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1.1 BIG DATA 

Big data is referred to as the collection of a huge data set that includes 
structured, semi-structure or unstructured data which cannot be stored and 
analyzed by traditional database management systems. The primary source 
of big data is various activities done by uses through the internet for 
various purposes.  

The use of the internet is an integral part of our lifestyle and due to that, it 
is very common to use various digital platforms on the internet for day-to-
day work. Lots of people leave their footprint in the form of the data by 
doing various activities on social media, online shopping websites, online 
business transactions, online banking systems, online searching, online 
education system and many others. Subsequently, it is observed that the 
growth of data is exponential way. So very advanced technology has 
emerged to manage a huge amount of data. 

1.1.1 Introduction to Big data Platform:  

The invention of hand-held digital devices has been considering as a prime 
factor for the growth of internet users. In today's life, the internet is 
accessed via computers, mobile phones, personal digital assistant devices, 
gaming stations and digital TV. It is believed that the Internet is the most 
fast growing technology.    

 
Figure 1 :  Internet usage in 2020 

Big data cannot be analyzed by conventional technology or it cannot be 
stored by the traditional database management system. The biggest 
challenge to work with big data is the exponential growth of data which 
requires very advanced technology to store it in such a way that can be 
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utilized for analysis purposes. Various big data platforms enable storing, 
managing, merging, developing, deploying, operating and analyzing big 
data. The big data infrastructure generally consists of very advanced data 
storage systems, high computing servers and big data management 
technology. A big data platform normally includes very advanced 
infrastructure which combines the capability of several big data 
applications. Whereas, the big data analytics software mainly focuses on 
providing facilities to support analytics for extremely large data sets. In 
other words, analytics helps to convert a huge amount of data into smart 
data or high-quality information which provides deeper insights for the 
decision-making process.  

There are many big data tools are available in the market for Big data 
analytics, few can be listed here. Apache Hadoop, Cassandra, data 
wrapper, mongo DB, Apache storm, Tableau, R, CDH (Cloudera 
Distribution for Hadoop), Elastic search, Kaggle, Hive, Spark, OpenText, 
Oracle Data Mining, BigML, CouchDB, Pentaho, Adverity, Xplenty, 
Apache SAMOA, Lumify, HPCC, Adverity, Knime, Talend, rapid miner, 
Microsoft Azure, Amazon Web service, Google bigquery, VMware, 
Google big data, IBM big data, wavefront, Cloudera enterprise big data, 
Oracle Big data analytics, DataTorrent,  mapR converged data platform, 
Splunk big data analytics, Big object, Opera solutions signal hub, SAP Big 
data analytics, Next Pathway, 1010data, GE industrial internet, SGI big 
data, Teradata big data analytics, Intel big data, HP big data, Dell Big data 
analytics, Cisco big data, Pentahol big data, Opera solutions big data. 

1.1.2 Traits of big data: 

Billions of users are connected to the World Wide Web and spending a 
significant amount of time via mobiles, computers and other devices. 
Consecutively, there are collections of large-scale unstructured data and it 
is also increasing with a constant growth rate every day. Hence, it emerges 
into the necessity of an advanced technology that could support a wide 
range of data storage, scalable processing and analysis of this data. In this 
scenario, big data technologies evolved as a revolutionary solution to cope 
up with all these solutions.  

Big data defines with 5V’s characteristics. The first ‘V’ is a symbolization 
of extra-large scale of the data volume. The second ‘V’ is a symbolization 
of a variety of data that emphasis on heterogeneous data (structure, 
unstructured and semi-structure). The third ‘V’ is a symbolization of 
velocity of data that highlights on data-analytics.  Figure 2 shows 5 ‘V’ 
characteristics of big data. 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

4 

 

Figure 2 :  5 ‘V’ characteristics of big data 

1 Volume 

Big data has been defining with five V characteristics. The first V is 
symbolization of volume. The big data has an extra-large scale data. The 
volume of data can be measured with zettabytes.  

Unit Abbreviation Size 

byte B 8 bits 

kilobyte KB 1,024 bytes or 10^3 bytes 

megabyte MB 1,024 KB or 10^6 bytes 

gigabyte GB 1,024 MB or 10^9 bytes 

terabyte TB 1,024 GB or 10^12 bytes 

petabyte PB 1,024 TB or 10^15 bytes 

exabyte EB 1,024 PB or 10^18 bytes 

zettabyte ZB 1,024 EB or 10^21 bytes 

yottabyte YB 1,024 ZB or 10^24 bytes 

 

In real life, millions of users are connected with the World Wide Web and 
spending a significant amount of time for surfing and online activities with 
the help of many hand-held devices, such as computers, laptops and 
tablets. 

Due to this, a constant growth rate was found, and mostly this data 
increasing at petabyte scale. The volume of data was previously measuring 
into Terabytes, later on, Petabytes and nowadays that is shifted to 
Zettabytes. Have a look at some statics about today’s scenario. Only 
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Twitter has more than 500 tweets to send every day and hence it generates 
more than 7 TB of data every day. Whereas, on Facebook, approximately 
4 petabytes of the post or likes related data and hence it generates 10 TB 
data every day. It is also observed that more than 65 billion messages are 
sent by people via WhatsApp. Some online enterprises are also believed to 
generate terabytes of data every hour of every day. A new era has begun in 
the field of transportation and 4 TB of data has been generated by each 
connected car. On the Internet, 5 billion searches are made from all around 
the world and the Internet is a huge network of many web servers and web 
services. This is just for having an idea that how much data we produce 
and even how much data will be available in the future to dig into it?   

 

 

Figure 3 :  A day in big data 

In other words, we can say that a massive amount of data has generated 
every day, which has to store. An organization has to manage storage and 
processing in real-time, which is the biggest challenge related to big data. 

2 Variety 

The second ‘V’ is a symbol of a variety of data that means the big data can 
be found as structured data, unstructured data or semi-structured data. In 
an online environment, the source of data could be different and hence the 
data can have a different format subsequently the data may have a variety 
of format.  Due to the presence of text, media, links and application 
programs as a part of today’s websites, a variety of data is found as a part 
of the big data. In the case of convention data technology, data could be 
processed only if it is structured and represented in the two-dimensional 
table. On the other hand, the major portion of today's websites and social 
media data consist of text, images and videos, which are very complex and 
difficult to process. Herein, text, links, maps, network hierarchies and 
streaming data are unstructured and cannot be stored in that 2-D format. 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

6 

Some of the data are semi-structure, which is more structure in nature, 
compare to unstructured data. It cannot process with the help of a 
relational database. Normally, a tree-like structure such as XML is used to 
store semi-structured data. It is also known as the key-value pair structure. 
XML and JSON are an example of these kinds of data storage formats. 

 Structured Data Unstructured Data 

Type of 
data 

It is represented as 
numbers, dates, strings 
and alphanumeric values 
etc. 

It may consist of text, images, 
audio and videos etc. 

Storage 
structure 

It can be easily stored in 
2-dimensal structure of 
row and column. So, it 
can be stored with Excel 
or RDBMS. 

It can be stored with (NOSQL) 
Non relational structure, Big 
Table, graph data and many other 
advanced data structures. 

Source of 
data 

It is part of major business 
data stored with ERP 
systems and other MIS 
system.  

It is normally present at a part of 
online systems and web data.  

Growth 
rate 

It is increasing at the 
growth rate of 20-30%  

It is increasing at the growth rate 
of 80-90% 

Analysis 
Process 

It is very easy to analysis 
it with RDMS and with 
use of simple algorithms. 

It is very complicated to 
preprocess, process  and analysis 
of it. It requires very complex 
and advanced technology for 
analysis purpose such as text 
analysis algorithms, Artificial 
Intelligent and Neural Network.  

 

Due to all these challenges, many innovations have provided solutions to 
process data in various formats such as Big Table, graph data and many 
others. Even due to these data challenges, NoSQL technology emerged as 
a solution and it has been adapted by many. 

3 Velocity 

The third ‘V’ is a symbol of the velocity of the data. A Velocity is related 
to the speed at which data are arriving and it has to store. Similarly, 
velocity is related to 'How much the data received in a specific period?' 
and that could accommodate into the database. Sometimes, velocity is also 
referred as the measurement of the speed at which the data it is moving 
towards the data repository. For the conventional system, it is impossible 
to manage the constant flow of data that comes from various data streams 
connected with RFID sensors. More than that, for the real-time system, it 
is essential to analyze this data in real life as the life of the data is short. 
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For real-life applications, batch processing is not a good option 
specifically for data streams. The real-time computing system, which 
accepts data from many data streams and computing systems has to 
execute the query and identifies current trends based on the recent and up-
to-date data in real-time. The Google map traffic analysis system is this 
kind of real-time system which processes a massive amount of current 
traffic-related data and provides valuable information in real-time. 

4 Varacity 

The next ‘V’ stands for ‘Varacity’ or ‘Validity’ of the data. The veracity 
refers to the trustworthiness and quality of the data used for analysis. 
Nowadays, the data is available in huge amounts but the quality of data is 
a big question. Only high-quality data yields meaningful information, 
which seems a difficult task in an online environment. The source of data 
and its authenticity must be considered at the time of data preprocessing. 
The handling of noise, inaccurate data and missing data must be done to 
increase the quality of the data. The process of validating data is a big 
challenge due to the consideration of context analysis for text data.  

5 Variability 

The next ‘V’ stands for ‘Variability’ or uncertainty of the data. The 
variability of the data suggests too many changes in the data. Due to 
changing nature of the data, the data processing methods and the models 
has to also change according to the data. The constant changes and 
innovation in the technology lead to the addition of new things into the 
Internet, and hence new kinds of data formats and processing methods 
involve automatically. The general methodology for various kinds of 
objects cannot be applicable. Subsequently, new algorithms and 
processing approaches have to introduce to manage constantly variable 
data. The conventional technology only focused on the analysis of 
historical data collected over a period of time from the same enterprise 
system. This system design is for specific kinds of processing 
requirements concerning that data only. Internet and advanced IoT 
systems are capable to connect many different systems with different 
components. This emerges as needs flexible algorithms that can work well 
with a wide range of data variety.  

1.1.3 Challenges of conventional systems: 

The conventional systems are mainly made to manage enterprise level data 
but, it is normally do not focus on gathering data from out of the 
organization. Due to this, the data of conventional system has predefined 
and fixed structure, where as big data system has mix of various kinds of 
data. More than this, volume of data for conventional system is limited to 
gigabytes to terabytes only whereas big data system has to store and 
manage zetabytes of data with cloud and other advanced data storage 
system. The conventional system can analysed data with algorithms which 
are suitable to process structured data only. The analysis of structured data 
may be done by various functions such as statistical functions and date 
functions. In the market now-a-days the most commonly used statistics 
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softwares for that is SPSS software. Statistical methods are most suitable 
for quantitative data. In statistic, a wide range of aggregation functions are 
available which can be applicable o groups. In contrast to that, statistical 
methods cannot be applicable to heterogeneous data. Hence, a wide 
variety of algorithms are needed to process structured, semi-structured and 
unstructured data. The analysis of unstructured data or text data is very 
complicated in nature, compare to structured data. For example, search 
engines has to perform text analysis on web data, it may required key 
word extraction, semantic analysis and similarity matching etc.  

Another limitation of the conventional data management system is related 
to the storage capacity of data. In the case of a conventional data 
management system data is generated at the rate of per hour or per day. 
The business data can be stored at the centralized level and shared with all 
remote devices. The data has a fixed schema and it is not possible to 
change the structure at run time. The data manipulation functions are 
predefined and various data operations are performed on regular basis. 
Subsequently, the analysis process is also implied according to the data. In 
contrast to that, big data has flexible schema and heterogeneous data. 
More than that, big data is generated at the speed of exponential rate. Due 
to that, data has to store with a flat-file structure or in such a way that can 
be shared over a wide network. The latest technological revolution has 
made it possible with cloud storage and clustering storage systems. 
Subsequently, the processing method has to adapt the relevant technology 
for future analysis. In short, big data analysis systems should be flexible, 
scalable and more tolerant to failure to manage the need of the time. That 
should also allow distributed and allowed parallel processing to speed up 
the analysis task. 

1.1.4 Web data:  
The traditional system focus on a data management system that processes 
mostly transaction data such as enterprise resource planning system (ERP) 
and customer relationship management (CRP) system. The major source 
of this kind of system is transaction data produce due to various business 
transactions which have to be processed via predefine business methods. 

On the other side, the Web of data is today's reality and exist due to the 
relationship among the data on the internet. The web data consist of 
Website data, Domain name data, News data, Web activity data, Web 
search data, IP address data, Click Stream data, Sentiment web data, Web 
traffic data and Semantic web data. The entire collection of interrelated 
data set on the web is also sometimes referred to as linked data or 
Semantic Web. An example of a Linked Dataset is DBPedia, which 
includes Wikipedia data. A significant feature of DBPedia is it makes it 
possible to get the content of Wikipedia in RDF format.  

Web analytics is a process of measuring web traffic, web search and web 
uses. Many web search engines perform web analysis and help internet 
users to search from a huge collection of web pages present on the 
Internet. The analysis of web data is possible with the use of   HTML, 
XML, RDF, OWL, SPARQL, etc.  
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In addition to that, the volume of Web data is constantly increasing. Along 
with that, a variety of data sources continuously generating various kinds 
of data and makes web data more complicated and unstructured. The data 
on the Internet arises due to social media, social networking links, social 
media posts, image data, video data, click stream data and many other 
activities. Another source of data is various surveys, online surveys, 
experiments and observations of the people. Sometimes, market survey 
data, industry reports, consumer analysis reports, various kinds of business 
reports and comparative analysis reported also loads tons of different types 
of data on the internet. In this era, due to the presence of GPS and GIS, 
lots of location related data is also generated by mobile devices and other 
geospatial systems. Many security systems, produces images and videos in 
massive amount with the use of surveillance and other security devices. 
With the help of many remote sensors, RFID devices, IoT systems and 
many other real-time tracking systems load a massive amount of data. 
Satellite images and weather-related data are also an integral part of 
Internet data. 

1.1.5 Analytic processes and tools:  

Data analysis is a process that transforms raw data into very useful 
information. Data analysis is very useful for generating various statistics 
related to data, meaningful insights and valuable explanations to manage 
data-driven business decisions. There are many software and applications 
which perform various data analysis tasks. It is crucial to choose an 
appropriate tool to execute, from a wide range of data analytics tools. The 
selection process for data analytics tools may consider many parameters 
such as price, robustness, supported data models, learning curve, 
scalability, expandability, visualization facility and many others. 

Data analysis generally follows well-defined steps. It is very important to 
understand the importance of process along with know-how of data to 
yield meaningful insights and valuable patterns. Normally, to carry out the 
analytics process following steps are required to conduct : (1) data 
collection (2) data cleaning and preprocessing (3) data analysis (4) 
visualising the output (5) understanding the results.  

Data collection: The first step of the data analysis process is to understand 
the source of the data, the format of the data and the collection procedure. 
Based on all this, the data collection procedure has to be defined. 
Nowadays various data collection tools are also used to capture data in 
real-time, such as barcode readers, cameras, voice detecting machines, 
sensors and automatic weighing machines. 

Data cleaning and preprocessing: It is very essential to conduct a data 
cleaning process to convert raw data into high-quality data. The data 
cleaning process may include the process for removal of duplicate data, 
removal of outliers and removal of errors. Sometimes, it is also essential to 
identify and fill the gap between data that are collected from different 
sources to integrate them into a single database. The data cleaning process 
may carry out manually or by using automated data cleaning tools. Along 
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with the data cleaning process, it is also very essential to conduct an 
exploratory analysis of the data. This step helps to understand the 
characteristic of data and the relationship among them. Sometimes the 
existing co-relationship of the data is very essential to find out to establish 
a hypothesis. 

Data analysis:  A data analytic process mainly depends on the goal of the 
process and the availability of the data. There are lots of statistical 
techniques used for analysis, a few are listed here univariate or bivariate 
analysis, regression analysis, time series analysis, descriptive analysis and 
predictive analysis. 

The descriptive analysis identifies the underlying relationship among the 
data. This kind of analysis may help to find, a summary of the data, to 
describe the data, and to determine the next processing step to be carried 
out. The predictive analysis helps to find future values for future, based on 
the historical data. This kind of analysis may help to predict market sales 
based on the previous year's sales data. 

Visualiting the output: Data visualization is equally important as the data 
analytics process. The output of the analysis process must be clearly well 
presented and understandable. Sometimes data visualization tools are used 
to increase the readability of the data. More specifically, these tools are 
used when the volume of data is very large. Google charts, Infogram and 
Tableau are well known examples of data visualization tools. 

Understanding the results: Understanding of final output is a very 
crucial step. For instance, the output may be misleading or erroneous due 
to several reasons. In this situation, it is very essential to identify the 
reason behind it, and to determine correct approach. 

1.1.6 Analysis Vs Reporting: 

In this digital era, the wealth of information brings into existence due to 
modern analytics technology. Analysis and reporting both are valuable for 
the same. The goal of the analysis process is to inspect the data and 
transform it into useful information. The goal of the reporting process is 
transforming the output of the analytic process in a presentable format. 
The main purpose of conducting the analysis process is examining, 
interpreting, comparing and predicting the data. Whereas reporting process 
is mainly focusing on highlighting organizing, summarizing and 
formatting processes. Sometimes, visualization of output may enhance 
with the use of chats, maps,  graphs and linking of data. 

1.1.7 Modern data analytic tools: 

Big data analytics uses the large quantities of data that generates and 
gathers from various sources and converts into meaningful information. 
There are many big data tools, and having the most in-demand by data 
scientist. Some vital tools of big data are the following: 
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No. Tools Benefits 

1 R R programming language is the most common choice 
of many data scientists today. R is free and available 
under an open-source license. R available for different 
types of hardware and software e.g. Windows, Unix 
systems and the Mac. The most attractive feature of 
‘R’ is the extendibility and integration of a rich library 
of packages. 

2 Python Python is a very powerful yet, open source language 
and an easy-to-learn language. It offers statistical and 
mathematical functions. Few famous libraries are 
NumPy, SciPy, etc. It is a high-level language with 
high readability and object-oriented programming 
functionality. 

3 PIG and 
HIVE 

 

Hadoop is distributed File System that allows the 
storage of data in a distributed manner. The ecosystem 
is consists of many tools.  Hadoop MapReduce 
facilitates the processing of large volumes of data in a 
parallel and distributed manner. HIVE and PIG are 
also an integral part of the Hadoop ecosystem. They 
facilitate processing and analysis. More specifically, 
HIVE is a data warehouse with HiveQL, which is the 
query language for large datasets stored in HDFS. PIG 
runs on Hadoop cluster and processes and analyzes 
large datasets using a scripting language. 

4 Tableau 

 

Tableau is a very easy-to-learn data visualization tool 
that converts numeric and textual data into beautiful 
visuals. It is user friendly, mobile friendly, simple yet, 
fast. Anyone without knowledge of coding can also 
use Tableau. 

5 Jupyter 
Notebook 

 

Jupyter Notebook is a free, open-source and online 
data analytics tool. It supports 40+ programming 
languages so, it is known as a multi-language 
computing environment. It allows the use of python’s 
wide variety of packages and visualization tools.  

6  Google 
Data 
Studio 

 

Google data studio is a free data analytics tool that can 
automatically integrate with other Google applications 
such as Google Analytics, Google Ads, Google Sheets 
and Google BigQuery.  
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1.2. STATISTICAL CONCEPTS:  

1.2.1 Sampling distributions  

We consider sample as an analytic subset of a larger population in 
statistics. Samples allow researchers to conduct their studies with more 
manageable data and in a timely manner. Random samples do not have 
much bias if they are large enough, but achieving such a sample may be 
expensive and time consuming. In simple random sampling, every entity 
in the population is identical.  

 What is a Sampling Distribution?  

A sampling distribution is a probability distribution of a statistic obtained 
from a larger number of samples. It is the distribution of frequencies of a 
range of different outcomes that could possibly occur for a statistic of a 
population.  

A population may refer to an entire group of people, objects, events, 
hospital visits, or measurements. A population can thus be said to be an 
aggregate observation of subjects grouped together by a common feature.  

 A sampling distribution is a statistic that is arrived out through 
repeated sampling from a larger population. 

 It describes a range of possible outcomes that of a statistic, such as the 
mean or mode of some variable, as it truly exists a population. 

 The majority of data analyzed by researchers are actually drawn from 
samples and not populations. 

Understanding Sampling Distribution 

Huge amount of data drawn and used by academicians, statisticians, 
researchers, marketers, analysts, etc. are actually samples, not 
populations. Consider this example, a medical researcher that wanted to 
compare the average weight of all babies born in North America from 
1995 to 2005 to those born in South America within the same time period 
cannot within a reasonable amount of time draw the data for the entire 
population of over a million childbirths that occurred over the ten-year 
time frame. He will instead only use the weight of, say, 100 babies, in each 
continent to make a conclusion. The weight of 200 babies used is the 
sample and the average weight calculated is the sample mean.  

Few Definitions 

A sample is a subset of the population. 

A population is a collection of all the elements of interest. 

The sampled population is the population from which the sample is 
drawn. 

An element is the entity on which data are collected. 
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A frame is a list of the elements that the sample will be selected from. 

1.2.2 Re-sampling 

Once we have a data sample, it can be used to estimate the population 
parameter. The problem is that we only have a single estimate of the 
population parameter.  One way to address this is by estimating the 
population parameter multiple times from our data sample. This is called 
re-sampling. 

Statistical re-sampling methods are procedures that describe how to 
economically use available data to estimate a population parameter. The 
result can be both a more accurate estimate of the parameter (such as 
taking the mean of the estimates) and a quantification of the uncertainty of 
the estimate (such as adding a confidence interval). 

Two commonly used re-sampling methods that you may encounter are k-
fold cross - validation and the bootstrap. 

 Bootstrap. Samples are drawn from the dataset with replacement 
(allowing the same sample to appear more than once in the sample), where 
those instances not drawn into the data sample may be used for the test set. 

 k-fold Cross Validation. A dataset is partitioned into k groups, where 
each group is given the opportunity of being used as a held out test set 
leaving the remaining groups as the training set. 

The k-fold cross-validation method specifically lends itself to use in the 
evaluation of predictive models that are repeatedly trained on one subset 
of the data and evaluated on a second held-out subset of the data. 

Generally, re-sampling techniques for estimating model performance 
operate similarly. Re-sampling methods are very easy to use, requiring 
little mathematical knowledge. They are methods that are easy to 
understand and implement compared to specialized statistical methods that 
may require deep technical skill in order to select and interpret. 

The re-sampling methods are easy to learn and easy to apply. They require 
no mathematics beyond introductory high-school algebra, etc are 
applicable in an exceptionally broad range of subject areas. 

A downside of the methods is that they can be computationally very 
expensive, requiring tens, hundreds, or even thousands of re-samples in 
order to develop a robust estimate of the population parameter. 

The key idea is to resample form the original data either directly or via a 
fitted model to create replicate datasets, from which the variability of the 
interest can be assessed without long-winded and error-prone analytical 
calculation. Because this approach involves repeating the original data 
analysis procedure with many replicate sets of data, these are sometimes 
called computer intensive methods. 
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Each new subsample from the original data sample is used to estimate the 
population parameter. The sample of estimated population parameters can 
then be considered with statistical tools in order to quantify the expected 
value and variance, providing measures of the uncertainty of the estimate. 
Statistical sampling methods can be used in the selection of a subsample 
from the original sample. 

A key difference is that process must be repeated multiple times. The 
problem with this is that there will be some relationship between the 
samples as observations that will be shared across multiple subsamples. 
This means that the subsamples and the estimated population parameters 
are not strictly identical and independently distributed. This has 
implications for statistical tests performed on the sample of estimated 
population parameters downstream, i.e. paired statistical tests may be 
required. 

Subset of samples can be used to fit a model and the remaining samples 
are used to estimate the efficacy of the model. This process is repeated 
multiple times and the results are aggregated and summarized. The 
difference in techniques usually depends on the method in which 
subsamples are chosen. 

1.2.3 Statistical Inference 

Statistical inference makes propositions about a population, using data 
drawn from the population with some form of sampling. Given a 
hypothesis about a population, for which we wish to draw inferences, 
statistical inference consists of selecting a statistical model of the process 
that generates the data and deducing propositions from the model. 

"The majority of the problems in statistical inference can be considered to 
be problems related to statistical modelling".  Sir David Cox has said, 
"How [the] translation from subject-matter problem to statistical model is 
done is often the most critical part of an analysis". 

The conclusion of a statistical inference is a statistical proposition. Some 
common forms of statistical proposition are the following:  

 a point estimate, i.e. a particular value that best approximates some 
parameter of interest; 

 an interval estimate, e.g. a confidence interval (or set estimate), i.e. an 
interval constructed using a dataset drawn from a population so that, 
under repeated sampling of such datasets, such intervals would contain 
the true parameter value with the probability at the stated confidence 
level; 

 a credible interval, i.e. a set of values containing, for example, 95% of 
posterior belief; 

 rejection of a hypothesis; 

 Clustering or classification of data points into groups. 
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Models and assumptions 

Any statistical inference requires some assumptions. A statistical model 
is a set of assumptions concerning the generation of the observed data and 
similar data. Descriptions of statistical models usually emphasize the role 
of population quantities of interest, about which we wish to draw 
inference. Descriptive statistics are typically used as a preliminary step 
before more formal inferences are drawn. 

Paradigms for inference 

Different schools of statistical inference have become established. These 
schools or "paradigms" are not mutually exclusive, and methods that work 
well under one paradigm often have attractive interpretations under other 
paradigms.  

There are four paradigms: 

 (i) Classical statistics or error statistics,  

(ii) Bayesian statistics,  

(iii) Likelihood based statistics and  

(iv) Akaikean Information Criterion based statistics.  

 The practice of statistics falls broadly into two categories: 

(1) Descriptive or  

(2) Inferential.  

When we are just describing or exploring the observed sample data, we 
are doing descriptive statistics. However, we are often also interested in 
understanding something that is unobserved in the wider population, 
this could be the average blood pressure in a population of pregnant 
women for example, or the true effect of a drug on pregnancy rate, or 
whether a new treatment perform better or worse than the standard 
treatment. In these situations we have to recognise that almost always 
we observe only one sample or do one experiment. If we took another 
sample or did another experiment, then the result would almost certainly 
vary. This means that there is uncertainty in our result, if we took another 
sample or did another experiment and based our conclusion solely on the 
observed sample data, we may even end up drawing a different 
conclusion!   

 The purpose of statistical inference is to estimate this sample to 
sample variation or uncertainty. Understanding how much our results may 
differ if we did the study again, or how uncertain our findings are, allows 
us to take this uncertainty into account when drawing conclusions. It 
allows us to provide a plausible range of values for the true value of 
something in the population, such as the mean, or size of an effect and it 
allows us to make statements about whether our study provides evidence 
to reject a hypothesis.  
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Estimating uncertainty:  

 Almost of all of the statistical methods you will come across are based 
on sampling distribution. This is a completely abstract concept. It is the 
theoretical distribution of a sample statistic such as the sample mean over 
infinite independent random samples. We typically only do one 
experiment or one study and certainly don't replicate a study so many 
times that we could empirically observe the sampling distribution. It is 
thus a theoretical concept. However we can estimate what the sampling 
distribution looks like for our sample statistic or point estimate of interest 
based on only one sample or one experiment or one study. The spread of 
the sampling distribution is captured by its standard deviation, just like the 
spread of a sample distribution is captured by the standard deviation.  

Do not get confused between the sample distribution and sampling 
distribution, one is the distribution of the individual observations that 
we observe or measure, and the other is the theoretical distribution of 
the sample statistic that we don't observe.  

We should not get confused between the standard deviation of the sample 
distribution and the standard deviation of the sampling distribution, we 
call the standard deviation of the sampling distribution the standard error. 
This is useful because the standard deviation of the sampling distribution 
captures the error due to sampling, it is thus a measure of the precision of 
the point estimates or put another way, a measure of the uncertainty of our 
estimate. Since we often want to draw conclusions about something in a 
population based on only one study, understanding how our sample 
statistics may vary from sample to sample, as captured by the standard 
error, is also really useful. The standard error allows us to try to answer 
questions such as: what is a plausible range of values for the mean in this 
population given the mean that I have observed in this particular sample? 
The standard error is thus integral to all statistical inference, it is used for 
all of the hypothesis tests and confidence intervals that you are likely to 
ever come across. 

1.2.4 Prediction error  

A prediction error is the failure of some expected event to occur. When 
predictions fail, humans can use meta-cognitive functions, examining prior 
predictions and failures and deciding. For example, whether there are 
correlations and trends such as consistently being unable to foresee 
outcomes accurately in particular situations. Applying that type of 
knowledge can inform decisions and improve the quality of future 
predictions. 

Predictive analytics software processes new and historical data to forecast 
activity, behavior and trends. The programs apply statistical analysis  
techniques, analytical queries and machine learning algorithms to data sets 
to create predictive models that quantify the likelihood of a particular 
event happening. 
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Errors are an inescapable element of predictive analytics that should also 
be quantified and presented along with any model, often in the form of a 
confidence interval that indicates how accurate its predictions are expected 
to be. Analysis of prediction errors from similar or previous models can 
help determine confidence intervals. 

In artificial intelligence (AI), the analysis of prediction errors can help 
guide machine learning (ML), similarly to the way it does for human 
learning. In reinforcement learning, for example, an agent might use the 
goal of minimizing error feedback as a way to improve. Prediction errors, 
in that case, might be assigned a negative value and predicted outcomes a 
positive value, in which case the AI would be programmed to attempt to 
maximize its score. That approach to ML, sometimes known as error-
driven learning, seeks to stimulate learning by approximating the human 
drive for mastery. 

1.3. DATA ANALYSIS:  

Regression analysis is a set of statistical processes for estimating the 
relationships between a dependent variable and one or more independent 
variables. The most common form of regression analysis is linear 
regression, in which one finds the line that most closely fits the data 
according to a specific mathematical criterion.  

For example, the method of ordinary least squares computes the unique 
line that minimizes the sum of squared differences between the true data 
and that line. For specific mathematical reasons, this allows the researcher 
to estimate the conditional expectation of the dependent variable when the 
independent variables take on a given set of values. Less common forms 
of regression use slightly different procedures to estimate alternative 
location parameters  or estimate the conditional expectation across a 
broader collection of non-linear models. 

Regression analysis is primarily used for two conceptually distinct 
purposes.  

First, regression analysis is widely used for prediction and forecasting, 
where its use has substantial overlap with the field of machine learning.  

Second, in some situations regression analysis can be used to infer causal 
relationships between the independent and dependent variables.  

Importantly, regressions by themselves only reveal relationships between 
a dependent variable and a collection of independent variables in a fixed 
dataset. To use regressions for prediction or to infer causal relationships, 
respectively, a researcher must carefully justify why existing relationships 
have predictive power for a new context or why a relationship between 
two variables has a causal interpretation. 

1.3.1 Regression modeling  

Regression is a form of machine learning where we try to predict a 
continuous value based on some variables. It is a form of supervised 
learning where a model is taught using some features from existing data. 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

18 

From the existing data the regression model then builds its knowledge 
base. Based on this knowledge base the model can later make predictions 
for outcomes on new data. 

Continuous values are numerical or quantitative values that have to be 
predicted and are not from an existing set of labels or categories. There are 
lots of examples of regression where it is heavily used on a daily basis and 
in many cases it has a direct business impact.  

Types of Regressions Models:  

 Linear Regression 

 Logistic Regression 

 Polynomial Regression 

 Stepwise Regression 

 Ridge Regression 

 Lasso Regression 

1.4. ANALYSIS OF TIME SERIES:  

1.4.1 Linear systems analysis 

A CEO of car manufacturing company is interested in knowing what will 
be approximate sale of cars for next 2 years. Airline Company is eager to 
know how many passengers are likely to travel through their flights in 
next 2 months. Manufacturer of perishable sweet items would want to 
know how much demand will be there for next 2 weeks. Head of Supply 
Chain Company wants to know how much will be petrol and diesel prices 
for next 2 days. A CFO of an IT company is interested in knowing stock 
prices for next 2 hours. 

Everybody sitting at higher positions are taking decisions is of utmost 
importance. Only resource they have with them is historical data. Time 
series analysis is a technique with which one can forecast for the future, 
based on historical data. In all such scenarios, one can use historical data 
and apply time series analysis on the data to create a model which can aid 
in getting some idea about future. It is important to note that the historical 
data has to be time-dependent (collected with respect to time function). 

Univariate time series is one where data is collected with respect to only 
one variable, with respect to periodic time instance, over s period where as 
multivariate time series in one in which data for multiple variables is 
collected for a certain time period. Recording temperature values every 
hour for a week is an example of univariate time series. Whereas, 
recording temperature, pressure and humidity every hour for a week is an 
example of multivariate time series.  

Data collected for the time series can be linear or non-linear. Linear data, 
when plotted in the form of a graph, will be sequential in nature. Any data 
point with be connected to only two other datapoints, previous and the 
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next. On the other hand, non-linear data when plotted in the form of graph 
will not result into a straight line.  

A. Components of time series data 

Any time series may have some inherent properties / components – Trend, 
Seasonality, Cyclicity and Irregularity.   

(1) Trend is an important component of any time series which is a 
result of overall long term effect of environmental factors. Trend may 
show inclining or declining effect over a period. 

 

Figure 4.1: Trend component of time series 

As seen in graph A, in figure 4.1, there has been overall increase in the 
sale of air conditioners and overall decrease in sale of kerosene for 
cooking purpose.  

(2) Seasonality is the short term movement in data due to seasonal 
factors. E.g. there can be notable increase of sale of warm clothes during 
winter season or even sudden increase in the sale of washing machines 
during rainy season can be attributed to seasonal fluctuation. 

 

Figure 4.2: Seasonality component of time series 
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(3) Cyclicity is a pattern observed when the data is collected for a very 
long duration, say 40-50 years. This pattern repeats over a period, but the 
gap between two time instances may not be fixed. E.g. recession occurring 
time and again, but it is difficult to predict the next occurrence. 

 

Figure 4.3: Cyclicity component of time series 

(4) Irregularities / random component are the sudden changes in data 
which are unlikely to be repeated. Such a sudden change in data cannot be 
predicted by other components like trend / seasonality or cyclicity. These 
variations are mostly accidental in nature and may result in to change in 
trends / seasonality and cyclicity in the forthcoming period. Natural 
calamities can be an example which may cause irregularities in data. E.g. 
Covid pandemic has resulted steep increase in the sale of electronic 
gadgets such as tablets, laptops and cell phones on account of online 
lectures from schools and colleges. 

 

Figure 4.4: Irregularity component of time series 

There are certain situation when data is not changing with respect to time, 
then time series analysis is not applicable to such situations. E.g. If 
average rainfall over the years in 3-4 decades is approximately same, then 
it implies that time factor has not affected the rainfall or one can conclude 
that rainfall is independent of time. There is no point in applying time 
series analysis to such situations.  
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B. Types of analysis on time series data 

Time series analysis can be categorized into Descriptive, Diagnostic, 
Predictive and Prescriptive analysis. 

Descriptive analysis gives idea about what happened in the past. It helps 
in interpretation of the patterns followed by the data. It can be represented 
in the form of data visualizations like graphs, charts, dashboards etc. 
Variations in the data can be tracked with the help of descriptive analysis. 

Diagnostic analysis is like an extension of descriptive analysis, which 
helps in answering the reasoning behind variations in the data. This is 
often referred to as root-cause analysis. Techniques like data discovery, 
data mining and drilling down data come handy for this purpose 

Predictive analysis tries to generate a model based on the historical data. 
The model understands the basic pattern and trends of the data. The same 
model is then applied to predict for the future. E.g. based on the sale of 
apartments in a city for last 50 years, a model can help predict the same 
for next 5 years.  

Prescriptive analysis takes predictive data, a step higher and helps to 
decide what action should be taken. E.g. If certain number of demand is 
predicted for next year for electric vehicles, then accordingly production 
planning can be prepared by a company. 

It is a prerequisite for any time series forecasting that the data is 
stationary. If components like trends, seasonality, cyclicity and irregularity 
are present in the data, it is considered as non-stationary. It is necessary to 
smoothen the data before it is used for further forecasting. Mean, variance 
and covariance values help deciding whether the data is stationary or non-
stationary. Stationary data may have seasonality component but not the 
trend component and mean, variance and covariance should not change as 
per time. To illustrate on non-stationary data further, consider plotting 
blood pressure against time. It may have minor seasonal variation but 
definitely no trend. It will never continuously increase or decrease with 
time. Plotted in the form of a graph, blood pressure values will look as a 
flat line with no slope. In some medical conditions, there can be 
irregularities as well, there can be sudden spikes in blood pressed and 
medical practitioners are definitely interested to find out the root cause 
behind such spikes and remove them. 

 

Figure 4.5: Stationary Vs Non-stationary data 
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Smoothing of data (i.e. converting non-stationary data to stationary) can 
be achieved by applying moving average to the data. Moving average 
technique removes the randomness in the data. Consider the figure 4.6, the 
graph represents monthly sales figures for 3 consecutive years. Though 
there is overall increase in sales, there are variations in between.  

 

 

Figure 4.6: Monthly sales figures (Stationary and non-stationary) 

After applying moving average – MV4 (Take of first 4 data values and 
calculate average, then take 2nd, 3rd, 4th and 5th data values to calculate 
average, then 3rd to 6th and so on.). Next, calculate centered moving 
average of every 2 data values to further smoothen the rough edges. Plot 
the line graph of Centered Moving average instead of actual data values), 
against the time frequencies for data collection i.e. every month of 3 years. 
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The graph will then look as shown in figure 4.6. Except the last part, the 
graph is much smoother. Decomposition procedure helps in understanding 
trend and seasonality factors in time series. De-trending and removing 
seasonal effect followed by step to identify irregularity causing factors in 
the original data can prepare data for applying models for forecasting. 

Next important task is to forecast based on historical non-stationary data. 
Certain tools with programming languages like R, Python can also be used 
for forecasting purpose. Or mathematical models also can be used for this 
purpose, 2 such models are widely used and they are 

a) Additive model:  

Xt = Trend + Seasonal + Irregular 

In a party, a cook assumes that on an average, people will eat 2 rotis and 
accordingly will prepare the food. But, if some people are hungry, may be 
they will eat one extra roti. So, one who east 1 roti normally, will eat 2. 
One who eats 2 in normal situation, will eat 3. This is 1 extra to normal 
situation, irrespective of what original number is. In such a case, additive 
model is used for forecasting.  

b) Multiplicative model:  

Xt = Trend * Seasonal * Irregular 

When there is increase in product prices, it is in percentage terms. E.g. 
Price of laptop increases by 5% than previous year, cost of certain model 
laptop which costed 50,000 Rs. previous year will now cost 52,500 Rs. 
The one which costed 70,000 Rs. previous year will now cost 73,500 Rs. 
So, the increase in cost is not fixed but in terms of percentage, and such 
scenarios, multiplicative model is best suited. 

So, we can summarize that additive model is useful when the seasonal 
variation is relatively constant over time. 

The multiplicative model is useful when the seasonal variation increases 
over time. 

In the additive model, we take the addition of trend, seasonal and irregular 
factor and divide it by centered moving average. 

Exponential smoothing is a feature available in Excel worksheet, which 
takes care of this entire process. After applying exponential smoothing, the 
graph will show actual as well as predicted values of sales, which can be 
further extrapolated for forecasting. As we can observe, actual and 
forecasted values are pretty matching with each other. Hence, we can say 
that this model is accurate and can be used for forecasting future sales 
values. Other data smoothing techniques like random walk, simple 
exponential smoothing are also available. Once smoothing is done, we 
need to right click on the line chart and add equation, R2 value on the 
graph. Also after adding trend line on the graph, one can forecast for the 
future. R2 helps in indicating how good the model is for prediction. 
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Figure 4.7: Sales values (actual vs. predicted) along with forecast line. 

1.4.2 Nonlinear dynamics:  

In case of non-linear data, data points are connected to each other in 
multiple ways. As shown in figure 4.7, the number of data point and 
degree of connections with each other may vary. Further, elements can 
also be heterogeneous in nature. This also called as topology of the 
system. Consider a pendulum moving with certain initial state and velocity 
it will follow certain pattern of movements.  

 

Figure 4.8: Non-linear data 

But, if the pendulum is bent in between, it will be controlled by 2 
equilibriums.The resultant motion will become non-linear. Hypothetically, 
imagine the earth is also controlled by another plant, which will exert its 
own gravitational force effect on the earth, the entire structure of earth’s 
orbit will change and may look like 2 connected ovals. This will again 
result into non-linear motion. If data for non-linear motion is plotted as 
graph, instead of sequential nature of line, it will look curved, more like a 
quadratic equation. Such a change in movement is called as chaos. Chaos 
theory studies behavior of dynamical systems, sensitive to initial 
conditions (referred to as butterfly effect). Motion of pendulum with 2 
pendulums, recorded in isolation, is predictable. But when combined, 
reveal non-linear behavior. 

Two sound waves, perfectly out of synch with each other, rather than 
adding with each other, will cancel the effect of both. Many human being 
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working in tandem, may synergize overall output, much higher than 
addition of individual outputs. Non-linear systems may shift to whole new 
regime, even if there is small change in input condition. Such a change is 
called as phase-transition.  

