation 4-1, below table provides the
probability of a customer churning based on the customer's age and the
number of churned contacts.

Table 4.1 Estimated churn probabilities

Based on the fitted model, there is a 93% chance that a 20-year-old
customer who has had six contacts churn will also churn.

4.2.3 Diagnostics:

Deviance and the Pseudo-R2:

In logistic regression, deviance is defined to be -2*logL, where L
is the maximized value of the likelihood function that was used to obtain
the parameter estimates. In the R output, two deviance values are
provided. The null deviance is the value where the likelihood function is
based only on the intercept term (0y β=). The residual deviance is the

value where the likelihood function is based on the parameters in the
specified logistic model, shown in Equation 4-12

0 1 2* *y Age Churned contactsβ β β= + + ………………(4 -12)

A metric analogous to R2 in linear regression can be computed in equation
4-13

2 dev. . .
1

 dev. dev.

residual dev null res dev
pseudo R

null null

−
− = − =

The pseudo-R2is a measure of how well the fitted model explains

the data as compared to the default model of no predictor variables and

mu
no
tes
.in

58

only an intercept term. A pseudo-R2 value near 1 indicates a good fit over
the simple null model.

Deviance and the Log-likelihood Ratio Test:

In the pseudo-R2 calculation, the -2 multiplier simply divide out.
So, it may appear that including such multiplier does not provide a benefit.

However, the multiplier in the deviance definition is based on the

log-likelihood test statistic shown in Equation 4-14.;

2*log null

alt

L
T

L

= −

() () ()2*log 2 *lognull altL L= − − −

Where T is approximately Chi-squared distributed ()2
1px − with

K degree off freedom (df) = dfnull - dfalternate

The previous description of the log-likelihood test statistic applies
to any estimation using MLE. As can be seen in equation 4-15, in the
logistic regression case,

2

1 pT null deviance residdual deviance x −= − ∼ ………………….(4-14)

Where p is a number of parameters in the fitted model
So, in the hypothesis test, a large value of T would indicate that the fitted
model is significantly better than the null model that uses only the
intercept term.

In the churn example, the log likelihood ratio statistic would be
like this:
T= 8387.3-5359.2=3028.1 with 2 degrees of freedom and a corresponding
p-value that is essentially zero.

So far, the log-likelihood ratio test discussion has focused on

comparing a fitted model to the default model of using only the intercept.
However, the log-likelihood ratio test can also compare one fitted model
to another.

Receiver Operating Characteristic (ROC) Curve:

Logistic regression is often used as a classifier to assign class
labels to a person, item, or transaction based on the predicted probability
provided by the model. In the Churn example, a customer can be classified
with the label called Churn if the logistic model predicts a high probability
that the customer will churn. Otherwise, a Remain label is assigned to the
customer. Commonly, 0.5 is used as the default probability threshold to
distinguish between any two class labels. However, any threshold value

mu
no
tes
.in

59

can be used depending on the preference to avoid false positives (for
example, to predict Churn when actually the customer will Remain) or
false negatives (for example, to predict Remain when the customer will
actually Churn).

Histogram of the Probabilities:

It can be useful to visualize the observed responses against the
estimated probabilities provided by the logistic regression. Figure 4-2
provides overlaying histograms for the customers who churned and for the
customers who remained as customers. With a proper fitting logistic
model, the customers who remained tend to have a low probability of
churning. Conversely, the customers who churned have a high probability
of churning again. This histogram plot helps visualize the number of items
to be properly classified or mis- dassified. In the Churn example, an ideal
histogram plot would have the remaining customers grouped at the left
side of the plot, the customers who churned at the right side of the plot,
and no overlap of these two groups.

Figure 4.2 : Customer counts versus estimated churn probability

4.3 REASONS TO CHOOSE AND CAUTIONS

Linear regression is suitable when the input variables are
continuous or discrete, including categorical data types, but the outcome
variable is continuous. If the outcome variable is categorical, logistic
regression is a better choice.

Both models assume a linear additive function of the input
variables. If such an assumption does not hold true, both regression
techniques perform poorly, Furthermore, in linear regression, the
assumption of normally distributed error terms with a constant variance is
important for many of the statistical inferences that can be considered. If

mu
no
tes
.in

60

the various assumptions do not appear to hold, the appropriate
transformations need to be applied to the data.

Although a collection of input variables may be a good predictor
for the outcome variable, the analyst should not infer that the input
variables directly cause an outcome. For example, it may be identified that
those individuals who have regular dentist visits may have a reduced risk
of heart attacks. However, simply sending someone to the dentist almost
certainly has no effect on that person's chance of having a heart attack. It
is possible that regular dentist visits may indicate a person's overall health
and dietary choices, which may have a more direct impact on a person's
health.

Use caution when applying an already fitted model to data that
falls outside the dataset used to train the model. The linear relationship in
a regression model may no longer hold at values outside the training
dataset. For example, if income was an input variable and the values of
income ranged from $35,000 to $90,000, applying the model to incomes
well outside those incomes could result in inaccurate estimates and
predictions.

If several of the input variables are highly correlated to each other,
the condition is known as multicollinearity. Multicollinearity can often lead
to coefficient estimates that are relatively large in absolute magnitude and
may be of inappropriate direction (negative or positive sign). When
possible, the majority of these correlated variables should be removed
from the model or replaced by a new variable that is a function of the
correlated variables.

UNIT END QUESTIONS

1. What is clustering? Explain in detail. Also explain any two of its

applications.

2. Describe the steps to find k clusters using k-means algorithm.

3. How to generalize the k-means algorithm? Also write a short note on
determining the number of clusters.

4. Write a short note on association rules.

5. What is the role of support in apriori algorithm? Also explain how
the Apriori property works with a neat diagram.

6. Find the associative rule using Apriori algorithm; if there are four
transactions – T1, T2, T3 and T4 for itemsets {A,B,C},{A,C},{A,D}
and {B,E,F} respectively and minimum support and confidence are
50 %.

7. What is Linear regression? Explain in detail. Also explain any two of
its applications.

mu
no
tes
.in

61

8. Write a short note on linear regression model. Also apply Ordinary
least Squares (OLS) technique to estimate the parameters.

9. Explain Linear Regression Model with Normally Distributed Errors.

10. What is Logistic regression? Explain in detail. Also explain any two
of its applications.

11. Describe logistic regression model with respect to logistic function.

REFERENCES

•••• Big Data and Analytics, Subhashini Chellappan Seema Acharya,
Wiley First addition

•••• Data Analytics with Hadoop, An Introduction for Data Scientists,
Benjamin Bengfort and Jenny KimO’Reilly 2016

•••• Big Data and Hadoop V.K Jain Khanna Publishing First 2018

mu
no
tes
.in

62

UNIT III

5

ANALYTICAL THEORY AND METHODS

Unit Structure

5.0 Objectives

5.1 Decision Trees

5.1.1 Overview of a Decision Tree

5.1.2 The General Algorithm of Decision Tree

5.1.3 Decision Tree Algorithms

5.1.4 Evaluating a Decision Tree

5.2 Naive Bayes

5.3 Bayes' Theorem

5.4 Diagnostics

5.5 Diagnostics of Classifiers

5.6 Additional Classification Methods

5.7 Summary

5.8 Questions

5.0 OBJECTIVES

• To study classification techniques used in data analytics

• To develop the understanding of decision trees

• To develop the understanding of Naïve Bayes

• To analyse the diagnostics of classifiers

5.1 DECISION TREES

A decision tree (also called prediction tree) uses a tree structure to
specify sequences of decisions and consequences. Given input X =
{x1,x2,...xn}, the goal is to predict a response or output variable Y. Each
member of the set {x1,x2,...xn} is called an input variable. The prediction
can be achieved by constructing a decision tree with test points and
branches. At each test point, a decision is made to pick a specific branch
and traverse down the tree. Eventually, a final point is reached, and a
prediction can be made. Due to its flexibility and easy visualization,
decision trees are commonly deployed in data mining applications for
classification purposes.

The input values of a decision tree can be categorical or

mu
no
tes
.in

63

continuous. A decision tree employs a structure of test points (called
nodes) and branches, which represent the decision being made. A node
without further branches is called a leaf node. The leaf nodes return class
labels and, in some implementations, they return the probability scores. A
decision tree can be converted into a set of decision rules. In the following
example rule, income and mortgage_amount are input variables, and the
response is the output variable default with a probability score.

IF income <50,000 AND
mortgage_amount > 100K
THEN default = True WITH
PROBABILITY 75%

Decision trees have two varieties: classification trees and

regression trees. Classification trees usually apply to output variables that
are categorical—often binary—in nature, such as yes or no, purchase or
not purchase, and so on. Regression trees, on the other hand, can apply to
output variables that are numeric or continuous, such as the predicted price
of a consumer good or the likelihood a subscription will be purchased.

5.1.1-Overview of a Decision Tree:

Figure 5-1 shows an example of using a decision tree to predict
whether customers will buy a product. The term branch refers to the
outcome of a decision and is visualized as a line connecting two nodes. If
a decision is numerical, the "greater than" branch is usually placed on the
right, and the "less than" branch is placed on the left. Depending on the
nature of the variable, one of the branches may need to include an "equal
to" component.

Internal nodes are the decision or test points. Each internal node refers
to an input variable or an attribute. The top internal node is called the root.
The decision tree in Figure 5-1 is a binary tree in that each internal node
has no more than two branches. The branching of a node is referred to as a
split.

Figure 5-1 Example of a decision tree

mu
no
tes
.in

64

The depth of a node is the minimum number of steps required to
reach the node from the root. In Figure 5-1 for example, nodes Income and
Age have a depth of one, and the four nodes on the bottom of the tree have
a depth of two.

Leaf nodes are at the end of the last branches on the tree. They

represent class labels—the outcome of all the prior decisions. The path
from the root to a leaf node contains a series of decisions made at various
internal nodes.

The decision tree in Figure 5-1 shows that females with income
less than or equal to $45,000 and males 40 years old or younger are
classified as people who would purchase the product. In traversing this
tree, age does not matter for females, and income does not matter for
males.

Where decision tree is used?

• Decision trees are widely used in practice.

• To classify animals, questions (like cold-blooded or warm-blooded,
mammal or not mammal) are answered to arrive at a certain
classification.

• A checklist of symptoms during a doctor's evaluation of a patient.

• The artificial intelligence engine of a video game commonly uses
decision trees to control the autonomous actions of a character in
response to various scenarios.

• Retailers can use decision trees to segment customers or predict
response rates to marketing and promotions.

• Financial institutions can use decision trees to help decide if a loan
application should be approved or denied. In the case of loan approval,
computers can use the logical if - then statements to predict whether
the customer will default on the loan.

5.1.2 The General Algorithm of Decision Tree :

In general, the objective of a decision tree algorithm is to construct
a tree T from a training set S. If all the records in S belong to some class C
(subscribed=yes, for example), or if S is sufficiently pure (greater than a
preset threshold), then that node is considered a leaf node and assigned the
label C. The purity of a node is defined as its probability of the
corresponding class.

In contrast, if not all the records in S belong to class C or if S is not
sufficiently pure, the algorithm selects the next most informative attribute
A (duration, marital, and so on) and partitions S according to A's values.
The algorithm constructs subtrees T1 T2... for the subsets of S recursively
until one of the following criteria is met:

mu
no
tes
.in

65

• All the leaf nodes in the tree satisfy the minimum purity threshold.

• The tree cannot be further split with the preset minimum purity
threshold.

• Any other stopping criterion is satisfied (such as the maximum depth
of the tree).

The first step in constructing a decision tree is to choose the most
informative attribute. A common way to identify the most informative
attribute is to use entropy-based methods. The entropy methods select
the most informative attribute based on two basic measures:

• Entropy, which measures the impurity of an attribute

• Information gain, which measures the purity of an attribute

Given a class X and its label x x∈ , let P(x) be the probability of x. Hx the
entropy of X, is defined as shown in equation 5-1.

() ()2logx
x X

H P x P x
∀ ∈

= −∑

Equation 5-1 shows that entropy Hx becomes 0 when all p(x) is 0 or 1. For
a binary classification (True or false), Hx is zero if p(x) is the probability
of each label x is neither zero or one. On the other hand, Hx achieves the
maximum entropy when all the class lables are equally probable. For a
binary classification, Hx =1 if the probability of all class lables is 50/50.
The maximum entropy increases as the number of possible outcome
increases.

As an example of a binary random variable, consider tossing a coin
with known, not necessarily fair, probabilities of coming up heads or tails.
The corresponding entropy graph is shown in Figure 5-5. Let x = 1
represent heads and x = 0 represent tails. The entropy of the unknown
result of the next toss is maximized when the coin is fair. That is, when
heads and tai ls have equal probability P(x = 1) = P(x = 0) = 0.5, entropy
Hx = - (0.5 x log2 0.5 + x log2 0.5) = 1. On the other hand, if the coin is
not fair, the probabilities of heads and tails would not be equal and there
would be less uncertainty. As an extreme case, when the probability of
tossing a head is equal to 0 or 1, the entropy is minimized to 0. Therefore,
the entropy for a completely pure variable is 0 and is 1 for a set with equal
occurrences for both the classes (head and tail, or yes and no)

mu
no
tes
.in

66

Figure 5.5 Entropy of coin flips, where X=1 represents heads

The next step is to identify the conditional entropy for each
attribute. Given an attribute X, its value x, its outcome Y, and its value y,
conditional entropy Hy/x is the remaining entropy of Y given X, formally
defined as shown in Equation 5.2.

() ()/y x
X

H P x H Y X x= =∑

() () ()2log
x X y Y

P x P Y X P Y X
∀ ∈ ∀ ∈

= −∑ ∑ ……………. (5-2)

The information gain of an attribute A is defined as the difference
between the base entropy and the conditional entropy of the attribute, as
shown in figure 5-3.

/A s S AInfoGain H H= − ………………………… (5-3)

Information gain compares the degree of purity of the parent node
before a split with the degree of purity of the child node after a split. At
each split, an attribute with the greatest information gain is considered the
most informative attribute. Information gain indicates the purity of an
attribute.

5.1.3 Decision Tree Algorithms:

Multiple algorithms exist to implement decision trees, and the
methods of tree construction vary with different algorithms. Some popular
algorithms include ID3.

mu
no
tes
.in

67

ID3 Algorithm :

ID3 (or Iterative Dichotomiser 3) is one of the first decision tree
algorithms, and it was developed by John Ross Quinlan. Let A be a set of
categorical input variables, P be the output variable (or the predicted
class), and T be the training set. The ID3 algorithm is shown here.

5.1.4 Evaluating a Decision Tree:

Decision trees use greedy algorithms, in that they always choose the
option that seems the best available at that moment. At each step, the
algorithm selects which attribute to use for splitting the remaining records.
This selection may not be the best overall, but it is guaranteed to be the
best at that step. This characteristic reinforces the efficiency of decision
trees. However, once a bad split is taken, it is propagated through the rest
of the tree. To address this problem, an ensemble technique (such as
random forest) may randomize the splitting or even randomize data and
come up with a multiple tree structure, these trees then vote for each class,
and the class with the most votes is chosen as the predicted class.

There are a few ways to evaluate a decision tree, First, evaluate

whether the splits of the tree make sense. Conduct sanity checks by
validating the decision rules with domain experts, and determine if the
decision rules are sound.

Having too many layers and obtaining nodes with few members
might be signs of overfitting. In overfitting, the model fits the training set
well, but it performs poorly on the new samples in the testing set. For
decision tree learning, overfitting can be caused by either the lack of
training data or the biased data in the training set. Two approaches can
help avoid overfitting in decision tree learning.

• Stop growing the tree early before it reaches the point where all the
training data is perfectly classified.

• Grow the full tree, and then post-prune the tree with methods such as
reduced-error pruning and rule- based post pruning.

mu
no
tes
.in

68

Decision trees are computationally inexpensive, and it is easy to
classify the data. The outputs are easy to interpret as a fixed sequence of
simple tests. Decision trees are able to handle both numerical and
categorical attributes and are robust with redundant or correlated variables.
Decision trees can handle categorical attributes with many distinct values,
such as country codes for telephone numbers. Decision trees can also
handle variables that have a nonlinear effect on the outcome, so they work
better than linear models (for example, linear regression and logistic
regression) for highly nonlinear problems.

The structure of a decision tree is sensitive to small variations in

the training data. Although the dataset is the same, constructing two
decision trees based on two different subsets may result in very different
trees. If a tree is too deep, overfitting may occur, because each split
reduces the training data for subsequent splits.

Decision trees are not a good choice if the dataset contains many
irrelevant variables. This is different from the notion that they are robust
with redundant variables and correlated variables. If the dataset contains
redundant variables, the resulting decision tree ignores all but one of these
variables because the algorithm cannot detect information gain by
including more redundant variables. On the other hand, if the dataset
contains irrelevant variables and if these variables are accidentally chosen
as splits in the tree, the tree may grow too large and may end up with less
data at every split, where overfitting is likely to occur. To address this
problem, feature selection can be introduced in the data preprocessing
phase to eliminate the irrelevant variables.

Although decision trees are able to handle correlated variables,
decision trees are not well suited when most of the variables in the training
set are correlated, since overfitting is likely to occur. To overcome the
issue of instability and potential overfitting of deep trees, one can combine
the decisions of several randomized shallow decision trees—the basic idea
of another classifier called random forest or use ensemble methods to
combine several weak learners for better classification.

For binary decisions, a decision tree works better if the training

dataset consists of records with an even probability of each result. In other
words, the root of the tree has a 50% chance of either classification. This
occurs by randomly selecting training records from each possible
classification in equal numbers.

When using methods such as logistic regression on a dataset with
many variables, decision trees can help determine which variables are the
most useful to select based on information gain. Then these variables can
be selected for the logistic regression. Decision trees can also be used to
prune redundant variables.

mu
no
tes
.in

69

5.2 NAIVE BAYES

Naive Bayes is a probabilistic classification method based on
Bayes' theorem. Bayes' theorem gives the relationship between the
probabilities of two events and their conditional probabilities.

A naive Bayes classifier assumes that the presence or absence of a
particular feature of a class is unrelated to the presence or absence of other
features. For example, an object can be classified based on its attributes
such as shape, color, and weight.

The input variables are generally categorical, but variations of the
algorithm can accept continuous variables, There are also ways to convert
continuous variables into categorical ones. This process is often referred to
as the discretization of continuous variables. For an attribute such as income,
the attribute can be converted into categorical values as shown below.

• Low Income: income < $10,000

• Working Class: $10,000 < income < $50,000

• Middle Class: $50,000 < income < $1,000,000

• Upper Class: income >$1,000,000

The output typically includes a class label and its corresponding
probability score. The probability score is not the true probability of the
class label, but it's proportional to the true probability.

Because naive Bayes classifiers are easy to implement and can
execute efficient. Spam filtering is a classic use case of naive Bayes text
classification. Bayesian spam filtering has become a popular mechanism
to distinguish spam e-mail from legitimate e-mail.

Naive Bayes classifiers can also be used for fraud detection. In the
domain of auto insurance, for example, based on a training set with
attributes such as driver's rating, vehicle age, vehicle price, historical
claims by the policy holder, police report status, and claim genuineness,
naive Bayes can provide probability- based classification of whether a new
claim is genuine.

5.3 BAYES' THEOREM

The conditional probability of event C occurring, given that event
A has already occurred, is denoted as P(C|A), which can be found using
the formula in Equation 5-6.

()
()

()
P

P A

P A C
C A

∩
= ……………(5-6)

Equation 5-7 can be obtained with some minor algebra and

mu
no
tes
.in

70

substitution of the conditional probability

()
() ()

()
.

P
P A

P A C P C
C A = ……………(5-7)

Where c is the class label { }1 2, , nC c c c∈ and A is observed

attributes { }1 2, ,........ mA a a a= Equation 5-7 is the most common form of

the Baye’s theorem.

