

1

1
INTRODUCTION TO COMPILERS

Unit Structure
1.0 Objectives
1.1 Introduction
1.2 The structure to compiler
 1.2.1 Lexical Analysis
 1.2.2 Syntax Analysis
 1.2.3 Semantic Analysis
 1.2.4 Intermediate Code Generation
 1.2.5 Code Optimization
 1.2.6 Code Generation
 1.2.7 Target Code Generator
 1.2.8 Symbol-Table Management
1.3 Lexical Analyzers
1.4 Regular Expressions
1.5 Finite Automata
 1.5.1 From Regular to Finite Automata
 1.5.2 Minimizing the States of DFA
1.6 Context Free Grammars
1.7 Derivation and Parse Tree
1.8 Parsers
 1.8.1 Shift-Reduce Parsing
 1.8.2 Operator-Precedence Parsing
 1.8.3 Top-Down Parsing
 1.8.4 Predictive Parsers
1.9 Summary
1.10 References for further reading
1.11 Unit End Exercises

1.0 OBJECTIVES

After going through this unit, you will be able to:

● define the compiler, regular expression

● structure of compiler

● define the Context free grammars, parsers

● minimize the number of states of DFA

● top-down parsing

mu
no
tes
.in

2

Design and implementation
of Modern Compilers

2

1.1 INTRODUCTION

Compiler is a software that translate one language into another language.
The compiler converts the code from high-level language (source code) to
low level language (machine code/object code) as shown in figure 1. From
the compiler expected that it will give optimized result in terms of time and
space.

Figure. 1

● Computer are the combination of hardware and software.
● Hardware is a mechanical device that will not work alone and these

devices are controlled by the software. Hardware devices will work
on electronic charge viz positive and negative these charges are
handled by software programming i.e. binary languages. The binary
language has two values 0 and 1.

● When compiler converts the source code into machine code then at
first it checks the source code whether in the code having any syntax
error that it will check from predefined keywords, tokens or values.

● If any syntax of particular keyword is different from predefined
keyword values, then it will arise an error message. Compiler convert
the source code into object code in one go.

Features of Compiler
1. Good error detection
2. Compile in one go
3. Fast in speed
4. Help in code debugging
5. Faultlessness
6. Easily detect the illegal errors
Types of Compilers
1. Single pass compiler
2. Two pass compilers
 3. Multi pass compiler

1.2 STRUCTURE OF COMPILER

Compiler is an abstract machine. It is in between the high-level language
and machine level language. Structure part define the phases of compiler.
At first compiler get the data from user i.e. source code then convert these
data in lexical part then data pass to another level. Every level gets the
intermediate data. The output of first stage becomes the input of second
stage. Structure of compiler describe in figure 2.

mu
no
tes
.in

3

Introduction to Compilers

Figure 2.

1.2.1 LEXICAL ANALYSIS
1. It is the first level of compilation process.
2. At first it takes code as input from source code then it starts to

convert the data.
3. It reads the source code one character at a time and then convert this

source code into meaningful lexemes.
4. These lexemes are represented as a token in lexical analyzer.
5. It also removes the white space and comments.
6. It also uses to check and remove the lexical errors.
7. It reads the character or values from left to right.
1.2.2 SYNTAX ANALYSIS
1. It is a second phase of compiler.
2. It takes the input from lexical analysis as tokens then convert these

tokens into parse tree.
3. When tokens convert into parse tree it will follow the rules of source

code grammar.
4. These grammar codes as known as context free grammar.
5. This phase analyzes the parser and then check the input expressions

that are syntactically correct or not.
1.2.3 SEMANTIC ANALYSIS
1. This level checks source code for semantic consistency with language

definition for that it uses the syntax tree and for the information
symbol table.

2. It collects all the information and checks the validity for variables,
keyword, data and save it into syntax tree or in the symbol table.

3. In this analysis every operator checks whether it is having matching
operands.

mu
no
tes
.in

4

Design and implementation
of Modern Compilers

4

4. Type checking and flow checking is an important part of Semantic
analysis.

5. Language specification may allow type conversion also it is known as
coercions.

6. It also checks whether the language follows the rules or not.
7. It also verifies the parser tree of syntax analyzer.

For instance, coercions appear in figure 3. Assume that Interest, principal,
rate have been declared to be floating point number and lexeme 70 is itself
forms of an integer. The (*) operator is concern to a floating-point number
rate and the integer value 70. In this case, integer value is translated into
floating point number.

Figure 3

mu
no
tes
.in

5

Introduction to Compilers 1.2.4 INTERMEDIATE CODE GENERATION

When compiler convert the source code into target code then compiler
create one or more intermediate code. Syntax tree are the intermediate
representation of syntax and semantic analysis. This code is similar for all
the compilers. This intermediate representation have two properties
1. To convert into the object code or target machine.
2. It produces the result in easy manner.
This is an example of intermediate code. This code consists of three
operators. It is also known as three-address code. Each instruction consists
assignment operator(l1, l2, l3) are the temporary name that hold the values.
In l1 statement integer value is converted into floating point value. In l2
statement multiplication operator is used. In l3 statement addition operator
is used.
E.g.
l1= inttofloat(70)
l2= id3*l1
l3= id2+l2
Id1=l3
1.2.5 CODE OPTIMIZATION
1. The code optimization step is to improve the intermediate code

performance for better target code result. In the code optimizer firstly
decided that the code should be small so that the result given will be
very quickly and it will consume less power.

2. One special point is that the code should be user friendly.
3. The code optimizer also can reduce the compilation and execution

time of compiler when it compiles the code.
4. Below is the example given which shows that the conversion of

integer value into floating point(60.0) at once, after that it will use
previous result.

 l1= id3*60.0
 Id1= id2+l1
1.2.6 CODE GENERATION
1. Code generation phase is an important part that takes the intermediate

code value as a input and writes the code for target language.
2. Intermediate instructions are converted into sequence of target

instruction code that perform a particular task.
3. During the code generation firstly is decided about the variable

names, keywords, operation which gives the result as per the
requirement.

4. Example for code generation. F letter is use for the floating-point
value and R1, R2 are the intermediate code and the first value of each
statement specify the destination means place where statements result
will get store.

mu
no
tes
.in

6

Design and implementation
of Modern Compilers

6

5. # Symbol specifies the value 70.0 is treated as immediate constants.
E.g.

 LDF R2, id3
 MULF R2, R2, #70.0 LDF R1, id2
 ADDF R1, R1, R2 STF id1, R1

1.2.7 TARGET CODE GENERATOR

1. After the completion of code generation phase execute that code and
user will get the desired result.

2. If the result is according to the requirements, then solve another
problem if the result will not come according to the user requirements,
then do some changes till the desired result will come.

3. This is final phase of compiler.
4. All the phases of compiler are divided into two parts:

1. Front end
2. Back end

1. Front end
In this phase all the phases come viz. lexical analysis, syntax
analysis, semantic analysis and Intermediate code generation.

2. Back end
Code optimization and code generation phases comes under
back-end phase.

1.2.8 SYMBOL-TABLE MANAGMENT

1. Symbol table is a data structure that consists all the variable name,
keyword, fields name.

2. With the help of symbol table user can easily store and get the data
for each record with name quickly.

3. It collects the information for attribute of a name.

4. It also provides the detail or information for the storage, type, and its
scope.

5. Different kinds of data structure techniques are used to create a
symbol table. Some of techniques listed are:
1. Linked list
2. Hash table
3. Tree
E.g. int sum (int x, int y) {
add=0; add=x+y; return add;

}

mu
no
tes
.in

7

Introduction to Compilers Operations on Symbol table
1. Allocates the operations on symbol table
2. Insert the operations on symbol table
3. Set_attributes
4. Get_attributes
5. Free operation
6. Look up operation

1.3 LEXICAL ANALYZER

1. Lexical analyzer is the first and important phase of compiler.
2. It reads the character or value as an input from the source program

then group them into lexemes and generate the output as a sequence
of tokens for every lexeme.

3. All the tokens are pass to the parser for syntax analysis.
4. Lexical analyzer communicates with the symbol table.
5. When the lexical analyzer generates a lexeme, it must enter lexemes

value into symbol table.
6. In few cases, some identifiers are read from the symbol table then

lexical analyzer determine the proper tokens that should be pass to the
parser. The relationship between lexical analyzer, symbol table and
parser as shown in figure 4.

Figure 4. Interaction between lexical analyzer and parser

 From this it is clear that lexical analyzer passes the tokens to the parser
then parser pass the system call command to lexical analyzer i.e., get
next token . Parser have the bidirectional link with symbol table.
Symbol table is the data structure that contain the value, keywords,
data types. Lexical analyzer also communicates with symbol table.

7. The main task of lexical analyser is to correct the error messages that
are generated by the compiler.

8. It also keeps track of the number of new line character. so it identifies
the error message with line number.

9. Lexical analyzer is classified into two processes:

mu
no
tes
.in

8

Design and implementation
of Modern Compilers

8

a) Scanning contains the normal process that doesn’t require
tokenization of the input.

b) Lexical analyzer produces the tokens from the result of the
scanner.

10. Lexical analyzer having some important operations on languages viz.
union, concatenation.

11. Union operation join two language statements.
12. Concatenation operation perform on two languages by taking a string

or character from one language then take another string from second
language then apply concatenation operation on them. Table 1
describes the operations on languages.

Table 1. Operations on languages

Tokens, Patterns and Lexemes

Tokens: Lexemes are the sequence of alphanumeric character that are
known as tokens. Tokens represent a bit of information in a source code. In
every language some predefined values are there that are known as
keywords. All lexemes follow that predefined rule. Every programming
language having some symbols i.e. keywords, punctuations, operators,
operations, string these are consider as a tokens in lexical analysis.
For example, in C programming language variables are declared as: float
a=10.0;
float (keyword), a (identifier), = (operator), 10.0 (constant) ; (symbol).
Patterns: Patterns represent the description of tokens. Pattern is a structure
that match with a string.
Lexemes: Lexemes are the combination of characters that find the matches
for a token. Example: while (x<y) represented as that are shown in table 2:

Table 2.

mu
no
tes
.in

9

Introduction to Compilers 1.4 REGULAR EXPRESSION

Regular expressions are a sequence of characters that define a search
pattern. For specific patterns regular expression have an important notation.
every programming language having tokens are described as regular
expression. In regular expression anchors are using “^” and “$” as a
character in the string. The “^” represent the starting of the string and “$”
represent the ending of the string. Regular expression have a series of
characters that matched a text pattern.
Examples of Regular Expression:

1. The string with alphabet (a,b)
 {aba, abba, abbba, abbbba ……}
 lets say the language is starting with a and ending with a is given as
S={a, aa, aaa, aaaa, aaaaa …..}
These strings have infinite values then the language is also infinite.
2. ^..J[.]* : Sort the string those are having 3 letter of their name is J.
 {aajabab, abjbaba}
3. [.]*F : Sort the string that is ending with letter F.
4. (b+a)* set of string b’s and a’s any amount of character including null

string. So T={ 𝜀, b, a, bb, ba, aa, ab, bbb …..}

5. (b+a)*bba set of string b’s and a’s that ends with the string bba. So
T={bba, abba, aabba, babba……}

Table 3 is to describe the most common characters that are used in regular
expression.

mu
no
tes
.in

10

Design and implementation
of Modern Compilers

10

Applications of Regular expression: simple parsing, data wrangling, data
validation, data scraping.

Regular Language: Regular expression is formal grammar that are used
for parse string and textual information this is known as Regular languages.
languages are regular if the expression are regular expression.

For regular languages regular expressions are used. Expressions are
regular if:

1. ɸ is a regular expression for regular language ɸ.

2. ɛ is a regular expression for regular language {ɛ}.

3. If b ∈ Σ (Σ used for input alphabets), b is regular expression with
language {b}.

4. If x and y are regular expression, x+y is also a regular expression
with language {x,y}.

5. If x and y are regular expression, xy is also regular.

6. If b is regular expression, then b* (more times of b or 0) will be
regular.

Closure Properties of Regular Languages

1. Union: If T1 and T2 are two regular languages, then union of T1 ∪
T2 will also be regular. For example, T1 = {bm | m ≥ 0} and T2 =
{am | m ≥ 0} T3 = T1 ∪ T2 = {bm ∪ am | m ≥ 0} is also regular.

2. Intersection: If T1 and T2 are two regular languages, then
intersection of T1 ∩ T2 will also be regular. For example, T1 = {bm |

m ≥ 0} and T2 = {am | m ≥ 0} T3 = T1 ∩ T2 = {bm ∩ am | m ≥ 0} is
also regular.

3. Concatenation: If L1 and If L2 are two regular languages, their
concatenation L1.L2 will also be regular. For example, T1 = {bm | m

≥ 0} and T2 = {am | m ≥ 0} T3=T1.T2={bm.am |m≥0} is also regular.

4. Kleene Closure: If T1 is a regular language, its Kleene closure T1*
will also be regular. For example, T1 = (b ∪ a) T1* = (b ∪ a)*

5. Complement: If T(Y) is regular language, then its complement
T’(Y) will also be regular. For example, T(Y) = {bm | m > 3} T’(Y)

= {bm | m <= 3}.

1.5 FINITE AUTOMATA

1. A finite automaton is a machine that accept patterns. it has a group of
states and through these rules one state moves to another state.

mu
no
tes
.in

https://www.geeksforgeeks.org/introduction-of-finite-automata/

11

Introduction to Compilers 2. To recognize patterns, we use finite automata.
3. It takes the input from string and change that string into state.

Transition state occur when the desired symbol will be find.
4. When transition function occurs, the automata move from one state to

another or again move on the same state.
5. Finite automata consist of two states, Accept or Reject state. When

the automata reach its final state, it means the string processed
successfully.

6. Finite automata consist of:

● A finite set T of M states.
● Start state.
● Accepting or final state.
● Moving from one state to another state use transition function.

Definition of FA

It is a collection of 5 tuples (Q, 𝛴, 𝛿, q0, F)

1. Q : To represent the Finite state
2. ∑: To represent the input symbol
3. q0: To represent the initial state.
4. F: to represent the final state.
5. δ: perform the transition function on string

Finite Automata Construction

1. States: In FA, states are represented by circle.
2. Start state: The start state pointed with an arrow. It represents the

starting state for finite automata.
3. Intermediate states: intermediate state have two arrows, one pointing

to and another arrow pointing out.
4. Final state: If the string will successfully accept then automata reach

to its final state. It represents with a double circle.
5. Transition: when string successfully accepted then initial state moves

to another state. This process continues till it reach to its final state.

Finite Automata Model:
Finite automata represented by finite control and input tape as shown in
figure 5.

● Input tape: In the input tape, input are placed in each cell.
Finite control : The finite control receives the input and then decides
the next state. It takes the input from input tape. Tape reads the cells
from left to right, and it reads the input one by one.

mu
no
tes
.in

12

Design and implementation
of Modern Compilers

12

Figure 5. Finite automata model

Types of Automata:

● Automata classified into two categories as shown in figure 6:

1. DFA (Deterministic finite automata)
2. NFA (Non-deterministic finite automata)

Figure 6. Types of Automata

DFA: DFA is the deterministic finite automata. In DFA, the machine have
only one state for a single input character. It refers to a uniqueness of
computation. It doesn’t accept the null moves.

NFA: NFA refers to non-deterministic finite automata. In NFA, the
machine have multiple states for a particular input character. It accepts the
null move.

Important points about DFA and NFA:

1. Every NFA is not DFA but every DFA will be NFA.
2. There are multiple final states in NFA and DFA.
3. In compiler DFA used lexical analyser.

mu
no
tes
.in

13

Introduction to Compilers DFA

1. DFA is the deterministic finite automata. In DFA, the machine have
only one state for a single input character. It refers to a uniqueness of
computation.

2. It doesn’t accept the null moves.
3. In DFA, from the input state to output state there will be a one path

for a particular input.

4. DFA having multiple final states that are use in lexical analyzer.

Figure 7. DFA

In the above diagram 7 it is shown that q0 is the initial state. q1 is the final
state, when a input apply on state then the next state will become q1 that is
final state. When b input apply on q0 state then the next state will be q2.
State q1 having a self-loop.

Definition of DFA

DFA having 5 tuples.

1. Q: Represent the states.
2. ∑: To represent input symbol.
3. q0: Initial state.
4. F: Final state
5. δ: transition function

Transition function represented as:

δ: Q x ∑ ->Q

mu
no
tes
.in

14

Design and implementation
of Modern Compilers

14

E.g.

1. Q = {q0,q1,q2}
2. ∑= {a,b}
3. q0 = {q0}
4. F= {q1}

Figure 8.

Transition function: Table 4 represent the transition function

Table 4.

1.5.1 CONVERSION FROM REGULAR EXPRESSION TO FINITE
AUTOMATA

To convert the regular expression to finite automata, use subset method
some steps tobe followed are:
Step 1 − Construct a Transition diagram for a given RE by using non-
deterministic finite automata (NFA) with ε moves.

Step 2 − Convert NFA with ε to NFA without ε.

Step 3 − Convert the NFA to the equivalent Deterministic Finite Automata
(DFA).

mu
no
tes
.in

15

Introduction to Compilers Example to convert R.E to Finite automata.

Case 1: Construct finite automata, for regular expression ‘b’.

Case 2: Construct finite automata, for regular expression ‘ba’.

Case 3: Construct finite automata, for regular expression ‘(b+a)’.

Case 4: Construct the finite automata, for regular expression ‘(b+a)*’.

mu
no
tes
.in

16

Design and implementation
of Modern Compilers

16

1.5.2 MINIMIZING THE STATES OF DFA

Minimization means reducing the number of states of FA. Following are
some steps to minimize DFA.

Step 1: Remove all the states that are unreachable from the initial state via
any set of the transition of DFA.

Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1 contains
all final states, and T2 contains non-final states.

Step 4: Find similar rows from T1 such that:

1. δ (q, a) = p

2. δ (r, a) = p

That means, find the two states which have the same value of a and b and
remove one of them.

Step 5: Repeat step 3 until we find no similar rows available in the transition
table T1.

Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined
transition table is the transition table of minimized DFA.

Example:

Solution:

Step 1: In the given DFA, q3 and q5 are the unreachable states so remove
them.

mu
no
tes
.in

17

Introduction to Compilers Step 2: For the other states draw transition table.

Step 3: Now break the transition table into two sets:

1. One set having non-final states:

2. Another set having final states.

Step 4: Set 1 doesn’t have any similar rows so it will be the same.

Step 5: In set 2, row 1 and row 2 having similar states q4 and q6 on 0 and
1.so skip q6 and replace with q4.

Step 6: Now join set 1 and set 2.

mu
no
tes
.in

18

Design and implementation
of Modern Compilers

18

Minimize DFA shown as:

1.6 CONTEXT FREE GRAMMAR

CFG (context free grammar) is a formal grammar. It is used to produce
string in a formal language.
There are the various capabilities of CFG:
1. Context free grammar is very helpful to describe programming

languages.
2. If the grammar properly defined then parser easily construct it

automatically.
3. It is efficient to describe the nested structure viz. if-then-else,

balanced parentheses and so on.
CFG defined in 4 tuples. G = (V, T, P, S)
Where,
G define the grammar
T define a finite set of terminal symbols.
V define a finite set of non-terminal symbols
P define a set of production rules
S represent start symbol.
In CFG, S represent the start symbol that is used to proceed the string. The
string is proceeded with a non-terminal until all the non-terminal symbol
have been exchanged by terminal symbols.
Example:

L= {tftR | t € (a, b)*}

Production rules:
1. S → aSa
2. S → bSb
3. S → c

mu
no
tes
.in

19

Introduction to Compilers Now check that abbcbba string can be derived from the given CFG baacaab.

