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1.0 OBJECTIVES 

After going through this unit, you will be able to: 

●     define the compiler, regular expression 

● structure of compiler 

● define the Context free grammars, parsers 

● minimize the number of states of DFA 

● top-down parsing 
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1.1 INTRODUCTION 

Compiler is a software that translate one language into another language. 
The compiler converts the code from high-level language (source code) to 
low level language (machine code/object code) as shown in figure 1. From 
the compiler expected that it will give optimized result in terms of time and 
space. 

 
Figure. 1 

● Computer are the combination of hardware and software. 
● Hardware is a mechanical device that will not work alone and these 

devices are controlled by the software. Hardware devices will work 
on electronic charge viz positive and negative these charges are 
handled by software programming i.e. binary languages. The binary 
language has two values 0 and 1. 

● When compiler converts the source code into machine code then at 
first it checks the source code whether in the code having any syntax 
error that it will check from predefined keywords, tokens or values. 

● If any syntax of particular keyword is different from predefined 
keyword values, then it will arise an error message. Compiler convert 
the source code into object code in one go. 

Features of Compiler 
1. Good error detection 
2. Compile in one go 
3. Fast in speed 
4. Help in code debugging  
5. Faultlessness 
6. Easily detect the illegal errors 
Types of Compilers 
1. Single pass compiler  
2. Two pass compilers 
 3. Multi pass compiler 

1.2 STRUCTURE OF COMPILER 

Compiler is an abstract machine. It is in between the high-level language 
and machine level language. Structure part define the phases of compiler. 
At first compiler get the data from user i.e. source code then convert these 
data in lexical part then data pass to another level. Every level gets the 
intermediate data. The output of first stage becomes the input of second 
stage. Structure of compiler describe in figure 2. 
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Introduction to Compilers 

 

Figure 2. 

1.2.1 LEXICAL ANALYSIS 
1.      It is the first level of compilation process. 
2.      At first it takes code as input from source      code then it starts to 

convert the data. 
3.      It reads the source code one character at a time and then convert this 

source code into meaningful lexemes. 
4.      These lexemes are represented as a token in lexical analyzer. 
5.      It also removes the white space and comments. 
6.     It also uses to check and remove the lexical errors. 
7.     It reads the character or values from left to right. 
1.2.2 SYNTAX ANALYSIS 
1. It is a second phase of compiler. 
2. It takes the input from lexical analysis as tokens then convert these 

tokens into parse tree. 
3. When tokens convert into parse tree it will follow the rules of source 

code grammar. 
4. These grammar codes as known as context free grammar. 
5. This phase analyzes the parser and then check the input expressions 

that are syntactically correct or not. 
1.2.3 SEMANTIC ANALYSIS 
1. This level checks source code for semantic consistency with language 

definition for that it uses the syntax tree and for the information 
symbol table. 

2. It collects all the information and checks the validity for variables, 
keyword, data and save it into syntax tree or in the symbol table. 

3. In this analysis every operator checks whether  it is having matching 
operands. 

mu
no
tes
.in



   

 
4 

Design and implementation  
of Modern Compilers 

4 

4. Type checking and flow checking is an important part of Semantic 
analysis. 

5. Language specification may allow type conversion also it is known as 
coercions. 

6. It also checks whether the language follows the rules or not. 
7. It also verifies the parser tree of syntax analyzer. 

For instance, coercions appear in figure 3. Assume that Interest, principal, 
rate have been declared to be floating point number and lexeme 70 is itself 
forms of an integer. The (*) operator is concern to a floating-point number 
rate and the integer value 70. In this case, integer value is translated into 
floating point number. 

 

Figure 3 
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Introduction to Compilers 1.2.4 INTERMEDIATE CODE GENERATION 

When compiler convert the source code into target code then compiler 
create one or more intermediate code. Syntax tree are the intermediate 
representation of syntax and semantic analysis. This code is similar for all 
the compilers. This intermediate representation have two properties 
1. To convert into the object code or target machine.  
2. It produces the result in easy manner. 
This is an example of intermediate code. This code consists of  three 
operators. It is also known as three-address code. Each instruction consists 
assignment operator( l1, l2, l3) are the temporary name that hold the values. 
In l1 statement integer value is converted into floating point value. In l2 
statement multiplication operator is used. In l3 statement addition operator 
is used. 
E.g. 
l1= inttofloat(70) 
l2= id3*l1 
l3= id2+l2  
Id1=l3 
1.2.5 CODE OPTIMIZATION 
1.   The code optimization step is to improve the intermediate code 

performance for better target code result. In the code optimizer firstly 
decided that the code should be small so that the result given will be 
very quickly and it will consume less power. 

2. One special point is that the code should be user friendly. 
3. The code optimizer also can reduce the compilation and execution 

time of compiler when it compiles the code. 
4.       Below is the example given which  shows that the conversion of 

integer value into floating point(60.0) at once, after that it will use 
previous result. 

 l1= id3*60.0 
         Id1= id2+l1 
1.2.6 CODE GENERATION 
1. Code generation phase is an important part that takes the intermediate 

code value as a input and writes the code for target language. 
2. Intermediate instructions are converted into sequence of target 

instruction code that perform a particular task. 
3. During the code generation firstly is decided about the variable 

names, keywords, operation which gives the result as per the 
requirement. 

4. Example for code generation. F letter is use for the floating-point 
value and R1, R2 are the intermediate code and the first value of each 
statement specify the destination means place where statements result 
will get store. 
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5. # Symbol specifies the value  70.0 is treated as immediate constants. 
E.g. 

 LDF R2, id3 
 MULF R2, R2, #70.0 LDF R1, id2 
 ADDF R1, R1, R2 STF id1, R1 

1.2.7 TARGET CODE GENERATOR 

1. After the completion of code generation phase execute that code and 
user will get the desired result. 

2. If the result is according to the requirements, then solve another 
problem if the result will not come according to the user requirements, 
then do some changes till the desired result will come. 

3. This is final phase of compiler. 
4. All the phases of compiler are divided into two parts:  

1. Front end 
2. Back end 

1. Front end 
In this phase all the phases come viz. lexical analysis, syntax 
analysis, semantic analysis and Intermediate code generation. 

2. Back end 
Code optimization and code generation phases comes under 
back-end phase.  

1.2.8 SYMBOL-TABLE MANAGMENT 

1. Symbol table is a data structure that consists all the variable name, 
keyword, fields name. 

2. With the help of symbol table user can easily store and get the data 
for each record with name quickly. 

3. It collects the information for attribute of a name. 

4. It also provides the detail or information for the storage, type, and its 
scope. 

5. Different kinds of data structure techniques are used to create a 
symbol table. Some of techniques listed are: 
1. Linked list 
2. Hash table 
3. Tree 
E.g. int sum (int x, int y) { 
add=0; add=x+y; return add; 

} 
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Introduction to Compilers Operations on Symbol table 
1. Allocates the operations on symbol table 
2. Insert the operations on symbol table 
3. Set_attributes 
4. Get_attributes 
5. Free operation 
6. Look up operation 

1.3 LEXICAL ANALYZER 

1. Lexical analyzer is the first and important phase of compiler. 
2. It reads the character or value as an input from the source program 

then group them into lexemes and generate the output as a sequence 
of tokens for every lexeme. 

3. All the tokens are pass to the parser for syntax analysis.  
4.  Lexical analyzer communicates with the symbol table. 
5. When the lexical analyzer generates a lexeme, it must enter lexemes 

value into symbol table. 
6. In few cases, some identifiers are read from the symbol table then 

lexical analyzer determine the proper tokens that should be pass to the 
parser. The relationship between lexical analyzer, symbol table and 
parser as shown in figure 4. 

 

Figure 4. Interaction between lexical analyzer and parser 

 From this it is clear that lexical analyzer passes the tokens to the parser 
then parser pass the system call command to lexical analyzer i.e., get 
next token . Parser have  the bidirectional link with symbol table. 
Symbol table is the data structure that contain the value, keywords, 
data types. Lexical analyzer also communicates with symbol table. 

7. The main task of lexical analyser is to correct the error messages that 
are generated by the compiler. 

8. It also keeps track of the number of new line character. so it identifies 
the error message with line number. 

9. Lexical analyzer is classified into two processes: 
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a) Scanning contains the normal process that doesn’t require 
tokenization of the input.  

b)  Lexical analyzer produces the tokens from the result of the 
scanner. 

10. Lexical analyzer having some important operations on languages viz. 
union, concatenation. 

11. Union operation join two language statements. 
12. Concatenation operation perform on two languages by taking a string 

or character from one language then take another string from second 
language then apply concatenation operation on them. Table 1 
describes the operations on languages. 

 
Table 1. Operations on languages 

Tokens, Patterns and Lexemes 

Tokens: Lexemes are the sequence of alphanumeric character that are 
known as tokens. Tokens represent a bit of information in a source code. In 
every language some predefined values are there that are known as 
keywords. All lexemes follow that predefined rule. Every programming 
language having some symbols i.e. keywords, punctuations, operators, 
operations, string these are consider as a tokens in lexical analysis.  
For example, in C programming language variables are declared as: float 
a=10.0; 
float (keyword), a (identifier), = (operator), 10.0 (constant) ; (symbol). 
Patterns: Patterns represent the description of tokens. Pattern is a structure 
that match with a string. 
Lexemes: Lexemes are the combination of characters that find the matches 
for a token. Example: while (x<y) represented as that are shown in table 2: 

 
Table 2. 
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Introduction to Compilers 1.4 REGULAR EXPRESSION 

Regular expressions are a sequence of characters that define a search 
pattern. For specific patterns regular expression have an important notation.  
every programming language having tokens are described as regular 
expression. In regular expression anchors are using “^” and “$” as a 
character in the string. The “^” represent the starting of the string and “$” 
represent the ending of the string. Regular expression have a series of 
characters that matched a text pattern. 
Examples of Regular Expression: 

1. The string  with  alphabet (a,b) 
 {aba, abba, abbba, abbbba ……} 
 lets say the language is starting with a and ending with a  is given  as 
S={a, aa, aaa, aaaa, aaaaa …..}  
These strings have infinite values then the language is also infinite. 
2. ^..J[.]* : Sort the string those are having 3 letter of their name is J.  
             {aajabab, abjbaba} 
3. [.]*F : Sort the string that is ending with letter  F. 
4. (b+a)* set of string b’s and a’s any amount of character including null 

string. So T={ 𝜀, b, a, bb, ba, aa, ab, bbb …..} 

5. (b+a)*bba set of string b’s and a’s that ends with the string bba. So 
T={bba, abba, aabba, babba……} 

Table 3 is to describe the most common characters that are used in regular 
expression. 
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Applications of Regular expression: simple parsing, data wrangling, data 
validation, data scraping. 

Regular Language: Regular expression is formal grammar that are used 
for parse string and textual information this is known as Regular languages. 
languages are regular if the expression are regular expression. 

For regular languages regular expressions are used. Expressions are 
regular if:  

1. ɸ is a regular expression for regular language ɸ. 

2. ɛ is a regular expression for regular language {ɛ}. 

3. If b ∈ Σ (Σ used for input alphabets), b is regular expression with 
language {b}. 

4. If x and y are regular expression, x+y is also a regular expression 
with language {x,y}. 

5. If x and y are regular expression, xy is also regular. 

6. If b is regular expression, then b* (more times of b or 0) will be 
regular. 

Closure Properties of Regular Languages 

1. Union: If T1 and T2 are two regular languages, then union of T1 ∪ 
T2 will also be regular. For example, T1 = {bm | m ≥ 0} and T2 = 
{am | m ≥ 0} T3 = T1 ∪ T2 = {bm ∪ am | m ≥ 0} is also regular. 

2. Intersection: If T1 and T2 are two regular languages, then 
intersection of T1 ∩ T2 will also be regular. For example, T1 = {bm | 

m ≥ 0} and T2 = {am | m ≥ 0} T3 = T1 ∩ T2 = {bm ∩ am | m ≥ 0} is 
also regular. 

3. Concatenation: If L1 and If L2 are two regular languages, their 
concatenation L1.L2 will also be regular. For example, T1 = {bm | m 

≥ 0} and T2 = {am | m ≥ 0} T3=T1.T2={bm.am |m≥0} is also regular. 

4. Kleene Closure: If T1 is a regular language, its Kleene closure T1* 
will also be regular. For example, T1 = (b ∪ a) T1* = (b ∪ a)* 

5. Complement: If T(Y) is regular language, then its complement 
T’(Y) will also be regular. For example, T(Y) = {bm | m > 3} T’(Y) 

= {bm | m <= 3}. 

1.5 FINITE AUTOMATA 

1. A finite automaton is a machine that accept patterns. it has a group of 
states and  through these rules one state moves to another state. 
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Introduction to Compilers 2. To recognize patterns, we use finite automata. 
3. It takes the input from string and change that string into state. 

Transition state occur when the desired symbol will be  find. 
4. When transition function occurs, the automata move from one state to 

another or again move on the same state. 
5. Finite automata consist of two states, Accept or Reject state. When 

the automata reach its final state, it means the string processed 
successfully. 

