

1

1
LINUX OPERATING SYSTEM

INTRODUCTION

Unit Structure

1.0 Objectives
1.1 Introduction
1.2 Linux Versus Other Unix-Like Kernels
1.3 Types of Kernels
1.4 GRUB in Linux
1.5 Inter Process Communication
1.6 Let us Sum Up
1.7 List of References
1.8 Bibliography
1.9 Unit End Exercise

1.0 Objective

1. To presents a general picture of what is inside a Unix kernel and
how Linux competes against other well-known Unix systems.

2. To learn various kernel types.
3. To gain knowledge on GRUB
4. To learn about Inter process communication

1.1 Introduction

Linux is a member of the large family of Unix-like operating systems. A
relative newcomer experiencing sudden spectacular popularity starting in
the late 1990s, Linux joins such well-known commercial Unix operating
systems as System V Release 4 (SVR4) developed by AT&T, which is
now owned by Novell; the 4.4 BSD release from the University of
California at Berkeley (4.4BSD), Digital Unix from Digital Equipment
Corporation (now Compaq); AIX from IBM; HP-UX from Hewlett-
Packard; and Solaris from Sun Microsystems.

Linux was initially developed by Linus Torvalds in 1991 as an operating
system for IBM compatible personal computers based on the Intel 80386
microprocessor. Linus remains deeply involved with improving Linux,
keeping it up to date with various hardware developments and
coordinating the activity of hundreds of Linux developers around the
world. Over the years, developers have worked to make Linux available
on other architectures, including Alpha, SPARC, Motorola MC680x0,
PowerPC, and IBM System/390.

mu
no
tes
.in

2

Advanced Operating
System

2

1.2 Linux Versus Other Unix-Like Kernels

One of the more appealing benefits to Linux is that it isn't a commercial
operating system: its source code under the GNU Public License is open
and available to anyone to study.

The GNU project is coordinated by the Free Software Foundation, Inc.
(http://www.gnu.org/); its aim is to implement a whole operating system
freely usable by everyone. The availability of a GNU C compiler has been
essential for the success of the Linux project. Technically speaking, Linux
is a true Unix kernel, although it is not a full Unix operating system,
because it does not include all the applications such as filesystem utilities,
windowing systems and graphical desktops, system administrator
commands, text editors, compilers, and so on. However, since most of
these programs are freely available under the GNU General Public
License, they can be installed into one of the filesystems supported by
Linux. Since Linux is a kernel, many Linux users prefer to rely on
commercial distributions, available on CD-ROM, to get the code included
in a standard Unix system. Alternatively, the code may be obtained from
several different FTP sites.
The Linux source code is usually installed in the /usr/src/linux directory.
In the rest of this book, all file pathnames will refer implicitly to that
directory. 1.1 Linux Versus Other Unix-Like Kernels The various Unix-
like systems on the market, some of which have a long history and may
show signs of archaic practices, differ in many important respects. All
commercial variants were derived from either SVR4 or 4.4BSD; all of
them tend to agree on some common standards like IEEE's POSIX
(Portable Operating Systems based on Unix) and X/Open's CAE
(Common Applications Environment).
Understanding the Linux Kernel 7 The current standards specify only an
application programming interface (API)—that is, a well-defined
environment in which user programs should run. Therefore, the standards
do not impose any restriction on internal design choices of a compliant
kernel. As a matter of fact, several non-Unix operating systems like
Windows NT are POSIX-compliant. In order to define a common user
interface, Unix-like kernels often share fundamental design ideas and
features. In this respect, Linux is comparable with the other Unix-like
operating systems. The 2.2 version of the Linux kernel aims to be
compliant with the IEEE POSIX standard. This, of course, means that
most existing Unix programs can be compiled and executed on a Linux
system with very little effort or even without the need for patches to the
source code. Moreover, Linux includes all the features of a modern Unix
operating system, like virtual memory, a virtual filesystem, lightweight
processes, reliable signals, SVR4 inter process communications, support
for Symmetric Multiprocessor (SMP) systems, and so on. By itself, the
Linux kernel is not very innovative. When Linus Torvalds wrote the first
kernel, he referred to some classical books on Unix internals, like Maurice
Bach's The Design of the Unix Operating System (Prentice Hall, 1986).
Actually, Linux still has some bias toward the Unix baseline described in
Bach's book (i.e., SVR4).

mu
no
tes
.in

3

Linux Operating
System Introduction

1.3 Types of Kernels

The microkernel and monolithic kernels are two types of kernels in the
operating system. The kernel is the main part of the OS. As a result, the
kernel's important code is stored in different memory spaces. The kernel is
a crucial component because it maintains the proper functioning of the
complete system. It manages hardware and processes, files handling, and
several other functions.

Microkernel
The microkernel is a type of kernel that permits the customization of the
OS. It is privileged and provides low-level address space management as
well as Inter-Process Communication (IPC). Furthermore, OS functions
like the virtual memory manager, file system, and CPU scheduler are built
on top of the microkernel. Every service has its address space to make
them secure. Moreover, every application has its address space. As a
result, there is protection between applications, OS Services, and the
kernel.

When an application requests a service from the OS services, the OS
services communicate with one another in order to provide the requested
service to the application. Inter-Process Communication (IPC) can assist
in establishing this communication. Overall, microkernel-based operating
systems offer a high level of extensibility. It is also possible to customize
the operating system's services to meet the needs of the application.

Monolithic Kernel
The monolithic kernel manages the system's resources between the system
application and the system hardware. Unlike the microkernel, user and
kernel services are run in the same address space. It increases the kernel
size and also increases the size of the OS.

The monolithic kernel offers CPU scheduling, device management, file
management, memory management, process management, and other OS
services via the system calls. All of these components, including file
management and memory management, are located within the kernel. The
user and kernel services use the same address space, resulting in a fast-
executing operating system. One drawback of this kernel is that if anyone
process or service of the system fails, the complete system crashes. The
entire operating system must be modified to add a new service to a
monolithic kernel.

Exo Kernel
It is the type of kernel which follows end-to-end principle. It has fewest
hardware abstractions as possible. It allocates physical resources to
applications.

Example:
Nemesis, ExOS etc.

mu
no
tes
.in

4

Advanced Operating
System

4

However, Linux doesn't stick to any particular variant. Instead, it tries to
adopt good features and design choices of several different Unix kernels.
Here is an assessment of how Linux competes against some well-known
commercial Unix kernels:

x The Linux kernel is monolithic: It is a large, complex do-it-
yourself program, composed of several logically different
components. In this, it is quite conventional; most commercial Unix
variants are monolithic. A notable exception is CarnegieMellon's
Mach 3.0, which follows a microkernel approach.

x Traditional Unix kernels are compiled and linked statically. Most
modern kernels can dynamically load and unload some portions of
the kernel code (typically, device drivers), which are usually called
modules. Linux's support for modules is very good, since it is able to
automatically load and unload modules on demand. Among the main
commercial Unix variants, only the SVR4.2 kernel has a similar
feature.

x Kernel threading: Some modern Unix kernels, like Solaris 2.x and
SVR4.2/MP, are organized as a set of kernel threads. A kernel
thread is an execution context that can be independently scheduled;
it may be associated with a user program, or it may run only some
kernel functions. Context switches between kernel threads are
usually much less expensive than context switches between ordinary
processes, since the former usually operate on a common address
space. Linux uses kernel threads in a very limited way to execute a
few kernel functions periodically; since Linux kernel threads cannot
execute user programs, they do not represent the basic execution
context abstraction. (That's the topic of the next item.)

x Multithreaded application support: Most modern operating
systems have some kind of support for multithreaded applications,
that is, user programs that are well designed in terms of many
relatively independent execution flows sharing a large portion of the
application data structures. A multithreaded user application could
be composed of many lightweight processes (LWP), or processes
that can operate on a common Understanding the Linux Kernel 8
address space, common physical memory pages, common opened
files, and so on. Linux defines its own version of lightweight
processes, which is different from the types used on other systems
such as SVR4 and Solaris. While all the commercial Unix variants
of LWP are based on kernel threads, Linux regards lightweight
processes as the basic execution context and handles them via the
nonstandard clone() system call.

x Linux is a nonprimitive kernel: This means that Linux cannot
arbitrarily interleave execution flows while they are in privileged
mode. Several sections of kernel code assume they can run and
modify data structures without fear of being interrupted and having
another thread alter those data structures. Usually, fully pre-emptive
kernels are associated with special real-time operating systems.
Currently, among conventional, general-purpose Unix systems, only

mu
no
tes
.in

5

Linux Operating
System Introduction

Solaris 2.x and Mach 3.0 are fully pre-emptive kernels. SVR4.2/MP
introduces some fixed pre-emption points as a method to get limited
pre-emption capability.

x Multiprocessor support: Several Unix kernel variants take
advantage of multiprocessor systems. Linux 2.2 offers an evolving
kind of support for symmetric multiprocessing (SMP), which means
not only that the system can use multiple processors but also that
any processor can handle any task; there is no discrimination among
them. However, Linux 2.2 does not make optimal use of SMP.
Several kernel activities that could be executed concurrently—like
filesystem handling and networking—must now be executed
sequentially.

x Filesystem: Linux's standard filesystem lacks some advanced
features, such as journaling. However, more advanced filesystems
for Linux are available, although not included in the Linux source
code; among them, IBM AIX's Journaling File System (JFS), and
Silicon Graphics Irix's XFS filesystem. Thanks to a powerful
objectoriented Virtual File System technology (inspired by Solaris
and SVR4), porting a foreign filesystem to Linux is a relatively easy
task.

x STREAMS: Linux has no analog to the STREAMS I/O subsystem
introduced in SVR4, although it is included nowadays in most Unix
kernels, and it has become the preferred interface for writing device
drivers, terminal drivers, and network protocols.
Several features make Linux a wonderfully unique operating system.
Commercial Unix kernels often introduce new features in order to
gain a larger slice of the market, but these features are not
necessarily useful, stable, or productive. As a matter of fact, modern
Unix kernels tend to be quite bloated. By contrast, Linux doesn't
suffer from the restrictions and the conditioning imposed by the
market, hence it can freely evolve according to the ideas of its
designers (mainly Linus Torvalds).
Specifically, Linux offers the following advantages over its
commercial competitors: Linux is free. You can install a complete
Unix system at no expense other than the hardware (of course).
Understanding the Linux Kernel 9 Linux is fully customizable in all
its components. Thanks to the General Public License (GPL), you
are allowed to freely read and modify the source code of the kernel
and of all system programs. Several commercial companies have
started to support their products under Linux, most of which aren't
distributed under a GNU Public License. Therefore, you may not be
allowed to read or modify their source code. Linux runs on low-end,
cheap hardware platforms. You can even build a network server
using an old Intel 80386 system with 4 MB of RAM. Linux is
powerful. Linux systems are very fast, since they fully exploit the
features of the hardware components.
The main Linux target is efficiency, and indeed many design choices
of commercial variants, like the STREAMS I/O subsystem, have
been rejected by Linus because of their implied performance

mu
no
tes
.in

6

Advanced Operating
System

6

penalty. Linux has a high standard for source code quality. Linux
systems are usually very stable; they have a very low failure rate and
system maintenance time. The Linux kernel can be very small and
compact. Indeed, it is possible to fit both a kernel image and full root
filesystem, including all fundamental system programs, on just one
1.4 MB floppy disk! As far as we know, none of the commercial
Unix variants is able to boot from a single floppy disk. Linux is
highly compatible with many common operating systems. It lets you
directly mount filesystems for all versions of MS-DOS and MS
Windows, SVR4, OS/2, Mac OS, Solaris, SunOS, NeXTSTEP,
many BSD variants, and so on. Linux is also able to operate with
many network layers like Ethernet, Fiber Distributed Data Interface
(FDDI), High Performance Parallel Interface (HIPPI), IBM's Token
Ring, AT&T WaveLAN, DEC RoamAbout DS, and so forth. By
using suitable libraries, Linux systems are even able to directly run
programs written for other operating systems.
For example, Linux is able to execute applications written for
MSDOS, MS Windows, SVR3 and R4, 4.4BSD, SCO Unix,
XENIX, and others on the Intel 80x86 platform. Linux is well
supported. Believe it or not, it may be a lot easier to get patches and
updates for Linux than for any proprietary operating system! The
answer to a problem often comes back within a few hours after
sending a message to some newsgroup or mailing list. Moreover,
drivers for Linux are usually available a few weeks after new
hardware products have been introduced on the market. By contrast,
hardware manufacturers release device drivers for only a few
commercial operating systems, usually the Microsoft ones.
Understanding the Linux Kernel 10 Therefore, all commercial Unix
variants run on a restricted subset of hardware components. With an
estimated installed base of more than 12 million and growing,
people who are used to certain creature features that are standard
under other operating systems are starting to expect the same from
Linux. As such, the demand on Linux developers is also increasing.
Luckily, though, Linux has evolved under the close direction of
Linus over the years, to accommodate the needs of the masses.

1.4 GRUB in Linux

The GRUB (Grand Unified Bootloader) is a bootloader available from the
GNU project. A bootloader is very important as it is impossible to start an
operating system without it. It is the first program which starts when the
program is switched on. The bootloader transfers the control to the
operating system kernel.

GRUB Features
GRUB is the default bootloader for many of the Linux distributions. This
is because it is better than many of the previous versions of the
bootloaders. Some of its features are:

mu
no
tes
.in

7

Linux Operating
System Introduction

x GRUB supports LBA (Logical Block Addressing Mode) which puts
the addressing conversion used to find files into the firmware of the
hard drive

x GRUB provides maximum flexibility in loading the operating
systems with required options using a command based, pre-
operating system environment.

x The booting options such as kernel parameters can be modified
using the GRUB command line.

x There is no need to specify the physical location of the Linux kernel
for GRUB. It only required the hard disk number, the partition
number and file name of the kernel.

x GRUB can boot almost any operating system using the direct and
chain loading boot methods.

GRUB Installation Process
GRUB automatically becomes the default loader after it is installed. The
following steps are followed to install GRUB:

x It is important to use the latest GRUB package available to install
GRUB. Or the GRUB package from the installation CD-ROM is
used.

x The root shell prompt is opened and the command /sbin/grub-
install is run after the GRUB package is installed. The in the
command is the location where the GRUB stage 1 boot loader
should be installed.

x After all this is done, the GRUB graphical boot loader menu appears
before the kernel loads into memory when the system boots.

GRUB Boot Process
The boot process using GRUB requires the GRUB to load itself into
memory. This is done in the following steps:

x The stage 1 boot loader is loaded into the memory by the BIOS. This
boot loader is also known as the primary boot loader. It exists on
512 bytes or less of disk space within the master boot record. The
primary boot loader can load the stage 1.5 or stage 2 boot loader if
required.

x The stage 1.5 boot loader is loaded into the memory by the stage 1
boot loader if required. This may be necessary in some cases as
some hardware require a middle step before moving on to the stage
2 loader.

x The secondary boot loader is also known as the stage 2 boot loader
and it can be loaded into the memory by the primary boot loader.
Display of the GRUB menu and command environment are
functions performed by the secondary boot loader. This allows the
user to look at system parameters and select the operating system to
boot.

mu
no
tes
.in

8

Advanced Operating
System

8

x The operating system or kernel is loaded into the memory by the
secondary boot loader. After that, the control of the machine is
transferred to the operating system.

GRUB Interfaces
There are three interfaces in GRUB which all provide different levels of
functionality. The Linux kernel can be booted by the users with the help of
these interfaces. Details about the interfaces are:

Menu Interface
The GRUB is configured by the installation program in the menu
interface. It is the default interface available. It contains a list of the
operating systems or kernels which is ordered by name. A specific
operating system or kernel can be selected using the arrow keys and it can
be booted using the enter key.

Menu Entry Editor Interface
The e key in the boot loader menu is used to access the menu entry editor.
All the GRUB commands for the particular menu entry are displayed there
and these commands may be altered before loading the operating system.
Command Line Interface
This interface is the most basic GRUB interface, but it grants the most
control to the user. Using the command line interface, any command can
be executed by typing it and then pressing enter. This interface also
features some advanced shell features.
GRUB vs GRUB2
The default menu for GRUB2 looks very similar to GRUB but there are
some changes made in this.

x Grub has two configuration files namely menu. lst and grub.
conf whereas, Grub2 has only one main configuration file namely
grub.cfg and it looks very close to a full scripting language. And this
configuration file is overwritten by certain Grub 2 package updates,
whenever a kernel is added or removed, or when the user runs
update-grub. For any configuration changes, we need to run update-
grub to make the changes effective.

x In Grub, it is really hard for the normal user to modify the
configuration. But Grub2 is more user-friendly, Grub-mkconfig will
automatically changes the configuration.

x In Grub, partition number starts from 0, whereas in Grub2 it starts
with 1. The first device is still identified with hd0. These changes
can be altered if needed by making some changes to device.map file
of the '/etc/grub' folder.

x Grub uses physical and logical addresses to address the disk, it can't
even read from new partitions whereas, Grub2 uses UUID to
identify a disk thus is more reliable. It supports LVM and RAID
devices.

mu
no
tes
.in

9

Linux Operating
System Introduction

x In today’s Linux Distros including (Ubuntu 16.04 and RHEL 7),
GRUB2 will now directly show a login prompt and no menu is
displayed now.

x If you want to see the menu during boot you need to hold down
SHIFT key. Even sometimes by pressing ESC you can also display
the menu.

x Users have also now choice of creating custom files in which they
can place their own menu entries. You can make use of a file called
40_custom which is available in '/etc/grub.d' folder.

x Even users can now change the menu display settings. This is done
through a file called grub located in /etc/default folder.

1.5 Inter Process Communication (IPC)

A process can be of two types:
x Independent process.
x Co-operating process.

An independent process is not affected by the execution of other processes
while a co-operating process can be affected by other executing processes.
Though one can think that those processes, which are running
independently, will execute very efficiently, in reality, there are many
situations when co-operative nature can be utilized for increasing
computational speed, convenience, and modularity. Inter-process
communication (IPC) is a mechanism that allows processes to
communicate with each other and synchronize their actions. The
communication between these processes can be seen as a method of co-
operation between them. Processes can communicate with each other
through both:

1. Shared Memory
2. Message passing

Figure 1 below shows a basic structure of communication between
processes via the shared memory method and via the message passing
method.
An operating system can implement both methods of communication.
First, we will discuss the shared memory methods of communication and
then message passing. Communication between processes using shared
memory requires processes to share some variable, and it completely
depends on how the programmer will implement it. One way of
communication using shared memory can be imagined like this: Suppose
process1 and process2 are executing simultaneously, and they share some
resources or use some information from another process. Process1
generates information about certain computations or resources being used
and keeps it as a record in shared memory. When process2 needs to use
the shared information, it will check in the record stored in shared memory
and take note of the information generated by process1 and act
accordingly. Processes can use shared memory for extracting information

mu
no
tes
.in

10

Advanced Operating
System

10

as a record from another process as well as for delivering any specific
information to other processes.
Let’s discuss an example of communication between processes using the
shared memory method.

ii) Messaging Passing Method
Now, We will start our discussion of the communication between
processes via message passing. In this method, processes
communicate with each other without using any kind of shared
memory. If two processes p1 and p2 want to communicate with each
other, they proceed as follows:

x Establish a communication link (if a link already exists, no
need to establish it again.)

x Start exchanging messages using basic primitives.
We need at least two primitives:
– send (message, destination) or send(message)
– receive (message, host) or receive(message)

mu
no
tes
.in

11

Linux Operating
System Introduction

The message size can be of fixed size or of variable size. If it is of fixed
size, it is easy for an OS designer but complicated for a programmer and if
it is of variable size then it is easy for a programmer but complicated for
the OS designer. A standard message can have two parts: header and
body.

The header part is used for storing message type, destination id, source
id, message length, and control information. The control information
contains information like what to do if runs out of buffer space, sequence
number, priority. Generally, message is sent using FIFO style.

Process Scheduling in Linux Scheduling is the action of
assigning resources to perform tasks. We will mainly focus on scheduling
where our resource is a processor or multiple processors, and the task will
be a thread or a process that needs to be executed. The act of scheduling is
carried out by a process called scheduler.

The scheduler goals are to
x Maximize throughput (number of tasks done per time unit)
x Minimize wait time (amount of time passed since the process was

ready until it started to execute)
x Minimize response time (amount of time passed since the process

was ready until it finished executing)
x Maximize fairness (distributing resources fairly for each task)

Process Types in Linux
Linux has two types of processes
x Real-time Processes
x Conventional Processes

Real-time processes are required to ‘obey’ response time constraints
without any regard to the system’s load. In different words, real-time
processes are urgent and cannot be delayed no matter the circumstances.
An example of a real-time process in Linux is the migration process which
is responsible for distributing processes across CPU cores (a.k.a load
balancing).

Conventional processes don’t have strict response time constraints and
they can suffer from delays in case the system is ‘busy’. Each process type
has a different scheduling algorithm, and as long as there are ready-to-run
real-time processes they will run and make the conventional processes
wait.

Real-Time Scheduling
There are two scheduling policies when it comes to real-time scheduling,
SCHED_RR and SCHED_FIFO. The policy affects how much runtime a
process will get and how is the runqueue is operating. The ready-to-run
processes I have mentioned are stored in a queue called runqueue. The
scheduler is picking processes to run from this runqueue based on the
policy.

mu
no
tes
.in

12

Advanced Operating
System

12

SCHED_FIFO
In this policy the scheduler will choose a process based on the arrival time
(FIFO = First In First Out). A process with a scheduling policy of
SCHED_FIFO can ‘give up’ the CPU under a few circumstances:

x Process is waiting, for example for an IO operation. When the
process is back to ‘ready’ state it will go back to the end of the
runqueue.

x Process yielded the CPU, with the system call sched_yield. The
process will immediately go back to the end of the runqueue.

SCHED_RR
RR = Round Robin
In this scheduling policy, every process in the runqueue gets a time slice
(quantum) and executes in his turn (based on priority) in a cyclic fashion.
Let’s consider an example where we have 3 processes in our runqueue, A
B C, all of them have the policy of SCHED_RR.
As shown in the drawing below, each process gets a time slice and
executes in his turn. when all processes ran 1 time, they repeat the same
execution order.

Real-Time Scheduling Summary
A real-time process can be scheduled in two different policies,
SCHED_FIFO and SCHED_RR. The policy affects how the runqueue is
working and how much time each process is getting for execution.
Conventional Scheduling
CFS — Completely Fair Scheduler is the scheduling algorithm of
conventional processes since version 2.6.23 of Linux.So CFS is focusing
mainly on one metric — it wants to be fair as much as possible, meaning
that he gives every process gets an even time slice of the CPU.
Note that, processes with higher priority might still get bigger time slices.
In order for us to understand how CFS works, we will have to get familiar
with a new term — virtual runtime (vruntime).
Virtual Runtime
Virtual runtime of a process is the amount of time spent by actually
executing, not including any form of waiting. As we mentioned, CFS tries
to be as fair as possible.
To accomplish that, CFS will schedule the process with the minimum
virtual time that is ready to run. CFS maintains variables holding the
maximum and minimum virtual runtime for reasons we will understand
soon.

mu
no
tes
.in

13

Linux Operating
System Introduction

CFS — Completely Fair Scheduler
Before talking about how the algorithm works, let’s understand what data
structure this algorithm is using. CFS uses a red-black tree which is a
balanced binary search tree — meaning that insertion, deletion, and look-
up are performed in O(logN) where N is the number of processes.

The key in this tree is the virtual runtime of a process. New processes or
processes that got back to the ready state from waiting are inserted into the
tree with a key vruntime=min_vruntime. This is extremely important in
order to prevent starvation of older processes in the tree. Moving on to the
algorithm, at first, the algorithm sets itself a time limit — sched_latency.

In this time limit, it will try to execute already processes — N.
This means that each process will get a time slice of the time limit divided
by the number of processes — Q஘ = sched_latency/N.

When a process finishes its time-slice (Q஘), the algorithm picks the process
with the least virtual runtime in the tree to execute next.

1.6 Let us Sum Up

x Linux is a member of the large family of Unix-like operating
systems

x The microkernel and monolithic kernels are two types of kernels in
the operating system. The kernel is the main part of the OS.

x The GRUB (Grand Unified Bootloader) is a bootloader available
from the GNU project. A bootloader is very important as it is
impossible to start an operating system without it.

x Inter-process communication (IPC) is a mechanism that allows
processes to communicate with each other and synchronize their
actions.

x Process Scheduling in Linux Scheduling is the action of
assigning resources to perform tasks.

1.7 List of References

x Linux Pocket Guide is a book written by Daniel J. Barrett
x The Complete Reference is a book written by Richard Petersen
x Linux Kernel Development is a book written by Robert Love
x The Linux Programming Interface is a book written by Michael

Kerrisk

1.8 Bibliography

x Linux Kernel Development is a book written by Robert Love
x The Linux Programming Interface is a book written by Michael

Kerrisk

mu
no
tes
.in

14

Advanced Operating
System

14

1.9 Unit End Exercise

1. Explain Linux Kernel.
2. What are the types of Kernels?
3. Explain Operating system booting process.
4. Mention the difference between GRUB-I, GRUB-II.
5. Explain Inter Processes communication.
6. Explain various scheduling.