Mathematically, Bayes’ theorem gives the relationship between the

probabilities of C and A, P(C) and P(A), and the conditional probabilities
of C given A and A, given C, namely P(C/A) and P(A/C)

5.4 DIAGNOSTICS

Unlike logistic regression, naive Bayes classifiers can handle
missing values. Naive Bayes is also robust to irrelevant variables—
variables that are distributed among all the classes whose effects are not
pronounced.

The model is simple to implement even without using libraries.

The prediction is based on counting the occurrences of events, making the
classifier efficient to run. Naive Bayes is computationally efficient and is
able to handle high-dimensional data efficiently. .In some cases naive
Bayes even outperforms other methods. Unlike logistic regression, the
naive Bayes classifier can handle categorical variables with many levels.
Recall that decision trees can handle categorical variables as well, but too
many levels may result in a deep tree. The naive Bayes classifier overall
performs better than decision trees on categorical values with many levels.
Compared to decision trees, naive Bayes is more resistant to overfitting,
especially with the presence of a smoothing technique.

One problem of the Laplace smoothing is that it may assign too
much probability to unseen events. To address this problem, Laplace
smoothing can be generalized to use ε instead of 1, where typically

[]0,1ε ∈ see equation 5-8.

()
[]

()
P``

()
x

count x
x

count x

ε

ε

+
=

+∑
………….(5.8)

Smoothing techniques are available in most standard software
packages for native Bayes classifiers. However, if for some reason (like
performance concerns) the native Bayes classifiers needs to be coded
directly into an application, the smoothing and logarithm calculations
should be incorporated into the implementation.

Despite the benefits of naive Bayes, it also comes with a few
disadvantages. Naive Bayes assumes the variables in the data are
conditionally independent. Therefore, it is sensitive to correlated variables

mu
no
tes
.in

71

because the algorithm may double count the effects. As an example,
assume that people with low income and low credit tend to default. If the
task is to score "default" based on both income and credit as two separate
attributes, naive Bayes would experience the double-counting effect on the
default outcome, thus reducing the accuracy of the prediction.

Although probabilities are provided as part of the output for the
prediction, naive Bayes classifiers in general are not very reliable for
probability estimation and should be used only for assigning class labels.
Naive Bayes in its simple form is used only with categorical variables.
Any continuous variables should be converted into a categorical variable
with the process known as discretization.

5.5 DIAGNOSTICS OF CLASSIFIERS

Classifiers methods can be used to classify instances into distinct

groups according to the similar characteristics they share. Each of these
classifiers faces the same issue: how to evaluate if they perform well. A
few tools have been designed to evaluate the performance of a classifier.
Such tools are not limited to the three classifiers but rather serve the
purpose of assessing classifiers in general.

A confusion matrix is a specific table layout that allows visualization

of the performance of a classifier. Table 5-6 shows the confusion matrix
for a two-class classifier. True positives (TP) are the number of positive
instances the classifier correctly identified as positive. False positives (FP)
are the number of instances in which the classifier identified as positive
but in reality are negative. True negatives (TN) are the number of negative
instances the classifier correctly identified as negative, False negatives (FN)
are the number of instances classified as negative but in reality are
positive. In a two-class classification, a preset threshold may be used to
separate positives from negatives. TP and TN are the correct guesses. A
good classifier should have large TP and TN and small (ideally zero)
numbers for FP and FN.

The accuracy (or the overall success rate) is a metric defining the

rate at which a model has classified the records correctly. It is defined as
the sum of TP and TN divided by the total number of instances, as shown
in Equation 4.9.

mu
no
tes
.in

72

100%
TP TN

Accuracy
TP TN FP FN

+
= ×

+ + +
…………(4.9)

A good model should have a high accuracy score, but having a

high accuracy score alone does not guarantee the model is well
established. The true positive rate (TPR) shows what percent of positive
instances the classifier correctly identified. It's also illustrated in Equation
4.10

TP
TPR

TP FN
=

+
………….

The false positive rate (FPR) shows what percent of negatives. The
classifier marked as positive. The FPR is also called the false alarm rate or
the type one 1 error rate and is shown in equation 7-20

FP
FPR

FP TN
=

+
………….

The false negative rate (FNR) shows what percent of positives the
classifier marked as negatives. It is also known as the miss rate type II
error rate and is shown in equation 7-21. Note that the sum of TPR and
FNR is 1

FN
FNR

TP FN
=

+

A well-performed model should have a high TPR that is ideally 1

and a low FPR and FNR that are ideally 0. In some cases, a model with a
TPR of 0.95 and an FPR of 0.3 is more acceptable than a model with a
TPR of 0.9 and an FPR of 0.1 even if the second model is more accurate
overall. Precision is the percentage of instances marked positive that really
are positive, as shown in Equation 7-22.

Pr
TP

ecision
TP FP

=
+

ROC curve is a common tool to evaluate classifiers. The

abbreviation stands for receiver operating characteristic, a term used in
signal detection to characterize the trade-off between hit rate and false-
alarm rate over a noisy channel. A ROC curve evaluates the performance
of a classifier based on the TP and FP, regardless of other factors such as
class distribution and error costs.

Related to the ROC curve is the area under the curve (AUC). The

AUC is calculated by measuring the area under the ROC curve. Higher
AUC scores mean the classifier performs better. The score can range from
0.5 (for the diagonal line TPR=FPR) to 1.0 (with ROC passing through the
top-left corner).

mu
no
tes
.in

73

5.6 ADDITIONAL CLASSIFICATION METHODS

Besides the two classifiers introduced in this chapter, several other

methods are commonly used for classification, including bagging,
boosting, random forest, and support vector machines (SVM).

Bagging (or bootstrap aggregating) uses the bootstrap technique

that repeatedly samples with replacement from a dataset according to a
uniform probability distribution. "With replacement" means that when a
sample is selected for a training or testing set, the sample is still kept in the
dataset and may be selected again. Because the sampling is with
replacement, some samples may appear several times in a training or
testing set, whereas others may be absent. A model or base classifier is
trained separately on each bootstrap sample, and a test sample is assigned
to the class that received the highest number of votes.

Similar to bagging, boosting (or AdaBoost) uses votes for

classification to combine the output of individual models. In addition, it
combines models of the same type. However, boosting is an iterative
procedure where a new model is influenced by the performances of those
models built previously. Furthermore, boosting assigns a weight to each
training sample that reflects its importance, and the weight may adaptively
change at the end of each boosting round. Bagging and boosting have been
shown to have better performances [S] than a decision tree.

Random forest is a class of ensemble methods using decision tree

classifiers. It is a combination of tree predictors such that each tree depends
on the values of a random vector sampled independently and with the
same distribution for all trees in the forest. A special case of random forest
uses bagging on decision trees, where samples are randomly chosen with
replacement from the original training set.

SVM is another common classification method that combines
linear models with instance-based learning techniques. Support vector
machines select a small number of critical boundary instances called
support vectors from each class and build a linear decision function that
separates them as widely as possible, SVM by default can efficiently
perform linear classifications and can be configured to perform nonlinear
classifications as well.

mu
no
tes
.in

74

 SUMMARY

• A decision tree (also called prediction tree) uses a tree structure to
specify sequences of decisions and consequences. Given input X =
{x1,x2,...xn}, the goal is to predict a response or output variable Y.
Each member of the set {x1,x2,...xn} is called an input variable.

• Internal nodes are the decision or test points. Each internal node refers
to an input variable or an attribute

• The objective of a decision tree algorithm is to construct a tree T from
a training set S.

• ID3 (or Iterative Dichotomiser 3) is one of the first decision tree
algorithms, and it was developed by John Ross Quinlan

• Decision trees use greedy algorithms, in that they always choose the
option that seems the best available at that moment. At each step, the
algorithm selects which attribute to use for splitting the remaining
records.

• Decision trees are computationally inexpensive, and it is easy to
classify the data. The outputs are easy to interpret as a fixed sequence
of simple tests.

• Although decision trees are able to handle correlated variables,
decision trees are not well suited when most of the variables in the
training set are correlated, since overfitting is likely to occur.

• Naive Bayes is a probabilistic classification method based on Bayes'
theorem. Bayes' theorem gives the relationship between the
probabilities of two events and their conditional probabilities.

• Naive Bayes is also robust to irrelevant variables—variables that are
distributed among all the classes whose effects are not pronounced.

• Naive Bayes assumes the variables in the data are conditionally
independent. Therefore, it is sensitive to correlated variables because
the algorithm may double count the effects

• A confusion matrix is a specific table layout that allows visualization
of the performance of a classifier

• Bagging (or bootstrap aggregating) uses the bootstrap technique that
repeatedly samples with replacement from a dataset according to a
uniform probability distribution.

 UNIT END QUESTIONS

A. Where decision tree is used?

B. Explain the General Algorithm of Decision Tree.

mu
no
tes
.in

75

C. Write down the ID3 Algorithm.

D. Explain the Bayes' Theorem.

E. What are Diagnostics of Classifiers?

F. Give a brief account Classification Methods used in data analytics.

REFERENCES

• Data Analytics with Hadoop -An Introduction for Data Scientists by
Benjamin Bengfort and Jenny Kim

• The Data Revolution: Big Data, Open Data, Data Infrastructures, And
Their Consequences By Rob Kitchin

• Big Data: Principles and Best Practices of Scalable Real-Time Data
Systems By Nathan Marz And James Warren

• Big Data Demystified By David Stephenson

mu
no
tes
.in

76

6

TIME SERIES AND TEXT ANALYSIS

Unit Structure

6.0 Objectives

6.1 Overview of Time Series Analysis

6.1.1 Box-Jenkins Methodology

6.2 ARIMA Model (Autoregressive Integrated Moving

Average)

6.2.1 Moving Average Models

6.2.2 ARMA and ARIMA Models

6.2.3 Reasons to Choose and Cautions

6.3 Additional Methods

6.4 Text analysis

6.5 Text Analysis Steps

6.6 A Text Analysis Example

6.7 Collecting Raw Text

6.8 Representing Text

6.9 Term Frequency-Inverse Document Frequency (TFIDF)

6.10 Categorizing Documents by Topics

6.11 Determining Sentiments

6.12 Summary

6.13 Unit End Questions

6.0 OBJECTIVES

• To analyse and interpret Time series data

• To understand Box-Jenkins Methodology and its applications to time
series data

• To study the applications of Autoregressive Integrated Moving
Average methodology

• To analyse the various techniques used in text analysis

• To learn how to categorizing documents by topics

mu
no
tes
.in

77

6.1 OVERVIEW OF TIME SERIES ANALYSIS

Figure: 6.1 Monthly international airline passengers

Time series analysis attempts to model the underlying structure of

observations taken over time, A time series, denoted Y = a + bX , is an
ordered sequence of equally spaced values over time. For example, Figure
6-1 provides a plot of the monthly number of international airline
passengers over a 12-year period. In this example, the time series consists
of an ordered sequence of 144 values.

Following are the goals of time series analysis:

• Identify and model the structure of the time series.

• Forecast future values in the time series.

 Time series analysis has many applications in finance, economics,
biology, engineering, retail, and manufacturing. Here are a few
specific use cases:

• Retail sales: For various product lines, a clothing retailer is looking to
forecast future monthly sales. These forecasts need to account for the
seasonal aspects of the customer's purchasing decisions.

• Spare parts planning: Companies’ service organizations have to
forecast future spare part demands to ensure an adequate supply of
parts to repair customer products. To forecast future demand, complex
models for each part number can be built using input variables such as
expected part failure rates, service diagnostic effectiveness, forecasted
new product shipments, and forecasted trade-ins/decommissions.

• Stock trading: Some high-frequency stock traders utilize a technique
called pairs trading. In pairs trading, an identified strong positive
correlation between the prices of two stocks is used to detect a market
opportunity. Suppose the stock prices of Company A and Company B
consistently move together. Time series analysis can be applied to the
difference of these companies' stock prices over time. A statistically

mu
no
tes
.in

78

larger than expected price difference indicates that it is a good time to
buy the stock of Company A and sell the stock of Company B, or vice
versa.

6.1.1 Box-Jenkins Methodology:

A time series consists of an ordered sequence of equally spaced
values over time. Examples of a time series are monthly unemployment
rates, daily website visits, or stock prices every second. A time series can
consist of the following components:

• Trend

• Seasonality

• Cyclic

• Random

The trend refers to the long-term movement in a time series. It
indicates whether the observation values are increasing or decreasing over
time. Examples of trends are a steady increase in sales month over month
oran annual decline of fatalities due to car accidents.

The seasonality component describes the fixed, periodic
fluctuation in the observations over time. As the name suggests, the
seasonality component is often related to the calendar. For example,
monthly retail sales can fluctuate over the year due to the weather and
holidays.

A cyclic component also refers to a periodic fluctuation, but one
that is not as fixed as in the case of a seasonality component. For example,
retails sales are influenced by the general state of the economy. Thus, a
retail sales time series can often follow the lengthy boom-bust cycles of
the economy.

Although noise is certainly part of this random component, there
is often some underlying structure to this random component that needs to
be modeled to forecast future values of a given time series.

The Box-Jenkins methodology for time series analysis involves the
following three main steps:

1) Condition data and select a model.

a. Identify and account for any trends or seasonality in the time
series,

b. Examine the remaining time series and determine a suitable model.

2) Estimate the model parameters.

3) Assess the model and return to Step 1, if necessary.

mu
no
tes
.in

79

6.2 ARIMA MODEL (AUTOREGRESSIVE
INTEGRATED MOVING AVERAGE)

As stated in the first step of the Box-Jenkins methodology, it is
necessary to remove any trends or seasonality in the time series. This step
is necessary to achieve a time series with certain properties to which
autoregressive and moving average models can be applied. Such a time
series is known as a stationary time series. A stationary time series is one
whose properties do not depend on the time at which the series is
observed. A time series, yt, for t = 1,2,3,...,, is a stationary time series if
the following three conditions are met:

(a) The expected value (mean) of yt, is a constant for all values of t.

(b) The variance of yt, is finite.

(c) The covariance of yt and yt+h depends only on the value of h= 0,1,2,
...for all t.

The covariance of yt and yt+h is a measure of how the two

variables, yt and yt+h vary together. It is expressed in Equation 8-1.
cov(yt , yt+h)=E[(yt – μt) (yt+h – μt+h)] (8.1)

If two variables are independent of each other, their covariance is
zero. If the variables change together in the same direction, the variables
have a positive covariance. Conversely, if the variables change together in
the opposite direction, the variables have a negative covariance.

For a stationary time series, by condition (a), the mean is a
constant, say μ. So, for a given stationary sequence, yt, the covariance
notation can be simplified to what's shown in Equation 6-2.

cov(h)=E[(yt – μ) (yt+h – μ)] (8.2)

Figure 6.2 A plot of a stationary series

mu
no
tes
.in

80

So the constant variance coupled with part (a), E[yt]=μ, for all t
and some constant μ, suggests that a stationary time series can look like
Figure 6-2. In this plot, the points appear to be centered about a fixed
constant, zero, and the variance appears to be somewhat constant over
time.

6.2.1 Autocorrelation Function (Acf):

The plot of autocorrelation function (ACF) provides insight into
the covariance of the variables in the time series and its underlying
structure. For a stationary time series, the ACF is defined as shown in
Equation 8-4

Because the cov(0) is the variance, the ACF is analogous to the

correlation function of two variables, corr(yt , yt+h), and the value of the
ACF falls between -1 and 1.Thus, the closer the absolute value of ACF(h)
is to 1, the more useful yt can be as a predictor of yt+h. The plot of the
ACF is provided in Figure 8-3 for stationary time series.

By convention, the quantity h in the ACF is referred to as the lag,
the difference between the time points t and t +h. At lag 0, the ACF
provides the correlation of every point with itself. So ACF(0) always
equals 1. According to the ACF plot, at lag 1 the correlation between y,
and yt-1 is approximately 0.9, which is very close to 1. So yt-1 appears to
be a good predictor of the value of y.

mu
no
tes
.in

81

�

6.2.1 Moving Average Models:

Fora time series, yt centered at zero, a moving average model of
order q, denoted MA(q), is expressed as shown in Equation 8-9.
yt = �t + θ1�t -1+….+ θq�t-q (8.9)
Where θk is a constant for k = 1, 2…..,q θq ≠ 0
�t ~N(0,σ2) for all t

In an MA(q) model, the value of a time series is a linear
combination of the current white noise term and the prior q white noise
terms. So earlier random shocks directly affect the current value of the
time series. For MA(q) models, the behavior of the ACF and PACF plots
are somewhat swapped from the behavior of these plots for AR(p) models.
Fora simulated MA(3) time series of the form yt = �t + 0.4�t -1+1.1�t-2 -
2.5�t-3

�t~N(0,1), Figure 6-5 provides the scatterplot of the simulated data
overtime.

Figure 6-6 provide; the ACF plot for the simulated data. Again, the
ACF(O) equals 1, because any variable is perfectly correlated with itself.

mu
no
tes
.in

82

At lags 1, 2, and 3, the value of the ACF is relatively large in absolute
value compared to the subsequent terms. In an autoregressive model, the
ACF slowly decays, but for an MA(3) model, the ACF somewhat abruptly
cuts off after lag 3. in general, this pattern can be extended to any MA(q)
model.

6.2.2 Arma And Arima Models :

In general, the data scientist does not have to choose between an
AR(p) and an MA(q) model to describe a time series. In fact, it is often
useful to combine these two representations into one model. The
combination of these two models for a stationary time series results in an
Autoregressive Moving Average model, ARMA(p,q), which is expressed
as shown in Equation 8-15.

If p = 0 and q≠≠≠≠0, then the ARMA(p,q) model is simply an AR(p)

model. Similarly, if p ≠≠≠≠ 0 and q=0, then the ARMA(p,q) model is an
MA(q) model.

To apply an ARMA model properly, the time series must be a
stationary one. If detrending using a linear or higher order regression model
does not provide a stationary series, a second option is to compute the
difference between successive y-values. This is known as differencing. In

mu
no
tes
.in

83

other words, for the n values in a given time series compute the differences
as shown in Equation 8-16

dt= yt-yt-1 for t=2,3,…..,n (8.16)

Because the need to make a time series stationary is common, the
differencing can be included (integrated) into the ARMA model definition
by defining the Autoregressive Integrated Moving Average model, denoted
ARIMA(p,d,q). The structure of the ARIMA model is identical to the
expression in Equation 8-15, but the ARMA(p.q) model is applied to the
time series, yt, after applying differencing d times.

6.2.3 Reasons to Choose and Cautions:

One advantage of ARIMA modeling is that the analysis can be
based simply on historical time series data for the variable of interest.
Various input variables need to be considered and evaluated for inclusion
in the regression model for the outcome variable. Because ARIMA
modeling, in general, ignores any additional input variables, the
forecasting process is simplified.

The minimal data requirement also leads to a disadvantage of
ARIMA modeling; the model does not provide an indication of what
underlying variables affect the outcome. For example, if ARIMA
modeling was used to forecast future retail sales, the fitted model would
not provide an indication of what could be done to increase sales.

One caution in using time series analysis is the impact of severe

shocks to the system. In the gas production example, shocks might include
refinery fires, international incidents, or weather-related impacts such as
hurricanes. Such events can lead to short-term drops in production,
followed by persistently high increases in production to compensate for
the lost production or to simply capitalize on any price increases.

Along similar lines of reasoning, time series analysis should only

be used for short-term forecasts.

6.3 ADDITIONAL METHODS

Additional time series methods include the following:

• Autoregressive Moving Average with Exogenous inputs (ARM
AX) is used to analyze a time series that is dependent on another time
series. For example, retail demand for products can be modeled based
on the previous demand combined with a weather-related time series
such as temperature or rainfall.

• Spectral analysis is commonly used for signal processing and other
engineering applications. Speech recognition software uses such
techniques to separate the signal for the spoken words from the overall
signal that may include some noise.

mu
no
tes
.in

84

• Generalized Autoregressive Conditionally Heteroscedastic
(GARCH) is a useful model for addressing time series with
nonconstant variance or volatility. GARCH is used for modeling stock
market activity and price fluctuations.