6. Finite automata consist of: 

● A finite set T of M states.  
● Start state. 
● Accepting or final state. 
● Moving from one state to another state use transition function. 

Definition of FA 

It is a collection of 5 tuples (Q, 𝛴, 𝛿, q0, F) 

1. Q : To represent the Finite state 
2. ∑: To represent the input symbol 
3. q0: To represent the initial state. 
4. F: to represent the final state. 
5. δ: perform the transition function on string 

Finite Automata Construction 

1. States: In FA, states are represented by circle. 
2. Start state: The start state pointed with an  arrow. It represents the 

starting state for finite automata. 
3. Intermediate states:  intermediate state have two arrows, one pointing 

to and another arrow pointing out. 
4. Final state: If the string will successfully accept then automata reach 

to its final state. It represents with a double circle. 
5. Transition: when string successfully accepted then initial state moves 

to another state. This process continues till it reach to its final state. 

Finite Automata Model: 
Finite automata represented by finite control and input tape as shown in 
figure 5. 

● Input tape: In the input tape, input are placed in each cell. 
Finite control : The finite control receives the input and then decides 
the next state. It takes the input from input tape. Tape reads the cells 
from left to right, and it reads the input one by one. 
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Figure 5. Finite automata model 

Types of Automata: 

● Automata classified into two categories as shown in figure 6: 

1. DFA (Deterministic finite automata) 
2. NFA (Non-deterministic finite automata) 

 

Figure 6. Types of Automata 

DFA: DFA is the deterministic finite automata. In DFA, the machine have 
only one state for a single input character. It refers to a uniqueness of 
computation. It doesn’t accept the null moves. 

NFA: NFA refers to non-deterministic finite automata. In NFA, the 
machine have multiple states for a particular input character. It accepts the 
null move. 

Important points about DFA and NFA: 

1. Every NFA is not DFA but every DFA will be NFA. 
2. There are multiple final states in NFA and DFA. 
3. In compiler DFA used lexical analyser.  

mu
no
tes
.in



 

 
13 

 

Introduction to Compilers DFA 

1. DFA is the deterministic finite automata. In DFA, the machine have 
only one state for a single input character. It refers to a uniqueness of 
computation. 

2. It doesn’t accept the null moves. 
3. In DFA, from the input state to output state there will be a one path 

for a particular input.  

4.  DFA having multiple final states that are use in lexical analyzer. 

 

Figure 7. DFA 

In the above diagram 7 it is shown that q0 is the initial state. q1 is the final 
state, when a input apply on state then the next state will become q1 that is 
final state. When b input apply on q0 state then the next state will be q2. 
State q1 having a self-loop. 

Definition of DFA  

DFA having 5 tuples. 

1. Q: Represent the states. 
2. ∑: To represent input symbol. 
3. q0: Initial state. 
4. F: Final state 
5. δ: transition function 

Transition function represented as: 

δ: Q x ∑ ->Q 
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E.g. 

1. Q = {q0,q1,q2}  
2. ∑= {a,b} 
3. q0 = {q0} 
4. F= {q1} 

 

Figure 8. 

Transition function: Table 4 represent the transition function 

 

Table 4. 

1.5.1 CONVERSION FROM REGULAR EXPRESSION TO FINITE 
AUTOMATA  

To convert the regular expression to finite automata, use subset method 
some steps tobe followed are: 
Step 1 − Construct a Transition diagram for a given RE by using non-
deterministic finite automata (NFA) with ε moves. 

Step 2 − Convert NFA with ε to NFA without ε. 

Step 3 − Convert the NFA to the equivalent Deterministic Finite Automata 
(DFA). 
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Introduction to Compilers Example to convert R.E to Finite automata. 

Case 1: Construct finite automata, for regular expression ‘b’. 

 

Case 2: Construct finite automata, for regular expression ‘ba’. 

 

Case 3: Construct finite automata, for regular expression ‘(b+a)’. 

 

Case 4: Construct the finite automata, for regular expression ‘(b+a)*’. 
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1.5.2 MINIMIZING THE STATES OF DFA 

Minimization means reducing the number of states of FA. Following are 
some steps to minimize DFA. 

Step 1: Remove all the states that are unreachable from the initial state via 
any set of the transition of DFA. 

Step 2: Draw the transition table for all pair of states. 

Step 3: Now split the transition table into two tables T1 and T2. T1 contains 
all final states, and T2 contains non-final states. 

Step 4: Find similar rows from T1 such that: 

1.     δ (q, a) = p  

2.     δ (r, a) = p 

That means, find the two states which have the same value of a and b and 
remove one of them. 

Step 5: Repeat step 3 until we find no similar rows available in the transition 
table T1. 

Step 6: Repeat step 3 and step 4 for table T2 also. 

Step 7: Now combine the reduced T1 and T2 tables. The combined 
transition table is the transition table of minimized DFA. 

Example: 

 

Solution: 

Step 1: In the given DFA, q3 and q5 are the unreachable states so remove 
them. 
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Introduction to Compilers Step 2: For the other states draw transition table. 

 

Step 3: Now break the transition table into two sets: 

1. One set having non-final states: 

 

2. Another set having final states. 

 

Step 4: Set 1 doesn’t have any similar rows so it will be the same. 

Step 5: In set 2, row 1 and row 2 having similar states q4 and q6 on 0 and 
1.so skip q6 and replace with q4. 

 

Step 6: Now join set 1 and set 2. 
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Minimize DFA shown as: 

 

1.6 CONTEXT FREE GRAMMAR 

CFG (context free grammar) is a formal grammar. It is used to produce 
string in a formal language. 
There are the various capabilities of CFG: 
1.  Context free grammar is very helpful to describe programming 

languages. 
2.  If the grammar properly defined then parser easily construct it 

automatically. 
3.  It is efficient to describe the nested structure viz. if-then-else, 

balanced parentheses and so on. 
CFG defined in 4 tuples. G = (V, T, P, S) 
Where, 
G define the grammar 
T define a finite set of terminal symbols. 
V define a finite set of non-terminal symbols 
P define a set of production rules 
S represent start symbol. 
In CFG, S represent the start symbol that is used to proceed the string. The 
string is proceeded with a non-terminal until all the non-terminal symbol 
have been exchanged by terminal symbols. 
Example: 

L= {tftR | t € (a, b)*} 

Production rules: 
1. S → aSa 
2. S → bSb 
3. S → c 
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Introduction to Compilers Now check that abbcbba string can be derived from the given CFG baacaab. 

1. S ⇒ bSb 

2. S ⇒ baSab 

3. S ⇒ baaSaab  

4. S ⇒ baacaab 

Applying the production S → bSb, S → aSa recursively and at last we get 
the final production S →c, now we get the final string baacaab. 

Classification of Context Free Grammars 

Context free grammar are divided into two properties: 

1. Number of strings it generates. 

● If context free grammar producing number of strings in finite 
order, then that grammar will be non-recursive grammar. 

● If context free grammar producing number of strings in infinite 
order, then that grammar will be non-recursive grammar. 

2. Number of derivation trees. 

● Context free grammar is unambiguous if only one derivation 
tree is there. 

● Context free grammar is ambiguous if more than one derivation 
tree is there. 

Examples of Recursive and Non-Recursive grammar 

1. S ->SbS 
S->a 
The language produced by this grammar: {a, aba, ababa, …….} this is 
infinite. So this grammar is recursive grammar. 

2. S ->Ba B ->b | c 
The language produced by this grammar: {ba, ca} this is finite. So, this 
grammar is non-recursive grammar. 

Types of recursive grammar 

A recursive grammar classified into 3 types 

1. General recursive grammar 
2. Left recursive grammar 
3. Right recursive grammar 
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1.7 DERIVATION AND PARSE TREE 

The process of preceding the string is known as derivation. At every step of 
derivation, make two decisions. Firstly, take the decision which non-
terminal symbol should be replaced. Secondly take the decision for 
replacing the non-terminal symbol which production rule should be use. 
Every non-terminal symbol replaced with more than one derivation in the 
identical production rule but order of exchanging non-terminal symbol will 
be different. There are two types of derivation as shown in fig 9. 

 

Figure 9. 

1. Leftmost Derivation- 

● The process of preceding the string by enlarge the rightmost 
non-terminal at every step is known as leftmost derivation. 

● The rightmost derivation’s representation in geometrical form 
is known as leftmost derivation tree. 

Example- 

Consider the following grammar- 

S → bB | aA 

S → bS | aAA | b 

B → aS | bBB | a 

(Unambiguous Grammar) 

Let us consider a string w = bbbaabaaab 

Now, let us derive the string w using leftmost derivation. 

Leftmost Derivation-S → bB 

→ bbBB (Using B → bBB) 

→ bbbBBB (Using B → bBB) 

→ bbbaBB (Using B → a) 

→ bbbaaB (Using B→ bBB) 
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Introduction to Compilers → bbbaabBB (Using B → bBB) 

→ bbbaabaB (Using B→ a) 

→ bbbaabaaS (Using B → aS) 

→ bbbaabaaaA (Using S→ aA) 

→ bbbaabaaab (Using A → b) 

Parse tree in fig. 10. 

 

Figure 10. Leftmost Derivation Parse Tree 

2. Rightmost Derivation- 

● The process of preceding the string by enlarge the rightmost non-
terminal at every step is known as rightmost derivation. 

● The rightmost derivation’s representation in geometrical form is 
known as rightmost derivation tree. 

Example- 

Consider the following grammar- 

S → bB | aA 

S → bS | aAA | b 

B → aS | bBB | a 

(Unambiguous Grammar) 

Let us consider a string w = bbbaabaaab 

Now, derive the string w using rightmost derivation. 
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Rightmost Derivation- 

S →bB 

→ bbBB (Using B → bBB) 

→ bbBbBB (Using B → bBB) 

→ bbBbBaS (Using B → aS) 

→ bbBbBaaA (Using S → aA) 

→ bbBbBaaB (Using A → a) 

→ bbBbaaab (Using B→ a) 

→ bbbBBbaaab (Using B → bBB) 

→bbbBabaaab (Using B → a ) 

→ bbbaabaaab (Using B a) 

Parse tree in figure 11. 

 

          Figure 11. Rightmost Derivation Parse Tree 

Properties Of Parse Tree- 

1. The start symbol of grammar is known as Root node of a parse tree. 

2. The terminal symbol of a parse tree is represented as a leaf node. 

3. The non-terminal symbol is the interior node of a parse tree. 

4. Parse tree is independent when the productions are used derivations. 
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Introduction to Compilers 1.8 PARSERS 

● It is a compiler that divide the data into smaller elements that it gets 
from lexical analysis phase. 

● Parser takes the input into set of tokens form then output will 
become in parse tree. 

● It has  two types describe in figure 12: 

Top-down parsing Bottom-up parsing 

 

Figure 12. 

Top-Down Parsing 

1. Top-down parsing is called as recursive or predictive parsing. 
2. To construct a parse tree use, bottom-up parsing. 
3. In top down parsing the process start from the start symbol and 

convert it into input symbol. 
4. Top-down parser are categories into 2 parts: Recursive descent 

parser, and non-recursive descent parser. 

(i) Recursive descent parser: 

 It is also called as Brute force parser or backtracking parser. 

(ii) Non-recursive descent parser: 

 To generates the parse tree, use parsing tree rather backtracking. 
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Bottom-up parsing 

1. Bottom-up parsing is called as shift-reduce parsing. 
2. To construct a parse tree use, bottom-up parsing. 
3. In bottom up parsing the process start from the start symbol 

and design a parse tree from the start symbol by touching out 
the string from rightmost derivation in reverse. 

Example: Production 

1. T → P 
2. P→ P * E  
3. P → id 
4. E → P 
5. E → id 

Parse Tree representation of input string "id * id" is as follows: 

 

Figure 13. 

Bottom-up parsing having various parsing techniques. 

1. Shift-Reduce parser 
2. Operator Precedence parser 
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Introduction to Compilers 3. Table Driven LR parser 

● LR( 1 ) 
● SLR( 1 ) 
● CLR ( 1 ) 
● LALR( 1 ) 

Further Bottom-up parser is classified into 2 types: LR parser, and 
Operator precedence parser. LR parser is of 4 types: 

(a). LR(0) (b). SLR(1) (c). LALR(1) (d). CLR(1) 

i) LR parser: 
It generates the parse tree for a particular grammar by using 
unambiguous grammar. For the derivation it follows right most 
derivation. LR parser having 4 types: 
(a). LR(0) (b). SLR(1) (c). LALR(1) (d). CLR(1) 

ii) Operator precedence parser: 
It generates the parse tree for a particular grammar or string with a 
condition i.e., two consecutives non terminal and epsilon doesn’t 
come at the right-hand side of any production. 

1.8.1 SHIFT-REDUCE PARSING 
1.  In Shift reduce parsing reduce a string of a grammar from the start 

symbol show in  figure 14. 
2.  A string of a grammar from the start symbol. 
3.  It uses a stack to hold the grammar and to hold the string it uses 

input tape. 