7777777�

mu
no
tes
.in

15

2
MEMORY MANAGEMENT AND

VIRTUAL MEMORY IN LINUX

Unit Structure

2.0 Objectives
2.1 Introduction
2.2 Basic memory management
 2.2.1. Monoprogramming without Swapping or Paging
 2.2.2. Multiprogramming with Fixed Partitions
 2.2.3. Relocation and Protection
2.3 Swapping
 2.3.1. Memory Management with Bitmaps
 2.3.2 Memory Management with Linked Lists
2.4 Virtual memory
 2.4.1 Paging
 2.4.2 Page Table
 2.4.3 Translation look aside buffers
2.5 Page replacement algorithms
 2.5.1 First In First Out (FIFO)
 2.5.2 Least Recently Used (LRU)
 2.5.3 Optimal Range
 2.5.4 Last In First Out (LIFO)
 2.5.5 Practice problems based on page replacement algorithm
2.6 Design issues for paging systems
 2.6.1 The working set model
 2.6.2 Local versus Global Allocation Policies
 2.6.3 Page size
 2.6.4 Virtual Memory Interface
2.7 Segmentation
 2.7.1 Types of segmentation
 2.7.2 Characteristics of segmentation
 2.7.3 Need of segmentation
 2.7.4 User’s view of a program
 2.7.5 Segmentation Architecture
 2.7.6 Segmentation Hardware
 2.7.7 Advantages of Segmentation
 2.7.8 Disadvantages of Segmentation
 2.7.9 Example of Segmentation
2.8 Case Study: Linux memory management
2.9 Summary
2.10 List of References
2.11 Unit End Exercises

mu
no
tes
.in

16

Advanced Operating
System

16

2.0 OBJECTIVES

 After going through this unit, you will be able to:
 Understand the fundamentals of operating system
 Acquaint with the operating system mechanism in handling and

managing the process and threads along with their communication
 Understand the mechanisms and conceptualize the components

involved in designing the memory management in contemporary
operating system

2.1 INTRODUCTION

Memory is a valuable resource that must be maintained properly. While
today's average home computer has two thousand times the memory of the
IBM 7094 (the world's largest computer in the early 1960s), applications
and the data they are expected to process have also increased dramatically.
"Programs and their data expand to fill the memory available to contain
them," says Parkinson's Law. We'll look at how operating systems handle
and manage memory in this chapter.

Every programmer dreams of having an endlessly huge, infinitely fast
memory that is also nonvolatile, meaning it does not lose its contents if the
power goes off. Why not ask for it to be reasonably priced while we're at
it? Unfortunately, technology is unable to transform such fantasies into
reality. As a result, most computers contain a memory hierarchy, with a
tiny amount of extremely fast, expensive volatile cache memory, hundreds
of megabytes of medium-speed, medium-price volatile main memory
(RAM), and tens or hundreds of gigabytes of slow, inexpensive
nonvolatile disc storage. The operating system's role is to coordinate how
these memories are utilized.

The memory manager is the element of the operating system that handles
the memory hierarchy. Its role is to keep track of which bits of memory
are in use and which are not, to allocate memory to processes when they
require it and deallocate it when they are finished, and to manage
swapping between main memory and disc when main memory is
insufficient to accommodate all processes. It's in the kernel on most
systems (excluding MINIX 3).

In this chapter, we'll look at a variety of memory management strategies,
ranging from the most basic to the most complex. We'll start at the
beginning, looking at the most basic memory management system
available, and work our way up to more complex systems.

2.2 BASIC MEMORY MANAGEMENT

There are two types of memory management systems: those that swap
processes between main memory and disc during execution (swapping and
paging) and those that don't. Keep in mind that swapping and paging are
largely artifacts of a lack of main memory that can hold all apps and data

mu
no
tes
.in

17

Memory Management and
Virtual Memory in Linux

at the same time. If primary memory grows to the point that there is
genuinely enough of it, arguments for one memory management technique
or another may become obsolete.

On the other hand, as previously said, software appears to increase at the
same rate as memory, so effective memory management may be required
at all times. Many institutions in the 1980s used a 4 MB VAX to run a
timesharing system with dozens of (mostly satisfied) users. For a single-
user Windows XP machine, Microsoft now recommends at least 128 MB.
The trend toward multimedia places even greater demands on memory,
therefore good memory management will be required for at least the next
decade.

2.2.1. MONOPROGRAMMING WITHOUT SWAPPING OR
PAGING

The simplest memory management approach is to execute only one
application at a time, with that program and the operating system sharing
memory. Figure 2.1 depicts three variations on this topic. The operating
system may be in RAM (Random Access Memory) at the bottom of
memory, as shown in figure 2.1(a), or in ROM (Read-Only Memory) at
the top of memory, as shown in figure 2.1(b), or the device drivers may be
in ROM at the top of memory, with the rest of the system in RAM down
below, as shown in figure 2.1(c). The first model was once common on
mainframes and minicomputers, but it is now rarely seen. On some
palmtop computers and embedded systems, the second model is used.
Early on, the third model was employed. Personal computers (e.g., those
running MS-DOS), where the BIOS is the piece of the system stored in the
ROM (Basic Input Output System).

Only one process can execute at a time when the system is organized this
way. The operating system copies the desired application from disc to
memory and executes it as soon as the user forms a command. The
operating system shows a prompt character and waits for a new command
when the process is complete. It loads a new program into memory,
overwriting the old one, when it receives the command.

Figure 2.1 With one operating system and one user process, there are three
easy ways to organize memory. Other options are also available.

mu
no
tes
.in

18

Advanced Operating
System

18

2.2.2. MULTIPROGRAMMING WITH FIXED PARTITIONS
Monoprogramming is rarely implemented these days, with the exception
of very small embedded devices. Multiple processes can run at the same
time in most modern systems. When many processes are operating at the
same time, one can use the CPU while the other is waiting for I/O to
complete. As a result, multiprogramming improves CPU usage. Although
network servers can always execute several processes (for distinct clients)
at the same time, most client (i.e., desktop) systems now have this
capability as well.

The simplest method for achieving multiprogramming is to divide
memory into n (potentially uneven) segments. This partitioning can be
done manually, for example, when the machine is booted.

When a job comes in, it can be placed in the input queue for the smallest
partition that can accommodate it. Because the partitions in this system are
fixed, any space in a partition that is not used by a work is wasted while
that process is running. This system of fixed partitions and independent
input queues is depicted in figure 2.2(a).

Figure 2.2: (a) Memory partitions are fixed, and each partition has its own
input queue.
 (b) Memory partitions are fixed, and each partition has a single input
queue.

When the large partition of queue is vacant but the queue for a small
partition is filled, as is the situation for partitions 1 and 3 in figure 2.2 (a),
the disadvantage of dividing the incoming jobs into different queues
becomes obvious. Even if there is plenty of memory available, little jobs
must wait to get into memory. Maintaining a single queue, as shown in
figure 2.2 (b), is an alternate arrangement. Whenever a partition becomes
available, the work closest to the top of the queue that fits in it could be
loaded and executed.

mu
no
tes
.in

19

Memory Management and
Virtual Memory in Linux

As wasting a large partition on a tiny project is undesirable, another
technique is to examine the whole input queue whenever a partition
becomes available and select the largest job that fits. It's worth noting that
the latter approach considers little tasks as unworthy of a full partition,
whereas it's normally preferable to provide the best service to the smallest
jobs (often interactive activities), not the worst.

Having at least one little partition around is one way out. Small jobs will
be able to run on this partition without the need for a huge partition.
Another option is to establish a rule that no job that is eligible to run may
be skipped over more than k times. It receives one point for each time it is
skipped over. It cannot be skipped once it has accumulated k points.

2.2.3. RELOCATION AND PROTECTION
Multiprogramming brings two key issues that must be addressed:
relocation and privacy. Separate jobs will be run at different addresses, as
shown in Figure 2.2. When a program is linked, the linker needs to know
where in memory the program will start.

Assume an example that the first instruction is a call to a procedure
located at absolute address 100 in the binary file generated by the linker.
This program will jump to absolute address 100, which is inside the
operating system, if it is loaded in partition 1 (at address 100K). A call to
100K + 100 is all that is required. If the program is loaded into partition 2,
the call to 200K + 100, and so on, must be made. This issue is called as
the relocation problem.

One option is to change the instructions while the program is being loaded
into memory. 100K is added to each address in program put into partition
1, 200K is added to addresses in program loaded into partition 2, and so
on. To conduct this type of relocation during loading, the linker must
include a list or bitmap in the binary program that specifies which program
words are addresses to be relocated and which are opcodes, constants, or
other elements that must not be relocated.

The problem of protection is not solved by relocating during loading. A
malicious application can create a new instruction and jump to it at any
time. There is no mechanism to prevent a program from creating an
instruction that reads or writes any word in memory since program in this
system use absolute memory addresses rather than addresses relative to a
register. Allowing processes to read and write memory belonging to other
users is very undesirable in multiuser systems.

Equipping the machine with two unique hardware registers, known as the
base and limit registers, is an alternate solution to both the relocation and
protection difficulties. When a process is scheduled, the start address of its
partition is loaded into the base register, and the length of the partition is
placed into the limit register. Before being transmitted to memory, every
memory address is automatically supplemented with the contents of the
base register. Thus, if the base register has the value 100K, a CALL 100
instruction becomes a CALL 100K + 100 instructions without changing
the instruction itself. The limit register is also verified to ensure that

mu
no
tes
.in

20

Advanced Operating
System

20

addresses do not attempt to target memory outside the current partition.
The base and limit registers are protected by hardware to prevent user
program from changing them.

The necessity to do an addition and a comparison on each memory
reference is a disadvantage of this technique. Although comparisons are
quick, addition takes a long time due to carry propagation time unless
specific addition circuits are employed.

2.3 SWAPPING

Organizing memory into fixed segments is straightforward and effective
using a batch system. When a work reaches the front of the queue, it is
loaded into a partition. It is retained in memory until it is completed.
There's no reason to use anything more elaborate if you can keep enough
jobs in memory to keep the CPU active all the time.
The situation is different with timesharing systems or graphics-oriented
personal computers. When main memory is insufficient to accommodate
all of the presently running processes, extra processes must be stored on
disc and brought in to execute dynamically.
Depending on the hardware available, there are two broad techniques to
memory management. Swapping is the most basic technique, which
involves bringing in each process in its whole, executing it for a bit, and
then putting it back on the disc. Virtual memory, on the other hand, allows
applications to run even if they are only partially in main memory.
In figure 2.3, the operation of a switching system is depicted. Only process
A is initially stored in memory. Processes B and C are then either created
or swapped in from memory. A is swapped off to storage in figure 2.3(d).
Then D arrives, and B exits. Finally, A arrives. Because A is now in a
different location, the addresses it contains must be redirected, either by
software when it is swapped in or (most likely) by hardware during
program execution.

Figure 2.3 As processes enter and exit memory, the memory allocation
changes. The shaded areas are memory that hasn't been used yet.

When swapping generates many memory holes, they can be merged into
one large one by shifting all the processes as far down as possible. This

mu
no
tes
.in

21

Memory Management and
Virtual Memory in Linux

concept is known as memory compaction. It is frequently avoided since it
consumes a significant amount of CPU time.

One thing worth mentioning is the amount of memory that should be
assigned to a process when it is created or swapped in. When processes are
established with a constant size, the allocation is straightforward: the
operating system allocates exactly what is required, no more and no less.

If, on the other hand, processes' data segments can grow by dynamically
allocating memory from a heap, as many programming languages allow, a
problem arises whenever a process attempts to grow. If there is a hole
adjacent to the process, it can be allocated and the process permitted to
develop into it. If, on the other hand, the expanding process is adjacent to
another process, it will either have to be transferred to a memory hole
large enough for it, or one or more processes will have to be swapped out
to make room. If a process can't grow in memory and the swap area on the
disc is full, it'll have to wait or die.

If most processes are expected to grow as they run, allocating a little more
memory whenever a process is swapped in or moved is probably a good
idea to reduce the overhead involved with moving or swapping processes
that no longer fit in their assigned memory. When switching processes to
disc, however, only the memory that is really in use should be changed;
exchanging the extra RAM is wasteful. Figure 2.4(a) shows a memory
arrangement in which two processes have been given space for expansion.

Figure 2.4: (a) Making space for an expanding data portion.
 (b) Setting aside space for a rising stack and data segment.

If processes can have two expanding segments, for example, the data
segment as a heap for dynamically created and released variables and a
stack segment for typical local variables and return addresses, an alternate
design, shown in figure 2.4(b), emerges. We can see that each process has

mu
no
tes
.in

22

Advanced Operating
System

22

a stack at the top of its allotted memory that is increasing downward, as
well as a data segment just beyond the program text that is rising upward
in this diagram. Either segment can make use of the shared memory
between them. If it runs out, the process must be transferred to a hole with
enough space, swapped out of memory until a larger hole can be created,
or destroyed.

2.3.1. MEMORY MANAGEMENT WITH BITMAPS

When memory is dynamically allotted, the operating system is responsible
for managing it. Bitmaps and free lists are the two most common
techniques to keep track of memory use.

A bitmap divides memory into allocation units, which can be many
kilobytes in size. To each of the allocation unit a bit in the bitmap
corresponds to 0 if the unit is free and 1 if it is occupied (or vice versa).
Figure 2.5 depicts a section of memory and the bitmap that corresponds.

Figure 2.5: (a) A section of memory that contains five processes and three
holes. The memory allocation units are indicated by tick
marks. Shaded areas (0 in the bitmap) are unrestricted.

 (b) Its related bitmap.
 (c) The same data as in a list.

The size of the allocation unit is a crucial design consideration. The
greater the bitmap, the smaller the allocation unit. However, even with a
4-byte allocation unit, 32 bits of memory will only require 1 bit of the
map. Because a memory of 32n bits uses n map bits, the bitmap will only
take up 1/33 of the memory. The bitmap will be smaller if the allocation
unit is large, but if the process size is not an exact multiple of the
allocation unit, significant memory will be wasted in the last unit of the
process.

Because the size of a bitmap depends only on the size of memory and the
size of the allocation unit, it is a straightforward approach to keep track of
memory words in a set amount of memory. The main problem is that when
a k-unit process is brought into memory, the memory management must
scan the bitmap for a sequence of k consecutive 0 bits in the map. Because

mu
no
tes
.in

23

Memory Management and
Virtual Memory in Linux

the run may transcend word boundaries in the map, searching a bitmap for
a run of a particular length is a long process; this is an argument against
bitmaps.

2.3.2 MEMORY MANAGEMENT WITH LINKED LISTS

Maintaining a linked list of allocated and free memory segments, where a
segment is either a process or a gap between two processes, is another
technique to keep track of memory. Figure 2.5(c) depicts the memory of
figure 2.5(a) as a linked list of segments. Each list entry describes a hole
(H) or process (P), as well as the location at which it begins, the length,
and a pointer to the next entry.

The segment list is kept ordered by address in this example. The
advantage of sorting this method is that updating the list is simple when a
process ends or is replaced. Except when it's at the very top or very bottom
of memory, a terminating process usually has two neighbors. These could
be holes or processes, resulting in the four combinations indicated in
figure 2.6. Updating the list in figure 2.6(a) necessitates replacing a P with
an H. Two entries are combined into one in figure 2.6(b) and figure 2.6(c),
making the list one entry shorter.

Three entries are combined in figure 2.6(d), and two items are eliminated
from the list. Because the terminating process's process table slot will
usually point to the process's list entry, it may be more convenient to have
the list as a double-linked list rather than the single-linked list shown in
figure 2.5(c). This format makes it easy to locate the prior entry and
determine whether or not a merge is possible.

Figure 2.6 For the terminating process, X, there are four neighboring
combinations.

Several strategies can be used to allocate memory for a newly generated
process (or an old process being swapped in from disc) when the processes
and holes are kept on a list sorted by address. The memory management,
we suppose, knows how much memory to allocate. First fit is the simplest
algorithm. The process manager checks the list of segments until it locates
a large enough hole. Except in the statistically unusual situation of a
precise fit, the hole is then split into two portions, one for the process and

mu
no
tes
.in

24

Advanced Operating
System

24

one for the unused memory. Because it searches as little as possible, first
fit is a fast algorithm.
Next fit is a small variant of first fit. It functions similarly to initial fit,
with the exception that it retains track of its location whenever it finds a
suitable hole. When it's called to discover a hole again, it starts searching
the list from where it left off the last time, rather than starting from the
beginning, as first fit does. According to Bays (1977) simulations,
following fit performs somewhat worse than first fit. Best fit is another
well-known method. Best fit scans the entire list for the tiniest hole that is
suitable. Rather than splitting up a large hole that may be needed later,
best fit looks for a hole that is near to the actual size required.
Consider figure 2.5 as an example of initial fit and best fit. If a block of
size 2 is required, the hole will be allocated at 5, but the hole will be
allocated at 18. Because it must search the complete list every time it is
invoked, best fit is slower than first fit. It also resulted in more wasted
memory than first fit or next fit because it tends to fill memory with tiny,
useless holes. On average, the first fit produces larger holes.
To get around the difficulty of breaking up nearly precise matches into a
process and a little hole, consider the worst fit approach, which is to
always select the largest available hole, ensuring that the hole broken off
is large enough to be useful. Worst fit has also been proved to be a bad
concept through simulation. By keeping distinct lists for processes and
holes, all four algorithms can be made faster. As a result, they can focus
all of their attention on holes rather than processes. Because a freed
segment must be deleted from the process list and entered into the hole
list, the additional complexity and slowdown when deallocating memory
is an unavoidable cost of this allocation speedup. If separate lists for
processes and holes are kept, the hole list can be sorted by size to find the
best fit faster. When best fit examines a list of holes from smallest to
largest, it recognizes that the hole that fits is the smallest one that will
perform the task, resulting in the best fit. As with the single list technique,
no additional searching is required. First fit and best fit are equally fast
with a hole list organized by size, and next fit is meaningless. A slight
optimization is achievable when the holes are kept on separate lists from
the processes. The holes themselves can be utilized instead of a distinct set
of data structures for keeping the hole list, as shown in figure 2.5(c). Each
hole's first word may represent the hole size, while the second word could
be a link to the next item. Figure 2.5(c) which requires three words and
one bit (P/H) are no longer required.

2.4 VIRTUAL MEMORY

People were initially confronted with programs that were too large to fit in
the available memory many years ago. The most common technique was
to divide the programs into sections known as overlays. Overlay 0 would
be the first to run. It would then request for another overlay when it was
finished. Some overlay systems were extremely complicated, allowing
many overlays to be stored in memory at the same time. The overlays

mu
no
tes
.in

25

Memory Management and
Virtual Memory in Linux

were stored on disc and dynamically swapped in and out of memory by
the operating system as needed.
Although the system did the actual work of shifting overlays in and out,
the programmer was responsible for deciding how to partition the program
into sections. It took a long time and was tedious to break down enormous
programs into small, modular bits. It didn't take long for someone to come
up with a means to automate the entire process.
Virtual memory is the name given to the method that was invented
(Fotheringham, 1961). Virtual memory works on the premise that the total
size of the program, data, and stack may exceed the amount of physical
memory accessible. The operating system keeps the bits of the program in
main memory that is currently in use, and the remainder on the disc.

2.4.1 PAGING
Paging is a memory management strategy that does away with the need for
contiguous physical memory allocation. This approach allows a process's
physical address space to be non-contiguous.

 Logical Address or Virtual Address (Represented in bits): The CPU
generates an address.

 The set of all logical addresses generated by a program (expressed in
words or bytes) is known as the logical address space or virtual
address space.

 Physical Address (in bits): An address that is physically existent on
the memory unit.

 The set of all physical addresses that correspond to the logical
addresses (expressed in words or bytes) is known as the Physical
Address Space.

Example:

 Logical Address Space = 2^31 words = 2 G words (1 G = 2^30) if
Logical Address is 31 bits.

 Logical Address = log2 2^27 = 27 bits if Logical Address Space =
128 M words = 2^7 * 2^20 words.

 Physical Address Space = 2^22 words = 4 M words (1 M = 2^20) if
Physical Address is 22 bits.

 Physical Address = log2 2^24 = 24 bits if Physical Address Space =
16 M words = 2^4 * 2^20 words.

The memory management unit (MMU), which is a hardware component,
performs the mapping from virtual to physical address, which is known as
the paging mechanism.

 The Physical Address Space is organized into frames, which are
fixed-size pieces of data.

 The Logical Address Space is also divided into pages, which are
fixed-size blocks.

 Page Dimensions = Frame Dimensions

mu
no
tes
.in

26

Advanced Operating
System

26

Consider the following scenario:
 When the Physical Address is 12 bits, the Physical Address Space is

4 kilobytes.
 If the logical address is 13 bits, the address space is 8 K words.
 1 K words Equals page size = frame size (assumption)

The address generated by the CPU is categorized into two parts.
 Page Number (p): It indicates the number of bits required to indicate

pages in Logical Address Space
 Page offset (d): It indicates the number of bits necessary to

represent a certain word in a page, the size of a page in Logical
Address Space, the word number of a page, or the offset of a page.

The physical address is separated into two parts.
 Frame number (f): The number of bits necessary to represent a frame

of Physical Address Space.
 Frame offset (d): The number of bits necessary to represent a certain

word in a frame, or the physical address space frame size, or the
word number of a frame, or the frame offset.

Dedicated registers can be used to implement the page table in hardware.
However, using a register for the page table is only useful if the page table
is tiny. We can employ TLB (translation Look-aside buffer), a particular,
small, fast look-up hardware cache, if the page table has a significant
number of entries.

 The TLB is a high-speed, associative memory.
 TLB entries are made up of two parts: a tag and a value.
 When this memory is accessed, an item is compared to all tags at the

same time. If the object is located, the value associated with it is
returned.

mu
no
tes
.in

27

Memory Management and
Virtual Memory in Linux

Time to access main memory = m
Effective access time = m (for page table) + m (for main memory) if page
tables are kept in main memory (for particular page in page table)

2.4.2 PAGE TABLE

The Page Table is a data structure that is used by the virtual memory
system in the operating system of a computer to record the mapping
between physical and logical addresses. With the help of the page table,
the logical address created by the CPU is converted into a physical
address. As a result, the page table primarily supplies the relevant frame
number (frame base address) where that page is stored in main memory.
Figure 2.7 represents the paging model of physical and logical memory.

Figure 2.7 Physical and logical memory paging model

mu
no
tes
.in

28

Advanced Operating
System

28

Characteristics of the Page Table

The following are some of the features of the Page Table:
 It's saved in the system's main memory.
 In general, the number of entries in the page table equals the number

of pages divided by the procedure.
 PTBR stands for page table base register, and it is used to store the

base address for the current process's page table.
 Each process has its own table of contents.

Techniques used for structuring the Page Table

The following are some of the most popular approaches for structuring the
Page table:
[1] Hierarchical Paging
[2] Hashed Page Tables
[3] Inverted Page Tables

[1] Hierarchical Paging
It is also known as multilevel paging. If the page table is too large to
accommodate in a single place, we may need to create a hierarchy with
multiple levels. The logical address space is divided into multiple page
tables in this sort of paging. One of the simplest ways is hierarchical
paging, which may be accomplished using a two-level page table or a
three-level page table.

 Two-level page Table
Consider a system with a 32-bit logical address space and a 1 KB
page size, which is partitioned into:

 The page number is made up of 22 bits.
 Page Offset is a 10-bit value.

As we page the Page table, the page number is further separated into
 The page number is made up of 12 bits.
 Page Offset is a 10-bit value.

As a result, the logical address is:

In the diagram above,

 P1 is the Outer Page table's index.

mu
no
tes
.in

29

Memory Management and
Virtual Memory in Linux

 The displacement within the page of the Inner page Table is
indicated by P2.

Forward-mapped Page Table is so named because address translation
operates from the outer page table inward.

The Address Translation Scheme for a Two-Level Page Table is shown in
the diagram below.

 Three-level page Table
A two-level paging technique is not suited for a system with a 64-bit
logical address space. Let's pretend the page size is 4KB in this
example. If we apply the two-page level method in this situation, the
addresses will appear as in the image below.

To prevent creating such a big table, divide the outer page table,
which will result in a three-level page table:

[2] Hashed Page Tables
This method is used to deal with address spaces larger than 32 bits.
The number is hashed into a page table on this virtual page. This
Page table consists primarily of a chain of elements that hashes to
the same elements.

mu
no
tes
.in

30

Advanced Operating
System

30

The following are the main components of each element:

 The number of the virtual page
 The mapped page frame's value.
 A pointer to the linked list's next element.

The Hashed Page Table's address translation technique is shown in the
diagram below:

Figure 2.8 Hashed Page Table
In this chain, the Virtual Page numbers are compared for a match; if a
match is discovered, the matching physical frame is extracted. Clustered
page tables are often used in this approach for 64-bit address space.

 Clustered Page Tables
These are similar to hashed tables, but instead of one page, each
item links to many pages (i.e. 16). Typically utilized in sparse
address spaces where memory references are dispersed and non-
contiguous.

[3] Inverted Page Tables
The Inverted Page table is a data structure that combines a page
table and a frame table into one. Each virtual page number and real
memory page has their own entries. The virtual address of the page
stored in that real memory location, as well as information about the
process that owns the page, make up the majority of the entry. While
this strategy reduces the amount of memory required to store each
page table, it also increases the time required to search the table
whenever a page reference is encountered.

The address translation scheme of the Inverted Page Table is shown
in the diagram below:

mu
no
tes
.in

31

Memory Management and
Virtual Memory in Linux

Figure 2.9 Inverted page table’s address translation scheme
Because numerous processes may have the identical logical addresses, we
must keep track of the process id of each entry. After running through the
hash function, numerous entries can map to the same index in the page
table. As a result, chaining is utilized to deal with this.

2.4.3 Translation Look aside Buffers
 Drawbacks of Paging:

1] The size of a Page table might be quite large, resulting in a
waste of main memory.

2] Reading a single word from the main memory will take longer
on the CPU.

 How to decrease the page size table
1] The size of the page table can be reduced by raising the page

size, however this will result in internal fragmentation and
page waste.

2] Another option is to use multilevel paging, but this increases
the effective access time and is therefore not a viable option.

 How to decrease the effective access time
1] The CPU can utilize a register with the page table stored inside

it to reduce the time it takes to access the page table, but the
registers are not inexpensive and are small in comparison to
the page table size, so this is not a realistic solution.

2] To solve these numerous paging flaws, we must seek out a
memory that is less expensive than the register and faster than
the main memory, allowing the CPU to focus on accessing the
actual word rather than repeatedly accessing the page table.

 Locality of reference
The notion of locality of reference in operating systems asserts that,
rather than loading the complete process in main memory, the OS
can load only the number of pages in main memory that are
regularly accessed by the CPU, as well as the page table entries that
correspond to those many pages.

 Translation look aside buffer (TLB)
A translation look aside buffer is a memory cache that can be
utilized to reduce the time it takes to repeatedly access the page

mu
no
tes
.in

32

Advanced Operating
System

32

table. It's a memory cache that's closer to the CPU; therefore it takes
the CPU less time to access TLB than it does to access main
memory. To put it another way, TLB is faster and smaller than main
memory, but it is also cheaper and larger than the register. TLB
adheres to the principle of locality of reference, which means it only
stores the entries of the many pages that the CPU accesses regularly.

