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Simulation and Modeling 1.0 OBJECTIVES 

The objectives of this chapter are as follows: 

• To understand what is simulation and how it works 

• To acquaint with the significance and purpose of simulation 

• To understand what is there inside the simulation software, how it 
works and the process of simulation 

1.1 INTRODUCTION  

 The facilities needed in a new terminal building are being planned by 
airport management. Important choices must be made regarding, among 
other things, the quantity of security check positions, the size of the baggage 
handling system, the number of departure gates, and the number of check-
in desks allocated to each airline. Additionally, it is necessary to decide how 
many employees to hire and what shifts they should work. These choices 
must be wisely chosen because the whole investment is in the tens of 
millions. How can the airport administration decide how many resources 
are needed in each location? 

Building the terminal and hoping it works is one idea. With so much at risk, 
this seems exceedingly dangerous. Relying on intuitions, perhaps based on 
prior experience with designing and managing airport terminals, would only 
be marginally better. Even though a spreadsheet or a few calculations on 
paper might be helpful, they probably won't be able to tackle the whole 
intricacy of the scenario. 

A simulation of the intended airport terminal is perhaps a far more 
successful strategy. This might serve as a model for the movement of 
travellers and their luggage through each of the crucial phases from arrival 
to departure and serve as the foundation for designing airport amenities. 
Indeed, many businesses employ simulation models to design new facilities 
and enhance those already in use. Financial services corporations simulate 
their call centres, transportation companies simulate their delivery 
networks, and manufacturing companies simulate their production lines. 
There are numerous instances of simulation in action. 

 Three simulation-related questions are addressed in this chapter: 

1] What is a simulation and why it is essential? 

2] Why would a company decide to create and apply a simulation model? 

3] When is simulation useful? 

1.2 WHAT IS SIMULATION? 

A simulation is a replication of the evolving dynamics of a process or 
system in the actual world. Even though simulation could theoretically still 
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Introduction be performed "by hand," it now indirectly almost always calls on the use of 
a computer to fabricate a false history of a system in order to make 
assumptions about its characteristics and functioning. 

By creating a simulation model, which typically takes the form of a 
collection of assumptions about how the system functions, the behaviour of 
the system is analysed. Once created, a simulation model can be applied to 
a number of projects, such as: 

• Examine how the system behaves in a variety of situations. 
Additionally known as "what-if" analysis, this is; 

• Before making changes, the system can be simulated to determine 
how they will affect the real world; 

• Simulation can be used to direct system building when it is still in the 
design stage, or as the system is being created. 

Computer simulation has been employed in many different fields, including 
management science, manufacturing, healthcare, transportation, and the 
military. 

1.2.1 A simple simulation model 

Let's say we've decided to build a donut store, but we're not sure how many 
staff members to hire to serve customers. The real-world system whose 
behaviour we seek to understand is the operations of our tiny shop. Only a 
simulation model can give us information because the shop is not yet open. 

We might certainly create models of varying complexity, but let's assume 
for the moment that we are content with a straightforward model that has 
the following components: 

• customers who enter our store at a specific rate; 

• staff (of a number to be input) who service customers for a certain 
amount of time. 

Implicitly, we are presuming a limitless supply of doughnuts and 
completely ignoring the quantity of donuts we have in stock. Of course, to 
provide a more accurate description of the system, we might also want to 
integrate this component in a more complex simulation model. 

1.2.2 How simulation works? 

Simulation creates a visual mock-up of a process using user-friendly 
simulation software. To effectively represent the real-world process, this 
visual simulation should incorporate information about timings, rules, 
resources, and limitations. 

This can be applied to a variety of situations; for instance, you could model 
a supermarket and the typical consumer movements as business picks up. 
This can help with judgments on the need for more staff, the design of the 
shop floor, and the supply chain. 
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Simulation and Modeling Another illustration would be a manufacturing setting where several line 
segments may be simulated to evaluate how their processes interact with 
one another. This can give a general idea of how the entire system will 
operate, which can be used to develop creative ways to boost performance. 

1.2.3 Advantages 

A variety of benefits can be attained by using simulation, including: 

1.  Lower Risk to Your Money 

 Simulated experiments are less expensive than actual ones. Testing 
theories of actual systems may incur expenditures such as those 
related to switching to an unproven procedure, hiring personnel, or 
even purchasing new equipment. Through simulation, you may test 
hypotheses and steer clear of costly errors in the real world. 

2.  Testing Repeatedly 

 A simulation enables you to repeatedly test various hypotheses and 
inventions under the same conditions. This implies that you can 
rigorously evaluate and contrast several views without deviating. 

3.  Investigate Long-Term Effects 

 By precisely simulating the effects of years of use in a matter of 
seconds, a simulation that allows you to look into the future can be 
produced. The ability to see both immediate and long-term effects 
enable you to confidently make smart financial choices today that will 
pay off for years to come. 

4.  Acquire Understanding for Process Improvement 

 The advantages of simulation are not just realised at the project's 
conclusion. By putting various theories to the test, improvements can 
be incorporated throughout the entire process. 

5.  Examine Unexpected Events 

 A simulation can be used to evaluate unpredictable occurrences such 
an unanticipated staff absence or supply chain problems. 

6.  Examine Non-Normal Distributions 

 Instead of needing to repeat only the predetermined parameters, a 
simulation can accommodate for varying and non-standard 
distributions. For instance, when replicating a supermarket, you can 
enter several consumer categories who will navigate the store at 
various paces. An elderly couple or a mother making a weekly shop 
with two kids in tow will go through the store differently than a young 
businesswoman picking up a lunch. An accurate representation of the 
real world can be achieved through simulation by accounting for such 
changing factors. 
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Introduction 7.  Promotes In-Depth Thinking Problems can be solved even during the 
simulation design and parameter selection phase. It is possible to 
develop ideas or innovations by carefully considering a process or 
procedure without even using the final simulation. 

8.  Increase Stakeholder Support 

 Additionally, a visual simulation can aid in increasing stakeholders' 
and partners' buy-in. Visualizing the outcomes of any process 
modifications and how they were accomplished would increase 
attention from potential customers and may even allow for a sales 
pitch based on simulation. 

1.2.4 Limitations 

Even while simulation has a lot of benefits, it still has significant drawbacks 
as compared to other related methods and tools, such digital twins. 

A digital twin is an extension of simulation that adds real-time feedback and 
a data stream between the virtual simulation and a real-world asset (or set 
of real-world assets). A digital twin is an actual object, as opposed to a 
simulation, which is a theoretical construct. 

As a result, simulations cannot be used to evaluate actual real-world 
problems as they arise. 

1.2.5 Why is simulation used? 

Simulation is used to assess the impact of new procedures, process 
modifications, and equipment investment. Engineers can compare various 
solutions and designs using simulation to evaluate the performance of an 
existing system or forecast the performance of a planned system. 

Instead of testing hypotheses and adjustments in the real world, which might 
be expensive, simulation is employed. System cycle times, throughput 
under various loads, resource utilisation, bottlenecks and choke points, 
storage demands, personnel needs, and the efficiency of scheduling and 
control systems are among variables that simulation may quantify. 

1.2.6 What can be simulated? 

Any process or system with an event flow can be emulated. In principle, 
you can simulate a process if you can depict it in a flowchart. However, 
simulation works best when it is used with systems or pieces of machinery 
that undergo continuous change, have changing parameters, or receive 
unpredictable inputs. For instance, the supermarket we mentioned before 
has unpredictable and variable elements because of client usage patterns, 
demands, and stock levels. 

Simulating dynamic systems that are complicated and subject to change 
might provide insights that are challenging to obtain through other 
techniques. 
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Simulation and Modeling While managing processes, procedures, and assets can benefit from 
simulation, Swedish philosopher Nick Bostrom expanded on the idea in his 
2003 paper, "Are You Living in a Computer Simulation?" He contends that 
by incorporating artificial awareness into simulations, it is possible to 
obfuscate the distinction between reality and simulation, making it 
challenging to determine whether you are actually living in reality or a 
simulation. This simulation theory contends that, should you realise that 
your perceived reality wasn't actually "real," the simulation might change 
your memories to once again keep you blissfully unconscious that you aren't 
a genuine person in the real world! 

1.2.7 Types of simulation 

Three broad categories of simulation can be distinguished, as follows: 

1]  Discrete event simulation 
 Modelling a system's evolution over time, for instance; 

• industrial processes (stamping, turning, milling) 
• traffic study (roads, networks, queues) 

2]  Dynamic simulation 
 A system's progression through space being modelled, for instance; 

• kinematics of machines 
• ergonomics for people 
• aerodynamic analysis 
• digital prototyping 

3]  Process simulation 

  Modelling, for examples, the physical interactions between two or more 
systems; 

• Listing of products used in use 

• Modelling of products during production 

• Weather prediction 

1.2.8 Examples of simulation 

 There are numerous simulation examples in business, entertainment, 
education, and other fields. Here are a few noteworthy instances: 

1]  Automotive  

 Simulation makes it possible to imitate a real vehicle's features in a 
digital setting so that the user can experience driving a real vehicle. It 
is possible to simulate various situations so that the driver has an 
entirely immersive experience. These kinds of driving simulators can 
aid in the training of both inexperienced and seasoned drivers, 
providing a way to impart driving techniques that can lower 
maintenance and fuel expenses and guarantee the safety of the drivers 
themselves. 
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Introduction 2]  Biomechanics 

 In order to understand the function of anatomical structures in humans 
or other animals and develop medical treatments and equipment, 
biomechanics simulation can be used to build models of those 
structures. Additionally, biomechanics simulation can be used to 
evaluate joint stresses, mimic surgical procedures, and research 
athletic performance. Another illustration is neuromechanical 
simulation, which combines biomechanics and neural network 
simulation to test theories in a virtual setting. 

3]  Urban and city planning 

 In addition to testing how current urban areas might change as a result 
of policy decisions, simulation can be used to develop new cities and 
urban ecosystems. This incorporates, among other possible models, 
the city's infrastructure and traffic flow. 

4]  Designing the Digital Lifecycle 

 In addition to examining the lifecycle of the finished product, 
simulations can help with product design by enabling digital 
prototyping and testing to develop better performing goods with a 
shorter time-to-market. 

5]  Disaster Planning 

 In order to aid in disaster preparedness, simulations can simulate 
emergency conditions. This includes planning for reactions to 
situations like terrorism, pandemics, and natural catastrophes. 
Responses can be monitored and evaluated through the simulation, 
exposing potential issues and places where responders may need extra 
training, as well as ensuring that any mistakes are made in a safe 
environment before any real-life catastrophe. 

6]  Finance and Economics 

 Simulations are useful in macroeconomics, finance, and economics. 
For instance, historical data can be used as a stand-in for the real 
economy to evaluate a mathematical model of the economy. This can 
be used to evaluate budgets, trade balances, unemployment rates, and 
inflation. Simulators can also be used to evaluate financial models or 
to imitate the stock market in other contexts. Simulated methods for 
settlement of securities are also used by banks. 

7]  Technical Systems 

 Engineering systems frequently employ simulation to mimic the 
actions and functions of tools, workflows, and procedures. For 
process design or improvement, engineering simulations can mix 
mathematical models with computer-assisted simulation. 
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Simulation and Modeling 8]  Layout 

 This model, also known as a digital human model or anthropometric 
virtual depiction of the human, can be used in simulation to analyse 
virtual products and work settings (DHM). In simulated scenarios, 
these DHMs are capable of simulating human performance and 
capabilities. Applications for this kind of simulation include waste 
collection, video games, assembly lines, and disaster management. 

9]  Aircraft Simulation 

 For years, new pilots have been trained in a secure setting using flight 
simulators. This not only makes it possible to evaluate pilots safely, 
but it also makes it possible to test instrument malfunctions and other 
issues without endangering the pilot, the teacher, or the aircraft. In 
addition to saving fuel and other expenses in comparison to actual 
flight time, it is also simple to repeat the same events, such as 
approaching a runway to land, under various conditions. 

10]  Simulation of Marine Craft 

 It is feasible to mimic operating on a ship or submarine in a manner 
similar to flight simulation. Simulators may resemble the bridge, the 
engine room, the cargo handling bay, the communications, or 
remotely operated vehicles. These are employed by colleges, navies, 
and training facilities. 

11]  Applications in the Military 

 Military simulations, also known as "war games," can be used to test 
out military strategies in a virtual setting utilising computer models. 
These are employed by governments and military organisations all 
over the world and can also involve social and political concerns. 

12]  Network systems 

 These simulations have been used to test novel algorithms and 
protocols before they are deployed in operational systems for 
networks and distributed systems. Applications for these include the 
Internet of Things, smart cities, and content delivery networks. 

13]  Project management  

 The usage of project management simulation is possible for training 
and analysis reasons. Simulation is routinely carried out using 
software tools, whether for manager training or analysing the results 
of various decisions. 

14]  Robotics 

 Robotics simulations are used to replicate circumstances that could be 
difficult or expensive to recreate and test in the real world. The 
outcomes of these experiments can subsequently be evaluated and 
applied to actual robots. 
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Introduction 15]  Manufacturing Systems 

 It is possible to evaluate manufacturing procedures, assembly delays, 
machine setup, and other factors by simulating production systems 
using techniques like discrete event simulation. 

16]  Sales 

 To assess the flow of transactions and client orders as well as 
expenses, labour times, and more, sales can be simulated. 

17]  Space and satellites 

 To prepare space shuttle engineers for launch operations, the Kennedy 
Space Center employed simulation. People would interact with a 
mock shuttle and ground support equipment in this scenario. Tests for 
satellite navigation also involve simulation. 

18]  Sports 

 In order to simulate sporting events and anticipate their results as well 
as the performance of specific athletes, sport statistics are frequently 
used. In addition to being utilised for fantasy sports leagues, sports 
simulation can also be used to forecast the results of matches and other 
events. Additionally, biomechanics models can be used to improve 
training, gauge levels of fatigue and how they affect performance, and 
more. 

19]  Weather 

 In order to forecast extreme weather events like hurricanes or 
cyclones, weather forecasting uses simulations based on historical 
data. 

1.2.9 Purpose of simulation 

For the following reasons, several categories of systems are addressed to 
simulation modelling and analysis 

1]  Getting a Better Understanding of How a System Works 

 Without a dynamic model, it might be challenging to comprehend 
how some systems function and interact with one another. To put it 
another way, it might not be possible to analyse the system by 
stopping it or by looking at its parts separately. Try to comprehend 
how manufacturing process bottlenecks emerge as a classic 
illustration of this 

2]  Creating Resource and Operating Policies 

 You might already use a system that you comprehend and would like 
to enhance. This can be accomplished primarily in two ways: by 
altering operating or resource regulations. Different scheduling 
priority for work orders could be a result of modifications to 
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Simulation and Modeling operational procedures. Staffing numbers or break scheduling could 
change in resource policies. 

3]  Trying out new ideas 

 A simulation model can help give you an idea of how well the 
suggested system will work if it doesn't already exist or if you're 
thinking about buying new systems. When compared to the capital 
expense required to establish any large manufacturing process, the 
cost of designing a new system might be quite low. It is possible to 
assess the consequences of various equipment costs and levels. 
Additionally, using a simulation model prior to installation can help 
optimise the equipment's configuration. 

 Many businesses now demand that before making a purchase, sellers 
of material-handling equipment create a simulation of their suggested 
systems. The claims made by the different suppliers are assessed 
using the simulation model. The simulation model is useful even after 
installation. In the event that the deployed system does not perform as 
promised, the corporation can use the simulation model to help 
discover issues. 

4]  Information gathering without impacting with the system itself 

 Perhaps the only technique for testing out non-distortable systems is 
to use simulation models. Some systems are so vital or delicate that it 
is impossible to change the resource or operational policies in order 
to examine them. The security checkpoint at an airport would be a 
prime illustration of this kind of technology. Operating policy or 
resource level experiments would have a significant impact on the 
system's operational capabilities or security efficacy. 

1.3 NEED OF SIMULATION 

To adapt to changes in industry requirements, to optimise operations, and 
to estimate the possible effects of such improvements, simulation is 
necessary in logistics. 

When experimenting on the actual system is costly, risky, or likely to create 
a substantial disturbance, it is helpful (e.g. transport systems, nuclear reactor 
and airline systems). 

When it is impossible to model a system mathematically, it could also be an 
option. Although there are various mathematical analysis techniques, some 
of them are so complicated that simulation might offer a more 
straightforward answer. Computer networks, weather forecasting, and oil 
drilling are a few fields where simulation may be preferred to mathematical 
modelling. 

More advanced technology, such simulation that can deal with the inherent 
volatility of real-world logistics systems, are needed for logistics operations 
management. 
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Introduction 1.4 TIME TO SIMULATE 

The concept of time in a simulation is a variable kept by the simulation 
programme and is not directly tied to the real-time that it takes to perform a 
simulation (as measured by a wall clock or the computer's own clock).  

Consider the example of NetSim simulator. The virtual clock in NetSim 
keeps track of virtual time. Virtual time is a positive real number that begins 
at zero. 

To clearly separate it from real (wall-clock) time, this virtual time is referred 
to as simulation time. As a discrete event simulator (DES), NetSim breaks 
down the model's evolution throughout the course of the simulation into 
discrete events where change might occur. Time only moves between 
occurrences; it is not a continuous process. This means that simulation time 
can only advance between events, not during them. In actuality, the 
simulation time is always the same as the moment the current event takes 
place. As a result, it is possible to think of simulation time as a variable that 
"jumps" to follow the time allotted for each new occurrence. 

When the Simulation time is set to 10 seconds, users wonder if NetSim will 
operate for that amount of time. and the response is that if the network 
scenario is really large and has a high traffic load, the simulation may take 
longer than 10 seconds (Wall clock). Small networks with light traffic 
volumes could need substantially less time (wall clock). The capabilities of 
the system also affect how long it takes to perform the simulation. The 
simulations will execute more quickly on a PC with a more powerful 
processor and more RAM. 

Due to the fact that NetSim's "Emulation mode" involves the transport of 
real packets through the virtual network, simulation time and the wall clock 
will be precisely synchronised when used. 

INSIDE SIMULATION SOFTWARE 

Most of the time, simulation models for operational systems are created 
using specialised software rather than by hand-coding. Modern simulation 
software is so powerful that using a programming language is rarely 
necessary. However, one risk of adopting packaged software is that the user 
has little knowledge of the fundamentals of the underlying method. 
Simulation is not a regular activity, in contrast to the majority of the 
software we use (such as spreadsheets), which merely automates routine 
processes and facilitates their performance on a bigger scale. This makes 
the risk considerably larger. 

The basics of the simulation technique are described in this section to help 
readers comprehend what is contained in simulation software. In short, the 
software consists of two essential components: time progression modelling 
and variability modelling. All dynamic simulations contain the first, while 
most simulations contain the second. In fact, by modelling the variability in 
the first element and the interconnection and complexity in the latter two, a 
simulation is able to accurately represent the unpredictability, 
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Simulation and Modeling interconnectedness, and complexity in an operational system. First, a 
description of modelling time progression is given, then a discussion of 
modelling variability. 

1.5 MODELING THE PROGRESS OF TIME 

There are various ways to model the passage of time. Here, three distinct 
strategies are described. To grasp the fundamentals of the simulation 
methodology, the time-slicing method is given first. Then, discrete-event 
simulation followed by continuous time simulation is explained. 

1.5.1 Time slicing approach 

The time-slicing strategy, which adopts a constant time-step (∆t), is the 
most basic way to model the passage of time. The simplest way to convey 
this is through an example. Calls to a call centre arrive every three minutes, 
are routed to one of two operators, and are handled by that operator in five 
minutes (Figure 1). The inter-arrival time and the service time are now 
believed to be constant. 

 

Figure 1: Time-Slicing Approach: Simple Telephone Call Centre 
Simulation Technique 

Table 1 displays a simulation of a 24-minute call centre shift with the timer 
∆t set to one minute. The time left till a call arrives is displayed in column 
two. The amount of time left till a client service is finished is displayed in 
columns three and four. Each operator's total number of calls completed is 
determined. 

A time-slicing simulation may be put up for this scenario quite easily. For 
more complicated circumstances, the same method may be applied, but the 
table would quickly grow enormous and possibly become impossible to 
operate by hand. Larger-scale simulations might be achievable by creating 
a flow chart defining the order of the steps and incorporating it into a 
computer programme. A spreadsheet can also be used to quickly model the 
time-slicing strategy. 

The time-slicing strategy has two key drawbacks. It is firstly incredibly 
ineffective. Since the system state does not change for a large portion of the 
time steps, many computations are not required. Only the times that a call 
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Introduction arrives, when an operator answers it, and when the operator ends the call 
are of importance in Table 1. There is a total of 22 such points as compared 
to the 72 (24x3) estimates made in Table 1's calculations. The bigger the 
simulation gets, the more likely it is that this issue will get worse. 

A second issue is figuring out what ∆t is worth. Even while a one-minute 
time-step for the aforementioned example seems simple, in most 
simulations, activity durations cannot be counted in full numbers. 
Additionally, there is frequently a large range of activity times inside a 
model, ranging from perhaps seconds (or less) to hours, days, weeks, or 
more. These two problems are both addressed by the discrete-event 
simulation method. 

Table 1: Time-Slicing Approach: Simple Telephone Call Centre 
Simulation Technique 
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Simulation and Modeling 1.5.2 Discrete event simulation approach (three-phase method) 

By modelling systems as undergoing separate state changes at different 
periods in time, discrete event simulation (DES) analyses the dynamic 
behaviour of systems. Variables like the number of consumers in the system 
or the size of a waiting list can be used to represent the state of the system. 
Every time an event happens, all or part of the variables receive new values. 
Events mark the transition of an entity into a new state or the allocation of 
resources. An example of an event is the beginning of an operation. 

The N, Q, and S state variables in a DES of a single server queue system 
are tracked in Fig. 2's bar chart at various periods in time. N stands for the 
quantity of users entering the system, Q for the length of the single queue, 
and S for the server state (0-busy, 1-idle). 

 

Figure 2: State variables discretely changing at specific times 

DES is typically viewed as being separate from continuous simulation, 
which simulates how a system's status changes over a continuous period of 
time. But keep in mind that since digital computers are discrete state 
machines, continuous time is really just a collection of tiny, discrete 
changes. The mathematical models utilised by these two groups to track the 
system's states are different. Also keep in mind that this difference is fuzzier 
in situations where state variables, for instance, change continuously but we 
can only read their values at specific periods in time. 

According to the random variability of the systems, DES and continuous 
simulations are also divided into deterministic and stochastic simulations. 
Given that the majority of simulation models have both deterministic and 
stochastic elements, these two groupings are not mutually exclusive. For 
instance, in the same scenario, arrivals can change at random while a 
machine's processing speed might be fixed. 

1.5.3 Continuous time simulation approach 

A simulation type called continuous-time simulation continuously monitors 
the target system's condition. In continuous-time simulation, differential 
equations are frequently used to simulate systems. These differential 
equations describe the temporal evolution of the system's state. 
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Introduction Computer-based continuous-time simulations are rarely actually 
continuous-time simulations. Digital computers, on the other hand, 
approximate continuous-time simulation. This is due to two factors: 

1]  Since real numbers cannot be counted, they cannot be accurately 
represented. 

2]  Differential equations can only be somewhat solved using a 
discretization technique. 

 

Figure 3: Continual and Discrete Simulation: Updated State Over 
Simulated Time 

Due to this, digital computers use a technique known as fixed-increment 
time progression to execute continuous-time simulations by discretizing 
(dividing) time into small time steps. Variable-increment time progression 
can be used in some complex situations. 

Systems that are anticipated to evolve constantly throughout time should be 
modelled using continuous-time simulation rather than discrete simulations. 
Continuous-time simulation can be used to simulate a variety of phenomena 
and procedures, such as: Cities, the environment, ecosystems, electricity 
and power grids, flight dynamics, hydraulics, intelligent complex adaptive 
systems, and temperature and humidity are some of the topics covered. 

Continuous-time simulation can also be used to calculate the likelihood of 
various events, such as the likelihood that an industrial equipment would 
break down or that a piece of programme code will fall short of quality 
standards. Continuous-time simulation can also be utilised for tasks like 
system control management or generative design. 

1.6 MODELING VARIABILITY 

After discussing time progression modelling, the focus now shifts to 
modelling variability, the second essential component of simulation. In this 
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Simulation and Modeling regard, modelling unanticipated variability poses the primary issue, which 
is why a large portion of the discussion that follows is centred on it. 

1.6.1 Modelling unforeseen variation 

The call centre simulation has not yet incorporated any unanticipated 
variability or other factors of variability. It is unreasonable to anticipate that 
the amount of time callers spend with the operators and router will be 
reduced. Additionally, calls won't come in at predetermined intervals in a 
ratio of exactly X:Y consumers. How can a simulation accurately depict 
such unpredictability? 

Take the ratio of clients from X and Y as an example to begin responding 
to this question. It is standard practise to model a single arrival event and to 
determine the call type as a customer comes rather than modelling the 
arrival of various clients as distinct events. This eliminates the need for 
numerous B-events, one for each type of consumer, if there are numerous 
customer types. We'll assume for the time being that a consumer arrives 
exactly every three minutes. 

Tossing a coin each time a consumer enters the model is an easy approach 
to determine the call type. A head might stand in for an X client, and a tail 
for a Y client. This strategy has the drawback of assuming an equal 
distribution of clients from X and Y. (unless the coin is biased). What if just 
40% of your consumers are type Y and 60% are type X? You may illustrate 
this by taking 10 pieces of paper and writing X and Y on six of them and 
four of them, respectively. Every time a customer enters the model, a piece 
of paper from a hat containing the pieces of paper could be drawn to reveal 
the type of customer. To keep the customer ratio at 60:40, it's crucial that 
the paper be changed each time. 

Although the second method would allow for the modelling of various 
customer ratios, it is only appropriate for hand simulations since computers 
cannot pull paper out of a hat! A similar theory is applied in computer 
simulation and is based on the usage of random numbers. 

1.6.2 Arbitrary numbers 

A series of integers that occur in a random order are known as random 
numbers. They are presented as real (with decimal places) numbers on a 
scale of 0 to 1, or as integer (whole) numbers on a scale of, instance, 0 to 9 
or 0 to 99. You could create an integer random number series from 0 to 99 
by putting 100 pieces of paper with numbers on them into a hat and drawing 
numbers out of it. Each time, new pieces of paper are added. The top hat 
approach is used in this situation. 

This method produces random numbers that have two crucial 
characteristics: 

1]  Uniform: Any number can appear at any place in the sequence with 
the same chance; 
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Introduction 2]  Independent: Once a number is picked, the likelihood that it will be 
chosen again or that another number will be chosen is unaffected. 

Due to regular paper replacement, these characteristics are preserved. 

There is a list of random numbers in Table 2. You may purchase books with 
these tables (RAND Corporation 1955) and use spreadsheet functions (like 
Excel's "RAND" function) to build tables of random integers. Such tables 
could be saved for a simulation to use, but this would be a very inefficient 
use of computer memory. Therefore, it is more common to produce the 
random numbers as needed. 