• Kalman filtering is useful for analyzing real-time inputs about a
system that can exist in certain states. Typically, there is an underlying
model of how the various components of the system interact and affect
each other. A Kalman filter processes the various inputs, attempts to
identify the errors in the input, and predicts the current state.

• Multivariate time series analysis examines multiple time series and
their effect on each other. Vector ARIMA (VARIMA) extends
ARIMA by considering a vector of several time series at a particular
time, t. VARIMA can be used in marketing analyses that examine the
time series related to a company's price and sales volume as well as
related time series for the competitors

6.4 TEXT ANALYSIS

Text analysis, sometimes called text analytics, refers to the
representation, processing, and modeling of textual data to derive useful
insights. An important component of text analysis is text mining, the
process of discovering relationships and interesting patterns in large text
collections.

Text analysis suffers from the curse of high dimensionality. Text
analysis often deals with textual data that is far more complex. A corpus
(plural: corpora) is a large collection of texts used for various purposes in
Natural Language Processing (N LP). Another major challenge with text
analysis is that most of the time the text is not structured.

6.5 TEXT ANALYSIS STEPS

A text analysis problem usually consists of three important steps:

• Parsing

• Search and Retrieval

• Text Mining.

Parsing is the process that takes unstructured text and imposes a
structure for further analysis. The unstructured text could be a plain text
file, a weblog, an Extensible Markup Language (XML) file, a Hyper Text
Markup Language (HTML) file, or a Word document. Parsing
deconstructs the provided text and renders it in a more structured way for
the subsequent steps.

Search and retrieval is the identification of the documents in a
corpus that contain search items such as specific words, phrases, topics, or

mu
no
tes
.in

85

entities like people or organizations. These search items are generally
called key terms. Search and retrieval originated from the field of library
science and is now used extensively by web search engines.

Text mining uses the terms and indexes produced by the prior two
steps to discover meaningful insights pertaining to domains or problems of
interest. With the proper representation of the text, many of the techniques
such as clustering and classification, can be adapted to text mining. For
example, the k-means can be modified to cluster text documents into
groups, where each group represents a collection of documents with a
similar topic. The distance of a document to a centroid represents how
closely the document talks about that topic. Classification tasks such as
sentiment analysis and spam filtering are prominent use cases for the naive
Bayes. Text mining may utilize methods and techniques from various fields
of study, such as statistical analysis, information retrieval, data mining, and
natural language processing.

Note that, in reality, all three steps do not have to be present in a
text analysis project. If the goal is to construct a corpus or provide a
catalog service, for example, the focus would be the parsing task using one
or more text preprocessing techniques, such as part-of-speech (POS)
tagging, named entity recognition, lemmatization, or stemming.
Furthermore, the three tasks do not have to be sequential. Sometimes their
orders might even look like a tree.

6.6 A TEXT ANALYSIS EXAMPLE

Consider the fictitious company ACME, maker of two products:
bPhone and bEbook. ACME is in strong competition with other
companies that manufacture and sell similar products. To succeed, ACME
needs to produce excellent phones and eBook readers and increase sales.
One of the ways the company does this is to monitor what is being said
about ACME products in social media. In other words, what is the buzz on
its products? ACME wants to search all that is said about ACME products
in social media sites, such as Twitter and Facebook, and popular review
sites, such as Amazon and Consumer Reports. It wants to answer
questions such as these.

• Are people mentioning its products?

• What is being said? Are the products seen as good or bad? If people
think an ACME product is bad, why? For example, are they
complaining about the battery life of the bPhone, or the response time
in their bEbook?

ACME can monitor the social media buzz using a simple process
based on the three steps of text analysis. This process is illustrated in
Figure 9-1, and it includes following the modules.

mu
no
tes
.in

86

1. Collect raw text: This corresponds to Phase 1 and Phase 2 of the Data

Analytic Lifecycle. In this step, the Data Science team at ACME
monitors websites for references to specific products. The websites
may include social media and review sites. The team could interact
with social network application programming interfaces (APIs) process
data feeds, or scrape pages and use product names as keywords to get
the raw data. Regular expressions are commonly used in this case to
identify text that matches certain patterns. Additional filters can be
applied to the raw data for a more focused study. For example, only
retrieving the reviews originating in New York instead of the entire
United States would allow ACME to conduct regional studies on its
products. Generally, it is a good practice to apply filters during the
data collection phase. They can reduce I/O workloads and minimize
the storage requirements.

2. Represent text: Convert each review into a suitable document
representation with proper indices, and build a corpus based on these
indexed reviews. This step corresponds to Phases 2 and 3 of the Data
Analytic Lifecycle.

3. Comput: the usefulness of each word in the reviews using methods
such as TFIDF. This and the following two steps correspond to Phases
3 through 5 of the Data Analytic Lifecycle.

4. Categorize documents by topics : This can be achieved through topic
models (such as latent Dirichlet allocation).

5. Determine sentiments of the reviews-. Identify whether the reviews
are positive or negative. Many product review sites provide ratings of
a product with each review. If such information is not available,
techniques like sentiment analysis can be used on the textual data to
infer the underlying sentiments.

6. Review the results and gain greater insights- This step corresponds to
Phase 5 and 6 of the Data Analytic Lifecycle. Marketing gathers the
results from the previous steps. Find out what exactly makes people
love or hate a product. Use one or more visualization techniques to
report the findings. Test the soundness of the conclusions and
operationalize the findings if applicable.

mu
no
tes
.in

87

6.7 COLLECTING RAW TEXT

In Data Analytic Lifecycle discovery is the first phase. In it, the
Data Science team investigates the problem, understands the necessary
data sources, and formulates initial hypotheses. Correspondingly, for text
analysis, data must be collected before anything can happen, The Data
Science team starts by actively monitoring various websites for user-
generated contents. The user-generated contents being collected could be
related articles from news portals and blogs, comments on ACME'S
products from online shops or reviews sites, or social media posts that
contain keywords ibPhone or bEbook. Regardless of where the data
comes from, it's likely that the team would deal with semi-structured data
such as HTML web pages, Really Simple Syndication (RSS) feeds, XML,
or JavaScript Object Notation (JSON) files. Enough structure needs to be
imposed to find the part of the raw text that the team really cares about. In
the brand management example, ACME is interested in what the reviews
say about bPhone or bEbook and when the reviews are posted. Therefore,
the team will actively collect such information.

Many websites and services offer public APIs for third-party
developers to access their data. For example, the Twitter API allows
developers to choose from the Streaming API or the REST API to retrieve
public Twitter posts that contain the keywords bPhone or bEbook.
Developers can also read tweets in real time from a specific user or tweets
posted near a specific venue. The fetched tweets are in the JSON format.
Many news portals and blogs provide data feeds that are in an open
standard format, such as RSS or XML.

If the plan is to collect user comments on ACME'S products from
online shops and review sites where APIs or data feeds are not provided,
the team may have to write web scrapers to parse web pages and
automatically extract the interesting data from those HTML files. A web
scraper is a software program (bot) that systematically browses the World
Wide Web, downloads web pages, extracts useful information, and stores
it somewhere for further study.

The team can then construct the web scraper based on the
identified patterns. The scraper can use the curl tool to fetch HTML source
code given specific URLs, use XPath and regular expressions to select and
extract the data that match the patterns, and write them into a data store.

Regular expressions can find words and strings that match particular
patterns in the text effectively and efficiently. The general idea is that once
text from the fields of interest is obtained, regular expressions can help
identify if the text is really interesting for the project. In this case, do those
fields mention bPhone, bEbook, or ACME? When matching the text,
regular expressions can also take into account capitalizations, common
misspellings, common abbreviations, and special formats for e-mail
addresses, dates, and telephone numbers.

mu
no
tes
.in

88

6.8 REPRESENTING TEXT

In this data representation step, raw text is first transformed with
text normalization techniques such as tokenization and case folding. Then
it is represented in a more structured way for analysis.

Tokenization is the task of separating words from the body of text.

Raw text is converted into collections of tokens after the tokenization,
where each token is generally a word.

A common approach is tokenizing on spaces. For example, witthe
tweet shown previously:

I once had a gf back in the day. Then the bPhone came out lol
tokenization based on spaces would output a list of tokens.

(I, once, had, a, gf, back, in, the, day., Then, the, bPhone, came,
out, lol) Another way is to tokenize the text based on punctuation marks
and spaces. In this case, the previous tweet would become:

{I, once, had, a, gf, back, in, the, day, ., Then, the, bPhone, came,
out, lol} However, tokenizing based on punctuation marks might not be
well suited to certain scenarios. For example, if the text contains
contractions such as we 'll, tokenizing based on punctuation will split them
into separated words we and ll.

Tokenization is a much more difficult task than one may expect.
For example, should words like state-of - the - art, Wi -Fi,and San
Francisco be considered one token or more?

Another text normalization technique is called case folding, which
reduces all letters to lowercase (or the opposite if applicable). For the
previous tweet, after case folding the text would become this:

i once had a gf back in the day. then the bphone came out lol
One needs to be cautious applying case folding to tasks such as
information extraction, sentiment analysis, and machine translation. For
example, when General Motors becomes general and motors, the
downstream analysis may very likely consider them as separated words
rather than the name of a company.

After normalizing the text by tokenization and case folding, it
needs to be represented in a more structured way. A simple yet widely
used approach to represent text is called bag-of-words. Given a document,
bag-of-words represents the document as a set of terms, ignoring
information such as order, context, inferences, and discourse.

Bag-of-words takes quite a naive approach, as order plays an
important role in the semantics of text. With bag- of-words, many texts

mu
no
tes
.in

89

with different meanings are combined into one form. For example, the
texts "a dog bites a man" and "a man bites a dog" have very different
meanings, but they would share the same representation with bag-of-
words.

Besides extracting the terms, their morphological features may
need to be included. The morphological features specify additional
information about the terms, which may include root words, affixes, part-
of-speech tags, named entities, or intonation (variations of spoken pitch).
The features from this step contribute to the downstream analysis in
classification or sentiment analysis.

Sometimes creating features is a text analysis task all to itself. One

such example is topic modeling. Topic modeling provides a way to
quickly analyze large volumes of raw text and identify the latent topics.
Topic modeling may not require the documents to be labeled or annotated.
It can discover topics directly from an analysis of the raw text.

It is important not only to create a representation of a document but
also to create a representation of a corpus. Most corpora come with
metadata, such as the size of the corpus and the domains from which the
text is extracted. Some corpora (such as the Brown Corpus) include the
information content of every word appearing in the text. Information
content (IC) is a metric to denote the importance of a term in a corpus.

6.9 TERM FREQUENCY-INVERSE DOCUMENT
FREQUENCY (TFIDF)

TFIDF is widely used in information retrieval and text analysis.
Instead of using a traditional corpus as a knowledge base, TFIDF directly
works on top of the fetched documents and treats these documents as the
"corpus." TFIDF is robust and efficient on dynamic content, because
document changes require only the update of frequency counts.

Given a term t and a document d = (t1,t2,t3…tn) containing n
terms, the simplest form of term frequency of r in dean be defined as the
number of times f appears in d, as shown in Equation 9-1.

Similarly, the logarithm can be applied to word frequencies whose
distribution also contains a long tail, as shown in Equation 9-2.

mu
no
tes
.in

90

Because longer documents contain more terms, they tend to have
higher term frequency values, They also tend to contain more distinct
terms. These factors can conspire to raise the term frequency values of
longer documents and lead to undesirable bias favoring longer documents.
To address this problem, the term frequency can be normalized. For
example, the term frequency of term t in document d can be normalized
based on the number of terms in das shown in Equation 9-3.

Indeed, that is the intention of them verted document frequency
(IDF). The IDF inversely corresponds to the document frequency (DF),
which is defined to be the number of documents in the corpus that contain
a term. Let a corpus D contain N documents. The document frequency of a
term t in corpus D = [dyd2,...dN3 is defined as shown in Equation 9-4.

The precise base of the logarithm is not material to the ranking of a
term. Mathematically, the base constitutes a constant multiplicative factor
towards the overall result.

The TFIDF (or TF-IDF) is a measure that considers both the
prevalence of a term within a document (TF) and the scarcity of the term
over the entire corpus (IDF). The TFIDF of a term t in a document dis
defined as the term frequency of t in d multiplying the document
frequency of t in the corpus as shown in Equation 9-7:

TFIDF(t,d) = TF(t,d) x IDF(t) (9-7)

TFIDF is efficient in that the calculations are simple and

straightforward, and it does not require knowledge of the underlying
meanings of the text. But this approach also reveals little of the inter-
document or intra-document statistical structure.

6.10 CATEGORIZING DOCUMENTS BY TOPICS

A topic consists of a cluster of words that frequently occur together
and share the same theme. Document grouping can be achieved with
clustering methods such as k-means clustering or classification methods
such as support vector machines, or naive Bayes, However, a more
feasible and prevalent approach is to use topic modeling. Topic modeling
provides tools to automatically organize, search, understand, and
summarize from vast amounts of information. Topic models are statistical
models that examine words from a set of documents, determine the themes
over the text, and discover how the themes are associated or change over
time. The process of topic modeling can be simplified to the following.

1. Uncover the hidden topical patterns within a corpus.

mu
no
tes
.in

91

2. Annotate documents according to these topics.

3. Use annotations to organize, search, and summarize texts.

A topic is formally defined as a distribution over a fixed
vocabulary of words, Different topics would have different distributions
over the same vocabulary. A topic can be viewed as a cluster of words
with related meanings, and each word has a corresponding weight inside
this topic.

The simplest topic model is latent Dirichlet allocation (LDA), a
generative probabilistic model of a corpus proposed by David M. Blei and
two other researchers. In generative probabilistic modeling, data is treated
as the result of a generative process that includes hidden variables. LDA
assumes that there is a fixed vocabulary of words, and the number of the
latent topics is predefined and remains constant. LDA assumes that each
latent topic follows a Dirichlet distribution over the vocabulary, and each
document is represented as a random mixture of latent topics.

Figure 6-4 illustrates the intuitions behind LDA. The left side of the
figure shows four topics built from a corpus, where each topic contains a
list of the most important words from the vocabulary. The four example
topics are related to problem, policy, neural, and report. For each
document, a distribution over the topics is chosen, as shown in the
histogram on the right. Next, a topic assignment is picked for each word in
the document, and the word from the corresponding topic (colored discs)
is chosen. In reality, only the documents (as shown in the middle of the
figure) are available. The goal of LDA is to infer the underlying topics,
topic proportions, and topic assignments for every document.

Many programming tools provide software packages that can
perform LDA over datasets. R comes with an Ida package that has built-in
functions and sample datasets.

mu
no
tes
.in

92

6.11 DETERMINING SENTIMENTS

Sentiment analysis refers to a group of tasks that use statistics and
natural language processing to mine opinions to identify and extract
subjective information from texts.

Intuitively, to conduct sentiment analysis, one can manually
construct lists of words with positive sentiments (such as brilliant,
awesome, and spectacular) and negative sentiments (such as awful, stupid,
and hideous). Related work has pointed out that such an approach can be
expected to achieve accuracy around 60%, and it is likely to be
outperformed by examination of corpus statistics.

Classification methods such as naive Bayes, maximum entropy
(MaxEnt), and support vector machines (SVM) are often used to extract
corpus statistics for sentiment analysis. Related research has found out that
these classifiers can score around 80% accuracy on sentiment analysis
over unstructured data. One or more of such classifiers can be applied to
unstructured data, such as movie reviews or even tweets.

Depending on the classifier, the data may need to be split into

training and testing sets. One way for splitting data is to produce a training
set much bigger than the testing set. For example, an 80/20 split would
produce 80% of the data as the training set and 20% as the testing set.

Next, one or more classifiers are trained over the training set to
learn the characteristics or patterns residing in the data. The sentiment tags
in the testing data are hidden away from the classifiers. After the training,
classifiers are tested over the testing set to infer the sentiment tags. Finally,
the result is compared against the original sentiment tags to evaluate the
overall performance of the classifier.

Classifiers determine sentiments solely based on the datasets on
which they are trained. The domain of the datasets and the characteristics of
the features determine what the knowledge classifiers can learn. For
example, lightweight is a positive feature for reviews on laptops but not
necessarily for reviews on wheelbarrows or textbooks. In addition, the
training and the testing sets should share similar traits for classifiers to
perform well. For example, classifiers trained on movie reviews generally
should not be tested on tweets or blog comments.

Note that an absolute sentiment level is not necessarily very
informative. Instead, a baseline should be established and then compared
against the latest observed values. For example, a ratio of 40% positive
tweets on a topic versus 60% negative might not be considered a sign that
a product is unsuccessful if other similar successful products have a
similar ratio based on the psychology of when people tweet.

mu
no
tes
.in

93

 SUMMARY

• Time series analysis attempts to model the underlying structure of

observations taken over time.

• The goals of time series analysis:Identify and model the structure of
the time series and forecast future values in the time series

• The trend refers to the long-term movement in a time series. It
indicates whether the observation values are increasing or decreasing
over time.

• The seasonality component describes the fixed, periodic fluctuation in
the observations over time.

• A cyclic component also refers to a periodic fluctuation, but one that is
not as fixed as in the case of a seasonality component.

• Although noise is certainly part of this random component, there is
often some underlying structure to this random component that needs
to be modeled to forecast future values of a given time series.

• The plot of autocorrelation function (ACF) provides insight into the
covariance of the variables in the time series and its underlying
structure.

• Text analysis is text mining, the process of discovering relationships
and interesting patterns in large text collections.

• A corpus (plural: corpora) is a large collection of texts used for various
purposes in Natural Language Processing (NLP).

• Parsing is the process that takes unstructured text and imposes a
structure for further analysis.

• Search and retrieval is the identification of the documents in a corpus
that contain search items such as specific words, phrases, topics, or
entities like people or organizations.

• Text mining uses the terms and indexes produced by the prior two
steps to discover meaningful insights pertaining to domains or
problems of interest.

UNIT END QUESTIONS

1. Write a note on Box-Jenkins Methodology

2. Explain the ARIMA Model technique

3. Explain the steps involved in Text analysis with example.

4. What is tokenization? Explain how it is used in text analysis.

5. Describe the Term Frequency-Inverse Document Frequency
method.

mu
no
tes
.in

94

6. Explain the steps involved in categorizing documents by topic.

7. Write a note on determining sentiments of documents using text
analysis.

8. Write a short note on decision tree.

9. How to predict whether customers will buy a product or not? Explain
with respect to decision tree.

10. Explain a probabilistic classification method based on Naive Bayes'
theorem.

11. John flies frequently and likes to upgrade his seat to first class. He
has determined that if he checks in for his flight at least two hours
early, the probability that he will get an upgrade is 0.75; otherwise,
the probability that he will get an upgrade is 0.35. With his busy
schedule, he checks in at least two hours before his flight only 40%
of the time. Suppose John did not receive an upgrade on his most
recent attempt. What is the probability that he did not arrive two
hours early? Find it with respect to on Bayes' theorem.

12. Describe additional classification methods other than decision tree
and Bayes’ theorem.

13. How to model a structure of observations taken over time? Explain
with respect to Time series analysis. Also explain any two of its
applications.

14. What are the components of time series? Explain each of them. Also
write the main steps of Box-Jenkins methodology for time series
analysis.

15. Explain Autoregressive Integrated Moving Average Model in detail.

16. Explain additional time series methods other than Box-Jenkins
methodology and Autoregressive Integrated Moving Average
Model.

17. What are major challenges with text analysis? Explain with
examples.

18. What are various text analysis steps? Explain in detail.

19. Describe ACME's Text Analysis Process.

20. What is the use of Regular Expressions? Explain any five regular
expressions with its description and example.

21. How to normalize the text using tokenization and case folding?
Explain in detail. Also explain about Bag-of-words approach.