 

Figure 14. 

4. It performs two actions: shift and reduce so it is known as shift 
reduce parsing, 

5. When shifting process start then the current symbol of string move 
to the stack. 

6. Shift reduce parsing having 2 categories: 
Example 
Operator Precedence Parsing 
LR-Parser 
A → A+A A → A-A A → (A) A → a 
Input string: x1-(x2+x3) 
Parsing table: Describe in Table 5. 

mu
no
tes
.in

https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/
https://www.geeksforgeeks.org/theory-computation-operator-grammar-precedence-parser/


   

 
26 

Design and implementation  
of Modern Compilers 

26 

 

Table 5. 

1.8.2 OPERATOR-PRECEDENCE PARSING 

1. It is related to small type of class operator grammar. 
2. If the grammar is the type of operator precedence, then it should have 

two properties: 

3. The production should not have any a∈ operator at right side. 

4. Non-terminal symbols are not adjacent. 
5. It can only perform the operation between the terminal symbols of 

grammar. It doesn’t take any notice to non-terminals. 

6. Operator precedence are categories into three relations ⋗ ⋖ ≐. 

x ⋗ y means that terminal “x “has greater precedence than the 
terminal “y”. 

x ⋖ y means that terminal “y “has higher precedence than the terminal 
“x”. 

x ≐ y means that precedence of terminal “x and y “are equal. 

7. Operator precedence parser comes under bottom-up parser that 
interprets with operator grammar. 

8. In this parser ambiguous grammar is not allowed. 
9. There are 2 waysthat determinewhich precedence relation should hold 

the pair of terminals. 

1. Use precedence of order and conventional associativity. 
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Introduction to Compilers 2. Firstly, construct the unambiguous grammar for a 
particular language, that grammar reflects the correct 
precedence of parse tree. 

Precedence table: 

 

Table 6. 

Parsing Action 

1. At the end of string use $ symbol. 

2. After that scan input string from left to right until ⋗ is encountered. 

3. Now scan the string towards left above all the equal precedence Until 
first left ⋖ is encountered. 

4. Now handle all the string value that lie between ⋖ and ⋗. 

5. If at last we get $ it means the parsing is successfully accepted. 
  Example: Grammar: 
 S → S+E/E E → E* F/F F → id 
Given string: 
1. w = id + id * id 
Let us consider a parse tree for it as follow: 

 

Figure 15. Parse tree 
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According to parse tree, we can design operator precedence table describe 
in table 7: 

 

Table 7. Operator Precedence Table 

Now process the string through precedence table as shown in figure 16. 

 

Figure 16. 

Disadvantage of operator precedence parser 

If we have n number of operators then the size for table will be n*n. Then 
complexity will be 0(n2). To decrease the size of table, use operator function 
table. Operator precedence parsers use precedence function that plot 
terminal symbols to integer, and the relations between the symbol are 
affected by numerical comparison. Parsing table enclosed by two 
precedence function f and g that plot terminal symbols to integers. 

1. f(a) < g(b) takes the precedence to b 
2. f(a) = g(b) a and b have the same precedence  
3. f(a) > g(b) takes the precedence over b 

1.8.3 TOP-DOWN PARSING 

1. Top-down parsing is called as recursive or predictive parsing. 
2. To construct a parse tree use, bottom-up parsing. 
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Introduction to Compilers 3. In top down parsing the process start from the start symbol and 
convert it into input symbol. 

4. It always uses left most derivation. 

5. It is a parser that generate the parse for a particular string through 
the help of grammar production. 

6. Top-down parser categories into two parts as shown in figure 17. 

a) Back tracking 

b) Non-backtracking 

● Predictive Parser 

● LL Parser 

 

Figure. 17 

Recursive Descent Parsing 

Recursive descent parser is a top-down parser. It starts to construct the parse 
tree from the top and it reads the input from left to right. It is use to process 
each terminal and non-terminal entities. This technique isuseto makethe 
parsetreefor that parser recursively passthe input. Context freegrammar is 
recursive in nature so this grammar uses in recursive descent parsing. 

A technique that doesn’t require any backtracking that are known as 
predictive parser. 

Back-tracking 
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Top-down parser match the input string against the production rule from 
the start node. Example for CFG: 

X → pYd | pZd 

Y → ka | wa 

Z → ae 

It will start the production rule from the root node i.e., X and start to find 
the match of a letter from left most input i.e., ‘p’.Theproduction ofX (X→ 
pYd) match with it.Then top-down parser proceeds to the next input string 
i.e., ‘w’. Now parser find the match for non-terminal ‘Y’ and check the 
production for (Y → ka). This string doesn’t match with input string. So 
top-down parser backtracks to get the result of Y. (Y → wa). The parser 
matches complete string in ordered manner. Hence string is accepted as 
shown in figure 18. 

 

Figure 18. 

Example for Top-down parser: 

Input string: “adbc” 

Representation of Parse Tree for input string "adbc" is as shown in  
figure 19 
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Introduction to Compilers 

 

Figure 19. Parse tree 

1.8.4 PREDICTIVE PARSING 

1. Predictive parsing is a top-down parser it doesn’t require 
backtracking. 

2. It is a recursive descent parser but backtracking is not there. 

3. Predictive parsing steps for Pre-processing 

● From the grammar remove left recursion. 

● On the resultant grammar perform left factoring. 

● From the grammar remove ambiguity. 

4. Point to the next input symbols predictive parser use a look ahead 
pointer. 

5. The predictive parser use some limit on the grammar to make parser 
free from back tacking.  

6.    It is also called as LL(1) parser. 

7. The predictive parser use few constrains on the grammar and will get 
only in LL(k) grammar. 
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Figure 20. 

Predictive parsing uses a parsing table to parse the input and for storing the 
data in the parse table it uses stack and then prepare the parse tree. Stack an 
input string contains $ symbol at the end. $ symbol represent the stack is 
empty and the inputs are used. Parser use the parsing table for the 
combination of input and stack elements. Describe in figure 20. 

Describe the processing of parsers 

 

Figure 21. 
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Introduction to Compilers Recursive descent parser has more than one input production then it chooses 
one production from the production, whereas predictive parser use table to 
generate the parse tree. 

Predictive Parser Algorithm: 

1. Construct a transition diagram (DFA/NFA) for each production of 
grammar. 

2. By reducing the number of states, optimize DFA to produce the final 
transition diagram. 

3. Simulate the string on the transition diagram to parse a string. 

4. If the transition diagram reaches an accept state after the input is 
consumed, it is parsed. 

LL Parser: 

● LL Parser accept LL grammar. 

● It is a subset of context free grammar. 

● It follows the rule of context free grammar but with some restriction 
to get easier version. LL grammar implemented with recursive 
descent or table-driven algorithm. 

● It is denoted as LL(K). first L represent the parse input from left to 
right, second L represent left most derivationand krepresent look 
ahead symbols. Usually, k=1, so LL(K) also written as LL (1) as 
described in figure 22. 

 

Figure 22. 

1.9 SUMMARY 

1. Computers are combination of hardware and software. 
2. Hardware is a machinal devices these can’t understand human 

language so we write programs into programming language that is 
high level language but these programs can’t understand by computer 
then compiler convert this high-level language into machine level 
language. 
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3. Compilers are classified into three categories 
 a. Single pass compiler 
 b. Two pass compilers 
 c. Multi pass compiler 
4. Compiler is a software that convert high level language into machine 

level language. 
5. When compiler convert the one language into another language then 

it doesn’t change the meaning of code it only finds the syntax errors. 
6. In lexical analyzer helps to identify the tokens from symbol table. 7. 

Lexical analysis implemented with DFA. 
8. Lexical analyzer removes the white space and comments. 9. Lexical 

analyzer breaks the syntax into series of tokens. 
10. Syntactic analysis collects all the information and checks the validity 

for variables, keyword, data and save it into syntax tree or in the 
symbol table. 

11. Top-down parsing is called as recursive or predictive parsing. 12. 
Operator precedence are categories into three relations ⋗ ⋖ ≐. 

13. Parser is a compiler that divide the data into smaller elements that get 
from lexical analysis phase. 

14. DFA is a collection of 5 tuples (Q, 𝛴, 𝛿, q0, F) 

 a. Q : To represent the Finite state 
 b. ∑: To represent the input symbol 
 c. q0: To represent the initial state. 
 d. F: to represent the final state. 
 e. δ: perform the transition function on string 
15. Derivation having two parts 
1. Left most derivation 
2. Right most derivation 
16. CFG (context free grammar) is a formal grammar. It is used to 

produce string in a formal language. 
17. Predictive parsing uses a parsing table to parse the input and for 

storing the data in the parse table it uses stack and then prepare the 
parse tree. 

18. Operator precedence parsing can only perform the operation between 
the terminal symbols of grammar. It doesn’t take any notice to non-
terminals. 

19. A recursive grammar classified into 3 types 
 a. General recursive grammar 
 b. Left recursive grammar 

mu
no
tes
.in



 

 
35 

 

Introduction to Compilers  c. Right recursive grammar 

20. Finite automata having two types; 
 1. DFA (Deterministic finite automata) 
 2. NFA (Non-deterministic finite automata) 

1.10 EXCERSICE 

1) Define Complier? 
2) What is the difference between compiler and interpreter? 3) What is 

symbol table? 
4) What are the phases/structure of compiler? 
5) Define applications of compiler? 
6) The regular expression (1*0)*1* denotes the same set as  
 (A) 0*(10*)* 
 (B) 0 + (0 + 10)* 
 (C) (0 + 1)* 10(0 + 1)* 
 (D) none of these 
7) Which one of the following languages over the alphabet {1,0} is 

described by the regular expression? (1+0)*1(1+0)*1(1+0)* 
8) Which of the following languages is generated by given grammar? X 

-> bS | aS | ∊ 

9) DFA with ∑ = {0, 1} accepts all ending with 1. 
10) Assume FA accepts any three digit binary value ending in digit 0 FA 

= {Q(q0, qf), Σ(0,1), q0, qf, δ} 
11) Consider the grammar 
 S → aB | bA 
 A → a | aS | bAA 
 B → b| bS | aBB 
 For the string w = aabbabab, find- 
 1. Leftmost derivation  
 2. Rightmost derivation  
 3. Parse Tree 
12) Consider the grammar- 
 S → X1Y 

 X → 0X | ∈ 

 Y → 0Y | 1Y | ∈ 

 For the string w = 11010, find- 
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 1. Leftmost derivation 
 2. Rightmost derivation 
 3. Parse Tree 
13) Construct Regular expression for the language L= {w ε{1,0}/w. 
14) Define the parts of string? 
15) Define DFA and NFA? 
16) Differentiate between Recursive descent and Predictive parser? 
17) Describe the language denoted by the R.E. (0/1)*0(0/1)(0/1). 
18) Define the steps of lexical analyzer? 
19) Explain Parsers and its types? 
20) Write the R.E. for the set of statements over {x, y, z} that contain an 

even no of x’s. 
21) What is parse tree? 
22) Write down the operations on languages? 
23) What is regular expression? Write down the rules for R.E? 24) Define 

the types of top-down parser? 
25) Explain Top-down parser and bottom-up parser? 

❄❄❄❄❄❄❄ 
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2 
AUTOMATIC CONSTRUCTION OF 

EFFICIENT PARSERS 

Unit Structure 

2.1 Objectives 
2.2 Introduction 
2.3 Overview 
2.4 Basic concepts related to Parsers 
 2.4.1 The Role of the Parser 
 2.4.2 Syntax Error Handling: - 
2.5 Summary 
2.6 Reference for Further Reading 
2.7      Unit End Exercise  

2.1 OBJECTIVES 

The main objective to use Efficient Parsers is it imparts a structure to a 
programming language that is useful for the translation of source programs 
into correct object code and for the detection of errors. 

2.2 INTRODUCTION 

Every programming language has rules that prescribe the syntactic structure 
of well formed programs. The syntax of programming language constructs 
can be described by context- free grammars or BNF (Back us – Naur Form) 
notation. For certain classes of grammars, we can automatically construct 
an efficient parser that determines if a source program is syntactically well 
formed. In addition to this, the parser construction process can reveal 
syntactic ambiguities and other difficult-to-parse constructs that does not 
remain undetected in the initial design phase of a language and its compiler. 

2.3 OVERVIEW 

At the end of this chapter you will know and understand the following 
concepts in detail :- 

1) Parsing methods used in compilers. 
2) Basic concepts. 
3) Techniques used in Efficient Parsers. 
4) Algorithms – to recover from commonly occurring errors. 
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2.4. BASIC CONCEPTS RELATED TO PARSERS 

2.4.1 The Role of the Parser:-  

Parser for any grammar is program that takes as input string w (obtain set 
of strings tokens from the lexical analyzer) and produces as output either a 
parse tree for w, if w is a valid sentences of grammar or error message 
indicating that w is not a valid sentences of given grammar. 