Table 2: Scale of Integer Random Numbers, 0-99 

 

1.6.3 Relating the variability in a simulation to random numbers 

To sample the kind of incoming call, utilise the random integers in Table 
2.14. They can be connected to the client type in the following ways so that 
60% of the random numbers are related to type X calls and 40% are related 
to type Y calls: 

 

The first customer to arrive would be a type Y (93), the second a type X 
(43) and so on, reading across the top row of random digits. The first 10 
clients are listed in the following order: Y (93), X (43), X (08), X (21), Y 
(61), X (40), Y (88), X (36), X (10), X (09). It should be noted that for this 
sequence, the X:Y customer ratio is 7:3. There won't always be five heads 
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Simulation and Modeling and five tails when a coin is tossed ten times. In reality, it's feasible that 
there will be 10 of either at the most. This is due to the random nature of the 
process rather than a biased coin. It is assumed that the heads-to-tails ratio 
will be exactly 1:1 after a large number of tosses. In the same way, it is not 
anticipated that utilising random numbers to categorise clients into types X 
or Y over a small number of arrivals will result in an exact ratio of 6 (X): 4. 
(Y). But over a large number of arrivals, the ratio will essentially be 
reached. 

1.6.4 Modelling time variability 

For modelling proportions, the method previously provided is helpful. A 
slight modification to the approach must be made in order to model activity 
times (or other continuous real variables). The simplest way to convey this 
is through an example. 

Calls have always been thought to occur at regular intervals up until this 
point. The period between call arrivals is probably going to vary somewhat, 
and this is plainly unrealistic. Figure 4 depicts a frequency distribution for 
the call center's inter-arrival time for calls. Although calls arriving 
simultaneously have an average inter-arrival time of zero, actual inter-
arrival delays might range from zero to seven minutes. 

 

Figure 4: Distribution of Frequencies for Call Inter-Arrival Time. 

In a manner similar to how it was done for the fraction of client kinds above, 
random numbers can be related to the frequencies in Figure 4. (Table 3). 
The appropriate ratio of inter-arrival times in each range can be found in 
this way. However, this merely provides the range that the inter-arrival time 
falls into. A second random number might be chosen, divided by 100, and 
added to the lower end of the range to get the actual inter-arrival time. 
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Introduction Table 3: Inter-Arrival Times and Random Numbers Have a Relationship 

 

Table 4 provides the inter-arrival time for the first 10 calls as an example. 
Rows six and eleven of Table 2 are used as the source of random numbers. 
To achieve total independence, distinct rows are used for both these samples 
and the sampling of customer type. The frequency of samples in each range 
deviates significantly from the distribution shown in Figure 4, and the mean 
time for the 10 samples is just 2.38 minutes. The mean and shape of the 
sampled distribution wouldn't resemble the original data until many samples 
had been obtained. 

Table 4: Inter-Arrival Time of the First Ten Calls: Random Number 
Sampling. 

 

The variability is produced using a predetermined set of random numbers. 
As a result, the same set of random numbers can be used repeatedly to 
generate the series of occurrences, in this case the inter-arrival times. In this 
instance, sampling the arrival times would entail always starting in rows 6 
and 11. This method offers the advantage of being able to regulate the 
experimental circumstances by allowing experiments with a simulation 
model to be performed as often as necessary under the same conditions. 

1.6.5 Selecting samples from normal statistical distributions 

Samples were taken in the preceding subsection by connecting random 
integers to an empirical distribution. Samples from common statistical 
distributions, such the normal distribution, are frequently used. The 
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Simulation and Modeling sampling idea is pretty similar to the one mentioned earlier. Consider a 
normal distribution, as depicted in Figure 5, with a mean of 5 and a standard 
deviation of 1. The random number chosen is assumed to be a proportion of 
the area under the curve in order to sample a value from this distribution. 
The sample value is the location on the x-axis where the area under the 
curve equals that %, starting from the left end of the distribution. The 
sample would be drawn from the location where 30% of the area under the 
curve is found, for example, if the random number is 30. This results in a 
sample value of 4.48 in the example, as illustrated in Figure 5. 

 

Figure 5: Using a Normal Distribution for Sampling 

 Thinking in terms of locating the region under a curve is really challenging. 
Therefore, samples are taken using the cumulative distribution function 
rather than directly from a distribution's probability density function (PDF), 
as in Figure 5. (CDF). This details the percentage of the curve's area under 
the provided x value. The cumulative distribution function for the normal 
distribution depicted in Figure 5 is shown in Figure 6. The sample value of 
x can be found by locating the cumulative distribution function's 
intersection with a random number (let's say 30, for example). 

 

Figure 6: Sampling from a Normal Distribution's Cumulative Distribution 
Function 
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Introduction Despite the simplicity of the theory, direct or numerical integration of the 
distribution's probability density function is necessary in order to sample 
from such distributions (to obtain its cumulative distribution function). 
Thanks to functionalities offered by simulation software programmes, it is 
now possible to obtain samples from a variety of practical statistical 
distributions without having to consult the underlying theory. 

1.6.6 Random numbers produced by a computer 

During a run, large-scale simulation models could need dozens or even 
millions of random numbers. It is plainly impracticable to manually 
generate that many numbers, say, using the top hat method. To hold so many 
numbers, a large amount of computer memory is also necessary. It is more 
typical for the computer to provide the random numbers as needed to 
overcome this issue. 

Computers are not good at generating random numbers because their 
behaviour is not by nature random. However, there exist algorithms that 
appear to generate random numbers, even though the outcomes are 100% 
foreseeable! The next number in the sequence can always be predicted 
(using the technique), but when a stream of the numbers is examined, they 
exhibit the uniformity and independence necessary for randomness. 
Therefore, the random numbers produced in this are known as pseudo-
random numbers. 

The following is a straightforward yet often employed procedure for 
producing random numbers: 

Xi+1 = a Xi + c (mod m) 

where:  

Xi: A stream of arbitrary integer values on the range (0, m 1) 

a: Multiplier constant 

c: additive constant. 

m: modulus; mod m refers to taking the remaining amount after dividing 
by m. 

 A beginning value for X (X0), sometimes known as the "seed," is chosen 
along with values for each of the constants. The Xi can be divided by m if 
the random numbers must be on a scale from 0 to 1, which is more typical 
for computer-generated numbers. 

 The procedure is shown in Table 5 with the parameters X0 = 8, a = 4, c = 
0, and m = 25. The greatest number produced by this is always one less than 
the value of m, and it ranges from 0 to 24. After I = 9, you'll notice that the 
stream repeats itself. This is a common issue with this approach, so it is 
important to carefully choose the constant values to make sure the cycle is 
long enough to prevent repetition during simulation runs. Normally, far 
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Simulation and Modeling bigger numbers, at least of m, are required to ensure the cycle is very long; 
nevertheless, this example is just illustrative. 

Table 5: Algorithm-Based Random Number Generation 

 

The random numbers that are created can be completely controlled using 
this type of strategy. The same stream of random integers can be produced 
repeatedly by utilising the same seed and constants. This provides the same 
level of control over the experimental settings as using a random number 
table (Table 2). Modifying the model's parameters, a separate random 
number seed (X0) must be chosen in order to increase diversity. Different 
streams of pseudo-random numbers are generated by altering the seed. 
Pseudorandom number streams are the name given to these streams. 

1.6.7 Modelling expected variation 

The discussion that has just been had is centred on modelling unexpected 
fluctuation. Randomness is not necessary for predictable variability; all that 
is needed is a way to predict when a variation (or event) will happen. An 
example of a piece of data is the time when an operator begins or ends their 
shift. The simulation's B and C phases can then be used to carry out the 
event as usual. 

SUMMARY 

Industry uses simulations for a variety of purposes to save time and money 
while testing theories and concepts before putting them into practise. 
Simulations still have a lot of uses, even though related techniques like 
digital twin may offer extra advantages owing to the two-way information 
flow this permits. 

For many enterprises and organisations, simulation is a useful tool for 
testing theories, evaluating procedural performance, or figuring out the 
lifecycle of an asset. 
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Introduction Based on the characteristics of operational systems and the benefits of 
simulation, the rationale for its use is examined. The latter explains why 
simulation is frequently preferred to other possible improvement strategies. 
Additionally, simulation's drawbacks are noted. Finally, a list of some 
typical simulation modelling application fields is provided. It also explains 
how a simulation model functions by demonstrating the modelling of time 
progression and variability. 

The fundamental problems with modelling variability are also covered in 
this module. The use of random numbers and the ways of connecting these 
numbers to empirical and statistical distributions to create samples are 
fundamental to the modelling of unpredictable variability. There is also 
some discussion of the modelling of predictable variability and the creation 
of random numbers by computers. 
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UNIT END EXERCISES  

1]  Define simulation and illustrate it with an example. 

2]  Explain the process of simulation and state its advantages and 
disadvantages. 

3]  What are the different types of simulations? State its need. 

4] Illustrate different examples of simulation.  

5] What is the purpose of simulation? 

6] Write a note on time to simulate. 

7]  Explain the time slicing approach of simulation. 

8]  Write a note on discrete event simulation approach. 

9]  Write a detailed note on continuous time simulation approach. 

10] Explain the concept of modelling variability. 
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Simulation and Modeling 2 
CONCEPTUAL MODELLING   

Unit Structure : 
2.0  Objectives  

2.1  Introduction to Conceptual modelling 

2.2  Defining conceptual model 

2.3  Requirements of the conceptual model 

 2.3.1 Four criteria for conceptual models 

 2.3.2 Maintain a basic model 

2.4  Communicating the conceptual model 

2.4.1  Project specifications for simulation 

2.4.2  Representing the conceptual model Developing the Conceptual 
Model: 

2.5  Introduction 

2.6  A framework for conceptual modelling 

 2.6.1 Acquiring knowledge of the underlying situation 

 2.6.2 Establishing the modelling goals 

 2.6.3 The inputs and outcomes of conceptual model design 

 2.6.4 Conceptual model designing: model content 

 2.6.5 Data's significance in conceptual modelling 

2.7  Methods of model simplification 

 2.7.1 Combination of model elements 

 2.7.2 Holding out parts and details 

 2.7.3 Using random variables to replace components 

 2.7.4 Excluding irregular occurrences 

 2.7.5 Reduce the number of rules 

 2.7.6 Dividing up models 

 2.7.4 What defines a good simplification? 

2.8 Summary 

2.9 List of References  

2.10 Unit End Exercises   
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Conceptual Modelling  2.0 OBJECTIVES  

The objectives of this model are 

 To acquaint with the concepts of conceptual modelling 

 To get familiar with the requirements and communication of 
conceptual model 

 Different frameworks associated with conceptual modelling 

 Adoption of methods for model simplification 

2.1 INTRODUCTION TO CONCEPTUAL MODELLING 

A simulation of a restaurant serving fast food take many different natures. 
The easy version is having service desks and queues. However, the model 
might be enlarged to incorporate the dining room, kitchen, raw material 
supply, drive-through, parking lot, and other areas. For example, the service 
desks can be developed as a set period of time. The process might be more 
precisely described as a sequence of sub-steps and process interruptions and 
failures could be developed. This conceptual modelling requires the 
modeller to decide on the right scope and level of detail to model. 

2.2 DEFINING CONCEPTUAL MODEL 

By defining four terms, Zeigler (1976) clarifies what a conceptual model is. 
The original model is which a simulation model is meant to mimic. The 
framework is the constrained set of conditions where the original system is 
observed; that is we can say that the genuine system is not fully understood. 
The fundamental model has the capacity to capture the entire behaviour of 
the real system. This model cannot be fully understood because of how 
intricate it is. The system's components are grouped together and the 
interconnections are made simpler in the lumped model. The modeller is 
completely aware of this model's structure. The conceptual model and the 
empirical model are equivalent in our understanding. 

However, this description only really conveys the idea of concise summary 
of the actual model. A conceptual model can be described in more detail as 
follows: 

“The conceptual model describes the goals, inputs, outputs, content, 
assumptions, and simplifications of the simulation model that will be 
created without referring specifically to any software”. 

The key components of this definition are two. It is independence from the 
program in where simulation produced is clearly mentioned in the first 
sentence. In a perfect world, the software would be chosen based on how 
well it comprehends. Since the globe is not perfect, it frequently happens 
that the conceptual model is created using the modeler's programme. In fact, 
there is interaction between the computer and conceptual model, with 
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Simulation and Modeling ongoing revisions, because the activities in simulation research are carried 
out iteratively. 

The definition also includes a list of following essential elements: 

1]  Objectives: The model's intended use. 

2]  Inputs: Also referred to as experimental factors, are components to 
enhance or better understand the real world. 

3]  Outputs: Summarize the outcomes of simulated iterations. 

4]  Content: the elements that the model represents and how they relate 
to one another. 

5]  Assumptions that are made either when there are uncertainties or 
when there are convictions about the modelled real world. 

6]  The model has been simplified to speed up model creation and 
application. 

The features of assumptions and simplifications are distinguished. 
Assumptions are techniques to include doubts and preconceptions about 
reality in the model. Simplicities can be used to make the model less 
complex. As a result, simplicity is a side effect of the aim to build simple 
models, whereas assumptions are a side effect of having restricted 
information or presumptions. 

Two dimensions should be used to describe the model's content (Robinson, 
1994): 

 The model's domain, also known as the model constrain or the size of 
the original model. 

 The extent of detail is the amount of information that should be 
provided for each part of the system. 

The goal is to specify the foundation upon which the simulation (computer 
model) is created. In essence, it is a program description. There is a desire 
for many modellers to begin coding the computer model right away. 
However, if the conceptual model is not developed with sufficient care, it 
may not accomplish the desired results and, in the worst-case scenario, may 
need to be totally overwrite and time consuming. 

2.3 REQUIREMENTS OF THE CONCEPTUAL MODEL 

A list of needs can be beneficial when creating a system. The model is 
developed in such a way that it satisfies these specifications. What therefore 
are the prerequisites for a successful model? This is first addressed by 
outlining 4 key needs, and then the general necessity to keep the model as 
straightforward as feasible is covered. 
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Conceptual Modelling 2.3.1 Four criteria for conceptual models 

According to Willemain (1994), an effective model must have the following 
characteristics: validity, usability, client value, practicality, and aptness for 
the customer's problem. A good model must meet 11 performance 
requirements, according to Brooks and Tobias (1996). Based on these lists, 
it is suggested that a conceptual model must meet the following four criteria: 
validity, credibility, utility, and feasibility. 

A valid model is if it can accurately represent the situation at hand. 
However, as a model with no numerical output has limited use for accuracy, 
validity might be characterised more accurately as: 

“The modeller's belief that it will result in a system that is efficient enough 
for the task taken”. 

The difficulty to predict efficiency lies at heart of this idea. In keeping with 
the majority of definitions of validity, it also upholds the idea that a model 
is created with a specific goal in mind. 

Credibility is also measured through client’s viewpoint apart from modeller. 
Thus, following criteria determine credibility: 

“The clients' expectation that the system developed is precise enough for 
task considered”. 

Utility is described as follows: 

“A belief shared by the modeller and the clients that the system developed 
will be used as a decision-assistance tool”. 

Utility is viewed as a shared understanding of the model's usefulness, in 
contrast to the notions of validity and credibility that are particular to the 
modeller and the customers. The definition of utility presented here shifts 
the focus from merely determining accuracy. A variety of system might be 
created in any situation, and each one might be realistic enough for the task 
at hand. As a result, each of these models would be reliable and accurate. A 
implemented model, even one that is vast and laborious but nonetheless 
accurate enough, might only be of limited use.  

Feasibility is the last condition and is defined as follows: 

“The modeler's and the clients' belief that the system can be transformed 
into a computer model”. 

A model could be unworkable for a variety of reasons. For example, it’s 
impossible to produce the suggested system within the necessary timeframe, 
the information requirements capability be too oppressive, or the real 
system may not be well enough understood for implemented system. 
Whatever the case, it's critical of being capable to convert into a computer 
model. 

Finally, it should be noted that these four ideas are not incompatible with 
one another. The correctness of a model as seen by the modeller and the 
clients is likely to be strongly connected. A useless model is also not a 
beneficial model.  
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Simulation and Modeling 2.3.2 Maintain a basic model 

The necessity to prevent the creation of an excessively complex model 
unites all of the objectives outlined above. To accomplish the goals of the 
simulation study, the system must be as easy. Simple models have several 
benefits. As we know the systems structure, they can be constructed more 
quickly, are much reliable, needs less information, execute more quickly, 
and simple to induce findings. These benefits are lost as complexity rises. 

Good modelling practise revolves around keeping models basic. This is not 
to say that sophisticated models should never be created; in some cases, they 
are essential to achieving the study's goals. However, there is a propensity 
to attempt to represent every component that might accomplish the goals 
with a great deal low work. 

Robinson (1994) uses graph in Figure 1 to illustrate the necessity for 
simplicity. This demonstrates the increase in model accuracy that comes 
with difficulty. It demonstrates the common 80-20 rule, which states only 
20% of the complexity results in 80% of the accuracy (point x). In addition, 
the benefits of adding complexity decrease over time. Since it is impossible 
to accurately represent every component of reality in a model, there can be 
no model that is 100% correct. In fact, it is suggested that going overboard 
with complexity may result in a model that is less accurate since the data 
and knowledge needed to support the intricacy being modelled are not 
readily available. For example, it is improbable that we could precisely 
model every individual's behaviour in restaurant scenario and beyond 
certain guidelines result in lower outcome. This representation is helpful for 
demonstrating the necessity for simplicity even though it is not based on 
real data. 

 

Figure 1: Complexity and Accuracy of Simulation Models 

Ward (1989) draws a helpful difference between constructive simplicity 
(CS) and transparency (T) in a study on simplicity. CS is feature of the 
system, whereas T is a feature of the client (how proper they comprehend 
the system). When creating a model, the modeller must take transparency 
into account in addition to simplicity. Transparency is a client attribute, 
hence it depends on the client's expertise and understanding. Thus, the 
model must be created with the demands of the specific client in mind. 
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Conceptual Modelling 2.4 COMMUNICATING THE CONCEPTUAL MODEL 

It is crucial that the modeller and clients have a mutual sharing of 
information and its architecture to assess if it satisfies the 4 requirements 
outlined above. As a result, a system for disseminating the conceptual model 
is required. This is one of a project specification's functions. 

2.4.1 Project specifications for simulation 

A project specification should outline the results of conceptual modelling 
as well as the administration of the simulation research. In fact, the key 
method for validating the conceptual model is the project specification. 
Additionally, it offers a point of reference for creating and validating the 
computer model, carrying out pertinent tests, and evaluating the 
effectiveness of the simulation research. 

The bulk, if not all, of the following should be covered in the specification, 
depending on the project's specifics and the rapport between the client and 
modeller: 

 Background information on the issue 

 The simulation study's goals 

 Expected advantages 

 The conceptual model: assumptions and simplifications, inputs, 
outputs, content (scope and amount of detail) 

 Experimentation: Potential Scenarios 

 Data requirements: data necessary, when necessary, collection 
responsibilities 

 Timeline and objectives 

 Approximate price 

A documentation that is distributed to each party engaged in the simulation 
research often serves as the specification. To track that the paper is 
overlooked and output is gathered, it is recommended to make it somewhat 
brief—probably no more than 10 pages. Naturally, at times when a more 
detailed specification is necessary, just as there are conditions when a quick 
discussion is sufficient. Each of this is dependent on the model's size, 
complexity, and level of formality. 

The modeller must get feedback in order to assess the validity, credibility, 
usefulness, and practicality of the suggested system. Discussions about 
project's administration, such as data collecting, timelines, and expenses, 
should also be included. It could be helpful to formally depict the system 
requirements to the team members to get rapid input to help with this 
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Simulation and Modeling process. All comments should be handled properly. If the conceptual model 
is questioned, the modeller should either explain rationale of the system or 
update it in response to the input. This is especially important when 
assumptions and oversimplifications are called into question. They should 
choose whether to modify the system, defend the considered scenario, or 
simplify data. What is better depends on how much flexibility vs a reason 
induces the model's validity, credibility, utility, and practicability. 

It should not be expected that the specification would remain unchanged 
once model coding begins because the process is iterative. It must anticipate 
the considerations that will alter for four key reasons: 

 The original specification contained omissions 

 Alterations in the outside environment 

 An improved level of client knowledge of simulation 

 The creation and application of a simulation model to identify new 
issues. 

The primary source of change ought to be constrained by effective 
conceptual modelling, communication, and feedback. Inevitably, the real 
world undergoes changes. For instance, a production system may alter in 
design on a little or large scale (for example, by adding a machine). The 
final 2 modification causes are advantageous features to be promoted. 

There needs to be a system in place for dealing with changes because things 
change. The specification quickly goes out of date and there is no validation 
if the model is just changed as needed, without any effective reporting. It is 
helpful to have a "characteristic modification application" that is utilised 
each time a modification is proposed in order to keep track of changes. To 
make sure everyone is aware of and in favour of the change, this can be 
distributed. 

Of course, it might be impossible to finish the model development and 
experimentation if system is constantly varying. Therefore, it is beneficial 
to arrive to a consensus that the standard has been unchanged. If any 
modification are recorded, but model is not changed unless the change is 
especially substantial. Following the conclusion of the simulation and 
reporting of the findings, the simulation procedure may be repeated with the 
logged changes factored into the model. Whether this is required depends 
on whether the changes are deemed significant enough to justify additional 
modelling. 

2.4.2 Representing the conceptual model 

Having a way to represent the system content is crucial for the project 
specification. The four most popular representational techniques are as 
follows: 
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Conceptual Modelling 1]  Component list  

 This gives a catalogue of elements with a brief explanation of each 
detail contained. The single server queue is exemplified in Table 1. 
Even though this method is fairly straightforward, it lacks a graphical 
presentation of the system making it challenging to record 
sophisticated rationale and the process description.  

 

Table 1: Catalogue of Elements for a Single Server Queue 

 

2]  Process flow diagram 

 According to this method, a system is shown as a process map, 
illustrating every system part and offering brief summary of the 
model's specifics. A queue may be depicted as a circle and a procedure 
as a box. Its representation is shown in Figure 2. The part specifics 
are indicated in brackets in diagram. 

 This method is quite straightforward, and the graphic representation 
helps to illustrate how the process moves along. This strategy is 
advantageous because numerous simulation software makes use of a 
comparable format. More complicated logic, however, is still 
challenging to understand. 

 

Figure 2: Flow representation of process   

3]  Logic flow diagram  

 They use symbols to convey system rationale. Figure 3 depicts an 
illustration. The user is probably already familiar with the vocabulary, 
and the illustrations are effective at illustrating logic. However, the 
process flow is not always evident, and for models of any realistic 
scale, these diagrams can often grow huge, complex, and burdensome. 
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Simulation and Modeling 

 

Figure 3: Logic flow representation 

4]  Activity cycle diagram 

 Discrete-event simulation models are represented using activity cycle 
diagrams (Hills 1971). An illustration of the single server queue is 
shown in Figure 4. In dead states depicted by circles an object waits 
for anything to happen. Rectangles indicate the active states, which 
are where an item is being acted upon. This typically involves 
processing the item for a period of time before moving on to the 
subsequent step. Active and dead states typically alternate. In order to 
build a full activity cycle, in which consumers originate from and 
return to "outside," Figure 4 includes a dead state of the model. 

 Activity cycle diagrams are a hybrid of logic flow diagrams and 
process flow diagrams that partially define a model's logic while also 
providing a visual depiction. For models with large scales, however, 
they can easily become exceedingly complex. They have mostly been 
used as a foundation for programming simulation models because 
they offer a straightforward way to identify the events in a simulation. 
As a result, if a simulation package is being used, they are probably 
less useful. 
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Conceptual Modelling 

 

Figure 4: Activity cycle representation  

DEVELOPING THE CONCEPTUAL MODEL 

2.5 INTRODUCTION 

The concept and prerequisites for a conceptual model were covered in detail 
in the previous section, which served as an introduction to the fundamental 
ideas. The query of system development was left unanswered. This chapter's 
topic is that. There are two ways that the question is addressed. First, a 
conceptual model development framework is provided. Second, various 
model simplification techniques are described. This first viewpoint assumes 
that the modeller is working with a blank piece of paper. According to the 
second viewpoint, the modeller already has a system architecture and it 
search for methods for enhancement. 

2.6 A FRAMEWORK FOR CONCEPTUAL MODELLING 

A representation for modelling can be found in Figure 5. A modeller can 
learn how to create a conceptual model by using this framework, which 
serves that goal. Four essential components make up the framework: 

 Improve your knowledge of the situation at hand 

 Establish the modelling goals 

 Inputs and outputs for conceptual model design 

 Create the conceptual model and its contents  
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Figure 5: Conceptual modelling framework 

A set of modelling goals are chosen after gaining a grasp of the problem 
situation. Then, using these objectives as a guide, the conceptual model is 
generated by first specifying input-output followed by the description of 
model's actual information. Details of components are provided as follows: 

2.6.1 Acquiring knowledge of the underlying situation 

In order to develop a system that accurately represents the situation, the 
modeller must obviously gain a thorough knowledge of system difficulty. 
The method used in this procedure mostly depends on how well clients 
comprehend and can articulate the difficult circumstance. 

Mostly, the clients offer such description, for example, by outlining how the 
model operational behaviour that is at the root of the issue. One concern is 
that the clients could not fully comprehend the relationships between causes 
and effects that exist in the problem situation. For instance, it was believed 
that the support function was overloaded (cause) in a description of a 
telephone helpline resulting in an inadequate level of customer service 
(effect). However, the effect is accurately detected (the study was indeed 
conducted for this purpose), it turned out that adding human resources had 
little to no effect on improving the service. There is a necessity of business 
process modification. 

Clients almost definitely have diverse worldviews, which presents another 
challenge for the modeller. It appears that varied accounts of how the 
maintenance engineers approach their tasks as of interviewees exist. This is 
expected, when working with systems because whims of human behaviour 
and capability of making decision affect the system's performance. 

It soon becomes clear that while the modeller's responsibility appears to be 
to listen to clients in order to comprehend task, the modeller actually needs 
to take a stand. To achieve this understanding, it's essential to use the 
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Conceptual Modelling appropriate stimuli and communicate with the appropriate individuals. In 
order to encourage fresh perspectives on the problematic issue, they should 
also be open to suggesting alternate task formulations. Such conversations 
may take place in person during meetings and workshops, over the phone 
or over email, for example. 

Discussion and meticulous note-taking should be sufficient when customers 
have understanding of the scenario. Additionally, it's critical that the 
modeller verify their comprehension by giving the clients details of the 
problematic issue. More formal issue structuring techniques, such as soft 
systems methodology, cognitive mapping, and causal loop diagrams, may 
be helpful if the clients have less understanding of the scenario. 

Areas where there is a lack of awareness of the operational behaviour exist 
during task understanding phase. Assumptions must be made regarding 
these areas. This ought to be noted in the project specification and 
documented. As a simulation study develops, new areas of limited 
information are continually discovered for the reasons listed below. This 
indicates that fresh hypotheses must be developed before they can be 
included in the project specification. 

The issue at hand should not be viewed as static, nor should our 
understanding of it. Both will evolve as the simulation research goes on, 
with the simulation itself serving as one of the driving forces behind this 
evolution. The knowledge needed to create a simulation model serves as a 
focal point for elaborating on and deepening our knowledge of the model 
developed.  

Like previously said, a fast-food restaurant serves as an example to illustrate 
the conceptual modelling framework. The issue at the restaurant is detailed 
in Table 2.  

Table 2: Problem situation of a fast-food restaurant scenario 

  

2.6.2 Establishing the modelling goals 

The modelling method revolves around the objectives. They serve as a 
method for determining the nature of the model, a point of comparison for 
system deployment, a manual a performance indicator to assess the 
effectiveness. 