1. S ⇒ bSb

2. S ⇒ baSab

3. S ⇒ baaSaab

4. S ⇒ baacaab

Applying the production S → bSb, S → aSa recursively and at last we get
the final production S →c, now we get the final string baacaab.

Classification of Context Free Grammars

Context free grammar are divided into two properties:

1. Number of strings it generates.

● If context free grammar producing number of strings in finite
order, then that grammar will be non-recursive grammar.

● If context free grammar producing number of strings in infinite
order, then that grammar will be non-recursive grammar.

2. Number of derivation trees.

● Context free grammar is unambiguous if only one derivation
tree is there.

● Context free grammar is ambiguous if more than one derivation
tree is there.

Examples of Recursive and Non-Recursive grammar

1. S ->SbS
S->a
The language produced by this grammar: {a, aba, ababa, …….} this is
infinite. So this grammar is recursive grammar.

2. S ->Ba B ->b | c
The language produced by this grammar: {ba, ca} this is finite. So, this
grammar is non-recursive grammar.

Types of recursive grammar

A recursive grammar classified into 3 types

1. General recursive grammar
2. Left recursive grammar
3. Right recursive grammar

mu
no
tes
.in

20

Design and implementation
of Modern Compilers

20

1.7 DERIVATION AND PARSE TREE

The process of preceding the string is known as derivation. At every step of
derivation, make two decisions. Firstly, take the decision which non-
terminal symbol should be replaced. Secondly take the decision for
replacing the non-terminal symbol which production rule should be use.
Every non-terminal symbol replaced with more than one derivation in the
identical production rule but order of exchanging non-terminal symbol will
be different. There are two types of derivation as shown in fig 9.

Figure 9.

1. Leftmost Derivation-

● The process of preceding the string by enlarge the rightmost
non-terminal at every step is known as leftmost derivation.

● The rightmost derivation’s representation in geometrical form
is known as leftmost derivation tree.

Example-

Consider the following grammar-

S → bB | aA

S → bS | aAA | b

B → aS | bBB | a

(Unambiguous Grammar)

Let us consider a string w = bbbaabaaab

Now, let us derive the string w using leftmost derivation.

Leftmost Derivation-S → bB

→ bbBB (Using B → bBB)

→ bbbBBB (Using B → bBB)

→ bbbaBB (Using B → a)

→ bbbaaB (Using B→ bBB)

mu
no
tes
.in

21

Introduction to Compilers → bbbaabBB (Using B → bBB)

→ bbbaabaB (Using B→ a)

→ bbbaabaaS (Using B → aS)

→ bbbaabaaaA (Using S→ aA)

→ bbbaabaaab (Using A → b)

Parse tree in fig. 10.

Figure 10. Leftmost Derivation Parse Tree

2. Rightmost Derivation-

● The process of preceding the string by enlarge the rightmost non-
terminal at every step is known as rightmost derivation.

● The rightmost derivation’s representation in geometrical form is
known as rightmost derivation tree.

Example-

Consider the following grammar-

S → bB | aA

S → bS | aAA | b

B → aS | bBB | a

(Unambiguous Grammar)

Let us consider a string w = bbbaabaaab

Now, derive the string w using rightmost derivation.

mu
no
tes
.in

22

Design and implementation
of Modern Compilers

22

Rightmost Derivation-

S →bB

→ bbBB (Using B → bBB)

→ bbBbBB (Using B → bBB)

→ bbBbBaS (Using B → aS)

→ bbBbBaaA (Using S → aA)

→ bbBbBaaB (Using A → a)

→ bbBbaaab (Using B→ a)

→ bbbBBbaaab (Using B → bBB)

→bbbBabaaab (Using B → a)

→ bbbaabaaab (Using B a)

Parse tree in figure 11.

 Figure 11. Rightmost Derivation Parse Tree

Properties Of Parse Tree-

1. The start symbol of grammar is known as Root node of a parse tree.

2. The terminal symbol of a parse tree is represented as a leaf node.

3. The non-terminal symbol is the interior node of a parse tree.

4. Parse tree is independent when the productions are used derivations.

mu
no
tes
.in

23

Introduction to Compilers 1.8 PARSERS

● It is a compiler that divide the data into smaller elements that it gets
from lexical analysis phase.

● Parser takes the input into set of tokens form then output will
become in parse tree.

● It has two types describe in figure 12:

Top-down parsing Bottom-up parsing

Figure 12.

Top-Down Parsing

1. Top-down parsing is called as recursive or predictive parsing.
2. To construct a parse tree use, bottom-up parsing.
3. In top down parsing the process start from the start symbol and

convert it into input symbol.
4. Top-down parser are categories into 2 parts: Recursive descent

parser, and non-recursive descent parser.

(i) Recursive descent parser:

 It is also called as Brute force parser or backtracking parser.

(ii) Non-recursive descent parser:

 To generates the parse tree, use parsing tree rather backtracking.

mu
no
tes
.in

https://www.geeksforgeeks.org/compiler-design-recursive-descent-parser/
https://www.geeksforgeeks.org/compiler-design-recursive-descent-parser/
https://www.geeksforgeeks.org/compiler-design-recursive-descent-parser/
https://www.geeksforgeeks.org/compiler-design-recursive-descent-parser/
https://www.geeksforgeeks.org/compiler-design-recursive-descent-parser/

24

Design and implementation
of Modern Compilers

24

Bottom-up parsing

1. Bottom-up parsing is called as shift-reduce parsing.
2. To construct a parse tree use, bottom-up parsing.
3. In bottom up parsing the process start from the start symbol

and design a parse tree from the start symbol by touching out
the string from rightmost derivation in reverse.

Example: Production

1. T → P
2. P→ P * E
3. P → id
4. E → P
5. E → id

Parse Tree representation of input string "id * id" is as follows:

Figure 13.

Bottom-up parsing having various parsing techniques.

1. Shift-Reduce parser
2. Operator Precedence parser

mu
no
tes
.in

25

Introduction to Compilers 3. Table Driven LR parser

● LR(1)
● SLR(1)
● CLR (1)
● LALR(1)

Further Bottom-up parser is classified into 2 types: LR parser, and
Operator precedence parser. LR parser is of 4 types:

(a). LR(0) (b). SLR(1) (c). LALR(1) (d). CLR(1)

i) LR parser:
It generates the parse tree for a particular grammar by using
unambiguous grammar. For the derivation it follows right most
derivation. LR parser having 4 types:
(a). LR(0) (b). SLR(1) (c). LALR(1) (d). CLR(1)

ii) Operator precedence parser:
It generates the parse tree for a particular grammar or string with a
condition i.e., two consecutives non terminal and epsilon doesn’t
come at the right-hand side of any production.

1.8.1 SHIFT-REDUCE PARSING
1. In Shift reduce parsing reduce a string of a grammar from the start

symbol show in figure 14.
2. A string of a grammar from the start symbol.
3. It uses a stack to hold the grammar and to hold the string it uses

input tape.

Figure 14.

4. It performs two actions: shift and reduce so it is known as shift
reduce parsing,

5. When shifting process start then the current symbol of string move
to the stack.

6. Shift reduce parsing having 2 categories:
Example
Operator Precedence Parsing
LR-Parser
A → A+A A → A-A A → (A) A → a
Input string: x1-(x2+x3)
Parsing table: Describe in Table 5.

mu
no
tes
.in

https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/

26

Design and implementation
of Modern Compilers

26

Table 5.

1.8.2 OPERATOR-PRECEDENCE PARSING

1. It is related to small type of class operator grammar.
2. If the grammar is the type of operator precedence, then it should have

two properties:

3. The production should not have any a∈ operator at right side.

4. Non-terminal symbols are not adjacent.
5. It can only perform the operation between the terminal symbols of

grammar. It doesn’t take any notice to non-terminals.

6. Operator precedence are categories into three relations ⋗ ⋖ ≐.

x ⋗ y means that terminal “x “has greater precedence than the
terminal “y”.

x ⋖ y means that terminal “y “has higher precedence than the terminal
“x”.

x ≐ y means that precedence of terminal “x and y “are equal.

7. Operator precedence parser comes under bottom-up parser that
interprets with operator grammar.

8. In this parser ambiguous grammar is not allowed.
9. There are 2 waysthat determinewhich precedence relation should hold

the pair of terminals.

1. Use precedence of order and conventional associativity.

mu
no
tes
.in

27

Introduction to Compilers 2. Firstly, construct the unambiguous grammar for a
particular language, that grammar reflects the correct
precedence of parse tree.

Precedence table:

Table 6.

Parsing Action

1. At the end of string use $ symbol.

2. After that scan input string from left to right until ⋗ is encountered.

3. Now scan the string towards left above all the equal precedence Until
first left ⋖ is encountered.

4. Now handle all the string value that lie between ⋖ and ⋗.

5. If at last we get $ it means the parsing is successfully accepted.
 Example: Grammar:
 S → S+E/E E → E* F/F F → id
Given string:
1. w = id + id * id
Let us consider a parse tree for it as follow:

Figure 15. Parse tree

mu
no
tes
.in

28

Design and implementation
of Modern Compilers

28

According to parse tree, we can design operator precedence table describe
in table 7:

Table 7. Operator Precedence Table

Now process the string through precedence table as shown in figure 16.

Figure 16.

Disadvantage of operator precedence parser

If we have n number of operators then the size for table will be n*n. Then
complexity will be 0(n2). To decrease the size of table, use operator function
table. Operator precedence parsers use precedence function that plot
terminal symbols to integer, and the relations between the symbol are
affected by numerical comparison. Parsing table enclosed by two
precedence function f and g that plot terminal symbols to integers.

1. f(a) < g(b) takes the precedence to b
2. f(a) = g(b) a and b have the same precedence
3. f(a) > g(b) takes the precedence over b

1.8.3 TOP-DOWN PARSING

1. Top-down parsing is called as recursive or predictive parsing.
2. To construct a parse tree use, bottom-up parsing.

mu
no
tes
.in

29

Introduction to Compilers 3. In top down parsing the process start from the start symbol and
convert it into input symbol.

4. It always uses left most derivation.

5. It is a parser that generate the parse for a particular string through
the help of grammar production.

6. Top-down parser categories into two parts as shown in figure 17.

a) Back tracking

b) Non-backtracking

● Predictive Parser

● LL Parser

Figure. 17

Recursive Descent Parsing

Recursive descent parser is a top-down parser. It starts to construct the parse
tree from the top and it reads the input from left to right. It is use to process
each terminal and non-terminal entities. This technique isuseto makethe
parsetreefor that parser recursively passthe input. Context freegrammar is
recursive in nature so this grammar uses in recursive descent parsing.

A technique that doesn’t require any backtracking that are known as
predictive parser.

Back-tracking

mu
no
tes
.in

30

Design and implementation
of Modern Compilers

30

Top-down parser match the input string against the production rule from
the start node. Example for CFG:

X → pYd | pZd

Y → ka | wa

Z → ae

It will start the production rule from the root node i.e., X and start to find
the match of a letter from left most input i.e., ‘p’.Theproduction ofX (X→
pYd) match with it.Then top-down parser proceeds to the next input string
i.e., ‘w’. Now parser find the match for non-terminal ‘Y’ and check the
production for (Y → ka). This string doesn’t match with input string. So
top-down parser backtracks to get the result of Y. (Y → wa). The parser
matches complete string in ordered manner. Hence string is accepted as
shown in figure 18.

Figure 18.

Example for Top-down parser:

Input string: “adbc”

Representation of Parse Tree for input string "adbc" is as shown in
figure 19

mu
no
tes
.in

31

Introduction to Compilers

Figure 19. Parse tree

1.8.4 PREDICTIVE PARSING

1. Predictive parsing is a top-down parser it doesn’t require
backtracking.

2. It is a recursive descent parser but backtracking is not there.

3. Predictive parsing steps for Pre-processing

● From the grammar remove left recursion.

● On the resultant grammar perform left factoring.

● From the grammar remove ambiguity.

4. Point to the next input symbols predictive parser use a look ahead
pointer.

5. The predictive parser use some limit on the grammar to make parser
free from back tacking.

6. It is also called as LL(1) parser.

7. The predictive parser use few constrains on the grammar and will get
only in LL(k) grammar.

mu
no
tes
.in

32

Design and implementation
of Modern Compilers

32

Figure 20.

Predictive parsing uses a parsing table to parse the input and for storing the
data in the parse table it uses stack and then prepare the parse tree. Stack an
input string contains $ symbol at the end. $ symbol represent the stack is
empty and the inputs are used. Parser use the parsing table for the
combination of input and stack elements. Describe in figure 20.

Describe the processing of parsers

Figure 21.

mu
no
tes
.in

33

Introduction to Compilers Recursive descent parser has more than one input production then it chooses
one production from the production, whereas predictive parser use table to
generate the parse tree.

Predictive Parser Algorithm:

1. Construct a transition diagram (DFA/NFA) for each production of
grammar.

2. By reducing the number of states, optimize DFA to produce the final
transition diagram.

3. Simulate the string on the transition diagram to parse a string.

4. If the transition diagram reaches an accept state after the input is
consumed, it is parsed.

LL Parser:

● LL Parser accept LL grammar.

● It is a subset of context free grammar.

● It follows the rule of context free grammar but with some restriction
to get easier version. LL grammar implemented with recursive
descent or table-driven algorithm.

● It is denoted as LL(K). first L represent the parse input from left to
right, second L represent left most derivationand krepresent look
ahead symbols. Usually, k=1, so LL(K) also written as LL (1) as
described in figure 22.

Figure 22.

1.9 SUMMARY

1. Computers are combination of hardware and software.
2. Hardware is a machinal devices these can’t understand human

language so we write programs into programming language that is
high level language but these programs can’t understand by computer
then compiler convert this high-level language into machine level
language.

mu
no
tes
.in

34

Design and implementation
of Modern Compilers

34

3. Compilers are classified into three categories
 a. Single pass compiler
 b. Two pass compilers
 c. Multi pass compiler
4. Compiler is a software that convert high level language into machine

level language.
5. When compiler convert the one language into another language then

it doesn’t change the meaning of code it only finds the syntax errors.
6. In lexical analyzer helps to identify the tokens from symbol table. 7.

Lexical analysis implemented with DFA.
8. Lexical analyzer removes the white space and comments. 9. Lexical

analyzer breaks the syntax into series of tokens.
10. Syntactic analysis collects all the information and checks the validity

for variables, keyword, data and save it into syntax tree or in the
symbol table.

11. Top-down parsing is called as recursive or predictive parsing. 12.
Operator precedence are categories into three relations ⋗ ⋖ ≐.

13. Parser is a compiler that divide the data into smaller elements that get
from lexical analysis phase.

14. DFA is a collection of 5 tuples (Q, 𝛴, 𝛿, q0, F)

 a. Q : To represent the Finite state
 b. ∑: To represent the input symbol
 c. q0: To represent the initial state.
 d. F: to represent the final state.
 e. δ: perform the transition function on string
15. Derivation having two parts
1. Left most derivation
2. Right most derivation
16. CFG (context free grammar) is a formal grammar. It is used to

produce string in a formal language.
17. Predictive parsing uses a parsing table to parse the input and for

storing the data in the parse table it uses stack and then prepare the
parse tree.

18. Operator precedence parsing can only perform the operation between
the terminal symbols of grammar. It doesn’t take any notice to non-
terminals.

19. A recursive grammar classified into 3 types
 a. General recursive grammar
 b. Left recursive grammar

mu
no
tes
.in

35

Introduction to Compilers c. Right recursive grammar

20. Finite automata having two types;
 1. DFA (Deterministic finite automata)
 2. NFA (Non-deterministic finite automata)

1.10 EXCERSICE

1) Define Complier?
2) What is the difference between compiler and interpreter? 3) What is

symbol table?
4) What are the phases/structure of compiler?
5) Define applications of compiler?
6) The regular expression (1*0)*1* denotes the same set as
 (A) 0*(10*)*
 (B) 0 + (0 + 10)*
 (C) (0 + 1)* 10(0 + 1)*
 (D) none of these
7) Which one of the following languages over the alphabet {1,0} is

described by the regular expression? (1+0)*1(1+0)*1(1+0)*
8) Which of the following languages is generated by given grammar? X

-> bS | aS | ∊

9) DFA with ∑ = {0, 1} accepts all ending with 1.
10) Assume FA accepts any three digit binary value ending in digit 0 FA

= {Q(q0, qf), Σ(0,1), q0, qf, δ}
11) Consider the grammar
 S → aB | bA
 A → a | aS | bAA
 B → b| bS | aBB
 For the string w = aabbabab, find-
 1. Leftmost derivation
 2. Rightmost derivation
 3. Parse Tree
12) Consider the grammar-
 S → X1Y

 X → 0X | ∈

 Y → 0Y | 1Y | ∈

 For the string w = 11010, find-

mu
no
tes
.in

36

Design and implementation
of Modern Compilers

36

 1. Leftmost derivation
 2. Rightmost derivation
 3. Parse Tree
13) Construct Regular expression for the language L= {w ε{1,0}/w.
14) Define the parts of string?
15) Define DFA and NFA?
16) Differentiate between Recursive descent and Predictive parser?
17) Describe the language denoted by the R.E. (0/1)*0(0/1)(0/1).
18) Define the steps of lexical analyzer?
19) Explain Parsers and its types?
20) Write the R.E. for the set of statements over {x, y, z} that contain an

even no of x’s.
21) What is parse tree?
22) Write down the operations on languages?
23) What is regular expression? Write down the rules for R.E? 24) Define

the types of top-down parser?
25) Explain Top-down parser and bottom-up parser?

❄❄❄❄❄❄❄

mu
no
tes
.in

37

2
AUTOMATIC CONSTRUCTION OF

EFFICIENT PARSERS

Unit Structure

2.1 Objectives
2.2 Introduction
2.3 Overview
2.4 Basic concepts related to Parsers
 2.4.1 The Role of the Parser
 2.4.2 Syntax Error Handling: -
2.5 Summary
2.6 Reference for Further Reading
2.7 Unit End Exercise

2.1 OBJECTIVES

The main objective to use Efficient Parsers is it imparts a structure to a
programming language that is useful for the translation of source programs
into correct object code and for the detection of errors.

2.2 INTRODUCTION

Every programming language has rules that prescribe the syntactic structure
of well formed programs. The syntax of programming language constructs
can be described by context- free grammars or BNF (Back us – Naur Form)
notation. For certain classes of grammars, we can automatically construct
an efficient parser that determines if a source program is syntactically well
formed. In addition to this, the parser construction process can reveal
syntactic ambiguities and other difficult-to-parse constructs that does not
remain undetected in the initial design phase of a language and its compiler.

2.3 OVERVIEW

At the end of this chapter you will know and understand the following
concepts in detail :-

1) Parsing methods used in compilers.
2) Basic concepts.
3) Techniques used in Efficient Parsers.
4) Algorithms – to recover from commonly occurring errors.

mu
no
tes
.in

38

Design and implementation
of Modern Compilers

38

2.4. BASIC CONCEPTS RELATED TO PARSERS

2.4.1 The Role of the Parser:-

Parser for any grammar is program that takes as input string w (obtain set
of strings tokens from the lexical analyzer) and produces as output either a
parse tree for w, if w is a valid sentences of grammar or error message
indicating that w is not a valid sentences of given grammar.

The goal of the parser is to determine the syntactic validity of a source string
is valid, a tree is built for use by the subsequent phases of the computer. The
tree reflects the sequence of derivations or reduction used during the parser.
Hence, it is called parse tree. If string is invalid, the parse has to issue
diagnostic message identifying the nature and cause of the errors in string.
Every elementary subtree in the parse tree corresponds to a production of
the grammar.