For a quick comparison between linear and non-linear time series data, a 
linear data will reveal a straight line when plotted in graph, whereas non-
linear data will generated a curved shaped graph. A linear data, when 
presented in an equation, will be first degree equation whereas non-linear 
data will be a quadratic equation. It is crucial to find out whether data is 
linear or non-linear before deciding the techniques to use for forecasting 
purpose. When represented graphically, non-linear time-series data will 
generally one of following shapes: 

 

Figure 4.9: Graphical representation of non-linear time series data 

Structural breaks (outside forces that may cause sudden and permanent 
change in the pattern of the data) play vital role while studying non-linear 
time series data. Identifying the presence of structural breaks, estimating 
their timings and studying behavior of data before, after and during the 
breaks needs to be studied while dealing with non-linear data. 

Brock- Dechert-Scheinkman test (denoted as the BDS test) is the most 
widely used test for detecting non-linearity of the data.  The BDS test gets 
its name from its original authors William Brock, Davis Dechert and Jose 
Scheinkman, who develop it in 1987. It is generally used indirectly to test 
alternative hypothesis for non-linearity. The BDS test uses the correlation 
function (also called the correlation integral) as the statistic test. In case of 
non-linear data, which is time dependent, BDS test checks dependence of 
data points in the space where point are plotted. Naturally, unlike linear 
data, there is more than 2 dependence of datapoints in case on non-linear 
data. This is denoted as checking spatial dependence check.  

ARIMA (Auto Regressive Integrated Moving Average) Model is used 
for forecasting in non-linear time series data. ARIMA model is denoted as 
ARIMA (p, d, q) where p is The number of lag observations included in 
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the model, also called the lag order. D is the number of times that the raw 
observations are differenced, also called the degree of differencing and q 
is the size of the moving average window, also called the order of moving 
average. Steps in ARIMA are stated as  

1. Model identification. Use plots and summary statistics to identify 
trends, seasonality, and auto regression elements to get an idea of the 
amount of differencing and the size of the lag that will be required.  

2. Parameter Estimation. Use a fitting procedure to find the coefficients of 
the regression model.  

3. Model Checking. Use plots and statistical tests of the residual errors to 
determine the amount and type of temporal structure not captured by the 
model. The process is repeated until either a desirable level of fit is 
achieved on the in-sample or out-of-sample observations (e.g. training or 
test datasets). 

ARIMA includes both auto regression and moving average features. It 
needs at least 50 and on an average 100 records to build a proper model. 
The ARIMA model tend to be unstable, both with respect to changes in 
observations and changes in model specification. Because of the large data 
requirements, the lack of convenient updating procedure, ARIMA 
becomes high cost model. 

1.4.3 Rule induction: 

Rule induction is a process of deriving if-then rules as a part of data 
mining. Rules are most popular symbolic representation of knowledge. 
Rules are not only very easy but also natural and in human understandable 
form. Such decision rules help in discovering inherent relationships 
amongst the data sets as well as use them for business. Consider an 
example – If it is 8 pm on Saturday, then there will be lot of rush in the 
restaurants. Predictions based on such rules are based on everyday 
observation for long duration. Rules are easier to understand than decision 
trees. Consider a scenario which has more than 30-35 decision situations. 
A decision tree built based on such decision points will not only be a very 
large diagram but will be difficult to understand as well. Hence, decision 
rules are more preferred over decision trees or any other technique for 
classification.  

Such rules can be extracted from a decision tree. Rules consist of attribute 
– value pairs which can be traced from a root of a decision tree to a 
particular node. These rules are mutually exclusive (without conflict / 
overlap) and exhaustive (covering all possible scenarios of decision 
making).  

For deciding income tax to be paid by a person, following rules can be 
followed (The given example is totally hypothetical and for academic 
purpose only). 
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If a person is a senior citizen and earning in slab 1 Then No income tax 

If a person is a senior citizen and earning in slab 1 Then 5%  income tax 

If a person is salaried, not a senior citizen and 
earning in slab 1 and gender -Male 

Then 5%  income tax 

If a person is salaried,  not a senior citizen and 
earning in slab 2 and gender -Male 

Then 10%  income 
tax 

If a person is salaried , not a senior citizen and 
earning in slab 1 and gender -Female 

Then No income tax 

If a person is salaried , not a senior citizen and 
earning in slab 2 and gender -Female 

Then 5%  income tax 

If a person is business person , not a senior citizen 
and earning in slab 1 and gender -Male 

Then 15%  income 
tax 

If a person is business person , not a senior citizen 
and earning in slab 1 and gender -Female 

Then 10%  income 
tax 

 

a. Rule Induction algorithms: 

Apart from inducing rules from decision trees, certain algorithms can also 
be used for rule induction process. Training data can be used for deriving 
rules. Generally one rule is learnt by using the process of machine 
learning. For more number of rules, iterations are carried out on the 
dataset for every new rule.  

i. Learn one rule: 

This rule follows greedy search technique where it searches for a rule 
which has high accuracy but less coverage classifying all positive 
examples for a given instance. Strength of this algorithm lies in its ability 
to create relations amongst the given attributes under test and cover 
maximum number of dataset for these attributes. Consider a situation 
where in a decision of playing cricket match is based on certain 
parameters such as weather, rains, cloudiness, light intensity, temperature, 
nature of grass on the playground and soil quality. Based on possible 
alternatives to all these parameters, final ruleset is designed.  

E.g. Rule number 1 can be - If quality of soil is good, and no grass on the 
ground, and light intensity is good, and no cloudiness and no rains, match 
will be played.  

Another rule can be - If heavy rains, even if no grass, soil quality is good, 
match will be played. 
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ii. Sequential covering: 

This is widely used algorithm for rule based classification for learning 
disjunction rules. In this algorithm, based on learn one rule, one rule is 
discovered. After that all the data covered by this rule is removed. Then 
the same process is repeated in a sequential manner for all other rules. 

iii. FOIL: 

First Order Inductive Learning is a rule based algorithm which is a 
natural extension of Sequential Covering algorithm and Learn One rule 
algorithms. FOIL used the concept of inductive  logic  which involves 
analyzing and understanding evidences and then use them for prediction. 
Look at the example, wherein the evidence say 80% of youth go for 
movies on weekends, and the fact that A is a youth, one can predict that 
this person will go and watch movie on a weekend. The algorithm works 
in iteration forming new rules, and for every new rule, all previous 
positive and negative examples are eliminated. 

iv. AQ:  

Algorithm Quasi Optimal is a powerful machine learning methodology 
aimed at learning symbolic decision rules from a set of examples and 
counterexamples (negative examples). AQ starts with assigning class 
(labels) to input data. So it can be treated as supervised algorithm. AQ 
involve 4 major steps – data preparation, rule learning, postprocessing and 
optional testing.AQ is used in two ways, for theory formation (TF) and 
Pattern Discovery (PD). AQ segregates all ambiguous data/ event into 4 
categories – Positive, where all ambiguous data is gathered into a class.  
Negative, where ambiguous data is eliminated. Eliminate, where 
ambiguous data is not used further. Majority, where ambiguous data is 
labeled to a class where it mostly appears. Further, the algorithm selects 
only most relevant attributes. This avoid unnecessary rule formation in a 
highly noisy situation. In the beginning, a general rule is formed by 
comparing with positive and negative examples, and keep repeating this 
process by refining previous rules. 

v. CN2:  

CN2 algorithm works best in a noisy environment. It is a classification 
technique for inducing simple if-then rules to predict a class to which data 
related to an event belongs to. There is inbuilt process for removing empty 
columns, removing instances with unknown target values and imputing 
missing values with mean values. Two algorithms, search algorithm 
(decides which are the best rules) and control algorithm (exerts criteria for 
deciding best rules) which are part of CN2, work in tandem to induce 
rules, in an ordered and unordered set. 

vi. RIPPER:  

It stands for Repeated Incremental Pruning to Produce Error Reduction. 
The Ripper Algorithm is a Rule-based classification algorithm. It derives 
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a set of rules from the training set. It is a widely used rule induction 
algorithm. RIPPER algorithm is used when the dataset is imbalanced one 
(Unequal number of data elements in different classes). Amongst 
imbalanced datasets, this algorithm selects the majority class as a default 
class. The algorithm starts with the assumption that records belonging to 
default class are positive example and all other classes with reducing 
frequenting of data elements are considered as negative examples. 
Sequential Covering Algorithm is used to generate the rules that 
discriminate between +ve and -ve examples. Then RIPPER considers next 
class for deriving the rules. It starts with empty rules and then keeps 
adding best conjunct (conditions connected by AND) to the antecedents (If 
part). All such conjuncts are evaluated by a metric. When the rule starts 
covering negative examples, the algorithm stop execution. 

Once a rule is derived, all positive and negative examples are covered by a 
rule are eliminated and the rule is added to rule set.  

Accuracy of such rule induction system can be calculated based on 
number of correct data elements covered by a rule and number of total 
number of data elements covered by a rule. It is possible that there are 
more than one rules are applied for uncovering such hidden relationships 
in the dataset. In such a case, prioritization of rules depending on the 
requirement is carried out. Such prioritization of rules will avoid conflict 
while triggering the rules.  

b. Conflict resolution techniques: 

To avoid multiple rules being triggered at the same time, or conflict 
between rules and class which it belongs to, following conflict resolution 
techniques are used. 

i. Size ordering – In this technique, the rules with maximum number of 
attributes is given the highest priority. 

ii. Class based ordering – Rules with maximum frequency class is 
considered at the priority. 

iii. Rule based ordering – Rules are arranged into a long list of priority 
based on some measure of rule qualities such as accuracy, coverage 
and experts’ opinion. 

1.5. NEURAL NETWORKS:  

A neural network is a computational data model which captures and 
represents complex input & output mechanism. The main motives come 
for the development of neural network technology is from the thought to 
develop an artificial system which can perform "intelligent" tasks similar 
to human brain. NN (Neural networks) reflect the behavior of the human 
brain. It allows computer programs to recognize patterns and solve 
common Artificial intelligence problems. NN is also known as Artificial 
Neural Networks (ANNs). NNs are having many layers, which mainly 
divide in three categories like an input layer, one or more hidden layers, 
and an output layer. Node is also known as artificial neuron. Each node 
connects to another node and each node has an associated weightage and 
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specific threshold. If the output of any specific node is above the threshold 
value, then that specific node is activated and it sends data to the next 
layer of the network.  

 

NNs rely on training data to learn and continuously improve their 
accuracy over time. For getting the better accuracy there is need to tune up 
the learning algorithms. Tasks in speech recognition and image 
recognition can be completed within minutes when it takes several hours 
in the manual human expert’s identification. Google’s search algorithm is 
one of the most well known examples of NNs. Face recognition or 
character recognition is not the only the problems that NNs can solve. 
NNs have been successfully applied to wide spectrum of data-intensive 
applications like: 

Fraud Detection - Detect fake transactions of credit card and 
automatically refuse such charges. 

Process Modeling and Controlling - Creating a NN model for a physical 
plant for best automation. 

Machine Diagnostics - Detect the failure of machine and automatically 
shut down the machine systems when this problem occurs. 

Targeted Marketing and survey – For getting highest response rate for a 
particular marketing campaign. 

Quality Control and Maintenance – Identifying the product defects 
based on the recorded data.  

Portfolio Management - Allocate the assets in a portfolio in for 
maximum return with minimum risk. 

Medical Diagnosis Application - Help doctors with their diagnosis by 
analyzing the image data such as MRIs & X-rays. 

Financial Forecasting & Credit Rating – Do the financial forecasting 
with the available data also calculate the credit rating based on current 
financial conditions.  
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Military Application -Target Recognition - Determine target if any 
enemy present in given data. 

1.5.1 Learning and Generalization: 

First step in NNs training is generalization.  Generalization specifies 
how good our model is for learning from the provided data and applying 
the learnt information. When we train a NN, some data we will use for 
train the model and some we will reserve for checking the performance of 
model. Here we are explaining generalization of NN with an example. 

We are training a NN which should give the decision about given image is 
of dog or not. We have some pictures of dogs, each dog belonging to a 
certain breed and having different features like color, strips, height and 
many more.  We have a total 12 pictures of dog. We will use 10 pictures 
for training and remaining 2 for checking the accuracy of model.  

Now we will show this to a person and train them with 10 breeds of dogs 
and after training ask person to detect other dogs from testing data.  
Hopefully person will give answer about asked question. Here 10 breeds 
should be enough to understand and identify the unique features of a dog. 
This concept of learning is called generalization in which Learning from 
some data and correctly applying the gained knowledge on other data  
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1.5.2 Competitive Learning: 

Competitive learning is a specific form of unsupervised learning in NNs. 
This type of learning is done without any supervision of a teacher. This is 
independent learning process. At the time of training of NN under 
unsupervised learning, the similar input vectors combined and form a 
cluster. In this system when a new input pattern is applied, then the NN 
gives a response indicating the class to which input pattern belongs. There 
is a no any feedback from the environment as to what should be the 
desired output and whether the generated result is correct or incorrect. In 
this type of learning the network and discover the patterns. This is based 
on the concept of Competitive Learning Network. 

Competitive Network is like a single layer feed-forward network having 
feedback connection between the outputs. The connections between the 
outputs are inhibitory type, which is shown by dotted lines, which means 
the competitors never support themselves. Here the competition done 
between the output nodes specifically during the training. Output node 
unit which has the highest activation to a given input pattern will be 
declared the winner node. During training, the output unit that provides 
the highest activation to a given input pattern is declared the specific 
weights of the winner and is moved closer to the input pattern; whereas 
the rest of the neurons are remain unchanged. In this strategy winner-take-
all and only the winning neuron is updated other remain as it is.  
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1.5.3 Principal Component Analysis and Neural Networks: 

 Principal Component Analysis (PCA) is an unsupervised learning 
methodology which is generally used to reduce the dimensionality of large 
datasets or generally use to simplify the complexity of dataset by 
transforming a large set of variables into a smaller one while trying to 
retain most of the information of the original dataset.PCA reduces data by 
geometrically projecting it onto lower dimensions which in turn are called 
as Principal Components (PC).  

The purpose of this method is to find the best summary of our data by 
using the least amount of principal components.  By choosing principal 
components we minimizing our distance between the original data and its 
projected values on the principal components, as a result of minimizing 
the distance we maximize the variance of the projected points, same we 
can repeat for all other principal components.  

The basic idea of PCA is to preserve maximal variance for a data set with 
a minimal set of linear descriptors. High dimensional datasets are 
projected into a smaller number of dimensions maximizing the variance on 
the new axes. PCA is a very important Statistical analysis tool and 
therefore many researchers are working to improve the algorithm for 
better performance and better data interpretation.  

Let’s take an example, if we have a training set consisting of 250 images 
of “person wearing glasses” and “person not wearing glasses” having 4096 
features per image, when we directly apply NN to our dataset it would 
take a huge amount of time for the training purpose, but if we pre-process 
our data using PCA it will reduce the dimensions of our dataset to 
(250,250) from the original (250,4096) hence when we apply NN to our 
resulting dataset the time required to train the dataset will reduce 
drastically without a huge loss in accuracy.  

 

1.6. FUZZY LOGIC:  

The term “Fuzzy Logic” refers to the data which is imprecise or vague. 
This concept was first introduced in 1965 by Lotfi A Zadeh, A Barkley 
Professor in Electronics and computer Science, who was basically a 
Mathematician. He is also called as “Father of Fuzzy Logic”. He realized 
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that the legacy application were not capable of  handling imprecise data 
and mainly focused on handling precise (Boolean) data such as True / 
False in the form of 1 and 0. In real world, more often one has to process 
unclear data than clear data. 

To further elaborate, consider a question “Is the car is moving?. “We have 
only two answers – YES or NO. It’s pretty simple to handle such 
situations and transform them in to software systems. But imagine a 
situation where we think of developing an autopilot application for a car. 
Software is expected to handle a decision making situation wherein a 
decision needs to be made about applying brakes or pushing accelerator 
based on the existing speed of the car, whether it is moving slow or fast. 
Let’s assume, 40 km per hour is a threshold, below which car is 
considered to have slow speed and above it, considered to be fast.  If a car 
is moving at the speed of 10 km/hr. is definitely slow speed and pushing 
accelerator will be appropriate decision. On the other hand, if a car is 
moving at the speed of 60 km/hr is definitely moving with fast speed and 
applying brakes will be advisable. But think of a situation where the speed 
is 39.5 km/hr. as per traditional logic, accelerators should be pushed and 
as soon as speed becomes 40.5 /hr., brakes should be applied. In this way, 
a car will keep speeding up and suddenly stopping. The person inside the 
car will keep experiencing continuous jerks.  

The only solution to handle such a situation was to consider speed of the 
car as a continuous imprecise data than fixed precise. Slow speed can be 
anywhere between 0 to 40, depending on how close it is to the threshold 
value, we can say that it is extremely slow, very slow, little slow, slow, 
little fast, very fast or extremely fast. Fuzzy logic helps in accepting such 
continuous data and further take actions based on such input. 
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Figure 6.1 Extracting fuzzy models (rules) from data 

a. Architecture of fuzzy logic based software systems 

A software system based on fuzzy logic mainly has 4 components: 
Fuzzifier module, a rule base, Inference engine and De-Fuzzifier module. 

           

 

Figure 6.2: Architecture of Fuzzy Logic System 

1. Fuzzifier module: A fuzzifier module accepts inputs in the form of 
crisp values. These values are further converted fuzzy data by applying 
membership function. E.g. consider an answer to a question – Is it hot 
today? The respondent, depending upon his / her perception, may answer 
differently- Very hot / extremely hot / hot / slightly hot / Not at all hot. 
Instead of plain YES or NO binary answer, there are varied answers. Such 
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answers are treated as LP, MP, SM, MN, and LN.  Such an input is more 
like human like and realistic one.  
    

 

Figure 6.3:  Fuzzification rules 

2. Rule base: This is a collection of set of rules, which are applied on 
the fuzzy input received from fuzzifier module. The rules are in the form 
of if-then conditions and respective action, designed by experts. Such set 
of rules can be further updated to fine tune the system.  
 
3. Inference engine: This is the most important component of the 
system. Based on inputs received from Fuzzifier module and rules base, 
inference engine is responsible for making decisions. After matching 
fuzzy inputs and selecting appropriate rules, the inference engine 
determines which rules to be applied for developing control actions. 

 
4. De-Fuzzification module: This is responsible for output from 
inference engine to crisp values and present to user. Further, user can 
choose the best option to reduce the error. 

 
De-Fuzzification methods – Lambda-Cut method, maxima method, 
weighted-sum method and centroid method are the methods which are 
used for converting fuzzy values to crisp values which are in the human 
understandable form. 

Let’s consider the illustration of designing fuzzy logic system for a smart 
air conditioner. The system can detect temperature through a thermometer. 
This crisp value is taken as input for fuzzy system. Fuzzifier modules, 
using membership function, will convert it into fuzzy data set. These fuzzy 
values, combined with if-then rules base, inference engine will generate 
output, which is again fuzzy. Using defuzzifying techniques, output will 
be again converted into crisp value, based on which air conditioner will 
automatically adjust its value. 

A fuzzy logic based system is one which can treat the input as a set of 
limited approximate values instead of precise values. All the values are 
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nothing but matter of degrees. Knowledge is nothing but a set of variables. 
Any logical system can be converted into fuzzy logic based system. 

b. Membership function: 

A membership function is one which can help in transforming crisp values 
to fuzzy sets. It was first put forth by Lotfi A Zadeh. Such a function helps 
in representing all the data in fuzzy set (discrete and continuous both). It 
helps in handling real world problems with the help of experts. It is 
possible to have one or many fuzzy rules with one or many antecedents 
and consequents. Consider Following If-Then rule, part I is called 
antecedent or premise and part II is called as consequence. In the 
following case there is only 1 antecedent and 1 consequents in the rule. 

 

 

In the above example, there are 2 antecedents and 1 consequents in the 
rule. 

Rules for defining fuzzy values are also fuzzy. In the similar way, it is 
possible to have multiple antecedent and multiple rules. 

Here is an example with multiple rules with multiple antecedents. 

Rule 1: If x is A and y is B Then z is C 

Rule 2: If x is A1 or y is B1 Then z is C1. 

 

Part I and part II in the above rules indicate antecedent I and II whereas III 
indicates consequents. Consequents of multiple rules in a rule base can be 
aggregated to generate defuzzified output.  
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The method of assigning membership values are as follows: 1. Intuition 2. 
Inference 3. Rank Ordering 4. Angular Fuzzy Sets 5. Neural Networks 6. 
Genetic Algorithm 7. Inductive Reasoning 

One can represent a membership function with the help of a graph. A 
membership value will always range between 0 and 1.  

 

Figure 6.4: Graphical representation of membership function 

Membership values lie between 0 and 1 and the one which are equal to full 
membership i.e. 1 are called core values. The values which are non-zero 
membership values are called support values. All the values which are 
greater than zero but have incomplete membership are called as boundary 
values. Membership values can be assigned based on intuition of experts, 
through referencing, by rank ordering, angular fuzzy sets, neural networks, 
genetic algorithm, and induction reasoning. 

1.6.1 Extracting Fuzzy Models from Data 

 A Fuzzy rule consists of antecedent (also called as hypothesis), 
consequence (also known as conclusion). Multiple antecedents are 
possible in a rule and there can be many rules in a given scenario. Such an 
expression with antecedents and consequences, with optional AND, OR 
conjunctive/disjunctive operators If-Then rule. These are also called as 
canonical form of rule base.  

When the two antecedents are conjunctive in nature i.e. joined by AND 
then the aggregated output is intersection of all membership values. In 
this case, all conditions that should be jointly satisfied, joined with AND. 
This is called as Conjunctive system of rules. It can be represented 
mathematically as  

µx(x) =min (µx1(x1), µx2(x2)…… µxn (xn)) 
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On the other hand, if antecedents are disjunctive in nature, i.e. joined by 
OR, then aggregated output is union of all membership values. In this 
case, at least one conditions that should be satisfied, joined with OR. This 
is called as Disjunctive system of rules. It can be mathematically 
represented as  

µx(x) =max (µx1(x1), µx2(x2)…… µxn (xn)) 

There are well researched fuzzy methods that provide well defined 
systems for which can be used in inference system. 

A. Mamdani system 

Ebhasim Mamdani suggested this method in the year 1975. This method 
can accept crisp as well as fuzzy inputs for the purpose of inference. 
Consider a set of 2 rules  

Rule 1 - If x is A and y is B Then z is C 
Rule 2 - If x is A1 or y is B1 Then z is C1 

There are two cases for 2 inputs methods in Mamdani system 

a. Max-Min inference method – Considering above Rule 1 and Rule 
2, with x=2.5 and y=3 as the inputs, minimum of membership values for 
different antecedent is considered. Let µ1 be the membership value for 
x=2.5 and µ2 be the membership value for y=3. Then minimum of µ1 and 
µ2 is considered for Rule 1. Same procedure is followed for Rule 2 (and 
up to Rule n if there are any) and maximum µ of all these rules is 
considered for final Defuzzification. This method is also called as 
truncated membership method. 

Area covered under marked area is considered for finding out the final 
crisp value. Appropriate equation for area calculation is used based on the 
shape that is formed in the final output graph. 

 
Figure 6.5: Max- Min Mamdani Method 
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b. Max-product inference method – Same procedure as Max-Min is 
followed, except, instead of considering minimum membership value for 
each rule, product is considered. For aggregation, maximum of all these 
products considered for final Defuzzification. Instead of truncated 
membership method, scaled membership method is used in Max-Product 
Method. 
 

 
 
Figure 6.6: Max Product Mamdani Method 

B. TSK / Sugeno system (Takagi Sugeno Kang / Sugeno) 

This model was suggested in the year 1985. In case of Mamdani system, 
all the antecedents in If Then rule were in the fuzzy form and consequent 
is also fuzzy. But the consequent is a polynomial function represented as 
y=f(x, y), which is a crisp function.  
Rule 1 - If x is small and y is small Then z1= (-x) +y+1 
Rule 2 - If x is small and y is large Then z2= (-y) +3 
Rule 3 - If x is large and y is small Then z3= (-x) +3 
Rule 4 - If x is large and y is large Then z4= (-x) +y+2 
Consider values of x=1.5 and y=2.5 

 
Figure 6.7: Graphical representatiopn of TSK / Sugeno method 
 
Minimum of membership values for x=1.5 for small and large are 0.3 and 
0.3 and that of y=2.5 are 0.4 and 0.7 respectively. 
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y* = (0.3 * 2) + (0.3 * 0.5) + (0.4 * 1.5) + (0.7 * 6) 
                           0.3 + 0.3 + 0.4 +0.7 
 y* = 3.264 
 
Before discussing the third system i.e.Tsukamoto system, let’s have brief 
discussion on comparison of Mamdani and Sugeno system. 
a. As per Mamdani system, consequent is s fuzzy data set whereas 

according to Sugeno system, output membership function is a either 
linear or constant.  

b. Sugeno system is more based on mathematical rules than Mamdani.  
c. Mamdani system more suitable for human inputs 
d. Sugeno controller has more adjustable parameters than Mamdani 

system. 
e. Mamdani system is more intuitive and has widespread acceptance, 

but Sugeno method is more computationally efficient. 
f. Sugeno system works better for optimization and adaptive 

techniques. 

C. Tsukamoto system 
In this system, antecedents as well as consequent is a fuzzy set, but the 
membership function of the consequent is a fuzzy set, based on monotonic 
function (which is also called shoulder function) whose successive values 
are increasing, decreasing or constant. Output of each rule is defined as a 
crisp value induced by membership value coming from antecedent rule. 

Rule 1 – If x is A and y is B Then z is C 

Rule 2 – If x is A1 and y is B1 Then z1 is C1 

w1, w2 and w3 represent corresponding weights (based on membership 
value) for x, y and z. 

 

Figure 6.8: Graphical representation of Tsukamoto method 
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Based on rule 1 and rule 2, we find corresponding values for x and y and 
the membership value for output z. This is done using maximum or 
minimum depending on the rule (whether AND/OR condition used in the 
rule). In a given illustration, both the rules are connected with AND, hence 
we consider minimum of the two membership values. After extending w2 
in first case and w2 in second case, corresponding values for membership 
value w3 can be obtained. (This is a crisp value). Overall output can be 
obtained by weighted average of each rule’s output (i.e. w3 and z in both 
the rules).  

 

Consider values of x=2 and y=5 , 

 y*=  (0.2 * 0.5) + (0.5 * 5) 

           0.2 + 0.5 

       y* = 3.714 (Final output) 

Main advantage of Tsukamoto method is that it bypasses the long process 
of Defuzzification as each rule renders a crisp value, and overall output 
can be calculated with weighted average method. 

Major lacuna of this method is that, it can be applied only when 
monotonic function used. In all other generic case Tsukamoto method 
cannot be used. 

1.6.2 Fuzzy Decision Trees 

Decision tree is a diagrammatic representation of decision rules and 
corresponding outcomes. A decision tree consists of 2 parts, decision node 
and branches. A decision tree of such kind helps the end user better design 
strategy in a complex situation where there are multiple decision rules and 
conditions. Let’s consider the example of decision income tax percentage 
to be deducted in a given situation.  Tax to be deducted will be decided 
upon following conditions 

1. Whether a person under consideration is a salaried person or a 
business person 

2. Age of the person 
3. Gender of a person 
4. Total amount of earning 

To design a tree for this situation, Questions are designed in such a way 
that there are only two possible answers to a question. A condition is 
considered as a decision node and answers are like branches. All possible 
conditions and their answers are included in a single tree so that end-user 
can easily take decision. It is important to note that all the decision 
rules and possible answers are clear and well-defined. 
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Now, let’s consider another situation, where person X has been 
interviewed by different companies and has received job offers from 4 
different companies. X has to make a decision, which offer to accept, 
based on 3 criteria he has in mind. The criteria r\are salary, distance from 
home and growth opportunities. X is looking for salary in the range of 35-
55 thousand per month. Distance from home should be between 5 to 30 
km. Growth opportunities are indicated by number of ticks where more 
number of ticks indicate more opportunities. Unlike previous example of 
tax calculation, all the above conditions and possible criteria and unclear 
and fuzzy in this case. 

Following table represents all the criteria and available job opportunities 
available for person X wherein J1, J2, J3 and J4 indicate job offers and 
C1, C2, C3 indicate criteria for selection of job offer. 

Job offers 
Criteria 

J1 J2 J3 J4 

Salary C1 40 k 45 k 50 k 60 k 
Distance C2 27 7.5 12 2.5 
Growth C3 √√ √√√ √ √ 
 

After assigning membership function and assigning weights for salary 
criteria, we get a continuous line as shown below. 

 

Figure 6.9: Graphical presentation of salary vs. membership values 

After following similar procedure for all other criteria, we get a table as 
follows 

Job offers 
Criteria 

J1 J2 J3 J4 

Salary C1 0.25 0.5 0.7 1 
Distance C2 1 0.9 0.78 0.1 
Growth C3 0.5 0.8 0.2 0.2 
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For finding out best possible option, following equation used: 

D1=Min (C1 (J1), C1 (J2), C1 (J3), C1 (J4)) = 0.25 

D2=Min (C2 (J1), C2 (J2), C2 (J3), C2 (J4)) = 0.5 

D3=Min (C3 (J1), C3 (J2), C3 (J3), C3 (J4)) = 0.2 

D4=Min (C4 (J1), C1 (J2), C1 (J3), C1 (J4)) = 0.1 

D (Final) = Max (D1, D2, D3, D4) = Max (0.25, 0.5, 0.2, 0.1) = 0.5 

Hence, best option is with the weight 0.5 i.e. option 2. Hence J2, job offer 
2 is most advisable for X.  

A decision tree based on fuzzy value will not have just 2 branches, but can 
have multiple branches. Experts’ views do matter for designing weights 
giver to the values and membership function. 

 

Figure 6.10: Decision tree (fuzzy values) 

6.3 Stochastic Search Methods. 

Since the advent of computers and software systems, they have undergone 
lot of evolution. In the recent days, software systems have reached a stage 
where one can expect them to imitate human intelligence. Needless to say, 
agility and adaptability is one of the most prominent feature of human 
intelligence. Incorporating changing environment to support decision 
making in most complex systems, machine learning, deep learning and 
neural networks have immensely aided in the development of appropriate 
artificially intelligent software.  

An efficient adaptive, self-learning algorithm for speedy search in a large 
size database can give and edge over other traditional search algorithms. 

Previously used deterministic and probabilistic models may not give 
expected intelligent output, nearer to human intelligence. Deterministic 
models as experiment based and with same set of initial conditions, will 
generate same output. Probabilistic works with certain degree of 
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randomness, but fails to work in an inherent highly random environment. 
Further, deterministic and probabilistic methods are not capable of 
handling time-dependent randomness. Consider an example of bacterial 
growth in a controlled environment. In spite of same set of initial 
condition and environment, final results may vary. Predicting stock prices 
at different points of time is also highly unpredictable process and asks for 
algorithms that can handle the nature of randomness in such a situation. 
Modeling efficient supply chain management from production facilities to 
warehouse, designing best red-yellow-green signal timings in various 
directions in a traffic-network, deciding time to administer a drug for its 
best therapeutic effects, Gaussian movement of particles are some more 
such areas with high degree of randomness. Stochastic methods can come 
handy in such situations.  

What is stochastic search? : Most of the real-world problems need 
stochastic approach. Stochastic process is a set of random variables, which 
are time-dependent (time can be discrete-X0, X 1, X 2, X 3… X n or 
continuous – {X t} t>=0). Certain degree of uncertainty helps in improving 
ability in optimizing search processes. Natural world is full of 
stochasticity. Most of the machine learning algorithms are based on 
stochastic methods. Games do have certain level of stochasticity, such as 
rolling dice or shuffling cards. Following are some generic steps for 
building stochastic search model: 

1. Creating a sample space (Ω) — which includes a list of all possible 
outcomes, 

2. Assigning probabilities to all the elements in a sample space 

3. Identifying different events of interest, 

4. Calculating the probabilities for the events of interest. 

Let’s see a common example of this process in action: You are rolling a 
dice in a casino. If you roll a six or a one, you win Rs. 1000. The steps 
would be: 

The sample space includes all possibilities for dice roll outcomes: Ω = {1, 
2, 3, 4, 5, 6}. 

The probability for any number being rolled is 1/6. 

The event of interest is “roll a 6 or roll a 1”. 

The probability for “roll a 6 or 1” is 1/6 + 1/6 = 2/6 = 1/3. 

Implementation of stochastic search is achieved through different 
algorithms and techniques. Such techniques are based on exploitation and 
exploration principles.  

Following are some of the popular techniques for stochastic search: 

a. Simulated annealing – The name simulated annealing come from the 
field of metallurgical engineering in which temperature is brought down in 
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a very slow manner, so that particles can settle down gradually while 
cooling (minimum lattice energy state, thus avoiding and crystal defects, 
final configuration results in a solid with such superior structural 
integrity). Simulation of this entire process of annealing is used in an 
algorithm, which can be represented as: 

Simulated Annealing () 

Step 1 – Start with any random node and generate a solution 

Step 2 - Using any cost function, calculate the cost of the solution  

Step 3- Generate a new solution using a random neighbor 

Step 4 – Calculate the cost of new function 

Step 5 – Compare new solution cost against the cost of previous solution 

Step 6- If new solution is better than the old one cost wise, move to new 
solution and move to one more iteration.  

Step 7- Keep checking for termination condition, which may either 
maximum number of iteration or optimal solution resulted. 

b. Genetic algorithms – Motivation for genetic algorithm come from 
nature and the way it has evolved. Genetic mutation is a common process 
that keep happening in animals as well as trees. In this process, a gene is 
replaced by another, for environmental reasons. The evolutionary 
fundamentals when applied for computation purpose, are called as 
Evolutionary Computing and one of the branch of Evolutionary 
Computing is Genetic algorithm. In GA, there is a population, which 
consists of all possible encoded solutions to a given problem, wherein, 
every single solution in the population is called as chromosome. 
Population in computational space is called as genotype, whereas 
population in real world is called phenotype. Genotype is basically 
encoded solution from real world population to computational space. On 
the other hand, phenotype is decoded solution from computational space 
to real world. In a given population with problem, which is random one or 
generated from other known heuristics problem, fit parent candidates are 
selected. Fitness function is used to select the fit parents, the function has 
to be very fast and is expected to quantitatively measure the fitness of the 
candidates selected as parent. Crossover and mutation is carried out to 
generate a new off-sprint, which in turn replace the one in original 
population. This process is repeated again and again till number of 
iterations are met or optimal solution is arrived. GA is widely used in 
robotic engineering as well as other search optimization techniques. 

Process in the GA can be represented in the form of algorithm as follows: 

Genetic Algorithm () 

Step 1 – Initialize the population 

Step 2- Using fitness function, check the fitness of population 
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Step 3 – Select the parent 

Step 4 – Probability of cross over is P1 

Step 5 – Probability of mutation is P2 

Step 6 – Decode the solution to real world and calculate for fitness 

Step 7 – Select the survivor 

Step 8 – Find the best one and return the same to real world population 

Step 9 – Repeat the steps 3 to 8 till termination criteria is met 

Before moving ahead with explanation for Hill climbing technique for 
stochastic search optimization, let’s see the comparison of Simulated 
Annealing and Genetic Algorithm. 

SA:  Comes from metallurgy engineering 

Uses cost function to compare two solutions 

Uses only one population space 

Keeps comparing one solution with the neighboring to reach optimal 
solution 

Widely used in solving combinatorial problems 

GA:  Comes from human evolutionary concepts 

Uses Best fit function for the comparison purpose 

Uses 2 population spaces, Phenotype and Genotype. 

Keeps combining two solutions to reach target best off-spring 

Widely used in robotic application, production planning.  

c. Hill climbing – Hill climbing algorithm starts with a random value and 
continues searching higher value, till it reaches peak. Then peak values of 
neighboring peaks are compared with each other for better optimization. 
TSP (Traveling salesman problem) is an area where hill-climbing 
algorithm is widely used. Hill-climbing algorithm is a variation of 
generate and test method, which helps to decide in which direction to 
move in a search space. The direction to move in a search space is decided 
based on cost function value. Steps for hill-climbing algorithm are as 
follows: 

Hill Climbing () 

Step 1 – If existing state is equal to target state, then stop 

Step 2 – If existing state is not the target, keep repeating the process of 
finding and comparing new states until target state is achieved or there is 
no new operator left to apply 
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Step 3- Select new operator and apply on the current state 

Step 4- Keep swapping current state and new state if new state is better 

Step 5- Exit the repetitive process the moment current state becomes the 
optimum state. 

QUESTION BANK 

Q-1. What is a Sample? Why to use Sample? 

A-1. Sample is a subset of large population. It allow researcher to conduct 
their study in a timely manner as its size is small. 

Q-2. What is a Sampling Distribution? 

A-2. It is a probability distribution of a statistic from a large number of 
samples. 

Q-3. Give one example of sampling distribution. 

A-3. Any live example used by researcher for analysis. 

Q-4. Define following terms. 

        Sample, Population, Sampled Population, Element and Frame. 

A-4. A sample is a subset of the population. 

A population is a collection of all the elements of interest. 

The sampled population is the population from which the sample is 
drawn. 

An element is the entity on which data are collected. 

A frame is a list of the elements that the sample will be selected from. 

Q-5. What is re-sampling? 

A-5. We only have a single estimate of the population parameter. To avoid 
this situation, we can use estimating the population parameter 
multiple times from our data sample. This is called re-sampling. 

Q-6. What are TWO commonly used re-sampling methods? 

A-6. (1). Bootstrap 

(2). K – fold Cross Validation 

Q-7. Discuss Statistical Inference. 

A-7. Statistical Inference makes propositions about a population. 
Statistical Inference consists of selecting a statistical model and 
process that generates data and deducing propositions from the 
model. 
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Q-8. Define Prediction error. 

A-8. Prediction error is the failure of some expected event to occur. 

Q-9. What is Regression Analysis? 

A-9. It is a set of statistical processes for estimating relationships between 
a dependent variable and one or more independent variables. 

Q-10. What are the types of Regressions models? 

A-10. Linear 

          Logistics 

          Polynomial 

          Stepwise 

          Ridge  

          Lasso 

 Q-11. Case study I 

A group of estate agents carried out a survey in Mumbai for predicting 
rent and deposit amounts for apartments in different locations. Rent and 
deposit amounts can vary upon variety of factors such as distance from 
railway station, locality of the flat, distance from airport, nearest school 
and mall, amenities and carpet area of the flat. Mr. and Mrs. Y are looking 
for an apartment on rent and approached group of property agents. Their 
criteria for selecting an apartment are proximity from a school (2-4 km), 
distance from nearest railway station (5-10 km), amenities and locality. 
Property agents have short listed 4 properties for them. For finalizing the 
best property for them, create a decision table and tree based on fuzzy 
logic. Refer following values to prepare the table: P1 to P4 are shortlisted 
properties and C1 to C4 are criteria. 
 

Properties 

Criteria 

P1 P2 P3 P4 

School distance C1 3.5 km 2 km 4 km 3 km 

Railway station 
distance C2 

8 km 6.5 km 10 km 5 km 

Amenities C3 √√√ √√ √√ √ 

Locality C4 * *** * ** 
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A-11. Refer the section 6.2, for solving the case. Using a membership 
function (1/5 for school distance criteria, we can plot the graph with the 
gap of 5), write the membership values along with school distance in a 
tabular form. Find out minimum of membership value for each short-listed 
property, after repeating this process for all the criteria. Consider the 
maximum membership value from all membership values for different 
criteria and corresponding property. This property is ideal for Mr. and 
Mrs. Y based on their criteria. Draw a decision tree based on membership 
values for all the criteria. 

Q-12. Case study II 

In class of 40, students are graded as poor, average and extraordinary 
based on their percentages in the examination. Consider the universe with 
percentage values as: 
U={0,10,20,30,40,50,60,70,80,90,100} and students with percentage 
below 40 are considered as poor, above 40 till 70 percent are average and 
above 70 are extraordinary. 

Assume 2 subsets A and B  

A= {33, 56, 87, 96, 25, 66, 79} 

B= {78, 42, 64, 86, 35, 27, 31} 

Assign weights (membership values) to all the values in A and B, design a 
membership function for the same. Draw graphs and find out count of 
core, support and boundary values in subset A and B. 

A-12. Consider the universe U, which has values 0 to 100, where the gap 
is of 10. Hence, membership function can be 1/10. For each member in A 
and B, apply membership function to find out membership values. Then 
plot membership values against original values of each element. 

Q-13 Multiple choice questions 

1. Membership functions are better  represented with the help of  
a. Tabular form  b. Graphical form   
c. Mathematical form d. Logical form 
 
2. Which of the following are fuzzy operators? 
a. AND  b. OR  c. NOT  d. All of the above 
 
3. How best can we define dry in terms of humidity of the weather? 
a. Fuzzy set   c. Crisp set   
b. Fuzzy and Crisp  d. None of the above 
 
4. Values of X mapped to lie between 0 to 1 which is called as 
a. Membership value c. Degree of membership  
b. All of the above  d. None of the above 
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5. Fuzzy systems can be implement with the help of  
a. Hardware   c. Software  
b. Both of the above d. None of the above 
 
6. For a given fuzzy set A, which of the following elements do not 

belong to A? 
  A={(a,0.5) , (b,0.2) , (c,0), (d,1) , (e,0.8), (f,0.3)} 
a. c  b. d c. None of the above d. All of the above 
 
7. _____ is best used to represent fuzzy values in a graph. 
a. Square   c. Hexagon 
b. Triangle   d. All of the above 
 
8. A fuzzy system architecture has ____ main components. 
a. 2 b.4 c.5 d. None of the above 
 
9. Which of the following logic is the form of Fuzzy logic? 
a. Two-valued logic  d. Crisp set logic 
b. Binary set logic  e. Many-valued logic 
c. None of these 

A-13. Answers in Red color above. 