In translation look aside the buffers; there are tags and keys that are
used to map data. When the requested entry is located in the
translation look aside buffer, it is referred to as a TLB hit. When this
occurs, the CPU just accesses the actual location in main memory. If
the item isn't located in the TLB (TLB miss), the CPU must first
read the page table in main memory, then the actual frame in main
memory. As a result, the effective access time in the case of a TLB
hit will be less than in the case of a TLB miss. As a result, the
effective access time can be calculated as follows:

EAT = P (t + m) + (1 - p) (t + k.m + m)
Where,

‘p’ is the TLB hit rate,
‘t’ is the time taken to access TLB,
‘m’ indicates the time taken to access main memory k = 1, if the
single level paging has been implemented.
We can deduce from the formula that

1] If the TLB hit rate is increased, the effective access time will
be reduced.

2] In the case of multilevel paging, the effective access time will
be increased.

2.5 PAGE REPLACEMENT ALGORITHMS

When a new page needs to be loaded into the main memory, the Page
Replacement Algorithm determines which page to remove, also known as
swap out. When a requested page is not present in the main memory and

mu
no
tes
.in

33

Memory Management and
Virtual Memory in Linux

the available space is insufficient to allocate to the requested page, Page
Replacement occurs.

When the page chosen for replacement is paged out and referenced again,
it must read in from disc, which necessitates I/O completion. The quality
of the page replacement method is determined by this process: the less
time spent waiting for page-ins, the better.

A page replacement algorithm tries to determine which pages should be
replaced in order to reduce the frequency of page misses. There are
numerous page replacement algorithms to choose from. These algorithms
are tested by executing them on a specific memory reference string and
counting the number of page faults. The method for that circumstance is
better if there are less page faults. When a process requests a page and that
page is found in main memory, it is referred to as a page hit; otherwise, it
is referred to as a page miss or a page fault.

There are several page replacement algorithms in operating system as
indicated in the diagram 2.10 below

Figure 2.10 Various page replacement algorithms

2.5.1 First In First Out (FIFO)
This is the most basic page replacement method. The OS maintains a
queue in this algorithm, with the oldest page at the front and the most
recent page at the back, to keep track of all the pages in memory.
When a page needs to be replaced, the FIFO algorithm replaces the page at
the front of the queue, which is the page that has been in memory the
longest.

 EXAMPLE:
Consider the following page reference string of size 12: 1, 2, 3, 4, 5,
1, 3, 1, 6, 3, 2, 3 with frame size 4 (i.e. maximum 4 pages in a
frame).

mu
no
tes
.in

34

Advanced Operating
System

34

Total Page Fault=9

All four spaces are initially empty, therefore when 1, 2, 3, and 4 arrive,
they are assigned to the empty spots in the order of their arrival. This is a
page fault because the numbers 1, 2, 3, and 4 are not in memory.
When page 5 arrives, it is not available in memory, so a page fault occurs,
and the oldest page in memory, 1, is replaced.
Because 1 is not in memory when it arrives, a page fault occurs, and it
replaces the oldest page in memory, i.e. 2.
When 3,1 arrives, it is already in the memory, i.e., Page Hit, therefore
there is no need to update it.
When page 3 arrives, it is not in memory, therefore a page fault occurs,
and the oldest page in memory, 4, is replaced.
When page 2 arrives, it is not in memory, therefore a page fault occurs,
and the oldest page in memory, 5, is replaced.
When 3 arrives, it is already in the memory, i.e., Page Hit, therefore there
is no need to update it.
Page Fault Ratio = 9/12, i.e. total miss/total cases possible

 Advantages
1] Simple and straightforward to implement.
2] Low overhead.

 Disadvantages
1] Poor performance.
2] It doesn't take into account how often you use it or when you

last used it; it just changes the oldest page.
3] Belady's Anomaly affects this algorithm (i.e. more page faults

when we increase the number of page frames).

2.5.2 Least Recently Used (LRU)
The Least Recently Used page replacement algorithm maintains track of
how many times a page has been used in a short period of time. It is based
on the assumption that the pages that have been widely utilized in the past
will also be heavily used in the future.

mu
no
tes
.in

35

Memory Management and
Virtual Memory in Linux

When page replacement occurs in LRU, the page that has not been utilized
for the longest period is replaced.

 EXAMPLE:

Total Page Fault: 8

All four spaces are initially empty, therefore when 1, 2, 3, and 4 arrive;
they are assigned to the empty spots in the order of their arrival. This is a
page fault because the numbers 1, 2, 3, and 4 are not in memory.
Because 5 is not in memory when it arrives, a page fault occurs, and it
replaces 1 as the least recently utilized page.
When 1 arrives, it is not in memory, therefore a page fault occurs, and it
takes the place of 2.
When 3,1 arrives, it is already in the memory, i.e., Page Hit, therefore
there is no need to update it.
When 6 arrives, it is not found in memory, causing a page fault, and it
takes the place of 4.
When 2 arrives, it is not found in memory, causing a page fault, and it
takes the place of 5.
When 3 arrives, it is already in the memory, i.e., Page Hit, therefore there
is no need to update it.
Page Fault Ratio = 8/12

 Advantages
1] Efficient
2] Not affected by Belady's Anomaly.

 Disadvantages
1] Implementation is difficult.
2] Expensive.
3] Hardware support is required.

2.5.3 Optimal Page Replacement
The best page replacement algorithm is the Optimal Page Replacement
algorithm, which produces the fewest page faults. This algorithm is also
known as OPT that stands for clairvoyant replacement algorithm, or

mu
no
tes
.in

36

Advanced Operating
System

36

Belady's optimal page replacement policy. This algorithm replaces pages
that will not be used for the longest period of time in the future, i.e., pages
in the memory that will be referred to the farthest in the future.

This approach was first proposed a long time ago and is difficult to
execute since it necessitates future knowledge about program behavior.
Using the page reference information obtained on the first run, however, it
is possible to implement optimal page replacement on the second run.

 EXAMPLE:

Total Page Fault=6
All four spaces are initially empty, therefore when 1, 2, 3, and 4
arrive, they are assigned to the empty spots in the order of their
arrival. This is a page fault because the numbers 1, 2, 3, and 4 are
not in memory.
When 5 arrives, it is not in memory, causing a page fault, and it
substitutes 4, which will be utilized the most in the future among 1,
2, 3, and 4.
When 1,3,1 arrives, they are already in the memory, i.e., Page Hit,
therefore there is no need to update them.
When 6 arrives, it is not found in memory, causing a page fault, and
it takes the place of 1.
When 3, 2, 3 appears, it is already in the memory, i.e., Page Hit, thus
there is no need to update it.
Page Fault Ratio = 6/12

 Advantages

1] Implementation is simple.
2] The data structures are simple.
3] Extremely effective.

 Disadvantages

1] Future knowledge of the program is required.
2] Time-consuming.

mu
no
tes
.in

37

Memory Management and
Virtual Memory in Linux

2.5.4 Last In First Out (LIFO)

The FIFO principle is comparable to how this method works. The newest
page, which is the last to arrive in the primary memory, gets replaced in
this way. This algorithm uses the stack to keep track of all the pages.

The last items entered are the first to be eliminated in the LIFO technique
of data processing. FIFO (First In, First Out) is the contrary of LIFO, in
which objects are deleted in the order they were entered.

Imagine stacking a deck of cards by laying one card on top of the other,
starting at the bottom, to help understand LIFO. You begin removing
cards from the top of the deck after it has been entirely stacked. Because
the last cards to be placed on the deck are the first to be removed, this
procedure is an example of the LIFO approach.

When pulling data from an array or data buffer, computers sometimes
employ the LIFO approach. The LIFO method is used when a computer
needs to access the most recent data entered. The FIFO approach is
utilized when data must be retrieved in the order it was entered.

2.5.5 PRACTICE PROBLEMS BASED ON PAGE REPLACEMENT
ALGORITHMS

Problem-01: In main memory, a system uses three page frames to store
process pages. It employs a FIFO (First in, First Out) page replacement
policy. Assume that all of the page frames are blank at first. What is the
total number of page faults that will be generated while processing the
following page reference string-

4, 7, 6, 1, 7, 6, 1, 2, 7, 2
Calculate the hit and miss ratios as well.
Solution:
Number of total references = 10

From this figure,
Total number of page fault occurred = 6

Calculating Hit ratio-

Total number of page hits

mu
no
tes
.in

38

Advanced Operating
System

38

= Total number of references – Total number of page misses or page faults
= 10 – 6
= 4

 Thus, Hit ratio
= Total number of page hits / Total number of references
= 4 / 10
= 0.4 or 40%

Calculating Miss ratio-

Total number of page misses or page faults = 6
Thus, Miss ratio
= Total number of page misses / Total number of references
= 6 / 10
= 0.6 or 60%

 Alternatively,
Miss ratio
= 1 – Hit ratio
= 1 – 0.4
= 0.6 or 60%

Problem-02: In main memory, a system uses three page frames to store
process pages. It replaces pages based on the Least Recently Used (LRU)
policy. Assume that all of the page frames are blank at first. What is the
total number of page faults that will be generated while processing the
following page reference string-

4 , 7, 6, 1, 7, 6, 1, 2, 7, 2
Calculate the hit and miss ratios as well.
Solution:
Number of total references = 10

From this figure,
Total number of page fault occurred = 6
Solving same as above-
 Hit ratio = 0.4 or 40%
 Miss ratio = 0.6 or 60%

Problem-03: In main memory, a system uses three page frames to store
process pages. The Optimal page replacement policy is used. Assume that
all of the page frames are blank at first. What is the total number of page

mu
no
tes
.in

39

Memory Management and
Virtual Memory in Linux

faults that will be generated while processing the following page reference
string-
4, 7, 6, 1, 7, 6, 1, 2, 7, 2
Calculate the hit and miss ratios as well.
Solution:
Number of total references = 10

From this figure,
Total number of page fault occurred = 5
Solving same as above-
 Hit ratio = 0.5 or 50%
 Miss ratio = 0.5 or 50%

2.6 DESIGN ISSUES FOR PAGING SYSTEMS

The difficulties that operating system designers must address in order to
acquire optimal performance from a paging system will be discussed in
the following sections.

2.6.1 The working set model
Processes are started with none of their pages in memory in the purest
form of paging. The CPU receives a page fault as soon as it attempts to
acquire the first instruction, requiring the operating system to bring in the
page holding the first instruction. Other page faults, such as those
affecting global variables and the stack, frequently appear rapidly. After a
while, the process has most of the pages it requires and begins to run
smoothly with minimal page errors. Demand paging is the name given to a
system in which pages are loaded only when they are needed, rather than
in advance.
Of course, writing a test program that reads all the pages in a huge address
space in a methodical manner, creating so many page faults that there isn't
enough memory to keep them all is simple. Thankfully, most procedures
do not operate in this manner. They have a locality of reference, which
means that during any phase of execution, the process only refers to a
small portion of the total number of pages. For example, each pass of a
multipass compiler only looks at a fraction of the pages, and a different
fraction at that.
The working set refers to the set of pages that a process is currently using.
The process will operate without creating many errors if the full working
set is in memory until it progresses to the next execution phase (e.g., the
next pass of the compiler). Because executing an instruction takes a few
nanoseconds and reading a page from the disc takes around 10
milliseconds, if the available memory is insufficient to hold the complete

mu
no
tes
.in

40

Advanced Operating
System

40

working set, the operation will generate multiple page faults and run
slowly. It will take a long time to complete at a rate of one or two
instructions per 10 milliseconds. Thrashing is a term used to describe a
program that causes page faults every few instructions.
Processes are regularly relocated to disc (i.e., all of their pages are deleted
from memory) in a multiprogramming system to give other processes a
chance at the CPU. When a process is brought back in, the question of
what to do emerges. Nothing needs to be done from a technical standpoint.
Until its working set is loaded, the process will only create page faults.
The issue is that having 20, 100, or even 1000 page faults every time a
process is loaded is slow and wastes a lot of CPU time, because processing
a page fault takes the operating system a few milliseconds of CPU time,
not to mention a lot of disc I/O.
As a result, many paging systems attempt to keep track of each process'
working set and verify that it is in memory before allowing it to operate.
The working set model is the name for this method. It is intended to
drastically minimize the number of page faults. Prepaging is the process of
loading pages before allowing processes to run. It's worth noting that the
working set evolves with time.
The operating system must keep track of which pages are in the working
set in order to implement the working set concept. The aging algorithm is
one technique to keep track of this data. The clock algorithm's
performance can be improved by using information about the working set.

2.6.2 Local versus Global Allocation Policies

Several strategies for selecting a page to replace when a defect occurs
have been discussed in the preceding sections. The allocation of memory
among the competing runnable processes is a major challenge involved
with this decision.
Consider figure 2.11 (a). The set of runnable processes in this diagram is
made up of three processes: A, B, and C. Assume A receives a page fault.
Should the page replacement method look for the least recently used page
using only the six pages now allocated to A, or all the pages in memory?
When only A's pages are examined, the page with the lowest age value is
A5, resulting in the condition depicted in Figure 2.11. (b).

Figure 2.11: Local Vs. Global page replacement

mu
no
tes
.in

41

Memory Management and
Virtual Memory in Linux

(a) Original Configuration
(b) Local page replacement
(c) Global page replacement

If, on the other hand, the page with the lowest age value is eliminated
regardless of whatever page it is, page B3 is chosen, and we will have the
scenario as shown in the figure 2.11(c). The algorithm shown in figure
2.11 (b) is a local page replacement algorithm, whereas the algorithm
shown in figure 2.11 (c) is a global algorithm. Local algorithms effectively
correspond to dedicating a fixed portion of memory to each process. Page
frames are dynamically allocated among the runnable processes via global
algorithms. As a result, the amount of page frames allocated to each
activity changes over time.
Global algorithms perform better in general, especially when the working
set size varies throughout the course of an operation. Even if there are lots
of free page frames, thrashing will occur if a local algorithm is employed
and the working set expands. Local algorithms waste memory as the
working set shrinks. If you utilize a global approach, the system will have
to decide how many page frames to give each process on a regular basis.
One method is to keep an eye on the working set size as indicated by the
ageing bits, but this does not guarantee that thrashing will not occur. The
working set can grow or shrink in microseconds, but the ageing bits are a
rough estimate based on a number of clock ticks.

2.6.3 Page size

The page size is frequently a setting that the operating system can set.
Even if the hardware supports 512-byte pages, the operating system can
treat pages 0 and 1, 2 and 3, 4 and 5, and so on as 1-KB pages by
allocating two consecutive 512-byte page frames for them.
The ideal page size is determined by balancing numerous competing
elements. As a result, there is no one-size-fits-all solution. To begin, there
are two arguments in favor of a tiny page size. A text, data, or stack
segment picked at random will not fill an integral number of pages. Half
of the final page will be blank on average. That page's extra space is being
squandered. Internal fragmentation is the term for this type of waste.
Internal fragmentation will waste np/ 2 bytes with n segments in memory
and a page size of p bytes. This supports the idea of a tiny page size.
When we consider a program that consists of eight 4 KB sequential
phases, another rationale for a modest page size emerges. With a 32-KB
page size, the program must always be given 32 KB. It only takes 16 KB
with a 16-KB page size. It only takes 4 KB at any time with a page size of
4 KB or less. A big page size, on average, will result in more unneeded
program being stored in memory than a small page size. Small pages, on
the other hand, imply that applications will require a high number of
pages, necessitating the use of a large page table.
When the CPU switches from one process to another on some machines,
the page table must be loaded into hardware registers. A small page size
on these machines means that the time required to load the page registers

mu
no
tes
.in

42

Advanced Operating
System

42

increases as the page size decreases. Furthermore, as the page size lowers,
the page table takes up more space.

2.6.4 Virtual Memory Interface

Our entire discussion has been based on the assumption that virtual
memory is transparent to processes and programmers. That is, all they
perceive on a machine with a smaller physical memory is a big virtual
address space. That is true for many systems, but in certain advanced
systems, programmers have some control over the memory map and can
use it in unconventional ways to improve program behavior. We'll take a
look at a couple of them in this section.
Allowing two or more processes to share the same memory is one
rationale for providing programmers control over their memory map. If
programmers can identify memory areas, it may be conceivable for one
process to give the name of a memory region to another so that the latter
can map it in. High bandwidth sharing is feasible when two (or more)
processes share the same pages: one process writes to the shared memory
while the other reads from it.
A high-performance message forwarding system can also be implemented
via page sharing. Normally, data is duplicated from one address space to
another when messages are passed, which costs a lot of money. A message
can be passed by having the sending process unmap the page(s) containing
the message and the receiving process map them in if processes can
manage their page map. Instead of copying all of the data, only the page
names must be copied. Distributed shared memory is yet another advanced
memory management technology. The concept is to allow different
processes on a network to share a set of pages, maybe as a single shared
linear address space, but not necessary. A page fault occurs when a
process refers to a page that is not currently mapped in. The page fault
handler, which may be in kernel or user space, then locates the machine
that is holding the page and sends it a message instructing it to unmap the
page and transfer it over the network. The page is mapped in and the
faulting instruction is restarted when it comes.

2.7 SEGMENTATION

Segments are used to break down a procedure. Segments are the sections
into which a program is separated that are not always all the same size.
Another method of splitting accessible memory is segmentation. It's a new
memory management technique that generally supports the user's
perspective on memory. The logical address space consists primarily of
segments. Each section is given a name as well as a length.
A procedure is divided into segments in generally. Segmentation splits or
segments the memory in the same way as paging does. However, there is a
distinction: paging splits the memory into fixed segments, whereas
segmentation divides the memory into variable segments, which are then
loaded into logical memory space. A program is essentially a grouping of
segments. A segment is a logical unit that includes things like: main

mu
no
tes
.in

43

Memory Management and
Virtual Memory in Linux

program, procedure, function, method, object, local and global variable,
symbol table, common block, stack, arrays.

2.7.1 Types of segmentation

The following are the several forms of segmentation:

1] Virtual Memory Segmentation: In this sort of segmentation, each
process is divided into n divisions, but they are not segmented all at
once.

2] Simple Segmentation: With this type, each process is divided into n
divisions and all of them are segmented at the same time, but during
runtime, and they can be non-contiguous (that is they may be
scattered in the memory).

2.7.2 Characteristics of segmentation

The following are some characteristics of the segmentation technique:

1] Variable-size partitioning is used in the Segmentation scheme.
2] Segments are the conventional name for supplementary memory

partitions.
3] The length of modules determines the partition size.
4] Secondary memory and main memory are thus partitioned into

unequal-sized sections using this technique.

2.7.3 Need of segmentation

The separation of the user's image of memory and the real physical
memory is one of the major downsides of memory management in the
operating system. Paging is a technique that allows these two memories to
be separated.

The user's perspective is essentially mapped to physical storage. This
mapping also allows for the separation of physical and logical memory.
The operating system may partition the same function into multiple pages,
which may or may not be loaded into memory at the same time. The
operating system is also unconcerned about the user's perspective on the
process. The system's efficiency suffers as a result of this strategy.
Because it breaks the process into chunks, segmentation is a better
technique.

2.7.4 User’s view of a program

The user's perspective on segmentation is depicted in the figure 2.12
below

mu
no
tes
.in

44

Advanced Operating
System

44

Figure 2.12 User’s view of segmentation

Basic Method

A segmented computer system has a logical address space that can be
divided into several parts. And the segment's size is changeable, meaning
it can expand or shrink. As we previously stated, each segment has a name
and length throughout execution. And the address primarily specifies the
segment's name as well as its displacement inside the segment. As a result,
the user provides each address using two values: segment name and offset.
Because implementation segments are numbered rather than named, they
are referred to as segment number rather than name.

As a result, the logical address is made up of two tuples:
<segment-number, offset>
where,
Segment Number(s): A Segment Number is a number that represents the
number of bits needed to represent a segment.
Offset(d): The amount of bits necessary to express the size of the segment
is represented by segment offset.

2.7.5 Segmentation Architecture

Segment Table

The term "Segment Table" refers to a table that is used to store data from
all process segments. In this method, there isn't a straightforward link
between logical and physical addresses. The segment table is used to
convert a two-dimensional logical address to a one-dimensional physical
address. This table is primarily stored in the main memory as a distinct
segment. The base address of the segment table is stored in a table known
as the Segment table base register (STBR)

Each entry in the segment table has the following information:

mu
no
tes
.in

45

Memory Management and
Virtual Memory in Linux

1] Segment Base/Base Address: The segment base primarily comprises
the starting physical address in the memory where the segments are
stored.

2] Segment Limit: The segment limit is mostly used to define the
segment's length.

Segment Table Base Register (STBR): The STBR register is used to
point to the memory location of the segment table.

Segment Table Length Register (STLR): The number of segments used
by a program is indicated by this register. If s<STLR, the segment number
s is allowed.

2.7.6 Segmentation Hardware

The segmentation hardware is depicted in the figure 2.13 below

Figure 2.13 Segmentation hardware

mu
no
tes
.in

46

Advanced Operating
System

46

The two portions of the logical address generated by the CPU are:
 Segment Number(s): It's a key to the segment table.
 Offset(d): It must be between '0' and also it should be in a 'segment

limit'. If the Offset is greater than the segment limit, the trap is
generated.

As a result, correct offset + segment base = physical memory address and
a segment table is essentially a collection of base-limit register pairs.

2.7.7 Advantages of Segmentation

The following are some of the benefits of using the segmentation
technique:

 The segment table is mostly utilized in the Segmentation technique
to keep track of segments. In addition, the segment table takes
significantly less space than the paging table.

 Internal Fragmentation does not exist.

 In general, segmentation allows us to separate a program into
modules for easier viewing.

 The size of the segments varies.

2.7.8 Disadvantages of Segmentation

The following are some of the technique's drawbacks:

 The overhead of maintaining a segment table for each process is
significant.

 This method is quite costly.

 Because two memory visits are now necessary, the time it takes to
fetch the instruction increases.

 In segmentation, segments are of different sizes and so are not ideal
for exchanging.

 As the open space is divided down into smaller bits, and processes
are loaded and withdrawn from the main memory, this strategy leads
to external fragmentation, resulting in a lot of memory waste.

2.7.9 Example of Segmentation

The segmentation example is shown below, with five segments numbered
from 0 to 4. As illustrated, these portions will be stored in physical
memory. Each segment has its own entry in the segment table, which
provides the segment's beginning entry address in physical memory
(referred to as the base) as well as the segment's length (denoted as limit).

mu
no
tes
.in

47

Memory Management and
Virtual Memory in Linux

Segment 2 starts at position 4300 and is 400 bytes long. As a result, a
reference to byte 53 of segment 2 is mapped to position 4300
(4300+53=4353) in this scenario. 3200 (the base of segment 3) +
852=4052 is mapped to a reference to segment 3, byte 85. Because this
segment is 1000 bytes long, a reference to byte 1222 of segment 0 would
result in a trap to the OS.

2.8 CASE STUDY: LINUX MEMORY MANAGEMENT

 Memory management is one of the most difficult tasks performed by
the Linux kernel. It is linked to a number of topics and issues.

 One of the most significant aspects of the operating system is the
memory management subsystem. There has always been a demand
for more memory than is physically available in a system since the
dawn of computing. Virtual memory is the most successful of the
strategies explored to overcome this issue. Virtual memory gives the
impression that the system has more memory than it actually has by
spreading it across competing processes as needed.

 Virtual memory does more than merely extend the memory of your
machine. The memory management subsystem allows you to
manage your memory.

 Large Address Spaces: The operating system gives the impression
that the system has more memory than it actually has. The virtual
memory in the system can be many times greater than the physical
memory.

mu
no
tes
.in

48

Advanced Operating
System

48

 Security: Each system process has its own virtual address space.
Because these virtual address spaces are fully distinct, a process
executing one program will not influence another. Furthermore, the
hardware virtual memory techniques enable for the protection of
memory sectors against writing. This prevents unauthorized apps
from overwriting code and data.

 Memory Mapping: Memory mapping is a technique for mapping
picture and data files into the address space of a process. The
contents of a file are linked directly into the virtual address space of
a process through memory mapping.

 Equitable Physical Memory Allocation: The memory management
subsystem allots a fair share of the system's physical memory to
each operating process.

 Virtual Memory Sharing: Although virtual memory allows program
to have their own (virtual) address space, there are situations when
they must share memory. For example, the bash command shell
could be used by multiple processes in the system. Rather than
having multiple copies of bash, one for each process' virtual address
space, it is preferable to have only one copy in physical memory,
which all bash-running processes share. Another typical example of
executing code shared by several processes is dynamic libraries.
Shared memory can also be utilized as an Inter Process
Communication (IPC) mechanism, allowing two or more processes
to exchange data via shared memory. Unix TM System V shared
memory IPC is supported by Linux.

 The virtual and physical memory is separated into pages, which are
fixed length blocks of memory.

 The theoretical page table contains the following information for
each entry.

mu
no
tes
.in

49

Memory Management and
Virtual Memory in Linux

 Valid flag: This determines whether or not the page table entry is
valid.

 The physical page frame number.

 Information on access control: This section explains how to use the page.
Is it possible to write to it? Is there any executable code in it?

Linux Memory Management System Calls

Physical memory management

Linux separates memory into three zones:
 ZONE DMA - these are pages that can be used to perform DMA

operations.

 ZONE NORMAL - pages that are mapped on a regular basis.
 ZONE HIGHMEM - non-permanently mapped pages with high-

memory addresses.

2.9 SUMMARY

We looked at memory management in this chapter. The simplest systems,
we discovered, do not swap or page at all. When a program is loaded into
memory, it stays there until it is completed. This is how most embedded
systems function, with the programming maybe even stored in ROM.
Some operating systems only allow one process in memory at a time,
whilst others allow multiprogramming.

Swapping is the next stage. The system can handle more processes than it
has memory for when swapping is used. Processes that don't have enough
memory are moved to the disc. A bitmap or a hole list can be used to keep
track of free space in memory and on disc.

Virtual memory is commonly found in more modern computers. Each
process address space is partitioned into uniformly sized chunks called
pages, which can be inserted into any available page frame in memory in
their most basic form. There has been a slew of page replacement
algorithms proposed. Second chances and ageing are two of the more
well-known examples. Choosing an algorithm isn't enough to make paging
systems operate successfully; other considerations include establishing the
working set, memory allocation policy, and page size.

