
 1

1
INTRODUCTION TO BIG DATA

Unit Structure

1.1 Big Data

1.1.1 Introduction to Big data Platform

1.1.2 Traits of big data

1.1.3 Challenges of conventional systems

1.1.4 Web data

1.1.5 Analytic processes and tools

1.1.6 Analysis vs Reporting

1.1.7 Modern data analytic tools

1.2 Statistical concepts

1.2.1 Sampling distributions

1.2.2 Re-sampling

1.2.3 Statistical Inference

1.2.4 Prediction error

1.3 Data Analysis

1.3.1 Regression modeling

1.4 Analysis of time Series

1.4.1 Linear systems analysis

1.4.2 Nonlinear dynamics

1.4.3 Rule induction

1.5 Neural networks

1.5.1 Learning and Generalization

1.5.2 Competitive Learning

1.5.3 Principal Component Analysis and Neural Networks

1.6 Fuzzy Logic

1.6.1 Extracting Fuzzy Models from Data

1.6.2 Fuzzy Decision Trees,

1.6.3 Stochastic Search Methods

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

2

1.1 BIG DATA

Big data is referred to as the collection of a huge data set that includes
structured, semi-structure or unstructured data which cannot be stored and
analyzed by traditional database management systems. The primary source
of big data is various activities done by uses through the internet for
various purposes.

The use of the internet is an integral part of our lifestyle and due to that, it
is very common to use various digital platforms on the internet for day-to-
day work. Lots of people leave their footprint in the form of the data by
doing various activities on social media, online shopping websites, online
business transactions, online banking systems, online searching, online
education system and many others. Subsequently, it is observed that the
growth of data is exponential way. So very advanced technology has
emerged to manage a huge amount of data.

1.1.1 Introduction to Big data Platform:

The invention of hand-held digital devices has been considering as a prime
factor for the growth of internet users. In today's life, the internet is
accessed via computers, mobile phones, personal digital assistant devices,
gaming stations and digital TV. It is believed that the Internet is the most
fast growing technology.

Figure 1 : Internet usage in 2020

Big data cannot be analyzed by conventional technology or it cannot be
stored by the traditional database management system. The biggest
challenge to work with big data is the exponential growth of data which
requires very advanced technology to store it in such a way that can be

mu
no
tes
.in

Introduction to Big Data

3

utilized for analysis purposes. Various big data platforms enable storing,
managing, merging, developing, deploying, operating and analyzing big
data. The big data infrastructure generally consists of very advanced data
storage systems, high computing servers and big data management
technology. A big data platform normally includes very advanced
infrastructure which combines the capability of several big data
applications. Whereas, the big data analytics software mainly focuses on
providing facilities to support analytics for extremely large data sets. In
other words, analytics helps to convert a huge amount of data into smart
data or high-quality information which provides deeper insights for the
decision-making process.

There are many big data tools are available in the market for Big data
analytics, few can be listed here. Apache Hadoop, Cassandra, data
wrapper, mongo DB, Apache storm, Tableau, R, CDH (Cloudera
Distribution for Hadoop), Elastic search, Kaggle, Hive, Spark, OpenText,
Oracle Data Mining, BigML, CouchDB, Pentaho, Adverity, Xplenty,
Apache SAMOA, Lumify, HPCC, Adverity, Knime, Talend, rapid miner,
Microsoft Azure, Amazon Web service, Google bigquery, VMware,
Google big data, IBM big data, wavefront, Cloudera enterprise big data,
Oracle Big data analytics, DataTorrent, mapR converged data platform,
Splunk big data analytics, Big object, Opera solutions signal hub, SAP Big
data analytics, Next Pathway, 1010data, GE industrial internet, SGI big
data, Teradata big data analytics, Intel big data, HP big data, Dell Big data
analytics, Cisco big data, Pentahol big data, Opera solutions big data.

1.1.2 Traits of big data:

Billions of users are connected to the World Wide Web and spending a
significant amount of time via mobiles, computers and other devices.
Consecutively, there are collections of large-scale unstructured data and it
is also increasing with a constant growth rate every day. Hence, it emerges
into the necessity of an advanced technology that could support a wide
range of data storage, scalable processing and analysis of this data. In this
scenario, big data technologies evolved as a revolutionary solution to cope
up with all these solutions.

Big data defines with 5V’s characteristics. The first ‘V’ is a symbolization
of extra-large scale of the data volume. The second ‘V’ is a symbolization
of a variety of data that emphasis on heterogeneous data (structure,
unstructured and semi-structure). The third ‘V’ is a symbolization of
velocity of data that highlights on data-analytics. Figure 2 shows 5 ‘V’
characteristics of big data.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

4

Figure 2 : 5 ‘V’ characteristics of big data

1 Volume

Big data has been defining with five V characteristics. The first V is
symbolization of volume. The big data has an extra-large scale data. The
volume of data can be measured with zettabytes.

Unit Abbreviation Size

byte B 8 bits

kilobyte KB 1,024 bytes or 10^3 bytes

megabyte MB 1,024 KB or 10^6 bytes

gigabyte GB 1,024 MB or 10^9 bytes

terabyte TB 1,024 GB or 10^12 bytes

petabyte PB 1,024 TB or 10^15 bytes

exabyte EB 1,024 PB or 10^18 bytes

zettabyte ZB 1,024 EB or 10^21 bytes

yottabyte YB 1,024 ZB or 10^24 bytes

In real life, millions of users are connected with the World Wide Web and
spending a significant amount of time for surfing and online activities with
the help of many hand-held devices, such as computers, laptops and
tablets.

Due to this, a constant growth rate was found, and mostly this data
increasing at petabyte scale. The volume of data was previously measuring
into Terabytes, later on, Petabytes and nowadays that is shifted to
Zettabytes. Have a look at some statics about today’s scenario. Only

mu
no
tes
.in

Introduction to Big Data

5

Twitter has more than 500 tweets to send every day and hence it generates
more than 7 TB of data every day. Whereas, on Facebook, approximately
4 petabytes of the post or likes related data and hence it generates 10 TB
data every day. It is also observed that more than 65 billion messages are
sent by people via WhatsApp. Some online enterprises are also believed to
generate terabytes of data every hour of every day. A new era has begun in
the field of transportation and 4 TB of data has been generated by each
connected car. On the Internet, 5 billion searches are made from all around
the world and the Internet is a huge network of many web servers and web
services. This is just for having an idea that how much data we produce
and even how much data will be available in the future to dig into it?

Figure 3 : A day in big data

In other words, we can say that a massive amount of data has generated
every day, which has to store. An organization has to manage storage and
processing in real-time, which is the biggest challenge related to big data.

2 Variety

The second ‘V’ is a symbol of a variety of data that means the big data can
be found as structured data, unstructured data or semi-structured data. In
an online environment, the source of data could be different and hence the
data can have a different format subsequently the data may have a variety
of format. Due to the presence of text, media, links and application
programs as a part of today’s websites, a variety of data is found as a part
of the big data. In the case of convention data technology, data could be
processed only if it is structured and represented in the two-dimensional
table. On the other hand, the major portion of today's websites and social
media data consist of text, images and videos, which are very complex and
difficult to process. Herein, text, links, maps, network hierarchies and
streaming data are unstructured and cannot be stored in that 2-D format.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

6

Some of the data are semi-structure, which is more structure in nature,
compare to unstructured data. It cannot process with the help of a
relational database. Normally, a tree-like structure such as XML is used to
store semi-structured data. It is also known as the key-value pair structure.
XML and JSON are an example of these kinds of data storage formats.

 Structured Data Unstructured Data

Type of
data

It is represented as
numbers, dates, strings
and alphanumeric values
etc.

It may consist of text, images,
audio and videos etc.

Storage
structure

It can be easily stored in
2-dimensal structure of
row and column. So, it
can be stored with Excel
or RDBMS.

It can be stored with (NOSQL)
Non relational structure, Big
Table, graph data and many other
advanced data structures.

Source of
data

It is part of major business
data stored with ERP
systems and other MIS
system.

It is normally present at a part of
online systems and web data.

Growth
rate

It is increasing at the
growth rate of 20-30%

It is increasing at the growth rate
of 80-90%

Analysis
Process

It is very easy to analysis
it with RDMS and with
use of simple algorithms.

It is very complicated to
preprocess, process and analysis
of it. It requires very complex
and advanced technology for
analysis purpose such as text
analysis algorithms, Artificial
Intelligent and Neural Network.

Due to all these challenges, many innovations have provided solutions to
process data in various formats such as Big Table, graph data and many
others. Even due to these data challenges, NoSQL technology emerged as
a solution and it has been adapted by many.

3 Velocity

The third ‘V’ is a symbol of the velocity of the data. A Velocity is related
to the speed at which data are arriving and it has to store. Similarly,
velocity is related to 'How much the data received in a specific period?'
and that could accommodate into the database. Sometimes, velocity is also
referred as the measurement of the speed at which the data it is moving
towards the data repository. For the conventional system, it is impossible
to manage the constant flow of data that comes from various data streams
connected with RFID sensors. More than that, for the real-time system, it
is essential to analyze this data in real life as the life of the data is short.

mu
no
tes
.in

Introduction to Big Data

7

For real-life applications, batch processing is not a good option
specifically for data streams. The real-time computing system, which
accepts data from many data streams and computing systems has to
execute the query and identifies current trends based on the recent and up-
to-date data in real-time. The Google map traffic analysis system is this
kind of real-time system which processes a massive amount of current
traffic-related data and provides valuable information in real-time.

4 Varacity

The next ‘V’ stands for ‘Varacity’ or ‘Validity’ of the data. The veracity
refers to the trustworthiness and quality of the data used for analysis.
Nowadays, the data is available in huge amounts but the quality of data is
a big question. Only high-quality data yields meaningful information,
which seems a difficult task in an online environment. The source of data
and its authenticity must be considered at the time of data preprocessing.
The handling of noise, inaccurate data and missing data must be done to
increase the quality of the data. The process of validating data is a big
challenge due to the consideration of context analysis for text data.

5 Variability

The next ‘V’ stands for ‘Variability’ or uncertainty of the data. The
variability of the data suggests too many changes in the data. Due to
changing nature of the data, the data processing methods and the models
has to also change according to the data. The constant changes and
innovation in the technology lead to the addition of new things into the
Internet, and hence new kinds of data formats and processing methods
involve automatically. The general methodology for various kinds of
objects cannot be applicable. Subsequently, new algorithms and
processing approaches have to introduce to manage constantly variable
data. The conventional technology only focused on the analysis of
historical data collected over a period of time from the same enterprise
system. This system design is for specific kinds of processing
requirements concerning that data only. Internet and advanced IoT
systems are capable to connect many different systems with different
components. This emerges as needs flexible algorithms that can work well
with a wide range of data variety.

1.1.3 Challenges of conventional systems:

The conventional systems are mainly made to manage enterprise level data
but, it is normally do not focus on gathering data from out of the
organization. Due to this, the data of conventional system has predefined
and fixed structure, where as big data system has mix of various kinds of
data. More than this, volume of data for conventional system is limited to
gigabytes to terabytes only whereas big data system has to store and
manage zetabytes of data with cloud and other advanced data storage
system. The conventional system can analysed data with algorithms which
are suitable to process structured data only. The analysis of structured data
may be done by various functions such as statistical functions and date
functions. In the market now-a-days the most commonly used statistics

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

8

softwares for that is SPSS software. Statistical methods are most suitable
for quantitative data. In statistic, a wide range of aggregation functions are
available which can be applicable o groups. In contrast to that, statistical
methods cannot be applicable to heterogeneous data. Hence, a wide
variety of algorithms are needed to process structured, semi-structured and
unstructured data. The analysis of unstructured data or text data is very
complicated in nature, compare to structured data. For example, search
engines has to perform text analysis on web data, it may required key
word extraction, semantic analysis and similarity matching etc.

Another limitation of the conventional data management system is related
to the storage capacity of data. In the case of a conventional data
management system data is generated at the rate of per hour or per day.
The business data can be stored at the centralized level and shared with all
remote devices. The data has a fixed schema and it is not possible to
change the structure at run time. The data manipulation functions are
predefined and various data operations are performed on regular basis.
Subsequently, the analysis process is also implied according to the data. In
contrast to that, big data has flexible schema and heterogeneous data.
More than that, big data is generated at the speed of exponential rate. Due
to that, data has to store with a flat-file structure or in such a way that can
be shared over a wide network. The latest technological revolution has
made it possible with cloud storage and clustering storage systems.
Subsequently, the processing method has to adapt the relevant technology
for future analysis. In short, big data analysis systems should be flexible,
scalable and more tolerant to failure to manage the need of the time. That
should also allow distributed and allowed parallel processing to speed up
the analysis task.

1.1.4 Web data:
The traditional system focus on a data management system that processes
mostly transaction data such as enterprise resource planning system (ERP)
and customer relationship management (CRP) system. The major source
of this kind of system is transaction data produce due to various business
transactions which have to be processed via predefine business methods.

On the other side, the Web of data is today's reality and exist due to the
relationship among the data on the internet. The web data consist of
Website data, Domain name data, News data, Web activity data, Web
search data, IP address data, Click Stream data, Sentiment web data, Web
traffic data and Semantic web data. The entire collection of interrelated
data set on the web is also sometimes referred to as linked data or
Semantic Web. An example of a Linked Dataset is DBPedia, which
includes Wikipedia data. A significant feature of DBPedia is it makes it
possible to get the content of Wikipedia in RDF format.

Web analytics is a process of measuring web traffic, web search and web
uses. Many web search engines perform web analysis and help internet
users to search from a huge collection of web pages present on the
Internet. The analysis of web data is possible with the use of HTML,
XML, RDF, OWL, SPARQL, etc.

mu
no
tes
.in

Introduction to Big Data

9

In addition to that, the volume of Web data is constantly increasing. Along
with that, a variety of data sources continuously generating various kinds
of data and makes web data more complicated and unstructured. The data
on the Internet arises due to social media, social networking links, social
media posts, image data, video data, click stream data and many other
activities. Another source of data is various surveys, online surveys,
experiments and observations of the people. Sometimes, market survey
data, industry reports, consumer analysis reports, various kinds of business
reports and comparative analysis reported also loads tons of different types
of data on the internet. In this era, due to the presence of GPS and GIS,
lots of location related data is also generated by mobile devices and other
geospatial systems. Many security systems, produces images and videos in
massive amount with the use of surveillance and other security devices.
With the help of many remote sensors, RFID devices, IoT systems and
many other real-time tracking systems load a massive amount of data.
Satellite images and weather-related data are also an integral part of
Internet data.

1.1.5 Analytic processes and tools:

Data analysis is a process that transforms raw data into very useful
information. Data analysis is very useful for generating various statistics
related to data, meaningful insights and valuable explanations to manage
data-driven business decisions. There are many software and applications
which perform various data analysis tasks. It is crucial to choose an
appropriate tool to execute, from a wide range of data analytics tools. The
selection process for data analytics tools may consider many parameters
such as price, robustness, supported data models, learning curve,
scalability, expandability, visualization facility and many others.

Data analysis generally follows well-defined steps. It is very important to
understand the importance of process along with know-how of data to
yield meaningful insights and valuable patterns. Normally, to carry out the
analytics process following steps are required to conduct : (1) data
collection (2) data cleaning and preprocessing (3) data analysis (4)
visualising the output (5) understanding the results.

Data collection: The first step of the data analysis process is to understand
the source of the data, the format of the data and the collection procedure.
Based on all this, the data collection procedure has to be defined.
Nowadays various data collection tools are also used to capture data in
real-time, such as barcode readers, cameras, voice detecting machines,
sensors and automatic weighing machines.

Data cleaning and preprocessing: It is very essential to conduct a data
cleaning process to convert raw data into high-quality data. The data
cleaning process may include the process for removal of duplicate data,
removal of outliers and removal of errors. Sometimes, it is also essential to
identify and fill the gap between data that are collected from different
sources to integrate them into a single database. The data cleaning process
may carry out manually or by using automated data cleaning tools. Along

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

10

with the data cleaning process, it is also very essential to conduct an
exploratory analysis of the data. This step helps to understand the
characteristic of data and the relationship among them. Sometimes the
existing co-relationship of the data is very essential to find out to establish
a hypothesis.

Data analysis: A data analytic process mainly depends on the goal of the
process and the availability of the data. There are lots of statistical
techniques used for analysis, a few are listed here univariate or bivariate
analysis, regression analysis, time series analysis, descriptive analysis and
predictive analysis.

The descriptive analysis identifies the underlying relationship among the
data. This kind of analysis may help to find, a summary of the data, to
describe the data, and to determine the next processing step to be carried
out. The predictive analysis helps to find future values for future, based on
the historical data. This kind of analysis may help to predict market sales
based on the previous year's sales data.

Visualiting the output: Data visualization is equally important as the data
analytics process. The output of the analysis process must be clearly well
presented and understandable. Sometimes data visualization tools are used
to increase the readability of the data. More specifically, these tools are
used when the volume of data is very large. Google charts, Infogram and
Tableau are well known examples of data visualization tools.

Understanding the results: Understanding of final output is a very
crucial step. For instance, the output may be misleading or erroneous due
to several reasons. In this situation, it is very essential to identify the
reason behind it, and to determine correct approach.

1.1.6 Analysis Vs Reporting:

In this digital era, the wealth of information brings into existence due to
modern analytics technology. Analysis and reporting both are valuable for
the same. The goal of the analysis process is to inspect the data and
transform it into useful information. The goal of the reporting process is
transforming the output of the analytic process in a presentable format.
The main purpose of conducting the analysis process is examining,
interpreting, comparing and predicting the data. Whereas reporting process
is mainly focusing on highlighting organizing, summarizing and
formatting processes. Sometimes, visualization of output may enhance
with the use of chats, maps, graphs and linking of data.

1.1.7 Modern data analytic tools:

Big data analytics uses the large quantities of data that generates and
gathers from various sources and converts into meaningful information.
There are many big data tools, and having the most in-demand by data
scientist. Some vital tools of big data are the following:

mu
no
tes
.in

Introduction to Big Data

11

No. Tools Benefits

1 R R programming language is the most common choice
of many data scientists today. R is free and available
under an open-source license. R available for different
types of hardware and software e.g. Windows, Unix
systems and the Mac. The most attractive feature of
‘R’ is the extendibility and integration of a rich library
of packages.

2 Python Python is a very powerful yet, open source language
and an easy-to-learn language. It offers statistical and
mathematical functions. Few famous libraries are
NumPy, SciPy, etc. It is a high-level language with
high readability and object-oriented programming
functionality.

3 PIG and
HIVE

Hadoop is distributed File System that allows the
storage of data in a distributed manner. The ecosystem
is consists of many tools. Hadoop MapReduce
facilitates the processing of large volumes of data in a
parallel and distributed manner. HIVE and PIG are
also an integral part of the Hadoop ecosystem. They
facilitate processing and analysis. More specifically,
HIVE is a data warehouse with HiveQL, which is the
query language for large datasets stored in HDFS. PIG
runs on Hadoop cluster and processes and analyzes
large datasets using a scripting language.

4 Tableau

Tableau is a very easy-to-learn data visualization tool
that converts numeric and textual data into beautiful
visuals. It is user friendly, mobile friendly, simple yet,
fast. Anyone without knowledge of coding can also
use Tableau.

5 Jupyter
Notebook

Jupyter Notebook is a free, open-source and online
data analytics tool. It supports 40+ programming
languages so, it is known as a multi-language
computing environment. It allows the use of python’s
wide variety of packages and visualization tools.

6 Google
Data
Studio

Google data studio is a free data analytics tool that can
automatically integrate with other Google applications
such as Google Analytics, Google Ads, Google Sheets
and Google BigQuery.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

12

1.2. STATISTICAL CONCEPTS:

1.2.1 Sampling distributions

We consider sample as an analytic subset of a larger population in
statistics. Samples allow researchers to conduct their studies with more
manageable data and in a timely manner. Random samples do not have
much bias if they are large enough, but achieving such a sample may be
expensive and time consuming. In simple random sampling, every entity
in the population is identical.

 What is a Sampling Distribution?

A sampling distribution is a probability distribution of a statistic obtained
from a larger number of samples. It is the distribution of frequencies of a
range of different outcomes that could possibly occur for a statistic of a
population.

A population may refer to an entire group of people, objects, events,
hospital visits, or measurements. A population can thus be said to be an
aggregate observation of subjects grouped together by a common feature.

 A sampling distribution is a statistic that is arrived out through
repeated sampling from a larger population.

 It describes a range of possible outcomes that of a statistic, such as the
mean or mode of some variable, as it truly exists a population.

 The majority of data analyzed by researchers are actually drawn from
samples and not populations.

Understanding Sampling Distribution

Huge amount of data drawn and used by academicians, statisticians,
researchers, marketers, analysts, etc. are actually samples, not
populations. Consider this example, a medical researcher that wanted to
compare the average weight of all babies born in North America from
1995 to 2005 to those born in South America within the same time period
cannot within a reasonable amount of time draw the data for the entire
population of over a million childbirths that occurred over the ten-year
time frame. He will instead only use the weight of, say, 100 babies, in each
continent to make a conclusion. The weight of 200 babies used is the
sample and the average weight calculated is the sample mean.

Few Definitions

A sample is a subset of the population.

A population is a collection of all the elements of interest.

The sampled population is the population from which the sample is
drawn.

An element is the entity on which data are collected.

mu
no
tes
.in

Introduction to Big Data

13

A frame is a list of the elements that the sample will be selected from.

1.2.2 Re-sampling

Once we have a data sample, it can be used to estimate the population
parameter. The problem is that we only have a single estimate of the
population parameter. One way to address this is by estimating the
population parameter multiple times from our data sample. This is called
re-sampling.

Statistical re-sampling methods are procedures that describe how to
economically use available data to estimate a population parameter. The
result can be both a more accurate estimate of the parameter (such as
taking the mean of the estimates) and a quantification of the uncertainty of
the estimate (such as adding a confidence interval).

Two commonly used re-sampling methods that you may encounter are k-
fold cross - validation and the bootstrap.

 Bootstrap. Samples are drawn from the dataset with replacement
(allowing the same sample to appear more than once in the sample), where
those instances not drawn into the data sample may be used for the test set.

 k-fold Cross Validation. A dataset is partitioned into k groups, where
each group is given the opportunity of being used as a held out test set
leaving the remaining groups as the training set.

The k-fold cross-validation method specifically lends itself to use in the
evaluation of predictive models that are repeatedly trained on one subset
of the data and evaluated on a second held-out subset of the data.

Generally, re-sampling techniques for estimating model performance
operate similarly. Re-sampling methods are very easy to use, requiring
little mathematical knowledge. They are methods that are easy to
understand and implement compared to specialized statistical methods that
may require deep technical skill in order to select and interpret.

The re-sampling methods are easy to learn and easy to apply. They require
no mathematics beyond introductory high-school algebra, etc are
applicable in an exceptionally broad range of subject areas.

A downside of the methods is that they can be computationally very
expensive, requiring tens, hundreds, or even thousands of re-samples in
order to develop a robust estimate of the population parameter.

The key idea is to resample form the original data either directly or via a
fitted model to create replicate datasets, from which the variability of the
interest can be assessed without long-winded and error-prone analytical
calculation. Because this approach involves repeating the original data
analysis procedure with many replicate sets of data, these are sometimes
called computer intensive methods.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

14

Each new subsample from the original data sample is used to estimate the
population parameter. The sample of estimated population parameters can
then be considered with statistical tools in order to quantify the expected
value and variance, providing measures of the uncertainty of the estimate.
Statistical sampling methods can be used in the selection of a subsample
from the original sample.

A key difference is that process must be repeated multiple times. The
problem with this is that there will be some relationship between the
samples as observations that will be shared across multiple subsamples.
This means that the subsamples and the estimated population parameters
are not strictly identical and independently distributed. This has
implications for statistical tests performed on the sample of estimated
population parameters downstream, i.e. paired statistical tests may be
required.

Subset of samples can be used to fit a model and the remaining samples
are used to estimate the efficacy of the model. This process is repeated
multiple times and the results are aggregated and summarized. The
difference in techniques usually depends on the method in which
subsamples are chosen.

1.2.3 Statistical Inference

Statistical inference makes propositions about a population, using data
drawn from the population with some form of sampling. Given a
hypothesis about a population, for which we wish to draw inferences,
statistical inference consists of selecting a statistical model of the process
that generates the data and deducing propositions from the model.

"The majority of the problems in statistical inference can be considered to
be problems related to statistical modelling". Sir David Cox has said,
"How [the] translation from subject-matter problem to statistical model is
done is often the most critical part of an analysis".

The conclusion of a statistical inference is a statistical proposition. Some
common forms of statistical proposition are the following:

 a point estimate, i.e. a particular value that best approximates some
parameter of interest;

 an interval estimate, e.g. a confidence interval (or set estimate), i.e. an
interval constructed using a dataset drawn from a population so that,
under repeated sampling of such datasets, such intervals would contain
the true parameter value with the probability at the stated confidence
level;

 a credible interval, i.e. a set of values containing, for example, 95% of
posterior belief;

 rejection of a hypothesis;

 Clustering or classification of data points into groups.

mu
no
tes
.in

Introduction to Big Data

15

Models and assumptions

Any statistical inference requires some assumptions. A statistical model
is a set of assumptions concerning the generation of the observed data and
similar data. Descriptions of statistical models usually emphasize the role
of population quantities of interest, about which we wish to draw
inference. Descriptive statistics are typically used as a preliminary step
before more formal inferences are drawn.

Paradigms for inference

Different schools of statistical inference have become established. These
schools or "paradigms" are not mutually exclusive, and methods that work
well under one paradigm often have attractive interpretations under other
paradigms.

There are four paradigms:

 (i) Classical statistics or error statistics,

(ii) Bayesian statistics,

(iii) Likelihood based statistics and

(iv) Akaikean Information Criterion based statistics.

 The practice of statistics falls broadly into two categories:

(1) Descriptive or

(2) Inferential.

When we are just describing or exploring the observed sample data, we
are doing descriptive statistics. However, we are often also interested in
understanding something that is unobserved in the wider population,
this could be the average blood pressure in a population of pregnant
women for example, or the true effect of a drug on pregnancy rate, or
whether a new treatment perform better or worse than the standard
treatment. In these situations we have to recognise that almost always
we observe only one sample or do one experiment. If we took another
sample or did another experiment, then the result would almost certainly
vary. This means that there is uncertainty in our result, if we took another
sample or did another experiment and based our conclusion solely on the
observed sample data, we may even end up drawing a different
conclusion!

 The purpose of statistical inference is to estimate this sample to
sample variation or uncertainty. Understanding how much our results may
differ if we did the study again, or how uncertain our findings are, allows
us to take this uncertainty into account when drawing conclusions. It
allows us to provide a plausible range of values for the true value of
something in the population, such as the mean, or size of an effect and it
allows us to make statements about whether our study provides evidence
to reject a hypothesis.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

16

Estimating uncertainty:

 Almost of all of the statistical methods you will come across are based
on sampling distribution. This is a completely abstract concept. It is the
theoretical distribution of a sample statistic such as the sample mean over
infinite independent random samples. We typically only do one
experiment or one study and certainly don't replicate a study so many
times that we could empirically observe the sampling distribution. It is
thus a theoretical concept. However we can estimate what the sampling
distribution looks like for our sample statistic or point estimate of interest
based on only one sample or one experiment or one study. The spread of
the sampling distribution is captured by its standard deviation, just like the
spread of a sample distribution is captured by the standard deviation.

Do not get confused between the sample distribution and sampling
distribution, one is the distribution of the individual observations that
we observe or measure, and the other is the theoretical distribution of
the sample statistic that we don't observe.

We should not get confused between the standard deviation of the sample
distribution and the standard deviation of the sampling distribution, we
call the standard deviation of the sampling distribution the standard error.
This is useful because the standard deviation of the sampling distribution
captures the error due to sampling, it is thus a measure of the precision of
the point estimates or put another way, a measure of the uncertainty of our
estimate. Since we often want to draw conclusions about something in a
population based on only one study, understanding how our sample
statistics may vary from sample to sample, as captured by the standard
error, is also really useful. The standard error allows us to try to answer
questions such as: what is a plausible range of values for the mean in this
population given the mean that I have observed in this particular sample?
The standard error is thus integral to all statistical inference, it is used for
all of the hypothesis tests and confidence intervals that you are likely to
ever come across.

1.2.4 Prediction error

A prediction error is the failure of some expected event to occur. When
predictions fail, humans can use meta-cognitive functions, examining prior
predictions and failures and deciding. For example, whether there are
correlations and trends such as consistently being unable to foresee
outcomes accurately in particular situations. Applying that type of
knowledge can inform decisions and improve the quality of future
predictions.

Predictive analytics software processes new and historical data to forecast
activity, behavior and trends. The programs apply statistical analysis
techniques, analytical queries and machine learning algorithms to data sets
to create predictive models that quantify the likelihood of a particular
event happening.

mu
no
tes
.in

Introduction to Big Data

17

Errors are an inescapable element of predictive analytics that should also
be quantified and presented along with any model, often in the form of a
confidence interval that indicates how accurate its predictions are expected
to be. Analysis of prediction errors from similar or previous models can
help determine confidence intervals.

In artificial intelligence (AI), the analysis of prediction errors can help
guide machine learning (ML), similarly to the way it does for human
learning. In reinforcement learning, for example, an agent might use the
goal of minimizing error feedback as a way to improve. Prediction errors,
in that case, might be assigned a negative value and predicted outcomes a
positive value, in which case the AI would be programmed to attempt to
maximize its score. That approach to ML, sometimes known as error-
driven learning, seeks to stimulate learning by approximating the human
drive for mastery.

1.3. DATA ANALYSIS:

Regression analysis is a set of statistical processes for estimating the
relationships between a dependent variable and one or more independent
variables. The most common form of regression analysis is linear
regression, in which one finds the line that most closely fits the data
according to a specific mathematical criterion.

For example, the method of ordinary least squares computes the unique
line that minimizes the sum of squared differences between the true data
and that line. For specific mathematical reasons, this allows the researcher
to estimate the conditional expectation of the dependent variable when the
independent variables take on a given set of values. Less common forms
of regression use slightly different procedures to estimate alternative
location parameters or estimate the conditional expectation across a
broader collection of non-linear models.

Regression analysis is primarily used for two conceptually distinct
purposes.

First, regression analysis is widely used for prediction and forecasting,
where its use has substantial overlap with the field of machine learning.

Second, in some situations regression analysis can be used to infer causal
relationships between the independent and dependent variables.

Importantly, regressions by themselves only reveal relationships between
a dependent variable and a collection of independent variables in a fixed
dataset. To use regressions for prediction or to infer causal relationships,
respectively, a researcher must carefully justify why existing relationships
have predictive power for a new context or why a relationship between
two variables has a causal interpretation.

1.3.1 Regression modeling

Regression is a form of machine learning where we try to predict a
continuous value based on some variables. It is a form of supervised
learning where a model is taught using some features from existing data.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

18

From the existing data the regression model then builds its knowledge
base. Based on this knowledge base the model can later make predictions
for outcomes on new data.

Continuous values are numerical or quantitative values that have to be
predicted and are not from an existing set of labels or categories. There are
lots of examples of regression where it is heavily used on a daily basis and
in many cases it has a direct business impact.

Types of Regressions Models:

 Linear Regression

 Logistic Regression

 Polynomial Regression

 Stepwise Regression

 Ridge Regression

 Lasso Regression

1.4. ANALYSIS OF TIME SERIES:

1.4.1 Linear systems analysis

A CEO of car manufacturing company is interested in knowing what will
be approximate sale of cars for next 2 years. Airline Company is eager to
know how many passengers are likely to travel through their flights in
next 2 months. Manufacturer of perishable sweet items would want to
know how much demand will be there for next 2 weeks. Head of Supply
Chain Company wants to know how much will be petrol and diesel prices
for next 2 days. A CFO of an IT company is interested in knowing stock
prices for next 2 hours.

Everybody sitting at higher positions are taking decisions is of utmost
importance. Only resource they have with them is historical data. Time
series analysis is a technique with which one can forecast for the future,
based on historical data. In all such scenarios, one can use historical data
and apply time series analysis on the data to create a model which can aid
in getting some idea about future. It is important to note that the historical
data has to be time-dependent (collected with respect to time function).

Univariate time series is one where data is collected with respect to only
one variable, with respect to periodic time instance, over s period where as
multivariate time series in one in which data for multiple variables is
collected for a certain time period. Recording temperature values every
hour for a week is an example of univariate time series. Whereas,
recording temperature, pressure and humidity every hour for a week is an
example of multivariate time series.

Data collected for the time series can be linear or non-linear. Linear data,
when plotted in the form of a graph, will be sequential in nature. Any data
point with be connected to only two other datapoints, previous and the

mu
no
tes
.in

Introduction to Big Data

19

next. On the other hand, non-linear data when plotted in the form of graph
will not result into a straight line.

A. Components of time series data

Any time series may have some inherent properties / components – Trend,
Seasonality, Cyclicity and Irregularity.

(1) Trend is an important component of any time series which is a
result of overall long term effect of environmental factors. Trend may
show inclining or declining effect over a period.

Figure 4.1: Trend component of time series

As seen in graph A, in figure 4.1, there has been overall increase in the
sale of air conditioners and overall decrease in sale of kerosene for
cooking purpose.

(2) Seasonality is the short term movement in data due to seasonal
factors. E.g. there can be notable increase of sale of warm clothes during
winter season or even sudden increase in the sale of washing machines
during rainy season can be attributed to seasonal fluctuation.

Figure 4.2: Seasonality component of time series

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

20

(3) Cyclicity is a pattern observed when the data is collected for a very
long duration, say 40-50 years. This pattern repeats over a period, but the
gap between two time instances may not be fixed. E.g. recession occurring
time and again, but it is difficult to predict the next occurrence.

Figure 4.3: Cyclicity component of time series

(4) Irregularities / random component are the sudden changes in data
which are unlikely to be repeated. Such a sudden change in data cannot be
predicted by other components like trend / seasonality or cyclicity. These
variations are mostly accidental in nature and may result in to change in
trends / seasonality and cyclicity in the forthcoming period. Natural
calamities can be an example which may cause irregularities in data. E.g.
Covid pandemic has resulted steep increase in the sale of electronic
gadgets such as tablets, laptops and cell phones on account of online
lectures from schools and colleges.

Figure 4.4: Irregularity component of time series

There are certain situation when data is not changing with respect to time,
then time series analysis is not applicable to such situations. E.g. If
average rainfall over the years in 3-4 decades is approximately same, then
it implies that time factor has not affected the rainfall or one can conclude
that rainfall is independent of time. There is no point in applying time
series analysis to such situations.

mu
no
tes
.in

Introduction to Big Data

21

B. Types of analysis on time series data

Time series analysis can be categorized into Descriptive, Diagnostic,
Predictive and Prescriptive analysis.

Descriptive analysis gives idea about what happened in the past. It helps
in interpretation of the patterns followed by the data. It can be represented
in the form of data visualizations like graphs, charts, dashboards etc.
Variations in the data can be tracked with the help of descriptive analysis.

Diagnostic analysis is like an extension of descriptive analysis, which
helps in answering the reasoning behind variations in the data. This is
often referred to as root-cause analysis. Techniques like data discovery,
data mining and drilling down data come handy for this purpose

Predictive analysis tries to generate a model based on the historical data.
The model understands the basic pattern and trends of the data. The same
model is then applied to predict for the future. E.g. based on the sale of
apartments in a city for last 50 years, a model can help predict the same
for next 5 years.

Prescriptive analysis takes predictive data, a step higher and helps to
decide what action should be taken. E.g. If certain number of demand is
predicted for next year for electric vehicles, then accordingly production
planning can be prepared by a company.

It is a prerequisite for any time series forecasting that the data is
stationary. If components like trends, seasonality, cyclicity and irregularity
are present in the data, it is considered as non-stationary. It is necessary to
smoothen the data before it is used for further forecasting. Mean, variance
and covariance values help deciding whether the data is stationary or non-
stationary. Stationary data may have seasonality component but not the
trend component and mean, variance and covariance should not change as
per time. To illustrate on non-stationary data further, consider plotting
blood pressure against time. It may have minor seasonal variation but
definitely no trend. It will never continuously increase or decrease with
time. Plotted in the form of a graph, blood pressure values will look as a
flat line with no slope. In some medical conditions, there can be
irregularities as well, there can be sudden spikes in blood pressed and
medical practitioners are definitely interested to find out the root cause
behind such spikes and remove them.

Figure 4.5: Stationary Vs Non-stationary data

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

22

Smoothing of data (i.e. converting non-stationary data to stationary) can
be achieved by applying moving average to the data. Moving average
technique removes the randomness in the data. Consider the figure 4.6, the
graph represents monthly sales figures for 3 consecutive years. Though
there is overall increase in sales, there are variations in between.

Figure 4.6: Monthly sales figures (Stationary and non-stationary)

After applying moving average – MV4 (Take of first 4 data values and
calculate average, then take 2nd, 3rd, 4th and 5th data values to calculate
average, then 3rd to 6th and so on.). Next, calculate centered moving
average of every 2 data values to further smoothen the rough edges. Plot
the line graph of Centered Moving average instead of actual data values),
against the time frequencies for data collection i.e. every month of 3 years.

mu
no
tes
.in

Introduction to Big Data

23

The graph will then look as shown in figure 4.6. Except the last part, the
graph is much smoother. Decomposition procedure helps in understanding
trend and seasonality factors in time series. De-trending and removing
seasonal effect followed by step to identify irregularity causing factors in
the original data can prepare data for applying models for forecasting.

Next important task is to forecast based on historical non-stationary data.
Certain tools with programming languages like R, Python can also be used
for forecasting purpose. Or mathematical models also can be used for this
purpose, 2 such models are widely used and they are

a) Additive model:

Xt = Trend + Seasonal + Irregular

In a party, a cook assumes that on an average, people will eat 2 rotis and
accordingly will prepare the food. But, if some people are hungry, may be
they will eat one extra roti. So, one who east 1 roti normally, will eat 2.
One who eats 2 in normal situation, will eat 3. This is 1 extra to normal
situation, irrespective of what original number is. In such a case, additive
model is used for forecasting.

b) Multiplicative model:

Xt = Trend * Seasonal * Irregular

When there is increase in product prices, it is in percentage terms. E.g.
Price of laptop increases by 5% than previous year, cost of certain model
laptop which costed 50,000 Rs. previous year will now cost 52,500 Rs.
The one which costed 70,000 Rs. previous year will now cost 73,500 Rs.
So, the increase in cost is not fixed but in terms of percentage, and such
scenarios, multiplicative model is best suited.

So, we can summarize that additive model is useful when the seasonal
variation is relatively constant over time.

The multiplicative model is useful when the seasonal variation increases
over time.

In the additive model, we take the addition of trend, seasonal and irregular
factor and divide it by centered moving average.

Exponential smoothing is a feature available in Excel worksheet, which
takes care of this entire process. After applying exponential smoothing, the
graph will show actual as well as predicted values of sales, which can be
further extrapolated for forecasting. As we can observe, actual and
forecasted values are pretty matching with each other. Hence, we can say
that this model is accurate and can be used for forecasting future sales
values. Other data smoothing techniques like random walk, simple
exponential smoothing are also available. Once smoothing is done, we
need to right click on the line chart and add equation, R2 value on the
graph. Also after adding trend line on the graph, one can forecast for the
future. R2 helps in indicating how good the model is for prediction.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

24

Figure 4.7: Sales values (actual vs. predicted) along with forecast line.

1.4.2 Nonlinear dynamics:

In case of non-linear data, data points are connected to each other in
multiple ways. As shown in figure 4.7, the number of data point and
degree of connections with each other may vary. Further, elements can
also be heterogeneous in nature. This also called as topology of the
system. Consider a pendulum moving with certain initial state and velocity
it will follow certain pattern of movements.

Figure 4.8: Non-linear data

But, if the pendulum is bent in between, it will be controlled by 2
equilibriums.The resultant motion will become non-linear. Hypothetically,
imagine the earth is also controlled by another plant, which will exert its
own gravitational force effect on the earth, the entire structure of earth’s
orbit will change and may look like 2 connected ovals. This will again
result into non-linear motion. If data for non-linear motion is plotted as
graph, instead of sequential nature of line, it will look curved, more like a
quadratic equation. Such a change in movement is called as chaos. Chaos
theory studies behavior of dynamical systems, sensitive to initial
conditions (referred to as butterfly effect). Motion of pendulum with 2
pendulums, recorded in isolation, is predictable. But when combined,
reveal non-linear behavior.