22. How to retrieve information and applying text analysis? Explain
with respect to Term Frequency.

23. What is the critical problem in using Term frequency? How can it be
fixed?

24. How to categorize documents by topics? Explain in detail.

mu
no
tes
.in

95

25. What is sentiment analysis? How it can be carried out? Explain it in
detail.

REFERENCES

• Data Analytics with Hadoop -An Introduction for Data Scientists by

Benjamin Bengfort and Jenny Kim

• The Data Revolution: Big Data, Open Data, Data Infrastructures, And

Their Consequences By Rob Kitchin

• Big Data: Principles and Best Practices of Scalable Real-Time Data

Systems By Nathan Marz And James Warren

• Big Data Demystified By David Stephenson

mu
no
tes
.in

96

UNIT IV

7

DATA PRODUCT & BIG DATA
OPERATING SYSTEM

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Introduction to Data Product

7.3 Using Hadoop to build Data Products at scale

7.4 The Data Science, the Big Data Pipeline & Hadoop Ecosystem

7.5 Hadoop : The Big Data Operating System

7.6 Hadoop Architecture

7.7 Working with Distributed Computation

7.8 Summary

7.9 Unit End Question

7.10 References

7.0 OBJECTIVES

The objectives of this chapter are to:

• Introduce the concept of a data product and evolve its definition as we
go ahead.

• Introduce Hadoop as a means to solve the problem of processing data
at a scale

• Define & understand the difference in the Data Science Pipeline as
well as the Big Data Pipeline

• Understand the Architecture of the Big Data Operating System:
Hadoop

• Understand the Hadoop file system and way to perform Distributed
Computation

• Understand what is Map Reduce

7.1 INTRODUCTION

• This chapter explains the concept data products, its necessity and
explains how Hadoop can be used for implementing it and for data
science.

mu
no
tes
.in

97

• The requirements for distributed storage and computation has resulted
in the creation of Hadoop and its evolution into an operating system
for big data.

7.2 INTRODUCTION TO DATA PRODUCT

• The volume of data being generated every second is very
overwhelming.

• Data is increasingly changing how we work, play, and entertain
ourselves, and technology has come to describe every facet of life,
from the food we prepare to our online social interactions.

• Yet we expect highly personalized and finely tuned products and
services well suited to our behavior and nature which has resulted in
creating an opportunity in the market with a new technology—the
data product.

• Data products are created using processing chains in data science,
thoughtful application of complex algorithms possibly predictive or
inferential being applied to a specific dataset.

• Defining a Data Product

• Traditionally a data product is any application combining data with
algorithms.

• Writing a software is not just combining data with algorithms,
speaking of data product, it is the combination of data and
statistical algorithms useful for generating inferences or
predictions. Ex. Facebook’s “People You May Know”

• But this definition limits data products to single software instances
(ex, any web application),

• A data product is not just a name for a app driven by data but also
an data application which uses the data to acquire its value and in
the process creates additional data as output. it’s a data product,
not just an application with data.

• A data product is a cost-effective engine that extracts value from
data while also generating more data.

• Data products have been described as systems that learn from data and
can self-adapt in a number of ways.

• The Nest Thermostat, for example, is a data system that derives its
value from sensor data, schedules heating and cooling, and collects
and validates new sensor observations.

• Data products are economic engines that self-adapt and uses the data
to acquire its value and in the process creates additional data while it
makes inferences or predictions upon new data by influencing human
behavior with this very data.

mu
no
tes
.in

98

• Data products are no longer programs that run on the web
interface, they are becoming an important part of every domain of
activity in the current modern world.

7.3 USING HADOOP TO BUILD DATA PRODUCTS AT
SCALE

• In this era of data product the job of the data scientist is to build it.

The experimental methodology is this typical analytical workflow as
pointed by data scientists in creating a data product is:

Ingestion → Wrangling → Modeling → Reporting & Visualization.

• The data science pipeline and is human designed and augmented by
the use of languages like R and Python

• When we create a data product it allows data to become big in size,
fast in execution, and enables larger variety of data for computation
which in turn help to derive insights and does not involve human
interaction.

• Using Large Datasets as an Advantage

• Humans have extraordinary vision for large-scale patterns, such
as woods and clearings visible through the foliage.

• Statistical methodologies allow us to deal with both noisy and
meaningful data by defining them with aggregations and indices
or inferentially by performing the analysis directly.

• As our ability to gather data has increased, so has the
requirement for more generalization.

• Smart grids, quantified selves, mobile technology, sensors, and
wired homes all require personalised statistical inference.

• Scale is measured by the number of facets that must be explored
in addition to the amount of data—a forest view for individual
trees.

• Hadoop is distinct due to the economics of data processing as
well as the fact that it is a platform.

• Hadoop's release was interesting in that it came at a time when
the world needed a solution for large-scale data analytics.

• Creating Data Products using Hadoop

• Hadoop has been developed by tech giants such as Google, Facebook,
and Yahoo to deal with big data challenges

• Data issues are no longer limited to tech behemoths; they also impact
commercial and public organisations of all sizes, from large companies
to startups, federal agencies to cities, and perhaps even individuals.

• Computing services are also becoming more available and affordable.

mu
no
tes
.in

99

• Data scientists can get on-demand, instant access to clusters of large
sizes by using different cloud computing platforms like Google
Compute Engine or Amazon EC2 at a fraction of the cost of traditional
data centres and with no requirement of doing data center
management..

• Big data computing is being made democratic and more open to
everyone by Hadoop

• Data analytics at large scale have historically been available only to
social networks such as Facebook and Twitter, but now they are also
available to individual brands or artists.

• Connected homes and mobile devices, as well as other personal
sensors, are producing vast quantities of personal data, raising
questions about privacy, among other items.

• In 2015, British researchers founded the Hub of All Things (HAT). It
is a customised data collection that tackles the problem of data
ownership and offers a solution for personal data aggregation.

• New data problems are emerging, and a data product is needed to
address these questions.

• Applications like ShotSpotter & Location and HAT offer an
application interface and decision-making tools to help people derive
value from data and create new data.

• Conventional software development workflows are insufficient for
working with large datasets, but Big Data workflows and Hadoop have
allowed and personalised these applications.

7.4.1 The Data Science Pipeline:

Characteristics of data science pipeline are as follows:

• Human - driven, is concerned with the development of practical data
visualisations.

• Having a workflow with the aim to produce results that enable humans
to make decisions.

Fig 7.1: The Data Science Pipeline

(Ref - Chapter 1, Fig 7.1 - Data Analytics with Hadoop - An Introduction for
Data Scientists)

• An analyst takes in large volume of data performs some operations
on it to convert it into a normal form so that can we can perform
different calculations to finally present the results in a visual
manner.

mu
no
tes
.in

100

• With the overwhelming growth rate in the volume and velocity at
which many businesses are now generating data, this human-
powered model is not scalable.

7.4.2 The Big Data Pipeline:

• We implement a machine learning feedback loop into the data science

pipeline to create a framework that enables the development of
scalable, automated data analysis and insight generation solutions.

• The new framework is the big data pipeline which is

• Not human-driven,

• Is an iterative model

• has four primary phases

• ensures scalability and automation

Fig 7.2 The Big Data Pipeline

(Ref - Chapter 1, Fig 1.1 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• The 4 stages of the Big Data Pipeline are:

• staging,

• ingestion,

• computation,

• workflow management

• In its most basic form, this model, like the data science pipeline, takes
raw data and transforms it into insights.

• This stage generates a reusable data product as the output by
transforming the ingestion, staging, and computation phases into an
automated workflow.

• A feedback system is often needed during the workflow management
stage, that gives the output of one job can be automatically fed in as
the data input for the next, allowing for self-adaptation.

• The ingestion phase involves both the model's initialization and the
model's device interaction with users.

mu
no
tes
.in

101

• Users may define data source locations or annotate data during the
initialization process

• While interacting, users will receive the predictions given by the
model and in turn give important feedback to strengthen the model

• The staging step requires executing transformations on data to make it
usable and storeable, allowing it to be processed.

• The tasks of staging include data normalization, standardization & data
management.

• The computation phase takes maximum time while executing the key
responsibilities of extracting insights from data, conducting
aggregations or reports, and developing machine learning models for
recommendations, regressions, clustering, or classification.

• The workflow management phase involves tasks such as abstraction,
orchestration, and automation, which enables to operationalize the
performance of workflow steps. The final output is supposed to be an
program that is automated that can be run as desired.

7.4.3 The Hadoop Ecosystem:

• Hadoop Platform has specifically transformed into an ecosystem
consisting of a variety different tools that operationalize the different
parts of the Big Data pipeline.

• Kafka and Sqoop, for example, are designed for data extraction and
ingestion, enabling relational databases to be imported into Hadoop or
distributed message queues for processing on-demand.

• Data warehouses in Hadoop, such as Hive and HBase, allow for large-
scale data management.

• Hapdoop makes use of libraries like Spark's GraphX and MLlib, as
well as Mahout, which provide analytical packages for large-scale
computation and validation.

7.5 HADOOP : THE BIG DATA OPERATING SYSTEM

• Hadoop systems ensure that the criteria for a distributed Big Data
Operating System are met, as well as that Hadoop is a data
management system that works as expected while processing
analytical data.

• Hadoop has mainly been used to store and compute massive,
heterogeneous datasets stored in data lakes rather than warehouses, as
well as for rapid data processing and prototyping.

• Basic knowledge of distributed computing and storage is needed to
fully understand the working of Hadoop and how to build data
processing algorithms and workflows.

mu
no
tes
.in

102

• Hadoop distributes the computational processing of a large dataset to
several machines that each run on their own chunk of data in parallel
to perform computation at scale.

• The following conditions must be fulfilled by a distributed system:

• Fault tolerance - A system part failure does not result in the whole
system failing. The system should be able to degrade into a less
productive state in a graceful manner. The failed system part
should be able to rejoin the system if it recovers.

• Recoverability - No data should be lost when a malfunction
occurs no matter how big or small.

• Scalability - As the load increases (data & computation), the
output decreases, not fails; increasing resources should result in a
proportional increase in power.

• Continuity - The failure of one job or task should not affect the
final result.

• Hadoop tackles the above specifications using a variety of abstract
principles such as:

• Clusters - working out how to manage data storage and distributed
computing in a cluster.

• Data distribution - As data is applied to the cluster and stored on
several nodes, it is distributed instantly. To reduce network traffic,
each node processes locally stored data

• Data Storage - Data is held in typically 128 MB fixed-size blocks,
and copies of each block are made several times for achieving
redundancy and data protection.

• Jobs - In Hadoop, a job is any computation performed; jobs may
be divided into several tasks, with each node performing the work
on a single block of data.

• Programming Language - Jobs written in high level allow us to
ignore low level details, allowing developers to concentrate their
attention only on data and computation.

• Fault tolerance - When task replication is used, jobs are fault
tolerant, ensuring that the final computation is not incorrect or
incomplete if a single node or task fails.

• Communication - The amount of communication occurring
between nodes should be kept at minimum and should be done in a
transparent manner by the system. To avoid inter-process
dependencies leading to deadlock situation every task should be
executed independently and nodes should not communicate during
processing to ensure it.

• Work Allocation - Master programmes divide work among
worker nodes so that they can all run in parallel on their own slice
of the larger dataset.

mu
no
tes
.in

103

7.6 HADOOP ARCHITECTURE

• Hadoop Architecture consists of two primary components:

1. HDFS (or DFS) is the Hadoop Distributed File System

It implements the fundamentals of distributed storage and is in
charge of handling data around the cluster's discs.

2. YARN (Yet Another Resource Negotiator)

• It implements computation in a distributed environment.

• YARN acts as a cluster resource manager, allocating computing
resources to applications that require distributed computing.

• Hadoop Architecture in Figure below:

Fig 7.3 : Hadoop Architecture

(Ref - Chapter 2, Fig 7.3 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• Together, HDFS and YARN together form a platform. This can be

used for creating big data applications as it provides an operating
system for big data. The two collaborate to reduce network traffic in
the cluster, mainly by guaranteeing that data is kept local to the
necessary computation. Both data and tasks are duplicated to ensure
error tolerance, recoverability, and accuracy. To provide scalability
and low-level clustering programming information, the cluster is
managed centrally.

mu
no
tes
.in

104

7.6.1 Hadoop Cluster:

• Hadoop is not a piece of hardware but is a cluster of machines that
function together in a synchronised manner.

• Hadoop is the software that runs on a cluster—it include the DFS -
HDFS, and the cluster resource manager - YARN, which run in
background on a group of machines are collectively as six different
types of background services.

• A cluster is a collection of machines running HDFS and YARN, with
nodes representing individual machines. Several daemon (background)
processes implement YARN and HDFS in the background and do not
require user input

• A cluster may have a single node or thousands, but they all scale
horizontally, meaning that the cluster's capacity and performance
increase linearly as more nodes are added.

• Hadoop processes are background services that execute throughout the
time on a cluster node. It accepts input and output across the
network. Each of Hadoop processes has its own allocation of system
resources and is managed independently.

• Nodes are two types, each of which is differentiated by the process or
processes that it executes:

• Master nodes

• These nodes provide Hadoop workers with organising resources
and are usually the cluster's entry points.

• Communication would fall apart without masters, and would not
be possible to have distributed storage tasks or computations.

• Worker nodes

• These are the majority of the cluster's machines.

• Services of Worker nodes include accepting requests from
master nodes, such as storing or retrieving data or running a
specific programme.

• In a distributed computation, the analysis is parallelized across
worker nodes.

• Both HDFS and YARN have multiple master services. These services
are responsible for coordinating worker services which run on each worker
node.

mu
no
tes
.in

105

Fig 7.4: A cluster in Hadoop containing two master & four workers
nodes together implementing the six primary Hadoop services

(Ref - Chapter 2, Fig 2.2 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

HDFS has the following master, worker services:

• NameNode (Master service)

• Keeps the file system's directory tree, file metadata, and the
locations of all files in the cluster.

• Clients who want to use HDFS must first request information from
the NameNode in order to find the required storage nodes.

• Secondary NameNode (Master service)

• On behalf of the NameNode, conducts housekeeping and
checkpointing.

• It is not a backup NameNode, despite its name.

• DataNode (Worker service)

• Stores and manages HDFS blocks on the local disk.

• Reports health and status of individual data stores back to the
NameNode.

• When a client application requests data from HDFS, it must first make
a request to the NameNode for the data to be located on disc.

• Instead of storing data or transferring data from DataNode to client,
the NameNode simply functions as a traffic cop, guiding clients to the
necessary DataNodes.

mu
no
tes
.in

106

• Following are the master and worker services provided by YARN:

• ResourceManager (Master service)

• Controls job scheduling on the cluster by allocating and
monitoring available cluster resources, such as physical assets like
memory and processor cores, to applications.

• ApplicationMaster (Master service)

• The ResourceManager schedules the execution of a particular
program on the cluster, and this portion coordinates its execution.

• NodeManager (Worker service)

• On a each individual node, it runs and manages processing
activities, as well as reporting on their health and status..

• Similar to how HDFS works, clients that wish to execute a job must
first request resources from the ResourceManager, which assigns an
application-specific ApplicationMaster for the duration of the job. The
ApplicationMaster is responsible for tracking the execution of the job,
while the ResourceManager is responsible for tracking the status of the
nodes, and each individual NodeManager creates containers and
executes tasks within them.

• Pseudo-distributed mode is a single node cluster. All Hadoop daemons
are run on a single machine as if it were a cluster, but network traffic is
routed via the local loopback network interface. The advantages of a
distributed architecture aren't realised in this mode, but it's a great way
to build without having to worry about handling multiple machines.

7.6.2 Hadoop Distributed File System (HDFS):

• HDFS doubles the amount of storage space available from a single
computer by storing it via a cluster of low-cost, unreliable devices.

• HDFS is a layer of software that sits on top of a native file system,
allowing it to communicate with local file systems and generalising the
storage layer.

• HDFS was built with the aim of storing large files while still allowing
for real-time access to data.

• For storing raw input data for computation, intermediate results
between computational phases, and overall job results, HDFS is the
best choice.

• HDFS is not good as a data backend for applications requiring real-
time updates, interactive analysis and record based transactional
support.

• Following are few characteristics of HDFS:

• HDFS is best suited to a small number of very large files—for
example, millions of large files (greater than 100 MB in size)

mu
no
tes
.in

107

rather than billions of smaller files that would otherwise occupy
the same amount of space.

• HDFS follows the WORM (write once, read many) pattern and
does not permit random file appends or writes.

• HDFS is designed for large-scale, continuous file reading rather
than random reading or collection.

• HDFS Blocks

• HDFS files are divided into blocks, which are usually 64 MB or
128 MB in size, but this is configurable at runtime, and high-
performance systems typically use 256 MB block sizes.

• Equivalent to the block size on a single disc file system, the block
size in HDFS is the smallest amount of data that can be read or
written to. Files that are smaller than the block size, unlike blocks
on a single disc, do not fill the entire block.

• Blocks allow very large files to be split across multiple machines
and distributed at runtime. To allow for more efficient distributed
processing, separate blocks from the same file will be stored on
different machines.

• The DataNodes will duplicate the blocks. The replication is three-
fold by design, but this can be modified at runtime. As a result,
each block of data resides on three different computers and three
different discs, and the data will not be lost even though two nodes
fail.

• The cluster's potential data storage capacity is just a third of the
available disc space due to replication.

• HDFS Data Management

• The master NameNode keeps track of the file's blocks and their
locations.

• The NameNode communicates with the DataNodes, which are
processes that house the blocks in the cluster.

• Each file's metadata is stored in the NameNode master's memory
for fast lookups, and if the NameNode stops or fails, the entire
cluster becomes unavailable.

• The Secondary NameNode is not a substitute for the NameNode;
rather, it handles the NameNode's housekeeping such as
periodically combining a snapshot of the current data space with
the edit log to prevent the edit log from becoming too large.

• The function of the edit log is used to maintain data integrity and
avoid data loss; in case the NameNode fails, this combined record
can be used to restore the state of the DataNodes.

mu
no
tes
.in

108

7.6.3 Workload & Resource Manager (YARN):

• The original version of Hadoop offered MapReduce on HDFS where
the MapReduce job/workload management functions were highly
coupled to the cluster/resource management functions. As a result,
other computing models or applications were unable to use the cluster
infrastructure for execution of distributed workloads.

• YARN separates workload and resource management so that many
applications can share a single, unified resource management service.
Hadoop is no longer a uniquely oriented MapReduce platform, but a
full-fledged multi-application, big data operating system, thanks to
YARN's generalised job and resource management capabilities.

• The basic concept behind YARN is to separate the resource
management and workload management roles into separate daemons.

7.7 WORKING WITH DISTRIBUTED COMPUTATION –
MAPREDUCE

• Although YARN has allowed Hadoop to become a general-purpose

distributed computing platform, MapReduce (also known as MR) was
the first Hadoop computational system.

• MapReduce is a straightforward but effective computational system
for fault-tolerant distributed computing across a cluster of centrally
controlled machines. It accomplishes this by using a “functional”
programming style that is essentially parallelizable, allowing several
independent tasks to perform a function on local groups of data and
then combining the results.

• Functional programming is a programming methodology that
guarantees stateless evaluation of unit computations. This implies that
functions are closed, in the sense that they do not exchange state and
depend solely on their inputs. Data is transferred between functions by
using the output of one function as the input of a completely different
function.

• MapReduce provides the two functions that distribute work and
aggregate results called map and reduce

• Map Function

• MapReduce offers the map and reduce functions, which distribute
work and aggregate results.

• A map function takes a list of key/value pairs as input and works
on each pair separately.

• The map operation is where the core analysis or processing takes
place, as this is the function that sees each individual element in
the dataset

mu
no
tes
.in

109

Fig 7.5 - A map function

(Ref - Chapter 2, Fig 2.3 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• Reduce Function

• Any emitted key/value pairs will be grouped by key after the map
phase, and those key/value groups will be used as input for per-key
minimization functions.

• When a reduce function is applied to an input set, the output is a
single, aggregated value.

Fig 7.6 - A reduce function

(Ref - Chapter 2, Fig 2.4 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• MapReduce Framework

• Hadoop MapReduce is a software framework for composing jobs
that run in parallel on a cluster and process large quantities of data,
and is the native distributed processing framework that ships with
Hadoop.

mu
no
tes
.in

110

• As a job configuration, the system exposes a Java API that allows
developers to define HDFS input and output positions, map and
reduce functions, and other job parameters.