Segmentation makes it easier to link and share data structures that change
in size during execution. It also makes it easier to provide varying levels
of protection to different areas. To create a two-dimensional virtual

mu
no
tes
.in

50

Advanced Operating
System

50

memory, segmentation and paging are sometimes coupled. Segmentation
and paging are supported by the Intel Pentium.

2.10 LIST OF REFERENCES

1] An Introduction to Operating Systems: Concepts and Practice
(GNU/Linux), 4th edition, Pramod Chandra P. Bhatt, Prentice-Hall
of India Pvt. Ltd, 2014

2] Operating System Concepts with Java Eight Edition, Avi
Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons,
Inc., 2009, http://codex.cs.yale.edu/avi/os book/OS8/os8j

3] UNIX and Linux System Administration Handbook, Fourth Edition,
Evi Nemeth, Garth Snyder, Tren Hein, Ben Whaley, Pearson
Education, Inc, 2011,

4] Operating Systems: Design and Implementation, Third Edition,
Andrew S. Tanenbaum, Albert S. Woodhull, Prentice Hall, 2006.

5] https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-
2008-l05-slides

6] https://www.cs.princeton.edu/courses/archive/fall16/cos318/lectures/
14.VM-Design.pdf

7] https://www.cs.unm.edu/~cris/481/481.170memory.pdf

8] https://www.cpp.edu/~gsyoung/CS4310/Notes/Part2Memory
Management.pdf

9] https://kgut.ac.ir/useruploads/1552306818833dqu.pdf

10] https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-
2008-l05-handout6.pdf

11] https://sritsense.weebly.com/uploads/5/7/2/7/57272303/case_study_
on_linux.pdf

2.11 UNIT END EXERCISES

1] Explain the concept of memory management.

2] Write a note on relocation and protection.

3] Write in brief about swapping concept.

4] Discuss the concept of virtual memory.

5] What do you mean by Paging?

6] Explain the concept of Page table.

mu
no
tes
.in

http://codex.cs.yale.edu/avi/os
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-slides
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-slides
https://www.cs.princeton.edu/courses/archive/fall16/cos318/lectures/%2014.VM-Design.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos318/lectures/%2014.VM-Design.pdf
https://www.cs.unm.edu/~cris/481/481.170memory.pdf
https://www.cpp.edu/~gsyoung/CS4310/Notes/Part2Memory%20Management.pdf
https://www.cpp.edu/~gsyoung/CS4310/Notes/Part2Memory%20Management.pdf
https://kgut.ac.ir/useruploads/1552306818833dqu.pdf
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-handout6.pdf
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-l05-handout6.pdf
https://sritsense.weebly.com/uploads/5/7/2/7/57272303/case_study_%20on_linux.pdf
https://sritsense.weebly.com/uploads/5/7/2/7/57272303/case_study_%20on_linux.pdf

51

Memory Management and
Virtual Memory in Linux

7] Write a note on various techniques used for structuring the page
table.

8] Write a short note on translational look aside buffer.

9] Discuss various page replacement algorithms.

10] Explain First in First Out page replacement algorithm along with an
example.

11] Explain with an example the concept of Least Recently Used
Algorithm.

12] Discuss on optimal page replacement algorithm.

13] Write a note on Last in First Out page replacement algorithm.

14] Discuss the various design issues for paging system.

15] What is the need of Segmentation?

16] Explain the concept of segmentation and state its characteristics.

17] What are the types of segmentation? Explain in brief.

18] Write a note on segmentation hardware.

19] Explain segmentation architecture and state its advantages,
disadvantages along with an example.

20] Discuss on the case study of Linux memory management.



mu
no
tes
.in

52

Advanced Operating
System

52

3
INPUT/ OUTPUT IN LINUX

Unit Structure

3.0 Objective
3.1 History
3.2 Principles of I/O Hardware
3.3 File, Directories and Implementation
3.4 Security
3.5 Summary
3.6 Exercise
3.7 References

3.0 OBJECTIVE

 To explore the history of the UNIX operating system from which
Linux is derived and the principles upon which Linux’s design is
based

 To examine the Linux process model and illustrate how Linux
schedules processes and provides interprocess communication

 To look at memory management in Linux
 To explore how Linux implements file systems and manages I/O

devices

3.1 HISTORY

Linux is a modern, free operating system based on UNIX standards. First
developed as a small but self-contained kernel in 1991 by Linus Torvalds,
with the major design goal of UNIX compatibility, released as open
source. Its history has been one of collaboration by many users from all
around the world, corresponding almost exclusively over the Internet. It
has been designed to run efficiently and reliably on common PC hardware,
but also runs on a variety of other platforms. The core Linux operating
system kernel is entirely original, but it can run much existing free UNIX
software, resulting in an entire UNIX-compatible operating system free
from proprietary code. Linux system has many, varying Linux
distributions including the kernel, applications, and management tools.

3.2 PRINCIPLES OF I/O HARDWARE

Input and Output

To the user, the I/O system in Linux looks much like that in any UNIX
system. That is, to the extent possible, all device drivers appear as normal

mu
no
tes
.in

53

Input/ Output in Linux files. A user can open an access channel to a device in the same way she
opens any other file—devices can appear as objects within the file system.

 The system administrator can create special files within a file system that
contain references to a specific device driver, and a user opening such a
file will be able to read from and write to the device referenced. By using
the normal file-protection system, which determines who can access which
file, the administrator can set access permissions for each device. Linux
splits all devices into three classes: block devices, character devices, and
network devices.

Figure 3.1: Structure of Device Driver System

Figure illustrates the overall structure of the device-driver system. Block
devices include all devices that allow random access to completely
independent, fixed-sized blocks of data, including hard disks and floppy
disks, CD-ROMs, and flash memory. Block devices are typically used to
store file systems, but direct access to a block device is also allowed so
that programs can create and repair the file system that the device
contains.

Applications can also access these block devices directly if they wish; for
example, a database application may prefer to perform its own, fine-tuned
laying out of data onto the disk, rather than using the general-purpose file
system. Character devices include most other devices, such as mice and
keyboards. The fundamental difference between block and character
devices is random access—block devices may be accessed randomly,
while character devices are only accessed serially.

For example, seeking to a certain position in a file might be supported for
a DVD but makes no sense to a pointing device such as a mouse. Network
devices are dealt with differently from block and character devices. Users
cannot directly transfer data to network devices; instead, they must
communicate indirectly by opening a connection to the kernel's
networking subsystem.

Block Devices
Block devices provide the main interface to all disk devices in a system.
Performance is particularly important for disks, and the block-device
system must provide functionality to ensure that disk access is as fast as

mu
no
tes
.in

54

Advanced Operating
System

54

possible. This functionality is achieved through the scheduling of I/O
operations In the context of block devices, a block represents the unit with
which the kernel performs I/O. When a block is read into memory, it is
stored in a buffer. The request manager is the layer of software that
manages the reading and writing of buffer contents to and from a block-
device driver. A separate list of requests is kept for each block-device
driver. Traditionally, these requests have been scheduled according to a
unidirectional-elevator (C-SCAN) algorithm that exploits the order in
which requests are inserted in and removed from the per-device lists. The
request lists are maintained in sorted order of increasing starting-sector
number. When a request is accepted for processing by a block-device
driver, it is not removed from the list. It is removed only after the I/O is
complete, at which point the driver continues with the next request in the
list, even if new requests have been inserted into the list before the active
request. As new I/O requests are made, the request manager attempts to
merge requests in the per-device lists. The scheduling of I/O operations
changed somewhat with version 2.6 of the kernel. The fundamental
problem with the elevator algorithm is that I/O operations concentrated in
a specific region of the disk can result in starvation of requests that need to
occur in other regions of the disk.
The deadline I/O scheduler used in version 2.6 works similarly to the
elevator algorithm except that it also associates a deadline with each
request, thus addressing the starvation issue. By default, the deadline for
read requests is 0.5 second and that for write requests is 5 seconds. The
deadline scheduler maintains a sorted queue of pending I/O operations
sorted by sector number. However, it also maintains two other queues—a
read queue for read operations and a write queue for write operations.
These two queues are ordered according to deadline.
Every I/O request is placed in both the sorted queue and either the read or
the write queue, as appropriate. Ordinarily, I/O operations occur from the
sorted queue. However, if a deadline expires for a request in either the
read or the write queue, I/O operations are scheduled from the queue
containing the expired request. This policy ensures that an I/O operation
will wait no longer than its expiration time

Character Devices
A character-device driver can be almost any device driver that does not
offer random access to fixed blocks of data. Any character-device drivers
registered to the Linux kernel must also register a set of functions that
implement the file I/O operations that the driver can handle. The kernel
performs almost no preprocessing of a file read or write request to a
character device; it simply passes the request to the device in question and
lets the device deal with the request.

The main exception to this rule is the special subset of character-device
drivers that implement terminal devices. The kernel maintains a standard
interface to these drivers by means of a set of tty_struc t structures. Each
of these structures provides buffering and flow control on the data stream
from the terminal device and feeds those data to a line discipline.

mu
no
tes
.in

55

Input/ Output in Linux A line discipline is an interpreter for the information from the terminal
device. The most common line discipline is the tt y discipline, which glues
the terminal's data stream onto the standard input and output streams of a
user's running processes, allowing those processes to communicate
directly with user's terminal. This job is complicated by the fact that
several such processes may be running simultaneously, and the tt y line
discipline is responsible for attaching and detaching the terminal's input
and output from the various processes connected to it as those processes
are suspended or awakened by the user.

Other line disciplines also are implemented that have nothing to do with
I/O to a user process. The PPP and SLIP networking protocols are ways of
encoding a networking connection over a terminal device such as a serial
line. These protocols are implemented under Linux as drivers that at one
end appear to the terminal system as line disciplines and at the other end
appear to the networking system as network-device drivers. After one of
these line disciplines has been enabled on a terminal device, any data
appearing on that terminal will be routed directly to the appropriate
network-device driver.

I/O Hardware:-
One of the important jobs of an Operating System is to manage various
I/O devices including mouse, keyboards, touch pad, disk drives, display
adapters, USB devices, Bit-mapped screen, LED, Analog-to-digital
converter, On/off switch, network connections, audio I/O, printers etc.
An I/O system is required to take an application I/O request and send it to
the physical device, then take whatever response comes back from the
device and send it to the application. I/O devices can be divided into two
categories −
Block devices − A block device is one with which the driver
communicates by sending entire blocks of data. For example, Hard disks,
USB cameras, Disk-On-Key etc.
Character devices − A character device is one with which the driver
communicates by sending and receiving single characters (bytes, octets).
For example, serial ports, parallel ports, sounds cards etc

Device Controllers
Device drivers are software modules that can be plugged into an OS to
handle a particular device. Operating System takes help from device
drivers to handle all I/O devices.
The Device Controller works like an interface between a device and a
device driver. I/O units (Keyboard, mouse, printer, etc.) typically consist
of a mechanical component and an electronic component where electronic
component is called the device controller.
There is always a device controller and a device driver for each device to
communicate with the Operating Systems. A device controller may be
able to handle multiple devices. As an interface its main task is to convert
serial bit stream to block of bytes, perform error correction as necessary.
Any device connected to the computer is connected by a plug and socket,
and the socket is connected to a device controller. Following is a model

mu
no
tes
.in

56

Advanced Operating
System

56

for connecting the CPU, memory, controllers, and I/O devices where CPU
and device controllers all use a common bus for communication.

 Synchronous vs asynchronous I/O
Synchronous I/O − In this scheme CPU execution waits while I/O
proceeds
Asynchronous I/O − I/O proceeds concurrently with CPU execution
Communication to I/O Devices
The CPU must have a way to pass information to and from an I/O device.
There are three approaches available to communicate with the CPU and
Device.
Special Instruction I/O
Memory-mapped I/O
Direct memory access (DMA)

Special Instruction I/O
This uses CPU instructions that are specifically made for controlling I/O
devices. These instructions typically allow data to be sent to an I/O device
or read from an I/O device.

Memory-mapped I/O
When using memory-mapped I/O, the same address space is shared by
memory and I/O devices. The device is connected directly to certain main
memory locations so that I/O device can transfer block of data to/from
memory without going through CPU.

mu
no
tes
.in

57

Input/ Output in Linux While using memory mapped IO, OS allocates buffer in memory and
informs I/O device to use that buffer to send data to the CPU. I/O device
operates asynchronously with CPU, interrupts CPU when finished.
The advantage to this method is that every instruction which can access
memory can be used to manipulate an I/O device. Memory mapped IO is
used for most high-speed I/O devices like disks, communication
interfaces.

Direct Memory Access (DMA)

Slow devices like keyboards will generate an interrupt to the main CPU
after each byte is transferred. If a fast device such as a disk generated an
interrupt for each byte, the operating system would spend most of its time
handling these interrupts. So a typical computer uses direct memory
access (DMA) hardware to reduce this overhead.
Direct Memory Access (DMA) means CPU grants I/O module authority to
read from or write to memory without involvement. DMA module itself
controls exchange of data between main memory and the I/O device. CPU
is only involved at the beginning and end of the transfer and interrupted
only after entire block has been transferred.
Direct Memory Access needs a special hardware called DMA controller
(DMAC) that manages the data transfers and arbitrates access to the
system bus. The controllers are programmed with source and destination
pointers (where to read/write the data), counters to track the number of
transferred bytes, and settings, which includes I/O and memory types,
interrupts and states for the CPU cycles.

mu
no
tes
.in

58

Advanced Operating
System

58

 Polling vs Interrupts I/O
A computer must have a way of detecting the arrival of any type of input.
There are two ways that this can happen, known as polling and interrupts.
Both of these techniques allow the processor to deal with events that can
happen at any time and that are not related to the process it is currently
running.

Polling I/O
Polling is the simplest way for an I/O device to communicate with the
processor. The process of periodically checking status of the device to see
if it is time for the next I/O operation, is called polling. The I/O device
simply puts the information in a Status register, and the processor must
come and get the information.
Most of the time, devices will not require attention and when one does it
will have to wait until it is next interrogated by the polling program. This
is an inefficient method and much of the processors time is wasted on
unnecessary polls.
Compare this method to a teacher continually asking every student in a
class, one after another, if they need help. Obviously the more efficient
method would be for a student to inform the teacher whenever they require
assistance.

Interrupts I/O
An alternative scheme for dealing with I/O is the interrupt-driven method.
An interrupt is a signal to the microprocessor from a device that requires
attention.
A device controller puts an interrupt signal on the bus when it needs
CPU’s attention when CPU receives an interrupt, It saves its current state
and invokes the appropriate interrupt handler using the interrupt vector
(addresses of OS routines to handle various events). When the interrupting
device has been dealt with, the CPU continues with its original task as if it
had never been interrupted.

I/O software is often organized in the following layers −

User Level Libraries − This provides simple interface to the user program
to perform input and output. For example, stdio is a library provided by C
and C++ programming languages.
Kernel Level Modules − This provides device driver to interact with the
device controller and device independent I/O modules used by the device
drivers.
Hardware − This layer includes actual hardware and hardware controller
which interact with the device drivers and makes hardware alive.
A key concept in the design of I/O software is that it should be device
independent where it should be possible to write programs that can access
any I/O device without having to specify the device in advance. For
example, a program that reads a file as input should be able to read a file
on a floppy disk, on a hard disk, or on a CD-ROM, without having to
modify the program for each different device.

mu
no
tes
.in

59

Input/ Output in Linux

Device Drivers

Device drivers are software modules that can be plugged into an OS to
handle a particular device. Operating System takes help from device
drivers to handle all I/O devices. Device drivers encapsulate device-
dependent code and implement a standard interface in such a way that
code contains device-specific register reads/writes. Device driver, is
generally written by the device's manufacturer and delivered along with
the device on a CD-ROM.
A device driver performs the following jobs −
To accept request from the device independent software above to it.
Interact with the device controller to take and give I/O and perform
required error handling
Making sure that the request is executed successfully
How a device driver handles a request is as follows: Suppose a request
comes to read a block N. If the driver is idle at the time a request arrives, it
starts carrying out the request immediately. Otherwise, if the driver is
already busy with some other request, it places the new request in the
queue of pending requests.

Interrupt handlers

An interrupt handler, also known as an interrupt service routine or ISR, is
a piece of software or more specifically a callback function in an operating
system or more specifically in a device driver, whose execution is
triggered by the reception of an interrupt.
When the interrupt happens, the interrupt procedure does whatever it has
to in order to handle the interrupt, updates data structures and wakes up
process that was waiting for an interrupt to happen.
The interrupt mechanism accepts an address ─ a number that selects a
specific interrupt handling routine/function from a small set. In most
architectures, this address is an offset stored in a table called the interrupt
vector table. This vector contains the memory addresses of specialized
interrupt handlers.

mu
no
tes
.in

60

Advanced Operating
System

60

Device-Independent I/O Software
The basic function of the device-independent software is to perform the
I/O functions that are common to all devices and to provide a uniform
interface to the user-level software. Though it is difficult to write
completely device independent software but we can write some modules
which are common among all the devices. Following is a list of functions
of device-independent I/O Software −

Kernel I/O Subsystem
Kernel I/O Subsystem is responsible to provide many services related to
I/O. Following are some of the services provided.

Scheduling − Kernel schedules a set of I/O requests to determine a good
order in which to execute them. When an application issues a blocking I/O
system call, the request is placed on the queue for that device. The Kernel
I/O scheduler rearranges the order of the queue to improve the overall
system efficiency and the average response time experienced by the
applications.
Buffering − Kernel I/O Subsystem maintains a memory area known as
buffer that stores data while they are transferred between two devices or
between a device with an application operation. Buffering is done to cope
with a speed mismatch between the producer and consumer of a data
stream or to adapt between devices that have different data transfer sizes.
Caching − Kernel maintains cache memory which is region of fast
memory that holds copies of data. Access to the cached copy is more
efficient than access to the original.
Spooling and Device Reservation − A spool is a buffer that holds output
for a device, such as a printer, that cannot accept interleaved data streams.
The spooling system copies the queued spool files to the printer one at a
time. In some operating systems, spooling is managed by a system
daemon process. In other operating systems, it is handled by an in-kernel
thread.
Error Handling − An operating system that uses protected memory can
guard against many kinds of hardware and application errors.

3.3 FILE, DIRECTORIES AND IMPLEMENTATION: -

A file is a named collection of related information that is recorded on
secondary storage such as magnetic disks, magnetic tapes and optical
disks. In general, a file is a sequence of bits, bytes, lines or records whose
meaning is defined by the files creator and user.

File Structure
A File Structure should be according to a required format that the
operating system can understand.
A file has a certain defined structure according to its type.
A text file is a sequence of characters organized into lines.
A source file is a sequence of procedures and functions.

mu
no
tes
.in

61

Input/ Output in Linux An object file is a sequence of bytes organized into blocks that are
understandable by the machine.
When operating system defines different file structures, it also contains the
code to support these file structure. Unix, MS-DOS support minimum
number of file structure.

File Type
File type refers to the ability of the operating system to distinguish
different types of file such as text files source files and binary files etc.
Many operating systems support many types of files. Operating system
like MS-DOS and UNIX have the following types of files −

Ordinary files
These are the files that contain user information. These may have text,
databases or executable program. The user can apply various operations
on such files like add, modify, delete or even remove the entire file.

Directory files
These files contain list of file names and other information related to these
files.

Special files
These files are also known as device files. These files represent physical
device like disks, terminals, printers, networks, tape drive etc.

These files are of two types −

Character special files − data is handled character by character as in case
of terminals or printers.

Block special files − data is handled in blocks as in the case of disks and
tapes.

File Access Mechanisms

File access mechanism refers to the manner in which the records of a file
may be accessed. There are several ways to access files −
 Sequential access
 Direct/Random access
 Indexed sequential access

Sequential access
A sequential access is that in which the records are accessed in some
sequence, i.e., the information in the file is processed in order, one record
after the other. This access method is the most primitive one. Example:
Compilers usually access files in this fashion.

Direct/Random access
Random access file organization provides, accessing the records directly.
Each record has its own address on the file with by the help of which it
can be directly accessed for reading or writing. The records need not be in

mu
no
tes
.in

62

Advanced Operating
System

62

any sequence within the file and they need not be in adjacent locations on
the storage medium.

Indexed sequential access
This mechanism is built up on base of sequential access. An index is
created for each file which contains pointers to various blocks. Index is
searched sequentially and its pointer is used to access the file directly.

Space Allocation
Files are allocated disk spaces by operating system. Operating systems
deploy following three main ways to allocate disk space to files.

Contiguous Allocation
Linked Allocation
Indexed Allocation
Contiguous Allocation
Each file occupies a contiguous address space on disk.
Assigned disk address is in linear order.
Easy to implement.
External fragmentation is a major issue with this type of allocation
technique.
Linked Allocation
Each file carries a list of links to disk blocks.
Directory contains link / pointer to first block of a file.
No external fragmentation
Effectively used in sequential access file.
Inefficient in case of direct access file.
Indexed Allocation
Provides solutions to problems of contiguous and linked allocation.
A index block is created having all pointers to files.
Each file has its own index block which stores the addresses of disk space
occupied by the file.
Directory contains the addresses of index blocks of files.

3.4 SECURITY

Security refers to providing a protection system to computer system
resources such as CPU, memory, disk, software programs and most
importantly data/information stored in the computer system. If a computer
program is run by an unauthorized user, then he/she may cause severe
damage to computer or data stored in it. So a computer system must be
protected against unauthorized access, malicious access to system
memory, viruses, worms etc.

Authentication
Authentication refers to identifying each user of the system and
associating the executing programs with those users. It is the responsibility
of the Operating System to create a protection system which ensures that a

mu
no
tes
.in

63

Input/ Output in Linux user who is running a particular program is authentic. Operating Systems
generally identifies/authenticates users using following three ways −
Username / Password − User need to enter a registered username and
password with Operating system to login into the system.
User card/key − User need to punch card in card slot, or enter key
generated by key generator in option provided by operating system to
login into the system.
User attribute - fingerprint/ eye retina pattern/ signature − User need to
pass his/her attribute via designated input device used by operating system
to login into the system.

One Time passwords
One-time passwords provide additional security along with normal
authentication. In One-Time Password system, a unique password is
required every time user tries to login into the system. Once a one-time
password is used, then it cannot be used again. One-time password are
implemented in various ways.

Random numbers − Users are provided cards having numbers printed
along with corresponding alphabets. System asks for numbers
corresponding to few alphabets randomly chosen.

Secret key − User are provided a hardware device which can create a
secret id mapped with user id. System asks for such secret id which is to
be generated every time prior to login.

Network password − Some commercial applications send one-time
passwords to user on registered mobile/ email which is required to be
entered prior to login.

Program Threats
Operating system's processes and kernel do the designated task as
instructed. If a user program made these process do malicious tasks, then it
is known as Program Threats. One of the common example of program
threat is a program installed in a computer which can store and send user
credentials via network to some hacker. Following is the list of some well-
known program threats.
Trojan Horse − Such program traps user login credentials and stores them
to send to malicious user who can later on login to computer and can
access system resources.
Trap Door − If a program which is designed to work as required, have a
security hole in its code and perform illegal action without knowledge of
user then it is called to have a trap door.
Logic Bomb − Logic bomb is a situation when a program misbehaves only
when certain conditions met otherwise it works as a genuine program. It is
harder to detect.
Virus − Virus as name suggest can replicate themselves on computer
system. They are highly dangerous and can modify/delete user files, crash
systems. A virus is generatlly a small code embedded in a program. As

mu
no
tes
.in

64

Advanced Operating
System

64

user accesses the program, the virus starts getting embedded in other files/
programs and can make system unusable for user

System Threats
System threats refers to misuse of system services and network
connections to put user in trouble. System threats can be used to launch
program threats on a complete network called as program attack. System
threats creates such an environment that operating system resources/ user
files are misused. Following is the list of some well-known system threats.
Worm − Worm is a process which can choked down a system performance
by using system resources to extreme levels. A Worm process generates
its multiple copies where each copy uses system resources, prevents all
other processes to get required resources. Worms processes can even shut
down an entire network.
Port Scanning − Port scanning is a mechanism or means by which a
hacker can detects system vulnerabilities to make an attack on the system.
Denial of Service − Denial of service attacks normally prevents user to
make legitimate use of the system. For example, a user may not be able to
use internet if denial of service attacks browser's content settings.

What is Deadlock?
Deadlock is a situation that occurs in OS when any process enters a
waiting state because another waiting process is holding the demanded
resource. Deadlock is a common problem in multi-processing where
several processes share a specific type of mutually exclusive resource
known as a soft lock or software

What is Circular wait?
One process is waiting for the resource, which is held by the second
process, which is also waiting for the resource held by the third process
etc. This will continue until the last process is waiting for a resource held
by the first process. This creates a circular chain.

For example, Process A is allocated Resource B as it is requesting
Resource A. In the same way, Process B is allocated Resource A, and it is
requesting Resource B. This creates a circular wait loop.

mu
no
tes
.in

65

Input/ Output in Linux Deadlock Detection
A deadlock occurrence can be detected by the resource scheduler. A
resource scheduler helps OS to keep track of all the resources which are
allocated to different processes. So, when a deadlock is detected, it can be
resolved using the below-given methods:

Deadlock Prevention:
It’s important to prevent a deadlock before it can occur. The system
checks every transaction before it is executed to make sure it doesn’t lead
the deadlock situations. Such that even a small change to occur dead that
an operation which can lead to Deadlock in the future it also never
allowed process to execute.
It is a set of methods for ensuring that at least one of the conditions cannot
hold.
No preemptive action:
No Preemption – A resource can be released only voluntarily by the
process holding it after that process has finished its task If a process which
is holding some resources request another resource that can’t be
immediately allocated to it, in that situation, all resources will be released.
Preempted resources require the list of resources for a process that is
waiting. The process will be restarted only if it can regain its old resource
and a new one that it is requesting. If the process is requesting some other
resource, when it is available, then it was given to the requesting process.
If it is held by another process that is waiting for another resource, we
release it and give it to the requesting process.

Mutual Exclusion:
Mutual Exclusion is a full form of Mutex. It is a special type of binary
semaphore which used for controlling access to the shared resource. It
includes a priority inheritance mechanism to avoid extended priority
inversion problems. It allows current higher priority tasks to be kept in the
blocked state for the shortest time possible. Resources shared such as read-
only files never lead to deadlocks, but resources, like printers and tape
drives, needs exclusive access by a single process.