There are two ways of identifying an elementary subtree:

1. By deriving a string from a non-terminal or

2. By reducing a string of symbol to a non-terminal.

There are three general types of parsers for grammar’s. Universal parsing
methods such as the Cocke-Younger-Kasami algorithm and Earley’s
algorithm can parse any grammar. But these methods are inefficient to use
in production compilers. The Efficient methods commonly used in
compilers are as follows:-

mu
no
tes
.in

39

Design and Implementation
of Modern Compiler

2.4.1.1 Syntax Error Handling:-

Planning the error handling right from the start can both simplify the
structure of a compiler and improve its response to errors.

Programs can contain errors at many different levels as follows:-

a) Lexical, such as misspelling an identifier, keyword or an operator.

b) Syntactic, such as an arithmetic expression with unbalanced
parenthesis.

c) Semantic, such as an operator applied to an incompatible operand.

d) Logical, such as an infinitely recursive call.

For recovery from syntax errors, the error handler in a parser has
simple-to-state goals:-

a) It should report the presence of errors clearly and accurately.

b) It should recover from each error quickly enough to be able to detect
subsequent errors.

c) It should not significantly slow down the processing of correct
programs.

2.4.1.2 Error – Recovery Strategies:-

There are many different general strategies that a parser can employ to
recover from syntactic error. Here are few methods listed down which have
broad applicability. :-

a) Panic mode – Simplest and adequate method and panic mode
recovery does not work in an infinite loop.

b) Phrase level – local correction, one must be careful to choose
replacements that do not lead to infinite loops. Difficulty in coping
with situations in which the actual error has occurred before the point
of detection.

c) Error productions – One can generate appropriate error diagnostics
to indicate the erroneous construct that has been recognized in the
input.

d) Global corrections – Too costly to implement in terms of time and
space.

2.4.2 CONTEXT FREE GRAMMARS: -

A context-free grammar (grammar for short) consists of terminals, non-
terminals, a start symbol, and productions.

mu
no
tes
.in

40

Design and implementation
of Modern Compilers

40

1. Terminals are the basic symbols from which strings are formed. The
word "token" is a synonym for "terminal" when we are talking about
grammars for programming languages.

2. Non terminals are syntactic variables that denote sets of strings. They
also impose a hierarchical structure on the language that is useful for
both syntax analysis and translation.

3. In a grammar, one non terminal is distinguished as the start symbol,
and the set of strings it denotes is the language defined by the
grammar.

4. The productions of a grammar specify the way the terminals and non-
terminals can be combined to form strings. Each production consists
of a non terminal, followed by an arrow, followed by a string of non-
terminals and terminals.

Inherently recursive structures of a programming language are
defined by a context-free Grammar. In a context-free grammar, we
have four tuples G(V,T,P,S). Here , V is finite set of terminals (in our
case, this will be the set of tokens) T is a finite set of non-terminals
(syntactic- variables).P is a finite set of production rules in the
following form A → α where A is a non- terminal and α is a string of
terminals and non-terminals (including the empty string).S is a start
symbol (one of the non-terminal symbol).

L(G) is the language of G (the language generated by G) which is a
set of sentences. A sentence of L(G) is a string of terminal symbols of
G. If S is the start symbol of G then ω is a sentence of L(G) if S
produces ω, where ω is a string of terminals of G. If G is a context-
free Grammar then L(G) is a context-free language. Two grammars
G1 and G2 are equivalent, if they produce same grammar.

Consider the production of the form S ->α, if α contains non-
terminals, it is called as a sentential form of G. If α does not contain
non-terminals, it is called as a sentence of G.

Example: Consider the grammar for simple arithmetic expressions:

expr → expr op expr
expr → (expr)
expr → - expr
expr → id
op → +
op → -
op → *
op → /
op → ^
Terminals : id + - * / ^ ()
Non-terminals : expr , op
Start symbol : expr

mu
no
tes
.in

41

Design and Implementation
of Modern Compiler

2.4.2.1 Notational Conventions:

1. These symbols are terminals:

i. Lower-case letters early in the alphabet such as a, b, c.

ii. Operator symbols such as +, -, etc.

iii. Punctuation symbols such as parentheses, comma etc.

iv. Digits 0,1,…,9.

v. Boldface strings such as id or if (keywords)

2. These symbols are non-terminals:

i. Upper-case letters early in the alphabet such as A, B, C..

ii. The letter S, when it appears is usually the start symbol.

iii. Lower-case italic names such as expr or stmt.

3. Upper-case letters late in the alphabet, such as X,Y,Z, represent
grammar symbols, that is either terminals or non-terminals.

4. Greek letters α , β , γ represent strings of grammar symbols.

 e.g., a generic production could be written as A → α.

5. If A → α1 , A → α2 , , A → αn are all productions with A , then
we can write A

 → α1 | α2 |. . . . | αn , (alternatives for A).

6. Unless otherwise stated, the left side of the first production is the start
symbol.

 Using the shorthand, the grammar can be written as:

 E → E A E | (E) | - E | id

 A → + | - | * | / | ^

2.4.2.2 Derivations:

A derivation of a string for a grammar is a sequence of grammar rule
applications that transform the start symbol into the string. A derivation
proves that the string belongs to the grammar's language.

mu
no
tes
.in

42

Design and implementation
of Modern Compilers

42

2.4.3.2.1. To create a string from a context-free grammar:

● Begin the string with a start symbol.

● Apply one of the production rules to the start symbol on the left-hand
side by replacing the start symbol with the right-hand side of the
production.

● Repeat the process of selecting non-terminal symbols in the string,
and replacing them with the right-hand side of some corresponding
production, until all non-terminals have been replaced by terminal
symbols.

In general, a derivation step is αAβ then αγβ is sentential form and if
there is a production rule A→γ in our grammar. where α and β are
arbitrary strings of terminal and non-terminal symbols α1 α2... αn (αn
derives from α1 or α1 derives αn). There are two types of derivation:

1. Leftmost Derivation (LMD):

● If the sentential form of an input is scanned and replaced
from left to right, it is called left-most derivation.

● The sentential form derived by the left-most derivation is
called the left-sentential form.

2. Rightmost Derivation (RMD):

● If we scan and replace the input with production rules,
from right to left, it is known as right-most derivation.

● The sentential form derived from the right-most
derivation is called the right sentential form.

 Example:

 Consider the G,

 E → E + E | E * E | (E) | - E | id

Derive the string id + id * id using leftmost derivation and rightmost
derivation.

Fig 2.2 a) Leftmost derivation b) Rightmost derivation

mu
no
tes
.in

43

Design and Implementation
of Modern Compiler

Strings that appear in leftmost derivation are called left sentential forms.
Strings that appear in rightmost derivation are called right sentential forms.

Sentential Forms:

Given a grammar G with start symbol S, if S => α , where α may contain
non-terminals or terminals, then α is called the sentential form of G.

2.4.2.2.2 Parse Tree:

A parse tree is a graphical representation of a derivation sequence of a
sentential form.

In a parse tree:

● Inner nodes of a parse tree are non-terminal symbols.

● The leaves of a parse tree are terminal symbols.

● A parse tree can be seen as a graphical representation of a derivation.

A parse tree depicts associativity and precedence of operators. The deepest
sub-tree is traversed first, therefore the operator in that sub-tree gets
precedence over the operator which is in the parent nodes.

Yield or frontier of tree:

Each interior node of a parse tree is a non-terminal. The children of node
can be a terminal or non-terminal of the sentential forms that are read from
left to right. The sentential form in the parse tree is called yield or frontier
of the tree.

 Ambiguity:

A grammar that produces more than one parse tree for some sentence is said
to be ambiguous grammar. i.e. An ambiguous grammar is one that produce
more than one leftmost or more than one rightmost derivation for the same
sentence.

Example : Given grammar G : E → E+E | E*E | (E) | - E | id

The sentence id+id*id has the following two distinct leftmost derivations:

mu
no
tes
.in

44

Design and implementation
of Modern Compilers

44

The two corresponding parse trees are:-

Consider another example –

stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2
has the following

Two parse trees for leftmost derivation :

 Eliminating Ambiguity:

An ambiguous grammar can be rewritten to eliminate the ambiguity. e.g.
Eliminate the ambiguity from “dangling-else” grammar,

mu
no
tes
.in

45

Design and Implementation
of Modern Compiler

stmt → if expr then stmt

 | if expr then stmt else stmt

 | other

Match each else with the closest previous unmatched then. This
disambiguity rule can be incorporated into the grammar.

 stmt → matched_stmt | unmatched_stmt

 matched_stmt →if expr then matched_stmt else matched_stmt

 | other

 unmatched_stmt → if expr then stmt

 | if expr then matched_stmt else unmatched_stmt

This grammar generates the same set of strings, but allows only one parsing
for string.

 Removing Ambiguity by Precedence & Associativity Rules:

An ambiguous grammar may be converted into an unambiguous grammar
by implementing:

– Precedence Constraints

– Associativity Constraints

These constraints are implemented using the following rules:

 Rule-1:

• The level at which the production is present defines the priority of the
operator contained in it.

– The higher the level of the production, the lower the priority of
operator.

– The lower the level of the production, the higher the priority of
operator.

 Rule-2:

● If the operator is left associative, induce left recursion in its
production.

● If the operator is right associative, induce right recursion in its
production.

Example: Consider the ambiguous Grammar:

E → E + E |E – E | E * E | E / E | (E) | id

Introduce new variable / non-terminals at each level of precedence,

mu
no
tes
.in

46

Design and implementation
of Modern Compilers

46

● an expression E for our example is a sum of one or more terms. (+,-)

● a term T is a product of one or more factors. (*, /)

● a factor F is an identifier or parenthesised expression.

The resultant unambiguous grammar is:

 E → E + T | E – T | T

 T → T * F | T / F | F

 F → (E) | id

Trying to derive the string id+id*id using the above grammar will yield one
unique derivation.

Regular Expression vs. Context Free Grammar:

● Every construct that can be described by a regular expression can be
described by a grammar.

● NFA can be converted to a grammar that generates the same language
as recognized by the NFA.

● Rules:

● For each state i of the NFA, create a non-terminal symbol Ai .

● If state i has a transition to state j on symbol a, introduce the production
Ai →a Aj

● If state i goes to state j on symbol ε, introduce the production Ai → Aj

● If i is an accepting state, introduce Ai → ε

● If i is the start state make Ai the start symbol of the grammar.

Example: The regular expression (a|b)*abb, consider the NFA

mu
no
tes
.in

47

Design and Implementation
of Modern Compiler

Equivalent grammar is given by:

A0 → a A0 | b A0 | a A1

A1 → b A2

A2 → b A3

A3 → ε

2.4.2.2 LR Parsing:

The "L" is for left-to-right scanning of the input and the "R" is for
constructing a rightmost derivation in reverse.

Why LR parsing:

● LR parsers can be constructed to recognize virtually all programming-
language constructs for which context-free grammars can be written.

● The LR parsing method is the most general non-backtracking shift-
reduce parsing method known, yet it can be implemented as
efficiently as other shift-reduce methods.

● The class of grammars that can be parsed using LR methods is a
proper subset of the class of grammars that can be parsed with
predictive parsers.

● An LR parser can detect a syntactic error as soon as it is possible to
do so on a left-to right scan of the input.

● The disadvantage is that it takes too much work to construct an LR
parser by hand for a typical programming-language grammar. But
there are lots of LR parser generators available to make this task easy.

2.4.2.3 Bottom-Up Parsing:

Constructing a parse tree for an input string beginning at the leaves and
going towards the root is called bottom-up parsing. A general type of
bottom-up parser is a shift-reduce parser.

mu
no
tes
.in

48

Design and implementation
of Modern Compilers

48

2.4.2.3.1 Shift-Reduce Parsing:

Shift-reduce parsing is a type of bottom -up parsing that attempts to
construct a parse tree for an input string beginning at the leaves (the bottom)
and working up towards the root (the top).

Example:

Consider the grammar:

S → aABe

A → Abc | b

B → d

The string to be recognized is abbcde. We want to reduce the string to S.

Steps of reduction:

Abbcde (b,d can be reduced)

aAbcde (leftmost b is reduced)

aAde (now Abc,b,d qualified for reduction)

aABe (d can be reduced)

S

Each replacement of the right side of a production by the left side in the
above example is

called reduction, which is equivalent to rightmost derivation in reverse.

Handle:

A substring which is the right side of a production such that replacement of
that substring by

the production left side leads eventually to a reduction to the start symbol,
by the reverse of a

rightmost derivation is called a handle.

mu
no
tes
.in

49

Design and Implementation
of Modern Compiler

2.4.2.4 Stack Implementation of Shift-Reduce Parsing:

There are two problems that must be solved if we are to parse by handle
pruning. The first is to locate the substring to be reduced in a right-sentential
form, and the second is to determine what production to choose in case there
is more than one production with that substring on the right side.

A convenient way to implement a shift-reduce parser is to use a stack to
hold grammar symbols and an input buffer to hold the string w to be parsed.
We use $ to mark the bottom of the stack and also the right end of the input.
Initially, the stack is empty, and the string w is on the input, as follows:

STACK INPUT

$ w$

The parser operates by shifting zero or more input symbols onto the stack
until a handle is on top of the stack. The parser repeats this cycle until it has
detected an error or until the stack contains the start symbol and the input is
empty:

STACK INPUT

$ S $

Example: The actions a shift-reduce parser in parsing the input string
id1+id2*id3, according to the ambiguous grammar for arithmetic
expression.

mu
no
tes
.in

50

Design and implementation
of Modern Compilers

50

In above fig. Reductions made by Shift Reduce Parser.

While the primary operations of the parser are shift and reduce, there are
actually four possible actions a shift-reduce parser can make:

 (1) shift, (2) reduce,(3) accept, and (4) error.

● In a shift action, the next input symbol is shifted unto the top of the
stack.

● In a reduce action, the parser knows the right end of the handle is at
the top of the stack. It must then locate the left end of the handle within
the stack and decide with what non-terminal to replace the handle.

● In an accept action, the parser announces successful completion of
parsing.

● In an error action, the parser discovers that a syntax error has occurred
and calls an error recovery routine.

Figure below represents the stack implementation of shift reduce parser
using unambiguous grammar.

2.4.2.5 Operator Precedence Parsing:

Operator grammars have the property that no production right side is ε
(empty) or has two adjacent non terminals. This property enables the
implementation of efficient operator precedence parsers.

Example: The following grammar for expressions:

 E→E A E | (E) | -E | id

 A→ + | - | * | / | ^

mu
no
tes
.in

51

Design and Implementation
of Modern Compiler

This is not an operator grammar, because the right side EAE has two
consecutive nonterminals. However, if we substitute for A each of its
alternate, we obtain the following

operator grammar:

 E→E + E |E – E |E * E | E / E | (E) | E ^ E | - E | id

In operator-precedence parsing, we define three disjoint precedence
relations between pair of terminals. This parser relies on the following three
precedence relations.

These precedence relations guide the selection of handles. These operator
precedence relations allow delimiting the handles in the right sentential
forms: <· marks the left end, =· appears in the interior of the handle, and ·>
marks the right end.

Above figure - Operator Precedence Relation Table.

Example: The input string: id1 + id2 * id3

After inserting precedence relations the string becomes:

 $ <· id1 ·> + <· id2 ·> * <· id3 ·> $

Having precedence relations allows identifying handles as follows:

1. Scan the string from left end until the leftmost ·> is encountered.

2. Then scan backwards over any =’s until a <· is encountered.

3. Everything between the two relations <· and ·> forms the handle.

mu
no
tes
.in

52

Design and implementation
of Modern Compilers

52

Defining Precedence Relations:

The precedence relations are defined using the following rules:

Rule-01:

● If precedence of b is higher than precedence of a, then we define a <
b

● If precedence of b is same as precedence of a, then we define a = b
● If precedence of b is lower than precedence of a, then we define a > b

Rule-02:

● An identifier is always given the higher precedence than any other
symbol.

● $ symbol is always given the lowest precedence.

Rule-03:

● If two operators have the same precedence, then we go by checking
their associativity.

mu
no
tes
.in

53

Design and Implementation
of Modern Compiler

Above fig. – Operator Precedence Relation Table

Above fig. – Stack Implementation

Implementation of Operator-Precedence Parser:
● An operator-precedence parser is a simple shift-reduce parser that is

capable of parsing a subset of LR(1) grammars.
● More precisely, the operator-precedence parser can parse all LR(1)

grammars where two consecutive non-terminals and epsilon never
appear in the right-hand side of any rule.

Steps involved in Parsing:
1. Ensure the grammar satisfies the pre-requisite.
2. Computation of the function LEADING()
3. Computation of the function TRAILING()
4. Using the computed leading and trailing ,construct the operator

Precedence Table
5. Parse the given input string based on the algorithm
6. Compute Precedence Function and graph.
Computation of LEADING:
● Leading is defined for every non-terminal.
● Terminals that can be the first terminal in a string derived from that

non-terminal.
● LEADING(A)={ a| A=>+

γaδ },where γ is ε or any non-terminal, =>+ indicates derivation in one or
more steps, A is a non-terminal.

mu
no
tes
.in

54

Design and implementation
of Modern Compilers

54

Algorithm for LEADING(A):

{

1. ‘a’ is in LEADING(A) is A→ γaδ where γ is ε or any non-terminal.

2.If ‘a’ is in LEADING(B) and A→B, then ‘a’ is in LEADING(A).

}

Computation of TRAILING:

● Trailing is defined for every non-terminal.

● Terminals that can be the last terminal in a string derived from that
non-terminal.

● TRAILING(A)={ a| A=>+

γaδ },where δ is ε or any non-terminal, =>+ indicates derivation in one or
more steps, A is a non-terminal.

Algorithm for TRAILING(A):

{

1. ‘a’ is in TRAILING(A) is A→ γaδ where δ is ε or any non-terminal.

2.If ‘a’ is in TRAILING(B) and A→B, then ‘a’ is in TRAILING(A).

}

Example 1: Consider the unambiguous grammar,

E→E + T

E→T

T→T * F

T→F

F→(E)

F→id

Step 1: Compute LEADING and TRAILING:

LEADING(E)= { +,LEADING(T)} ={+ , * , (, id}

LEADING(T)= { *,LEADING(F)} ={* , (, id}

LEADING(F)= { (, id}

TRAILING(E)= { +, TRAILING(T)} ={+ , * ,) , id}

TRAILING(T)= { *, TRAILING(F)} ={* ,) , id}

TRAILING(F)= {) , id}

mu
no
tes
.in

55

Design and Implementation
of Modern Compiler

Step 2: After computing LEADING and TRAILING, the table is
constructed between all the terminals in the grammar including the ‘$’
symbol.

Above fig. – Algorithm for constructing Precedence Relation Table.

Above fig. – Precedence Relation Table.

Step 3: Parse the given input string (id+id)*id$

mu
no
tes
.in

56

Design and implementation
of Modern Compilers

56

Above fig. – Parsing Algorithm

Above fig. - Parse the input string(id+id)*id$

mu
no
tes
.in

57

Design and Implementation
of Modern Compiler

2.4.2.6 Precedence Functions:

Compilers using operator-precedence parsers need not store the table of
precedence relations. In most cases, the table can be encoded by two
precedence functions f and g that map terminal symbols to integers. We
attempt to select f and g so that, for symbols a and b.

1. f (a) < g(b) whenever a<·b.

2. f (a) = g(b) whenever a = b. and

3. f(a) > g(b) whenever a ·> b.

Algorithm for Constructing Precedence Functions:

1. Create functions fa for each grammar terminal a and for the end of
string symbol.

2. Partition the symbols in groups so that fa and gb are in the same group
if a = b (there can be symbols in the same group even if they are not
connected by this relation).