The goal of the parser is to determine the syntactic validity of a source string 
is valid, a tree is built for use by the subsequent phases of the computer. The 
tree reflects the sequence of derivations or reduction used during the parser. 
Hence, it is called parse tree. If string is invalid, the parse has to issue 
diagnostic message identifying the nature and cause of the errors in string. 
Every elementary subtree in the parse tree corresponds to a production of 
the grammar. 

There are two ways of identifying an elementary subtree: 

1. By deriving a string from a non-terminal or 

2. By reducing a string of symbol to a non-terminal. 

 

There are three general types of parsers for grammar’s. Universal parsing 
methods such as the Cocke-Younger-Kasami algorithm and Earley’s  
algorithm can parse any grammar. But these methods are inefficient to use 
in production compilers. The Efficient methods commonly used in 
compilers are as follows:-  
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2.4.1.1 Syntax Error Handling:- 

Planning the error handling right from the start can both simplify the 
structure of a compiler and improve its response to errors.  

Programs can contain errors at many different levels as follows:- 

a) Lexical, such as misspelling an identifier, keyword or an operator. 

b) Syntactic, such as an arithmetic expression with unbalanced 
parenthesis. 

c) Semantic, such as an operator applied to an incompatible operand. 

d) Logical, such as an infinitely recursive call. 

For recovery from syntax errors, the error handler in a parser has 
simple-to-state goals:- 

a) It should report the presence of errors clearly and accurately. 

b) It should recover from each error quickly enough to be able to detect 
subsequent errors. 

c) It should not significantly slow down the processing of correct 
programs. 

2.4.1.2 Error – Recovery Strategies:- 

There are many different general strategies that a parser can employ to 
recover from syntactic error. Here are few methods listed down which have 
broad applicability. :- 

a) Panic mode – Simplest and adequate method and panic mode 
recovery does not work in an infinite loop.  

b) Phrase level – local correction, one must be careful to choose 
replacements that do not lead to infinite loops. Difficulty in coping 
with situations in which the actual error has occurred before the point 
of detection.  

c) Error productions – One can generate appropriate error diagnostics 
to indicate the erroneous construct that has been recognized in the 
input. 

d) Global corrections – Too costly to implement in terms of time and 
space. 

2.4.2 CONTEXT FREE GRAMMARS: - 

A context-free grammar (grammar for short) consists of terminals, non-
terminals, a start symbol, and productions. 
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1. Terminals are the basic symbols from which strings are formed. The 
word "token" is a synonym for "terminal" when we are talking about 
grammars for programming languages. 

2. Non terminals are syntactic variables that denote sets of strings. They 
also impose a hierarchical structure on the language that is useful for 
both syntax analysis and translation. 

3. In a grammar, one non terminal is distinguished as the start symbol, 
and the set of strings it denotes is the language defined by the 
grammar. 

4. The productions of a grammar specify the way the terminals and non-
terminals can be combined to form strings. Each production consists 
of a non terminal, followed by an arrow, followed by a string of non-
terminals and terminals. 

Inherently recursive structures of a programming language are 
defined by a context-free Grammar. In a context-free grammar, we 
have four tuples G( V,T,P,S). Here , V is finite set of terminals (in our 
case, this will be the set of tokens) T is a finite set of non-terminals 
(syntactic- variables).P is a finite set of production rules in the 
following form A → α where A is a non- terminal and α is a string of 
terminals and non-terminals (including the empty string).S is a start 
symbol (one of the non-terminal symbol). 

L(G) is the language of G (the language generated by G) which is a 
set of sentences. A sentence of L(G) is a string of terminal symbols of 
G. If S is the start symbol of G then ω is a sentence of L(G) if S 
produces  ω, where ω is a string of terminals of G. If G is a context-
free Grammar then L(G) is a context-free language. Two grammars 
G1 and G2 are equivalent, if they produce same grammar. 

Consider the production of the form S ->α, if α contains non-
terminals, it is called as a sentential form of G. If α does not contain 
non-terminals, it is called as a sentence of G. 

Example: Consider the grammar for simple arithmetic expressions: 

expr → expr op expr 
expr → ( expr ) 
expr → - expr 
expr → id 
op → + 
op → - 
op → * 
op → / 
op → ^ 
Terminals : id + - * / ^ ( ) 
Non-terminals : expr , op 
Start symbol : expr 
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2.4.2.1 Notational Conventions: 

1. These symbols are terminals: 

i. Lower-case letters early in the alphabet such as a, b, c. 

ii. Operator symbols such as +, -, etc. 

iii. Punctuation symbols such as parentheses, comma etc. 

iv. Digits 0,1,…,9. 

v. Boldface strings such as id or if (keywords) 

2. These symbols are non-terminals: 

i. Upper-case letters early in the alphabet such as A, B, C.. 

ii. The letter S, when it appears is usually the start symbol. 

iii. Lower-case italic names such as expr or stmt. 

3. Upper-case letters late in the alphabet, such as X,Y,Z, represent 
grammar symbols, that is either terminals or non-terminals. 

4. Greek letters α , β , γ represent strings of grammar symbols. 

 e.g., a generic production could be written as A → α. 

5. If A → α1 , A → α2 , . . . . , A → αn are all productions with A , then 
we can write A 

 → α1 | α2 |. . . . | αn , (alternatives for A). 

6. Unless otherwise stated, the left side of the first production is the start 
symbol. 

 Using the shorthand, the grammar can be written as: 

 E → E A E | ( E ) | - E | id 

 A → + | - | * | / | ^ 

2.4.2.2 Derivations: 

A derivation of a string for a grammar is a sequence of grammar rule 
applications that transform the start symbol into the string. A derivation 
proves that the string belongs to the grammar's language. 
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2.4.3.2.1. To create a string from a context-free grammar: 

● Begin the string with a start symbol. 

● Apply one of the production rules to the start symbol on the left-hand 
side by replacing the start symbol with the right-hand side of the 
production. 

● Repeat the process of selecting non-terminal symbols in the string, 
and replacing them with the right-hand side of some corresponding 
production, until all non-terminals have been replaced by terminal 
symbols. 

In general, a derivation step is αAβ then αγβ is sentential form and if 
there is a production rule A→γ in our grammar. where α and β are 
arbitrary strings of terminal and non-terminal symbols α1 α2... αn (αn 
derives from α1 or α1 derives αn ). There are two types of derivation: 

1. Leftmost Derivation (LMD): 

● If the sentential form of an input is scanned and replaced 
from left to right, it is called left-most derivation. 

● The sentential form derived by the left-most derivation is 
called the left-sentential form. 

2. Rightmost Derivation (RMD): 

● If we scan and replace the input with production rules, 
from right to left, it is known as right-most derivation. 

● The sentential form derived from the right-most 
derivation is called the right sentential form. 

  Example: 

  Consider the G, 

  E → E + E | E * E | (E ) | - E | id 

Derive the string id + id * id using leftmost derivation and rightmost 
derivation. 

 

Fig 2.2 a) Leftmost derivation b) Rightmost derivation 
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Strings that appear in leftmost derivation are called left sentential forms. 
Strings that appear in rightmost derivation are called right sentential forms. 

Sentential Forms: 

Given a grammar G with start symbol S, if S => α , where α may contain 
non-terminals or terminals, then α is called the sentential form of G. 

2.4.2.2.2 Parse Tree: 

A parse tree is a graphical representation of a derivation sequence of a 
sentential form. 

In a parse tree: 

● Inner nodes of a parse tree are non-terminal symbols. 

● The leaves of a parse tree are terminal symbols. 

● A parse tree can be seen as a graphical representation of a derivation. 

A parse tree depicts associativity and precedence of operators. The deepest 
sub-tree is traversed first, therefore the operator in that sub-tree gets 
precedence over the operator which is in the parent nodes. 

 

Yield or frontier of tree: 

Each interior node of a parse tree is a non-terminal. The children of node 
can be a terminal or non-terminal of the sentential forms that are read from 
left to right. The sentential form in the parse tree is called yield or frontier 
of the tree. 

 Ambiguity: 

A grammar that produces more than one parse tree for some sentence is said 
to be ambiguous grammar. i.e. An ambiguous grammar is one that produce 
more than one leftmost or more than one rightmost derivation for the same 
sentence. 

Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 

The sentence id+id*id has the following two distinct leftmost derivations: 

mu
no
tes
.in



   

 
44 

Design and implementation  
of Modern Compilers 

44 

 

The two corresponding parse trees are:-  

 

Consider another example –  

stmt → if expr then stmt | if expr then stmt else stmt | other 

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 
has the following 

Two parse trees for leftmost derivation : 

 

 Eliminating Ambiguity: 

An ambiguous grammar can be rewritten to eliminate the ambiguity. e.g. 
Eliminate the ambiguity from “dangling-else” grammar, 
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stmt → if expr then stmt 

 | if expr then stmt else stmt 

 | other 

Match each else with the closest previous unmatched then. This 
disambiguity rule can be incorporated into the grammar. 

 stmt → matched_stmt | unmatched_stmt 

 matched_stmt →if expr then matched_stmt else matched_stmt 

 | other 

 unmatched_stmt → if expr then stmt 

 | if expr then matched_stmt else unmatched_stmt 

This grammar generates the same set of strings, but allows only one parsing 
for string. 

 Removing Ambiguity by Precedence & Associativity Rules: 

An ambiguous grammar may be converted into an unambiguous grammar 
by implementing: 

– Precedence Constraints 

– Associativity Constraints 

These constraints are implemented using the following rules: 

 Rule-1: 

•  The level at which the production is present defines the priority of the 
operator contained in it. 

–  The higher the level of the production, the lower the priority of 
operator. 

–  The lower the level of the production, the higher the priority of 
operator. 

 Rule-2: 

● If the operator is left associative, induce left recursion in its 
production. 

● If the operator is right associative, induce right recursion in its 
production. 

Example: Consider the ambiguous Grammar: 

E → E + E |E – E | E * E | E / E | (E) | id 

Introduce new variable / non-terminals at each level of precedence, 
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● an expression E for our example is a sum of one or more terms. (+,-) 

● a term T is a product of one or more factors. (*, /) 

● a factor F is an identifier or parenthesised expression. 

The resultant unambiguous grammar is: 

 E → E + T | E – T | T 

 T → T * F | T / F | F 

 F → (E) | id 

Trying to derive the string id+id*id using the above grammar will yield one 
unique derivation. 

 

Regular Expression vs. Context Free Grammar: 

● Every construct that can be described by a regular expression can be 
described by a grammar. 

● NFA can be converted to a grammar that generates the same language 
as recognized by the NFA. 

● Rules: 

● For each state i of the NFA, create a non-terminal symbol Ai . 

● If state i has a transition to state j on symbol a, introduce the production 
Ai →a Aj 

● If state i goes to state j on symbol ε, introduce the production Ai → Aj 

● If i is an accepting state, introduce Ai → ε 

● If i is the start state make Ai the start symbol of the grammar. 

Example: The regular expression (a|b)*abb, consider the NFA 
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Equivalent grammar is given by: 

A0 → a A0 | b A0 | a A1 

A1 → b A2 

A2 → b A3 

A3 → ε 

2.4.2.2 LR Parsing: 

The "L" is for left-to-right scanning of the input and the "R" is for 
constructing a rightmost derivation in reverse. 

Why LR parsing: 

● LR parsers can be constructed to recognize virtually all programming-
language constructs for which context-free grammars can be written. 

● The LR parsing method is the most general non-backtracking shift-
reduce parsing method known, yet it can be implemented as 
efficiently as other shift-reduce methods. 

● The class of grammars that can be parsed using LR methods is a 
proper subset of the class of grammars that can be parsed with 
predictive parsers. 

● An LR parser can detect a syntactic error as soon as it is possible to 
do so on a left-to right scan of the input. 

● The disadvantage is that it takes too much work to construct an LR 
parser by hand for a typical programming-language grammar. But 
there are lots of LR parser generators available to make this task easy. 

2.4.2.3 Bottom-Up Parsing: 

Constructing a parse tree for an input string beginning at the leaves and 
going towards the root is called bottom-up parsing. A general type of 
bottom-up parser is a shift-reduce parser. 
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2.4.2.3.1 Shift-Reduce Parsing:  

Shift-reduce parsing is a type of bottom -up parsing that attempts to 
construct a parse tree for an input string beginning at the leaves (the bottom) 
and working up towards the root (the top). 

Example: 

Consider the grammar: 

S → aABe 

A → Abc | b 

B → d 

The string to be recognized is abbcde. We want to reduce the string to S. 

Steps of reduction: 

Abbcde      (b,d can be reduced) 

aAbcde       (leftmost b is reduced) 

aAde            (now Abc,b,d qualified for reduction) 

aABe            (d can be reduced) 

S 

Each replacement of the right side of a production by the left side in the 
above example is 

called reduction, which is equivalent to rightmost derivation in reverse. 

 

Handle: 

A substring which is the right side of a production such that replacement of 
that substring by 

the production left side leads eventually to a reduction to the start symbol, 
by the reverse of a 

rightmost derivation is called a handle. 
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2.4.2.4 Stack Implementation of Shift-Reduce Parsing: 

There are two problems that must be solved if we are to parse by handle 
pruning. The first is to locate the substring to be reduced in a right-sentential 
form, and the second is to determine what production to choose in case there 
is more than one production with that substring on the right side. 