Q-14.What is a membership function used in fuzzy logic? What are 
different techniques for fuzzifying or defuzzifying data? 

A-14. Definition and need for fuzzy logic with example. List down 
techniques for Defuzzification.  

Q-15. Compare Mamdani and Sugeno model with their pros and cons. 

A-15. Explain the concept of Stochastic Search methods. Mamdani and 
Sugeno method, Advantages and disadvantages of each. 

Q-16. Explain the concept of ‘Monotonic function”? Why it is 
alternatively called as shoulder function? 

A-16. In Tsukamoto method, outcome is a polynomial function instead of 
fuzzy value. Monotonic function is one which takes increasing, 
decreasing or constant values. After plotting such successive values, 
we get a graph of following nature, which resembles human 
shoulder. Hence called as shoulder function. 
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Q-17. Explain architecture of Fuzzy system with appropriate diagram. 

A-17. Draw a diagram with 4 important components of Fuzzy System: 
Fuzzifier, Rule Base, Inference System and De-fuzzifier. Explain 
each and list down any 2 techniques, each for Fuzzification and 
Defuzzification. 

Q-18. Compare and contrast Simulated annealing, Genetic algorithm and 
Random walk techniques for stochastic search. 

A-18. Explain SA and GA technique and steps for the same. Write one 
application where it can be used. Write advantages and 
disadvantages of each. 

Q-19.What is Neural Network? 

Q-20.What is generalization in Neural Network? 

Q-21.List out various applications where we can use Neural Network 

Q-22.What is Competitive Learning in Neural Network? 

Q-23.What is need of Principal components analysis in Neural 
Network? 

Q-24. List five characteristic of big data. 

A-24. Volume, variety, veracity, variability and velocity are  
characteristics of big data. 

Q-25. Name few unit of measurement for memory used in today's era of 
big data. 

A-25. Terabytes,  Petabytes,  Zettabytes and Exabytes. 

Q-26. Write various steps to carry out for analysis process in general. 

A-26. The following steps has to carry out analysis process: Data 
collection, Data cleaning, Data  preprocessing,  Data analysis, 
Visualisation and Representation, Understanding results. 

Q-27. Write 2 differences between analysis and reporting process. 

A-27. (1) The goal of the analysis process is inspecting the data and 
transforming into useful meaningful information. Whereas, the goal 
of the reporting process is to transforming the output of process  in 
to presentable format. (2) The main purpose of conducting analysis 
process is examining interpreting comparing and predicting about 
the data. Whereas reporting process is mainly focusing on 
highlighting organizing summarizing and formatting process. 

Q-28. Write difference between structure and unstructured data. 

A-28. Structure data can store with two dimensional structure like 
worksheets. The structure of data is predefined and fixed. Whereas 
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unstructured data do not have fixed data format. It is volatile in 
nature. 

Q-29. Write examples of structure and unstructured data.  

A-29. Structure data - Business data stored in RDBMS system, excel 
worksheet Unstructured data - text data, web data, images.  

Q-30. Write any three reasons behind increasing volume of internet data in 
last few years. 

A-30. The reasons behind increasing volume of internet data are as follow: 

(1) Increase in number of internet users. 

(2) Increasing popularity of social media websites and online shopping 
websites. 

(3) IoT systems usage. 

Q-31. Explain the term 'velocity' with reference to big data. 

A-31. Velocity measures how fast the data is coming in. In some system 
data are come in in real-time, whereas in other systems data are 
come in batches. Depending on the velocity of data, data storage 
system has to manage the flow of the data. 

Q-32. Name any three technology used for Big data analytics. 

A-32. R language, Python language and Hadoop ecosystem are popular 
technology used for big data analytics.  

Q-33. Differentiate between linear and non-linear time series data 

Q-34. Explain various inherent components of time-series data, with 
suitable examples. 

Q-35. Mention and briefly introduce algorithms available for rule 
induction process. 

Q-36. Illustrate the statement “BDS is a litmus test for deciding non-
linearity of time series data”. 

Q-37. Compare and contrast Additive and Multiplicative methods. 

Q-38. Explain steps to carry out Exponential Smoothing of time series 
data. 

Q-39. Discuss pros and cons of ARIMA for the purpose of forecasting of 
time series data. 

Text book: 

 Mining of Massive Datasets, Anand Rajaraman and Jeffrey David 
Ullman, Cambridge University Press, 2012. 
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 Big Data, Big Analytics: Emerging Business Intelligence and 
Analytic Trends for Today's Businesses, Michael Minelli, Wiley, 2013 

References: 

 Big Data for Dummies, J. Hurwitz, et al., Wiley, 2013 

 Understanding Big Data Analytics for Enterprise Class Hadoop and 
Streaming Data, Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, 
Thomas Deutsch, George Lapis, McGraw-Hill, 2012. 

 Big data: The next frontier for innovation, competition, and 
productivity, James Manyika ,Michael Chui, Brad Brown, Jacques 
Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung Byers, 
McKinsey Global Institute May 2011. 

 Big Data Glossary, Pete Warden, O’Reilly, 2011. 

 Big Data Analytics: From Strategic Planning to Enterprise Integration 
with Tools, Techniques, NoSQL, and Graph, David Loshin, Morgan 
Kaufmann Publishers, 2013 
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         2.7.1 Workflow Systems   

         2.7.2 Recursive Extensions to Map Reduce   

         2.7.3 Pregel 

2.8   Common Map Reduce Algorithms 

2.8.1 Sorting 

 2.8.2 Searching 

 2.8.3 Indexing 

 2.8.4 TF-IDF 

2.9 Summary 

2.10 List of References and Bibliography 

2.11 Unit End Exercise 

2.0 OBJECTIVES 

This chapter will make you to understand the following concepts: 

● The requirement of the big data handling tool. 
● The structure and working of the Distributed File System. 
● Physical Organization of Compute Nodes 
● Large-Scale File System Organization 
● The importance of Apache Hadoop, MapReduce and parallel processing 

for mining large-scale data. 
● The MapReduce Framework and its steps of execution. 
● The features and working flow of the MapReduce system. 
● The MapReduce execution of Matrix Multiplication algorithm and 

relational algebra operations. 
● The input and output file format of MapReduce phases. 
● The generalized form of MapReduce, a workflow system. 
● The recursive extension of MapReduce and handling faults during 

execution of MapReduce. 
● Designing the MapReduce algorithm for small tasks and large data. 

2.1 INTRODUCTION  

In modern applications the quick data insights or analysis require us to manage 
the immense amount of data quickly. In most of these applications, the data is 
extremely regular, and there is ample opportunity to exploit parallelism. Some of 
the Important examples are: 

1. Importance wise ranking of Web pages, involves an iterated matrix-vector 
multiplication where the dimension is in the tens of billions. 

2. At social networking sites, searches in “friends” networks involve graphs 
with hundreds of millions of nodes and many billions of edges. 
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In these applications, a new software stack has developed. These applications are 
using the new form of file system, which features much larger units than the disk 
blocks in a conventional operating system. This file system also provides the 
facility of replication of data to protect against the frequent media failures that 
occur when data is distributed over thousands of disks. 

Now a day many of the higher-level programming languages support these file 
systems. The central component of these programming languages is MapReduce. 
The MapReduce implementation helps us to perform most common calculations 
on large-scale data on large collections of computers efficiently, that is tolerant 
of hardware failures during the computation. 

Map-reduce systems are evolving and extending rapidly. In this chapter we will 
discuss the distributed file systems, MapReduce, generalizations of map-reduce, 
first to acyclic workflows and then to recursive algorithms. We will discuss some 
common algorithms of MapReduce as well. 

2.2 DISTRIBUTED FILE SYSTEMS 

Most computations are performed on a single processor that uses its own main 
memory, cache and local disk (a computing node).In such systems the files are 
managed by a file management system. The file management system is capable 
of handling the files that are stored on a single computer or cluster. In the past 
parallel processing applications, the parallel processing was done on special 
purpose computers with multiple processors and specialized hardware. The ever-
increasing web services have created the demand to do huge computing 
independently and instantly on a large extensible cluster. As compared to the 
special-purpose parallel computers the Commodity hardware is cheap in cost.  

The availability of cheap and faster hardware gives rise to a new generation of 
programming systems with the feature of parallelism. These systems take 
advantage of the power of parallelism and at the same time avoid the reliability 
problems that arise when the computing hardware consists of thousands of 
independent components, any of which could fail at any time. 

In this chapter, we will discuss the characteristics of the computing installations 
and the specialized file systems that have been developed to take advantage of 
them. 

2.2.1 Physical Organisation of Compute Nodes 

The parallel-computing architecture or cluster computing comprises the 
computing nodes that are organised into the number of racks. The rack may 
contain 8 to 64 computing nodes that are connected by a network like gigabit 
ethernet.  The racks are connected with each other through a switch or another 
level of network. In order to communicate with the nodes in other rack, the 
bandwidth of inter-rack communication should be greater than the bandwidth of 
intra-rack ethernet. Figure 2.1 shows the architecture of a large-scale computing 
system with multiple racks, each with multiple nodes.In this network, the 
principal modes are loss of a single node or loss of an entire rack. If any of the 
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nodes failed due to some reason, then the network will not be able to provide the 
data of this node or perform computations on this node. Or if any connection to a 
rack fails, then the network connecting its nodes to each other and the outside 
world fails. 

 

Figure 2.1: Computing nodes are organized into racks and racks are 
interconnected by a switch. The large computations may take minutes or even 
hours. During computation, if any one component failed, the abort or restart of 
computation may lead to failure.  

To overcome this problem,  

1. Files must be stored redundantly onto multiple nodes. 
2. Computations must be divided into tasks and allocated to the multiple 

nodes. 

2.2.2 Large-Scale File System Organization 

To store the enormous file on multiple computers you need to use the distributed 
file system. The distributed File Systems (DFS) can handle the data stored across 
multiple clusters or nodes. The files that are stored on a distributed file system 
are rarely updated. The file is stored on multiple nodes by dividing it into a 
number of chunks.  

For example, to store the file of 30 TB in a distributed file system with multiple 
nodes in a cluster (each of capacity 10 TB), needs to be divided into the blocks or 
chunks. The size of the chuck is defined by the user like 64 megabytes, 128 
megabytes and so on.  

The Fault tolerance is achieved by replicating the chunks three times, at three 
different compute nodes of different racks. This also helps us to get the copy of 
the chunk in case of rack failure. Usually, both the chunk size and the degree of 
replication can be decided by the user.  

The metadata of the chunks of a file is stored on a name node which acts as a 
master node. The master node is itself replicated, and a directory for the file 
system as a whole knows where to find its copies. The directory itself can be 
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replicated, and all participants using the DFS know where the directory copies 
are. 

DFS Implementations  

There are several distributed file systems of the type. Some of these systems that 
are used in practice are:  

1. The Google File System (GFS), the original of the class.  
2. Hadoop Distributed File System (HDFS), an open-source DFS used with 

Hadoop, an implementation of map-reduce and distributed by the Apache 
Software Foundation.  

3. Cloud Store, an open-source DFS originally developed by Kosmix. 

2.3 APACHE HADOOP 

Apache Hadoop is a collection of open-source utilities that allows us to use a 
network of many computers to solve problems involving massive amounts of 
Data and computation. Hadoop provides the software framework for distributed 
data storage and MapReduce programming model for processing big data. 
Hadoop is designed to scale up from a single server to a cluster of thousands of 
machines. Each of these machines in the cluster offers the local computation and 
storage.  

Apache Hadoop was originally designed for computer clusters that are built from 
commodity hardware or even high-end hardware. The Hadoop framework 
distributes an analytical computation of massive data on many machines, each of 
which simultaneously operates on their own individual chunk of data.  

For distributed computing, the distributed systems shall meet the following 
requirements - 

1. Fault Tolerance: If any of the components fails, the entire system should not 
get fail. The system should gracefully degrade into a lower performing state. 
If a failed component recovers, it should be able to rejoin the system. 

2. Recoverability: In case of failure, no data should be lost. 
3. Consistency: The final result should not get affected due to failure of any 

component. 
4. Scalability: Adding more data and more computation leads to a decline in 

performance but not fail; increasing resources should result in a proportional 
increase in capacity. 

Hadoop addresses these requirements through the abstract concepts, as defined in 
the following list:  

1. Data is distributed immediately when added to the cluster and stored on 
multiple nodes. Nodes prefer to process data that is stored locally in order to 
minimize traffic across the network.  

2. Data is stored in blocks of a fixed size (usually 128 MB) and each block is 
duplicated multiple times across the system to provide redundancy and data 
safety. 

3. A computation is usually referred to as a job; jobs are broken into tasks 
where each individual node performs the task on a single block of data.  
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4. Jobs are written at a high level without concern for network programming, 
time, or low-level infrastructure, allowing developers to focus on the data 
and computation rather than distributed programming details.  

5. The amount of network traffic between nodes should be minimized 
transparently by the system. Each task should be independent and nodes 
should not have to communicate with each other during processing to ensure 
that there are no inter-process dependencies that could lead to deadlock.  

6. Jobs are fault tolerant usually through task redundancy, such that if a single 
node or task fails, the final computation is not incorrect or incomplete.  

7. Master programs allocate work to worker nodes such that many worker 
nodes can operate in parallel, each on their own portion of the larger dataset. 

These basic concepts, while implemented slightly differ to various Hadoop 
systems, drive the core architecture and together ensure that the requirements for 
fault tolerance, recoverability, consistency, and scalability are met. These 
requirements also ensure that Hadoop is a data management system that behaves 
as expected for analytical data processing, which has traditionally been 
performed in relational databases or scientific data warehouses.  

2.3.1 Elements of Hadoop Ecosystem 

The Hadoop ecosystem is a platform that provides various services to solve the 
big data problems. This includes various Apache products, commercial tools and 
solutions. The four major elements of Hadoop Ecosystem are Hadoop Distributed 
File System (HDFS), MapReduce, YARN and Hadoop Common. Hadoop 
Ecosystem provides the tools that are used to perform tasks like load, analyse, 
and maintain data. Some of the components/tools of Hadoop Ecosystem are as 
follows:  

1. Hadoop Distributed File System (HDFS) 

2. Yet Another Resource Negotiator (YARN) 

3. MapReduce - Programming based Data Processing 

4. Spark for In-Memory data processing 

5. PIG and HIVE - Query based processing of data services 

6. HBase - NoSQL Database 

7. Mahout and Spark MLLib - Machine Learning algorithm libraries 

8. Solar and Lucene - Searching and Indexing 

9. Zookeeper - Managing Cluster 

10. Oozie - Job Scheduling 

2.4 MAPREDUCE 

Hadoop MapReduce is a Software framework. MapReduce is also referred to as a 
programming model that performs parallel and distributed processing on massive 
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datasets. The implementations of MapReduce can be used to manage large-scale 
computations in a way that is tolerant of hardware faults. 

MapReduce is the processing component of Hadoop and is used to write the 
applications that process huge] amounts of data in parallel on large Hadoop 
clusters of commodity hardware. These clusters are scalable, reliable and fault 
tolerant.  

The term ‘MapReduce’ specifies the two distinct tasks that are to be performed 
by Hadoop programs:  

1. Map task which accepts the data and converts it into another set of data. Here 
each individual element of the data is split into Key-value pairs. 

2. Reduce Task that takes the output of Map Task as input and combines them 
into a smaller set of tuples.  So, the reducer task takes place after the 
completion of the map task.  

In brief, a map-reduce computation executes as follows: 

1. The Map tasks with given one or more chunks from a distributed file 
system turns the chunk into a sequence of key-value pairs. The way key-
value pairs are produced from the input data is determined by the code 
written by the user for the Map function. 

2. The key-value pairs from each Map task are collected by a master 
controller and sorted by key. The keys are divided among all the Reduce 
tasks, so all key-value pairs with the same key wind up at the same Reduce 
task. 

3. The Reduce tasks work on one key at a time, and combine all the values 
associated with that key in some way. The manner of combination of 
values is determined by the code written by the user for the Reduce 
function. 

 

The figure 2.2 shows the schematic of a MapReduce computation. 

 

Figure 2.2: Schematic of a MapReduce Computation  
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The MapReduce programming is useful to gain valuable insights from the data. 
The advantages of MapReduce programming are as follows: 

1. Simple: Developers can write code using any of the languages including Java, 
C++ and Python. 

2. Scalability: Businesses can process petabytes of data stored in the Hadoop 
Distributed File System (HDFS). 

3. Flexibility: Hadoop enables easier access to multiple sources of data and 
multiple types of data. 

4. Speed: Due to parallel processing and minimal data movement, Hadoop offers 
fast processing of massive amounts of data. 

The MapReduce programming model is developed using Java with three classes:  

1. Mapper class: The Mapper class performs the Map task of splitting data and 
converting it into key-value pairs.  The mapper class stores these resultant 
key-value pairs in HDFS. 

2. Reducer class: The Reducer class reads the output of the mapper class from 
HDFS, processes it and generates the final output in the form of Key-value 
pairs. The reducer stores this output of the Reduce task in HDFS. 

3. Driver class: The Driver class sets up the MapReduce job to run in Hadoop.  

With the help of Mapper class and Reducer class, MapReduce processes the 
given input data and generates the output in form of key-value pairs. During this 
process the data undergoes the various MapReduce steps.  

2.5 STEPS OF MAP REDUCE 

The MapReduce programming model follows the following steps for solving the 
problem. 

1. The Map Task 
2. Grouping by Keys 
3. Reduce Task 
4. Combiner 

2.5.1 The Map Task 

The mapper accepts the user input file with the elements of any type like tuples 
or a document. The mapper will split the input into the number of chunks and 
distribute it over the network of map nodes. Here, a chunk is a collection of data 
elements and no element is stored across the two chunks. Each map node will 
process the data and will return the list of key-value pairs.  

Technically, all inputs from Map tasks and outputs of Reduce tasks are of the 
key-value-pair form, but normally the keys of input elements are not relevant and 
we shall tend to ignore them. Insisting on this form for inputs and outputs is 
motivated by the desire to allow composition of several map-reduce processes. 

A Map function is written to convert input elements to key-value pairs. The types 
of keys and values are each arbitrary. Here, the keys are not “keys” in the usual 
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sense; they do not have to be unique. Rather a Map task can produce several key-
value pairs with the same key, even from the same element. 

Example 2.1: Let us discuss a map-reduce computation with the standard Word 
count example application: counting the number of occurrences for each word in 
a collection of documents.  

Here, in this example the input file is a repository of documents, and each 
document is an element. Here the Map function defines the key value pair with 
the document words as keys and the number of occurrences of words as integer 
values. The Map task reads a document and splits it into its sequence of words 
w1, w2, . . .,wn. After processing the Map task emits a sequence of key-value pairs 
where the value is always 1. That is, the output of the Map task for this document 
is the sequence of key-value pairs: 

(w1,1), (w2,1),. . ., (wn,1) 

A single Map task will typically process many documents where each of these 
documents is in one or more chunks. In such cases the output will be more than 
the sequence for the one document suggested above. If a word w appears m times 
among all the documents assigned to that process, then there will be m key-value 
pairs (w, 1) among its output.  

2.5.2 Grouping by Keys 

Grouping and aggregation task is performed independently by the master 
controller process. It is not related to Map and Reduce tasks. The master 
controller process knows how many Reduce tasks r, that are given by the user to 
the map-reduce system.  

The master controller uses a hash function to group the keys. To do so it 
produces a bucket number from 0 to r-1. So, each key that is emitted by a Map 
task is hashed and its key-value pair is put in one of r local files. Each file is 
intended for one of the Reduce tasks. 

After completing all the Map tasks successfully, the master controller merges the 
file from each Map task that are intended for a particular Reduce task and feeds 
the merged file to that process as a sequence of key-list-of-value pairs. For each 
key k, the input to the Reduce task that handles key k is a pair of the form (k, [v1, 
v2, . . .,vn]), where (k, v1), (k, v2), . . ., (k, vn) are all the key-value pairs with key 
k coming from all the Map tasks. 

2.5.3 The Reduce Task 

The Reduce function readsthe output of the Mapper function, which is in the key-
value pairs and combines the values in some way. After reading these key-value 
pairs, the reducer function combines the list of values for each key. Once 
combined, the reducer function merges the output of all reduce tasks into a single 
file. 
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Example 2.2: In continuation to Example 2.1 of word-count. The Reduce 
function sums all the values and returns a sequence of (w, m) pairs, where w is a 
key or word that appears at least once in the input documents and m is the total 
number of occurrences of word w among all those documents. 

2.5.4 Combiners  

Usually, the Reduce function is associative and commutative, which helps to 
combine the values in any order, with the same result. In Example 2.2, the 
addition performed is an example of an associative and commutative operation. 
While grouping the values, the order of numbers in the list of values v1, v2, . . ., vn 
does not affect the sum value. 

Since the Reduce function is associative and commutative, it is possible to push 
some tasks of Reduce to the Map tasks. For example, in Example 2.1, instead of 
producing many pairs (w, 1), (w, 1), . . ., in map task, we could apply the Reduce 
function within the Map task before sending output of map task for grouping and 
aggregation. So, this list of key-value pairs would thus be replaced by one pair 
with key w and value equal to the sum of all the 1’s in all those pairs. That 
means, the pairs with key w generated by a single Map task would be combined 
into a pair (w, m), where m is the number of times that w appears among the 
documents handled by this Map task. Though the reduced task is applied in map 
tasks, there is still a need for grouping and aggregation operations for grouping 
the key-value pairs that are coming from map tasks of different map nodes.  

2.5.5 Details of MapReduce Execution  

While executing the MapReduce tasks, the various processes, tasks and files 
interact with each other as shown in Figure 2.3. With the help of Hadoop, a 
library provided by a MapReduce system, the user program forks a Master 
Controller process and some number of Worker processes at different compute 
nodes. Here each of the worker nodes can act as a Map worker or a Reduce 
worker but not both. The Map worker handles the Map task whereas the Reduce 
worker handles the Reduce task.  

The Master creates some number of Map tasks and some number of Reduce tasks 
where this number is being selected by the user program. After creation, the 
Master assigns these tasks to worker processes. Depending on the size of the 
input file and the size of the chunk defined by the user, the Master creates one 
Map task for every chunk. For each Reduce task, the Map task needs to create an 
intermediate file. So, the number of reduced tasks should be less than the Map 
tasks, otherwise the number of intermediate files explodes. 
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Figure 2.3: Overview of the execution of a MapReduce program 

All the Map and Reduce nodes status is maintained and controlled by the Master 
node. The Master node keeps track of the execution process of the Map and 
Reduce nodes. If any of the Map or Reduce nodes finish the execution, the 
Master allocates the other task to this node. If any task execution fails at a 
particular node, the Master node reallocates that task to another node.   

Every Map task is assigned one or more chunks of the input files. The Map node 
executes the mapper code, written by the user on these chunks. The Map tasks 
creates an output file for each reduce task and stores it on the local disk of Map 
node and sends information about size and location of this file to Master node.   

The Master node assigns the Reduce task to worker nodes and provides the 
output files of Map tasks as an input.  The reduce task executes code written by 
the user and sends output to the file that is stored in a distributed file system. 

2.5.6 Coping with Node Failures 

The Mater node is controlling the failure of the Map nodes and the Reduce 
nodes. But what if the Master node fails? The one node can bring the entire 
process down. In this case the entire MapReduce job needs to be restarted and 
completed eventually. 

The Master node periodically pings the worker nodes, and hence the worker 
processes. In case of the failure of the worker node, the master node reallocates 
the complete process of this node to another node, since the output of this process 
needs to be assigned to the Reduce task. The Master must also inform each 
Reduce task that the location of its input from that Map task has changed.  
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Managing the failure of a Reduce worker is simpler. The Master simply sets the 
status of its currently executing Reduce tasks to idle. These will be rescheduled 
on another reduce worker later.    

Example 2.3:Let us understand the steps of MapReduce with a word count 
example. The Word count example reads a text file and counts the total number 
of occurrences of each word.  

Let us consider the text file sample.txt with the following text.  

Bus. Car, Train, Ship, Ship, Train, Bus, Ship, Car 

Figure 2.4 shows the steps of MapReduce tasks for the Wordcount example. 

 

Figure 2.4: MapReduce steps of Wordcount example 

The Map Task 

For the above Example 2.3 mapper call read the input text file ‘Sample.txt’ and 
split it into the 3 chunks, (Bus. Car, Train), (Ship, Ship, Train), and (Bus, Ship, 
Car). After splitting the mapper assigns each of these chunks to the map nodes. 
Each map node then splits the chunk text into words and converts it into the key 
value pair, by adding a frequency of occurrence as 1. Here the key is the word 
and the value is the frequency of occurrence of that word. 

Map Node 1: (Bus.1), (Car,1), (Train,1),  

Map Node 2: (Ship,1), (Ship,1), (Train,1), and  

Map Node 3: (Bus,1), (Ship,1), (Car,1) 

Grouping by Key 

In Example 2.3 after completing a mapper phase, the reducer will read the output 
of mapper, and partition it with the help of sorting and shuffling process for each 
of the keys in the data set. The partition process sent the tuples with the same key 
to a respective reducer. The sort and shuffle acts on these lists of <key, value> 
pairs and sends out unique keys and a list of values associated with this unique 
key <key, list(values)>. 

Reducer Node 1: (Bus,1,1) 

Reducer Node 2: (Car,1,1) 
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Reducer Node 3: (Ship,1,1,1) 

Reducer Node 4: (Train,1,1) 

The Reduce Task 

In Example 2.3 the reducer will aggregate the values of intermediate tuples that 
are generated in sorting and shuffling step and will generate the list of unique 
key-value pairs with the total number of key occurrences by summing the list of 
values.  

Reducer Node 1: (Bus,2) 

Reducer Node 2: (Car,2) 

Reducer Node 3: (Ship,3) 

Reducer Node 4: (Train,2) 

Combiner 

In Example 2.3, the combiner will read the key-value pairs that are generated by 
reducer and combine it into a single set of key-value pairs and write it into the 
output file.  

Final Output: 

 (Bus,2) 

 (Car,2) 

 (Ship,3) 

 (Train,2) 

2.6 ALGORITHMS USING MAPREDUCE 

MapReduce is growing rapidly and helps in parallel computing tasks like 
determining the price for products, yielding the highest profits, predicting and 
recommending analysis and so on. It allows programmers to run models over 
different data sets and uses advanced statistical techniques and machine learning 
techniques that help in predicting data. 

MapReduce algorithms are not used for smaller tasks. Even every problem needs 
not to use the Distributed File Systems for storing data. For example, we would 
not expect to use either a DFS or an implementation of MapReduce for managing 
online retail sales, even though a large on-line retailer such as Amazon.com uses 
thousands of compute nodes when processing requests over the Web. The reason 
is that the principal operations on Amazon data involve responding to searches 
for products, recording sales, and so on. MapReduce algorithms are not advised 
to use for the processes that involve relatively little calculation and that need to 
update the database. 
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On the other hand, the MapReduce algorithms are used for large computations or 
processes. For example, Amazon uses MapReduce to perform analytic queries on 
large amounts of data, such as finding the customers pattern, who are buying the 
particular product. 

MapReduce algorithm can be used with a variety of applications. It can be used 
for distributed pattern-based searching, distributed sorting, web link graph 
reversal, web access log stats. It can also help in creating and working on 
multiple clusters, desktop grids, volunteer computing environments. One can also 
create dynamic cloud environments, mobile environments and also high-
performance computing environments.  

Google made use of MapReduce which regenerates Google Index of the World 
Wide Web. The original purpose for which the Google implementation of 
MapReduce was created is to execute very large matrix-vector multiplications as 
are needed in the calculation of Page Rank. Another important class of operations 
that can use MapReduce effectively are relational-algebra operations.  

2.6.1Matrix-Vector Multiplication by MapReduce 

Let us consider matrix M of size n × n. The location of the element of matrix M 
is referred to by row i and column jand will be denoted by mij. Let us have a 
vector v of length n, whose jth element is vj. The product of vector v and matrix M 
is the vector x of length n, whose ith element xi is given by  

 

If the value of n is small, say 100, we do not want to use a DFS or MapReduce 
for this calculation. On the other hand, this method can be used when n is large. 
For example, in search engines for the ranking of Web pages, n is in the tens of 
billions. 

When n is large, it should not be so large that vector v cannot fit in main memory 
and be part of the input to every Map task. It is observed that there is nothing in 
the definition of map-reduce that for bids providing the same input to more than 
one Map task. 

Both the matrix M and the vector v each will be stored in a file of the Distributed 
File System. The elements of the Matrix are stored in rows and columns. The 
element mij, that is stored at the row i and column j, can be referred to by a 
triple(i, j, mij). In the same way the position of jthelement in the vector v is 
referred to by vj.  

The Map Function: Each Map task will take the entire vector v and a chunk of 
the matrix M. From each matrix element mij it produces the key-value pair (i, 
mijvj). Thus, all terms of the sum that make up the component xi of the matrix-
vector product will get the same key. 
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The Reduce Function: The Reduce task simply sums all the values associated 
with a given key i. The result will be a pair (i, xi).  

2.6.2 If the Vector v Cannot Fit in Main Memory 

If the vector v is so large that it will not fit in main memory, then to perform the 
Matrix-Vector multiplication operation, we need to divide the vector into 
horizontal stripes of equal height. But in that case, we also need to divide the 
matrix into the vertical stripes of equal width. Here we need to use enough stripes 
so that the portion of the vector in one stripe can fit conveniently into the main 
memory at a compute node. Figure 2.5shows the matrix and vector, which are 
divided into five stripes. 

 

Figure 2.5: Division of matrix and vector into five stripes 

The ith stripe of the matrix multiplies only components from the ith stripe of the 
vector. We can store each stripe of matrix and vector into individual files. Each 
Map task is assigned a chunk from one of the stripes of the matrix and gets the 
entire corresponding stripe of the vector. The Map and Reduce tasks can then act 
exactly as was described above for the case where Map tasks get the entire 
vector. 

2.6.3 Relational Algebra Operations 

In database queries, the number of operations needs to be performed on large-
scale data. In many traditional database applications, the database is large but 
some of the queries need to retrieve a small amount of data. For example, in bank 
applications, the database is too large but the query for getting the balance of an 
account is too small. In all such applications, we need not to use MapReduce 
algorithms. 

In fact, there are many operations on data that can be described easily in terms of 
the common database-query primitives, even if the queries themselves are not 
executed within a database management system. Thus, a good starting point for 
exploring applications of MapReduce is by considering the standard operations 
on relations. 

In relational model, a relation is a table with column headers called attributes. 
Rows of the relation are called tuples. The set of attributes of a relation is called 
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its schema. We often write an expression for a Relation R like R(A1, A2, . . . , 
An)where A1,A2, . . . , An.are the attributes of it. 

Example 2.4: The Figure 2.6shows the part of the relation Links that describes 
the structure of the Web. The relation has two attributes, From and To. In this 
relation, a row, or tuple is a pair of URLs, such that there is at least one link from 
the first URL to the second. For example, the first row of Figure 2.6 is the pair 
(url1, url2) that says the Web page url1 has a link to page url2. Figure 2.6 shows 
only four tuples. But the typical search engine stores the billions of tuples that 
define the relation of url1 to url2. Such large files of rations are stored on DFS.  

 

Figure 2.6: Relation Links consists of the set of pairs of URLs, such that the first 
has one or more links to the second 

The relation algebra specifies several standard operations on relations that are 
used to implement queries. The queries are usually written in SQL. Some of the 
relational-algebra operations are: 

1. Selection: Applying a condition C to each tuple in the relation and producing 
as output only those tuples that satisfy C. The result of the selection is 
denoted σC(R). 
 

2. Projection: For subset S of the attributes of the relation, produce from each 
tuple only the components for the attributes in S. The result of the projection 
is denoted πS(R). 

 
3. Union, Intersection, and Difference: These set operations apply to the sets 

of tuples in two relations that have the same schema.  
 

4. Natural Join: Given two relations, compare each pair of tuples, one from 
each relation. If the tuples agree on all the attributes that are common to the 
two schemas, then produce a tuple that has components for each of the 
attributes in either schema and agrees with the two tuples on each attribute. If 
the tuples disagree on one or more shared attributes, then produce nothing 
from this pair of tuples. The natural join of relations R and S is denoted R ⊳⊲ 
S. While we shall discuss executing only the natural join with map-reduce, 
all equijoins can be executed in the same manner.  

 
5. Grouping and Aggregation: For a given relation R, partition its tuples 

according to their values in one set of attributes G, called the grouping 
attributes. Then, for each group, aggregate the values in certain other 
attributes.  
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The common aggregations are SUM, COUNT, AVG, MIN, and MAX. Here the 
MIN and MAX require the aggregated attributes of number or string type. The 
SUM and AVG require the numeric type attribute to perform arithmetic. The 
grouping-and-aggregation operation on a relation R is denoted by γX(R), where X 
is a list of elements that are either 
a) A grouping attribute, or  
b) An expression θ(A), where θ is one of the five aggregation operations such 

as SUM, and A is an attribute not among the grouping attributes. 

The result of this operation is one tuple for each group. That tuple has a 
component for each of the grouping attributes, with the value common to tuples 
of that group, and a component for each aggregation, with the aggregated value 
for that group.  

Example 2.5: For the relation in Figure 2.6, let us try to find the paths of length 
two in the Web. That is, we want to find the triples of URLs (u, v, w) such that 
there is a link from u to v and a link from v to w.  

We need to take the natural join of Links with itself, but we first need to imagine 
that it is two relations, with different schemas, so we can describe the desired 
connection as a natural join. Thus, imagine that there are two copies of Links, 
namely L1(U1, U2) and L2(U2, U3). Now, if we compute L1⊳⊲L2, we shall 
have exactly what we want. That is, for each tuple t1 of L1 (i.e., each tuple of 
Links) and each tuple t2 of L2 (another tuple of Links, possibly even the same 
tuple), see if their U2 components are the same. Note that these components are 
the second component of t1 and the first component of t2. If these two 
components agree, then produce a tuple for the result, with schema (U1, U2, U3). 
This tuple consists of the first component of t1, the second component of t1 
(which must equal the first component of t2), and the second component of t2. 

We may not want the entire path of length two, but only want the pairs (u, w) of 
URLs such that there is at least one path from u to w of length two. If so, we can 
project out the middle components by computing πU1,U3(L1 ⊳⊲ L2). 

2.6.4 Computing Selections by MapReduce 

The Selection operations does not require the full power of map-reduce. They 
can be done most conveniently either by using Map portion or the Reduce 
portion. A map-reduce implementation of selection is denoted by σC (R). 

The Map Function: For each tuple t in R, test if it satisfies C. If so, produce the 
key-value pair (t, t). That is, both the key and value are t. 

The Reduce Function: The Reduce function is the identity. It simply passes 
each key-value pair to the output. 

Here, the output is not exactly a relation, since it has key-value pairs. However, a 
relation can be obtained by using only the value components (or only the key 
components) of the output. 
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2.6.5 Computing Projections by MapReduce 

Projection is performed similarly to selection, because projection may cause the 
same tuple to appear several times, the Reduce function must eliminate 
duplicates. We may compute πS (R) as follows. 

The Map Function: For each tuple t in R, construct a tuple t′ by eliminating 
from t those components whose attributes are not in S. Output the key-value pair 
(t′, t′). 

The Reduce Function: For each key t′ produced by any of the Map tasks, there 
will be one or more key-value pairs (t′, t′). The Reduce function turns (t′, [t′, t′, . . 
., t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for this key t′. 

The Reduce operation is duplicate elimination. This operation is associative and 
commutative, so a combiner associated with each Map task can eliminate 
whatever duplicates are produced locally. However, the Reduce tasks are still 
needed to eliminate two identical tuples coming from different Map tasks. 

2.6.6 Union, Intersection and Difference by MapReduce 

Union 

Let us consider the union of two relations. Suppose relations R and S have the 
same schema. Map tasks will be assigned chunks from either R or S; it doesn’t 
matter which. The Map tasks don’t really do anything except pass their input 
tuples as key-value pairs to the Reduce tasks. The latter need only eliminate 
duplicates as for projection. 

The Map Function: Turn each input tuple t into a key-value pair (t, t). 

The Reduce Function: Associated with each key t there will be either one or 
two values. Produce output (t, t) in either case. 

Intersection 

To compute the intersection, we can use the same Map function. However, the 
Reduce function must produce a tuple only if both relations have the tuple. If the 
key t has two values [t, t] associated with it, then the Reduce task for t should 
produce (t, t). However, if the value associated with key t is just [t], then one of 
R and S is missing t, so we don’t want to produce a tuple for the intersection. We 
need to produce a value that indicates “no tuple,” such as the SQL value NULL. 
When the result relation is constructed from the output, such a tuple will be 
ignored. 

The Map Function: Turn each tuple t into a key-value pair (t, t). 

The Reduce Function: If key t has value list [t, t], then produce (t, t). Otherwise, 
produce (t, NULL). 
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Difference 

The Difference R−S requires a bit more thought. The only way a tuple t can 
appear in the output is if it is in R but not in S. The Map function can pass tuples 
from R and S through, but must inform the Reduce function whether the tuple 
came from R or S. We shall thus use the relation as the value associated with the 
key t. Here is a specification for the two functions. 

The Map Function: For a tuple t in R, produce key-value pair (t, R), and for a 
tuple t in S, produce key-value pair (t, S). Note that the intent is that the value is 
the name of R or S, not the entire relation. 

The Reduce Function: For each key t, do the following. 

1. If the associated value list is [R], then produce (t, t). 
2. If the associated value list is anything else, which could only be [R, S], [S, 

R], or [S], produce (t, NULL). 

2.6.7 Computing Natural Join by MapReduce 

The idea behind implementing natural join via map-reduce can be seen if we look 
at the specific case of joining R(A, B) with S(B, C). We must find tuples that 
agree on their B components, that is the second component from tuples of R and 
the first component of tuples of S. We shall use the B-value of tuples from either 
relation as the key. The value will be the other component and the name of the 
relation, so the Reduce function can know where each tuple came from. 

The Map Function: For each tuple (a, b) of R, produce the key-value pair (b,(R, 
a)). For each tuple (b, c) of S, produce the key-value pair (b,(S, c)). 

The Reduce Function: Each key value b will be associated with a list of pairs 
that are either of the form (R, a) or (S, c). Construct all pairs consisting of one 
with first component R and the other with first component S, say (R, a) and (S, 
c). The output for key b is (b, [(a1, b, c1), (a2, b, c2), . . .]), that is, b associated 
with the list of tuples that can be formed from an R-tuple and an S-tuple with a 
common b value. 

2.7 EXTENSIONS TO MAPREDUCE 

The MapReduce method of computation gave rise to many systems with some 
extensions and modifications. Some of the common characteristics of these 
systems and MapReduce systems are as follows:  

1. Both the extended systems and the MapReduce are built on a distributed file 
system.  

2. Both of them manage large numbers of tasks, which are nothing but the 
instantiations of a small number of user-written functions.  

3. Both of these provide the feature of fault tolerance, that handles the 
execution of a large job, without having to restart that job from the 
beginning. 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

74 

In this topic, we will discuss “workflow” systems, that are nothing but the 
extension of MapReduce. The workflow system supports acyclic networks of 
functions, where each function is implemented by a collection of tasks. The 
Systems like UC Berkeley’s Spark, Google’s Tens or Flow have been 
implemented using the workflow system. The latest machine learning 
applications have workflow systems at heart.  

2.7.1 Workflow Systems  

The experimental system, Clustera from the University of Wisconsin and 
Hyracks from the University of California at Irvine has extended the map-reduce 
from the simple two-step workflow (the Map function feeds the Reduce function) 
to any collection of functions, with an acyclic graph representing workflow 
among the functions. The MapReduce is a two-step workflow in which the Map 
function feeds the Reduce function. Workflow systems extend MapReduce to 
any collection of functions, with an acyclic graph representing workflow among 
the functions. In Workflow systems, the workflow is represented with an acyclic 
flow graph, whose arcs a → b represents the fact that function a’s output is an 
input to function b. 

In the workflow system the data file containing the elements of one type is 
passed from one function to the next function. In case of single input, the 
function is applied to each input independently, same as that of the Map and 
Reduce functions are applied to their input elements individually. Each of these 
functions spits the output in the form of a file, that is generated after processing 
the input file. When a function has inputs from multiple files, elements from each 
of the files can be combined in various ways. But the function itself is applied to 
combinations of input elements, at most one from each input file.  

 

Figure 2.7: An example of a workflow that is more complex than Map feeding 
Reduce 

Example2.6: The Figure 2.7 shows a workflow with five functions, f through j. 
Here the data is passed from left to right in such a way that the flow of data is 
acyclic and no tasks need to provide data out before getting its entire input. For 
example, the function h takes its input from a pre-existing file of the distributed 
file system. Then each output element of h is passed to the functions i and j. The 
function i takes the outputs of both f and h as inputs. The output of function j is 
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either passed to an application that invoked this dataflow or is stored in the 
distributed file. 

The workflow systems are analogous to the MapReduce functions. So, in a 
workflow system each function of a workflow can be executed by many tasks 
where each of these functions is assigned a portion of the input. A master 
controller divides the work among the tasks that implement a function by hashing 
the input elements to decide on the proper task to receive an element. Same as 
that of the Map tasks, the workflow task that is implementing the function f has 
an output file of data, which is passed to each task implementing the successor 
function(s) f. After completing the task execution, the controller delivers these 
output files to the DFS. 