3. Create a directed graph whose nodes are in the groups, next for each
symbols a and b do: place an edge from the group of gb to the group
of fa if a <· b, otherwise if a ·> b place an edge from the group of fa
to that of gb.

4. If the constructed graph has a cycle then no precedence functions
exist. When there are no cycles collect the length of the longest paths
from the groups of fa and gb respectively.

Precedence Graph.

There are no cycles,so precedence function exist. As f$ and g$ have no out
edges,f($)=g($)=0.The longest path from g+ has length 1,so g(+)=1.There
is a path from gid to f* to g* to f+ to g+ to f$,so g(id)=5.The resulting
precedence functions are:

mu
no
tes
.in

58

Design and implementation
of Modern Compilers

58

Example 2:

Consider the following grammar, and construct the operator precedence
parsing table and check whether the input string (i) *id=id (ii)id*id=id are
successfully parsed or not?

S→L=R

S→R

L→*R

L→id

R→L

Solution:

1. Computation of LEADING:

 LEADING(S) = {=, * , id}

 LEADING(L) = {* , id}

 LEADING(R) = {* , id}

2. Computation of TRAILING:

 TRAILING(S) = {= , * , id}

 TRAILING(L)= {* , id}

 TRAILING(R)= {* , id}

3. Precedence Table:

 * All undefined entries are error (e).

mu
no
tes
.in

59

Design and Implementation
of Modern Compiler

4. Parsing the given input string:

 1. *id = id

 2. id*id=id

2.4.3 Top-Down Parsing- Recursive Descent Parsing:

Top-down parsing can be viewed as an attempt to find a leftmost derivation
for an input string. Equivalently it can be viewed as an attempt to construct
a parse tree for the input starting from the root and creating the nodes of the
parse tree in preorder.

A general form top-down parsing called recursive descent parsing, involves
backtracking, that is making repeated scans of the input. A special case of
recursive descent parsing called predictive parsing, where no backtracking
is required.

Consider the grammar

S → cAd

A → ab | a

and the input string w=cad. Construction of parse is shown in fig below:-

mu
no
tes
.in

60

Design and implementation
of Modern Compilers

60

Above fig. – Steps in Top-Down Parse.

The leftmost leaf, labeled c, matches the first symbol of w, hence advance
the input pointer to a, the second symbol of w. Fig 2.21(b) and (c) shows
the backtracking required to match the input string.

Predictive Parser:

A grammar after eliminating left recursion and left factoring can be parsed
by a recursive descent parser that needs no backtracking is a called a
predictive parser. Let us understand how to eliminate left recursion and left
factoring.

Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that
there is a derivation A=>Aα for some string α. Top-down parsing methods
cannot handle left-recursive grammars. Hence, left recursion can be
eliminated as follows:

If there is a production A → Aα | β it can be replaced with a sequence of
two productions

A → βA'

A' → αA' | ε

Without changing the set of strings derivable from A.

Example : Consider the following grammar for arithmetic expressions:

E → E+T | T
T → T*F | F
F → (E) | id
First eliminate the left recursion for E as
E → TE'
E' → +TE' | ε
Then eliminate for T as
T → FT '
T'→ *FT ' | ε
Thus the obtained grammar after eliminating left recursion is
E → TE'
25
E' → +TE' | ε
T → FT '
T'→ *FT ' | ε
F → (E) | id

mu
no
tes
.in

61

Design and Implementation
of Modern Compiler

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.

2. for i := 1 to n do begin

for j := 1 to i-1 do begin

replace each production of the form Ai → Aj γ

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ.

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai- productions

end

Left factoring:

Left factoring is a grammar transformation that is useful for producing a
grammar suitable for predictive parsing. When it is not clear which of two
alternative productions to use to expand a non-terminal A, we can rewrite
the A-productions to defer the decision until we have seen enough of the
input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as

A → αA'

A’ → αβ1 | αβ2

Consider the grammar,

S → iEtS | iEtSeS | a

E → b

Here,i,t,e stand for if ,the,and else and E and S for “expression” and
“statement”.

After Left factored, the grammar becomes

S → iEtSS' | a

S' → eS | ε

E → b

Non-recursive Predictive Parsing:

It is possible to build a non-recursive predictive parser by maintaining a
stack explicitly, rather than implicitly via recursive calls. The key problem
during predictive parsing is that of 26 determining the production to be
applied for a non-terminal.

mu
no
tes
.in

62

Design and implementation
of Modern Compilers

62

Above fig. - Model of a Non-recursive predictive parser.

A table-driven predictive parser has an input buffer, a stack, a parsing table,
and an output stream. The input buffer contains the string to be parsed,
followed by $, a symbol used as a right end marker to indicate the end of
the input string. The stack contains a sequence of grammar symbols with $
on the bottom, indicating the bottom of the stack. Initially, the stack contains
the start symbol of the grammar on top of S. The parsing table is a two-
dimensional array M[A,a],where A is a non-terminal, and a is a terminal or
the symbol $.

The program considers X, the symbol on top of the stack, and a, the current
input symbol. These two symbols determine the action of the parser. There
are three possibilities.

1. If X = a =$,the parser halts and announces successful completion of
parsing.

2. If X =a ≠$, the parser pops X off the stack and advances the input
pointer to the next input symbol.

3. If X is a nonterminal, the program consults entry M[X,a] of the
parsing table M. This entry will be either an X-production of the
grammar or an error entry. If, for example, M[X,a] = {X→UVW},
the parser replaces X on top of the stack by WVU (with U on top). If
M[X, a] = error, the parser calls an error recovery routine.

2.4.3.1 Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated
with a grammar

G .These functions are FIRST and FOLLOW.

mu
no
tes
.in

63

Design and Implementation
of Modern Compiler

Rules for FIRST():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X).

4. If X is non-terminal and X → Y 1 Y2…Yk is a production, then place a
in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of
FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is in FIRST(Yj)
for all j=1,2,..,k, then add ε to FIRST(X).

Rules for FOLLOW():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except
ε is placed in follow(B).

3. If there is a production A → αB, or a production A → αBβ where
FIRST(β) contains ε,then everything in FOLLOW(A) is in
FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

1. For each production A → α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in
FOLLOW(A). If ε is in FIRST(α) and $ is in FOLLOW(A) , add A
→ α to M[A, $].

4. Make each undefined entry of M be error.

Algorithm : Non-recursive predictive parsing.

Input: A string w and a parsing table M for grammar G.

Output: If w is in L(G), a leftmost derivation of w; otherwise, an error .

Method: Initially, the parser is in a configuration in which it has $$ on the
stack with S, the start symbol of G on top, and w$ in the input buffer. The
program that utilizes the predictive parsing table M to produce a parse for
the input.

set ip to point to the first symbol of w$:

mu
no
tes
.in

64

Design and implementation
of Modern Compilers

64

repeat

let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then

if X = a then

pop X from the stack and advance ip

else error()

else /* X is a non-terminal */

if M[X,a] =X→Y1Y2…….Yk, then

begin

pop X from the stack:

push Yk , Yk - 1 Y1 , onto the stack, with Y1 on top;

output the production X→Y1Y2 …..Yk

end

else error()

until X ≠$ /* stack is empty*/

LL(1) Grammars:

For some grammars the parsing table may have some entries that are
multiply-defined. For example, if G is left recursive or ambiguous , then the
table will have at least one multiply-defined entry. A grammar whose
parsing table has no multiply-defined entries is said to be LL(1) grammar.

Example: Consider this following grammar:

S→ iEtS | iEtSeS | a

E → b

After eliminating left factoring, we have

S→ iEtSS’ | a S’→ eS | ε

E → b

To construct a parsing table, we need FIRST() and FOLLOW() for all the
non-terminals. FIRST(S) ={ i, a }

FIRST(S’) = {e, ε }

FIRST(E) = { b}

FOLLOW(S) = { $,e }

mu
no
tes
.in

65

Design and Implementation
of Modern Compiler

FOLLOW(S’) = { $,e }

FOLLOW(E) = {t}

Parsing Table for the grammar:

Since there are more than one production for an entry in the table, the
grammar is not LL(1) grammar.

2.4.4 LR PARSERS:

An efficient bottom-up syntax analysis technique that can be used to parse
a large class of CFG is called LR(k) parsing. The “L” is for left-to-right
scanning of the input, the “R” for constructing a rightmost derivation in
reverse, and the “k” for the number of input symbols of lookahead that are
used in making parsing decisions.. When (k) is omitted, it is assumed to be
1.

2.4.4.1 Types of LR parsing method:

1. SLR- Simple LR

● Easiest to implement, least powerful.

2. CLR- Canonical LR

mu
no
tes
.in

66

Design and implementation
of Modern Compilers

66

● Most powerful, most expensive.

3. LALR- Look -Ahead LR

● Intermediate in size and cost between the other two methods.

2.4.4.2 The LR Parsing Algorithm:

The schematic form of an LR parser is shown in Fig 2.25. It consists of an
input, an output, a stack, a driver program, and a parsing table that has two
parts (action and goto).The driver program is the same for all LR parser.
The parsing table alone changes from one parser to another. The parsing
program reads characters from an input buffer one at a time. The program
uses a stack to store a string of the form s0X1s1X2s2…… Xmsm , where
sm is on top. Each Xi is a grammar symbol and each si is a symbol called a
state.

Above fig. – Model of an LR Parser.

The parsing table consists of two parts : action and goto functions.

Action : The parsing program determines sm, the state currently on top of
stack, and ai, the current input symbol. It then consults action[sm,ai] in the
action table which can have one of four values :

1. shift s, where s is a state,
2. reduce by a grammar production A → β,
3. accept, and
4. error.

Goto : The function goto takes a state and grammar symbol as arguments
and produces a state.

mu
no
tes
.in

67

Design and Implementation
of Modern Compiler

2.4.5 CONSTRUCTING SLR PARSING TABLE:

To perform SLR parsing, take grammar as input and do the following:

1. Find LR(0) items.

2. Completing the closure.

3. Compute goto(I,X), where, I is set of items and X is grammar symbol.

 LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some
position of the right side. For example, production A → XYZ yields
the four items :

A → •XYZ

A → X•YZ

A → XY•Z

A → XYZ•

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items
constructed from I by the two rules:

1. Initially, every item in I is added to closure(I).

2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the
item B → . γ to I , if it is not already there. We apply this rule until no
more new items can be added to closure(I).

 Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX•β]
such that [A→ α•Xβ] is in I.Steps to construct SLR parsing table for
grammar G are:

1. Augment G and produce G`

2. Construct the canonical collection of set of items C for G‟

3. Construct the parsing action function action and goto using the
following algorithm that requires FOLLOW(A) for each non-terminal
of grammar.

2.4.5.1 Algorithm for construction of SLR parsing table:

Input : An augmented grammar G‟

Output : The SLR parsing table functions action and goto for G’

mu
no
tes
.in

68

Design and implementation
of Modern Compilers

68

Method :

1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for
G’.

2. State i is constructed from Ii. The parsing functions for state i are
determined as follows:

(a) If [A→α•aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to
“shift j”. Here a must be terminal.

(b) If[A→α•] is in Ii , then set action[i,a] to “reduce A→α” for all
a in FOLLOW(A).

(c) If [S‟→S•] is in Ii, then set action[i,$] to “accept”.

If any conflicting actions are generated by the above rules, we say
grammar is not SLR(1).

3. The goto transitions for state i are constructed for all non-terminals A
using the rule: If

 goto(Ii,A)= Ij, then goto[i,A] = j.

4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state of the parser is the one constructed from the set of
items containing [S’→•S].

2.4.5.2 SLR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and
goto for grammar G.

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error
indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state,
and w$ in the input buffer. The parser then executes the following program:

set ip to point to the first input symbol of w$;

repeat forever begin

let s be the state on top of the stack and a the symbol pointed to by ip;

if action[s, a] =shift s‟ then begin

push a then s‟ on top of the stack;

advance ip to the next input symbol

end

mu
no
tes
.in

69

Design and Implementation
of Modern Compiler

else if action[s, a]=reduce A→β then begin

pop 2* |β |symbols off the stack;

let s‟ be the state now on top of the stack;

push A then goto[s‟, A] on top of the stack;

output the production A→ β

end

else if action[s, a]=accept then

return

else error()

end

Example: Implement SLR Parser for the given grammar:

1.E→E + T

2.E→T

3.T→T * F

4.T→F

5.F→(E)

6.F→id

Step 1 : Convert given grammar into augmented grammar.

Augmented grammar:

E'→E

35

E→E + T

E→T

T→T * F

T→F

F→(E)

F→id

Step 2 : Find LR (0) items.

mu
no
tes
.in

70

Design and implementation
of Modern Compilers

70

Step 3 : Construction of Parsing table.

1. Computation of FOLLOW is required to fill the reduction action in the
ACTION part of the table.

FOLLOW(E) = {+,),$ }

FOLLOW(T) ={*,+,) ,$}

FOLLOW(F) ={*,+,) ,$}

mu
no
tes
.in

71

Design and Implementation
of Modern Compiler

1. si means shift and stack state i.

2. rj means reduce by production numbered j.

3. acc means accept.

4. Blank means error.

Step 4: Parse the given input. The Fig below shows the parsing the string
id*id+id using stack implementation

mu
no
tes
.in

72

Design and implementation
of Modern Compilers

72

2.4.6 Constructing Canonical or LR(1) parsing tables

LR or canonical LR parsing incorporates the required extra information into
the state by redefining configurations to include a terminal symbol as an
added component. LR(1) configurations have the general form:

A –> X1...Xi

● Xi+1...Xj , a

This means we have states corresponding to X1...Xi on the stack and we are
looking to put states corresponding to Xi+1...Xj on the stack and then
reduce, but only if the token following Xj is the terminal a. a is called the
lookahead of the configuration. The lookahead only comes into play with
LR(1) configurations with a dot at the right end:

A –> X1…Xj •, a

This means we have states corresponding to X1...Xj on the stack but we
may only reduce when the next symbol is a. The symbol a is either a
terminal or $ (end of input marker).

With SLR(1) parsing, we would reduce if the next token was any of those
in Follow(A).

With LR(1) parsing, we reduce only if the next token is exactly a. We may
have more than one symbol in the lookahead for the configuration, as a
convenience, we list those symbols separated by a forward slash. Thus, the
configuration A –> u•, a/b/c says that it is valid to reduce u to A only if the
next token is equal to a, b, or c. The configuration lookahead will always be
a subset of Follow(A).

Recall the definition of a viable prefix from the previous handout. Viable
prefixes are those prefixes of right sentential forms that can appear on the
stack of a shift-reduce parser. Formally we say that a configuration [A –>
u•v, a] is valid for a viable prefix α if there is a rightmost derivation S =>*
βAw =>* βuvw where α = βu and either a is the first symbol of w or w is ∂
and a is $.

For example:

S –> ZZ

Z –> xZ | y

There is a rightmost derivation S =>* xxZxy => xxxZxy. We see that
configuration

[Z –> x•Z, x] is valid for viable prefix α = xxx by letting β = xx, A = Z, w
= xy, u = x and

v = Z. Another example is from the rightmost derivation S =>* ZxZ =>
ZxxZ, making

[Z –> x•Z, $] valid for viable prefix Zxx.

mu
no
tes
.in

73

Design and Implementation
of Modern Compiler

Often we have a number of LR(1) configurations that differ only in their
lookahead components. The addition of a lookahead component to LR(1)
configurations allows us to make parsing decisions beyond the capability of
SLR(1) parsers. There is, however, a big price to be paid. There will be
more distinct configurations and thus many more possible configurating
sets. This increases the size of the goto and action tables considerably. In
the past when memory was smaller, it was difficult to find storageefficient
ways of representing these tables, but now this is not as much of an issue.
Still, it’s a big job building LR tables for any substantial grammar by hand.

The method for constructing the configurating sets of LR(1) configurations
is essentially the same as for SLR, but there are some changes in the closure
and successor operations because we must respect the configuration
lookahead. To compute the closure of an LR(1) configurating set I:

Repeat the following until no more configurations can be added to state I:

— For each configuration [A –> u•Bv, a] in I, for each production B –> w
in G', and for each terminal b in First(va) such that [B –> •w, b] is not in I:
add [B –> •w, b] to I.

What does this mean? We have a configuration with the dot before the
non-terminal B.

In LR(0), we computed the closure by adding all B productions with no
indication of what was expected to follow them. In LR(1), we are a little
more precise— we add each B production but insist that each have a
lookahead of va. The lookahead will be First(va) since this is what follows
B in this production. Remember that we can compute first sets not just for
a single non-terminal, but also a sequence of terminal and non-terminals.

First(va) includes the first set of the first symbol of v and then if that symbol
is nullable, we include the first set of the following symbol, and so on. If
the entire sequence v is nullable, we add the lookahead a already required
by this configuration.

The successor function for the configurating set I and symbol X is computed
as this:

Let J be the configurating set [A –> uX•v, a] such that [A –> u•Xv, a] is in
I.

successor(I,X) is the closure of configurating set J.

We take each production in a configurating set, move the dot over a symbol
and close on the resulting production. This is basically the same successor
function as defined for LR(0), but we have to propagate the lookahead
when computing the transitions.

We construct the complete family of all configurating sets F just as we did
before. F is initialized to the set with the closure of [S' –> S, $]. For each
configurating set I and each grammar symbol X such that successor(I,X) is
not empty and not in F, add successor (I,X) to F until no other configurating
set can be added to F.

mu
no
tes
.in

74

Design and implementation
of Modern Compilers

74

LR(1) grammars

Every SLR(1) grammar is a canonical LR(1) grammar, but the canonical
LR(1) parser may have more states than the SLR(1) parser. An LR(1)
grammar is not necessarily SLR(1), the grammar given earlier is an
example. Because an LR(1) parser splits states based on differing
lookaheads, it may avoid conflicts that would otherwise result if using the
full follow set.

A grammar is LR(1) if the following two conditions are satisfied for each
configurating set:

1. For any item in the set [A –> u•xv, a] with x a terminal, there is no
item in the set of the form [B –> v•, x]. In the action table, this
translates no shift-reduce conflict for any state. The successor
function for x either shifts to a new state or reduces, but not both.

2. The lookaheads for all complete items within the set must be disjoint,
e.g. set cannot have both [A –> u•, a] and [B –> v•, a] This translates
to no reduce-reduce conflict on any state. If more than one
non-terminal could be reduced from this set, it must be possible to
uniquely determine which is appropriate from the next input token.

 As long as there is a unique shift or reduce action on each input
symbol from each state, we can parse using an LR(1) algorithm. The
above state conditions are similar to what is required for SLR(1), but
rather than the looser constraint about disjoint follow sets and so on,
canonical LR(1) computes a more precise notion of the appropriate
lookahead within a particular context and thus is able to resolve
conflicts that SLR(1) would encounter.

2.4.7 LALR Table Construction

A LALR(1) parsing table is built from the configurating sets in the same
way as canonical LR(1); the lookaheads determine where to place reduce
actions. In fact, if there are no mergable states in the configuring sets, the
LALR(1) table will be identical to the corresponding LR(1) table and we
gain nothing.

In the common case, however, there will be states that can be merged and
the LALR table will have fewer rows than LR. The LR table for a typical
programming language may have several thousand rows, which can be
merged into just a few hundred for LALR. Due to merging, the LALR(1)
table seems more similar to the SLR(1) and LR(0) tables, all three have the
same number of states (rows), but the LALR may have fewer reduce
actions—some reductions are not valid if we are more precise about the
lookahead. Thus, some conflicts are avoided because an action cell with
conflicting actions in SLR(1) or LR(0) table may have a unique entry in an
LALR(1) once some erroneous reduce actions have been eliminated.

mu
no
tes
.in

75

Design and Implementation
of Modern Compiler

Brute Force?