• Jobs are compiled and packaged into a JAR, which is submitted to
the Resource Manager by the job client—usually via the command
line. The Resource Manager will then schedule the tasks, monitor
them, and provide the status back to the client.

• Typically, a Map Reduce application is composed of three Java
classes: a Job, a Mapper, and a Reducer.

• Mappers and reducers handle the details of computation on
key/value pairs and are connected through a shuffle and sort phase.
The Job is responsible of configuring the input and output data
format by specifying the InputFormat and OutputFormat classes of
data being serialized to and from HDFS.

Fig. 7.7- Stages of a MapReduce Framework
(Ref - Chapter 2, Fig 2.5 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• The stages a MapReduce Framework are as follows:

• Phase I - Local data is loaded as key/value pairs from HDFS into a
mapping process..

• Phase II - Mappers can generate nil or multiple key/value pairs, to
map a given key to computed values.

• Phase III - The pairs are then subjected to sort or shuffle
operation, selection of operation depends on the key and passed to
the reducer so that it can access all of the values for a given key.

• Phase IV - Reducers then reduce the map's output by supplying
output with nil or multiple final key/value pairs

SUMMARY

In this chapter we introduced the concept of data product, its
several definitions. We were introduced to Hadoop as a solution to the
problem of processing data at a scale. We defined the Data Science & Big
Data Pipelines. We introduced and explained in detail the concept of Big
Data Operating System: Hadoop and understood the Hadoop file system
along with MapReduce

mu
no
tes
.in

111

UNIT END QUESTION

1. Explain the concept of Data Product.

2. How can Hadoop be used to build Data Products at scale?

3. Write a short note on : The Data Science Pipeline

4. Write a short note on : The Big Data Pipeline

5. Write a short note on : Hadoop : The Big Data Operating System

6. Explain Hadoop Architecture

7. Explain the different master and worker services in Hadoop

8. Explain the concept of Hadoop Cluster

9. Explain Hadoop Distributed File System

10. Explain the concept of MapReduce

11. Explain the MapReduce Framework

REFERENCES

• The book - Data Analytics with Hadoop - An Introduction for Data
Scientists authored by Benjamin Bengfort and Jenny Kim

 mu

no
tes
.in

112

 8

HADOOP STREAMING & IN-MEMORY

COMPUTATION WITH SPARK

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 Hadoop Streaming

8.3 Advanced Map Reduce

8.4 Spark Basics

8.5 The Spark Stack

8.6 Resilient Distributed Datasets (RDD)

8.7 A typical Spark application

8.8 Summary

8.9 Review Question

8.10 References

8.0 OBJECTIVES

The objectives of this chapter are to:

• Explain the concept of Hadoop Streaming

• Explain the Advanced Map Reduce concepts

• Explain the basics of Apache Spark

• Explain the components of Spark Stack

• Explain the concept of Resilient Distributed Datasets (RDD) in Spark

• Explain the working of a typical Spark application

8.1 INTRODUCTION

• Hadoop Streaming is an important tool that allows data scientists to

program in R or Python instead of Java to immediately start using
Hadoop and MapReduce

• Advanced Map Reduce concepts such as Combiners, Partitioners and
Job Chaining play a large role in MapReduce algorithms and
optimizations and are essential to understanding Hadoop

• Apache Spark will remain the primary method for interaction with
cluster for any new Hadoop user. Apache Spark is the first distributed

mu
no
tes
.in

113

computing platform that is not only fast & general-purpose but also
popular particularly because of features such as speed and adaptability.
It uses a data model called Resilient Distributed Datasets (RDD) that
stores the required data in the memory for the duration of computation
thereby eliminating intermediate writes to disk.

8.2 HADOOP STREAMING

• Hadoop MapReduce framework allows programmers to specify HDFS
input /output locations, map-reduce functions, and other parameters
through a Java API that provides them as a job configuration.

• However, to use the MapReduce framework Java is not the only
option. Hadoop Streaming is a utility written in Java that allows
programmers to make the executable of the mapper and reducer
independent of programming languages. With Hadoop Streaming shell
utilities, R, or Python, scripts can all be used to compose MapReduce
jobs.

• Hadoop Streaming is a utility, that is packaged as a JAR file which
comes with the Hadoop MapReduce distribution. Concept of
Streaming is a normal Hadoop job that is passed to the cluster through
the job client allowing you to also specify arguments such as the
HDFS input and output paths, along with the mapper and reducer
executable.

• Streams in Hadoop Streaming refer to the concept of standard Unix
streams: stdin, stdout, and stderr. Streaming utilizes the standard Unix
streams for input and output to perform a MapReduce job, hence the
name Streaming.

• Input to both mappers and reducers is read from stdin, which a Python
process can access

• Hadoop expects the Python mappers and reducers to write their output
key/value pairs to stdout.

• Following figure demonstrates the streaming process in a MapReduce
context.

Fig. 8.1-Streaming in Hadoop using Python

mu
no
tes
.in

114

(Ref - Chapter 3, Fig 3.1 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• When Streaming executes a job, each mapper task will launch the

supplied executable inside of its own process.

• The mapper then converts the input data into lines of text and pipes it
to the stdin of the external process while simultaneously collecting
output from stdout.

• The input conversion is usually a simple and straight forward
serialization of the value as data is being read from HDFS having each
line as a new value.

• The mapper expects output to be in a string key/value format, where
the key is separated from the value by some separator character, tab
(\t) by default. If there is no separator, then the mapper considers the
output to only be a key with a null value.

• The reducer is launched as its separate executable once the output
from the mappers is shuffled and sorted ensuring that each key is sent
to the same reducer.

• The output of key/value strings from the mapper are then streamed to
the reducer as input through stdin, matching the output from the
mapper, and ensures to be grouped by key.

• The output given by the reducer to stdout is supposed to have the same
key, separator, and value format as that of the mapper.

• To write Hadoop jobs using Python, we are required to create two
separate Python files, mapper.py and a reducer.py. Inside each of these
files we have to include the statement import sys to enable access to
stdin and stdout.

• The code will accept input as a string, then parse it and after
converting for each number or complex data type, it needs to serialize
the output as a string.

8.3 ADVANCED MAP REDUCE CONCEPTS

• The concepts such as combiners, partitioners, and job chaining play a
large role in MapReduce algorithms and optimizations.

• Combiners are the primary MapReduce optimization technique

• Partitioners are a technique for ensuring there is no bottleneck in the
reduce step

• Job Chaining is a technique for putting together larger algorithms and
data flows.

mu
no
tes
.in

115

8.3.1 Combiners:

• Mappers produce a lot of intermediate data that must be sent over the
network to be shuffled, sorted, and reduced. Since networking is a
physical resource, transmission of large amounts of data can lead to
job delays resulting in memory bottlenecks

• Combiners are the primary mechanism to solve this problem, and are
essentially intermediate reducers that are associated with the mapper
output. Combiners reduce network traffic by performing a mapper-
local reduction of the data before forwarding it on to the appropriate
reducer.

8.3.2 Partitioners:

• Partitioners control how keys and their values get sent to individual
reducers by dividing up the keyspace.

• The default behaviour is the HashPartitioner, which is often all that is
needed. By computing the hash of the key the partitioner allocates
keys evenly to each reducer and then assigns the key to a keyspace that
is determined by the number of reducers.

• Given a uniformly distributed keyspace, each reducer will get a
relatively equal workload. The problem occurs when there is a key
imbalance caused when a large number of values are associated with
one key. In such a situation, a major portion of the reducers are
unutilized, and the benefit of reduction using parallelism is lost.

• A custom partitioner can ease this problem by dividing the keyspace
according to some other semantic structure besides hashing.

8.3.3 Job Chaining:

• Most complex algorithms cannot be described as a simple map and
reduce, so in order to implement more complex analytics, a technique
called job chaining is required.

• If a complex algorithm can be decomposed into several smaller
MapReduce tasks, then these tasks can be chained together to produce
a complete output.

• Job chaining is therefore the combination of many smaller jobs into a
complete computation by sending the output of one or more previous
jobs into the input of another.

• Linear job chaining produces complete computations by sending the
output of one or more MapReduce jobs as the input to another

Fig.8.2- Job Chaining

mu
no
tes
.in

116

(Ref - Chapter 3, Fig 3.2 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• Linear job chaining is a simplification of the more general form of job

chaining, which is expressed as a data flow where jobs are dependent
on one or more previous jobs.

• Complex jobs are represented as directed acyclic graphs (DAG) that
describe how data flows from an input source through each job to the
next job and finally as final output

Fig. 8.3 - An extension of linear chaining Data flow job chaining

(Ref - Chapter 3, Fig 3.3 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

8.4 SPARK BASICS

• Apache Spark is a lightning-fast cluster computing technology

designed for fast computation. This framework was built above the
Hadoop MapReduce extending the MapReduce model to use a variety
computations efficiently which includes Interactive Queries and
Stream Processing.

• Apache Spark enables distributed programming that is similar to the
MapReduce model through an API for that is designed for faster
execution on iterative algorithms and interactive queries.

• Spark achieves the goal of executing computations with super speed
by caching data in the memory of the cluster nodes initially that may
be needed for computation. This allows Spark to execute iterative

mu
no
tes
.in

117

algorithms and get back to it without needing to reload it again from
disk.

• Spark stores the dataset in memory for the duration of execution of the
application thus does not need to reload data during iterations.

• Spark utilizes Hadoop platform in two ways – First by using it for
storage and second is to use it for processing. As Spark has its own
computation for cluster management, it uses Hadoop for storage
purposes only.

• While Spark is implemented in Scala it provides programming APIs in
Scala, Java, R, and Python.

8.5 THE SPARK STACK

• Apache Spark – It is a computing platform that is distributed and can
execute in a without a cluster called standalone mode. Spark is mainly
focused on computation rather than storage of data and as executed in
a cluster implementing cluster management and data warehousing
tools.

• When Spark is built with Hadoop the task of allocation and
management of cluster resources is done by YARN using its
ResourceManager. This way Spark can then access any kind of
Hadoop data source like HBase, Hive, etc

• Core Spark module is the one that provides Sparks primary
programming concepts to programmers and includes the API that
contains the functionality to for creating definitions of Resilient
Distributed Datasets (RDD).

Fig. 8.4 - Spark framework

(Ref - Chapter 4, Fig 4.1 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

mu
no
tes
.in

118

• The primary components of Spark Core are described as follows:

• Spark SQL

• It is a component which provides necessary support for data of
types structured and semi-structured.

• Provides API to interact with Spark.

• Libraries included provide structured data-processing using
DataFrames.

• Spark Streaming

• Enables real time processing and manipulation of unbounded
streams of data

• There are many streaming data libraries available for handling
real-time data.

• Spark Streaming makes sure that programmers get advantage by
allowing data interaction in a manner similar to interacting with a
normal RDD as data starts to come in.

• MLlib

• A library containing machine learning algorithms implemented as
Spark operations on RDD.

• MLib provides developers with scalable algorithms like the ones in
machine learning like neural networks, decision tress,
classification, regression, etc.

• GraphX

• It provides set of algorithms and tools that allow manipulation of
graphs and perform parallel operations on graphs

• It provides extension to the RDD API to include functions for
manipulation of graphs, creation subgraphs, or accessing all
vertices in a path.

8.6 RESILIENT DISTRIBUTED DATASETS (RDD)

• Spark does not deal with distributed data storage but it depends upon

Hadoop to provide storage functionality and itself uses Resilient
Distributed Datasets to make distributed computation more reliable .

• RDD is a concept suggesting a collection of objects that is read-only &
partitioned across a set of machines.

• RDD can be recreated using knowledge of the sequence of
applications of transformations to earlier RDD and are hence fault
tolerant and can be accessed using parallel operations. RDD can be

mu
no
tes
.in

119

read and written to distributed storages and also provide ability to be
cached in the memory of worker nodes for future iterations.

• The feature of in-memory caching helps achieve massive speedups in
execution and facilitates iterative computing required in the case of
machine learning analyses.

• RDD are executed using functional programming concepts which use
the concepts of map and reduce. New RDDs can be created by simply
of loading data or by making any transformation to an existing
collection of data resulting in generation of a new RDD.

• The knowledge of the sequence of applications of transformations to
RDD defines its lineage, and the transformations can be reapplied to
the complete collection in to recover from failure as they are
immutable.

• Spark API is a collection of operations that is used for creation,
transformation and export of RDD

• RDD can be operated upon using transformations and actions.

• Transformations – These consist of operations that are applied to an
existing RDD for the creation of a new one—for example, application
of a filter operation to an RDD for generation of a smaller RDD.

• Actions are operations that will return the computed result to the
Spark driver program —This results in a coordinating or aggregating
of all partitions of an RDD.

• In context of the MapReduce model, map is a transformation while
reduce is an action. In case of map transformation after passing a
function to each object present in the RDD it gives an output which is
a mapping from old RDD to a new one. In case of reduce operation the
RDD has to be partitioned again and an aggregate value like sum or
average has to be computed and returned.

8.7 A TYPICAL SPARK APPLICATION

• A typical Spark application will execute a dataset in parallel mode
throughout the cluster into the RDD

Fig. 8.5 - Typical Spark Application

mu
no
tes
.in

120

(Ref - Chapter 4, Fig 4.2 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

• The code Spark in applications is written in a driver program which is

executed on the drivers local machine upon its submission, and when
acted upon, this driver code is first distributed across the entire cluster
and then its execution is done by workers on their respective partitions.
For combining of the results they are sent back to the driver program.

• The driver program creates RDDs by executing a dataset in parallel
from a Hadoop data source then it applies transformations to obtain
new RDD then finally the action on the new RDD to get the output

• Programming Spark involves the following data flow sequence:

1. Definition of RDD by accessing data present on disk which
involves parallel execution of certain tasks like transformation of
an existing RDD. The task of Caching is important in Spark as
storing of RDDs inside the memory of a node allows us to achieve
super fast access for the performing calculations.

2. Invoke operations on the RDD by passing closured functions to
each element of the RDD. Spark library provides large number of
high-level operators other than map and reduce.

3. Use the output RDDs with aggregation actions like collect, save,
count, etc. Progress can be made only when the aggregation has
been computed on the cluster and hence Actions signal the end of
the computation.

• The Spark Execution Model

• The Spark Execution model brings about its execution through the
interaction of the following components: driver, YARN, and
workers.

• The SparkContext in a driver program coordinates the independent
execution of processes in Spark applications

• The context in SparkContext will connect to a cluster manager for
allocation of system resources.

• Management of every worker in the cluster is done by an executor,
and management of the executor is done by the SparkContext.

• The executor coordinates computation, storage and caching on
every machine.

mu
no
tes
.in

121

Fig. 8.6 - The Spark Execution Model

(Ref - Chapter 4, Fig 4.3 - Data Analytics with Hadoop - An Introduction
for Data Scientists)

 SUMMARY

In this chapter we got a thorough understanding of the Hadoop
concepts such as Hadoop Streaming, Advanced Map Reduce. We were
introduced with the basics of Apache Spark, the components of the Spark
Stack and the concept of Resilient Distributed Datasets (RDD) in Spark.
Finally the chapter was concluded with the description of working of a
typical Spark application.

 UNIT END QUESTION

1. Explain the concept of Hadoop Streaming

2. Explain the following Advanced Map Reduce concepts:

 a) Combiners b) Partitioners c) Job Chaining

3. Explain the Basics of Apache Spark

4. Explain the components of Spark Stack

5. Explain the concept of Resilient Distributed Datasets

6. Write short note on : A typical Spark Application

7. Write short note on : The Spark Execution model

8. What is data science pipeline? Explain in detail with a neat diagram.

9. How to refactor the data science pipeline into an iterative model?
Explain all its phases with a neat diagram.

10. List the requirements of distributed system in order to perform
computation at scale.

mu
no
tes
.in

122

11. How Hadoop addresses these requirements?

12. Write a short note on Hadoop architecture.

13. Explain with a neat diagram a small Hadoop cluster with two master
nodes and four workers nodes that implements all six primary
Hadoop services.

14. Write a short note on Hadoop Distributed File System.

15. How basic interaction can be done in Hadoop distributed file
system? Explain any five basic file system operations with its
appropriate command.

16. What are various types of permissions in Hadoop distributed file
system? What are different access levels? Write and explain
commands to set various types and access levels. What is a caveat
with file permissions on HDFS?

17. Explain functionality of map() function and reduce() function with a
neat diagram in a MapReduce context.

18. How MapReduce can be implemented on a Cluster? Explain its all
phases with a neat diagram.

19. Explain the details of data flow in a MapReduce pipeline executed
on a cluster of a few nodes with a neat diagram.

20. Write a short note on job chaining.

21. Demonstrate the process of Hadoop streaming in a MapReduce
context.

22. Demonstrate the process of Computing on CSV Data with Hadoop
Streaming.

22. Demonstrate the process of executing a Streaming job on a Hadoop
cluster.

23. Write a short note on Combiners in advanced MapReduce context.

24. Write a short note on Partitioners in advanced MapReduce context.

25. Write a short note on Job Chaining in advanced MapReduce context.

26. Write in brief about Spark. Also write and explain its primary
components.

 REFERENCES

• Data Analytics with Hadoop - An Introduction for Data Scientists by
Benjamin Bengfort and Jenny Kim

• Apache Spark
https://www.tutorialspoint.com/apache_spark/index.html

• RDD - https://spark.apache.org/docs/latest/rdd-programming-
guide.html

• Apache Spark - https://spark.apache.org/docs/latest/quick-start.html

mu
no
tes
.in

123

UNIT V

9

DISTRIBUTED ANALYSIS AND
PATTERNS

Unit Structure

9.0 Objectives

9.1 A Distributed Analysis And Patterns

9.1 Computing With Keys

9.2 Design Patterns

9.3 Toward Last-Mile Analytics

9.4 Unit End Questions

9.0 OBJECTIVES

To Study and Understand the following concept

• Distributed Analysis and Patterns,

• Computing with Keys

• Design Patterns

• Last-Mile Analytics

9.1 A DISTRIBUTED ANALYSIS AND PATTERNS

MapReduce and Spark allow developers and data scientists the ability to
easily con‐ duct data parallel operations, where data is distributed to
multiple processing nodes and computed upon simultaneously, then
reduced to a final output. YARN provides simple task parallelism by
allowing a cluster to perform multiple different operations simultaneously
by allocating free computational resources to perform individual tasks.
Parallelism reduces the amount of time required to perform a single
computation, thereby unlocking datasets that are measured in petabytes,
analyzed at thou‐ sands of records per second, or composed of multiple
heterogeneous data sources. However, most parallel operations like the
ones described to this point are simple, leading to the question, how can
data scientists conduct advanced data analysis at scale?

The primary principle of conducting large-scale analytics can be
summarized by the quip from Creighton Abrams: “When eating an
elephant, take one bite at a time.” Whereas single operations take many
small bites of the data, these operations must be composed into a step-by-

mu
no
tes
.in

124

step sequence called a data flow to be organized into more meaningful
results. Data flows may fork and merge, allowing for both task and data
parallelism if two operations can be computed simultaneously, but the
sequence must maintain the property that data is fed sequentially from an
input data source to a final output. For that reason, data flows are
described as directed acyclic graphs (DAGs). It is important, therefore, to
realize that if an algorithm, analysis, or other non-trivial computation can
be expressed as a DAG, then it can be parallelized on Hadoop.

 Unfortunately, it also quickly becomes apparent that many algorithms
aren’t easily converted into DAGs, and are therefore unsuitable for this
type of parallelism. Algo‐ rithms that cannot be described as a directed
data flow include those that maintain or update a single data structure
throughout the course of computation (requiring some shared memory) or
computations that are dependent on the results of another at intermediate
steps (requiring intermediate interprocess communication). Algorithms
that introduce cycles, particularly iterative algorithms that are not bounded
by a finite number of cycles, are also not easily described as DAGs.