Similar to MapReduce tasks, the workflow tasks follow the blocking property, in 
which they only deliver output after they complete. In case of task failure, it has 
not delivered output to any of its successors in the flow graph. To recover this 
failed task, a master controller restarts this task at another compute node, without 
worrying that the output of the restarted task will duplicate output that previously 
was passed to some other task 

Some workflow systems applications effectively cascade the MapReduce jobs. 
For example, in the join of three relations, one MapReduce job joins the first two 
relations, and a second MapReduce job joins the third relation with the result of 
joining the first two relations.  

The advantage of implementing cascades as a single workflow is that the master 
controller manages the flow of data among tasks, and its replication without 
storing the temporary file in the distributed file system whereas the MapReduce 
jobs stores output file in the distributed systems. By locating tasks at compute 
nodes that have a copy of their input, we can avoid much of the communication 
that would be necessary if we stored the result of one MapReduce job and then 
initiated a second MapReduce job. The Hadoop and other MapReduce systems 
also try to locate Map tasks where a copy of their input is already present. 

The other popular extensions of MapReduce are Spark and Google’s Tens or 
Flow, which has a workflow system at heart.  

Spark 

Spark uses a workflow system and provides the following advanced features: 

1. A more efficient way to cope up with the failures.  
 

2. A more efficient way of grouping tasks among compute nodes and 
scheduling execution of functions.  

 
3. Integration of programming language features such as looping (which 

technically takes it out of the acyclic workflow class of systems) and 
function libraries. 
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Spark uses the central data abstraction, called the Resilient Distributed Dataset 
(RDD). RDD is a file of objects of one type. One of the examples of an RDD is 
the files of key-value pairs that are used in MapReduce systems or the files that 
get passed among functions of the workflow system as shown in Figure 2.7. The 
RDDs are normally broken into chunks that may be held at different compute 
nodes. The RDDs are “resilient” and are able to recover from the loss of any or 
all chunks of an RDD. Unlike the key-value-pair abstraction of MapReduce, 
there is no restriction on the type of the elements that comprise an RDD. 

The Spark program performs the transformations and actions on the RDDs. A 
Sparks program consists of a sequence of steps. Each of these steps applies some 
function to an RDD to produce another RDD. These operations are also referred 
to as transformations. Some of the commonly used operations are Map, Flatmap, 
and Filter. Spark also allows to take data from the surrounding file system, such 
as Hadoop Distributed File System, and turn it into an RDD, and to take an RDD 
and return it to the surrounding file system or to produce a result that is passed 
back to an application that called a Spark program. Here the process of returning 
the RDD output to an application is also referred to as actions. In Spark, the 
Reduce operation is an action, not a transformation. 

The Spark implementation differs from Hadoop or other MapReduce 
implementations. It uses lazy evaluation of RDD’s and lineage for RDD’s. 

Tenso Flow 

TensorFlow is an open-source system developed at Google to support machine-
learning applications. Same as that of Spark, TensorFlow provides a 
programming interface in which one writes a sequence of steps. Programs are 
typically acyclic, although like Spark it is possible to iterate blocks of code.  

One major difference between Spark and TensorFlow is the type of data that is 
passed between steps of the program. In place of the RDD, TensorFlow uses 
tensors; a tensor is simply a multidimensional matrix. 

2.7.2 Recursive Extensions to MapReduce   

Many large-scale computations like Google’s search algorithm, Page Rank are 
recursive extensions of MapReduce. These are nothing but the computations of 
the fixed point of a matrix-vector multiplication that can be computed under 
MapReduce systems by the matrix-vector multiplication iterative algorithm. The 
iteration typically continues for an unknown number of steps, each step being a 
MapReduce job, until the results of two consecutive iterations are sufficiently 
close that we believe convergence has occurred.  

Recursions present a problem for failure recovery. Recursive tasks inherently 
lack the blocking property necessary for independent restart of failed tasks. It is 
impossible for a collection of mutually recursive tasks, each of which has an 
output that is input to at least some of the other tasks, to produce output only at 
the end of the task. If they all followed that policy, no task would ever receive 
any input, and nothing could be accomplished. As a result, some mechanism 
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other than simple restart of failed tasks must be implemented in a system that 
handles recursive workflows (flow graphs that are not acyclic). We shall start by 
studying an example of a recursion implemented as a workflow, and then discuss 
approaches to dealing with task failures. 

Example 2.7: Let us consider a directed graph with arcs, that are represented by 
the relation E(X, Y). That means there is an arc from node X to node Y. Here we 
wish to compute the paths relation P(X, Y),that is a path from node X to node 
Yhaving of length 1 or more. The path P is the transitive closure of E. A simple 
recursive algorithm is: 

1. Start with P(X, Y ) = E(X, Y ). 
2. While changes to the relation P occur, add to P all tuples in  

 

The above equation states that the pairs of nodes X and Y for some point Z are 
known to have the path from X to Z and from Z to Y. 

Figure 2.8shows the organization of recursive tasks to be performed for this 
computation. There are two kinds of tasks: Join tasks and Dup-elim tasks. The 
figure 2.8 shows the some of the n tasks with the respective bucket of hash 
function h.  

Once discovered, a path tuple P(a, b), becomes input to two Join tasks that are 
numbered h(a) and h(b). The job of the ith Join task, when it receives input tuple 
P(a, b), is to find certain other tuples seen previously (and stored locally by that 
task).  

1. Store P(a, b) locally. 
 
2. If h(a) = i then look for tuples P(x, a) and produce output tuple P(x, b).  

 
3. If h(b) = i then look for tuples P(b, y) and produce output tuple P(a, y). 

In rare cases, we have h(a) = h(b), so both steps (2) and (3) are executed. But 
generally, only one of these needs to be executed for a given tuple. 

Also, Figure 2.8 shows m Dup-elim tasks with the corresponding bucket of hash 
function g with two arguments. The output of some Join task P(c, d) is then sent 
to Dup-elim task j = g(c, d).On receiving this tuple, the jth Dup-elim task checks 
that it has not received this tuple before, since its job is duplicate elimination. If 
previously received, the tuple is ignored. But if this tuple is new, it is stored 
locally and sent to two Join tasks, those numbered h(c) and h(d). 

Every Join task has m output files, one for each Dup-elim task. Every Dup-elim 
task has n output files, one for each Join task. These files are distributed 
according to any of several strategies. Initially, the E(a, b) tuples representing the 
arcs of the graph are distributed to the Dup-elim tasks, with E(a, b) being sent as 
P(a, b) to Dup-elim task g(a, b). The master controller waits until each Join task 
has processed its entire input for a round. Then, all output files are distributed to 
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the Dup-elim tasks, which create their own output. That output is distributed to 
the Join tasks and becomes their input for the next round. 

 

Figure 2.8: Implementation of transitive closure by a collection of recursive tasks 

In Example 2.7 it is not necessary to have two kinds of tasks. Instead, Join tasks 
could eliminate duplicates as they are received, since they must store their 
previously received inputs anyway. This arrangement has an advantage when we 
must recover from a task failure. If each task stores all the output files it has ever 
created, and we place Join tasks on different racks from the Dup-elim tasks, then 
we can deal with any single compute node or single rack failure. That is, a Join 
task needing to be restarted can get all the previously generated inputs that it 
needs from the Dup-elim tasks, and vice versa. 

In the specific case of computing transitive closure, it is not necessary to prevent 
a restarted task from generating outputs that the original task generated 
previously. In the computation of the transitive closure, the rediscovery of a path 
does not influence the eventual answer. However, many computations cannot 
tolerate a situation where both the original and restarted versions of a task pass 
the same output to another task. For example, if the final step of the computation 
were an aggregation, say a count of the number of nodes reached by each node in 
the graph, then we would get the wrong answer if we counted a path twice. 

Let us discuss at least three different approaches that have been used to deal with 
failures while executing a recursive program. 

1. Iterated MapReduce: Write the recursion as repeated execution of a 
MapReduce job or of a sequence of MapReduce jobs. In this case, to handle 
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failures at any step, we can then rely on the failure mechanism of the MapReduce 
implementation. The very first example of such a system was HaLoop. 
 
2. The Spark Approach: The Spark language includes iterative statements, 
such as for-loops that allow the implementation of recursions. In Spark, failure 
management is implemented using the lazy-evaluation and lineage mechanisms. 
In addition to this the Spark programmer has options to store intermediate states 
of the recursion. 

 
3. Bulk-Synchronous Systems: These systems use a graph-based model of 
computation. They typically use another resilience approach: periodic check 
pointing. One of the examples of bulk synchronous system is Pragel.  

2.7.3 Pragel 

Another approach that implements the recursive algorithms on a computing 
cluster is represented by Google’s Pragel system. This System is the first 
example of a graph-based, bulk-synchronous system that processes massive 
amounts of data. This system views its data as a graph, where each node of the 
graph corresponds roughly to a task. Each graph node generates output messages 
that are destined for other nodes of the graph, and each graph node processes the 
inputs it receives from other nodes. 

Example 2.8: Suppose our data is a collection of weighted arcs of a graph, and 
we want to find, for each node of the graph, the length of the shortest path to 
each of the other nodes. As the algorithm executes, each node a will store a set of 
pairs (b, w), where w is the length of the shortest path from node a to node b that 
is currently known. 

Here first we need to store the set of pairs and weight for each graph node. For 
example, graph node a, stores the set of pairs (b, w) such that there is an arc from 
a to b of weight w. Then these facts are sent to all other nodes, as triples (a, b, w), 
with the intended meaning that node a knows about a path of length w to node b. 
When the node a receives a triple (c, d, w), it must decide whether this fact 
implies a shorter path than a already knows about from itself to node d. Node a 
looks up its current distance to c; that is, it finds the pair (c, v) stored locally, if 
there is one. It also finds the pair (d, u) if there is one. If w + v < u, then the pair 
(d, u) is replaced by (d, w + v), and if there is no pair (d, u), then the pair (d, w + 
v) is stored at the node a. Also, the other nodes are sent the message (a, d, w + v) 
in either of these two cases. 

In Pregel, the computations are organized into super steps. In one super step, all 
the messages that were received by any of the nodes at the previous super step 
are processed, and then all the messages generated by those nodes are sent to 
their destination. This approach of packaging many messages into one is referred 
to as “bulk-synchronous.” 

The bulk synchronous approach has reduced the overhead of sending many 
messages on the network. This is one of the very important advantages of the 
bulk synchronous approach.  
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Suppose that in Example 2.8 we sent a single new shortest-distance fact to the 
relevant node every time one was discovered. The number of messages sent 
would be enormous if the graph was large, and it would not be realistic to 
implement such an algorithm. However, in a bulk-synchronous system, a task 
that has the responsibility for managing many nodes of the graph can bundle 
together all the messages being sent by its nodes to any of the nodes being 
managed by another task. That choice typically saves orders of magnitude in the 
time required to send all the needed messages. 

Failure Management in Pregel 

In case of a compute-node failure, there is no attempt to restart the failed tasks at 
that compute node. Rather, Pregel checkpoints its entire computation after some 
of the super steps. A checkpoint consists of making a copy of the entire state of 
each task, so it can be restarted from that point if necessary. If any compute node 
fails, the entire job is restarted from the most recent checkpoint. 

Although this recovery strategy causes many tasks that have not failed to redo 
their work, it is satisfactory in many situations. Recall that the reason 
MapReduce systems support restart of only the failed tasks is that we want 
assurance that the expected time to complete the entire job in the face of failures 
is not too much greater than the time to run the job with no failures. Any failure-
management system will have that property as long as the time to recover from a 
failure is much less than the average time between failures. Thus, it is only 
necessary that Pregel checkpoints its computation after a number of super steps 
such that the probability of a failure during that number of super steps is low. 

2.8 COMMON MAPREDUCE ALGORITHMS  

The MapReduce implements the number of mathematical algorithms. Such 
algorithms divide a task into number of chunks and assign them to distributed 
nodes. These distributed nodes act as Map nodes and Reduce nodes, and executes 
the map and reduce tasks respectively. Some of the common mathematical 
algorithms are: 

1. Sorting 

2. Searching 

3. Indexing 

4. TF-IDF 

2.8.1 Sorting 

Sorting is one of the basic MapReduce algorithms, used to process and analyse 
data. MapReduce implements the sorting algorithm to automatically sort the 
output key-value pairs from the mapper by their keys. The mapper class 
implements Sorting method.  After tokenizing the values, during the Shuffle and 
Sort phase, the mapper class collects the matching valued keys as a collection. To 
collect similar intermediate key-value pairs, the Mapper class takes the help 
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of class to sort the key-value pairs. The set of intermediate key-value pairs for a 
given Reducer is automatically sorted by Hadoop to form key-values (K2, {V2, 
V2, …}) before they are presented to the Reducer. 

2.8.2 Searching 

Searching plays an important role in the Map Reduce algorithm. It helps in the 
combiner phase and in the Reducer phase. The following example demonstrates 
the working of the searching algorithm. 

Example 2.9: The example shows how MapReduce employs a Searching 
algorithm to find out the details of the employee who draws the highest salary in 
a given employee dataset. 

Let us assume we have employee data in four different files A, B, C, and D. Let 
us also assume there are duplicate employee records in all four files because of 
importing the employee data from all database tables repeatedly. 

 

Figure 2.9: Data of files A,B,C and D  

The Map phase processes each input file and provides the employee data in key-
value pairs (<k, v> :<emp name, salary>) as shown in Figure 2.10. 

 

Figure 2.10: Output of Map Process  

The combiner phase (searching technique) will accept the input from the Map 
phase as a key-value pair with employee name and salary. Using searching 
technique, the combiner will check all the employee salary to find the highest 
salaried employee in each file. The expected result is as shown in figure 2.11. 

<Satish, 26000> <Harsh,50000> <Tanmay, 45000> <Mansi,45000> 

Figure 2.11: Output of Combiner 

Reducer phase - Form each file, you will find the highest salaried employee. To 
avoid redundancy, check all the <k, v> pairs and eliminate duplicate entries, if 
any. The same algorithm is used in between the four <k, v> pairs, which are 
coming from four input files. The final output should be as follows -  

<Harsh, 50000> 
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2.8.3 Indexing 

Normally indexing is used to point to a particular data and its address. It 
performs batch indexing on the input files for a particular Mapper. 

The indexing technique that is normally used in MapReduce is known 
as inverted index. Search engines like Google and Bing use inverted indexing 
techniques. Let us try to understand how Indexing works with the help of a 
simple example. 

Example 2.10 : The following text is the input for inverted indexing. Here T[0], 
T[1], and t[2] are the file names and their content are in double quotes. 

T[0] = "it is what it is" 

T[1] = "what is it" 

T[2] = "it is a banana" 

After applying the Indexing algorithm, we get the following output - 

"a": {2} 

"banana": {2} 

"is": {0, 1, 2} 

"it": {0, 1, 2} 

"what": {0, 1} 

Here "a": {2} implies the term "a" appears in the T[2] file. Similarly, "is": {0, 1, 
2} implies the term "is" appears in the files T[0], T[1], and T[2]. 

2.8.4 TF-IDF 

TF-IDF is a text processing algorithm which is short for Term Frequency − 
Inverse Document Frequency. It is one of the common web analysis algorithms. 
Here, the term 'frequency' refers to the number of times a term appears in a 
document. 

Term Frequency (TF) 

It measures how frequently a particular term occurs in a document. It is 
calculated by the number of times a word appears in a document divided by the 
total number of words in that document. 

TF(the) = (Number of times term the ‘the’ appears in a document) / (Total 
number of terms in the document) 

Inverse Document Frequency (IDF) 

It measures the importance of a term. It is calculated by the number of documents 
in the text database divided by the number of documents where a specific term 
appears. 
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While computing TF, all the terms are considered equally important. That means, 
TF counts the term frequency for normal words like “is”, “a”, “what”, etc. Thus, 
we need to know the frequent terms while scaling up the rare ones, by computing 
the following - 

IDF(the) = log_e(Total number of documents / Number of documents with term 
‘the’ in it). 

2.9 SUMMARY 

● The common architecture, cluster of compute nodes, is used to process very 
large-scale applications.  

● The Distributed File Systems architecture is used to store and process the 
large data files on distributed nodes. 

● The MapReduce framework processes the data parallelly on the DFS with the 
help of cluster nodes like Master node, Map node and Reduce node and so 
on. 

● The Map and Reduce functions are problem specific and need to be designed 
by the user. 

● The Map and Reduce functions generate the output in Key-value pair 
formats. The Map function stores output in the intermediatory file whereas 
the Reduce function stores the final output file.  

● Apache Hadoop is the open-source implementation of a Distributed File 
System also referred as HDFS. 

● The MapReduce framework is fault tolerant and manages the faults of 
Master, Map and Reduce nodes.  

● MapReduce is not suitable for all parallel algorithms. The Simple 
implementations like, Matrix-Vector multiplication, Matrix-Matrix 
Multiplications, Principal operators of linear algebra can be done in 
MapReduce. 

● MapReduce is generalized to the systems, supporting any acyclic collection 
of functions, which are referred to as workflow systems. Each of these 
functions can be instantiated by any number of tasks that are responsible for 
executing that function on a portion of the data. 

● In case of recursive workflows, it is not possible to restart the whole task 
again. Instead, a number of checkpointing parts of the computation allows 
restart of single task. You can also restart all tasks from a recent checkpoint 
has been proposed. 

● The MapReduce algorithms can be implemented by using any of the 
programming languages like, Java, Python and so on. The MapReduce 
algorithms are generally written for large-scale data. 
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2.11 UNIT END EXERCISE 

1. Distributed File System? How is DFS extended in the Hadoop Distributed 
File System? 

2. What is a Distributed File System? How does the system store file of large 
size on DFS? 

3. What is Apache Hadoop? What are the characteristics of a Distributed File 
System?  

4. What is the Hadoop ecosystem? Discuss the various elements of the 
Hadoop Ecosystem? 

5. What is MapReduce?  What are the advantages of MapReduce? 

6. Explain the steps of execution of MapReduce. 

7. Describe the Map task and Reduce task with an example for each. 

8. What is the role of mapper function and combiner function in MapReduce? 

9. What is the role of a Master node? How does the master role control the 
failure of a task or a node?  

10. Explain the steps of execution for word count algorithm with an example. 

11. Explain the Matrix-Vector multiplication algorithm with an example. 

12. How does the MapReduce algorithm handle the vector of large size?  

13. What are relational algebra operations? Explain each operation in brief. 

14. How does MapReduce handle the selection and projection operations 
computing? Explain the role of Map and Reduce tasks and an example for 
each. 

15. Explain union, intersection and NaturalJoin computing operations of 
MapReduce. 

16. What are the characteristics of the MapReduce System? How is the 
MapReduce framework extended to the workflow system? 

17. Explain the function of the workflow system with an example. 
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18. What is the purpose of the workflow system? Discuss any two examples of 
workflow systems. 

19. What do mean by recursive extension of MapReduce? Describe the process 
of transitive closure for the number of recursive tasks. 

20. Discuss the various approaches of handling the failure of recursive 
MapReduce tasks? 

21. Describe the Bulk-Synchronous System - Pregel with an example.   

22. Discuss any three common MapReduce algorithms. 

23. Write a program to implement the matrix-multiplication algorithm using 
any one programming language. 

 

❖❖❖❖
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3 
SHINGLING OF DOCUMENTS 

Unit Structure 

3.0 Objectives 

3.1 Introduction 

3.2 Finding Similar Items 

3.3 Applications of Near-Neighbor Search 

3.4 Shingling of Documents 

3.5   Similarity-Preserving Summaries of Sets 

3.6  Locality-Sensitive Hashing for Documents 

 3.7 Distance Measures 

3.8 The Theory of Locality-Sensitive Functions 

3.9 LSH Families for Other Distance Measures 

3.10 Applications of Locality-Sensitive Hashing 

3.11 Methods for High Degrees of Similarity 

3.0 OBJECTIVES 

We will study how to define the distance between sets. To illustrate and 
motivate this study, we will focus on using Jaccard distance to measure 
the distance between documents. This uses the common “bag of words” 
model, which is simplistic, but is sufficient for many applications. We 
start with some big questions. This lecture will only begin to answer them. 

• Given two homework assignments (reports) how can a computer detect if 
one is likely to have been plagiarized from the other without 
understanding the content?  

• In trying to index webpages, how does Google avoid listing duplicates or 
mirrors?  

• How does a computer quickly understand emails, for either detecting 
spam or placing effective advertisers? (If an ad worked on one email, how 
can we determine which others are similar?) 
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The key to answering these questions will be convert the data 
(homeworks, webpages, emails) into an object in an abstract space that we 
know how to measure distance, and how to do it efficiently. 

3.1 INTRODUCTION 

 In data mining large number of  dataset is finding similar items. As an 
example, finding similar documents can be recommended. In this case 
many methods are existed. For example, Shingling method and length 
based filtering are one of them.  

In Shingling method, from each document, substrings have been selected 
with symbol name and, they are placed on one set. For finding similar 
documents, the similarities of sets that related with them have been 
calculated. In Length based filtering just documents which close these 
lengths have been compared. These methods don’t consider repetition of 
symbols. With considering the repetition can calculate length of 
documents with more accurately.  

In this paper we suggested a method for finding similar documents with 
considering the repetition of symbols. This method separated documents 
to better form. The main goal of this a method for finding similar 
documents with take fewer comparisons and time indeed. 

 
3.2 FINDING SIMILAR ITEMS  

A fundamental data-mining problem is to examine data for “similar” 
items. We shall take up applications in Section 3.1, but an example 
would be looking at a collection of Web pages and finding near-
duplicate pages. These pages could be plagiarisms, for example, or they 
could be mirrors that have almost the same content but differ in 
information about the host and about other mirrors. 

We begin by phrasing the problem of similarity as one of finding 
sets with a relatively large intersection. We show how the problem of 
finding textually similar documents can be turned into such a set problem 
by the technique known as “shingling.” Then, we introduce a technique 
called “minhashing,” which compresses large sets in such a way that 
we can still deduce the similarity of the underlying sets from their 
compressed versions. Other techniques that work when the required 
degree of similarity is very high are covered in Section 3.9. 

Another important problem that arises when we search for similar 
items of any kind is that there may be far too many pairs of items to 
test each pair for their degree of similarity, even if computing the 
similarity of any one pair can be made very easy. That concern 
motivates a technique called “locality-sensitive hashing,” for focusing 
our search on pairs that are most likely to be similar. 

Finally, we explore notions of “similarity” that are not expressible as 
inter- section of sets. This study leads us to consider the theory of 
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distance measures in arbitrary spaces. It also motivates a general 
framework for locality-sensitive hashing that applies for other 
definitions of “similarity.” 

3.3 APPLICATIONS OF NEAR-NEIGHBOR 
SEARCH 

We shall focus initially on a particular notion of “similarity”:  the 
similarity of sets by looking at the relative size of their intersection. 
This notion of similarity is called “Jaccard similarity,” and will be 
introduced in Section 3.1.1. We then examine some of the uses of 
finding similar sets. These include finding textually similar documents 
and collaborative filtering by finding similar customers and similar 
products. In order to turn the problem of textual similarity of 
documents into one of set intersection, we use a technique called 
“shingling,” which is introduced in Section 3.2. 

3.3.1 Jaccard Similarity of Sets 

The Jaccard similarity of sets S and T is S T / S T, that is, the 
ratio of the size of the intersection of S and T to the size of their 
union. We shall denote the Jaccard similarity of S and T by SIM               
(S, T). 

Example 3.1: In Fig. 3.1 we see two sets S and T.  There are three 
elements in their intersection and a total of eight elements that appear 
in S or T or both. Thus, SIM(S, T) = 3/8. ✷ 

 

 

 
 
 
S 
                                                         T 
 

Figure 3.1: Two sets with Jaccard similarity 3/8 

3.3.2 Similarity of Documents 

An important class of problems that Jaccard similarity addresses 
well is that of finding textually similar documents in a large corpus 
such as the Web or a collection of news articles. We should understand 
that the aspect of similarity we are looking at here is character-level 
similarity, not “similar meaning,” which requires us to examine the 
words in the documents and their uses. That problem is also interesting 
but is addressed by other techniques, which we hinted at in Section 
1.3.1. However, textual similarity also has important uses.  Many of 
these involve finding duplicates or near duplicates. First, let us observe 
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that testing whether two documents are exact duplicates is easy; just 
compare the two documents character-by-character, and if they ever 
differ then they are not the same. However, in many applications, the 
documents are not identical, yet they share large portions of their text. 
Here are some examples: 

APPLICATIONS OF NEAR-NEIGHBOR SEARCH  

Plagiarism 

Finding plagiarized documents tests our ability to find textual 
similarity. The plagiarizer may extract only some parts of a document 
for his own. He may alter a few words and may alter the order in which 
sentences of the original appear. Yet the resulting document may still 
contain 50% or more of the original. No simple process of comparing 
documents character by character will detect a sophisticated 
plagiarism. 

Mirror Pages 

It is common for important or popular Web sites to be duplicated at a 
number of hosts, in order to share the load.   The pages of these mirror 
sites will be quite similar, but are rarely identical. For instance, they 
might each contain information associated with their particular host, 
and they might each have links to the other mirror sites but not to 
themselves.  A related phenomenon is the appropriation of pages from 
one class to another. These pages might include class notes, 
assignments, and lecture slides. Similar pages might change the name 
of the course, year, and make small changes from year to year. It is 
important to be able to detect similar pages of these kinds, because 
search engines produce better results if they avoid showing two pages 
that are nearly identical within the first page of results. 

Articles from the Same Source 

It is  common for one  reporter to  write a  news article that  gets  
distributed, say through the Associated Press,  to  many newspapers,  
which then  publish the article on their Web sites. Each newspaper 
changes the article somewhat. They may cut out paragraphs, or even 
add material of their own. They most likely will surround the article by 
their own logo, ads, and links to other articles at their site. However, 
the core of each newspaper’s page will be the original article. News 
aggregators, such as Google News, try to find all versions of such an 
article, in order to show only one, and that task requires finding when 
two Web pages are textually similar, although not identical.1 

3.3.3  Collaborative Filtering as a Similar-Sets Problem 

Another class of applications where similarity of sets is very important 
is called collaborative filtering, a process whereby we recommend to 
users items that were liked by other users who have exhibited similar 
tastes. We shall investigate collaborative filtering in detail in Section 
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9.3, but for the moment let us see some common examples. 

1News aggregation also involves finding articles that are about the 
same topic, even though not textually similar. This problem too can 
yield to a similarity search, but it requires techniques other than 
Jaccard similarity of sets. 

On-Line Purchases 

Amazon.com has millions of customers and sells millions of items. Its 
database records which items have been bought by which customers. 
We can say two cus- tomers are similar if their sets of purchased items 
have a high Jaccard similarity. Likewise, two items that have sets of 
purchasers with high Jaccard similarity will be deemed similar. Note 
that, while we might expect mirror sites to have Jaccard similarity 
above 90%, it is unlikely that any two customers have Jac- card 
similarity that high (unless they have purchased only one item). Even a 
Jaccard similarity like 20% might be unusual enough to identify 
customers with similar tastes. The same observation holds for items; 
Jaccard similarities need not be very high to be significant. 

Collaborative filtering requires several tools, in addition to finding 
similar customers or items, as we discuss in Chapter 9. For example, 
two Amazon customers who like science-fiction might each buy many 
science-fiction books, but only a few of these will be in common. 
However, by combining similarity- finding with clustering (Chapter 7), 
we might be able to discover that science- fiction books are mutually 
similar and put them in one group.  Then, we can get a more powerful 
notion of customer-similarity by asking whether they made purchases 
within many of the same groups. 

Movie Ratings 

Netflix records which movies each of its customers rented, and also the 
ratings assigned to those movies by the customers. We can see movies 
as similar if they were rented or rated highly by many of the same 
customers, and see customers as similar if they rented or rated highly 
many of the same movies. The same observations that we made for 
Amazon above apply in this situation: similarities need not be high to 
be significant, and clustering movies by genre will make things easier. 

When our data consists of ratings rather than binary decisions 
(bought/did not buy or liked/disliked), we cannot rely simply on sets as 
representations of customers or items. Some options are: 

3.3.3.1 Ignore low-rated customer/movie pairs; that is, treat these 
events as if the customer never watched the movie. 

3.3.3.2 When comparing customers, imagine two set elements for 
each movie, “liked” and “hated.”  If a customer rated a movie highly, 
put the “liked” for that movie in the customer’s set. If they gave a low 
rating to a movie, put “hated” for that movie in their set. Then, we can 
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look for high Jaccard similarity among these sets. We can do a similar 
trick when comparing movies. 

3.3.3.3 If ratings are 1-to-5-stars, put a movie in a customer’s set n 
times if they rated the movie n-stars. Then, use Jaccard similarity for 
bags when measuring the similarity of customers. The Jaccard 
similarity for bags B and C is defined by counting element n times in the 
intersection if n is the minimum of the number of times the element appears 
in B and C. In the union, we count the element the sum of the number of 
times it appears in B and in C.2 

Example 3.2:  The bag-similarity of bags   a, a, a, b   and   a, a, b, b, c   
is 1/3. The intersection counts a twice and b once, so its size is 3.  The 
size of the union of two bags is always the sum of the sizes of the two 
bags, or 9 in this case. Since the highest possible Jaccard similarity for 
bags is 1/2, the score of 1/3 indicates the two bags are quite similar, as 
should be apparent from an examination of their contents. 

3.3.4 Exercises for Section 3.1 

Exercise 3.1.1: Compute the Jaccard similarities of each pair of the 
following three sets: {1, 2, 3, 4}, {2, 3, 5, 7}, and {2, 4, 6}. 

Exercise 3.1.2: Compute the Jaccard bag similarity of each pair of the 
fol- lowing three bags: {1, 1, 1, 2}, {1, 1, 2, 2, 3}, and {1, 2, 3, 4}. 

!! Exercise 3.1.3: Suppose we have a universal set U of n elements, and 
we choose two subsets S and T at random, each with m of the n 
elements. What is the expected value of the Jaccard similarity of S        
and T? 

3.4 SHINGLING OF DOCUMENTS 

The most effective way to represent documents as sets, for the purpose 
of iden- tifying lexically similar documents is to construct from the 
document the set of short strings that appear within it. If we do so, then 
documents that share pieces as short as sentences or even phrases will 
have many common elements in their sets, even if those sentences 
appear in different orders in the two docu- ments. In this section, we 
introduce the simplest and most common approach, shingling, as well 
as an interesting variation. 

3.4.1 k-Shingles 

A document is a string of characters. Define a k-shingle for a 
document to be any substring of length k found within the document. 
Then, we may associate with each document the set of k-shingles that 
appear one or more times within that document. 

Example 3.3: Suppose our document D is the string abcdabd, and 
we pick k = 2. Then the set of 2-shingles for D is {ab, bc, cd, da, and 
bd}. 
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Note that the substring ab appears twice within D, but appears only 
once as a shingle. A variation of shingling produces a bag, rather than a 
set, so each shingle would appear in the result as many times as it 
appears in the document. However, we shall not use bags of shingles 
here.  

There are several options regarding how white space (blank, tab, 
newline, etc.) is treated. It probably makes sense to replace any 
sequence of one or more white-space characters by a single blank. That 
way, we distinguish shingles that cover two or more words from those 
that do not. 

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then 
we would see some lexical similarity in the sentences “The plane was 
ready for touch down” and “The quarterback scored a touchdown”.  
However, if we retain the blanks, then the first has shingles touch dow 
and ouch down, while the second has touchdown.  If we eliminated the 
blanks, then both would have touchdown.      

3.4.2 Choosing the Shingle Size 
We can pick k to be any constant we like. However, if we pick k too 
small, then we would expect most sequences of k characters to appear 
in most documents. If so, then we could have documents whose 
shingle-sets had high Jaccard simi- larity, yet the documents had none 
of the same sentences or even phrases. As an extreme example, if we 
use k = 1, most Web pages will have most of the common characters 
and few other characters, so almost all Web pages will have high 
similarity. 

How large k should be depends on how long typical documents are and 
how large the set of typical characters is. The important thing to 
remember is: k should be picked large enough that the probability of 
any given shingle appearing in any given document is low. 

Thus, if our corpus of documents is emails, picking k = 5 should 
be fine. To see why, suppose that only letters and a general white-
space character ap- pear in emails (although in practice, most of the 
printable ASCII characters can be expected to appear 
occasionally). If so, then there would be 275 = 14,348,907 possible 
shingles. Since the typical email is much smaller than 14 million 
characters long, we would expect k = 5 to work well, and indeed it 
does. However, the calculation is a bit more subtle. Surely, more 
than 27 charac- ters appear in emails, However, all characters do not 
appear with equal proba- bility. Common letters and blanks 
dominate, while”z” and other letters that have high point-value in 
Scrabble are rare. Thus, even short emails will have many 5-shingles 
consisting of common letters, and the chances of unrelated emails 
sharing these common shingles are greater than would be implied by 
the calculation in the paragraph above. A good rule of thumb is to 
imagine that there are only 20 characters and estimate the number of k-
shingles as 20k. For large documents, such as research articles, choice 
k = 9 is considered safe. 

• 
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3.4.3 Hashing Shingles 

Instead of using substrings directly as shingles, we can pick a hash 
function that maps strings of length k to some number of buckets and 
treat the resulting bucket number as the shingle.  The set representing a 
document is then the set of integers that are bucket numbers of one or 
more k-shingles that appear in the document. For instance, we could 
construct the set of 9-shingles for a document and then map each of 
those 9-shingles to a bucket number in the range 0 to 232 -1. Thus, each 
shingle is represented by four bytes instead of nine. Not only has the 
data been compacted, but we can now manipulate (hashed) shingles by 
single-word machine operations. 

Notice that we can differentiate documents better if we use 9-shingles 
and hash them down to four bytes than to use 4-shingles, even though 
the space used to represent a shingle is the same. The reason was touched 
upon in Section 3.2.2. If we use 4-shingles, most sequences of four 
bytes are unlikely or impossible to find in typical documents. Thus, the 
effective number of different shingles is much less than 232 -1. If, as in 
Section 3.2.2, we assume only 20 characters are frequent in English 
text, then the number of different 4-shingles that are likely to occur is 
only (20)4 = 160,000. However, if we use 9-shingles, there are many 
more than 232 likely shingles. When we hash them down to four bytes, 
we can expect almost any sequence of four bytes to be possible, as was 
discussed in Section 1.3.2. 

3.4.4  Shingles Built from Words 

An alternative form of shingle has proved effective for the problem of 
identifying similar news articles, mentioned in Section 3.1.2. The 
exploitable distinction for this problem is that the news articles are 
written in a rather different style than are other elements that typically 
appear on the page with the article. News articles, and most prose, 
have a lot of stop words (see Section 1.3.1), the most common words 
such as “and,” “you,” “to,” and so on. In many applications, we 
want to ignore stop words, since they don’t tell us anything useful 
about the article, such as its topic. 

However, for the problem of finding similar news articles, it was found 
that defining a shingle to be a stop word followed by the next two 
words, regardless of whether or not they were stop words, formed a 
useful set of shingles. The advantage of this approach is that the news 
article would then contribute more shingles to the set representing the 
Web page than would the surrounding ele-ments. Recall that the goal 
of the exercise is to find pages that had the same articles, regardless of 
the surrounding elements. By biasing the set of shingles in favor of 
the article, pages with the same article and different surrounding 
material have higher Jaccard similarity than pages with the same 
surrounding material but with a different article. 

Example 3.5: An ad might have the simple text “Buy Sudzo.”  
However, a news article with the same idea might read something 
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like “A spokesperson for the  Sudzo  Corporation  revealed  today  
that  studies  have  shown  it is good  for  people  to  buy  Sudzo  
products.”   Here, we have italicized all the likely stop words, although 
there is no set number of the most frequent words that should be 
considered stop words. The first three shingles made from a stop 
word and the next two following are: 

A spokesperson for  

for the Sudzo 

the Sudzo Corporation 

There are nine shingles from the sentence, but none from the “ad.”     

3.4.5 Exercises for Section 3.2 

Exercise 3.2.1 : What are the first ten 3-shingles in the first sentence of 
Sec- tion 3.2? 

Exercise 3.2.2 : If we use the stop-word-based shingles of Section 
3.2.4, and we take the stop words to be all the words of three or fewer 
letters, then what are the shingles in the first sentence of Section 3.2? 

Exercise 3.2.3 :  What is the largest number of k-shingles a document 
of n bytes can have? You may assume that the size of the alphabet is 
large enough that the number of possible strings of length k is at least 
as n. 

3.5 SIMILARITY-PRESERVING SUMMARIES 
OF SETS 

Sets of shingles are large. Even if we hash them to four bytes each, the 
space needed to store a set is still roughly four times the space taken by 
the document. If we have millions of documents, it may well not be 
possible to store all the shingle-sets in main memory.3 

Our goal in this section is to replace large sets by much smaller 
represen- tations called “signatures.” The important property we need 
for signatures is that we can compare the signatures of two sets and 
estimate the Jaccard sim- ilarity of the underlying sets from the 
signatures alone. It is not possible that the similarity of each pair.  
We take up the solution to this problem in Section 3.4. the 
signatures give the exact similarity of the sets they represent, but the 
esti- mates they provide are close, and the larger the signatures the 
more accurate the estimates. For example, if we replace the 200,000-
byte hashed-shingle sets that derive from 50,000-byte documents by 
signatures of 1000 bytes, we can usually get within a few percent. 

3.5.1     Matrix Representation of Sets 

Before explaining how it is possible to construct small signatures 
from large sets, it is helpful to visualize a collection of sets as their 
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characteristic matrix. The columns of the matrix correspond to the 
sets, and the rows correspond to elements of the universal set from 
which elements of the sets are drawn. There is a 1 in row r and 
column c if the element for row r is a member of the set for column c. 
Otherwise the value in position (r, c) is 0. 

Element S1 S2 S3 S4 

a 1 0 0 1 

b 0 0 1 0 

c 0 1 0 1 

d 1 0 1 1 

e 0 0 1 0 

 

Figure 3.2: A matrix representing four sets 

Example 3.6: In Fig. 3.2 is an example of a matrix representing sets 
chosen from the universal set {a, b, c, d, e}. Here, S1 = {a, d}, S2 = 
{c}, S3 = {b, d, e}, and S4 = a, c, d . The top row and leftmost 
columns are not part of the matrix, but are present only to remind us 
what the rows and columns represent. 

It is important to remember that the characteristic matrix is unlikely to 
be the way the data is stored, but it is useful as a way to visualize the 
data. For one reason not to store data as a matrix, these matrices are 
almost always sparse (they have many more 0’s than 1’s) in practice. 
It saves space to represent a sparse matrix of 0’s and 1’s by the 
positions in which the 1’s appear. For another reason, the data is 
usually stored in some other format for other purposes. 

As an example, if rows are products, and columns are customers, 
represented by the set of products they bought, then this data would 
really appear in a database table of purchases. A tuple in this table 
would list the item, the purchaser, and probably other details about the 
purchase, such as the date and the credit card used. 

3.5.2 Minhashing 
The signatures we desire to construct for sets are composed of the 
results of a large number of calculations, say several hundred, each of 
which is a “minhash” of the characteristic matrix. In this section, we 
shall learn how a minhash is computed in principle, and in later 
sections we shall see how a good approxi- mation to the minhash is 
computed in practice. 

To minhash a set represented by a column of the characteristic matrix, 
pick a permutation of the rows. The minhash value of any column is 
the number of the first row, in the permuted order, in which the 
column has a 1. 
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Example 3.7 : Let us suppose we pick the order of rows beadc for the 
matrix of Fig. 3.2. This permutation defines a minhash function h that 
maps sets to rows. Let us compute the minhash value of set S1 
according to h. The first column, which is the column for set S1, has 0 
in row b, so we proceed to row e, the second in the permuted order. 
There is again a 0 in the column for S1, so we proceed to row a, 
where we find a 1. Thus. h(S1) = a. 

Element S1 S2 S3 S4 

b 0 0 1 0 

e 0 0 1 0 

a 1 0 0 1 

d 1 0 1 1 

c 0 1 0 1 

 

Figure 3.3: A permutation of the rows of Fig. 3.2 

Although it is not physically possible to permute very large 
characteristic matrices, the minhash function h implicitly reorders the 
rows of the matrix of Fig. 3.2 so it becomes the matrix of Fig. 3.3. 
In this matrix, we can read off the values of h by scanning from the 
top until we come to a 1. Thus, we see that h(S2) = c, h(S3) = b, and 
h(S4) = a.  

3.5.3  Minhashing and Jaccard Similarity 
There is a remarkable connection between  minhashing  and  Jaccard 
similarity of the sets that are minhashed. 

The probability that the minhash function for a random permutation of 
rows produces the same value for two sets  equals the  Jaccard 
similarity of those sets. 

To see why, we need to picture the columns for those two sets. If we 
restrict ourselves to the columns for sets S1 and S2, then rows can be 
divided into three classes: 

3.5.3.1 Type X rows have 1 in both columns. 

3.5.3.2 Type Y rows have 1 in one of the columns and 0 in the other. 

3.5.3.3 Type Z rows have 0 in both columns. 

Since the matrix is sparse, most rows are of type Z. However, it is 
the ratio of the  numbers of type  X  and  type Y  rows that  determine 
both  SIM(S1, S2) and the probability that h(S1) = h(S2). Let there be 
x rows of type X and y rows of type Y .  Then SIM(S1, S2) = x/(x + 
y).  The reason is that x is the size of S1 ∩ S2 and x + y is the size of 
S1 ∪ S2. 
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Now, consider the probability that h(S1) = h(S2). If we imagine the 
rows permuted randomly, and we proceed from the top, the probability 
that we shall meet a type X row before we meet a type Y row is 
x/(x + y). But if the first row from the top other than type Z rows is 
a type X row, then surely h(S1) = h(S2).  On the other hand, if the 
first row other than a type Z  row that we meet is a type Y row, then 
the set with a 1 gets that row as its minhash value. However the set 
with a 0 in that row surely gets some row further down the permuted 
list. Thus, we know h(S1) /= h(S2) if we first meet a type Y row. We 
conclude the probability that h(S1) = h(S2) is x/(x + y), which is 
also the Jaccard similarity of S1 and S2. 