Two sound waves, perfectly out of synch with each other, rather than
adding with each other, will cancel the effect of both. Many human being

mu
no
tes
.in

Introduction to Big Data

25

working in tandem, may synergize overall output, much higher than
addition of individual outputs. Non-linear systems may shift to whole new
regime, even if there is small change in input condition. Such a change is
called as phase-transition.

For a quick comparison between linear and non-linear time series data, a
linear data will reveal a straight line when plotted in graph, whereas non-
linear data will generated a curved shaped graph. A linear data, when
presented in an equation, will be first degree equation whereas non-linear
data will be a quadratic equation. It is crucial to find out whether data is
linear or non-linear before deciding the techniques to use for forecasting
purpose. When represented graphically, non-linear time-series data will
generally one of following shapes:

Figure 4.9: Graphical representation of non-linear time series data

Structural breaks (outside forces that may cause sudden and permanent
change in the pattern of the data) play vital role while studying non-linear
time series data. Identifying the presence of structural breaks, estimating
their timings and studying behavior of data before, after and during the
breaks needs to be studied while dealing with non-linear data.

Brock- Dechert-Scheinkman test (denoted as the BDS test) is the most
widely used test for detecting non-linearity of the data. The BDS test gets
its name from its original authors William Brock, Davis Dechert and Jose
Scheinkman, who develop it in 1987. It is generally used indirectly to test
alternative hypothesis for non-linearity. The BDS test uses the correlation
function (also called the correlation integral) as the statistic test. In case of
non-linear data, which is time dependent, BDS test checks dependence of
data points in the space where point are plotted. Naturally, unlike linear
data, there is more than 2 dependence of datapoints in case on non-linear
data. This is denoted as checking spatial dependence check.

ARIMA (Auto Regressive Integrated Moving Average) Model is used
for forecasting in non-linear time series data. ARIMA model is denoted as
ARIMA (p, d, q) where p is The number of lag observations included in

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

26

the model, also called the lag order. D is the number of times that the raw
observations are differenced, also called the degree of differencing and q
is the size of the moving average window, also called the order of moving
average. Steps in ARIMA are stated as

1. Model identification. Use plots and summary statistics to identify
trends, seasonality, and auto regression elements to get an idea of the
amount of differencing and the size of the lag that will be required.

2. Parameter Estimation. Use a fitting procedure to find the coefficients of
the regression model.

3. Model Checking. Use plots and statistical tests of the residual errors to
determine the amount and type of temporal structure not captured by the
model. The process is repeated until either a desirable level of fit is
achieved on the in-sample or out-of-sample observations (e.g. training or
test datasets).

ARIMA includes both auto regression and moving average features. It
needs at least 50 and on an average 100 records to build a proper model.
The ARIMA model tend to be unstable, both with respect to changes in
observations and changes in model specification. Because of the large data
requirements, the lack of convenient updating procedure, ARIMA
becomes high cost model.

1.4.3 Rule induction:

Rule induction is a process of deriving if-then rules as a part of data
mining. Rules are most popular symbolic representation of knowledge.
Rules are not only very easy but also natural and in human understandable
form. Such decision rules help in discovering inherent relationships
amongst the data sets as well as use them for business. Consider an
example – If it is 8 pm on Saturday, then there will be lot of rush in the
restaurants. Predictions based on such rules are based on everyday
observation for long duration. Rules are easier to understand than decision
trees. Consider a scenario which has more than 30-35 decision situations.
A decision tree built based on such decision points will not only be a very
large diagram but will be difficult to understand as well. Hence, decision
rules are more preferred over decision trees or any other technique for
classification.

Such rules can be extracted from a decision tree. Rules consist of attribute
– value pairs which can be traced from a root of a decision tree to a
particular node. These rules are mutually exclusive (without conflict /
overlap) and exhaustive (covering all possible scenarios of decision
making).

For deciding income tax to be paid by a person, following rules can be
followed (The given example is totally hypothetical and for academic
purpose only).

mu
no
tes
.in

Introduction to Big Data

27

If a person is a senior citizen and earning in slab 1 Then No income tax

If a person is a senior citizen and earning in slab 1 Then 5% income tax

If a person is salaried, not a senior citizen and
earning in slab 1 and gender -Male

Then 5% income tax

If a person is salaried, not a senior citizen and
earning in slab 2 and gender -Male

Then 10% income
tax

If a person is salaried , not a senior citizen and
earning in slab 1 and gender -Female

Then No income tax

If a person is salaried , not a senior citizen and
earning in slab 2 and gender -Female

Then 5% income tax

If a person is business person , not a senior citizen
and earning in slab 1 and gender -Male

Then 15% income
tax

If a person is business person , not a senior citizen
and earning in slab 1 and gender -Female

Then 10% income
tax

a. Rule Induction algorithms:

Apart from inducing rules from decision trees, certain algorithms can also
be used for rule induction process. Training data can be used for deriving
rules. Generally one rule is learnt by using the process of machine
learning. For more number of rules, iterations are carried out on the
dataset for every new rule.

i. Learn one rule:

This rule follows greedy search technique where it searches for a rule
which has high accuracy but less coverage classifying all positive
examples for a given instance. Strength of this algorithm lies in its ability
to create relations amongst the given attributes under test and cover
maximum number of dataset for these attributes. Consider a situation
where in a decision of playing cricket match is based on certain
parameters such as weather, rains, cloudiness, light intensity, temperature,
nature of grass on the playground and soil quality. Based on possible
alternatives to all these parameters, final ruleset is designed.

E.g. Rule number 1 can be - If quality of soil is good, and no grass on the
ground, and light intensity is good, and no cloudiness and no rains, match
will be played.

Another rule can be - If heavy rains, even if no grass, soil quality is good,
match will be played.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

28

ii. Sequential covering:

This is widely used algorithm for rule based classification for learning
disjunction rules. In this algorithm, based on learn one rule, one rule is
discovered. After that all the data covered by this rule is removed. Then
the same process is repeated in a sequential manner for all other rules.

iii. FOIL:

First Order Inductive Learning is a rule based algorithm which is a
natural extension of Sequential Covering algorithm and Learn One rule
algorithms. FOIL used the concept of inductive logic which involves
analyzing and understanding evidences and then use them for prediction.
Look at the example, wherein the evidence say 80% of youth go for
movies on weekends, and the fact that A is a youth, one can predict that
this person will go and watch movie on a weekend. The algorithm works
in iteration forming new rules, and for every new rule, all previous
positive and negative examples are eliminated.

iv. AQ:

Algorithm Quasi Optimal is a powerful machine learning methodology
aimed at learning symbolic decision rules from a set of examples and
counterexamples (negative examples). AQ starts with assigning class
(labels) to input data. So it can be treated as supervised algorithm. AQ
involve 4 major steps – data preparation, rule learning, postprocessing and
optional testing.AQ is used in two ways, for theory formation (TF) and
Pattern Discovery (PD). AQ segregates all ambiguous data/ event into 4
categories – Positive, where all ambiguous data is gathered into a class.
Negative, where ambiguous data is eliminated. Eliminate, where
ambiguous data is not used further. Majority, where ambiguous data is
labeled to a class where it mostly appears. Further, the algorithm selects
only most relevant attributes. This avoid unnecessary rule formation in a
highly noisy situation. In the beginning, a general rule is formed by
comparing with positive and negative examples, and keep repeating this
process by refining previous rules.

v. CN2:

CN2 algorithm works best in a noisy environment. It is a classification
technique for inducing simple if-then rules to predict a class to which data
related to an event belongs to. There is inbuilt process for removing empty
columns, removing instances with unknown target values and imputing
missing values with mean values. Two algorithms, search algorithm
(decides which are the best rules) and control algorithm (exerts criteria for
deciding best rules) which are part of CN2, work in tandem to induce
rules, in an ordered and unordered set.

vi. RIPPER:

It stands for Repeated Incremental Pruning to Produce Error Reduction.
The Ripper Algorithm is a Rule-based classification algorithm. It derives

mu
no
tes
.in

Introduction to Big Data

29

a set of rules from the training set. It is a widely used rule induction
algorithm. RIPPER algorithm is used when the dataset is imbalanced one
(Unequal number of data elements in different classes). Amongst
imbalanced datasets, this algorithm selects the majority class as a default
class. The algorithm starts with the assumption that records belonging to
default class are positive example and all other classes with reducing
frequenting of data elements are considered as negative examples.
Sequential Covering Algorithm is used to generate the rules that
discriminate between +ve and -ve examples. Then RIPPER considers next
class for deriving the rules. It starts with empty rules and then keeps
adding best conjunct (conditions connected by AND) to the antecedents (If
part). All such conjuncts are evaluated by a metric. When the rule starts
covering negative examples, the algorithm stop execution.

Once a rule is derived, all positive and negative examples are covered by a
rule are eliminated and the rule is added to rule set.

Accuracy of such rule induction system can be calculated based on
number of correct data elements covered by a rule and number of total
number of data elements covered by a rule. It is possible that there are
more than one rules are applied for uncovering such hidden relationships
in the dataset. In such a case, prioritization of rules depending on the
requirement is carried out. Such prioritization of rules will avoid conflict
while triggering the rules.

b. Conflict resolution techniques:

To avoid multiple rules being triggered at the same time, or conflict
between rules and class which it belongs to, following conflict resolution
techniques are used.

i. Size ordering – In this technique, the rules with maximum number of
attributes is given the highest priority.

ii. Class based ordering – Rules with maximum frequency class is
considered at the priority.

iii. Rule based ordering – Rules are arranged into a long list of priority
based on some measure of rule qualities such as accuracy, coverage
and experts’ opinion.

1.5. NEURAL NETWORKS:

A neural network is a computational data model which captures and
represents complex input & output mechanism. The main motives come
for the development of neural network technology is from the thought to
develop an artificial system which can perform "intelligent" tasks similar
to human brain. NN (Neural networks) reflect the behavior of the human
brain. It allows computer programs to recognize patterns and solve
common Artificial intelligence problems. NN is also known as Artificial
Neural Networks (ANNs). NNs are having many layers, which mainly
divide in three categories like an input layer, one or more hidden layers,
and an output layer. Node is also known as artificial neuron. Each node
connects to another node and each node has an associated weightage and

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

30

specific threshold. If the output of any specific node is above the threshold
value, then that specific node is activated and it sends data to the next
layer of the network.

NNs rely on training data to learn and continuously improve their
accuracy over time. For getting the better accuracy there is need to tune up
the learning algorithms. Tasks in speech recognition and image
recognition can be completed within minutes when it takes several hours
in the manual human expert’s identification. Google’s search algorithm is
one of the most well known examples of NNs. Face recognition or
character recognition is not the only the problems that NNs can solve.
NNs have been successfully applied to wide spectrum of data-intensive
applications like:

Fraud Detection - Detect fake transactions of credit card and
automatically refuse such charges.

Process Modeling and Controlling - Creating a NN model for a physical
plant for best automation.

Machine Diagnostics - Detect the failure of machine and automatically
shut down the machine systems when this problem occurs.

Targeted Marketing and survey – For getting highest response rate for a
particular marketing campaign.

Quality Control and Maintenance – Identifying the product defects
based on the recorded data.

Portfolio Management - Allocate the assets in a portfolio in for
maximum return with minimum risk.

Medical Diagnosis Application - Help doctors with their diagnosis by
analyzing the image data such as MRIs & X-rays.

Financial Forecasting & Credit Rating – Do the financial forecasting
with the available data also calculate the credit rating based on current
financial conditions.

mu
no
tes
.in

Introduction to Big Data

31

Military Application -Target Recognition - Determine target if any
enemy present in given data.

1.5.1 Learning and Generalization:

First step in NNs training is generalization. Generalization specifies
how good our model is for learning from the provided data and applying
the learnt information. When we train a NN, some data we will use for
train the model and some we will reserve for checking the performance of
model. Here we are explaining generalization of NN with an example.

We are training a NN which should give the decision about given image is
of dog or not. We have some pictures of dogs, each dog belonging to a
certain breed and having different features like color, strips, height and
many more. We have a total 12 pictures of dog. We will use 10 pictures
for training and remaining 2 for checking the accuracy of model.

Now we will show this to a person and train them with 10 breeds of dogs
and after training ask person to detect other dogs from testing data.
Hopefully person will give answer about asked question. Here 10 breeds
should be enough to understand and identify the unique features of a dog.
This concept of learning is called generalization in which Learning from
some data and correctly applying the gained knowledge on other data

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

32

1.5.2 Competitive Learning:

Competitive learning is a specific form of unsupervised learning in NNs.
This type of learning is done without any supervision of a teacher. This is
independent learning process. At the time of training of NN under
unsupervised learning, the similar input vectors combined and form a
cluster. In this system when a new input pattern is applied, then the NN
gives a response indicating the class to which input pattern belongs. There
is a no any feedback from the environment as to what should be the
desired output and whether the generated result is correct or incorrect. In
this type of learning the network and discover the patterns. This is based
on the concept of Competitive Learning Network.

Competitive Network is like a single layer feed-forward network having
feedback connection between the outputs. The connections between the
outputs are inhibitory type, which is shown by dotted lines, which means
the competitors never support themselves. Here the competition done
between the output nodes specifically during the training. Output node
unit which has the highest activation to a given input pattern will be
declared the winner node. During training, the output unit that provides
the highest activation to a given input pattern is declared the specific
weights of the winner and is moved closer to the input pattern; whereas
the rest of the neurons are remain unchanged. In this strategy winner-take-
all and only the winning neuron is updated other remain as it is.

mu
no
tes
.in

Introduction to Big Data

33

1.5.3 Principal Component Analysis and Neural Networks:

 Principal Component Analysis (PCA) is an unsupervised learning
methodology which is generally used to reduce the dimensionality of large
datasets or generally use to simplify the complexity of dataset by
transforming a large set of variables into a smaller one while trying to
retain most of the information of the original dataset.PCA reduces data by
geometrically projecting it onto lower dimensions which in turn are called
as Principal Components (PC).

The purpose of this method is to find the best summary of our data by
using the least amount of principal components. By choosing principal
components we minimizing our distance between the original data and its
projected values on the principal components, as a result of minimizing
the distance we maximize the variance of the projected points, same we
can repeat for all other principal components.

The basic idea of PCA is to preserve maximal variance for a data set with
a minimal set of linear descriptors. High dimensional datasets are
projected into a smaller number of dimensions maximizing the variance on
the new axes. PCA is a very important Statistical analysis tool and
therefore many researchers are working to improve the algorithm for
better performance and better data interpretation.

Let’s take an example, if we have a training set consisting of 250 images
of “person wearing glasses” and “person not wearing glasses” having 4096
features per image, when we directly apply NN to our dataset it would
take a huge amount of time for the training purpose, but if we pre-process
our data using PCA it will reduce the dimensions of our dataset to
(250,250) from the original (250,4096) hence when we apply NN to our
resulting dataset the time required to train the dataset will reduce
drastically without a huge loss in accuracy.

1.6. FUZZY LOGIC:

The term “Fuzzy Logic” refers to the data which is imprecise or vague.
This concept was first introduced in 1965 by Lotfi A Zadeh, A Barkley
Professor in Electronics and computer Science, who was basically a
Mathematician. He is also called as “Father of Fuzzy Logic”. He realized

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

34

that the legacy application were not capable of handling imprecise data
and mainly focused on handling precise (Boolean) data such as True /
False in the form of 1 and 0. In real world, more often one has to process
unclear data than clear data.

To further elaborate, consider a question “Is the car is moving?. “We have
only two answers – YES or NO. It’s pretty simple to handle such
situations and transform them in to software systems. But imagine a
situation where we think of developing an autopilot application for a car.
Software is expected to handle a decision making situation wherein a
decision needs to be made about applying brakes or pushing accelerator
based on the existing speed of the car, whether it is moving slow or fast.
Let’s assume, 40 km per hour is a threshold, below which car is
considered to have slow speed and above it, considered to be fast. If a car
is moving at the speed of 10 km/hr. is definitely slow speed and pushing
accelerator will be appropriate decision. On the other hand, if a car is
moving at the speed of 60 km/hr is definitely moving with fast speed and
applying brakes will be advisable. But think of a situation where the speed
is 39.5 km/hr. as per traditional logic, accelerators should be pushed and
as soon as speed becomes 40.5 /hr., brakes should be applied. In this way,
a car will keep speeding up and suddenly stopping. The person inside the
car will keep experiencing continuous jerks.

The only solution to handle such a situation was to consider speed of the
car as a continuous imprecise data than fixed precise. Slow speed can be
anywhere between 0 to 40, depending on how close it is to the threshold
value, we can say that it is extremely slow, very slow, little slow, slow,
little fast, very fast or extremely fast. Fuzzy logic helps in accepting such
continuous data and further take actions based on such input.

mu
no
tes
.in

Introduction to Big Data

35

Figure 6.1 Extracting fuzzy models (rules) from data

a. Architecture of fuzzy logic based software systems

A software system based on fuzzy logic mainly has 4 components:
Fuzzifier module, a rule base, Inference engine and De-Fuzzifier module.

Figure 6.2: Architecture of Fuzzy Logic System

1. Fuzzifier module: A fuzzifier module accepts inputs in the form of
crisp values. These values are further converted fuzzy data by applying
membership function. E.g. consider an answer to a question – Is it hot
today? The respondent, depending upon his / her perception, may answer
differently- Very hot / extremely hot / hot / slightly hot / Not at all hot.
Instead of plain YES or NO binary answer, there are varied answers. Such

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

36

answers are treated as LP, MP, SM, MN, and LN. Such an input is more
like human like and realistic one.

Figure 6.3: Fuzzification rules

2. Rule base: This is a collection of set of rules, which are applied on
the fuzzy input received from fuzzifier module. The rules are in the form
of if-then conditions and respective action, designed by experts. Such set
of rules can be further updated to fine tune the system.

3. Inference engine: This is the most important component of the
system. Based on inputs received from Fuzzifier module and rules base,
inference engine is responsible for making decisions. After matching
fuzzy inputs and selecting appropriate rules, the inference engine
determines which rules to be applied for developing control actions.

4. De-Fuzzification module: This is responsible for output from
inference engine to crisp values and present to user. Further, user can
choose the best option to reduce the error.

De-Fuzzification methods – Lambda-Cut method, maxima method,
weighted-sum method and centroid method are the methods which are
used for converting fuzzy values to crisp values which are in the human
understandable form.

Let’s consider the illustration of designing fuzzy logic system for a smart
air conditioner. The system can detect temperature through a thermometer.
This crisp value is taken as input for fuzzy system. Fuzzifier modules,
using membership function, will convert it into fuzzy data set. These fuzzy
values, combined with if-then rules base, inference engine will generate
output, which is again fuzzy. Using defuzzifying techniques, output will
be again converted into crisp value, based on which air conditioner will
automatically adjust its value.

A fuzzy logic based system is one which can treat the input as a set of
limited approximate values instead of precise values. All the values are

mu
no
tes
.in

Introduction to Big Data

37

nothing but matter of degrees. Knowledge is nothing but a set of variables.
Any logical system can be converted into fuzzy logic based system.

b. Membership function:

A membership function is one which can help in transforming crisp values
to fuzzy sets. It was first put forth by Lotfi A Zadeh. Such a function helps
in representing all the data in fuzzy set (discrete and continuous both). It
helps in handling real world problems with the help of experts. It is
possible to have one or many fuzzy rules with one or many antecedents
and consequents. Consider Following If-Then rule, part I is called
antecedent or premise and part II is called as consequence. In the
following case there is only 1 antecedent and 1 consequents in the rule.

In the above example, there are 2 antecedents and 1 consequents in the
rule.

Rules for defining fuzzy values are also fuzzy. In the similar way, it is
possible to have multiple antecedent and multiple rules.

Here is an example with multiple rules with multiple antecedents.

Rule 1: If x is A and y is B Then z is C

Rule 2: If x is A1 or y is B1 Then z is C1.

Part I and part II in the above rules indicate antecedent I and II whereas III
indicates consequents. Consequents of multiple rules in a rule base can be
aggregated to generate defuzzified output.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

38

The method of assigning membership values are as follows: 1. Intuition 2.
Inference 3. Rank Ordering 4. Angular Fuzzy Sets 5. Neural Networks 6.
Genetic Algorithm 7. Inductive Reasoning

One can represent a membership function with the help of a graph. A
membership value will always range between 0 and 1.

Figure 6.4: Graphical representation of membership function

Membership values lie between 0 and 1 and the one which are equal to full
membership i.e. 1 are called core values. The values which are non-zero
membership values are called support values. All the values which are
greater than zero but have incomplete membership are called as boundary
values. Membership values can be assigned based on intuition of experts,
through referencing, by rank ordering, angular fuzzy sets, neural networks,
genetic algorithm, and induction reasoning.

1.6.1 Extracting Fuzzy Models from Data

 A Fuzzy rule consists of antecedent (also called as hypothesis),
consequence (also known as conclusion). Multiple antecedents are
possible in a rule and there can be many rules in a given scenario. Such an
expression with antecedents and consequences, with optional AND, OR
conjunctive/disjunctive operators If-Then rule. These are also called as
canonical form of rule base.

When the two antecedents are conjunctive in nature i.e. joined by AND
then the aggregated output is intersection of all membership values. In
this case, all conditions that should be jointly satisfied, joined with AND.
This is called as Conjunctive system of rules. It can be represented
mathematically as

µx(x) =min (µx1(x1), µx2(x2)…… µxn (xn))

mu
no
tes
.in

Introduction to Big Data

39

On the other hand, if antecedents are disjunctive in nature, i.e. joined by
OR, then aggregated output is union of all membership values. In this
case, at least one conditions that should be satisfied, joined with OR. This
is called as Disjunctive system of rules. It can be mathematically
represented as

µx(x) =max (µx1(x1), µx2(x2)…… µxn (xn))

There are well researched fuzzy methods that provide well defined
systems for which can be used in inference system.

A. Mamdani system

Ebhasim Mamdani suggested this method in the year 1975. This method
can accept crisp as well as fuzzy inputs for the purpose of inference.
Consider a set of 2 rules

Rule 1 - If x is A and y is B Then z is C
Rule 2 - If x is A1 or y is B1 Then z is C1

There are two cases for 2 inputs methods in Mamdani system

a. Max-Min inference method – Considering above Rule 1 and Rule
2, with x=2.5 and y=3 as the inputs, minimum of membership values for
different antecedent is considered. Let µ1 be the membership value for
x=2.5 and µ2 be the membership value for y=3. Then minimum of µ1 and
µ2 is considered for Rule 1. Same procedure is followed for Rule 2 (and
up to Rule n if there are any) and maximum µ of all these rules is
considered for final Defuzzification. This method is also called as
truncated membership method.

Area covered under marked area is considered for finding out the final
crisp value. Appropriate equation for area calculation is used based on the
shape that is formed in the final output graph.

Figure 6.5: Max- Min Mamdani Method

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

40

b. Max-product inference method – Same procedure as Max-Min is
followed, except, instead of considering minimum membership value for
each rule, product is considered. For aggregation, maximum of all these
products considered for final Defuzzification. Instead of truncated
membership method, scaled membership method is used in Max-Product
Method.

Figure 6.6: Max Product Mamdani Method

B. TSK / Sugeno system (Takagi Sugeno Kang / Sugeno)

This model was suggested in the year 1985. In case of Mamdani system,
all the antecedents in If Then rule were in the fuzzy form and consequent
is also fuzzy. But the consequent is a polynomial function represented as
y=f(x, y), which is a crisp function.
Rule 1 - If x is small and y is small Then z1= (-x) +y+1
Rule 2 - If x is small and y is large Then z2= (-y) +3
Rule 3 - If x is large and y is small Then z3= (-x) +3
Rule 4 - If x is large and y is large Then z4= (-x) +y+2
Consider values of x=1.5 and y=2.5

Figure 6.7: Graphical representatiopn of TSK / Sugeno method

Minimum of membership values for x=1.5 for small and large are 0.3 and
0.3 and that of y=2.5 are 0.4 and 0.7 respectively.

mu
no
tes
.in

Introduction to Big Data

41

y* = (0.3 * 2) + (0.3 * 0.5) + (0.4 * 1.5) + (0.7 * 6)
 0.3 + 0.3 + 0.4 +0.7
 y* = 3.264

Before discussing the third system i.e.Tsukamoto system, let’s have brief
discussion on comparison of Mamdani and Sugeno system.
a. As per Mamdani system, consequent is s fuzzy data set whereas

according to Sugeno system, output membership function is a either
linear or constant.

b. Sugeno system is more based on mathematical rules than Mamdani.
c. Mamdani system more suitable for human inputs
d. Sugeno controller has more adjustable parameters than Mamdani

system.
e. Mamdani system is more intuitive and has widespread acceptance,

but Sugeno method is more computationally efficient.
f. Sugeno system works better for optimization and adaptive

techniques.

C. Tsukamoto system
In this system, antecedents as well as consequent is a fuzzy set, but the
membership function of the consequent is a fuzzy set, based on monotonic
function (which is also called shoulder function) whose successive values
are increasing, decreasing or constant. Output of each rule is defined as a
crisp value induced by membership value coming from antecedent rule.

Rule 1 – If x is A and y is B Then z is C

Rule 2 – If x is A1 and y is B1 Then z1 is C1

w1, w2 and w3 represent corresponding weights (based on membership
value) for x, y and z.

Figure 6.8: Graphical representation of Tsukamoto method

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

42

Based on rule 1 and rule 2, we find corresponding values for x and y and
the membership value for output z. This is done using maximum or
minimum depending on the rule (whether AND/OR condition used in the
rule). In a given illustration, both the rules are connected with AND, hence
we consider minimum of the two membership values. After extending w2
in first case and w2 in second case, corresponding values for membership
value w3 can be obtained. (This is a crisp value). Overall output can be
obtained by weighted average of each rule’s output (i.e. w3 and z in both
the rules).

Consider values of x=2 and y=5 ,

 y*= (0.2 * 0.5) + (0.5 * 5)

 0.2 + 0.5

 y* = 3.714 (Final output)

Main advantage of Tsukamoto method is that it bypasses the long process
of Defuzzification as each rule renders a crisp value, and overall output
can be calculated with weighted average method.

Major lacuna of this method is that, it can be applied only when
monotonic function used. In all other generic case Tsukamoto method
cannot be used.

1.6.2 Fuzzy Decision Trees

Decision tree is a diagrammatic representation of decision rules and
corresponding outcomes. A decision tree consists of 2 parts, decision node
and branches. A decision tree of such kind helps the end user better design
strategy in a complex situation where there are multiple decision rules and
conditions. Let’s consider the example of decision income tax percentage
to be deducted in a given situation. Tax to be deducted will be decided
upon following conditions

1. Whether a person under consideration is a salaried person or a
business person

2. Age of the person
3. Gender of a person
4. Total amount of earning

To design a tree for this situation, Questions are designed in such a way
that there are only two possible answers to a question. A condition is
considered as a decision node and answers are like branches. All possible
conditions and their answers are included in a single tree so that end-user
can easily take decision. It is important to note that all the decision
rules and possible answers are clear and well-defined.

mu
no
tes
.in

Introduction to Big Data

43

Now, let’s consider another situation, where person X has been
interviewed by different companies and has received job offers from 4
different companies. X has to make a decision, which offer to accept,
based on 3 criteria he has in mind. The criteria r\are salary, distance from
home and growth opportunities. X is looking for salary in the range of 35-
55 thousand per month. Distance from home should be between 5 to 30
km. Growth opportunities are indicated by number of ticks where more
number of ticks indicate more opportunities. Unlike previous example of
tax calculation, all the above conditions and possible criteria and unclear
and fuzzy in this case.

Following table represents all the criteria and available job opportunities
available for person X wherein J1, J2, J3 and J4 indicate job offers and
C1, C2, C3 indicate criteria for selection of job offer.

Job offers
Criteria

J1 J2 J3 J4

Salary C1 40 k 45 k 50 k 60 k
Distance C2 27 7.5 12 2.5
Growth C3 √√ √√√ √ √

After assigning membership function and assigning weights for salary
criteria, we get a continuous line as shown below.

Figure 6.9: Graphical presentation of salary vs. membership values

After following similar procedure for all other criteria, we get a table as
follows

Job offers
Criteria

J1 J2 J3 J4

Salary C1 0.25 0.5 0.7 1
Distance C2 1 0.9 0.78 0.1
Growth C3 0.5 0.8 0.2 0.2

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

44

For finding out best possible option, following equation used:

D1=Min (C1 (J1), C1 (J2), C1 (J3), C1 (J4)) = 0.25

D2=Min (C2 (J1), C2 (J2), C2 (J3), C2 (J4)) = 0.5

D3=Min (C3 (J1), C3 (J2), C3 (J3), C3 (J4)) = 0.2

D4=Min (C4 (J1), C1 (J2), C1 (J3), C1 (J4)) = 0.1

D (Final) = Max (D1, D2, D3, D4) = Max (0.25, 0.5, 0.2, 0.1) = 0.5

Hence, best option is with the weight 0.5 i.e. option 2. Hence J2, job offer
2 is most advisable for X.

A decision tree based on fuzzy value will not have just 2 branches, but can
have multiple branches. Experts’ views do matter for designing weights
giver to the values and membership function.

Figure 6.10: Decision tree (fuzzy values)

6.3 Stochastic Search Methods.

Since the advent of computers and software systems, they have undergone
lot of evolution. In the recent days, software systems have reached a stage
where one can expect them to imitate human intelligence. Needless to say,
agility and adaptability is one of the most prominent feature of human
intelligence. Incorporating changing environment to support decision
making in most complex systems, machine learning, deep learning and
neural networks have immensely aided in the development of appropriate
artificially intelligent software.

An efficient adaptive, self-learning algorithm for speedy search in a large
size database can give and edge over other traditional search algorithms.

Previously used deterministic and probabilistic models may not give
expected intelligent output, nearer to human intelligence. Deterministic
models as experiment based and with same set of initial conditions, will
generate same output. Probabilistic works with certain degree of

mu
no
tes
.in

Introduction to Big Data

45

randomness, but fails to work in an inherent highly random environment.
Further, deterministic and probabilistic methods are not capable of
handling time-dependent randomness. Consider an example of bacterial
growth in a controlled environment. In spite of same set of initial
condition and environment, final results may vary. Predicting stock prices
at different points of time is also highly unpredictable process and asks for
algorithms that can handle the nature of randomness in such a situation.
Modeling efficient supply chain management from production facilities to
warehouse, designing best red-yellow-green signal timings in various
directions in a traffic-network, deciding time to administer a drug for its
best therapeutic effects, Gaussian movement of particles are some more
such areas with high degree of randomness. Stochastic methods can come
handy in such situations.

What is stochastic search? : Most of the real-world problems need
stochastic approach. Stochastic process is a set of random variables, which
are time-dependent (time can be discrete-X0, X 1, X 2, X 3… X n or
continuous – {X t} t>=0). Certain degree of uncertainty helps in improving
ability in optimizing search processes. Natural world is full of
stochasticity. Most of the machine learning algorithms are based on
stochastic methods. Games do have certain level of stochasticity, such as
rolling dice or shuffling cards. Following are some generic steps for
building stochastic search model:

1. Creating a sample space (Ω) — which includes a list of all possible
outcomes,

2. Assigning probabilities to all the elements in a sample space

3. Identifying different events of interest,

4. Calculating the probabilities for the events of interest.

Let’s see a common example of this process in action: You are rolling a
dice in a casino. If you roll a six or a one, you win Rs. 1000. The steps
would be:

The sample space includes all possibilities for dice roll outcomes: Ω = {1,
2, 3, 4, 5, 6}.

The probability for any number being rolled is 1/6.

The event of interest is “roll a 6 or roll a 1”.

The probability for “roll a 6 or 1” is 1/6 + 1/6 = 2/6 = 1/3.

Implementation of stochastic search is achieved through different
algorithms and techniques. Such techniques are based on exploitation and
exploration principles.

Following are some of the popular techniques for stochastic search:

a. Simulated annealing – The name simulated annealing come from the
field of metallurgical engineering in which temperature is brought down in

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

46

a very slow manner, so that particles can settle down gradually while
cooling (minimum lattice energy state, thus avoiding and crystal defects,
final configuration results in a solid with such superior structural
integrity). Simulation of this entire process of annealing is used in an
algorithm, which can be represented as:

Simulated Annealing ()

Step 1 – Start with any random node and generate a solution

Step 2 - Using any cost function, calculate the cost of the solution

Step 3- Generate a new solution using a random neighbor

Step 4 – Calculate the cost of new function

Step 5 – Compare new solution cost against the cost of previous solution

Step 6- If new solution is better than the old one cost wise, move to new
solution and move to one more iteration.

Step 7- Keep checking for termination condition, which may either
maximum number of iteration or optimal solution resulted.

b. Genetic algorithms – Motivation for genetic algorithm come from
nature and the way it has evolved. Genetic mutation is a common process
that keep happening in animals as well as trees. In this process, a gene is
replaced by another, for environmental reasons. The evolutionary
fundamentals when applied for computation purpose, are called as
Evolutionary Computing and one of the branch of Evolutionary
Computing is Genetic algorithm. In GA, there is a population, which
consists of all possible encoded solutions to a given problem, wherein,
every single solution in the population is called as chromosome.
Population in computational space is called as genotype, whereas
population in real world is called phenotype. Genotype is basically
encoded solution from real world population to computational space. On
the other hand, phenotype is decoded solution from computational space
to real world. In a given population with problem, which is random one or
generated from other known heuristics problem, fit parent candidates are
selected. Fitness function is used to select the fit parents, the function has
to be very fast and is expected to quantitatively measure the fitness of the
candidates selected as parent. Crossover and mutation is carried out to
generate a new off-sprint, which in turn replace the one in original
population. This process is repeated again and again till number of
iterations are met or optimal solution is arrived. GA is widely used in
robotic engineering as well as other search optimization techniques.

Process in the GA can be represented in the form of algorithm as follows:

Genetic Algorithm ()

Step 1 – Initialize the population

Step 2- Using fitness function, check the fitness of population

mu
no
tes
.in

Introduction to Big Data

47

Step 3 – Select the parent

Step 4 – Probability of cross over is P1

Step 5 – Probability of mutation is P2

Step 6 – Decode the solution to real world and calculate for fitness

Step 7 – Select the survivor

Step 8 – Find the best one and return the same to real world population

Step 9 – Repeat the steps 3 to 8 till termination criteria is met

Before moving ahead with explanation for Hill climbing technique for
stochastic search optimization, let’s see the comparison of Simulated
Annealing and Genetic Algorithm.

SA: Comes from metallurgy engineering

Uses cost function to compare two solutions

Uses only one population space

Keeps comparing one solution with the neighboring to reach optimal
solution

Widely used in solving combinatorial problems

GA: Comes from human evolutionary concepts

Uses Best fit function for the comparison purpose

Uses 2 population spaces, Phenotype and Genotype.

Keeps combining two solutions to reach target best off-spring

Widely used in robotic application, production planning.

c. Hill climbing – Hill climbing algorithm starts with a random value and
continues searching higher value, till it reaches peak. Then peak values of
neighboring peaks are compared with each other for better optimization.
TSP (Traveling salesman problem) is an area where hill-climbing
algorithm is widely used. Hill-climbing algorithm is a variation of
generate and test method, which helps to decide in which direction to
move in a search space. The direction to move in a search space is decided
based on cost function value. Steps for hill-climbing algorithm are as
follows:

Hill Climbing ()

Step 1 – If existing state is equal to target state, then stop

Step 2 – If existing state is not the target, keep repeating the process of
finding and comparing new states until target state is achieved or there is
no new operator left to apply

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

48

Step 3- Select new operator and apply on the current state

Step 4- Keep swapping current state and new state if new state is better

Step 5- Exit the repetitive process the moment current state becomes the
optimum state.

QUESTION BANK

Q-1. What is a Sample? Why to use Sample?

A-1. Sample is a subset of large population. It allow researcher to conduct
their study in a timely manner as its size is small.

Q-2. What is a Sampling Distribution?

A-2. It is a probability distribution of a statistic from a large number of
samples.

Q-3. Give one example of sampling distribution.

A-3. Any live example used by researcher for analysis.

Q-4. Define following terms.

 Sample, Population, Sampled Population, Element and Frame.

A-4. A sample is a subset of the population.

A population is a collection of all the elements of interest.

The sampled population is the population from which the sample is
drawn.

An element is the entity on which data are collected.

A frame is a list of the elements that the sample will be selected from.

Q-5. What is re-sampling?

A-5. We only have a single estimate of the population parameter. To avoid
this situation, we can use estimating the population parameter
multiple times from our data sample. This is called re-sampling.

Q-6. What are TWO commonly used re-sampling methods?

A-6. (1). Bootstrap

(2). K – fold Cross Validation

Q-7. Discuss Statistical Inference.

A-7. Statistical Inference makes propositions about a population.
Statistical Inference consists of selecting a statistical model and
process that generates data and deducing propositions from the
model.

mu
no
tes
.in

Introduction to Big Data

49

Q-8. Define Prediction error.

A-8. Prediction error is the failure of some expected event to occur.

Q-9. What is Regression Analysis?

A-9. It is a set of statistical processes for estimating relationships between
a dependent variable and one or more independent variables.

Q-10. What are the types of Regressions models?

A-10. Linear

 Logistics

 Polynomial

 Stepwise

 Ridge

 Lasso

 Q-11. Case study I

A group of estate agents carried out a survey in Mumbai for predicting
rent and deposit amounts for apartments in different locations. Rent and
deposit amounts can vary upon variety of factors such as distance from
railway station, locality of the flat, distance from airport, nearest school
and mall, amenities and carpet area of the flat. Mr. and Mrs. Y are looking
for an apartment on rent and approached group of property agents. Their
criteria for selecting an apartment are proximity from a school (2-4 km),
distance from nearest railway station (5-10 km), amenities and locality.
Property agents have short listed 4 properties for them. For finalizing the
best property for them, create a decision table and tree based on fuzzy
logic. Refer following values to prepare the table: P1 to P4 are shortlisted
properties and C1 to C4 are criteria.

Properties

Criteria

P1 P2 P3 P4

School distance C1 3.5 km 2 km 4 km 3 km

Railway station
distance C2

8 km 6.5 km 10 km 5 km

Amenities C3 √√√ √√ √√ √

Locality C4 * *** * **

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

50

A-11. Refer the section 6.2, for solving the case. Using a membership
function (1/5 for school distance criteria, we can plot the graph with the
gap of 5), write the membership values along with school distance in a
tabular form. Find out minimum of membership value for each short-listed
property, after repeating this process for all the criteria. Consider the
maximum membership value from all membership values for different
criteria and corresponding property. This property is ideal for Mr. and
Mrs. Y based on their criteria. Draw a decision tree based on membership
values for all the criteria.

Q-12. Case study II

In class of 40, students are graded as poor, average and extraordinary
based on their percentages in the examination. Consider the universe with
percentage values as:
U={0,10,20,30,40,50,60,70,80,90,100} and students with percentage
below 40 are considered as poor, above 40 till 70 percent are average and
above 70 are extraordinary.

Assume 2 subsets A and B

A= {33, 56, 87, 96, 25, 66, 79}

B= {78, 42, 64, 86, 35, 27, 31}

Assign weights (membership values) to all the values in A and B, design a
membership function for the same. Draw graphs and find out count of
core, support and boundary values in subset A and B.

A-12. Consider the universe U, which has values 0 to 100, where the gap
is of 10. Hence, membership function can be 1/10. For each member in A
and B, apply membership function to find out membership values. Then
plot membership values against original values of each element.