Since a system consist of little inherent information unless utilised to 
support to take decision, a modelling study's goal is not to create a model 
from scratch. If it were, after the model was created, the goal would have 
been achieved, and the study would be finished. This process leads logically 
to system development that are not used or are actively seeking a task to 
resolve. Of course, there is a special case too. A generic model of a hospital 
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Simulation and Modeling emergency room, for instance, might be created with the intention of selling 
the model to various hospitals. The creation of a model is the overarching 
goal of the initial modelling effort. However, the model's creators must have 
had a goal in mind, such as figuring out resource needs, when creating the 
model. In fact, it appears that this method is used to construct several 
military models. A model is created, after which a use is found out. Here, 
anytime a new purpose is discovered, the model needs to be evaluated. 

What standard of performance is required, secondly? It is insufficient to just 
mention that the goal is to increase throughput. How big of an increase in 
throughput is necessary? Every time it is feasible, operational goals for each 
should be found. This could be articulated as simple goals or as the desire 
to maximise or decrease some measure. 

What limitations must the clients (or modeller) operate under, in the end? 
Often, there is a finite amount of money or strategies at hand to accomplish 
the goals. For instance, the clients might be unwilling to explore equipment 
purchases and open to considering adjustments in development formulation 
in order to increase efficacy. 

For the same reasons that their comprehension of the problem scenario may 
be imperfect and must acknowledged to provide defined goals. 
Additionally, if a client has never participated in a simulation study before, 
they should be a constrained and probably incorrect notion of what system 
can achieve. It is crucial that the modeller be open to recommend new 
outcomes, as well as to rephrase and scrap the ones suggested. Additionally, 
the modeller should inform the users by outlining the potential benefits of 
simulation. One way to do this is for the modeller to show one or more 
models of problems that are comparable to yours and to describe the 
modelling effort that went into them. The clients will learn more about how 
simulation can and cannot help in this way. The modeller should understand 
as much about the problem situation as the clients should about simulation 
and its capabilities in the objective context.  

The goals may alter and are not at all constant. Additionally, when 
customers' perceptions of simulation's potential develop, which is 
inevitable, so will their needs and expectations. Due to the increased 
iteration between modelling stages, changes in project objectives have an 
impact on the model's design, experimentation, and final results. This 
explains why Figure 5's "problem circumstance" and "modelling 
objectives" are connected by a two-way arrow. Table 3 provides the 
modelling goal for the fast-food restaurant scenario.  

Table 3: Modelling objectives of fast-food restaurant scenarios 
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Conceptual Modelling 2.6.3 The inputs and outcomes of conceptual model design 

The inputs and outputs of the model, which are shown in Figure 5 as the 
experimental elements and reactions, are what are focused on in the initial 
stage of conceptual model design rather than the model's specifics. Starting 
by thinking about these is significantly simpler than thinking about the 
model's content. In fact, the transition from the modelling goals to the 
experimental elements should be pretty simple. In essence, these are the 
methods that are suggested for achieving the goals. 

These methods may be stated in the objectives itself, such as "to boost 
throughput by altering the production schedule," or "to get a 10% 
enhancement in service by designing personnel agenda." The modeller must 
contribute as well using his or her understanding. When taken as a whole, 
this could result in a long list of factors.  

In the actual world, clients would frequently have influence over the 
experimental elements, but there are occasions when it can be beneficial to 
experiment with variables. A deeper comprehension of the actual system 
can be attained by conducting experiments with such variables. After all, 
this is a major advantage of simulation. 

The range that the experimental factors are to be adjusted over should be 
determined whenever possible. Discussions between the modeller and the 
clients can help achieve this. What is the largest size that could or would be 
taken into consideration if a storage area's size, what is the bare minimum 
and maximum that can be employed if employees shift count is under 
investigation? After that, the model is developed to support varied incoming 
information.  

The procedure for entering data for the experimental factors should also be 
covered. This could be done directly in the model code, using a menu 
system, a information file, or a firmware. This is mostly dependent on the 
model's intended users and their experience with firmware. This choice 
correlates to the overarching the goals that were previously established. 

Similar to this, finding the replies that the model must produce shouldn't be 
too difficult. There are two goals for the responses. The first step is to 
determine whether the goals have been accomplished. For instance, a 
system must address if efficacy increases by a specific amount. The replies' 
second objective is to identify the causes of the failure to meet the goals. 
This can necessitate statistics on machine and resource utilisation. One must 
be capable to detect the flaws along with the solutions to overcome it. 

Another thing to think about is how the data is presented, such as graphical 
data or numerical data (mean, maximum, minimum, standard deviation). 
Close collaboration between system and customers, each with skills, should 
be used to identify appropriate responses and reporting techniques. The kind 
of reports produced depends on the model's requirements for visual and 
interactive features, which were discussed above in the section on the 
project's overall objectives. The essential experimental variables and 
outcomes for the restaurant case are shown in Table 4.  
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Simulation and Modeling Table 4: Experimental factors and responses of fast-food restaurant 
scenarios 

 

This changes as the project advances, just like with all other components of 
the modelling process. For instance, it can be found that altering the 
business procedure is more successful at improving customer service than 
altering the staffing rosters. As the experiment develops, it may become 
necessary to review on the amount of study to comprehend the limitations. 
The problem scenario or the objectives varies with result of experimental 
conditions and responses.  

2.6.4 Conceptual model designing: model content  

Assuming simulation is chosen as the best strategy, the first step in creating 
system information to acknowledge that the system needs to be capable of 
accepting the real time cases and supplying the necessary solutions. Here 
the model's necessary components are based on the experimental conditions 
and responses. It is instantly clear that the model must include staff rosters 
in its example. Then, the model must deliver the pertinent reports, such as 
waiting time. As a result, the queues must be included in the model. 

The modeller must next determine the crucial linkages between these and 
the other elements of the real world after determining incoming and the 
target scenarios. The only connections that should be considered for 
inclusion in the model are those that are deemed crucial for accurately 
generating the information. It is probably helpful to consider the scope first.  

2.6.5 Data's significance in conceptual modelling 

In an ideal scenario, when precise data for every step to access is system 
creation. Of course, the world is not ideal. The proposed conceptual model 
is problematic since not all data are readily accessible or even collectable, 
and sometimes it is difficult to get sufficient data. The modeller is then left 
with two choices. Firstly, changing system so that the requirement for 
problematic content is eliminated. Another option is to steadfastly handling 
facts in other ways while resisting changing the conceptual model. In 
reality, the modeller most likely combines the two strategies. As a result, it 
establishes necessary information, whereas the design is influenced by the 
accessible or collected data. As a result, the modeller must alternate between 
taking the model's design into consideration and the availability of data, 
which increases the level of modification necessary in the process.   
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Conceptual Modelling 2.7 METHODS OF MODEL SIMPLIFICATION 

Reducing the scope and level of detail in a model simplification entails one 
of two methods: 

 eliminating parts and connections that don't significantly affect the 
model's accuracy, or by: 

 preserving a satisfactory level of model accuracy while showing parts 
and relationships more simply. 

This can be done either by looking for areas that can be simplified while 
conceptual modelling, or after the conceptual model is finished and beyond, 
as during model coding. The basic goal of simplification is to boost a 
model's utility without seriously compromising its validity or credibility. In 
general, simplicity allows for quicker model creation and application. If the 
initial model design is judged unworkable, for instance because the relevant 
data are not available, simplification could be required. 

2.7.1 Combination of model elements 

A method for lowering the level of detail is to aggregate model elements. 
Here, two particular strategies are described: black-box modelling and 
entity grouping.  

 Black-box modelling 

A portion of a process is modelled as a time delay in black-box modelling. 
Model entities that stand in for components, people, information, and other 
things enter the black box and exit later. With this method, you may 
simulate anything, from a collection of machines or service counters to a 
whole manufacturing or service operation. I have built a model of a whole 
manufacturing supply chain as a collection of interconnected plants, each 
portrayed as a black-box.  

The strategy is demonstrated in Figure 6. The time at which an entity Xi is 
expected to exit the black box, ti, is determined as it enters. The entity exits 
the box at time ti in the simulation. Of course, a sample from a distribution 
can be used to determine how long an entity spends in the box. By adjusting 
the values of ti for each entity in the box, the method can also be expanded 
to take stoppages, shifts, and entity re-sequencing (for example, re-work). 

 

Figure 6: Black-box modelling 
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Simulation and Modeling  Entity grouping 

A simulation entity can represent a set of items instead of modelling each 
item as it moves through a system. This is especially helpful when a system 
is processing a large number of things quickly, such during the 
confectionery wrapping process, where hundreds of chocolate bars are 
wrapped per minute. The number of events per minute that would result 
from modelling each chocolate bar separately would be hundreds, which 
would slow down the simulation run-speed. In this situation, having an 
entity represent, let's say, 100 chocolate bars, is advantageous. 

The method is easily adaptable to modelling scenarios where an entity's 
number of things it represents changes as it passes through the model. For 
instance, at a checkpoint, a specific amount of chocolate bars is rejected (or 
consumed!). This can be modelled by having the quantity of chocolate bars 
the entity represents as a property. As the entity navigates the model, the 
attribute value can then be modified. 

2.7.2 Holding out parts and details 

Some components may not always need to be included in simulations 
because leaving them out has little impact on the model's correctness. The 
scope has been reduced in this way. 

If it can be assumed that a resource is always, or almost always, available 
to carry out that task, then the resource is not necessary to be represented in 
order for the process to occur. In this instance, modelling the process is all 
that is required. For instance, it is not necessary to explicitly represent an 
operator on a production line who is committed to a task. 

A highly particular example of model simplification that is motivated by the 
availability of pertinent data is the modelling of machine repairs. It is vital 
to obtain information on real repair times if the resources needed for repair 
(often maintenance personnel and maybe some equipment) are to be clearly 
modelled. Many businesses, however, only track the whole amount of time 
a machine is down, including the time it takes for resources to be made 
available. Resources shouldn't be explicitly included in the simulation if 
downtime data are being modelled, as this would amount to double 
counting. 

A model may not include certain elements that are thought to have minimal 
bearing on the model's correctness. The modelling of shift patterns is one 
instance. These must only be modelled if 

 Different departments adhere to various shifts. 

 Between shifts, there are differences in labor availability, process 
speed, or process guidelines. 

 Outside of shifts, activities like machine repair continue. 

 In order to give the simulation legitimacy, shifts must be simulated. 

 Otherwise, there is no need to simulate the downtime between shifts. 
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Conceptual Modelling 2.7.3 Using random variables to replace components 

It might be conceivable to describe a component or group of components as 
a collection of random variables drawn from several distributions rather 
than modelling them in detail. Forklift trucks, autonomous guided vehicles, 
big freight vehicles, and trains, for example, might be complicated to 
represent. Allowance must be made for breakdowns, punctures, traffic jams, 
weather conditions, turnaround times, and driver shifts, depending on the 
situation. 

I was tasked with simulating the distribution of items between two locations 
as part of a model that represented two sites. After spending some time 
comprehending the delivery process's intricacy and all of its potential 
pitfalls, it became clear that a complicated model would be necessary for an 
accurate portrayal. The answer was to find out how many deliveries are 
made daily and what the average moving time is. The total number of 
deliveries every day, as well as the timings of the departure and arrival, 
might potentially be represented as three random variables. The creation of 
this model and its manipulation during experimentation were significantly 
easier. 

2.7.4 Excluding irregular occurrences 

Some incidents only occasionally have an impact on an operations system. 
Only every two years, a warehouse crane could experience a failure. Major 
disasters do not frequently affect hospitals. In order to evaluate the 
operations system under real-world operating circumstances, it is usually 
advisable to rule out the chance of such events happening during a 
simulation run. 

By executing specific runs in which the event is forced on the model (for 
example, a crane breakdown or a flow of patients into an emergency 
department), the influence of such events may always be explored. 

2.7.5 Reduce the number of rules 

In simulation models, rules are used to establish routes, processing times, 
schedules, resource allocation, and other factors. By minimizing the number 
of rules, a model can be made simpler while yet being sufficiently accurate. 
When it comes to route choices for automatically guided vehicles, for 
instance, 80% of situations are frequently covered by 20% of the rule set. 
Decision-making is necessary to determine whether modelling the 
remaining 80% of the rule set is worthwhile for a marginal increase in model 
accuracy. 

The representation of human interaction with an operational system is a 
unique challenge in simulation modelling. For instance, it can be quite 
challenging to predict how people would act when waiting in line for a 
service. How does one choose which line to get in at the grocery store? 
When does a person choose to skip one line in favor of another? When 
might a person opt to get out of a line? What situations would lead someone 
to choose not to join a line? It is nearly impossible to create a set of rules 
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Simulation and Modeling that work for everyone in all circumstances because such decisions depend 
on the individual. As a result, standard procedure calls for the employment 
of a set of criteria that are simplified. For example, clients may opt to join 
the shortest queue or refrain from doing so if there are more than five 
persons in it. 

To completely ignore the rule set is an extreme but nonetheless effective 
strategy. The simulation in the service system scenario above could only 
possibly assume that people join the shortest queue in terms of queuing 
behavior. This would imply that long lines would form if there is an 
imbalance between the service rate and arrival rate. Although implausible, 
this gives the model's user useful information, such as the fact that the 
system is unbalanced and that customers are likely to leave unless the 
service rate can be raised. 

2.7.6 Dividing up models 

It can be advantageous to divide the model into two or more portions rather 
than creating a single, huge model. To do this, it is easy to divide the models 
so that model A's output serves as model B's input, as shown in Figure 7. 
Data about the model's output, including output time and any entity 
properties, can be sent to a data file as model A executes. In order to recreate 
the entities in model B at the proper time, model B is then run and the data 
is read. 

Splitting models has the benefit of making each model run more quickly. 
Assuming the three-phase method is being used, it is also extremely likely 
that a single run of all the sub-models is quicker than a single run of a 
combined model due to less processing at the C-phase. This is because each 
sub-model contains fewer conditional events. Every time an event happens 
anywhere in a combined model, every C-event would have to be checked, 
creating a lot of redundant work. Having separate modelers work on each 
model in parallel can speed up development time, which is another benefit 
of dividing models. 

 

Figure 7: Concept of splitting (dividing up) the models 

When there is feedback between the models, separating the models is less 
effective. For instance, it is not possible to prevent model A from producing 
an entity if model B is unable to accept it because the first buffer is full, 
even though in fact this is what would happen. Therefore, it is better to split 
models at a point with little to no feedback, like where there is a big buffer. 

To improve run-speed, there is a lot of interest in running simulations 
concurrently on different computers. Running split models simultaneously 

mu
no
tes
.in



 

 
43 

 

Conceptual Modelling should make it easy to model feedback effects and circumvent the problem 
mentioned above. However, there are already a number of challenges to 
using parallel computing for simulation, not the least of which is creating 
effective systems for synchronizing the models as they run. 

2.7.7 What defines a good simplification? 

Even while model simplifications are advantageous, the accuracy of the 
simulation can be significantly impacted by a bad choice of simplification 
or oversimplifying a model. A successful simplification is one that benefits 
from quicker model building and run-speed (utility), while still keeping a 
high enough level of accuracy (validity). How does a modeler assess the 
merits of a simplification? There are two major strategies. 

The first is to decide if a simplification is likely to have a major impact on 
model correctness using your best judgement. Discussions between the 
modeler, client, and other members of the simulation project team should 
be used to decide this. The project specification serves as a helpful forum 
for describing and debating the merits of suggested simplifications. Of 
course, using this method does not guarantee whether or not a simplification 
is necessary. Before using a certain simplification, it may be helpful to 
consult with an expert modeler who has a lot of experience with model 
simplifications. 

The second strategy involves prototyping the simplification in the computer 
model and testing it. Two computer models—one with and one without the 
simplification—are created by the modeler. The impact on accuracy can 
then be determined by contrasting the two models' outputs. Naturally, this 
gives much more assurance regarding the necessity of a simplification, but 
the benefit of a quicker model creation is lost. 

Along with preserving an adequate level of truth (accuracy), a successful 
simplification should also maintain credibility. A model's trustworthiness 
can be damaged by oversimplification, which can make it less transparent. 
Consider the application of black-box modelling. The intricacies of the 
representation are not transparent, even though a black-box may offer a 
sufficiently accurate representation of a portion of an operating system. This 
might be adequate for certain clients, but for others, it might be required to 
offer a more thorough portrayal in order to give the model legitimacy. In 
order to ensure the model's credibility, it is occasionally necessary to 
incorporate a wider scope and more specific degree of detail than is 
necessary to ensure the model's correctness. An inadequate simplification 
is one that makes a client doubt the validity of a model. In fact, there are 
times when it's required to invert the idea of simplification and actually 
make the model more complex (in terms of its breadth and amount of 
information) in order to meet the demand for believability.   

2.8 SUMMARY 

Virtually without a doubt, conceptual modelling is the most crucial 
component of a simulation study. The success of the simulation study as a 
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Simulation and Modeling whole depends on the construction of an acceptable model. Unfortunately, 
conceptual modelling is also the component of simulation modelling that is 
least well-known. In order to address the problem, this chapter defines a 
conceptual model and explains its needs, including validity, credibility, 
utility, and feasibility. It is crucial to create a model that is as 
straightforward as feasible while still being able to achieve the study's goals. 
Additionally discussed are ways to represent the conceptual model and how 
to use a project specification to communicate it. 

The topic of creating conceptual models is also covered from two angles: 
first, by offering a framework for conceptual modelling that enables a 
modeler to create a conceptual model from scratch; and second, by outlining 
various techniques for streamlining an existing conceptual model. The 
framework is demonstrated using a fast-food restaurant as an example.  
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2.10 UNIT END EXERCISES   

1]  Define and explain the conceptual model. 

2] What are the requirements of conceptual model? 

3] Write a detailed note on communicating the conceptual model. 

4]  Illustrate project specifications for simulation. 

5] State and explain various ways to represent the conceptual model. 

6] Explain the framework for conceptual models. 

7] Write a note on different process involved in the formation of 
conceptual model framework. 

8]  State and explain methods for model simplification    
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3 
DATA COLLECTION AND ANALYSIS   

Unit Structure : 
3.0 Objectives 
3.1  Introduction  
3.2  Data requirement and obtianing of data 
3.3  Representing data  
3.4  Selecting statistical distributions. 
3.5  Obtaining Accurate Results 
 3.5.1 Introduction  
 3.5.2 The nature of simulation models and simulation output 
 3.5.3 Issues in obtaining accurate simulation results 
 3.5.4 Example model 
 3.5.5 Dealing with initialization bias 
 3.5.6 Selecting the number of replications and  run-length 
3.6  Summary 
3.7  Exercise  
3.8  References 

3.0 OBJECTIVES  

After going through this chapter, students will able to learn 

• To understand what are data requirements 

• To deal with and collect various types of data 

• To represent data using various statistical distributions 

• To obtain accurate simulation results   

• To identify number of runs and replicaitons 

3.1 INTRODUCTION  

The initial step in simulation is gathering data and for the same determine 
what data is essential for building the model. The initial focus should be on 
defining the overall process flow for more detailed information. The 
information can then be added gradually as it is available . This detailed 
approach of data collection enables to build efficient model in the entire 
process. 
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Simulation and Modeling One needs to be careful in this data collection because if the data that are 
used to design and design the model are erroneous then the results from the 
model will also be erroneous. In this chapter a number of problems with 
respect to the collection and analysis of data are discussed. Initially the 
focus is on identifying the data requirements. Later it turns to obtaining the 
data and in precise how inaccurate data and data that are not available 
should be dealt with.  

3.2 DATA REQUIREMENT AND OBTAINING OF DATA 

Data plays an important role in simulation . Data can be qualitatiative (in 
orm of numbers like age, salary etc. ) or quantitative ( in terms of some 
quality like colour of hair, quality of rice etc.). while studying simulation 
quantitative data is of more use as compared to qualitative data. In this 
chapter,  the word data refers to both quantitative and qualitative data, even 
though that much of the discussion focuses on the collection and particularly 
analysis of quantitative data.  

It is also important to note that data and information are two different 
concepts. Information is usually perceived as data with interpretation, in 
other words data that has been investigated for some purpose. A simulation 
modeller may be provided with  raw data or data that have been interpreted 
in some manner . 

In simulation, as in any modelling exercise, data requirements can be split 
into three types as follows : 

1. Preliminary or contextual data : To develop a thorough understanding 
of the problem some data needs to be accessible for some  processing 
capability. Here in this phase massive data collection should be 
avoided, since the data are only required for developing an 
understanding and are usually not needed for detailed analysis. These 
data are essential for conceptual modelling process as they help in 
advancement of conceptual modelling. 

2. Data required for developing model: while we move from the 
conceptual model to a computer model different kind of data are 
required, for example, customer arrival patterns and descriptions of 
customer types. It may be essential to carry out a detailed collection 
process to acquire these data. These data are directly identified from 
the conceptual model.  

3. Data required for validation : It is important to guarantee that each 
part of the model, as well as the model as a whole, represents the real 
world system with adequate accuracy. Assuming  the existence of real 
world system , the apparent way to do this is to compare the model 
results with data from the real system. 

 Once data has identified according to requirements the next step is to 
“obtain data”. Some data are easily available while some needs to be 
collected . As discussed earlier there are three types of data of which: 
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Data Collection And Analysis •   Type 1 data is  available easily either because they are known or 
have been collected previously. For example, data may have been 
collected on service times and arrival rates in a bank for a survey 
of staffing levels. 

•   Type 3 data need to be collected. Data that fall into this category 
include service times, arrival patterns, machine failure rates and 
repair times etc. While  collecting this type of  data it is imperative 
to ensure that the data obtained are both accurate and in the correct 
format.  

•   Type 3 data are not available and cannot be collected. These often 
happens because the real world system does not yet exist, making 
it impossible to observe it in operation. Another factor is Time 
availability both in terms of person-time and elapsed time 
available to collect meaningful data. For example, data are not 
available on the repair time for a machine. 

•   There are two main ways of handling type 3 data.  

1. To estimate the data from various sources and  

2. To treat the data as an experimental factor rather than a fixed 
parameter. Instead of asking what the data are, the issue is twisted and 
the question asked is : what do the data need to be? But these can only 
be applied when there is some control over the data in question. 

Data accuracy, is the essential standard of data quality, refers to the 
consistency of data with reality.Even if the data is vaialable or collected 
one must ensure that it is accurate. The source of the data should be 
investigated. If the data are too inaccurate for the simulation model, then an 
alternative source could be required. If alternative is  not available, then 
expert judgement and analysis might be used to determine the more likely 
values of the data. 

In addition to accuracy, data  needs to be in the right format for the 
simulation. The modeller must know the format of the data that are being 
supplied or collected and also ensure that these are appropriate for the 
simulation model. In case they are not, then the data should be considered 
as inaccurate and improvement of  the data should be carried out or find an 
alternative source. The last resort is to treat the data as type 3. 

3.3 REPRESENTING DATA 

At the heart of simulation modelling lies modelling variability, especially 
unpredictable (or random) variability. While designing the simulation, the 
modeller must determine how variability that is present in each part of the 
model can be represented appropriately.  
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Simulation and Modeling Three options are available for the same as follows :  

1. Traces : A trace is a stream of data that describes a sequence of events. 
It holds data about the time at which the events occur. It may also hold 
additional data about the events such as the type of part to be 
processed (part arrival event) or the nature of the fault(event of 
machine brekadown). As simulation runs ,it reads the trace and the 
events are recreated in the model as described by the trace. The data 
are typically held in a data file or a spreadsheet. 

2. Empirical distributions : An empirical distribution is one for which 
each possible event is assigned a probability derived from 
experimental observation. It is assumed that the events are 
independent and the sum of the probabilities is 1. An empirical 
distribution may represent either a continuous or a discrete. 
distribution. An empirical distribution shows the frequency with 
which data values, or ranges of data values, occur and are represented 
by histograms or frequency charts and are usually based on historic 
data. 

3. Statistical distributions : They are defined by some mathematical 
function or probability density function (PDF). There are many 
standard statistical distributions(continuous and discrete) available to 
the simulation modeller. The best known is the normal distribution 
that is specified by two parameters: mean (its location) and standard 
deviation (its spread). 

Some of the most useful distributions are divided into three types:  

a. Continuous distributions: for sampling data that can take any value 
across a range for example height of students in a class. 

 Some of commonly used continuous distributions are : normal (Figure 
), negative exponential (Figure ) and Erlang (Figure ) distributions. 

b. Discrete distributions: for sampling data that can take only specific 
values across a range, for example number of students in a class. Some 
of commonly used discrete distributions are : Binomila(that describes 
the number of successes, or failures, in a specified number of trials) 
and  Poisson (used to represent the number of events that occur in an 
interval of time, for example , total customer arrivals in an hour in a 
bank) 

c. Approximate distributions: used in the absence of data. The simplest 
form of approximate distribution is the uniform distribution, which 
can either be discrete or continuous. Another example is triangular 
distribution. 

 Having discussed three types of variability next question is “Which 
of the three approaches for modelling unpredictable variability should 
be preferred?” 
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Data Collection And Analysis Each type has its own advantages and disadvantages. 

Type Advantage Disadvantage 

Traces  • Represent historic 
events in the real system 
exactly as they occurred. 

• Help to improve the 
reliability of a mode. 

• need for the real 
system to exist and for 
the necessary data to 
have been collected 
from that system. 

Empirical 
Distribution 

• does not use up large 
quantities of computer 
memory. 

• difficult to 
perform sensitivity 
analysis 

Statistical 
Distribution 

• limited use of computer 
memory 

• sensitivity analysis can 
be performed  easily 

• least transparent 
approach for the clients, 
potentially reducing the 
credibility of the model 

A fourth option for modelling unpredictable variability, known as 
bootstrapping, also is of some interest. Instead of fitting a distribution to the 
data or summarize the data in an empirical distribution, data are simply re-
sampled at random with replacement from the original trace.It is useful 
when there is only a small sample of data available. 

Dependency, or correlation in input data can also be an issue in representing 
unpredictable variability. To handle such dependencies conditional 
probability can be used. Another problem that occurs when distributions 
change over time, stated to as non-stationary input data.One of the simplest 
examples is modelling arrival times.  

3.4 SELECTING STATISTICAL DISTRIBUTIONS 

After data has been collected , in order  to proceed further a modeler must 
decide which statistical distributions are most suitable for the model that is 
being created. 

The Distributions needed to model can be chosen by studying the existing 
properties of the process or can be fitted using empirical data. 

1. Selection of distribution from existing properties of the process: 

 When  a process id being modelled it is often possible to choose a 
model using the properties of process. For example if we have to 
model arrival time of customers in a café then this arrival is random 
in nature for a given time interval so a negative exponential 
distribution can be used. To signify service times for example the 
mount of time a customer needs to get the service in café can be 
modelled suitably using Erlang, gamma and lognormal distributions. 
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Simulation and Modeling If time between arrival  is being modelled, then it is  sensible to 
assume a Weibull distribution. 

 The benefit of using properties to select a distribution is that only the 
parameters of the distribution need to be defined and that there is no 
reuirement of collecting  complete data. For example, for the negative 
exponential distribution, just the mean inter-arrival time is needed 
instead of inter-arrival time between every customer.this method is 
also useful when data cannot be obtained directly. 