3.5.4 Minhash Signatures 

Again think of a collection of sets represented by their characteristic 
matrix M. To represent sets, we pick at random some number n of 
permutations of the rows of M. Perhaps 100 permutations or several 
hundred permutations will do. Call the minhash functions determined 
by these permutations h1, h2, . . . , hn. From the column representing set 
S, construct the minhash signature for S, the vector [h1(S), h2(S), . . . , 
hn(S)].  We  normally represent this  list of hash-values as a column. 
Thus, we can form from matrix M a signature matrix, in which the 
ith column of M is replaced by the minhash signature for (the set 
of) the ith column. 

Note that the signature matrix has the same number of columns as M 
but only n rows. Even if M is not represented explicitly, but in some 
compressed form suitable for a sparse matrix (e.g., by the locations 
of its 1’s), it is normal for the signature matrix to be much smaller 
than M. 

3.5.5 Computing Minhash Signatures 

It is not feasible to permute a large characteristic matrix explicitly. 
Even picking a random permutation of millions or billions of rows is  
time-consuming,  and the necessary sorting of the rows would take 
even more time. Thus, permuted matrices like that suggested by Fig. 
3.3, while conceptually appealing, are not implementable. 

Fortunately, it is possible to simulate the effect of a random 
permutation by a random hash function that maps row numbers to  as 
many buckets as there are rows. A hash function that maps integers 0, 
1, . . . , k     1 to bucket numbers 0 through k 1 typically will map some 
pairs of integers to the same bucket and leave other buckets unfilled. 
However, the difference is unimportant as long as k is large and there 
are not too many collisions.  We can maintain the fiction that our hash 
function h “permutes” row r to position h(r) in the permuted order. 

Thus, instead of picking n random permutations of rows, we pick n 
randomly chosen hash functions h1, h2, . . . , hn on the rows. We 
construct the signature matrix by considering each row in their given 
order. Let SIG(i, c) be the element of the signature matrix for the ith 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

98 

hash function and column c. Initially, set SIG(i, c) to ∞ for all i and 
c. We handle row r by doing the following: 

1.  Compute h1(r), h2(r), . . . , hn(r). 

2. For each column c do the following: 

(a) If c has 0 in row r, do nothing. 

(b) However, if c has 1 in row r, then for each i = 1, 2, . . . , n set 
SIG(i, c) to the smaller of the current value of SIG(i, c) and hi(r). 

Row S1 S2 S3 S4 x + 1 mod 5 3x + 1 mod 5 

0 1 0 0 1 1 1 

1 0 0 1 0 2 4 

2 0 1 0 1 3 2 

3 1 0 1 1 4 0 

4 0 0 1 0 0 3 

 

Figure 3.4: Hash functions computed for the matrix of Fig. 3.2 

Example 3.8 : Let us reconsider the characteristic matrix  of  Fig.  3.2,  
which we reproduce with some additional data as Fig. 3.4. We have 
replaced the letters naming the rows by integers 0 through 4. We have 
also chosen two hash functions:  h1(x) = x+1   mod 5 and h2(x) = 3x+1   
mod 5.  The values of these two functions applied to the row numbers 
are given in the last two columns of Fig. 3.4. Notice that these simple 
hash functions are true permutations of the rows, but a true 
permutation is only possible because the number of rows, 5, is a prime. 
In general, there will be collisions, where two rows get the same hash 
value. 

Now, let  us  simulate  the  algorithm for  computing  the  signature 
matrix. 

Initially, this matrix consists of all ∞’s: 

 S1 S2 S3 S4 

h1 

h2 

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 

 

First, we consider row 0 of Fig. 3.4.  We see that the values of 
h1(0) and h2(0) are both 1.  The row numbered 0 has 1’s in the 
columns for sets S1 and S4, so only these columns of the signature 
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∞  matrix can change. As 1 is less than, we do in fact change both values 
in the columns for S1 and S4. The current estimate of the signature 
matrix is thus: 

 

 S1 S2 S3 S4 

h1 

h2 

1 

1 

∞ 

∞ 

∞ 

∞ 

1 

1 

 

Now, we move to the row numbered 1 in Fig. 3.4. This row has 1 
only in S3, and its hash values are h1(1) = 2 and h2(1) = 4. Thus, we 
set SIG(1, 3) to 2 and SIG(2, 3) to 4. All other signature entries 
remain as they are because their columns have 0 in the row 
numbered 1. The new signature matrix: 

 S1 S2 S3 S4 

h1 

h2 

1 

1 

∞ 

∞ 

2 

4 

1 

1 

 

The row of Fig. 3.4 numbered 2 has 1’s in the columns for S2 and 
S4, and its hash values are h1(2) = 3 and h2(2) = 2. We could 
change the values in the signature for S4, but the values in this column 
of the signature matrix, [1, 1], are each less than the corresponding hash 
values [3, 2]. However, since the column for S2 still has ∞’s, we 
replace it by [3, 2], resulting in: 

 S1 S2 S3 S4 

h1 1 3 2 1 

h2 1 2 4 1 

 

Next comes the row numbered 3 in Fig. 3.4. Here, all columns but 
S2 have 1, and the hash values are h1(3) = 4 and h2(3) = 0. The 
value 4 for h1 exceeds what is already in the signature matrix for all 
the columns, so we shall not change any values in the first row of 
the signature matrix. However, the value 0 for h2 is less than what is 
already present, so we lower SIG(2, 1), SIG(2, 3) and SIG(2, 4) to 0. 
Note that we cannot lower SIG(2, 2) because the column for S2 in Fig. 
3.4 has 0 in the row we are currently considering. The resulting 
signature matrix: 
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 S1 S2 S3 S4 

h1 1 3 2 1 

h2 0 2 0 0 

 

Finally, consider the row of Fig. 3.4 numbered 4. h1(4) = 0 and 
h2(4) = 3. Since row 4 has 1 only in the column for S3, we only 
compare the current signature column for that set, [2, 0] with the hash 
values [0, 3]. Since 0 < 2, we change SIG(1, 3) to 0, but since 3 > 0 we 
do not change SIG(2, 3). The final signature matrix is: 

 S1 S2 S3 S4 

h1 1 3 0 1 

h2 0 2 0 0 

 

We can estimate the Jaccard similarities of the underlying sets from 
this signature matrix. Notice that columns 1 and 4 are identical, so 
we guess that SIM(S1, S4) = 1.0. If we look at Fig. 3.4, we see that 
the true Jaccard similarity of S1 and S4 is 2/3. Remember that the 
fraction of rows that agree in the signature matrix is only an 
estimate of the true Jaccard similarity, and this example is much too 
small for the law of large numbers to assure that the estimates are 
close. For additional examples, the signature columns for S1 and S3 
agree in half the rows (true similarity 1/4), while the signatures of 
S1 and S2 estimate 0 as their Jaccard similarity (the correct value).  

3.5.6 Exercises for Section 3.3 

Exercise 3.3.1 : Verify the theorem from Section 3.3.3, which relates 
the Jac- card similarity to the probability of minhashing to equal 
values, for the partic- ular case of Fig. 3.2. 

(a) Compute the Jaccard similarity of each of the pairs of columns in 
Fig. 3.2. 

! (b) Compute, for each pair of columns of that figure, the fraction of 
the 120 permutations of the rows that make the two columns hash to 
the same value. 

Exercise 3.3.2 : Using the data from Fig. 3.4, add to the signatures of 
the columns the values of the following hash functions: 

(a) h3(x) = 2x + 4  mod 5. 

(b)  h4(x) = 3x − 1   mod 5. 
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Element S1 S2 S3 S4 

0 0 1 0 1 

1 0 1 0 0 

2 1 0 0 1 

3 0 0 1 0 

4 0 0 1 1 

5 1 0 0 0 

 

Figure 3.5: Matrix for Exercise 3.3.3 

Exercise 3.3.3 : In Fig. 3.5 is a matrix with six rows. 

(a) Compute the minhash signature for each column if we use the 
following three hash functions:  h1(x) = 2x + 1  mod 6; h2(x) = 
3x + 2  mod 6; h3(x) = 5x + 2 mod 6. 

(b) Which of these hash functions are true permutations? 

(c) How close are the estimated Jaccard similarities for the six pairs of 
columns to the true Jaccard similarities? 

! Exercise 3.3.4 : Now that we know Jaccard similarity is related to the 
proba- bility that two sets minhash to the same value, reconsider 
Exercise 3.1.3. Can you use this relationship to simplify the problem of 
computing the expected Jaccard similarity of randomly chosen sets? 

! Exercise 3.3.5 : Prove that if the Jaccard similarity of two columns is 
0, then minhashing always gives a correct estimate of the Jaccard 
similarity. 

!! Exercise 3.3.6 : One might expect that we could estimate the Jaccard 
simi- larity of columns without using all possible permutations of 
rows. For example, we could only allow cyclic permutations;  i.e., start 
at a  randomly   chosen row r, which becomes the first in the order, 
followed by rows r + 1,  r + 2,  and so on, down to the last row, and 
then continuing with the first row, second row, and so on, down to 
row r   1. There are only n such permutations if there are n rows. 
However, these permutations are not sufficient to estimate the Jaccard 
similarity correctly. Give an example of a two-column matrix where 
averaging over all the cyclic permutations does not give the Jaccard 
similarity. 

! Exercise 3.3.7 : Suppose we want to use a MapReduce framework to 
compute minhash signatures. If the matrix is stored in chunks that 
correspond to some columns, then it is quite easy to exploit 
parallelism. Each Map task gets some of the columns and all the hash 
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functions, and computes the minhash signatures of its given columns. 
However, suppose the matrix were chunked by rows, so that a Map 
task is given the hash functions and a set of rows to work on. Design 
Map and Reduce functions to exploit MapReduce with data in this 
form. 

3.6 LOCALITY-SENSITIVE HASHING FOR 
DOCUMENTS 

Even though we can use minhashing to compress large documents into 
small signatures and preserve the expected similarity of any pair  of  
documents,  it still may be impossible to find the pairs with greatest 
similarity efficiently. The reason is that the number of pairs of 
documents may be too large, even if there are not too many 
documents. 

Example 3.9 : Suppose we have a million documents, and we use 
signatures of length 250.  Then we use 1000 bytes per document for the 
signatures, and the entire data fits i n a gigab yte – less than a typical 
main memory of a laptop. 

However, there are 1,000,000 or half a trillion pairs of documents. If 
it takes a microsecond to compute the similarity of two signatures, 
then it takes almost six days to compute all the similarities on that 
laptop.  

If our goal is to compute the similarity of every pair, there is 
nothing we can do to reduce the work, although parallelism can reduce 
the elapsed time. However, often we want only the most similar pairs 
or all pairs that are above some lower bound in similarity. If so, then 
we need to focus our attention only on pairs that are likely to be 
similar, without investigating every pair. There is a general theory of 
how to provide such focus, called locality-sensitive hashing (LSH) or 
near-neighbor search.  In this section we shall consider a specific form 
of LSH, designed for the particular problem we have been studying: 
documents, represented by shingle-sets, then minhashed to short 
signatures. In Section 3.6 we present the general theory of locality-
sensitive hashing and a number of applications and related 
techniques. 

3.6.1 LSH for Minhash Signatures 

One general approach to LSH is to “hash” items several times, in such 
a way that similar items are more likely to be hashed to the same 
bucket than dissimilar items are. We then  consider any pair that  
hashed to the  same bucket for any of the hashings to be a candidate 
pair. We check only the candidate pairs for similarity. The hope is that 
most of the dissimilar pairs will never hash to the same bucket, and 
therefore will never be checked.  Those dissimilar pairs that do hash to 
the same bucket are false positives; we hope these will be only a small 
fraction of all pairs. We also hope that most of the truly similar 
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pairs will hash to the same bucket under at least one of the hash 
functions. Those that do not are false  negatives; we hope these will be 
only a small fraction of the truly similar pairs. 

If we have minhash signatures for the items, an effective way to 
choose the hashings is to divide the signature matrix into b bands 
consisting   of r rows each.  For each band, there is a hash function that 
takes vectors of r integers (the portion of one column within that band) 
and hashes them to some large number of buckets.  We can use the 
same hash function for all the bands, but we use a separate bucket 
array for each band, so columns with the same vector in different 
bands will not hash to the same bucket. 

Example 3.10 : Figure 3.6 shows part of a signature matrix of 12 rows 
divided into four bands of three rows each. The second and fourth of 
the explicitly shown columns each have the column vector [0, 2, 1] in the 
first band, so they will definitely hash to the same bucket in the 
hashing for the first band. Thus, regardless of what those columns 
look like in the other three bands, this pair of columns will be a 
candidate pair.  It is possible that other columns, such as the first two 
shown explicitly, will also hash to the same bucket according to the 
hashing of the first band. However, since their column vectors are 
different, [1, 3, 0] and [0, 2, 1], and there are many buckets for each 
hashing, we expect the chances of an accidental collision to be very 
small. We shall normally assume that two vectors hash to the same 
bucket if and only if they are identical. 

Two columns that do not agree in band 1 have three other chances to 
become a candidate pair; they might be identical in any one of 
these other bands. 

 
 
band 1 
 
 
band 2 
 
 
band 3 
 
 
band 4 
 

Figure 3.6: Dividing a signature matrix into four bands of three rows 
per band 

However, observe that the more similar two columns are, the more 
likely it is that they will be identical in some band. Thus, intuitively 
the banding strategy makes similar columns much more likely to be 
candidate pairs than dissimilar pairs.  

1 0 0 0 2 
. . . 3 2 1 2 2 . . . 

0 1 3 1 1 
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3.6.2 Analysis of the Banding Technique 

Suppose we use b bands of r rows each, and suppose that a particular 
pair of documents have Jaccard similarity s. Recall from Section 3.3.3 
that the prob- ability the minhash signatures for these documents agree 
in any one particular row of the signature matrix is s. We can calculate 
the probability that these documents (or rather their signatures) 
become a candidate pair as follows: 

3.6.2.1 The probability that the signatures agree in all rows of one 
particular band is sr. 

3.6.2.2 The probability that the signatures disagree in at least one 
row of a par- ticular band is 1 − sr. 

3.6.2.3 The probability that the signatures disagree in at least one 
row of each of the bands is (1 − sr)b. 

3.6.2.4 The probability that the signatures agree in all the rows of at 
least one band, and therefore become a candidate pair, is 1 − (1 − sr)b. 

It may not be obvious, but regardless of the chosen constants b and r, 
this function has the form of an S-curve, as suggested in Fig. 3.7. The 
threshold, that is, the value  of  similarity s  at which  the  probability 
of becoming  a candidate is 1/2, is a function of b and r. The 
threshold is roughly where the rise is the steepest,  and for large b  
and r  there we find that pairs with similarity above the threshold are 
very likely to become candidates, while those below the threshold are 
unlikely to become candidates – exactly the situation we want. 
 
 
 
 
 
 
Probability of becoming a candidate 
 
 
 
 
0 Jaccard similarity       1 
of documents 
 

Figure 3.7: The S-curve 

An  approximation  to  the  threshold  is  (1/b)1/r.    For  example,  if  b  
=  16  and r = 4, then the threshold is approximately at s = 1/2, 
since the 4th root of 1/16 is 1/2. 

Example 3.11 : Let us consider the case b = 20 and r = 5. That is, we 
suppose we have signatures of length 100, divided into twenty bands 
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of five rows each. Figure 3.8 tabulates some of the values of the 
function 1 (1 s5)20.  Notice that the threshold, the value of s at which 
the curve has risen halfway, is just slightly more than 0.5. Also notice 
that the curve is not exactly the ideal step function that jumps from 0 
to 1 at the threshold, but the slope of the curve in the middle is 
significant. For example, it rises by more than 0.6 going from s = 0.4 
to s = 0.6, so the slope in the middle is greater than 3. 

s 1 − (1 − sr)b 
 

.2 .006 

.3 .047 

.4 .186 

.5 .470 

.6 .802 

.7 .975 

.8 .9996 
 

Figure 3.8: Values of the S-curve for b = 20 and r = 5 

For example, at s = 0.8, 1 (0.8)5 is about 0.672. If you raise this 
number to the 20th power, you get about 0.00035. Subtracting this 
fraction from 1 yields 0.99965. That is, if we consider two documents 
with 80% similarity, then in any one band, they have only about a 33% 
chance of agreeing in all five rows and thus becoming a candidate pair. 
However, there are 20 bands and thus 20 chances to become a 
candidate. Only roughly one in 3000 pairs that are as high as 80% 
similar will fail to become a candidate pair and thus be a false 
negative. 

3.6.3 Combining the Techniques 

We can now give an approach to finding the set of candidate pairs for 
similar documents and then discovering the truly similar documents 
among them. It must be emphasized that this approach can produce 
false negatives – pairs of similar documents that are not identified as 
such because they never become a candidate pair. There will also be 
false positives – candidate pairs that are evaluated, but are found not 
to be sufficiently similar. 

3.6.3.1 Pick a value of k and construct from each document the set of 
k-shingles. Optionally, hash the k-shingles to shorter bucket numbers. 

3.6.3.2 Sort the document-shingle pairs to order them by shingle. 

3.6.3.3 Pick a length n for the minhash signatures. Feed the sorted list 
to the algorithm of Section 3.3.5 to compute the minhash signatures for 
all the documents. 

3.6.3.4 Choose a threshold t that defines how similar documents have 
to be in order for them to be regarded as a desired “similar pair.”  Pick 
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a number of bands b and a  number  of rows r  such that br  = n,  and 
the  threshold t  is  approximately (1/b)1/r.  If  avoidance  of  false  
negatives  is  important, you may wish to select b and r to produce a 
threshold lower than t; if speed is important and you wish to limit false 
positives, select b and r to produce a higher threshold. 

3.6.3.5 Construct candidate pairs by applying the LSH technique of 
Section 3.4.1. 

3.6.3.6 Examine each candidate pair’s signatures and determine 
whether the frac- tion of components in which they agree is at least t. 

3.6.3.7 Optionally, if the signatures are sufficiently similar, go to the 
documents themselves and check that they are truly similar, rather than 
documents that, by luck, had similar signatures. 

3.6.4  Exercises for Section 3.4 

Exercise 3.4.1 : Evaluate the S-curve 1  (1  sr)b for s = 0.1, 0.2, . . . , 
0.9, for the following values of r and b: 

• r = 3 and b = 10. 

• r = 6 and b = 20. 

• r = 5 and b = 50. 

! Exercise 3.4.2 : For each of the (r, b) pairs in Exercise 3.4.1, compute 
the threshold, that is, the value of s for which the value of 1 (1 sr)b is 
exactly 1/2. How does  this  value compare with the  estimate of (1/b)1/r  
that was suggested in Section 3.4.2? 

! Exercise 3.4.3 : Use the techniques explained in Section 1.3.5 to 
approximate the S-curve 1 − (1 − sr)b when sr is very small. 

! Exercise 3.4.4 : Suppose we wish to implement LSH by MapReduce. 
Specifi- cally, assume chunks of the signature matrix consist of 
columns, and elements are key-value pairs where the key is the column 
number and the value is the signature itself (i.e., a vector of values). 

(a) Show how to produce the buckets for all the bands as output of 
a single MapReduce process. Hint : Remember that a Map function can 
produce several key-value pairs from a single element. 

(b) Show how another MapReduce process can convert the 
output of (a) to a list of pairs that need to be compared. Specifically, 
for each column i, there should be a list of those columns j > i with 
which i needs to be compared. 

3.7 DISTANCE MEASURES 

We now take a short detour to study the general notion of distance 
measures. The Jaccard similarity is a measure of how close sets are, 
although it  is  not really a distance measure. That is, the closer sets are, 
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the higher the Jaccard similarity. Rather, 1 minus the Jaccard similarity 
is a distance measure, as we shall see; it is called the Jaccard 
distance. 

However, Jaccard distance is not the only measure of closeness that 
makes sense. We shall examine in this section some other distance 
measures that have applications. Then, in Section 3.6 we see how some 
of these distance measures also have an LSH technique that allows us 
to focus on nearby points without comparing all points. Other 
applications of distance measures will appear when we study 
clustering in Chapter 7. 

3.7.1 Definition of a Distance Measure 

Suppose we have a set of points, called a space. A distance measure 
on this space is a function d(x, y) that takes two points in the space as 
arguments and produces a real number, and satisfies the following 
axioms: 

3.7.1.1 d(x, y) ≥ 0 (no negative distances). 

3.7.1.2 d(x, y) = 0 if and only if x  = y (distances are positive, 
except for the distance from a point to itself). 

3.7.1.3 d(x, y) = d(y, x) (distance is symmetric). 

3.7.1.4 d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality). 

The triangle inequality is the most complex condition. It says, 
intuitively, that to travel from x to y, we cannot obtain any benefit if 
we are forced to travel via some particular third point z. The triangle-
inequality axiom is what makes all distance measures behave as if 
distance describes the length of a shortest path from one point to 
another. 

3.7.2 Euclidean Distances 

The most familiar distance measure is the one we normally think of as 
“dis- tance.” An n-dimensional Euclidean space is one where points 
are vectors of n real numbers. The conventional distance measure in 
this space, which we shall refer to as the L2-norm, is defined: 

‚   

.d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) = , 

i=1 (xi − yi)2 

That is, we square the distance in each dimension, sum the squares, 
and take the positive square root. 

It is easy to verify the first three requirements for a distance 
measure are satisfied. The Euclidean distance between two points 
cannot be negative, be- cause the positive square root is intended. 
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Since all squares of real numbers are nonnegative, any i such that xi /= 
yi forces the distance to be strictly positive. On the other hand, if xi 
= yi for all i, then the distance is clearly 0. Symmetry follows 
because (xi yi)2 = (yi xi)2. The triangle inequality requires a good 
deal of algebra to verify. However, it is well understood to be a 
property of Euclidean space: the sum of the lengths of any two sides 
of a triangle is no less than the length of the third side. 

There are other distance measures that have been used for Euclidean 
spaces. For any constant r, we can define the Lr-norm to be the distance 
measure d defined by: 

Σn 
d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) =                                                       
(i=1 |xi − yi| ) 

The case r = 2 is the usual L2-norm just mentioned. Another common 
distance measure is the L1-norm, or Manhattan distance. There, the 
distance between two points is the sum of the magnitudes of the 
differences in each dimension. It is called “Manhattan distance” 
because it is the distance one would have to travel between points if 
one were constrained to travel along grid lines, as on the streets of a 
city such as Manhattan. 

Another interesting distance measure is  the  L∞-norm,  which  is  the  
limit as r approaches infinity of the Lr-norm.  As r  gets larger, only the 
dimension with the largest difference matters, so formally, the L∞-
norm is defined as the maximum of |xi − yi | over all dimensions i. 

Example 3.12 :  Consider the two-dimensional Euclidean space (the 
custom- 

ary√plane)  and  the  points  √(2, 7)  and  (6, 4).    The  L2-norm  gives  

a  distance of (2 − 6)2 + (7 − 4)2   = 42 + 32   = 5.   The  L1-norm  
gives  a  distance  of |2 − 6| + |7 − 4| = 4 + 3 = 7. The L∞-norm gives a 
distance of max(|2 − 6|, |7 − 4|) = max(4, 3) = 4 

3.7.3  Jaccard Distance 

As mentioned at the beginning of the section, we define the Jaccard 
distance of sets by d(x, y) = 1 SIM(x, y).  That is, the Jaccard distance 
is 1 minus the ratio of the sizes of the intersection and union of sets x 
and y. We must verify that this function is a distance measure. 

3.7.3.1 d(x, y) is nonnegative because the size of the intersection cannot 
exceed the size of the union. 

3.7.3.2 d(x, y) = 0 if x = y, because x     x = x     x = x. However, if 
x = y, then the size of x y is strictly less than the size of x y, so d(x, y) 
is strictly positive. 

3.7.3.3 d(x, y) = d(y, x) because both union and intersection are 
symmetric; i.e., x ∪ y = y ∪ x and x ∩ y = y ∩ x. 
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3.7.3.4 For the triangle inequality, recall from Section 3.3.3 that 
SIM(x, y) is the probability a random minhash function maps x and y 
to the same value. Thus, the Jaccard distance d(x, y) is the probability 
that a random min- hash function does not send x and y to the same 
value. We can therefore translate the condition d(x, y) d(x, z) + d(z, y) 
to the statement that if h is a random minhash function, then the 
probability that h(x) = h(y) is no greater than the sum of the 
probability that h(x) = h(z) and the probability that h(z) = h(y). 
However, this statement is true because whenever h(x) = h(y), at 
least one of h(x) and h(y) must be different from h(z). They could 
not both be h(z), because then h(x) and h(y) would be the same. 

3.7.4 Cosine Distance 

The cosine distance makes sense in spaces that have dimensions, 
including Eu- clidean spaces and discrete versions of Euclidean spaces, 
such as spaces where points are vectors with integer components or 
Boolean (0 or 1) components. In such a space, points may be thought 
of as directions. We do not distinguish be- tween a vector and a 
multiple of that vector. Then the cosine distance between two points is 
the angle that the vectors to those points make. This angle will be in 
the range 0 to 180 degrees, regardless of how many dimensions the 
space has. 

We can calculate the cosine distance by first computing the cosine of 
the angle, and then applying the arc-cosine function to translate to an 
angle in the 0-180 degree range. Given two vectors x and y, the cosine 
of the angle between them is the dot product x.y  divided by the L2-
norms of x and y  (i.e., their 

Euclidean  distances  from  the  orΣigin).   Recall  that  the  dot  product  
of  vectors [x1, x2, . . . , xn].[y1, y2, . . . , yn] is n i=1 xiyi. 

Example 3.13 :  Let our two vectors be x = [1, 2, −1] and = [2, 1, 1].  
The dot √pr oduct  x.y  is  1 × 2 + 2 × 1 + (−√1) × 1  =  3.   The  L2-n√orm  of  

both  vectors  is 6. For example, x has L2-norm 12 + 22 + (−1)2 = 

6. Thus, the cosine of the angle between x and y is 3/(
√

6
√

6) or 1/2. 
The angle whose cosine is ½ is 60 degrees, so that is the cosine 
distance between x and y.     

We must show that the cosine distance is indeed a distance measure. 
We have defined it so the values are in the range 0 to 180, so no 
negative distances are possible. Two vectors have angle 0 if and only if 
they are the same direction.4 Symmetry is obvious: the angle between x 
and y is the same as the angle between y and x. The triangle inequality 
is best argued by physical reasoning. One way to rotate from x to y is 
to rotate to z and thence to y.  The sum of those two rotations cannot 
be less than the rotation directly from x to y. 

3.7.5  Edit Distance 
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This distance makes sense when points are strings. The distance 
between two strings x = x1x2    xn and y = y1y2    ym is the smallest 
number of insertions and deletions of single characters that will 
convert x to y. 

Example 3.14 : The  edit  distance between  the  strings x  =  abcde 
and y  = acfdeg is 3. To convert x to y: 

3.7.5.1 Delete b. 
3.7.5.2 Insert f after c. 
3.7.5.3 Insert g after e. 

No sequence of fewer than three insertions and/or deletions will 
convert x to y. Thus, d(x, y) = 3.  

Another way to define and calculate the edit distance d(x, y) is to 
compute a longest common subsequence (LCS) of x and y.   An LCS 
of x and y is a string that is constructed by deleting positions from x 
and y, and that is as long as any string that can be constructed that 
way.  The edit distance d(x, y) can be calculated as the length of x 
plus the length of y minus twice the length of their LCS. 

Example 3.15 : The strings x = abcde and y = acfdeg from 
Example 3.14 have a unique LCS, which is acde. We can be sure it 
is the longest possible, because it contains every symbol appearing in 
both x and y. Fortunately, these common symbols appear in the same 
order in both strings, so we are able to use them all in an LCS. Note 
that the length of x is 5, the length of y is 6, and the length of their 
LCS is 4. The edit distance is thus 5 + 6 2 4 = 3, which agrees with 
the direct calculation in Example 3.14. 

For another example, consider x = aba and y = bab. Their edit 
distance is 2.  For example, we can convert x to y  by deleting the first 
a and then inserting b at the end. There are two LCS’s: ab and  ba.  
Each can  be  obtained  by deleting one symbol from each string.  As 
must be the case for multiple LCS’s of the  same pair of strings,  both 
LCS’s have the same length.  Therefore, we may compute the edit 
distance as 3 + 3 − 2 × 2 = 2.  

Edit distance is a distance measure. Surely no edit distance can be 
negative, and only two identical strings have an edit distance of 0. To 
see that edit distance is symmetric, note that a sequence of insertions 
and deletions can be reversed, with each insertion becoming a deletion, 
and vice versa. The triangle inequality is also straightforward. One 
way to turn a string s into a string t is to turn s into some string u 
and then turn u  into t.  Thus,  the  number  of edits made going from s 
to u, plus the number of edits made going from u to t cannot be less 
than the smallest number of edits that will turn s into t. 
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3.7.6 Hamming Distance 

Given a space of vectors, we define the Hamming distance between 
two vectors to be the number of components in which they  differ.  It  
should be obvious that Hamming distance is a distance measure. 
Clearly the Hamming distance cannot be negative, and if it is zero, 
then the vectors are identical.  The dis- tance does not depend on 
which of two vectors we consider first. The triangle inequality should 
also be evident. If x and z differ in m components, and z and y 
differ in n components, then x and y cannot differ in more than m + n 
components. Most commonly, Hamming distance is used when the 
vectors are Boolean; they consist of 0’s and 1’s only. However, in 
principle, the vectors can have components from any set. 

 

Example 3.16 : The Hamming distance between the vectors 10101 and 
11110 is 3. That is, these vectors differ in the second, fourth, and fifth 
components, while they agree in the first and third components.  

3.7.7  Exercises for Section 3.5 

! Exercise 3.5.1 : On the space of nonnegative integers, which of the 
following functions are distance measures? If so, prove it; if not, prove 
that it fails to satisfy one or more of the axioms. 

(a) max(x, y) = the larger of x and y. 

(b) diff(x, y) =  x y (the absolute magnitude of the difference 
between x and y). 

(c) sum(x, y) = x + y. 

Non-Euclidean Spaces 

Notice that several of the distance measures introduced in this 
section are not Euclidean spaces. A property of Euclidean 
spaces that we shall find important when we take up 
clustering in Chapter 7 is that the average of points in a 
Euclidean space always exists and is a point in the space. 
However, consider the space of sets for which we defined the 
Jaccard dis- tance. The notion of the “average” of two sets 
makes no sense. Likewise, the space of strings, where we can 
use the edit distance, does not let us take the “average” of 
strings. 

Vector spaces, for which we suggested the cosine distance, 
may or may not be Euclidean. If the components of the vectors 
can be any real num- bers, then the space is Euclidean.  
However, if we restrict components to be integers, then the 
space is not Euclidean. Notice that, for instance, we cannot find 
an average of the vectors [1, 2] and [3, 1] in the space of vectors 
with two integer components, although if we treated them as 
members of the two-dimensional Euclidean space, then we 
could say that their average was [2.0, 1.5]. mu
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Exercise 3.5.2 :  Find the L1 and L2 distances between the points (5, 6, 
7) and (8, 2, 4). 

!! Exercise 3.5.3 : Prove that if i and  j  are  any  positive  integers,  and  
i  <  j, then the Li norm between any two points is greater than the Lj 
norm between those same two points. 

Exercise 3.5.4 : Find the Jaccard distances between the  following  
pairs  of sets: 

(a) {1, 2, 3, 4} and {2, 3, 4, 5}. 

(b) {1, 2, 3} and {4, 5, 6}. 

Exercise 3.5.5 : Compute the cosines of the angles between each of the 
fol- lowing pairs of vectors.5 

(a) (3, −1, 2) and (−2, 3, 1). 

(b) (1, 2, 3) and (2, 4, 6). 

(c) (5, 0, −4) and (−1, −6, 2). 

(d) (0, 1, 1, 0, 1, 1) and (0, 0, 1, 0, 0, 0). 

! Exercise 3.5.6 : Prove that the cosine distance between any two vectors 
of 0’s and 1’s, of the same length, is at most 90 degrees. 

Exercise 3.5.7 : Find the edit distances (using only insertions and 
deletions) between the following pairs of strings. 

(a) abcdef and bdaefc. 

(b) abccdabc and acbdcab. 

(c) abcdef and baedfc. 

! Exercise 3.5.8 : There are a number of other notions of edit distance 
available. For instance, we can allow, in addition to insertions and 
deletions, the following operations: 

i. Mutation, where one symbol is replaced by another symbol. Note 
that a mutation can always be performed by an insertion followed by a 
deletion, but if we allow mutations, then this change counts for only 1, 
not 2, when computing the edit distance. 

ii. Transposition, where two adjacent symbols have their positions 
swapped. Like a mutation, we can simulate a transposition by one 
insertion followed by one deletion, but here we count only 1 for these 
two steps. 

Repeat Exercise 3.5.7 if edit distance is defined to be the number of 
insertions, deletions, mutations, and transpositions needed to transform 
one string into another. 

! Exercise 3.5.9 : Prove that the edit distance discussed in Exercise 
3.5.8 is indeed a distance measure. 
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Exercise 3.5.10 : Find the Hamming distances between each pair of the 
fol- lowing vectors: 000000, 110011, 010101, and 011100. 

5Note that what we are asking for is not precisely the cosine 
distance, but from the cosine of an angle, you can compute the 
angle itself, perhaps with the aid of a table or library function. 

3.8 THE THEORY OF LOCALITY-SENSITIVE 
FUNCTIONS 

The LSH technique developed in Section 3.4 is one example of a 
family of func- tions (the minhash functions) that can be combined (by 
the banding technique) to distinguish strongly between pairs at a low 
distance from pairs at a high dis- tance. The steepness of the S-curve in 
Fig. 3.7 reflects how effectively we can avoid false positives and false 
negatives among the candidate pairs. 

Now, we shall explore other families of functions, besides the minhash 
func- tions, that can serve to produce candidate pairs efficiently. These 
functions can apply to the space of sets and the Jaccard distance, or to 
another space and/or another distance measure. There are three 
conditions that we need for a family of functions: 

1. They must be more likely to make close pairs be candidate pairs 
than distant pairs. We make this notion precise in Section 3.6.1. 

2. They must be statistically independent, in the sense that it is 
possible to estimate the probability that two or more functions will 
all give a certain response by the product rule for independent 
events. 

3. They must be efficient, in two ways: 

(a) They must be able to identify candidate pairs in  time  much  less 
than the time it takes to look at all pairs. For example, minhash 
functions have this capability, since we can hash sets to minhash 
values in time proportional to the size of the data, rather than the 
square of the number of sets in the data. Since sets with common 
values are colocated in a bucket, we have implicitly produced the 
candidate pairs for a single minhash function in time much less than 
the number of pairs of sets. 

(b) They must be combinable to build functions that are better at 
avoid- ing false positives and negatives, and the combined functions 
must also take time that is much less than the number of pairs. For ex- 
ample, the banding technique of Section 3.4.1 takes single minhash 
functions, which satisfy condition 3a but do not, by themselves have 
the S-curve behavior we want, and produces from a number of min- 
hash functions a combined function that has the S-curve shape. 

Our first step is to define “locality-sensitive functions” generally. 
We then see how the idea can be applied in several applications. 
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Finally, we discuss how to apply the theory to arbitrary data with 
either a cosine distance or a Euclidean distance measure. 

3.8.1 Locality-Sensitive Functions 

For the purposes of this section, we shall consider functions that take 
two items and render a decision about whether these items should be 
a candidate pair. 

In many cases, the function f will “hash” items, and the decision will 
be based on whether or not the result is equal. Because it is 
convenient to use the notation f(x) = f(y) to mean that f(x, y)  is “yes;  
make x  and  y  a candidate pair,” we shall use f(x) = f(y) as a 
shorthand with this meaning. We also use f(x) = f(y) to mean “do 
not make x and y a candidate pair unless some other function 
concludes we should do so.” 

A collection of functions of this form will be  called a  family  of  
functions. For example, the family of minhash functions, each based on 
one of the possible permutations of rows of a characteristic matrix, 
form a family. 

Let d1 < d2 be two distances according to some distance measure d. 
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for 
every f in F: 

3.8.1.1 If d(x, y) ≤ d1, then the probability that f(x) = f(y) is at least 
p1. 

3.8.1.2 If d(x, y) ≥ d2, then the probability that f(x) = f(y) is at 
most p2. 

 
 
              p 
              1 
 
                                                                     Probabilty of being declared a candidate 
  
 P                                    
            2 
 
 
 
 
          d 1                                                               d 2 
                                    Distance 
 
Figure 3.9: Behavior of a (d1, d2, p1, p2)-sensitive function 

Figure 3.9 illustrates what we expect about the probability that a given 
function in a (d1, d2, p1, p2)-sensitive family will declare two items to 
be a can- didate pair. Notice that we say nothing about what happens 
when the distance between the items is strictly between d1 and d2, but 
we can make d1 and d2 as close as we wish.  The penalty is that 
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typically p1 and p2 are then close as well. As we shall see, it is possible 
to drive p1 and p2 apart while keeping d1 and d2 fixed. 

3.8.2  Locality-Sensitive Families for Jaccard Distance 

For the moment, we have only one way to find a family of 
locality-sensitive functions: use the family of minhash functions, and 
assume that the distance measure is the Jaccard distance. As before, 
we interpret a minhash function h to make x and y a candidate pair 
if and only if h(x) = h(y). 

The family of minhash functions is a (d1, d2, 1 −d1, 1 −d2)-sensitive 
family for any d1 and d2, where 0 ≤ d1 < d2 ≤ 1. 

The reason is that if d(x, y) ≤ d1, where d is the Jaccard distance, 
then SIM(x, y)  = 1     d(x, y)     1     d1.   But  we  know  that  the  
Jaccard similarity of x and y is equal to the probability that a 
minhash function will hash x and y to the same value. A similar 
argument applies to d2 or any distance. 

Example 3.17 : We could  let  d1 = 0.3 and d2  = 0.6.  Then  we can 
assert that the  family of minhash functions  is  a (0.3, 0.6, 0.7, 0.4)-
sensitive family.  That is, if the Jaccard distance between x and y  is at 
most 0.3 (i.e.,  SIM(x, y)       0.7) then there is at least a 0.7 chance 
that a minhash function will send x and y to the same value, and if the 
Jaccard distance between x and y is at least 0.6 (i.e., SIM(x, y)   0.4), 
then there is at most a 0.4 chance that x and y will be sent to the 
same value. Note that we could make the same assertion with another 
choice of d1 and d2; only d1 < d2 is required.  

3.8.3 Amplifying a Locality-Sensitive Family 

Suppose we are given a (d1, d2, p1, p2)-sensitive family F. We can 
construct a new family F′ by the AND-construction on F, which is 
defined as follows. Each member of F′ consists of r members of F 
for some fixed r. If f is in F′, and f is constructed from the set {f1, 
f2, . . . , fr} of members of F, we say f(x) = f(y) if and only if fi(x) 
= fi(y) for all i = 1, 2, . . . , r. Notice that this construction mirrors 
the effect of the r rows in a single band: the band makes x and y a 
candidate pair if every one of the r rows in the band say that x and y 
are equal (and therefore a candidate pair according to that row). 

Since the members of F are independentl y chosen to make a member 
of F′, we can assert that F′ is a   d1, d2, (p1)r, (p2)r  -sensitive family.  
That is, for any p, if p is the probability that a member of F will 
declare (x, y) to be a candidate pair, then the probability that a 
member of F′ will so declare is pr. 

There is another construction, which we call the OR-construction, that 
turn s a (d1, d2, p1, p2)-sensitive family F into a    d1, d2, 1 − (1 − p1)b, 1 − 
(1 − p2)b - sensitive family F′. Each member f of F′ is constructed 
from b members of F, say f1, f2, . . . , fb. We define f(x) = f(y) if 
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p 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 −  (1 −  p4)4 
0.0064 
0.0320 
0.0985 
0.2275 
0.4260 
0.6666 
0.8785 
0.9860 

and only if fi(x) = fi(y) for one or more values of i. The OR-
construction mirrors the effect of combining several bands: x and y 
become a candidate pair if any band makes them a candidate pair. 

If p is the probability that a member of F will declare (x, y) to be a 
candidate pair, then 1−p is the probability it will not so declare. (1−p)b is 
the probability that none of f1, f2, . . . , fb will declare (x, y) a 
candidate pair, and 1 − (1 − p)b is the probability that at least one fi will 
declare (x, y) a candidate pair, and therefore that f will declare (x, y) to 
be a candidate pair. 

Notice that the AND-construction lowers all probabilities, but if we 
choose F and r judiciously, we can make the small probability p2 get 
very close to 0, while the higher probability p1 stays significantly 
away from 0. Similarly, the OR- construction makes all 
probabilities rise, but by choosing F and b judiciously, we can make 
the larger probability approach 1 while the smaller probability 
remains bounded away from 1. We can cascade AND- and OR-
constructions in any order to make the low probability close to 0 and 
the high probability close to 1. Of course the more constructions we 
use, and the higher the values of r and b that we pick, the larger the 
number of functions from the original family that we are forced to 
use. Thus, the better the final family of functions is, the longer it 
takes to apply the functions from this family. 