Q-13 Multiple choice questions

1. Membership functions are better represented with the help of
a. Tabular form b. Graphical form
c. Mathematical form d. Logical form

2. Which of the following are fuzzy operators?
a. AND b. OR c. NOT d. All of the above

3. How best can we define dry in terms of humidity of the weather?
a. Fuzzy set c. Crisp set
b. Fuzzy and Crisp d. None of the above

4. Values of X mapped to lie between 0 to 1 which is called as
a. Membership value c. Degree of membership
b. All of the above d. None of the above

mu
no
tes
.in

Introduction to Big Data

51

5. Fuzzy systems can be implement with the help of
a. Hardware c. Software
b. Both of the above d. None of the above

6. For a given fuzzy set A, which of the following elements do not

belong to A?
 A={(a,0.5) , (b,0.2) , (c,0), (d,1) , (e,0.8), (f,0.3)}
a. c b. d c. None of the above d. All of the above

7. _____ is best used to represent fuzzy values in a graph.
a. Square c. Hexagon
b. Triangle d. All of the above

8. A fuzzy system architecture has ____ main components.
a. 2 b.4 c.5 d. None of the above

9. Which of the following logic is the form of Fuzzy logic?
a. Two-valued logic d. Crisp set logic
b. Binary set logic e. Many-valued logic
c. None of these

A-13. Answers in Red color above.

Q-14.What is a membership function used in fuzzy logic? What are
different techniques for fuzzifying or defuzzifying data?

A-14. Definition and need for fuzzy logic with example. List down
techniques for Defuzzification.

Q-15. Compare Mamdani and Sugeno model with their pros and cons.

A-15. Explain the concept of Stochastic Search methods. Mamdani and
Sugeno method, Advantages and disadvantages of each.

Q-16. Explain the concept of ‘Monotonic function”? Why it is
alternatively called as shoulder function?

A-16. In Tsukamoto method, outcome is a polynomial function instead of
fuzzy value. Monotonic function is one which takes increasing,
decreasing or constant values. After plotting such successive values,
we get a graph of following nature, which resembles human
shoulder. Hence called as shoulder function.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

52

Q-17. Explain architecture of Fuzzy system with appropriate diagram.

A-17. Draw a diagram with 4 important components of Fuzzy System:
Fuzzifier, Rule Base, Inference System and De-fuzzifier. Explain
each and list down any 2 techniques, each for Fuzzification and
Defuzzification.

Q-18. Compare and contrast Simulated annealing, Genetic algorithm and
Random walk techniques for stochastic search.

A-18. Explain SA and GA technique and steps for the same. Write one
application where it can be used. Write advantages and
disadvantages of each.

Q-19.What is Neural Network?

Q-20.What is generalization in Neural Network?

Q-21.List out various applications where we can use Neural Network

Q-22.What is Competitive Learning in Neural Network?

Q-23.What is need of Principal components analysis in Neural
Network?

Q-24. List five characteristic of big data.

A-24. Volume, variety, veracity, variability and velocity are
characteristics of big data.

Q-25. Name few unit of measurement for memory used in today's era of
big data.

A-25. Terabytes, Petabytes, Zettabytes and Exabytes.

Q-26. Write various steps to carry out for analysis process in general.

A-26. The following steps has to carry out analysis process: Data
collection, Data cleaning, Data preprocessing, Data analysis,
Visualisation and Representation, Understanding results.

Q-27. Write 2 differences between analysis and reporting process.

A-27. (1) The goal of the analysis process is inspecting the data and
transforming into useful meaningful information. Whereas, the goal
of the reporting process is to transforming the output of process in
to presentable format. (2) The main purpose of conducting analysis
process is examining interpreting comparing and predicting about
the data. Whereas reporting process is mainly focusing on
highlighting organizing summarizing and formatting process.

Q-28. Write difference between structure and unstructured data.

A-28. Structure data can store with two dimensional structure like
worksheets. The structure of data is predefined and fixed. Whereas

mu
no
tes
.in

Introduction to Big Data

53

unstructured data do not have fixed data format. It is volatile in
nature.

Q-29. Write examples of structure and unstructured data.

A-29. Structure data - Business data stored in RDBMS system, excel
worksheet Unstructured data - text data, web data, images.

Q-30. Write any three reasons behind increasing volume of internet data in
last few years.

A-30. The reasons behind increasing volume of internet data are as follow:

(1) Increase in number of internet users.

(2) Increasing popularity of social media websites and online shopping
websites.

(3) IoT systems usage.

Q-31. Explain the term 'velocity' with reference to big data.

A-31. Velocity measures how fast the data is coming in. In some system
data are come in in real-time, whereas in other systems data are
come in batches. Depending on the velocity of data, data storage
system has to manage the flow of the data.

Q-32. Name any three technology used for Big data analytics.

A-32. R language, Python language and Hadoop ecosystem are popular
technology used for big data analytics.

Q-33. Differentiate between linear and non-linear time series data

Q-34. Explain various inherent components of time-series data, with
suitable examples.

Q-35. Mention and briefly introduce algorithms available for rule
induction process.

Q-36. Illustrate the statement “BDS is a litmus test for deciding non-
linearity of time series data”.

Q-37. Compare and contrast Additive and Multiplicative methods.

Q-38. Explain steps to carry out Exponential Smoothing of time series
data.

Q-39. Discuss pros and cons of ARIMA for the purpose of forecasting of
time series data.

Text book:

 Mining of Massive Datasets, Anand Rajaraman and Jeffrey David
Ullman, Cambridge University Press, 2012.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

54

 Big Data, Big Analytics: Emerging Business Intelligence and
Analytic Trends for Today's Businesses, Michael Minelli, Wiley, 2013

References:

 Big Data for Dummies, J. Hurwitz, et al., Wiley, 2013

 Understanding Big Data Analytics for Enterprise Class Hadoop and
Streaming Data, Paul C. Zikopoulos, Chris Eaton, Dirk deRoos,
Thomas Deutsch, George Lapis, McGraw-Hill, 2012.

 Big data: The next frontier for innovation, competition, and
productivity, James Manyika ,Michael Chui, Brad Brown, Jacques
Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung Byers,
McKinsey Global Institute May 2011.

 Big Data Glossary, Pete Warden, O’Reilly, 2011.

 Big Data Analytics: From Strategic Planning to Enterprise Integration
with Tools, Techniques, NoSQL, and Graph, David Loshin, Morgan
Kaufmann Publishers, 2013

mu
no
tes
.in

 55

2
MAP REDUCE

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Distributed File Systems

2.2.1 Physical Organization of Compute Nodes

2.2.2 Large-Scale File System Organization

2.3 Apache Hadoop

 2.3.1 Elements of Hadoop Ecosystem

2.4 Map Reduce

2.5 Steps of Map Reduce

2.5.1 The Map Task

2.5.2 Grouping by Key

2.5.3 The Reduce Tasks

2.5.4 Combiners

2.5.5 Details of Map Reduce Execution

2.5.6 Coping with Node Failures

2.6 Algorithms using Map Reduce

2.6.1 Matrix-Vector Multiplication by Map Reduce

 2.6.2 If the Vector v Cannot Fit in Main Memory

 2.6.3 Relational Algebra Operations

 2.6.4 Computing Selections by Map Reduce

 2.6.5 Computing Projections by Map Reduce

 2.6.6 Union, Intersections and Difference by Map Reduce

 2.6.7 Computing Natural Join by Map Reduce

2.7 Extensions to Map Reduce

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

56

 2.7.1 Workflow Systems

 2.7.2 Recursive Extensions to Map Reduce

 2.7.3 Pregel

2.8 Common Map Reduce Algorithms

2.8.1 Sorting

 2.8.2 Searching

 2.8.3 Indexing

 2.8.4 TF-IDF

2.9 Summary

2.10 List of References and Bibliography

2.11 Unit End Exercise

2.0 OBJECTIVES

This chapter will make you to understand the following concepts:

● The requirement of the big data handling tool.
● The structure and working of the Distributed File System.
● Physical Organization of Compute Nodes
● Large-Scale File System Organization
● The importance of Apache Hadoop, MapReduce and parallel processing

for mining large-scale data.
● The MapReduce Framework and its steps of execution.
● The features and working flow of the MapReduce system.
● The MapReduce execution of Matrix Multiplication algorithm and

relational algebra operations.
● The input and output file format of MapReduce phases.
● The generalized form of MapReduce, a workflow system.
● The recursive extension of MapReduce and handling faults during

execution of MapReduce.
● Designing the MapReduce algorithm for small tasks and large data.

2.1 INTRODUCTION

In modern applications the quick data insights or analysis require us to manage
the immense amount of data quickly. In most of these applications, the data is
extremely regular, and there is ample opportunity to exploit parallelism. Some of
the Important examples are:

1. Importance wise ranking of Web pages, involves an iterated matrix-vector
multiplication where the dimension is in the tens of billions.

2. At social networking sites, searches in “friends” networks involve graphs
with hundreds of millions of nodes and many billions of edges.

mu
no
tes
.in

Map Reduce

57

In these applications, a new software stack has developed. These applications are
using the new form of file system, which features much larger units than the disk
blocks in a conventional operating system. This file system also provides the
facility of replication of data to protect against the frequent media failures that
occur when data is distributed over thousands of disks.

Now a day many of the higher-level programming languages support these file
systems. The central component of these programming languages is MapReduce.
The MapReduce implementation helps us to perform most common calculations
on large-scale data on large collections of computers efficiently, that is tolerant
of hardware failures during the computation.

Map-reduce systems are evolving and extending rapidly. In this chapter we will
discuss the distributed file systems, MapReduce, generalizations of map-reduce,
first to acyclic workflows and then to recursive algorithms. We will discuss some
common algorithms of MapReduce as well.

2.2 DISTRIBUTED FILE SYSTEMS

Most computations are performed on a single processor that uses its own main
memory, cache and local disk (a computing node).In such systems the files are
managed by a file management system. The file management system is capable
of handling the files that are stored on a single computer or cluster. In the past
parallel processing applications, the parallel processing was done on special
purpose computers with multiple processors and specialized hardware. The ever-
increasing web services have created the demand to do huge computing
independently and instantly on a large extensible cluster. As compared to the
special-purpose parallel computers the Commodity hardware is cheap in cost.

The availability of cheap and faster hardware gives rise to a new generation of
programming systems with the feature of parallelism. These systems take
advantage of the power of parallelism and at the same time avoid the reliability
problems that arise when the computing hardware consists of thousands of
independent components, any of which could fail at any time.

In this chapter, we will discuss the characteristics of the computing installations
and the specialized file systems that have been developed to take advantage of
them.

2.2.1 Physical Organisation of Compute Nodes

The parallel-computing architecture or cluster computing comprises the
computing nodes that are organised into the number of racks. The rack may
contain 8 to 64 computing nodes that are connected by a network like gigabit
ethernet. The racks are connected with each other through a switch or another
level of network. In order to communicate with the nodes in other rack, the
bandwidth of inter-rack communication should be greater than the bandwidth of
intra-rack ethernet. Figure 2.1 shows the architecture of a large-scale computing
system with multiple racks, each with multiple nodes.In this network, the
principal modes are loss of a single node or loss of an entire rack. If any of the

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

58

nodes failed due to some reason, then the network will not be able to provide the
data of this node or perform computations on this node. Or if any connection to a
rack fails, then the network connecting its nodes to each other and the outside
world fails.

Figure 2.1: Computing nodes are organized into racks and racks are
interconnected by a switch. The large computations may take minutes or even
hours. During computation, if any one component failed, the abort or restart of
computation may lead to failure.

To overcome this problem,

1. Files must be stored redundantly onto multiple nodes.
2. Computations must be divided into tasks and allocated to the multiple

nodes.

2.2.2 Large-Scale File System Organization

To store the enormous file on multiple computers you need to use the distributed
file system. The distributed File Systems (DFS) can handle the data stored across
multiple clusters or nodes. The files that are stored on a distributed file system
are rarely updated. The file is stored on multiple nodes by dividing it into a
number of chunks.

For example, to store the file of 30 TB in a distributed file system with multiple
nodes in a cluster (each of capacity 10 TB), needs to be divided into the blocks or
chunks. The size of the chuck is defined by the user like 64 megabytes, 128
megabytes and so on.

The Fault tolerance is achieved by replicating the chunks three times, at three
different compute nodes of different racks. This also helps us to get the copy of
the chunk in case of rack failure. Usually, both the chunk size and the degree of
replication can be decided by the user.

The metadata of the chunks of a file is stored on a name node which acts as a
master node. The master node is itself replicated, and a directory for the file
system as a whole knows where to find its copies. The directory itself can be

mu
no
tes
.in

Map Reduce

59

replicated, and all participants using the DFS know where the directory copies
are.

DFS Implementations

There are several distributed file systems of the type. Some of these systems that
are used in practice are:

1. The Google File System (GFS), the original of the class.
2. Hadoop Distributed File System (HDFS), an open-source DFS used with

Hadoop, an implementation of map-reduce and distributed by the Apache
Software Foundation.

3. Cloud Store, an open-source DFS originally developed by Kosmix.

2.3 APACHE HADOOP

Apache Hadoop is a collection of open-source utilities that allows us to use a
network of many computers to solve problems involving massive amounts of
Data and computation. Hadoop provides the software framework for distributed
data storage and MapReduce programming model for processing big data.
Hadoop is designed to scale up from a single server to a cluster of thousands of
machines. Each of these machines in the cluster offers the local computation and
storage.

Apache Hadoop was originally designed for computer clusters that are built from
commodity hardware or even high-end hardware. The Hadoop framework
distributes an analytical computation of massive data on many machines, each of
which simultaneously operates on their own individual chunk of data.

For distributed computing, the distributed systems shall meet the following
requirements -

1. Fault Tolerance: If any of the components fails, the entire system should not
get fail. The system should gracefully degrade into a lower performing state.
If a failed component recovers, it should be able to rejoin the system.

2. Recoverability: In case of failure, no data should be lost.
3. Consistency: The final result should not get affected due to failure of any

component.
4. Scalability: Adding more data and more computation leads to a decline in

performance but not fail; increasing resources should result in a proportional
increase in capacity.

Hadoop addresses these requirements through the abstract concepts, as defined in
the following list:

1. Data is distributed immediately when added to the cluster and stored on
multiple nodes. Nodes prefer to process data that is stored locally in order to
minimize traffic across the network.

2. Data is stored in blocks of a fixed size (usually 128 MB) and each block is
duplicated multiple times across the system to provide redundancy and data
safety.

3. A computation is usually referred to as a job; jobs are broken into tasks
where each individual node performs the task on a single block of data.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

60

4. Jobs are written at a high level without concern for network programming,
time, or low-level infrastructure, allowing developers to focus on the data
and computation rather than distributed programming details.

5. The amount of network traffic between nodes should be minimized
transparently by the system. Each task should be independent and nodes
should not have to communicate with each other during processing to ensure
that there are no inter-process dependencies that could lead to deadlock.

6. Jobs are fault tolerant usually through task redundancy, such that if a single
node or task fails, the final computation is not incorrect or incomplete.

7. Master programs allocate work to worker nodes such that many worker
nodes can operate in parallel, each on their own portion of the larger dataset.

These basic concepts, while implemented slightly differ to various Hadoop
systems, drive the core architecture and together ensure that the requirements for
fault tolerance, recoverability, consistency, and scalability are met. These
requirements also ensure that Hadoop is a data management system that behaves
as expected for analytical data processing, which has traditionally been
performed in relational databases or scientific data warehouses.

2.3.1 Elements of Hadoop Ecosystem

The Hadoop ecosystem is a platform that provides various services to solve the
big data problems. This includes various Apache products, commercial tools and
solutions. The four major elements of Hadoop Ecosystem are Hadoop Distributed
File System (HDFS), MapReduce, YARN and Hadoop Common. Hadoop
Ecosystem provides the tools that are used to perform tasks like load, analyse,
and maintain data. Some of the components/tools of Hadoop Ecosystem are as
follows:

1. Hadoop Distributed File System (HDFS)

2. Yet Another Resource Negotiator (YARN)

3. MapReduce - Programming based Data Processing

4. Spark for In-Memory data processing

5. PIG and HIVE - Query based processing of data services

6. HBase - NoSQL Database

7. Mahout and Spark MLLib - Machine Learning algorithm libraries

8. Solar and Lucene - Searching and Indexing

9. Zookeeper - Managing Cluster

10. Oozie - Job Scheduling

2.4 MAPREDUCE

Hadoop MapReduce is a Software framework. MapReduce is also referred to as a
programming model that performs parallel and distributed processing on massive

mu
no
tes
.in

Map Reduce

61

datasets. The implementations of MapReduce can be used to manage large-scale
computations in a way that is tolerant of hardware faults.

MapReduce is the processing component of Hadoop and is used to write the
applications that process huge] amounts of data in parallel on large Hadoop
clusters of commodity hardware. These clusters are scalable, reliable and fault
tolerant.

The term ‘MapReduce’ specifies the two distinct tasks that are to be performed
by Hadoop programs:

1. Map task which accepts the data and converts it into another set of data. Here
each individual element of the data is split into Key-value pairs.

2. Reduce Task that takes the output of Map Task as input and combines them
into a smaller set of tuples. So, the reducer task takes place after the
completion of the map task.

In brief, a map-reduce computation executes as follows:

1. The Map tasks with given one or more chunks from a distributed file
system turns the chunk into a sequence of key-value pairs. The way key-
value pairs are produced from the input data is determined by the code
written by the user for the Map function.

2. The key-value pairs from each Map task are collected by a master
controller and sorted by key. The keys are divided among all the Reduce
tasks, so all key-value pairs with the same key wind up at the same Reduce
task.

3. The Reduce tasks work on one key at a time, and combine all the values
associated with that key in some way. The manner of combination of
values is determined by the code written by the user for the Reduce
function.

The figure 2.2 shows the schematic of a MapReduce computation.

Figure 2.2: Schematic of a MapReduce Computation

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

62

The MapReduce programming is useful to gain valuable insights from the data.
The advantages of MapReduce programming are as follows:

1. Simple: Developers can write code using any of the languages including Java,
C++ and Python.

2. Scalability: Businesses can process petabytes of data stored in the Hadoop
Distributed File System (HDFS).

3. Flexibility: Hadoop enables easier access to multiple sources of data and
multiple types of data.

4. Speed: Due to parallel processing and minimal data movement, Hadoop offers
fast processing of massive amounts of data.

The MapReduce programming model is developed using Java with three classes:

1. Mapper class: The Mapper class performs the Map task of splitting data and
converting it into key-value pairs. The mapper class stores these resultant
key-value pairs in HDFS.

2. Reducer class: The Reducer class reads the output of the mapper class from
HDFS, processes it and generates the final output in the form of Key-value
pairs. The reducer stores this output of the Reduce task in HDFS.

3. Driver class: The Driver class sets up the MapReduce job to run in Hadoop.

With the help of Mapper class and Reducer class, MapReduce processes the
given input data and generates the output in form of key-value pairs. During this
process the data undergoes the various MapReduce steps.

2.5 STEPS OF MAP REDUCE

The MapReduce programming model follows the following steps for solving the
problem.

1. The Map Task
2. Grouping by Keys
3. Reduce Task
4. Combiner

2.5.1 The Map Task

The mapper accepts the user input file with the elements of any type like tuples
or a document. The mapper will split the input into the number of chunks and
distribute it over the network of map nodes. Here, a chunk is a collection of data
elements and no element is stored across the two chunks. Each map node will
process the data and will return the list of key-value pairs.

Technically, all inputs from Map tasks and outputs of Reduce tasks are of the
key-value-pair form, but normally the keys of input elements are not relevant and
we shall tend to ignore them. Insisting on this form for inputs and outputs is
motivated by the desire to allow composition of several map-reduce processes.

A Map function is written to convert input elements to key-value pairs. The types
of keys and values are each arbitrary. Here, the keys are not “keys” in the usual

mu
no
tes
.in

Map Reduce

63

sense; they do not have to be unique. Rather a Map task can produce several key-
value pairs with the same key, even from the same element.

Example 2.1: Let us discuss a map-reduce computation with the standard Word
count example application: counting the number of occurrences for each word in
a collection of documents.

Here, in this example the input file is a repository of documents, and each
document is an element. Here the Map function defines the key value pair with
the document words as keys and the number of occurrences of words as integer
values. The Map task reads a document and splits it into its sequence of words
w1, w2, . . .,wn. After processing the Map task emits a sequence of key-value pairs
where the value is always 1. That is, the output of the Map task for this document
is the sequence of key-value pairs:

(w1,1), (w2,1),. . ., (wn,1)

A single Map task will typically process many documents where each of these
documents is in one or more chunks. In such cases the output will be more than
the sequence for the one document suggested above. If a word w appears m times
among all the documents assigned to that process, then there will be m key-value
pairs (w, 1) among its output.

2.5.2 Grouping by Keys

Grouping and aggregation task is performed independently by the master
controller process. It is not related to Map and Reduce tasks. The master
controller process knows how many Reduce tasks r, that are given by the user to
the map-reduce system.

The master controller uses a hash function to group the keys. To do so it
produces a bucket number from 0 to r-1. So, each key that is emitted by a Map
task is hashed and its key-value pair is put in one of r local files. Each file is
intended for one of the Reduce tasks.

After completing all the Map tasks successfully, the master controller merges the
file from each Map task that are intended for a particular Reduce task and feeds
the merged file to that process as a sequence of key-list-of-value pairs. For each
key k, the input to the Reduce task that handles key k is a pair of the form (k, [v1,
v2, . . .,vn]), where (k, v1), (k, v2), . . ., (k, vn) are all the key-value pairs with key
k coming from all the Map tasks.

2.5.3 The Reduce Task

The Reduce function readsthe output of the Mapper function, which is in the key-
value pairs and combines the values in some way. After reading these key-value
pairs, the reducer function combines the list of values for each key. Once
combined, the reducer function merges the output of all reduce tasks into a single
file.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

64

Example 2.2: In continuation to Example 2.1 of word-count. The Reduce
function sums all the values and returns a sequence of (w, m) pairs, where w is a
key or word that appears at least once in the input documents and m is the total
number of occurrences of word w among all those documents.

2.5.4 Combiners

Usually, the Reduce function is associative and commutative, which helps to
combine the values in any order, with the same result. In Example 2.2, the
addition performed is an example of an associative and commutative operation.
While grouping the values, the order of numbers in the list of values v1, v2, . . ., vn
does not affect the sum value.

Since the Reduce function is associative and commutative, it is possible to push
some tasks of Reduce to the Map tasks. For example, in Example 2.1, instead of
producing many pairs (w, 1), (w, 1), . . ., in map task, we could apply the Reduce
function within the Map task before sending output of map task for grouping and
aggregation. So, this list of key-value pairs would thus be replaced by one pair
with key w and value equal to the sum of all the 1’s in all those pairs. That
means, the pairs with key w generated by a single Map task would be combined
into a pair (w, m), where m is the number of times that w appears among the
documents handled by this Map task. Though the reduced task is applied in map
tasks, there is still a need for grouping and aggregation operations for grouping
the key-value pairs that are coming from map tasks of different map nodes.

2.5.5 Details of MapReduce Execution

While executing the MapReduce tasks, the various processes, tasks and files
interact with each other as shown in Figure 2.3. With the help of Hadoop, a
library provided by a MapReduce system, the user program forks a Master
Controller process and some number of Worker processes at different compute
nodes. Here each of the worker nodes can act as a Map worker or a Reduce
worker but not both. The Map worker handles the Map task whereas the Reduce
worker handles the Reduce task.

The Master creates some number of Map tasks and some number of Reduce tasks
where this number is being selected by the user program. After creation, the
Master assigns these tasks to worker processes. Depending on the size of the
input file and the size of the chunk defined by the user, the Master creates one
Map task for every chunk. For each Reduce task, the Map task needs to create an
intermediate file. So, the number of reduced tasks should be less than the Map
tasks, otherwise the number of intermediate files explodes.

mu
no
tes
.in

Map Reduce

65

Figure 2.3: Overview of the execution of a MapReduce program

All the Map and Reduce nodes status is maintained and controlled by the Master
node. The Master node keeps track of the execution process of the Map and
Reduce nodes. If any of the Map or Reduce nodes finish the execution, the
Master allocates the other task to this node. If any task execution fails at a
particular node, the Master node reallocates that task to another node.

Every Map task is assigned one or more chunks of the input files. The Map node
executes the mapper code, written by the user on these chunks. The Map tasks
creates an output file for each reduce task and stores it on the local disk of Map
node and sends information about size and location of this file to Master node.

The Master node assigns the Reduce task to worker nodes and provides the
output files of Map tasks as an input. The reduce task executes code written by
the user and sends output to the file that is stored in a distributed file system.

2.5.6 Coping with Node Failures

The Mater node is controlling the failure of the Map nodes and the Reduce
nodes. But what if the Master node fails? The one node can bring the entire
process down. In this case the entire MapReduce job needs to be restarted and
completed eventually.

The Master node periodically pings the worker nodes, and hence the worker
processes. In case of the failure of the worker node, the master node reallocates
the complete process of this node to another node, since the output of this process
needs to be assigned to the Reduce task. The Master must also inform each
Reduce task that the location of its input from that Map task has changed.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

66

Managing the failure of a Reduce worker is simpler. The Master simply sets the
status of its currently executing Reduce tasks to idle. These will be rescheduled
on another reduce worker later.

Example 2.3:Let us understand the steps of MapReduce with a word count
example. The Word count example reads a text file and counts the total number
of occurrences of each word.

Let us consider the text file sample.txt with the following text.

Bus. Car, Train, Ship, Ship, Train, Bus, Ship, Car

Figure 2.4 shows the steps of MapReduce tasks for the Wordcount example.

Figure 2.4: MapReduce steps of Wordcount example

The Map Task

For the above Example 2.3 mapper call read the input text file ‘Sample.txt’ and
split it into the 3 chunks, (Bus. Car, Train), (Ship, Ship, Train), and (Bus, Ship,
Car). After splitting the mapper assigns each of these chunks to the map nodes.
Each map node then splits the chunk text into words and converts it into the key
value pair, by adding a frequency of occurrence as 1. Here the key is the word
and the value is the frequency of occurrence of that word.

Map Node 1: (Bus.1), (Car,1), (Train,1),

Map Node 2: (Ship,1), (Ship,1), (Train,1), and

Map Node 3: (Bus,1), (Ship,1), (Car,1)

Grouping by Key

In Example 2.3 after completing a mapper phase, the reducer will read the output
of mapper, and partition it with the help of sorting and shuffling process for each
of the keys in the data set. The partition process sent the tuples with the same key
to a respective reducer. The sort and shuffle acts on these lists of <key, value>
pairs and sends out unique keys and a list of values associated with this unique
key <key, list(values)>.

Reducer Node 1: (Bus,1,1)

Reducer Node 2: (Car,1,1)

mu
no
tes
.in

Map Reduce

67

Reducer Node 3: (Ship,1,1,1)

Reducer Node 4: (Train,1,1)

The Reduce Task

In Example 2.3 the reducer will aggregate the values of intermediate tuples that
are generated in sorting and shuffling step and will generate the list of unique
key-value pairs with the total number of key occurrences by summing the list of
values.

Reducer Node 1: (Bus,2)

Reducer Node 2: (Car,2)

Reducer Node 3: (Ship,3)

Reducer Node 4: (Train,2)

Combiner

In Example 2.3, the combiner will read the key-value pairs that are generated by
reducer and combine it into a single set of key-value pairs and write it into the
output file.

Final Output:

 (Bus,2)

 (Car,2)

 (Ship,3)

 (Train,2)

2.6 ALGORITHMS USING MAPREDUCE

MapReduce is growing rapidly and helps in parallel computing tasks like
determining the price for products, yielding the highest profits, predicting and
recommending analysis and so on. It allows programmers to run models over
different data sets and uses advanced statistical techniques and machine learning
techniques that help in predicting data.

MapReduce algorithms are not used for smaller tasks. Even every problem needs
not to use the Distributed File Systems for storing data. For example, we would
not expect to use either a DFS or an implementation of MapReduce for managing
online retail sales, even though a large on-line retailer such as Amazon.com uses
thousands of compute nodes when processing requests over the Web. The reason
is that the principal operations on Amazon data involve responding to searches
for products, recording sales, and so on. MapReduce algorithms are not advised
to use for the processes that involve relatively little calculation and that need to
update the database.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

68

On the other hand, the MapReduce algorithms are used for large computations or
processes. For example, Amazon uses MapReduce to perform analytic queries on
large amounts of data, such as finding the customers pattern, who are buying the
particular product.

MapReduce algorithm can be used with a variety of applications. It can be used
for distributed pattern-based searching, distributed sorting, web link graph
reversal, web access log stats. It can also help in creating and working on
multiple clusters, desktop grids, volunteer computing environments. One can also
create dynamic cloud environments, mobile environments and also high-
performance computing environments.

Google made use of MapReduce which regenerates Google Index of the World
Wide Web. The original purpose for which the Google implementation of
MapReduce was created is to execute very large matrix-vector multiplications as
are needed in the calculation of Page Rank. Another important class of operations
that can use MapReduce effectively are relational-algebra operations.

2.6.1Matrix-Vector Multiplication by MapReduce

Let us consider matrix M of size n × n. The location of the element of matrix M
is referred to by row i and column jand will be denoted by mij. Let us have a
vector v of length n, whose jth element is vj. The product of vector v and matrix M
is the vector x of length n, whose ith element xi is given by

If the value of n is small, say 100, we do not want to use a DFS or MapReduce
for this calculation. On the other hand, this method can be used when n is large.
For example, in search engines for the ranking of Web pages, n is in the tens of
billions.

When n is large, it should not be so large that vector v cannot fit in main memory
and be part of the input to every Map task. It is observed that there is nothing in
the definition of map-reduce that for bids providing the same input to more than
one Map task.

Both the matrix M and the vector v each will be stored in a file of the Distributed
File System. The elements of the Matrix are stored in rows and columns. The
element mij, that is stored at the row i and column j, can be referred to by a
triple(i, j, mij). In the same way the position of jthelement in the vector v is
referred to by vj.

The Map Function: Each Map task will take the entire vector v and a chunk of
the matrix M. From each matrix element mij it produces the key-value pair (i,
mijvj). Thus, all terms of the sum that make up the component xi of the matrix-
vector product will get the same key.

mu
no
tes
.in

Map Reduce

69

The Reduce Function: The Reduce task simply sums all the values associated
with a given key i. The result will be a pair (i, xi).

2.6.2 If the Vector v Cannot Fit in Main Memory

If the vector v is so large that it will not fit in main memory, then to perform the
Matrix-Vector multiplication operation, we need to divide the vector into
horizontal stripes of equal height. But in that case, we also need to divide the
matrix into the vertical stripes of equal width. Here we need to use enough stripes
so that the portion of the vector in one stripe can fit conveniently into the main
memory at a compute node. Figure 2.5shows the matrix and vector, which are
divided into five stripes.

Figure 2.5: Division of matrix and vector into five stripes

The ith stripe of the matrix multiplies only components from the ith stripe of the
vector. We can store each stripe of matrix and vector into individual files. Each
Map task is assigned a chunk from one of the stripes of the matrix and gets the
entire corresponding stripe of the vector. The Map and Reduce tasks can then act
exactly as was described above for the case where Map tasks get the entire
vector.

2.6.3 Relational Algebra Operations

In database queries, the number of operations needs to be performed on large-
scale data. In many traditional database applications, the database is large but
some of the queries need to retrieve a small amount of data. For example, in bank
applications, the database is too large but the query for getting the balance of an
account is too small. In all such applications, we need not to use MapReduce
algorithms.

In fact, there are many operations on data that can be described easily in terms of
the common database-query primitives, even if the queries themselves are not
executed within a database management system. Thus, a good starting point for
exploring applications of MapReduce is by considering the standard operations
on relations.

In relational model, a relation is a table with column headers called attributes.
Rows of the relation are called tuples. The set of attributes of a relation is called

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

70

its schema. We often write an expression for a Relation R like R(A1, A2, . . . ,
An)where A1,A2, . . . , An.are the attributes of it.

Example 2.4: The Figure 2.6shows the part of the relation Links that describes
the structure of the Web. The relation has two attributes, From and To. In this
relation, a row, or tuple is a pair of URLs, such that there is at least one link from
the first URL to the second. For example, the first row of Figure 2.6 is the pair
(url1, url2) that says the Web page url1 has a link to page url2. Figure 2.6 shows
only four tuples. But the typical search engine stores the billions of tuples that
define the relation of url1 to url2. Such large files of rations are stored on DFS.

Figure 2.6: Relation Links consists of the set of pairs of URLs, such that the first
has one or more links to the second

The relation algebra specifies several standard operations on relations that are
used to implement queries. The queries are usually written in SQL. Some of the
relational-algebra operations are:

1. Selection: Applying a condition C to each tuple in the relation and producing
as output only those tuples that satisfy C. The result of the selection is
denoted σC(R).

2. Projection: For subset S of the attributes of the relation, produce from each
tuple only the components for the attributes in S. The result of the projection
is denoted πS(R).

3. Union, Intersection, and Difference: These set operations apply to the sets

of tuples in two relations that have the same schema.

4. Natural Join: Given two relations, compare each pair of tuples, one from
each relation. If the tuples agree on all the attributes that are common to the
two schemas, then produce a tuple that has components for each of the
attributes in either schema and agrees with the two tuples on each attribute. If
the tuples disagree on one or more shared attributes, then produce nothing
from this pair of tuples. The natural join of relations R and S is denoted R ⊳⊲
S. While we shall discuss executing only the natural join with map-reduce,
all equijoins can be executed in the same manner.

5. Grouping and Aggregation: For a given relation R, partition its tuples

according to their values in one set of attributes G, called the grouping
attributes. Then, for each group, aggregate the values in certain other
attributes.

mu
no
tes
.in

Map Reduce

71

The common aggregations are SUM, COUNT, AVG, MIN, and MAX. Here the
MIN and MAX require the aggregated attributes of number or string type. The
SUM and AVG require the numeric type attribute to perform arithmetic. The
grouping-and-aggregation operation on a relation R is denoted by γX(R), where X
is a list of elements that are either
a) A grouping attribute, or
b) An expression θ(A), where θ is one of the five aggregation operations such

as SUM, and A is an attribute not among the grouping attributes.

The result of this operation is one tuple for each group. That tuple has a
component for each of the grouping attributes, with the value common to tuples
of that group, and a component for each aggregation, with the aggregated value
for that group.

Example 2.5: For the relation in Figure 2.6, let us try to find the paths of length
two in the Web. That is, we want to find the triples of URLs (u, v, w) such that
there is a link from u to v and a link from v to w.

We need to take the natural join of Links with itself, but we first need to imagine
that it is two relations, with different schemas, so we can describe the desired
connection as a natural join. Thus, imagine that there are two copies of Links,
namely L1(U1, U2) and L2(U2, U3). Now, if we compute L1⊳⊲L2, we shall
have exactly what we want. That is, for each tuple t1 of L1 (i.e., each tuple of
Links) and each tuple t2 of L2 (another tuple of Links, possibly even the same
tuple), see if their U2 components are the same. Note that these components are
the second component of t1 and the first component of t2. If these two
components agree, then produce a tuple for the result, with schema (U1, U2, U3).
This tuple consists of the first component of t1, the second component of t1
(which must equal the first component of t2), and the second component of t2.

We may not want the entire path of length two, but only want the pairs (u, w) of
URLs such that there is at least one path from u to w of length two. If so, we can
project out the middle components by computing πU1,U3(L1 ⊳⊲ L2).

2.6.4 Computing Selections by MapReduce

The Selection operations does not require the full power of map-reduce. They
can be done most conveniently either by using Map portion or the Reduce
portion. A map-reduce implementation of selection is denoted by σC (R).

The Map Function: For each tuple t in R, test if it satisfies C. If so, produce the
key-value pair (t, t). That is, both the key and value are t.

The Reduce Function: The Reduce function is the identity. It simply passes
each key-value pair to the output.

Here, the output is not exactly a relation, since it has key-value pairs. However, a
relation can be obtained by using only the value components (or only the key
components) of the output.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

72

2.6.5 Computing Projections by MapReduce

Projection is performed similarly to selection, because projection may cause the
same tuple to appear several times, the Reduce function must eliminate
duplicates. We may compute πS (R) as follows.

The Map Function: For each tuple t in R, construct a tuple t′ by eliminating
from t those components whose attributes are not in S. Output the key-value pair
(t′, t′).

The Reduce Function: For each key t′ produced by any of the Map tasks, there
will be one or more key-value pairs (t′, t′). The Reduce function turns (t′, [t′, t′, . .
., t′]) into (t′, t′), so it produces exactly one pair (t′, t′) for this key t′.

The Reduce operation is duplicate elimination. This operation is associative and
commutative, so a combiner associated with each Map task can eliminate
whatever duplicates are produced locally. However, the Reduce tasks are still
needed to eliminate two identical tuples coming from different Map tasks.

2.6.6 Union, Intersection and Difference by MapReduce

Union

Let us consider the union of two relations. Suppose relations R and S have the
same schema. Map tasks will be assigned chunks from either R or S; it doesn’t
matter which. The Map tasks don’t really do anything except pass their input
tuples as key-value pairs to the Reduce tasks. The latter need only eliminate
duplicates as for projection.

The Map Function: Turn each input tuple t into a key-value pair (t, t).

The Reduce Function: Associated with each key t there will be either one or
two values. Produce output (t, t) in either case.

Intersection

To compute the intersection, we can use the same Map function. However, the
Reduce function must produce a tuple only if both relations have the tuple. If the
key t has two values [t, t] associated with it, then the Reduce task for t should
produce (t, t). However, if the value associated with key t is just [t], then one of
R and S is missing t, so we don’t want to produce a tuple for the intersection. We
need to produce a value that indicates “no tuple,” such as the SQL value NULL.
When the result relation is constructed from the output, such a tuple will be
ignored.

The Map Function: Turn each tuple t into a key-value pair (t, t).

The Reduce Function: If key t has value list [t, t], then produce (t, t). Otherwise,
produce (t, NULL).

mu
no
tes
.in

Map Reduce

73

Difference

The Difference R−S requires a bit more thought. The only way a tuple t can
appear in the output is if it is in R but not in S. The Map function can pass tuples
from R and S through, but must inform the Reduce function whether the tuple
came from R or S. We shall thus use the relation as the value associated with the
key t. Here is a specification for the two functions.

The Map Function: For a tuple t in R, produce key-value pair (t, R), and for a
tuple t in S, produce key-value pair (t, S). Note that the intent is that the value is
the name of R or S, not the entire relation.

The Reduce Function: For each key t, do the following.

1. If the associated value list is [R], then produce (t, t).
2. If the associated value list is anything else, which could only be [R, S], [S,

R], or [S], produce (t, NULL).

2.6.7 Computing Natural Join by MapReduce

The idea behind implementing natural join via map-reduce can be seen if we look
at the specific case of joining R(A, B) with S(B, C). We must find tuples that
agree on their B components, that is the second component from tuples of R and
the first component of tuples of S. We shall use the B-value of tuples from either
relation as the key. The value will be the other component and the name of the
relation, so the Reduce function can know where each tuple came from.

The Map Function: For each tuple (a, b) of R, produce the key-value pair (b,(R,
a)). For each tuple (b, c) of S, produce the key-value pair (b,(S, c)).

The Reduce Function: Each key value b will be associated with a list of pairs
that are either of the form (R, a) or (S, c). Construct all pairs consisting of one
with first component R and the other with first component S, say (R, a) and (S,
c). The output for key b is (b, [(a1, b, c1), (a2, b, c2), . . .]), that is, b associated
with the list of tuples that can be formed from an R-tuple and an S-tuple with a
common b value.

2.7 EXTENSIONS TO MAPREDUCE

The MapReduce method of computation gave rise to many systems with some
extensions and modifications. Some of the common characteristics of these
systems and MapReduce systems are as follows:

1. Both the extended systems and the MapReduce are built on a distributed file
system.

2. Both of them manage large numbers of tasks, which are nothing but the
instantiations of a small number of user-written functions.

3. Both of these provide the feature of fault tolerance, that handles the
execution of a large job, without having to restart that job from the
beginning.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

74

In this topic, we will discuss “workflow” systems, that are nothing but the
extension of MapReduce. The workflow system supports acyclic networks of
functions, where each function is implemented by a collection of tasks. The
Systems like UC Berkeley’s Spark, Google’s Tens or Flow have been
implemented using the workflow system. The latest machine learning
applications have workflow systems at heart.