A convenient way to implement a shift-reduce parser is to use a stack to 
hold grammar symbols and an input buffer to hold the string w to be parsed. 
We use $ to mark the bottom of the stack and also the right end of the input. 
Initially, the stack is empty, and the string w is on the input, as follows: 

STACK              INPUT 

$                          w$ 

The parser operates by shifting zero or more input symbols onto the stack 
until a handle is on top of the stack. The parser repeats this cycle until it has 
detected an error or until the stack contains the start symbol and the input is 
empty: 

STACK              INPUT 

$ S                        $ 

Example: The actions a shift-reduce parser in parsing the input string 
id1+id2*id3, according to the ambiguous grammar for arithmetic 
expression. 
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In above fig. Reductions made by Shift Reduce Parser. 

While the primary operations of the parser are shift and reduce, there are 
actually four possible actions a shift-reduce parser can make: 

 (1) shift, (2) reduce,(3) accept, and (4) error. 

● In a shift action, the next input symbol is shifted unto the top of the 
stack. 

● In a reduce action, the parser knows the right end of the handle is at 
the top of the stack. It must then locate the left end of the handle within 
the stack and decide with what non-terminal to replace the handle. 

● In an accept action, the parser announces successful completion of 
parsing. 

● In an error action, the parser discovers that a syntax error has occurred 
and calls an error recovery routine. 

Figure below represents the stack implementation of shift reduce parser 
using unambiguous grammar. 

 

2.4.2.5 Operator Precedence Parsing: 

Operator grammars have the property that no production right side is ε 
(empty) or has two adjacent non terminals. This property enables the 
implementation of efficient operator precedence parsers. 

Example: The following grammar for expressions: 

 E→E A E | (E) | -E | id 

 A→ + | - | * | / | ^ 
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This is not an operator grammar, because the right side EAE has two 
consecutive nonterminals. However, if we substitute for A each of its 
alternate, we obtain the following 

operator grammar: 

 E→E + E |E – E |E * E | E / E | ( E ) | E ^ E | - E | id 

In operator-precedence parsing, we define three disjoint precedence 
relations between pair of terminals. This parser relies on the following three 
precedence relations. 

 

These precedence relations guide the selection of handles. These operator 
precedence relations allow delimiting the handles in the right sentential 
forms: <· marks the left end, =· appears in the interior of the handle, and ·> 
marks the right end. 

 

Above figure - Operator Precedence Relation Table. 

Example: The input string: id1 + id2 * id3 

After inserting precedence relations the string becomes: 

 $ <· id1 ·> + <· id2 ·> * <· id3 ·> $ 

Having precedence relations allows identifying handles as follows: 

1. Scan the string from left end until the leftmost ·> is encountered. 

2. Then scan backwards over any =’s until a <· is encountered. 

3. Everything between the two relations <· and ·> forms the handle. 
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Defining Precedence Relations: 

The precedence relations are defined using the following rules: 

Rule-01: 

● If precedence of b is higher than precedence of a, then we define a < 
b 

● If precedence of b is same as precedence of a, then we define a = b 
● If precedence of b is lower than precedence of a, then we define a > b 

Rule-02: 

● An identifier is always given the higher precedence than any other 
symbol. 

● $ symbol is always given the lowest precedence. 

Rule-03: 

● If two operators have the same precedence, then we go by checking 
their associativity. 
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Above fig. – Operator Precedence Relation Table 

 

Above fig. – Stack Implementation 

Implementation of Operator-Precedence Parser: 
● An operator-precedence parser is a simple shift-reduce parser that is 

capable of parsing a subset of LR(1) grammars. 
● More precisely, the operator-precedence parser can parse all LR(1) 

grammars where two consecutive non-terminals and epsilon never 
appear in the right-hand side of any rule. 

Steps involved in Parsing: 
1. Ensure the grammar satisfies the pre-requisite. 
2. Computation of the function LEADING() 
3. Computation of the function TRAILING() 
4. Using the computed leading and trailing ,construct the operator 

Precedence Table 
5. Parse the given input string based on the algorithm 
6. Compute Precedence Function and graph. 
Computation of LEADING: 
● Leading is defined for every non-terminal. 
● Terminals that can be the first terminal in a string derived from that 

non-terminal. 
● LEADING(A)={ a| A=>+ 

γaδ },where γ is ε or any non-terminal, =>+ indicates derivation in one or 
more steps, A is a non-terminal. 
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Algorithm for LEADING(A): 

{ 

1. ‘a’ is in LEADING(A) is A→ γaδ where γ is ε or any non-terminal. 

2.If ‘a’ is in LEADING(B) and A→B, then ‘a’ is in LEADING(A). 

} 

Computation of TRAILING: 

● Trailing is defined for every non-terminal. 

● Terminals that can be the last terminal in a string derived from that 
non-terminal. 

● TRAILING(A)={ a| A=>+ 

γaδ },where δ is ε or any non-terminal, =>+ indicates derivation in one or 
more steps, A is a non-terminal. 

Algorithm for TRAILING(A): 

{ 

1. ‘a’ is in TRAILING(A) is A→ γaδ where δ is ε or any non-terminal. 

2.If ‘a’ is in TRAILING(B) and A→B, then ‘a’ is in TRAILING(A). 

} 

Example 1: Consider the unambiguous grammar, 

E→E + T 

E→T 

T→T * F 

T→F 

F→(E) 

F→id 

Step 1: Compute LEADING and TRAILING: 

LEADING(E)= { +,LEADING(T)} ={+ , * , ( , id} 

LEADING(T)= { *,LEADING(F)} ={* , ( , id} 

LEADING(F)= { ( , id} 

TRAILING(E)= { +, TRAILING(T)} ={+ , * , ) , id} 

TRAILING(T)= { *, TRAILING(F)} ={* , ) , id} 

TRAILING(F)= { ) , id} 
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Step 2: After computing LEADING and TRAILING, the table is 
constructed between all the terminals in the grammar including the ‘$’ 
symbol. 

 

Above fig. – Algorithm for constructing Precedence Relation Table. 

 

Above fig. – Precedence Relation Table. 

Step 3: Parse the given input string (id+id)*id$ 
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Above fig. – Parsing Algorithm 

 

Above fig. -  Parse the input string(id+id)*id$ 
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2.4.2.6 Precedence Functions: 

Compilers using operator-precedence parsers need not store the table of 
precedence relations. In most cases, the table can be encoded by two 
precedence functions f and g that map terminal symbols to integers. We 
attempt to select f and g so that, for symbols a and b. 

1. f (a) < g(b) whenever a<·b. 

2. f (a) = g(b) whenever a = b. and 

3. f(a) > g(b) whenever a ·> b. 

Algorithm for Constructing Precedence Functions: 

1. Create functions fa for each grammar terminal a and for the end of 
string symbol. 

2. Partition the symbols in groups so that fa and gb are in the same group 
if a = b (there can be symbols in the same group even if they are not 
connected by this relation). 

3. Create a directed graph whose nodes are in the groups, next for each 
symbols a and b do: place an edge from the group of gb to the group 
of fa if a <· b, otherwise if a ·> b place an edge from the group of fa 
to that of gb. 

4. If the constructed graph has a cycle then no precedence functions 
exist. When there are no cycles collect the length of the longest paths 
from the groups of fa and gb respectively. 

 

Precedence Graph. 

There are no cycles,so precedence function exist. As f$ and g$ have no out 
edges,f($)=g($)=0.The longest path from g+ has length 1,so g(+)=1.There 
is a path from gid to f* to g* to f+ to g+ to f$ ,so g(id)=5.The resulting 
precedence functions are: 
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Example 2: 

Consider the following grammar, and construct the operator precedence 
parsing table and check whether the input string (i) *id=id (ii)id*id=id are 
successfully parsed or not? 

S→L=R 

S→R 

L→*R 

L→id 

R→L 

Solution: 

1. Computation of LEADING: 

 LEADING(S) = {=, * , id} 

 LEADING(L) = {* , id} 

 LEADING(R) = {* , id} 

2. Computation of TRAILING: 

 TRAILING(S) = {= , * , id} 

 TRAILING(L)= {* , id} 

 TRAILING(R)= {* , id} 

3. Precedence Table: 

 

 * All undefined entries are error (e). 
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4. Parsing the given input string: 

  1. *id = id 

 

 2. id*id=id 

 

2.4.3 Top-Down Parsing- Recursive Descent Parsing: 

Top-down parsing can be viewed as an attempt to find a leftmost derivation 
for an input string. Equivalently it can be viewed as an attempt to construct 
a parse tree for the input starting from the root and creating the nodes of the 
parse tree in preorder. 

A general form top-down parsing called recursive descent parsing, involves 
backtracking, that is making repeated scans of the input. A special case of 
recursive descent parsing called predictive parsing, where no backtracking 
is required. 

Consider the grammar 

S → cAd 

A → ab | a 

and the input string w=cad. Construction of parse is shown in fig below:- 
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Above fig. – Steps in Top-Down Parse. 

The leftmost leaf, labeled c, matches the first symbol of w, hence advance 
the input pointer to a, the second symbol of w. Fig 2.21(b) and (c) shows 
the backtracking required to match the input string. 

Predictive Parser: 

A grammar after eliminating left recursion and left factoring can be parsed 
by a recursive descent parser that needs no backtracking is a called a 
predictive parser. Let us understand how to eliminate left recursion and left 
factoring. 

Eliminating Left Recursion: 

A grammar is said to be left recursive if it has a non-terminal A such that 
there is a derivation A=>Aα for some string α. Top-down parsing methods 
cannot handle left-recursive grammars. Hence, left recursion can be 
eliminated as follows: 

If there is a production A → Aα | β it can be replaced with a sequence of 
two productions 

A → βA' 

A' → αA' | ε 

Without changing the set of strings derivable from A. 

Example : Consider the following grammar for arithmetic expressions: 

E → E+T | T 
T → T*F | F 
F → (E) | id 
First eliminate the left recursion for E as 
E → TE' 
E' → +TE' | ε 
Then eliminate for T as 
T → FT ' 
T'→ *FT ' | ε 
Thus the obtained grammar after eliminating left recursion is 
E → TE' 
25 
E' → +TE' | ε 
T → FT ' 
T'→ *FT ' | ε 
F → (E) | id 
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Algorithm to eliminate left recursion: 

1. Arrange the non-terminals in some order A1, A2 . . . An. 

2. for i := 1 to n do begin 

for j := 1 to i-1 do begin 

replace each production of the form Ai → Aj γ 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ. 

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions; 

end 

eliminate the immediate left recursion among the Ai- productions 

end 

Left factoring: 

Left factoring is a grammar transformation that is useful for producing a 
grammar suitable for predictive parsing. When it is not clear which of two 
alternative productions to use to expand a non-terminal A, we can rewrite 
the A-productions to defer the decision until we have seen enough of the 
input to make the right choice. 

If there is any production A → αβ1 | αβ2 , it can be rewritten as 

A → αA' 

A’ → αβ1 | αβ2 

Consider the grammar, 

S → iEtS | iEtSeS | a 

E → b 

Here,i,t,e stand for if ,the,and else and E and S for “expression” and 
“statement”. 

After Left factored, the grammar becomes 

S → iEtSS' | a 

S' → eS | ε 

E → b 

Non-recursive Predictive Parsing: 

It is possible to build a non-recursive predictive parser by maintaining a 
stack explicitly, rather than implicitly via recursive calls. The key problem 
during predictive parsing is that of 26 determining the production to be 
applied for a non-terminal.  
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Above fig. - Model of a Non-recursive predictive parser. 

A table-driven predictive parser has an input buffer, a stack, a parsing table, 
and an output stream. The input buffer contains the string to be parsed, 
followed by $, a symbol used as a right end marker to indicate the end of 
the input string. The stack contains a sequence of grammar symbols with $ 
on the bottom, indicating the bottom of the stack. Initially, the stack contains 
the start symbol of the grammar on top of S. The parsing table is a two-
dimensional array M[A,a],where A is a non-terminal, and a is a terminal or 
the symbol $. 

The program considers X, the symbol on top of the stack, and a, the current 
input symbol. These two symbols determine the action of the parser. There 
are three possibilities. 

1. If X = a =$,the parser halts and announces successful completion of 
parsing. 

2. If X =a ≠$, the parser pops X off the stack and advances the input 
pointer to the next input symbol. 

3. If X is a nonterminal, the program consults entry M[X,a] of the 
parsing table M. This entry will be either an X-production of the 
grammar or an error entry. If, for example, M[X,a] = {X→UVW}, 
the parser replaces X on top of the stack by WVU (with U on top). If 
M[X, a] = error, the parser calls an error recovery routine. 