Example 3.18 : Suppose we start with a family F. We use the AND-
construc- tion with r = 4  to  produce a  family F1.  We  then  apply  
the  OR-construction to F1 with b = 4 to produce a third family F2. 
Note that the members of F2 each are built from 16 members of F, and 
the situation is analogous to starting with 16 minhash functions and 
treating them as four bands of four rows each. 

 

Figure 3.10: Effect of the 4-way AND-construction followed by the 
4-way OR- construction 

The 4-way AND-function converts any probability p into p4. 
When we follow it by the 4-way OR-construction, that probability  
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  p 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

1 −  (1 −  p)4  4 

0.0140 
0.1215 
0.3334 
0.5740 
0.7725 
0.9015 
0.9680 

 
is further converted into 1 (1 p4)4. Some values of this transformation 
are indicated in Fig. 3.10. This function is an S-curve, staying low for 
a while, then rising steeply (although not too steeply; the slope never 
gets much higher than 2), and then leveling off at high values. Like 
any S-curve, it has a fixedpoint, the value of p that is left 
unchanged when we apply the function of the S-curve. In this 
case, the fixedpoint is the value of p for which p = 1 (1 p4)4. We 
can see that the fixedpoint is somewhere between 0.7 and 0.8. Below 
that value, probabilities are decreased, and above it they are increased. 
Thus, if we pick a high probability above the fixedpoint and a low 
probability below it, we shall have the desired effect that the low 
probability is decreased and the high probability is increased. Suppose 
F is the  minhash  functions,  regarded as  a  (0.2, 0.6, 0.8, 0.4)-sens- 
itive family. Then F2, the family constructed by a 4-way AND 
followed by a 4-way OR, is a (0.2, 0.6, 0.8785, 0.0985)-sensitive 
family, as we can read from the rows for 0.8 and 0.4 in Fig. 3.10. By 
replacing F by F2, we have reduced both the false-negative and false-
positive rates, at the cost of making application of the functions take 
16 times as long.  
 

Figure 3.11: Effect of the 4-way OR-construction followed by the 
4-way AND- construction 

Example 3.19 : For the same cost, we can apply a 4-way OR-
construction followed by a 4-way AND-construction. Figure 3.11 
gives the transformation on probabilities implied by this 
construction. For instance, suppose that F is a (0.2, 0.6, 0.8, 0.4)-
sensitive family. Then the constructed family is a (0.2, 0.6, 0.9936, 
0.5740)-sensitive family. This choice is not necessarily the best. 
Although the higher probability has moved much closer to 1, the lower 
probability has also raised,  increasing the number of false positives.  

Example 3.20 : We can cascade constructions as much as we like. For 
exam- ple, we could use the construction of Example 3.18 on the 
family of minhash functions and then use the construction of Example 
3.19 on the resulting family. The constructed family would then have 
functions each built from 256 minhash functions. It would, for instance 
transform a (0.2, 0.8, 0.8, 0.2)-sensitive family into a (0.2, 0.8, 
0.9991285, 0.0000004)-sensitive family.  

 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

118 

3.8.4 Exercises for Section 3.6 

Exercise 3.6.1 : What is the effect on probability of starting with the 
family of minhash functions and applying: 

(a) A 2-way AND construction followed by a 3-way OR 
construction. 

(b) A 3-way OR construction followed by a 2-way AND 
construction. 

(c) A 2-way AND construction followed by a 2-way OR construction, 
followed by a 2-way AND construction. 

(d) A 2-way OR construction followed by a 2-way AND construction, 
followed by a 2-way OR construction followed by a 2-way AND 
construction. 

Exercise 3.6.2 : Find the fixedpoints for each of the functions 
constructed in Exercise 3.6.1. 

! Exercise 3.6.3 : Any function of probability p, such as that of Fig. 
3.10, has a slope given by the derivative of the function. The maximum 
slope is where that derivative is a maximum.  Find the value of p that 
gives a maximum slope for the S-curves given by Fig. 3.10 and Fig. 
3.11. What are the values of these maximum slopes? 

!! Exercise 3.6.4 : Generalize Exercise 3.6.3 to give, as a function of r 
and b, the point of maximum slope and the value of that slope, for 
families of functions defined from the minhash functions by: 

(a) An r-way AND construction followed by a b-way OR 
construction. 

(b) A b-way OR construction followed by an r-way AND 
construction. 

3.9 LSH FAMILIES FOR OTHER DISTANCE 
MEASURES 

There is no guarantee that a distance measure has a locality-sensitive 
family of hash functions. So far, we have only seen such families for 
the Jaccard distance. In this section, we shall show how to construct 
locality-sensitive families for Hamming distance, the cosine distance 
and for the normal Euclidean distance. 

3.9.1 LSH Families for Hamming Distance 

It is quite simple to build a locality-sensitive family of functions for 
the Ham- ming distance. Suppose we have a space of d-dimensional 
vectors, and h(x, y) denotes the Hamming distance between vectors x 
and y. If we take any one position of the vectors, say the ith 
position, we can define the function fi(x) to be the ith bit of vector 
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x. Then fi(x) = fi(y) if and only if vectors x and y agree in the ith 
position. Then the probability that fi(x) = fi(y) for a ran- domly 
chosen i is exactly 1    h(x, y)/d;  i.e., it is the fraction of positions in 
which x and y agree. 

This situation is almost exactly like the one we encountered for 
minhashing. 

Thus, the family F consisting of the functions {f1, f2, . . . , fd} is 
a(d1, d2, 1 − d1/d, 1 − d2/d)-sensitive family of hash functions, for any d1 
< d2. There are only two differences between this family and the 
family of minhash functions. 

3.9.1.1 While Jaccard distance runs from 0 to 1, the Hamming  
distance on a vector space of dimension d runs from 0 to d. It is 
therefore necessary to scale the distances by dividing by d, to turn 
them into probabilities. 

3.9.1.2 While there is essentially an unlimited supply of minhash 
functions, the size of the family F for Hamming distance is only d. 

The first point is of no consequence; it only requires that we divide by 
d at appropriate times.  The second point is more serious.  If d is 
relatively small, then we are limited in the number of functions that 
can be composed using the AND and OR constructions, thereby 
limiting how steep we can make the S-curve be. 

3.9.2 Random Hyperplanes and the Cosine Distance 

Recall from Section 3.5.4 that the cosine distance between two vectors 
is the angle between the vectors. For instance, we see in Fig. 3.12 
two vectors x and y that  make an angle θ  between  them.  Note  that  
these vectors may be in a space of many dimensions, but they always 
define a plane, and the angle between them is measured in this plane.  
Figure 3.12 is a “top-view” of the plane containing x and y. 

 

Figure 3.12: Two vectors make an angle θ 
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Suppose we pick a hyperplane through the origin. This hyperplane 
intersects the plane of x and y in a line.  Figure 3.12 suggests two 
possible hyperplanes, one whose intersection is the dashed line and the 
other’s intersection is the dotted line. To pick a random hyperplane, 
we actually pick the normal vector to the hyperplane, say v. The 
hyperplane is then the set of points whose dot product with v is 0. 

First, consider a vector v that is normal to the hyperplane whose 
projection is represented by the dashed line in Fig. 3.12; that is, x and 
y are on different sides of the hyperplane. Then the dot products v.x 
and v.y will have different signs. If we assume, for instance, that v is a 
vector whose projection onto the plane of x and y is above the dashed 
line in Fig.  3.12,  then  v.x  is  positive, while v.y is negative. The 
normal vector v instead might extend in the opposite direction, below 
the dashed line. In that case v.x is negative and v.y is positive, but the 
signs are still different. 

On the other hand, the randomly chosen vector v could be normal to a 
hyperplane like the dotted line in Fig.  3.12.  In that  case,  both  v.x  
and v.y have the same sign. If the projection of v extends to the right, 
then both dot products are positive, while if v extends to the left, then 
both are negative. 

What is the probability that the randomly chosen vector is normal 
to a hyperplane that looks like the dashed line rather than the dotted 
line?  All angles for the line that is the intersection of the random 
hyperplane and the plane of x and y are equally likely. Thus, the 
hyperplane will look like the dashed line with probability θ/180 and 
will look like the dotted line otherwise. 

Thus, each hash function f in our locality-sensitive family F is 
built from a  randomly  chosen  vector  vf .   Given  two  vectors  x  and  
y,  say  f(x)  =  f(y)  if and  only  if  the  dot  products  vf .x  and  vf .y  
have  the  same  sign.   Then  F  is  a locality-sensitive family for the 
cosine distance. The parameters are essentially the same as for the 
Jaccard-distance family described in Section 3.6.2, except the scale of 
distances is 0–180 rather than 0–1. That is, F is a (d1, d2, (180 − 
d1)/180, (180 − d2)/180)-sensitive family of hash functions. From this 
basis, we can amplify the family as we wish, just as for the minhash-
based family. 

3.9.3 Sketches 

Instead of chosing a random vector from all possible vectors, it turns 
out to be sufficiently random if we restrict our choice to vectors 
whose components are +1 and    1.  The dot  product of  any vector x  
with  a vector v  of +1’s and     1’s is formed by adding the 
components of x where v is +1 and then subtracting the other 
components of x – those where v is −1. 

If we pick a collection of random vectors, say v1, v2, . . . , vn, then we 
can apply them to an arbitrary vector x by computing v1.x, v2.x, . . . , 

mu
no
tes
.in



 

 

Shingling of Documents 

121 

− 
− 

− 

− 

— − 

vn.x and then replacing any positive value by +1 and any negative 
value by 1. The result is called the sketch of x. You can handle 0’s 
arbitrarily, e.g., by chosing a result +1 or 1 at random. Since there is 
only a tiny probability of a zero dot product, the choice has 
essentially no effect. 

Example 3.21 : Suppose our space consists of 4-dimensional vectors, 
and we pick three random vectors:  v1  = [+1, −1, +1, +1], v2  = [−1, 
+1, −1, +1], and v3 = [+1, +1, −1, −1]. For the vector x = [3, 4, 5, 6], 
the sketch is [+1, +1, −1]. 

That is, v1.x = 3−4+5+6 = 10.  Since the result is positive, the first 
component of the sketch is +1. Similarly, v2.x = 2 and v3.x = 4, so 
the second component of the sketch is +1 and the third component 
is 1. 

Consider the vector y = [4, 3, 2, 1]. We can similarly compute its 
sketch to be [+1, 1, +1].  Since the  sketches for x and  y  agree in  1/3 
of the positions, we estimate that the angle between them is 120 
degrees. That is, a randomly chosen hyperplane is twice as likely to 
look like the dashed line in Fig. 3.12 than like the dotted line. 

The above conclusion turns out to be quite wrong. We can calculate 
the cosine of the angle between x and y to be x.y, which is 

6 × 1 + 5 × 2 + 4 × 3 + 3 × 4 = 40 

divided by the magnitudes of the two vectors. These magnitudes are 

√   

62 + 52 + 42 + 32 = 9.274 

and 
√

12 + 22 + 32 + 42 = 5.477. Thus, the cosine of the angle 
between x and y  is 0.7875, and this angle is about 38 degrees.  
However, if you look at all 16 different vectors v of length 4 that 
have +1 and  1 as components, you find that there are only four of 
these whose dot products with x and y have a  different  sign,  
namely  v2,  v3,  and  their  complements  [+1,    1, +1,    1]  and [  1,  1, 
+1, +1].   Thus, had we picked all sixteen of these vectors to form a 
sketch, the estimate of the angle would have been 180/4 = 45 degrees.  

3.9.4 LSH Families for Euclidean Distance 

Now, let us turn to the Euclidean distance (Section 3.5.2), and see if 
we can develop a locality-sensitive family of hash functions for this 
distance. We shall start with a 2-dimensional Euclidean space. Each 
hash function f in our family F will be associated with a randomly 
chosen line in this space. Pick a constant a and divide the line into 
segments of length a, as suggested by Fig. 3.13, where the “random” 
line has been oriented to be horizontal. 
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The segments of the line are the buckets into which function f hashes 
points. A point is hashed to the bucket in which its projection onto the 
line lies. If the distance d between two points is small compared with 
a, then there is a good chance the two points hash to the same bucket, 
and thus the hash function  f will declare the two points equal.  For 
example, if d = a/2, then there is at least a 50% chance the two points 
will fall in the same bucket. In fact, if the angle θ between the 
randomly chosen line and the line connecting the points is large, then 
there is an even greater chance that the two points will fall in the same 
bucket.  For instance, if θ  is 90 degrees, then  the two points are 
certain to fall in the same bucket. 

However, suppose d is larger than a. In order for there to be any 
chance of the two points falling in the same bucket, we need d cos θ ≤ a. 
The diagram of Fig. 3.13 suggests why this requirement holds. Note 
that even if d cos θ ≪ a it Bucket width a 

 

 

Figure 3.13: Two points at distance d a have a small chance of being 
hashed to the same bucket is still not certain that the two points will 
fall in the same bucket. However, we can guarantee the following.  If 
d  2a, then there is no more than a 1/3 chance the two points fall in the 
same bucket. The reason is that for cos θ to be less than 1/2, we need 
to have θ in the range 60 to 90 degrees. If θ is in the range 0 to 60 
degrees, then cos θ is more than 1/2. But since θ is the smaller angle 
between two randomly chosen lines in the plane, θ is twice as likely to 
be between 0 and 60 as it is to be between 60 and 90. 

We conclude that the family F just described forms a (a/2, 2a, 1/2, 
1/3)- sensitive family of hash functions. That is, for distances up to 
a/2 the proba- bility is at least 1/2 that two points at that distance will 
fall in the same bucket, while for distances at least 2a the probability 
points at that distance will fall in the same bucket is at most 1/3. We 
can amplify this family as we like, just as for the other examples of 
locality-sensitive hash functions we have discussed. 

3.9.5 More LSH Families for Euclidean Spaces 

There is something unsatisfying about the family of  hash functions  
developed in Section 3.7.4. First, the technique was only described for 

Points at 
distance d 
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− 

two-dimensional Euclidean spaces. What happens if our data is 
points in a space with many dimensions? Second, for Jaccard and 
cosine distances, we were able to develop locality-sensitive families 
for any pair of distances d1 and d2 as long as d1 < d2. In Section 3.7.4 
we appear to need the stronger condition d1 < 4d2. 

However, we claim that there is a locality-sensitive family of hash 
func- tions for any d1 < d2 and for any number of dimensions. The 
family’s hash functions still derive from random lines through the 
space and a bucket size a that partitions the line. We still hash 
points by projecting them onto the line. Given that d1 < d2, we may 
not know what the probability p1 is that two points at distance d1  
hash to the same bucket, but we can be certain that it is greater than 
p2, the probability that two points at distance d2 hash to the same 
bucket. The reason is that this probability surely grows as the 
distance shrinks. Thus, even if we cannot calculate p1 and p2 easily, 
we know that there is a (d1, d2, p1, p2)-sensitive family of hash 
functions for any d1 < d2  and any given number of dimensions. 

Using the amplification techniques of Section 3.6.3, we can then adjust 
the two probabilities to surround any particular value we like, and to 
be as far apart as we like. Of course, the further apart we want the 
probabilities to be, the larger the number of basic hash functions in F 
we must use. 

3.9.6 Exercises for Section 3.7 

Exercise 3.7.1 : Suppose we construct the basic family of six locality-
sensitive functions for vectors of length six. For each pair of the 
vectors 000000, 110011, 010101, and 011100, which of the six 
functions makes them candidates? 

Exercise 3.7.2 : Let us compute sketches using the following four 
“random” vectors: 

v1 = [+1, +1, +1, −1] v2 = [+1, +1, −1, +1] 

v3 = [+1, −1, +1, +1] v4 = [−1, +1, +1, +1] 

Compute the sketches of the following vectors. (a) [2, 3, 4, 5]. 

(b) [−2, 3, −4, 5]. 

(c) [2, −3, 4, −5]. 

For each pair, what is the estimated angle between them, according to 
the sketches? What are the true angles? 

Exercise 3.7.3 : Suppose we form sketches by using all sixteen of the 
vectors of length 4, whose components are each +1 or    1.   Compute 
the sketches of the three vectors in Exercise 3.7.2. How do the estimates 
of the angles between each pair compare with the true angles? 
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Exercise 3.7.4 : Suppose we form sketches using the four vectors from 
Exer- cise 3.7.2. 

! (a) What are the constraints on a, b, c, and d that will cause the 
sketch of the vector [a, b, c, d] to be [+1, +1, +1, +1]? 

!! (b) Consider two vectors [a, b, c, d] and [e, f, g, h]. What are the 
conditions on 

a, b, . . . , h that will make the sketches of these two vectors be the 
same? 

Exercise 3.7.5 :  Suppose we have points in  a 3-dimensional Euclidean 
space: p1 = (1, 2, 3), p2 = (0, 2, 4), and p3 = (4, 3, 2). Consider the 
three hash functions defined by the three axes (to make our 
calculations very easy).  Let  buckets be of length a, with one bucket 
the interval [0, a) (i.e., the set of points x such that 0 ≤ x < a), the next 
[a, 2a), the previous one [−a, 0), and so on. 

(a) For each of the three lines, assign each of the points to 
buckets, assuming 

a = 1. 

(b) Repeat part (a), assuming a = 2. 

(c) What are the candidate pairs for the cases a = 1 and a = 2? 

(d) For each pair of points, for what values of a will that pair be a 
candidate pair? 

3.10 APPLICATIONS OF LOCALITY-SENSITIVE 
HASHING 

In this section, we shall explore three examples of how LSH is used 
in practice. In each case, the techniques we have learned must be 
modified to meet certain constraints of the problem. The three 
subjects we cover are: 

1. Entity Resolution: This term refers to matching data records that 
refer to the same real-world entity, e.g., the same person. The principal 
problem addressed here is that the similarity of records does not match 
exactly either the similar-sets or similar-vectors models of similarity 
on which the theory is built. 

2. Matching Fingerprints: It is possible to represent fingerprints as 
sets. However, we shall explore a different family of locality-sensitive 
hash func- tions from the one we get by minhashing. 

3. Matching Newspaper Articles: Here, we consider a different notion 
of shingling that focuses attention on the core article in an on-line 
news- paper’s Web page, ignoring all the extraneous material such as 
ads and newspaper-specific material. 
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3.10.1 Entity Resolution 

It is common to have several data sets available, and to know that they 
refer to some of the same entities. For example, several different 
bibliographic sources provide information about many of the same 
books or papers. In the general case, we have records describing 
entities of some type, such as people or books. The records may all 
have the same format, or they may have different formats, with 
different kinds of information. 

There are many reasons why information about an entity may vary, 
even if the field in question is supposed to be the same. For example, 
names may be expressed differently in different records because of 
misspellings, absence of a middle initial, use of a nickname, and 
many other reasons. For example, “Bob S. Jomes” and “Robert Jones 
Jr.”  may or may not be the same person.   If records come from 
different sources, the fields may differ as well. One source’s records 
may have an “age” field, while another does not. The second source 
might have a “date of birth” field, or it may have no information at all 
about when a person was born. 

3.10.2 An Entity-Resolution Example 

We shall examine a real example of how LSH was used to deal with an 
entity- resolution problem. Company A was engaged by Company B to 
solicit cus- tomers for B. Company B would pay A a yearly fee, as 
long as the customer maintained their subscription. They later 
quarreled and disagreed over how many customers A had provided to 
B. Each had about 1,000,000 records, some of which described the 
same people; those were the customers A had provided to B. The 
records had different data fields, but unfortunately none of those fields 
was “this is a customer that A had provided to B.” Thus, the 
problem was to match records from the two sets to see if a pair 
represented the same person. 

Each record had fields for the name, address, and phone number of the 
person. However, the values in these fields could differ for many 
reasons. Not only were there the misspellings and other naming 
differences mentioned in Section 3.8.1, but there were other 
opportunities to disagree as well. A customer might give their home 
phone to A and their cell phone to B. Or  they might move, and tell B 
but not A (because they no longer had need for a relationship with A). 
Area codes of phones sometimes change. 

The strategy for identifying records involved scoring the differences in 
three fields: name, address, and phone. To create a score describing the 
likelihood that two records, one from A and the other from B, 
described the same per- son, 100 points was assigned to each of the 
three fields, so records with exact matches in all three fields got a score 
of 300. However, there were deductions for mismatches in each of the 
three fields. As a first approximation, edit-distance (Section 3.5.5) was 
used, but the penalty grew quadratically with the distance. Then, 

mu
no
tes
.in



  

 

Track C Business Intelligence 
and Big Data Analytics –II 
(Mining Massive Data sets) 

126 

certain publicly available tables were used to reduce the penalty in ap- 
propriate situations. For example, “Bill” and “William” were treated as 
if they differed in only one letter, even though their edit-distance is 5. 

However, it is not feasible to score all one trillion pairs of records. 
Thus, a simple LSH was used to focus on likely candidates. Three 
“hash functions” were used. The first sent records to the same bucket 
only if they had identical names; the second did the same but for 
identical addresses, and the third did the same for phone numbers. In 
practice, there was no hashing; rather the records were sorted by name, 
so records with identical names would appear consecutively and get 
scored for overall similarity of the name, address, and phone. Then the 
records were sorted by address, and those with the same 

 

 

address were scored.  Finally, the records were sorted a third time by 
phone, and records with identical phones were scored. 

This approach missed a record pair that truly represented the same 
person but  none of the  three fields  matched exactly.  Since  the  goal 
was to  prove in a court of law that the persons were the same, it is 
unlikely that such a pair would have been accepted by a judge as 
sufficiently similar anyway. 

3.10.3 Validating Record Matches 

What remains is to determine how high a score indicates that two 
records truly represent the same individual.  In  the  example at  hand,  
there  was an easy way to make that decision, and the technique can be 
applied in many similar situations. It was decided to look at the 
creation-dates for the records at hand, and to assume that 90 days was 
an absolute maximum delay between the time the service was bought 
at Company A and registered at B. Thus, a proposed match between 
two records that were chosen at random, subject only to the constraint 
that the date on the B-record was between 0 and 90 days after the date 
on the A-record, would have an average delay of 45 days. 

When Are Record Matches Good Enough? 

While every case will be different, it may be of interest to 
know how the experiment of Section 3.8.3 turned out on 
the data of Section 3.8.2. For scores down to 185, the 
value of x was very close to 10; i.e., these scores 
indicated that the likelihood of the records representing 
the same person was essentially 1. Note that a score of 
185 in this example represents a situation where one 
field is the same (as would have to be the case, or the 
records would never even be scored), one field was 
completely different, and the third field had a small 
discrepancy. Moreover, for scores as low as 115, the 
value of x was noticeably less than 45, meaning that 
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It was found that of the pairs with a perfect 300 score, the average 
delay was 10 days. If you assume that 300-score pairs are surely correct 
matches, then you can look at the pool of pairs with any given score s, 
and compute the average delay of those pairs.  Suppose that the 
average delay is x, and the fraction of true matches among those pairs 
with score s is f. Then x = 10f + 45(1 − f), or x = 45 − 35f. Solving 
for f, we find that the fraction of the pairs with score s that are truly 
matches is (45 − x)/35. 

The same trick can be used whenever: 

3.10.3.1 There is a scoring system used to evaluate the likelihood that 
two records represent the same entity, and 

3.10.3.2 There is some field, not used in the scoring, from which 
we can derive a measure that differs, on average, for true pairs and 
false pairs. 

For instance, suppose there were a “height” field recorded by both 
companies A and B in our running example. We can compute the 
average difference in height for pairs of random records, and we can 
compute the average difference in height for records that have a perfect 
score (and thus surely represent the same entities). For a given score s, 
we can evaluate the average height difference of the pairs with that score 
and estimate the probability of the records representing the same 
entity. That is, if h0 is the average height difference for the perfect 
matches, h1 is the average height difference for random pairs, and h is 
the average height difference for pairs of score s, then the fraction of 
good pairs with score s is (h1 − h)/(h1 − h0). 

3.10.4 Matching Fingerprints 

When fingerprints are matched by computer,  the usual representation 
is  not an  image,  but  a set of  locations in  which  minutiae  are 
located. A  minutia, in the context of fingerprint descriptions, is a place 
where something unusual happens, such as two ridges merging or a 
ridge ending. If we place a grid over a fingerprint, we can represent the 
fingerprint by the set of grid squares in which minutiae are located. 

Ideally, before overlaying the grid, fingerprints are normalized for size 
and orientation, so that if we took two images of the same finger, we 
would find minutiae lying in exactly the same grid squares. We 
shall not consider here the best ways to normalize images. Let us 
assume that some combination of techniques, including choice of grid 
size and placing a minutia in several adjacent grid squares if it lies close 
to the border of the squares enables us to assume that grid squares 
from two images have a significantly higher probability of agreeing in 
the presence or absence of a minutia than if they were from images of 
different fingers. 
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Thus, fingerprints can be represented by sets of grid squares – those 
where their minutiae are located – and compared like any sets, using 
the Jaccard sim- ilarity or distance. There are two versions of 
fingerprint comparison, however. 

The many-one problem is the one we typically expect. A fingerprint 
has been found on a gun, and we want to compare it with all the 
fingerprints in a large database, to see which one matches. 

The many-many version of the problem is to take the entire database, 
and see if there are any pairs that represent the same individual. 

While the many-many version matches the model that we have been 
following for finding similar items, the same technology can be used to 
speed up the many-one problem. 

3.10.5 A LSH Family for Fingerprint Matching 

We could minhash the sets that represent a fingerprint, and use the 
standard LSH technique from Section 3.4. However, since the sets 
are chosen from a relatively small set of grid points (perhaps 1000), 
the need to minhash them into more succinct signatures is not clear. 
We shall study here another form of locality-sensitive hashing that 
works well for data of the type we are discussing. Suppose for an 
example that the probability of finding a minutia in a random grid 
square of a random fingerprint is 20%. Also, assume that if two 
fingerprints come from the same finger, and one has a minutia in a 
given grid square, then the probability that the other does too is 80%. 
We can define a locality-sensitive family of hash functions as 
follows. Each function f in this family F is defined by three grid 
squares. Function f says “yes” for two fingerprints if both have 
minutiae in all three grid squares, and otherwise f says “no.” Put 
another way, we may imagine that f sends to a single bucket all 
fingerprints that have minutiae in all three of f’s grid points, and 
sends each other fingerprint to a bucket of its own. In what follows, 
we shall refer to the first of these buckets as “the” bucket for f and 
ignore the buckets that are required to be singletons. 

If we want to solve the many-one problem, we can use many functions 
from the family F and precompute their buckets of fingerprints to 
which they answer “yes.” Then, given a new fingerprint that we want 
to match, we determine which of these buckets it belongs to and 
compare it with all the fingerprints found in any of those buckets. To 
solve the many-many problem, we compute the buckets for each of the 
functions and compare all fingerprints in each of the buckets. 

Let us consider how many functions we need to get a reasonable 
probability of catching a match, without having to compare the 
fingerprint on the gun with each of the millions of fingerprints in the 
database. First, the probability that two fingerprints from different 
fingers would be  in the  bucket for a function f in F is (0.2)6 = 
0.000064. The reason is that they will both go into the bucket only if 

• 

• 
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they each have a minutia in each of the three grid points associated 
with f, and the probability of each of those six independent events is 
0.2. 

Now, consider the probability that two fingerprints from the same 
finger wind up in the bucket for f. The probability that the first 
fingerprint has minutiae in each of the three squares belonging to f is 
(0.2)3 = 0.008.  However, if it does, then the probability is (0.8)3 = 
0.512 that the other fingerprint will as well. Thus, if the 
fingerprints are from the same finger, there is a 0.008 0.512 = 
0.004096 probability that they will both be in the bucket of f. That 
is not much; it is about one in 200. However, if we use many 
functions from F, but not too many, then we can get a good 
probability of matching fingerprints from the same finger while not 
having too many false positives – fingerprints that must be 
considered but do not match. 

Example 3.22 : For a specific example, let us suppose that we use 1024 
functions chosen randomly from F. Next, we shall construct a 
new fam- ily F1 by performing a 1024-way OR on F. Then the 
probability that F1 will put fingerprints from the same finger 
together in at least one bucket is 

1 (1     0.004096)1024  =  0.985.    On  the  other  hand,  the  probability  
that two fingerprints from different fingers will be placed in the 
same bucket is (1   (1   0.000064)1024  = 0.063.   That  is,  we  get  
about  1.5%  false negatives and about 6.3% false positives.  

The result of Example 3.22 is not the best we can do. While it offers 
only a 1.5% chance that we shall fail to identify the fingerprint on the 
gun, it does force us to look at 6.3% of the entire database. Increasing 
the number of functions from F will  increase the  number  of false 
positives,  with  only  a small benefit of reducing the number of false 
negatives below 1.5%. On the other hand, we can also use the AND 
construction, and in so doing, we can greatly reduce the probability 
of a false positive, while making only a small increase in the false-
negative rate. For instance, we could take 2048 functions from F in 
two groups of 1024. Construct the buckets for each of the functions. 
However, given a fingerprint P on the gun: 

1. Find the buckets from the first group in which P belongs, and 
take the union of these buckets. 

2. Do the same for the second group. 

3. Take the intersection of the two unions. 

4. Compare P only with those fingerprints in the intersection. 

Note that we still have to take unions and intersections of large sets of 
finger- prints, but we compare only a small fraction of those. It is the 
comparison of fingerprints that takes the bulk of the time; in steps 
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(1) and (2) fingerprints can be represented by their integer indices in 
the database. 

If we use this  scheme,  the  probability of detecting  a matching  
fingerprint is (0.985)2 = 0.970; that is, we get about 3% false negatives. 
However, the probability of a false positive is (0.063)2 = 0.00397. 
That is, we only have to examine about 1/250th of the database. 

3.10.6 Similar News Articles 

Our last case study concerns the problem of organizing a large 
repository of on-line news articles by grouping together Web pages 
that were derived from the same basic text. It is common for 
organizations like The Associated Press to produce a news item and 
distribute it to many newspapers. Each newspaper puts the story in its 
on-line edition, but surrounds it by information that is special to that 
newspaper, such as the name and address of the newspaper, links to 
related articles, and links to ads. In addition, it is common for the 
newspaper to modify the article, perhaps by leaving off the last few 
paragraphs or even deleting text from the middle. As a result, the same 
news article can appear quite different at the Web sites of different 
newspapers. 

The problem looks very much like the one that was suggested in 
Section 3.4: find documents whose shingles have a high Jaccard 
similarity. Note that this problem is different from the problem of 
finding news articles that tell about the same events. The latter problem 
requires other techniques, typically examining the set of important 
words in the documents (a concept we discussed briefly in Section 
1.3.1) and clustering them to group together different articles about the 
same topic. 

However, an interesting variation on the theme of shingling was found 
to be more effective for data of the type described. The problem is that 
shingling as we described it in Section 3.2 treats all parts of a 
document equally. However, we wish to ignore parts of the document, 
such as ads or the headlines of other articles to which the newspaper 
added a link, that are not part of the news article. It turns out that there 
is a noticeable difference between text that appears in prose and text 
that appears in ads or headlines. Prose has a much greater frequency of 
stop words, the very frequent words such as “the” or “and.” The total 
number of words that are considered stop words varies with the 
application, but it is common to use a list of several hundred of the 
most frequent words. 

Example 3.23 : A typical ad might say simply  “Buy Sudzo.”  On  the  
other hand, a prose version of the same thought that might appear in 
an article is “I recommend that you buy Sudzo for your laundry.” In 
the latter sentence, it would be normal to treat “I,” “that,” “you,” 
“for,” and “your” as stop words. 
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Suppose we define a shingle to be a stop word followed by the next 
two words. Then the ad “Buy Sudzo” from Example  3.23  has  no  
shingles  and would not be reflected in the representation of the Web 
page containing that ad. On the other hand, the sentence from Example 
3.23 would be represented by five shingles:  “I recommend that,” “that 
you buy,” “you buy Sudzo,” “for your laundry,” and “your laundry x,” 
where x is whatever word follows that sentence. 

Suppose we have two Web pages, each of which consists of half news 
text and half ads or other material that has a low density of stop words. 
If the news text is the same but the surrounding material is different, 
then we would expect that a large fraction of the shingles of the two 
pages would be the same. They might have a Jaccard similarity of 
75%. However, if the surrounding material is the same but the news 
content is different, then the number of common shingles would be 
small, perhaps 25%. If we were to use the conventional shingling, 
where shingles are (say) sequences of 10 consecutive characters, we 
would expect the two documents to share half their shingles (i.e., a 
Jaccard similarity of 1/3), regardless of whether it was the news or the 
surrounding material that they shared. 

3.10.7 Exercises for Section 3.8 

Exercise 3.8.1 : Suppose we are trying to perform entity resolution 
among bibliographic references, and we score pairs of references based 
on the similar- ities of their titles, list of authors, and place of 
publication. Suppose also that all references include a year of 
publication, and this year is equally likely to be any of the ten most 
recent years. Further, suppose that we discover that among the pairs of 
references with a perfect score, there is an average difference in the 
publication year of 0.1.6 Suppose that the pairs of references with a 
certain score s are found to have an average difference in their 
publication dates of 2. What is the fraction of pairs with score s that 
truly represent the same pub- lication? Note:  Do  not  make the  
mistake of assuming the  average difference in publication date 
between random pairs is 5 or 5.5. You need to calculate it exactly, and 
you have enough information to do so. 

Exercise 3.8.2 : Suppose we use the family F of  functions described  in 
Sec- tion 3.8.5, where there is a 20% chance of a minutia in an grid 
square, an 80% chance of a second copy of a fingerprint having a 
minutia in a grid square where the first copy does, and each function in 
F being formed from three grid squares. In Example 3.22, we 
constructed family F1 by using the  OR  construction on 1024 members 
of F.  Suppose we instead used family F2 that is a 2048-way OR of 
members of F. 

(a) Compute the rates of false positives and false negatives for F2. 

(b) How do these rates compare with what we get if we organize the 
same 2048 functions into a 2-way AND of members of F1, as was 
discussed at the end of Section 3.8.5? 
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Exercise 3.8.3 : Suppose fingerprints have the same statistics outlined 
in Ex- ercise 3.8.2, but we use a base family of functions F′ defined 
like F, but using only two randomly chosen grid squares. Construct 
another set of functions F′ from F′ by taking the n-way OR of 
functions from F′. What, as a function of n, are the false positive and 
false negative rates for F′ ? 

Exercise 3.8.4 : Suppose we use the functions F1 from Example 3.22, 
but we want to solve the many-many problem. 

(a) If two fingerprints are from the same finger, what is the probability 
that they will not be compared (i.e., what is the false negative 
rate)? 

(b) What fraction of the fingerprints from different fingers will be 
compared (i.e., what is the false positive rate)? 

! Exercise 3.8.5 : Assume we have the set of functions F as in 
Exercise 3.8.2, and we construct a new set of functions F3 by an n-
way OR of functions in 

F. For what value of n is the sum of the false positive and false 
negative rates minimized? 

6We might expect the average to be 0, but in practice, errors in 
publication year do occur. 

3.11 METHODS FOR HIGH DEGREES OF 
SIMILARITY 

LSH-based methods appear most effective when the degree of 
similarity we accept is relatively low. When we want to find sets that 
are almost identical, there are other methods that can be faster. 
Moreover, these methods are exact, in that they find every pair of items 
with the desired degree of similarity. There are no false negatives, as 
there can be with LSH. 

3.11.1 Finding Identical Items 

The extreme case is finding identical items, for example, Web pages 
that are identical, character-for-character. It is straightforward to 
compare two docu- ments and tell whether they are identical, but we 
still must avoid having to compare every pair of documents. Our first 
thought would be to hash docu- ments based on their first few 
characters, and compare only those documents that fell into the same 
bucket. That scheme should work well, unless all the documents begin 
with the same characters, such as an HTML header. 

Our second thought would be to use a hash function that examines the 
entire document. That would work, and if we use enough buckets, it 
would be very rare that two documents went into the same bucket, yet 
were not identical. The downside of this approach is that we must 

mu
no
tes
.in



 

 

Shingling of Documents 

133 

{
 

examine every character of every document. If we limit our 
examination to a small number of characters, then we never have to 
examine a document that is unique and falls into a bucket of its own. 

A better approach is to pick some fixed random positions for all 
documents, and make the hash function depend only on these. This 
way, we can avoid a problem where there is a common prefix for all 
or most documents, yet we need not examine entire documents unless 
they fall into a bucket with another document. One problem with 
selecting fixed positions is that if some documents are short, they may 
not have some of the selected positions. However, if we are looking for 
highly similar documents, we never need to compare two documents 
that differ significantly in their length. We exploit this idea in 
Section 3.9.3. 

3.11.2 Representing Sets as Strings 

Now, let us focus on the harder problem of finding, in a large 
collection of sets, all pairs that have a high Jaccard similarity, say at 
least 0.9. We can represent a set by sorting the elements of the 
universal set in some fixed order, and representing any set by listing 
its elements in this order. The list is essentially a string of 
“characters,” where the characters are the elements of the universal set. 
These strings are unusual, however, in that: 

3.11.2.1 No character appears more than once in a string, and 

3.11.2.2 If two characters appear in two different strings, then they 
appear in the same order in both strings. 

Example 3.24 : Suppose the universal set consists of the 26 lower-case 
letters, and we use the normal alphabetical order. Then the set    d, a, b    
is represented by the string abd.  

In what follows, we shall assume all strings represent sets in the 
manner just described. Thus, we shall talk about the Jaccard similarity 
of strings, when strictly speaking we mean the similarity of the sets 
that the strings represent. Also, we shall talk of the length of a string, 
as a surrogate for the number of elements in the set that the string 
represents. 

Note that the documents discussed in Section 3.9.1 do  not exactly 
match this  model,  even though we can see documents as strings.  To  
fit the model, we would shingle the documents, assign an order to the 
shingles, and represent each document by its list of shingles in the 
selected order. 

3.11.3 Length-Based Filtering 

The simplest way to exploit the string representation of Section 3.9.2 is 
to sort the strings by length. Then, each string s is compared with 
those strings t that follow s in the list, but are not too long. Suppose 
the lower bound on Jaccard similarity between two strings is J. For 
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any string x, denote its length by Lx. Note that Ls ≤ Lt. The 
intersection of the sets represented by s and t cannot have more than Ls 
members, while their union has at least Lt members. Thus, the 
Jaccard similarity of s and t, which we denote SIM(s, t), is at most 
Ls/Lt. That is, in order for s and t to require comparison, it must be 
that J ≤ Ls/Lt, or equivalently, Lt ≤ Ls/J. 

Example 3.25 : Suppose that s is a string of length 9, and we are 
looking for strings with at least 0.9 Jaccard similarity. Then we have  
only  to  compare s with strings following it in the length-based sorted 
order that have length at most 9/0.9 = 10.  That is, we compare s with 
those strings of length 9 that follow it in order, and all strings of length 
10. We have no need to compare s with any other string. 

Suppose the length of s were 8 instead. Then s would be compared 
with following strings of length up to  8/0.9 = 8.89.  That is,  a string 
of length 9 would be too long to have a Jaccard similarity of 0.9 with s, 
so we only have to compare s with the strings that have length 8 but 
follow it in the sorted order. 

3.11.4 Prefix Indexing 

In addition to length, there are several other features of strings that can 
be exploited to limit the number of comparisons that must be made 
to identify all pairs of similar strings. The simplest of these options is 
to create an index for each symbol; recall a symbol of a string is any 
one of the elements of the universal set. For each string s, we select a 
prefix of s consisting of the first psymbols of s. How large p must be 
depends on Ls and J, the lower bound on Jaccard similarity. We 
add string s to the index for each of its first p symbols. In effect, the 
index for each symbol becomes a bucket of strings that must be 
compared.  We must be certain that any other string t such that 
SIM(s, t) will have  at least  one symbol in its prefix that also 
appears in the prefix of s. 

 

Suppose not; rather SIM(s,t) J, but t has none of the first p symbols 
of s.   Then the highest Jaccard similarity that s and t can have occurs 

A Better Ordering for Symbols 

Instead of using the obvious order for elements of the universal 
set, e.g., lexicographic order for shingles,  we  can  order 
symbols rarest first.  That is, determine how many times each 
element appears in the collection of sets, and order them by 
this count, lowest first. The advantage of doing so is that the 
symbols in prefixes will tend to be rare.   Thus,  they will cause 
that string to be placed in index buckets that have relatively 
few members. Then, when we need to examine a string for 
possible matches, we shall find few other strings that are 
candidates for comparison. 
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when t is a suffix of s, consisting of everything but the first p symbols of 
s. The Jaccard similarity of s and t would then be (Ls − p)/Ls. To be 
sure that we do not have to compare s with t, we must be certain 
that J  >  (Ls − p)/Ls.   That is, p must be at least   (1    J)Ls   + 1. Of 
course we want p to be as small as possible, so we do not index string s 
in more buckets than we need to. Thus, we shall hereafter take p =  (1 
J)Ls   + 1 to be the length of the prefix that gets indexed. 

Example 3.26 :  Suppose  J  =  0.9.   If  Ls  =  9,  then  p  =    0.1    
9   + 1  = 0.9 + 1 = 1. That is, we need to index s under only its 
first symbol. Any string t that does not have the first symbol of s in 
a position such that t is indexed by that symbol will have Jaccard 
similarity with s that is less than 0.9. Suppose  s  is  bcdefghij.  Then  
s  is  indexed  under  b  only.  Suppose  t  does  not begin with b. There 
are two cases to consider. 