2.7.1 Workflow Systems

The experimental system, Clustera from the University of Wisconsin and
Hyracks from the University of California at Irvine has extended the map-reduce
from the simple two-step workflow (the Map function feeds the Reduce function)
to any collection of functions, with an acyclic graph representing workflow
among the functions. The MapReduce is a two-step workflow in which the Map
function feeds the Reduce function. Workflow systems extend MapReduce to
any collection of functions, with an acyclic graph representing workflow among
the functions. In Workflow systems, the workflow is represented with an acyclic
flow graph, whose arcs a → b represents the fact that function a’s output is an
input to function b.

In the workflow system the data file containing the elements of one type is
passed from one function to the next function. In case of single input, the
function is applied to each input independently, same as that of the Map and
Reduce functions are applied to their input elements individually. Each of these
functions spits the output in the form of a file, that is generated after processing
the input file. When a function has inputs from multiple files, elements from each
of the files can be combined in various ways. But the function itself is applied to
combinations of input elements, at most one from each input file.

Figure 2.7: An example of a workflow that is more complex than Map feeding
Reduce

Example2.6: The Figure 2.7 shows a workflow with five functions, f through j.
Here the data is passed from left to right in such a way that the flow of data is
acyclic and no tasks need to provide data out before getting its entire input. For
example, the function h takes its input from a pre-existing file of the distributed
file system. Then each output element of h is passed to the functions i and j. The
function i takes the outputs of both f and h as inputs. The output of function j is

mu
no
tes
.in

Map Reduce

75

either passed to an application that invoked this dataflow or is stored in the
distributed file.

The workflow systems are analogous to the MapReduce functions. So, in a
workflow system each function of a workflow can be executed by many tasks
where each of these functions is assigned a portion of the input. A master
controller divides the work among the tasks that implement a function by hashing
the input elements to decide on the proper task to receive an element. Same as
that of the Map tasks, the workflow task that is implementing the function f has
an output file of data, which is passed to each task implementing the successor
function(s) f. After completing the task execution, the controller delivers these
output files to the DFS.

Similar to MapReduce tasks, the workflow tasks follow the blocking property, in
which they only deliver output after they complete. In case of task failure, it has
not delivered output to any of its successors in the flow graph. To recover this
failed task, a master controller restarts this task at another compute node, without
worrying that the output of the restarted task will duplicate output that previously
was passed to some other task

Some workflow systems applications effectively cascade the MapReduce jobs.
For example, in the join of three relations, one MapReduce job joins the first two
relations, and a second MapReduce job joins the third relation with the result of
joining the first two relations.

The advantage of implementing cascades as a single workflow is that the master
controller manages the flow of data among tasks, and its replication without
storing the temporary file in the distributed file system whereas the MapReduce
jobs stores output file in the distributed systems. By locating tasks at compute
nodes that have a copy of their input, we can avoid much of the communication
that would be necessary if we stored the result of one MapReduce job and then
initiated a second MapReduce job. The Hadoop and other MapReduce systems
also try to locate Map tasks where a copy of their input is already present.

The other popular extensions of MapReduce are Spark and Google’s Tens or
Flow, which has a workflow system at heart.

Spark

Spark uses a workflow system and provides the following advanced features:

1. A more efficient way to cope up with the failures.

2. A more efficient way of grouping tasks among compute nodes and
scheduling execution of functions.

3. Integration of programming language features such as looping (which

technically takes it out of the acyclic workflow class of systems) and
function libraries.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

76

Spark uses the central data abstraction, called the Resilient Distributed Dataset
(RDD). RDD is a file of objects of one type. One of the examples of an RDD is
the files of key-value pairs that are used in MapReduce systems or the files that
get passed among functions of the workflow system as shown in Figure 2.7. The
RDDs are normally broken into chunks that may be held at different compute
nodes. The RDDs are “resilient” and are able to recover from the loss of any or
all chunks of an RDD. Unlike the key-value-pair abstraction of MapReduce,
there is no restriction on the type of the elements that comprise an RDD.

The Spark program performs the transformations and actions on the RDDs. A
Sparks program consists of a sequence of steps. Each of these steps applies some
function to an RDD to produce another RDD. These operations are also referred
to as transformations. Some of the commonly used operations are Map, Flatmap,
and Filter. Spark also allows to take data from the surrounding file system, such
as Hadoop Distributed File System, and turn it into an RDD, and to take an RDD
and return it to the surrounding file system or to produce a result that is passed
back to an application that called a Spark program. Here the process of returning
the RDD output to an application is also referred to as actions. In Spark, the
Reduce operation is an action, not a transformation.

The Spark implementation differs from Hadoop or other MapReduce
implementations. It uses lazy evaluation of RDD’s and lineage for RDD’s.

Tenso Flow

TensorFlow is an open-source system developed at Google to support machine-
learning applications. Same as that of Spark, TensorFlow provides a
programming interface in which one writes a sequence of steps. Programs are
typically acyclic, although like Spark it is possible to iterate blocks of code.

One major difference between Spark and TensorFlow is the type of data that is
passed between steps of the program. In place of the RDD, TensorFlow uses
tensors; a tensor is simply a multidimensional matrix.

2.7.2 Recursive Extensions to MapReduce

Many large-scale computations like Google’s search algorithm, Page Rank are
recursive extensions of MapReduce. These are nothing but the computations of
the fixed point of a matrix-vector multiplication that can be computed under
MapReduce systems by the matrix-vector multiplication iterative algorithm. The
iteration typically continues for an unknown number of steps, each step being a
MapReduce job, until the results of two consecutive iterations are sufficiently
close that we believe convergence has occurred.

Recursions present a problem for failure recovery. Recursive tasks inherently
lack the blocking property necessary for independent restart of failed tasks. It is
impossible for a collection of mutually recursive tasks, each of which has an
output that is input to at least some of the other tasks, to produce output only at
the end of the task. If they all followed that policy, no task would ever receive
any input, and nothing could be accomplished. As a result, some mechanism

mu
no
tes
.in

Map Reduce

77

other than simple restart of failed tasks must be implemented in a system that
handles recursive workflows (flow graphs that are not acyclic). We shall start by
studying an example of a recursion implemented as a workflow, and then discuss
approaches to dealing with task failures.

Example 2.7: Let us consider a directed graph with arcs, that are represented by
the relation E(X, Y). That means there is an arc from node X to node Y. Here we
wish to compute the paths relation P(X, Y),that is a path from node X to node
Yhaving of length 1 or more. The path P is the transitive closure of E. A simple
recursive algorithm is:

1. Start with P(X, Y) = E(X, Y).
2. While changes to the relation P occur, add to P all tuples in

The above equation states that the pairs of nodes X and Y for some point Z are
known to have the path from X to Z and from Z to Y.

Figure 2.8shows the organization of recursive tasks to be performed for this
computation. There are two kinds of tasks: Join tasks and Dup-elim tasks. The
figure 2.8 shows the some of the n tasks with the respective bucket of hash
function h.

Once discovered, a path tuple P(a, b), becomes input to two Join tasks that are
numbered h(a) and h(b). The job of the ith Join task, when it receives input tuple
P(a, b), is to find certain other tuples seen previously (and stored locally by that
task).

1. Store P(a, b) locally.

2. If h(a) = i then look for tuples P(x, a) and produce output tuple P(x, b).

3. If h(b) = i then look for tuples P(b, y) and produce output tuple P(a, y).

In rare cases, we have h(a) = h(b), so both steps (2) and (3) are executed. But
generally, only one of these needs to be executed for a given tuple.

Also, Figure 2.8 shows m Dup-elim tasks with the corresponding bucket of hash
function g with two arguments. The output of some Join task P(c, d) is then sent
to Dup-elim task j = g(c, d).On receiving this tuple, the jth Dup-elim task checks
that it has not received this tuple before, since its job is duplicate elimination. If
previously received, the tuple is ignored. But if this tuple is new, it is stored
locally and sent to two Join tasks, those numbered h(c) and h(d).

Every Join task has m output files, one for each Dup-elim task. Every Dup-elim
task has n output files, one for each Join task. These files are distributed
according to any of several strategies. Initially, the E(a, b) tuples representing the
arcs of the graph are distributed to the Dup-elim tasks, with E(a, b) being sent as
P(a, b) to Dup-elim task g(a, b). The master controller waits until each Join task
has processed its entire input for a round. Then, all output files are distributed to

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

78

the Dup-elim tasks, which create their own output. That output is distributed to
the Join tasks and becomes their input for the next round.

Figure 2.8: Implementation of transitive closure by a collection of recursive tasks

In Example 2.7 it is not necessary to have two kinds of tasks. Instead, Join tasks
could eliminate duplicates as they are received, since they must store their
previously received inputs anyway. This arrangement has an advantage when we
must recover from a task failure. If each task stores all the output files it has ever
created, and we place Join tasks on different racks from the Dup-elim tasks, then
we can deal with any single compute node or single rack failure. That is, a Join
task needing to be restarted can get all the previously generated inputs that it
needs from the Dup-elim tasks, and vice versa.

In the specific case of computing transitive closure, it is not necessary to prevent
a restarted task from generating outputs that the original task generated
previously. In the computation of the transitive closure, the rediscovery of a path
does not influence the eventual answer. However, many computations cannot
tolerate a situation where both the original and restarted versions of a task pass
the same output to another task. For example, if the final step of the computation
were an aggregation, say a count of the number of nodes reached by each node in
the graph, then we would get the wrong answer if we counted a path twice.

Let us discuss at least three different approaches that have been used to deal with
failures while executing a recursive program.

1. Iterated MapReduce: Write the recursion as repeated execution of a
MapReduce job or of a sequence of MapReduce jobs. In this case, to handle

mu
no
tes
.in

Map Reduce

79

failures at any step, we can then rely on the failure mechanism of the MapReduce
implementation. The very first example of such a system was HaLoop.

2. The Spark Approach: The Spark language includes iterative statements,
such as for-loops that allow the implementation of recursions. In Spark, failure
management is implemented using the lazy-evaluation and lineage mechanisms.
In addition to this the Spark programmer has options to store intermediate states
of the recursion.

3. Bulk-Synchronous Systems: These systems use a graph-based model of
computation. They typically use another resilience approach: periodic check
pointing. One of the examples of bulk synchronous system is Pragel.

2.7.3 Pragel

Another approach that implements the recursive algorithms on a computing
cluster is represented by Google’s Pragel system. This System is the first
example of a graph-based, bulk-synchronous system that processes massive
amounts of data. This system views its data as a graph, where each node of the
graph corresponds roughly to a task. Each graph node generates output messages
that are destined for other nodes of the graph, and each graph node processes the
inputs it receives from other nodes.

Example 2.8: Suppose our data is a collection of weighted arcs of a graph, and
we want to find, for each node of the graph, the length of the shortest path to
each of the other nodes. As the algorithm executes, each node a will store a set of
pairs (b, w), where w is the length of the shortest path from node a to node b that
is currently known.

Here first we need to store the set of pairs and weight for each graph node. For
example, graph node a, stores the set of pairs (b, w) such that there is an arc from
a to b of weight w. Then these facts are sent to all other nodes, as triples (a, b, w),
with the intended meaning that node a knows about a path of length w to node b.
When the node a receives a triple (c, d, w), it must decide whether this fact
implies a shorter path than a already knows about from itself to node d. Node a
looks up its current distance to c; that is, it finds the pair (c, v) stored locally, if
there is one. It also finds the pair (d, u) if there is one. If w + v < u, then the pair
(d, u) is replaced by (d, w + v), and if there is no pair (d, u), then the pair (d, w +
v) is stored at the node a. Also, the other nodes are sent the message (a, d, w + v)
in either of these two cases.

In Pregel, the computations are organized into super steps. In one super step, all
the messages that were received by any of the nodes at the previous super step
are processed, and then all the messages generated by those nodes are sent to
their destination. This approach of packaging many messages into one is referred
to as “bulk-synchronous.”

The bulk synchronous approach has reduced the overhead of sending many
messages on the network. This is one of the very important advantages of the
bulk synchronous approach.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

80

Suppose that in Example 2.8 we sent a single new shortest-distance fact to the
relevant node every time one was discovered. The number of messages sent
would be enormous if the graph was large, and it would not be realistic to
implement such an algorithm. However, in a bulk-synchronous system, a task
that has the responsibility for managing many nodes of the graph can bundle
together all the messages being sent by its nodes to any of the nodes being
managed by another task. That choice typically saves orders of magnitude in the
time required to send all the needed messages.

Failure Management in Pregel

In case of a compute-node failure, there is no attempt to restart the failed tasks at
that compute node. Rather, Pregel checkpoints its entire computation after some
of the super steps. A checkpoint consists of making a copy of the entire state of
each task, so it can be restarted from that point if necessary. If any compute node
fails, the entire job is restarted from the most recent checkpoint.

Although this recovery strategy causes many tasks that have not failed to redo
their work, it is satisfactory in many situations. Recall that the reason
MapReduce systems support restart of only the failed tasks is that we want
assurance that the expected time to complete the entire job in the face of failures
is not too much greater than the time to run the job with no failures. Any failure-
management system will have that property as long as the time to recover from a
failure is much less than the average time between failures. Thus, it is only
necessary that Pregel checkpoints its computation after a number of super steps
such that the probability of a failure during that number of super steps is low.

2.8 COMMON MAPREDUCE ALGORITHMS

The MapReduce implements the number of mathematical algorithms. Such
algorithms divide a task into number of chunks and assign them to distributed
nodes. These distributed nodes act as Map nodes and Reduce nodes, and executes
the map and reduce tasks respectively. Some of the common mathematical
algorithms are:

1. Sorting

2. Searching

3. Indexing

4. TF-IDF

2.8.1 Sorting

Sorting is one of the basic MapReduce algorithms, used to process and analyse
data. MapReduce implements the sorting algorithm to automatically sort the
output key-value pairs from the mapper by their keys. The mapper class
implements Sorting method. After tokenizing the values, during the Shuffle and
Sort phase, the mapper class collects the matching valued keys as a collection. To
collect similar intermediate key-value pairs, the Mapper class takes the help

mu
no
tes
.in

Map Reduce

81

of class to sort the key-value pairs. The set of intermediate key-value pairs for a
given Reducer is automatically sorted by Hadoop to form key-values (K2, {V2,
V2, …}) before they are presented to the Reducer.

2.8.2 Searching

Searching plays an important role in the Map Reduce algorithm. It helps in the
combiner phase and in the Reducer phase. The following example demonstrates
the working of the searching algorithm.

Example 2.9: The example shows how MapReduce employs a Searching
algorithm to find out the details of the employee who draws the highest salary in
a given employee dataset.

Let us assume we have employee data in four different files A, B, C, and D. Let
us also assume there are duplicate employee records in all four files because of
importing the employee data from all database tables repeatedly.

Figure 2.9: Data of files A,B,C and D

The Map phase processes each input file and provides the employee data in key-
value pairs (<k, v> :<emp name, salary>) as shown in Figure 2.10.

Figure 2.10: Output of Map Process

The combiner phase (searching technique) will accept the input from the Map
phase as a key-value pair with employee name and salary. Using searching
technique, the combiner will check all the employee salary to find the highest
salaried employee in each file. The expected result is as shown in figure 2.11.

<Satish, 26000> <Harsh,50000> <Tanmay, 45000> <Mansi,45000>

Figure 2.11: Output of Combiner

Reducer phase - Form each file, you will find the highest salaried employee. To
avoid redundancy, check all the <k, v> pairs and eliminate duplicate entries, if
any. The same algorithm is used in between the four <k, v> pairs, which are
coming from four input files. The final output should be as follows -

<Harsh, 50000>

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

82

2.8.3 Indexing

Normally indexing is used to point to a particular data and its address. It
performs batch indexing on the input files for a particular Mapper.

The indexing technique that is normally used in MapReduce is known
as inverted index. Search engines like Google and Bing use inverted indexing
techniques. Let us try to understand how Indexing works with the help of a
simple example.

Example 2.10 : The following text is the input for inverted indexing. Here T[0],
T[1], and t[2] are the file names and their content are in double quotes.

T[0] = "it is what it is"

T[1] = "what is it"

T[2] = "it is a banana"

After applying the Indexing algorithm, we get the following output -

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

Here "a": {2} implies the term "a" appears in the T[2] file. Similarly, "is": {0, 1,
2} implies the term "is" appears in the files T[0], T[1], and T[2].

2.8.4 TF-IDF

TF-IDF is a text processing algorithm which is short for Term Frequency −
Inverse Document Frequency. It is one of the common web analysis algorithms.
Here, the term 'frequency' refers to the number of times a term appears in a
document.

Term Frequency (TF)

It measures how frequently a particular term occurs in a document. It is
calculated by the number of times a word appears in a document divided by the
total number of words in that document.

TF(the) = (Number of times term the ‘the’ appears in a document) / (Total
number of terms in the document)

Inverse Document Frequency (IDF)

It measures the importance of a term. It is calculated by the number of documents
in the text database divided by the number of documents where a specific term
appears.

mu
no
tes
.in

Map Reduce

83

While computing TF, all the terms are considered equally important. That means,
TF counts the term frequency for normal words like “is”, “a”, “what”, etc. Thus,
we need to know the frequent terms while scaling up the rare ones, by computing
the following -

IDF(the) = log_e(Total number of documents / Number of documents with term
‘the’ in it).

2.9 SUMMARY

● The common architecture, cluster of compute nodes, is used to process very
large-scale applications.

● The Distributed File Systems architecture is used to store and process the
large data files on distributed nodes.

● The MapReduce framework processes the data parallelly on the DFS with the
help of cluster nodes like Master node, Map node and Reduce node and so
on.

● The Map and Reduce functions are problem specific and need to be designed
by the user.

● The Map and Reduce functions generate the output in Key-value pair
formats. The Map function stores output in the intermediatory file whereas
the Reduce function stores the final output file.

● Apache Hadoop is the open-source implementation of a Distributed File
System also referred as HDFS.

● The MapReduce framework is fault tolerant and manages the faults of
Master, Map and Reduce nodes.

● MapReduce is not suitable for all parallel algorithms. The Simple
implementations like, Matrix-Vector multiplication, Matrix-Matrix
Multiplications, Principal operators of linear algebra can be done in
MapReduce.

● MapReduce is generalized to the systems, supporting any acyclic collection
of functions, which are referred to as workflow systems. Each of these
functions can be instantiated by any number of tasks that are responsible for
executing that function on a portion of the data.

● In case of recursive workflows, it is not possible to restart the whole task
again. Instead, a number of checkpointing parts of the computation allows
restart of single task. You can also restart all tasks from a recent checkpoint
has been proposed.

● The MapReduce algorithms can be implemented by using any of the
programming languages like, Java, Python and so on. The MapReduce
algorithms are generally written for large-scale data.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

84

2.10 LIST OF REFERENCES AND BIBLIOGRAPHY

1. Mining of Massive Datasets, Anand Rajaraman and Jeffrey David Ullman,
Cambridge University Press, 2012.

2. Big Data, Big Analytics: Emerging Business Intelligence and Analytic
Trends forToday's Businesses, Michael Minelli, Wiley, 2013.

3. https://www.ibm.com/topics/mapreduce
4. https://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/mmds/mmds_ch2n_4.pdf
5. https://www.tutorialspoint.com/map_reduce/map_reduce_algorithm. htm
6. https://stanford.edu/~rezab/amdm/notes/lecture4.pdf
7. https://www.cdac.in/index.aspx?id=ev_hpc_hadoop-map-reduce#hadoop-

map-reduce-par-prog-id12

2.11 UNIT END EXERCISE

1. Distributed File System? How is DFS extended in the Hadoop Distributed
File System?

2. What is a Distributed File System? How does the system store file of large
size on DFS?

3. What is Apache Hadoop? What are the characteristics of a Distributed File
System?

4. What is the Hadoop ecosystem? Discuss the various elements of the
Hadoop Ecosystem?

5. What is MapReduce? What are the advantages of MapReduce?

6. Explain the steps of execution of MapReduce.

7. Describe the Map task and Reduce task with an example for each.

8. What is the role of mapper function and combiner function in MapReduce?

9. What is the role of a Master node? How does the master role control the
failure of a task or a node?

10. Explain the steps of execution for word count algorithm with an example.

11. Explain the Matrix-Vector multiplication algorithm with an example.

12. How does the MapReduce algorithm handle the vector of large size?

13. What are relational algebra operations? Explain each operation in brief.

14. How does MapReduce handle the selection and projection operations
computing? Explain the role of Map and Reduce tasks and an example for
each.

15. Explain union, intersection and NaturalJoin computing operations of
MapReduce.

16. What are the characteristics of the MapReduce System? How is the
MapReduce framework extended to the workflow system?

17. Explain the function of the workflow system with an example.

mu
no
tes
.in

Map Reduce

85

18. What is the purpose of the workflow system? Discuss any two examples of
workflow systems.

19. What do mean by recursive extension of MapReduce? Describe the process
of transitive closure for the number of recursive tasks.

20. Discuss the various approaches of handling the failure of recursive
MapReduce tasks?

21. Describe the Bulk-Synchronous System - Pregel with an example.

22. Discuss any three common MapReduce algorithms.

23. Write a program to implement the matrix-multiplication algorithm using
any one programming language.

❖❖❖❖

mu
no
tes
.in

 86

3
SHINGLING OF DOCUMENTS

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Finding Similar Items

3.3 Applications of Near-Neighbor Search

3.4 Shingling of Documents

3.5 Similarity-Preserving Summaries of Sets

3.6 Locality-Sensitive Hashing for Documents

 3.7 Distance Measures

3.8 The Theory of Locality-Sensitive Functions

3.9 LSH Families for Other Distance Measures

3.10 Applications of Locality-Sensitive Hashing

3.11 Methods for High Degrees of Similarity

3.0 OBJECTIVES

We will study how to define the distance between sets. To illustrate and
motivate this study, we will focus on using Jaccard distance to measure
the distance between documents. This uses the common “bag of words”
model, which is simplistic, but is sufficient for many applications. We
start with some big questions. This lecture will only begin to answer them.

• Given two homework assignments (reports) how can a computer detect if
one is likely to have been plagiarized from the other without
understanding the content?

• In trying to index webpages, how does Google avoid listing duplicates or
mirrors?

• How does a computer quickly understand emails, for either detecting
spam or placing effective advertisers? (If an ad worked on one email, how
can we determine which others are similar?)

mu
no
tes
.in

Shingling of Documents

87

The key to answering these questions will be convert the data
(homeworks, webpages, emails) into an object in an abstract space that we
know how to measure distance, and how to do it efficiently.

3.1 INTRODUCTION

 In data mining large number of dataset is finding similar items. As an
example, finding similar documents can be recommended. In this case
many methods are existed. For example, Shingling method and length
based filtering are one of them.

In Shingling method, from each document, substrings have been selected
with symbol name and, they are placed on one set. For finding similar
documents, the similarities of sets that related with them have been
calculated. In Length based filtering just documents which close these
lengths have been compared. These methods don’t consider repetition of
symbols. With considering the repetition can calculate length of
documents with more accurately.

In this paper we suggested a method for finding similar documents with
considering the repetition of symbols. This method separated documents
to better form. The main goal of this a method for finding similar
documents with take fewer comparisons and time indeed.

3.2 FINDING SIMILAR ITEMS

A fundamental data-mining problem is to examine data for “similar”
items. We shall take up applications in Section 3.1, but an example
would be looking at a collection of Web pages and finding near-
duplicate pages. These pages could be plagiarisms, for example, or they
could be mirrors that have almost the same content but differ in
information about the host and about other mirrors.

We begin by phrasing the problem of similarity as one of finding
sets with a relatively large intersection. We show how the problem of
finding textually similar documents can be turned into such a set problem
by the technique known as “shingling.” Then, we introduce a technique
called “minhashing,” which compresses large sets in such a way that
we can still deduce the similarity of the underlying sets from their
compressed versions. Other techniques that work when the required
degree of similarity is very high are covered in Section 3.9.

Another important problem that arises when we search for similar
items of any kind is that there may be far too many pairs of items to
test each pair for their degree of similarity, even if computing the
similarity of any one pair can be made very easy. That concern
motivates a technique called “locality-sensitive hashing,” for focusing
our search on pairs that are most likely to be similar.

Finally, we explore notions of “similarity” that are not expressible as
inter- section of sets. This study leads us to consider the theory of

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

88

| ∩ | | ∪
|

distance measures in arbitrary spaces. It also motivates a general
framework for locality-sensitive hashing that applies for other
definitions of “similarity.”

3.3 APPLICATIONS OF NEAR-NEIGHBOR
SEARCH

We shall focus initially on a particular notion of “similarity”: the
similarity of sets by looking at the relative size of their intersection.
This notion of similarity is called “Jaccard similarity,” and will be
introduced in Section 3.1.1. We then examine some of the uses of
finding similar sets. These include finding textually similar documents
and collaborative filtering by finding similar customers and similar
products. In order to turn the problem of textual similarity of
documents into one of set intersection, we use a technique called
“shingling,” which is introduced in Section 3.2.

3.3.1 Jaccard Similarity of Sets

The Jaccard similarity of sets S and T is S T / S T, that is, the
ratio of the size of the intersection of S and T to the size of their
union. We shall denote the Jaccard similarity of S and T by SIM
(S, T).

Example 3.1: In Fig. 3.1 we see two sets S and T. There are three
elements in their intersection and a total of eight elements that appear
in S or T or both. Thus, SIM(S, T) = 3/8. ✷

S
 T

Figure 3.1: Two sets with Jaccard similarity 3/8

3.3.2 Similarity of Documents

An important class of problems that Jaccard similarity addresses
well is that of finding textually similar documents in a large corpus
such as the Web or a collection of news articles. We should understand
that the aspect of similarity we are looking at here is character-level
similarity, not “similar meaning,” which requires us to examine the
words in the documents and their uses. That problem is also interesting
but is addressed by other techniques, which we hinted at in Section
1.3.1. However, textual similarity also has important uses. Many of
these involve finding duplicates or near duplicates. First, let us observe

mu
no
tes
.in

Shingling of Documents

89

that testing whether two documents are exact duplicates is easy; just
compare the two documents character-by-character, and if they ever
differ then they are not the same. However, in many applications, the
documents are not identical, yet they share large portions of their text.
Here are some examples:

APPLICATIONS OF NEAR-NEIGHBOR SEARCH

Plagiarism

Finding plagiarized documents tests our ability to find textual
similarity. The plagiarizer may extract only some parts of a document
for his own. He may alter a few words and may alter the order in which
sentences of the original appear. Yet the resulting document may still
contain 50% or more of the original. No simple process of comparing
documents character by character will detect a sophisticated
plagiarism.

Mirror Pages

It is common for important or popular Web sites to be duplicated at a
number of hosts, in order to share the load. The pages of these mirror
sites will be quite similar, but are rarely identical. For instance, they
might each contain information associated with their particular host,
and they might each have links to the other mirror sites but not to
themselves. A related phenomenon is the appropriation of pages from
one class to another. These pages might include class notes,
assignments, and lecture slides. Similar pages might change the name
of the course, year, and make small changes from year to year. It is
important to be able to detect similar pages of these kinds, because
search engines produce better results if they avoid showing two pages
that are nearly identical within the first page of results.

Articles from the Same Source

It is common for one reporter to write a news article that gets
distributed, say through the Associated Press, to many newspapers,
which then publish the article on their Web sites. Each newspaper
changes the article somewhat. They may cut out paragraphs, or even
add material of their own. They most likely will surround the article by
their own logo, ads, and links to other articles at their site. However,
the core of each newspaper’s page will be the original article. News
aggregators, such as Google News, try to find all versions of such an
article, in order to show only one, and that task requires finding when
two Web pages are textually similar, although not identical.1

3.3.3 Collaborative Filtering as a Similar-Sets Problem

Another class of applications where similarity of sets is very important
is called collaborative filtering, a process whereby we recommend to
users items that were liked by other users who have exhibited similar
tastes. We shall investigate collaborative filtering in detail in Section

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

90

9.3, but for the moment let us see some common examples.

1News aggregation also involves finding articles that are about the
same topic, even though not textually similar. This problem too can
yield to a similarity search, but it requires techniques other than
Jaccard similarity of sets.

On-Line Purchases

Amazon.com has millions of customers and sells millions of items. Its
database records which items have been bought by which customers.
We can say two cus- tomers are similar if their sets of purchased items
have a high Jaccard similarity. Likewise, two items that have sets of
purchasers with high Jaccard similarity will be deemed similar. Note
that, while we might expect mirror sites to have Jaccard similarity
above 90%, it is unlikely that any two customers have Jac- card
similarity that high (unless they have purchased only one item). Even a
Jaccard similarity like 20% might be unusual enough to identify
customers with similar tastes. The same observation holds for items;
Jaccard similarities need not be very high to be significant.

Collaborative filtering requires several tools, in addition to finding
similar customers or items, as we discuss in Chapter 9. For example,
two Amazon customers who like science-fiction might each buy many
science-fiction books, but only a few of these will be in common.
However, by combining similarity- finding with clustering (Chapter 7),
we might be able to discover that science- fiction books are mutually
similar and put them in one group. Then, we can get a more powerful
notion of customer-similarity by asking whether they made purchases
within many of the same groups.

Movie Ratings

Netflix records which movies each of its customers rented, and also the
ratings assigned to those movies by the customers. We can see movies
as similar if they were rented or rated highly by many of the same
customers, and see customers as similar if they rented or rated highly
many of the same movies. The same observations that we made for
Amazon above apply in this situation: similarities need not be high to
be significant, and clustering movies by genre will make things easier.

When our data consists of ratings rather than binary decisions
(bought/did not buy or liked/disliked), we cannot rely simply on sets as
representations of customers or items. Some options are:

3.3.3.1 Ignore low-rated customer/movie pairs; that is, treat these
events as if the customer never watched the movie.

3.3.3.2 When comparing customers, imagine two set elements for
each movie, “liked” and “hated.” If a customer rated a movie highly,
put the “liked” for that movie in the customer’s set. If they gave a low
rating to a movie, put “hated” for that movie in their set. Then, we can

mu
no
tes
.in

Shingling of Documents

91

{ } {
 }

look for high Jaccard similarity among these sets. We can do a similar
trick when comparing movies.

3.3.3.3 If ratings are 1-to-5-stars, put a movie in a customer’s set n
times if they rated the movie n-stars. Then, use Jaccard similarity for
bags when measuring the similarity of customers. The Jaccard
similarity for bags B and C is defined by counting element n times in the
intersection if n is the minimum of the number of times the element appears
in B and C. In the union, we count the element the sum of the number of
times it appears in B and in C.2

Example 3.2: The bag-similarity of bags a, a, a, b and a, a, b, b, c
is 1/3. The intersection counts a twice and b once, so its size is 3. The
size of the union of two bags is always the sum of the sizes of the two
bags, or 9 in this case. Since the highest possible Jaccard similarity for
bags is 1/2, the score of 1/3 indicates the two bags are quite similar, as
should be apparent from an examination of their contents.

3.3.4 Exercises for Section 3.1

Exercise 3.1.1: Compute the Jaccard similarities of each pair of the
following three sets: {1, 2, 3, 4}, {2, 3, 5, 7}, and {2, 4, 6}.

Exercise 3.1.2: Compute the Jaccard bag similarity of each pair of the
fol- lowing three bags: {1, 1, 1, 2}, {1, 1, 2, 2, 3}, and {1, 2, 3, 4}.

!! Exercise 3.1.3: Suppose we have a universal set U of n elements, and
we choose two subsets S and T at random, each with m of the n
elements. What is the expected value of the Jaccard similarity of S
and T?

3.4 SHINGLING OF DOCUMENTS

The most effective way to represent documents as sets, for the purpose
of iden- tifying lexically similar documents is to construct from the
document the set of short strings that appear within it. If we do so, then
documents that share pieces as short as sentences or even phrases will
have many common elements in their sets, even if those sentences
appear in different orders in the two docu- ments. In this section, we
introduce the simplest and most common approach, shingling, as well
as an interesting variation.

3.4.1 k-Shingles

A document is a string of characters. Define a k-shingle for a
document to be any substring of length k found within the document.
Then, we may associate with each document the set of k-shingles that
appear one or more times within that document.

Example 3.3: Suppose our document D is the string abcdabd, and
we pick k = 2. Then the set of 2-shingles for D is {ab, bc, cd, da, and
bd}.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

92

Note that the substring ab appears twice within D, but appears only
once as a shingle. A variation of shingling produces a bag, rather than a
set, so each shingle would appear in the result as many times as it
appears in the document. However, we shall not use bags of shingles
here.

There are several options regarding how white space (blank, tab,
newline, etc.) is treated. It probably makes sense to replace any
sequence of one or more white-space characters by a single blank. That
way, we distinguish shingles that cover two or more words from those
that do not.

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then
we would see some lexical similarity in the sentences “The plane was
ready for touch down” and “The quarterback scored a touchdown”.
However, if we retain the blanks, then the first has shingles touch dow
and ouch down, while the second has touchdown. If we eliminated the
blanks, then both would have touchdown.

3.4.2 Choosing the Shingle Size
We can pick k to be any constant we like. However, if we pick k too
small, then we would expect most sequences of k characters to appear
in most documents. If so, then we could have documents whose
shingle-sets had high Jaccard simi- larity, yet the documents had none
of the same sentences or even phrases. As an extreme example, if we
use k = 1, most Web pages will have most of the common characters
and few other characters, so almost all Web pages will have high
similarity.

How large k should be depends on how long typical documents are and
how large the set of typical characters is. The important thing to
remember is: k should be picked large enough that the probability of
any given shingle appearing in any given document is low.

Thus, if our corpus of documents is emails, picking k = 5 should
be fine. To see why, suppose that only letters and a general white-
space character ap- pear in emails (although in practice, most of the
printable ASCII characters can be expected to appear
occasionally). If so, then there would be 275 = 14,348,907 possible
shingles. Since the typical email is much smaller than 14 million
characters long, we would expect k = 5 to work well, and indeed it
does. However, the calculation is a bit more subtle. Surely, more
than 27 charac- ters appear in emails, However, all characters do not
appear with equal proba- bility. Common letters and blanks
dominate, while”z” and other letters that have high point-value in
Scrabble are rare. Thus, even short emails will have many 5-shingles
consisting of common letters, and the chances of unrelated emails
sharing these common shingles are greater than would be implied by
the calculation in the paragraph above. A good rule of thumb is to
imagine that there are only 20 characters and estimate the number of k-
shingles as 20k. For large documents, such as research articles, choice
k = 9 is considered safe.

•

mu
no
tes
.in

Shingling of Documents

93

−

−

3.4.3 Hashing Shingles

Instead of using substrings directly as shingles, we can pick a hash
function that maps strings of length k to some number of buckets and
treat the resulting bucket number as the shingle. The set representing a
document is then the set of integers that are bucket numbers of one or
more k-shingles that appear in the document. For instance, we could
construct the set of 9-shingles for a document and then map each of
those 9-shingles to a bucket number in the range 0 to 232 -1. Thus, each
shingle is represented by four bytes instead of nine. Not only has the
data been compacted, but we can now manipulate (hashed) shingles by
single-word machine operations.

Notice that we can differentiate documents better if we use 9-shingles
and hash them down to four bytes than to use 4-shingles, even though
the space used to represent a shingle is the same. The reason was touched
upon in Section 3.2.2. If we use 4-shingles, most sequences of four
bytes are unlikely or impossible to find in typical documents. Thus, the
effective number of different shingles is much less than 232 -1. If, as in
Section 3.2.2, we assume only 20 characters are frequent in English
text, then the number of different 4-shingles that are likely to occur is
only (20)4 = 160,000. However, if we use 9-shingles, there are many
more than 232 likely shingles. When we hash them down to four bytes,
we can expect almost any sequence of four bytes to be possible, as was
discussed in Section 1.3.2.

3.4.4 Shingles Built from Words

An alternative form of shingle has proved effective for the problem of
identifying similar news articles, mentioned in Section 3.1.2. The
exploitable distinction for this problem is that the news articles are
written in a rather different style than are other elements that typically
appear on the page with the article. News articles, and most prose,
have a lot of stop words (see Section 1.3.1), the most common words
such as “and,” “you,” “to,” and so on. In many applications, we
want to ignore stop words, since they don’t tell us anything useful
about the article, such as its topic.

However, for the problem of finding similar news articles, it was found
that defining a shingle to be a stop word followed by the next two
words, regardless of whether or not they were stop words, formed a
useful set of shingles. The advantage of this approach is that the news
article would then contribute more shingles to the set representing the
Web page than would the surrounding ele-ments. Recall that the goal
of the exercise is to find pages that had the same articles, regardless of
the surrounding elements. By biasing the set of shingles in favor of
the article, pages with the same article and different surrounding
material have higher Jaccard similarity than pages with the same
surrounding material but with a different article.

Example 3.5: An ad might have the simple text “Buy Sudzo.”
However, a news article with the same idea might read something

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

94

like “A spokesperson for the Sudzo Corporation revealed today
that studies have shown it is good for people to buy Sudzo
products.” Here, we have italicized all the likely stop words, although
there is no set number of the most frequent words that should be
considered stop words. The first three shingles made from a stop
word and the next two following are:

A spokesperson for

for the Sudzo

the Sudzo Corporation

There are nine shingles from the sentence, but none from the “ad.”

3.4.5 Exercises for Section 3.2

Exercise 3.2.1 : What are the first ten 3-shingles in the first sentence of
Sec- tion 3.2?

Exercise 3.2.2 : If we use the stop-word-based shingles of Section
3.2.4, and we take the stop words to be all the words of three or fewer
letters, then what are the shingles in the first sentence of Section 3.2?

Exercise 3.2.3 : What is the largest number of k-shingles a document
of n bytes can have? You may assume that the size of the alphabet is
large enough that the number of possible strings of length k is at least
as n.

3.5 SIMILARITY-PRESERVING SUMMARIES
OF SETS

Sets of shingles are large. Even if we hash them to four bytes each, the
space needed to store a set is still roughly four times the space taken by
the document. If we have millions of documents, it may well not be
possible to store all the shingle-sets in main memory.3

Our goal in this section is to replace large sets by much smaller
represen- tations called “signatures.” The important property we need
for signatures is that we can compare the signatures of two sets and
estimate the Jaccard sim- ilarity of the underlying sets from the
signatures alone. It is not possible that the similarity of each pair.
We take up the solution to this problem in Section 3.4. the
signatures give the exact similarity of the sets they represent, but the
esti- mates they provide are close, and the larger the signatures the
more accurate the estimates. For example, if we replace the 200,000-
byte hashed-shingle sets that derive from 50,000-byte documents by
signatures of 1000 bytes, we can usually get within a few percent.

3.5.1 Matrix Representation of Sets

Before explaining how it is possible to construct small signatures
from large sets, it is helpful to visualize a collection of sets as their

mu
no
tes
.in

Shingling of Documents

95

{

characteristic matrix. The columns of the matrix correspond to the
sets, and the rows correspond to elements of the universal set from
which elements of the sets are drawn. There is a 1 in row r and
column c if the element for row r is a member of the set for column c.
Otherwise the value in position (r, c) is 0.

Element S1 S2 S3 S4

a 1 0 0 1

b 0 0 1 0

c 0 1 0 1

d 1 0 1 1

e 0 0 1 0

Figure 3.2: A matrix representing four sets

Example 3.6: In Fig. 3.2 is an example of a matrix representing sets
chosen from the universal set {a, b, c, d, e}. Here, S1 = {a, d}, S2 =
{c}, S3 = {b, d, e}, and S4 = a, c, d . The top row and leftmost
columns are not part of the matrix, but are present only to remind us
what the rows and columns represent.

It is important to remember that the characteristic matrix is unlikely to
be the way the data is stored, but it is useful as a way to visualize the
data. For one reason not to store data as a matrix, these matrices are
almost always sparse (they have many more 0’s than 1’s) in practice.
It saves space to represent a sparse matrix of 0’s and 1’s by the
positions in which the 1’s appear. For another reason, the data is
usually stored in some other format for other purposes.

As an example, if rows are products, and columns are customers,
represented by the set of products they bought, then this data would
really appear in a database table of purchases. A tuple in this table
would list the item, the purchaser, and probably other details about the
purchase, such as the date and the credit card used.