There are tools and techniques that address requirements for cyclicity,
shared mem‐ ory, or interprocess communication in both MapReduce and
Spark, but to make use of these tools, algorithms must be rewritten to a
distributed form. Rather than rewrite algorithms, a less technical but
equally effective approach is usually employed: design a data flow that
decomposes the input domain into a smaller output that fits into the
memory of a single machine, run the sequential algorithm on that output,
then vali‐ date that analysis across the cluster with another data flow (e.g.,
to compute error).

It is because of the widespread use of this approach that Hadoop is often
said to be a preprocessor that unlocks the potential of large datasets by
reducing them into increasingly manageable chunks through every
operation. A common rule of thumb is use either MapReduce or Spark to
articulate data down to a computational space that can fit into 128 GB of
memory (a cost-effective hardware requirement for a sin‐ gle machine).
This rule is often called “last-mile” computing because it moves data from
an extremely large space to a place close enough, the last mile, that allows
for accurate analyses or application-specific computations.

In this chapter, we explore patterns for parallel computations in the
context of data flows that reduce or decompose the computational space
into a more manageable one. We begin by discussing key-based
computations, a requirement for MapReduce and also essential to Spark.
This leads us to a discussion of patterns for summariza‐ tion, indexing, and
filtering, which are key components to most decomposition algorithms. In
this context, we will discuss applications for statistical summarization,
sampling, search, and binning. We conclude by surveying three
preprocessing techniques for computing regression, classification, and
clustering style analyses

mu
no
tes
.in

125

This chapter also presents standard algorithms that are used routinely for
data analytics, including statistical summarization (the parallel “describe”
command), parallel grep, TF-IDF, and canopy clustering. Through these
examples, we will clarify the basic mechanics of both MapReduce and
Spark.

9.1 COMPUTING WITH KEYS

The first step toward understanding how data flows work in practice is to
understand the relationship between key/value pairs and parallel
computation. In MapReduce, all data is structured as key/value pairs in
both the map and reduce stages. The key requirement relates primarily to
reduction, as aggregation is grouped by the key, and parallel reduction
requires partitioning of the key space—in other words, the domain of key
values such that a reducer task sees all values for that key. If you don’t
necessarily have a key to group by (which is actually very common), you
could reduce to a single key that would force a single reduction on all
mapped values. However, in this case, the reduce phase would not benefit
from parallelism.

Although often ignored (especially in the mapper, where the key is simply
a document identifier), keys allow the computation to work on sets of data
simultaneously. Therefore, a data flow expresses the relation of one set of
values to another, which should sound familiar, especially presented in the
context of more traditional data management—structured queries on a
relational database. Similar to how you would not run multiple individual
queries for an analysis of different dimensions on a data‐ base like
PostgreSQL, MapReduce and Spark computations look to perform
grouping operations in parallel, as shown by the mean computation
grouped by key in Figure 9-1.

Figure 9-1. Keys allow parallel reduction by partitioning the key space to

mu
no
tes
.in

126

multiple reducers

Moreover, keys can maintain information that has already been reduced at
one stage in the data flow, automatically parallelizing a result that is
required for the next step in computation. This is done using compound
keys—a technique discussed in the next section that shows that keys do
not need to be simple, primitive values. Keys are so useful for these types
of computations, in fact, that although they are not strictly required in
computations with Spark (an RDD can be a collection of simple values),
most Spark applications require them for their analyses, primarily using
groupByKey, aggregateByKey, sortByKey and reduceByKey actions to
collect and reduce.

9.1.1 Compound Keys:

Keys need not be simple primitives such as integers or strings;
instead, they can be compound or complex types so long as they are both
hashable and comparable. Comparable types must at the very least expose
some mechanism to determine equality and some method of ordering.
Comparison is usually accomplished by mapping some type to a numeric
value (e.g., months of the year to the integers 1-12) or through a lexical
ordering. Hashable types in Python are any immutable type, the most
notable of which is the tuple. Tuples can contain mutable types (e.g., a
tuple of lists), however, so a hashable tuple is one that is composed of
immutable types. Mutable types such as lists and dictionaries can be
transformed into immutable tuples:

Compound keys are used in two primary ways: to facet the

keyspace across multiple dimensions and to carry key-specific information
forward through computational stages that involve the values alone.
Consider web log records of the following form:

Web log records are a typical data source of big data computations

on Hadoop, as they represent per-user clickstream data that can be easily
mined for insight in a variety of domains; they also tend to be very large,
dynamic semistructured datasets, well suited to operations in Spark and
MapReduce. Initial computation on this dataset requires a frequency
analysis; for example, we can decompose the text into two daily time
series, one for local traffic and the other for remote traffic using a
compound key:

mu
no
tes
.in

127

Mapping yields the following data from the preceding dataset:

Compound data serialization:

The final consideration when using compound keys (and complex
values) is to understand serialization and deserialization of the compound
data. Serialization is the process of turning an object in memory into a
stream of bytes such that it can be written to disk or transmitted across the
network (deserialization is the reverse process). This process is essential,
particularly in MapReduce, as keys and values are written (usually as
strings) to disk between map and reduce phases

By default in Spark, the Python API uses the pickle module for
serialization, which means that any data structures you use must be pickle-
able. With MapReduce Streaming, you must serialize both the key and the
value as a string, separated by a specified character, by default a tab (\t).

One common first attempt is to simply serialize an immutable type

(e.g., a tuple) using the built-in str function, converting the tuple into a
string that can be easily pickled or streamed. The problem then shifts to
deserialization; using the ast (abstract syntax tree) in the Python standard
library, we can use the literal_eval function to evaluate stringified tuples
back into Python tuple types as follows:

mu
no
tes
.in

128

As both keys and values get more complex. Other data structures

for serialization is Base64-encoded JSON because it is compact, uses only
ASCII characters, and is easily serialized and deserialized with the
standard library as follows:

However, take care when using more complex serial

representations; often there is a trade-off in the computational complexity
of serialization versus the amount of space used.

9.1.2-Keyspace Patterns:

The notion of computing with keys allows you to manage sets of
data and their relations. However, keys are also a primary piece of the
computation, and as such, they must be managed in addition to the data.
There several patterns that impact the keyspace, specifically the explode,
filter, transform, and identity patterns.

For the following examples, we will consider a dataset of orders
whose key is the order ID, customer ID, and timestamp, and whose value
is a list of universal product codes (UPCs) for the products purchased in
the order as follows:

Transforming the keyspace:

The most common key-based operation is a transformation of the
input key domain, which can be conducted either in a map or a reduce.
The most common transformation functions are direct assignment,
compounding, splitting, and inversion.

mu
no
tes
.in

129

Direct assignment drops the input key, which is usually entirely
ignored, and constructs a new key from the input value or another source
(e.g., a random key). Compounding constructs or adds to a compound key,
increasing the faceting of the key relation. Splitting breaks apart a
compound key and uses only a smaller piece of it. It is, however,
appropriate to also drop unneeded data and eliminate extraneous
information via compounding or splitting.

For example, in order to sort a dataset by value rather than by key,
it is necessary to first map the inversion of the key and value, perform a
sortByKey or utilize the shuffle and sort in MapReduce, then reinvert in
the reduce or with another map. Consider a job to sort our orders by the
number of products in each order, along with the date, which will use all
of the keyspace transformations identified earlier

This example is perhaps a bit verbose for the required task, but it does
demonstrate each type of transformation as follows:

1. First, the dataset is loaded from a CSV using the split method.

2. At this point, orders is only a collection of lists, so we assign keys by
breaking the value into the IDs and date as the key, and associate it
with the list of products as the value.

3. The next step is to get the length of the products list (number of
products ordered) and to parse the date, using a closure that wraps a
date format for date time.strptime; note that this method splits the
compound key and eliminates the customer ID, which is unnecessary.

4. In order to sort by order size, we need to invert the size value with the
key, also splitting the date from the key so we can also sort by date.

5. After performing the sort, this function reinverts so that each order
can be identified by size and date.

mu
no
tes
.in

130

The following snippet demonstrates what happens to the first record
throughout each map in the Spark job:

Through this series of transformations, the client program can then
take the top 10 orders by size and date, and print them out after the
distributed computation.

The explode mapper:

The explode mapper generates multiple intermediate key/value
pairs for a single input key. Generally, this is done by a combination of a
key shift and splitting of the value into multiple parts. An explode mapper
can also generate many intermediate pairs by dividing a value into its
constituent parts and reassigning them with the key. We can explode the
list of products per order value to order/product pairs, as in the following
code:

Note the use of the flatMap operation on the RDD, which is

specifically designed for explode mapping. It operates similarly to the
regular map; however, the function can yield a sequence instead of a
single item, which is then chained into a single collection (rather than an
RDD of lists).

The filter mapper:

Filtering is often essential to limit the amount of computation
performed in a reduce stage, particularly in a big data context. It is also

mu
no
tes
.in

131

used to partition a computation into two paths of the same data flow, a sort
of data-oriented branching in larger algorithms that is specifically
designed for extremely large datasets.

Spark provides a filter operation that takes a function and
transforms the RDD such that only elements on which the function returns
True are retained. This example shows a more advanced use of a closure
and a general filter function that can take any year. The partial function
creates a closure whose year argument to year_filter is always 2014,
allowing for a bit more versatility. MapReduce code is similar but requires
a bit more logic:

It is completely acceptable for a mapper to not emit anything,

therefore the logic for a filter mapper is to only emit when the condition is
met.

The identity pattern:

The final keyspace pattern that is commonly used in MapReduce is
the Identity function. This is simply a pass-through, such that identity
mappers or reducers return the same value as their input (e.g., as in the
identity function, f(x) = x). Identity mappers are typically used to perform
multiple reductions in a data flow. When an identity reducer is employed
in MapReduce, it makes the job the equivalent of a sort on the keyspace.
Identity mappers and reducers are implemented simply as follows:

mu
no
tes
.in

132

Identity reducers are generally more common because of the

optimized shuffle and sort in MapReduce. However, identity mappers are
also very important, particularly in chained MapReduce jobs where the
output of one reducer must immediately be reduced again by a secondary
reducer.

9.1.3 Pairs versus Stripes:

There are two ways that matrices are commonly represented: by
pairs and by stripes. Both pairs and stripes are examples of key-based
computation. To explain the motivation behind this example, consider the
problem of building a word co-occurrence matrix for a text-based corpus.

The word co-occurrence matrix as shown in Figure 9-2 is a square
matrix of size NxN, where N is the vocabulary (the number of unique
words) in the corpus. Each cell Wij contains the number of times both
word wi and word wj appear together in a sentence, paragraph, document,
or other fixed-length window. This matrix is sparse, particularly with
aggressive stopword filtering because most words only co-occur with very
few other words on a regular basis.

Figure 9.2 A word co-occurrence matrix demonstrates the frequency of terms

apperaring together in the same block of text such as a sentence
The pairs approach maps every cell in the matrix to a particular

mu
no
tes
.in

133

value, where the pair is the compound key i, j. Reducers therefore work on
per-cell values to produce a final, cell-by-cell matrix. This is a reasonable
approach, which yields output where each Wij is computed upon and
stored separately. Using a sum reducer, the mapper is as follows:

Here is the input:

While the pairs approach is easy to implement and understand, it

causes a lot of intermediate pairs that must be transmitted across the
network both during the MapReduce shuffle and sort phase, and during
groupByKey operations to shuffle values between partitions in an RDD.
Moreover, the pairs approach is not well suited to computations that
require an entire row (or column) of data.

The stripes approach was initially conceived as an optimization to
reduce the number of intermediate pairs and reduce network
communication in order to make jobs faster. However, it also quickly
became an essential tool in many algorithms that need to perform fast per-
element computations—for example, relative frequencies or other
statistical operations. Instead of pairs, a per-term associative array (a
Python dictionary) is constructed in the mapper and emitted as a value:

mu
no
tes
.in

134

The stripes approach is not only more compact in its
representation, but also generates fewer and simpler intermediary keys,
thus optimizing sorting and shuffling of data or other optimizations.
However, the stripes object is heavier, both in terms of processing time as
well as the serialization requirements, particularly if the stripes get very
large. There is a limit to the size of a stripe, particularly in very dense
matrices, which may take a lot of memory to track single occurrences.

9.2 DESIGN PATTERNS

Design patterns are a special term in software design: generic,
reusable solutions for a particular programming challenge. We can explore
functional design patterns for solving parallel computations in both
MapReduce and Spark. These patterns show a generic strategy and
principle that can be used in more complex or domain-specific roles.

Donald Miner and Adam Shook explore 23 design patterns for
common MapReduce jobs. They loosely categorize them as follows:

Summarization:
Provide a summary view of a large dataset in terms of aggregations,
grouping, statistical measures, indexing, or other high-level views of the
data.

Filtering:
Create subsets or samples of the data based on a fixed set of criteria,
without modifying the original data in any way.

mu
no
tes
.in

135

Data Organization:
Reorganize records into a meaningful pattern in a way that doesn’t
necessarily imply grouping. This task is useful as a first step to further
computations.

Joins:
Collect related data from disparate sources into a unified whole.

Metapatterns:
Implement job chaining and job merging for complex or optimized
computations. These are patterns associated with other patterns.

Input and output:
Transform data from one input source to a different output source using
data manipulation patterns, either internal to HDFS or from external
sources.

9.2.1 Summarization:

Summarization attempts to describe the largest amount of
information about a dataset as simply as possible. We are accustomed to
executive summaries that highlight the primary take-aways of a longer
document without getting into the details. Similarly, descriptive statistics
attempt to summarize the relationships between observations by
measuring their central tendency (mean, median), their dispersion
(standard deviation), the shape of their distribution (skewness), or the
dependence of variables on each other (correlation).

MapReduce and Spark in principle apply a sequence of summarizations
distilling the most specific form of the data (each individual record) to a
more general form. Broadly speaking, we are most familiar with
summarization as characterized by the following operations:

• Aggregation (collection to a single value such as the mean, sum, or
maximum)

• Indexing (the functional mapping of a value to a set of values)

• Grouping (selection or division of a set into multiple sets)

Aggregation:

An aggregation function in the context of MapReduce and Spark is
one that takes two input values and produces a single output value and is
also commutative and associative so that it can be computed in parallel.
Addition and multiplication are commutative and associative, whereas
subtraction and division are not.

Aggregation is the general application of an operation on a
collection to create a smaller collection (gathering together), and reduction
is generally considered an operation that reduces a collection into a single

mu
no
tes
.in

136

value. Aggregation can also be thought of as the application of a series of
smaller reductions. With this context, it’s easy to see why associativity
and commutativity are necessary for parallelism.

Consider the standard dataset descriptors: mean, median, mode,
minimum, maximum, and sum. Of these, summation, minimum, and
maximum are easily implemented because they are both associative and
commutative. Mean, median, and mode, however, are not. Although there
are parallel approximations for these computations, it is important to be
aware that some care should be taken when performing these types of
analyses.

Statistical summarization:

We can simplify and summarize large datasets by grouping
instances into keys and describing the per-key properties. Rather than
implementing a MapReduce job for each descriptive metric individually
(costly), we’re going to run all six jobs together in a single batch,
computing the count, sum, mean, standard deviation, and range (minimum
and maximum).

The basic strategy will be to map a collection of counter values for
each computation we want to make on a per-key basis. The reducer will
then apply each operation independently to each item in the value
collection, using each as necessary to compute the final output (e.g., mean
depends on both a count and a sum). Here is the basic outline for such a
mapper:

In this case, the three operations that will be directly reduced are

count, sum, and sum of squares. Therefore, this mapper emits on a per-key
basis, a 1 for count, the value for summation, and the square of the value
for the sum of the squares. The reducer uses the count and sum to compute
the mean, the value to compute the range, and the count, sum, and sum of
squares to compute the standard deviation as follows:

mu
no
tes
.in

137

The reducer utilizes the ast.literal_eval mechanism of deseri-
alization to parse the value tuple, then performs a single loop over the data
values to compute the various sums, minimums, and maximums.
Our mapper must extend the value with minimum and maximum counters,
such that the minimum and maximum values are tracked with each value
through the reduction as follows: mu

no
tes
.in

138

We can’t simply perform our final computation during the

aggregation, and another map is needed to finalize the summarization
across the (much smaller) aggregated RDD.

mu
no
tes
.in

139

The describe example provides a useful pattern for computing
multiple features simultaneously and returning them as a vector. This
pattern is reused often, particularly in the machine learning context, where
multiple procedures might be required in order to produce an instance to
train on (e.g., quadratic computations, normalization, imputation, joins, or
more specific machine learning tasks). Understanding the difference
between aggregation implementations in MapReduce versus Spark can
make a lot of difference in tracking down bugs and porting code from
MapReduce to Spark and vice versa.

9.2.2 Indexing:

In contrast to aggregation-based summarization techniques,
indexing takes a many- to-many approach. While aggregation collects
several records into a single record, indexing associates several records to
one or more indices. In databases, an index is a specialized data structure
that is used for fast lookups, usually a binary-tree (B-Tree). In
Hadoop/Spark, indices perform a similar function, though rather than
being maintained and updated, they are typically generated as a first step
to downstream computation that will require fast lookups.

Text indexing has a special place in the Hadoop algorithm
pantheon due to Hadoop’s original intended use for creating search
applications. When dealing with only a small corpus of documents, it may
be possible to scan the documents looking for the search term like grep
does. However, as the number of documents and queries increases, this
quickly becomes unreasonable. In this section, we take a look at two types
of text- based indices, the more common inverted index, as well as term
frequency-inverse document frequency (TF-IDF), a numerical statistic that
is associated with an index and is commonly used for machine learning.

Inverted index:

An inverted index is a mapping from an index term to locations in a
set of documents (in contrast to forward indexing, which maps from
documents to index terms). In full text search, the index terms are search
terms: usually words or numbers with stopwords removed (e.g., very
common words that are meaningless in search). Most search engines also
employ some sort of stemming or lemmatization: multiple words with the
same meaning are categorized into a single word class (e.g., “running”,
“ran”, “runs” is indexed by the single term “run”).

The search example shows the most common use case for an
inverted index: it quickly allows the search algorithm to retrieve the subset
of documents that it must rank and return without scanning every single
document. For example, for the query “running bear”, the index can be
used to look up the intersection of documents that contain the term
“running” and the term “bear”. A simple ranking system might then be
employed to return documents where the search terms are close together
rather than far apart in the document (though obviously modern search
ranking systems are far more complex than this).

mu
no
tes
.in

140

The search example can be generalized, however, to a machine
learning context. The index term does not necessarily have to be text; it
can be any piece of a larger record. Moreover, the task of using an index
to simplify or speed up downstream computation (like the ranking) is
common. Depending on how the index is created, there can be a trade-off
between performance and accuracy, or, given a stochastic index, between
precision and recall.

we would use an identity reducer and the following mapper (note that the
same algorithm is easily implemented with Spark):

The output of the character index job is a list of character names,

each of which corresponds to a list of lines where that character starts
speaking. This can be used as a lookup table or as input to other types of
analysis.

TF-IDF:

Term frequency-inverse document frequency (TF-IDF) is now probably
the most commonly used form of text-based summarization and is
currently the most commonly used feature of documents in text-based
machine learning. TF-IDF is a metric that defines the relationship between
a term (a word) and a document that is part of a larger corpus. In
particular, it attempts to define how important that word is to that
particular document given the word’s relative frequency in other
documents.

We include this algorithm with indexing for a similar reason that
we included the simpler inverted indexing example: it creates a data
structure that is typically used for downstream computations and machine
learning. Moreover, this more complex example highlights something
we’ve only touched upon in other sections: the use of job chaining to
compute a single algorithm. With that in mind, let’s take a look at the
MapReduce implementation of TF-IDF.

Typically, the tf-idf weight is composed by two terms: the first
computes the normalized Term Frequency (TF), aka. the number of times
a word appears in a document, divided by the total number of words in
that document; the second term is the Inverse Document Frequency (IDF),

mu
no
tes
.in

141

computed as the logarithm of the number of the documents in the corpus
divided by the number of documents where the specific term appears.