There are two ways to construct LALR(1) parsing tables. The first (and
certainly more obvious way) is to construct the LR(1) table and merge the
sets manually. This is sometimes referred as the "brute force" way. If you
don’t mind first finding all the multitude of states required by the canonical
parser, compressing the LR table into the LALR version is straightforward.

1. Construct all canonical LR(1) states.

2. Merge those states that are identical if the lookaheads are ignored, i.e.,
two states being merged must have the same number of items and the
items have the same core (i.e., the same productions, differing only in
lookahead). The lookahead on merged items is the union of the
lookahead from the states being merged.

3. The successor function for the new LALR(1) state is the union of the
successors of the merged states. If the two configurations have the
same core, then the original successors must have the same core as
well, and thus the new state has the same successors.

4. The action and goto entries are constructed from the LALR(1) states
as for the canonical LR(1) parser. Consider the LR(1) table for the
grammar given on page 1 of this handout. There are nine states.

Looking at the configurating sets, we saw that states 3 and 6 can be merged,
so can 4 and 7, and 8 and 9. Now we build this LALR(1) table with the six
remaining states:

mu
no
tes
.in

76

Design and implementation
of Modern Compilers

76

Having to compute the LR(1) configurating sets first means we won’t save
any time or effort in building an LALR parser. However, the work wasn’t
all for naught, because when the parser is executing, it can work with the
compressed table, thereby saving memory. The difference can be an order
of magnitude in the number of states.

However there is a more efficient strategy for building the LALR(1) states
called step-by-step merging. The idea is that you merge the configurating
sets as you go, rather than waiting until the end to find the identical ones.
Sets of states are constructed as in the LR(1) method, but at each point
where a new set is spawned, you first check to see 6 whether it may be
merged with an existing set. This means examining the other states to see
if one with the same core already exists. If so, you merge the new set with
the existing one, otherwise you add it normally.

Here is an example of this method in action:

S' –> S
S –> V = E
E –> F | E + F
F –> V | int | (E)
V –> id

Start building the LR(1) collection of configurating sets as you would
normally:

I0: S' –> •S, $
S –> •V = E, $
V –> •id, =
I1: S' –> S•, $
I2: S' –> V• = E, $
I3: V –> id•, =
I4: S –> V =•E, $
E –> •F, $/+
E –> •E + F, $/+
F –>•V, $/+
F –>•int, $/+
F –>•(E), $/+
V –>•id, $/+
I5: S –> V = E•, $
E –> E• + F, $/+
I6: E –> F•, $/+
I7: F–> V•, $/+
I8: F–> int•, $/+

mu
no
tes
.in

77

Design and Implementation
of Modern Compiler

I9: F–> (•E), $/+
E –> •F,)/+
E –> •E + F,)/+
F –> •V,)/+
F –> •int,)/+
F –> •(E),)/+
V –> •id)/+
I10: F–> (E•), $/+
E –> E• + F,)/+

When we construct state I11, we get something we’ve seen before:

I11: E –>F•,)/+

It has the same core as I6, so rather than add a new state, we go ahead and
merge with that one to get:

I611: E –>F•, $/+/)

We have a similar situation on state I12 which can be merged with state I7.
The algorithm continues like this, merging into existing states where
possible and only adding new states when necessary. When we finish
creating the sets, we construct the table just as in LR(1).

2.4.8 An automatic parser generator

A parser generator takes a grammar as input and automatically generates
source code that can parse streams of characters using the grammar.

The generated code is a parser, which takes a sequence of characters and
tries to match the sequence against the grammar. The parser typically
produces a parse tree, which shows how grammar productions are expanded
into a sentence that matches the character sequence. The root of the parse
tree is the starting nonterminal of the grammar. Each node of the parse tree
expands into one production of the grammar.

The final step of parsing is to do something useful with this parse tree.
We’re going to translate it into a value of a recursive data type. Recursive
abstract data types are often used to represent an expression in a language,
like HTML, or Markdown, or Java, or algebraic expressions. A recursive
abstract data type that represents a language expression is called an abstract
syntax tree (AST).

Antlr is a mature and widely-used parser generator for Java, and other
languages as well.

Example tool for parser generator is YACC:

mu
no
tes
.in

78

Design and implementation
of Modern Compilers

78

YACC is a automatic tool that generates the parser program

YACC stands for Yet Another Compiler Compiler. This program is
available in UNIX OS The construction of LR parser requires lot of work
for parsing the input string. Hence, the process must involve automation to
achieve efficiency in parsing an input.

Basically YACC is a LALR parser generator that reports conflicts or
uncertainties (if at all present) in the form of error messages.

The typical YACC translator can be represented as shown in the image

2.5 SUMMARY

We have studied the below concepts:

1) Parsing methods used in compilers.

2) Basic concepts.

3) Techniques used in Efficient Parsers.

4) Algorithms – to recover from commonly occurring errors.

2.6 REFERENCE FOR FURTHER READING

A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools.
Reading, MA:
Addison-Wesley, 1986.
J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England:
McGraw-Hill, 1990.

mu
no
tes
.in

79

3
ADVANCED SYNTAX ANALYSIS AND

BASIC SEMANTIC ANALYSIS

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Syntax-directed Translation

3.3 Syntax-directed Translation Schemes

3.4 Implementation of Syntax-directed Translators

3.4 Semantic Analysis

 3.4.1 Introduction to Tiger Compiler

 3.4.2 Symbol Tables

 3.4.3 Bindings for Tiger Compiler

 3.4.4 Type-checking Expressions

 3.4.5 Type-checking Declarations

3.5 Activation Records

 3.5.1 Stack Frames

 3.5.2 Frames in the Tiger Compiler

3.6 Translation to Intermediate Code

 3.6.1 Intermediate Representation Trees

 3.6.2 Translation into Trees

 3.6.3 Declarations

3.7 Basic Blocks and Traces

 3.7.1 Taming Conditional Branches

3.8 Liveness Analysis

 3.8.1 Solution of Dataflow Equations

 3.8.2 Interference graph construction

 3.8.3 Liveness in the Tiger Compiler

3.9 Summary

3.10 Reference for further reading

3.11 Exercise

mu
no
tes
.in

80

Design and implementation
of Modern Compilers

80

3.0 OBJECTIVES

The aim of this chapter is to explain the role of the syntax analysis and to
introduce the important techniques used in the syntax analysis and semantic
analysis. After going through this unit, you will be able to understand:

● Syntax directed definitions

● Syntax directed translations

● SDT schemes

● Introduction to Tiger compiler

● Bindings for Tiger compiler

● Type-checking expressions, declarations

● Activation records and stack frames in Tiger compiler

● Intermediate code and its representation trees

● Liveliness in Tiger compiler

3.1 INTRODUCTION

A compiler's analysis step breaks down a source program into its
components and generates intermediate code, which is an internal
representation of the program. The intermediate code is translated into the
target program during the synthesis process. The syntax of the language to
be compiled is used to conduct the analysis. The syntax of a programming
language explains the correct format of its programs, but the semantics of
the language defines what each program means when it runs. We offer a
commonly used notation for describing syntax termed context-free
grammars.

Fig 3.1 Phases of compiler

mu
no
tes
.in

81

Advanced Syntax
Analysis and Basic
Semantic Analysis

3.2 SYNTAX-DIRECTED TRANSLATION

Background: Parser by using CFG (Context free Grammar) validate any
input statement and generate output for the next phase of the compiler. This
output could be represented in the form of either a parse tree or abstract
syntax tree. At this stage semantic analysis is associated with the syntax
analysis phase of compiler by using Syntax Directed
Translation.Definition: Syntax Directed Translation are additional
notations to the grammar that make semantic analysis more simple and
effective. These additional informal notations are called Semantic Rules. In
general, syntax directed translation states that meaning of any input
statement is related to its syntactic structure (Parse Tree).

In Syntax Directed Translation, we attach attributes to the grammar symbols
representing the language constructs. Values for these attributes are
calculated by the semantic rules augmented with the grammar. These
semantic rules use:

● Lexical values of nodes (returned by lexical analyzer)
● Constants
● Attributes associated to the node.

Notations to attach semantic rules:

1. Syntax Directed Definitions (SDD)

● A syntax-directed definition (SDD) is a generalized context-
free grammar along with both attributes and rules. Attributes
set is associated with grammar symbols and semantic rules
are associated with productions for computing the attribute
value.

● For example:

Production Semantic Rules
𝐿 → 𝑋 𝐿. 𝑣𝑎𝑙 ≔ 𝑋. 𝑣𝑎𝑙

𝑋 → 𝑋 + 𝑇 𝑋. 𝑣𝑎𝑙
≔ 𝑋. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝑋 → 𝑇 𝑋. 𝑣𝑎𝑙 ≔ 𝑇. 𝑣𝑎𝑙
𝑇 → 𝑇 ∗ 𝐹 𝑇. 𝑣𝑎𝑙

≔ 𝑇. 𝑣𝑎𝑙 ∗ 𝐹. 𝑣𝑎𝑙
𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 ≔ 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 ≔ 𝐸. 𝑣𝑎𝑙
𝐹 → 𝑐𝑜𝑛𝑠𝑡 𝐹. 𝑣𝑎𝑙

≔ 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙

Fig 3.2 Syntax directed definition of desk calculator

Where,
X is a symbol and val is one of its attributes.

mu
no
tes
.in

82

Design and implementation
of Modern Compilers

82

X.val denotes the value of that attribute at a particular parse-tree node X.
lexval is integer valued attribute returned by lexical analyzer.

Attributes may attain value of any type: numbers, types, table references, or
strings, for instance. The strings may even be long sequences of code, say
code in the intermediate language used by a compiler.

If nodes of the parse tree are implemented as records or objects, then the
attributes of X can be implemented by data fields in record corresponding
to node X.

There are two types of attributes:

● Synthesized Attributes: These are derived from the values of the
children node's attributes.

● Inherited Attributes: These are calculated from the values of the
siblings' and parent's attributes.

2. Translation Schemes.

SDDs hide many implementation details and give high-level
specification whereas translation schemes are more implementation
oriented and indicate the order of evaluation of semantic rules.

Applications of Syntax Directed Translation (SDT)

1. Executing Arithmetic Expression

2. Conversion from infix to postfix

3. Conversion from infix to prefix

4. Conversion from binary to decimal

5. Counting number of reductions

6. Creating syntax tree

7. Generating intermediate code

8. Type checking

9. Storing type information into symbol table

A syntax-directed translation scheme (SDT) is a context-free grammar with
some program component embedded within production bodies. These
program components are called semantic actions. These actions are
enclosed between curly braces at any position where action is to be
performed.

Grammar + Semantic Rules = SDT

mu
no
tes
.in

83

Advanced Syntax
Analysis and Basic
Semantic Analysis

3.3 IMPLEMENTATION OF SYNTAX-DIRECTED

TRANSLATORS

Any SDT is implemented by first creating a parse tree and then performing
the actions in preorder traversal.
Syntax Directed Translation (SDT) Schemes
1. Postfix Translation Schemes
2. Parser-Stack Implementation of Postfix SDT's
3. SDT's With Actions Inside Productions
4. SDT for L-Attributed Definitions
3.3.1 Postfix Translation Scheme:
In this scheme we parse the grammar bottom up and each action is placed
at the end of production i.e. all the actions are at right ends of the
productions. This SDT is called Postfix SDT.
Fig 3.2 implements Desk calculator SDD of Fig 3.1 as a postfix SDT. “Print
a value” action is performed for first production and rest of the actions are
equivalent to the semantic rules.

Production Semantic Actions
𝐿 → 𝑋 {𝑃𝑟𝑖𝑛𝑡 (𝑋. 𝑣𝑎𝑙); }

𝑋 → 𝑋 + 𝑇 {𝑋. 𝑣𝑎𝑙 = 𝑋. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙; }
𝑋 → 𝑇 {𝑋. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙;}

𝑇 → 𝑇 ∗ 𝐹 {𝑇. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙 ∗ 𝐹. 𝑣𝑎𝑙; }
𝑇 → 𝐹 {𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙; }

𝐹 → (𝐸) {𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙; }
𝐹 → 𝑐𝑜𝑛𝑠𝑡 {𝐹. 𝑣𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙; }

Fig 3.3 Postfix SDT implementation of desk calculator

Example 3.1: Parse tree for evaluating expression 23*4+5

SDD uses only synthesized attributes and semantic rules are evaluated by
bottom-up, post order traversal.

Production Semantic Actions
𝐿 → 𝑋 {𝑃𝑟𝑖𝑛𝑡 (𝑋. 𝑣𝑎𝑙); }

𝑋 → 𝑋1 + 𝑋2 {𝑋. 𝑣𝑎𝑙 = 𝑋1. 𝑣𝑎𝑙 + 𝑋2. 𝑣𝑎𝑙; }
𝑋 → 𝑋1 ∗ 𝑋2 𝑋. 𝑣𝑎𝑙 = 𝑋1. 𝑣𝑎𝑙 ∗ 𝑋2. 𝑣𝑎𝑙; }

𝑋 → (𝑋1) {𝑋. 𝑣𝑎𝑙 = 𝑋1. 𝑣𝑎𝑙;}
𝑋 → 𝑇 {𝑋. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙; }

𝑇 → 𝑇1𝑐𝑜𝑛𝑠𝑡 𝑇. 𝑣𝑎𝑙
= 10 ∗ 𝑇1. 𝑣𝑎𝑙
+ 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙; }

𝑇 → 𝑐𝑜𝑛𝑠𝑡 {𝐹. 𝑣𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙; }
Fig 3.4 Grammar and Semantic actions to solve expression 23*4+5

mu
no
tes
.in

84

Design and implementation
of Modern Compilers

84

1. S-attributed SDT :

● If any SDD contains only synthesized attributes, it is called
as S-attributed SDD.

● S-attributed SDDs are evaluated in bottom-up parsing, as the
values of the parent nodes depend upon the values of the
child nodes.

● Semantic actions are placed in rightmost place of RHS.

2. L-attributed SDT:

● If an SDTD has both synthesized attributes and inherited
attributes with a restriction that inherited attribute can inherit
values from left siblings only, it is called as L-attributed
SDD.

● Attributes in L-attributed SDDs are evaluated by depth-first
and left-to-right parsing manner.

● Semantic actions are placed anywhere in RHS

Fig 3.5 The Annotated parse tree

3.3.2 Parser-Stack Implementation of Postfix SDT's

During LR parsing, post x SDTs may be built by executing the actions when
reductions occur. Each grammar symbol's attribute(s) can be placed on the

mu
no
tes
.in

85

Advanced Syntax
Analysis and Basic
Semantic Analysis

stack at a location where they can be discovered throughout the reduction.
The optimal strategy is to store the characteristics, as well as the grammar
symbols in records on the stack. The parser stack record contains one field
for grammar symbols (or parser state) and, below it, a field for its any
attribute. For example:

Fig 3.6 Parser stack

Here, P,Q,R on the top of stack are grammar symbols and when these are
reduced according to any production then their attributes are stored in lower
field of the stack. Say P.p is one of its attributes. Any number of attributes
are stored on stack. If attributes are of large size like character strings then
attribute value is stored elsewhere and the pointer to that value is put in the
stack.

Production Semantic Actions

𝐿 → 𝑋 {𝑃𝑟𝑖𝑛𝑡 (𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 1]. 𝑣𝑎𝑙); 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 1; }
𝑋 → 𝑋 + 𝑇 {𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙

= 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
+ 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝]. 𝑣𝑎𝑙;

𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2}
𝑋 → 𝑇

𝑇 → 𝑇 ∗ 𝐹 {𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
= 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
∗ 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝]. 𝑣𝑎𝑙;

𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2}
𝑇 → 𝐹

𝐹 → (𝐸) {𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
= 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 1]. 𝑣𝑎𝑙; 𝑡𝑜𝑝
= 𝑡𝑜𝑝 − 2}

𝐹 → 𝑐𝑜𝑛𝑠𝑡

Fig 3.7 Implementing desk calculator on bottom-up parser stack

mu
no
tes
.in

86

Design and implementation
of Modern Compilers

86

3.3.3 SDT’s With Actions inside Productions

In this scheme action is placed anywhere inside the production and is
performed immediately after all left side terminals. For example, if we have
a production 𝑋 → 𝑌{𝑎} 𝑍, here action a is performed after processing of
Y.
In bottom-up parsing, action a is performed as soon as Y comes at the top
in parser stack.
In top-down parsing, action a is performed just before the expansion of non-
terminal Y.
3.3.4 SDT for L-Attributed Definitions
In this scheme the grammar is parsed top-down. Here actions in a parse tree
are executed in pre-order traversal of the tree. Principles to convert L-
attributed SDD into SDT are:
● Action to compute inherited attributes of a non-terminal symbol is

embedded just before this symbol in the production. Attributes are
calculated in the manner, that first required attributes are evaluated
first.

● Action to compute synthesized attribute is placed at the end of the
production.