2. Selection of distribution from empirical data : 

 In case data is available from experimentation it is  feasible to fit a 
statistical distribution to those data. This process consists of three 
stages:  

o Select a statistical distribution.  

o Determine the parameters.  

o Test the goodness-of-fit i.e determine how good the distribution 
fits the data. 

     Also care has to be taken that a sequence of distributions should tried 
with different parameters instead of relying on a single distribution . 
In other words, there should be a number of iterations through these 
phases. 

3.5 OBTAINING ACCURATE RESULTS 

In earlier sections  we saw requirements of data, planning and building of 
model , selection of appropriate distributions for the given data. In this 
section now we proceed with acquiring accurate results and process needed 
for the same. 

3.5.1 Introduction 

There are two significant issues in experimentation of simulation.  

I To guarantee that the on the basis of  model performance accurate results 
are obtained from the simulation model. We will do in this section  

II To confirm that the search for a better understanding and improvements 
is achieved as efficiently and effectively as possible.This is referred to as 
searching the solution space and will be done in next section . 

In this section , before we discuss precise methods for finding accurate 
results on performance of model, the nature of simulation models and 
simulation output are described. 

This is significant because it affects the approaches that need to be taken to 
obtaining accurate results. The primary issues in obtaining accurate results 
are then explained i.e  
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Data Collection And Analysis • Dealing with initialization bias and obtaining sufficient output data.  

• Various methods for dealing with these two issues which are 
described (warm-up period, setting initial conditions, multiple 
replications and long runs).  

These methods are demonstrated by applying them to the output data from 
a model of a computer user help desk. The main emphasis is  on practical 
issues, which in some cases are supported by the use of statistical methods. 

3.5.2 The nature of simulation models and simulation output 

THE NATURE OF SIMULTION MODELS AND SIMULATION 
OUTPUT 

Depending upon the accurate results that are obtained from a model depends 
the nature of a simulation model and its output .We assume that that the 

simulation output is stochastic, for the purposes of this discussion ,that is, 
the model comprises random events. Eventhough possible to have a 
simulation model that does not contain any random events, it is not common 
exercise. It is to be noted  that for such deterministic models, some of the 
concerns described below still needs consideration. 

1  Terminating and non-terminating simulations : 

 A simulation model can be categorized as one of two types: 
terminating and non-terminating. 

 For a terminating simulation there is a regular end point that defines 
the length of a run. The end point can be defined in a number of ways, 
for instance: 

• The model reaches an empty condition, e.g. a bank that closes at the 
end of a day. 

• The completion of the time period under search, e.g. the end of the 
busy lunch period in a supermarket. 

• The completion of a trace of input data, e.g. the completion of a 
production schedule. 

 Whereas , a non-terminating simulation does not have a natural end 
point.  

• An example is a model of a production facility that aims to determine 
its throughput capability.  

 There is no precise reason as to why a simulation experiment should 
terminate other than the model user interrupting the run. For non-
terminating models the length of a simulation run needs to be 
determined by the model user. 

2  Transient output: 

 In maximum cases the output from a terminating simulation is 
transient. Transient output means that the distribution of the output is 
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Simulation and Modeling constantly changing. For aexample ,in  a simulation of a bank. One of 
the responses of interest is the number of customers served in each 
hour of the day. In addition ,for any time period the number of 
customers served is unlikely to be same on any given day. This is 
purely as a result of the random variation in the system. 

 The distribution of customers served in the hour 11:00–12:00 on any 
day could be between about 60 and about 100. Over many days, the 
mean number of customers served between 11:00 and 12:00 will be 
about 80. Similarly, for each hour of the day there is a distribution of 
the number of customers served. Because the output data are transient, 
the distribution varies for each hour of the day.  

3  Steady-state output 

 For non-terminating simulations the output often reaches a steady 
state. Steady state means  that the output is varying according to some 
fixed distribution (the steady-state distribution). Consider the 
example of a simulation of a production facility. The throughput 
varies from day-to-day owing to breakdowns, conversions and other 
interruptions. In the long run, however, the throughput capability (the 
mean throughput level) remains constant. In steady state the level of 
inconsistency about that mean also remains constant since the steady-
state distribution is constant.  

 Even though steady-state output is defined with respect to non-
terminating simulations, it is possible that a terminating simulation 
may also reach a steady state, mostly if the termination point infers a 
long run-length. In the Similar manner, the output from a non-
terminating simulation may not reach a steady state. 

4  Other types of output 

 Transient and steady-state are not the only types of output that occur 
from simulation models. A third type, steady-state cycle is also 
identified by Law and Kelton (2000) . Consider simulation of a 
production facility working two shifts. The night shift has lesser 
operators and hence works at a slower rate, in this situation the 
throughput recorded by the simulation cycles 

 between two steady states. A similar effect might occur in a 24-hour 
service operation such as a call handling centre for the emergency 
services. The rate at which calls are received varies according to the 
time of the day. Hence , a simulation response there is change in calls 
handled as the day progresses. Assuming that the call pattern is 
similar on each day, the simulation output will cycle through the same 
series of steady states. The pattern may be more complex, with a day-
of-week effect as well. In this case there are two cycles overlapped on 
one another, a daily and a weekly cycle. 

 Steady-state-cycle output can be distributed  simply by lengthening 
the observation interval in the time-series to the length of the longest 
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Data Collection And Analysis cycle. Instead of recording hourly throughput or throughput by shift 
in the production example above, the data could be recorded daily. 
Due to this ,the cycles are subsumed into the longer observation 
interval and the output analysis can be performed as for steady-state 
output. 

 Robinson et al. (2002)also  define a fourth  type of output i.e  shifting 
steady-state. In certain models the output shifts from one steady state 
to another as time advances.For example, this may be due to changes 
in product type, number of staff or operating practice, assuming that 
each of these affects the output response. Unlike the steady-state cycle 
described above, these shifts do not necessarily occur in a regular or 
even predictable pattern. A heuristic method was also described by 
the authors for detecting such output behaviour their analysis. 

5  Determining the nature of the simulation output 

 Genarally, the output from terminating simulations is transient and 
that from nonterminating simulations is steady-state (possibly with a 
cycle or shifts). However, this  is not always the case. Some additional 
investigation is desirable before determining on the nature of the 
output. 

1 The input data should be examined. Do they change during a 
simulation run? For example, the customer arrival rate might 
change as the simulation run progresses. If they do not change, 
then it is probable that the model output is steady-state. On the 
other hand if the data change, and the model is terminating, then 
this is revealing of transient output. If the model is non-
terminating, and the data change according to a regular cycle, 
then this suggests the output is steady-state-cycle. 

2 The output data should be explored, mainly by inspecting time-
series.If the output is steady-state, then the time-series should 
disclose a typical initial transientand then steady-state pattern. 
However, if  the output is transient,then the time-series should 
not resolve, Steady-state cycle output should be reasonably easy 
to detect, assuming that multiple cycles are not overlaid. Shifts 
in steady state are not so willingly identified by straightforward 
inspection and need more detailed analysis (Robinson et al. 
2002). 

3.5.3 Issues In Obtaining Accurate Simulation Results 

Let us understand the main difference between model performance and real 
system performance before discussing the issues in obtaining accurate 
simulation results.In this sectionwe will  discuss about obtaining accurate 
data on the performance of the model.  

The main aim of simulation output analysis is to obtain an accurate estimate 
of average (mean) performance, although measures of variability are also 
important .There are two primary issues in guaranteeing the accuracy of the 
estimates obtained from a simulation model.  
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Simulation and Modeling • The first is the elimination of any initialization bias, and  

• The second is confirming that enough output data have been obtained 
from the simulation to acquire an accurate estimate of performance.  

Both issues, can lead to results if not properly addressed, that are biased and 
ambiguous. 

1  Initialization bias: warm-up and initial conditions 

 The first issue, the removal of initialization bias, is applicable to non-
terminating simulations and sometimes needs to be addressed for 
terminating simulations. Many terminating simulations start from, 
and return to, an empty condition.  

 For example , most service operations open and close each day with 
no customers present. However, there are, situations where the empty 
condition is not a realistic starting point.  

 If a week’s production schedule is run through a simulation model, it 
would be wrong to assume that there is no work-in-progress on 
Monday morning. We may want to model the lunch period in a bank 
and it would be inappropriate to ignore the customers who are present 
at the beginning of this period. 

 There are two ways of handling initialization bias.  

• The first is to run the model for a warm-up period. Basically this 
involves running the model until it reaches a realistic condition 
(steady-state for a non-terminating simulation) and only 
collecting results from the model after this point.  

• The second approach is to set initial conditions in the model. 
Instead of running the model until it is in a realistic condition, 
the model is placed in a realistic condition at the start of the run. 
This often means placing work-in-progress into the model at the 
beginning of a run, for example, customers or parts.  

• A third option is to use a blend of initial conditions and warm-
up. 

2  Obtaining sufficient output data: long runs and multiple 
replications 

 The second issue, ensuring that enough output data have been 
obtained from the simulation,can be solved in two ways.  

• The first is to perform a single long run with the model.This is 
only an option for a non-terminating simulation, unless 
perchance the termination point for a terminating simulation is 
sufficiently far off to collect enough output data. 

•  In general, for terminating simulations the only option is to use 
the second approach,performing multiple replications.  

 

mu
no
tes
.in



 

 
55 

 

Data Collection And Analysis  A replication is a run of a simulation model that uses specified streams 
of random numbers, which in turn cause a specific sequence of 
random events. By changing the random number streams another 
replication is performed in which the sequence of random events that 
occur during the model run changes, as do the results obtained. By 
performing multiple replications and taking the mean of the results, a 
better estimate of model performance is gained. Performing multiple 
replications is equivalent to taking multiple samples in statistics. 
Meanwhile, performing one long run is equivalent to taking one large 
sample.Multiple replications as discussed above, is generally the only 
approach available for obtaining  sufficient output data from 
terminating simulations. Meanwhile, for non-terminating simulations 
the model user can use either long runs or multiple replications. 

3.5.4 An Example Model: Computer User Help Desk 

In order to describe  the methods for dealing with initialization bias and 
ensuring that sufficient output data are obtained, it is useful to refer to an 
example. Figure 1 shows a time-series of output from a simulation of a 
computer user help desk. This model has been used for a simulation study 
of a real life help desk. 

 

Figure 1 : Time-Series of Mean Time in the System for User Help 
Desk Example. 

The desk receives email enquiries and telephone call from computer users. 
The enquiries are received, logged and whenever possible dealt with by the 
staff on the help desk. A high proportion of the calls require technical 
expertise or a site visit and so they are passed on to the technical team. 
Because of a backlog of work it may take hours or even days to bring an 

enquiry to completion. The time-series in Figure 1 shows the mean time that 
enquiries being completed on each day have spent in the system (in 
minutes); this is just one of a number of output statistics that may be of 
interest. It is evident that there is a lot of variability in the time it takes to 
complete enquiries.The model is non-terminating and review of the time-
series intensely suggests that the output is steady-state. The input data do 
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Simulation and Modeling not change during the simulation run, lending further weight to this 
conclusion. There appears to be some initialization bias since at least 

the first two observations are low. This is expected as the initial condition 
of the model is unrealistic; there are no enquiries in the system. 

3.5.5 Dealing with Initialization Bias 

This section defines two methods for dealing with initialization bias: a 
warm-up period and setting initial conditions. The third option of using 
mixed initial conditions and warm-up discussed, as well .The advantages 
and disadvantages of the different methods are also discussed  

1  Determining the warm-up period : 

If a warm-up period is to be employed, the main question is what should be 
the length of the warm-up period? The simple answer is that the warm-up 
period should be long enough to ensure the model is in a realistic condition. 
For a non-terminating simulation this normally means that the initial 
transient has passed and the model output is in steady state. The trouble in 
this answer lies in finding whether the model is in a realistic condition. 

A variety of methods have been projected for identifying and determining 
the warm-up period and initialization bias. These can be classified into 
five types. 

• Graphical methods: which involve the visual inspection of time-series 
of the output data. 

• Heuristics approaches: which apply simple rules with few underlying 
assumptions. 

• Statistical methods: which depend  upon the principles of statistics for 
determining the warmup period. 

• Initialization bias tests: that identify whether there is any initialization 
bias in the data. Rigorously these are not methods for identifying the 
warm-up period, but they can be used in combination with warm-up 
methods to determine whether they are working effectively. 

• Hybrid methods: these involve a combination of graphical or heuristic 
methods with an initialization bias test. 

For those that wish to investigate these approaches further, a list of methods 
and references is provided in Table 1. All of these methods unfortunately, 
have limitations and there is no one method that can be recommended for 
all circumstances. Main problems that occur with these methods are 
overestimating or underestimating the length of the initial transient, relying 
on very restrictive assumptions and using highly complex statistical 
procedures. 
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Data Collection And Analysis 

 

Table 1 : Methods for Determining the Warm-up Period  
(Robinson 2002). 

Two fairly straightforward graphical methods which are commonly used  
are described here :  Time-series inspection and Welch’s method.  

1 Time-series inspection : 
 The simplest method for identifying the warm-up period is to inspect 

a time-series of the simulation output, that is, the key response(s) of 
the simulation model .The problem with reviewing a time-series of a 
single run, is that the data can be very noisy and hence difficult to spot 
any initialization bias. Consequently, if a series of replications are run 
and the mean averages of those replications for each period are plotted 
on a time-series it would be better. At least five replications should be 
performed, while more may be required for very noisy data. The more 
replications the more the time-series will be smoothed as outliers are 
subsumed into the calculation of the mean for each period. 

 To determine the warm-up period, the point at which the output 
appears to settle into a steady state should be identified. That is, the 
point at which the data are neither consistently higher or lower than 
their ‘‘normal’’ level and where there is no apparent upward or 
downward trend in the data. particularly noisy, subtle patterns in the 
data may go unnoticed. Time-series 
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Simulation and Modeling  output that looks as if in steady state, but more detailed analysis 
reveals a trend in the data and that the warm-up period needs to be 
somewhat longer than originally thought. 

2 Welch’s method 
 Welch (1983) suggests a method that is based on the calculation and 

plotting of moving averages.This involves the following steps: 

• T o obtain time-series of the output data,perform a series of 
replications (at least five) . 

• Calculate the mean of the output data across the replications 
for each period (Yi). 

• Calculate a moving average based on a window size w (start 
with w = 5). 

• Plot the moving average on a time-series. 
• Are the data smooth? If not, increase the size of the window 

(w) and return to the previous two steps. 
• Identify the warm-up period as the point where the time-series 

becomes flat. 
The moving averages are calculated using the following formula: 

 

While using the Welch’s method the intention should be to select the 
smallest window size that gives a sensibly smooth line. Eventhough 
selecting a larger window size will give a smoother line, it also tends to give 
a more conservative (longer) estimate of the warm-up period.It is also 
recommended that the value of w should be no more than a quarter of the 
total observations in the original time-series. If more observations are 
required, the simulation model should be run for longer. 

Even if Welch’s method requires the calculation of moving averages, it is 
relatively simple to use and also has the advantage that the calculation of 
the moving average smooths out the noise in the data and helps to give a 
clearer picture of the initial transient. 
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Data Collection And Analysis However, it is still a subjective method and the conclusion made depends 
on the experience of the user. A specific difficulty is in determining whether 
the line is ’smooth’ and what is the appropriate window size. Lastly, since 
the method is based on cumulative statistics (moving averages), according 
to some it is conservative and tends to overestimate the warm-up period. 

Some additional issues related to both method discussed above needs to be 
stated.  

• First,while generating the time-series data the length of the simulation 
run should be muchgreater than the anticipated warm-up period. Also 
oone should be sure that the output data have established into a steady 
state beyond the warm-up period that is identified. 

• Secondly, when a model has more than one key response (as defined 
by the conceptual model, the initial transient should be investigated 
for each one. The responses may settle to a steady state at different 
times in the simulation run.  

The warm-up period should be selected based on the response that takes 
longest to settle. Each of these should be investigated for initialization bias. 

An alternative to using a warm-up period is to set the initial conditions of 
the model. There are two ways in which appropriate initial conditions can 
be identified. 

• The first is to observe the real system. In some cases, data on the 
current state of the real system can be downloaded directly from 
automatic monitoring systems . Clearly this approach can only be 
used if the real system exists.  

• The second approach is to run the simulation model for a warm-up 
period and record the status of the model, using this to define the 
initial condition of the model for future runs. 

Besides defining the work-in-progress in a model, initial conditions can be 
set for the activities that take place in the model. It is often not worth the 
additional effort in data collection and model coding to include initial 
conditions for activities. Athird area for which initial conditions can be set 
is for equipment stoppages (breakdowns and changeovers). If specific initial 
conditions are not set then the default would effectively be to assume that 
all activities have just completed a stoppage at the start of the simulation 
run.  

In certain cases it is useful to use a combination of a warm-up period and 
initial conditions. The aim here is to reduce the length of the warm-up 
period required.  

3.5.6  Selecting The Number Of Replications And Run-Length 

In the following section we will describe the  methods for finding the 
number of replications that should be executed with a model and for 
selecting an appropriate run-length for a long run. 
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Simulation and Modeling In both the cases the aim is to guarantee that sufficient output data have 
been obtained from the simulation in order to estimate the model 
performance with sufficient accuracy.  

Along with discussion of multiple replications there is also a brief 
explanation of variance reduction. At the ens we also discuss the  relative 
merits of using multiple replications and long runs. 

1 Performing multiple replications : 

A replication is a run of a simulation that uses specific streams of random 
numbers. Multiple replications are performed by changing the streams of 
random numbers that are referenced and re-running the simulation. The aim 
is to produce multiple samples in order to obtain a better estimate of mean 
performance. How many replications need to be performed? Three 
approaches to answering this question are: a rule of thumb, a graphical 
method and a confidence interval method. 

A rule of thumb 

Law and McComas (1990) recommend that at least three to five replications 
are performed. 

This simple rule of thumb is useful because it makes clear that model users 
should not rely on the results from a single replication. It however ,does not, 
take into account the characteristics of a model’s output. Models with output 
data that vary normally require more replications than models with a more 
stable output. The two methods below address this issue by inspecting the 
output data from a model. 

Graphical method 

A simple graphical approach is to plot the cumulative mean of the output 
data from a series of replications. It is recommended that at least 10 
replications are performed initially. As more replications are performed the 
graph should become a flat line (minimal variability and no upward or 
downward trend).  

The number of replications required is defined by the point at which the line 
becomes flat. Performing more replications away from this point will only 
give a marginal improvement in the estimate of the mean value. 

If the line does not become flat, then more replications are needed. 

Confidence interval method 

A confidence interval is a statistical method which shows accurately the 
mean average of a value is being estimated. The narrower the interval the 
more accurate the estimate is considered to be. In general, the more sample 
data that are included in the interval, the narrower it becomes. When 
applying confidence intervals to simulation output, more replications 
(samples) are performed until the interval becomes sufficiently narrow to 
satisfy the model user (and the clients). 
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Data Collection And Analysis When analysing simulation output data a confidence interval is calculated 
as follows: 

 

Where Xi = result from replication i. 

Often a significance level (α) of 5% is selected. This gives a 95% probability 
that the value of the true mean (obtained if the model is run for an infinite 
period) lies within the confidence interval (this is known as a 95% 
confidence interval). On the contrary, it implies that there is a 5% likelihood 
that the mean does not lie in the interval.  

Because the confidence interval provides an upper and a lower limit the 
significance level is divided by two (α/2). So for a 5% significance level, 
values at 2.5% significance are selected from the Student’s t-distribution.  

An alternative method for determining the number of replications required 
is to rearrange the confidence interval formula above so that n (the number 
of replications) is on the left-hand side, as follows: 

 

By performing some initial replications (say five to ten) to estimate S and 
𝑋ത, the number of replications required to achieve a specified percentage 
deviation (d) can be determined.The accuracy of this method depends, of 
course, on the accuracy with which S and 𝑋ത are estimated from the initial 
replications. 

For both the graphical and confidence interval method it is important to 
obtain output data from more replications than are required in order to be 
sure that the cumulative mean line has flattened and that the confidence 
interval remains narrow. If there is more than one key response ,then the 
number of replications should be selected on the basis of the response that 
requires the most replications. Since the graphical and confidence interval 
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Simulation and Modeling methods use the output data from the model to draw a conclusion about the 
number of replications required, they are preferred to the rule of thumb.  

The confidence interval approach effectively builds on the graphical 
method by not only enabling an inspection of the cumulative mean line, but 
also providing a measure of accuracy. As a result, eventhough it requires 
some more complex calculations, the recommended approach is to use 
confidence intervals. 

2 Variance reduction (antithetic variates) 

One of the aim of variance reduction is to obtain an accurate estimate of 
model performance while reducing the number of replications required. 
Many methods have been proposed for variance reduction . In practice, 
however, it would appear that only two methods are used frequently:  

• Antithetic variates. 

• Common random numbers  

Antithetic variates, proposed by Tocher (1963), are the inverse of the 
random numbers normally generated by a pseudo random number stream. 
A pseudo random number stream {u1, u2, u3, . . .} is inverted to become 
the stream {1 − u1, 1 − u2, 1 − u3, . . .}. If samples are  taken from a normal 
distribution, the use of antithetic variates would have the effect of changing 
the sample given by the original variate to be on the equal and opposite side 

of the mean of the normal distribution. In effect, the samples from the 
original replication are reversed in the second (antithetic) replication. The 
mean result from the two replications (original and antithetic) gives a better 
estimate of model performance than from two completely independent 
replications. 

Although the use of antithetic variates is appealing, some words of caution 
are :  

• First, the reversal effect occurs because the normal distribution is 
symmetrical. If the distribution is not symmetrical, the effect is less 
marked.  

• Second, simulation models normally consist of many random vents 
that interact in a complex fashion. Therefore, it is difficult to predict 
the effect of inverting the random streams and certainly it cannot be 
guaranteed that an equal and opposite result will be obtained. Law and 
Kelton (2000) suggest that the use of antithetic variates may actually 
increase the variance in some circumstances, meaning that more 
replications are required to obtain a good estimate of model 
performance. 

• A third issue is that, although the use of antithetic variates may enable 
the mean performance of the model to be estimated from fewer 
replications, the approach by nature restricts the variance in the 
results. The results cannot, therefore, be used fully to understand the 
likely spread of model performance (e.g. the standard deviation). 
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Data Collection And Analysis In practice, it is probably sensible to test the effect of using a mix of original 
and antithetic variates. If it reduces the number of replications required for 
a particular model then we can continue using the approach. If it does not, 
then all that is lost is the time taken to test the idea.  

3  Performing a single long run 

Instead of using multiple replications, if a single long run is to be performed 
an appropriate length of run needs to be determined. Robinson (1995) 
describes a graphical method for determining the run-length of a single long 
run with the aim of ensuring that the results are sufficiently accurate. 

Initially, three replications are performed with the model. These should be 
run for longer than the anticipated run-length. An initial estimate could be 
made using Banks et al.’s (2001) rule of thumb that the run-length should 
be at least 10 times the length of the warm-up period .Time-series data are 
generated for the key output data and then cumulative means are calculated 
for each of the replications. The cumulative meansare plotted on a graph. 
As the run-length increases, it is expected that the cumulative means of the 
three replications will converge. If the replications were run for an infinite 

period, they would produce exactly the same result! The level of 
convergence is calculated as follows: 

 

The run-length is selected as the point where the convergence is seen as 
acceptable. This might be at a level of less than 5%. Because of variations 
in the output data the convergence may temporarily increase with a longer 
run, particularly when there are only a few observations. It is important, 
therefore, that the convergence value is not only within an acceptable level, 
but that it is also fairly steady at the selected run-length. If an acceptable 
and steady value is not obtained with the output data generated, the run-
length should be increased. 

It is also recommended that histograms are drawn and compared for the 
output data from each of the replications. If the model run is sufficiently 
long the distribution of the output data, as well as the mean, should be 
reasonably similar.  

4  Multiple replications versus long runs 

For terminating simulations we need to perform multiple replications. For 

non-terminating simulations, such as the user help desk model, there is an 
option. The question is whether it is better to perform multiple replications 
or long runs.The advantage of performing multiple replications is that 
confidence intervals can easily be calculated, and they are an important 
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Simulation and Modeling measure of accuracy for simulation results. The disadvantage of multiple 
replications is that if there is a warm-up period, it needs to be run for every 
replication that is performed. This wastes valuable experimentation time. 

On the other hand, with long runs, the warm-up period is only run once for 
each experimental scenario. This saves time. Another advantage of long 
runs is that the results probably appear more intuitive to the model user and 
the clients, since most operations run week-on-week and they are not 
constantly returned to the same starting state as with multiple replications. 
It is not easy, however, to calculate confidence intervals from a single time-
series, since the data are likely to be correlated. The choice of which 
approach to use depends upon their relative merits within the context of the 
simulation study.  

3.6 SUMMARY 

In this chapter , we discussed a series of decisions that need to be taken 
when performing simulation experiments. These are as follows: 

• Determine the nature of the simulation model: terminating or non-
terminating. 

• Determine the nature of the simulation model output: transient or 
steady-state (steadystate cycle, shifting steady-state). 

• Determine how to deal with initialization bias: warm-up period, initial 
conditions or mixed warm-up and initial conditions. This is an issue 
for both terminating and non-terminatingsimulations. 

•  Determine the amount of output data required: multiple replications 
or long runs.For terminating simulations the only option is to perform 
multiple replications. Either approach can be used for non-terminating 
models. 

3.7 EXERCISE  

For the following simulation models identify the expected type of model 
(terminating or non-terminating) and the nature of the simulation output 
(transient, steady-state, steady-state cycle). 

a)  A model of a refrigerator manufacturing plant that aims to determine 
plant throughput. 

b)  A model of a chemical plant that tests the production schedule for the 
next week. 

c)  A model of a supermarket checkout that aims to determine customer 
service levels over a typical day. 

d)  A model of a supermarket checkout that aims to determine customer 
service levels during a busy period. 

e)  A model of a hospital emergency unit that aims to determine service 
levels for patients. 
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Data Collection And Analysis 3.8 REFERENCES   
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Simulation and Modeling 4 
SEARCHING THE SOLUTION SPACE    

Unit Structure : 
4.0  Objectives 

4.1  Introduction  

4.2    The nature of simulation experimentation 

4.3  Analysis of results from a single scenario 

4.4  Comparing alternatives. 

4.5     Search experimentation 

 4.5.1 Informal approaches to search experimentation 

 4.5.2 Experimental design 

 4.5.3 Metamodelling 

4.5.4 Optimization  

4.6    Sensitivity analysis 

4.7 Verification, Validation and Confidence 

4.7.1 Definition  

4.7.2 The difficulties of verification and validation  

4.7.3 The Methods of verification and validation  

4.7.4 Independent Verification and Validation 

4.8  Summary 

4.9  Exercise  

4.10  References   

4.0 OBJECTIVES   

The main objective  of this chapter is to discourse procedures for searching 
the solution space .There is a discussion on how the results from a 
simulation experiment should be analysed. This provides an important 
foundation for being able to compare alternative scenarios when searching 
the solution space. The discussion then moves on to cover three key areas 
in relation to searching the solution space: 

• The comparison of results from two or more different scenarios. 

• Methods for searching the solution space, covering informal methods, 
experimental design, metamodelling and optimization. 