3.5.2 Minhashing
The signatures we desire to construct for sets are composed of the
results of a large number of calculations, say several hundred, each of
which is a “minhash” of the characteristic matrix. In this section, we
shall learn how a minhash is computed in principle, and in later
sections we shall see how a good approxi- mation to the minhash is
computed in practice.

To minhash a set represented by a column of the characteristic matrix,
pick a permutation of the rows. The minhash value of any column is
the number of the first row, in the permuted order, in which the
column has a 1.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

96

Example 3.7 : Let us suppose we pick the order of rows beadc for the
matrix of Fig. 3.2. This permutation defines a minhash function h that
maps sets to rows. Let us compute the minhash value of set S1
according to h. The first column, which is the column for set S1, has 0
in row b, so we proceed to row e, the second in the permuted order.
There is again a 0 in the column for S1, so we proceed to row a,
where we find a 1. Thus. h(S1) = a.

Element S1 S2 S3 S4

b 0 0 1 0

e 0 0 1 0

a 1 0 0 1

d 1 0 1 1

c 0 1 0 1

Figure 3.3: A permutation of the rows of Fig. 3.2

Although it is not physically possible to permute very large
characteristic matrices, the minhash function h implicitly reorders the
rows of the matrix of Fig. 3.2 so it becomes the matrix of Fig. 3.3.
In this matrix, we can read off the values of h by scanning from the
top until we come to a 1. Thus, we see that h(S2) = c, h(S3) = b, and
h(S4) = a.

3.5.3 Minhashing and Jaccard Similarity
There is a remarkable connection between minhashing and Jaccard
similarity of the sets that are minhashed.

The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard
similarity of those sets.

To see why, we need to picture the columns for those two sets. If we
restrict ourselves to the columns for sets S1 and S2, then rows can be
divided into three classes:

3.5.3.1 Type X rows have 1 in both columns.

3.5.3.2 Type Y rows have 1 in one of the columns and 0 in the other.

3.5.3.3 Type Z rows have 0 in both columns.

Since the matrix is sparse, most rows are of type Z. However, it is
the ratio of the numbers of type X and type Y rows that determine
both SIM(S1, S2) and the probability that h(S1) = h(S2). Let there be
x rows of type X and y rows of type Y . Then SIM(S1, S2) = x/(x +
y). The reason is that x is the size of S1 ∩ S2 and x + y is the size of
S1 ∪ S2.

• mu
no
tes
.in

Shingling of Documents

97

−
−

Now, consider the probability that h(S1) = h(S2). If we imagine the
rows permuted randomly, and we proceed from the top, the probability
that we shall meet a type X row before we meet a type Y row is
x/(x + y). But if the first row from the top other than type Z rows is
a type X row, then surely h(S1) = h(S2). On the other hand, if the
first row other than a type Z row that we meet is a type Y row, then
the set with a 1 gets that row as its minhash value. However the set
with a 0 in that row surely gets some row further down the permuted
list. Thus, we know h(S1) /= h(S2) if we first meet a type Y row. We
conclude the probability that h(S1) = h(S2) is x/(x + y), which is
also the Jaccard similarity of S1 and S2.

3.5.4 Minhash Signatures

Again think of a collection of sets represented by their characteristic
matrix M. To represent sets, we pick at random some number n of
permutations of the rows of M. Perhaps 100 permutations or several
hundred permutations will do. Call the minhash functions determined
by these permutations h1, h2, . . . , hn. From the column representing set
S, construct the minhash signature for S, the vector [h1(S), h2(S), . . . ,
hn(S)]. We normally represent this list of hash-values as a column.
Thus, we can form from matrix M a signature matrix, in which the
ith column of M is replaced by the minhash signature for (the set
of) the ith column.

Note that the signature matrix has the same number of columns as M
but only n rows. Even if M is not represented explicitly, but in some
compressed form suitable for a sparse matrix (e.g., by the locations
of its 1’s), it is normal for the signature matrix to be much smaller
than M.

3.5.5 Computing Minhash Signatures

It is not feasible to permute a large characteristic matrix explicitly.
Even picking a random permutation of millions or billions of rows is
time-consuming, and the necessary sorting of the rows would take
even more time. Thus, permuted matrices like that suggested by Fig.
3.3, while conceptually appealing, are not implementable.

Fortunately, it is possible to simulate the effect of a random
permutation by a random hash function that maps row numbers to as
many buckets as there are rows. A hash function that maps integers 0,
1, . . . , k 1 to bucket numbers 0 through k 1 typically will map some
pairs of integers to the same bucket and leave other buckets unfilled.
However, the difference is unimportant as long as k is large and there
are not too many collisions. We can maintain the fiction that our hash
function h “permutes” row r to position h(r) in the permuted order.

Thus, instead of picking n random permutations of rows, we pick n
randomly chosen hash functions h1, h2, . . . , hn on the rows. We
construct the signature matrix by considering each row in their given
order. Let SIG(i, c) be the element of the signature matrix for the ith

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

98

hash function and column c. Initially, set SIG(i, c) to ∞ for all i and
c. We handle row r by doing the following:

1. Compute h1(r), h2(r), . . . , hn(r).

2. For each column c do the following:

(a) If c has 0 in row r, do nothing.

(b) However, if c has 1 in row r, then for each i = 1, 2, . . . , n set
SIG(i, c) to the smaller of the current value of SIG(i, c) and hi(r).

Row S1 S2 S3 S4 x + 1 mod 5 3x + 1 mod 5

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

Figure 3.4: Hash functions computed for the matrix of Fig. 3.2

Example 3.8 : Let us reconsider the characteristic matrix of Fig. 3.2,
which we reproduce with some additional data as Fig. 3.4. We have
replaced the letters naming the rows by integers 0 through 4. We have
also chosen two hash functions: h1(x) = x+1 mod 5 and h2(x) = 3x+1
mod 5. The values of these two functions applied to the row numbers
are given in the last two columns of Fig. 3.4. Notice that these simple
hash functions are true permutations of the rows, but a true
permutation is only possible because the number of rows, 5, is a prime.
In general, there will be collisions, where two rows get the same hash
value.

Now, let us simulate the algorithm for computing the signature
matrix.

Initially, this matrix consists of all ∞’s:

 S1 S2 S3 S4

h1

h2

∞

∞

∞

∞

∞

∞

∞

∞

First, we consider row 0 of Fig. 3.4. We see that the values of
h1(0) and h2(0) are both 1. The row numbered 0 has 1’s in the
columns for sets S1 and S4, so only these columns of the signature

mu
no
tes
.in

Shingling of Documents

99

∞ matrix can change. As 1 is less than, we do in fact change both values
in the columns for S1 and S4. The current estimate of the signature
matrix is thus:

 S1 S2 S3 S4

h1

h2

1

1

∞

∞

∞

∞

1

1

Now, we move to the row numbered 1 in Fig. 3.4. This row has 1
only in S3, and its hash values are h1(1) = 2 and h2(1) = 4. Thus, we
set SIG(1, 3) to 2 and SIG(2, 3) to 4. All other signature entries
remain as they are because their columns have 0 in the row
numbered 1. The new signature matrix:

 S1 S2 S3 S4

h1

h2

1

1

∞

∞

2

4

1

1

The row of Fig. 3.4 numbered 2 has 1’s in the columns for S2 and
S4, and its hash values are h1(2) = 3 and h2(2) = 2. We could
change the values in the signature for S4, but the values in this column
of the signature matrix, [1, 1], are each less than the corresponding hash
values [3, 2]. However, since the column for S2 still has ∞’s, we
replace it by [3, 2], resulting in:

 S1 S2 S3 S4

h1 1 3 2 1

h2 1 2 4 1

Next comes the row numbered 3 in Fig. 3.4. Here, all columns but
S2 have 1, and the hash values are h1(3) = 4 and h2(3) = 0. The
value 4 for h1 exceeds what is already in the signature matrix for all
the columns, so we shall not change any values in the first row of
the signature matrix. However, the value 0 for h2 is less than what is
already present, so we lower SIG(2, 1), SIG(2, 3) and SIG(2, 4) to 0.
Note that we cannot lower SIG(2, 2) because the column for S2 in Fig.
3.4 has 0 in the row we are currently considering. The resulting
signature matrix:

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

100

 S1 S2 S3 S4

h1 1 3 2 1

h2 0 2 0 0

Finally, consider the row of Fig. 3.4 numbered 4. h1(4) = 0 and
h2(4) = 3. Since row 4 has 1 only in the column for S3, we only
compare the current signature column for that set, [2, 0] with the hash
values [0, 3]. Since 0 < 2, we change SIG(1, 3) to 0, but since 3 > 0 we
do not change SIG(2, 3). The final signature matrix is:

 S1 S2 S3 S4

h1 1 3 0 1

h2 0 2 0 0

We can estimate the Jaccard similarities of the underlying sets from
this signature matrix. Notice that columns 1 and 4 are identical, so
we guess that SIM(S1, S4) = 1.0. If we look at Fig. 3.4, we see that
the true Jaccard similarity of S1 and S4 is 2/3. Remember that the
fraction of rows that agree in the signature matrix is only an
estimate of the true Jaccard similarity, and this example is much too
small for the law of large numbers to assure that the estimates are
close. For additional examples, the signature columns for S1 and S3
agree in half the rows (true similarity 1/4), while the signatures of
S1 and S2 estimate 0 as their Jaccard similarity (the correct value).

3.5.6 Exercises for Section 3.3

Exercise 3.3.1 : Verify the theorem from Section 3.3.3, which relates
the Jac- card similarity to the probability of minhashing to equal
values, for the partic- ular case of Fig. 3.2.

(a) Compute the Jaccard similarity of each of the pairs of columns in
Fig. 3.2.

! (b) Compute, for each pair of columns of that figure, the fraction of
the 120 permutations of the rows that make the two columns hash to
the same value.

Exercise 3.3.2 : Using the data from Fig. 3.4, add to the signatures of
the columns the values of the following hash functions:

(a) h3(x) = 2x + 4 mod 5.

(b) h4(x) = 3x − 1 mod 5.

mu
no
tes
.in

Shingling of Documents

101

−

Element S1 S2 S3 S4

0 0 1 0 1

1 0 1 0 0

2 1 0 0 1

3 0 0 1 0

4 0 0 1 1

5 1 0 0 0

Figure 3.5: Matrix for Exercise 3.3.3

Exercise 3.3.3 : In Fig. 3.5 is a matrix with six rows.

(a) Compute the minhash signature for each column if we use the
following three hash functions: h1(x) = 2x + 1 mod 6; h2(x) =
3x + 2 mod 6; h3(x) = 5x + 2 mod 6.

(b) Which of these hash functions are true permutations?

(c) How close are the estimated Jaccard similarities for the six pairs of
columns to the true Jaccard similarities?

! Exercise 3.3.4 : Now that we know Jaccard similarity is related to the
proba- bility that two sets minhash to the same value, reconsider
Exercise 3.1.3. Can you use this relationship to simplify the problem of
computing the expected Jaccard similarity of randomly chosen sets?

! Exercise 3.3.5 : Prove that if the Jaccard similarity of two columns is
0, then minhashing always gives a correct estimate of the Jaccard
similarity.

!! Exercise 3.3.6 : One might expect that we could estimate the Jaccard
simi- larity of columns without using all possible permutations of
rows. For example, we could only allow cyclic permutations; i.e., start
at a randomly chosen row r, which becomes the first in the order,
followed by rows r + 1, r + 2, and so on, down to the last row, and
then continuing with the first row, second row, and so on, down to
row r 1. There are only n such permutations if there are n rows.
However, these permutations are not sufficient to estimate the Jaccard
similarity correctly. Give an example of a two-column matrix where
averaging over all the cyclic permutations does not give the Jaccard
similarity.

! Exercise 3.3.7 : Suppose we want to use a MapReduce framework to
compute minhash signatures. If the matrix is stored in chunks that
correspond to some columns, then it is quite easy to exploit
parallelism. Each Map task gets some of the columns and all the hash

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

102

functions, and computes the minhash signatures of its given columns.
However, suppose the matrix were chunked by rows, so that a Map
task is given the hash functions and a set of rows to work on. Design
Map and Reduce functions to exploit MapReduce with data in this
form.

3.6 LOCALITY-SENSITIVE HASHING FOR
DOCUMENTS

Even though we can use minhashing to compress large documents into
small signatures and preserve the expected similarity of any pair of
documents, it still may be impossible to find the pairs with greatest
similarity efficiently. The reason is that the number of pairs of
documents may be too large, even if there are not too many
documents.

Example 3.9 : Suppose we have a million documents, and we use
signatures of length 250. Then we use 1000 bytes per document for the
signatures, and the entire data fits i n a gigab yte – less than a typical
main memory of a laptop.

However, there are 1,000,000 or half a trillion pairs of documents. If
it takes a microsecond to compute the similarity of two signatures,
then it takes almost six days to compute all the similarities on that
laptop.

If our goal is to compute the similarity of every pair, there is
nothing we can do to reduce the work, although parallelism can reduce
the elapsed time. However, often we want only the most similar pairs
or all pairs that are above some lower bound in similarity. If so, then
we need to focus our attention only on pairs that are likely to be
similar, without investigating every pair. There is a general theory of
how to provide such focus, called locality-sensitive hashing (LSH) or
near-neighbor search. In this section we shall consider a specific form
of LSH, designed for the particular problem we have been studying:
documents, represented by shingle-sets, then minhashed to short
signatures. In Section 3.6 we present the general theory of locality-
sensitive hashing and a number of applications and related
techniques.

3.6.1 LSH for Minhash Signatures

One general approach to LSH is to “hash” items several times, in such
a way that similar items are more likely to be hashed to the same
bucket than dissimilar items are. We then consider any pair that
hashed to the same bucket for any of the hashings to be a candidate
pair. We check only the candidate pairs for similarity. The hope is that
most of the dissimilar pairs will never hash to the same bucket, and
therefore will never be checked. Those dissimilar pairs that do hash to
the same bucket are false positives; we hope these will be only a small
fraction of all pairs. We also hope that most of the truly similar

mu
no
tes
.in

Shingling of Documents

103

pairs will hash to the same bucket under at least one of the hash
functions. Those that do not are false negatives; we hope these will be
only a small fraction of the truly similar pairs.

If we have minhash signatures for the items, an effective way to
choose the hashings is to divide the signature matrix into b bands
consisting of r rows each. For each band, there is a hash function that
takes vectors of r integers (the portion of one column within that band)
and hashes them to some large number of buckets. We can use the
same hash function for all the bands, but we use a separate bucket
array for each band, so columns with the same vector in different
bands will not hash to the same bucket.

Example 3.10 : Figure 3.6 shows part of a signature matrix of 12 rows
divided into four bands of three rows each. The second and fourth of
the explicitly shown columns each have the column vector [0, 2, 1] in the
first band, so they will definitely hash to the same bucket in the
hashing for the first band. Thus, regardless of what those columns
look like in the other three bands, this pair of columns will be a
candidate pair. It is possible that other columns, such as the first two
shown explicitly, will also hash to the same bucket according to the
hashing of the first band. However, since their column vectors are
different, [1, 3, 0] and [0, 2, 1], and there are many buckets for each
hashing, we expect the chances of an accidental collision to be very
small. We shall normally assume that two vectors hash to the same
bucket if and only if they are identical.

Two columns that do not agree in band 1 have three other chances to
become a candidate pair; they might be identical in any one of
these other bands.

band 1

band 2

band 3

band 4

Figure 3.6: Dividing a signature matrix into four bands of three rows
per band

However, observe that the more similar two columns are, the more
likely it is that they will be identical in some band. Thus, intuitively
the banding strategy makes similar columns much more likely to be
candidate pairs than dissimilar pairs.

1 0 0 0 2
. . . 3 2 1 2 2 . . .

0 1 3 1 1

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

104

— −

3.6.2 Analysis of the Banding Technique

Suppose we use b bands of r rows each, and suppose that a particular
pair of documents have Jaccard similarity s. Recall from Section 3.3.3
that the prob- ability the minhash signatures for these documents agree
in any one particular row of the signature matrix is s. We can calculate
the probability that these documents (or rather their signatures)
become a candidate pair as follows:

3.6.2.1 The probability that the signatures agree in all rows of one
particular band is sr.

3.6.2.2 The probability that the signatures disagree in at least one
row of a par- ticular band is 1 − sr.

3.6.2.3 The probability that the signatures disagree in at least one
row of each of the bands is (1 − sr)b.

3.6.2.4 The probability that the signatures agree in all the rows of at
least one band, and therefore become a candidate pair, is 1 − (1 − sr)b.

It may not be obvious, but regardless of the chosen constants b and r,
this function has the form of an S-curve, as suggested in Fig. 3.7. The
threshold, that is, the value of similarity s at which the probability
of becoming a candidate is 1/2, is a function of b and r. The
threshold is roughly where the rise is the steepest, and for large b
and r there we find that pairs with similarity above the threshold are
very likely to become candidates, while those below the threshold are
unlikely to become candidates – exactly the situation we want.

Probability of becoming a candidate

0 Jaccard similarity 1
of documents

Figure 3.7: The S-curve

An approximation to the threshold is (1/b)1/r. For example, if b
= 16 and r = 4, then the threshold is approximately at s = 1/2,
since the 4th root of 1/16 is 1/2.

Example 3.11 : Let us consider the case b = 20 and r = 5. That is, we
suppose we have signatures of length 100, divided into twenty bands

mu
no
tes
.in

Shingling of Documents

105

−

of five rows each. Figure 3.8 tabulates some of the values of the
function 1 (1 s5)20. Notice that the threshold, the value of s at which
the curve has risen halfway, is just slightly more than 0.5. Also notice
that the curve is not exactly the ideal step function that jumps from 0
to 1 at the threshold, but the slope of the curve in the middle is
significant. For example, it rises by more than 0.6 going from s = 0.4
to s = 0.6, so the slope in the middle is greater than 3.

s 1 − (1 − sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

Figure 3.8: Values of the S-curve for b = 20 and r = 5

For example, at s = 0.8, 1 (0.8)5 is about 0.672. If you raise this
number to the 20th power, you get about 0.00035. Subtracting this
fraction from 1 yields 0.99965. That is, if we consider two documents
with 80% similarity, then in any one band, they have only about a 33%
chance of agreeing in all five rows and thus becoming a candidate pair.
However, there are 20 bands and thus 20 chances to become a
candidate. Only roughly one in 3000 pairs that are as high as 80%
similar will fail to become a candidate pair and thus be a false
negative.

3.6.3 Combining the Techniques

We can now give an approach to finding the set of candidate pairs for
similar documents and then discovering the truly similar documents
among them. It must be emphasized that this approach can produce
false negatives – pairs of similar documents that are not identified as
such because they never become a candidate pair. There will also be
false positives – candidate pairs that are evaluated, but are found not
to be sufficiently similar.

3.6.3.1 Pick a value of k and construct from each document the set of
k-shingles. Optionally, hash the k-shingles to shorter bucket numbers.

3.6.3.2 Sort the document-shingle pairs to order them by shingle.

3.6.3.3 Pick a length n for the minhash signatures. Feed the sorted list
to the algorithm of Section 3.3.5 to compute the minhash signatures for
all the documents.

3.6.3.4 Choose a threshold t that defines how similar documents have
to be in order for them to be regarded as a desired “similar pair.” Pick

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

106

— −

— −

a number of bands b and a number of rows r such that br = n, and
the threshold t is approximately (1/b)1/r. If avoidance of false
negatives is important, you may wish to select b and r to produce a
threshold lower than t; if speed is important and you wish to limit false
positives, select b and r to produce a higher threshold.

3.6.3.5 Construct candidate pairs by applying the LSH technique of
Section 3.4.1.

3.6.3.6 Examine each candidate pair’s signatures and determine
whether the frac- tion of components in which they agree is at least t.

3.6.3.7 Optionally, if the signatures are sufficiently similar, go to the
documents themselves and check that they are truly similar, rather than
documents that, by luck, had similar signatures.

3.6.4 Exercises for Section 3.4

Exercise 3.4.1 : Evaluate the S-curve 1 (1 sr)b for s = 0.1, 0.2, . . . ,
0.9, for the following values of r and b:

• r = 3 and b = 10.

• r = 6 and b = 20.

• r = 5 and b = 50.

! Exercise 3.4.2 : For each of the (r, b) pairs in Exercise 3.4.1, compute
the threshold, that is, the value of s for which the value of 1 (1 sr)b is
exactly 1/2. How does this value compare with the estimate of (1/b)1/r
that was suggested in Section 3.4.2?

! Exercise 3.4.3 : Use the techniques explained in Section 1.3.5 to
approximate the S-curve 1 − (1 − sr)b when sr is very small.

! Exercise 3.4.4 : Suppose we wish to implement LSH by MapReduce.
Specifi- cally, assume chunks of the signature matrix consist of
columns, and elements are key-value pairs where the key is the column
number and the value is the signature itself (i.e., a vector of values).

(a) Show how to produce the buckets for all the bands as output of
a single MapReduce process. Hint : Remember that a Map function can
produce several key-value pairs from a single element.

(b) Show how another MapReduce process can convert the
output of (a) to a list of pairs that need to be compared. Specifically,
for each column i, there should be a list of those columns j > i with
which i needs to be compared.

3.7 DISTANCE MEASURES

We now take a short detour to study the general notion of distance
measures. The Jaccard similarity is a measure of how close sets are,
although it is not really a distance measure. That is, the closer sets are,

mu
no
tes
.in

Shingling of Documents

107

n

the higher the Jaccard similarity. Rather, 1 minus the Jaccard similarity
is a distance measure, as we shall see; it is called the Jaccard
distance.

However, Jaccard distance is not the only measure of closeness that
makes sense. We shall examine in this section some other distance
measures that have applications. Then, in Section 3.6 we see how some
of these distance measures also have an LSH technique that allows us
to focus on nearby points without comparing all points. Other
applications of distance measures will appear when we study
clustering in Chapter 7.

3.7.1 Definition of a Distance Measure

Suppose we have a set of points, called a space. A distance measure
on this space is a function d(x, y) that takes two points in the space as
arguments and produces a real number, and satisfies the following
axioms:

3.7.1.1 d(x, y) ≥ 0 (no negative distances).

3.7.1.2 d(x, y) = 0 if and only if x = y (distances are positive,
except for the distance from a point to itself).

3.7.1.3 d(x, y) = d(y, x) (distance is symmetric).

3.7.1.4 d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

The triangle inequality is the most complex condition. It says,
intuitively, that to travel from x to y, we cannot obtain any benefit if
we are forced to travel via some particular third point z. The triangle-
inequality axiom is what makes all distance measures behave as if
distance describes the length of a shortest path from one point to
another.

3.7.2 Euclidean Distances

The most familiar distance measure is the one we normally think of as
“dis- tance.” An n-dimensional Euclidean space is one where points
are vectors of n real numbers. The conventional distance measure in
this space, which we shall refer to as the L2-norm, is defined:

‚

.d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) = ,

i=1 (xi − yi)2

That is, we square the distance in each dimension, sum the squares,
and take the positive square root.

It is easy to verify the first three requirements for a distance
measure are satisfied. The Euclidean distance between two points
cannot be negative, be- cause the positive square root is intended.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

108

r 1/r

−

∩

∪ ∩
 /

Since all squares of real numbers are nonnegative, any i such that xi /=
yi forces the distance to be strictly positive. On the other hand, if xi
= yi for all i, then the distance is clearly 0. Symmetry follows
because (xi yi)2 = (yi xi)2. The triangle inequality requires a good
deal of algebra to verify. However, it is well understood to be a
property of Euclidean space: the sum of the lengths of any two sides
of a triangle is no less than the length of the third side.

There are other distance measures that have been used for Euclidean
spaces. For any constant r, we can define the Lr-norm to be the distance
measure d defined by:

Σn
d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) =
(i=1 |xi − yi|)

The case r = 2 is the usual L2-norm just mentioned. Another common
distance measure is the L1-norm, or Manhattan distance. There, the
distance between two points is the sum of the magnitudes of the
differences in each dimension. It is called “Manhattan distance”
because it is the distance one would have to travel between points if
one were constrained to travel along grid lines, as on the streets of a
city such as Manhattan.

Another interesting distance measure is the L∞-norm, which is the
limit as r approaches infinity of the Lr-norm. As r gets larger, only the
dimension with the largest difference matters, so formally, the L∞-
norm is defined as the maximum of |xi − yi | over all dimensions i.

Example 3.12 : Consider the two-dimensional Euclidean space (the
custom-

ary√plane) and the points √(2, 7) and (6, 4). The L2-norm gives

a distance of (2 − 6)2 + (7 − 4)2 = 42 + 32 = 5. The L1-norm
gives a distance of |2 − 6| + |7 − 4| = 4 + 3 = 7. The L∞-norm gives a
distance of max(|2 − 6|, |7 − 4|) = max(4, 3) = 4

3.7.3 Jaccard Distance

As mentioned at the beginning of the section, we define the Jaccard
distance of sets by d(x, y) = 1 SIM(x, y). That is, the Jaccard distance
is 1 minus the ratio of the sizes of the intersection and union of sets x
and y. We must verify that this function is a distance measure.

3.7.3.1 d(x, y) is nonnegative because the size of the intersection cannot
exceed the size of the union.

3.7.3.2 d(x, y) = 0 if x = y, because x x = x x = x. However, if
x = y, then the size of x y is strictly less than the size of x y, so d(x, y)
is strictly positive.

3.7.3.3 d(x, y) = d(y, x) because both union and intersection are
symmetric; i.e., x ∪ y = y ∪ x and x ∩ y = y ∩ x.

mu
no
tes
.in

Shingling of Documents

109

≤

3.7.3.4 For the triangle inequality, recall from Section 3.3.3 that
SIM(x, y) is the probability a random minhash function maps x and y
to the same value. Thus, the Jaccard distance d(x, y) is the probability
that a random min- hash function does not send x and y to the same
value. We can therefore translate the condition d(x, y) d(x, z) + d(z, y)
to the statement that if h is a random minhash function, then the
probability that h(x) = h(y) is no greater than the sum of the
probability that h(x) = h(z) and the probability that h(z) = h(y).
However, this statement is true because whenever h(x) = h(y), at
least one of h(x) and h(y) must be different from h(z). They could
not both be h(z), because then h(x) and h(y) would be the same.

3.7.4 Cosine Distance

The cosine distance makes sense in spaces that have dimensions,
including Eu- clidean spaces and discrete versions of Euclidean spaces,
such as spaces where points are vectors with integer components or
Boolean (0 or 1) components. In such a space, points may be thought
of as directions. We do not distinguish be- tween a vector and a
multiple of that vector. Then the cosine distance between two points is
the angle that the vectors to those points make. This angle will be in
the range 0 to 180 degrees, regardless of how many dimensions the
space has.

We can calculate the cosine distance by first computing the cosine of
the angle, and then applying the arc-cosine function to translate to an
angle in the 0-180 degree range. Given two vectors x and y, the cosine
of the angle between them is the dot product x.y divided by the L2-
norms of x and y (i.e., their

Euclidean distances from the orΣigin). Recall that the dot product
of vectors [x1, x2, . . . , xn].[y1, y2, . . . , yn] is n i=1 xiyi.

Example 3.13 : Let our two vectors be x = [1, 2, −1] and = [2, 1, 1].
The dot √pr oduct x.y is 1 × 2 + 2 × 1 + (−√1) × 1 = 3. The L2-n√orm of

both vectors is 6. For example, x has L2-norm 12 + 22 + (−1)2 =

6. Thus, the cosine of the angle between x and y is 3/(
√

6
√

6) or 1/2.
The angle whose cosine is ½ is 60 degrees, so that is the cosine
distance between x and y.

We must show that the cosine distance is indeed a distance measure.
We have defined it so the values are in the range 0 to 180, so no
negative distances are possible. Two vectors have angle 0 if and only if
they are the same direction.4 Symmetry is obvious: the angle between x
and y is the same as the angle between y and x. The triangle inequality
is best argued by physical reasoning. One way to rotate from x to y is
to rotate to z and thence to y. The sum of those two rotations cannot
be less than the rotation directly from x to y.

3.7.5 Edit Distance

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

110

· · · · · ·

— ×

This distance makes sense when points are strings. The distance
between two strings x = x1x2 xn and y = y1y2 ym is the smallest
number of insertions and deletions of single characters that will
convert x to y.

Example 3.14 : The edit distance between the strings x = abcde
and y = acfdeg is 3. To convert x to y:

3.7.5.1 Delete b.
3.7.5.2 Insert f after c.
3.7.5.3 Insert g after e.

No sequence of fewer than three insertions and/or deletions will
convert x to y. Thus, d(x, y) = 3.

Another way to define and calculate the edit distance d(x, y) is to
compute a longest common subsequence (LCS) of x and y. An LCS
of x and y is a string that is constructed by deleting positions from x
and y, and that is as long as any string that can be constructed that
way. The edit distance d(x, y) can be calculated as the length of x
plus the length of y minus twice the length of their LCS.

Example 3.15 : The strings x = abcde and y = acfdeg from
Example 3.14 have a unique LCS, which is acde. We can be sure it
is the longest possible, because it contains every symbol appearing in
both x and y. Fortunately, these common symbols appear in the same
order in both strings, so we are able to use them all in an LCS. Note
that the length of x is 5, the length of y is 6, and the length of their
LCS is 4. The edit distance is thus 5 + 6 2 4 = 3, which agrees with
the direct calculation in Example 3.14.

For another example, consider x = aba and y = bab. Their edit
distance is 2. For example, we can convert x to y by deleting the first
a and then inserting b at the end. There are two LCS’s: ab and ba.
Each can be obtained by deleting one symbol from each string. As
must be the case for multiple LCS’s of the same pair of strings, both
LCS’s have the same length. Therefore, we may compute the edit
distance as 3 + 3 − 2 × 2 = 2.

Edit distance is a distance measure. Surely no edit distance can be
negative, and only two identical strings have an edit distance of 0. To
see that edit distance is symmetric, note that a sequence of insertions
and deletions can be reversed, with each insertion becoming a deletion,
and vice versa. The triangle inequality is also straightforward. One
way to turn a string s into a string t is to turn s into some string u
and then turn u into t. Thus, the number of edits made going from s
to u, plus the number of edits made going from u to t cannot be less
than the smallest number of edits that will turn s into t.

mu
no
tes
.in

Shingling of Documents

111

| −
|

3.7.6 Hamming Distance

Given a space of vectors, we define the Hamming distance between
two vectors to be the number of components in which they differ. It
should be obvious that Hamming distance is a distance measure.
Clearly the Hamming distance cannot be negative, and if it is zero,
then the vectors are identical. The dis- tance does not depend on
which of two vectors we consider first. The triangle inequality should
also be evident. If x and z differ in m components, and z and y
differ in n components, then x and y cannot differ in more than m + n
components. Most commonly, Hamming distance is used when the
vectors are Boolean; they consist of 0’s and 1’s only. However, in
principle, the vectors can have components from any set.

Example 3.16 : The Hamming distance between the vectors 10101 and
11110 is 3. That is, these vectors differ in the second, fourth, and fifth
components, while they agree in the first and third components.

3.7.7 Exercises for Section 3.5

! Exercise 3.5.1 : On the space of nonnegative integers, which of the
following functions are distance measures? If so, prove it; if not, prove
that it fails to satisfy one or more of the axioms.

(a) max(x, y) = the larger of x and y.

(b) diff(x, y) = x y (the absolute magnitude of the difference
between x and y).

(c) sum(x, y) = x + y.

Non-Euclidean Spaces

Notice that several of the distance measures introduced in this
section are not Euclidean spaces. A property of Euclidean
spaces that we shall find important when we take up
clustering in Chapter 7 is that the average of points in a
Euclidean space always exists and is a point in the space.
However, consider the space of sets for which we defined the
Jaccard dis- tance. The notion of the “average” of two sets
makes no sense. Likewise, the space of strings, where we can
use the edit distance, does not let us take the “average” of
strings.

Vector spaces, for which we suggested the cosine distance,
may or may not be Euclidean. If the components of the vectors
can be any real num- bers, then the space is Euclidean.
However, if we restrict components to be integers, then the
space is not Euclidean. Notice that, for instance, we cannot find
an average of the vectors [1, 2] and [3, 1] in the space of vectors
with two integer components, although if we treated them as
members of the two-dimensional Euclidean space, then we
could say that their average was [2.0, 1.5]. mu

no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

112

Exercise 3.5.2 : Find the L1 and L2 distances between the points (5, 6,
7) and (8, 2, 4).

!! Exercise 3.5.3 : Prove that if i and j are any positive integers, and
i < j, then the Li norm between any two points is greater than the Lj
norm between those same two points.

Exercise 3.5.4 : Find the Jaccard distances between the following
pairs of sets:

(a) {1, 2, 3, 4} and {2, 3, 4, 5}.

(b) {1, 2, 3} and {4, 5, 6}.

Exercise 3.5.5 : Compute the cosines of the angles between each of the
fol- lowing pairs of vectors.5

(a) (3, −1, 2) and (−2, 3, 1).

(b) (1, 2, 3) and (2, 4, 6).

(c) (5, 0, −4) and (−1, −6, 2).

(d) (0, 1, 1, 0, 1, 1) and (0, 0, 1, 0, 0, 0).

! Exercise 3.5.6 : Prove that the cosine distance between any two vectors
of 0’s and 1’s, of the same length, is at most 90 degrees.

Exercise 3.5.7 : Find the edit distances (using only insertions and
deletions) between the following pairs of strings.

(a) abcdef and bdaefc.

(b) abccdabc and acbdcab.

(c) abcdef and baedfc.

! Exercise 3.5.8 : There are a number of other notions of edit distance
available. For instance, we can allow, in addition to insertions and
deletions, the following operations:

i. Mutation, where one symbol is replaced by another symbol. Note
that a mutation can always be performed by an insertion followed by a
deletion, but if we allow mutations, then this change counts for only 1,
not 2, when computing the edit distance.

ii. Transposition, where two adjacent symbols have their positions
swapped. Like a mutation, we can simulate a transposition by one
insertion followed by one deletion, but here we count only 1 for these
two steps.

Repeat Exercise 3.5.7 if edit distance is defined to be the number of
insertions, deletions, mutations, and transpositions needed to transform
one string into another.

! Exercise 3.5.9 : Prove that the edit distance discussed in Exercise
3.5.8 is indeed a distance measure.

mu
no
tes
.in

Shingling of Documents

113

Exercise 3.5.10 : Find the Hamming distances between each pair of the
fol- lowing vectors: 000000, 110011, 010101, and 011100.

5Note that what we are asking for is not precisely the cosine
distance, but from the cosine of an angle, you can compute the
angle itself, perhaps with the aid of a table or library function.

3.8 THE THEORY OF LOCALITY-SENSITIVE
FUNCTIONS

The LSH technique developed in Section 3.4 is one example of a
family of func- tions (the minhash functions) that can be combined (by
the banding technique) to distinguish strongly between pairs at a low
distance from pairs at a high dis- tance. The steepness of the S-curve in
Fig. 3.7 reflects how effectively we can avoid false positives and false
negatives among the candidate pairs.

Now, we shall explore other families of functions, besides the minhash
func- tions, that can serve to produce candidate pairs efficiently. These
functions can apply to the space of sets and the Jaccard distance, or to
another space and/or another distance measure. There are three
conditions that we need for a family of functions:

1. They must be more likely to make close pairs be candidate pairs
than distant pairs. We make this notion precise in Section 3.6.1.

2. They must be statistically independent, in the sense that it is
possible to estimate the probability that two or more functions will
all give a certain response by the product rule for independent
events.

3. They must be efficient, in two ways:

(a) They must be able to identify candidate pairs in time much less
than the time it takes to look at all pairs. For example, minhash
functions have this capability, since we can hash sets to minhash
values in time proportional to the size of the data, rather than the
square of the number of sets in the data. Since sets with common
values are colocated in a bucket, we have implicitly produced the
candidate pairs for a single minhash function in time much less than
the number of pairs of sets.

(b) They must be combinable to build functions that are better at
avoid- ing false positives and negatives, and the combined functions
must also take time that is much less than the number of pairs. For ex-
ample, the banding technique of Section 3.4.1 takes single minhash
functions, which satisfy condition 3a but do not, by themselves have
the S-curve behavior we want, and produces from a number of min-
hash functions a combined function that has the S-curve shape.

Our first step is to define “locality-sensitive functions” generally.
We then see how the idea can be applied in several applications.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

114

Finally, we discuss how to apply the theory to arbitrary data with
either a cosine distance or a Euclidean distance measure.

3.8.1 Locality-Sensitive Functions

For the purposes of this section, we shall consider functions that take
two items and render a decision about whether these items should be
a candidate pair.

In many cases, the function f will “hash” items, and the decision will
be based on whether or not the result is equal. Because it is
convenient to use the notation f(x) = f(y) to mean that f(x, y) is “yes;
make x and y a candidate pair,” we shall use f(x) = f(y) as a
shorthand with this meaning. We also use f(x) = f(y) to mean “do
not make x and y a candidate pair unless some other function
concludes we should do so.”

A collection of functions of this form will be called a family of
functions. For example, the family of minhash functions, each based on
one of the possible permutations of rows of a characteristic matrix,
form a family.

Let d1 < d2 be two distances according to some distance measure d.
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for
every f in F:

3.8.1.1 If d(x, y) ≤ d1, then the probability that f(x) = f(y) is at least
p1.

3.8.1.2 If d(x, y) ≥ d2, then the probability that f(x) = f(y) is at
most p2.

 p
 1

 Probabilty of being declared a candidate

 P
 2

 d 1 d 2
 Distance

Figure 3.9: Behavior of a (d1, d2, p1, p2)-sensitive function

Figure 3.9 illustrates what we expect about the probability that a given
function in a (d1, d2, p1, p2)-sensitive family will declare two items to
be a can- didate pair. Notice that we say nothing about what happens
when the distance between the items is strictly between d1 and d2, but
we can make d1 and d2 as close as we wish. The penalty is that

mu
no
tes
.in

Shingling of Documents

115

≥

≤

— ≥ −

typically p1 and p2 are then close as well. As we shall see, it is possible
to drive p1 and p2 apart while keeping d1 and d2 fixed.

3.8.2 Locality-Sensitive Families for Jaccard Distance

For the moment, we have only one way to find a family of
locality-sensitive functions: use the family of minhash functions, and
assume that the distance measure is the Jaccard distance. As before,
we interpret a minhash function h to make x and y a candidate pair
if and only if h(x) = h(y).

The family of minhash functions is a (d1, d2, 1 −d1, 1 −d2)-sensitive
family for any d1 and d2, where 0 ≤ d1 < d2 ≤ 1.

The reason is that if d(x, y) ≤ d1, where d is the Jaccard distance,
then SIM(x, y) = 1 d(x, y) 1 d1. But we know that the
Jaccard similarity of x and y is equal to the probability that a
minhash function will hash x and y to the same value. A similar
argument applies to d2 or any distance.

Example 3.17 : We could let d1 = 0.3 and d2 = 0.6. Then we can
assert that the family of minhash functions is a (0.3, 0.6, 0.7, 0.4)-
sensitive family. That is, if the Jaccard distance between x and y is at
most 0.3 (i.e., SIM(x, y) 0.7) then there is at least a 0.7 chance
that a minhash function will send x and y to the same value, and if the
Jaccard distance between x and y is at least 0.6 (i.e., SIM(x, y) 0.4),
then there is at most a 0.4 chance that x and y will be sent to the
same value. Note that we could make the same assertion with another
choice of d1 and d2; only d1 < d2 is required.

3.8.3 Amplifying a Locality-Sensitive Family

Suppose we are given a (d1, d2, p1, p2)-sensitive family F. We can
construct a new family F′ by the AND-construction on F, which is
defined as follows. Each member of F′ consists of r members of F
for some fixed r. If f is in F′, and f is constructed from the set {f1,
f2, . . . , fr} of members of F, we say f(x) = f(y) if and only if fi(x)
= fi(y) for all i = 1, 2, . . . , r. Notice that this construction mirrors
the effect of the r rows in a single band: the band makes x and y a
candidate pair if every one of the r rows in the band say that x and y
are equal (and therefore a candidate pair according to that row).

Since the members of F are independentl y chosen to make a member
of F′, we can assert that F′ is a d1, d2, (p1)r, (p2)r -sensitive family.
That is, for any p, if p is the probability that a member of F will
declare (x, y) to be a candidate pair, then the probability that a
member of F′ will so declare is pr.