1. If t  begins with a,  and SIM(s, t) 0.9, then it can only be that 
t is abcdefghij.  But  if  that  is  the  case,  t  will  be  indexed  under  both  a  
and 

b. The reason is that Lt = 10, so t will be indexed under the symbols 
of its prefix of length ⌊0.1 × 10⌋ + 1 = 2. 

2. If t begins with c or a later letter, then the maximum value of 
SIM(s, t) occurs when t  is cdefghij.  But then SIM(s, t) = 8/9 < 
0.9. 

In general, with J = 0.9, strings of length up to 9 are indexed by 
their first symbol, strings of lengths 10–19 are indexed under their 
first two symbols, strings of length 20–29 are indexed under their 
first three symbols, and so on. 

We can use the indexing  scheme in two ways, depending  on whether 
we are trying to solve the many-many problem or a many-one 
problem; recall the distinction was introduced in Section 3.8.4. For the 
many-one problem, we create the index for the entire database. To 
query for matches to a new set S, we convert that set to a string s, 
which we call the probe string. Determine the length of the prefix that 
must be considered, that is,   (1   J)Ls  + 1.  For each symbol 
appearing in one of the prefix positions of s, we look in the index 
bucket for that symbol, and we compare s with all the strings appearing 
in that bucket. 

If we want to solve the many-many problem, start with an empty 
database of strings and indexes. For each set S, we treat S as a new set 
for the many-one problem. We convert S to a string s, which we treat 
as a probe string in the many-one problem. However, after we examine 
an index bucket, we also add s to that bucket, so s will be compared 
with later strings that could be matches. 
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3.11.5 Using Position Information 

Consider the strings s = acdefghijk and t = bcdefghijk, and 
assume J  = 0.9. Since both strings are of length 10, they are 
indexed under their first two symbols. Thus, s is indexed under a 
and c, while t is indexed under b and c. Whichever is added last will 
find the other in the bucket for c, and they will be compared. 
However, since c is the second symbol of both, we know there will be 
two symbols, a and b in this case, that are in the union of the two 
sets but not in the intersection. Indeed, even though s and t are 
identical from c to the end, their intersection is 9 symbols and their 
union is 11; thus SIM(s, t) = 9/11, which is less than 0.9. 

If we build our index based not only on the symbol, but on the 
position of the symbol within the string, we could avoid comparing 
s and t above. That is, let our index have a bucket for each pair (x, i), 
containing the strings that have symbol x in position i of their prefix. 
Given a string s, and assuming J is the minimum desired Jaccard 
similarity, we look at the prefix of s, that is, the positions 1  through   
(1    J)Ls   + 1.  If the  symbol in  position  i  of the  prefix is x, add s to 
the index bucket for (x, i). 

Now consider s as a probe string. With what buckets must it be 
compared? We shall visit the symbols of the prefix of s from the left, 
and we shall take advantage of the fact that we only need to find a 
possible matching string t if none of the previous buckets we have 
examined for matches held t. That is, we only need to find a candidate 
match once. Thus, if we find that the ith symbol of s is x, then we 
need look in the bucket (x, j) for certain small values of j. 

To compute the upper bound on j, suppose t is a string none of whose 
first j  1 symbols matched anything in s, but the ith symbol of s is the 
same as the jth symbol of t. The highest value of SIM(s, t) occurs if 
s and t are identical Symbols definitely appearing in only one string 

 
                                                           s 
 
              t 
                                                      j 
Figure 3.14: Strings s and t begin with i 1 and j 1 unique symbols, 
respec- tively, and then agree beyond that beyond their ith and jth 
symbols, respectively, as suggested by Fig. 3.14. If that is the case, 
the size of their intersection is Ls i + 1, since that is the number of 
symbols of s that could possibly be in t. The size of their union is at 
least Ls + j 1. That is, s surely contributes Ls symbols to the union, 
and there are also at least j 1 symbols of t that are not in s. The ratio 
of the sizes of the intersection and union must be at least J, so we 
must have: 
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Ls − i + 1 J 

Ls + j − 1 

If we isolate j in this inequality, we have j ≤ 

Ls(1 − J) − i + 1 + J 

/J. 

Example  3.27 :  Consider  the  string  s  =  acdefghijk with  J  =  
0.9  discussed at the beginning of this section. Suppose s is now a 
probe string. We already established that we need to consider the 
first two positions; that is, i can be 1 or 2.  Suppose i = 1.  Then j   
(10   0.1    1 + 1 + 0.9)/0.9.  That is, we only have to compare the 
symbol a with strings in the bucket for (a, j) if j    2.11. Thus, j can be 
1 or 2, but nothing higher. 

Now suppose  i = 2.  Then we require j (10     0.1     2 + 1 + 
0.9)/0.9, Or j   1. We conclude that we must look in the buckets for (a, 
1), (a, 2), and (c, 1), but in no other bucket. In comparison, using the 
buckets of Section 3.9.4, we would look into the buckets for a and c, 
which is equivalent to looking to all buckets (a, j) and (c, j) for   
any j.  

3.11.6 Using Position and Length in Indexes 

When we considered the upper limit on j in the previous section, we 
assumed that what follows positions i and j were as in Fig. 3.14, where 
what followed these positions in strings s and t matched exactly. We 
do not want to build an index that involves every symbol in the strings, 
because that makes the total work excessive. However, we can add to 
our index a summary of what follows the positions being indexed. 
Doing so expands the number of buckets, but not beyond reasonable 
bounds, and yet enables us to eliminate many candidate matches 
without comparing entire strings. The idea is to use index buckets 
corresponding to a symbol, a position, and the suffix length, that is, the 
number of symbols following the position in question. 

Example  3.28 :  The string  s  =  acdefghijk, with  J  = 0.9, would 
be  indexed in the buckets for (a, 1, 9) and (c, 2, 8). That is, the first 
position of s has symbol a, and its suffix is of length 9. The second 
position has symbol c and its suffix is of length 8.  

Figure 3.14 assumes that the suffixes for position i of s and position j 
of t have the same length. If not, then we can either get a smaller upper 
bound on the size of the intersection of s  and t  (if t  is  shorter) or a  
larger lower bound on the size of the union (if t is longer). Suppose s 
has suffix length p and t has suffix length q. 

Case 1: p ≥ q.   Here, the maximum size of the intersection is Ls − i + 1 
− (p − q) 
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Since Ls  = i + p, we can write the  above expression for  the 
intersection size as q + 1. The minimum size of the union is Ls + j 1, 
as it was when we did not take suffix length into account. Thus, 
we require 

                           q + 1 

 

whenever p ≥ q. 

L  + j − 1 ≥ J 

Case 2:  p < q.   Here, the maximum size of the intersection is Ls i + 
1, as when suffix length was not considered. However, the minimum 
size of the union is now Ls + j − 1 + q − p. If we again use the 
relationship Ls = i + p, we can replace Ls   p by i and get the formula 
i + j    1 + q for the size of the union. If the Jaccard similarity is at 
least J, then 

  Ls − i + 1  J i + j − 1 + q 

whenever p < q. 

Example  3.29 :  Let us again consider the string s = acdefghijk, but 
to make the example show some details, let us choose J = 0.8 instead 
of 0.9. We know that Ls = 10. Since (1  J)Ls  + 1 = 3, we 
must consider prefix positions i = 1, 2, and 3 in what follows. As 
before, let p be the suffix length of s and q the suffix length of t. 

First,  consider the  case   p  q.  The  additional constraint we have on q  
and j is (q + 1)/(9 + j)   0.8. We can enumerate the pairs of values of j 
and q for each i between 1 and 3, as follows. 

i = 1: Here, p = 9, so q ≤ 9. Let us consider the possible values of q: 

q = 9: We must have 10/(9 + j) 0.8. Thus, we can have j = 1, 
j = 2, or j = 3. Note that for j = 4, 10/13 > 0.8. 

q = 8: We must have 9/(9 + j) 0.8. Thus, we can have j = 1 or 
j = 2. 

For j = 3, 9/12 > 0.8. 

q = 7: We must have 8/(9 + j) ≥ 0.8. Only j = 1 satisfies this 
inequality. q = 6: There are no possible values of j, since 7/(9 + j) > 
0.8 for every positive integer j. The same holds for every smaller 
value of q. 

i = 2: Here, p = 8, so we require q 8. Since the constraint 
(q+1)/(9+j)  0.8 does not depend on i,7 we can use the analysis from 
the above case, but exclude the case q = 9.  Thus, the only possible 
values of j and q  when i = 2 are 
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1.  q = 8; j = 1. 

2.  q = 8; j = 2. 

3.  q = 7; j = 1. 

i = 3:  Now, p = 7 and the constraints are q     7 and (q + 1)/(9 + j)     
0.8.  The only option is q = 7 and j = 1. 

Next, we must consider the case p < q. The additional constraint is 

  11 − i  0.8 

i + j + q − 1 
Again, consider each possible value of i. 

i = 1:  Then p = 9, so we require q    10 and 10/(q + j)    0.8.  The 
possible values of q and j are 

1. q = 10; j = 1. 

2. q = 10; j = 2. 

3. q = 11; j = 1. 

i = 2: Now, p = 8, so we require q     9 and 9/(q + j + 1)     0.8.  
Since j must be a positive integer, the only solution is q = 9 and j = 
1, a possibility that we already knew about. 

i = 3: Here, p = 7, so we require q 8 and 8/(q + j + 2) 0.8. There are 
no solutions. 

When we accumulate the possible combinations of i, j, and q, we see 
that the set of index buckets in which we must look forms a pyramid. 
Figure 3.15 shows the buckets in which we must search. That is, we 
must look in those buckets (x, j, q) such that the ith symbol of the 
string s is x, j is the position associated with the bucket and q the 
suffix length.  

7Note that i does influence the value of p, and through p, puts a 
limit on q. 

 q j = 1 j = 2 j = 3 

 7 x   

 8 x x  

i = 1 9 x x x 

 10 x x  

 11 x   

 7 x   
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i = 2 8 x x  

 9 x   

i = 3 7 x 

 

Figure 3.15: The buckets that must be examined to find possible 
matches for the string s =  acdefghijk with J  = 0.8 are marked 
with an x 

3.11.7 Exercises for Section 3.9 

Exercise 3.9.1 : Suppose our universal set is the lower-case letters, and 
the order of elements is taken to be the vowels, in alphabetic order, 
followed by the consonants in reverse alphabetic order. Represent the 
following sets as strings. 

a {q, w, e, r, t, y}. 

(b) {a, s, d, f, g, h, j, u, i}. 

Exercise 3.9.2 : Suppose we filter candidate pairs based only on length, 
as in Section 3.9.3. If s is a string of length 20, with what strings is s 
compared when J, the lower bound on Jaccard similarity has the 
following values: (a) J = 0.85 (b) J = 0.95 (c) J = 0.98? 

Exercise 3.9.3 : Suppose we have a string s of length 15, and we wish 
to index its prefix as in Section 3.9.4. 

(a) How many positions are in the prefix if J = 0.85? 

(b) How many positions are in the prefix if J = 0.95? 

! (c) For what range of values of J will s be indexed under its first four 
symbols, but no more? 

Exercise 3.9.4 : Suppose s is a string of length 12. With what symbol-
position pairs will s be compared with if we use the indexing approach 
of Section 3.9.5, and (a) J = 0.75 (b) J = 0.95? 

! Exercise 3.9.5 : Suppose we use position information in our index, as 
in Sec- tion 3.9.5.  Strings s  and t are both chosen at random from a 
universal set of 100 elements. Assume J = 0.9. What is the 
probability that s and t will be compared if 

(a) s and t are both of length 9. 

(b) s and t are both of length 10. 

Exercise 3.9.6 : Suppose we use indexes based on both position and 
suffix length, as in Section 3.9.6. If s is a string of length 20, with 
what symbol- position-length triples will s be compared with, if (a) 
J = 0.8 (b) J = 0.9? 
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3.12 SUMMARY OF UNIT 3 

✦ Jaccard Similarity: The Jaccard similarity of sets is the ratio of 
the size of the intersection of the sets to the size of the union. This 
measure of similarity is suitable for many applications, including 
textual similarity of documents and similarity of buying habits of 
customers. 

✦ Shingling: A k-shingle is any k characters that appear 
consecutively in a document.   If we represent a document by its set of 
k-shingles,  then the Jaccard similarity of the shingle sets measures 
the textual similarity of documents. Sometimes, it is useful to hash 
shingles to bit strings of shorter length, and use sets of hash values to 
represent documents. 

✦ Minhashing: A minhash function on sets is based on a permutation 
of the universal set. Given any such permutation, the minhash value 
for a set is that element of the set that appears first in the permuted 
order. 

✦ Minhash Signatures: We may represent sets by picking some list of 
per- mutations and computing for each set its minhash signature, 
which is the sequence of minhash values obtained by applying each 
permutation on the list to that set. Given two sets, the expected fraction 
of the permutations that will yield  the  same minhash  value  is exactly  
the  Jaccard similarity of the sets. 

✦ Efficient Minhashing: Since it is not really possible to generate 
random permutations, it is normal to simulate a permutation by picking 
a random hash function and taking the minhash value for a set to be the 
least hash value of any of the set’s members. 

✦ Locality-Sensitive Hashing for Signatures: This technique allows us  
to avoid computing the similarity of every pair of sets or their minhash 
sig- natures. If we are given signatures for the sets, we may divide 
them into bands, and only measure the similarity of a pair of sets if 
they are identi- cal in at least one band. By choosing the size of bands 
appropriately, we can eliminate from consideration most of the pairs 
that do not meet our threshold of similarity. 

✦ Distance Measures:  A distance measure is a function on pairs of 
points in a space that satisfy certain axioms. The distance between two 
points is 0 if the points are the same, but greater than 0 if the points are 
different. The distance is symmetric; it does not matter in which order 
we consider the two points. A distance measure must satisfy the 
triangle inequality: the distance between two points is never more than 
the sum of the distances between those points and some third point. 

✦ Euclidean Distance: The most common notion of distance is the 
Euclidean distance in an n-dimensional space. This distance, 
sometimes called the L2-norm, is the square root of the sum of the 
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squares of the differences between the points in each dimension. 
Another distance suitable for Eu- clidean spaces, called Manhattan 
distance or the L1-norm is the  sum of the magnitudes of the 
differences between the points in each dimension. 

✦ Jaccard Distance: One minus the Jaccard similarity is a distance 
measure, called the Jaccard distance. 

✦ Cosine Distance: The angle between vectors in a vector space is the 
cosine distance measure. We can compute the cosine of that angle by 
taking the dot product of the vectors and dividing by the lengths of 
the vectors. 

✦ Edit Distance:  This  distance measure applies  to  a  space of  
strings, and is the number of insertions and/or deletions needed to 
convert one string into the other. The edit  distance can also be  
computed  as the  sum  of the lengths of the strings minus twice the 
length of the longest common subsequence of the strings. 

✦ Hamming Distance: This distance measure applies to a space of 
vectors. The Hamming distance between two vectors is the number of 
positions in which the vectors differ. 

✦ Generalized Locality-Sensitive Hashing: We may start with any 
collection of functions, such as the minhash functions, that can 
render a decision as to whether or not a pair of items should be 
candidates for similarity checking. The only constraint on these 
functions is that they provide a lower bound on the probability of 
saying “yes” if the distance (according to some distance measure) is 
below a given limit, and an upper bound on the probability of saying 
“yes” if the distance is above another given limit. We can then increase 
the probability of saying “yes” for nearby items and at the same time 
decrease the probability of saying “yes” for distant items to as great an 
extent as we wish, by applying an AND construction and an OR 
construction. 

✦ Random Hyperplanes and LSH for Cosine Distance: We can get 
a set of basis functions to start a generalized LSH for the cosine 
distance measure by identifying each function with a list of 
randomly chosen vectors. We apply a function to a given vector v 
by taking the dot product of v with each vector on the list. The result 
is a sketch consisting of the signs (+1 or −1) of the dot products. The 
fraction of positions in which the sketches of two vectors agree, 
multiplied by 180, is an estimate of the angle between the two vectors. 

✦ LSH For Euclidean Distance: A set of basis functions to start 
LSH for Euclidean distance can be obtained by choosing random lines 
and project- ing points onto those lines. Each line is broken into fixed-
length intervals, and the function answers “yes” to a pair of points 
that fall into the same interval. 
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✦ High-Similarity Detection by String Comparison:  An alternative 
approach to finding similar items, when the threshold of Jaccard 
similarity is close to 1, avoids using minhashing and LSH. Rather, the 
universal set is ordered, and sets are represented by strings,  consisting 
their elements in order. The simplest way to avoid comparing all pairs 
of sets or their strings is to note that highly similar sets will have 
strings of approximately the same length.  If we sort the strings, we 
can compare each string with only a small number of the immediately 
following strings. 

✦ Character Indexes: If we represent sets by strings, and the 
similarity threshold is close to 1, we can index all strings by their first 
few characters. The prefix whose characters must be indexed is 
approximately the length of the string times the maximum Jaccard 
distance (1 minus the minimum Jaccard similarity). 

✦ Position Indexes:  We  can index  strings not only on the  characters 
in their prefixes, but on the position of that character within the prefix. 
We reduce the number of pairs of strings that must be compared, 
because if two strings share a character that is not in the first position in 
both strings, then we know that either there are some preceding 
characters that are in the union but not the intersection, or there is an 
earlier symbol that appears in both strings. 

✦ Suffix Indexes: We can also index strings based not only on the 
characters in their  prefixes and the positions of those characters, but 
on the length of the character’s suffix – the number of positions that 
follow it in the string. This structure further reduces the number of 
pairs that must be compared, because a common symbol with different 
suffix lengths implies additional characters that must be in the union 
but not in the intersection. 
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4 
MINING DATA STREAMS 

Unit Structure 

4.1 Introduction to streams concept: 

4.2  The Stream Data Model 

4.3 Sampling Data in a Stream 

4.4  Filtering Streams 

4.5  Counting Distinct Elements in a Stream 

4.6  Estimating Moments 

4.7 Filtering Streams 

4.8 Sampling Data in a Stream 

4.9 Counting Distinct Elements in a Stream 

4.1 INTRODUCTION TO STREAMS CONCEPT: 

In this chapter, we shall make another assumption: data arrives in a 
stream or  streams, and if it is not processed immediately or stored, then 
it is lost forever. Moreover, we shall assume that the data arrives so 
rapidly that it is not feasible to store it all in active storage (i.e., in a 
conventional database), and then interact with it at the time of our 
choosing. 

The algorithms for processing streams each involve summarization of 
the stream in some way. We shall start by considering how to make a 
useful sample of a stream and how to filter a stream to eliminate most 
of the “undesirable” elements. We then show how to estimate the 
number of different elements in a stream using much less storage than 
would be required if we listed all the elements we have seen. 

Another approach to summarizing a stream is to look at only a fixed-
length “window” consisting of the last n elements for some (typically 
large) n.   We then query the window as if it  were a  relation in  a  
database.  If there  are many streams and/or n is large, we may not be 
able to store the entire window for every stream, so we need to 
summarize even the windows. We address the fundamental problem of 
maintaining an approximate count on the number of 1’s in the window 
of a bit stream, while using much less space than would be needed to 
store the entire window itself. This technique generalizes to 
approximating various kinds of sums. 
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4.2 THE STREAM DATA MODEL 

Let us begin by discussing the elements of streams and stream 
processing. We explain the difference between streams and databases 
and the special problems that arise when dealing with streams. Some 
typical applications where the stream model applies will be examined. 

 

Figure 4.1: A data-stream-management system 

4.2.1 A Data-Stream-Management System 

In analogy to a database-management system, we can view a stream 
processor as a kind of data-management system, the high-level 
organization of which is suggested in Fig. 4.1. Any number  of streams 
can enter the system.  Each stream can provide elements at its own 
schedule; they need not have the same data rates or data types, and the 
time between elements of one stream need not be uniform.  The fact 
that the  rate of arrival of stream elements is  not under the control of 
the system distinguishes stream processing from the processing of 
data that goes on within a database-management system. The latter 
system controls the rate at which data is read from the disk, and 
therefore never has to worry about data getting lost as it attempts to 
execute queries. 

Streams may be archived in a large archival store, but we assume it is 
not possible to answer queries from the archival store. It could be 
examined only under special circumstances using time-consuming 
retrieval processes. There is also a working store, into which 
summaries or parts of streams may be placed, and which can be used 
for answering queries. The working store might be disk, or it might be 
main memory, depending on how fast we need to process queries. But 
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either way, it is of sufficiently limited capacity that it cannot store all 
the data from all the streams. 

4.2.2 Examples of Stream Sources 

Before proceeding, let us consider some of the ways in which stream 
data arises naturally. 

Sensor Data 

Imagine a temperature sensor bobbing about in the ocean, sending 
back to a base station a reading of the surface temperature each hour. 
The data produced by this sensor is a stream of real numbers. It is not a 
very interesting stream, since the data rate is so low. It would not stress 
modern technology, and the entire stream could be kept in main 
memory, essentially forever. 

Now, give the sensor a GPS unit, and let it report surface height 
instead of temperature. The surface height varies quite rapidly 
compared with tempera- ture, so we might have the sensor send back a 
reading every tenth of a second. If it sends a 4-byte real number each 
time, then it produces 3.5 megabytes per day. It will still take some 
time to fill up main memory, let alone a single disk. But one sensor 
might not be  that  interesting.  To  learn  something  about ocean 
behavior, we might want to deploy a million sensors, each sending 
back a stream, at the rate of ten per second. A million sensors isn’t 
very many; there would be one for every 150 square miles of ocean. 
Now we have 3.5 terabytes arriving every day, and we definitely need 
to think about what can be kept in working storage and what can 
only be archived. 

Image Data 

Satellites often send down to earth streams consisting of many 
terabytes of images per day. Surveillance cameras produce images 
with lower resolution than satellites, but there can be many of them, 
each producing a stream of images at intervals like one second. 
London is said to have six million such cameras, each producing a 
stream. 

Internet and Web Traffic 

A switching node in the middle of the Internet receives streams of 
IP packets from many inputs and routes them to its outputs. 
Normally, the job of the switch is to transmit data and not to retain 
it or query it. But there is a tendency to put more capability into the 
switch, e.g., the ability to detect denial-of-service attacks or the 
ability to reroute packets based on information about congestion in 
the network. 

Web sites receive streams of various types. For example, Google 
receives sev- eral hundred million search queries per day. Yahoo! 
accepts billions of “clicks” per day on its various sites. Many 
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interesting things can be learned from these streams. For example, an 
increase in queries like “sore throat” enables us to track the spread of 
viruses. A sudden increase in the click rate for a link could indicate 
some news connected to that page, or it could mean that the link is 
broken and needs to be repaired. 

4.2.3  Stream Queries 

There are two ways that queries get asked about streams. We show in 
Fig. 4.1 a place within the processor where standing queries are stored. 
These queries are, in a sense, permanently executing, and produce 
outputs at appropriate times. 

Example 4.1 : The stream  produced  by  the  ocean-surface-
temperature sen- sor mentioned at the  beginning  of Section 4.1.2 
might have a standing  query to output an alert whenever the 
temperature exceeds 25 degrees centigrade. This query is easily 
answered, since it depends only on the most recent stream element. 

Alternatively, we might have a standing query that, each time a new 
reading arrives, produces the average of the 24 most recent readings. 
That query also can be answered easily, if we store the 24 most recent 
stream elements. When a new stream element arrives, we can drop 
from the working store the 25th most recent element, since it will never 
again be needed (unless there is some other standing query that 
requires it). 

Another query we might ask is the maximum temperature ever 
recorded by that sensor. We can answer this query by retaining a 
simple summary: the maximum of all stream elements ever seen. It is 
not necessary to record the entire stream. When a new stream element 
arrives, we compare it with the stored maximum, and set the maximum 
to whichever is larger. We can then answer the query by producing  the  
current value  of the  maximum.  Similarly, if we want the average 
temperature over all time, we have only to record two values: the 
number of readings ever sent in the stream and the sum of those 
readings.  We can adjust these values easily each time a new reading 
arrives, and we can produce their quotient as the answer to the     
query.  

The other form of query is ad-hoc, a question asked once about the 
current state of a stream or streams. If we do not store all streams in 
their entirety, as normally we can not, then we cannot expect to answer 
arbitrary queries about streams. If we have some idea what kind of 
queries will be asked through the ad-hoc query interface, then we can 
prepare for them by storing appropriate parts or summaries of streams 
as in Example 4.1. 

If we want the facility to ask a wide variety of ad-hoc queries, a 
common approach is to store a sliding window of each stream in the 
working store. A sliding window can be the most recent n elements of 
a stream, for some n, or it can be all the elements that arrived within 
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the last t time units, e.g., one day. If we regard each stream element 
as a tuple, we can treat the window as a relation and query it with any 
SQL query. Of course the stream-management system must keep the 
window fresh, deleting the oldest elements as new ones come in. 

Example 4.2 :  Web sites often like to report the number of unique 
users over the past month.  If we think of each login as a stream 
element, we can maintain a window that is all logins in the most recent 
month. We must associate the arrival time with each login, so we know 
when it no longer belongs to the window.  If  we  think  of the  window 
as a relation Logins(name, time),  then it is simple to get the number of 
unique users over the past month. The SQL query is: 

SELECT COUNT(DISTINCT(name)) 

FROM Logins WHERE time >= t; 

Here, t is a constant that represents the time one month before the 
current time. 

Note that we must be able to maintain the entire stream of logins for 
the past month in working storage. However, for even the largest 
sites, that data is not more than a few terabytes, and so surely can be 
stored on disk. 

4.2.4 Issues in Stream Processing 

Before proceeding to discuss algorithms, let us consider the constraints 
under which we work when dealing with streams. First, streams often 
deliver elements very rapidly. We must process elements in real time, 
or we lose the opportunity to process them at all, without accessing the 
archival storage. Thus, it often is important that the stream-processing 
algorithm is executed in main memory, without access to secondary 
storage or with only rare accesses to secondary storage. Moreover, even 
when streams are “slow,” as in the sensor-data example of Section 4.1.2, 
there may be many such streams. Even if each stream by itself can be 
processed using a small amount of main memory, the requirements of 
all the streams together can easily exceed the amount of available main 
memory. 

Thus,  many problems about streaming data would be easy to  solve if 
we had enough memory, but become rather hard and require the 
invention of new techniques in order to execute them at a realistic rate 
on a machine of realistic size. Here are two generalizations about 
stream algorithms worth bearing in mind as you read through this 
chapter: 

4.2.4.1 Often, it is much more efficient to get an approximate answer 
to our problem than an exact solution. 

4.2.4.2 As in Chapter 3, a variety of techniques related to hashing turn 
out to be useful. Generally, these techniques introduce useful 
randomness into the algorithm’s behavior, in order to produce an 
approximate answer that is very close to the true result. 
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4.3 SAMPLING DATA IN A STREAM 

As our first example of managing streaming data, we shall look at 
extracting reliable samples from a stream. As with many stream 
algorithms, the “trick” involves using hashing in a somewhat 
unusual way. 

4.3.1  A Motivating Example 
The general problem we shall address is selecting a subset of a stream 
so that we can ask queries about the selected subset and have the 
answers be statistically representative of the stream as a whole. If we 
know what queries are to be asked, then there are a number of methods 
that might work, but we are looking for a technique that will allow ad-
hoc queries on the sample. We shall look at a particular problem, 
from which the general idea will emerge. 

Our running example is the following. A search engine receives a 
stream of queries, and it would like to study the behavior of typical 
users.1 We assume the stream consists of tuples (user, query, time). 
Suppose that we want to answer queries such as “What fraction of the 
typical user’s queries were repeated over the past month?” Assume 
also that we wish to store only 1/10th of the stream elements. 

The obvious approach would be to generate a random number, say an 
integer from 0 to 9, in response to each search query. Store the tuple if 
and only if the random number is 0. If we do so, each user has, on 
average, 1/10th of their queries stored. Statistical fluctuations will 
introduce some noise into the data, but if users issue many queries, the 
law of large numbers will assure us that most users will have a 
fraction quite close to 1/10th of their queries stored. 

However, this scheme gives us the wrong answer to the query 
asking for the average number of duplicate queries for a user. 
Suppose a user has issued s search queries one time in the past month, 
d search queries twice, and no search queries more than twice. If we 
have a 1/10th sample, of queries, we shall see in the sample for that 
user an expected s/10 of the search queries issued once. Of the d search 
queries issued twice, only d/100 will appear twice in the sample; that 
fraction is d times the probability that both occurrences of the query 
will be in the 1/10th sample. Of the queries that appear twice in the full 
stream, 18d/100 will appear exactly once. To see why, note that 18/100 
is the probability that one of the two occurrences will be in the 1/10th 
of the stream that is selected, while the other is in the 9/10th that is 
not selected. 

The correct answer to the query about the fraction of repeated searches 
is d/(s+d). However, the answer we shall obtain from the sample is 
d/(10s+19d). To derive the latter formula, note that d/100 appear twice, 
while s/10+18d/100 appear once. Thus, the fraction appearing twice 
in the sample is d/100 divided by d/100 + s/10 + 18d/100. This ratio 
is d/(10s + 19d). For no positive values of s and d is d/(s + d) = 
d/(10s + 19d). 
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4.3.2 Obtaining a Representative Sample 

The query of Section 4.2.1, like many queries about the statistics of  
typical users, cannot be answered by taking a sample of each user’s 
search queries. Thus, we must strive to pick 1/10th of the users, and 
take all their searches for the sample, while taking none of the searches 
from other users.  If we can store a list of all users, and whether or 
not they are in the sample, then we could do the following. Each 
time a search query arrives in the stream, we look up the user to see 
whether or not they are in the sample. If so, we add this search query 
to the sample, and if not,  then not.  However, if we have no record of 
ever having seen this user before, then we generate a random integer 
between 0 and 9. If the number is 0, we add this user to our list with 
value “in,” and if the number is other than 0, we add the user with the 
value “out.” 

That method works as long as we can afford to keep the list of all users 
and their in/out decision in main memory, because there isn’t time to 
go to disk for every search that arrives. By using a hash function, one 
can avoid keeping the list of users. That is, we hash each user name to 
one of ten buckets, 0 through 9. If the user hashes to bucket 0, then 
accept this search query for the sample, and if not, then not. 

Note we do not actually store the user in the bucket;  in fact,  there is 
no data in the buckets at all. Effectively, we use the hash function as a 
random- number generator, with the important property that, when 
applied to the same user several times, we always get the same 
“random” number. That is, without storing the in/out decision for any 
user, we can reconstruct that decision any time a search query by that 
user arrives. 

More generally, we can obtain a sample consisting of any rational 
fraction a/b of the users by hashing user names to b buckets, 0 through 
b − 1. Add the search query to the sample if the hash value is less 
than a. 

4.3.3 The General Sampling Problem 

The running example is typical of the following general problem. Our 
stream consists of tuples with n components. A subset of the 
components are the key components, on which the selection of the 
sample will be based. In our running example, there are three 
components – user, query, and time – of which only user is in the key. 
However, we could also take a sample of queries by making query be 
the key, or even take a sample of user-query pairs by making both 
those components form the key. 

To take a sample of size a/b, we hash the key value for each tuple to b 
buckets, and accept the tuple  for  the  sample if  the  hash value is less  
than a. If the key consists of more than one component, the hash 
function needs to combine the values for those components to make 
a single hash-value. The result will be a sample consisting of all 
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tuples with certain key values. The selected key values will be 
approximately a/b of all the key values appearing in the stream. 

4.3.4 Varying the Sample Size 

Often, the sample will grow as more of the stream enters the system. In 
our running  example,  we retain all the  search queries  of the selected 
1/10th of the users, forever. As time goes on, more searches for the 
same users will be accumulated, and new users that are selected for the 
sample will appear in the stream. 

If we have a budget for how many tuples from the stream can be stored 
as the sample, then the fraction of key values must vary, lowering as 
time goes on. In order to assure that at all times, the sample consists 
of all tuples from a subset of the key values, we choose a hash function 
h from key values to a very large number of values 0, 1, . . . , B −1. We 
maintain a threshold t, which initially can be the largest bucket 
number, B − 1. At all times, the sample consists of those tuples whose 
key K satisfies h(K) ≤ t. New tuples from the stream are added to 
the sample if and only if they satisfy the same condition. 

If the number of stored tuples of the sample exceeds the allotted space, 
we lower t to t −1 and remove from the sample all those tuples whose 
key K hashes to t. For efficiency, we can lower t by more than 1, and 
remove the tuples with several of the highest hash values, whenever 
we need to throw some key values out of the sample.  Further 
efficiency  is  obtained by maintaining an index on the hash value, so 
we can find all those tuples whose keys hash to a particular value 
quickly. 

4.3.5 Exercises for Section 4.2 

Exercise 4.2.1 : Suppose we have a stream of tuples with the schema 
Grades(university, courseID, studentID, grade) Assume universities 
are unique, but a courseID is unique only within a uni- versity (i.e., 
different universities may have different courses with the same ID, 
e.g., “CS101”) and likewise, studentID’s are unique only within a 
university (different universities may assign the same ID to different 
students).  Suppose we want to answer certain queries approximately 
from a 1/20th sample of the data. For each of the queries below, 
indicate how you would construct the sample. That is, tell what the 
key attributes should be. 

(a) For each university, estimate the average number of students in a 
course. 

(b) Estimate the fraction of students who have a GPA of 3.5 or more. 

(c) Estimate the fraction of courses where at least half the students got 
“A.” 
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4.4 FILTERING STREAMS 

Another common process on streams is selection, or filtering. We want 
to accept those tuples in the stream that meet a criterion. Accepted 
tuples are passed to another process as a stream, while other tuples are 
dropped. If the selection criterion is a property of the tuple that can be  
calculated (e.g.,  the first component is less than 10), then the selection 
is easy to do. The problem becomes harder when the criterion involves 
lookup for membership in a set.  It is especially hard, when that set is 
too large to store in main memory. In this section, we shall discuss the 
technique known as “Bloom filtering” as a way to eliminate most of 
the tuples that do not meet the criterion. 

4.4.1 A Motivating Example 

Again let us start with a running example  that  illustrates  the  problem 
and what we can do about it. Suppose we have a set S of one billion 
allowed email addresses – those that we will allow through because 
we believe them not to be spam. The stream consists of pairs: an email 
address and the email itself. Since the typical email address is 20 bytes 
or more, it is not reasonable to store S in main memory. Thus, we can 
either use disk accesses to determine whether or not to let through any 
given stream element, or we can devise a method that requires no more 
main memory than we have available, and yet will filter most of the 
undesired stream elements. 

Suppose for argument’s sake that we have one gigabyte of available 
main memory. In the technique known as Bloom filtering, we use that 
main memory as a bit array. In this case, we have room for eight 
billion bits, since one byte equals eight bits. Devise a hash function h 
from email addresses to eight billion buckets. Hash each member of S 
to a bit, and set that bit to 1. All other bits of the array remain 0. 

Since there are one billion members of S, approximately 1/8th of the 
bits will be 1. The exact fraction of bits set to 1 will be slightly less 
than 1/8th, because it is possible that two members of S hash to the 
same bit. We shall discuss the exact fraction of 1’s in Section 4.3.3. 
When a stream element arrives, we hash its email address.  If the bit to 
which that email address hashes is 1, then we let the email through. 
But if the email address hashes to a 0, we are certain that the address 
is not in S, so we can drop this stream element. 

Unfortunately, some spam email will get through. Approximately 
1/8th of the stream elements whose email address is not in S will 
happen to hash to a bit whose value is 1 and will be let through. 
Nevertheless, since the majority of emails are spam (about 80% 
according to some reports), eliminating 7/8th of the spam is a 
significant benefit. Moreover, if we want to eliminate every spam, we 
need only check for membership in S those good and bad emails 
that get through the filter. Those checks will require the use of 
secondary memory to access S itself. There are also other options, as 
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we shall see when we study the general Bloom-filtering technique. As 
a simple example, we could use a cascade of filters, each of which 
would eliminate 7/8th of the remaining spam. 

4.4.2 The Bloom Filter 

A Bloom filter consists of: 

1. An array of n bits, initially all 0’s. 

2. A collection of hash functions h1, h2, . . . , hk. Each hash 
function maps “key” values to n buckets, corresponding to the n 
bits of the bit-array. 

3. A set S of m key values. 

The purpose of the Bloom filter is to allow through all stream elements 
whose keys are in S, while rejecting most of the stream elements 
whose keys are not in S. 

To initialize the bit array, begin with all bits 0. Take each key value 
in S and hash it using each of the k hash functions. Set to 1 each bit 
that is hi(K) for some hash function hi and some key value K               
in S. 

To test a key K that arrives in the stream, check that all of h1(K), 
h2(K), . . . , hk(K) are 1’s in the bit-array. If all are 1’s, then let the 
stream element through. If one or more of these bits are 0, then K 
could not be in S, so reject the stream element. 

4.4.3 Analysis of Bloom Filtering 

If a key value is in S, then  the  element will  surely pass through the  
Bloom filter. However, if the key value is not in S, it might still pass. 
We need to understand how to calculate the probability of a false  
positive, as a function of n, the bit-array length, m the number of 
members of S, and k, the number of hash functions. 

The model to use is throwing darts at targets.  Suppose we have x 
targets and y  darts.  Any dart is equally likely to hit any target.  After 
throwing the darts, how many targets can we expect to be hit at least 
once? The analysis is similar to the analysis in Section 3.4.2, and 
goes as follows: 

4.4.3.1 The probability that a given dart will not hit a given target      
is (x − 1)/x. 

4.4.3.2 The probability that none of the y darts will hit a given 

target is (x−1 )y .     
     We can write this expression as  
4.4.3.3 Using the approximation (1 − �)1/� = 1/e for small � (recall 
Section 1.3.5), we conclude that the probability that none of the y darts 
hit a given target is e−y/x. 
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Example 4.3 : Consider the  running  example  of  Section  4.3.1.  We  
can  use the above calculation to get the true expected number of 1’s 
in the bit array. Think of each bit as a target, and each member of S 
as a dart. Then the probability that a given bit will be 1 is the 
probability that the corresponding target will be hit by one or more 
darts. Since there are one billion members of S, we have y = 109 darts. 
As there are eight billion bits, there are x = 8 × 109 targets.  Thus,  the 
probability that a given target is not hit is e−y/x = e−1/8 and the 
probability that it is hit is 1 − e−1/8. That quantity is about 0.1175. 
In Section 4.3.1 we suggested that 1/8 = 0.125 is a good 
approximation, which it is, but now we have the exact                
calculation.  

We can apply the rule to the more general situation, where set S has 
m members, the array has n bits, and there are k hash functions. The 
number of targets is x = n, and the number of darts is y = km. Thus, 
the probability that a bit remains 0 is e−km/n. We want the fraction 
of 0 bits to be fairly large, or else the probability that a nonmember 
of S will hash at least once to a 0 becomes too small, and there are 
too many false positives. For example, we might choose k, the 
number of hash functions to be n/m or less. Then the probability of a 
0 is at least e−1 or 37%. In general, the probability of a false positive 
is the probability of a 1 bit, which is 1 − e−km/n, raised to the kth 
power, i.e., (1 − e−km/n)k. 

Example  4.4 :  In Example 4.3 we found that the fraction of 1’s in the 
array of our running example is 0.1175, and this fraction is also the 
probability of a false positive. That is, a nonmember of S will pass 
through the filter if it hashes to a 1, and the probability of it doing 
so is 0.1175. 

Suppose we used the same S and the same array, but used two 
different hash functions. This situation corresponds to throwing two 
billion darts at eight billion targets, and the probability that a bit 
remains 0 is e−1/4. In order to be a false positive, a nonmember of S 
must hash twice to bits that are 1, and this probability is (1 − e−1/4)2, 
or approximately 0.0493. Thus, adding a second hash function for 
our running example is an improvement, reducing the false-positive 
rate from 0.1175 to 0.0493.   

4.4.4 Exercises for Section 4.3 

Exercise 4.3.1 : For the situation of our running example  (8  billion  
bits,  1 billion members of the set S), calculate the false-positive rate if 
we use three hash functions? What if we use four hash functions? 

! Exercise 4.3.2 : Suppose  we have n  bits  of  memory  available, and  
our set S has m members. Instead of using k hash functions, we 
could divide the n bits into k arrays, and hash once to each array. As 
a function of n, m, and k, what is the probability of a false positive? 
How does it compare with using k hash functions into a single 
array? 
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!! Exercise 4.3.3 : As  a  function  of  n,  the  number  of  bits  and  m  
the  number of members in the set S, what number of hash functions 
minimizes the false- positive rate? 

4.5 COUNTING DISTINCT ELEMENTS IN A 
STREAM 

In this section we look at a third simple kind of processing we 
might want to do on a stream. As with the previous examples – 
sampling and filtering – it is somewhat tricky to do what we want in a 
reasonable amount of main memory, so we use a variety of hashing 
and a randomized algorithm to get approximately what we want with 
little space needed per stream. 

4.5.1 The Count-Distinct Problem 

Suppose stream elements are chosen from some universal set. We 
would like to know how many different elements have appeared in the 
stream, counting either from the beginning of the stream or from some 
known time in the past. 

Example 4.5 : As a useful example of this problem, consider a Web 
site gath- ering statistics on how many unique users it has seen in each 
given month. The universal set is the set of logins for that site, and a 
stream element is generated each time someone logs in. This measure 
is appropriate for a site like Amazon, where the typical user logs in 
with their unique login name. 

A similar problem is a Web site like Google that does not require 
login to issue a search query, and may be able to identify users only 
by the IP address from which they send the query. There are about 4 
billion IP addresses,2 sequences of four 8-bit bytes will serve as the 
universal set in this case.  