2.4.3.1 Predictive parsing table construction: 

The construction of a predictive parser is aided by two functions associated 
with a grammar 

G .These functions are FIRST and FOLLOW. 
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Rules for FIRST(): 

1. If X is terminal, then FIRST(X) is {X}. 

2. If X → ε is a production, then add ε to FIRST(X). 

3. If X is non-terminal and X → aα is a production then add a to FIRST(X). 

4. If X is non-terminal and X → Y 1 Y2…Yk is a production, then place a 
in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of 
FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is in FIRST(Yj) 
for all j=1,2,..,k, then add ε to FIRST(X). 

Rules for FOLLOW(): 

1. If S is a start symbol, then FOLLOW(S) contains $. 

2. If there is a production A → αBβ, then everything in FIRST(β) except 
ε is placed in follow(B). 

3. If there is a production A → αB, or a production A → αBβ where 
FIRST(β) contains ε,then everything in FOLLOW(A) is in 
FOLLOW(B). 

Algorithm for construction of predictive parsing table: 

Input : Grammar G 

Output : Parsing table M 

Method : 

1. For each production A → α of the grammar, do steps 2 and 3. 

2. For each terminal a in FIRST(α), add A → α to M[A, a]. 

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in 
FOLLOW(A). If ε is in FIRST(α) and $ is in FOLLOW(A) , add A 
→ α to M[A, $]. 

4. Make each undefined entry of M be error. 

 

Algorithm : Non-recursive predictive parsing. 

Input: A string w and a parsing table M for grammar G. 

Output: If w is in L(G), a leftmost derivation of w; otherwise, an error . 

Method: Initially, the parser is in a configuration in which it has $$ on the 
stack with S, the start symbol of G on top, and w$ in the input buffer. The 
program that utilizes the predictive parsing table M to produce a parse for 
the input. 

set ip to point to the first symbol of w$: 
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repeat 

let X be the top stack symbol and a the symbol pointed to by ip; 

if X is a terminal or $ then 

if X = a then 

pop X from the stack and advance ip 

else error() 

else /* X is a non-terminal */ 

if M[X,a] =X→Y1Y2…….Yk, then 

begin 

pop X from the stack: 

push Yk , Yk - 1 Y1 , onto the stack, with Y1 on top; 

output the production X→Y1Y2 …..Yk 

end 

else error() 

until X ≠$ /* stack is empty*/ 

LL(1) Grammars: 

For some grammars the parsing table may have some entries that are 
multiply-defined. For example, if G is left recursive or ambiguous , then the 
table will have at least one multiply-defined entry. A grammar whose 
parsing table has no multiply-defined entries is said to be LL(1) grammar. 

Example: Consider this following grammar: 

S→ iEtS | iEtSeS | a 

E → b 

After eliminating left factoring, we have 

S→ iEtSS’ | a S’→ eS | ε 

E → b 

To construct a parsing table, we need FIRST() and FOLLOW() for all the 
non-terminals. FIRST(S) ={ i, a } 

FIRST(S’) = {e, ε } 

FIRST(E) = { b} 

FOLLOW(S) = { $ ,e } 
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FOLLOW(S’) = { $ ,e } 

FOLLOW(E) = {t} 

Parsing Table for the grammar: 

 

Since there are more than one production for an entry in the table, the 
grammar is not LL(1) grammar. 

2.4.4 LR PARSERS: 

An efficient bottom-up syntax analysis technique that can be used to parse 
a large class of CFG is called LR(k) parsing. The “L” is for left-to-right 
scanning of the input, the “R” for constructing a rightmost derivation in 
reverse, and the “k” for the number of input symbols of lookahead that are 
used in making parsing decisions.. When (k) is omitted, it is assumed to be 
1.  

 

2.4.4.1 Types of LR parsing method: 

1. SLR- Simple LR 

● Easiest to implement, least powerful. 

2. CLR- Canonical LR 
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● Most powerful, most expensive. 

3. LALR- Look -Ahead LR 

● Intermediate in size and cost between the other two methods. 

2.4.4.2 The LR Parsing Algorithm: 

The schematic form of an LR parser is shown in Fig 2.25. It consists of an 
input, an output, a stack, a driver program, and a parsing table that has two 
parts (action and goto).The driver program is the same for all LR parser. 
The parsing table alone changes from one parser to another. The parsing 
program reads characters from an input buffer one at a time. The program 
uses a stack to store a string of the form s0X1s1X2s2…… Xmsm , where 
sm is on top. Each Xi is a grammar symbol and each si is a symbol called a 
state. 

 

Above fig. – Model of an LR Parser. 

The parsing table consists of two parts : action and goto functions. 

Action : The parsing program determines sm, the state currently on top of 
stack, and ai, the current input symbol. It then consults action[sm,ai] in the 
action table which can have one of four values : 

1. shift s, where s is a state, 
2. reduce by a grammar production A → β, 
3. accept, and 
4.  error. 

Goto : The function goto takes a state and grammar symbol as arguments 
and produces a state. 
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2.4.5 CONSTRUCTING SLR PARSING TABLE: 

To perform SLR parsing, take grammar as input and do the following: 

1. Find LR(0) items. 

2. Completing the closure. 

3. Compute goto(I,X), where, I is set of items and X is grammar symbol. 

 LR(0) items: 

An LR(0) item of a grammar G is a production of G with a dot at some 
position of the right side. For example, production A → XYZ yields 
the four items : 

A → •XYZ 

A → X•YZ 

A → XY•Z 

A → XYZ• 

Closure operation: 

If I is a set of items for a grammar G, then closure(I) is the set of items 
constructed from I by the two rules: 

1. Initially, every item in I is added to closure(I). 

2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the 
item B → . γ to I , if it is not already there. We apply this rule until no 
more new items can be added to closure(I). 

 Goto operation: 

Goto(I, X) is defined to be the closure of the set of all items [A→ αX•β] 
such that [A→ α•Xβ] is in I.Steps to construct SLR parsing table for 
grammar G are: 

1. Augment G and produce G` 

2. Construct the canonical collection of set of items C for G‟ 

3. Construct the parsing action function action and goto using the 
following algorithm that requires FOLLOW(A) for each non-terminal 
of grammar. 

2.4.5.1 Algorithm for construction of SLR parsing table: 

Input : An augmented grammar G‟ 

Output : The SLR parsing table functions action and goto for G’ 
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Method : 

1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for 
G’. 

2. State i is constructed from Ii. The parsing functions for state i are 
determined as follows: 

(a) If [A→α•aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to 
“shift j”. Here a must be terminal. 

(b) If[A→α•] is in Ii , then set action[i,a] to “reduce A→α” for all 
a in FOLLOW(A). 

(c) If [S‟→S•] is in Ii, then set action[i,$] to “accept”. 

If any conflicting actions are generated by the above rules, we say 
grammar is not SLR(1). 

3. The goto transitions for state i are constructed for all non-terminals A 
using the rule: If 

 goto(Ii,A)= Ij, then goto[i,A] = j. 

4. All entries not defined by rules (2) and (3) are made “error” 

5. The initial state of the parser is the one constructed from the set of 
items containing [S’→•S]. 

2.4.5.2 SLR Parsing algorithm: 

Input: An input string w and an LR parsing table with functions action and 
goto for grammar G. 

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error 
indication. 

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, 
and w$ in the input buffer. The parser then executes the following program: 

set ip to point to the first input symbol of w$; 

repeat forever begin 

let s be the state on top of the stack and a the symbol pointed to by ip; 

if action[s, a] =shift s‟ then begin 

push a then s‟ on top of the stack; 

advance ip to the next input symbol 

end 
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else if action[s, a]=reduce A→β then begin 

pop 2* |β |symbols off the stack; 

let s‟ be the state now on top of the stack; 

push A then goto[s‟, A] on top of the stack; 

output the production A→ β 

end 

else if action[s, a]=accept then 

return 

else error( ) 

end 

Example: Implement SLR Parser for the given grammar: 

1.E→E + T 

2.E→T 

3.T→T * F 

4.T→F 

5.F→(E) 

6.F→id 

Step 1 : Convert given grammar into augmented grammar. 

Augmented grammar: 

E'→E 

35 

E→E + T 

E→T 

T→T * F 

T→F 

F→(E) 

F→id 

Step 2 : Find LR (0) items. 
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Step 3 : Construction of Parsing table. 

1. Computation of FOLLOW is required to fill the reduction action in the 
ACTION part of the table. 

FOLLOW(E) = {+,),$ } 

FOLLOW(T) ={*,+,) ,$} 

FOLLOW(F) ={*,+,) ,$} 
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1. si means shift and stack state i. 

2. rj means reduce by production numbered j. 

3. acc means accept. 

4. Blank means error. 

Step 4: Parse the given input. The Fig below shows the parsing the string 
id*id+id using stack implementation 
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2.4.6 Constructing Canonical or LR(1) parsing tables 

LR or canonical LR parsing incorporates the required extra information into 
the state by redefining configurations to include a terminal symbol as an 
added component.  LR(1) configurations have the general form: 

A –> X1...Xi 

● Xi+1...Xj , a 

This means we have states corresponding to X1...Xi on the stack and we are 
looking to  put states corresponding to Xi+1...Xj on the stack and then 
reduce, but only if the token  following Xj is the terminal a. a is called the 
lookahead of the configuration.  The  lookahead only comes into play with 
LR(1) configurations with a dot at the right end: 

A –> X1…Xj •, a 

This means we have states corresponding to X1...Xj  on the stack but we 
may only reduce when the next symbol is a. The symbol a is either a 
terminal or $ (end of input marker).   

With SLR(1) parsing, we would reduce if the next token was any of those 
in Follow(A).   

With LR(1) parsing, we reduce only if the next token is exactly a. We may 
have more than one symbol in the lookahead for the configuration, as a 
convenience, we list those symbols separated by a forward slash. Thus, the 
configuration A –> u•, a/b/c says that it is valid to reduce u to A only if the 
next token is equal to a, b, or c. The configuration lookahead will always be 
a subset of Follow(A). 

Recall the definition of a viable prefix from the previous handout. Viable 
prefixes are those prefixes of right sentential forms that can appear on the 
stack of a shift-reduce parser. Formally we say that a configuration [A –> 
u•v, a] is valid for a viable prefix α if there is a rightmost derivation S =>* 
βAw =>* βuvw where α = βu and either a is the first symbol of w or w is ∂ 
and a is $.   

For example: 

S –> ZZ 

Z –> xZ | y 

There is a rightmost derivation S =>* xxZxy => xxxZxy.  We see that 
configuration  

[Z –> x•Z, x] is valid for viable prefix α = xxx by letting β = xx, A = Z, w 
= xy, u = x and  

v = Z.  Another example is from the rightmost derivation S =>* ZxZ => 
ZxxZ, making  

[Z –> x•Z, $] valid for viable prefix Zxx. 
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Often we have a number of LR(1) configurations that differ only in their 
lookahead components. The addition of a lookahead component to LR(1) 
configurations allows us to make parsing decisions beyond the capability of 
SLR(1) parsers.  There is, however, a big price to be paid.  There will be 
more distinct configurations and thus many more possible configurating 
sets.  This increases the size of the goto and action tables considerably.  In 
the past when memory was smaller, it was difficult to find storageefficient 
ways of representing these tables, but now this is not as much of an issue.  
Still, it’s a big job building LR tables for any substantial grammar by hand. 

The method for constructing the configurating sets of LR(1) configurations 
is essentially the same as for SLR, but there are some changes in the closure 
and successor operations because we must respect the configuration 
lookahead. To compute the closure of an LR(1) configurating set I: 

Repeat the following until no more configurations can be added to state I: 

— For each configuration  [A –> u•Bv, a] in I, for each production B –> w 
in G', and for each terminal b in First(va) such that [B –> •w, b] is not in I: 
add [B –> •w, b] to I. 

What does this mean?  We have a configuration with the dot before the 
non-terminal B.   

In LR(0), we computed the closure by adding all B productions with no 
indication of what was expected to follow them. In LR(1), we are a little 
more precise— we add each B production but insist that each have a 
lookahead of va.  The lookahead will be First(va) since this is what follows 
B in this production.  Remember that we can compute first sets  not just for 
a single non-terminal, but also a sequence of terminal and non-terminals.  

First(va) includes the first set of the first symbol of v and then if that symbol 
is nullable, we include the first set of the following symbol, and so on. If 
the entire sequence v is nullable, we add the lookahead a already required 
by this configuration. 

The successor function for the configurating set I and symbol X is computed 
as this:  

Let J be the configurating set [A –> uX•v, a] such that  [A –> u•Xv, a] is in 
I.  

successor(I,X) is the closure of configurating set J. 

We take each production in a configurating set, move the dot over a symbol 
and close on the resulting production. This is basically the same successor 
function as defined for  LR(0), but we have to propagate the lookahead 
when computing the transitions.  

We construct the complete family of all configurating sets F just as we did 
before. F is initialized to the set with the closure of [S' –> S, $].  For each 
configurating set I and each grammar symbol X such that successor(I,X) is 
not empty and not in F, add successor (I,X) to F until no other configurating 
set can be added to F. 
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LR(1) grammars 

Every SLR(1) grammar is a canonical LR(1) grammar, but the canonical 
LR(1) parser may have more states than the SLR(1) parser.  An LR(1) 
grammar is not necessarily SLR(1), the grammar given earlier is an 
example.  Because an LR(1) parser splits states based on differing 
lookaheads, it may avoid conflicts that would otherwise result if using the 
full follow set. 