• Sensitivity analysis. 
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Searching the Solution Space We will also concepts of verification and validation methods for model 
testing. The discussion  is split into four parts.  

• First, the terms verification and validation are defined, and various 
forms of verification and validation are described and set in the 
context of the process of performing a simulation study.  

• There is then a discussion on the difficulties that are encountered 
when trying to perform verification and validation.  

• Thirdly, some useful verification and validation methods are 
described.  

• Finally,there is a brief discussion on independent verification and 
validation.  

4.1 INTRODUCTION   

In this chapter we move on to discuss the selection and comparison of 
alternative scenarios in experimentation. This comprises of a search for a 
solution to the real world problem being addressed by the simulation study. 
It means  finding the best scenario or the one which will satisfy the  
requirements of clients’. This entire procedure is designated as searching 
the solution space. The solution space is defined as the total range of 
conditions under which the model might be run. Two precise terms are used 
during the chapter.  

• level for an experimental factor. For experimental factors quantitative 
in nature (e.g. cycle times, arrival rates) the level is the value of the 
factor and for qualitative factors (e.g. rules) the level is inferred as an 
option.  

• scenario, is a run of the simulation under a specific set of conditions, 
that is, levels set for experimental factors. A scenario can be thought 
of as a specific factor/level combination. By changing the level of one 
or more experimental factors, the scenario is changed. 

In the process of determining how well the model performance it reflects 
the real world issue for verification and validation.Indeed  verification and 
validation intends to determine the accuracy with which the model predicts 
the performance of the real system.  

4.2 NATURE OF SIMULATION EXPERIMENT  

There are various forms of Simulation experiments .In this section we 
discuss two forms :  

• Interactive and batch experimentation : this describes the means by 
which the simulation runs are performed 

• Comparing alternatives and search experimentation:this  describes the 
means by which the scenarios for experimentation are determined. 
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Simulation and Modeling 1 Interactive and batch experimentation :  
Interactive experimentation comprises inspecting the simulation run 
and making changes to the model to see the effect. For example, while 
watching the simulation, the model user might notice a bottleneck in 
one area of the model. The capacity of that area could be increased 
(e.g. faster cycle, more machines) and the model run continued to see 
the effect of such a change. The aim here  is to cultivate an 
understanding of the model (and so the real system), its key problem 
areas and recognize possible solutions. Such an approach is very 
useful for facilitating group decision-making. 

2  Batch experiments are achieved by setting the experimental factors 
and leaving the model to run for a predefined run-length (or to a 
specific event) and for a set number of replications. This needs no 
communication from the model user and so the display is usually 
switched off. This also improves the run-speed of the model. The aim 
here  is to run the simulation for sufficient time in order to acquire 
statistically significant results. The run-length (including a warm-up 
period) and the number of replications are determined using methods 
such as those described in Chapter 3.  

There are a restricted number of scenarios to be compared when comparing 
alternatives. These scenarios are frequently known at the start of the 
simulation study, for example, there may be three alternative factory 
layouts. On other occasions the scenarios arise as the simulation study 
progresses. The number of scenarios (the solution space) is often small, 
although there are occasions when a large number exist. 

In search experimentation there are no predefined scenarios. As an 
alternative, one or more experimental factors are varied till a target or 
optimal level is reached. For instance,the aim might be to reach a target 
throughput or to achieve an optimum level of customer service by balancing 
the cost of resources with the cost of lost custom. For this type of 

experimentation there either needs to be a clearly defined target, normally 
expressed in the objectives of the project, or a well defined function (e.g. 
cost or profit) to be optimized.  

4.3 ANALYSIS OF RESULTS FROM A SINGLE 
SCENARIO  

In order to decide the performance of the model, Simulation experiments 
are achieved. This  is measured in terms of values of the responses. For 
each response two measures are generally of interest:  

 The average (or point estimate) : Mean is commonly used to measure 
the average level of a response.It would be possible to obtain an exact 
value of the mean for each response if a simulation could be run for 
an infinite amount of time. Since this is not practically possible, we 
must depend on upon simulation runs which provide a sample of 
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Searching the Solution Space results. Since simulation experiments provide only a sample of output 
data it is important that a confidence interval for each mean is stated. 
A confidence interval delivers information on the range within which 
the population mean (obtained from an infinite run-length) is expected 
to lie. It is, therefore, the primary method for reporting the mean in 
simulation studies. It would be beneficial to be able to construct a 
confidence interval for the output data since single long runs have a 
number of advantages over performing multiple replications. Various 
methods have been proposed for accomplishing this: 

• Batch means method  

• Overlapping batch means method 

• Regenerative method 

• Standardized time-series method 

• Spectral estimation method 

• Autoregressive method 

We will discuss only batch method here. 

In the batch mean method, only one simulation run is executed. After 
deleting the warm up period, the remainder of the run is divided 
into k batches, with each batch average representing a single 
observation In the batch means method the time-series of output data         
(Y1, Y2, . . . , Yn) is divided into k batches of length b, such that the mean of 
each batch is calculated as follows: 

 

The batches can be assumed to be independent of each other if the batch 
size is sufficiently large. In this case the confidence interval can be 
constructed in usual manner as :  
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Simulation and Modeling The primary issue with this method is determining the batch size. Numerous 
methods have been proposed, but not any seems to be satisfactory.  

• Schmeiser (1982) proposes that the time-series should not be split into 
more than 30 batches. He found that the accuracy of the confidence 
interval does not improve greatly by having more batches.He also 
recommends that there should be no fewer than 10 batches, since this 
also affects the accuracy of the interval.  

• Fishman (1978) recommends a process based on the von Neumann 
(1941) test for correlation. The batch size is doubled until the null 
hypothesis that there is no correlation in the batch means is accepted. 
An advantage of the von Neumann test is that it can be functional to 
small sample sizes (as few as k = 8 batches).  

• Beyond Schmeiser and Fishman, many other measures have been 
proposed for determining the batch size. For instance, Banks et al. 
(2001) propose a four-step method and Hoover and Perry (1990) 
outline an approach that uses the runs test to check for independence. 

Alternative measure of average performance is the median and 
quantiles estimation. In other words the level of performance can be 
achieved with a given probability. The median is simply the 0.5 
quantile, and the upper and lower quartiles the 0.25 and 0.75 quantiles 
respectively  

 The variability : An average does not provide a complete depiction of 
model performance. We may have instances where two different data  
have the same mean (and indeed mode), but the variability is much 
greater in the one data set. Majorly we prefer a lower levelof 
variability since it is easier to match resources to the levels of demand. 
Apart from creating histograms of the output data, useful measures of 
variability are the minimum, maximum and standard deviation. One 
needs to take care of  outliers when stating the minimum and 
maximum, else these measures may be ambiguous. For a median, 
quartiles and more generally quantiles provide a measure of 
variability. Time-series plots are also significant, since they display 
the form of variability over time.  

4.4 COMPARING ALTERNATIVES  

When matching alternative situations the model user must be capable to 
determine whether one alternative is improved than another. Following  
factors need to be considered: 

 What is the standard deviation of the mean daily throughput for the 
two situations? 

 How many replications (or batches) were used to generate the results? 

If the data have been generated from only a few replications and there 
is a lot of variation in the results, this gives little confidence that the 
difference is significant. However, if many replications have been 
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Searching the Solution Space executed and the standard deviation is low, there can be more 
confidence that the difference is real. 

A realistic method would be to deliberate all three factors  

• the size of the difference, 

• the standard deviation and  

• the number of replications 

Then make a decision whether the difference in the results is significant. A 
more difficult approach depend on on developing confidence intervals for 
the difference between the results. 

We will now discuss how to compare scenarious .Following are some cases: 

1 Comparison of two scenarios 
Supposing that common random numbers are being used in the 
model a confidence interval for the difference between the results 
from two scenarios can be calculated as follows :   

  
This formula is essentially the same as the confidence interval formula 
given earlier in Section except that it uses a single set of values the rather 
than the difference between two sets of values .The subsequent confidence 
interval can lead to one of three outcomes as follows : 

a) The confidence interval is completely to the left of zero. It can be 
concluded, with the specified level of confidence (normally 95%), 
that the result for scenario 1 is less than the result for scenario 2. 

b) The confidence interval includes zero. It can be concluded, with the 
specified level of confidence (normally 95%), that the result for 
scenario 1 is not significantly different from the result for scenario 2. 

c) The confidence interval is completely to the right of zero. It can be 
concluded, with the specified level of confidence (normally 95%), 
that the result for scenario 1 is greater than the result for scenario 2.  
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Simulation and Modeling In order to identify the statistical significance of a difference in the 
results from two scenarios a  paired-t confidence interval can be used.  

2 Comparison of many scenarios :  
To enable more than two scenarios to be compared at once,the paired-
t confidence interval can be extended by use of the Bonferroni 
inequality. This states that if we wish to make c confidence interval 
statements with an overall significance level of α, the individual 
confidence intervals should be formed with a significance level of α/c.  

For example, if 10 confidence intervals are to be formed for 
comparison and an overall significance level of 10% (90% 
confidence) is required, each confidence interval should be calculated 
with a significance level of 1% (99% confidence).  

3 Choosing the best scenario(s) : 

Apart from  comparing scenarios, a group of scenarios are of much 
interest. At the simplest level this can be achieved by inspecting the 
mean results for each scenario. Also , merely comparing point 
estimates does not take explain the standard deviation of the results or 
the number of replications accomplished. Hence it is  better to refer 
to confidence intervals.  

Beyond comparing means and using confidence intervals for 
differences, there are statistical methods for choosing the best 
scenario known as ranking and selection methods. 

In this section our discussion is centred on identifying the statistically 
best scenario. The model user and clients need to discuss the practical 
issues surrounding the decision to determine whether the statistically 
best scenario is indeed the best decision.    

4.5 SEARCH EXPERIMENTATION  

Since there is the prospective to have many scenarios (factor/level 
combinations) in search experimentation, very often it is not possible to 
simulate every single scenario in the time available in order to determine 
which meet the target required or provide the optimum result. Subsequently, 
procedures need to be established for improving the efficiency of the 
experimentation process. There are three methods for accomplishing this: 

1 Experimental Design: identify the experimental factors that are most 
likely to lead to significant improvements, thereby reducing the total 
factor/level combinations to be analysed.  

2 Metamodels: fitting a model to the simulation output (a model of a 
model). Because the fitted model runs much faster than the 
simulation, many more factor/level combinations can be investigated  

3 Optimization: performing an efficient search of the factor/level 
combinations, trying to identify the optimum combination There is 
much written on these approaches and each provides a fertile area for 
continued research. 
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Searching the Solution Space Though these methods are described as separate topics, it must be recalled 
that they overlap with one another and that the approaches can be used in 
combination during experimentation. Before discussing  the formal 
methods to carry out search investigation let s discuss some informal 
approaches.  

4.5.1 Informal Approaches to Search Experimentation  

Many simulation model users do not have the essential skills and simulation 
software usually does not provide ample support for search 
experimentation, with the exception of optimization .In such cases , 
informal approaches can be quite operative and they also have the advantage 
that the model user is closely involved with the selection of scenarios. 

Following are  some informal approaches to search experimentation.These 
are classified under three headings that relate closely to those listed above: 

1 Identifying important experimental factors (similar to experimental 
design):  
There are three ways in which the importance of an experimental 
factor can be identified: 

a) Data Analysis: by analysing the data in a model it is sometimes 
possible to draw conclusions about the likely impact of a change 
to an experimental factor.  

b) Expert Knowledge: subject matter experts, for example, 
operations staff, often have a good understanding of the system 
and the factors that are likely to have greatest impact.  

c) Preliminary Experimentation: varying the levels of 
experimental factors and execuing the model to see the effect. 
If used with caution, Interactive experimentation may be helpful 
in this respect, although it is important to perform batch 
experiments to test fully the effect of a change to an 
experimental factor. 
An advantage of Data analysis and expert knowledge as 
compared preliminary experimentation is that they require less 
time. However, Preliminary experimentation, delivers a more 
detailed means for inspecting the effect of a change to an 
experimental factor. 

2 Developing an understanding of the solution space (similar to 
metamodelling)  
It is often possible to form an opinion by simulating a limited number 
of scenarios (factor/level combinations) as to the likely outcome of 
other scenarios without having to run the simulation .It may be likely 
to identify those scenarios that are possible  to yield the anticipated 
result and those that are unlikely to do so. Through this process the 
model user forms an understanding of the solution space. 

3 Searching factor/level combinations efficiently (similar to 
optimization) 
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Simulation and Modeling The model user should recognize factor changes that have the utmost 
influence in improving the simulation result or moving the simulation 
result towards the wanted objective. The user can then ponder on 
continuing to change those experimental factors in the direction of the 
improvement. For instance, if the addition of service personnel leads 
to the greatest improvement, then further service personnel could be 
added. 

An additional apprehension is recognizing a scenario that appears optimal 
when an extensive search would disclose a better result. This can only be 
handled by jumping to quite different factor/level combinations to 
understand if there is a substantial enhancement.  
   
4.5.2  Experimental Design  

Experimental design acts as a method of recognizing important 
experimental factors, that .These are those factors to which changes are 
most likely to produce the desired result. It is a formal method for carrying 
out the preliminary experimentation As such,experimental design can be 
valuable, mainly in the early stages of experimentation, for recognizing 
scenarios that should be simulated. 

2k factorial designs 

One approach to experimental design is to adopt a 2k factorial design, where 
k is the number of experimental factors as  described by Law and Kelton 
(2000) 

If k number of variables/factors are considered to determine/screen the 
important ones, the total number of treatment combinations for a k number 
of factors can be calculated as in Equation given below : 

2x 2 x ----- x 2 = 2k 

Therefore, this method is known as the 2K design of experiments. 

The main advantage of this methd is it helps you to screen out factors 
strongly influencing your response variable from those which are not. 

However there are some restrictions in using 2k factorial designs as follows:  

1. If interaction effects exist then the interpretation of the main effects 
becomes more difficult.  

2. It is precarious to extrapolate the findings of a 2k factorial design 
outside the range of the levels used in the simulation runs. 

3. Because the approach interpolates between results, a linear model is 
assumed effectively. 

Some other methods of experimental design are : 

• Fractional factorial designs which are applied when there are too 
many factors to enable full experimentation with every factor/level 
combination.  
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Searching the Solution Space • Analysis of variance (ANOVA) provides a more rigorous means for 
identifying the effect of changes to factors. It involves a series of 
hypothesis tests in which it is determined whether changes to the 
experimental factors have an effect on the response.   

4.5.3 Metamodelling  

As the name indicates a metamodel is a model of a model, or  a model of 
the simulation output. Because the metamodel is usually an analytical 
model it runs much faster than the simulation. It is, therefore, probable to 
investigate many more scenarios with a metamodel than with the simulation 
itself. The disadvantage is that the metamodel is an approximation of the 
simulation output and so the results it provides are not precise. There is also 
the overhead of creating the metamodel. 

Once the metamodel is fitted it is used for continued experimentation in 
place of the simulation. In doing so it must be recollected that the 
metamodel is only an approximation.It should only be used to identify 
candidate scenarios, which will be then executed in the full simulation 
model. It is also unsafe to extrapolate results from the metamodel outside 
the range of the factor/level combinations used to create the model.  

4.5.4 Optimization  

The main aim in simulation optimization is to find the combination of 
factor/level that gives the finest value for a response, that is the maximum 
or minimum value. The problem is  similar to standard mathematical 
optimization methods. There is some objective function to be optimized, 
typically, cost, profit or customer service. Then  there is a set of decision 
variables that can be changed; in simulation these are the experimental 
factors. Finally, there are a series of constraints within which the decision 
variables can be changed; this is expressed in terms of the range within 
which the experimental factors can be altered. 

The difference between two optimizations is that there is no algorithm for 
guaranteeing an optimum solution. One standard approach to use heuristic 

search methods .The difficulty,though, is that a heuristic search requires the 
simulation to be run, which makes it a time consuming approach.  

Many simulation software dealers deliver optimization packages for their 
software.The majority of these use heuristic search approaches and in 
particular a set of methods known as meta-heuristics, like simulated 
annealing, genetic algorithms and tabu search (Reeves 1995; Debuse et al. 
1999). 

But none of the optimization packages can assure that an optimum solution 
will be found.  

4.6 SENSITIVITY ANALYSIS  

Sensitivity analysis determines how different values of an independent 
variable affect a particular dependent variable under a given set of 

mu
no
tes
.in



   

 
76 

Simulation and Modeling assumptions. This model is also referred to as a what-if or simulation 
analysis. 

 In other words, sensitivity analyses study how various sources of 
uncertainty in a mathematical model contribute to the model's overall 
uncertainty. In sensitivity analysis the consequences of changes in model 
inputs are assessed. In this framework model inputs are inferred more 
generally than just experimental factors and include all model data. The 
sensitivity analysis is as shown in figure : 

 

Figure 1 : Sensitivity Analysis  
The input (I) is varied, the simulation run and the effect on the response is 
measured. If there is a significant shift in the response (the gradient is steep), 
then the response is sensitive to the change in the input. If there is little 
change (the gradient is shallow), then the response is insensitive to the 
change. 

Sensitivity analysis is beneficial in three main areas: 

• Assessing the effect of uncertainties in the data. 

• Understanding how variations to the experimental factors affect the 
responses. 

• Assessing the robustness of the solution. 

The key method to performing sensitivity analysis is to vary the model 
inputs, run the simulation and record the change in the responses. This can 
be a very time consuming process, particularly if there are many model 
inputs. Hence , sensitivity analysis should be limited to a few key inputs, 
which might be identified as those about which there is greatest uncertainty 
and which it is believed have the greatest impact on the response. In addition 
to this, experimental design and metamodelling methods can be beneficial 
in helping to achieve and speed up sensitivity analysis (Kleijnen 1998; 
Noordegraaf et al. 2003). Perturbation analysis tries to predict the 
sensitivity of the results from a single run of a simulation model 
(Glasserman 1991). Because the simulation does not have to be run 
repeatedly this should save time.   
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Searching the Solution Space 4.7 VERIFICATION, VALIDATION AND CONFIDENCE  

Verification and validation of computer simulation models is carried out 
during the development of a simulation model with the final goal of 
producing an accurate and credible model.Verification and validation 
intends to determine the accuracy with which the model predicts the 
performance of the real system.  
   
4.7.1 Definition  

Verification is the process of guaranteeing that the model design 
(conceptual model) has been converted into a computer model with 
sufficient accuracy (Davis 1992). On the other hand ,Validation is the 
procedure of ensuring that the model is sufficiently accurate for the purpose 
at hand (Carson 1986).  

There are two main concepts in validation:  

• sufficient accuracy and  

• models that are constructed for a specific purpose.  

The main aim in verification and validation is to guarantee that the model 
is adequately accurate. Additionally, this accuracy is with mention to the 

purpose for which the model is to be used. As a result, the purpose, or 
objectives, of a model should be known before it can be validated. This 
purpose may have been determined at the commencement of the simulation 
study, being expressed through the objectives or it may be an alternative use 
for an existing model.  

Concepts of validity and accuracy are related but are separate.While 
accuracy is measured on a scale of zero to 100%,validity is a binary 
decision.  
Various types of validation can be defined as follows: 

• Conceptual Model Validation: Finding  that the content, assumptions 
and simplifications of the proposed model are sufficiently accurate for 
the purpose at hand.  

• Data Validation: determining that the contextual data and the data 
required for model realization and validation are sufficiently accurate 
for the purpose at hand.  

• White-Box Validation: determining that the essential parts of the 
computer model signify the corresponding real world elements with 
sufficient accuracy for the purpose at hand.  

• Black-Box Validation: determining that the overall model represents 
the real world with sufficient accuracy for the purpose at hand. This 
is an overall, or macro, check of the model’s operation. 
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Simulation and Modeling •  Experimentation Validation: determining that the experimental 
procedures accepted are providing results that are satisfactorily 
accurate for the purpose at hand.  

• Solution Validation: determining that the results obtained from the 
model of the proposed solution are sufficiently accurate for the 
purpose at hand. Similar to black-box validation in that it involves a 
comparison with the real world. The difference is that only compares 
the final model of the proposed solution to the implemented solution.  

verification and validation is a continuous process that is executed 
throughout the life-cycle of a simulation study. Just as modelling is 
an iterative process, so too is verification and validation.  

• At an primary stage in project of  simulation  a conceptual model is 
established. Here the model should be validated.  

• As the project evolves the conceptual model is possibly revised as the 
understanding of the problem and the modelling requirements change.  

• As a result, the conceptual model also needs to be revalidated.  

• -While the conceptual model is being transformed into a computer 
model, the constituent parts of the model should be continuously 
verified. Similarly, the details of the model should be checked against 
the real world throughout model coding (white-box validation). 
Black-box validation requires a completed model, since it makes little 
sense to compare the overall model against the real world until it is 
complete.  

• The identification of model errors and constant changes to the 
conceptual model demands model revisions and therefore further 
black-box validation.  

4.7.2 The Dfficulties Of Verification And Validation  

Before we discusse precise methods of verification and validation it is 
important to know that there are a number of problems that result when we 
try to validate a model. 

• There is no such thing as general validity 

o A model is only validated with respect to its purpose. It cannot 
be expected that a model that is valid for one purpose is also 
valid for another.  

• There may be no real world to compare against 
• Considerable validation needs a comparison of the model to the real 

system. There is no real world to use for comparison. Even if the 
model is of an existing system, its purpose is to investigate 
alternative operating practices, for which again no real world exists. 
The model may be shown to be valid when it is representing the 
existing operation, but this does not guarantee that it is valid once it 
represents some change to the system. 
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Searching the Solution Space • Which real world? 

o Different people have different interpretations of the real world, 
as described by Weltanschauung or world views by Checkland 
(1981). An employee in a bank may see the bank as a means for 
earning money, while a customer may see it as a means for 
safely storingmoney, or as a means for borrowing money. This 
presents a problem when validating models. If people have 
different world views,which interpretation(s) should be used for 
developing and validating a model? A model that is valid to one 
person may not be valid to another.   

• Often the real world data are inaccurate 

o Validation often involves a comparison of some facet of the 
model, for instance throughput,against real world data. The 
model is run under the same conditions as the real world to see 
if it performs in a similar manner. There are two difficulties that 
arise with this procedure. 

 First, the real world data may not be accurate. Indeed, the purpose of 
data validation is to determine the accuracy of the data that are being 
used. If the data are not accurate,however, this creates problems in 
determining whether a model’s results are correct. 

 Secondly, even if ‘‘accurate’’ real world data do exist, it must be 
remembered that these are only a sample, which in itself creates 
inaccuracy. For instance, data may have been collected on the 
throughput of a production facility over a 10-week period. 

• There is not enough time to verify and validate everything 

o There is purely not enough time to verify and validate every 
aspect of a model (Balci 1997). This is a problem that affects 
both verification and validation.The modeller’s job is to ensure 
that as much of the model is verified and validated as possible, 
both in terms of the model details (conceptual model validity, 
verification, whitebox validation and data validation), the 
overall validity (black-box valid-ation) and the experimental 
procedures (experimentation validation). 

• Confidence not validity 
• Though, in theory, a model is either valid or it is not, proving this in 

practice is a very different matter. It is not possible to prove that a 
model is valid. Instead, it is only imaginable to think in terms of the 
confidence that can be placed in a model. The process of verification 
and validation is not one of trying to demonstrate that the model is 
correct, but is in fact a process of trying to prove that the model is 
incorrect.  
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Simulation and Modeling 4.7.3 The Methods uf Verification and Validation   
Following are some useful methods of verification and validation existing 
to simulation modellers. 

1 Conceptual model validation 

For validating a conceptual model there are no official methods. The project 
specification is the major means available for determining what confidence 
should be placed in the model. The specification should be distributed 
among those who have a detailed knowledge of the system and  feedback 
must be obtained on whether the model is appropriate.It is also useful that 
the modeller and the clients together  assess the assumptions and 
simplifications for the level of confidence that can be placed in them and 
their probable impact on the accuracy of the model. Those assumptions and 
simplifications about which there is little confidence, and which it is 
believed have a high impact, need to be addressed. One approach is to 
eliminate them by altering the model or investigating the real system 
further. Iit is not possible to remove them, sensitivity analysis can be 
performed later in the project to determine their impact.  

2 Data validation 

obviously  data are possible source of inaccuracy in a simulation model and 
can move a model from being sufficiently accurate to being invalid. Effort 

should be made to ensure that the data are as accurate as possible. The  data 
should be analysed for inconsistencies and any cause for concern 
investigated.   

3 Verification and white-box validation 

Although verification and white-box validation are conceptually different, 
they are treated together here because they are both performed continuously 
throughout model coding. 

• Verification ensures that the model is true to the conceptual model, 
while white-box validation ensures that the content of the model is 
true to the real world (in this way it is an indirect form of conceptual 
model validation).  

• Verification can be performed by the modeller alone,comparing the 
computer model with the conceptual model description. In the 
meantime, whitebox validation requires the involvement of those 
knowledgeable about the real world system.  

• Whereas verification can be performed almost continuously during 
model coding,white-box validation is performed less frequently since 
it requires the involvement of more than just the modeller. 

Various aspects of the model should be checked during model coding: 

• Timings, e.g. cycle times, repair times and travel times. 

• Control of elements, e.g. breakdown frequency and shift patterns. 
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Searching the Solution Space • Control of flows, e.g. routing. 

• Control logic, e.g. scheduling and stock replenishment. 

• Distribution sampling, e.g. the samples obtained from an empirical 
distribution. 

Three methods of verification and white-box validation are : 

• Checking the code 
The modeller needs to read through the code to ensure that the right 
data and logic have been entered. We can get someone else to read the 
code, or to explain the code to someone else as a second check. If no 
modelling experts are available, then most simulation software 
vendors offer a help-desk service with which specific areas of code 
could be discussed.  

• Visual checks 
The visual display of the model proves to be a powerful support for 
verification and validation.By running the model and watching how 
each element behaves both the logic of the model and the behaviour 
against the real world can be checked. Various ideas in this approach 
are : 

 Stepping through the model event by event. 

 Stopping the model, predicting what will happen next, running the 
model on and checking what happens. 

 Interactively setting up conditions to force certain events to take 
place.  

 Creating extreme conditions, such as a very high arrival rate, to 
determine whether the model behaves as expected 

 Isolating areas of the model so it runs faster, reducing the time to 
perform thorough verification and validation. 

 Explaining the model as it runs to those knowledgeable about the real 
system in order to gain their opinion. 

 Tracing the progress of an item through the model. 

• Inspecting output reports 
By reviewing the reports from a simulation run,comparison can be done of  
the actual and expected results. In verification and white-box validation of 
interest is the performance of the individual elements. Graphical reports of 
samples from input distributions, for instance, machine repair times, are an 
aid in checking that they are being modelled correctly. A report which may 
be of some use is a ’trace’ of a simulation run.  

4 Black-box validation 

In black-box validation the complete behaviour of the model is considered. 
There are two broad approaches to performing this form of validation.  
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Simulation and Modeling  The first is to compare the simulation model to the real world.  

 The other is to make a comparison with another model.  

The second approach is particularly useful when there are no real world data 
to compare against.  

5 Experimentation validation 

Guaranteeing the accuracy of simulation experiments requires 
consideration to the issues like initial transient effects, run-length, the 
number of replications and sensitivity analysis. Also, the search of the 
solution space should be sufficient to obtain an adequate understanding and 
identify appropriate solutions.   