There is another construction, which we call the OR-construction, that
turn s a (d1, d2, p1, p2)-sensitive family F into a d1, d2, 1 − (1 − p1)b, 1 −
(1 − p2)b - sensitive family F′. Each member f of F′ is constructed
from b members of F, say f1, f2, . . . , fb. We define f(x) = f(y) if

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

116 — −

p
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 − (1 − p4)4
0.0064
0.0320
0.0985
0.2275
0.4260
0.6666
0.8785
0.9860

and only if fi(x) = fi(y) for one or more values of i. The OR-
construction mirrors the effect of combining several bands: x and y
become a candidate pair if any band makes them a candidate pair.

If p is the probability that a member of F will declare (x, y) to be a
candidate pair, then 1−p is the probability it will not so declare. (1−p)b is
the probability that none of f1, f2, . . . , fb will declare (x, y) a
candidate pair, and 1 − (1 − p)b is the probability that at least one fi will
declare (x, y) a candidate pair, and therefore that f will declare (x, y) to
be a candidate pair.

Notice that the AND-construction lowers all probabilities, but if we
choose F and r judiciously, we can make the small probability p2 get
very close to 0, while the higher probability p1 stays significantly
away from 0. Similarly, the OR- construction makes all
probabilities rise, but by choosing F and b judiciously, we can make
the larger probability approach 1 while the smaller probability
remains bounded away from 1. We can cascade AND- and OR-
constructions in any order to make the low probability close to 0 and
the high probability close to 1. Of course the more constructions we
use, and the higher the values of r and b that we pick, the larger the
number of functions from the original family that we are forced to
use. Thus, the better the final family of functions is, the longer it
takes to apply the functions from this family.

Example 3.18 : Suppose we start with a family F. We use the AND-
construc- tion with r = 4 to produce a family F1. We then apply
the OR-construction to F1 with b = 4 to produce a third family F2.
Note that the members of F2 each are built from 16 members of F, and
the situation is analogous to starting with 16 minhash functions and
treating them as four bands of four rows each.

Figure 3.10: Effect of the 4-way AND-construction followed by the
4-way OR- construction

The 4-way AND-function converts any probability p into p4.
When we follow it by the 4-way OR-construction, that probability

mu
no
tes
.in

Shingling of Documents

117

 p
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 − (1 − p)4 4

0.0140
0.1215
0.3334
0.5740
0.7725
0.9015
0.9680

is further converted into 1 (1 p4)4. Some values of this transformation
are indicated in Fig. 3.10. This function is an S-curve, staying low for
a while, then rising steeply (although not too steeply; the slope never
gets much higher than 2), and then leveling off at high values. Like
any S-curve, it has a fixedpoint, the value of p that is left
unchanged when we apply the function of the S-curve. In this
case, the fixedpoint is the value of p for which p = 1 (1 p4)4. We
can see that the fixedpoint is somewhere between 0.7 and 0.8. Below
that value, probabilities are decreased, and above it they are increased.
Thus, if we pick a high probability above the fixedpoint and a low
probability below it, we shall have the desired effect that the low
probability is decreased and the high probability is increased. Suppose
F is the minhash functions, regarded as a (0.2, 0.6, 0.8, 0.4)-sens-
itive family. Then F2, the family constructed by a 4-way AND
followed by a 4-way OR, is a (0.2, 0.6, 0.8785, 0.0985)-sensitive
family, as we can read from the rows for 0.8 and 0.4 in Fig. 3.10. By
replacing F by F2, we have reduced both the false-negative and false-
positive rates, at the cost of making application of the functions take
16 times as long.

Figure 3.11: Effect of the 4-way OR-construction followed by the
4-way AND- construction

Example 3.19 : For the same cost, we can apply a 4-way OR-
construction followed by a 4-way AND-construction. Figure 3.11
gives the transformation on probabilities implied by this
construction. For instance, suppose that F is a (0.2, 0.6, 0.8, 0.4)-
sensitive family. Then the constructed family is a (0.2, 0.6, 0.9936,
0.5740)-sensitive family. This choice is not necessarily the best.
Although the higher probability has moved much closer to 1, the lower
probability has also raised, increasing the number of false positives.

Example 3.20 : We can cascade constructions as much as we like. For
exam- ple, we could use the construction of Example 3.18 on the
family of minhash functions and then use the construction of Example
3.19 on the resulting family. The constructed family would then have
functions each built from 256 minhash functions. It would, for instance
transform a (0.2, 0.8, 0.8, 0.2)-sensitive family into a (0.2, 0.8,
0.9991285, 0.0000004)-sensitive family.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

118

3.8.4 Exercises for Section 3.6

Exercise 3.6.1 : What is the effect on probability of starting with the
family of minhash functions and applying:

(a) A 2-way AND construction followed by a 3-way OR
construction.

(b) A 3-way OR construction followed by a 2-way AND
construction.

(c) A 2-way AND construction followed by a 2-way OR construction,
followed by a 2-way AND construction.

(d) A 2-way OR construction followed by a 2-way AND construction,
followed by a 2-way OR construction followed by a 2-way AND
construction.

Exercise 3.6.2 : Find the fixedpoints for each of the functions
constructed in Exercise 3.6.1.

! Exercise 3.6.3 : Any function of probability p, such as that of Fig.
3.10, has a slope given by the derivative of the function. The maximum
slope is where that derivative is a maximum. Find the value of p that
gives a maximum slope for the S-curves given by Fig. 3.10 and Fig.
3.11. What are the values of these maximum slopes?

!! Exercise 3.6.4 : Generalize Exercise 3.6.3 to give, as a function of r
and b, the point of maximum slope and the value of that slope, for
families of functions defined from the minhash functions by:

(a) An r-way AND construction followed by a b-way OR
construction.

(b) A b-way OR construction followed by an r-way AND
construction.

3.9 LSH FAMILIES FOR OTHER DISTANCE
MEASURES

There is no guarantee that a distance measure has a locality-sensitive
family of hash functions. So far, we have only seen such families for
the Jaccard distance. In this section, we shall show how to construct
locality-sensitive families for Hamming distance, the cosine distance
and for the normal Euclidean distance.

3.9.1 LSH Families for Hamming Distance

It is quite simple to build a locality-sensitive family of functions for
the Ham- ming distance. Suppose we have a space of d-dimensional
vectors, and h(x, y) denotes the Hamming distance between vectors x
and y. If we take any one position of the vectors, say the ith
position, we can define the function fi(x) to be the ith bit of vector

mu
no
tes
.in

Shingling of Documents

119

x

y

x. Then fi(x) = fi(y) if and only if vectors x and y agree in the ith
position. Then the probability that fi(x) = fi(y) for a ran- domly
chosen i is exactly 1 h(x, y)/d; i.e., it is the fraction of positions in
which x and y agree.

This situation is almost exactly like the one we encountered for
minhashing.

Thus, the family F consisting of the functions {f1, f2, . . . , fd} is
a(d1, d2, 1 − d1/d, 1 − d2/d)-sensitive family of hash functions, for any d1
< d2. There are only two differences between this family and the
family of minhash functions.

3.9.1.1 While Jaccard distance runs from 0 to 1, the Hamming
distance on a vector space of dimension d runs from 0 to d. It is
therefore necessary to scale the distances by dividing by d, to turn
them into probabilities.

3.9.1.2 While there is essentially an unlimited supply of minhash
functions, the size of the family F for Hamming distance is only d.

The first point is of no consequence; it only requires that we divide by
d at appropriate times. The second point is more serious. If d is
relatively small, then we are limited in the number of functions that
can be composed using the AND and OR constructions, thereby
limiting how steep we can make the S-curve be.

3.9.2 Random Hyperplanes and the Cosine Distance

Recall from Section 3.5.4 that the cosine distance between two vectors
is the angle between the vectors. For instance, we see in Fig. 3.12
two vectors x and y that make an angle θ between them. Note that
these vectors may be in a space of many dimensions, but they always
define a plane, and the angle between them is measured in this plane.
Figure 3.12 is a “top-view” of the plane containing x and y.

Figure 3.12: Two vectors make an angle θ

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

120 −

−

Suppose we pick a hyperplane through the origin. This hyperplane
intersects the plane of x and y in a line. Figure 3.12 suggests two
possible hyperplanes, one whose intersection is the dashed line and the
other’s intersection is the dotted line. To pick a random hyperplane,
we actually pick the normal vector to the hyperplane, say v. The
hyperplane is then the set of points whose dot product with v is 0.

First, consider a vector v that is normal to the hyperplane whose
projection is represented by the dashed line in Fig. 3.12; that is, x and
y are on different sides of the hyperplane. Then the dot products v.x
and v.y will have different signs. If we assume, for instance, that v is a
vector whose projection onto the plane of x and y is above the dashed
line in Fig. 3.12, then v.x is positive, while v.y is negative. The
normal vector v instead might extend in the opposite direction, below
the dashed line. In that case v.x is negative and v.y is positive, but the
signs are still different.

On the other hand, the randomly chosen vector v could be normal to a
hyperplane like the dotted line in Fig. 3.12. In that case, both v.x
and v.y have the same sign. If the projection of v extends to the right,
then both dot products are positive, while if v extends to the left, then
both are negative.

What is the probability that the randomly chosen vector is normal
to a hyperplane that looks like the dashed line rather than the dotted
line? All angles for the line that is the intersection of the random
hyperplane and the plane of x and y are equally likely. Thus, the
hyperplane will look like the dashed line with probability θ/180 and
will look like the dotted line otherwise.

Thus, each hash function f in our locality-sensitive family F is
built from a randomly chosen vector vf . Given two vectors x and
y, say f(x) = f(y) if and only if the dot products vf .x and vf .y
have the same sign. Then F is a locality-sensitive family for the
cosine distance. The parameters are essentially the same as for the
Jaccard-distance family described in Section 3.6.2, except the scale of
distances is 0–180 rather than 0–1. That is, F is a (d1, d2, (180 −
d1)/180, (180 − d2)/180)-sensitive family of hash functions. From this
basis, we can amplify the family as we wish, just as for the minhash-
based family.

3.9.3 Sketches

Instead of chosing a random vector from all possible vectors, it turns
out to be sufficiently random if we restrict our choice to vectors
whose components are +1 and 1. The dot product of any vector x
with a vector v of +1’s and 1’s is formed by adding the
components of x where v is +1 and then subtracting the other
components of x – those where v is −1.

If we pick a collection of random vectors, say v1, v2, . . . , vn, then we
can apply them to an arbitrary vector x by computing v1.x, v2.x, . . . ,

mu
no
tes
.in

Shingling of Documents

121

−
−

−

−

— −

vn.x and then replacing any positive value by +1 and any negative
value by 1. The result is called the sketch of x. You can handle 0’s
arbitrarily, e.g., by chosing a result +1 or 1 at random. Since there is
only a tiny probability of a zero dot product, the choice has
essentially no effect.

Example 3.21 : Suppose our space consists of 4-dimensional vectors,
and we pick three random vectors: v1 = [+1, −1, +1, +1], v2 = [−1,
+1, −1, +1], and v3 = [+1, +1, −1, −1]. For the vector x = [3, 4, 5, 6],
the sketch is [+1, +1, −1].

That is, v1.x = 3−4+5+6 = 10. Since the result is positive, the first
component of the sketch is +1. Similarly, v2.x = 2 and v3.x = 4, so
the second component of the sketch is +1 and the third component
is 1.

Consider the vector y = [4, 3, 2, 1]. We can similarly compute its
sketch to be [+1, 1, +1]. Since the sketches for x and y agree in 1/3
of the positions, we estimate that the angle between them is 120
degrees. That is, a randomly chosen hyperplane is twice as likely to
look like the dashed line in Fig. 3.12 than like the dotted line.

The above conclusion turns out to be quite wrong. We can calculate
the cosine of the angle between x and y to be x.y, which is

6 × 1 + 5 × 2 + 4 × 3 + 3 × 4 = 40

divided by the magnitudes of the two vectors. These magnitudes are

√

62 + 52 + 42 + 32 = 9.274

and
√

12 + 22 + 32 + 42 = 5.477. Thus, the cosine of the angle
between x and y is 0.7875, and this angle is about 38 degrees.
However, if you look at all 16 different vectors v of length 4 that
have +1 and 1 as components, you find that there are only four of
these whose dot products with x and y have a different sign,
namely v2, v3, and their complements [+1, 1, +1, 1] and [1, 1,
+1, +1]. Thus, had we picked all sixteen of these vectors to form a
sketch, the estimate of the angle would have been 180/4 = 45 degrees.

3.9.4 LSH Families for Euclidean Distance

Now, let us turn to the Euclidean distance (Section 3.5.2), and see if
we can develop a locality-sensitive family of hash functions for this
distance. We shall start with a 2-dimensional Euclidean space. Each
hash function f in our family F will be associated with a randomly
chosen line in this space. Pick a constant a and divide the line into
segments of length a, as suggested by Fig. 3.13, where the “random”
line has been oriented to be horizontal.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

122

≫

≥

The segments of the line are the buckets into which function f hashes
points. A point is hashed to the bucket in which its projection onto the
line lies. If the distance d between two points is small compared with
a, then there is a good chance the two points hash to the same bucket,
and thus the hash function f will declare the two points equal. For
example, if d = a/2, then there is at least a 50% chance the two points
will fall in the same bucket. In fact, if the angle θ between the
randomly chosen line and the line connecting the points is large, then
there is an even greater chance that the two points will fall in the same
bucket. For instance, if θ is 90 degrees, then the two points are
certain to fall in the same bucket.

However, suppose d is larger than a. In order for there to be any
chance of the two points falling in the same bucket, we need d cos θ ≤ a.
The diagram of Fig. 3.13 suggests why this requirement holds. Note
that even if d cos θ ≪ a it Bucket width a

Figure 3.13: Two points at distance d a have a small chance of being
hashed to the same bucket is still not certain that the two points will
fall in the same bucket. However, we can guarantee the following. If
d 2a, then there is no more than a 1/3 chance the two points fall in the
same bucket. The reason is that for cos θ to be less than 1/2, we need
to have θ in the range 60 to 90 degrees. If θ is in the range 0 to 60
degrees, then cos θ is more than 1/2. But since θ is the smaller angle
between two randomly chosen lines in the plane, θ is twice as likely to
be between 0 and 60 as it is to be between 60 and 90.

We conclude that the family F just described forms a (a/2, 2a, 1/2,
1/3)- sensitive family of hash functions. That is, for distances up to
a/2 the proba- bility is at least 1/2 that two points at that distance will
fall in the same bucket, while for distances at least 2a the probability
points at that distance will fall in the same bucket is at most 1/3. We
can amplify this family as we like, just as for the other examples of
locality-sensitive hash functions we have discussed.

3.9.5 More LSH Families for Euclidean Spaces

There is something unsatisfying about the family of hash functions
developed in Section 3.7.4. First, the technique was only described for

Points at
distance d

mu
no
tes
.in

Shingling of Documents

123

−

two-dimensional Euclidean spaces. What happens if our data is
points in a space with many dimensions? Second, for Jaccard and
cosine distances, we were able to develop locality-sensitive families
for any pair of distances d1 and d2 as long as d1 < d2. In Section 3.7.4
we appear to need the stronger condition d1 < 4d2.

However, we claim that there is a locality-sensitive family of hash
func- tions for any d1 < d2 and for any number of dimensions. The
family’s hash functions still derive from random lines through the
space and a bucket size a that partitions the line. We still hash
points by projecting them onto the line. Given that d1 < d2, we may
not know what the probability p1 is that two points at distance d1
hash to the same bucket, but we can be certain that it is greater than
p2, the probability that two points at distance d2 hash to the same
bucket. The reason is that this probability surely grows as the
distance shrinks. Thus, even if we cannot calculate p1 and p2 easily,
we know that there is a (d1, d2, p1, p2)-sensitive family of hash
functions for any d1 < d2 and any given number of dimensions.

Using the amplification techniques of Section 3.6.3, we can then adjust
the two probabilities to surround any particular value we like, and to
be as far apart as we like. Of course, the further apart we want the
probabilities to be, the larger the number of basic hash functions in F
we must use.

3.9.6 Exercises for Section 3.7

Exercise 3.7.1 : Suppose we construct the basic family of six locality-
sensitive functions for vectors of length six. For each pair of the
vectors 000000, 110011, 010101, and 011100, which of the six
functions makes them candidates?

Exercise 3.7.2 : Let us compute sketches using the following four
“random” vectors:

v1 = [+1, +1, +1, −1] v2 = [+1, +1, −1, +1]

v3 = [+1, −1, +1, +1] v4 = [−1, +1, +1, +1]

Compute the sketches of the following vectors. (a) [2, 3, 4, 5].

(b) [−2, 3, −4, 5].

(c) [2, −3, 4, −5].

For each pair, what is the estimated angle between them, according to
the sketches? What are the true angles?

Exercise 3.7.3 : Suppose we form sketches by using all sixteen of the
vectors of length 4, whose components are each +1 or 1. Compute
the sketches of the three vectors in Exercise 3.7.2. How do the estimates
of the angles between each pair compare with the true angles?

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

124

Exercise 3.7.4 : Suppose we form sketches using the four vectors from
Exer- cise 3.7.2.

! (a) What are the constraints on a, b, c, and d that will cause the
sketch of the vector [a, b, c, d] to be [+1, +1, +1, +1]?

!! (b) Consider two vectors [a, b, c, d] and [e, f, g, h]. What are the
conditions on

a, b, . . . , h that will make the sketches of these two vectors be the
same?

Exercise 3.7.5 : Suppose we have points in a 3-dimensional Euclidean
space: p1 = (1, 2, 3), p2 = (0, 2, 4), and p3 = (4, 3, 2). Consider the
three hash functions defined by the three axes (to make our
calculations very easy). Let buckets be of length a, with one bucket
the interval [0, a) (i.e., the set of points x such that 0 ≤ x < a), the next
[a, 2a), the previous one [−a, 0), and so on.

(a) For each of the three lines, assign each of the points to
buckets, assuming

a = 1.

(b) Repeat part (a), assuming a = 2.

(c) What are the candidate pairs for the cases a = 1 and a = 2?

(d) For each pair of points, for what values of a will that pair be a
candidate pair?

3.10 APPLICATIONS OF LOCALITY-SENSITIVE
HASHING

In this section, we shall explore three examples of how LSH is used
in practice. In each case, the techniques we have learned must be
modified to meet certain constraints of the problem. The three
subjects we cover are:

1. Entity Resolution: This term refers to matching data records that
refer to the same real-world entity, e.g., the same person. The principal
problem addressed here is that the similarity of records does not match
exactly either the similar-sets or similar-vectors models of similarity
on which the theory is built.

2. Matching Fingerprints: It is possible to represent fingerprints as
sets. However, we shall explore a different family of locality-sensitive
hash func- tions from the one we get by minhashing.

3. Matching Newspaper Articles: Here, we consider a different notion
of shingling that focuses attention on the core article in an on-line
news- paper’s Web page, ignoring all the extraneous material such as
ads and newspaper-specific material.

mu
no
tes
.in

Shingling of Documents

125

3.10.1 Entity Resolution

It is common to have several data sets available, and to know that they
refer to some of the same entities. For example, several different
bibliographic sources provide information about many of the same
books or papers. In the general case, we have records describing
entities of some type, such as people or books. The records may all
have the same format, or they may have different formats, with
different kinds of information.

There are many reasons why information about an entity may vary,
even if the field in question is supposed to be the same. For example,
names may be expressed differently in different records because of
misspellings, absence of a middle initial, use of a nickname, and
many other reasons. For example, “Bob S. Jomes” and “Robert Jones
Jr.” may or may not be the same person. If records come from
different sources, the fields may differ as well. One source’s records
may have an “age” field, while another does not. The second source
might have a “date of birth” field, or it may have no information at all
about when a person was born.

3.10.2 An Entity-Resolution Example

We shall examine a real example of how LSH was used to deal with an
entity- resolution problem. Company A was engaged by Company B to
solicit cus- tomers for B. Company B would pay A a yearly fee, as
long as the customer maintained their subscription. They later
quarreled and disagreed over how many customers A had provided to
B. Each had about 1,000,000 records, some of which described the
same people; those were the customers A had provided to B. The
records had different data fields, but unfortunately none of those fields
was “this is a customer that A had provided to B.” Thus, the
problem was to match records from the two sets to see if a pair
represented the same person.

Each record had fields for the name, address, and phone number of the
person. However, the values in these fields could differ for many
reasons. Not only were there the misspellings and other naming
differences mentioned in Section 3.8.1, but there were other
opportunities to disagree as well. A customer might give their home
phone to A and their cell phone to B. Or they might move, and tell B
but not A (because they no longer had need for a relationship with A).
Area codes of phones sometimes change.

The strategy for identifying records involved scoring the differences in
three fields: name, address, and phone. To create a score describing the
likelihood that two records, one from A and the other from B,
described the same per- son, 100 points was assigned to each of the
three fields, so records with exact matches in all three fields got a score
of 300. However, there were deductions for mismatches in each of the
three fields. As a first approximation, edit-distance (Section 3.5.5) was
used, but the penalty grew quadratically with the distance. Then,

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

126

certain publicly available tables were used to reduce the penalty in ap-
propriate situations. For example, “Bill” and “William” were treated as
if they differed in only one letter, even though their edit-distance is 5.

However, it is not feasible to score all one trillion pairs of records.
Thus, a simple LSH was used to focus on likely candidates. Three
“hash functions” were used. The first sent records to the same bucket
only if they had identical names; the second did the same but for
identical addresses, and the third did the same for phone numbers. In
practice, there was no hashing; rather the records were sorted by name,
so records with identical names would appear consecutively and get
scored for overall similarity of the name, address, and phone. Then the
records were sorted by address, and those with the same

address were scored. Finally, the records were sorted a third time by
phone, and records with identical phones were scored.

This approach missed a record pair that truly represented the same
person but none of the three fields matched exactly. Since the goal
was to prove in a court of law that the persons were the same, it is
unlikely that such a pair would have been accepted by a judge as
sufficiently similar anyway.

3.10.3 Validating Record Matches

What remains is to determine how high a score indicates that two
records truly represent the same individual. In the example at hand,
there was an easy way to make that decision, and the technique can be
applied in many similar situations. It was decided to look at the
creation-dates for the records at hand, and to assume that 90 days was
an absolute maximum delay between the time the service was bought
at Company A and registered at B. Thus, a proposed match between
two records that were chosen at random, subject only to the constraint
that the date on the B-record was between 0 and 90 days after the date
on the A-record, would have an average delay of 45 days.

When Are Record Matches Good Enough?

While every case will be different, it may be of interest to
know how the experiment of Section 3.8.3 turned out on
the data of Section 3.8.2. For scores down to 185, the
value of x was very close to 10; i.e., these scores
indicated that the likelihood of the records representing
the same person was essentially 1. Note that a score of
185 in this example represents a situation where one
field is the same (as would have to be the case, or the
records would never even be scored), one field was
completely different, and the third field had a small
discrepancy. Moreover, for scores as low as 115, the
value of x was noticeably less than 45, meaning that

mu
no
tes
.in

Shingling of Documents

127

It was found that of the pairs with a perfect 300 score, the average
delay was 10 days. If you assume that 300-score pairs are surely correct
matches, then you can look at the pool of pairs with any given score s,
and compute the average delay of those pairs. Suppose that the
average delay is x, and the fraction of true matches among those pairs
with score s is f. Then x = 10f + 45(1 − f), or x = 45 − 35f. Solving
for f, we find that the fraction of the pairs with score s that are truly
matches is (45 − x)/35.

The same trick can be used whenever:

3.10.3.1 There is a scoring system used to evaluate the likelihood that
two records represent the same entity, and

3.10.3.2 There is some field, not used in the scoring, from which
we can derive a measure that differs, on average, for true pairs and
false pairs.

For instance, suppose there were a “height” field recorded by both
companies A and B in our running example. We can compute the
average difference in height for pairs of random records, and we can
compute the average difference in height for records that have a perfect
score (and thus surely represent the same entities). For a given score s,
we can evaluate the average height difference of the pairs with that score
and estimate the probability of the records representing the same
entity. That is, if h0 is the average height difference for the perfect
matches, h1 is the average height difference for random pairs, and h is
the average height difference for pairs of score s, then the fraction of
good pairs with score s is (h1 − h)/(h1 − h0).

3.10.4 Matching Fingerprints

When fingerprints are matched by computer, the usual representation
is not an image, but a set of locations in which minutiae are
located. A minutia, in the context of fingerprint descriptions, is a place
where something unusual happens, such as two ridges merging or a
ridge ending. If we place a grid over a fingerprint, we can represent the
fingerprint by the set of grid squares in which minutiae are located.

Ideally, before overlaying the grid, fingerprints are normalized for size
and orientation, so that if we took two images of the same finger, we
would find minutiae lying in exactly the same grid squares. We
shall not consider here the best ways to normalize images. Let us
assume that some combination of techniques, including choice of grid
size and placing a minutia in several adjacent grid squares if it lies close
to the border of the squares enables us to assume that grid squares
from two images have a significantly higher probability of agreeing in
the presence or absence of a minutia than if they were from images of
different fingers.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

128

Thus, fingerprints can be represented by sets of grid squares – those
where their minutiae are located – and compared like any sets, using
the Jaccard sim- ilarity or distance. There are two versions of
fingerprint comparison, however.

The many-one problem is the one we typically expect. A fingerprint
has been found on a gun, and we want to compare it with all the
fingerprints in a large database, to see which one matches.

The many-many version of the problem is to take the entire database,
and see if there are any pairs that represent the same individual.

While the many-many version matches the model that we have been
following for finding similar items, the same technology can be used to
speed up the many-one problem.

3.10.5 A LSH Family for Fingerprint Matching

We could minhash the sets that represent a fingerprint, and use the
standard LSH technique from Section 3.4. However, since the sets
are chosen from a relatively small set of grid points (perhaps 1000),
the need to minhash them into more succinct signatures is not clear.
We shall study here another form of locality-sensitive hashing that
works well for data of the type we are discussing. Suppose for an
example that the probability of finding a minutia in a random grid
square of a random fingerprint is 20%. Also, assume that if two
fingerprints come from the same finger, and one has a minutia in a
given grid square, then the probability that the other does too is 80%.
We can define a locality-sensitive family of hash functions as
follows. Each function f in this family F is defined by three grid
squares. Function f says “yes” for two fingerprints if both have
minutiae in all three grid squares, and otherwise f says “no.” Put
another way, we may imagine that f sends to a single bucket all
fingerprints that have minutiae in all three of f’s grid points, and
sends each other fingerprint to a bucket of its own. In what follows,
we shall refer to the first of these buckets as “the” bucket for f and
ignore the buckets that are required to be singletons.

If we want to solve the many-one problem, we can use many functions
from the family F and precompute their buckets of fingerprints to
which they answer “yes.” Then, given a new fingerprint that we want
to match, we determine which of these buckets it belongs to and
compare it with all the fingerprints found in any of those buckets. To
solve the many-many problem, we compute the buckets for each of the
functions and compare all fingerprints in each of the buckets.

Let us consider how many functions we need to get a reasonable
probability of catching a match, without having to compare the
fingerprint on the gun with each of the millions of fingerprints in the
database. First, the probability that two fingerprints from different
fingers would be in the bucket for a function f in F is (0.2)6 =
0.000064. The reason is that they will both go into the bucket only if

•

•

mu
no
tes
.in

Shingling of Documents

129

they each have a minutia in each of the three grid points associated
with f, and the probability of each of those six independent events is
0.2.

Now, consider the probability that two fingerprints from the same
finger wind up in the bucket for f. The probability that the first
fingerprint has minutiae in each of the three squares belonging to f is
(0.2)3 = 0.008. However, if it does, then the probability is (0.8)3 =
0.512 that the other fingerprint will as well. Thus, if the
fingerprints are from the same finger, there is a 0.008 0.512 =
0.004096 probability that they will both be in the bucket of f. That
is not much; it is about one in 200. However, if we use many
functions from F, but not too many, then we can get a good
probability of matching fingerprints from the same finger while not
having too many false positives – fingerprints that must be
considered but do not match.

Example 3.22 : For a specific example, let us suppose that we use 1024
functions chosen randomly from F. Next, we shall construct a
new fam- ily F1 by performing a 1024-way OR on F. Then the
probability that F1 will put fingerprints from the same finger
together in at least one bucket is

1 (1 0.004096)1024 = 0.985. On the other hand, the probability
that two fingerprints from different fingers will be placed in the
same bucket is (1 (1 0.000064)1024 = 0.063. That is, we get
about 1.5% false negatives and about 6.3% false positives.

The result of Example 3.22 is not the best we can do. While it offers
only a 1.5% chance that we shall fail to identify the fingerprint on the
gun, it does force us to look at 6.3% of the entire database. Increasing
the number of functions from F will increase the number of false
positives, with only a small benefit of reducing the number of false
negatives below 1.5%. On the other hand, we can also use the AND
construction, and in so doing, we can greatly reduce the probability
of a false positive, while making only a small increase in the false-
negative rate. For instance, we could take 2048 functions from F in
two groups of 1024. Construct the buckets for each of the functions.
However, given a fingerprint P on the gun:

1. Find the buckets from the first group in which P belongs, and
take the union of these buckets.

2. Do the same for the second group.

3. Take the intersection of the two unions.

4. Compare P only with those fingerprints in the intersection.

Note that we still have to take unions and intersections of large sets of
finger- prints, but we compare only a small fraction of those. It is the
comparison of fingerprints that takes the bulk of the time; in steps

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

130

(1) and (2) fingerprints can be represented by their integer indices in
the database.

If we use this scheme, the probability of detecting a matching
fingerprint is (0.985)2 = 0.970; that is, we get about 3% false negatives.
However, the probability of a false positive is (0.063)2 = 0.00397.
That is, we only have to examine about 1/250th of the database.

3.10.6 Similar News Articles

Our last case study concerns the problem of organizing a large
repository of on-line news articles by grouping together Web pages
that were derived from the same basic text. It is common for
organizations like The Associated Press to produce a news item and
distribute it to many newspapers. Each newspaper puts the story in its
on-line edition, but surrounds it by information that is special to that
newspaper, such as the name and address of the newspaper, links to
related articles, and links to ads. In addition, it is common for the
newspaper to modify the article, perhaps by leaving off the last few
paragraphs or even deleting text from the middle. As a result, the same
news article can appear quite different at the Web sites of different
newspapers.

The problem looks very much like the one that was suggested in
Section 3.4: find documents whose shingles have a high Jaccard
similarity. Note that this problem is different from the problem of
finding news articles that tell about the same events. The latter problem
requires other techniques, typically examining the set of important
words in the documents (a concept we discussed briefly in Section
1.3.1) and clustering them to group together different articles about the
same topic.

However, an interesting variation on the theme of shingling was found
to be more effective for data of the type described. The problem is that
shingling as we described it in Section 3.2 treats all parts of a
document equally. However, we wish to ignore parts of the document,
such as ads or the headlines of other articles to which the newspaper
added a link, that are not part of the news article. It turns out that there
is a noticeable difference between text that appears in prose and text
that appears in ads or headlines. Prose has a much greater frequency of
stop words, the very frequent words such as “the” or “and.” The total
number of words that are considered stop words varies with the
application, but it is common to use a list of several hundred of the
most frequent words.

Example 3.23 : A typical ad might say simply “Buy Sudzo.” On the
other hand, a prose version of the same thought that might appear in
an article is “I recommend that you buy Sudzo for your laundry.” In
the latter sentence, it would be normal to treat “I,” “that,” “you,”
“for,” and “your” as stop words.

mu
no
tes
.in

Shingling of Documents

131

Suppose we define a shingle to be a stop word followed by the next
two words. Then the ad “Buy Sudzo” from Example 3.23 has no
shingles and would not be reflected in the representation of the Web
page containing that ad. On the other hand, the sentence from Example
3.23 would be represented by five shingles: “I recommend that,” “that
you buy,” “you buy Sudzo,” “for your laundry,” and “your laundry x,”
where x is whatever word follows that sentence.

Suppose we have two Web pages, each of which consists of half news
text and half ads or other material that has a low density of stop words.
If the news text is the same but the surrounding material is different,
then we would expect that a large fraction of the shingles of the two
pages would be the same. They might have a Jaccard similarity of
75%. However, if the surrounding material is the same but the news
content is different, then the number of common shingles would be
small, perhaps 25%. If we were to use the conventional shingling,
where shingles are (say) sequences of 10 consecutive characters, we
would expect the two documents to share half their shingles (i.e., a
Jaccard similarity of 1/3), regardless of whether it was the news or the
surrounding material that they shared.

3.10.7 Exercises for Section 3.8

Exercise 3.8.1 : Suppose we are trying to perform entity resolution
among bibliographic references, and we score pairs of references based
on the similar- ities of their titles, list of authors, and place of
publication. Suppose also that all references include a year of
publication, and this year is equally likely to be any of the ten most
recent years. Further, suppose that we discover that among the pairs of
references with a perfect score, there is an average difference in the
publication year of 0.1.6 Suppose that the pairs of references with a
certain score s are found to have an average difference in their
publication dates of 2. What is the fraction of pairs with score s that
truly represent the same pub- lication? Note: Do not make the
mistake of assuming the average difference in publication date
between random pairs is 5 or 5.5. You need to calculate it exactly, and
you have enough information to do so.

Exercise 3.8.2 : Suppose we use the family F of functions described in
Sec- tion 3.8.5, where there is a 20% chance of a minutia in an grid
square, an 80% chance of a second copy of a fingerprint having a
minutia in a grid square where the first copy does, and each function in
F being formed from three grid squares. In Example 3.22, we
constructed family F1 by using the OR construction on 1024 members
of F. Suppose we instead used family F2 that is a 2048-way OR of
members of F.

(a) Compute the rates of false positives and false negatives for F2.

(b) How do these rates compare with what we get if we organize the
same 2048 functions into a 2-way AND of members of F1, as was
discussed at the end of Section 3.8.5?

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

132

1

1

Exercise 3.8.3 : Suppose fingerprints have the same statistics outlined
in Ex- ercise 3.8.2, but we use a base family of functions F′ defined
like F, but using only two randomly chosen grid squares. Construct
another set of functions F′ from F′ by taking the n-way OR of
functions from F′. What, as a function of n, are the false positive and
false negative rates for F′ ?

Exercise 3.8.4 : Suppose we use the functions F1 from Example 3.22,
but we want to solve the many-many problem.

(a) If two fingerprints are from the same finger, what is the probability
that they will not be compared (i.e., what is the false negative
rate)?

(b) What fraction of the fingerprints from different fingers will be
compared (i.e., what is the false positive rate)?

! Exercise 3.8.5 : Assume we have the set of functions F as in
Exercise 3.8.2, and we construct a new set of functions F3 by an n-
way OR of functions in

F. For what value of n is the sum of the false positive and false
negative rates minimized?

6We might expect the average to be 0, but in practice, errors in
publication year do occur.

3.11 METHODS FOR HIGH DEGREES OF
SIMILARITY

LSH-based methods appear most effective when the degree of
similarity we accept is relatively low. When we want to find sets that
are almost identical, there are other methods that can be faster.
Moreover, these methods are exact, in that they find every pair of items
with the desired degree of similarity. There are no false negatives, as
there can be with LSH.

3.11.1 Finding Identical Items

The extreme case is finding identical items, for example, Web pages
that are identical, character-for-character. It is straightforward to
compare two docu- ments and tell whether they are identical, but we
still must avoid having to compare every pair of documents. Our first
thought would be to hash docu- ments based on their first few
characters, and compare only those documents that fell into the same
bucket. That scheme should work well, unless all the documents begin
with the same characters, such as an HTML header.

Our second thought would be to use a hash function that examines the
entire document. That would work, and if we use enough buckets, it
would be very rare that two documents went into the same bucket, yet
were not identical. The downside of this approach is that we must

mu
no
tes
.in

Shingling of Documents

133

{

examine every character of every document. If we limit our
examination to a small number of characters, then we never have to
examine a document that is unique and falls into a bucket of its own.

A better approach is to pick some fixed random positions for all
documents, and make the hash function depend only on these. This
way, we can avoid a problem where there is a common prefix for all
or most documents, yet we need not examine entire documents unless
they fall into a bucket with another document. One problem with
selecting fixed positions is that if some documents are short, they may
not have some of the selected positions. However, if we are looking for
highly similar documents, we never need to compare two documents
that differ significantly in their length. We exploit this idea in
Section 3.9.3.

3.11.2 Representing Sets as Strings

Now, let us focus on the harder problem of finding, in a large
collection of sets, all pairs that have a high Jaccard similarity, say at
least 0.9. We can represent a set by sorting the elements of the
universal set in some fixed order, and representing any set by listing
its elements in this order. The list is essentially a string of
“characters,” where the characters are the elements of the universal set.
These strings are unusual, however, in that:

3.11.2.1 No character appears more than once in a string, and

3.11.2.2 If two characters appear in two different strings, then they
appear in the same order in both strings.

Example 3.24 : Suppose the universal set consists of the 26 lower-case
letters, and we use the normal alphabetical order. Then the set d, a, b
is represented by the string abd.

In what follows, we shall assume all strings represent sets in the
manner just described. Thus, we shall talk about the Jaccard similarity
of strings, when strictly speaking we mean the similarity of the sets
that the strings represent. Also, we shall talk of the length of a string,
as a surrogate for the number of elements in the set that the string
represents.

Note that the documents discussed in Section 3.9.1 do not exactly
match this model, even though we can see documents as strings. To
fit the model, we would shingle the documents, assign an order to the
shingles, and represent each document by its list of shingles in the
selected order.

3.11.3 Length-Based Filtering

The simplest way to exploit the string representation of Section 3.9.2 is
to sort the strings by length. Then, each string s is compared with
those strings t that follow s in the list, but are not too long. Suppose
the lower bound on Jaccard similarity between two strings is J. For

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

134

≥

≥

any string x, denote its length by Lx. Note that Ls ≤ Lt. The
intersection of the sets represented by s and t cannot have more than Ls
members, while their union has at least Lt members. Thus, the
Jaccard similarity of s and t, which we denote SIM(s, t), is at most
Ls/Lt. That is, in order for s and t to require comparison, it must be
that J ≤ Ls/Lt, or equivalently, Lt ≤ Ls/J.

Example 3.25 : Suppose that s is a string of length 9, and we are
looking for strings with at least 0.9 Jaccard similarity. Then we have
only to compare s with strings following it in the length-based sorted
order that have length at most 9/0.9 = 10. That is, we compare s with
those strings of length 9 that follow it in order, and all strings of length
10. We have no need to compare s with any other string.

Suppose the length of s were 8 instead. Then s would be compared
with following strings of length up to 8/0.9 = 8.89. That is, a string
of length 9 would be too long to have a Jaccard similarity of 0.9 with s,
so we only have to compare s with the strings that have length 8 but
follow it in the sorted order.

3.11.4 Prefix Indexing

In addition to length, there are several other features of strings that can
be exploited to limit the number of comparisons that must be made
to identify all pairs of similar strings. The simplest of these options is
to create an index for each symbol; recall a symbol of a string is any
one of the elements of the universal set. For each string s, we select a
prefix of s consisting of the first psymbols of s. How large p must be
depends on Ls and J, the lower bound on Jaccard similarity. We
add string s to the index for each of its first p symbols. In effect, the
index for each symbol becomes a bucket of strings that must be
compared. We must be certain that any other string t such that
SIM(s, t) will have at least one symbol in its prefix that also
appears in the prefix of s.

Suppose not; rather SIM(s,t) J, but t has none of the first p symbols
of s. Then the highest Jaccard similarity that s and t can have occurs

A Better Ordering for Symbols

Instead of using the obvious order for elements of the universal
set, e.g., lexicographic order for shingles, we can order
symbols rarest first. That is, determine how many times each
element appears in the collection of sets, and order them by
this count, lowest first. The advantage of doing so is that the
symbols in prefixes will tend to be rare. Thus, they will cause
that string to be placed in index buckets that have relatively
few members. Then, when we need to examine a string for
possible matches, we shall find few other strings that are
candidates for comparison.

mu
no
tes
.in

Shingling of Documents

135

≥

�

� × �

� −

when t is a suffix of s, consisting of everything but the first p symbols of
s. The Jaccard similarity of s and t would then be (Ls − p)/Ls. To be
sure that we do not have to compare s with t, we must be certain
that J > (Ls − p)/Ls. That is, p must be at least (1 J)Ls + 1. Of
course we want p to be as small as possible, so we do not index string s
in more buckets than we need to. Thus, we shall hereafter take p = (1
J)Ls + 1 to be the length of the prefix that gets indexed.