3.4 SEMANTIC ANALYSIS

As we have studied Syntax Directed Translation led to generate Abstract
Syntax Tree. It is fed to Semantic Analysis phase, where meaning of each
phrase is determined. This process relates uses of variables to their
definitions, checks types of declarations and expressions and requests
translation of each phrase into representation easy to generate machine
code.
3.4.1 Introduction to Tiger Compiler
A modern Compiler design has many phases, each for different aspects of
language. This section focuses on compiling Tiger, a small but non-trivial
language from Algol family. It is description language with syntax trees,
nested structures, heap allocated record values with embedded pointers,
arrays, strings and integer variables, and some control structures. These
constructs make Tiger both functional and object oriented. In this chapter
compilation of real programming is illustrated by using Tiger code
fragments.
3.4.2 Bindings for Tiger Compiler
Symbol Tables:
Symbol tables are also called environments. As we know symbol table maps
identifiers to their types and locations. As the declarations of identifiers are
processed, each literal, variable and function is bound to “its meaning” in
symbol table. Whenever these identifiers are faced in executable statements,
they are searched in the symbol tables.

mu
no
tes
.in

87

Advanced Syntax
Analysis and Basic
Semantic Analysis

A symbol table is a set of bindings denoted by arrow . Each declared
variable in the program has its scope in which it is known & can be visible.
As semantic analyzer reaches to the end of that scope, the variable bindings
in the table are discarded.
Assume example in Tiger language:
1 function f (a:int, b:int) =
2 (print_int (a+b);
3 let var m:= a+b
4 var a := “tiger”
5 in print (a); print_int (m)
6 end;
7 print_int (b)
8)
Suppose this program has initial symbol table 𝜎°, after processing
Line 1, we get
Table 𝜎1 = 𝜎° + {𝑎 int, b int}
i.e new bindings for a and b are added to 𝜎°.
Line 2, identifiers are searched in 𝜎1.
At line 3, we get
Table 𝜎2 = 𝜎1 + {𝑚 int}
At line 4, we get
Table 𝜎3 = 𝜎2 + {𝑎 string}
Now same symbol has different bindings, so right hand side table {a
string} overrides bindings in the left (𝜎2).
At line 6, tables 𝜎2, 𝜎3 are discarded.
At line 7, table 𝜎1 is used to search for b.
At line 8, table 𝜎1 is discarded and go back to 𝜎°.
In Tiger there are two name spaces: one is for types, and the other for
functions & variables. Any type ‘a’ can be present with variable a or
function a in same scope at the same type but both variable and function
can’t have same name within scope simultaneously. A type identifier is
associated with a Ty_ty. The types module describes the structure of types.
For eg.
/* types.h*/
typedef struct Ty_ty_ *Ty_ty;
typedef struct Ty_tyList_ *Ty_tyList;
struct Ty_ty_ {enum
{ty_record, Ty_int, Ty_string, Ty_array, Ty_name, Ty_nill, Ty_void}
kind;
}

mu
no
tes
.in

88

Design and implementation
of Modern Compilers

88

The primitive types in Tiger are int and string, other types are constructed
by using records, arrays or primitive types. Record types hold the names
and fields types. Arrays are just like records and carries the type of array
element.
A symbol table provide mappings from symbols to bindings and We need
two environments one is value environment and the other is type
environment. Consider following example:
let type a = int
var a: a := 5
var b: a := a //here a denoting type of b
in b+a
end
here, in syntactic context, symbol a denotes the type a where type identifier
is expected and denotes the variable a where variables are expected.
3.4.3 Type-checking Expressions
For each type identifier we need to remember only the type it stands for.
Hence a type environment maps symbols to Ty_ty_ and the lookup function
for symbol table of that environment will always return Ty_ty pointers.
For each value identifier we need to know whether it is a variable or a
function; if a variable, what is its type; if a function, what are its parameters
and type of result, and so on. Type enventry will hold all this information
in following type-checking environment:
typedef struct E_enventry_ *E_enventry;
struct E_enventry_ {enum {E_varEntry, E_funEntry} Kind;
union {struct {Ty_ty ty;} var;
struct {Ty_tyList formals; Ty_ty result;} fun;
} u;
};
A variable is mapped to varEntry where its type is found and if we are
looking for a function, it is mapped to funEntry which contains:
formals- type list of formal arguments.
result- return type of function.
During processing of expressions for each identifier type-checker consult
these environments.
The type-checker is a recursive function of the abstract syntax tree. This is
transExp which is also used for translating the expression into intermediate
code.
In several languages, addition (+) is overloaded, if one integer operand is
added to real operand then real result is produced. Here integer operand is
implicitly converted into real. But compiler need to convert it explicitly in
the machine code.

mu
no
tes
.in

89

Advanced Syntax
Analysis and Basic
Semantic Analysis

3.4.4 Type-checking Declarations
In Tiger, any declaration occurs only by let expression. Type-checking of
let expression is very simple and tansDec module is used to translate
declaration. The call for transDec, enhance the value environment (venv)
and type environment (tenv) with new declarations.
● Variable declarations- It is a very simple to process, a variable is

declared without any type constraint. E.g:
 var x := exp.
● Type declarations- When a variable is declared with type constraint and

initializing expression. E.g:
 var x: type-id := exp.
● Function declarations- In Type-checking implementation of function

declaration, first
● transDec will search result-type identifier in the tenv.
● Then, a local function will traverse through the formal arguments

list and return their types. This information is entered into venv.
● Formal parameters are entered into the value environment.
● This augmented environment is used to process the body

(expressions).
Recursive declaration- Above procedure will not work with recursive type
or function declarations. Because undefined identifiers (type or functions)
are encountered while processing and this error cannot be handled by above
implementation. The solution for these recursive things is to put all the
prototypes (headers) in the environment first. Then process all the bodies in
that environment. While processing of body all newly faced identifiers are
looked up in the environment.

3.5 ACTIVATION RECORDS

In several languages such as C, Pascal, Tiger etc., local variables are created
at the time of entry to the function and destroyed when function returns.
Several function calls may exist simultaneously and each call has its own
instances of variables. Consider below tiger function:

function f (a:int):int =

let var b := a+a

in if y<50

then f(b)

else b-1

end

Each time new instance of a is created when f is called and for each a
instance of b is also created when entered into the body. Because this is

mu
no
tes
.in

90

Design and implementation
of Modern Compilers

90

recursive call, many a’s exist simultaneously. A function returns in LIFO
manner i.e it returns when all its called functions have returned. So we can
use a Stack (LIFO) to hold local variables.

3.5.1 Stack Frames

Two operations are performed on stack data structures. On entry to the
function, local variables are pushed into the stack and popped on exit in
large batches. All variables are not initialized at time of push and we keep
accessing all variables deep in stack. This way we need a different suitable
model.

In this model, stack is used as array with special register (called stack
pointer), which locate variable in this big array. Size of stack increases with
entries and shrinks with exit from the function. These locations on the stack
allocated to the local variables, formal parameters, return and other
temporary identifiers are called that function’s Activation Records or
Stack Frames. For example consider following stack frame:

incoming arguments

frame pointer →

argument n

argument 2

argument 1

static link

↑ higher addresses

previous frame

 local

variables

current frame return address

temporaries

saved registers

outgoing arguments

stack pointer →

argument m

argument 2

argument 1

static link

 next frame

 ↓ lower
addresses

Fig 3.8

mu
no
tes
.in

91

Advanced Syntax
Analysis and Basic
Semantic Analysis

Features of this stack frame:

i. Stack starts from higher addresses and grow towards lower addresses.

ii. In previous frame incoming arguments are passed by the caller and
stored at known offset from frame pointer.

iii. Return address is created by call statement, it tells where control
should return after completion of currently called function. Some
local variables are stored in current frame others are stored in machine
register. Machine register variables sometimes shifted to the frame to
create space in register.

iv. When this function calls another function (nested function) then
outgoing argument space is used to pass parameters.

v. Stack pointer is pointing to the first argument passed by calling
function. On entry of function new frame is allocated and size of that
frame is subtracted from SP to generate new SP. At this time old SP
is called Frame Pointer FP. i.e. FP=SP+ frame size.

vi. When function exits FP is copied back to SP and current FP attains
old FP value.

vii. Return address is the address of instruction which is just next to call
statement in the calling function.

3.5.2 Frames in the Tiger Compiler

Including Tiger there are many languages (Pascal, ML), which support
block structure feature. That feature allow, in nested functions, the inner
function can also use variables declared in outer function.

Following arrangements can achieve this.

i. When a function f is called, it is passed a pointer to the frame of that
function which enclosed f statistically. This pointer is called static
link.

ii. A global array is maintained which contains static nesting depth
pointers, this array is called Display.

iii. When a function f is called, all the variables of calling function are
also passed as extra arguments (and same way passed to nested
functions of f). This method is called lambda lifting.

If we uses C functions in Tiger then, Tiger compiler uses standard stack
frame layout, and abstract semantic analysis module which hides the
internal representation of the symbol tables. This abstract implementation
makes module machine independent.

Tiger compiler have two layers of abstraction between semantic analysis
and frame layout:

mu
no
tes
.in

92

Design and implementation
of Modern Compilers

92

semant.c

translate.h

translate.c

frame.h temp.h

𝜇 frame.c temp.c

Fig 3.9

Here,

● frame.h and temp.h are interfaces to provide machine independent
views for memory and register variables.

● Translate module handles nested scope (block structure feature) by
using static links and provide abstract interface translate.h to semant
module.

● 𝜇 stands for target machines. Abstraction is used to separate source
code semantics and machine dependent frame layout. So that frame
module become independent of specific language being compiled.

3.6 TRANSLATION TO INTERMEDIATE CODE

After type-checking semantic phase of tiger compiler request to translate
abstract syntax into abstract machine code which is independent of machine
target or any source language. It increases portability and modularity. This
code is called Intermediate Representation (IR).

Front end of any portable compiler perform analysis: Lexical analysis,
parsing, semantic analysis, and intermediate representations. The back end
compiler does optimization of IR and translate it to target machine
instructions.

Without IR we require m*n compilers to compile m number of languages
of n number of machines, whereas m front ends generate one IR only n
backend compilers are required to convert it into machine code. For e.g.

Fig 3.10 without IR

mu
no
tes
.in

93

Advanced Syntax
Analysis and Basic
Semantic Analysis

Fig 3.11 with IR

3.6.1 Intermediate Representation Trees

In tiger compiler implementation interface tree.h defines intermediate tree
representation. A good IR must have following qualities:

 It must be convenient to produce for semantic analysis phase.
 For all the target machines, it must be convenient to translate it into

machine code.
 Code optimizing implementation requires to rewrite the IR, so each

constructs should have clear and simple meaning.

3.6.2 Translation into Trees

In some architectures it is found that complex structures (array subscript,
procedure call etc.) of abstract syntax tree doesn’t lead to corresponding
complex machine instructions. These structures are transformed into
abstract machine instructions. Therefore IR should have individual simple
things- fetch, store, jump or add and then these abstract instructions are
grouped together into clumps to form target machine instructions.

Translation of abstract syntax expression to intermediate tree:

Expressions: Abstract syntax expression A_exp is represented as T_exp in
tree language, which computes a value. Those expressions which return no
value (e.g procedure calls, while statements etc.) are represented as T_stm.
Expressions with conditional jumps (e.g a>b) are represented as the
combination of T_stm and Temp_labels (destinations).

Simple variables: In section 3.4.4 and 3.4.5 semantic analyzer function
type checks a variable in type environment (tenv) and value environment
(venv). At this stage semants of exp are modified to generate intermediate
representation translation. A simple variable v declared in stack frame is
translated as:

mu
no
tes
.in

94

Design and implementation
of Modern Compilers

94

MEM(BINOP(PLUS, TEMP fp, CONST k))

Where, mem: content of memory word size.
BINOP: binary operation
TEMP fp: temporary frame pointer
CONST k: offset of variable v in the current frame
Array variables: All languages handle array elements differently. Like, in
pascal array variable stands for its content where as in C, array variables are
like pointer constants. So there is translate function which handles array
subscripts for records fields, expression etc.
3.6.3 Declarations
Modules for type-check Let expressions are enhanced to translate into tree
expression i.e TransDec and TransExp will accept more arguments now.
● Variable: as we know transDec updates tenv and venv. Now transDec

will also return Tr_exp for assignment expressions to perform
initializations.

● Function: Each tiger function is translated into assembly language with
a prologue, a body, and an epilogue.
Prologue specifies:
● The beginning of the function and label definition for function

name.
● Adjust the stack pointer to allocate new frame.
● Maintain callee-save registers and return address registers.
Then comes body of function.
● After body epilogue comes which specifies:
● Pops the stack
● Return value
● Restore callee save register
● Reset stack pointer
● Jump to the return address
● End of a function

MEM

BINOP

+ TEMP fp CONST k

mu
no
tes
.in

95

Advanced Syntax
Analysis and Basic
Semantic Analysis

3.7 BASIC BLOCKS AND TRACES

While translating trees generated by semantic analysis into machine
language, operators capable on most of the machines are chosen. Some
aspects of tree languages doesn’t correspond to machine code and interfere
with compiler optimization. For eg: the order of evaluating subexpression
of any expression doesn’t matter but if tree expression includes side effects
ESEQ (expression sequence), CJUMP and CALL then mismatch between
tree and machine language can occur. Because they make different orders
of evaluation yielding different results.

Translation is done in three stages:

1. A tree is rewritten into equivalent trees i.e canonical trees without
these SEQ or ESEQ, CALL labels, internal jumps etc. Hence,
canonical trees have no SEQ or ESEQ

2. This list of trees is grouped into basic blocks.

3. Then basic blocks are ordered in such a way that each CJUMP is
followed by its false label. These arrangements are called traces.

3.7.1 TAMING CONDITIONAL BRANCHES

Most of the machine languages doesn’t have direct equivalent of CJUMP
instruction. In the tree language CJUMP is designed with two way branch,
i.e it can jump either of two target labels whereas in real machine, the
conditional jump can either transfer control on true condition or comes to
immediate next instruction. So to transfer it into machine language every
CJUMP (condition, Tlabel, Flabel) is arranged in such a way that it is
immediately followed by its false label Flabel. Then each CJUMP can
directly be translated as conditional branching with only true label Tlabel.

BASIC BLOCKS

In order to determine where to jump in a program we analyze control flow.
The flow of control in a program doesn’t know whether the jump is for true
or false value. So control flows sequentially till it faces a jump statement.
We can group these sequential non branching instructions (without any
jump) into a basic block and analyze flow of control between these basic
blocks.

A basic block is a set of non-branch instructions to be executed sequentially.
We enter into a basic block at the beginning and exit at the end. i.e

● First statement of a basic block is a label.

● There are no other JUMPs, LABELs or CJUMPs.

● Only the last statement is a jump statement (CJUMP). We
can say after that control enters into another basic block.
Where ever a label is found a new basic block is started and
that basic block ends whenever a JUMP or CJUMP is found.

mu
no
tes
.in

96

Design and implementation
of Modern Compilers

96

This arrangement is applied to every function body. The last basic block has
no JUMP at the end, so label done is appended at last to indicate the
beginning of epilogue.

TRACES

Now the order of basic blocks doesn’t affect execution result. Control jumps
to new appropriate place at the end of each block. So we arrange these
blocks in such a way that every CJUMP is followed by its false label. Also
many target labels are immediate next to their unconditional jumps. So that
deletion of these unconditional JUMPs makes compilation of program
faster.

A trace is a order of basic blocks (sequence of statements) that can be
consecutively executed during the program execution. A program can have
many traces. While arranging CJUMPs and False-labels, a set of traces
should cover the program. If we reduce the number of jumps from one trace
to another, we will have few traces. For example, if blocks b1 ends with a
jump to b6 and b6 has a jump to b4, then the trace will be b1, b6, b4. Now
imagine block b4 have last instruction CJUMP (condition, b3,b7). Since it
can’t be decided at compile time which is false label, by assuming b7 is
false label and some execution will follow it, we append b7 to our trace b1,
b6, b4, b7 and b3 will fall under different trace.

3.8 LIVENESS ANALYSIS

The front end compiler translates program into an intermediate language
with many number of temporaries. All of these are never written explicitly.
But machine has limited number of registers and many temporaries can fit
into these few registers if all of them are not in use at the same time. Other
excess temps can be kept in memory.

Liveness analysis is process of analyzing intermediate representation to find
which temporary variable are used at the same time and are live. A variable
is live if its value is needed in future. To analyze this control flow a graph
is made, which determines the order of statements to be executed. For
example, in the following flow graph A is live at edge {2, 5, and 5 to 2}.
Variable B is not live at edge 1, 2, 5 and 6 because it is not used at this time.
It is assigned into at statement 2, so its live range is {3, 4}. If C is a formal
parameter, it is live at entry and exit of the code. So only two registers can
hold values of three variables because variable A and B are not live at same
time so one register is for A and B and the other is for C.

mu
no
tes
.in

97

Advanced Syntax
Analysis and Basic
Semantic Analysis

Fig 3.12 flow graph

3.8.1 SOLUTION OF DATAFLOW EQUATIONS

The edges that come to any node from predecessor nodes are called in-
edges of that node and the edges that are going towards successor nodes are
called out-edges of a that node. If any variable is live at any in-edge then it
is called live-in and if it is live at any out-edge then it is live-out. We can
analyze liveness of any variable by using two terms:

Def: def of a variable is the set of those graph nodes which defines that
variable.

Uses: use of variable is the set of those variables or graph nodes which uses
that variable.
Live range of each variable across the dataflow graph is calculated by
following equation:

𝑖𝑛[𝑛] = 𝑢𝑠𝑒[𝑛] ∪ (𝑜𝑢𝑡[𝑛] − 𝑑𝑒𝑓[𝑛])
𝑜𝑢𝑡[𝑛] = ⋃௦∈௦௨[]𝑖𝑛[𝑠]

Where,
Pred[n]: set of all predecessors of node n
Succ[n]: set of all successors of node n
From above equation we can say:

A variable is live-in at node n, if it is in use set of that node i.e in use[n].
If a variable is live-out at n but it is not defined at n i.e not in def[n], then
this variable must be line-in at n.

Live-out variable at n is live-in at all nodes s in succ[n].

mu
no
tes
.in

98

Design and implementation
of Modern Compilers

98

3.8.2 INTERFERENCE GRAPH CONSTRUCTION

Liveness information is used in compiler optimization. Some optimization
algorithms need to know at each node in the flow graph, which set of
variables are live. Registers are allocated to the temporaries accordingly. If
we have a set of temporary variables v1,v2,v3,……, which are to be
allocated to registers r1,r2,r3,……, then the condition due to which we can’t
allocate same register to v1 & v2 is called an interference. This may occur
due to overlapping live period i.e v1 & v2 both are live at same time in the
program. In this case we can’t assign same register to these variables.
Interference can also occur when any variable v1 is generated by such
instruction which doesn’t address register r1, in this case v1 and r1 interfere.
Interference information is represented as matrix of variables by marking x
on the inference. This matrix can be expressed as undirected graph. Each
node of graph is representing variables and edge between two nodes
(variables) represent interference. Interference matrix and corresponding
graph of fig 3.9 is:-

 A B C

A x

B x

C x x

Fig 3.13 interference representation

3.8.3 LIVENESS IN THE TIGER COMPILER

In tiger compiler, first control-flow graph is generated and then liveness of
a variable is analyzed. This analysis is expressed as interference graph. To
represent these two types of graph, an abstract data type Graph is created.

G_Graph() := function to create empty directed graph.
G_Node(g,x) := adds new node in graph g with additional information
x.
G_addEdge(n,m) := creates directed edge from n to m, now m is available
in G_succ(n) list and n is present in G_pred(m) list. If instruction n is

mu
no
tes
.in

99

Advanced Syntax
Analysis and Basic
Semantic Analysis

followed by instruction m (even by a jump), then there will be an edge
between n and m in the control-flow graph. In flow graph each node
contains information about the following:

a) FG_def(n): a set of all temporaries defined at n

b) FG_use(n): a set of temporary variables used at n

c) FG_isMove(n): represents any Move instruction at n

LIVENESS ANALYSIS

The liveness module takes flow-graph as input and produces:

● Interference graph

● List of node-pairs (having Move instruction). These are assigned to
the same register to eliminate Move)

What happens if a freshly defined temporary isn't active right away? If a
variable is defined but never utilized, this is the situation. It appears that
there is no need to enter it in a register; hence, it will not conflict with any
other temporary identifiers. However, if the defining instruction is executed
it will write to a register, which must not contain any other live variables.
As a result, any live ranges that overlap zero-length live ranges will
interfere.

3.9 SUMMARY

This chapter gives the translation of languages guided by context-free
grammars. The translation techniques in this chapter are applied for type
checking and intermediate-code generation in compiler design. The
techniques are also useful for implementing little languages for specialized
tasks. To illustrate the issues in compiling real programming languages,
code snippets of Tiger (a simple but nontrivial language of the Algol family,
with nested scope and heap-allocated records) are discussed. These code
snippets can be implemented in C-language or java. For complete code refer
book by A.Andrew et.al., Modern Compiler Implementation in java (2004).

3.10 REFERENCE FOR FURTHER READING

● Modern Compiler Implementation in Java, Second Edition, Andrew
Appel and Jens Palsberg, Cambridge University Press (2004).

● Principles of Compiler Design, Alfred Aho and Jeffrey D. Ullman,
Addison Wesley (1997).

● Compiler design in C, Allen Holub, Prentice Hall (1990).

● Mogensen, T. Æ. (2017). Syntax Analysis. In Introduction to
Compiler Design (pp. 39-95). Springer, Cham.

mu
no
tes
.in

100

Design and implementation
of Modern Compilers

100

3.11 EXCERCISE

Q1. What are inherited and synthesized attributes?

Q2. What is the difference between syntax directed definition and
syntax directed translation?

Q3. What are implementation scheme of syntax directed
translation?

Q4. Differentiate between L-attributed and S-attributed SDT.

Q5. How compiler checks declarations and expressions in a
program?

Q6. How local variables are managed during function calls?

Q7. What are blocks and traces?