The obvious way to solve the problem is to keep in main memory a list 
of all the elements seen so far in the stream. Keep them in an efficient 
search structure such as a hash table or search tree, so one can quickly 
add new elements and check whether or not the element that just 
arrived on the stream was already seen. As long as the number of 
distinct elements is not too great, this structure can fit in main 
memory and there is little problem obtaining an exact answer to the 
question how many distinct elements appear in the stream. 

However, if the number of distinct elements is too great, or if there are 
too many streams that need to be processed at once (e.g., Yahoo! 
wants to count the number of unique users viewing each of its pages in 
a month), then we cannot store the needed data in main memory. There 
are several options. We could use more machines, each machine 
handling only one or several of the streams. We could store most of the 
data structure in secondary memory and batch stream elements so 
whenever we brought a disk block to main memory there would be 
many tests and updates to be performed on the data in that block. Or 
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we could use the strategy to be discussed in this section, where we 
only estimate the number of distinct elements but use much less 
memory than the number of distinct elements. 

4.5.2 The Flajolet-Martin Algorithm 

It is possible to estimate the number of distinct elements by hashing 
the ele- ments of the universal set to a bit-string that is sufficiently 
long. The length of the bit-string must be sufficient that there are more 
possible results of the hash function than there are elements of the 
universal set. For example, 64 bits is sufficient to hash URL’s. We 
shall pick many different hash functions and hash each element of the 
stream using these hash functions. The important property of a hash 
function is that when applied to the same element, it always produces 
the same result. Notice that this property was also essential for the 
sampling technique of Section 4.2. 

The idea behind the Flajolet-Martin Algorithm is that the more 
different elements we see in the stream, the more different hash-values 
we shall see. As we see more different hash-values, it becomes more 
likely that one of these values will  be  “unusual.”  The particular 
unusual property we shall exploit is that the value ends in many 0’s, 
although many other options exist. 

Whenever we apply a hash function h to a stream element a, the bit 
string h(a) will end in some number of 0’s, possibly none. Call this 
number the tail length for a and h. Let R be the maximum tail 
length of any a seen so far in the stream. Then we shall use estimate 
2R for the number of distinct elements seen in the stream. 

This estimate makes intuitive sense. The probability that a given 
stream element a has h(a) ending in at least r 0’s is 2−r. Suppose 
there are m distinct elements in the stream. Then the probability that 
none of them has tail length at least r is (1 − 2−r)m. This sort of 
expression should be familiar by now.We can rewrite it as (1 − 

2−r)2    m2.  Assuming r is reasonably large, the inner  expression  
is  of  the  form  (1 − �)1/�,  which  is  approximately  1/e.   Thus, the 
probability of not finding a stream element with as many as r 0’s at 

the end of its hash value is e−m2−r . We can conclude: 

1. If m is much larger than 2r, then the probability that we shall find 
a tail of length at least r approaches 1. 

2. If m is much less than 2r, then the probability of finding a tail 
length at least r approaches 0. 

We conclude from these two points that the proposed estimate of m, 
which is 2R (recall R is the largest tail length for any stream element) is 
unlikely to be either much too high or much too low. 
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4.5.3  Combining Estimates 

Unfortunately, there is a trap regarding the strategy for combining the 
estimates of m, the number of distinct elements, that we obtain by 
using many different hash functions. Our first assumption would be 
that if we take the average of the values 2R that we get from each 
hash function, we shall get a value that approaches the true m, the 
more hash functions we use. However, that is not the case, and the 
reason has to do with the influence an overestimate has on the 
average. 

Consider a value of r such that 2r is much larger than m. There is 
some probability p that we shall discover r to be the largest number of 
0’s at the end of the hash value for any of the m stream elements. 
Then the probability of finding r + 1 to be the largest number of 0’s 
instead is at least p/2. However, if we do increase by 1 the number of 
0’s at the end of a hash value, the value of 2R doubles. 
Consequently, the contribution from each possible large R to the 
expected value of 2R grows as R grows, and the expected value of 2R is 
actually infinite.3 

Another way to combine estimates is to take the median of all 
estimates. The median is not affected by the occasional outsized value 
of 2R, so the worry described above for the average should not carry 
over to the median. Unfortu- nately, the median suffers from another 
defect: it is always a power of 2. Thus, no matter how many hash 
functions we use, should the correct value of m be between two powers 
of 2, say 400, then it will be impossible to obtain a close estimate. 

There is a solution to the problem, however. We can combine the two 
methods. First, group the hash functions into small groups, and take 
their average. Then, take the median of the averages. It is true that an 
occasional outsized 2R will bias some of the groups and make them too 
large. However, taking the median of group averages will reduce the 
influence of this effect almost to nothing. Moreover, if the groups 
themselves are large enough, then the averages can be essentially any 
number, which enables us to approach the true value m as long as we 
use enough hash functions. In order to guarantee that any possible 
average can be obtained, groups should be of size at least a small 
multiple of log2 m. 

4.5.4 Space Requirements 

Observe that as we read the stream it is not necessary to store the 
elements seen. The only thing we need to keep in main memory is one 
integer per hash function; this integer records the largest tail length 
seen so far for that hash function and any stream element. If we are 
processing only one stream, we could use millions of hash functions, 
which is far more than we need to get a close estimate. Only if we are 
trying to process many streams at the same time would main memory 
constrain the number of hash functions we could associate with any one 
stream. In practice, the time it takes to compute hash values for each 
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stream element would be the more significant limitation on the number 
of hash functions we use. 

4.5.5 Exercises for Section 4.4 

Exercise 4.4.1 :  Suppose our stream consists of the integers 3, 1, 4, 
1, 5, 9, 2, 6, 5. Our hash functions will all be of the form h(x) = ax + 
b mod 32 for some a and b. You should treat the result as a 5-bit 
binary integer. Determine the tail length for each stream element and 
the resulting estimate of the number of distinct elements if the hash 
function is: 

(a) h(x) = 2x + 1  mod 32. 

(b) h(x) = 3x + 7  mod 32. 

(c) h(x) = 4x mod 32. 

! Exercise 4.4.2 : Do you see any problems with the choice of hash 
functions in Exercise 4.4.1? What advice could you give someone 
who was going to use a hash function of the form h(x) = ax + b 
mod 2k? 

4.6 ESTIMATING MOMENTS 

In this section we consider a generalization of the problem of counting 
distinct elements in a stream. The problem, called computing 
“moments,” involves the distribution of frequencies of different 
elements in the stream. We shall define moments of all orders and 
concentrate on computing second moments, from which the general 
algorithm for all moments is a simple extension. 

4.6.1 Definition of Moments 

Suppose a stream consists of elements chosen from a universal set. 
Assume the universal set is ordered so we can speak of the ith 
element for any i. Let mi be the number of occurrences of the ith 
element for any i. Then the kth-order moment (or just kth moment) of 
the stream is the sum over all i of (mi)k. 

Example 4.6 : The 0th moment is the sum of 1 for each mi that is 
greater than 0.4  That is,  the 0th moment is  a count of the  number of 
distinct elements in the stream. We can use the method of Section 4.4 
to estimate the 0th moment of a stream. 

The 1st moment is the sum of the mi’s, which must be the length of the 
stream. Thus, first moments are especially easy to compute; just count 
the length of the stream seen so far. 

The second moment is the sum of the squares of the mi’s. It is 
some- times called the surprise number, since it measures how 
uneven the distribu- tion of elements in the stream is. To see the 
distinction, suppose we have a stream of length 100, in which 
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eleven different elements appear. The most even distribution of these 
eleven elements would have one appearing 10 times and the other ten 
appearing 9 times each. In this case, the surprise number is 102 + 10 
× 92 = 910. At the other extreme, one of the eleven elements could 
appear 90 times and the other ten appear 1 time each. Then, the 
surprise number would be 902 + 10 × 12 = 8110.  

As in Section 4.4, there is no problem computing moments of any 
order if we can afford to keep in main memory a count for each element 
that appears in the stream. However, also as in that section, if we 
cannot afford to use that much memory, then we need to estimate the 
kth moment by keeping a limited number of values in main memory and 
computing an estimate from these values.  For the case of distinct 
elements, each of these values were counts of the longest tail produced 
by a single hash function. We shall see another form of value that is 
useful for second and higher moments. 

4.6.2 The Alon-Matias-Szegedy Algorithm for Second Moments 

For now, let us assume that a stream has a particular length n. We 
shall show how to deal with growing streams in the next section. 
Suppose we do not have enough space to count all the mi’s for all the 
elements of the stream. We can still estimate the second moment of 
the stream using a limited amount of space; the more space we use, the 
more accurate the estimate will be. We compute some number of 
variables. For each variable X, we store: 

1. A particular element of the universal set, which we refer to as 
X.element , and 

2. An integer X.value, which is the value of the variable. To 
determine the value of a variable X, we choose a position in the 
stream between 1 and n, uniformly and at random. Set X.element 
to be the element found there, and initialize X.value to 1. As we 
read the stream, add 1 to X.value each time we encounter another 
occurrence of X.element . 

Example 4.7 : Suppose the stream is a, b, c, b, d, a, c, d, a, b, d, c, a, a, 
b. The length of the stream is n = 15. Since a appears 5 times, b 
appears 4 times, and c and d appear three times each, the second 
moment for the stream is 52 + 42 + 32 + 32 = 59. Suppose we keep 
three variables, X1, X2, and X3. Also, assume that at “random” we 
pick the 3rd, 8th, and 13th positions to define these three variables. 

When we reach position 3, we find element c, so we set X1.element 
= c and X1.value = 1. Position 4 holds b, so we do not change X1. 
Likewise, nothing happens at positions 5 or 6. At position 7, we see 
c again, so we set X1.value = 2. 

At position 8 we find d, and so set X2.element = d and X2.value  = 1. 
Positions 9 and 10 hold a and b, so they do not affect X1 or X2.  
Position 11 holds d so we set X2.value = 2, and position 12 holds c so 
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we set X1.value  = 3. At position 13, we find element a, and so set 
X3.element = a and X3.value = 1. Then, at position 14 we see another 
a  and so set  X3.value  = 2.  Position 15, with element b does not 
affect any of the variables, so we are done, with final values X1.value 
= 3 and X2.value = X3.value = 2.  

We can derive an estimate of the second moment from any variable X. 
This estimate is n(2X.value − 1). 

Example 4.8 : Consider the three variables from Example 4.7. From 
X1 we derive the  estimate n(2X1.value − 1)  = 15 × (2 × 3 − 1)  = 
75.  The  other two variables, X2 and X3, each have value 2 at the 
end, so their estimates are 15 × (2 × 2 − 1) = 45. Recall that the true 
value of the second moment for this stream is 59. On the other hand, 
the average of the three estimates is 55, a fairly close 
approximation.  

Why the Alon-Matias-Szegedy Algorithm Works 

We can prove that the expected value of any variable constructed as 
in Sec- tion 4.5.2 is the second moment of the stream from which it 
is constructed. Some notation will make the argument easier to 
follow. Let e(i) be the stream element that appears at position i in the 
stream, and let c(i) be the number of times element e(i) appears in the 
stream among positions i, i + 1, . . . , n. 

Example 4.9 : Consider the stream of Example 4.7. e(6) = a, since 
the 6th position holds a.  Also, c(6) = 4, since a appears at positions 9, 
13, and 14, as well as at position 6. Note that a also appears at position 
1, but that fact does not contribute to c(6). Q 

The expected value of n(2X.value − 1) is the average over all 
positions ibetween 1 and n of n(2c(i) − 1), that is 

 

We can simplify the above by canceling factors 1/n and n, to get 

 

However, to make sense of the formula, we need to change the order of 
summation by grouping all those positions that have the same 
element. For instance, concentrate on some element a that appears ma 
times in the stream. The term for the last position in which a appears 
must be 2 × 1 − 1 = 1. The term for the next-to-last position in which 
a appears is 2 × 2 − 1 = 3. The positions with a before that yield 
terms 5, 7, and so on, up to 2ma − 1, which is the term for the first 
position in which a appears. That is, the formula for the expected 
value of 2X.value − 1 can be written: 

 E(n(2X.value − 1))= Σ 1 + 3 + 5 + · · · + (2ma − 1) 
a 
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Note that 1 +3 +5 +· · ·+(2ma −1) = (ma)2.  The proof is an easy 
induction on the number of terms in the sum. Thus, E(n(2X.value 
− 1))= Σa(ma)2 , which is the definition of the second moment.  

Higher-Order Moments 

We estimate kth moments, for k > 2, in essentially the same way as we 
estimate second moments. The only thing that changes is the way we 
derive an estimate from a variable. In Section 4.5.2 we used the 
formula n(2v − 1) to turn a value v, the count of the  number  of 
occurrences of some particular stream element a, into an estimate of 
the second moment. Then, in Section 4.5.3 we saw why this formula 
works: the terms 2v − 1, for v = 1, 2, . . . , m sum to m2, where m is 
the number of times a appears in the stream. 

Notice that 2v − 1 is the difference between v2 and (v − 1)2.  
Suppose we wanted  the  third  moment  rather  than  the  second                Σ.   Then  
all  we  have  to  do  is replace 2v−1 by v3−(v−1)3 = 3v2−3v+1. 
Then mΣ m

 v=1 3v2−3v+1 = m3, so we can use as our estimate of 
the third moment the formula n(3v2 − 3v + 1), where v = X.value is 
the value associated with some variable X. More generally, we can 
estimate kth moments for any k ≥ 2 by turning value v = X.value 
into n( vk − (v − 1)k ) 

4.6.3 Dealing With Infinite Streams 

Technically, the estimate we used for second and higher moments 
assumes that n, the stream length, is a constant. In practice, n grows 
with time. That fact, by itself,  doesn’t cause problems, since we store 
only the values of variables and multiply some function of that value 
by n when it is time to estimate the moment. If we count the number of 
stream elements seen and store this value, which only requires log n 
bits, then we have n available whenever we need it. 

A more serious problem is that we must be careful how we select the 
positions for the variables. If we do this selection once and for all, then 
as the stream gets longer, we are biased in favor of early positions, and 
the estimate of the moment will be too large. On the other hand, if we 
wait too long to pick positions, then early in the stream we do not have 
many variables and so will get an unreliable estimate. 

The proper technique is to  maintain  as many variables as we  can 
store at all times, and to throw some out as the stream grows. The 
discarded variables are replaced by new ones, in such a way that at all 
times, the probability of picking any one position for a variable is the 
same as that of picking any other position.  Suppose we have space to 
store s variables. Then the first s positions of the stream are each 
picked as the position of one of the s variables. 

 

Inductively, suppose we have seen n stream elements, and the 
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probability of any particular position being the position of a variable 
is uniform, that is s/n. When the (n+1)st element arrives, pick that 
position with probability s/(n+1). If not picked, then the s variables 
keep their same positions. However, if the (n + 1)st position is 
picked, then throw out one of the current s variables, with equal 
probability.  Replace the one discarded by a new variable whose 
element is the one at position n + 1 and whose value is 1. 

Surely, the probability that position n + 1  is  selected for  a variable is  
what it should be: s/(n + 1). However, the probability of every other 
position also is s/(n + 1), as we can prove by induction on n. By the 
inductive hypothesis, before the arrival of the (n + 1)st stream 
element, this probability was s/n. With probability 1 − s/(n + 1) the (n 
+ 1)st position will not  be  selected,  and the probability of each of 
the first n positions remains s/n. However, with probability s/(n + 
1), the (n + 1)st position is picked, and the probability for each of 
the first n positions is reduced by factor (s − 1)/s. Considering the two 
cases, the probability of selecting each of the first n positions is 

 Thus, we have shown by induction on the stream length n that all 
positions have equal probability s/n of being chosen as the position of 
a variable. 

4.6.4 Exercises for Section 4.5 

Exercise 4.5.1 : Compute the surprise number (second moment) for 
the stream 3, 1, 4, 1, 3, 4, 2, 1, 2. What is the third moment of this 
stream? 

 

!  Exercise  4.5.2 :  If a stream has n elements, of which m are distinct, 
what are the minimum and maximum possible surprise number, as a 
function of m and n? 

Exercise 4.5.3 : Suppose  we are given the  stream of  Exercise 4.5.1, 
to  which we apply the Alon-Matias-Szegedy Algorithm to estimate 
the surprise number. For each possible value of i, if Xi is a variable 

A General Stream-Sampling Problem 
Notice that the technique described in Section 4.5.5 actually 
solves a more general problem. It gives us a way to maintain a 
sample of s stream elements so that at all times, all stream 
elements are equally likely to be selected for the sample. 

As an example of where this technique can be useful, recall 
that in Section 4.2 we arranged to select all the tuples of a 
stream having key value in a randomly selected subset. 
Suppose that, as time goes on, there are too many tuples 
associated with any one key. We can arrange to limit the 
number of tuples for any key K to a fixed constant s by using 
the technique of Section 4.5.5 whenever a new tuple for key 
K arrives. 
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starting position i, what is the value of Xi.value? 

Exercise 4.5.4 : Repeat Exercise 4.5.3 if the intent of the variables is 
to com- pute third moments. What is the value of each variable at the 
end? What estimate of the third moment do you get from each 
variable? How does the average of these estimates compare with the 
true value of the third moment? 

Exercise 4.5.5 : Prove by induction on m that 1 + 3 + 5 +· · · +(2m 
− 1) = m2. 

Exercise 4.5.6 : If we wanted to compute fourth moments, how would 
we convert X.value to an estimate of the fourth moment? 

4.6 COUNTING ONES IN A WINDOW 

We now turn our attention to counting problems for streams. Suppose 
we have a window of length N on a binary stream. We want at all 
times to be able to answer queries of the form “how many 1’s are there 
in the last k bits?” for any k ≤ N . As in previous sections, we focus on 
the situation where we cannot afford to store the entire window. After 
showing an approximate algorithm for the binary case, we discuss how 
this idea can be extended to summing numbers. 

4.6.1 The Cost of Exact Counts 

To begin, suppose we want to be able to count exactly the number 
of 1’s in the last k bits for any k ≤ N . Then we claim it is 
necessary to store all N bits of the window, as any representation 
that used fewer than N bits could not work. In proof, suppose we 
have a representation that uses fewer than N bits to represent the N 
bits in the window. Since there are 2N sequences of N bits, but fewer 
than 2N representations, there must be two different bit strings w and x 
that have the same representation. Since w /= x, they must differ in 
at least one bit. Let the last k − 1 bits of w and x agree, but let them 
differ on the kth bit from the right end. 

Example 4.10 : If  w = 0101 and x = 1010, then k  = 1, since 
scanning from the right, they first disagree at position 1. If w = 
1001 and x = 0101, then k = 3, because they first disagree at the 
third position from the right.  

Suppose the data representing the contents of the window is whatever 
se- quence of bits  represents both w  and x.  Ask the query “how many 
1’s are in the last k  bits?”  The query-answering algorithm will 
produce the same an- swer, whether the window contains w or x, 
because the algorithm can only see their representation. But the correct 
answers are surely different for these two bit-strings. Thus, we have 
proved that we must use at least N bits to answer queries about the last 
k bits for any k. 

In fact, we need N  bits,  even if the  only  query we  can ask is  “how 
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many 1’s are in the entire window of length N ?” The argument is 
similar to that used above. Suppose we use fewer than N bits to 
represent the window, and therefore we can find w, x, and k as 
above. It might be that w and x have the same number of 1’s, as 
they did in both cases of Example 4.10. However, if we follow the 
current window by any N − k  bits, we will have a situation where the 
true window contents resulting from w and x are identical except for 
the leftmost bit, and therefore, their counts of 1’s are unequal. 
However, since the representations of w and x are the same, the 
representation of the window must still be the same if we feed the same 
bit sequence to these representations. Thus, we can force the answer to 
the query “how many 1’s in the window?” to be incorrect for one of 
the two possible window contents. 

4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm 

We shall present the simplest case of an algorithm called DGIM. This 
version of the algorithm uses O(log2 N ) bits to represent a window of 
N  bits,  and allows us to estimate the number of 1’s in the window 
with an error of no more than 50%.   Later, we shall discuss an 
improvement of the method that limits the error to any fraction � > 0, 
and still uses only O(log2 N ) bits (although with a constant factor that 
grows as  shrinks). 

To begin, each bit of the stream has a timestamp, the position in which 
it arrives. The first bit has timestamp 1, the second has timestamp 2, 
and so on. 

Since we only need to distinguish positions within the window of length 
N , we shall represent timestamps modulo N , so they can be represented 
by log2 N bits. If we also store the total number of bits ever seen in the 
stream (i.e., the most recent timestamp) modulo N , then we can 
determine from a timestamp modulo N where in the current window 
the bit with that timestamp is. 

We divide the window into buckets,5 consisting of: 

1. The timestamp of its right (most recent) end. 

2. The number of 1’s in the bucket. This number must be a power of 
2, and we refer to the number of 1’s as the size of the bucket. 

To represent a bucket, we need log2 N bits to represent the timestamp 
(modulo N ) of its right end. To represent the number of 1’s we only 
need log2 log2 N bits.  The  reason  is  that  we  know  this  number  i  is  
a  power  of  2,  say  2j ,  so  we can represent i by  coding  j  in  binary.  
Since  j  is  at most log2 N ,  it requires log2 log2 N bits. Thus, O(log N 
) bits suffice to represent a bucket. 

There are six rules that must be followed when representing a stream 
by buckets. 

 The right end of a bucket is always a position with a 1. 
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1 1 1 1 

 Every position with a 1 is in some bucket. 

 No position is in more than one bucket. 

 There are one or two buckets of any given size, up to some 
maximum size. 

 All sizes must be a power of 2. 

 Buckets cannot decrease in size as we move to the left (back in 
time). 

. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 

 0         0 

           
At least one    Two of size 4 One of   Two of 
of size 8 size 2      size 1 
         
Figure 4.2: A bit-stream divided into buckets following the DGIM 
rules 

Example  4.11 :  Figure 4.2 shows a bit  stream divided into  buckets in 
a way that satisfies the DGIM rules. At the right (most recent) end we 
see two buckets of size 1. To its left we see one bucket of size 2. 
Note that this bucket covers four positions, but only two of them are 
1. Proceeding left, we see two buckets of size 4, and we suggest that 
a bucket of size 8 exists further left. 

Notice that it is OK for some 0’s to lie between buckets. Also, observe 
from Fig. 4.2 that the buckets do not overlap; there are one or two of 
each size up to the largest size, and sizes only increase moving left. Q 

In the next sections, we shall explain the following about the DGIM 
algo- rithm: 

1. Why the number of buckets representing a window must be small. 

2. How to estimate the number of 1’s in the last k bits for any k, 
with an error no greater than 50%. 

3. How to maintain the DGIM conditions as new bits enter the 
stream. 

4.6.3 Storage Requirements for the DGIM Algorithm 

We observed that each bucket can be represented by O(log N ) bits. If 
the window has length N , then there are no more than N 1’s, surely. 
Suppose the largest bucket is of size 2j.  Then j  cannot exceed log2 N , 
or else there are more 1’s in this bucket than there are 1’s in the entire 
window. Thus, there are at most two buckets of all sizes from log2 N 
down to 1, and no buckets of larger sizes. 

. . . 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 . . . 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 
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We conclude that there are O(log N ) buckets. Since each bucket can be 
represented in O(log N ) bits, the total space required for all the buckets 
repre- senting a window of size N is O(log2 N ). 

4.6.4 Query Answering in the DGIM Algorithm 

Suppose we are asked how many 1’s there are in the last k bits of the 
window, for some 1 ≤ k ≤ N . Find the bucket b with the  earliest  
timestamp  that includes at least some of the k most recent bits. 
Estimate the number of 1’s to be the sum of the sizes of all the buckets 
to the right (more recent) than bucket b, plus half the size of b itself. 

Example 4.12 : Suppose the stream is that of Fig. 4.2, and k = 10. 
Then the query asks for the number of 1’s in the ten rightmost bits, 
which happen to be 0110010110. Let the current timestamp (time of 
the rightmost bit) be t. Then the two buckets with one 1, having 
timestamps t − 1 and t − 2 are completely included in the answer. The 
bucket of size 2, with timestamp t − 4, is also completely included. 
However, the rightmost bucket of size 4, with timestamp t − 8 is only 
partly included. We know it is the last bucket to contribute to the 
answer, because the next bucket to its left has timestamp less than t 
− 9 and thus is completely out of the window. On the other hand, we 
know the buckets to its right are completely inside the range of the 
query because of the existence of a bucket to their left with timestamp 
t − 9 or greater. 

Our estimate of the number of 1’s in the last ten positions is thus 6. 
This number is the two buckets of size 1, the bucket of size 2, and half 
the bucket of size 4 that is partially within range. Of course the 
correct answer is 5. 

Suppose the above estimate of the answer to a query involves a 
bucket b of  size  2j  that  is  partially  within  the  range  of  the  query.  
Let  us  consider  how far from the correct answer c our estimate could 
be. There are two cases: the estimate could be larger or smaller                 
than c. 

Case 1 : The estimate is less than c. In the worst case, all the 1’s of b are 
actually within the range of the query, so the estimate misses half 
bucket b, or 2j−1  1’s.  But  in  this  case,  c  is  at  least  2j;  in  fact  it  is  
at  least  2j+1 − 1,  since there is  at least one  bucket of each of  the  
sizes 2j−1,  2j−2, . . . , 1.  We  conclude that our estimate is at least 
50% of c. 

Case 2 : The estimate is greater than c. In the worst case, only the 
rightmost bit of bucket b is within range, and there is only one bucket 
of each of the sizes smaller  than  b.  Then  c = 1 + 2j−1 + 2j−2 + · · · 
+ 1 = 2j  and  the  estimate  we give is 2j−1 + 2j−1 + 2j−2 + · · · + 1 
= 2j + 2j−1 − 1.  We  see that  the estimate is no more than 50% 
greater than c. 

4.6.5 Maintaining the DGIM Conditions 
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Suppose we have a window of length N properly represented by 
buckets that satisfy the DGIM conditions. When a new bit comes in, 
we may need to modify the buckets, so they continue to represent the 
window and continue to satisfy the DGIM conditions. First, whenever 
a new bit enters: 

 Check the leftmost (earliest) bucket.  If  its timestamp has now 
reached the current timestamp minus N , then this bucket no longer 
has any of its 1’s in the window. Therefore, drop it from the list 
of buckets. 

Now, we must consider whether the new bit is 0 or 1. If it is 0, then no 
further change to the buckets is needed. If the new bit is a 1, however, 
we may need to make several changes. First: 

• Create a new bucket with the current timestamp and size 1. 

If there was only one bucket of size 1, then nothing more needs to be 
done. However, if there are now three buckets of size 1, that is one too 
many. We fix this problem by combining the leftmost (earliest) two 
buckets of size 1. 

• To combine any two adjacent buckets of the same size, replace them 
by one bucket of twice the size. The timestamp of the new bucket is 
the timestamp of the rightmost (later in time) of the two buckets. 

Combining two buckets of size 1 may create a third bucket of size 2.  
If  so, we combine the leftmost two buckets of size 2 into a bucket of 
size 4. That, in turn, may create a third bucket of size 4, and if so we 
combine the leftmost two into a bucket of size 8. This process may 
ripple through the bucket sizes, but there are at most log2 N different 
sizes, and the combination of two adjacent buckets of the same size 
only requires constant time. As a result, any new bit can be processed 
in O(log N ) time. 

Example 4.13 : Suppose we start with the buckets of Fig. 4.2 and a 1 
enters. First, the leftmost bucket evidently has not fallen out of the 
window, so we do not drop any buckets. We create a new bucket of 
size 1 with the current timestamp, say t. There are now three 
buckets of size 1, so we combine the leftmost two. They are 
replaced with a single bucket of size 2. Its timestamp is t − 2, the 
timestamp of the bucket on the right (i.e., the rightmost bucket that 
actually appears in Fig. 4.2.  

0  0  
At least one size 8                  Two of size 4    Two of size2  Two of size1       
 
Figure 4.3: Modified buckets after a new 1 arrives in the stream 

There are now two buckets of size 2, but that is allowed by the DGIM 
rules. Thus, the final sequence of buckets after the addition of the 1 

. . . 1 0 1 1 0 1 1 0 0 0 1 
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is as shown in Fig. 4.3.  

4.6.6 Reducing the Error 

Instead of allowing either one or two of each size bucket, suppose we 
allow either r − 1 or r of each of the exponentially growing sizes 1, 2, 4, 
. . ., for some integer r > 2. In order to represent any possible 
number of 1’s, we must relax this condition for the buckets of size 1 
and buckets of the largest size present; there may be any number, 
from 1 to r, of buckets of these sizes. 

The rule for combining buckets is essentially the same as in Section 
4.6.5. If we  get  r + 1  buckets of  size  2j,  combine  the  leftmost  two  
into  a  bucket  of  size 2j+1.  That may, in turn, cause there to be r + 1 
buckets of size 2j+1, and if so we continue combining buckets of 
larger sizes. 

The argument used in Section 4.6.4 can also be used here. However, 
because there are more buckets of smaller sizes, we can get a stronger 
bound on the error. We saw there that the largest relative error occurs 
when only one 1 from the leftmost bucket b is within the query range, 
and we therefore overestimate the true  count.   Suppose  bucket  b  is  
of  size  2j.   Then  the  true  count  is  at  least 

 

1 + (r − 1)(2j−1 + 2j−2 + · · · + 1)  =  1 + (r − 1)(2j  − 1).   The  
overestimate  is 2j−1 − 1.  Thus, the fractional error is 

2j-1  − 1 
1 + (r − 1)(2j  − 1) 
No matter what j is, this fraction is upper bounded by 1/(r − 1). 
Thus, by picking r sufficiently large, we can limit the error to any 
desired  € > 0. 
 
4.6.7 Extensions to the Counting of Ones 

It is natural to ask whether we can extend the technique of this 
section to handle aggregations more general than counting 1’s in a 
binary stream. An obvious direction to look is to consider streams 
of integers and ask if we can estimate the sum of the last k integers 
for any 1 ≤ k ≤ N , where N , as usual, is the window size. 

Bucket Sizes and Ripple-Carry Adders 

There is a pattern to the distribution of bucket sizes as we 
execute the basic algorithm of Section  4.6.5.  Think  of two  
buckets of size 2j  as a  ”1” in  position  j  and  one  bucket  of  
size  2j  as  a  ”0”  in  that  position.   Then as 1’s arrive in the 
stream, the bucket sizes after each 1 form consecutive binary 
integers.   The occasional long sequences of bucket 
combinations are analogous to the occasional long rippling of 
carries as we go from an integer like 101111 to 110000. mu

no
tes
.in



 

 

Mining Data Streams 
 

169 

It is unlikely that we can use  the  DGIM  approach to streams 
containing both positive and negative integers. We could have a stream 
containing both very large positive integers and very large negative 
integers, but with a sum in the window that is very close to 0. Any 
imprecision in estimating the values of these large integers would have 
a huge effect on the estimate of the sum, and so the fractional error 
could be unbounded. 

For example, suppose we broke the stream into buckets as we have 
done, but represented the bucket by the sum of the integers therein, 
rather than the count of 1’s. If b is the bucket that is partially within 
the query range, it could be that b has, in its first half, very large 
negative integers and in its second half, equally large positive integers, 
with a sum of 0. If we estimate the contribution of b by half its sum, 
that contribution is essentially 0. But  the  actual contribution of that 
part of bucket b that is in the query range could be anything from 0 to 
the sum of all the positive integers. This difference could be far greater 
than the actual query answer, and so the estimate would be 
meaningless. 

On the other hand, some other extensions involving integers do work. 
Sup- pose that the stream consists of only positive integers in the 
range 1 to 2m for some m. We can treat each of the m bits of each 
integer as if it were a separate stream. We then use the DGIM method 
to count the 1’s in each bit.  Suppose the count of the ith bit (assuming 
bits count from  the  low-order end,  starting at 0) is ci. Then the sum 
of the integers is   

   

If we use the technique of Section 4.6.6 to estimate each ci with 
fractional error at most �, then the estimate of the true sum has error at 
most.  The worst case occurs when all the ci’s are overestimated or all 
are underestimated by the same fraction. 

4.6.8 Exercises for Section 4.6 

Exercise 4.6.1 : Suppose the window is as shown in Fig. 4.2. Estimate 
the number of 1’s the the last k positions, for k = (a) 5 (b) 15. In 
each case, how far off the correct value is your estimate? 

! Exercise 4.6.2 :  There  are  several ways  that the  bit-stream 
1001011011101 could be partitioned into buckets. Find all of them. 

Exercise 4.6.3 :  Describe what happens to the buckets if three more 
1’s enter the window represented by Fig. 4.3. You may assume none of 
the 1’s shown leave the window. 

4.7 DECAYING WINDOWS 

We have assumed that a sliding window held a certain tail of the 
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stream, either the most recent N elements for fixed N , or all the elements 
that arrived after some time in the past. Sometimes we do not want to 
make a sharp distinction between recent elements and those in the  
distant past,  but  want to  weight the recent elements more heavily. In 
this section, we consider “exponentially decaying windows,” and an 
application where they are quite useful: finding the most common 
“recent” elements. 

4.7.1 The Problem of Most-Common Elements 

Suppose we have a stream whose elements are the movie tickets 
purchased all over the world, with the name of the movie as part of 
the element. We want to keep a summary of the stream that is the 
most popular movies “currently.” While the notion of “currently” is 
imprecise, intuitively, we want to discount the popularity of a movie 
like Star Wars–Episode 4, which sold many tickets, but most of 
these were sold decades ago. On the other hand, a movie that sold n 
tickets in each of the  last 10 weeks is probably more popular than a 
movie that sold 2n tickets last week but nothing in previous weeks. 

One solution would be to imagine a bit stream for each movie.  The ith 
bit has value 1 if the ith ticket is for that movie, and 0 otherwise.  Pick 
a  window size N , which is the number of most recent tickets that 
would be considered in evaluating popularity. Then, use the method of 
Section 4.6 to estimate the number of tickets for each movie, and rank 
movies by their estimated counts. This technique might work for 
movies, because there are only thousands of movies, but it would fail if 
we were instead recording the popularity of items sold at Amazon, or 
the rate at which different Twitter-users tweet, because there are too 
many Amazon products and too many tweeters. Further, it only offers 
approximate answers. 

4.7.2  Definition of the Decaying Window 

An alternative approach is to redefine the question so that we are not 
asking for a count of 1’s in a window. Rather, let us compute a smooth 
aggregation of all the 1’s ever seen in the stream, with decaying 
weights, so the further back in the stream, the less weight is given. 
Formally, let a stream currently consist of the elements a1, a2, . . . , at, 
where a1 is the first element to arrive and at is the current element. Let 
c  be  a  small constant, such as 10−6  or 10−9.  Define the exponentially 
decaying window for this stream to be the sum 

                                  

The effect of this definition is to spread out the weights of the stream 
el- ements as far back in time  as the stream goes.   In contrast,  a fixed 
window with the same sum of the weights, 1/c, would put equal weight 
1 on each of the most recent 1/c elements to arrive and weight 0 on all 
previous elements. The distinction is suggested by Fig. 4.4. 
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                         Window of length 1/c 

Figure 4.4: A decaying window and a fixed-length window of equal 
weight It is much easier to adjust the sum in an exponentially 
decaying window than in a sliding window of fixed length.  In the 
sliding window, we have to worry about the element that falls out of 
the window each time a new element arrives. That forces us to keep 
the exact elements along with the sum, or to use an approximation 
scheme such as DGIM. However, when a new element at+1 arrives 
at the stream input, all we need to do is: 

1. Multiply the current sum by 1 − c. 

2. Add at+1. 

The reason this method works is that each of the previous elements has 
now moved one position further from the current element, so its weight 
is multiplied by 1 − c. Further, the weight on the current element is (1 − 
c)0 = 1, so adding at+1 is the correct way to include the new 
element’s contribution. 

4.7.3 Finding the Most Popular Elements 
Let us return to the problem of finding the most popular movies in a 
stream of ticket sales.6 We shall use an exponentially decaying 
window with a constant c, which you might think of as 10−9. That is, 
we approximate a sliding window holding the last one billion ticket 
sales. For each movie, we imagine a separate stream with a 1 each 
time a ticket for that movie appears in the stream, and a 0 each time a 
ticket for some other movie arrives. The decaying sum of the 1’s 
measures the current popularity of the movie. 

We imagine that the number of possible movies in the stream is huge, 
so we do not want to record values for the unpopular movies. 
Therefore, we establish a threshold, say 1/2, so that if the popularity 
score for a movie goes below this number, its score is dropped from 
the counting. For reasons that will become obvious, the threshold must 
be less than 1, although it can be any number less than 1. When a new 
ticket arrives on the stream, do the following: 

1. For each movie whose score we are currently maintaining, multiply 
its score by (1 − c). 

2. Suppose the new ticket is for movie M . If there is currently a score 
for M , add 1 to that score. If there is no score for M , create one 
and initialize it to 1. 

3. If any score is below the threshold 1/2, drop that score. 

It may not be obvious that the number of movies whose scores are 
main- tained at any time is limited. However, note that the sum of all 
scores is 1/c. There cannot be more than 2/c movies with score of 1/2 
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or more, or else the sum of the scores would exceed 1/c. Thus, 2/c is a 
limit on the number of movies being counted at any time. Of course in 
practice, the ticket sales would be concentrated on only a small number 
of movies at any time, so the number of actively counted movies 
would be much less than 2/c. 

4.8  SUMMARY OF CHAPTER  

✦ The Stream Data Model : This model assumes data arrives at a 
processing engine at a rate that makes it infeasible to store everything 
in active storage. One strategy to dealing with streams is to maintain 
summaries of the streams, sufficient to answer the expected queries 
about the data. A second approach is to maintain a sliding window of 
the most recently arrived data. 

✦ Sampling of Streams: To create a sample of a stream that is 
usable for a class of queries, we identify a set of key attributes for the 
stream. By hashing the key of any arriving stream element, we can use 
the hash value to decide consistently whether all or none of the 
elements with that key will become part of the sample. 

✦ Bloom Filters: This technique allows us to filter streams so elements 
that belong to a particular set are allowed through, while most 
nonmembers are deleted. We use a large bit array, and several hash 
functions. Members of the selected set are hashed to buckets, which are 
bits in the array, and those bits are set to 1. To test a stream element for 
membership, we hash the element to a set of bits using each of the hash 
functions, and only accept the element if all these bits are 1. 

✦ Counting Distinct Elements: To estimate the number of different 
elements appearing in a stream, we can hash elements to integers, 
interpreted as binary numbers. 2 raised to the power that is the longest 
sequence of 0’s seen in the hash value of any stream element is an 
estimate of the number of different elements. By using many hash 
functions and combining these estimates, first by taking averages 
within groups, and then taking the median of the averages, we get a 
reliable estimate. 

✦ Moments of Streams: The kth moment of a stream is the sum of the 
kth powers of the counts of each element that appears at least once in 
the stream. The 0th moment is the number of distinct elements, and the 
1st moment is the length of the stream. 

✦ Estimating Second Moments: A good estimate for the second 
moment, or surprise number, is obtained by choosing a random 
position in the stream, taking twice the number of times this element 
appears in the stream from that position onward, subtracting 1, and 
multiplying by the length of the stream. Many random variables of 
this type can be combined like the estimates for counting the number 
of distinct elements, to produce a reliable estimate of the second 
moment. 
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✦ Estimating Higher Moments:  The technique for second moments 
works for kth moments as well, as long as we replace the formula 2x − 
1 (where x is the number of times the element appears at or after the 
selected position) by xk − (x − 1)k. 

4.9.  REFERENCES FOR CHAPTER 4  

✦ Estimating the Number of 1’s in a Window : We can estimate the 
number of 1’s in a window of 0’s and 1’s by grouping the 1’s into 
buckets. Each bucket has a number of 1’s that is a power of 2; there are 
one or two buckets of each size, and sizes never decrease as we go 
back in  time.  If we record only the position and size of the buckets, 
we can represent the contents of a window of size N with O(log2 N ) 
space. 

✦ Answering Queries About Numbers of 1’s: If we want to know the 
approx- imate numbers of 1’s in the most recent k elements of a 
binary stream, we find the earliest bucket B that is at least partially 
within the last k positions of the window and estimate the number of 
1’s to be the sum of the sizes of each of the more recent buckets plus 
half the size of B. This estimate can never be off by more that 50% 
of the true count of 1’s. 

✦ Closer Approximations  to the Number of 1’s:  By changing the rule 
for how many buckets of a given size can exist in the representation 
of a binary window, so that either r or r − 1 of a given size may exist, 
we can assure that the approximation to the true number of 1’s is 
never off by more than 1/r. 

✦ Exponentially Decaying Windows:  Rather than fixing a window 
size, we can imagine that the window consists of all the elements that 
ever arrived in the stream, but with the element that arrived t time units 
ago weighted by e−ct for some time-constant c. Doing so allows us to 
maintain certain summaries of an exponentially decaying window 
easily. For instance, the weighted sum of elements can be recomputed, 
when a new element arrives, by multiplying the old sum by 1 − c and 
then adding the new element. 

✦ Maintaining Frequent Elements in an Exponentially  Decaying 
Window : We can imagine that each item is represented by a binary 
stream, where 0 means the item was not the element arriving at a 
given time, and 1 means that it was. We can find the elements 
whose sum of their binary stream is at least 1/2. When a new element 
arrives, multiply all recorded sums by 1 minus the time constant, add 
1 to the count of the item that just arrived, and delete from the 
record any item whose sum has fallen below 1/2. 
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