Example 3.26 : Suppose J = 0.9. If Ls = 9, then p = 0.1
9 + 1 = 0.9 + 1 = 1. That is, we need to index s under only its
first symbol. Any string t that does not have the first symbol of s in
a position such that t is indexed by that symbol will have Jaccard
similarity with s that is less than 0.9. Suppose s is bcdefghij. Then
s is indexed under b only. Suppose t does not begin with b. There
are two cases to consider.

1. If t begins with a, and SIM(s, t) 0.9, then it can only be that
t is abcdefghij. But if that is the case, t will be indexed under both a
and

b. The reason is that Lt = 10, so t will be indexed under the symbols
of its prefix of length ⌊0.1 × 10⌋ + 1 = 2.

2. If t begins with c or a later letter, then the maximum value of
SIM(s, t) occurs when t is cdefghij. But then SIM(s, t) = 8/9 <
0.9.

In general, with J = 0.9, strings of length up to 9 are indexed by
their first symbol, strings of lengths 10–19 are indexed under their
first two symbols, strings of length 20–29 are indexed under their
first three symbols, and so on.

We can use the indexing scheme in two ways, depending on whether
we are trying to solve the many-many problem or a many-one
problem; recall the distinction was introduced in Section 3.8.4. For the
many-one problem, we create the index for the entire database. To
query for matches to a new set S, we convert that set to a string s,
which we call the probe string. Determine the length of the prefix that
must be considered, that is, (1 J)Ls + 1. For each symbol
appearing in one of the prefix positions of s, we look in the index
bucket for that symbol, and we compare s with all the strings appearing
in that bucket.

If we want to solve the many-many problem, start with an empty
database of strings and indexes. For each set S, we treat S as a new set
for the many-one problem. We convert S to a string s, which we treat
as a probe string in the many-one problem. However, after we examine
an index bucket, we also add s to that bucket, so s will be compared
with later strings that could be matches.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

136

−

� −

— −

−

−
−

3.11.5 Using Position Information

Consider the strings s = acdefghijk and t = bcdefghijk, and
assume J = 0.9. Since both strings are of length 10, they are
indexed under their first two symbols. Thus, s is indexed under a
and c, while t is indexed under b and c. Whichever is added last will
find the other in the bucket for c, and they will be compared.
However, since c is the second symbol of both, we know there will be
two symbols, a and b in this case, that are in the union of the two
sets but not in the intersection. Indeed, even though s and t are
identical from c to the end, their intersection is 9 symbols and their
union is 11; thus SIM(s, t) = 9/11, which is less than 0.9.

If we build our index based not only on the symbol, but on the
position of the symbol within the string, we could avoid comparing
s and t above. That is, let our index have a bucket for each pair (x, i),
containing the strings that have symbol x in position i of their prefix.
Given a string s, and assuming J is the minimum desired Jaccard
similarity, we look at the prefix of s, that is, the positions 1 through
(1 J)Ls + 1. If the symbol in position i of the prefix is x, add s to
the index bucket for (x, i).

Now consider s as a probe string. With what buckets must it be
compared? We shall visit the symbols of the prefix of s from the left,
and we shall take advantage of the fact that we only need to find a
possible matching string t if none of the previous buckets we have
examined for matches held t. That is, we only need to find a candidate
match once. Thus, if we find that the ith symbol of s is x, then we
need look in the bucket (x, j) for certain small values of j.

To compute the upper bound on j, suppose t is a string none of whose
first j 1 symbols matched anything in s, but the ith symbol of s is the
same as the jth symbol of t. The highest value of SIM(s, t) occurs if
s and t are identical Symbols definitely appearing in only one string

 s

 t
 j
Figure 3.14: Strings s and t begin with i 1 and j 1 unique symbols,
respec- tively, and then agree beyond that beyond their ith and jth
symbols, respectively, as suggested by Fig. 3.14. If that is the case,
the size of their intersection is Ls i + 1, since that is the number of
symbols of s that could possibly be in t. The size of their union is at
least Ls + j 1. That is, s surely contributes Ls symbols to the union,
and there are also at least j 1 symbols of t that are not in s. The ratio
of the sizes of the intersection and union must be at least J, so we
must have:

i
mu
no
tes
.in

Shingling of Documents

137

≥

≤
≤ × −

≤ × −

Ls − i + 1 J

Ls + j − 1

If we isolate j in this inequality, we have j ≤

Ls(1 − J) − i + 1 + J

/J.

Example 3.27 : Consider the string s = acdefghijk with J =
0.9 discussed at the beginning of this section. Suppose s is now a
probe string. We already established that we need to consider the
first two positions; that is, i can be 1 or 2. Suppose i = 1. Then j
(10 0.1 1 + 1 + 0.9)/0.9. That is, we only have to compare the
symbol a with strings in the bucket for (a, j) if j 2.11. Thus, j can be
1 or 2, but nothing higher.

Now suppose i = 2. Then we require j (10 0.1 2 + 1 +
0.9)/0.9, Or j 1. We conclude that we must look in the buckets for (a,
1), (a, 2), and (c, 1), but in no other bucket. In comparison, using the
buckets of Section 3.9.4, we would look into the buckets for a and c,
which is equivalent to looking to all buckets (a, j) and (c, j) for
any j.

3.11.6 Using Position and Length in Indexes

When we considered the upper limit on j in the previous section, we
assumed that what follows positions i and j were as in Fig. 3.14, where
what followed these positions in strings s and t matched exactly. We
do not want to build an index that involves every symbol in the strings,
because that makes the total work excessive. However, we can add to
our index a summary of what follows the positions being indexed.
Doing so expands the number of buckets, but not beyond reasonable
bounds, and yet enables us to eliminate many candidate matches
without comparing entire strings. The idea is to use index buckets
corresponding to a symbol, a position, and the suffix length, that is, the
number of symbols following the position in question.

Example 3.28 : The string s = acdefghijk, with J = 0.9, would
be indexed in the buckets for (a, 1, 9) and (c, 2, 8). That is, the first
position of s has symbol a, and its suffix is of length 9. The second
position has symbol c and its suffix is of length 8.

Figure 3.14 assumes that the suffixes for position i of s and position j
of t have the same length. If not, then we can either get a smaller upper
bound on the size of the intersection of s and t (if t is shorter) or a
larger lower bound on the size of the union (if t is longer). Suppose s
has suffix length p and t has suffix length q.

Case 1: p ≥ q. Here, the maximum size of the intersection is Ls − i + 1
− (p − q)

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

138

−

−

≥

≥
≥

� −

s

≥

≥

≤ ≥

Since Ls = i + p, we can write the above expression for the
intersection size as q + 1. The minimum size of the union is Ls + j 1,
as it was when we did not take suffix length into account. Thus,
we require

 q + 1

whenever p ≥ q.

L + j − 1 ≥ J

Case 2: p < q. Here, the maximum size of the intersection is Ls i +
1, as when suffix length was not considered. However, the minimum
size of the union is now Ls + j − 1 + q − p. If we again use the
relationship Ls = i + p, we can replace Ls p by i and get the formula
i + j 1 + q for the size of the union. If the Jaccard similarity is at
least J, then

 Ls − i + 1 J i + j − 1 + q

whenever p < q.

Example 3.29 : Let us again consider the string s = acdefghijk, but
to make the example show some details, let us choose J = 0.8 instead
of 0.9. We know that Ls = 10. Since (1 J)Ls + 1 = 3, we
must consider prefix positions i = 1, 2, and 3 in what follows. As
before, let p be the suffix length of s and q the suffix length of t.

First, consider the case p q. The additional constraint we have on q
and j is (q + 1)/(9 + j) 0.8. We can enumerate the pairs of values of j
and q for each i between 1 and 3, as follows.

i = 1: Here, p = 9, so q ≤ 9. Let us consider the possible values of q:

q = 9: We must have 10/(9 + j) 0.8. Thus, we can have j = 1,
j = 2, or j = 3. Note that for j = 4, 10/13 > 0.8.

q = 8: We must have 9/(9 + j) 0.8. Thus, we can have j = 1 or
j = 2.

For j = 3, 9/12 > 0.8.

q = 7: We must have 8/(9 + j) ≥ 0.8. Only j = 1 satisfies this
inequality. q = 6: There are no possible values of j, since 7/(9 + j) >
0.8 for every positive integer j. The same holds for every smaller
value of q.

i = 2: Here, p = 8, so we require q 8. Since the constraint
(q+1)/(9+j) 0.8 does not depend on i,7 we can use the analysis from
the above case, but exclude the case q = 9. Thus, the only possible
values of j and q when i = 2 are

mu
no
tes
.in

Shingling of Documents

139

≥

≤ ≥

≥ ≥

≥ ≥

≥ ≥

1. q = 8; j = 1.

2. q = 8; j = 2.

3. q = 7; j = 1.

i = 3: Now, p = 7 and the constraints are q 7 and (q + 1)/(9 + j)
0.8. The only option is q = 7 and j = 1.

Next, we must consider the case p < q. The additional constraint is

 11 − i 0.8

i + j + q − 1
Again, consider each possible value of i.

i = 1: Then p = 9, so we require q 10 and 10/(q + j) 0.8. The
possible values of q and j are

1. q = 10; j = 1.

2. q = 10; j = 2.

3. q = 11; j = 1.

i = 2: Now, p = 8, so we require q 9 and 9/(q + j + 1) 0.8.
Since j must be a positive integer, the only solution is q = 9 and j =
1, a possibility that we already knew about.

i = 3: Here, p = 7, so we require q 8 and 8/(q + j + 2) 0.8. There are
no solutions.

When we accumulate the possible combinations of i, j, and q, we see
that the set of index buckets in which we must look forms a pyramid.
Figure 3.15 shows the buckets in which we must search. That is, we
must look in those buckets (x, j, q) such that the ith symbol of the
string s is x, j is the position associated with the bucket and q the
suffix length.

7Note that i does influence the value of p, and through p, puts a
limit on q.

 q j = 1 j = 2 j = 3

 7 x

 8 x x

i = 1 9 x x x

 10 x x

 11 x

 7 x

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

140

i = 2 8 x x

 9 x

i = 3 7 x

Figure 3.15: The buckets that must be examined to find possible
matches for the string s = acdefghijk with J = 0.8 are marked
with an x

3.11.7 Exercises for Section 3.9

Exercise 3.9.1 : Suppose our universal set is the lower-case letters, and
the order of elements is taken to be the vowels, in alphabetic order,
followed by the consonants in reverse alphabetic order. Represent the
following sets as strings.

a {q, w, e, r, t, y}.

(b) {a, s, d, f, g, h, j, u, i}.

Exercise 3.9.2 : Suppose we filter candidate pairs based only on length,
as in Section 3.9.3. If s is a string of length 20, with what strings is s
compared when J, the lower bound on Jaccard similarity has the
following values: (a) J = 0.85 (b) J = 0.95 (c) J = 0.98?

Exercise 3.9.3 : Suppose we have a string s of length 15, and we wish
to index its prefix as in Section 3.9.4.

(a) How many positions are in the prefix if J = 0.85?

(b) How many positions are in the prefix if J = 0.95?

! (c) For what range of values of J will s be indexed under its first four
symbols, but no more?

Exercise 3.9.4 : Suppose s is a string of length 12. With what symbol-
position pairs will s be compared with if we use the indexing approach
of Section 3.9.5, and (a) J = 0.75 (b) J = 0.95?

! Exercise 3.9.5 : Suppose we use position information in our index, as
in Sec- tion 3.9.5. Strings s and t are both chosen at random from a
universal set of 100 elements. Assume J = 0.9. What is the
probability that s and t will be compared if

(a) s and t are both of length 9.

(b) s and t are both of length 10.

Exercise 3.9.6 : Suppose we use indexes based on both position and
suffix length, as in Section 3.9.6. If s is a string of length 20, with
what symbol- position-length triples will s be compared with, if (a)
J = 0.8 (b) J = 0.9?

mu
no
tes
.in

Shingling of Documents

141

3.12 SUMMARY OF UNIT 3

✦ Jaccard Similarity: The Jaccard similarity of sets is the ratio of
the size of the intersection of the sets to the size of the union. This
measure of similarity is suitable for many applications, including
textual similarity of documents and similarity of buying habits of
customers.

✦ Shingling: A k-shingle is any k characters that appear
consecutively in a document. If we represent a document by its set of
k-shingles, then the Jaccard similarity of the shingle sets measures
the textual similarity of documents. Sometimes, it is useful to hash
shingles to bit strings of shorter length, and use sets of hash values to
represent documents.

✦ Minhashing: A minhash function on sets is based on a permutation
of the universal set. Given any such permutation, the minhash value
for a set is that element of the set that appears first in the permuted
order.

✦ Minhash Signatures: We may represent sets by picking some list of
per- mutations and computing for each set its minhash signature,
which is the sequence of minhash values obtained by applying each
permutation on the list to that set. Given two sets, the expected fraction
of the permutations that will yield the same minhash value is exactly
the Jaccard similarity of the sets.

✦ Efficient Minhashing: Since it is not really possible to generate
random permutations, it is normal to simulate a permutation by picking
a random hash function and taking the minhash value for a set to be the
least hash value of any of the set’s members.

✦ Locality-Sensitive Hashing for Signatures: This technique allows us
to avoid computing the similarity of every pair of sets or their minhash
sig- natures. If we are given signatures for the sets, we may divide
them into bands, and only measure the similarity of a pair of sets if
they are identi- cal in at least one band. By choosing the size of bands
appropriately, we can eliminate from consideration most of the pairs
that do not meet our threshold of similarity.

✦ Distance Measures: A distance measure is a function on pairs of
points in a space that satisfy certain axioms. The distance between two
points is 0 if the points are the same, but greater than 0 if the points are
different. The distance is symmetric; it does not matter in which order
we consider the two points. A distance measure must satisfy the
triangle inequality: the distance between two points is never more than
the sum of the distances between those points and some third point.

✦ Euclidean Distance: The most common notion of distance is the
Euclidean distance in an n-dimensional space. This distance,
sometimes called the L2-norm, is the square root of the sum of the

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

142

squares of the differences between the points in each dimension.
Another distance suitable for Eu- clidean spaces, called Manhattan
distance or the L1-norm is the sum of the magnitudes of the
differences between the points in each dimension.

✦ Jaccard Distance: One minus the Jaccard similarity is a distance
measure, called the Jaccard distance.

✦ Cosine Distance: The angle between vectors in a vector space is the
cosine distance measure. We can compute the cosine of that angle by
taking the dot product of the vectors and dividing by the lengths of
the vectors.

✦ Edit Distance: This distance measure applies to a space of
strings, and is the number of insertions and/or deletions needed to
convert one string into the other. The edit distance can also be
computed as the sum of the lengths of the strings minus twice the
length of the longest common subsequence of the strings.

✦ Hamming Distance: This distance measure applies to a space of
vectors. The Hamming distance between two vectors is the number of
positions in which the vectors differ.

✦ Generalized Locality-Sensitive Hashing: We may start with any
collection of functions, such as the minhash functions, that can
render a decision as to whether or not a pair of items should be
candidates for similarity checking. The only constraint on these
functions is that they provide a lower bound on the probability of
saying “yes” if the distance (according to some distance measure) is
below a given limit, and an upper bound on the probability of saying
“yes” if the distance is above another given limit. We can then increase
the probability of saying “yes” for nearby items and at the same time
decrease the probability of saying “yes” for distant items to as great an
extent as we wish, by applying an AND construction and an OR
construction.

✦ Random Hyperplanes and LSH for Cosine Distance: We can get
a set of basis functions to start a generalized LSH for the cosine
distance measure by identifying each function with a list of
randomly chosen vectors. We apply a function to a given vector v
by taking the dot product of v with each vector on the list. The result
is a sketch consisting of the signs (+1 or −1) of the dot products. The
fraction of positions in which the sketches of two vectors agree,
multiplied by 180, is an estimate of the angle between the two vectors.

✦ LSH For Euclidean Distance: A set of basis functions to start
LSH for Euclidean distance can be obtained by choosing random lines
and project- ing points onto those lines. Each line is broken into fixed-
length intervals, and the function answers “yes” to a pair of points
that fall into the same interval.

mu
no
tes
.in

Shingling of Documents

143

✦ High-Similarity Detection by String Comparison: An alternative
approach to finding similar items, when the threshold of Jaccard
similarity is close to 1, avoids using minhashing and LSH. Rather, the
universal set is ordered, and sets are represented by strings, consisting
their elements in order. The simplest way to avoid comparing all pairs
of sets or their strings is to note that highly similar sets will have
strings of approximately the same length. If we sort the strings, we
can compare each string with only a small number of the immediately
following strings.

✦ Character Indexes: If we represent sets by strings, and the
similarity threshold is close to 1, we can index all strings by their first
few characters. The prefix whose characters must be indexed is
approximately the length of the string times the maximum Jaccard
distance (1 minus the minimum Jaccard similarity).

✦ Position Indexes: We can index strings not only on the characters
in their prefixes, but on the position of that character within the prefix.
We reduce the number of pairs of strings that must be compared,
because if two strings share a character that is not in the first position in
both strings, then we know that either there are some preceding
characters that are in the union but not the intersection, or there is an
earlier symbol that appears in both strings.

✦ Suffix Indexes: We can also index strings based not only on the
characters in their prefixes and the positions of those characters, but
on the length of the character’s suffix – the number of positions that
follow it in the string. This structure further reduces the number of
pairs that must be compared, because a common symbol with different
suffix lengths implies additional characters that must be in the union
but not in the intersection.

mu
no
tes
.in

 144

4
MINING DATA STREAMS

Unit Structure

4.1 Introduction to streams concept:

4.2 The Stream Data Model

4.3 Sampling Data in a Stream

4.4 Filtering Streams

4.5 Counting Distinct Elements in a Stream

4.6 Estimating Moments

4.7 Filtering Streams

4.8 Sampling Data in a Stream

4.9 Counting Distinct Elements in a Stream

4.1 INTRODUCTION TO STREAMS CONCEPT:

In this chapter, we shall make another assumption: data arrives in a
stream or streams, and if it is not processed immediately or stored, then
it is lost forever. Moreover, we shall assume that the data arrives so
rapidly that it is not feasible to store it all in active storage (i.e., in a
conventional database), and then interact with it at the time of our
choosing.

The algorithms for processing streams each involve summarization of
the stream in some way. We shall start by considering how to make a
useful sample of a stream and how to filter a stream to eliminate most
of the “undesirable” elements. We then show how to estimate the
number of different elements in a stream using much less storage than
would be required if we listed all the elements we have seen.

Another approach to summarizing a stream is to look at only a fixed-
length “window” consisting of the last n elements for some (typically
large) n. We then query the window as if it were a relation in a
database. If there are many streams and/or n is large, we may not be
able to store the entire window for every stream, so we need to
summarize even the windows. We address the fundamental problem of
maintaining an approximate count on the number of 1’s in the window
of a bit stream, while using much less space than would be needed to
store the entire window itself. This technique generalizes to
approximating various kinds of sums.

mu
no
tes
.in

Mining Data Streams

145

4.2 THE STREAM DATA MODEL

Let us begin by discussing the elements of streams and stream
processing. We explain the difference between streams and databases
and the special problems that arise when dealing with streams. Some
typical applications where the stream model applies will be examined.

Figure 4.1: A data-stream-management system

4.2.1 A Data-Stream-Management System

In analogy to a database-management system, we can view a stream
processor as a kind of data-management system, the high-level
organization of which is suggested in Fig. 4.1. Any number of streams
can enter the system. Each stream can provide elements at its own
schedule; they need not have the same data rates or data types, and the
time between elements of one stream need not be uniform. The fact
that the rate of arrival of stream elements is not under the control of
the system distinguishes stream processing from the processing of
data that goes on within a database-management system. The latter
system controls the rate at which data is read from the disk, and
therefore never has to worry about data getting lost as it attempts to
execute queries.

Streams may be archived in a large archival store, but we assume it is
not possible to answer queries from the archival store. It could be
examined only under special circumstances using time-consuming
retrieval processes. There is also a working store, into which
summaries or parts of streams may be placed, and which can be used
for answering queries. The working store might be disk, or it might be
main memory, depending on how fast we need to process queries. But

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

146

either way, it is of sufficiently limited capacity that it cannot store all
the data from all the streams.

4.2.2 Examples of Stream Sources

Before proceeding, let us consider some of the ways in which stream
data arises naturally.

Sensor Data

Imagine a temperature sensor bobbing about in the ocean, sending
back to a base station a reading of the surface temperature each hour.
The data produced by this sensor is a stream of real numbers. It is not a
very interesting stream, since the data rate is so low. It would not stress
modern technology, and the entire stream could be kept in main
memory, essentially forever.

Now, give the sensor a GPS unit, and let it report surface height
instead of temperature. The surface height varies quite rapidly
compared with tempera- ture, so we might have the sensor send back a
reading every tenth of a second. If it sends a 4-byte real number each
time, then it produces 3.5 megabytes per day. It will still take some
time to fill up main memory, let alone a single disk. But one sensor
might not be that interesting. To learn something about ocean
behavior, we might want to deploy a million sensors, each sending
back a stream, at the rate of ten per second. A million sensors isn’t
very many; there would be one for every 150 square miles of ocean.
Now we have 3.5 terabytes arriving every day, and we definitely need
to think about what can be kept in working storage and what can
only be archived.

Image Data

Satellites often send down to earth streams consisting of many
terabytes of images per day. Surveillance cameras produce images
with lower resolution than satellites, but there can be many of them,
each producing a stream of images at intervals like one second.
London is said to have six million such cameras, each producing a
stream.

Internet and Web Traffic

A switching node in the middle of the Internet receives streams of
IP packets from many inputs and routes them to its outputs.
Normally, the job of the switch is to transmit data and not to retain
it or query it. But there is a tendency to put more capability into the
switch, e.g., the ability to detect denial-of-service attacks or the
ability to reroute packets based on information about congestion in
the network.

Web sites receive streams of various types. For example, Google
receives sev- eral hundred million search queries per day. Yahoo!
accepts billions of “clicks” per day on its various sites. Many

mu
no
tes
.in

Mining Data Streams

147

interesting things can be learned from these streams. For example, an
increase in queries like “sore throat” enables us to track the spread of
viruses. A sudden increase in the click rate for a link could indicate
some news connected to that page, or it could mean that the link is
broken and needs to be repaired.

4.2.3 Stream Queries

There are two ways that queries get asked about streams. We show in
Fig. 4.1 a place within the processor where standing queries are stored.
These queries are, in a sense, permanently executing, and produce
outputs at appropriate times.

Example 4.1 : The stream produced by the ocean-surface-
temperature sen- sor mentioned at the beginning of Section 4.1.2
might have a standing query to output an alert whenever the
temperature exceeds 25 degrees centigrade. This query is easily
answered, since it depends only on the most recent stream element.

Alternatively, we might have a standing query that, each time a new
reading arrives, produces the average of the 24 most recent readings.
That query also can be answered easily, if we store the 24 most recent
stream elements. When a new stream element arrives, we can drop
from the working store the 25th most recent element, since it will never
again be needed (unless there is some other standing query that
requires it).

Another query we might ask is the maximum temperature ever
recorded by that sensor. We can answer this query by retaining a
simple summary: the maximum of all stream elements ever seen. It is
not necessary to record the entire stream. When a new stream element
arrives, we compare it with the stored maximum, and set the maximum
to whichever is larger. We can then answer the query by producing the
current value of the maximum. Similarly, if we want the average
temperature over all time, we have only to record two values: the
number of readings ever sent in the stream and the sum of those
readings. We can adjust these values easily each time a new reading
arrives, and we can produce their quotient as the answer to the
query.

The other form of query is ad-hoc, a question asked once about the
current state of a stream or streams. If we do not store all streams in
their entirety, as normally we can not, then we cannot expect to answer
arbitrary queries about streams. If we have some idea what kind of
queries will be asked through the ad-hoc query interface, then we can
prepare for them by storing appropriate parts or summaries of streams
as in Example 4.1.

If we want the facility to ask a wide variety of ad-hoc queries, a
common approach is to store a sliding window of each stream in the
working store. A sliding window can be the most recent n elements of
a stream, for some n, or it can be all the elements that arrived within

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

148

the last t time units, e.g., one day. If we regard each stream element
as a tuple, we can treat the window as a relation and query it with any
SQL query. Of course the stream-management system must keep the
window fresh, deleting the oldest elements as new ones come in.

Example 4.2 : Web sites often like to report the number of unique
users over the past month. If we think of each login as a stream
element, we can maintain a window that is all logins in the most recent
month. We must associate the arrival time with each login, so we know
when it no longer belongs to the window. If we think of the window
as a relation Logins(name, time), then it is simple to get the number of
unique users over the past month. The SQL query is:

SELECT COUNT(DISTINCT(name))

FROM Logins WHERE time >= t;

Here, t is a constant that represents the time one month before the
current time.

Note that we must be able to maintain the entire stream of logins for
the past month in working storage. However, for even the largest
sites, that data is not more than a few terabytes, and so surely can be
stored on disk.

4.2.4 Issues in Stream Processing

Before proceeding to discuss algorithms, let us consider the constraints
under which we work when dealing with streams. First, streams often
deliver elements very rapidly. We must process elements in real time,
or we lose the opportunity to process them at all, without accessing the
archival storage. Thus, it often is important that the stream-processing
algorithm is executed in main memory, without access to secondary
storage or with only rare accesses to secondary storage. Moreover, even
when streams are “slow,” as in the sensor-data example of Section 4.1.2,
there may be many such streams. Even if each stream by itself can be
processed using a small amount of main memory, the requirements of
all the streams together can easily exceed the amount of available main
memory.

Thus, many problems about streaming data would be easy to solve if
we had enough memory, but become rather hard and require the
invention of new techniques in order to execute them at a realistic rate
on a machine of realistic size. Here are two generalizations about
stream algorithms worth bearing in mind as you read through this
chapter:

4.2.4.1 Often, it is much more efficient to get an approximate answer
to our problem than an exact solution.

4.2.4.2 As in Chapter 3, a variety of techniques related to hashing turn
out to be useful. Generally, these techniques introduce useful
randomness into the algorithm’s behavior, in order to produce an
approximate answer that is very close to the true result.

mu
no
tes
.in

Mining Data Streams

149

4.3 SAMPLING DATA IN A STREAM

As our first example of managing streaming data, we shall look at
extracting reliable samples from a stream. As with many stream
algorithms, the “trick” involves using hashing in a somewhat
unusual way.

4.3.1 A Motivating Example
The general problem we shall address is selecting a subset of a stream
so that we can ask queries about the selected subset and have the
answers be statistically representative of the stream as a whole. If we
know what queries are to be asked, then there are a number of methods
that might work, but we are looking for a technique that will allow ad-
hoc queries on the sample. We shall look at a particular problem,
from which the general idea will emerge.

Our running example is the following. A search engine receives a
stream of queries, and it would like to study the behavior of typical
users.1 We assume the stream consists of tuples (user, query, time).
Suppose that we want to answer queries such as “What fraction of the
typical user’s queries were repeated over the past month?” Assume
also that we wish to store only 1/10th of the stream elements.

The obvious approach would be to generate a random number, say an
integer from 0 to 9, in response to each search query. Store the tuple if
and only if the random number is 0. If we do so, each user has, on
average, 1/10th of their queries stored. Statistical fluctuations will
introduce some noise into the data, but if users issue many queries, the
law of large numbers will assure us that most users will have a
fraction quite close to 1/10th of their queries stored.

However, this scheme gives us the wrong answer to the query
asking for the average number of duplicate queries for a user.
Suppose a user has issued s search queries one time in the past month,
d search queries twice, and no search queries more than twice. If we
have a 1/10th sample, of queries, we shall see in the sample for that
user an expected s/10 of the search queries issued once. Of the d search
queries issued twice, only d/100 will appear twice in the sample; that
fraction is d times the probability that both occurrences of the query
will be in the 1/10th sample. Of the queries that appear twice in the full
stream, 18d/100 will appear exactly once. To see why, note that 18/100
is the probability that one of the two occurrences will be in the 1/10th
of the stream that is selected, while the other is in the 9/10th that is
not selected.

The correct answer to the query about the fraction of repeated searches
is d/(s+d). However, the answer we shall obtain from the sample is
d/(10s+19d). To derive the latter formula, note that d/100 appear twice,
while s/10+18d/100 appear once. Thus, the fraction appearing twice
in the sample is d/100 divided by d/100 + s/10 + 18d/100. This ratio
is d/(10s + 19d). For no positive values of s and d is d/(s + d) =
d/(10s + 19d).

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

150

4.3.2 Obtaining a Representative Sample

The query of Section 4.2.1, like many queries about the statistics of
typical users, cannot be answered by taking a sample of each user’s
search queries. Thus, we must strive to pick 1/10th of the users, and
take all their searches for the sample, while taking none of the searches
from other users. If we can store a list of all users, and whether or
not they are in the sample, then we could do the following. Each
time a search query arrives in the stream, we look up the user to see
whether or not they are in the sample. If so, we add this search query
to the sample, and if not, then not. However, if we have no record of
ever having seen this user before, then we generate a random integer
between 0 and 9. If the number is 0, we add this user to our list with
value “in,” and if the number is other than 0, we add the user with the
value “out.”

That method works as long as we can afford to keep the list of all users
and their in/out decision in main memory, because there isn’t time to
go to disk for every search that arrives. By using a hash function, one
can avoid keeping the list of users. That is, we hash each user name to
one of ten buckets, 0 through 9. If the user hashes to bucket 0, then
accept this search query for the sample, and if not, then not.

Note we do not actually store the user in the bucket; in fact, there is
no data in the buckets at all. Effectively, we use the hash function as a
random- number generator, with the important property that, when
applied to the same user several times, we always get the same
“random” number. That is, without storing the in/out decision for any
user, we can reconstruct that decision any time a search query by that
user arrives.

More generally, we can obtain a sample consisting of any rational
fraction a/b of the users by hashing user names to b buckets, 0 through
b − 1. Add the search query to the sample if the hash value is less
than a.

4.3.3 The General Sampling Problem

The running example is typical of the following general problem. Our
stream consists of tuples with n components. A subset of the
components are the key components, on which the selection of the
sample will be based. In our running example, there are three
components – user, query, and time – of which only user is in the key.
However, we could also take a sample of queries by making query be
the key, or even take a sample of user-query pairs by making both
those components form the key.

To take a sample of size a/b, we hash the key value for each tuple to b
buckets, and accept the tuple for the sample if the hash value is less
than a. If the key consists of more than one component, the hash
function needs to combine the values for those components to make
a single hash-value. The result will be a sample consisting of all

mu
no
tes
.in

Mining Data Streams

151

tuples with certain key values. The selected key values will be
approximately a/b of all the key values appearing in the stream.

4.3.4 Varying the Sample Size

Often, the sample will grow as more of the stream enters the system. In
our running example, we retain all the search queries of the selected
1/10th of the users, forever. As time goes on, more searches for the
same users will be accumulated, and new users that are selected for the
sample will appear in the stream.

If we have a budget for how many tuples from the stream can be stored
as the sample, then the fraction of key values must vary, lowering as
time goes on. In order to assure that at all times, the sample consists
of all tuples from a subset of the key values, we choose a hash function
h from key values to a very large number of values 0, 1, . . . , B −1. We
maintain a threshold t, which initially can be the largest bucket
number, B − 1. At all times, the sample consists of those tuples whose
key K satisfies h(K) ≤ t. New tuples from the stream are added to
the sample if and only if they satisfy the same condition.

If the number of stored tuples of the sample exceeds the allotted space,
we lower t to t −1 and remove from the sample all those tuples whose
key K hashes to t. For efficiency, we can lower t by more than 1, and
remove the tuples with several of the highest hash values, whenever
we need to throw some key values out of the sample. Further
efficiency is obtained by maintaining an index on the hash value, so
we can find all those tuples whose keys hash to a particular value
quickly.

4.3.5 Exercises for Section 4.2

Exercise 4.2.1 : Suppose we have a stream of tuples with the schema
Grades(university, courseID, studentID, grade) Assume universities
are unique, but a courseID is unique only within a uni- versity (i.e.,
different universities may have different courses with the same ID,
e.g., “CS101”) and likewise, studentID’s are unique only within a
university (different universities may assign the same ID to different
students). Suppose we want to answer certain queries approximately
from a 1/20th sample of the data. For each of the queries below,
indicate how you would construct the sample. That is, tell what the
key attributes should be.

(a) For each university, estimate the average number of students in a
course.

(b) Estimate the fraction of students who have a GPA of 3.5 or more.

(c) Estimate the fraction of courses where at least half the students got
“A.”

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

152

4.4 FILTERING STREAMS

Another common process on streams is selection, or filtering. We want
to accept those tuples in the stream that meet a criterion. Accepted
tuples are passed to another process as a stream, while other tuples are
dropped. If the selection criterion is a property of the tuple that can be
calculated (e.g., the first component is less than 10), then the selection
is easy to do. The problem becomes harder when the criterion involves
lookup for membership in a set. It is especially hard, when that set is
too large to store in main memory. In this section, we shall discuss the
technique known as “Bloom filtering” as a way to eliminate most of
the tuples that do not meet the criterion.

4.4.1 A Motivating Example

Again let us start with a running example that illustrates the problem
and what we can do about it. Suppose we have a set S of one billion
allowed email addresses – those that we will allow through because
we believe them not to be spam. The stream consists of pairs: an email
address and the email itself. Since the typical email address is 20 bytes
or more, it is not reasonable to store S in main memory. Thus, we can
either use disk accesses to determine whether or not to let through any
given stream element, or we can devise a method that requires no more
main memory than we have available, and yet will filter most of the
undesired stream elements.

Suppose for argument’s sake that we have one gigabyte of available
main memory. In the technique known as Bloom filtering, we use that
main memory as a bit array. In this case, we have room for eight
billion bits, since one byte equals eight bits. Devise a hash function h
from email addresses to eight billion buckets. Hash each member of S
to a bit, and set that bit to 1. All other bits of the array remain 0.

Since there are one billion members of S, approximately 1/8th of the
bits will be 1. The exact fraction of bits set to 1 will be slightly less
than 1/8th, because it is possible that two members of S hash to the
same bit. We shall discuss the exact fraction of 1’s in Section 4.3.3.
When a stream element arrives, we hash its email address. If the bit to
which that email address hashes is 1, then we let the email through.
But if the email address hashes to a 0, we are certain that the address
is not in S, so we can drop this stream element.

Unfortunately, some spam email will get through. Approximately
1/8th of the stream elements whose email address is not in S will
happen to hash to a bit whose value is 1 and will be let through.
Nevertheless, since the majority of emails are spam (about 80%
according to some reports), eliminating 7/8th of the spam is a
significant benefit. Moreover, if we want to eliminate every spam, we
need only check for membership in S those good and bad emails
that get through the filter. Those checks will require the use of
secondary memory to access S itself. There are also other options, as

mu
no
tes
.in

Mining Data Streams

153

x
x

we shall see when we study the general Bloom-filtering technique. As
a simple example, we could use a cascade of filters, each of which
would eliminate 7/8th of the remaining spam.

4.4.2 The Bloom Filter

A Bloom filter consists of:

1. An array of n bits, initially all 0’s.

2. A collection of hash functions h1, h2, . . . , hk. Each hash
function maps “key” values to n buckets, corresponding to the n
bits of the bit-array.

3. A set S of m key values.

The purpose of the Bloom filter is to allow through all stream elements
whose keys are in S, while rejecting most of the stream elements
whose keys are not in S.

To initialize the bit array, begin with all bits 0. Take each key value
in S and hash it using each of the k hash functions. Set to 1 each bit
that is hi(K) for some hash function hi and some key value K
in S.

To test a key K that arrives in the stream, check that all of h1(K),
h2(K), . . . , hk(K) are 1’s in the bit-array. If all are 1’s, then let the
stream element through. If one or more of these bits are 0, then K
could not be in S, so reject the stream element.

4.4.3 Analysis of Bloom Filtering

If a key value is in S, then the element will surely pass through the
Bloom filter. However, if the key value is not in S, it might still pass.
We need to understand how to calculate the probability of a false
positive, as a function of n, the bit-array length, m the number of
members of S, and k, the number of hash functions.

The model to use is throwing darts at targets. Suppose we have x
targets and y darts. Any dart is equally likely to hit any target. After
throwing the darts, how many targets can we expect to be hit at least
once? The analysis is similar to the analysis in Section 3.4.2, and
goes as follows:

4.4.3.1 The probability that a given dart will not hit a given target
is (x − 1)/x.

4.4.3.2 The probability that none of the y darts will hit a given

target is (x−1)y .
 We can write this expression as
4.4.3.3 Using the approximation (1 − �)1/� = 1/e for small � (recall
Section 1.3.5), we conclude that the probability that none of the y darts
hit a given target is e−y/x.

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

154

Example 4.3 : Consider the running example of Section 4.3.1. We
can use the above calculation to get the true expected number of 1’s
in the bit array. Think of each bit as a target, and each member of S
as a dart. Then the probability that a given bit will be 1 is the
probability that the corresponding target will be hit by one or more
darts. Since there are one billion members of S, we have y = 109 darts.
As there are eight billion bits, there are x = 8 × 109 targets. Thus, the
probability that a given target is not hit is e−y/x = e−1/8 and the
probability that it is hit is 1 − e−1/8. That quantity is about 0.1175.
In Section 4.3.1 we suggested that 1/8 = 0.125 is a good
approximation, which it is, but now we have the exact
calculation.

We can apply the rule to the more general situation, where set S has
m members, the array has n bits, and there are k hash functions. The
number of targets is x = n, and the number of darts is y = km. Thus,
the probability that a bit remains 0 is e−km/n. We want the fraction
of 0 bits to be fairly large, or else the probability that a nonmember
of S will hash at least once to a 0 becomes too small, and there are
too many false positives. For example, we might choose k, the
number of hash functions to be n/m or less. Then the probability of a
0 is at least e−1 or 37%. In general, the probability of a false positive
is the probability of a 1 bit, which is 1 − e−km/n, raised to the kth
power, i.e., (1 − e−km/n)k.

Example 4.4 : In Example 4.3 we found that the fraction of 1’s in the
array of our running example is 0.1175, and this fraction is also the
probability of a false positive. That is, a nonmember of S will pass
through the filter if it hashes to a 1, and the probability of it doing
so is 0.1175.

Suppose we used the same S and the same array, but used two
different hash functions. This situation corresponds to throwing two
billion darts at eight billion targets, and the probability that a bit
remains 0 is e−1/4. In order to be a false positive, a nonmember of S
must hash twice to bits that are 1, and this probability is (1 − e−1/4)2,
or approximately 0.0493. Thus, adding a second hash function for
our running example is an improvement, reducing the false-positive
rate from 0.1175 to 0.0493.

4.4.4 Exercises for Section 4.3

Exercise 4.3.1 : For the situation of our running example (8 billion
bits, 1 billion members of the set S), calculate the false-positive rate if
we use three hash functions? What if we use four hash functions?

! Exercise 4.3.2 : Suppose we have n bits of memory available, and
our set S has m members. Instead of using k hash functions, we
could divide the n bits into k arrays, and hash once to each array. As
a function of n, m, and k, what is the probability of a false positive?
How does it compare with using k hash functions into a single
array?

mu
no
tes
.in

Mining Data Streams

155

!! Exercise 4.3.3 : As a function of n, the number of bits and m
the number of members in the set S, what number of hash functions
minimizes the false- positive rate?

4.5 COUNTING DISTINCT ELEMENTS IN A
STREAM

In this section we look at a third simple kind of processing we
might want to do on a stream. As with the previous examples –
sampling and filtering – it is somewhat tricky to do what we want in a
reasonable amount of main memory, so we use a variety of hashing
and a randomized algorithm to get approximately what we want with
little space needed per stream.