Hold and Wait:
In this condition, processes must be stopped from holding single or
multiple resources while simultaneously waiting for one or more others.

Circular Wait:
It imposes a total ordering of all resource types. Circular wait also requires
that every process request resources in increasing order of enumeration.

Deadlock Avoidance
It is better to avoid a deadlock instead of taking action after the Deadlock
has occurred. It needs additional information, like how resources should
be used. Deadlock avoidance is the simplest and most useful model that
each process declares the maximum number of resources of each type that
it may need.

mu
no
tes
.in

66

Advanced Operating
System

66

Avoidance Algorithms
The deadlock-avoidance algorithm helps you to dynamically assess the
resource-allocation state so that there can never be a circular-wait
situation.
A single instance of a resource type.
Use a resource-allocation graph
Cycles are necessary which are sufficient for Deadlock
Multiples instances of a resource type.
Cycles are necessary but never sufficient for Deadlock.
Uses the banker’s algorithm

Advantages of Deadlock
Here, are pros/benefits of using Deadlock method
This situation works well for processes which perform a single burst of
activity
No preemption needed for Deadlock.
Convenient method when applied to resources whose state can be saved
and restored easily
Feasible to enforce via compile-time checks
Needs no run-time computation since the problem is solved in system
design
Disadvantages of Deadlock method
Here, are cons/ drawback of using deadlock method

Disks
The ideal storage device is
1. Fast
2. Big (in capacity)
3. Cheap
4. Impossible
Disks are big and cheap, but slow.

Disk Hardware
Show a real disk opened up and illustrate the components

 Platter
 Surface
 Head
 Track
 Sector
 Cylinder
 Seek time
 Rotational latency
 Transfer rate

mu
no
tes
.in

67

Input/ Output in Linux Overlapping I/O operations is important. Many controllers can do
overlapped seeks, i.e. issue a seek to one disk while another is already
seeking.

Modern disks cheat and do not have the same number of sectors on outer
cylinders as on inner one. However, the disks have electronics and
software (firmware) that hides the cheat and gives the illusion of the same
number of sectors on all cylinders.

(Unofficial) Despite what tanenbaum says later, it is not true that when
one head is reading from cylinder C, all the heads can read from cylinder
C with no penalty. It is, however, true that the penalty is very small.

Choice of block size
 We discussed this before when studying page size.
 Current commodity disk characteristics (not for laptops) result in

about 15ms to transfer the first byte and 10K bytes per ms for
subsequent bytes (if contiguous).
 Rotation rate is 5400, 7600, or 10,000 RPM (15K just now

available).
 Recall that 6000 RPM is 100 rev/sec or one rev per 10ms. So

half a rev (the average time for to rotate to a given point) is
5ms.

 Transfer rates around 10MB/sec = 10KB/ms.
 Seek time around 10ms.

 This favors large blocks, 100KB or more.
 But the internal fragmentation would be severe since many files are

small.
 Multiple block sizes have been tried as have techniques to try to

have consecutive blocks of a given file near each other.
 Typical block sizes are 4KB-8KB.

RAID (Redundant Array of Inexpensive Disks) (Skipped)
 The name RAID is from Berkeley.
 IBM changed the name to Redundant Array of Independent Disks. I

wonder why?
 A simple form is mirroring, where two disks contain the same data.
 Another simple form is striping (interleaving) where consecutive

blocks are spread across multiple disks. This helps bandwidth, but is
not redundant. Thus it shouldn't be called RAID, but it sometimes is.

 One of the normal RAID methods is to have N (say 4) data disks and
one parity disk. Data is striped across the data disks and the bitwise
parity of these sectors is written in the corresponding sector of the
parity disk.

 On a read if the block is bad (e.g., if the entire disk is bad or even
missing), the system automatically reads the other blocks in the
stripe and the parity block in the stripe. Then the missing block is
just the bitwise exclusive or of all these blocks.

mu
no
tes
.in

68

Advanced Operating
System

68

 For reads this is very good. The failure free case has no penalty
(beyond the space overhead of the parity disk). The error case
requires N+1 (say 5) reads.

 A serious concern is the small write problem. Writing a sector
requires 4 I/O. Read the old data sector, compute the change, read
the parity, compute the new parity, write the new parity and the new
data sector. Hence one sector I/O became 4, which is a 300%
penalty.

 Writing a full stripe is not bad. Compute the parity of the N (say 4)
data sectors to be written and then write the data sectors and the
parity sector. Thus 4 sector I/Os become 5, which is only a 25%
penalty and is smaller for larger N, i.e., larger stripes.

 A variation is to rotate the parity. That is, for some stripes disk 1 has
the parity, for others disk 2, etc. The purpose is to not have a single
parity disk since that disk is needed for all small writes and could
become a point of contention.

Disk Arm Scheduling Algorithms
There are three components to disk response time: seek, rotational latency,
and transfer time. Disk arm scheduling is concerned with minimizing seek
time by reordering the requests.

These algorithms are relevant only if there are several I/O requests
pending. For many PCs this is not the case. For most commercial
applications, I/O is crucial and there are often many requests pending.

1. FCFS (First Come First Served): Simple but has long delays.

2. Pick: Same as FCFS but pick up requests for cylinders that are
passed on the way to the next FCFS request.

3. SSTF or SSF (Shortest Seek (Time) First): Greedy algorithm. Can
starve requests for outer cylinders and almost always favors middle
requests.

4. Scan (Look, Elevator): The method used by an old fashioned
jukebox (remember ``Happy Days'') and by elevators. The disk arm
proceeds in one direction picking up all requests until there are no
more requests in this direction at which point it goes back the other
direction. This favors requests in the middle, but can't starve any
requests.

5. C-Scan (C-look, Circular Scan/Look): Similar to Scan but only
service requests when moving in one direction. When going in the
other direction, go directly to the furthest away request. This doesn't
favor any spot on the disk. Indeed, it treats the cylinders as though
they were a clock, i.e. after the highest numbered cylinder comes
cylinder 0.

6. N-step Scan: This is what the natural implementation of Scan gives.

 While the disk is servicing a Scan direction, the controller
gathers up new requests and sorts them.

mu
no
tes
.in

69

Input/ Output in Linux  At the end of the current sweep, the new list becomes the next
sweep.

Minimizing Rotational Latency
Use Scan based on sector numbers not cylinder number. For rotational
latency Scan which is the same as C-Scan. Why?
Ans: Because the disk only rotates in one direction.

Security Mechanism
OS security mechanisms:
Memory Protection:
One of the important aspects of Operating system security is Memory
Protection. Memory provides powerful indirect way for an attacker to
circumvent security mechanism, since every piece of information accessed
by any program will need to reside in memory at some point in time, and
hence may potentially be accessed in the absence of memory protection
mechanisms.
Memory protection is a way for controlling memory usage on a computer,
and is core to virtually every operating system. The main purpose of
memory protection is to prevent a process running on an operating system
from accessing the memory of other processes, or is used by the OS
kernel. This prevents a bug within the process from affecting other
processes, and also prevents malicious software from gaining
unauthorized access to the system, e.g., suppose that process A is
permitted access to a file F, while process B is not. Process B can bypass
this policy by attempting to read F's content that will be stored in A's
memory immediately after A reads F. Alternatively, B may attempt to
modify the access control policy that is stored in the OS memory so that
the OS thinks that B is permitted access to this file.

How to protect memory of one process from another?
The virtual memory mechanism supported on most OSes ensures that the
memory of different processes are logically disjoint. The virtual addresses,
which are logical addresses, are transformed into a physical memory
address using address translation hardware. To speed up translation,
various caching mechanisms are utilized. First, most L1 processor caches
are based on virtual addresses, so cache accesses don't need address
translation. Next, the paging hardware uses cache-like mechanisms
(TLBs) to avoid performing bounds checks on every virtual access.
In order to secure the virtual address translation mechanism, it is important
to ensure that processes cannot tamper with the address translation
mechanisms. To ensure this, processors have to provide some protection
primitives. Typically, this is done using the notion of privileged execution
modes.
Specifically, 2 modes of CPU execution are introduced: privileged and
unprivileged. (Processors may support multiple levels of privileges, but
today's OSes use only two levels.) Certain instructions, such as those
relating to I/O, DMA, interrupt processing, and page table translation are
permitted only in the privileged mode.

mu
no
tes
.in

70

Advanced Operating
System

70

OSes rely on the protection mechanism provided by the processor as
follows. All user processes (including root-processes) execute in
unprivileged mode, while the OS kernel executes in privileged mode.
Obviously, user level processes need to access OS kernel functionality
from time time to time. Typically, this is done using system calls that
represent a call from unprivileged code to privileged code. Uncontrolled
calls across the privilege boundary can defeat security mechanism, e.g., it
should not be possible for arbitrary user code to call a kernel function that
changes the page tables. For this reason, privilege transitions need to be
carefully controlled. Usually, “software trap” instructions are used to
effect transition from low to high privilege mode. (Naturally, no protection
is needed for transitioning from privileged to unprivileged mode.) On
Linux, software interrupt 0x80 is used for this purpose. When this
instruction is invoked, the processor starts executing the interrupt handler
code for this interrupt in the privileged mode. (Note that the changes to
interrupt handler should itself be permitted only in the privileged mode, or
else this mechanism could be subverted.) This code should perform
appropriate checks to ensure that the call is legitimate, and then carry it
out. This basically means that the parameters to system calls have to be
thoroughly checked.
UNIX Processes and Security:
Processes have different type of ID’s. These Ids are inherited by a child
process from its parent, except in the case of setuid processes – in their
case, their effective userid is set to be the same as the owner of the file
that is executed.

1. User ID:
a) Effective User ID (EUID)
 Effective user id is used for all permission checking

operations.
b) Real User ID (RUID)
 Real user ID is the one that represents the “real user” that

launched the process.
c) Saved User ID (SUID)
 Saved userid stores the value of userid before a setuid

operation.
A privileged process (ie process with euid of 0) can change these 3 uids to
arbitrary values, while unprivileged processes can change them to one of
the values of these 3 uids. This constraint on unprivileged processes
prevents them for assuming the userid of arbitrary users, but allows
limited changes. For instance, an FTP server initially starts off with euid =
ruid = 0. When a user U logs in, the euid and ruid are set to U, but the
saved uid remains as root. This allows the FTP server to later change its
euid to 0 for the purpose of binding to a low-numbered port. (The original
FTP protocol requires this binding for each data connection.)

2. Group ID:
Group identifier (GID) is used to represent a specific group. As single user
can belongs to multiple groups, a single process can have multiple group

mu
no
tes
.in

71

Input/ Output in Linux ids. These are organized as a “primary” group id, and a list of
supplementary gids. The primary gid has 3 flavors (real, effective and
save), analogous to uids. All objects created by a process will have the
effective gid of the process. Supplementary gids are used only for
permission checking.

3. Group Passwords :
If a user is not listed as belonging to a group G, and there is a password for
G, this user can change her group by providing this group password.

Inter-processes communication:
A process can influence the behavior of another process by
communicating with it. From a security point of view, this is not an issue
if the two processes belong to the same user. (Any damage that can be
effected by the second process can be effected by the first process as well,
so there is no incentive for the first process to attack the second --- this is
true on standard UNIX systems, where application-specific access control
policies (say, DTE) aren't used.) If not, we need to be careful. We need to
pay particular attention to situations where an unprivileged process
communicates with a privileged process in ways that the privileged
process did not expect.

1. Parent to child communication
If the parent has a child with higher privilege- e.g. the child is a setuid
program, then certain mechanism is needed to prevent the child taking
advantage of the setuid program. In particular, such a child program
should expect to receive parameters from an unprivileged process and
validate them. But it may not expect subversion attacks, for example, the
parent may modify the path (specified in an environment variable) for
searching for libraries. To prevent this, the loader typically ignores these
path specifications for seuid processes. Parents are still permitted to send
signals to children, even if their uids are different.
2. Signals are a mechanism for the OS to notify user-level processes about
exceptions, e.g.,invalid memory access. Their semantics is similar to that
of interrupts ---- processes typically install a “signal handler,” which can
be different for different signals. (UNIX defines about 30 such signals.)
When a signal occurs, process execution in interrupted, and control
transferred to the handler for that signal. Once the handler finishes
execution, the execution of application code resumes at the point where it
was interrupted.
Signals can also be used for communication: one process can send a signal
to another process using the “kill” system call. Due to security
considerations, this is permitted only when the userid of the process
sending the signal is zero, or equals that of the receiving process.
3. Debugging and Tracing
OSes need to provide some mechanisms for debugging. On Linux, this
takes the form of the ptrace mechanism. It allows a debugger to read or
write arbitrary locations in the memory of a debugged process. It can also
read or set the values of registers used by the debugged process. The
interface allows code regions to be written as well --- typically, code

mu
no
tes
.in

72

Advanced Operating
System

72

regions are protected and hence the debugged process won't be able to
overwrite code without first using a system call to modify the permissions
on the memory page(s) that contains the code. But the debugger is able to
change code as well.
Obviously, the debugging interface enables a debugging process to exert a
great deal of control over the debugged process. As such, UNIX allows
debugging only if the debugger and the debugged processes are both run
by the same user.
(On Linux, ptrace can also be used for system call interception. In this
case, every time the debugged process makes a system call, the call is
suspended inside the kernel, and the information delivered to the
debugger. At this point, the debugger can change this system call or its
parameters, and then allow the system call to continue. When the system
call is completed, the debugger is notified again, and it can change the
return results or modify the debugged process memory. It can then let the
system call return to the debugged process, which then resumes
execution.)

4. Network Connection
a) Binding: Programs use the socket abstraction for network

communication. In order for a socket, which represents a
communication endpoint, to become visible from outside, it needs to
be associated with a port number. (This holds for TCP and UDP, the
two main protocols used for communication on the Internet.)
Historically, ports below 1024 were considered “privileged” ports ---
binding to them required root privileges. The justification is in the
context of large, multi-user systems where a number of user
applications are running on the same system as a bunch of services.
The assumption was that user processes are not trusted, and could
try to masquerade as a server. (For instance, a user process
masquerading as a telnet server could capture passwords of other
users and forward them to the attacker.) To prevent this possibility,
trusted servers would use only ports below 1024. Since such ports
cannot be bound to normal user processes, this masquerading wont
be possible.

b) Connect:
 A client initiates a connection. There are no access controls

associated with the connect operation on most contemporary OSes.
c) Accept :
 Accept is used by a server to accept an incoming connection (i.e., in

response to a connect operation invoked by a client). No permission
checks are associated with this operation on most contemporary
OSes.

Boot Security:
A number of security-critical services get started up at boot time. It is
necessary to understand this sequence in order to identify the relevant
security issues.

1) Loader loads the Kernel

mu
no
tes
.in

73

Input/ Output in Linux Loader loads the kernel and init process starts. The PID of init process is
0.
2) Kernel modules get loaded and devices are initialized
Some kernel modules are loaded immediately; others are loaded explicitly
by boot scripts.
3) Boot scripts are stored at /etc/init.d
4) Run Levels
0 halt
1 single user
2 Full Multi-User mode (default)
3-5 Same as 2
6 Reboot

 Scripts that will be run at different run levels can be different. To support
this, UNIX systems typically use one directory per run level (named
/etc/rcN.d/) for storing these scripts.

These directories contain symbolic links to the actual files stored in
/etc/init.d. Script names that start with “S” are run at startup, while those
starting with “K” are run at shutdown time. The order of running the
scripts is determined by its name --- for instance, S01 will be run before
S02 and so on.

Other UNIX security issues

1) Devices
a) Hard disk
b) /dev/mem & /dev/kmem : (virtual memory and kernel memory)
c) /dev/tty
Access to raw devices must be carefully controlled, or else it can
defeat higher level security primitives. For instance, by directly
accessing the contents of a hard drive, a process can modify any
thing on the file system, thereby bypassing any permissions set on
the files stored therein. Similarly, one process can interfere with the
network packets that belong to another user's process by directly
reading (or writing to) the network interface. Finally, memory can
be accessed indirectly through low-level devices. In UNIX, all these
devices are typically configured so that only root processes can
access them.

2) Mounting File Systems
When we want to attach a file system to an operating system we
need to specify where in a directory structure we want to attach it,
this process is called mounting. This ability to mount raises several
security issues.
(a) For removable media (USB drives, CDROMs, etc), an

ordinary user may create a setuid-toroot executable on a
different system (on which she has root access). My mounting
this file system on a machine on which she has no root access,

mu
no
tes
.in

74

Advanced Operating
System

74

she can obtain root privileges by running the suid application.
So. one should be careful about granting mount privileges to
ordinary users. One common approach is to grant these
privileges while disabling setuid option for filesystems
mounted by ordinary users.

(b) UNIX allows the same file system to be mounted at more than
one mount point. When this is done, the user has effectively
created aliases for file names. For instance, if a filesystem is
mounted on /usr and /mnt/usr, then a file A in this filesystem
can be accessed using the name /usr/A and /mnt/usr/A.

3) Search Path
A search path is a sequence of directories that a system uses to
locate an object (program, library, or file). Because programs rely on
search paths, users must take care to set them appropriately.

Some systems have many types of search paths. In addition to
searching for executables, a common search path contains
directories that are used to search for libraries when the system
supports dynamic loading. If an attacker is able to influence this
search path, then he induce other users (including root) to execute
code of his choice. For instance, suppose that an attacker A can
modify root's path to include /home/A at its beginning. Then, when
root types the command ls, the file /home/A/ls may get executed
with root privileges. Since the attacker created this file, it gives the
attacker the ability to run arbitrary code with root privileges.

4) Capabilities. Modern UNIX systems have introduced some
flexibility in places were policies were hard-coded previously. For
instance, the ability to change file ownerships is now treated as a
capability within Linux. (These are not fully transferable, in the
sense of classical capabilities, but they can inherited across a fork.)
A number of similar capabilities have been defined. (On Linux, try
“man capabilities.”)

5) Network Access
 Linux systems provide a built-in firewalling capabilities. This is

administered using the iptables program. When this service is
enabled, iptables related scripts are run at boottime. You can figure
out how to configure this by looking at the relevant scrips and the
documentation on iptables configuration. In addition to iptables,
additional mechanisms are available for controlled network access.
The most important ones among these are the hosts.allow and
hosts.deny files that specify which hosts are allowed to connect to
the local system.

Database security
Main issue in database security is fine granularity – it is not enough to
permit or deny access to an entire database. SQL supports an access
control mechanism that can be used to limit access to tables in much the
same way that access can be limited to specific files using a conventional

mu
no
tes
.in

75

Input/ Output in Linux access control specification, e.g., a user may be permitted to read a table,
another may be permitted to update it, and so on.

Sometimes, we want to have finer granularity of protection, e.g.,
suppressing certain columns and/or rows. This can be achieved using
database views. Views are a mechanism in databases to provide a
customized view of a database to particular users. Typically, a view can be
defined as the result of a database query. As a result, rows can be omitted,
or columns can be projected out using a query. Thus, by combining views
with SQL access control primitives, we can realize fairly sophisticated
access control objectives.

Statistical security and the inference problem
When dealing with sensitive data, it is often necessary permit access to
aggregated even when access to individual data items may be too sensitive
to reveal. For instance, the census bureau collects a lot of sensitive
information about individuals. In general, no one should be able to access
detailed individual records. However, if we dont permit aggregate queries,
e.g., the number of people in a state that are african americans, then the
whole purpose of conducting census would be lost. The catch is that it
may be possible to identify sensitive information from the results of one of
more aggregate queries. This is called the inference problem. As an
example, consider a database that contains grade information for this
course. We may permit aggregate queries, e.g., average score on the final
exam. But if this average is computed over a small set, then it can reveal
sensitive information. To illustrate this, consider a class that has only a
single woman. By making a query that selects the students whose gender
is female, and asking for the average of these students, one can determine
the grade of a single individual in the class.
One can attempt to solve this problem by prescribing a minimum size on
the sets on which aggregates are computed. But an attacker can
circumvent this by computing aggregates on the complement of a set, e.g.,
by comparing the average of the whole class with the average for male
students, an attacker can compute the female student's grade. Another
possibility is to insert random errors in outputs. For instance, in the above
calculation, a small error in the average grades can greatly increase the
error in the inferred grade of the female student.

3.5 SUMMARY

This chapter mainly focuses on Memory management in Operating
System.

3.6 EXERCISE

Homework: Consider a disk with an average seek time of 10ms, an
average rotational latency of 5ms, and a transfer rate of 10MB/sec.

1. If the block size is 1KB, how long would it take to read a block?
2. If the block size is 100KB, how long would it take to read a block?

mu
no
tes
.in

76

Advanced Operating
System

76

3. If the goal is to read 1K, a 1KB block size is better as the remaining
99KB are wasted. If the goal is to read 100KB, the 100KB block
size is better since the 1KB block size needs 100 seeks and 100
rotational latencies. What is the minimum size request for which a
disk with a 100KB block size would complete faster than one with a
1KB block size?

3.7 REFERENCES

 An Introduction to Operating Systems: Concepts and Practice
(GNU/Linux), 4th19 edition, Pramod Chandra P. Bhatt, Prentice-
Hall of India Pvt. Ltd, 2014.

 Operating System Concepts with Java Eight Edition, Avi
Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons,
Inc., 2009, http://codex.cs.yale.edu/avi/os-book/OS8/os8j

 UNIX and Linux System Administration Handbook, Fourth Edition,
Evi Nemeth, Garth Snyder, Tren Hein, Ben Whaley, Pearson
Education, Inc, 2011,



mu
no
tes
.in

77

4
ANDROID OPERATING SYSTEM

Unit Structure

4.0 Introduction
4.1 The Android Software Stack
4.2 The Linux Kernel
4.3 Libraries
4.4 Application Framework
4.5 Summary
4.6 Exercise
4.7 References

4.0 INTRODUCTION

This chapter provides information about Android Operating System and
Implementation

4.1 THE ANDROID SOFTWARE STACK

Understanding the Android Software Stack

The Android software stack is, put simply, a Linux kernel and a collection
of C/C++ libraries exposed through an application framework that
provides services for, and management of, the run time and applications.
The Android software stack is composed of the elements shown in Figure
1-1.

 Linux kernel - Core services (including hardware drivers, process
and memory management, security, network, and power
management) are handled by a Linux 2.6 kernel. The kernel also
provides an abstraction layer between the hardware and the
remainder of the stack.

 Libraries - Running on top of the kernel, Android includes various
C/C++ core libraries such as libc and SSL, as well as the following:

 A media library for playback of audio and video media
 A surface manager to provide display management
 Graphics libraries that include SGL and OpenGL for 2D and

3D graphics
 SQLite for native database support
 SSL and WebKit for integrated web browser and Internet

security

 Android run time - The run time is what makes an Android phone
an Android phone rather than a mobile Linux implementation.

mu
no
tes
.in

78

Advanced Operating
System

78

Including the core libraries and the Dalvik VM, the Android run
time is the engine that powers your applications and, along with the
libraries, forms the basis for the application framework.

 Core libraries - Although most Android application development is
written using the Java language, Dalvik is not a Java VM. The core
Android libraries provide most of the functionality available in the
core Java libraries, as well as the Androidspecific libraries.

 Dalvik VM - Dalvik is a register-based Virtual Machine that’s been
optimized to ensure that a device can run multiple instances
efficiently. It relies on the Linux kernel for threading and low-level
memory management.

 Application framework - The application framework provides the
classes used to create Android applications. It also provides a
generic abstraction for hardware access and manages the user
interface and application resources.

 Application layer - All applications, both native and third-party, are
built on the application layer by means of the same API libraries.
The application layer runs within the Android run time, using the
classes and services made available from the application framework.

Figure 4.1 Android Software Stack

4.2 THE LINUX KERNEL

The Linux Kernel – its functions
The kernel has 4 jobs:
 Memory management: Keep track of how much memory is used to

store what, and where
 Process management: Determine which processes can use the central

processing unit (CPU), when, and for how long

mu
no
tes
.in

79

Android
Operating System

 Device drivers: Act as mediator/interpreter between the hardware
and processes

 System calls and security: Receive requests for service from the
processes

The kernel, if implemented properly, is invisible to the user, working in its
own little world known as kernel space, where it allocates memory and
keeps track of where everything is stored. What the user sees—like web
browsers and files—are known as the user space. These applications
interact with the kernel through a system call interface (SCI).
Think about it like this. The kernel is a busy personal assistant for a
powerful executive (the hardware). It’s the assistant’s job to relay
messages and requests (processes) from employees and the public (users)
to the executive, to remember what is stored where (memory), and to
determine who has access to the executive at any given time and for how
long.
To put the kernel in context, you can think of a Linux machine as having 3
layers:
 The hardware: The physical machine—the bottom or base of the

system, made up of memory (RAM) and the processor or central
processing unit (CPU), as well as input/output (I/O) devices such as
storage, networking, and graphics. The CPU performs computations
and reads from, and writes to, memory.

 The Linux kernel: The core of the OS. (See? It’s right in the middle.)
It’s software residing in memory that tells the CPU what to do.

 User processes: These are the running programs that the kernel
manages. User processes are what collectively make up user space.
User processes are also known as just processes. The kernel also
allows these processes and servers to communicate with each other
(known as inter-process communication, or IPC).

Code executed by the system runs on CPUs in 1 of 2 modes: kernel mode
or user mode. Code running in the kernel mode has unrestricted access to
the hardware, while user mode restricts access to the CPU and memory to
the SCI. A similar separation exists for memory (kernel space and user
space). These 2 small details form the base for some complicated
operations like privilege separation for security, building containers, and
virtual machines.
This also means that if a process fails in user mode, the damage is limited
and can be recovered by the kernel. However, because of its access to
memory and the processor, a kernel process crash can crash the entire
system. Since there are safeguards in place and permissions required to
cross boundaries, user process crashes usually can’t cause too many
problems.

4.3 LIBRARIES

SQLite Library used for data storage and light in terms of mobile memory
footprints and task execution.

mu
no
tes
.in

80

Advanced Operating
System

80

WebKit Library mainly provides Web Browsing engine and a lot more
related features.
The surface manager library is responsible for rendering windows and
drawing surfaces of various apps on the screen.
The media framework library provides media codecs for audio and video.
The OpenGl (Open Graphics Library) and SGL(Scalable Graphics
Library) are the graphics libraries for 3D and 2D rendering, respectively.
The FreeType Library is used for rendering fonts.