A grammar is LR(1) if the following two conditions are satisfied for each 
configurating set: 

1. For any item in the set [A –> u•xv, a] with x a terminal, there is no 
item in the set of the form [B –> v•, x].  In the action table, this 
translates no shift-reduce conflict for any state.  The successor 
function for x either shifts to a new state or reduces, but not both. 

2. The lookaheads for all complete items within the set must be disjoint, 
e.g. set cannot have both [A –> u•, a] and [B –> v•, a]  This translates 
to no reduce-reduce conflict on any state.  If more than one 
non-terminal could be reduced from this set, it must be possible to 
uniquely determine which is appropriate from the next input token.  

 As long as there is a unique shift or reduce action on each input 
symbol from each state, we can parse using an LR(1) algorithm.  The 
above state conditions are similar to what is required for SLR(1), but 
rather than the looser constraint about disjoint follow sets and so on, 
canonical LR(1) computes a more precise notion of the appropriate 
lookahead within a particular context and thus is able to resolve 
conflicts that SLR(1) would encounter. 

2.4.7 LALR Table Construction 

A LALR(1) parsing table is built from the configurating sets in the same 
way as canonical LR(1); the lookaheads determine where to place reduce 
actions.  In fact, if there are no mergable states in the configuring sets, the 
LALR(1) table will be identical to the corresponding LR(1) table and we 
gain nothing. 

In the common case, however, there will be states that can be merged and 
the LALR table will have fewer rows than LR.  The LR table for a typical 
programming language may have several thousand rows, which can be 
merged into just a few hundred for LALR.  Due to merging, the LALR(1) 
table seems more similar to the SLR(1) and LR(0) tables, all three have the 
same number of states (rows), but the LALR may have fewer reduce 
actions—some reductions are not valid if we are more precise about the 
lookahead.  Thus, some conflicts are avoided because an action cell with 
conflicting actions in SLR(1) or LR(0) table may have a unique entry in an 
LALR(1) once some erroneous reduce actions have been eliminated. 
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Brute Force? 

There are two ways to construct LALR(1) parsing tables.  The first (and 
certainly more obvious way) is to construct the LR(1) table and merge the 
sets manually.  This is sometimes referred as the "brute force" way.  If you 
don’t mind first finding all the multitude of states required by the canonical 
parser, compressing the LR table into the LALR version is straightforward. 

1. Construct all canonical LR(1) states. 

2. Merge those states that are identical if the lookaheads are ignored, i.e., 
two states being merged must have the same number of items and the 
items have the same core (i.e., the same productions, differing only in 
lookahead).  The lookahead on merged items is the union of the 
lookahead from the states being merged. 

3. The successor function for the new LALR(1) state is the union of the 
successors of the merged states.  If the two configurations have the 
same core, then the original successors must have the same core as 
well, and thus the new state has the same successors. 

4. The action and goto entries are constructed from the LALR(1) states 
as for the canonical LR(1) parser. Consider the LR(1) table for the 
grammar given on page 1 of this handout.  There are nine states. 

 

Looking at the configurating sets, we saw that states 3 and 6 can be merged, 
so can 4  and 7, and 8 and 9.  Now we build this LALR(1) table with the six 
remaining states:    
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Having to compute the LR(1) configurating sets first means we won’t save 
any time or effort in building an LALR parser.  However, the work wasn’t 
all for naught, because when the parser is executing, it can work with the 
compressed table, thereby saving memory.  The difference can be an order 
of magnitude in the number of states. 

However there is a more efficient strategy for building the LALR(1) states 
called step-by-step merging.  The idea is that you merge the configurating 
sets as you go, rather than waiting until the end to find the identical ones.  
Sets of states are constructed as in the LR(1) method, but at each point 
where a new set is spawned, you first check to see 6 whether it may be 
merged with an existing set.  This means examining the other states to see 
if one with the same core already exists.  If so, you merge the new set with 
the existing one, otherwise you add it normally. 

Here is an example of this method in action: 

S' –> S 
S –> V = E 
E –> F | E + F 
F –> V | int | (E) 
V –> id 

Start building the LR(1) collection of configurating sets as you would 
normally: 

I0: S' –> •S, $ 
S –> •V = E, $ 
V –> •id, = 
I1: S' –> S•, $ 
I2: S' –> V• = E, $ 
I3: V –> id•, = 
I4: S –> V =•E, $ 
E –> •F, $/+ 
E –> •E + F, $/+ 
F –>•V, $/+ 
F –>•int, $/+ 
F –>•(E), $/+ 
V –>•id, $/+ 
I5: S –> V = E•, $ 
E –> E• + F, $/+ 
I6: E –> F•, $/+ 
I7: F–> V•, $/+ 
I8: F–> int•, $/+ 
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I9: F–> (•E), $/+ 
E –> •F, )/+ 
E –> •E + F, )/+ 
F –> •V, )/+ 
F –> •int, )/+ 
F –> •(E), )/+ 
V –> •id )/+ 
I10: F–> (E•), $/+ 
E –> E• + F, )/+ 

When we construct state I11, we get something we’ve seen before: 

I11: E –>F•,)/+ 

It has the same core as I6, so rather than add a new state, we go ahead and 
merge with that one to get: 

I611: E –>F•, $/+/) 

We have a similar situation on state I12 which can be merged with state I7.  
The algorithm continues like this, merging into existing states where 
possible and only adding new states when necessary.  When we finish 
creating the sets, we construct the table just as in LR(1). 

2.4.8 An automatic parser generator 

A parser generator takes a grammar as input and automatically generates 
source code that can parse streams of characters using the grammar. 

The generated code is a parser, which takes a sequence of characters and 
tries to match the sequence against the grammar. The parser typically 
produces a parse tree, which shows how grammar productions are expanded 
into a sentence that matches the character sequence. The root of the parse 
tree is the starting nonterminal of the grammar. Each node of the parse tree 
expands into one production of the grammar. 

The final step of parsing is to do something useful with this parse tree. 
We’re going to translate it into a value of a recursive data type. Recursive 
abstract data types are often used to represent an expression in a language, 
like HTML, or Markdown, or Java, or algebraic expressions. A recursive 
abstract data type that represents a language expression is called an abstract 
syntax tree (AST). 

Antlr is a mature and widely-used parser generator for Java, and other 
languages as well. 

Example tool for parser generator is YACC: 
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YACC is a automatic tool that generates the parser program 

YACC stands for Yet Another Compiler Compiler. This program is 
available in UNIX OS The construction of LR parser requires lot of work 
for parsing the input string. Hence, the process must involve automation to 
achieve efficiency in parsing an input. 

Basically YACC is a LALR parser generator that reports conflicts or 
uncertainties (if at all present) in the form of error messages. 

The typical YACC translator can be represented as shown in the image 

2.5 SUMMARY 

We have studied the below concepts: 

1) Parsing methods used in compilers. 

2) Basic concepts. 

3) Techniques used in Efficient Parsers. 

4) Algorithms – to recover from commonly occurring errors. 

2.6 REFERENCE FOR FURTHER READING 

A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. 
Reading, MA: 
Addison-Wesley, 1986. 
J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: 
McGraw-Hill, 1990. 
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3.0 OBJECTIVES 

The aim of this chapter is to explain the role of the syntax analysis and to 
introduce the important techniques used in the syntax analysis and semantic 
analysis. After going through this unit, you will be able to understand: 

● Syntax directed definitions 

● Syntax directed translations 

● SDT schemes 

● Introduction to Tiger compiler 

● Bindings for Tiger compiler 

● Type-checking expressions, declarations 

● Activation records and stack frames in Tiger compiler 

● Intermediate code and its representation trees 

● Liveliness in Tiger compiler 

3.1 INTRODUCTION 

A compiler's analysis step breaks down a source program into its 
components and generates intermediate code, which is an internal 
representation of the program. The intermediate code is translated into the 
target program during the synthesis process. The syntax of the language to 
be compiled is used to conduct the analysis. The syntax of a programming 
language explains the correct format of its programs, but the semantics of 
the language defines what each program means when it runs. We offer a 
commonly used notation for describing syntax termed context-free 
grammars. 

 

Fig 3.1   Phases of compiler 
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3.2 SYNTAX-DIRECTED TRANSLATION  

Background: Parser by using CFG (Context free Grammar) validate any 
input statement and generate output for the next phase of the compiler. This 
output could be represented in the form of either a parse tree or abstract 
syntax tree. At this stage semantic analysis is associated with the syntax 
analysis phase of compiler by using Syntax Directed 
Translation.Definition: Syntax Directed Translation are additional 
notations to the grammar that make semantic analysis more simple and 
effective. These additional informal notations are called Semantic Rules. In 
general, syntax directed translation states that meaning of any input 
statement is related to its syntactic structure (Parse Tree). 

In Syntax Directed Translation, we attach attributes to the grammar symbols 
representing the language constructs. Values for these attributes are 
calculated by the semantic rules augmented with the grammar. These 
semantic rules use: 

● Lexical values of nodes (returned by lexical analyzer) 
● Constants 
● Attributes associated to the node. 

Notations to attach semantic rules: 

1. Syntax Directed Definitions (SDD) 

● A syntax-directed definition (SDD) is a generalized context-
free grammar along with both attributes and rules. Attributes 
set is associated with grammar symbols and semantic rules 
are associated with productions for computing the attribute 
value. 

● For example: 

Production Semantic Rules 
𝐿 → 𝑋 𝐿. 𝑣𝑎𝑙 ≔ 𝑋. 𝑣𝑎𝑙 

𝑋 → 𝑋 + 𝑇 𝑋. 𝑣𝑎𝑙
≔ 𝑋. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙 

𝑋 → 𝑇 𝑋. 𝑣𝑎𝑙 ≔ 𝑇. 𝑣𝑎𝑙 
𝑇 → 𝑇 ∗ 𝐹 𝑇. 𝑣𝑎𝑙

≔ 𝑇. 𝑣𝑎𝑙 ∗ 𝐹. 𝑣𝑎𝑙 
𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 ≔ 𝐹. 𝑣𝑎𝑙 

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 ≔ 𝐸. 𝑣𝑎𝑙 
𝐹 → 𝑐𝑜𝑛𝑠𝑡 𝐹. 𝑣𝑎𝑙

≔ 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙 

Fig 3.2 Syntax directed definition of desk calculator 

Where,  
X is a symbol and val is one of its attributes. 
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X.val denotes the value of that attribute at a particular parse-tree node X.  
lexval is integer valued attribute returned by lexical analyzer. 

Attributes may attain value of any type: numbers, types, table references, or 
strings, for instance. The strings may even be long sequences of code, say 
code in the intermediate language used by a compiler. 

If nodes of the parse tree are implemented as records or objects, then the 
attributes of X can be implemented by data fields in record corresponding 
to node X.  

There are two types of attributes: 

● Synthesized Attributes: These are derived from the values of the 
children node's attributes. 

● Inherited Attributes: These are calculated from the values of the 
siblings' and parent's attributes. 

2. Translation Schemes. 

SDDs hide many implementation details and give high-level 
specification whereas translation schemes are more implementation 
oriented and indicate the order of evaluation of semantic rules. 

 

  

Applications of Syntax Directed Translation (SDT)  

1. Executing Arithmetic Expression 

2. Conversion from infix to postfix 

3. Conversion from infix to prefix 

4. Conversion from binary to decimal 

5. Counting number of reductions 

6. Creating syntax tree 

7. Generating intermediate code 

8. Type checking 

9. Storing type information into symbol table 

A syntax-directed translation scheme (SDT) is a context-free grammar with 
some program component embedded within production bodies. These 
program components are called semantic actions. These actions are 
enclosed between curly braces at any position where action is to be 
performed.  

Grammar + Semantic Rules = SDT 
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3.3 IMPLEMENTATION OF SYNTAX-DIRECTED 

TRANSLATORS 

Any SDT is implemented by first creating a parse tree and then performing 
the actions in preorder traversal.  
Syntax Directed Translation (SDT) Schemes 
1. Postfix Translation Schemes 
2. Parser-Stack Implementation of Postfix SDT's  
3. SDT's With Actions Inside Productions 
4. SDT for L-Attributed Definitions 
3.3.1 Postfix Translation Scheme: 
In this scheme we parse the grammar bottom up and each action is placed 
at the end of production i.e. all the actions are at right ends of the 
productions. This SDT is called Postfix SDT. 
Fig 3.2 implements Desk calculator SDD of Fig 3.1 as a postfix SDT. “Print 
a value” action is performed for first production and rest of the actions are 
equivalent to the semantic rules.  