Q8. Write short note on liveness of variables using Tiger compiler.

mu
no
tes
.in

101

4
DATAFLOW ANALYSIS AND LOOP

OPTIMIZATION

Unit Structure

4.0 Objectives
4.1 Introduction
4.2 Overview
4.3 The Principle Sources of Optimization
 4.3.1 Loop Optimization:
 4.3.2 The Dag Representation of Basic Blocks
 4.3.3 Dominators
 4.3.4 Reducible Flow Graphs
 4.3.5 Depth-First Search
 4.3.6 Loop-Invariant Computations
 4.3.7 Induction Variable Elimination
 4.3.8 Some Other Loop Optimizations.
 4.3.8.1 Frequency Reduction (Code Motion):
 4.3.8.2 Loop Unrolling:
 4.3.8.3 Loop Jamming:
4.4 Dataflow Analysis
 4.4.1 Intermediate Representation for Flow Analysis
 4.4.2 Various Dataflow Analyses
 4.4.3 Transformations Using Dataflow Analysis
 4.4.4 Speeding Up Dataflow Analysis
 4.4.4.1 Bit Vectors
 4.4.4.2 Basic Blocks
 4.4.4.3 Ordering the Nodes
 4.4.4.4 Work-List Algorithms
 4.4.4.5 Use-Def and Def-Use Chains
 4.4.4.6 Wordwise Approach
4.5 Alias Analysis
4.6 Summary
4.7 References for further Reading
4.8 Unit End Exercises

mu
no
tes
.in

102

Design and implementation
of Modern Compilers

102

4.0 OBJECTIVES

After going through this chapter you will be able to understand the
following concepts in detail:-

 DAG Representation
 Dominators
 Reducible flow graphs
 Depth-first search
 Loop invariant computations
 Induction variable elimination
 various loop optimizations.
 Intermediate representation
 dataflow analyses
 transformations
 speeding up and alias analysis.

4.1 INTRODUCTION

To create an efficient target language program, a programmer needs more
than an optimizing compiler. We mention the types of code-improving
transformations that a programmer and a compiler writer can be expected
to use to improve the performance of a program. We also consider the
representation of programs on which transformations will be applied.

4.2 OVERVIEW

The code produced by straight forward compiling algorithms can be made
to run faster or take less space or both. This process is achieved by program
transformations that are traditionally called optimizations.

The maximum optimization benefit can be obtained if we can identify the
frequently executed parts of the program and make these parts as efficient
as possible. Generally inner loops in the program written using while or for
statements are good candidates for optimization.

4.3 THE PRINCIPLE SOURCES OF OPTIMIZATION

4.3.1 Loop optimization:

Loop Optimization is the process of increasing execution speed and
reducing the overheads associated with loops. It plays an important role in
improving cache performance and making effective use of parallel
processing capabilities.

mu
no
tes
.in

103

Dataflow Analysis and
Loop Optimization

4.3.2. The DAG representation of basic blocks

A basic block is a sequence of consecutive statements in which flow of
control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end.

A three address statement x: = y + z is said to define x and use y and z. A
name in a basic block is said to be live at a given point if its value is used
after that point in the program perhaps in another basic block.

A DAG for basic block is a directed acyclic graph with the following labels
on nodes:

● The leaves of graph are labelled by unique identifier and that identifier
can be variable names or constants.

● Interior nodes of the graph are labelled by an operator symbol.

● Nodes are also given a sequence of identifiers for labels to store the
computed value.

● DAGs are a type of data structure. It is used to implement
transformations on basic blocks.

● DAG provides a good way to determine the common sub-expression.

● It gives a picture representation of how the value computed by the
statement is used in subsequent statements.

Algorithm for construction of Directed Acyclic Graph :
There are three possible scenarios for building a DAG on three address
codes:
Case 1 – x = y op z
Case 2 – x = op y

mu
no
tes
.in

104

Design and implementation
of Modern Compilers

104

Case 3 – x = y
Directed Acyclic Graph for the above cases can be built as follows :
Step 1 –
If the y operand is not defined, then create a node (y).
If the z operand is not defined, create a node for case(1) as node(z).
Step 2 –
Create node(OP) for case(1), with node(z) as its right child and node(OP)
as its left child (y).
For the case (2), see if there is a node operator (OP) with one child node (y).
Node n will be node(y) in case (3).
Step 3 –
Remove x from the list of node identifiers. Step 2: Add x to the list of
attached identifiers for node n.
Example :

T0 = a + b —Expression 1
T1 = T0 + c —-Expression 2
d = T0 + T1 —–Expression 3
Expression 1 : T0 = a + b

Expression 2: T1 = T0 + c

mu
no
tes
.in

105

Dataflow Analysis and
Loop Optimization

Expression 3 : d = T0 + T1

Example :

T1 = a + b
T2 = T1 + c
T3 = T1 x T2

mu
no
tes
.in

106

Design and implementation
of Modern Compilers

106

Example :
 T1:= 4*I0
T2:= a[T1]
T3:= 4*I0
T4:= b[T3]
T5:= T2 * T4
T6:= prod + T
prod:= T6
T7:= I0 + 1
I0:= T7
if I0 <= 20 goto 1

Application of Directed Acyclic Graph:
Directed acyclic graph determines the subexpressions that are commonly
used.

mu
no
tes
.in

107

Dataflow Analysis and
Loop Optimization

Directed acyclic graph determines the names used within the block as well
as the names computed outside the block.
Determines which statements in the block may have their computed value
outside the block.
Code can be represented by a Directed acyclic graph that describes the
inputs and outputs of each of the arithmetic operations performed within the
code; this representation allows the compiler to perform common
subexpression elimination efficiently.
Several programming languages describe value systems that are linked
together by a directed acyclic graph. When one value changes, its successors
are recalculated; each value in the DAG is evaluated as a function of its
predecessors.

4.3.3 Dominators

In a flow graph, a node d dominates node n, if every path from initial node
of the flow graph to n goes through d. This will be denoted by d Dom n.
Every initial node dominates all the remaining nodes in the flow graph and
the entry of a loop dominates all nodes in the loop. Similarly every node
dominates itself.

Example:

In the flow graph below,*Initial node, node1 dominates every node. *node
2 dominates itself *node 3 dominates all but 1 and 2. *node 4 dominates all
but 1,2 and 3. *node 5 and 6 dominates only themselves, since flow of
control can skip around either by going through the other. *node 7
dominates 7,8 ,9 and 10. *node 8 dominates 8,9 and 10. *node 9 and 10
dominates only themselves.

The way of presenting dominator information is in a tree, called the
dominator tree, in which

● The initial node is the root.

● The parent of each other node is its immediate dominator.

● Each node d dominates only its descendents in the tree.

mu
no
tes
.in

108

Design and implementation
of Modern Compilers

108

 The existence of dominator tree follows from a property of dominators;
each node has a unique immediate dominator in that is the last dominator of
n on any path from the initial node to n. In terms of the Dom relation, the
immediate dominator m has the property is d=! n and d Dom n, then d Dom
m.

D (1) ={1}
D (2)={1,2}
D (3)={1,3}
D (4)={1,3,4}
D (5)={1,3,4,5}
D (6)={1,3,4,6}
D (7)={1,3,4,7}
D (8)={1,3,4,7,8}
D (9)={1,3,4,7,8,9}
D (10)={1,3,4,7,8,10}

4.3.4 Reducible flow graphs

Reducible flow graphs are special flow graphs, for which several code
optimization transformations are especially easy to perform, loops are
unambiguously defined, dominators can be easily calculated, data flow
analysis problems can also be solved efficiently. Exclusive use of structured
flow-of-control statements such as if-then-else, while-do, continue, and
break statements produces programs whose flow graphs are always
reducible.

The most important properties of reducible flow graphs are that

1. There are no jumps into the middle of loops from outside;

2. The only entry to a loop is through its header

Definition:

A flow graph G is reducible if and only if we can partition the edges into
two disjoint groups, forward edges and back edges, with the following
properties.

 1. The forward edges from an acyclic graph in which every node can be
reached from initial node of G.

2. The back edges consist only of edges where heads dominate theirs tails.

Example: The above flow graph is reducible. If we know the relation DOM
for a flow graph, we can find and remove all the back edges. The remaining
edges are forward edges. If the forward edges form an acyclic graph, then
we can say the flow graph reducible. In the above example remove the five

mu
no
tes
.in

109

Dataflow Analysis and
Loop Optimization

back edges 4→3, 7→4, 8→3, 9→1 and 10→7 whose heads dominate their
tails, the remaining graph is acyclic.

 4.3.5 Depth-first search

Depth-first search (DFS) is an algorithm for traversing or searching tree or
graph data structures. The algorithm starts at the root node (selecting some
arbitrary node as the root node in the case of a graph) and explores as far as
possible along each branch before backtracking.

A depth first ordering can be used to detect loops in any flow graph; it also
helps speed up iterative data flow algorithms.

One possible DFS representation of the data flow on left given on the right
side figure.

4.3.6 Loop-invariant computations

Definition
● A loop invariant is a condition [among program variables] that is

necessarily true immediately before and immediately after each
iteration of a loop.

● A loop invariant is some predicate (condition) that holds for every
iteration of the loop.

● For example, let’s look at a simple for loop that looks like this:

● Int j = 9;

● for (int i=0; i<10; i++)

● J--;

● In this example it is true (for every iteration) that i + j == 9.

● A weaker invariant that is also true is that i >= 0 && i <= 10.

● One may get confused between the loop invariant, and the loop
conditional (the condition which controls termination of the loop).

● The loop invariant must be true:

● before the loop starts

mu
no
tes
.in

110

Design and implementation
of Modern Compilers

110

● before each iteration of the loop

● after the loop terminates (although it can temporarily be false
during the body of the loop).

● On the other hand the loop conditional must be false after the
loop terminates, otherwise, the loop would never terminate.

● Usage:

Loop invariants capture key facts that explain why code works. This means
that if you write code in which the loop invariant is not obvious, you should
add a comment that gives the loop invariant. This helps other programmers
understand the code, and helps keep them from accidentally breaking the
invariant with future changes.

A loop Invariant can help in the design of iterative algorithms when
considered an assertion that expresses important relationships among the
variables that must be true at the start of every iteration and when the loop
terminates. If this holds, the computation is on the road to effectiveness. If
false, then the algorithm has failed.

Loop invariants are used to reason about the correctness of computer
programs. Intuition or trial and error can be used to write easy algorithms
however when the complexity of the problem increases, it is better to use
formal methods such as loop invariants.

Loop invariants can be used to prove the correctness of an algorithm, debug
an existing algorithm without even tracing the code or develop an algorithm
directly from specification.

A good loop invariant should satisfy three properties:

● Initialization: The loop invariant must be true before the first
execution of the loop.

● Maintenance: If the invariant is true before an iteration of the loop,
it should be true also after the iteration.

● Termination: When the loop is terminated the invariant should tell
us something useful, something that helps us understand the
algorithm.

Loop Invariant Condition:

Loop invariant condition is a condition about the relationship between the
variables of our program which is definitely true immediately before and
immediately after each iteration of the loop.

For example: Consider an array A{7, 5, 3, 10, 2, 6} with 6 elements and we
have to find maximum element max in the array.

max = -INF (minus infinite)
for (i = 0 to n-1)

mu
no
tes
.in

111

Dataflow Analysis and
Loop Optimization

 if (A[i] > max)
max = A[i]

In the above example after the 3rd iteration of the loop max value is 7, which
holds true for the first 3 elements of array A. Here, the loop invariant
condition is that max is always maximum among the first i elements of array
A.

This technique can be used to optimize various sorting algorithms like –
selection sort, bubble sort, quick sort etc.

4.3.7 Induction variable elimination

A variable x is called an induction variable of loop L every time the variable
x changes values, it is incremented or decremented by some constant

Example 1:
int i, max = 10, r;
r = max-1;
for(i=10;i<=r;i++)
{
Printf(“%d”, i);
}

In the above code, variable i is called induction variable as values of I get
incremented by 1, i.e., 0,1,2,3,4,5,6,7,8,9,10

4.3.8 Some other loop optimizations.

Loop Optimization Techniques:

4.3.8.1 Frequency Reduction (Code Motion):

In frequency reduction, the amount of code in loop is decreased. A
statement or expression, which can be moved outside the loop body without
affecting the semantics of the program, is moved outside the loop.

4.3.8.2 Loop Unrolling:

Loop unrolling is a loop transformation technique that helps to optimize the
execution time of a program. We basically remove or reduce iterations.
Loop unrolling increases the program’s speed by eliminating loop control
instruction and loop test instructions.

4.3.8.3 Loop Jamming:

Loop jamming is the combining the two or more loops in a single loop. It
reduces the time taken to compile the many number of loops.

mu
no
tes
.in

112

Design and implementation
of Modern Compilers

112

4.4 DATAFLOW ANALYSIS

Data flow analysis is a process for collecting information about the use,
definition, and dependencies of data in programs. The data flow analysis
algorithm operates on a control flow graph generated from an AST. You
can use a control flow graph to determine the parts of a program to which a
particular value assigned to a variable might propagate.

An execution path (or path) from point p1 to point pn is a sequence of points
p1, p2, ..., pn such that:

for each i = 1, 2, ..., n − 1, either 1 pi is the point immediately preceding a
statement and pi+1 is the point immediately following that same statement,

 or

pi is the end of some block and pi+1 is the beginning of a successor block.

In general, there is an infinite number of paths through a program and there
is no bound on the length of a path. Program analyses summarize all
possible program states that can occur at a point in the program with a finite
set of facts.

No analysis is necessarily a perfect representation of the state.

Process of dataflow analysis:

1) Build a flow graph(nodes = basic blocks, edges = control flow)
2) set up a set of equations between in[b] and out[b] for all basic blocks

b.
 Effect of code in basic block:

● Transfer function fb relates in[b] and out[b], for same b.

● Effect of flow of control:

● Relates out[b], in[b] if b1 and b2 are adjacent

3) Find a solution to the equations

 Static Program vs. Dynamic Execution:-

mu
no
tes
.in

113

Dataflow Analysis and
Loop Optimization

● Statically: Finite program
● Dynamically: Can have infinitely many possible execution paths
● Data flow analysis abstraction:
● For each point in the program:

combines information of all the instances of the same program point.

4.4.1 Intermediate representation for flow analysis

A compiler transforms the source program to an intermediate form that is
mostly independent of the source language and the machine architecture.
This approach isolates the front-end and the back-end.
The portion of the compiler that does scanning, parsing and static semantic
analysis is called the front-end.
The translation and code generation portion of it is called the back-end.
The front-end depends mainly on the source language and the back-end
depends on the target architecture.
More than one intermediate representation may be used for different levels
of code improvement. A high level intermediate form preserves source
language structure. Code improvements on loop can be done on it.
A low level intermediate form is closer to target architecture.
Parse tree is a representation of complete derivation of the input. It has
intermediate nodes labeled with non-terminals of derivation.This is used
(often implicitly) for parsing and attribute synthesis.
A syntax tree is very similar to a parse tree where extraneous nodes are
removed.
It is a good representation that is close to the source-language as it preserves
the structure of source constructs.
It may be used in applications like source-to-source translation, or syntax-
directed editor etc.

Linear Intermediate Representation:-

Both the high-level source code and the target assembly codes are linear in
their text.
The intermediate representation may also be linear sequence of codes. with
conditional branches and jumps to control the flow of computation.

A linear intermediate code may have one operand address a , two-address
b, or three-address like RISC architectures.

GCC Intermediate Codes:-

The GCC compiler uses three intermediate representations:

1. GENERIC - it is a language independent tree representation of the
entire function.

mu
no
tes
.in

114

Design and implementation
of Modern Compilers

114

2. GIMPLE - is a three-address representation generated from
GENERIC.

3. RTL - a low-level representation known as register transfer language.

Consider the following C function.
double CtoF(double cel) { return cel * 9 / 5.0 + 32 ;}
C program with if:-
#include <stdio.h>
int main()
{
int l, m ;
scanf("%d", &l);
if(l < 10) m = 5*l;
else m = l + 10;
printf("l: %d, m: %d\n", l, m);
return 0;
}
C program with for:-
#include <stdio.h>
int main()
{
int n, i, sum=0 ;
scanf("%d", &n);
for(i=1; i<=n; ++i) sum = sum+i;
printf("sum: %d\n", sum);
return 0;
}

Representation of Three-Address Code:-

Any three address code has two essential components: operator and
operand.
There can be at most three operands and one operator.
The operands are of three types, a name from the source program, a
temporary name generated by the compiler or a constant a.
a There are different types of constants used in a programming language.
There is another category of name, a label in the sequence of three-address
codes.

mu
no
tes
.in

115

Dataflow Analysis and
Loop Optimization

A three-address code sequence may be represented as a list or array of
structures.

Quadruple:-

A quadruple is the most obvious first choice.

It has an operator, one or two operands, and the target field.

Triple:-

A triple is a more compact representation of a three-address code.
It does not have an explicit target field in the record.

When a triple u uses the value produced by another triple d, then u refers to
the value number (index) of d.

Example:-

t1 = a * a
t2 = a * b
t3 = t1 + t2
t4 = t3 + t2
t5 = t1 + t4

Indirect Triple:-

It may be necessary to reorder instructions for the improvement of
execution.
Reordering is easy with a quad representation, but is problematic with triple
representation as it uses absolute index of a triple.
As a solution indirect triples are used, where the ordering is maintained by
a list of pointers (index) to the array of triples.
The triples are in their natural translation order and can be accessed by their
indexes.
But the execution order is maintained by an array of pointers (index)
pointing to the array of triples.

Static Single-Assignment (SSA) Form:-

This representation is similar to three-address code with two main
differences.
Every definition a has a distinct name (virtual register).
Each use of a value refers to a particular definition.
e.g. t7= a + t3.
If the same user variable is defined on more than one control paths a, they
are renamed as distinct variables with appropriate subscripts.

mu
no
tes
.in

116

Design and implementation
of Modern Compilers

116

When more than one control-flow paths join, a φ-function is used to
combine the variables.
The φ-function selects the value of its arguments depending on the control-
flow path (data-flow under control-flow).
Each name is defined at one place a. Use of a name contains information
about the location of its definition (data-flow).
SSA-form tries to encode data-flow under flow-control.
Consider the following C code:
for(f=i=1; i<=n; ++i) f = f*i;

The corresponding three-address codes and SSA codes are as follows.

i = 1 i0 = 1
f = 1 f0 = 1
L2: if i>n goto - if i0 > n goto L1
L2: i1 =
φ(i0, i2)
f1 =
φ(f0, f2)
f = f*i f2 = f1*i1
i = i + 1 i2 = i1 + 1
goto L2 if i2 <= n goto L2
L1: i3 =
φ(i0, i2)
f3 =
φ(f0, f2)

4.4.2 Various data flow analyses

A data-flow value for a program point represents an abstraction of the set
of all possible program states that can be observed for that point The set of
all possible data-flow values is the domain for the application under
consideration Example: for the reaching definitions problem, the domain of
data-flow values is the set of all subsets of definitions in the program A
particular data-flow value is a set of definitions IN[s] and OUT[s]: data-
flow values before and after each statement s The data-flow problem is to
find a solution to a set of constraints on IN[s] and OUT[s], for all statements.

Two kinds of constraints :

Those based on the semantics of statements (transfer functions)

Those based on flow of control

mu
no
tes
.in

117

Dataflow Analysis and
Loop Optimization

● A DFA schema consists of:

● A control-flow graph

● A direction of data-flow (forward or backward)

● A set of data-flow values

● A confluence operator (normally set union or intersection)

● Transfer functions for each block

We always compute safe estimates of data-flow values
A decision or estimate is safe or conservative, if it never leads to a change
in what the program computes (after the change)
These safe values may be either subsets or supersets of actual values, based
on the application
Basic Terminologies –
Definition Point: a point in a program containing some definition.
Reference Point: a point in a program containing a reference to a data item.
Evaluation Point: a point in a program containing evaluation of
expression.