Application Framework
It is a collection of APIs written in Java, which gives developers access to
the complete feature set of Android OS.
Developers have full access to the same framework APIs used by the core
applications, so that they can enhance more in terms of functionalities of
their application.
Enables and simplify the reuse of core components and services, like:
Activity Manager: Manages the Lifecycle of apps & provide common
navigation back stack.
Window Manager: Manages windows and drawing surfaces, and is an
abstraction of the surface manager library.
Content Providers: Enables application to access data from other
applications or to share their own data i.e it provides mechanism to
exchange data among apps.
View System: Contains User Interface building blocks used to build an
application's UI, including lists, grids, texts, boxes, buttons,etc. and also
performs the event management of UI elements(explained in later
tutorials).
Package Manager: Manages various kinds of information related to the
application packages that are currently installed on the device.
Telephony Manager: Enables app to use phone capabilities of the device.
Resource Manager: Provides access to non-code resources (localized
Strings, bitmaps, Graphics and Layouts).
Location Manager: Deals with location awareness capabilities.
Notification Manager: Enable apps to display custom alerts in the status
bar.
Applications
Top of the Android Application Stack, is occupied by the System apps and
tonnes of other Apps that users can download from Android's Official Play
Store, also known as Google Play Store. A set of Core applications are
pre-packed in the handset like Email Client, SMS Program, Calendar,
Maps, Browser, Contacts and few more. This layer uses all the layers
below it for proper functioning of these mobile apps. So as we can see and
understand, Android holds layered or we can say grouped functionalities
as software stack that makes Android work very fluently in any device.

Media framework
A multimedia framework is a software framework that handles media on a
computer and through a network. ... It is meant to be used by applications

mu
no
tes
.in

81

Android
Operating System

such as media players and audio or video editors, but can also be used to
build videoconferencing applications, media converters and other
multimedia tools.

SQLite
SQLite is a opensource SQL database that stores data to a text file on a
device. Android comes in with built in SQLite database implementation.
SQLite supports all the relational database features. In order to access this
database, you don't need to establish any kind of connections for it like
JDBC,ODBC e.t.c

Database - Package
The main package is android.database.sqlite that contains the classes to
manage your own databases

Database - Creation
In order to create a database you just need to call this method
openOrCreateDatabase with your database name and mode as a parameter.
It returns an instance of SQLite database which you have to receive in
your own object.Its syntax is given below

SQLiteDatabase mydatabase = openOrCreateDatabase("your database
name",MODE_PRIVATE,null);

Apart from this , there are other functions available in the database
package , that does this job. They are listed below

Sr.No Method & Description

1 openDatabase(String path, SQLiteDatabase. CursorFactory
factory, int flags, DatabaseErrorHandler errorHandler)
This method only opens the existing database with the
appropriate flag mode. The common flags mode could be
OPEN_READWRITE OPEN_READONLY

2 openDatabase(String path, SQLiteDatabase. CursorFactory
factory, int flags)
It is similar to the above method as it also opens the existing
database but it does not define any handler to handle the errors
of databases

3 openOrCreateDatabase(String path, SQLiteDatabase.
CursorFactory factory)
It not only opens but create the database if it not exists. This
method is equivalent to openDatabase method.

4 openOrCreateDatabase(File file, SQLiteDatabase.
CursorFactory factory)
This method is similar to above method but it takes the File
object as a path rather then a string. It is equivalent to
file.getPath()

mu
no
tes
.in

82

Advanced Operating
System

82

Database - Insertion
we can create table or insert data into table using execSQL method defined
in SQLiteDatabase class. Its syntax is given below

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS
TutorialsPoint(Username VARCHAR,Password VARCHAR);");

mydatabase.execSQL("INSERT INTO TutorialsPoint
VALUES('admin','admin');");

This will insert some values into our table in our database. Another
method that also does the same job but take some additional parameter is
given below

Sr.No Method & Description

1 execSQL(String sql, Object[] bindArgs)
This method not only insert data , but also used to update or
modify already existing data in database using bind
arguments

Database – Fetching

We can retrieve anything from database using an object of the Cursor
class. We will call a method of this class called rawQuery and it will
return a resultset with the cursor pointing to the table. We can move the
cursor forward and retrieve the data.
Cursor resultSet = mydatbase.rawQuery("Select * from
TutorialsPoint",null);
resultSet.moveToFirst();
String username = resultSet.getString(0);
String password = resultSet.getString(1);

There are other functions available in the Cursor class that allows us to
effectively retrieve the data. That includes

Sr.No Method & Description

1 getColumnCount()
This method return the total number of columns of the table.

2 getColumnIndex(String columnName)
This method returns the index number of a column by
specifying the name of the column

3 getColumnName(int columnIndex)
This method returns the name of the column by specifying the
index of the column

mu
no
tes
.in

83

Android
Operating System 4 getColumnNames()

This method returns the array of all the column names of the
table.

5 getCount()
This method returns the total number of rows in the cursor

6 getPosition()
This method returns the current position of the cursor in the
table

7 isClosed()
This method returns true if the cursor is closed and return
false otherwise

Database - Helper class

For managing all the operations related to the database , an helper class
has been given and is called SQLiteOpenHelper. It automatically manages
the creation and update of the database. Its syntax is given below

public class DBHelper extends SQLiteOpenHelper {

 public DBHelper(){

 super(context,DATABASE_NAME,null,1);

 }

 public void onCreate(SQLiteDatabase db) {}

 public void onUpgrade(SQLiteDatabase database, int oldVersion, int
newVersion) {}

}

Example

Here is an example demonstrating the use of SQLite Database. It creates a
basic contacts applications that allows insertion, deletion and modification
of contacts.

To experiment with this example, you need to run this on an actual device
on which camera is supported.

Steps Description

1 You will use Android studio to create an Android application
under a package com.example.sairamkrishna.myapplication.

2 Modify src/MainActivity.java file to get references of all the

mu
no
tes
.in

84

Advanced Operating
System

84

XML components and populate the contacts on listView.

3 Create new src/DBHelper.java that will manage the database
work

4 Create a new Activity as DisplayContact.java that will display
the contact on the screen

5 Modify the res/layout/activity_main to add respective XML
components

6 Modify the res/layout/activity_display_contact.xml to add
respective XML components

7 Modify the res/values/string.xml to add necessary string
components

8 Modify the res/menu/display_contact.xml to add necessary
menu components

9 Create a new menu as res/menu/mainmenu.xml to add the
insert contact option

10 Run the application and choose a running android device and
install the application on it and verify the results.

Following is the content of the modified MainActivity.java.

package com.example.sairamkrishna.myapplication;

import android.content.Context;
import android.content.Intent;
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;

import android.view.KeyEvent;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ListView;
import java.util.ArrayList;
import java.util.List;

public class MainActivity extends ActionBarActivity {
 public final static String EXTRA_MESSAGE = "MESSAGE";
 private ListView obj;
 DBHelper mydb;

mu
no
tes
.in

85

Android
Operating System

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mydb = new DBHelper(this);
 ArrayList array_list = mydb.getAllCotacts();
 ArrayAdapter arrayAdapter=new
ArrayAdapter(this,android.R.layout.simple_list_item_1, array_list);

 obj = (ListView)findViewById(R.id.listView1);
 obj.setAdapter(arrayAdapter);
 obj.setOnItemClickListener(new OnItemClickListener(){
 @Override
 public void onItemClick(AdapterView<?> arg0, View arg1, int
arg2,long arg3) {
 // TODO Auto-generated method stub
 int id_To_Search = arg2 + 1;
 Bundle dataBundle = new Bundle();
 dataBundle.putInt("id", id_To_Search);

 Intent intent = new Intent (getApplicationContext(), Display
Contact.class);

 intent.putExtras(dataBundle);
 startActivity(intent);
 }
 });
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item){
 super.onOptionsItemSelected(item);

 switch(item.getItemId()) {
 case R.id.item1:Bundle dataBundle = new Bundle();
 dataBundle.putInt("id", 0);

 Intent intent = new Intent (getApplicationContext(), Display
Contact.class);
 intent.putExtras(dataBundle);

 startActivity(intent);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }

mu
no
tes
.in

86

Advanced Operating
System

86

 }

 public boolean onKeyDown(int keycode, KeyEvent event) {
 if (keycode == KeyEvent.KEYCODE_BACK) {
 moveTaskToBack(true);
 }
 return super.onKeyDown(keycode, event);
 }
}
Following is the modified content of display contact activity
DisplayContact.java

package com.example.sairamkrishna.myapplication;

import android.os.Bundle;
import android.app.Activity;
import android.app.AlertDialog;

import android.content.DialogInterface;
import android.content.Intent;
import android.database.Cursor;

import android.view.Menu;
import android.view.MenuItem;
import android.view.View;

import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class DisplayContact extends Activity {
 int from_Where_I_Am_Coming = 0;
 private DBHelper mydb ;

 TextView name ;
 TextView phone;
 TextView email;
 TextView street;
 TextView place;
 int id_To_Update = 0;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_display_contact);
 name = (TextView) findViewById(R.id.editTextName);
 phone = (TextView) findViewById(R.id.editTextPhone);
 email = (TextView) findViewById(R.id.editTextStreet);
 street = (TextView) findViewById(R.id.editTextEmail);
 place = (TextView) findViewById(R.id.editTextCity);

 mydb = new DBHelper(this);

 Bundle extras = getIntent().getExtras();
 if(extras !=null) {
 int Value = extras.getInt("id");

mu
no
tes
.in

87

Android
Operating System

 if(Value>0){
 //means this is the view part not the add contact part.
 Cursor rs = mydb.getData(Value);
 id_To_Update = Value;
 rs.moveToFirst();

 String nam =
rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_NA
ME));
 String phon =
rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_PHO
NE));
 String emai =
rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_EM
AIL));
 String stree =
rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_STR
EET));
 String plac =
rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_CIT
Y));

 if (!rs.isClosed()) {
 rs.close();
 }
 Button b = (Button)findViewById(R.id.button1);
 b.setVisibility(View.INVISIBLE);

 name.setText((CharSequence)nam);
 name.setFocusable(false);
 name.setClickable(false);

 phone.setText((CharSequence)phon);
 phone.setFocusable(false);
 phone.setClickable(false);

 email.setText((CharSequence)emai);
 email.setFocusable(false);
 email.setClickable(false);

 street.setText((CharSequence)stree);
 street.setFocusable(false);
 street.setClickable(false);

 place.setText((CharSequence)plac);
 place.setFocusable(false);
 place.setClickable(false);
 }
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {

mu
no
tes
.in

88

Advanced Operating
System

88

 // Inflate the menu; this adds items to the action bar if it is present.
 Bundle extras = getIntent().getExtras();

 if(extras !=null) {
 int Value = extras.getInt("id");
 if(Value>0){
 getMenuInflater().inflate(R.menu.display_contact, menu);
 } else{
 getMenuInflater().inflate(R.menu.menu_main menu);
 }
 }
 return true;
 }

 public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);
 switch(item.getItemId()) {
 case R.id.Edit_Contact:
 Button b = (Button)findViewById(R.id.button1);
 b.setVisibility(View.VISIBLE);
 name.setEnabled(true);
 name.setFocusableInTouchMode(true);
 name.setClickable(true);

 phone.setEnabled(true);
 phone.setFocusableInTouchMode(true);
 phone.setClickable(true);

 email.setEnabled(true);
 email.setFocusableInTouchMode(true);
 email.setClickable(true);

 street.setEnabled(true);
 street.setFocusableInTouchMode(true);
 street.setClickable(true);

 place.setEnabled(true);
 place.setFocusableInTouchMode(true);
 place.setClickable(true);

 return true;
 case R.id.Delete_Contact:

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setMessage(R.string.deleteContact)
 .setPositiveButton(R.string.yes, new
DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 mydb.deleteContact(id_To_Update);
 Toast.makeText(getApplicationContext(), "Deleted
Successfully",
 Toast.LENGTH_SHORT).show();

mu
no
tes
.in

89

Android
Operating System

 Intent intent = new
Intent(getApplicationContext(),MainActivity.class);
 startActivity(intent);
 }
 })
 .setNegativeButton(R.string.no, new
DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 // User cancelled the dialog
 }
 });

 AlertDialog d = builder.create();
 d.setTitle("Are you sure");
 d.show();

 return true;
 default:
 return super.onOptionsItemSelected(item);

 }
 }

 public void run(View view) {
 Bundle extras = getIntent().getExtras();
 if(extras !=null) {
 int Value = extras.getInt("id");
 if(Value>0){
 if(mydb.updateContact(id_To_Update,name.getText().toString(),
 phone.getText().toString(), email.getText().toString(),
 street.getText().toString(),
place.getText().toString())){
 Toast.makeText(getApplicationContext(), "Updated",
Toast.LENGTH_SHORT).show();
 Intent intent = new
Intent(getApplicationContext(),MainActivity.class);
 startActivity(intent);
 } else{
 Toast.makeText(getApplicationContext(), "not Updated",
Toast.LENGTH_SHORT).show();
 }
 } else{
 if(mydb.insertContact(name.getText().toString(),
phone.getText().toString(),
 email.getText().toString(),
street.getText().toString(),
 place.getText().toString())){
 Toast.makeText(getApplicationContext(), "done",
 Toast.LENGTH_SHORT).show();

mu
no
tes
.in

90

Advanced Operating
System

90

 } else{
 Toast.makeText(getApplicationContext(), "not done",
 Toast.LENGTH_SHORT).show();
 }
 Intent intent = new
Intent(getApplicationContext(),MainActivity.class);
 startActivity(intent);
 }
 }
 }
}
Following is the content of Database class DBHelper.java

package com.example.sairamkrishna.myapplication;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Hashtable;
import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.DatabaseUtils;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;

public class DBHelper extends SQLiteOpenHelper {

 public static final String DATABASE_NAME = "MyDBName.db";
 public static final String CONTACTS_TABLE_NAME = "contacts";
 public static final String CONTACTS_COLUMN_ID = "id";
 public static final String CONTACTS_COLUMN_NAME = "name";
 public static final String CONTACTS_COLUMN_EMAIL = "email";
 public static final String CONTACTS_COLUMN_STREET = "street";
 public static final String CONTACTS_COLUMN_CITY = "place";
 public static final String CONTACTS_COLUMN_PHONE = "phone";
 private HashMap hp;

 public DBHelper(Context context) {
 super(context, DATABASE_NAME , null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 // TODO Auto-generated method stub
 db.execSQL(
 "create table contacts " +
 "(id integer primary key, name text,phone text,email text, street
text,place text)"
);
 }

 @Override

mu
no
tes
.in

91

Android
Operating System

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {
 // TODO Auto-generated method stub
 db.execSQL("DROP TABLE IF EXISTS contacts");
 onCreate(db);
 }

 public boolean insertContact (String name, String phone, String email,
String street,String place) {
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues contentValues = new ContentValues();
 contentValues.put("name", name);
 contentValues.put("phone", phone);
 contentValues.put("email", email);
 contentValues.put("street", street);
 contentValues.put("place", place);
 db.insert("contacts", null, contentValues);
 return true;
 }

 public Cursor getData(int id) {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor res = db.rawQuery("select * from contacts where id="+id+"",
null);
 return res;
 }
 public int numberOfRows(){
 SQLiteDatabase db = this.getReadableDatabase();
 int numRows = (int) DatabaseUtils.queryNumEntries(db,
CONTACTS_TABLE_NAME);
 return numRows;
 }

public boolean updateContact (Integer id, String name, String phone,
String email, String street,String place) {
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues contentValues = new ContentValues();
 contentValues.put("name", name);
 contentValues.put("phone", phone);
 contentValues.put("email", email);
 contentValues.put("street", street);
 contentValues.put("place", place);
 db.update("contacts", contentValues, "id = ? ", new String[] {
Integer.toString(id) });
 return true;
 }

 public Integer deleteContact (Integer id) {
 SQLiteDatabase db = this.getWritableDatabase();
 return db.delete("contacts",
 "id = ? ",
 new String[] { Integer.toString(id) });

mu
no
tes
.in

92

Advanced Operating
System

92

 }

 public ArrayList<String> getAllCotacts() {
 ArrayList<String> array_list = new ArrayList<String>();

 //hp = new HashMap();
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor res = db.rawQuery("select * from contacts", null);
 res.moveToFirst();

 while(res.isAfterLast() == false){

array_list.add(res.getString(res.getColumnIndex(CONTACTS_COLUMN
_NAME)));
 res.moveToNext();
 }
 return array_list;
 }
}
Following is the content of the res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/textView"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:textSize="30dp"

mu
no
tes
.in

93

Android
Operating System

 android:text="Data Base" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Tutorials Point"

 android:id="@+id/textView2"

 android:layout_below="@+id/textView"

 android:layout_centerHorizontal="true"

 android:textSize="35dp"

 android:textColor="#ff16ff01" />

 <ImageView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/imageView"

 android:layout_below="@+id/textView2"

 android:layout_centerHorizontal="true"

 android:src="@drawable/logo"/>

 <ScrollView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/scrollView"

 android:layout_below="@+id/imageView"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:layout_alignParentBottom="true"

 android:layout_alignParentRight="true"

mu
no
tes
.in

94

Advanced Operating
System

94

 android:layout_alignParentEnd="true">

 <ListView

 android:id="@+id/listView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true" >

 </ListView>

 </ScrollView>

</RelativeLayout>

Following is the content of the res/layout/activity_display_contact.xml

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/scrollView1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 tools:context=".DisplayContact" >

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="370dp"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin">

 <EditText
 android:id="@+id/editTextName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_marginTop="5dp"
 android:layout_marginLeft="82dp"
 android:ems="10"
 android:inputType="text" >
 </EditText>

mu
no
tes
.in

95

Android
Operating System

 <EditText
 android:id="@+id/editTextEmail"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/editTextStreet"
 android:layout_below="@+id/editTextStreet"
 android:layout_marginTop="22dp"
 android:ems="10"
 android:inputType="textEmailAddress" />

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="@+id/editTextName"
 android:layout_alignParentLeft="true"
 android:text="@string/name"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/editTextCity"
 android:layout_alignParentBottom="true"
 android:layout_marginBottom="28dp"
 android:onClick="run"
 android:text="@string/save" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="@+id/editTextEmail"
 android:layout_alignLeft="@+id/textView1"
 android:text="@string/email"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textView5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="@+id/editTextPhone"
 android:layout_alignLeft="@+id/textView1"
 android:text="@string/phone"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textView4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/editTextEmail"

mu
no
tes
.in

96

Advanced Operating
System

96

 android:layout_alignLeft="@+id/textView5"
 android:text="@string/street"
 android:textAppearance="?android:attr/textAppearanceMedium" />
 <EditText
 android:id="@+id/editTextCity"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignRight="@+id/editTextName"
 android:layout_below="@+id/editTextEmail"
 android:layout_marginTop="30dp"
 android:ems="10"
 android:inputType="text" />
 <TextView
 android:id="@+id/textView3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/editTextCity"
 android:layout_alignBottom="@+id/editTextCity"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@+id/editTextEmail"
 android:text="@string/country"
 android:textAppearance="?android:attr/textAppearanceMedium" />
 <EditText
 android:id="@+id/editTextStreet"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/editTextName"
 android:layout_below="@+id/editTextPhone"
 android:ems="10"
 android:inputType="text" >
 <requestFocus />
 </EditText>
 <EditText
 android:id="@+id/editTextPhone"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/editTextStreet"
 android:layout_below="@+id/editTextName"
 android:ems="10"
 android:inputType="phone|text" />
 </RelativeLayout>
</ScrollView>

mu
no
tes
.in

97

Android
Operating System

Following is the content of the res/value/string.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Address Book</string>
 <string name="action_settings">Settings</string>
 <string name="hello_world">Hello world!</string>
 <string name="Add_New">Add New</string>
 <string name="edit">Edit Contact</string>
 <string name="delete">Delete Contact</string>
 <string name="title_activity_display_contact">DisplayContact</string>
 <string name="name">Name</string>
 <string name="phone">Phone</string>
 <string name="email">Email</string>
 <string name="street">Street</string>
 <string name="country">City/State/Zip</string>
 <string name="save">Save Contact</string>
 <string name="deleteContact">Are you sure, you want to delete
it.</string>
 <string name="yes">Yes</string>
 <string name="no">No</string>
</resources>

Following is the content of the res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item android:id="@+id/item1"
 android:icon="@drawable/add"
 android:title="@string/Add_New" >
 </item>

</menu>

Following is the content of the res/menu/display_contact.xml
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item
 android:id="@+id/Edit_Contact"
 android:orderInCategory="100"
 android:title="@string/edit"/>

 <item
 android:id="@+id/Delete_Contact"
 android:orderInCategory="100"
 android:title="@string/delete"/>

</menu>

mu
no
tes
.in

98

Advanced Operating
System

98

This is the defualt AndroidManifest.xml of this project
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.sairamkrishna.myapplication" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
/>
 </intent-filter>

 </activity>

 <activity android:name=".DisplayContact"/>

 </application>
</manifest>

Webkit
WebKit is the web browser engine used by Safari, Mail, App Store, and
many other apps on macOS, iOS, and Linux. Get started contributing
code, or reporting bugs.

Web developers can follow development, check feature status, download
Safari Technology Preview to try out the latest web technologies, and
report bugs.

OpenGL
Android supports OpenGL both through its framework API and the Native
Development Kit (NDK). This topic focuses on the Android framework
interfaces. For more information about the NDK, see the Android NDK.

There are two foundational classes in the Android framework that let you
create and manipulate graphics with the OpenGL ES API:
GLSurfaceView and GLSurfaceView.Renderer. If your goal is to use
OpenGL in your Android application, understanding how to implement
these classes in an activity should be your first objective.

mu
no
tes
.in

99

Android
Operating System

GLSurfaceView
This class is a View where you can draw and manipulate objects using
OpenGL API calls and is similar in function to a SurfaceView. You can
use this class by creating an instance of GLSurfaceView and adding your
Renderer to it. However, if you want to capture touch screen events, you
should extend the GLSurfaceView class to implement the touch listeners,
as shown in OpenGL training lesson, Responding to touch events.

GLSurfaceView.Renderer
This interface defines the methods required for drawing graphics in a
GLSurfaceView. You must provide an implementation of this interface as
a separate class and attach it to your GLSurfaceView instance using
GLSurfaceView.setRenderer().

The GLSurfaceView.Renderer interface requires that you implement the
following methods:

 onSurfaceCreated(): The system calls this method once, when
creating the GLSurfaceView. Use this method to perform actions
that need to happen only once, such as setting OpenGL environment
parameters or initializing OpenGL graphic objects.

 onDrawFrame(): The system calls this method on each redraw of the
GLSurfaceView. Use this method as the primary execution point for
drawing (and re-drawing) graphic objects.

 onSurfaceChanged(): The system calls this method when the
GLSurfaceView geometry changes, including changes in size of the
GLSurfaceView or orientation of the device screen. For example,
the system calls this method when the device changes from portrait
to landscape orientation. Use this method to respond to changes in
the GLSurfaceView container.

The Dalvik Virtual Machine

One of the key elements of Android is the Dalvik VM. Rather than using a
traditional Java VM such as Java ME, Android uses its own custom VM
designed to ensure that multiple instances run efficiently on a single
device.
The Dalvik VM uses the device’s underlying Linux kernel to handle low-
level functionality, including security, threading, and process and memory
management. It’s also possible to write C/C++ applications that run closer
to the underlying Linux OS. Although you can do this, in most cases
there’s no reason you should need to.
If the speed and efficiency of C/C++ is required for your application,
Android provides a native development kit (NDK). The NDK is designed
to enable you to create C++ libraries using the libc and libm libraries,
along with native access to OpenGL.
All Android hardware and system service access is managed using Dalvik
as a middle tier. By using a VM to host application execution, developers
have an abstraction layer that ensures they should never have to worry
about a particular hardware implementation.

mu
no
tes
.in

100

Advanced Operating
System

100

The Dalvik VM executes Dalvik executable files, a format optimized to
ensure minimal memory footprint. You create .dex executables by
transforming Java language compiled classes using the tools supplied
within the SDK

4.4 APPLICATION FRAMEWORK :-

Activity Manager − Controls all aspects of the application lifecycle and
activity stack. Content Providers − Allows applications to publish and
share data with other applications. Resource Manager − Provides access to
non-code embedded resources such as strings, color settings and user
interface layouts.

A content provider component supplies data from one application to others
on request. Such requests are handled by the methods of the
ContentResolver class. A content provider can use different ways to store
its data and the data can be stored in a database, in files, or even over a
network.

ContentProvider

sometimes it is required to share data across applications. This is where
content providers become very useful.

Content providers let you centralize content in one place and have many
different applications access it as needed. A content provider behaves very
much like a database where you can query it, edit its content, as well as
add or delete content using insert(), update(), delete(), and query()
methods. In most cases this data is stored in an SQlite database.

A content provider is implemented as a subclass of ContentProvider
class and must implement a standard set of APIs that enable other
applications to perform transactions.

mu
no
tes
.in

101

Android
Operating System

public class My Application extends ContentProvider {

}

Content URIs

To query a content provider, you specify the query string in the form of a
URI which has following format −

<prefix>://<authority>/<data_type>/<id>

Here is the detail of various parts of the URI −

Sr.No Part & Description

1 prefix
This is always set to content://

2

authority
This specifies the name of the content provider, for
example contacts, browser etc. For third-party content
providers, this could be the fully qualified name, such
as com.tutorialspoint.statusprovider

3

data_type
This indicates the type of data that this particular provider
provides. For example, if you are getting all the contacts
from the Contacts content provider, then the data path would
be people and URI would look like
thiscontent://contacts/people

4

id
This specifies the specific record requested. For example, if
you are looking for contact number 5 in the Contacts content
provider then URI would look like
this content://contacts/people/5.

Create Content Provider

This involves number of simple steps to create your own content provider.
 First of all you need to create a Content Provider class that extends

the ContentProviderbaseclass.

 Second, you need to define your content provider URI address
which will be used to access the content.