6 Solution validation 

The goal of all modelling and verification and validation is to try and assure 
the validity of the final solution. Once implemented, it should be possible 
to validate the implemented solution against the model’s results. This is 
similar in concept to the comparisons with the real world performed in 
black-box validation, except that the comparison is between the final model 
of the proposed solution and the implemented solution.   

4.7.4 Independent Verification, Validation   

Independent verification and validation (IV&V) or verification, validation 
and accreditation (VV&A) includes an independent third party whose aim 
is to determine whether a model is suitable for a particular use.  

Gass (1983) defines model assessment (or evaluation) as ‘‘a process by 
which interested parties (who were not involved in a model’s origins, 
development and implementation) can determine, with some level of 
confidence, whether or not the model’s results can be used in decision-
making’’. He considers that model valuation is essential in three 
circumstances: 

 When the decision-makers are far removed from the process of 
developing the model. 

 When the model is to be applied to a new set of situations other than 
that originally planned.  

 Even if the decision-makers work closely with the analysts during 
model development, it is unlikely that they have the necessary 
knowledge and skills to evaluate the model. 

Typically, independent verification and validation is only carried out for 
large-scale military and public policy models, probably because the costs of 
the process are prohibitive for most manufacturing and service sector 
projects which tend to be smaller in scale (Cochran et al.1995). In 1977, 
Gass suggests that in selecting a model for major evaluation it should have 
involved an expenditure of over $250,000 and more than five person-years 

of effort (Gass 1977). Even for large-scale models, independent verification 
and validation is not always common practice (Arthur and Nance 1996). 
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Searching the Solution Space A complete range of procedures for independently assessing simulation 
models have been planned over the years by several authors .Most of this 
criterias involve model verification and validation, although other factors 
such as documentation  and training are also considered to be important. For 
example Gass and Joel (1981) use seven criteria: 

 Model definition 

 Model structure 

 Model data 

 Computer model verification 

 Model validation 

 Model usability 

 Model pedigree 

For each of the criteria either a subjective score is given (e.g. on a scale of 
1–5) or a set of qualitative statements is made. Where subjective scores are 
given, then some overall score can be calculated, possibly taking into 
account the importance of each criteria (Gass and Joel 1981). The overall 
score indicates the level of confidence that can be placed in the model for 
its intended purpose. Balci et al. (2002) describe software that aids the 
evaluation process.   

4.8 SUMMARY  

In this chapter we discussed  how simulation experiments are performed 
and how the results should be reported. Methods for comparing alternative 
scenarios are described and approaches for searching the solution space are 
discussed. Some of the key areas and methods that are identified are The 
nature of simulation experimentation,The analysis of results,Comparison of 
alternatives,Informal search experimentation,Formal search 
experimentation and Sensitivity analysis .The experimental methods 
described focus on finding a solution and on the statistical significance of 
the results. The proper use of experimental methods, if used together with 
these wider considerations, must only enhance this process. 

Model verification and validation is concerned with creating enough 
confidence in a model for the results to be accepted. This is done by trying 
to prove that the model is incorrect. The more tests that are performed in 
which it cannot be proved that the model is incorrect, the more confidence 
in the model is increased. For verification and validation the general rule is: 
the more testing the better. 

Lastly, the modeller should recollect that the approval of a simulation study 
and its results does not depend exclusively on the validity of the model. 
Verification and validation assures (content) quality in the sense that the 
model conforms to the clients’ technical requirements for a model and a set 
of results that are sufficiently accurate  
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Simulation and Modeling 4.9 EXERCISE   

1. Compare and contrast the difficulties that might be encountered in 
validating a simulation model of: 

a) An existing manufacturing plant 

b) A unique construction project  

2. Carry out some verification and validation tests with the bank model. 
3. Explain nature of simulation 
4. Explain verificationand validation methods 
5. Write a note on sensitivity analysis. 
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5 
MODELING AND SIMULATION 

MODELLING: PART 1    
Unit Structure : 
5.1 Introduction:  

5.2  Objectives:  

5.3 Types of models 

5.4  Application of simulation modeling 

5.5  Level of abstraction  

5.6  Simulation Modeling Methods  

5.7  System Dynamics  

5.8  Discrete Event Modeling 

5.9  Conclusion  

5.10  Practice Question 

5.11  References   

5.1 INTRODUCTION:  

Simulation in general is to pretend that one deals with a real thing while 
really working with an imitation. In operations research the imitation is a 
computer model of the simulated reality. A flight simulator on a PC is also 
a computer model of some aspects of the flight: it shows on the screen the 
controls and what the "pilot" (the youngster who operates it) is supposed to 
see from the "cockpit" (his armchair). 

 Gain greater understanding of a process 

 Identify problem areas or bottlenecks in processes 

 Evaluate effect of systems or process changes such as demand, 
resources, supply, and constraints 

 Identify actions needed upstream or downstream relative to a given 
operation, organization, or activity to either improve or mitigate 
processes or events 

 Evaluate impact of changes in policy prior to implementation 

Why to use models? To fly a simulator is safer and cheaper than the real 
airplane. For precisely this reason, models are used in industry commerce 
and military: it is very costly, dangerous and often impossible to make 
experiments with real systems. Provided that models are adequate 
descriptions of reality (they are valid), experimenting with them can save 
money, suffering and even time.  
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Simulation and Modeling By method in simulation modeling, we mean a general framework for 
mapping a real-world system to its model. A method suggests a type of 
language, or "terms and conditions" for model building.  The choice of 
method should be based on the system being modeled and the purpose of 
the modeling – though often it is most heavily influenced by the background 
or available tool set of the modeler.  At a higher level, it is desirable that the 
engine supports:  

•  A large number of concurrent activities, including their dynamic 
creation and destruction.  

•  Correct handling of multiple instantaneous events, in particular 
deterministic and random execution. This is important for 
synchronous models.  

•  Networks and communication.  

•  2D, 3D, and geographical space, and space-related functionality.   

5.2 OBJECTIVES:  

 To understand different modelling techniques used in simulation 

 Comparative study of different models 

 To learn important aspects of model building   

5.3 TYPES OF MODELS: ANALYTICAL VS. 
SIMULATION MODELING  

There are many different types of models and associated modeling 
languages to address different aspects of a system and different types of 
systems. Since different models serve different purposes, a classification 
of models can be useful for selecting the right type of model for the intended 
purpose and scope. 

An analytical model describes mathematical relationships, such as 
differential equations that support quantifiable analysis about the system 
parameters. Analytical models can be further classified into dynamic and 
static models. Dynamic models describe the time-varying state of a system, 
whereas static models perform computations that do not represent the time-
varying state of a system. A dynamic model may represent the performance 
of a system, such as the aircraft position, velocity, acceleration, and fuel 
consumption over time. A static model may represent the mass properties 
estimate or reliability prediction of a system or component. 

The term simulation, or more specifically computer simulation, refers to 
a method for implementing a model over time. The computer simulation 
includes the analytical model which is represented in executable code, 
the input conditions and other input data, and the computing infrastructure. 
The computing infrastructure includes the computational engine needed to 
execute the model, as well as input and output devices. The great variety 
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Modeling and Simulation 
Modelling: Part 1 

of approaches to computer simulation is apparent from the choices that the 
designer of a computer simulation must make, which include: 

 stochastic or deterministic; 

 steady-state or dynamic; 

 continuous or discrete; and 

 local or distributed. 

Other classifications of a simulation may depend on the type of model that 
is being simulated. One example is an agent-based simulation that simulates 
the interaction among autonomous agents to 
predict complex emergent behavior (Barry 2009). There are many other 
types of models that could be used to further classify simulations. In 
general, simulations provide a means for analyzing complex dynamic 
behavior of systems, software, hardware, people, and physical phenomena. 

Simulations are often integrated with the actual hardware, software, and 
operators of the system to evaluate how actual components and users of the 
system perform in a simulated environment. Within the United States 
defense community, it is common to refer to simulations as live, virtual, or 
constructive, where live simulation refers to live operators operating real 
systems, virtual simulation refers to live operators operating simulated 
systems, and constructive simulations refers to simulated operators 
operating with simulated systems. The virtual and constructive simulations 
may also include actual system hardware and software in the loop as well 
as stimulus from a real systems environment.  

5.4 APPLICATION OF SIMULATION MODELING  

Modelling & Simulation can be applied to the following areas − Military 
applications, training & support, designing semiconductors, 
telecommunications, civil engineering designs & presentations, and E-
business models. 

Additionally, it is used to study the internal structure of a complex system 
such as the biological system. It is used while optimizing the system design 
such as routing algorithm, assembly line, etc. It is used to test new designs 
and policies. It is used to verify analytic solutions. Some of the area of 
application is as shown below: 

1. Modelling in Engineering and Sciences 

2. Applications of Simulation 

3. Modelling and Simulation tools 

4. Big Data Simulation and IoT 

5. High Performance Computing and Network Simulation 

6. Artificial Intelligence and Machine Learning 
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Simulation and Modeling 7. Choosing drilling projects for oil and natural gas 

8. Evaluating environmental impacts of a new highway or industrial 
plant 

9. Setting stock levels to meet fluctuating demand at retail stores 

10. Forecasting sales and production requirements for a new drug 

11. Planning aircraft sorties and ship movements in the military 

12. Planning for retirement, given expenses and investment performance 

13. Deciding on reservations and overbooking policies for an airline 

14. Selecting projects with uncertain payoffs in capital budgetin 

5.5 LEVEL OF ABSTRACTION  

Abstraction level of complex simulation models such as large 
manufacturing systems is always a critical factor in simulation projects. It 
not only helps define boundaries of a simulation model but also defines the 
complexity and resource requirements for the model. Many a times a simple 
looking model grows into a complex model because of incorrect choices in 
abstraction level. Developing the model in stages or steps of abstraction is 
sometimes a favored approach. In this paper we study and analyze 'why' and 
'how' these choices in abstraction level of a simulation model at various 
stages in a project's life cycle results in answering the objective function 
more precisely. Selection of abstraction levels should be based on project 
objectives and should not purely depend on the system itself.  

 

The level of abstraction of a model determines the amount of information 
that is contained in the model. The quantity of information in a model 
decreases with the lowering levels of abstraction. Thus a „low level 
abstraction‟ model contains more information than a „high level 
abstraction‟ model. The significance of abstraction is further amplified by 
pressures on both time and costs of projects and does not allow the use of a 
„safe‟ abstraction level that would have more than required details in the 
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model. It hence becomes vital to model at the highest possible abstraction 
level that does not compromise in any way on the accuracy of outputs or 
ensuing decisions. That said, there is a need for models and modelers to be 
flexible with abstraction levels during projects.  

  Selection of abstraction levels should be based on project objectives 
and should not purely depend on the system itself  

  Modelers should note adopt a safe-bet approach of putting more detail 
into the model than what is required. Models should be built at the 
highest level of abstraction possible without compromising accuracy.  

  Analysis of high-level model results and TOC based tools can help in 
identify areas for adding model fidelity  

  Changes to model efficiencies should be considered right from the 
conceptual phases when moving to low abstraction level models   

5.6 SIMULATION MODELING METHODS  

A system can be classified into the following categories. 

 Discrete-Event Simulation Model − In this model, the state variable 
values change only at some discrete points in time where the events 
occur. Events will only occur at the defined activity time and delays. 

 Stochastic vs. Deterministic Systems − Stochastic systems are not 
affected by randomness and their output is not a random variable, 
whereas deterministic systems are affected by randomness and their 
output is a random variable. 

 Static vs. Dynamic Simulation − Static simulation include models 
which are not affected with time. For example: Monte Carlo Model. 
Dynamic Simulation include models which are affected with time. 

 Discrete vs. Continuous Systems − Discrete system is affected by 
the state variable changes at a discrete point of time. Its behavior is 
depicted in the following graphical representation.  
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Simulation and Modeling Step 1 − Examine the problem. In this stage, we must understand the 
problem and choose its classification accordingly, such as 
deterministic or stochastic. 

Step 2 − Design a model. In this stage, we have to perform the following 
simple tasks which help us design a model − 

 Collect data as per the system behavior and future requirements. 

 Analyze the system features, its assumptions and necessary actions to 
be taken to make the model successful. 

 Determine the variable names, functions, its units, relationships, and 
their applications used in the model. 

 Solve the model using a suitable technique and verify the result using 
verification methods. Next, validate the result. 

 Prepare a report which includes results, interpretations, conclusion, 
and suggestions. 

Step 3 − Provide recommendations after completing the entire process 
related to the model. It includes investment, resources, algorithms, 
techniques, etc.  

 5.7 SYSTEM DYNAMICS  

System dynamics is a method created in the mid-1950s by MIT Professor 
Jay Forrester, whose original background was in science and engineering. 
Forrester's idea was to use the laws of physics, in particular the laws of 
electrical circuits, to describe and investigate the dynamics of economic 
and, later on, social systems. The principles and the modeling language of 
system dynamics were formed in the 1950s and early 1960s, and remain 
unchanged today.   

System dynamics is a method of studying dynamic systems. It suggests that 
you should:  

•  Take an endogenous point of view. Model the system as a causally 
closed structure that itself defines its behavior.  

•  Discover the feedback loops (circular causality) in the system. 
Feedback loops are the heart of system dynamics.  

•  Identify stocks (accumulations) and the flows that affect them. Stocks 
are the memory of the system, and sources of disequilibrium.  

•  See things from a certain perspective. Consider individual events and 
decisions as "surface phenomena that ride on an underlying tide of 
system structure and behavior.” Take a continuous view where events 
and decisions are blurred.  

To understand the essence of system dynamics, consider a shop with a 
counterman serving the shop’s clients. The more people come to the shop 
per hour, the longer the queue grows. You can build a discrete event model 
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that will give you the length of the queue as a function of the clients’ arrival 
rate and the service time. However, in a real shop, as the queue grows 
longer, some clients may decide not to join the queue, and instead leave the 
shop. Others may decide to leave the queue after having waited longer than 
they expected to. In other words, the length of the queue feeds back to 
inhibit the rate of queue growth. The results of the "straightforward" model 
(sometimes called open-loop models in the system dynamics community), 
will not be valid unless it addresses these circular causal dependencies. One 
of the key advantages of the system dynamics approach is to readily and 
elegantly identify such feedback loops and include them into the model.  

Consider a company that starts selling a new consumer product. The 
addressable market has a known size, which does not change over time. 
Consumers are sensitive to both advertising and word of mouth. The 
product has an unlimited lifetime and does not need replacement or repeated 
purchases. A consumer needs only one product. We are to forecast the sales 
dynamics.  

We will start with identifying the key variables in our model, and will 
iteratively draw causal loop diagrams. In a causal loop diagram, variables 
are connected by arrows showing the causal influences among them, with 
important feedback loops explicitly identified. In our system, one of the 
variables is obviously Sales – the number of people who bought our product 
per time unit, e.g. per week. The number of Potential Clients will be the 
other variable. The bigger the market, the greater the sales; therefore, we 
can draw a causal dependency from PotentialClients to Sales with positive 
polarity. On the other hand, as potential clients buy the product, they stop 
being potential clients, so there is another influence from Sales back to 
PotentialClients, this time with negative polarity. The feedback loop we 
have just created is a negative, or balancing feedback loop: it works for 
reaching a certain goal. In our case, we ultimately will sell the product to all 
potential clients, and both variables will become zero. 

 

What determines the sales rate? According to our assumptions, consumers 
are sensitive to ads and to what other consumers say. So, we will distinguish 
between sales from advertising, and sales from word of mouth. We 
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Simulation and Modeling introduce two new variables and create two balancing loops instead of one, 
see Figure B.   

 

The SalesFromWordofMouth depend on the number of (hopefully happy) 
owners of our product – our Clients. The number of clients grows with 
Sales. We draw another feedback loop, this time positive, or reinforcing, 
see Figure C.  

 

While the causal loop diagram we have drawn shows variable 
interdependencies and feedbacks, it misses the clear mathematical 
interpretation, and therefore cannot be simulated directly. One of the things 
that we need to do on our way to the mathematical model is to identify 
stocks and flows among the variables in our system. Stocks are 
accumulations, and characterize the state of the system. Flows are the rates 
at which these system states change. Units of measure can help identify 
stocks and flows. Stocks are usually quantities such as people, inventory, 
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money, and knowledge. Flows are measured in the same units per time 
period; for example, clients per month, or dollars per year.  

In our model, the stocks are PotentialClients and Clients, and the flow 
between them is Sales. We can now draw a stock and flow diagram and 
write equations for our model. The diagram is shown in Figure 2.2, D. The 
equations behind that diagram are: 

 

The first two equations are differential equations. They define how the stock 
values change over time. For example, the number of Clients grows at the 
Sales rate. The third equation tells that the sales rate consists of two sources, 
and those sources are independent. The equations for those sources, 
however, are not clear from the causal loop diagram, and we need to make 
more assumptions in order to define them.  

Underlying mathematics and simulation engine 

Mathematically, a system dynamics model is a system of coupled, 
nonlinear, first-order differential equations 

 

where is a vector of stocks, is a set of parameters, and is a nonlinear vector-
valued function. Simulation of system dynamics models is done with 
numerical methods that partition simulated time into discrete intervals of 
length dt and step the system through time one dt at a time. X P F  

While numerical methods may be very sophisticated in the modeling tools 
used by natural scientists and engineers (especially the ones with the 
adaptive variable time step), the numerical methods used in system 
dynamics are simple, fixed-step methods: Euler and Runge-Kutta. In 
addition to differential equations, the simulation engine must be able to 
solve algebraic equations that appear in the models with algebraic loops. 

Unlike discrete event and agent-based models, system dynamics models are 
deterministic, unless stochastic elements are explicitly inserted into them.  
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Simulation and Modeling 5.8 DISCRETE EVENT MODELING  

Discrete event modeling is almost as old as system dynamics. In October 
1961, IBM engineer Geoffrey Gordon introduced the first version of GPSS 
(General Purpose Simulation System, originally Gordon's Programmable 
Simulation System), which is considered to be the first method of software 
implementation of discrete event modeling. These days, discrete event 
modeling is supported by a large number of software tools, including 
modern versions of GPSS itself.  
The idea of discrete event modeling method is this: the modeler 
considers the system being modeled as a process, i.e. a sequence of 
operations being performed across entities.  
The operations include delays, service by various resources, choosing the 
process branch, splitting, combining, and some others. Since entities 
compete for resources and can be delayed, queues are present in virtually 
any discrete event model. The model is specified graphically as a process 
flowchart, where blocks represent operations (there are textual languages as 
well, but they are in the minority). The flowchart usually begins with 
"source" blocks that generate entities and inject them into the process, and 
ends with "sink" blocks that remove entities from the model. This type of 
diagram is familiar to the business world as a process diagram and is 
ubiquitous in describing their process steps. This familiarity is one of the 
reasons why discrete event modeling has been the most successful method 
in penetrating the business community.  
The entities (originally in GPSS they were called transactions) that are 
flowing through the process flowchart, are actually agents. Agents may 
represent clients, patients, phone calls, documents (physical and electronic), 
parts, products, pallets, computer transactions, vehicles, tasks, projects, and 
ideas. 
Resources represent various staff, doctors, operators, workers, servers, 
CPUs, computer memory, equipment, and transport.  
Service times, as well as agent arrival times, are usually stochastic, drawn 
from a probability distribution. Therefore, discrete event models are 
stochastic themselves. This means that a model must be run for a certain 
time, and/or needs a certain number of replications, before it produces a 
meaningful output.  
The typical output expected from a discrete event model is:  
•  Utilization of resources,  
•  Time spent in the system or its part by an agent,  
•  Waiting times,  
•  Queue lengths,  
•  System throughput,  
•  Bottlenecks,  

•  Cost of the agent processing and its structure.   
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Consider a bank with an ATM inside. The process in the bank is described 
as follows:  

 On average, 45 clients per hour enter the bank.  
•  Having entered the bank, half of the clients go to the ATM, and the 

other half go straight to the cashiers.  
•  Usage of the ATM has a minimum duration of 1 minute, a maximum 

of 4 minutes, and a most likely duration of 2 minutes.   
 Service with a cashier takes a minimum of 3 minutes and a maximum 

of 20 minutes, with a most likely duration of 5 minutes.  
•  After using the ATM, 30% of the clients go to the cashiers. The others 

exit the bank.  
•  There are 5 cashiers in the bank, and there is a single shared queue for 

all the cashiers.  
•  After being served by a cashier, clients exit the bank.  
We need to find out the:  
•  Utilization of cashiers,  
•  Average queue lengths, both to the ATM and to the cashiers, and the  
•  Distribution of time spent by a customer in the bank.  
With this problem definition, building a discrete event model is more or less 
a straightforward task. Clients obviously are agents, and the cashiers are 
resources. The flowchart of the bank is shown in Figure 2.4. The block 
ClientsArrive generates clients at the rate of 0.75 per minute (45 per hour). 
Having appeared in the model, 50% of the clients go to the cashiers, and 
50% to the ATM. The usage of the ATM is modeled by the Delay block 
ServiceAtATM, preceded by the Queue block. Service at cashiers is 
modeled by a pair of blocks: Service with triangularly distributed service 
time and ResourcePool Cashiers with capacity 5. The flowchart ends with 
the Sink block ClientsLeave.   
The output data is generated as the model is running. Statistics are collected 
at the blocks, as well as by the agents while they move through the process 
flowchart. The data (for example, the cashiers’ utilization) can be observed 
on-the-fly via inspect windows and is stored in the model execution logs, 
which can be accessed after the model run is finished. Each agent (client) 
measures time spent in the bank by making a timestamp at the entry and 
then comparing it with the current time at the exit.  
The mathematics behind discrete event simulation are based on discrete 
time. The model clock is advanced only when something significant 
happens in the model –namely, when an agent starts or finishes an 
operation. Any change in the model is associated with those events; 
continuous changes are approximated by instantaneous ones. 
Example: 
Most business processes can be described as a sequence of separate discrete 
events. For example, a truck arrives at a warehouse, goes to an unloading 
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Simulation and Modeling gate, unloads, and then departs. To simulate this, discrete-event simulation 
is often chosen.  

Using discrete-event simulation modeling, the movement of a train from 
point A to point B is modeled with two events, namely a departure and an 
arrival. The actual movement of the train would be modeled as a time delay 
between the departure and arrival events. These events and movement 
between them can be smoothly animated.  

Discrete-event simulation focuses on the processes in a system at a medium 
level of abstraction. Typically, specific physical details, such as car 
geometry or train acceleration, are not represented. Discrete-event 
simulation modeling is widely used in the manufacturing, logistics, and 
healthcare fields.  

Example: 

Three callers problem 

Problem Definition: 

Two lines services three callers. Each caller makes calls that are 
exponentially distributed in length, with mean 1/¹. If both lines are in service 
by two callers and the third one requests service, the third caller will be 
blocked. A caller whose previous attempt to make a call was successful has 
an exponentially distributed time before attempting the next call, with rate 
¸. A caller whose previous call attempt was blocked is impatient and tries to 
call again at twice that rate (2¸), also according to exponential distribution. 
The callers make their calls independent of one another. 
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5.9 CONCLUSION 

Simulation and modelling is used to representing the system and its 
environment, the simulation must provide efficient computational methods 
for solving the equations. Simulations may be required to operate in real 
time, particularly if there is an operator in the loop. Other simulations may 
be required to operate much faster than real time and perform thousands of 
simulation runs to provide statistically valid simulation results. Several 
computational and other simulation methods are described in Simulation 
Modeling and Analysis. 

5.10 PRACTICE QUESTION 

1. Why to use models in system study? 
2. List the different types of Models. 
3. Explain the area of application of Simulation. 
4. What do you mean by level of abstraction in simulation? Explain. 
5. Explain the Simulation Modelling Methods.  
6. Write a short note on following classification of: 

• Discrete-Event Simulation Model. 
• Stochastic vs. Deterministic Systems. 
• Static vs. Dynamic Simulation. 
• Discrete vs. Continuous Systems 

7. Write a short note on system dynamic method of modeling using 
suitable example. 

8. Demonstrate the use of discrete event simulation method.   
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MODELING AND SIMULATION 

MODELLING: PART 2 

Unit Structure : 
6.1  Introduction 

6.2  Objectives: 

6.3  Agent Based modeling 

 6.3.1 Introduction to Agent  

 6.3.2 Agent-based modeling  

 6.3.3 Time in agent based models  

 6.3.4 Space in agent based models  

 6.3.5 Discrete space 

 6.3.6 Communication between agents  

 6.3.7 Dynamic creation and destruction of agents  

 6.3.8 Statics on agent population  

 6.3.9 Condition triggered events and transition in agents  

6.4  Building agents based models:  

 6.4.1 The problem statement,  

 6.4.2 Phases of modeling,  

 6.4.3 Assumptions,  

 6.4.4 3-D animation.  

6.5  Dynamics Systems:  

 6.5.1 Stock and flow diagrams,  

 6.5.2 Examples of stock and flow diagrams.  

6.6  Multi-method modeling:  

 6.6.1 Architecture,  

 6.6.2 Technical aspects of combining modeling methods,  

 6.6.3 Examples.  

6.7  Conclusion 

6.8  Practice Question 

6.9  References 
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 6.1 INTRODUCTION 

Agent-based models (ABM) are used to analyze the influence of the 
behavior of individual agents (farmers, households, consumers) on the 
emergent properties of the system (e.g., landscape) in a dynamic way. 
Agent-based modeling is a powerful simulation modeling technique that has 
seen a number of applications in the last few years, including applications 
to real-world business problems. After the basic principles of agent-based 
simulation are briefly introduced, its four areas of application are discussed 
by using real-world applications: flow simulation, organizational 
simulation, market simulation, and diffusion simulation. 

6.2 OBJECTIVES: 

 To understand the working of Agent Based Models( ABM)  

 To study the factors influencing the Model creation in ABM 

 To study Dynamic System 

6.3 AGENT BASED MODELING 

6.3.1 Introduction to Agent  

Agent-based modeling is a powerful simulation modeling technique that has 
seen a number of applications in the last few years, including applications 
to real-world business problems. After the basic principles of agent-based 
simulation are briefly introduced, its four areas of application are discussed 
by using real-world applications: flow simulation, organizational 
simulation, market simulation, and diffusion simulation.  

The purpose of agent-based models is to explain system-level properties 
by the behaviour of interrelated individuals. An animal for instance is not 
aware of any birth-rates at population-level. Actually, it will successfully 
give birth to offspring, if it finds a mating partner at due time, if there is 
enough food around the nest for feeding, etc. The behaviour of a 
population thus ‘emerges’ in a self-organised manner from the behaviour 
of individual animals during their life cycles and the interplay of these 
individuals with other individuals. System-level properties like 
population size, birth- and death rates are the result rather than the input. 
Especially in the Life Sciences, agent-based modelling has gained 
momentum for its close resemblance of living systems, where the core 
units of an ecosystem are individual animals and plants. 

For each category, one or several business applications are described and 
analyzed. 

Agent-based modeling is a more recent modeling method than system 
dynamics or discrete event modeling. Until the early 2000s, agent-based 
modeling was pretty much an academic topic. The adoption of agent-based 
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Simulation and Modeling modeling by simulation practitioners started in 2002-2003. It was triggered 
by:  

•  Desire to get a deeper insight into systems that are not well-captured 
by traditional modeling approaches;  

•  Advances in modeling technology coming from computer science, 
namely object-oriented modeling, UML, and statecharts  ;  

•  Rapid growth of the availability of CPU power and memory (agent-
based models are more demanding of both, compared to system 
dynamics and discrete event models).  