4.5.1 The Count-Distinct Problem

Suppose stream elements are chosen from some universal set. We
would like to know how many different elements have appeared in the
stream, counting either from the beginning of the stream or from some
known time in the past.

Example 4.5 : As a useful example of this problem, consider a Web
site gath- ering statistics on how many unique users it has seen in each
given month. The universal set is the set of logins for that site, and a
stream element is generated each time someone logs in. This measure
is appropriate for a site like Amazon, where the typical user logs in
with their unique login name.

A similar problem is a Web site like Google that does not require
login to issue a search query, and may be able to identify users only
by the IP address from which they send the query. There are about 4
billion IP addresses,2 sequences of four 8-bit bytes will serve as the
universal set in this case.

The obvious way to solve the problem is to keep in main memory a list
of all the elements seen so far in the stream. Keep them in an efficient
search structure such as a hash table or search tree, so one can quickly
add new elements and check whether or not the element that just
arrived on the stream was already seen. As long as the number of
distinct elements is not too great, this structure can fit in main
memory and there is little problem obtaining an exact answer to the
question how many distinct elements appear in the stream.

However, if the number of distinct elements is too great, or if there are
too many streams that need to be processed at once (e.g., Yahoo!
wants to count the number of unique users viewing each of its pages in
a month), then we cannot store the needed data in main memory. There
are several options. We could use more machines, each machine
handling only one or several of the streams. We could store most of the
data structure in secondary memory and batch stream elements so
whenever we brought a disk block to main memory there would be
many tests and updates to be performed on the data in that block. Or

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

156

we could use the strategy to be discussed in this section, where we
only estimate the number of distinct elements but use much less
memory than the number of distinct elements.

4.5.2 The Flajolet-Martin Algorithm

It is possible to estimate the number of distinct elements by hashing
the ele- ments of the universal set to a bit-string that is sufficiently
long. The length of the bit-string must be sufficient that there are more
possible results of the hash function than there are elements of the
universal set. For example, 64 bits is sufficient to hash URL’s. We
shall pick many different hash functions and hash each element of the
stream using these hash functions. The important property of a hash
function is that when applied to the same element, it always produces
the same result. Notice that this property was also essential for the
sampling technique of Section 4.2.

The idea behind the Flajolet-Martin Algorithm is that the more
different elements we see in the stream, the more different hash-values
we shall see. As we see more different hash-values, it becomes more
likely that one of these values will be “unusual.” The particular
unusual property we shall exploit is that the value ends in many 0’s,
although many other options exist.

Whenever we apply a hash function h to a stream element a, the bit
string h(a) will end in some number of 0’s, possibly none. Call this
number the tail length for a and h. Let R be the maximum tail
length of any a seen so far in the stream. Then we shall use estimate
2R for the number of distinct elements seen in the stream.

This estimate makes intuitive sense. The probability that a given
stream element a has h(a) ending in at least r 0’s is 2−r. Suppose
there are m distinct elements in the stream. Then the probability that
none of them has tail length at least r is (1 − 2−r)m. This sort of
expression should be familiar by now.We can rewrite it as (1 −

2−r)2 m2. Assuming r is reasonably large, the inner expression
is of the form (1 − �)1/�, which is approximately 1/e. Thus, the
probability of not finding a stream element with as many as r 0’s at

the end of its hash value is e−m2−r . We can conclude:

1. If m is much larger than 2r, then the probability that we shall find
a tail of length at least r approaches 1.

2. If m is much less than 2r, then the probability of finding a tail
length at least r approaches 0.

We conclude from these two points that the proposed estimate of m,
which is 2R (recall R is the largest tail length for any stream element) is
unlikely to be either much too high or much too low.

mu
no
tes
.in

Mining Data Streams

157

4.5.3 Combining Estimates

Unfortunately, there is a trap regarding the strategy for combining the
estimates of m, the number of distinct elements, that we obtain by
using many different hash functions. Our first assumption would be
that if we take the average of the values 2R that we get from each
hash function, we shall get a value that approaches the true m, the
more hash functions we use. However, that is not the case, and the
reason has to do with the influence an overestimate has on the
average.

Consider a value of r such that 2r is much larger than m. There is
some probability p that we shall discover r to be the largest number of
0’s at the end of the hash value for any of the m stream elements.
Then the probability of finding r + 1 to be the largest number of 0’s
instead is at least p/2. However, if we do increase by 1 the number of
0’s at the end of a hash value, the value of 2R doubles.
Consequently, the contribution from each possible large R to the
expected value of 2R grows as R grows, and the expected value of 2R is
actually infinite.3

Another way to combine estimates is to take the median of all
estimates. The median is not affected by the occasional outsized value
of 2R, so the worry described above for the average should not carry
over to the median. Unfortu- nately, the median suffers from another
defect: it is always a power of 2. Thus, no matter how many hash
functions we use, should the correct value of m be between two powers
of 2, say 400, then it will be impossible to obtain a close estimate.

There is a solution to the problem, however. We can combine the two
methods. First, group the hash functions into small groups, and take
their average. Then, take the median of the averages. It is true that an
occasional outsized 2R will bias some of the groups and make them too
large. However, taking the median of group averages will reduce the
influence of this effect almost to nothing. Moreover, if the groups
themselves are large enough, then the averages can be essentially any
number, which enables us to approach the true value m as long as we
use enough hash functions. In order to guarantee that any possible
average can be obtained, groups should be of size at least a small
multiple of log2 m.

4.5.4 Space Requirements

Observe that as we read the stream it is not necessary to store the
elements seen. The only thing we need to keep in main memory is one
integer per hash function; this integer records the largest tail length
seen so far for that hash function and any stream element. If we are
processing only one stream, we could use millions of hash functions,
which is far more than we need to get a close estimate. Only if we are
trying to process many streams at the same time would main memory
constrain the number of hash functions we could associate with any one
stream. In practice, the time it takes to compute hash values for each

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

158

stream element would be the more significant limitation on the number
of hash functions we use.

4.5.5 Exercises for Section 4.4

Exercise 4.4.1 : Suppose our stream consists of the integers 3, 1, 4,
1, 5, 9, 2, 6, 5. Our hash functions will all be of the form h(x) = ax +
b mod 32 for some a and b. You should treat the result as a 5-bit
binary integer. Determine the tail length for each stream element and
the resulting estimate of the number of distinct elements if the hash
function is:

(a) h(x) = 2x + 1 mod 32.

(b) h(x) = 3x + 7 mod 32.

(c) h(x) = 4x mod 32.

! Exercise 4.4.2 : Do you see any problems with the choice of hash
functions in Exercise 4.4.1? What advice could you give someone
who was going to use a hash function of the form h(x) = ax + b
mod 2k?

4.6 ESTIMATING MOMENTS

In this section we consider a generalization of the problem of counting
distinct elements in a stream. The problem, called computing
“moments,” involves the distribution of frequencies of different
elements in the stream. We shall define moments of all orders and
concentrate on computing second moments, from which the general
algorithm for all moments is a simple extension.

4.6.1 Definition of Moments

Suppose a stream consists of elements chosen from a universal set.
Assume the universal set is ordered so we can speak of the ith
element for any i. Let mi be the number of occurrences of the ith
element for any i. Then the kth-order moment (or just kth moment) of
the stream is the sum over all i of (mi)k.

Example 4.6 : The 0th moment is the sum of 1 for each mi that is
greater than 0.4 That is, the 0th moment is a count of the number of
distinct elements in the stream. We can use the method of Section 4.4
to estimate the 0th moment of a stream.

The 1st moment is the sum of the mi’s, which must be the length of the
stream. Thus, first moments are especially easy to compute; just count
the length of the stream seen so far.

The second moment is the sum of the squares of the mi’s. It is
some- times called the surprise number, since it measures how
uneven the distribu- tion of elements in the stream is. To see the
distinction, suppose we have a stream of length 100, in which

mu
no
tes
.in

Mining Data Streams

159

eleven different elements appear. The most even distribution of these
eleven elements would have one appearing 10 times and the other ten
appearing 9 times each. In this case, the surprise number is 102 + 10
× 92 = 910. At the other extreme, one of the eleven elements could
appear 90 times and the other ten appear 1 time each. Then, the
surprise number would be 902 + 10 × 12 = 8110.

As in Section 4.4, there is no problem computing moments of any
order if we can afford to keep in main memory a count for each element
that appears in the stream. However, also as in that section, if we
cannot afford to use that much memory, then we need to estimate the
kth moment by keeping a limited number of values in main memory and
computing an estimate from these values. For the case of distinct
elements, each of these values were counts of the longest tail produced
by a single hash function. We shall see another form of value that is
useful for second and higher moments.

4.6.2 The Alon-Matias-Szegedy Algorithm for Second Moments

For now, let us assume that a stream has a particular length n. We
shall show how to deal with growing streams in the next section.
Suppose we do not have enough space to count all the mi’s for all the
elements of the stream. We can still estimate the second moment of
the stream using a limited amount of space; the more space we use, the
more accurate the estimate will be. We compute some number of
variables. For each variable X, we store:

1. A particular element of the universal set, which we refer to as
X.element , and

2. An integer X.value, which is the value of the variable. To
determine the value of a variable X, we choose a position in the
stream between 1 and n, uniformly and at random. Set X.element
to be the element found there, and initialize X.value to 1. As we
read the stream, add 1 to X.value each time we encounter another
occurrence of X.element .

Example 4.7 : Suppose the stream is a, b, c, b, d, a, c, d, a, b, d, c, a, a,
b. The length of the stream is n = 15. Since a appears 5 times, b
appears 4 times, and c and d appear three times each, the second
moment for the stream is 52 + 42 + 32 + 32 = 59. Suppose we keep
three variables, X1, X2, and X3. Also, assume that at “random” we
pick the 3rd, 8th, and 13th positions to define these three variables.

When we reach position 3, we find element c, so we set X1.element
= c and X1.value = 1. Position 4 holds b, so we do not change X1.
Likewise, nothing happens at positions 5 or 6. At position 7, we see
c again, so we set X1.value = 2.

At position 8 we find d, and so set X2.element = d and X2.value = 1.
Positions 9 and 10 hold a and b, so they do not affect X1 or X2.
Position 11 holds d so we set X2.value = 2, and position 12 holds c so

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

160

we set X1.value = 3. At position 13, we find element a, and so set
X3.element = a and X3.value = 1. Then, at position 14 we see another
a and so set X3.value = 2. Position 15, with element b does not
affect any of the variables, so we are done, with final values X1.value
= 3 and X2.value = X3.value = 2.

We can derive an estimate of the second moment from any variable X.
This estimate is n(2X.value − 1).

Example 4.8 : Consider the three variables from Example 4.7. From
X1 we derive the estimate n(2X1.value − 1) = 15 × (2 × 3 − 1) =
75. The other two variables, X2 and X3, each have value 2 at the
end, so their estimates are 15 × (2 × 2 − 1) = 45. Recall that the true
value of the second moment for this stream is 59. On the other hand,
the average of the three estimates is 55, a fairly close
approximation.

Why the Alon-Matias-Szegedy Algorithm Works

We can prove that the expected value of any variable constructed as
in Sec- tion 4.5.2 is the second moment of the stream from which it
is constructed. Some notation will make the argument easier to
follow. Let e(i) be the stream element that appears at position i in the
stream, and let c(i) be the number of times element e(i) appears in the
stream among positions i, i + 1, . . . , n.

Example 4.9 : Consider the stream of Example 4.7. e(6) = a, since
the 6th position holds a. Also, c(6) = 4, since a appears at positions 9,
13, and 14, as well as at position 6. Note that a also appears at position
1, but that fact does not contribute to c(6). Q

The expected value of n(2X.value − 1) is the average over all
positions ibetween 1 and n of n(2c(i) − 1), that is

We can simplify the above by canceling factors 1/n and n, to get

However, to make sense of the formula, we need to change the order of
summation by grouping all those positions that have the same
element. For instance, concentrate on some element a that appears ma
times in the stream. The term for the last position in which a appears
must be 2 × 1 − 1 = 1. The term for the next-to-last position in which
a appears is 2 × 2 − 1 = 3. The positions with a before that yield
terms 5, 7, and so on, up to 2ma − 1, which is the term for the first
position in which a appears. That is, the formula for the expected
value of 2X.value − 1 can be written:

 E(n(2X.value − 1))= Σ 1 + 3 + 5 + · · · + (2ma − 1)
a

mu
no
tes
.in

Mining Data Streams

161

Note that 1 +3 +5 +· · ·+(2ma −1) = (ma)2. The proof is an easy
induction on the number of terms in the sum. Thus, E(n(2X.value
− 1))= Σa(ma)2 , which is the definition of the second moment.

Higher-Order Moments

We estimate kth moments, for k > 2, in essentially the same way as we
estimate second moments. The only thing that changes is the way we
derive an estimate from a variable. In Section 4.5.2 we used the
formula n(2v − 1) to turn a value v, the count of the number of
occurrences of some particular stream element a, into an estimate of
the second moment. Then, in Section 4.5.3 we saw why this formula
works: the terms 2v − 1, for v = 1, 2, . . . , m sum to m2, where m is
the number of times a appears in the stream.

Notice that 2v − 1 is the difference between v2 and (v − 1)2.
Suppose we wanted the third moment rather than the second Σ. Then
all we have to do is replace 2v−1 by v3−(v−1)3 = 3v2−3v+1.
Then mΣ m

 v=1 3v2−3v+1 = m3, so we can use as our estimate of
the third moment the formula n(3v2 − 3v + 1), where v = X.value is
the value associated with some variable X. More generally, we can
estimate kth moments for any k ≥ 2 by turning value v = X.value
into n(vk − (v − 1)k)

4.6.3 Dealing With Infinite Streams

Technically, the estimate we used for second and higher moments
assumes that n, the stream length, is a constant. In practice, n grows
with time. That fact, by itself, doesn’t cause problems, since we store
only the values of variables and multiply some function of that value
by n when it is time to estimate the moment. If we count the number of
stream elements seen and store this value, which only requires log n
bits, then we have n available whenever we need it.

A more serious problem is that we must be careful how we select the
positions for the variables. If we do this selection once and for all, then
as the stream gets longer, we are biased in favor of early positions, and
the estimate of the moment will be too large. On the other hand, if we
wait too long to pick positions, then early in the stream we do not have
many variables and so will get an unreliable estimate.

The proper technique is to maintain as many variables as we can
store at all times, and to throw some out as the stream grows. The
discarded variables are replaced by new ones, in such a way that at all
times, the probability of picking any one position for a variable is the
same as that of picking any other position. Suppose we have space to
store s variables. Then the first s positions of the stream are each
picked as the position of one of the s variables.

Inductively, suppose we have seen n stream elements, and the

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

162

probability of any particular position being the position of a variable
is uniform, that is s/n. When the (n+1)st element arrives, pick that
position with probability s/(n+1). If not picked, then the s variables
keep their same positions. However, if the (n + 1)st position is
picked, then throw out one of the current s variables, with equal
probability. Replace the one discarded by a new variable whose
element is the one at position n + 1 and whose value is 1.

Surely, the probability that position n + 1 is selected for a variable is
what it should be: s/(n + 1). However, the probability of every other
position also is s/(n + 1), as we can prove by induction on n. By the
inductive hypothesis, before the arrival of the (n + 1)st stream
element, this probability was s/n. With probability 1 − s/(n + 1) the (n
+ 1)st position will not be selected, and the probability of each of
the first n positions remains s/n. However, with probability s/(n +
1), the (n + 1)st position is picked, and the probability for each of
the first n positions is reduced by factor (s − 1)/s. Considering the two
cases, the probability of selecting each of the first n positions is

 Thus, we have shown by induction on the stream length n that all
positions have equal probability s/n of being chosen as the position of
a variable.

4.6.4 Exercises for Section 4.5

Exercise 4.5.1 : Compute the surprise number (second moment) for
the stream 3, 1, 4, 1, 3, 4, 2, 1, 2. What is the third moment of this
stream?

! Exercise 4.5.2 : If a stream has n elements, of which m are distinct,
what are the minimum and maximum possible surprise number, as a
function of m and n?

Exercise 4.5.3 : Suppose we are given the stream of Exercise 4.5.1,
to which we apply the Alon-Matias-Szegedy Algorithm to estimate
the surprise number. For each possible value of i, if Xi is a variable

A General Stream-Sampling Problem
Notice that the technique described in Section 4.5.5 actually
solves a more general problem. It gives us a way to maintain a
sample of s stream elements so that at all times, all stream
elements are equally likely to be selected for the sample.

As an example of where this technique can be useful, recall
that in Section 4.2 we arranged to select all the tuples of a
stream having key value in a randomly selected subset.
Suppose that, as time goes on, there are too many tuples
associated with any one key. We can arrange to limit the
number of tuples for any key K to a fixed constant s by using
the technique of Section 4.5.5 whenever a new tuple for key
K arrives.

mu
no
tes
.in

Mining Data Streams

163

starting position i, what is the value of Xi.value?

Exercise 4.5.4 : Repeat Exercise 4.5.3 if the intent of the variables is
to com- pute third moments. What is the value of each variable at the
end? What estimate of the third moment do you get from each
variable? How does the average of these estimates compare with the
true value of the third moment?

Exercise 4.5.5 : Prove by induction on m that 1 + 3 + 5 +· · · +(2m
− 1) = m2.

Exercise 4.5.6 : If we wanted to compute fourth moments, how would
we convert X.value to an estimate of the fourth moment?

4.6 COUNTING ONES IN A WINDOW

We now turn our attention to counting problems for streams. Suppose
we have a window of length N on a binary stream. We want at all
times to be able to answer queries of the form “how many 1’s are there
in the last k bits?” for any k ≤ N . As in previous sections, we focus on
the situation where we cannot afford to store the entire window. After
showing an approximate algorithm for the binary case, we discuss how
this idea can be extended to summing numbers.

4.6.1 The Cost of Exact Counts

To begin, suppose we want to be able to count exactly the number
of 1’s in the last k bits for any k ≤ N . Then we claim it is
necessary to store all N bits of the window, as any representation
that used fewer than N bits could not work. In proof, suppose we
have a representation that uses fewer than N bits to represent the N
bits in the window. Since there are 2N sequences of N bits, but fewer
than 2N representations, there must be two different bit strings w and x
that have the same representation. Since w /= x, they must differ in
at least one bit. Let the last k − 1 bits of w and x agree, but let them
differ on the kth bit from the right end.

Example 4.10 : If w = 0101 and x = 1010, then k = 1, since
scanning from the right, they first disagree at position 1. If w =
1001 and x = 0101, then k = 3, because they first disagree at the
third position from the right.

Suppose the data representing the contents of the window is whatever
se- quence of bits represents both w and x. Ask the query “how many
1’s are in the last k bits?” The query-answering algorithm will
produce the same an- swer, whether the window contains w or x,
because the algorithm can only see their representation. But the correct
answers are surely different for these two bit-strings. Thus, we have
proved that we must use at least N bits to answer queries about the last
k bits for any k.

In fact, we need N bits, even if the only query we can ask is “how

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

164

many 1’s are in the entire window of length N ?” The argument is
similar to that used above. Suppose we use fewer than N bits to
represent the window, and therefore we can find w, x, and k as
above. It might be that w and x have the same number of 1’s, as
they did in both cases of Example 4.10. However, if we follow the
current window by any N − k bits, we will have a situation where the
true window contents resulting from w and x are identical except for
the leftmost bit, and therefore, their counts of 1’s are unequal.
However, since the representations of w and x are the same, the
representation of the window must still be the same if we feed the same
bit sequence to these representations. Thus, we can force the answer to
the query “how many 1’s in the window?” to be incorrect for one of
the two possible window contents.

4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm

We shall present the simplest case of an algorithm called DGIM. This
version of the algorithm uses O(log2 N) bits to represent a window of
N bits, and allows us to estimate the number of 1’s in the window
with an error of no more than 50%. Later, we shall discuss an
improvement of the method that limits the error to any fraction � > 0,
and still uses only O(log2 N) bits (although with a constant factor that
grows as shrinks).

To begin, each bit of the stream has a timestamp, the position in which
it arrives. The first bit has timestamp 1, the second has timestamp 2,
and so on.

Since we only need to distinguish positions within the window of length
N , we shall represent timestamps modulo N , so they can be represented
by log2 N bits. If we also store the total number of bits ever seen in the
stream (i.e., the most recent timestamp) modulo N , then we can
determine from a timestamp modulo N where in the current window
the bit with that timestamp is.

We divide the window into buckets,5 consisting of:

1. The timestamp of its right (most recent) end.

2. The number of 1’s in the bucket. This number must be a power of
2, and we refer to the number of 1’s as the size of the bucket.

To represent a bucket, we need log2 N bits to represent the timestamp
(modulo N) of its right end. To represent the number of 1’s we only
need log2 log2 N bits. The reason is that we know this number i is
a power of 2, say 2j , so we can represent i by coding j in binary.
Since j is at most log2 N , it requires log2 log2 N bits. Thus, O(log N
) bits suffice to represent a bucket.

There are six rules that must be followed when representing a stream
by buckets.

 The right end of a bucket is always a position with a 1.

mu
no
tes
.in

Mining Data Streams

165

1 1 1 1

 Every position with a 1 is in some bucket.

 No position is in more than one bucket.

 There are one or two buckets of any given size, up to some
maximum size.

 All sizes must be a power of 2.

 Buckets cannot decrease in size as we move to the left (back in
time).

. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0

 0 0

At least one Two of size 4 One of Two of
of size 8 size 2 size 1

Figure 4.2: A bit-stream divided into buckets following the DGIM
rules

Example 4.11 : Figure 4.2 shows a bit stream divided into buckets in
a way that satisfies the DGIM rules. At the right (most recent) end we
see two buckets of size 1. To its left we see one bucket of size 2.
Note that this bucket covers four positions, but only two of them are
1. Proceeding left, we see two buckets of size 4, and we suggest that
a bucket of size 8 exists further left.

Notice that it is OK for some 0’s to lie between buckets. Also, observe
from Fig. 4.2 that the buckets do not overlap; there are one or two of
each size up to the largest size, and sizes only increase moving left. Q

In the next sections, we shall explain the following about the DGIM
algo- rithm:

1. Why the number of buckets representing a window must be small.

2. How to estimate the number of 1’s in the last k bits for any k,
with an error no greater than 50%.

3. How to maintain the DGIM conditions as new bits enter the
stream.

4.6.3 Storage Requirements for the DGIM Algorithm

We observed that each bucket can be represented by O(log N) bits. If
the window has length N , then there are no more than N 1’s, surely.
Suppose the largest bucket is of size 2j. Then j cannot exceed log2 N ,
or else there are more 1’s in this bucket than there are 1’s in the entire
window. Thus, there are at most two buckets of all sizes from log2 N
down to 1, and no buckets of larger sizes.

. . . 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 . . . 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

166

We conclude that there are O(log N) buckets. Since each bucket can be
represented in O(log N) bits, the total space required for all the buckets
repre- senting a window of size N is O(log2 N).

4.6.4 Query Answering in the DGIM Algorithm

Suppose we are asked how many 1’s there are in the last k bits of the
window, for some 1 ≤ k ≤ N . Find the bucket b with the earliest
timestamp that includes at least some of the k most recent bits.
Estimate the number of 1’s to be the sum of the sizes of all the buckets
to the right (more recent) than bucket b, plus half the size of b itself.

Example 4.12 : Suppose the stream is that of Fig. 4.2, and k = 10.
Then the query asks for the number of 1’s in the ten rightmost bits,
which happen to be 0110010110. Let the current timestamp (time of
the rightmost bit) be t. Then the two buckets with one 1, having
timestamps t − 1 and t − 2 are completely included in the answer. The
bucket of size 2, with timestamp t − 4, is also completely included.
However, the rightmost bucket of size 4, with timestamp t − 8 is only
partly included. We know it is the last bucket to contribute to the
answer, because the next bucket to its left has timestamp less than t
− 9 and thus is completely out of the window. On the other hand, we
know the buckets to its right are completely inside the range of the
query because of the existence of a bucket to their left with timestamp
t − 9 or greater.

Our estimate of the number of 1’s in the last ten positions is thus 6.
This number is the two buckets of size 1, the bucket of size 2, and half
the bucket of size 4 that is partially within range. Of course the
correct answer is 5.

Suppose the above estimate of the answer to a query involves a
bucket b of size 2j that is partially within the range of the query.
Let us consider how far from the correct answer c our estimate could
be. There are two cases: the estimate could be larger or smaller
than c.

Case 1 : The estimate is less than c. In the worst case, all the 1’s of b are
actually within the range of the query, so the estimate misses half
bucket b, or 2j−1 1’s. But in this case, c is at least 2j; in fact it is
at least 2j+1 − 1, since there is at least one bucket of each of the
sizes 2j−1, 2j−2, . . . , 1. We conclude that our estimate is at least
50% of c.

Case 2 : The estimate is greater than c. In the worst case, only the
rightmost bit of bucket b is within range, and there is only one bucket
of each of the sizes smaller than b. Then c = 1 + 2j−1 + 2j−2 + · · ·
+ 1 = 2j and the estimate we give is 2j−1 + 2j−1 + 2j−2 + · · · + 1
= 2j + 2j−1 − 1. We see that the estimate is no more than 50%
greater than c.

4.6.5 Maintaining the DGIM Conditions

mu
no
tes
.in

Mining Data Streams

167

Suppose we have a window of length N properly represented by
buckets that satisfy the DGIM conditions. When a new bit comes in,
we may need to modify the buckets, so they continue to represent the
window and continue to satisfy the DGIM conditions. First, whenever
a new bit enters:

 Check the leftmost (earliest) bucket. If its timestamp has now
reached the current timestamp minus N , then this bucket no longer
has any of its 1’s in the window. Therefore, drop it from the list
of buckets.

Now, we must consider whether the new bit is 0 or 1. If it is 0, then no
further change to the buckets is needed. If the new bit is a 1, however,
we may need to make several changes. First:

• Create a new bucket with the current timestamp and size 1.

If there was only one bucket of size 1, then nothing more needs to be
done. However, if there are now three buckets of size 1, that is one too
many. We fix this problem by combining the leftmost (earliest) two
buckets of size 1.

• To combine any two adjacent buckets of the same size, replace them
by one bucket of twice the size. The timestamp of the new bucket is
the timestamp of the rightmost (later in time) of the two buckets.

Combining two buckets of size 1 may create a third bucket of size 2.
If so, we combine the leftmost two buckets of size 2 into a bucket of
size 4. That, in turn, may create a third bucket of size 4, and if so we
combine the leftmost two into a bucket of size 8. This process may
ripple through the bucket sizes, but there are at most log2 N different
sizes, and the combination of two adjacent buckets of the same size
only requires constant time. As a result, any new bit can be processed
in O(log N) time.

Example 4.13 : Suppose we start with the buckets of Fig. 4.2 and a 1
enters. First, the leftmost bucket evidently has not fallen out of the
window, so we do not drop any buckets. We create a new bucket of
size 1 with the current timestamp, say t. There are now three
buckets of size 1, so we combine the leftmost two. They are
replaced with a single bucket of size 2. Its timestamp is t − 2, the
timestamp of the bucket on the right (i.e., the rightmost bucket that
actually appears in Fig. 4.2.

0 0
At least one size 8 Two of size 4 Two of size2 Two of size1

Figure 4.3: Modified buckets after a new 1 arrives in the stream

There are now two buckets of size 2, but that is allowed by the DGIM
rules. Thus, the final sequence of buckets after the addition of the 1

. . . 1 0 1 1 0 1 1 0 0 0 1

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

168

is as shown in Fig. 4.3.

4.6.6 Reducing the Error

Instead of allowing either one or two of each size bucket, suppose we
allow either r − 1 or r of each of the exponentially growing sizes 1, 2, 4,
. . ., for some integer r > 2. In order to represent any possible
number of 1’s, we must relax this condition for the buckets of size 1
and buckets of the largest size present; there may be any number,
from 1 to r, of buckets of these sizes.

The rule for combining buckets is essentially the same as in Section
4.6.5. If we get r + 1 buckets of size 2j, combine the leftmost two
into a bucket of size 2j+1. That may, in turn, cause there to be r + 1
buckets of size 2j+1, and if so we continue combining buckets of
larger sizes.

The argument used in Section 4.6.4 can also be used here. However,
because there are more buckets of smaller sizes, we can get a stronger
bound on the error. We saw there that the largest relative error occurs
when only one 1 from the leftmost bucket b is within the query range,
and we therefore overestimate the true count. Suppose bucket b is
of size 2j. Then the true count is at least

1 + (r − 1)(2j−1 + 2j−2 + · · · + 1) = 1 + (r − 1)(2j − 1). The
overestimate is 2j−1 − 1. Thus, the fractional error is

2j-1 − 1
1 + (r − 1)(2j − 1)
No matter what j is, this fraction is upper bounded by 1/(r − 1).
Thus, by picking r sufficiently large, we can limit the error to any
desired € > 0.

4.6.7 Extensions to the Counting of Ones

It is natural to ask whether we can extend the technique of this
section to handle aggregations more general than counting 1’s in a
binary stream. An obvious direction to look is to consider streams
of integers and ask if we can estimate the sum of the last k integers
for any 1 ≤ k ≤ N , where N , as usual, is the window size.

Bucket Sizes and Ripple-Carry Adders

There is a pattern to the distribution of bucket sizes as we
execute the basic algorithm of Section 4.6.5. Think of two
buckets of size 2j as a ”1” in position j and one bucket of
size 2j as a ”0” in that position. Then as 1’s arrive in the
stream, the bucket sizes after each 1 form consecutive binary
integers. The occasional long sequences of bucket
combinations are analogous to the occasional long rippling of
carries as we go from an integer like 101111 to 110000. mu

no
tes
.in

Mining Data Streams

169

It is unlikely that we can use the DGIM approach to streams
containing both positive and negative integers. We could have a stream
containing both very large positive integers and very large negative
integers, but with a sum in the window that is very close to 0. Any
imprecision in estimating the values of these large integers would have
a huge effect on the estimate of the sum, and so the fractional error
could be unbounded.

For example, suppose we broke the stream into buckets as we have
done, but represented the bucket by the sum of the integers therein,
rather than the count of 1’s. If b is the bucket that is partially within
the query range, it could be that b has, in its first half, very large
negative integers and in its second half, equally large positive integers,
with a sum of 0. If we estimate the contribution of b by half its sum,
that contribution is essentially 0. But the actual contribution of that
part of bucket b that is in the query range could be anything from 0 to
the sum of all the positive integers. This difference could be far greater
than the actual query answer, and so the estimate would be
meaningless.

On the other hand, some other extensions involving integers do work.
Sup- pose that the stream consists of only positive integers in the
range 1 to 2m for some m. We can treat each of the m bits of each
integer as if it were a separate stream. We then use the DGIM method
to count the 1’s in each bit. Suppose the count of the ith bit (assuming
bits count from the low-order end, starting at 0) is ci. Then the sum
of the integers is

If we use the technique of Section 4.6.6 to estimate each ci with
fractional error at most �, then the estimate of the true sum has error at
most. The worst case occurs when all the ci’s are overestimated or all
are underestimated by the same fraction.

4.6.8 Exercises for Section 4.6

Exercise 4.6.1 : Suppose the window is as shown in Fig. 4.2. Estimate
the number of 1’s the the last k positions, for k = (a) 5 (b) 15. In
each case, how far off the correct value is your estimate?

! Exercise 4.6.2 : There are several ways that the bit-stream
1001011011101 could be partitioned into buckets. Find all of them.

Exercise 4.6.3 : Describe what happens to the buckets if three more
1’s enter the window represented by Fig. 4.3. You may assume none of
the 1’s shown leave the window.

4.7 DECAYING WINDOWS

We have assumed that a sliding window held a certain tail of the

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

170

stream, either the most recent N elements for fixed N , or all the elements
that arrived after some time in the past. Sometimes we do not want to
make a sharp distinction between recent elements and those in the
distant past, but want to weight the recent elements more heavily. In
this section, we consider “exponentially decaying windows,” and an
application where they are quite useful: finding the most common
“recent” elements.

4.7.1 The Problem of Most-Common Elements

Suppose we have a stream whose elements are the movie tickets
purchased all over the world, with the name of the movie as part of
the element. We want to keep a summary of the stream that is the
most popular movies “currently.” While the notion of “currently” is
imprecise, intuitively, we want to discount the popularity of a movie
like Star Wars–Episode 4, which sold many tickets, but most of
these were sold decades ago. On the other hand, a movie that sold n
tickets in each of the last 10 weeks is probably more popular than a
movie that sold 2n tickets last week but nothing in previous weeks.

One solution would be to imagine a bit stream for each movie. The ith
bit has value 1 if the ith ticket is for that movie, and 0 otherwise. Pick
a window size N , which is the number of most recent tickets that
would be considered in evaluating popularity. Then, use the method of
Section 4.6 to estimate the number of tickets for each movie, and rank
movies by their estimated counts. This technique might work for
movies, because there are only thousands of movies, but it would fail if
we were instead recording the popularity of items sold at Amazon, or
the rate at which different Twitter-users tweet, because there are too
many Amazon products and too many tweeters. Further, it only offers
approximate answers.

4.7.2 Definition of the Decaying Window

An alternative approach is to redefine the question so that we are not
asking for a count of 1’s in a window. Rather, let us compute a smooth
aggregation of all the 1’s ever seen in the stream, with decaying
weights, so the further back in the stream, the less weight is given.
Formally, let a stream currently consist of the elements a1, a2, . . . , at,
where a1 is the first element to arrive and at is the current element. Let
c be a small constant, such as 10−6 or 10−9. Define the exponentially
decaying window for this stream to be the sum

The effect of this definition is to spread out the weights of the stream
el- ements as far back in time as the stream goes. In contrast, a fixed
window with the same sum of the weights, 1/c, would put equal weight
1 on each of the most recent 1/c elements to arrive and weight 0 on all
previous elements. The distinction is suggested by Fig. 4.4.

mu
no
tes
.in

Mining Data Streams

171

 Window of length 1/c

Figure 4.4: A decaying window and a fixed-length window of equal
weight It is much easier to adjust the sum in an exponentially
decaying window than in a sliding window of fixed length. In the
sliding window, we have to worry about the element that falls out of
the window each time a new element arrives. That forces us to keep
the exact elements along with the sum, or to use an approximation
scheme such as DGIM. However, when a new element at+1 arrives
at the stream input, all we need to do is:

1. Multiply the current sum by 1 − c.

2. Add at+1.

The reason this method works is that each of the previous elements has
now moved one position further from the current element, so its weight
is multiplied by 1 − c. Further, the weight on the current element is (1 −
c)0 = 1, so adding at+1 is the correct way to include the new
element’s contribution.

4.7.3 Finding the Most Popular Elements
Let us return to the problem of finding the most popular movies in a
stream of ticket sales.6 We shall use an exponentially decaying
window with a constant c, which you might think of as 10−9. That is,
we approximate a sliding window holding the last one billion ticket
sales. For each movie, we imagine a separate stream with a 1 each
time a ticket for that movie appears in the stream, and a 0 each time a
ticket for some other movie arrives. The decaying sum of the 1’s
measures the current popularity of the movie.

We imagine that the number of possible movies in the stream is huge,
so we do not want to record values for the unpopular movies.
Therefore, we establish a threshold, say 1/2, so that if the popularity
score for a movie goes below this number, its score is dropped from
the counting. For reasons that will become obvious, the threshold must
be less than 1, although it can be any number less than 1. When a new
ticket arrives on the stream, do the following:

1. For each movie whose score we are currently maintaining, multiply
its score by (1 − c).

2. Suppose the new ticket is for movie M . If there is currently a score
for M , add 1 to that score. If there is no score for M , create one
and initialize it to 1.

3. If any score is below the threshold 1/2, drop that score.

It may not be obvious that the number of movies whose scores are
main- tained at any time is limited. However, note that the sum of all
scores is 1/c. There cannot be more than 2/c movies with score of 1/2

mu
no
tes
.in

Track C Business Intelligence
and Big Data Analytics –II
(Mining Massive Data sets)

172

or more, or else the sum of the scores would exceed 1/c. Thus, 2/c is a
limit on the number of movies being counted at any time. Of course in
practice, the ticket sales would be concentrated on only a small number
of movies at any time, so the number of actively counted movies
would be much less than 2/c.

4.8 SUMMARY OF CHAPTER

✦ The Stream Data Model : This model assumes data arrives at a
processing engine at a rate that makes it infeasible to store everything
in active storage. One strategy to dealing with streams is to maintain
summaries of the streams, sufficient to answer the expected queries
about the data. A second approach is to maintain a sliding window of
the most recently arrived data.

✦ Sampling of Streams: To create a sample of a stream that is
usable for a class of queries, we identify a set of key attributes for the
stream. By hashing the key of any arriving stream element, we can use
the hash value to decide consistently whether all or none of the
elements with that key will become part of the sample.

✦ Bloom Filters: This technique allows us to filter streams so elements
that belong to a particular set are allowed through, while most
nonmembers are deleted. We use a large bit array, and several hash
functions. Members of the selected set are hashed to buckets, which are
bits in the array, and those bits are set to 1. To test a stream element for
membership, we hash the element to a set of bits using each of the hash
functions, and only accept the element if all these bits are 1.

✦ Counting Distinct Elements: To estimate the number of different
elements appearing in a stream, we can hash elements to integers,
interpreted as binary numbers. 2 raised to the power that is the longest
sequence of 0’s seen in the hash value of any stream element is an
estimate of the number of different elements. By using many hash
functions and combining these estimates, first by taking averages
within groups, and then taking the median of the averages, we get a
reliable estimate.

✦ Moments of Streams: The kth moment of a stream is the sum of the
kth powers of the counts of each element that appears at least once in
the stream. The 0th moment is the number of distinct elements, and the
1st moment is the length of the stream.

✦ Estimating Second Moments: A good estimate for the second
moment, or surprise number, is obtained by choosing a random
position in the stream, taking twice the number of times this element
appears in the stream from that position onward, subtracting 1, and
multiplying by the length of the stream. Many random variables of
this type can be combined like the estimates for counting the number
of distinct elements, to produce a reliable estimate of the second
moment.

mu
no
tes
.in

Mining Data Streams

173

✦ Estimating Higher Moments: The technique for second moments
works for kth moments as well, as long as we replace the formula 2x −
1 (where x is the number of times the element appears at or after the
selected position) by xk − (x − 1)k.

4.9. REFERENCES FOR CHAPTER 4

✦ Estimating the Number of 1’s in a Window : We can estimate the
number of 1’s in a window of 0’s and 1’s by grouping the 1’s into
buckets. Each bucket has a number of 1’s that is a power of 2; there are
one or two buckets of each size, and sizes never decrease as we go
back in time. If we record only the position and size of the buckets,
we can represent the contents of a window of size N with O(log2 N)
space.

✦ Answering Queries About Numbers of 1’s: If we want to know the
approx- imate numbers of 1’s in the most recent k elements of a
binary stream, we find the earliest bucket B that is at least partially
within the last k positions of the window and estimate the number of
1’s to be the sum of the sizes of each of the more recent buckets plus
half the size of B. This estimate can never be off by more that 50%
of the true count of 1’s.

✦ Closer Approximations to the Number of 1’s: By changing the rule
for how many buckets of a given size can exist in the representation
of a binary window, so that either r or r − 1 of a given size may exist,
we can assure that the approximation to the true number of 1’s is
never off by more than 1/r.

✦ Exponentially Decaying Windows: Rather than fixing a window
size, we can imagine that the window consists of all the elements that
ever arrived in the stream, but with the element that arrived t time units
ago weighted by e−ct for some time-constant c. Doing so allows us to
maintain certain summaries of an exponentially decaying window
easily. For instance, the weighted sum of elements can be recomputed,
when a new element arrives, by multiplying the old sum by 1 − c and
then adding the new element.

✦ Maintaining Frequent Elements in an Exponentially Decaying
Window : We can imagine that each item is represented by a binary
stream, where 0 means the item was not the element arriving at a
given time, and 1 means that it was. We can find the elements
whose sum of their binary stream is at least 1/2. When a new element
arrives, multiply all recorded sums by 1 minus the time constant, add
1 to the count of the item that just arrived, and delete from the
record any item whose sum has fallen below 1/2.

mu
no
tes
.in