 Next you will need to create your own database to keep the content.
Usually, Android uses SQLite database and framework needs to
override onCreate() method which will use SQLite Open Helper
method to create or open the provider's database. When your
application is launched, the onCreate() handler of each of its Content
Providers is called on the main application thread.

mu
no
tes
.in

102

Advanced Operating
System

102

 Next you will have to implement Content Provider queries to
perform different database specific operations.

 Finally register your Content Provider in your activity file using
<provider> tag.

Here is the list of methods which you need to override in Content Provider
class to have your Content Provider working –

ContentProvider

 onCreate() This method is called when the provider is started.
 query() This method receives a request from a client. The result is

returned as a Cursor object.

 insert()This method inserts a new record into the content provider.

 delete() This method deletes an existing record from the content
provider.

 update() This method updates an existing record from the content
provider.

 getType() This method returns the MIME type of the data at the
given URI.

Example

This example will explain you how to create your own ContentProvider.
So let's follow the following steps to similar to what we followed while
creating Hello World Example−

mu
no
tes
.in

103

Android
Operating System Step Description

1 You will use Android StudioIDE to create an Android
application and name it as My Application under a
package com.example.MyApplication, with blank Activity.

2 Modify main activity file MainActivity.java to add two new
methods onClickAddName() and onClickRetrieveStudents().

3 Create a new java file called StudentsProvider.java under the
package com.example.MyApplication to define your actual
provider and associated methods.

4 Register your content provider in
your AndroidManifest.xml file using <provider.../> tag

5 Modify the default content
of res/layout/activity_main.xml file to include a small GUI to
add students records.

6 No need to change string.xml.Android studio take care of
string.xml file.

7 Run the application to launch Android emulator and verify
the result of the changes done in the application.

Following is the content of the modified main activity file
src/com.example.MyApplication/MainActivity.java. This file can
include each of the fundamental life cycle methods. We have added two
new methods onClickAddName() and onClickRetrieveStudents() to
handle user interaction with the application.

package com.example.MyApplication;

import android.net.Uri;
import android.os.Bundle;
import android.app.Activity;

import android.content.ContentValues;
import android.content.CursorLoader;

import android.database.Cursor;

import android.view.Menu;
import android.view.View;

import android.widget.EditText;
import android.widget.Toast;

public class MainActivity extends Activity {

mu
no
tes
.in

104

Advanced Operating
System

104

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 public void onClickAddName(View view) {
 // Add a new student record
 ContentValues values = new ContentValues();
 values.put(StudentsProvider.NAME,
 ((EditText)findViewById(R.id.editText2)).getText().toString());

 values.put(StudentsProvider.GRADE,
 ((EditText)findViewById(R.id.editText3)).getText().toString());

 Uri uri = getContentResolver().insert(
 StudentsProvider.CONTENT_URI, values);

 Toast.makeText(getBaseContext(),
 uri.toString(), Toast.LENGTH_LONG).show();
 }
 public void onClickRetrieveStudents(View view) {
 // Retrieve student records
 String URL =
"content://com.example.MyApplication.StudentsProvider";

 Uri students = Uri.parse(URL);
 Cursor c = managedQuery(students, null, null, null, "name");

 if (c.moveToFirst()) {
 do{
 Toast.makeText(this,
 c.getString(c.getColumnIndex(StudentsProvider._ID)) +
 ", " + c.getString(c.getColumnIndex(
StudentsProvider.NAME)) +
 ", " + c.getString(c.getColumnIndex(
StudentsProvider.GRADE)),
 Toast.LENGTH_SHORT).show();
 } while (c.moveToNext());
 }
 }
}
Create new file StudentsProvider.java under com.example.MyApplication
package and following is the content of
src/com.example.MyApplication/StudentsProvider.java −

mu
no
tes
.in

105

Android
Operating System

package com.example.MyApplication;
import java.util.HashMap;
import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
public class StudentsProvider extends ContentProvider {
 static final String PROVIDER_NAME =
"com.example.MyApplication.StudentsProvider";
 static final String URL = "content://" + PROVIDER_NAME +
"/students";
 static final Uri CONTENT_URI = Uri.parse(URL);
 static final String _ID = "_id";
 static final String NAME = "name";
 static final String GRADE = "grade";
 private static HashMap<String, String>
STUDENTS_PROJECTION_MAP;
 static final int STUDENTS = 1;
 static final int STUDENT_ID = 2;
 static final UriMatcher uriMatcher;
 static{
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(PROVIDER_NAME, "students", STUDENTS);
 uriMatcher.addURI(PROVIDER_NAME, "students/#",
STUDENT_ID);
 }
 /**
 * Database specific constant declarations
 */
private SQLiteDatabase db;
 static final String DATABASE_NAME = "College";
 static final String STUDENTS_TABLE_NAME = "students";
 static final int DATABASE_VERSION = 1;
 static final String CREATE_DB_TABLE =
 " CREATE TABLE " + STUDENTS_TABLE_NAME +
 " (_id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 " name TEXT NOT NULL, " +
 " grade TEXT NOT NULL);";
 /**
 * Helper class that actually creates and manages
 * the provider's underlying data repository.

mu
no
tes
.in

106

Advanced Operating
System

106

 */
 private static class DatabaseHelper extends SQLiteOpenHelper {
 DatabaseHelper(Context context){
 super(context, DATABASE_NAME, null,
DATABASE_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(CREATE_DB_TABLE);
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {
 db.execSQL("DROP TABLE IF EXISTS " +
STUDENTS_TABLE_NAME);
 onCreate(db);
 }
 }
 @Override
 public boolean onCreate() {
 Context context = getContext();
 DatabaseHelper dbHelper = new DatabaseHelper(context);
 /**
 * Create a write able database which will trigger its
 * creation if it doesn't already exist.
 */
 db = dbHelper.getWritableDatabase();
 return (db == null)? false:true;
 }
 @Override
 public Uri insert(Uri uri, ContentValues values) {
 /**
 * Add a new student record
 */
 long rowID = db.insert(STUDENTS_TABLE_NAME, "", values);
 /**
 * If record is added successfully
 */
 if (rowID > 0) {
 Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
 getContext().getContentResolver().notifyChange(_uri, null);
 return _uri;
 }
 throw new SQLException("Failed to add a record into " + uri);
 }
 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection,String[] selectionArgs, String sortOrder) {
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
 qb.setTables(STUDENTS_TABLE_NAME);

mu
no
tes
.in

107

Android
Operating System

 switch (uriMatcher.match(uri)) {
 case STUDENTS:
 qb.setProjectionMap(STUDENTS_PROJECTION_MAP);
 break;

 case STUDENT_ID:
 qb.appendWhere(_ID + "=" + uri.getPathSegments().get(1));
 break;

 default:
 }

 if (sortOrder == null || sortOrder == ""){
 /**
 * By default sort on student names
 */
 sortOrder = NAME;
 }

 Cursor c = qb.query(db, projection, selection,
 selectionArgs,null, null, sortOrder);
 /**
 * register to watch a content URI for changes
 */
 c.setNotificationUri(getContext().getContentResolver(), uri);
 return c;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 int count = 0;
 switch (uriMatcher.match(uri)){
 case STUDENTS:
 count = db.delete(STUDENTS_TABLE_NAME, selection,
selectionArgs);
 break;

 case STUDENT_ID:
 String id = uri.getPathSegments().get(1);
 count = db.delete(STUDENTS_TABLE_NAME, _ID + " = " + id
+
 (!TextUtils.isEmpty(selection) ? "
 AND (" + selection + ')' : ""), selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);

mu
no
tes
.in

108

Advanced Operating
System

108

 return count;
 }

 @Override
 public int update(Uri uri, ContentValues values,
 String selection, String[] selectionArgs) {
 int count = 0;
 switch (uriMatcher.match(uri)) {
 case STUDENTS:
 count = db.update(STUDENTS_TABLE_NAME, values,
selection, selectionArgs);
 break;

 case STUDENT_ID:
 count = db.update(STUDENTS_TABLE_NAME, values,
 _ID + " = " + uri.getPathSegments().get(1) +
 (!TextUtils.isEmpty(selection) ? "
 AND (" +selection + ')' : ""), selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
 @Override
 public String getType(Uri uri) {
 switch (uriMatcher.match(uri)){
 /**
 * Get all student records
 */
 case STUDENTS:
 return "vnd.android.cursor.dir/vnd.example.students";
 /**
 * Get a particular student
 */
 case STUDENT_ID:
 return "vnd.android.cursor.item/vnd.example.students";
 default:
 throw new IllegalArgumentException("Unsupported URI: " + uri);
 }
 }
}

mu
no
tes
.in

109

Android
Operating System

Following will the modified content of AndroidManifest.xml file. Here
we have added <provider.../> tag to include our content provider:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.MyApplication">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"
/>

 </intent-filter>

 </activity>

 <provider android:name="StudentsProvider"

android:authorities="com.example.MyApplication.StudentsProvider"/>

 </application>

</manifest>

Following will be the content of res/layout/activity_main.xml file−

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"

mu
no
tes
.in

110

Advanced Operating
System

110

 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.example.MyApplication.MainActivity">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Content provider"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:textSize="30dp" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Tutorials point "
 android:textColor="#ff87ff09"
 android:textSize="30dp"
 android:layout_below="@+id/textView1"
 android:layout_centerHorizontal="true" />

 <ImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageButton"
 android:src="@drawable/abc"
 android:layout_below="@+id/textView2"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/button2"
 android:text="Add Name"
 android:layout_below="@+id/editText3"
 android:layout_alignRight="@+id/textView2"
 android:layout_alignEnd="@+id/textView2"
 android:layout_alignLeft="@+id/textView2"
 android:layout_alignStart="@+id/textView2"
 android:onClick="onClickAddName"/>

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editText"
 android:layout_below="@+id/imageButton"
 android:layout_alignRight="@+id/imageButton"

mu
no
tes
.in

111

Android
Operating System

 android:layout_alignEnd="@+id/imageButton" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editText2"
 android:layout_alignTop="@+id/editText"
 android:layout_alignLeft="@+id/textView1"
 android:layout_alignStart="@+id/textView1"
 android:layout_alignRight="@+id/textView1"
 android:layout_alignEnd="@+id/textView1"
 android:hint="Name"
 android:textColorHint="@android:color/holo_blue_light" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editText3"
 android:layout_below="@+id/editText"
 android:layout_alignLeft="@+id/editText2"
 android:layout_alignStart="@+id/editText2"
 android:layout_alignRight="@+id/editText2"
 android:layout_alignEnd="@+id/editText2"
 android:hint="Grade"
 android:textColorHint="@android:color/holo_blue_bright" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Retrive student"
 android:id="@+id/button"
 android:layout_below="@+id/button2"
 android:layout_alignRight="@+id/editText3"
 android:layout_alignEnd="@+id/editText3"
 android:layout_alignLeft="@+id/button2"
 android:layout_alignStart="@+id/button2"
 android:onClick="onClickRetrieveStudents"/>
</RelativeLayout>
Make sure you have following content of res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">My Application</string>
</resources>;

mu
no
tes
.in

112

Advanced Operating
System

112

Android TelephonyManager Tutorial

The android.telephony.TelephonyManager class provides information
about the telephony services such as subscriber id, sim serial number,
phone network type etc. Moreover, you can determine the phone state etc.

Android TelephonyManager Example

Let's see the simple example of TelephonyManager that prints information
of the telephony services.

activity_main.xml

Drag one textview from the pallete, now the xml file will look like this.

File: activity_main.xml

1. <RelativeLayout
xmlns:androclass="http://schemas.android.com/apk/res/android"

2. xmlns:tools="http://schemas.android.com/tools"
3. android:layout_width="match_parent"
4. android:layout_height="match_parent"
5. android:paddingBottom="@dimen/activity_vertical_margin"
6. android:paddingLeft="@dimen/activity_horizontal_margin"
7. android:paddingRight="@dimen/activity_horizontal_margin"
8. android:paddingTop="@dimen/activity_vertical_margin"
9. tools:context=".MainActivity" >
10.
11. <TextView
12. android:id="@+id/textView1"
13. android:layout_width="wrap_content"
14. android:layout_height="wrap_content"
15. android:layout_alignParentLeft="true"
16. android:layout_alignParentTop="true"
17. android:layout_marginLeft="38dp"
18. android:layout_marginTop="30dp"
19. android:text="Phone Details:" />
20.
21. </RelativeLayout>

Activity Class

Now, write the code to display the information about the telephony
services.

File: MainActivity.java

1. package com.javatpoint.telephonymanager;
2.
3. import android.os.Bundle;

mu
no
tes
.in

113

Android
Operating System

4. import android.app.Activity;
5. import android.content.Context;
6. import android.telephony.TelephonyManager;
7. import android.view.Menu;
8. import android.widget.TextView;
9.
10. public class MainActivity extends Activity {
11. TextView textView1;
12. @Override
13. protected void onCreate(Bundle savedInstanceState) {
14. super.onCreate(savedInstanceState);
15. setContentView(R.layout.activity_main);
16.
17. textView1=(TextView)findViewById(R.id.textView1);
18.
19. //Get the instance of TelephonyManager
20. TelephonyManager

tm=(TelephonyManager)getSystemService(Context.TELEPHONY_
SERVICE);

21.
22. //Calling the methods of TelephonyManager the returns the

information
23. String IMEINumber=tm.getDeviceId();
24. String subscriberID=tm.getDeviceId();
25. String SIMSerialNumber=tm.getSimSerialNumber();
26. String networkCountryISO=tm.getNetworkCountryIso();
27. String SIMCountryISO=tm.getSimCountryIso();
28. String softwareVersion=tm.getDeviceSoftwareVersion();
29. String voiceMailNumber=tm.getVoiceMailNumber();
30.
31. //Get the phone type
32. String strphoneType="";
33.
34. int phoneType=tm.getPhoneType();
35.
36. switch (phoneType)
37. {
38. case (TelephonyManager.PHONE_TYPE_CDMA):
39. strphoneType="CDMA";
40. break;
41. case (TelephonyManager.PHONE_TYPE_GSM):
42. strphoneType="GSM";
43. break;
44. case (TelephonyManager.PHONE_TYPE_NONE):

mu
no
tes
.in

114

Advanced Operating
System

114

45. strphoneType="NONE";
46. break;
47. }
48.
49. //getting information if phone is in roaming
50. boolean isRoaming=tm.isNetworkRoaming();
51.
52. String info="Phone Details:\n";
53. info+="\n IMEI Number:"+IMEINumber;
54. info+="\n SubscriberID:"+subscriberID;
55. info+="\n Sim Serial Number:"+SIMSerialNumber;
56. info+="\n Network Country ISO:"+networkCountryISO;
57. info+="\n SIM Country ISO:"+SIMCountryISO;
58. info+="\n Software Version:"+softwareVersion;
59. info+="\n Voice Mail Number:"+voiceMailNumber;
60. info+="\n Phone Network Type:"+strphoneType;
61. info+="\n In Roaming? :"+isRoaming;
62.
63. textView1.setText(info);//displaying the information in the textView
64. }
65.
66.
67. }

AndroidManifest.xml

You need to provide READ_PHONE_STATE permission in the
AndroidManifest.xml file.

File: AndroidManifest.xml

1. <?xml version="1.0" encoding="utf-8"?>
2. <manifest

xmlns:androclass="http://schemas.android.com/apk/res/android"
3. package="com.javatpoint.telephonymanager"
4. android:versionCode="1"
5. android:versionName="1.0" >
6.
7. <uses-sdk
8. android:minSdkVersion="8"
9. android:targetSdkVersion="17" />
10.
11. <uses-permission

android:name="android.permission.READ_PHONE_STATE"/>
12.

mu
no
tes
.in

115

Android
Operating System

13. <application
14. android:allowBackup="true"
15. android:icon="@drawable/ic_launcher"
16. android:label="@string/app_name"
17. android:theme="@style/AppTheme" >
18. <activity
19.

android:name="com.javatpoint.telephonymanager.MainActivity"
20. android:label="@string/app_name" >
21. <intent-filter>
22. <action android:name="android.intent.action.MAIN" />
23.
24. <category android:name="android.intent.category.LAUNCHER" />
25. </intent-filter>
26. </activity>
27. </application>
28.
29. </manifest>
LocationManager
Kotlin |Java
public class LocationManager
extends Object
java.lang.Object

 ↳ android.location.LocationManager
This class provides access to the system location services. These services
allow applications to obtain periodic updates of the device's geographical
location, or to be notified when the device enters the proximity of a given
geographical location.
Unless otherwise noted, all Location API methods require the
Manifest.permission.ACCESS_COARSE_LOCATION or
Manifest.permission.ACCESS_FINE_LOCATION permissions. If
your application only has the coarse permission then providers will still
return location results, but the exact location will be obfuscated to a coarse
level of accuracy.
Requires the PackageManager#FEATURE_LOCATION feature which
can be detected using PackageManager.hasSystemFeature(String).

mu
no
tes
.in

116

Advanced Operating
System

116

Summary

Constants

String ACTION_GNSS_CAPABILITIES_CHANGED
 Broadcast intent action when GNSS capabilities change.

String EXTRA_GNSS_CAPABILITIES
Intent extra included with
ACTION_GNSS_CAPABILITIES_CHANGED broadcasts,
containing the new GnssCapabilities.

String EXTRA_LOCATION_ENABLED
Intent extra included with MODE_CHANGED_ACTION
broadcasts, containing the boolean enabled state of location.

String EXTRA_PROVIDER_ENABLED
Intent extra included with
PROVIDERS_CHANGED_ACTION broadcasts, containing
the boolean enabled state of the location provider that has
changed.

String EXTRA_PROVIDER_NAME
Intent extra included with
PROVIDERS_CHANGED_ACTION broadcasts, containing
the name of the location provider that has changed.

String FUSED_PROVIDER
Standard name of the fused location provider.

String GPS_PROVIDER
Standard name of the GNSS location provider.

String KEY_FLUSH_COMPLETE
Key used for an extra holding an integer request code when
location flush completion is sent using a PendingIntent.

String KEY_LOCATIONS
Key used for an extra holding a array of Locations when a
location change is sent using a PendingIntent.

String KEY_LOCATION_CHANGED
Key used for an extra holding a Location value when a
location change is sent using a PendingIntent.

String KEY_PROVIDER_ENABLED
Key used for an extra holding a boolean enabled/disabled
status value when a provider enabled/disabled event is
broadcast using a PendingIntent.

String KEY_PROXIMITY_ENTERING

mu
no
tes
.in

117

Android
Operating System

Key used for the Bundle extra holding a boolean indicating
whether a proximity alert is entering (true) or exiting (false)..

String KEY_STATUS_CHANGED
This constant was deprecated in API level 29. Status changes
are deprecated and no longer broadcast from Android Q
onwards.

String MODE_CHANGED_ACTION
Broadcast intent action when the device location enabled state
changes.

String NETWORK_PROVIDER
Standard name of the network location provider.

String PASSIVE_PROVIDER
A special location provider for receiving locations without
actively initiating a location fix.

String PROVIDERS_CHANGED_ACTION
Broadcast intent action when the set of enabled location
providers changes.

Public methods

boolean addGpsStatusListener(GpsStatus.Listener listener)
This method was deprecated in API level 24.
use registerGnssStatusCallback(android.location.GnssStatu
s.Callback) instead. No longer supported in apps targeting
S and above.

boolean addNmeaListener(OnNmeaMessageListener listener, Handl
er handler)
Adds an NMEA listener.

boolean addNmeaListener(OnNmeaMessageListener listener)
This method was deprecated in API level 30.
Use addNmeaListener(android.location.OnNmeaMessageLi
stener,
android.os.Handler) or addNmeaListener(java.util.concurr
ent.Executor,
android.location.OnNmeaMessageListener) instead.

boolean addNmeaListener(GpsStatus.NmeaListener listener)
This method was deprecated in API level 24.
Use addNmeaListener(GpsStatus.NmeaListener) instead.

boolean addNmeaListener(Executor executor, OnNmeaMessageList
ener listener)
Adds an NMEA listener.

void addProximityAlert(double latitude, double longitude, float
radius, long expiration, PendingIntent pendingIntent)
Sets a proximity alert for the location given by the position

mu
no
tes
.in

https://developer.android.com/reference/android/location/LocationManager#addGpsStatusListener(android.location.GpsStatus.Listener)
https://developer.android.com/reference/android/location/GpsStatus.Listener
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.OnNmeaMessageListener,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.GpsStatus.NmeaListener)
https://developer.android.com/reference/android/location/GpsStatus.NmeaListener
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(android.location.GpsStatus.NmeaListener)
https://developer.android.com/reference/android/location/LocationManager#addNmeaListener(java.util.concurrent.Executor,%20android.location.OnNmeaMessageListener)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/LocationManager#addProximityAlert(double,%20double,%20float,%20long,%20android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent

118

Advanced Operating
System

118

(latitude, longitude) and the given radius.
void addTestProvider(String provider, ProviderProperties proper

ties)
Creates a test location provider and adds it to the set of
active providers.

void addTestProvider(String provider, ProviderProperties proper
ties, Set<String> extraAttributionTags)
Creates a test location provider and adds it to the set of
active providers.

void addTestProvider(String provider, boolean
requiresNetwork, boolean requiresSatellite, boolean
requiresCell, boolean hasMonetaryCost, boolean
supportsAltitude, boolean supportsSpeed, boolean
supportsBearing, int powerUsage, int accuracy)
Creates a test location provider and adds it to the set of
active providers.

void clearTestProviderEnabled(String provider)
This method was deprecated in API level 29.
Use setTestProviderEnabled(java.lang.String,
boolean) instead.

void clearTestProviderLocation(String provider)
This method was deprecated in API level 29. This method
has always been a no-op, and may be removed in the future.

void clearTestProviderStatus(String provider)
This method was deprecated in API level 29. This method
has no effect.

List<String> getAllProviders()
Returns a list of the names of all available location
providers.

String getBestProvider(Criteria criteria, boolean enabledOnly)
Returns the name of the provider that best meets the given
criteria.

void getCurrentLocation(String provider, LocationRequest locati
onRequest, CancellationSignal cancellationSignal, Executor
 executor, Consumer<Location> consumer)
Asynchronously returns a single current location fix from
the given provider based on the given LocationRequest.

void getCurrentLocation(String provider, CancellationSignal can
cellationSignal, Executor executor, Consumer<Location>
consumer)
Asynchronously returns a single current location fix from
the given provider.

List<GnssA
ntennaInfo>

getGnssAntennaInfos()
Returns the current list of GNSS antenna infos, or null if
unknown or unsupported.

mu
no
tes
.in

https://developer.android.com/reference/android/location/LocationManager#addTestProvider(java.lang.String,%20android.location.provider.ProviderProperties)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/android/location/LocationManager#addTestProvider(java.lang.String,%20android.location.provider.ProviderProperties,%20java.util.Set%3Cjava.lang.String%3E)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/java/util/Set
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#addTestProvider(java.lang.String,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20int,%20int)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#clearTestProviderEnabled(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#setTestProviderEnabled(java.lang.String,%20boolean)
https://developer.android.com/reference/android/location/LocationManager#setTestProviderEnabled(java.lang.String,%20boolean)
https://developer.android.com/reference/android/location/LocationManager#clearTestProviderLocation(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#clearTestProviderStatus(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getAllProviders()
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getBestProvider(android.location.Criteria,%20boolean)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.location.LocationRequest,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/os/CancellationSignal
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/java/util/function/Consumer
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/os/CancellationSignal
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/java/util/function/Consumer
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/android/location/GnssAntennaInfo
https://developer.android.com/reference/android/location/GnssAntennaInfo
https://developer.android.com/reference/android/location/LocationManager#getGnssAntennaInfos()

119

Android
Operating System

GnssCapabil
ities

getGnssCapabilities()
Returns the supported capabilities of the GNSS chipset.

String getGnssHardwareModelName()
Returns the model name (including vendor and
hardware/software version) of the GNSS hardware driver,
or null if this information is not available.

int getGnssYearOfHardware()
Returns the model year of the GNSS hardware and software
build, or 0 if the model year is before 2016.

GpsStatus getGpsStatus(GpsStatus status)
This method was deprecated in API level 24. GpsStatus
APIs are deprecated, use GnssStatus APIs instead. No
longer supported in apps targeting S and above.

Location getLastKnownLocation(String provider)
Gets the last known location from the given provider, or
null if there is no last known location.

LocationPro
vider

getProvider(String provider)
This method was deprecated in API level 31. This method
has no way to indicate that a provider's properties are
unknown, and so may return incorrect results on rare
occasions.
Use getProviderProperties(java.lang.String) instead.

ProviderPro
perties

getProviderProperties(String provider)
Returns the properties of the given provider, or null if the
properties are currently unknown.

List<String> getProviders(boolean enabledOnly)
Returns a list of the names of available location providers.