6.3.2 Agent-based modeling  

Agent-based modeling suggests to the modeler yet another way of looking 
at the system.  

 You may not know how the system as a whole behaves, what are the 
key variables and dependencies between them, or simply don’t see 
that there is a process flow, but you may have some insight into how 
the objects in the system behave individually. Therefore, you can start 
building the model from the bottom up by identifying those objects 
(agents) and defining their behaviors.  
 

  Sometimes, you can connect the agents to each other and let them 
interact; other times, you can put them in an environment, which may 
have its own dynamics. The global behavior of the system then 
emerges out of many (tens, hundreds, thousands, even millions) 
concurrent individual behaviors.  

There are no standard languages for agent-based modeling. The structure of 
an agent-based model is created using graphical editors or scripts, 
depending on the software. The behavior of agents is specified in many 
different ways. Frequently, the agent has a notion of state, and its actions 
and reactions depend on its state. In such cases, behavior is best defined 
with statecharts. Sometimes, behavior is defined in the form of rules 
executed upon special events. In many cases, the internal dynamics of the 
agent can be best captured using system dynamics or discrete event 
approach. In these cases, we can put a stock and flow diagram or a process 
flowchart inside an agent. Similarly, processes outside of agents and the 
dynamics of the environment where they live are often naturally modeled 
using traditional methods. We find that a large percentage of agent-based 
models, therefore, are multi-method models. 

6.3.3 Time in agent based models  

Time is sometimes handled as ‘just another dimension’. For many cases 
this pragmatic view is a useful way to think about time. Analogous to the 
spatial dimensions, the choice of scale and data model types are of 
decisive importance. However, time has some peculiarities that we need 
to think about and explicitly address during model design. Unlike space, 
time has a direction and it is only one-dimensional. This makes the 
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adequate order of update routines and scheduling of processes an 
important factor in the model design process. Finally, time often exhibits 
a cyclic nature that is given by the day / night rhythm and seasonal 
changes. Therefore, the state of the system a year ago may be more 
relevant in predicting the upcoming change, than the state two months 
ago. 

There are four aspects in the representation of time that are important 
from a modelling perspective: 

 Temporal data models 
 Temporal scale 
 Update routines (synchronous / asynchronous) 
 Scheduling (Process timing) 

 

Time is a continuous phenomenon. Nevertheless, to represent time in a 
digital model, time needs to be discretised. Strictly speaking, even 
equation-based simulation models need to be discretised for computation. 
However, the actual parameter value can be computed for any point in 
time and we can think of these models as continuous models in the context 
of simulation modelling. In rule-based models (cellular automata and 
agent-based models) time is conceptualised in discrete time steps. 

6.3.4 Space in agent based models  

To design a simulation model, we need to think about how we want to 
model spatial features. On the one side this depends on the phenomenon, 
we are interested in. On the other side, aspects of performance need to be 
considered. As GIScientists, we are familiar with the concepts of how to 
represent geographic space in computer models. From the specific 
perspective of simulation modelling, four aspects are of particular 
importance: 

 Spatial data models (vector, raster, graphs) 
 Scale(s) 
 Neighbourhood: Moore and more 
 Boundaries: finite, infinite, toroidal 
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Simulation and Modeling 6.3.5 Discrete space  

A discrete space is one in which the state variable(s) change only at a 
discrete set of points in  time. The bank is an example of a discrete system: 
The state variable, the number of customers in the bank, changes only when 
a customer arrives or when the service provided a customer is completed 
Eg. how the number of customers changes only at discrete points in time. 

Discrete temporal phenomena are termed ‘events’. Events can happen 
regularly, e.g. each morning the sun rises and thus triggers multiple 
processes: flowers open, birds become active, etc. Such events are well 
represented in classical cellular automata and agent-based models, where 
time steps usually are assumed to be regular. However, events are often 
irregularly paced, e.g. natural catastrophes. Such irregularity of events 
can be addressed by a fine resolution of discrete steps, where there is only 
a certain probability that an event happens. For systems that are strongly 
governed by irregular events, it is probably more adequate to apply an 
event-based approach, where events trigger the placement of later events 
in a queue. 

6.3.6 Continuous space movement in continuous space  

A continuous system is one in which the state variable(s) change 
continuously over time. An example is the head of water behind a dam. 
During and for some time after a rain storm, water flows into the lake behind 
the dam. Water is drawn from the dam for flood control and to make 
electricity. Evaporation also decreases the water level. Eg. how the state 
variable head of water behind the dam changes for this continuous system. 

Continuous temporal phenomena describe an ongoing process, like 
temperature change or tree growth. System dynamics are the classical 
approach to model such phenomena. If we have a strong interest in how 
the process operates in space, a cellular automaton approach is more 
adequate. In this case, the continuous process needs to be broken down 
into time steps that are small enough to adequately represent the dynamic 
behaviour of the modelled process. 

6.3.7 Communication between agents  

Interaction is a key aspect in ABM. There is a plethora of definitions for the 
concept of agent and most of them emphasize the fact that this kind of entity 
should be able to interact with their environment and with other entities in 
order to solve problems or simply reach their goals according to 
coordination, cooperation or competition schemes. The essence of an ABM 
is the fact that the global system dynamics emerges from the local behaviors 
and interactions among its composing parts. Strictly speaking, for some 
kind of ABM the global dynamics is just the sum of local behaviors and 
interactions, so we cannot always speak of emergent behavior when we talk 
about ABM. However the assumptions that underlie the design of an 
interaction model (or the choice of an existing one for the design and 
implementation of a specific application) are so important that they have a 
deep impact on the definition of agents themselves (e.g. an interpreter of a 

mu
no
tes
.in



 

 
103 

 

Modeling and Simulation 
Modelling: Part 2 

specific language, a perceiver of signals). Therefore it is almost an obvious 
consequence that interaction mechanisms have a huge impact on the 
modeling, design and development of applications based on a specific kind 
of ABM, which in turn is based on a particular interaction model. It is thus 
not a surprise that a significant part of the research that was carried out in 
the agent area was focused on this aspect. 

 

6.3.10 Condition triggered events and transition in agents  

Events (low-level constructs that allow to schedule one-time or recurrent 
action) and statechart transitions are frequent elements of agent behavior. 
Among other trigger types, both can be triggered by a condition – a Boolean 
expression. If the model contains dynamic variables, all conditions of events 
and statechart transitions are evaluated on each integration step, which 
ensures the event or transition will occur exactly when the (continuously 
changing) condition turns true. Here event waits on the Money stock to fall 
below zero. Event and statechart can be located on the same level with the 
SD, or in a different active object. 

A transition is enabled if its source state is active and if any additional 
enabling condition is true. Only an enabled transition can be executed. 
Executing a transition changes the active state from the source state of the 
transition to its destination state. In addition, some actions may be 
performed.
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Macal and North suggest considering the following aspects when you 
design an agent-based model: 

1. Specific problem to be solved by the ABM 

2. Design of agents and their static/dynamic attributes 

3. Design of an environment and the way agents interact with it 

4. Design of agents’ behaviors 

5. Design of agents’ mutual interactions 

6. Availability of data 

7. Method of model validation 

It is important to keep in mind that just building an arbitrary ABM and 
obtaining results by simulation wouldn’t produce any scientifically 
meaningful conclusion. In order for an ABM to be scientifically 
meaningful, it has to be built and used in either of the following two 
complementary approaches: 

A. Build an ABM using model assumptions that are derived from 
empirically observed phenomena, and then produce previously 
unknown collective behaviors by simulation. 

B. Build an ABM using hypothetical model assumptions, and then 
reproduce empirically observed collective phenomena by simulation. 

Described in one page, the process of building an agent-based model 
includes answering the following questions:  

1.  Which objects in the real system are important? These will be the 
agents.  

2.  Are there any persistent (or partially persistent) relationships between 
the real objects? Establish the corresponding links between the agents.  

3.  Is space important? If yes, choose the space model (GIS, continuous, 
discrete) and place the agents in the space. If the agents are mobile, 
set speeds, paths, etc.  

4.  Identify the important events in the agents’ life. These events may be 
triggered from outside, or they may be internal events caused by the 
agent's own dynamics.  

5.  Define the agents' behavior:  

5.1.  Does the agent just react to the external events? Use message 
handling and function calls.  

5.2.  Does the agent have a notion of state? Use a statechart.  

5.3.  Does the agent have internal timing? Use events or timeout 
transitions.  
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5.4.  Is there any process inside the agent? Draw a process flowchart.  

5.5.  Are there any continuous-time dynamics? Create a stock and 
flow diagram inside the agent.  

6.  Do agents communicate? Use message sequence diagrams to design 
communication/timing patterns.  

7.  What information does the agent keep? This will be the memory, or 
state information, of the agent. Use variables and statechart states.  

8.  Is there any information, and/or dynamics, external to all agents and 
shared by all agents? If yes, there will be a global part of the model 
(the term "environment" is sometimes used instead).  

9.  What output are you looking for? Define the statistics collection at 
both the individual and aggregate levels. 

6.4.1 The problem statement,  

The assumptions we make about the market are similar to ones of the 
classical models of product/innovation diffusion, e.g. of Bass model with 
discards and replacements. We will however consider two competing 
products instead of one.    

•  There are two alternative products A and B manufactured by different 
(and competing) companies. The products are equivalent, i.e. can 
replace each other. The product prices are equal and therefore do not 
matter.    

•  Consumers (there are Total Population = 1000 of them) initially are 
not using any products but all are potentially interested (are potential 
users). • Consumers are sensitive to advertizing and to word of mouth.  

•  Advertizing generates the demand for a product among the potential 
users. Advertizing Effectiveness = 0.011 is the percent of potential 
users that become ready to buy a particular product (A or B) during a 
day. Both companies do advertizing.  

•  Consumers contact each other. A consumer contacts on average 
a  Contact Rate = 5 other people per day.  

•  During those contacts the users of products may influence potential 
users. If a user of e.g. A contacts a potential user, the latter will want 
to buy A with probability Adoption Fraction = 0.015, same for B.  

•  Any product discards in Discard Time = uniform(17,23) days and 
generates the immediate need to buy a replacement of the same brand.  

•  If a person wants to buy e.g. A, but A is not available for Maximum 
Waiting Time = 2 days, he becomes ready to buy anything that is 
available (A or B), same for B.  

 Each company (A and B) has its own supply chain that delivers 
products to the end consumers. The supply chains are very simple and 
work as follows:  
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Simulation and Modeling •  The product can be purchased by a consumer only from the retailer 
stock, initially holding a certain amount (Initial Retailer Stock = 100) 
of product.    

•  The product is manufactured by a producer. A producer makes 
Production Rate products per day, and this rate may vary, e.g. it can 
be adjusted according to the demand (which is known to the producer)  

• T he finished products are delivered to the retailer within Delivery Time 
= 2 days.    

The output of the model should include the market shares for A and B, the 
demand (i.e. the number of people who want to buy while the product(s) are 
not available) and the inventory levels in the supply chains. 

6.4.2 Phases of modeling,  

One of the main objectives of ABM is to test, by experimental means, the 
hypothesised mechanisms that bring about the macroscopic phenomenon 
the researcher is interested in explaining. 

In ABM these mechanisms are translated as the model microspecifications, 
that is to say, the set of behavioural and simple rules that specify how the 
agents behave and react to their local environment (which includes, of 
course, other agents). Once the population of agents and the environment 
are defined, the researcher can implement the microspecifications and run 
the computer simulation in order to evaluate whether these rules bring about 
or ‘generate’ the macro phenomenon of interest, over the simulated time. 

In order to simplify the presentation, we have identified three major stages:  

1) Specification and formalisation;  

2) Modelling, verification and experimentation; and  

3) Calibration and validation.  

The first stage involves translating the theoretical hypothesis that explains 
the social process of interest, usually expressed in natural languages, into 
formal languages, using logics or mathematics. The second stage includes 
the modelling itself, in which the researcher builds and verifies the model 
by experimental means. The third step includes the calibration of the model 
with empirical data and the consequent validation of it using appropriate 
statistical tests. 
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6.4.3 Assumptions,  

Assumptions can be informed by data or theory, and outcomes at both the 
individual and population levels can be compared with data statistically. 
ABM allows enormous flexibility in assumptions, and agents can be 
modeled at any level (or multiple levels) of scale. One of the main 
advantages of agent-based simulation is the flexility in model design that it 
allows. Basically, that means that the agent model can be formulated with 
every level of detail the modeler want it to contain. Pedestrian simulation 
may be based on reactive agents as well as agents with full spatial cognition 
and more. An simulation of an ant colony may integrate detailed predator 
models or just contain a probability for an ant to be killed outside the ant-
hill. one aspect that makes a good model is that it just contains necessary 
assumptions. Every detail incorporated into a model means increasing the 
number of assumptions that have to be justified and explained. The problem 
is that everything is in principle possible and the decision about necessary 
level of detail is not easy to answer. Modelers may fall in love with their 
model enriching it step by step without stopping at the appropriate level. 
Nevertheless, every assumption – every decision about a model detail – has 
to be documented and justified, why this part is elaborated in this particular 
way. 

6.4.4   3-D animation.  

3D Modeling is a three-dimensional representation of objects, animals, 
machines, and humans. In animation production, all the settings and 
characters are composed of a 3D model. Modeling is an initial step in 
producing an animation that is done in an animation studio. This is because 
characters and settings need to be completed before they can be rigged and 
animated. Also, settings need to be located in their places to specify the very 
last layout and composition of shots. 3D modeling is used in different kinds 
of fields from engineering, game industry, film and animation, business 
advertising to architecture, and special effects. 3D modeling software lets 
the designer design 3D models of what he has in mind. Some of them 
provide you with tools to elaborate additional details to your model. The 
highest used ones are listed here: 3Ds Max, Zbrush, Cinema 4D, Blender 
and others 
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System Dynamics is a computer-aided approach for strategy and policy 
design. 

The main goal is to help people make better decisions when confronted 
with complex, dynamic systems. The approach provides methods and 
tools to model and analyzes dynamic systems. Model results can be used 
to communicate essential findings to help everyone understand the 
system’s behavior.  

It uses simulation modeling based on feedback systems theory that 
complements systems thinking approaches. It applies to dynamic problems 
arising in complex social, managerial, economic, or ecological systems. It 
can be applied to social, managerial, economic, ecological, 
and physiological systems. As the complexity of our world increases, we 
need holistic approaches to tackle the problems we encounter in this 
complex and developing world. Missing the holistic view could lead us to 
struggle with the symptoms of a larger problem arising from the structure 
of the system. Hence, System Dynamics approach provide us tools and 
methods to understand the complex systems. 

6.5.1 Stock and flow diagrams,  

A system is a set of interrelating, interconnected parts or elements that, 
together, generate some distinct outcome or behavior over time. In 
dynamical systems modeling, the behavior that the system exhibits over 
time is called it’s dynamic. Stocks and flows are the basic building blocks 
of system dynamics models. Jay Forrester originally referred to them as 
“levels” (for stocks) and “rates” (for flows). A stock variable is measured 
at one specific time and represents a quantity existing at that point in time 
(say, December 31, 2004), which may have accumulated in the past. A flow 
variable is measured over an interval of time. Therefore a flow would be 
measured per unit of time (say a year). 
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6.5.2 Examples of stock and flow diagrams.  

Economics, business, accounting, and related fields often distinguish 
between quantities that are stocks and those that are flows. These differ in 
their units of measurement. A stock is measured at one specific time, and 
represents a quantity existing at that point in time (say, December 31, 2004), 
which may have accumulated in the past. A flow variable is measured over 
an interval of time. Therefore, a flow would be measured per unit of 
time (say a year). Flow is roughly analogous to rate or speed in this sense. 

For example, U.S. nominal gross domestic product refers to a total number 
of dollars spent over a time period, such as a year. Therefore, it is a flow 
variable, and has units of dollars/year. In contrast, the U.S. nominal capital 
stock is the total value, in dollars, of equipment, buildings, and other real 
productive assets in the U.S. economy, and has units of dollars. The diagram 
provides an intuitive illustration of how the stock of capital currently 
available is increased by the flow of new investment and depleted by 
the flow of depreciation. 

Elements of Stock Flow Diagram 

Name Symbol Description 

Stock 
 

·    A stock is accumulated over time by 
inflows and/or depleted by outflows. 
Stocks can only be changed via flows. 

·    Mathematically a stock can be seen as an 
accumulation or integration of flows over 
time – with outflows subtracting from the 
stock. 

·   Stocks typically have a certain value at 
each moment of time. 

·   Example: the number of population at a 
certain moment. 

Flow 
 

·   A flow changes a stock over time. Usually, 
we can clearly distinguish inflows (adding 
to the stock) and outflows (subtracting 
from the stock). 

·    Flows typically are measured over a 
certain interval of time 

·   Example: the number of births over a day 
or month. 
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Flow 
Rate 

 

·   It is always expressed per some unit time: 
If these flow into/out of a stock that keeps 
track of things of type X 

·   e.g. Incidence Rates is calculated by 
accumulating people over a year, revenue 
is $/Time, water flow is liters/minute 

Cloud 

 

     Cloud represents either: 
·   Source of the flow – when the flow is 

originated from outside the model 
·   Sink of the flow – when the flow sinks 
     Both sources and sinks are assumed to 

have infinite capacity and do not impose 
any limitations on the flows. Clouds are 
drawn as part of the flow element, in case 
the flow does not flows in/out of some 
stock. 

Link 
 

·    Link is used to define a dependency 
between elements of a stock and flow 
diagram 

·   If some element A is mentioned in the 
equation or initial value of element B, you 
should first connect these elements with a 
link going from A to B and only then type 
the expression in the properties of B. 

Stocks. A stock represents a part of a system whose value at any given 
instant in time depends on the system's past behavior. The value of the 
stocks at a particular instant in time cannot simply be determined by 
measuring the value of the other parts of the system at that instant in time – 
the only way you can calculate it is by measuring how it changes at every 
instant and adding up all these changes. 

This sounds more complicated than it is, so let us look at a simple example: 
driving a car along the motorway. Say you start driving at 8:00 AM and you 
want to know how far you have driven at 10:00 AM. We know that the only 
factor that determines this is the speed you were driving at. But it is not 
enough to just know your current speed at 10:00 AM, you actually need to 
know exactly how fast you were driving at every instant in time between 
8:00 AM and 10:00 AM to calculate this. In this example, the distance you 
have driven is a stock – if you look at the dashboard in your car, you will 
most likely find a representation of this stock on your car’s dashboard: the 
mileage counter (odometer). On diagrams, stocks are represented by 
rectangles. 
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Flows. Flows represent the rate at which the stock is changing at any given 
instant, they either flow into a stock (causing it to increase) or flow out of a 
stock (causing it to decrease). 

To continue our example above, the car’s velocity at any particular instant 
is a flow that flows into the mileage counter stock. It is important to note 
here that the distinction between stock and flow is not absolute – from the 
point of view of the mileage counter the velocity is a flow. But the velocity 
itself most likely also changes and depends on the acceleration and 
deceleration. So, even though we can determine the current velocity almost 
instantaneously (this is done by the speedometer), we again cannot explain 
why the velocity is at its current level without knowing the system's past 
behavior. On diagrams, flows are represented by small valves attached to 
flow pipes that lead into or out of stocks. 

Converters. Converters either represent parts at the boundary of the system 
(i.e. parts whose value is not determined by the behavior of the system itself) 
or they represent parts of a system whose value can be derived from other 
parts of the system at any time through some computational procedure. 

To continue our motorway example, we could assume that acceleration and 
deceleration are determined by outside circumstances (e.g. such as the 
positions of the accelerator and brake). In this case, we would model both 
the accelerator and brake positions as converters. On diagrams, converters 
are represented by small circles. 

Connectors. Much like in causal loop diagrams the connectors of a system 
show how the parts of a system influence each other. Stocks can only be 
influenced by flows (i.e. there can be no connector that connects into a 
stock), flows can be influenced by stocks, other flows, and by converters. 
Converters either are not influenced at all (i.e. they are at the systems' 
boundary) or are influenced by stocks, flows and other converters. 

Source/Sink. Sources and sinks are stocks that lie outside of the model's 
boundary – they are used to show that a stock is flowing from a source or 
into a sink that lies outside of the model's boundary. On diagrams, sources 
and sinks are represented by small clouds. 

The notation used in stock and flow diagrams was originated by Jay 
Forrester in his book “Industrial Dynamics”. It was based on a hydraulic 
metaphor: the flow of water into and out of reservoirs. Hence the names of 
these elements and their visualization. 

The key feature of a stock and flow diagram is that each construct can be 
precisely specified using a mathematical formalism – viewed from a 
mathematical perspective, such fully specified stock and flow models are 
just a way of visualizing a corresponding set of integral equations. 
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6.6 MULTI-METHOD MODELING:  

The idea of multimethod modeling is simple: to seamlessly integrate 
different methods of modeling and simulation to overcome the drawbacks 
of individual approaches and get the most from each one. Combining 
different methods leads to efficient and manageable models without using 
workarounds. 

There are three major methodologies used to build dynamic business 
simulation models: system dynamics, discrete event modeling, and agent 
based modeling. 

The system dynamics method assumes a high abstraction level and is 
primarily used for strategic level problems, such as market adoption rates 
and social process dependency. 

Discrete event modeling is mainly used at operational and tactical levels, 
like manufacturing processes and equipment investment evaluation. 

Agent-based models are used at all levels, with the agents possibly being 
any active entity. Example applications include supply chain optimization 
and epidemiology. 

Depending on the simulation project goals, the available data, and the nature 
of the system being modeled, different problems may call for different 
methods. Also, sometimes it is not clear at the beginning of the project 
which abstraction level and which method should be used. The modeler may 
start with, say, a highly abstract system dynamics model and switch later on 
to a more detailed discrete event model. Or, if the system is heterogeneous, 
the different components may be best described by using different methods. 
For example in the model of a supply chain that delivers goods to a 
consumer market the market may be described in system dynamics terms, 
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the retailers, distributors, and producers may be modeled as agents, and the 
operations inside those supply chain components – as process flowcharts. 

6.6.1 Architecture,  

The number of possible multi-method model architectures is infinite, and 
many are used in practice. Popular examples are shown in the Figure 1. In 
this section we briefly discuss the problems where these architectures may 
be useful. 

 

Agents in an SD environment. Think of a demographic model of a city. 
People work, go to school, own or rent homes, have families, and so on. 
Different neighborhoods have different levels of comfort, including 
infrastructure and ecology, cost of housing, and jobs. People may choose 
whether to stay or move to a different part of the city, or move out of the 
city altogether. People are modeled as agents. The dynamics of the city 
neighborhoods may be modeled in system dynamics way, for example, the 
home prices and the overall attractiveness of the neighborhood may depend 
on crowding, and so on. In such a model agents' decisions depend on the 
values of the system dynamics variables, and agents, in turn, affect other 
variables. The same architecture is used to model the interaction of public 
policies (SD) with people (agents). Examples: a government effort to reduce 
the number of insurgents in the society; policies related to drug users or 
alcoholics. 

Agents interacting with a process model. Think of a business where the 
service system is one of the essential components. It may be a call center, a 
set of offices, a Web server, or an IT infrastructure. As the client base grows, 
the system load increases. Clients who have different profiles and histories 
use the system in different ways, and their future behavior depends on the 
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and, as a result, frustrated clients may stop being clients. The service system 
is naturally modeled in a discrete event style as a process flowchart where 
requests are the entities and operators, tellers, specialists, and servers are 
the resources. The clients who interact with the system are the agents who 
have individual usage patterns. Note that in such a model the agents can be 
created directly from the company CRM database and acquire the properties 
of the real clients. This also applies to the modeling of the company's HR 
dynamics. You can create an agent for every real employee of the company 
and place them in the SD environment that describes the company's integral 
characteristics (the first architecture type). A process model linked to a 
system dynamics model. The SD aspect can be used to model the change in 
the external conditions for an established and ongoing process: demand 
variation, raw material pricing, skill level, productivity, and other properties 
of the people who are part of the process. The same architecture may be 
used to model manufacturing processes where part of the process is best 
described by continuous time equations – for example, tanks and pipes, or 
a large number of small pieces that are better modeled as quantities rather 
than as individual entities. Typically, however, the rates (time derivatives 
of stocks) in such systems are piecewise constants, so simulation can be 
done analytically, without invoking numerical methods. System dynamics 
inside agents. Think of a consumer market model where consumers are 
modeled individually as agents, and the dynamics of consumer decision 
making is modeled using the system dynamics approach. Stocks may 
represent the consumer perception of products, individual awareness, 
knowledge, experience, and so on. Communication between the consumers 
is modeled as discrete events of information exchange. A larger-scale 
example is interaction of organizations (agents) whose internal dynamics 
are modeled as stock and flow diagrams. Processes inside agents. This is 
widely used in supply chain modeling. Manufacturing and business 
processes, as well as the internal logistics of suppliers, producers, 
distributors and retailers are modeled using process flowcharts. Each 
element of the supply chain is at the same time an agent. Experience, 
memory, supplier choice, emerging network structures, orders and 
shipments are modeled at the agent level. Agents temporarily act as entities 
in a process. Consider patients with chronic diseases who periodically need 
to receive treatment in a hospital (sometimes planned, sometimes because 
of acute phases). During treatment, the patients are modeled as entities in 
the process. After discharge from the hospital, they do not disappear from 
the model, but continue to exist as agents with their diseases continuing to 
progress until they are admitted to the hospital again. The event of 
admission and the type of treatment needed depend on the agent's condition. 
The treatment type and timeliness affect the future disease dynamics. There 
are models where each entity is at the same time an agent exhibiting 
individual dynamics that continue while the entity is in the process, but are 
outside the process logic – for example, the sudden deterioration of a patient 
in a hospital.  
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6.6.2 Technical aspects of combining modeling methods,  

Important feature of the modeling language we are using is that all model 
elements of all methods, be they SD variables, statechart states, entities, 
process blocks, exist in the "same namespace": any element is accessible 
from any other element by name (and, sometimes, "path" – the prefix 
describing the location of the element in the model hierarchy). The 
following examples are all taken from the real projects and purged of all 
unnecessary details. This set, of course, does not cover everything, but it 
does give a good overview of how you can build interfaces between 
different methods. 

 

The system dynamics model is a set of continuously changing variables. All 
other elements in the model work in discrete time (where any changes are 
associated with events). SD itself does not generate any events, so it cannot 
actively make an impact on agents, process flowcharts, or other discrete 
time constructs. The only way for the SD part of the model to impact a 
discrete element is to let that element watch on a condition over SD 
variables, or to use SD variables when making a decision. The Figure 2 
shows some possible constructs. In the Figure 2 case A an SD variable 
triggers a statechart transition. Events (low-level constructs that allow 
scheduling a one-time or recurrent action) and statechart transitions are 
frequent elements of agent behavior. Among other types of triggers, both 
can be triggered by a condition – a Boolean expression the model contains 
dynamic variables, all conditions of events and statechart transitions are 
evaluated at each integration step, which ensures that the event or transition 
will occur exactly when the (continuously changing) condition becomes 
true. In the figure the statechart is waiting for the Interest stock to rise higher 
than a given threshold value. In the Figure 2 case B the flowchart source 
block NewPatientAdmissions generates new entities at the rate defined by 
the dynamic variable AdmissionsPerDay, which may be a part of a stock 
and flow diagram.  