4.4.3 Transformations using dataflow analysis

In order to do code optimization and a good job of code generation ,
compiler needs to collect information about the program as a whole and to
distribute this information to each block in the flow graph. A compiler could
take advantage of “reaching definitions” , such as knowing where a variable
like debug was last defined before reaching a given block, in order to
perform transformations are just a few examples of data-flow information
that an optimizing compiler collects by a process known as data-flow
analysis.

mu
no
tes
.in

118

Design and implementation
of Modern Compilers

118

Data-flow information can be collected by setting up and solving systems
of equations of the form :

out [S] = gen [S] U (in [S] - kill [S])

This equation can be read as “ the information at the end of a statement is
either generated within the statement , or enters at the beginning and is not
killed as control flows through the statement.” Such equations are called
data-flow equation.

1. The details of how data-flow equations are set and solved depend on
three factors. The notions of generating and killing depend on the
desired information, i.e., on the data flow analysis problem to be
solved. Moreover, for some problems, instead of proceeding along
with flow of control and defining out[S] in terms of in[S], we need to
proceed backwards and define in[S] in terms of out[S].

2. Since data flows along control paths, data-flow analysis is affected by
the constructs in a program. In fact, when we write out[s] we
implicitly assume that there is unique end point where control leaves
the statement; in general, equations are set up at the level of basic
blocks rather than statements, because blocks do have unique end
points.

3. There are subtleties that go along with such statements as procedure
calls, assignments through pointer variables, and even assignments to
array variables.

Points and Paths:

Within a basic block, we talk of the point between two adjacent statements,
as well as the point before the first statement and after the last. Thus, block
B1 has four points: one before any of the assignments and one after each of
the three assignments.

mu
no
tes
.in

119

Dataflow Analysis and
Loop Optimization

Now let us take a global view and consider all the points in all the blocks.
A path from p1 to pn is a sequence of points p1, p2,….,pn such that for each
i between 1 and n-1, either

1. Pi is the point immediately preceding a statement and pi+1 is the point
immediately following that statement in the same block, or

2. Pi is the end of some block and pi+1 is the beginning of a successor
block.

Reaching definitions

A definition of variable x is a statement that assigns, or may assign, a value
to x. The most common forms of definition are assignments to x and
statements that read a value from an i/o device and store it in x. These
statements certainly define a value for x, and they are referred to as
unambiguous definitions of x. There are certain kinds of statements that
may define a value for x; they are called ambiguous definitions.

The most usual forms of ambiguous definitions of x are:

1. A call of a procedure with x as a parameter or a procedure that can
access x because x is in the scope of the procedure.

2. An assignment through a pointer that could refer to x. For example,
the assignment *q:=y is a definition of x if it is possible that q points
to x. we must assume that an assignment through a pointer is a
definition of every variable.

We say a definition d reaches a point p if there is a path from the point
immediately following d to p, such that d is not “killed” along that path.
Thus a point can be reached by an unambiguous definition and an
ambiguous definition of the appearing later along one path.

mu
no
tes
.in

120

Design and implementation
of Modern Compilers

120

Data-flow analysis of structured programs:

Flow graphs for control flow constructs such as do-while statements have a
useful property: there is a single beginning point at which control enters and
a single end point that control leaves from when execution of the statement
is over. We exploit this property when we talk of the definitions reaching
the beginning and the end of statements with the following syntax.

S->id: = E| S; S | if E then S else S | do S while E
E->id + id| id

Expressions in this language are similar to those in the intermediate code,
but the flow graphs for statements have restricted forms.
We define a portion of a flow graph called a region to be a set of nodes N
that includes a header, which dominates all other nodes in the region. All
edges between nodes in N are in the region, except for some that enter the
header. The portion of flow graph corresponding to a statement S is a region
that obeys the further restriction that control can flow to just one outside
block when it leaves the region.

We say that the beginning points of the dummy blocks at the statement’s
region are the beginning and end points, respective equations are inductive,
or syntax-directed, definition of the sets in[S], out[S], gen[S], and kill[S]
for all statements S. gen[S] is the set of definitions “generated” by S while
kill[S] is the set of definitions that never reach the end of S.

Consider the following data-flow equations for reaching definitions :

Observe the rules for a single assignment of variable a. Surely that
assignment is a definition of a, say d. Thus
gen[S]={d}
On the other hand, d “kills” all other definitions of a, so we write
Kill[S] = Da - {d}
Where, Da is the set of all definitions in the program for variable a.

mu
no
tes
.in

121

Dataflow Analysis and
Loop Optimization

Under what circumstances is definition d generated by S=S1; S2? First of
all, if it is generated by S2, then it is surely generated by S. if d is generated
by S1, it will reach the end of S provided it is not killed by S2. Thus, we
write
gen[S]=gen[S2] U (gen[S1]-kill[S2])
Similar reasoning applies to the killing of a definition, so we have
Kill[S] = kill[S2] U (kill[S1] - gen[S2])
Conservative estimation of data-flow information:

There is a subtle miscalculation in the rules for gen and kill. We have made
the assumption that the conditional expression E in the if and do statements
are “uninterpreted”; that is, there exists inputs to the program that make
their branches go either way.

We assume that any graph-theoretic path in the flow graph is also an
execution path, i.e., a path that is executed when the program is run with
least one possible input. When we compare the computed gen with the
“true” gen we discover that the true gen is always a subset of the computed
gen. on the other hand, the true kill is always a superset of the computed
kill.

These containments hold even after we consider the other rules. It is natural
to wonder whether these differences between the true and computed gen
and kill sets present a serious obstacle to data-flow analysis. The answer lies
in the use intended for these data.

Overestimating the set of definitions reaching a point does not seem serious;
it merely stops us from doing an optimization that we could legitimately do.
On the other hand, underestimating the set of definitions is a fatal error; it
could lead us into making a change in the program that changes what the
program computes. For the case of reaching definitions, then, we call a set
of definitions safe or conservative if the estimate is a superset of the true set
of reaching definitions. We call the estimate unsafe, if it is not necessarily
a superset of the truth.

Returning now to the implications of safety on the estimation of gen and
kill for reaching definitions, note that our discrepancies, supersets for gen
and subsets for kill are both in the safe direction. Intuitively, increasing gen
adds to the set of definitions that can reach a point, and cannot prevent a

mu
no
tes
.in

122

Design and implementation
of Modern Compilers

122

definition from reaching a place that it truly reached. Decreasing kill can
only increase the set of definitions reaching any given point.

Computation of in and out:

Many data-flow problems can be solved by synthesized translation to
compute gen and kill. It can be used, for example, to determine
computations. However, there are other kinds of data-flow information,
such as the reaching-definitions problem. It turns out that in is an inherited
attribute, and out is a synthesized attribute depending on in. we intend that
in[S] be the set of definitions reaching the beginning of S, taking into
account the flow of control throughout the entire program, including
statements outside of S or within which S is nested.

The set out[S] is defined similarly for the end of s. it is important to note
the distinction between out[S] and gen[S]. The latter is the set of definitions
that reach the end of S without following paths outside S. Assuming we
know in[S] we compute out by equation, that is

Out[S] = gen[S] U (in[S] - kill[S])

Considering cascade of two statements S1; S2, as in the second case. We
start by observing in[S1]=in[S]. Then, we recursively compute out[S1],
which gives us in[S2], since a definition reaches the beginning of S2 if and
only if it reaches the end of S1. Now we can compute out[S2], and this set
is equal to out[S].

Consider the if-statement. we have conservatively assumed that control can
follow either branch, a definition reaches the beginning of S1 or S2 exactly
when it reaches the beginning of S. That is,

in[S1] = in[S2] = in[S]
 If a definition reaches the end of S if and only if it reaches the end of one
or both sub-statements; i.e,
out[S]=out[S1] U out[S2]

Representation of sets:

Sets of definitions, such as gen[S] and kill[S], can be represented compactly
using bit vectors. We assign a number to each definition of interest in the
flow graph. Then bit vector representing a set of definitions will have 1 in
position I if and only if the definition numbered I is in the set.

The number of definition statement can be taken as the index of statement
in an array holding pointers to statements. However, not all definitions may
be of interest during global data-flow analysis. Therefore the number of
definitions of interest will typically be recorded in a separate table.

A bit vector representation for sets also allows set operations to be
implemented efficiently. The union and intersection of two sets can be
implemented by logical or and logical and, respectively, basic operations in
most systems-oriented programming languages. The difference A-B of sets

mu
no
tes
.in

123

Dataflow Analysis and
Loop Optimization

A and B can be implement complement of B and then using logical and to
compute A

Local reaching definitions:

Space for data-flow information can be traded for time, by saving
information only at certain points and, as needed, recomputing information
at intervening points. Basic blocks are usually treated as a unit during global
flow analysis, with attention restricted to only those points that are the
beginnings of blocks.

Since there are usually many more points than blocks, restricting our effort
to blocks is a significant savings. When needed, the reaching definitions for
all points in a block can be calculated from the reaching definitions for the
beginning of a block.

Use-definition chains:

It is often convenient to store the reaching definition information as” use-
definition chains” or “ud-chains”, which are lists, for each use of a variable,
of all the definitions that reaches that use. If a use of variable a in block B
is preceded by no unambiguous definition of a, then ud-chain for that use of
a is the set of definitions in in[B] that are definitions of a.in addition, if there
are ambiguous definitions of a ,then all of these for which no unambiguous
definition of a lies between it and the use of a are on the ud-chain for this
use of a.

Evaluation order:

The techniques for conserving space during attribute evaluation, also apply
to the computation of data-flow information using specifications.
Specifically, the only constraint on the evaluation order for the gen, kill, in
and out sets for statements is that imposed by dependencies between these
sets. Having chosen an evaluation order, we are free to release the space for
a set after all uses of it have occurred. Earlier circular dependencies between
attributes were not allowed, but we have seen that data-flow equations may
have circular dependencies.

General control flow:

Data-flow analysis must take all control paths into account. If the control
paths are evident from the syntax, then data-flow equations can be set up
and solved in a syntax directed manner. When programs can contain goto
statements or even the more disciplined break and continue statements, the
approach we have taken must be modified to take the actual control paths
into account.

Several approaches may be taken. The iterative method works arbitrary
flow graphs. Since the flow graphs obtained in the presence of break and
continue statements are reducible, such constraints can be handled
systematically using the interval-based methods. However, the syntax-
directed approach need not be abandoned when break and continue
statements are allowed.

mu
no
tes
.in

124

Design and implementation
of Modern Compilers

124

4.4.4 Speeding up dataflow analysis

There are several ways to speed up the evaluation of dataflow equations.

4.4.4.1 Bit vectors

● Many dataflow analyses can be expressed using simultaneous
equations on finite sets.

● A set S over a finite domain can be represented by a bit vector.

● The ith bit in the vector is a 1 if the element i is in the set S.

● In the bit-vector representation,

1. unioning two sets S and T is done by a bitwise-or of the bit
vectors,

2. intersection can be done by bitwise-and,
3. set complement can be done by bitwise complement, and so on.

 If the word size of the computer is W, and the vectors are N bits long, then
such a merging operation needs a sequence of N/W instructions.

● Of course, 2N/W fetches and N/W stores will also be necessary, as
well as indexing and loop overhead.

It would be inadvisable to use bit vectors for dataflow problems where the
sets are expected to be very sparse (so the bit vectors would be almost all
zeros), in which case a different implementation of sets would be faster.

4.4.4.2 Basic blocks

● Suppose we have a node n in the flow graph that has only one
predecessor, p, and p has only one successor, n.

● we can combine the gen and kill effects of p and n and replace nodes
n and p with a single node.

● Such a single node is called a basic block.

● A basic block is a sequence of statements that is always entered at the
beginning and exited at the end, that is:

1. The first statement is a label.
2. The last statement is a jump or cjump.
3. There are no other labels, jumps, or cjumps.

● The algorithm for dividing a long sequence of statements into basic
blocks is quite simple. The sequence is scanned from beginning to
end;

1. whenever a label is found, a new block is started (and the
previous block is ended);

mu
no
tes
.in

125

Dataflow Analysis and
Loop Optimization

2. whenever a jump or cjump is found, a block is ended (and the
next block is started).

3. If this leaves any block not ending with a jump or cjump, then
a jump to the next block’s label is appended to the block.

4. If any block has been left without a label at the beginning, a new
label is invented and stuck there.

We introduce a new label done which mean the beginning of the
epilogue, and put a jump(name done) at the end of the last block.

● Taking reaching definitions as an example, we can combine all the
statements of a basic block as follows:

1. Consider what definitions reach out of the node n:

 out[n] = gen[n] ∪ (in[n] − kill[n])
2. We know in[n] is just out[p]; therefore

 out[n] = gen[n] ∪ ((gen[p] ∪ (in[p] − kill[p])) − kill[n])

3. By using the identity (A ∪ B) − C = (A − C) ∪ (B − C) and then

 (A − B) − C = A − (B ∪ C), we have

 out[n] = gen[n] ∪ (gen[p] − kill[n]) ∪ (in[p] − (kill[p] ∪ kill[n]))

4. If we regard p and n as a single node pn, the appropriate gen and
kill sets for pn are:

gen[pn] = gen[n] ∪ (gen[p] − kill[n])

kill[pn] = kill[p] ∪ kill[n]

The control-flow graph of basic blocks is much smaller than the
graph of individual statements.

● The multipass iterative dataflow analysis works much faster on basic
blocks.

● Once the iterative dataflow analysis algorithm is completed, we may
recover the dataflow information of an individual statement (such as
n) within a block (such pn in our example) as follows:

1. start with the in set computed for the entire block and,

2. apply the gen and kill sets of the statements that precede n in
the block.

4.4.4.3 Ordering the nodes

● If we could arrange that every node was calculated before its successors
in a forward dataflow problem, the dataflow analysis would terminate
in one pass through the nodes.

mu
no
tes
.in

126

Design and implementation
of Modern Compilers

126

● This would be possible if the control-flow graph had no cycles.

● quasi-topologically sorting a cyclic graph by depth-first search helps to
reduce the number of iterations required on cyclic graphs; in quasi-
sorted order, most nodes come before their successors.

● Information flows forward quite far through the equations on each
iteration.

1. Depth-first search topologically sorts an acyclic graph graph, or
quasi-topologically sorts a cyclic graph, quite efficiently.

2. Using sorted, the order computed by depth-first search, the iterative
solution of dataflow equations should be computed as

There is no need to make in a global array, since it is used only locally in
computing out.

● For backward dataflow problems such as liveness analysis, we use a
version of Algorithm 11 starting from exit-node instead of start-node,
and traversing predecessor instead of successor edges.

mu
no
tes
.in

127

Dataflow Analysis and
Loop Optimization

4.4.4.4 Work-list algorithms

● If any out set changes during an iteration of the repeat-until loop of
an iterative solver, then all the equations are recalculated.
 Most of the equations may not be affected by the change.

● A work-list algorithm keeps track of just which out sets must be
recalculated.

Whenever node n is recalculated and its out set is found to change, all the
successors of n are put onto the work-list (if they’re not on it already).

4.4.4.5 Use-def and def-use chains

● Use-def chains: a list of the definitions of x reaching that use for each
use of a variable x.
Information about reaching definitions can be kept as use-def chains,
Use-def chains do not allow faster dataflow analysis per se, but allow
efficient implementation of the optimization algorithms that use the
results of the analysis.

● A generalization of use-def chains is static single-assignment form.
SSA form not only provides more information than use-def chains,
but the dataflow analysis that computes it is very efficient.

● Def-use chains: a list of all possible uses of that definition for each
definition.
SSA form also contains def-use information.

4.4.4.6 Wordwise approach

● Bit vector approach + basic block approach + worklist approach +
wordwise

● Wordwise approach deals with the largest chunk of a bit vector which
can be processed in one machine operation.

● Typically, a machine word
1. Select a word.
4. Process it over required area of a control flow graph

● Wordwise approach results in considerable savings in the work to be
performed since all parts may not require processing for all nodes of
the control flow graph.

4.5 ALIAS ANALYSIS

If two or more expressions denote the same memory address we can say
that the expressions are aliases of each other.

How do aliases arise?

mu
no
tes
.in

128

Design and implementation
of Modern Compilers

128

● Pointers

● Call by reference (parameters can alias each other or non-locals)

● Array indexing

● C union, Pascal variant records, Fortran EQUIVALENCE and
COMMON blocks

Alias analysis techniques are usually classified by flow-sensitivity and
context-sensitivity. They may determine may-alias or must-alias
information. The term alias analysis is often used interchangeably with
points-to analysis, a specific case.

Alias analysers intend to make and compute useful information for
understanding aliasing in programs.

Example code:
p.foo = 1;
q.foo = 2;
i = p.foo + 3;
There are three possible alias cases here:
The variables p and q cannot alias (i.e., they never point to the same memory
location).
The variables p and q must alias (i.e., they always point to the same memory
location).
It cannot be conclusively determined at compile time if p and q alias or not.

If p and q cannot alias, then i = p.foo + 3; can be changed to i = 4. If p and
q must alias, then i = p.foo + 3; can be changed to i = 5 because p.foo + 3 =
q.foo + 3. In both cases, we are able to perform optimizations from the alias
knowledge (assuming that no other thread updating the same locations can
interleave with the current thread, or that the language memory model
permits those updates to be not immediately visible to the current thread in
absence of explicit synchronization constructs).

On the other hand, if it is not known if p and q alias or not, then no
optimizations can be performed and the whole of the code must be executed
to get the result. Two memory references are said to have a may-alias
relation if their aliasing is unknown.

In alias analysis, we divide the program's memory into alias classes. Alias
classes are disjoint sets of locations that cannot alias to one another. For the
discussion here, it is assumed that the optimizations done here occur on a
low-level intermediate representation of the program. This is to say that the
program has been compiled into binary operations, jumps, moves between
registers, moves from registers to memory, moves from memory to
registers, branches, and function calls/returns.

mu
no
tes
.in

129

Dataflow Analysis and
Loop Optimization

There are two ways for Alias Analysis:
Type-based alias analysis
Flow-based alias analysis

4.6 SUMMARY

 An optimizing compiler is a compiler that tries to minimize or maximize
some attributes of an executable computer program. Common requirements
are to minimize a program's execution time, memory footprint, storage size,
and power consumption (the last three being popular for portable
computers).

Compiler optimization is generally implemented using a sequence of
optimizing transformations, algorithms which take a program and transform
it to produce a semantically equivalent output program that uses fewer
resources or executes faster.

Data-flow optimizations, based on data-flow analysis, primarily depend on
how certain properties of data are propagated by control edges in the
control-flow graph.

We have learnt about various techniques of loop optimization and dataflow
analysis as applicable for compiler design.

4.7 REFERENCES FOR FURTHER READING

Compilers – Principles, Techniques and Tools. By – Alfred Aho, Ravi
Sethi, Jeffrey D. Ulman

4.8 UNIT END EXERCISES

1. For the above graph find the live expressions at the end of each block.
2. For the above graph find the available expressions

mu
no
tes
.in

130

Design and implementation
of Modern Compilers

130

3. Are there any expressions which may be hoisted in above example, if
so hoist them

4. Is there any constant folding possible in above graph. If so, do it.
5. Eliminate any common sub-expressions in the above figure
6. In the above figure, what is the limit flow graph? Is the flow graph

reducible.
7. Give an algorithm in time O(n) on an n-node flow graph to find the

extended basic block ending at each node.

mu
no
tes
.in

	99 Starting pages
	01 (1-36)
	02 (37-78)
	03 (79-100)
	04 (101-130)