List<String> getProviders(Criteria criteria, boolean enabledOnly)
Returns a list of the names of available location providers
that satisfy the given criteria.

boolean hasProvider(String provider)
Returns true if the given location provider exists on this
device, irrespective of whether it is currently enabled or
not.

boolean isLocationEnabled()
Returns the current enabled/disabled state of location.

boolean isProviderEnabled(String provider)
Returns the current enabled/disabled status of the given
provider.

boolean registerAntennaInfoListener(Executor executor, GnssAnten
naInfo.Listener listener)
Registers a GNSS antenna info listener that will receive all
changes to antenna info.

boolean registerGnssMeasurementsCallback(Executor executor, Gn
ssMeasurementsEvent.Callback callback)

mu
no
tes
.in

https://developer.android.com/reference/android/location/GnssCapabilities
https://developer.android.com/reference/android/location/GnssCapabilities
https://developer.android.com/reference/android/location/LocationManager#getGnssCapabilities()
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getGnssHardwareModelName()
https://developer.android.com/reference/android/location/LocationManager#getGnssYearOfHardware()
https://developer.android.com/reference/android/location/GpsStatus
https://developer.android.com/reference/android/location/LocationManager#getGpsStatus(android.location.GpsStatus)
https://developer.android.com/reference/android/location/GpsStatus
https://developer.android.com/reference/android/location/GnssStatus
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationProvider
https://developer.android.com/reference/android/location/LocationProvider
https://developer.android.com/reference/android/location/LocationManager#getProvider(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getProviderProperties(java.lang.String)
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/android/location/provider/ProviderProperties
https://developer.android.com/reference/android/location/LocationManager#getProviderProperties(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getProviders(boolean)
https://developer.android.com/reference/java/util/List
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#getProviders(android.location.Criteria,%20boolean)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationManager#hasProvider(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#isLocationEnabled()
https://developer.android.com/reference/android/location/LocationManager#isProviderEnabled(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#registerAntennaInfoListener(java.util.concurrent.Executor,%20android.location.GnssAntennaInfo.Listener)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssAntennaInfo.Listener
https://developer.android.com/reference/android/location/GnssAntennaInfo.Listener
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback

120

Advanced Operating
System

120

Registers a GNSS measurements callback.
boolean registerGnssMeasurementsCallback(GnssMeasurementsEv

ent.Callback callback)
This method was deprecated in API level 30.
Use registerGnssMeasurementsCallback(GnssMeasuremen
tsEvent.Callback,
Handler) or registerGnssMeasurementsCallback(Executor,
GnssMeasurementsEvent.Callback) instead.
Requires Manifest.permission.ACCESS_FINE_LOCATION

boolean registerGnssMeasurementsCallback(GnssMeasurementReq
uest request, Executor executor, GnssMeasurementsEvent.
Callback callback)
Registers a GNSS measurement callback.

boolean registerGnssMeasurementsCallback(GnssMeasurementsEv
ent.Callback callback, Handler handler)
Registers a GNSS measurements callback.

boolean registerGnssNavigationMessageCallback(GnssNavigation
Message.Callback callback, Handler handler)
Registers a GNSS navigation message callback.

boolean registerGnssNavigationMessageCallback(Executor executo
r, GnssNavigationMessage.Callback callback)
Registers a GNSS navigation message callback.

boolean registerGnssNavigationMessageCallback(GnssNavigation
Message.Callback callback)
This method was deprecated in API level 30.
Use registerGnssNavigationMessageCallback(android.loca
tion.GnssNavigationMessage.Callback,
android.os.Handler) or registerGnssNavigationMessageCa
llback(java.util.concurrent.Executor,
android.location.GnssNavigationMessage.Callback) instea
d.

boolean registerGnssStatusCallback(GnssStatus.Callback callback)
This method was deprecated in API level 30.
Use registerGnssStatusCallback(android.location.GnssStat
us.Callback,
android.os.Handler) or registerGnssStatusCallback(java.ut
il.concurrent.Executor,
android.location.GnssStatus.Callback) instead.

boolean registerGnssStatusCallback(GnssStatus.Callback callback,
Handler handler)
Registers a GNSS status callback.

boolean registerGnssStatusCallback(Executor executor, GnssStatus.
Callback callback)
Registers a GNSS status callback.

void removeGpsStatusListener(GpsStatus.Listener listener)

mu
no
tes
.in

https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/Manifest.permission#ACCESS_FINE_LOCATION
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementRequest,%20java.util.concurrent.Executor,%20android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/GnssMeasurementRequest
https://developer.android.com/reference/android/location/GnssMeasurementRequest
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssNavigationMessageCallback(java.util.concurrent.Executor,%20android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(android.location.GnssStatus.Callback,%20android.os.Handler)
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/os/Handler
https://developer.android.com/reference/android/location/LocationManager#registerGnssStatusCallback(java.util.concurrent.Executor,%20android.location.GnssStatus.Callback)
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/location/GnssStatus.Callback
https://developer.android.com/reference/android/location/LocationManager#removeGpsStatusListener(android.location.GpsStatus.Listener)
https://developer.android.com/reference/android/location/GpsStatus.Listener

121

Android
Operating System

This method was deprecated in API level 24.
use unregisterGnssStatusCallback(android.location.GnssSt
atus.Callback) instead. No longer supported in apps
targeting S and above.

void removeNmeaListener(OnNmeaMessageListener listener)
Removes an NMEA listener.

void removeNmeaListener(GpsStatus.NmeaListener listener)
This method was deprecated in API level 24.
Use removeNmeaListener(android.location.OnNmeaMessa
geListener) instead.

void removeProximityAlert(PendingIntent intent)
Removes the proximity alert with the given PendingIntent.

void removeTestProvider(String provider)
Removes the test location provider with the given name or
does nothing if no such test location provider exists.

void removeUpdates(LocationListener listener)
Removes all location updates for the
specified LocationListener.

void removeUpdates(PendingIntent pendingIntent)
Removes location updates for the specified PendingIntent.

void requestFlush(String provider, LocationListener listener, int
requestCode)
Requests that the given provider flush any batched
locations to listeners.

void requestFlush(String provider, PendingIntent pendingIntent,
int requestCode)
Requests that the given provider flush any batched
locations to listeners.

void requestLocationUpdates(String provider, long
minTimeMs, float
minDistanceM, LocationListener listener)
Register for location updates from the given provider with
the given arguments, and a callback on the Looper of the
calling thread.

void requestLocationUpdates(long minTimeMs, float
minDistanceM, Criteria criteria, LocationListener listener,
Looper looper)
This method was deprecated in API level 31.
Use requestLocationUpdates(java.lang.String, long, float,
android.location.LocationListener,
android.os.Looper) instead to explicitly select a provider.

void requestLocationUpdates(String provider, long
minTimeMs, float
minDistanceM, LocationListener listener, Looper looper)
Register for location updates from the given provider with

mu
no
tes
.in

https://developer.android.com/reference/android/location/LocationManager#unregisterGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/OnNmeaMessageListener
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.GpsStatus.NmeaListener)
https://developer.android.com/reference/android/location/GpsStatus.NmeaListener
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#removeNmeaListener(android.location.OnNmeaMessageListener)
https://developer.android.com/reference/android/location/LocationManager#removeProximityAlert(android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#removeTestProvider(java.lang.String)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#removeUpdates(android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationManager#removeUpdates(android.app.PendingIntent)
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestFlush(java.lang.String,%20android.location.LocationListener,%20int)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationManager#requestFlush(java.lang.String,%20android.app.PendingIntent,%20int)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(long,%20float,%20android.location.Criteria,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper

122

Advanced Operating
System

122

the given arguments, and a callback on the
specified Looper.

void requestLocationUpdates(String provider, long
minTimeMs, float
minDistanceM, Executor executor, LocationListener listene
r)
Register for location updates using the named provider, and
a callback on the specified Executor.

void requestLocationUpdates(String provider, LocationRequest l
ocationRequest, PendingIntent pendingIntent)
Register for location updates from the specified provider,
using a LocationRequest, and callbacks delivered via the
provided PendingIntent.

void requestLocationUpdates(String provider, LocationRequest l
ocationRequest, Executor executor, LocationListener listen
er)
Register for location updates from the specified provider,
using a LocationRequest, and a callback on the
specified Executor.

void requestLocationUpdates(long minTimeMs, float
minDistanceM, Criteria criteria, PendingIntent pendingInte
nt)
This method was deprecated in API level 31.
Use requestLocationUpdates(java.lang.String, long, float,
android.app.PendingIntent) instead to explicitly select a
provider.

void requestLocationUpdates(long minTimeMs, float
minDistanceM, Criteria criteria, Executor executor, Locatio
nListener listener)
This method was deprecated in API level 31.
Use requestLocationUpdates(java.lang.String, long, float,
java.util.concurrent.Executor,
android.location.LocationListener) instead to explicitly
select a provider.

void requestLocationUpdates(String provider, long
minTimeMs, float
minDistanceM, PendingIntent pendingIntent)
Register for location updates using the named provider, and
callbacks delivered via the provided PendingIntent.

void requestSingleUpdate(String provider, PendingIntent pendin
gIntent)
This method was deprecated in API level 30.
Use getCurrentLocation(java.lang.String,
android.os.CancellationSignal,
java.util.concurrent.Executor,

mu
no
tes
.in

https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20android.location.LocationRequest,%20android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20android.location.LocationRequest,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationRequest
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(long,%20float,%20android.location.Criteria,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(long,%20float,%20android.location.Criteria,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/java/util/concurrent/Executor
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20java.util.concurrent.Executor,%20android.location.LocationListener)
https://developer.android.com/reference/android/location/LocationManager#requestLocationUpdates(java.lang.String,%20long,%20float,%20android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(java.lang.String,%20android.app.PendingIntent)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)

123

Android
Operating System

java.util.function.Consumer) instead as it does not carry a
risk of extreme battery drain.

void requestSingleUpdate(Criteria criteria, PendingIntent pendin
gIntent)
This method was deprecated in API level 30.
Use getCurrentLocation(java.lang.String,
android.os.CancellationSignal,
java.util.concurrent.Executor,
java.util.function.Consumer) instead as it does not carry a
risk of extreme battery drain.

void requestSingleUpdate(String provider, LocationListener liste
ner, Looper looper)
This method was deprecated in API level 30.
Use getCurrentLocation(java.lang.String,
android.os.CancellationSignal,
java.util.concurrent.Executor,
java.util.function.Consumer) instead as it does not carry a
risk of extreme battery drain.

void requestSingleUpdate(Criteria criteria, LocationListener liste
ner, Looper looper)
This method was deprecated in API level 30.
Use getCurrentLocation(java.lang.String,
android.os.CancellationSignal,
java.util.concurrent.Executor,
java.util.function.Consumer) instead as it does not carry a
risk of extreme battery drain.

boolean sendExtraCommand(String provider, String command, Bun
dle extras)
Sends additional commands to a location provider.

void setTestProviderEnabled(String provider, boolean enabled)
Sets the given test provider to be enabled or disabled.

void setTestProviderLocation(String provider, Location location
)
Sets a new location for the given test provider.

void setTestProviderStatus(String provider, int
status, Bundle extras, long updateTime)
This method was deprecated in API level 29. This method
has no effect.

void unregisterAntennaInfoListener(GnssAntennaInfo.Listener li
stener)
Unregisters a GNSS antenna info listener.

void unregisterGnssMeasurementsCallback(GnssMeasurements
Event.Callback callback)
Unregisters a GPS Measurement callback.

void unregisterGnssNavigationMessageCallback(GnssNavigatio

mu
no
tes
.in

https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(android.location.Criteria,%20android.app.PendingIntent)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(java.lang.String,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#requestSingleUpdate(android.location.Criteria,%20android.location.LocationListener,%20android.os.Looper)
https://developer.android.com/reference/android/location/Criteria
https://developer.android.com/reference/android/location/LocationListener
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#getCurrentLocation(java.lang.String,%20android.os.CancellationSignal,%20java.util.concurrent.Executor,%20java.util.function.Consumer%3Candroid.location.Location%3E)
https://developer.android.com/reference/android/location/LocationManager#sendExtraCommand(java.lang.String,%20java.lang.String,%20android.os.Bundle)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/location/LocationManager#setTestProviderEnabled(java.lang.String,%20boolean)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/LocationManager#setTestProviderLocation(java.lang.String,%20android.location.Location)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/LocationManager#setTestProviderStatus(java.lang.String,%20int,%20android.os.Bundle,%20long)
https://developer.android.com/reference/java/lang/String
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/location/LocationManager#unregisterAntennaInfoListener(android.location.GnssAntennaInfo.Listener)
https://developer.android.com/reference/android/location/GnssAntennaInfo.Listener
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssMeasurementsCallback(android.location.GnssMeasurementsEvent.Callback)
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/GnssMeasurementsEvent.Callback
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssNavigationMessageCallback(android.location.GnssNavigationMessage.Callback)
https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback

124

Advanced Operating
System

124

nMessage.Callback callback)
Unregisters a GNSS Navigation Message callback.

void unregisterGnssStatusCallback(GnssStatus.Callback callbac
k)
Removes a GNSS status callback.

Inherited methods

From class java.lang.Object

Constants

ACTION_GNSS_CAPABILITIES_CHANGED
Added in API level 31

public static final String ACTION_GNSS_CAPABILITIES_CHANGED

Broadcast intent action when GNSS capabilities change. This is most
common at boot time as GNSS capabilities are queried from the chipset.
Includes an intent extra, EXTRA_GNSS_CAPABILITIES, with the new
GnssCapabilities.

See also:

 EXTRA_GNSS_CAPABILITIES
 getGnssCapabilities()

Constant Value:
"android.location.action.GNSS_CAPABILITIES_CHANGED"

EXTRA_GNSS_CAPABILITIES

Added in API level 31

public static final String EXTRA_GNSS_CAPABILITIES

Intent extra included with
ACTION_GNSS_CAPABILITIES_CHANGED broadcasts, containing
the new GnssCapabilities.

See also:

 ACTION_GNSS_CAPABILITIES_CHANGED

Constant Value: "android.location.extra.GNSS_CAPABILITIES"

EXTRA_LOCATION_ENABLED

Added in API level 30

public static final String EXTRA_LOCATION_ENABLED

Intent extra included with MODE_CHANGED_ACTION broadcasts,
containing the boolean enabled state of location.

mu
no
tes
.in

https://developer.android.com/reference/android/location/GnssNavigationMessage.Callback
https://developer.android.com/reference/android/location/LocationManager#unregisterGnssStatusCallback(android.location.GnssStatus.Callback)
https://developer.android.com/reference/android/location/GnssStatus.Callback

125

Android
Operating System

See also:

 MODE_CHANGED_ACTION

Constant Value: "android.location.extra.LOCATION_ENABLED"

EXTRA_PROVIDER_ENABLED

Added in API level 30

public static final String EXTRA_PROVIDER_ENABLED

Intent extra included with PROVIDERS_CHANGED_ACTION
broadcasts, containing the boolean enabled state of the location provider
that has changed.

See also:

 PROVIDERS_CHANGED_ACTION
 EXTRA_PROVIDER_NAME

Constant Value: "android.location.extra.PROVIDER_ENABLED"

EXTRA_PROVIDER_NAME

Added in API level 29

public static final String EXTRA_PROVIDER_NAME

Intent extra included with PROVIDERS_CHANGED_ACTION
broadcasts, containing the name of the location provider that has changed.

See also:

 PROVIDERS_CHANGED_ACTION
 EXTRA_PROVIDER_ENABLED

Constant Value: "android.location.extra.PROVIDER_NAME"
FUSED_PROVIDER
Added in API level 31
public static final String FUSED_PROVIDER
Standard name of the fused location provider.
If present, this provider may combine inputs from several other location
providers to provide the best possible location fix. It is implicitly used for
all requestLocationUpdates APIs that involve a Criteria.
Constant Value: "fused"
GPS_PROVIDER
Added in API level 1
public static final String GPS_PROVIDER
Standard name of the GNSS location provider.

mu
no
tes
.in

126

Advanced Operating
System

126

If present, this provider determines location using GNSS satellites. The
responsiveness and accuracy of location fixes may depend on GNSS
signal conditions.
The extras Bundle for locations derived by this location provider may
contain the following key/value pairs:
 satellites - the number of satellites used to derive the fix
Constant Value: "gps"
KEY_FLUSH_COMPLETE
Added in API level 31
public static final String KEY_FLUSH_COMPLETE
Key used for an extra holding an integer request code when location flush
completion is sent using a PendingIntent.
See also:
 requestFlush(String, PendingIntent, int)
Constant Value: "flushComplete"
KEY_LOCATIONS
Added in API level 31
public static final String KEY_LOCATIONS
Key used for an extra holding a array of Locations when a location change
is sent using a PendingIntent. This key will only be present if the location
change includes multiple (ie, batched) locations, otherwise only
KEY_LOCATION_CHANGED will be present. Use
Intent#getParcelableArrayExtra(String) to retrieve the locations.
The array of locations will never be empty, and will ordered from earliest
location to latest location, the same as with
LocationListener#onLocationChanged(List).
See also:

 requestLocationUpdates(String, LocationRequest, PendingIntent)
Constant Value: "locations"
KEY_LOCATION_CHANGED
Added in API level 3
public static final String KEY_LOCATION_CHANGED
Key used for an extra holding a Location value when a location change is
sent using a PendingIntent. If the location change includes a list of batched
locations via KEY_LOCATIONS then this key will still be present, and
will hold the last location in the batch. Use
Intent#getParcelableExtra(String) to retrieve the location.
See also:
 requestLocationUpdates(String, LocationRequest, PendingIntent)
Constant Value: "location"
KEY_PROVIDER_ENABLED
Added in API level 3
public static final String KEY_PROVIDER_ENABLED

mu
no
tes
.in

127

Android
Operating System

Key used for an extra holding a boolean enabled/disabled status value
when a provider enabled/disabled event is broadcast using a
PendingIntent.
See also:
• requestLocationUpdates(String, LocationRequest, PendingIntent)
Constant Value: "providerEnabled"
KEY_PROXIMITY_ENTERING
Added in API level 1
public static final String KEY_PROXIMITY_ENTERING
Key used for the Bundle extra holding a boolean indicating whether a
proximity alert is entering (true) or exiting (false)..
Constant Value: "entering"
KEY_STATUS_CHANGED

Resource Manager

The job of a resource manager is, quite simply, to manage all available
resources that your company has, especially employees. One of the many
responsibilities of a resource manager (more commonly known as a
human resource manager, or HR manager) is to assign the right people to a
job.

There are many more items which you use to build a good Android
application. Apart from coding for the application, you take care of
various other resources like static content that your code uses, such as
bitmaps, colors, layout definitions, user interface strings, animation
instructions, and more. These resources are always maintained separately
in various sub-directories under res/ directory of the project.

This tutorial will explain you how you can organize your application
resources, specify alternative resources and access them in your
applications.

Organize resource in Android Studio
MyProject/
 app/
 manifest/
 AndroidManifest.xml
 java/
 MyActivity.java
 res/
 drawable/
 icon.png
 layout/
 activity_main.xml
 info.xml
 values/
 strings.xml

mu
no
tes
.in

128

Advanced Operating
System

128

Sr.No. Directory & Resource Type

1 anim/
XML files that define property animations. They are saved in
res/anim/ folder and accessed from the R.anim class.

2 color/
XML files that define a state list of colors. They are saved in
res/color/ and accessed from the R.color class.

3 drawable/
Image files like .png, .jpg, .gif or XML files that are compiled into
bitmaps, state lists, shapes, animation drawable. They are saved in
res/drawable/ and accessed from the R.drawable class.

4 layout/
XML files that define a user interface layout. They are saved in
res/layout/ and accessed from the R.layout class.

5 menu/
XML files that define application menus, such as an Options Menu,
Context Menu, or Sub Menu. They are saved in res/menu/ and
accessed from the R.menu class.

6 raw/
Arbitrary files to save in their raw form. You need to
call Resources.openRawResource() with the resource ID, which
is R.raw.filename to open such raw files.

7 values/
XML files that contain simple values, such as strings, integers, and
colors. For example, here are some filename conventions for
resources you can create in this directory −

 arrays.xml for resource arrays, and accessed from
the R.array class.

 integers.xml for resource integers, and accessed from
the R.integer class.

 bools.xml for resource boolean, and accessed from
the R.bool class.

 colors.xml for color values, and accessed from
the R.color class.

 dimens.xml for dimension values, and accessed from
the R.dimen class.

 strings.xml for string values, and accessed from
the R.string class.

 styles.xml for styles, and accessed from the R.style class.

8 xml/
Arbitrary XML files that can be read at runtime by
calling Resources.getXML(). You can save various configuration files
here which will be used at run time.

mu
no
tes
.in

129

Android
Operating System

Alternative Resources

Your application should provide alternative resources to support specific
device configurations. For example, you should include alternative
drawable resources (i.e.images) for different screen resolution and
alternative string resources for different languages. At runtime, Android
detects the current device configuration and loads the appropriate
resources for your application.

To specify configuration-specific alternatives for a set of resources, follow
the following steps −

 Create a new directory in res/ named in the form <resources_name>-
<config_qualifier>. Here resources_name will be any of the
resources mentioned in the above table, like layout, drawable etc.
The qualifier will specify an individual configuration for which
these resources are to be used. You can check official documentation
for a complete list of qualifiers for different type of resources.

 Save the respective alternative resources in this new directory. The
resource files must be named exactly the same as the default
resource files as shown in the below example, but these files will
have content specific to the alternative. For example though image
file name will be same but for high resolution screen, its resolution
will be high.

Below is an example which specifies images for a default screen and
alternative images for high resolution screen.

MyProject/
 app/
 manifest/
 AndroidManifest.xml
 java/
 MyActivity.java
 res/
 drawable/
 icon.png
 background.png
 drawable-hdpi/
 icon.png
 background.png
 layout/
 activity_main.xml
 info.xml
 values/
 strings.xml

Below is another example which specifies layout for a default language
and alternative layout for Arabic language.

mu
no
tes
.in

130

Advanced Operating
System

130

MyProject/
 app/
 manifest/
 AndroidManifest.xml
 java/
 MyActivity.java
 res/
 drawable/
 icon.png
 background.png
 drawable-hdpi/
 icon.png
 background.png
 layout/
 activity_main.xml
 info.xml
 layout-ar/
 main.xml
 values/

 strings.xml

Accessing Resources

During your application development you will need to access defined
resources either in your code, or in your layout XML files. Following
section explains how to access your resources in both the scenarios −

Accessing Resources in Code

When your Android application is compiled, a R class gets generated,
which contains resource IDs for all the resources available in your res/
directory. You can use R class to access that resource using sub-directory
and resource name or directly resource ID.

Example

To access res/drawable/myimage.png and set an ImageView you will use
following code −

ImageView imageView = (ImageView)
findViewById(R.id.myimageview);

imageView.setImageResource(R.drawable.myimage);

Here first line of the code make use of R.id.myimageview to get
ImageView defined with id myimageview in a Layout file. Second line of
code makes use of R.drawable.myimage to get an image with name
myimage available in drawable sub-directory under /res.

mu
no
tes
.in

131

Android
Operating System

Example

Consider next example where res/values/strings.xml has following
definition −

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello, World!</string>

</resources>

Now you can set the text on a TextView object with ID msg using a
resource ID as follows −

TextView msgTextView = (TextView) findViewById(R.id.msg);

msgTextView.setText(R.string.hello);

Example

Consider a layout res/layout/activity_main.xml with the following
definition −

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a Button" />

</LinearLayout>

mu
no
tes
.in

132

Advanced Operating
System

132

This application code will load this layout for an Activity, in the
onCreate() method as follows −

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

Accessing Resources in XML

Consider the following resource XML res/values/strings.xml file that
includes a color resource and a string resource −

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="opaque_red">#f00</color>

 <string name="hello">Hello!</string>

</resources>

Now you can use these resources in the following layout file to set the text
color and text string as follows −

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@color/opaque_red"

 android:text="@string/hello" />

Now if you will go through previous chapter once again where I have
explained Hello World! example, and I'm sure you will have better
understanding on all the concepts explained in this chapter. So I highly
recommend to check previous chapter for working example and check
how I have used various resources at very basic level.

mu
no
tes
.in

133

Android
Operating System

Android Activity Lifecycle

Android Activity Lifecycle is controlled by 7 methods of
android.app.Activity class. The android Activity is the subclass of
ContextThemeWrapper class.

An activity is the single screen in android. It is like window or frame of
Java.

By the help of activity, you can place all your UI components or widgets
in a single screen.

The 7 lifecycle method of Activity describes how activity will behave at
different states.

Android Activity Lifecycle methods

Let's see the 7 lifecycle methods of android activity.

Method Description

onCreate called when activity is first created.

onStart called when activity is becoming visible to the user.

onResume called when activity will start interacting with the user.

onPause called when activity is not visible to the user.

onStop called when activity is no longer visible to the user.

onRestart called after your activity is stopped, prior to start.

onDestroy called before the activity is destroyed.

mu
no
tes
.in

134

Advanced Operating
System

134

File: activity_main.xml

1. <?xml version="1.0" encoding="utf-8"?>
2. <android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
3. xmlns:app="http://schemas.android.com/apk/res-auto"
4. xmlns:tools="http://schemas.android.com/tools"
5. android:layout_width="match_parent"
6. android:layout_height="match_parent"
7. tools:context="example.javatpoint.com.activitylifecycle.

MainActivity">
8.

mu
no
tes
.in

135

Android
Operating System

9. <TextView
10. android:layout_width="wrap_content"
11. android:layout_height="wrap_content"
12. android:text="Hello World!"
13. app:layout_constraintBottom_toBottomOf="parent"
14. app:layout_constraintLeft_toLeftOf="parent"
15. app:layout_constraintRight_toRightOf="parent"
16. app:layout_constraintTop_toTopOf="parent" />
17.
18. </android.support.constraint.ConstraintLayout>

Android Activity Lifecycle Example

It provides the details about the invocation of life cycle methods of
activity. In this example, we are displaying the content on the logcat.

File: MainActivity.java

1. package example.javatpoint.com.activitylifecycle;
2.
3. import android.app.Activity;
4. import android.os.Bundle;
5. import android.util.Log;
6.
7. public class MainActivity extends Activity {
8.
9. @Override
10. protected void onCreate(Bundle savedInstanceState) {
11. super.onCreate(savedInstanceState);
12. setContentView(R.layout.activity_main);
13. Log.d("lifecycle","onCreate invoked");
14. }
15. @Override
16. protected void onStart() {
17. super.onStart();
18. Log.d("lifecycle","onStart invoked");
19. }
20. @Override
21. protected void onResume() {
22. super.onResume();
23. Log.d("lifecycle","onResume invoked");
24. }
25. @Override
26. protected void onPause() {
27. super.onPause();
28. Log.d("lifecycle","onPause invoked");

mu
no
tes
.in

136

Advanced Operating
System

136

29. }
30. @Override
31. protected void onStop() {
32. super.onStop();
33. Log.d("lifecycle","onStop invoked");
34. }
35. @Override
36. protected void onRestart() {
37. super.onRestart();
38. Log.d("lifecycle","onRestart invoked");
39. }
40. @Override
41. protected void onDestroy() {
42. super.onDestroy();
43. Log.d("lifecycle","onDestroy invoked");
44. }
45. }

Output:

You will not see any output on the emulator or device. You need to open
logcat.

4.5 SUMMARY

This chapter Describes basic things of Android.

4.6 EXERCISE

 Explain the Android application Architecture.
 What are the code names of android?

4.7 REFERENCES

 PROFESSIONAL Android™ 4 Application Development, Reto
Meier, John Wiley & Sons, Inc. 2012.



mu
no
tes
.in

	0 97 Starting pages
	01 (1-14)
	02 (15-51)
	03 (53-77)
	04 (78-136)