6.6.3 Examples.  

Consumer market and supply chain: We will model the supply chain and 
sales of a new product in a consumer market in the absence of competition. 
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Simulation and Modeling The supply chain will include the delivery of the raw product to the 
production facility, production, and the stock of the finished products. The 
QR inventory policy will be used. Consumers are initially unaware of the 
product; advertizing and word of mouth will drive the purchase decisions. 
The product has a limited lifetime, and 100% of users will be willing to buy 
a new product to replace the old one. The full version of the model is 
available at RunTheModel.com. We will use discrete event methodology to 
model the supply chain, and system dynamics methodology, namely, a 
slightly modified Bass diffusion model (Bass 1969), to model the market. 
We will link the two models through the purchase events. 

 

 

 

The supply chain flowchart (top of the Figure 5) includes three stocks: the 
supplier stock of raw material, the stock of raw material at the production 
site, and the stock of finished products at the same location. Delivery and 
production are modeled by the two Delay objects with limited capacity. The 
Supply block of the flowchart is not generating any entities unless explicitly 
asked to do so (the inventory policy is not yet present at this stage). To load 
the supply chain with some initial product quantity we will add this Startup 
code: Supply.inject( OrderQuantity );. If we run this model, at the beginning 
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of the simulation, four hundred items of the product are produced and 
accumulate in the ProductStock. 

How do we link the supply chain and the market? We want to achieve the 
following: • If there is at least one product item in stock and there is at least 
one client who wants to buy it, the product item should be removed from 
the ProductStock queue, the value of Demand should be decremented, and 
the value of Users should be incremented. 

6.7 CONCLUSION 

When developing a discrete event model of a supply chain, IT 
infrastructure, or a contact center, the modeler would typically ask the client 
to provide the arrival rates of the orders, transactions, or phone calls. He 
would then be happy to get some constant values, periodical patterns, or 
trends, and treat arrival rates as variables exogenous to the model. In reality, 
however, those variables are outputs of another dynamic system, such as a 
market, a user base. Moreover, that other system can, in turn, be affected by 
the system being modelled. For example, the supply chain cycle time, which 
depends on the order rate, can affect the satisfaction level of the clients, 
which impacts repeated orders and, through the word of mouth, new orders 
from other customers. The choice of the model boundary therefore is very 
important. 

6.8 PRACTICE QUESTION 

1. Write a short note on  Agent Based modeling 
2. Explain the  Time dimension in agent based models  
3. Explain the  Space dimension in agent based models  
4. What do you mean by discrete space in ABM? Explain. 
5. Explain the Communication process between agents in ABM.  
6. How agents are created and destroyed dynamically? 
7. Explain the process Building agents based models:  
8. Explain using suitable example the following stages in building ABM 

a. The problem statement,  
b. Phases of modeling,  

9. Explain the role of Assumptions in ABM.  
10. How 3-D animation helps in modeling and simulation.  
11. Write a short note on  Dynamics Systems:  
12. Explain different symbols used  Stock and flow diagrams,  
13. Give a suitable Examples of stock and flow diagrams.  
14. Write a short note on Multi-method modeling.  
15. Explain the Architecture of Multi-method modeling.  
16. Explain the Technical aspects of combining modeling methods. 
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7 
DESIGN AND BEHAVIOR OF MODELS 

Unit Structure : 

7.1  Introduction: 
7.2  Objectives: 
7.3  Designing state-based behavior:  
7.4  Discrete events and Event model object 
7.5  Designing interactive models: using controls, Dynamic properties of 

controls, 3D Animation.  
7.6  Randomness in Models:  
7.7  Model time, date and calendar Virtual and real time:  
7.8  Conclusion 
7.9  Practice Question 
7.10  References 

7.1 INTRODUCTION: 

Simulation involves the development of descriptive computer models of a 
system and exercising those models to predict the operational performance 
of the underlying system being modeled. Systems that change with time, 
such as a gas station where cars come and go (called dynamic systems) and 
involve randomness. Nobody can guess at exactly which time the next car 
should arrive at the station, are good candidates for simulation. Modeling 
complex dynamic systems theoretically need too many simplifications and 
the emerging models may not be therefore valid. 

7.2  OBJECTIVES: 

 To understand Modeling tools that permit specialized device 
characterization or custom model development 

 To understand and Design knowledge and thorough understanding of 
simulation objectives and expectations of system behaviour. 

 To learn and design a simulator that is robust and reliable that can 
always be accepted with confidence that they reflect the state of the 
system. 

7.3 DESIGNING STATE-BASED BEHAVIOR:  

Deterministic refers to the uniqueness of the computation. A deterministic 
model will always produce the same output from a given starting condition 
or initial state.  
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Simulation and Modeling A dog is always asleep or awake. The dog can’t be asleep and awake at the 
same time, and it’s impossible for the dog to be neither asleep nor awake. 
There’s only these two states, a precisely limited, finite number of states. 
How the dog goes between asleep and awake is through transitions, which 
are symbolised by an arrow pointing from one state to the next state in the 
process’s sequence. A transition is caused by an event that results in the 
change of state. Transitions are labelled with their events. 

7.3.1 Statecharts 

A statechart  is a visual construct that enables you to define event- and time-
driven behavior of various objects (agents). Statecharts are very helpful in 
simulation modeling. They are used a lot in agentbased models, and also 
work well with process and system dynamics models. 

Statecharts consist of “states” and “transitions”. A state can be considered 
as a “concentrated history” of the agent and also as a set of reactions to 
external events that determine the agent’s future. The reactions in a 
particular state are defined by transitions exiting that state. Each transition 
has a “Trigger”, such as a message arrival, a condition, a timeout, or the 
agent arrival to the destination. When a transition is taken (“fired”) the state 
may change, and a new set of reactions may become active. State transition 
is atomic and instantaneous. Arbitrary actions can be associated with 
transitions and with entering and exiting states. 

Statecharts define internal states, reactions to external events, and the 
corresponding state transitions of a particular agent: a person, a physical 
device, an organization, a project, etc. The (simple) states of the statechart 
are alternative: at any given moment in time the statechart is in exactly one 
simple state. 
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Statecharts constitute a visual formalism for describing states and 
transitions in a modular fashion, enabling clustering, orthogonality (i.e., 
concurrency) and refinement, and encouraging ‘zoom' capabilities for 
moving easily back and forth between levels of abstraction. 

A basic fragment of such a description is a state transition, which takes the 
general form “when event E occurs in state A, if condition C is true at the 
time, the system transfers to state B” 

7.3.2 State transitions,  

Transitions and events are deterministic. Deterministic means that each 
transition and event always points to the same next state, and always 
produces the same result from their given starting condition, every time the 
process is run. Dogs never wake up to become asleep or fall asleep to 
become awake. 

 

This tiny dog process, with its two finite states and two transitions is a Finite 
State Machine. A state machine is used to describe the behavior of 
something. The machine describes the thing’s states and the transitions 
between those states. It’s a Finite State Machine because it has a finite 
number of states. 

7.3.3 Viewing and debugging Statecharts at runtime,  

At model runtime values of parameters and variables are displayed under 
their names. 

While debugging a statechart, you can perform the following actions: 

 Set breakpoints. 

 Highlight statechart execution. 

 Single-step through a statechart. 

 Watch statechart data. 

7.3.4 Statecharts for dynamic objects.  

The dynamic model describes the internal behavior of a system. Statechart 
diagrams describe the states of an individual object and the possible 
transitions between states 
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Simulation and Modeling As in general, the individuals can appear in the model at different ages (e.g. 
as a result of immigration), the statechart may initialize in either of the 
states, depending on the age. (Note that the statechart entry point points not 
to a state directly but to a decision point with four branches.) The transitions 
between the life phases are triggered by stochastic timeouts. For example, 
the transition from Adult to MidAge happens when the person is around 49, 
which is modeled by the timeout normal(49,5) – age(), where normal(49,5) 
is a normally distributed age with mean 49 and standard deviation 5, and 
age() is the age the person became Adult (remember that the timeout 
expressions are evaluated at the moment the statechart gets into the 
transition source state, in this case Adult). The Adult life phase is further 
decomposed to describe family-related behavior. The decisions in this 
section of the statechart (to have family or not, how long to wait before the 
first kid, how many kids to have, etc.) are also stochastic and may depend 
on the gender, the level of education, the cultural norms, etc. If this 
statechart is inside an agent in an agent-based model, the act of childbearing 
may result in a new agent added to the model, who may inherit the 
characteristics of the parents. The event of death then may delete the agent 
from the model. 

 

7.4  DISCRETE EVENTS AND EVENT MODEL OBJECT:  

Discrete event simulation (DES) is a method used to model real world 
systems that can be decomposed into a set of logically separate processes 
that autonomously progress through time. Each event occurs on a specific 
process, and is assigned a logical time (a timestamp). The result of this event 
can be an outcome passed to one or more other processes. The content of 
the outcome may result in the generation of new events to be processed at 
some specified future logical time. The underlying statistical paradigm that 
supports DES is based in queuing theory. 
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Discrete event modeling is almost as old as system dynamics. In October 
1961, IBM engineer Geoffrey Gordon introduced the first version of GPSS 
(General Purpose Simulation System, originally Gordon's Programmable 
Simulation System), which is considered to be the first method of software 
implementation of discrete event modeling. These days, discrete event 
modeling is supported by a large number of software tools, including 
modern versions of GPSS itself. 

The typical output expected from a discrete event model is:  

•  Utilization of resources,  

•  Time spent in the system or its part by an agent,  

•  Waiting times,  

•  Queue lengths,  

•  System throughput,  

•  Bottlenecks,  

•  Cost of the agent processing and its structure.  

The simple example consists of a cashier serving arriving customers, one at 
a time. Customers queue if the cashier is not available (serving another 
customer). Here, the state of the system consists of the state of the queue 
and that of the cashier. The queueing discipline is First In First Out (FIFO) 
and individual customers are assumed not to have any distinguishing 
features (such as age, or number of items bought). Thus, it is meaningful to 
model the state of the queue by means of the queue length, a natural number. 
The cashier can be in either the Idle or the Busy state. The dynamics of the 
system is determined by:  

 The arrival pattern of customers characterized by their Inter Arrival 
Time (IAT) distribution,  

 The time required by the cashier to serve a customer characterized by 
the Service Time (ST) distribution,  

 The logical sequence of customers progressing through the system 
under different conditions (queue empty/not empty, cashier 
Busy/Idle). 
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Simulation and Modeling 7.4.1 Discrete event,  

Discrete-event is the intended change to simulate systems where events 
occur at specific, separable instances in time. The defining characteristics 
of discrete-event simulation are as follows: 

• Events occurring at specific points in time. As mentioned earlier, DES 
is used to model processes or systems that change at identifiable time 
instances. DES does not track system state continuously. 

• Emphasis on events. Changes in state and events are the focus of DES, 
hence why DES is often referred to as “event-driven.” 

• Time skipping (next-event time advance). Typically, DES does not 
consider the system’s state between events, instead “jumping” to 
subsequent events as the simulation progresses. Time skipping 
reduces the complexity and resource intensity of discrete-event 
simulations. 

• Heavy use of queueing theory. Queueing theory is the cornerstone of 
many discrete-event simulations, defining how resource-constrained 
processing is executed. Although queueing theory is not always used 
in DES, it can be used whenever the arrival and the service of requests 
are the features of interest. 

7.4.2 Event-the simplest low level model object,  

An event is the specification of a significant occurrence that has a location 
in time and space. Anything that happens is modeled as an event in UML. 
In the context of state machines, an event is an occurrence of a stimulus that 
can trigger a state transition four kinds of events – signals, calls, the passing 
of time, and a change in state. 

Most business processes can be described as a sequence of separate discrete 
events. For example, a truck arrives at a warehouse, goes to an unloading 
gate, unloads, and then departs. To simulate this, discrete-event simulation 
is often chosen. 

7.4.3 Dynamic events, and Exchanging data with external world.  

Using discrete-event simulation modeling, the movement of a train from 
point A to point B is modeled with two events, namely a departure and an 
arrival. The actual movement of the train would be modeled as a time delay 
between the departure and arrival events. These events and movement 
between them can be smoothly animated. 

Discrete-event simulation focuses on the processes in a system at a medium 
level of abstraction. Typically, specific physical details, such as car 
geometry or train acceleration, are not represented. Discrete-event 
simulation modeling is widely used in the manufacturing, logistics, and 
healthcare fields. 

An event in the context of state machines is an occurrence of a stimulus that 
can trigger a state transition.  
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7.5  DESIGNING INTERACTIVE MODELS: USING 
CONTROLS, DYNAMIC PROPERTIES OF CONTROLS, 
3D ANIMATION.  

Willemain (1994) lists five qualities of an effective model: validity, 
usability, value to client, feasibility and aptness for clients’ problem. 
Meanwhile, Brooks and Tobias (1996) identify 11 performance criteria for 
a good model. Based on these lists, here it is proposed that there are four 
main requirements of a conceptual model: validity, credibility, utility and 
feasibility. 

Here are three examples:  

1.  A natural scientist may be interested in a system of wolves and sheep, 
where the number of wolves changes with a constant birth rate and a 
death rate that is inversely proportional to the number of sheep, and 
the number of sheep changes with a constant birth rate and a death 
rate that is directly proportional to the number of wolves. The scientist 
would like to know the following: Do the number of wolves and the 
number of sheep stabilize in the long run, and if so to what values? Or 
do they vary cyclically, and if so with what period and phase?  

2.  A computer scientist may be interested in a system of jobs that 
circulate in a network of servers (e.g., CPU’s and I/O devices). The 
computer scientist would like to know whether a particular server is a 
‘‘bottleneck’’, i.e., in the long run, is that server always busy while 
the other servers are mostly idle.  

3.  A classical system example is a queuing system with a single server. 
Here, customers arrive with certain service requirements, get served 
in some order, say first-comefirst-served, and depart when their 
service is completed. Note that a customer who arrives when the 
server is busy has to wait (in a queue). For this system, we would like 
to determine the average waiting time for customers, the average 
number of customers in the system, the fraction of time the server is 
busy, etc. 

A Simple Example: Building a simulation of gas station with a single pump 
served by a single service man. Assume that arrival of cars as well their 
service times are random. At first identify the:  

1.  states: number of cars waiting for service and number of cars served 
at any moment  

2.  events: arrival of cars, start of service, end of service  
3.  entities: these are the cars  
4.  queue: the queue of cars in front of the pump, waiting for service  
5.  random realizations: inter-arrival times, service times  
6.  distributions: we shall assume exponential distributions for both the 

inter-arrival time and service time. 
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Uncertainty is an essential part of our everyday lives. Here’s a simple 
example: imagine you own a café that serves hot beverages and delicious 
pastry to around 100 customers per day. The café is open from 9 am to 7 
pm. However, the first guests could arrive at 10 one day and 9:50 the next 
day, it could be two customers or a dozen entering at the same time. When 
we build simulation models, we want them to reflect the real world as 
closely as possible. For that, you would need to include randomness in your 
simulation. 

In most real-life situations, the arrival process and the service process 
occur in a random fashion. Even though the processes may be random, it 
does not mean that you cannot describe or model the randomness. To have 
any hope of simulating the situation, you must be able to model the 
randomness. One of the ways to model this randomness is to describe the 
phenomenon as a random variable governed by a particular probability 
distribution. For example, if the arrivals to the bank occur according to a 
Poisson process, then from probability theory it is known that the 
distribution of inter-arrival times is an exponential distribution. In 
general, information about how the customers arrive must be secured 
either through direct observation of the system or by using historical data. 
If neither source of information is available, then some plausible 
assumptions must be made to describe the random process by a 
probability model. 

Probability distributions: 

The first choice is to develop a probability model given the data. The 
second choice is to try to drive the simulation directly from the historical 
data. The latter approach is not recommended. First of all, it is extremely 
unlikely that the captured data will be in a directly usable form. Secondly, 
it is even more unlikely that the data will be able to adequately represent 
all the modeling scenarios that you will need through the course of 
experimenting with the model. For example, suppose that you only have 
1 day’s worth of arrival data, but you need to simulate a month’s worth 
of system operation. If you simply re-drive your simulation using the 1 
day’s worth of data, you are not simulating different days! It is much more 
advisable to develop probability models either from historical data or 
from data that you capture in developing your model.  

Once a probability model has been developed, statistical theory provides 
the means for obtaining random samples based on the use of uniformly 
distributed random numbers on the interval (0,1). These random samples 
are then used to map the future occurrence of an event on the time scale. 
For example, if the inter-arrival time is exponential then a random sample 
drawn from that distribution would represent the time interval until the 
occurrence of the next arrival.  
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Sources of randomness in the model: 

There are two types of models: stochastic and deterministic. 

A deterministic model doesn’t have internal randomness. It runs with the 
same set of input parameters and gives the same output results. For example, 
if 10,000 individuals each have a 95% chance of surviving one year, we can 
be reasonably sure that 9,500 of them will survive. 

A stochastic model, on the other hand, does have internal sources of 
randomness. So, each run (even with the same parameters) may give a 
different output. 

 

Randomness in system dynamics model: 

System Dynamics models often incorporate random components, in two 
ways: 

 Internal:  the system itself is stochastic (e.g. parts failures, random 
variations in sales, Poisson arrivals, etc. 

 External:  All the usual Monte-Carlo explorations of uncertainty from 
either internal randomness or via replacing constant-but-unknown 
parameters with probability distributions as a form of sensitivity 
analysis. 

There is also a kind of probabilistic flavor to the deterministic simulations 
in System Dynamics.  If one has a stochastic linear differential equation 
with deterministic coefficients and Gaussian exogenous inputs, it is easy to 
prove that all the state variables have time-varying Gaussian 
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process can be computed immediately by the deterministic linear 
differential equation which is just the original stochastic equations, with all 
random inputs replaced by their mean trajectories.  In System Dynamics, 
this concept, rigorous in the linear case, is extended informally to the 
nonlinear case as an approximation.  That is, the deterministic solution of a 
System Dynamics model is often taken as an approximation of what would 
be concluded about the mean of a Monte-Carlo exploration.  Of course it is 
only an approximate notion, and it gives no information at all about the 
variances of the stochastic variables. 

A third kind of randomness in System Dynamics models is also a bit 
informal:  delays, which might be naturally modeled as stochastic, are 
modeled as deterministic but distributed.  For example, if procurement 
orders are received on average 6 months later, with randomness of an 
unspecified nature, a typical System Dynamics model would represent the 
procurement delay as a deterministic subsystem, usually a first- or third-
order exponential delay.  That is the output of the delay, in response to a 
pulse input, is a first- or third-order Erlang shape.  These exponential delays 
often do a good job of matching data taken from high-volume stochastic 
processes. 

Random number generators: 

A random number generator is a critical component in modern 
cryptographic systems, communication systems, statistical simulation 
systems and any scientific area incorporating Monte Carlo methods and 
may other systems. Random number generators can be classified in three 
classes; true random number generators, pseudo random number generators 
(PRNG) and hybrid random number generators. seudo random number 
generators are deterministic processes which generate a series of outputs 
from an initial seed state.  
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The Linear Congruential Generator 

This generator produces a series of pseudorandom numbers. Given an initial 
seed X0 and integer parameters a as the multiplier, b as the increment, and 
m as the modulus, the generator is defined by the linear relation:  

Xn ≡ (aXn-1 + b)mod m. Or using more programming friendly syntax:  

Xn = (a * Xn-1 + b) % m. 

Each of these members have to satisfy the following conditions: 

m > 0 (the modulus is positive), 

0 < a < m (the multiplier is positive but less than the modulus), 

0 ≤ b < m (the increment is non negative but less than the modulus), and 

0 ≤ X0 < m (the seed is non negative but less than the modulus). 

 

7.7 MODEL TIME, DATE AND CALENDAR VIRTUAL 
AND REAL TIME:  

Time is the central axis in the dynamic simulation models we are building. 
The models are full of various references to  time: delays, arrival times, 
service times, rates, timeouts, schedules, dates, velocities, etc. This section 
explains what model time is and how the user can work with it.   

The model time, date and calendar:  

Model time is the virtual (simulated) time  maintained by the simulation 
engine. The model time has nothing to do with the real time or the computer 
clock. 

The model time takes Java double type values (real numbers with double 
precision). The model clock is advanced in steps: while the engine is 
executing a discrete event model, the model time jumps from one event to 
another; if a continuous‐time model is being executed, the time steps are 
typically smaller and have equal size.  

To establish the correspondence between the model time and real world 
time where the system being modeled lives, we need to define the time units. 
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modeling. For example, if you are  

modeling a call center where the call durations are measured in seconds or 
minutes, you may set the time units to seconds or minutes. If you are 
modeling a supply chain, where manufacturing and shipping times are 
measured in days, days would be the right choice. The expression 
triangular( 10, 12, 15 ) used, e.g., in the Delay object, means a minimum of 
10 days, a maximum of 15 days and most likely value of 12 days if day is 
the time unit. 

 

• long getTimeUnit() – returns the current time unit, namely the number 
of milliseconds in one time unit. If you are using one of the standard 
units, a constant from the Table above is returned.  

• setTimeUnit( long tu ) – sets the time unit to a given number of 
milliseconds (tu). If you are setting a standard time unit, you can use 
a constant from the table. 

 

•  double millisecond() – returns the value of a one‐millisecond time 
interval.  

•  double second() – returns the value of a one‐second time interval. 

For example, if the time unit is hours, minute() will return 0.0166, and 
week() will return 168.0. Thus, instead of remembering what the current 
time unit is and writing 48 or 5./60, you can simply write 2*day() and 
5*minute(). You can also combine different units in one expression: 3 * 
hour() + 20 * minute() 

Date and calendar 

To use calendar in the model you need to tie the start point of  the simulation 
to a particular date. This is also done on the experiment’s Model time 
property page.  
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To set the simulation start date 

1.  Select the experiment and open its Model time property page. 

2. Check the CheckBox “Use calendar” 

3. Use the Start date control to set the start date.   

Bydefault, the date is set to the date when the model was created.  

If STOP is set to STOP at  time, the end date of the simulation will be: 

 

The date in AnyLogic is stored in the form of the Java class Date.  

Date is composed of the year, month, day of month, hour of the day, minute, 
second and millisecond.  

To find out the current date, you should call:  

• Date date() – returns the current model date. A number of functions 
return particular components of the current date (and all those 
functions also have the form with parameter <function name>( Date 
date ), in which case they return the component of a given, not current, 
date):  

•  int getYear() – r eturns the year of the current date.  

•  int getMonth() – retJANUARY, FEBRUARurns the month of the 
current date: one of the constants  

•  int getDayoffMonth(Y, MARCH, ... int getDayO) – returns the day of 
the month of the current date: 1, 2, ...  
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Simulation and Modeling •  int getDayOfWeek() – returns the day of the week of the current date: 
one of the constants SUNDAY, MONDAY, ...  

•  int getHourOhour fDay() – returns the hour of the day of the current 
date in 24‐format: for 10:20 PM, will return 22.  

•  int getHour() – dafor returns the hour of the y of the current date in 
12‐hour format:  10:20 PM, will return 10. 

•  int getAmPm() –PM otherwise returns the constant AM if the current 
date is before noon. 

•  int getMinute() – re turns the second within the minute of the current 
date.  

•  int getSecond() – returns the minute within the hour of the current 
date. 

•  int getMillisecond() – returns the millisecond within the second of the 
current date.  

Consider a model of a processing center that operates from 9 AM to 6 PM 
on weekdays.  

The following function returns true if the center is currently open and 
falseotherwise: boolean isOpen()  

{     

int dayofweek = getDayOfWeek();     

if( dayofweek == SUNDAY || dayofweek == SATURDAY )        

return false;     

int hourofday = getHourOfDay();  

//will be in 24-hour format   return hourofday >= 9 && hourofday < 18;   

} 
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Virtual and real-time execution modes.  

AnyLogic can execute the simulation model in two modes, virtualtime and 
real time on  a given scale. Virtual time is the “natural” execution mode 
when the simulation engine executes the model as fast as possible. The 
model time progresses unevenly and not continuously relative to real time; 
see the Figure. In discrete event models, the model clock may instantly jump 
to the next event or may stall at one point while several simultaneous events 
are being executed. The model execution rate may appear more continuous 
if the model contains continuous‐time dynamics (as in system dynamics 
models): in that case, the model is driven by the numeric solver, which 
makes small time steps that are more or less even. The computational 
complexity of events and equations obviously affects the speed of the 
execution of the model. The virtual time mode is used when simulation 
performance is important and animation of the model dynamics is not 
needed, in particular in optimization, sensitivity analysis, parameter 
variation, Monte Carlo and other experiments where the model is run 
multiple times. System dynamics modelers also use the virtual time mode 
as they are typically interested more in the output graphs of the simulation 
than in the simulation process itself. Event that occurs everyday at  8AM 
State chart spends in the state exactly  two months Timeout: to Timeout 
(MONTH,2) Source generates an entity at exactly the same  time of the day 
every two weeks Entities are delayed here for 2.5 years Delay time: to 
Timeout (YEAR,2.5) 

 

Virtualtime(“natural”)execution mode : In the scale to real‐time mode, 
the engine tries to keep to a given scale, say 10 model time units (e.g., 10 
simulated weeks) per 1 real second. If the model’s computational 
complexity is not too high, the engine will periodically put itself in the 
“sleep” state and wait for the correct real time to execute the next event or 
make the next step in the numeric calculations. Sometimes, though, the 
engine is unable to keep a given time scale because of too‐frequent or too‐
complex events or because of a large system of equations and/or a too‐small 
time step. Then the engine will work as fast as possible until it finds the next 
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can guarantee with respect to the real time is that the model execution will 
never go faster than requested;  

 

7.8  CONCLUSION 

A discrete-event simulation (DES) models the operation of a system as a 
(discrete) sequence of events in time. Each event occurs at a particular 
instant in time and marks a change of state in the system.[1] Between 
consecutive events, no change in the system is assumed to occur; thus the 
simulation time can directly jump to the occurrence time of the next event, 
which is called next-event time progression. 

In addition to next-event time progression, there is also an alternative 
approach, called incremental time progression, where time is broken up into 
small time slices and the system state is updated according to the set of 
events/activities happening in the time slice. Because not every time slice 
has to be simulated, a next-event time simulation can typically run faster 
than a corresponding incremental time simulation. 

Both forms of DES contrast with continuous simulation in which the system 
state is changed continuously over time on the basis of a set of differential 
equations defining the rates of change of state variables. 

7.9  PRACTICE QUESTION 

1) Define the following with respect to System Simulation and 
Modeling: 

a. State 

b. Statecharts 

c. State Transitions 

d. Events 
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2) Write a short note on State charts. 

3) Design a state chart to represent  Car Ignition System 

4) Describe the events in tea vending machine System 

5) How to view and debug Statecharts at runtime? Explain. 

6) How to design Statecharts for dynamic objects? Explain using 
suitable example. 

7) Write a short note one discrete events and Event model object. 

8) Explain the discreet events associated with queuing system. 

9) Write a note on Randomness in system dynamics model. 

10) Explain the different procedures of generating random numbers. 

11) Explain the Linear Congruential Generator method. Support your 
answer with suitable example. 

12) How to Model time, date and calendar Virtual and real time? Explain. 
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