• TF: Term Frequency, which measures how frequently a term occurs

in a document. Since every document is different in length, it is
possible that a term would appear much more times in long documents
than shorter ones. Thus, the term frequency is often divided by the
document length (aka. the total number of terms in the document) as a
way of normalization:

TF(t) = (Number of times term t appears in a document) / (Total number
of terms in the document).

• IDF: Inverse Document Frequency, which measures how important

a term is. While computing TF, all terms are considered equally
important. However it is known that certain terms, such as "is", "of",
and "that", may appear a lot of times but have little importance. Thus
we need to weigh down the frequent terms while scale up the rare
ones, by computing the following:

IDF(t) = log_e(Total number of documents / Number of documents with
term t in it).

Consider a document containing 100 words wherein the
word cat appears 3 times. The term frequency (i.e., tf) for cat is then (3 /
100) = 0.03. Now, assume we have 10 million documents and the
word cat appears in one thousand of these. Then, the inverse document
frequency (i.e., idf) is calculated as log(10,000,000 / 1,000) = 4. Thus, the
Tf-idf weight is the product of these quantities: 0.03 * 4 = 0.12.

9.2.3 Filtering:

Filtering is one of the primary methods of coarse-grained data
reduction for downstream computation. Unlike aggregation methods,
which reduce the input space through a high-level overview over a set of
groups, filtering is intended to reduce the computational space through
omission. In fact, many filtering tasks are a perfect fit for map-only jobs,
which do not require reducers because mappers are so well suited to this
task. This can be considered filtering by predicate or by selection, similar
to a where clause in a SQL statement.

Other filtering tasks may leverage reducers in order to accumulate
a representative dataset or to perform some per-values filtering constraint.
Examples of this style of filtering include finding the n-largest or n-
smallest values, performing deduplication, or subselection. A very
common filtering task in analytics is sampling: creating a smaller,
representative dataset that is well distributed relative to the larger dataset
(depending on the type of distribution you are expecting to achieve). Data-
oriented subsamples are used in development, to validate machine-

mu
no
tes
.in

142

learning algorithms (e.g., cross-validation) or to produce other statistical
computations (e.g., power).

Generically we might implement filtering as a function that takes a
single record as input. If the evaluation returns true, the record is emitted;
otherwise, it is dropped. In this section, we explore sortless n-
largest/smallest, sampling techniques, as well as more advanced filtering
using Bloom filters to improve performance.

Top n records:

The top n records (and conversely the bottom n records)
methodology is a cardinality comparison filter that requires both a mapper
and reducer to work. The basic principle is to have each mapper yield its
top n items, and then the reducer will similarly choose the top n items
from the mappers. If n is relatively small (at least in comparison to the rest
of the dataset) a single reducer should be able to handle this computation
with ease because at most n records will come from each mapper:

The primary benefit of this methodology is that a complete sort

does not have to occur over the entire dataset. Instead, the mappers each

mu
no
tes
.in

143

sort their own subset of the data, and the reducer sees only n times the
number of mappers worth of data.

Simple random sample:

Simple random samples are subsets of a dataset where each record
is equally likely to belong to the subset. In this case, the evaluation
function does not care about the content or structure of the record, but
instead utilizes some random number generator to evaluate whether to
emit the record. The question is how to ensure that every element has an
equal likelihood of being selected.

A first approach if we don’t exactly need a specific sample of size
n but rather some percentage of records is to simply use a random number
generator to produce a number and compare it to the desired threshold
size. Generally speaking, random number generators return a value
between 0 and 1—so direct comparison to a percentage will yield the
intended result! For example, if we want to sample 20% of our dataset, we
might write a mapper as follows:

Bloom filtering:

A bloom filter is an efficient probabilistic data structure used to
perform set membership testing. A bloom filter is really no different from
any other evaluation function, except that a preliminary computation must
be made to gather “hot values”, which we would like to filter against. The
benefit is that a bloom filter is compact and fast to test membership.

Bloom filters suffer, however, from false positives—in other
words, saying something belongs to the set when it does not; however,
they guarantee that any exclusion does not belong in the membership
set—there are no false negatives). If you’re willing to have some
fuzziness, most bloom filters can be constructed with a threshold for the
probability of a false negative, by increasing or decreasing the size of the
bloom filter.

mu
no
tes
.in

144

In order to construct a bloom filter, you will first have to build it.
Bloom filters work by applying several hashes to input data, then by
setting bits in a bit array according to the hash. Once the bit array is
constructed, it can be used to test membership by applying hashes to the
test data and seeing if the relevant bits are 1 or not. The bit array
construction can either be parallelized by using rules to map distinct
values to a reducer that constructs the bloom filter, or it can be a living,
versioned data structure that is maintained by other processes.

In this example, we will use a third-party library,
pybloomfiltermmap, which can be installed using pip. Let’s consider an
example in which we are including tweets based on whether they contain a
hashtag or @ reply that is in a whitelist of terms and usernames. In order
to create the bloom filter, we load our data from disk, and save the bloom
filter to mmap file as follows:

After reading our hashtags and Twitter handles from files on, our

bloom filter will be written to disk in a file called twitter.bloom.
To employ this in a Spark context:

Bloom filters are potentially the most complex data structure that

you will use on a regular basis performing analytics in Hadoop.

9.3 TOWARD LAST-MILE ANALYTICS

Many machine learning techniques use generalized linear models

(GLM) under the hood to estimate a response variable given some input

mu
no
tes
.in

145

data and an error distribution. The most commonly used GLM is a linear
regression (others include logistic and Poisson regressions), which models
the continuous relationship between a dependent variable Y and one or
more independent variables, X. That relationship is encoded by a set of
coefficients and an error term as follows:

We can state that the computation of the � coefficients is the

primary goal of fitting the model to existing data. This is generally done
via an optimization algorithm that finds the set of coefficients that
minimizes the amount of error given some dataset with observations for X
and Y. Note that linear regression can be considered a supervised machine
learning method, as the “correct” answers are known in advance.

Optimization algorithms like ordinary least squares or stochastic

gradient descent are iterative; that is, they make multiple passes over the
data. In a big data context, reading a complete dataset multiple times for
each optimization iteration can be prohibitively time consuming,
particularly for on-demand analytics or development. Spark makes things
a bit better with distributed machine learning algorithms and inmemory
computing exposed in its MLlib. However, for extremely large datasets, or
smaller time windows, even Spark can take too long; and if Spark doesn’t
have the model or distributed algorithm you’d like to implement, then the
many gotchas of distributed programming could limit your analytical
choices.

The general solution is the one: decompose your problem by
transforming the input dataset into a smaller one, until it fits in memory.
Once the dataset is reduced to an in-memory computation, it can be ana-
lyzed using standard techniques, then validated across the entire dataset.
For a linear regression, we could take a simple random sample of the
dataset, perform feature extraction on the sample, build our linear model,
then validate the model by computing the mean square error of the entire
dataset.

9.3.1 Fitting a Model:

Consider a specific example where we have a dataset that
originates from news articles or blog posts and a prediction task where we
want to determine the number of comments in the next 24 hours. Given
the raw HTML pages from a web crawl, the data flow may be as follows:

1. Parse HTML page for metadata and separate the main text and the
comments.

2. Create an index of comments/commenters to blog post associated with
a timestamp.

3. Use the index to create instances for our model, where an instance is a
blog post and the comments in a 24-hour sliding window.

mu
no
tes
.in

146

4. Join the instances with the primary text data (for both comments and
blog test).

5. Extract the features of each instance (e.g., number of comments in the
first 24 hours, the length of the blog post, bag of words features, day of
week, etc.).

6. Sample the instance features.

7. Build a linear model in memory using Scikit-Learn or Statsmodels.

8. Compute the mean squared error or coefficient of determination across
the entire dataset of instance features.

At this point, let’s assume that through techniques we’ve already
learned we’ve managed to arrive at a dataset that has all features extracted.
Using the sampling technique, we can take a smaller dataset and save it to
disk, and build a linear model with Scikit-Learn:

This snippet of code uses the np.loadtxt function to load our

sample data from disk, which in this case must be a tab-delimited file of
instances where the first column is the target value and the remaining
columns are the features. This type of output matches what might happen
when key/value pairs are written to disk from Spark or MapReduce,
although you will have to collect the data from the cluster into a single
file, and ensure it is correctly formatted.

9.3.2 Validating Models:

In order to use this model in the cluster to evaluate our
performance, we have two choices. First, we could write the Scikit-Learn
linear model properties, clf.coef_ (coefficients) and clf.intercept_ (error
term) to disk and then load those parameters into our MapReduce or Spark
job and compute the error ourselves. However, this requires us to
implement a prediction function for every single model we may want to
use. Instead, we will use the pickle module to dump the model to disk,

mu
no
tes
.in

147

then load it to every node in the cluster to make our prediction.

In order to validate our model, we must compute the mean square
error (MSE) across the entire dataset. Error is defined as the difference
between the actual and predicted values.

mu
no
tes
.in

148

SUMMARY

This chapter we learn the concept of Distributed Analysis and Patterns
using MapReduce, Spark and YARN concept for big data analytics. How
to Computing with Keys, Compound Keys using final consideration when
using compound keys (and complex values) is to understand serialization
and deserialization of the compound data and different design pattern,.
Concept of Summarization, Aggregation, Indexing, Inverted index, etc..
used in MapReduce.

REVIEW QUESTIONS

1. What are the Distributed Analysis and Patterns.

2. What are the Computing with Keys.

3. Write a short note on Compound Keys

4. Explain Compound data serialization

5. What are the identity pattern..

6. Write a short note on Pairs versus Stripes

7. Explain different Design Patterns.

8. What is mean by Summarization.

REFERENCES

• Data Science & Big Data Analytics Discovering, Analyzing,

Visualizing and Presenting Data EMC Education Services Published
by John Wiley & Sons, Inc

mu
no
tes
.in

149

10

DATA MINING AND WAREHOUSING

Unit Structure

10.0 Objectives

10.1 Data Mining And Warehousing

10.1 Structured Data Queries With Hive

10.2 Structured Data Queries With Hive

10.3 Data Ingestion

10.4 Ingesting Streaming Data With Flume

10.5 Analytics With Higher-Level Apis

10.0 OBJECTIVES

To Study and Understand the following concept

• Data Mining and Warehousing

• Structured Data Queries with Hive

• HBase

• Data Ingestion

• Importing Relational data with Sqoop

• Injesting stream data with flume.

• Analytics with higher level APIs

• Pig

• Spark’s higher level APIs.

10.1 DATA MINING AND WAREHOUSING

It’s estimated that ETL consumes 70–80% of data warehousing
costs, risks, and implementation time. This overhead makes it costly to
perform even modest levels of data analysis prototyping or exploratory
analysis. RDBMSs present another limitation in the face of the rapidly
expanding diversity of data types that we need to store and analyze, which
can be unstructured (emails, multimedia files) or semi-structured
(clickstream data) in nature. The velocity and variety of this data often
demands the ability to evolve the schema in a “just-in-time” manner,
which is very tough to support in a traditional DW.

mu
no
tes
.in

150

It’s for these reasons that Hadoop has become the most disruptive
technology in the data warehousing and data mining space. Hadoop’s
separation of storage from processing enables organizations to store their
raw data in HDFS without necessitating ETLs to conform the data into a
single unified data model. Moreover, with YARN’s generalized
processing layer, we’re able to directly access and query the raw data from
multiple perspectives and using different methods (SQL, non-SQL) as
appropriate for the particular use case. Hadoop thus not only enables
exploratory analysis and data mining prototyping, it opens the floodgates
to new types of data and analysis.

10.2 STRUCTURED DATA QUERIES WITH HIVE

Apache Hive is a “data warehousing” framework built on top of
Hadoop. Hive provides data analysts with a familiar SQL-based interface
to Hadoop, which allows them to attach structured schemas to data in
HDFS and access and analyze that data using SQL queries. Hive has made
it possible for developers who are fluent in SQL to leverage the scalability
and resilience of Hadoop without requiring them to learn Java or the
native MapReduce API.

Hive provides its own dialect of SQL called the Hive Query
Language, or HQL. HQL supports many commonly used SQL statements,
including data definition statements (DDLs), data manipulation statements
(DMSs), and data retrieval queries. Hive also supports integration of
custom user-defined functions, which can be written in Java or any
language supported by Hadoop Streaming, that extend the built-in func-
tionality of HQL.

Hive commands and HQL queries are compiled into an execution
plan or a series of HDFS operations and/or MapReduce jobs, which are
then executed on a Hadoop cluster. Thus, Hive has inherited certain
limitations from HDFS and MapReduce that constrain it from providing
key online transaction processing (OLTP) features that one might expect
from a traditional database management system. In particular, because
HDFS is a write-once, read-many (WORM) file system and does not
provide in-place file updates, Hive is not very efficient for performing
row-level inserts, updates, or deletes.

Additionally, Hive queries entail higher-latency due to the
overhead required to generate and launch the compiled MapReduce jobs
on the cluster; even small queries that would complete within a few
seconds on a traditional RDBMS may take several minutes to finish in
Hive.

On the plus side, Hive provides the high-scalability and high-
throughput that you would expect from any Hadoop-based application,
and as a result, is very well suited to batch-level workloads for online
analytical processing (OLAP) of very large datasets at the terabyte and
petabyte scale.

mu
no
tes
.in

151

10.2.1 The Hive Command-Line Interface (CLI):

Hive’s installation comes packaged with a handy command-line
interface (CLI), which we will use to interact with Hive and run our HQL
statements. To start the Hive CLI from the $HIVE_HOME:

~$ cd $HIVE_HOME

 /srv/hive$ bin/hive

This will initiate the CLI and bootstrap the logger and Hive
history file, and finally display a Hive CLI prompt:
hive>

At any time, you can exit the Hive CLI using the following command:
hive> exit;

Hive can also run in non-interactive mode directly from the command line
by passing the filename option, -f, followed by the path to the script to
execute:
~$ hive -f ~/hadoop-fundamentats/hive/init.hqt
~$ hive -f ~/hadoop-fundamentats/hive/top_50_ptayers_by_homeruns.hqt
>> ~/homeruns.tsv

Additionally, the quoted-query-string option, -e, allows you to run inline
commands from the command line:
~$ hive -e 'SHOW DATABASES;'

You can view the full list of Hive options for the CLI by using the -H flag:

…..

mu
no
tes
.in

152

10.1.2 Hive Query Language (HQL):

However, because Hive data is stored in the file system, usually in

HDFS or the local file system, the CREATE TABLE command also takes
optional clauses to specify the row format with the ROW FORMAT
clause that tells Hive how to read each row in the file and map to our
columns. For example, we could indicate that the data is in a delimited file
with fields delimited by the tab character:

Fortunately, Hive provides a way for us to apply a regex to known

record formats to deserialize or parse each row into its constituent fields.
We’ll use the Hive serializer-deserializer row format option, SERDE, and
the contributed RegexSerDe library to specify a regex with which to

mu
no
tes
.in

153

deserialize and map the fields into columns for our table. We’ll need to
manually add the hive-serde JAR from the lib folder to the current hive
session in order to use the RegexSerDe package:

hive> ADD JAR /srv/hive/tib/hive-serde-0.13.1.jar;

And now let’s drop the apache_tog table that we created previously, and
re-create it to use our custom serializer:

mu
no
tes
.in

154

Table 10.1 Hive primitive data type

Table 10.2 Hive complex data type

Loading data:

Hive does not perform any verification of the data for compliance
with the table schema, nor does it perform any transformations when
loading the data into a table. Data loading in Hive is done in batch-
oriented fashion using a bulk LOAD DATA command or by inserting
results from another query with the INSERT command. To start,

let’s copy our Apache log data file to HDFS and then load it into the table
we created earlier:

You can verify that the apache.log file was successfully uploaded
to HDFS with the tail command:

~$ hadoop fs –tail statistics/log_data/apache.log

Once the file has been uploaded to HDFS, return to the Hive CLI and use
the log_data database:

mu
no
tes
.in

155

INPATH takes an argument to a path on the default file system (in
this case, HDFS). We can also specify a path on the local file system by
using LOCAL INPATH instead.

10.1.3 Data Analysis with Hive:

SQL GROUP BY query can be used to computes the number of
hits per calendar month:

we can easily perform other ad hoc queries on any of the other fields for
example:
hive> SELECT host, count(1) AS count FROM apache_log GROUP BY
host ORDER BY count;

In addition to count, Hive also supports other aggregate functions
to compute the sum, average, min, max as well as statistical aggregations
for variance, standard deviation, and covariance of numeric columns.

mu
no
tes
.in

156

When using these built-in aggregate functions, you can improve the
performance of the aggregation query by setting the following property to
true:
hive> SET hive.map.aggr = true;

We can create new tables to store the results returned by these
queries for later record-keeping and analysis:

Aggregations and joins:

Consider the US flight data ontime_flights.tsv. Each row of the on-
time flight data in ontime_flights.tsv includes an integer value that
represents the code for AIRLINE_ID (such as 19805) and a string value
that represents the code for CARRIER (such as “AA”). AIRLINE_ID
codes can be joined with the corresponding code in the airlines.tsv file in
which each row contains the code and corresponding description:
19805 American Airlines Inc.: AA

Accordingly, CARRIER codes can be joined with the
corresponding code in carriers.tsv, which contains the code and
corresponding airline name and effective dates:
AA American Airlines Inc. (1960 -)
Assuming that we’ve uploaded our data files to HDFS or local file system
and created required tables with data.

To get a list of airlines and their respective average departure
delays, we can simply perform a SQL JOIN on flights and airlines on the
airline code and then use the aggregate function AVG() to compute the
average depart_delay grouped by the airline description:

mu
no
tes
.in

157

10.2 HBase

We know that while Hive provides a familiar data manipulation
paradigm within Hadoop, it doesn’t change the storage and processing
paradigm, which still utilizes HDFS and MapReduce in a batch-oriented
fashion. HBase is part of the Hadoop ecosystem which offers random real-
time read/write access to data in the Hadoop File System.

10.2.1 NoSQL and Column-Oriented Databases:

NoSQL is a broad term that generally refers to non-relational
databases and encompasses a wide collection of data storage models,
including graph databases, document databases, key/value data stores and
column family databases. HBase is classified as a column-family or
column-oriented database, modeled on Google’s BigTable architecture.
This architecture allows HBase to provide:

• Random (row-level) read/write access

• Strong consistency

• “Schema-less” or flexible data modeling

The schema-less trait is a result of how HBase approaches data
modeling, which is very different from how relational databases approach
data modeling. HBase organizes data into tables that contain rows. Within
a table, rows are identified by their unique row key, which do not have a
data type and are instead stored and treated as a byte array. Row keys are
similar to the concept of primary keys in relational databases, in that they
are automatically indexed; in HBase, table rows are sorted by their row
key and because row keys are byte arrays, almost anything can serve as a
row key from strings to binary representations of longs or even serialized
data structures.

HBase stores its data as key/value pairs, where all table lookups
are performed via the table’s row key, or unique identifier to the stored
record data. Data within a row is grouped into column families, which
consist of related columns. Visually, you can picture an HBase table that
holds census data for a given population where each row represents a
person and is accessed via a unique ID rowkey, with column families for
personal data which contains columns for name and address, and
demographic info which contains columns for birthdate and gender. This
example is shown in Figure 10.3.

mu
no
tes
.in

158

Figure 10.3 Census data as an HBase schema

Storing data in columns rather than rows has particular benefits for
data warehouses and analytical databases where aggregates are computed
over large sets of data with potentially sparse values, where not all
columns values are present. However, the actual columns that make up a
row can be determined and created on an as-needed basis. In fact, each
row can have a different set of columns. Figure 6-2 shows an example
HBase table with two rows where first row key utilizes three column
families and the second row key utilizes just one column.

10.4 Social media events with sparse columns

Another interesting feature of HBase and BigTable-based column-

oriented databases is that the table cells, or the intersection of row and
column coordinates, are versioned by timestamp, stored as a long integer
representing milliseconds since January 1, 1970 UTC. HBase is thus also
described as being a multidimensional map where time provides the third
dimension, as shown in Figure 6-3. The time dimension is indexed in
decreasing order, so that when reading from an HBase store, the most
recent values are found first. The contents of a cell can be referenced by a
{rowkey, column, timestamp} tuple, or we can scan for a range of cell values
by time range.

mu
no
tes
.in

159

10.5 HBase timestamp versioning

10.2.2 Real-Time Analytics with HBase:

HBase schemas can be created or updated with the HBase Shell or
with the Java API, using the HBaseAdmin interface class. Additionally,
HBase supports a number of other clients that can be used to support non-
Java programming languages, including a REST API interface, Thrift, and
Avro. These clients act as proxies that wrap the native Java API.

Generating a schema:

When designing schemas in HBase, it’s important to think in terms
of the column- family structure of the data model and how it affects data
access patterns. Furthermore, because HBase doesn’t support joins and
provides only a single indexed rowkey, we must be careful to ensure that
the schema can fully support all use cases. Often this involves de-
normalization and data duplication with nested entities.

But HBase allows dynamic column definition at runtime, we have
quite a bit of flexibility even after table creation to modify and scale our
schema.

Namespaces, tables, and column families:

First, we need to declare the table name, and at least one column-
family name at the time of table definition. We can also declare our own
optional namespace to serve as a logical grouping of tables, analogous to a
database in relational database systems. If no namespace is declared,
HBase will use the default namespace.

mu
no
tes
.in

160

Row keys:

Before we insert row data, we need to determine how to design our
row key. By default, HBase stores rows in sorted order by row key, so that
similar keys are stored to the same RegionServer. While this enables faster
range scans, it could also lead to uneven load on particular servers during
read/write operations. For the current example, let’s assume that we will
use the unique reversed link URL for the row key.

mu
no
tes
.in

161

Inserting data with put:

 mu
no
tes
.in

162

Scan rows:

mu
no
tes
.in

163

Filters:

HBase provides a number of filter classes that can be applied to
further filter the row data returned from a get or scan operation. These
filters can provide a much more efficient means of limiting the row data
returned by HBase and offloading the row-filtering operations from the
client to the server. Some of HBase’s available filters include:

• RowFilter: Used for data filtering based on row key values

• ColumnRangeFilter: Allows efficient intra-row scanning, can be used
to get a slice of the columns of a very wide row.

• SingleColumnValueFilter: Used to filter cells based on column value

• RegexStringComparator: Used to test if a given regular expression
matches a cell value in the column.

The HBase Java API provides a Filter interface and abstract

FilterBase class plus a number of specialized Filter subclasses. Custom
filters can also be created by subclassing the FilterBase abstract class and
implementing the key abstract methods.

To begin, we need to import the necessary classes, including the
org.apache.hadoop.hbase.util.Bytes to convert our column family, column,
and values into bytes, and the filter and comparator classes:

mu
no
tes
.in

164

10.3 DATA INGESTION

One of Hadoop’s greatest strengths is that it’s inherently
schemaless and can work with any type or format of data regardless of
structure (or lack of structure) from any source, as long as you implement
Hadoop’s Writable or DBWritable interfaces and write your MapReduce
code to parse the data correctly. However, in cases where the input data is
already structured because it resides in a relational database, it would be
convenient to leverage this known schema to import the data into Hadoop
in a more efficient manner than uploading CSVs to HDFS and parsing
them manually.

Sqoop (SQL-to-Hadoop) is designed to transfer data between
relational database management systems (RDBMS) and Hadoop. It
automates most of the data transformation process, relying on the RDBMS
to provide the schema description for the data to be imported.

While Sqoop works very well for bulk-loading data that already
resides in a relational database into Hadoop, many new applications and
systems involve fast-moving data streams like application logs, GPS
tracking, social media updates, and sensor-data that we’d like to load
directly into HDFS to process in Hadoop. In order to handle and process
the high-throughput of event-based data produced by these systems, we
need the ability to support continuous ingestion of data from multiple
sources into Hadoop.

mu
no
tes
.in

165

Apache Flume was designed to efficiently collect, aggregate, and
move large amounts of log data from many different sources into a
centralized data store. While Flume is most often used to direct streaming
log data into Hadoop, usually HDFS or HBase, Flume data sources are
actually quite flexible and can be customized to transport many types of
event data, including network traffic data, social media-generated data,
and sensor data into any Flume-compatible consumer.

10.3.1 Importing Relational Data with Sqoop:

Sqoop (SQL-to-Hadoop) is a relational database import and export
tool created by Cloudera, and is now an Apache top-level project. Sqoop is
designed to transfer data between a relational database like MySQL or
Oracle, into a Hadoop data store, including HDFS, Hive, and HBase. It
automates most of the data transfer process by reading the schema
information directly from the RDBMS. Sqoop then uses MapReduce to
import and export the data to and from Hadoop.

Sqoop gives us the flexibility to maintain our data in its production
state while copying it into Hadoop to make it available for further analysis
without modifying the production database.

10.3.2 Importing from MySQL to HDFS:

When importing data from relational databases like MySQL,
Sqoop reads the source database to gather the necessary metadata for the
data being imported. Sqoop then submits a map-only Hadoop job to
transfer the actual table data based on the metadata that was captured in
the previous step. This job produces a set of serialized files, which may be
delimited text files, binary format (e.g., Avro), or Sequence Files con-
taining a copy of the imported table or datasets. By default, the files are
saved as comma-separated files to a directory on HDFS with a name that
corresponds to the source table name.

Assuming that you have MySQL with a database called energydata
and a table called average_price_by_state:

Before we proceed to run the sqoop import command, verify that HDFS
and YARN are started with the jps command:

mu
no
tes
.in

166

10.2.3 Importing from MySQL to Hive:

Sqoop provides a couple ways to do this, either exporting to HDFS
first and then loading the data into Hive using the LOAD DATA HQL
command in the Hive shell, or by using Sqoop to directly create the tables
and load the relational database data into the corresponding tables in Hive.

Sqoop can generate a Hive table and load data based on the defined
schema and table contents from a source database, using the import
command. However, because Sqoop still actually utilizes MapReduce to
implement the data load operation, we must first delete any preexisting
data directory with the same output name before running the import tool:

In local mode, Hive will create a metastore_db directory within the
file system location from which it was run; After above query
metastore_db will be created under the SQOOP_HOME (/srv/sqoop).
Open the Hive shell and verify that the table average_price_by_state was
created:

mu
no
tes
.in

167

10.3.4 Importing from MySQL to HBase:

HBase is designed to handle large volumes of data for a large
number of concurrent clients that need real-time access to row-level data.
Sqoop’s import tool allows us to import data from a relational database to
HBase. As with Hive, there are two approaches to importing this data. We
can import to HDFS first and then use the HBase CLI or API to load the
data into an HBase table, or we can use the --hbase-table option to
instruct Sqoop to directly import to a table in HBase.

In this example, the data that we want to offload to HBase is a
table of weblog stats where each record contains a primary key composed
of the pipe-delimited IP address and year, and a column for each month
that contains the number of hits for that IP and year. You can find the CSV
named weblogs.csv in the GitHub repo’s /data directory. Download this
CSV and load it into a MySQL table. Consider we have table weblogs in
logadata database in MQSQL.

mu
no
tes
.in

168

10.4 INGESTING STREAMING DATA WITH FLUME

Flume is designed to collect and ingest high volumes of data from
multiple data streams into Hadoop. A very common use case for Flume is
the collection of log data, such as collecting web server log data emitted
from multiple application servers, and aggregating it in HDFS for later
search or analysis. However, Flume isn’t restricted to simply consuming
and ingesting log data sources, but can also be customized to transport
massive quantities of event data from any custom event source. In both
cases, Flume enables us to incrementally and continuously ingest
streaming data as it is written into Hadoop, rather than writing custom client
applications to batch-load the data into HDFS, HBase, or other Hadoop
data sink. Flume provides a unified yet flexible method of pushing data
from many fast-moving, disparate data streams into Hadoop.

Flume’s flexibility is derived from its inherently extensible data
flow architecture. In addition to flexibility, Flume is designed to maintain
both fault-tolerance and scalability through its distributed architecture.
Flume provides multiple failover and recovery mechanisms, although the
default “end-to-end” reliability mode that guarantees that accepted events
will eventually be delivered is generally the recommended setting.

10.4.1 Flume Data Flows:

Flume expresses the data ingestion pathway from origin to
destination as a data flow. In a data flow, a unit of data or event (e.g., a
single log statement) travels from a source to the next destination via a
sequence of hops. This concept of data flow is expressed even in the
simplest entity in a Flume flow, a Flume agent. A Flume agent is a single
unit within a Flume data flow (actually, a JVM process), through which
events propagate once initiated at an external source. Agents consist of
three configurable components: the source, channel, and sink, as shown in
Figure 10-6.

Figure 10.6. flume agent design

mu
no
tes
.in

169

A Flume source is configured to listen for and consume events
from one or more external data sources (not to be confused with a Flume
source), which are configured by setting a name, type, and additional
optional parameters for each data source. For example, we could configure
up a Flume agent’s source to accept events from an Apache access log by
running a tail -f /etc/httpd/logs/access_log command. This type of source
is called an exec source because it requires Flume to execute a Unix
command to retrieve events.

When the agent consumes an event, the Flume source writes it to a
channel, which acts as a storage queue that stores and buffers events until
they are ready to be read. Events are written to channels transactionally,
meaning that a channel keeps all events queued until they have been
consumed and the corresponding transactions are explicitly closed. This
enables Flume to maintain durability of data events even if an agent goes
down.

Flume sinks eventually read and remove events from the channel
and forward them to their next hop or final destination. Sinks can thus be
configured to write its output as a streaming source for another Flume
agent, or to a data store like HDFS or HBase.

Using this source-channel-sink paradigm, we can easily construct a
simple singleagent Flume data flow to consume events from an Apache
access log and write the log events to HDFS, as shown in Figure 10-7.

Figure 10.7.Simple Flume data flow

But because Flume agents are so adaptable and can even be

configured to have multiple sources, channels, and sinks, we can actually
construct multi-agent data flows by chaining several Flume agents
together, as shown in Figure 10.8.

mu
no
tes
.in

170

Figure 10.8. Multi-agent Flume data flow

There’s almost no boundaries around how Flume agents can be
organized into these complex data flows, although certain patterns and
topologies of Flume data flows have emerged to handle common scenarios
when dealing with a streaming data- processing architecture. For instance,
a common scenario in log collection is when a large number of log
producing clients are writing events to several Flume agents, which we
call “first-tier” agents, as they are consuming data at the layer of the exter-
nal data source(s). If we want to write these events to HDFS, we can set
up each of the first-tier agents’ sinks to write to HDFS, but this could
present several problems as the first-tier scales out. Because several
disparate agents are writing to HDFS independently, this data flow
wouldn’t be able to handle periodic bursts of data writes to the storage
system and could thus introduce spikes in load and latency.

10.5 ANALYTICS WITH HIGHER-LEVEL APIS

10.5.1 Pig:

Pig, like Hive, is an abstraction of MapReduce, allowing users to
express their data processing and analysis operations in a higher-level
language that then compiles into a MapReduce job. Pig is now a top-level
Apache Project that includes two main platform components:

• Pig Latin, a procedural scripting language used to express data flows.

• The Pig execution environment to run Pig Latin programs, which can
be run in local or MapReduce mode and includes the Grunt command-
line interface.

Pig Latin is procedural in nature and designed to enable

programmers to easily implement a series of data operations and
transformations that are applied to datasets to form a data pipeline. While
Hive is great for use cases that translate well to SQL-based scripts, SQL
can become unwieldy when multiple complex data transformations are
required. Pig Latin is ideal for implementing these types of multistage data
flows, particularly in cases where we need to aggregate data from multiple
sources and perform subsequent transformations at each stage of the data
processing flow.

mu
no
tes
.in

171

Pig Latin scripts start with data, apply transformations to the data
until the script describes the desired results, and execute the entire data
processing flow as an optimized MapReduce job. Additionally, Pig
supports the ability to integrate custom code with user-defined functions
(UDFs) that can be written in Java, Python, or JavaScript, among other
supported languages. Pig thus enables us to perform near arbitrary
transformations and ad hoc analysis on our big data using comparatively
simple constructs.

It is important to remember the earlier point that Pig, like Hive,
ultimately compiles into MapReduce and cannot transcend the limitations
of Hadoop’s batch-processing approach. However, Pig does provide us
with powerful tools to easily and succinctly write complex data processing
flows, with the fine-grained controls that we need to build real business
applications on Hadoop.

10.5.2 Pig Latin:

The following script loads Twitter tweets with the hashtag
#unitedairlines over the course of a single week. The data file,
united_airlines_tweets.tsv, provides the tweet ID, permalink, date posted,
tweet text, and Twitter username. The script loads a dictionary,
dictionary.tsv, of known “positive” and “negative” words along with
sentiment scores (1 and -1, respectively) associated to each word. The
script then performs a series of Pig transformations to generate a sentiment
score and classification, either POSITIVE or NEGATIVE, for each
computed tweet:

mu
no
tes
.in

172

10.5.3 Data Types in pig:

Table 10.1. Pig scalar types

Table 10.2 Pig relational operators

10.5.4 User-Defined Functions:

Pig provides extensive support for such user-defined functions
(UDFs), and currently provides integration libraries for six languages:
Java, Jython, Python, JavaScript, Ruby, and Groovy. In this scenario, we
would like to write a custom eval UDF in java that will allow us to convert
the score classification evaluation into a function.

mu
no
tes
.in

173

10.5.5 Wrapping Up:

Pig can be a powerful tool for users who prefer a procedural
programming model. It provides the ability to control data checkpoints in
the pipeline, as well as fine-grained controls over how the data is
processed at each step. This makes Pig a great choice when you require
more flexibility in controlling the sequence of operations in a data
flow (e.g., an extract, form, and load, or ETL, process), or when you are
working with semi-structured data that may not lend itself well to Hive’s
SQL syntax.

10.6 SPARK’S HIGHER-LEVEL APIS

In practice, a typical analytic workflow will entail some
combination of relational queries, procedural programming, and custom
processing, which means that most end-to-end Hadoop workflows involve
integrating several disparate components and switching between different
programming APIs. Spark, in contrast, provides two major programming
advantages over the MapReduce-centric Hadoop stack:

• Built-in expressive APIs in standard, general-purpose languages like
Scala, Java, Python, and R

• A unified programming interface that includes several built-in higher-

mu
no
tes
.in

174

level libraries to support a broad range of data processing tasks,
including complex interactive analysis, structured querying, stream
processing, and machine learning.

10.6.1 Spark SQL:

Spark SQL is a module in Apache Spark that provides a relational
interface to work with structured data using familiar SQL-based
operations in Spark. It can be accessed through JDBC/ODBC connectors,
a built-in interactive Hive console, or via its built-in APIs. The last method
of access is the most interesting and powerful aspect of Spark SQL;
because Spark SQL actually runs as a library on top of Spark’s Core
engine and APIs, we can access the Spark SQL API using the same
programming interface that we use for Spark’s RDD APIs, as shown in
Figure 10-9.

Figure 10.9. Spark SQL interface

This allows us to seamlessly combine and leverage the benefits of

relational queries with the flexibility of Spark’s procedural processing and
the power of Python’s analytic libraries, all in one programming
environment.

Let’s write a simple program that uses the Spark SQL API to load
JSON data and query it. You can enter these commands directly in a
running pyspark shell or in a Jupyter notebook that is using a pyspark
kernel; in either case, ensure that you have a running SparkContext, which
we’ll assume is referenced by the variable sc.

To begin, we’ll need to import the SQLContext class from the
pyspark.sql package.

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)
With the file properly formatted, we can easily load its contents by calling
sqlCon text.read.json and passing it the path to the file:

parking = sqlContext.read.json('../data/sf_parking/sf_parking_clean.json')

In order to run a SQL statement against our dataset, we must first
register it as a temporary named table:

parking.registerTempTable("parking")

This allows us to run additional table and SQL methods, including

mu
no
tes
.in

175

show, which will display the first 20 rows of data in a tabular format:
parking.show()

To execute a SQL statement on the parking table, we use the sql
method, passing it the full query.

10.6.2 DataFrames:

DataFrames are the underlying data abstraction in Spark SQL. The
data frame concept should be very familiar to users of Python’s Pandas or
R, and in fact, Spark’s DataFrames are interoperable with native Pandas
(using pyspark) and R data frames (using SparkR). In Spark, a DataFrame
also represents a tabular collection of data with a defined schema. The key
difference between a Spark DataFrame and a dataframe in Pandas or R is
that a Spark DataFrame is a distributed collection that actually wraps an
RDD; you can think of it as an RDD of row objects.

Additionally, DataFrame operations entail many optimizations
under the hood that not only compile the query plan into executable code,
but substantially improve the performance and memory-footprint over
comparable handcoded RDD operations. In fact, in a benchmark test that
compared the runtimes between DataFrames code that aggregated 10
million integer pairs against equivalent RDD code, DataFrames were not
only found to be up to 4–5x faster for these workloads, but they also close
the performance gap between Python and JVM implementations.

The concise and intuitive semantics of the DataFrames API
coupled with the performance optimizations provided by its computational
engine was the impetus to make DataFrames the main interface for all of
Spark’s modules, including Spark SQL, RDDs, MLlib, and GraphX. In
this way, the DataFrames API provides a unified engine across all of
Spark’s data sources, workloads, and environments, as shown in Figure
10-10.

Figure 10.10 Data Frames as sparks unified interface

Example of chaining several simple DataFrame operations:

mu
no
tes
.in

176

The advantage of this approach over raw SQL is that we can easily
iterate on a complex query by successively chaining and testing
operations. Additionally, we have access to a rich collection of built-in
functions from the DataFrames API, including the count, round, and avg
aggregation functions that we used previously. The pyspark.sql.functions
module also contains several mathematical and statistical utilities that
include functions for:

• Random data generation

• Summary and descriptive statistics

• Sample covariance and correlation

• Cross tabulation (a.k.a. contingency table)

• Frequency computation

• Mathematical functions

 UNIT END QUESTIONS

1. Explain in detail how Keys allow parallel reduction by partitioning the

keyspace to multiple reducers.

2. What is the functionality of the explode mapper? Explain in detail with
example.

3. What is the functionality of the filter mapper? Explain in detail with
example.

4. What is the functionality of the identity pattern? Explain in detail with
example.

5. Write in brief about design pattern. Explain each of its category.

6. Consider a specific example where we have a dataset that originates
from news arti‐cles or blog posts and a prediction task where we want
to determine the number of comments in the next 24 hours. Then how
the data flow will be?

7. Write a command for the following in Hive Query Language:

i) changing directory to HIVE_HOME

mu
no
tes
.in

177

ii) creating a database iii) creating a table iv) loading data in a table

v) counting number of rows in a table and vi) exiting the Hive CLI

8. Write and explain with suitable example any three data analysis
commands with Hive.

9. What is the major drawback of conventional relational approach for
many data analytics applications? How can it be resolved? Explain in
detail.

10. How HBase schema can be created? How data can be inserted? and
Cell values can be fetched? Explain with suitable example.

11. Which different types of filters can be used in HBase? Explain its
entire procedure with appropriate commands.

12. Write the entire procedure with appropriate commands for importing
data from MySQL to HDFS.

13. Write the entire procedure with appropriate commands for importing
data from MySQL to Hive.

14. Write the entire procedure with appropriate commands for importing
data from MySQL to HBase.

15. Explain Flume Data Flows with a neat diagram.

16. How to construct a simple singleagent Flume data flow to consume
events from an Apache access log and write the log events to HDFS?
Explain with a neat diagram.

17. Explain with example Relations, tuples and Filtering in context of Pig.

18. Explain with example Projection in context of Pig.

19. Explain with example Grouping and joiningin context of Pig.

20. Explain with example Storing and outputting datain context of Pig.

21. Write and describe various Pig relational operators.

22. Explain Spark SQL interface architecture with a neat diagram.

REFERENCES

• Data Science & Big Data Analytics Discovering, Analyzing,
Visualizing and Presenting Data EMC Education Services
Published by John Wiley & Sons, Inc

 |

mu
no
tes
.in