Production Semantic Actions 
𝐿 → 𝑋 {𝑃𝑟𝑖𝑛𝑡 (𝑋. 𝑣𝑎𝑙); } 

𝑋 → 𝑋 + 𝑇 {𝑋. 𝑣𝑎𝑙 = 𝑋. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙; } 
𝑋 → 𝑇 {𝑋. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙;} 

𝑇 → 𝑇 ∗ 𝐹 {𝑇. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙 ∗ 𝐹. 𝑣𝑎𝑙; } 
𝑇 → 𝐹 {𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙; } 

𝐹 → (𝐸) {𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙; } 
𝐹 → 𝑐𝑜𝑛𝑠𝑡 {𝐹. 𝑣𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙; } 

Fig 3.3 Postfix SDT implementation of desk calculator 

Example 3.1: Parse tree for evaluating expression 23*4+5 

SDD uses only synthesized attributes and semantic rules are evaluated by 
bottom-up, post order traversal. 

Production Semantic Actions 
𝐿 → 𝑋 {𝑃𝑟𝑖𝑛𝑡 (𝑋. 𝑣𝑎𝑙); } 

𝑋 → 𝑋1 + 𝑋2 {𝑋. 𝑣𝑎𝑙 = 𝑋1. 𝑣𝑎𝑙 + 𝑋2. 𝑣𝑎𝑙; } 
𝑋 → 𝑋1 ∗ 𝑋2 𝑋. 𝑣𝑎𝑙 = 𝑋1. 𝑣𝑎𝑙 ∗ 𝑋2. 𝑣𝑎𝑙; } 

𝑋 → (𝑋1) {𝑋. 𝑣𝑎𝑙 = 𝑋1. 𝑣𝑎𝑙;} 
𝑋 → 𝑇 {𝑋. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙; } 

𝑇 → 𝑇1𝑐𝑜𝑛𝑠𝑡 𝑇. 𝑣𝑎𝑙
= 10 ∗ 𝑇1. 𝑣𝑎𝑙
+ 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙; } 

𝑇 → 𝑐𝑜𝑛𝑠𝑡 {𝐹. 𝑣𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡. 𝑙𝑒𝑥𝑣𝑎𝑙; } 
Fig 3.4 Grammar and Semantic actions to solve expression 23*4+5 
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1. S-attributed SDT : 

● If any SDD contains only synthesized attributes, it is called 
as S-attributed SDD. 

● S-attributed SDDs are evaluated in bottom-up parsing, as the 
values of the parent nodes depend upon the values of the 
child nodes. 

● Semantic actions are placed in rightmost place of RHS. 

2. L-attributed SDT: 

● If an SDTD has both synthesized attributes and inherited 
attributes with a restriction that inherited attribute can inherit 
values from left siblings only, it is called as L-attributed 
SDD. 

● Attributes in L-attributed SDDs are evaluated by depth-first 
and left-to-right parsing manner. 

● Semantic actions are placed anywhere in RHS 

 

Fig 3.5 The Annotated parse tree 

3.3.2 Parser-Stack Implementation of Postfix SDT's  

During LR parsing, post x SDTs may be built by executing the actions when 
reductions occur. Each grammar symbol's attribute(s) can be placed on the 
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stack at a location where they can be discovered throughout the reduction. 
The optimal strategy is to store the characteristics, as well as the grammar 
symbols in records on the stack. The parser stack record contains one field 
for grammar symbols (or parser state) and, below it, a field for its any 
attribute. For example: 

 

Fig 3.6 Parser stack 

Here, P,Q,R on the top of stack are grammar symbols and when these are 
reduced according to any production then their attributes are stored in lower 
field of the stack. Say P.p is one of its attributes. Any number of attributes 
are stored on stack. If attributes are of large size like character strings then 
attribute value is stored elsewhere and the pointer to that value is put in the 
stack.  

Production Semantic Actions 

𝐿 → 𝑋 {𝑃𝑟𝑖𝑛𝑡 (𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 1]. 𝑣𝑎𝑙);  𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 1; } 
𝑋 → 𝑋 + 𝑇 {𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙

= 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
+ 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝]. 𝑣𝑎𝑙; 

𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2} 
𝑋 → 𝑇  

𝑇 → 𝑇 ∗ 𝐹 {𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
= 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
∗ 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝]. 𝑣𝑎𝑙; 

𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2} 
𝑇 → 𝐹  

𝐹 → (𝐸) {𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 2]. 𝑣𝑎𝑙
= 𝑠𝑡𝑎𝑐𝑘[𝑡𝑜𝑝 − 1]. 𝑣𝑎𝑙; 𝑡𝑜𝑝
= 𝑡𝑜𝑝 − 2} 

𝐹 → 𝑐𝑜𝑛𝑠𝑡   

Fig 3.7 Implementing desk calculator on bottom-up parser stack 
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3.3.3 SDT’s With Actions inside Productions 

In this scheme action is placed anywhere inside the production and is 
performed immediately after all left side terminals. For example, if we have 
a production    𝑋 → 𝑌{𝑎} 𝑍, here action a is performed after processing of 
Y. 
In bottom-up parsing, action a is performed as soon as Y comes at the top 
in parser stack. 
In top-down parsing, action a is performed just before the expansion of non-
terminal Y. 
3.3.4 SDT for L-Attributed Definitions 
In this scheme the grammar is parsed top-down. Here actions in a parse tree 
are executed in pre-order traversal of the tree. Principles to convert L-
attributed SDD into SDT are: 
● Action to compute inherited attributes of a non-terminal symbol is 

embedded just before this symbol in the production. Attributes are 
calculated in the manner, that first required attributes are evaluated 
first. 

● Action to compute synthesized attribute is placed at the end of the 
production.  

3.4 SEMANTIC ANALYSIS 

As we have studied Syntax Directed Translation led to generate Abstract 
Syntax Tree. It is fed to Semantic Analysis phase, where meaning of each 
phrase is determined. This process relates uses of variables to their 
definitions, checks types of declarations and expressions and requests 
translation of each phrase into representation easy to generate machine 
code. 
3.4.1 Introduction to Tiger Compiler 
A modern Compiler design has many phases, each for different aspects of 
language. This section focuses on compiling Tiger, a small but non-trivial 
language from Algol family. It is description language with syntax trees, 
nested structures, heap allocated record values with embedded pointers, 
arrays, strings and integer variables, and some control structures. These 
constructs make Tiger both functional and object oriented. In this chapter 
compilation of real programming is illustrated by using Tiger code 
fragments.  
3.4.2 Bindings for Tiger Compiler 
Symbol Tables: 
Symbol tables are also called environments. As we know symbol table maps 
identifiers to their types and locations. As the declarations of identifiers are 
processed, each literal, variable and function is bound to “its meaning” in 
symbol table. Whenever these identifiers are faced in executable statements, 
they are searched in the symbol tables.  
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A symbol table is a set of bindings denoted by arrow   . Each declared 
variable in the program has its scope in which it is known & can be visible. 
As semantic analyzer reaches to the end of that scope, the variable bindings 
in the table are discarded. 
Assume example in Tiger language: 
1 function f ( a:int, b:int ) = 
2 ( print_int (a+b); 
3 let var m:= a+b        
4 var a := “tiger” 
5 in print (a); print_int (m) 
6 end; 
7 print_int (b) 
8 ) 
Suppose this program has initial symbol table 𝜎°, after processing  
Line 1, we get 
Table 𝜎1 = 𝜎° + {𝑎       int, b       int} 
i.e new bindings for a and b are added to 𝜎°. 
Line 2, identifiers are searched in 𝜎1. 
At line 3, we get 
Table 𝜎2 = 𝜎1 + {𝑚       int} 
At line 4, we get 
Table 𝜎3 = 𝜎2 + {𝑎      string} 
Now same symbol has different bindings, so right hand side table {a     
string} overrides bindings in the left (𝜎2). 
At line 6, tables 𝜎2, 𝜎3 are discarded. 
At line 7, table 𝜎1 is used to search for b. 
At line 8, table 𝜎1 is discarded and go back to 𝜎°. 
In Tiger there are two name spaces: one is for types, and the other for 
functions & variables. Any type ‘a’ can be present with variable a or 
function a in same scope at the same type but both variable and function 
can’t have same name within scope simultaneously. A type identifier is 
associated with a Ty_ty. The types module describes the structure of types. 
For eg. 
/* types.h*/ 
typedef struct Ty_ty_ *Ty_ty; 
typedef struct Ty_tyList_ *Ty_tyList; 
struct Ty_ty_ {enum  
{ty_record, Ty_int, Ty_string, Ty_array, Ty_name, Ty_nill, Ty_void} 
kind; 
} 
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The primitive types in Tiger are int and string, other types are constructed 
by using records, arrays or primitive types. Record types hold the names 
and fields types. Arrays are just like records and carries the type of array 
element. 
A symbol table provide mappings from symbols to bindings and We need 
two environments one is value environment and the other is type 
environment. Consider following example: 
let type a = int 
var a: a := 5 
var b: a := a                //here a denoting type of b   
in b+a 
end 
here, in syntactic context, symbol a denotes the type a where type identifier 
is expected and denotes the variable a where variables are expected. 
3.4.3 Type-checking Expressions 
For each type identifier we need to remember only the type it stands for. 
Hence a type environment maps symbols to Ty_ty_ and the lookup function 
for symbol table of that environment will always return Ty_ty pointers. 
For each value identifier we need to know whether it is a variable or a 
function; if a variable, what is its type; if a function, what are its parameters 
and type of result, and so on. Type enventry will hold all this information 
in following type-checking environment: 
typedef struct E_enventry_ *E_enventry; 
struct E_enventry_ {enum  {E_varEntry, E_funEntry} Kind; 
union {struct {Ty_ty ty;} var; 
struct {Ty_tyList formals; Ty_ty result;} fun; 
} u; 
}; 
A variable is mapped to varEntry where its type is found and if we are 
looking for a function, it is mapped to funEntry which contains:  
formals- type list of formal arguments. 
result- return type of function. 
During processing of expressions for each identifier type-checker consult 
these environments. 
The type-checker is a recursive function of the abstract syntax tree. This is 
transExp which is also used for translating the expression into intermediate 
code. 
In several languages, addition (+) is overloaded, if one integer operand is 
added to real operand then real result is produced. Here integer operand is 
implicitly converted into real. But compiler need to convert it explicitly in 
the machine code.  
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3.4.4 Type-checking Declarations 
In Tiger, any declaration occurs only by let expression. Type-checking of 
let expression is very simple and tansDec module is used to translate 
declaration. The call for transDec, enhance the value environment (venv) 
and type environment (tenv) with new declarations. 
● Variable declarations- It is a very simple to process, a variable is 

declared without any type constraint. E.g:    
 var x := exp. 
● Type declarations- When a variable is declared with type constraint and 

initializing expression. E.g:   
 var x: type-id := exp. 
● Function declarations- In Type-checking implementation of function 

declaration, first 
●   transDec will search result-type identifier in the tenv. 
●   Then, a local function will traverse through the formal arguments 

list and return their types. This information is entered into venv. 
●   Formal parameters are entered into the value environment. 
●   This augmented environment is used to process the body 

(expressions). 
Recursive declaration- Above procedure will not work with recursive type 
or function declarations. Because undefined identifiers (type or functions) 
are encountered while processing and this error cannot be handled by above 
implementation. The solution for these recursive things is to put all the 
prototypes (headers) in the environment first. Then process all the bodies in 
that environment. While processing of body all newly faced identifiers are 
looked up in the environment. 

3.5 ACTIVATION RECORDS 

In several languages such as C, Pascal, Tiger etc., local variables are created 
at the time of entry to the function and destroyed when function returns. 
Several function calls may exist simultaneously and each call has its own 
instances of variables. Consider below tiger function: 

function f (a:int):int = 

let var b := a+a 

in if y<50 

then f(b) 

else b-1 

end 

Each time new instance of a is created when f is called and for each a 
instance of b is also created when entered into the body. Because this is 
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recursive call, many a’s exist simultaneously. A function returns in LIFO 
manner i.e it returns when all its called functions have returned. So we can 
use a Stack (LIFO) to hold local variables. 

3.5.1 Stack Frames 

Two operations are performed on stack data structures. On entry to the 
function, local variables are pushed into the stack and popped on exit in 
large batches. All variables are not initialized at time of push and we keep 
accessing all variables deep in stack. This way we need a different suitable 
model.  

In this model, stack is used as array with special register (called stack 
pointer), which locate variable in this big array. Size of stack increases with 
entries and shrinks with exit from the function. These locations on the stack 
allocated to the local variables, formal parameters, return and other 
temporary identifiers are called that function’s Activation Records or 
Stack Frames. For example consider following stack frame: 

   

incoming arguments 

frame pointer → 

argument n 

argument 2 

argument 1 

static link 

↑ higher addresses 

previous frame 

 local 

variables  

 

 

current frame   return address 

temporaries 

saved registers 

 

outgoing arguments 

stack pointer → 

argument m 

argument 2 

argument 1 

static link 

  

     next frame 

      

        ↓ lower      
addresses 

Fig 3.8 
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Features of this stack frame: 

i. Stack starts from higher addresses and grow towards lower addresses. 

ii. In previous frame incoming arguments are passed by the caller and 
stored at known offset from frame pointer.   

iii. Return address is created by call statement, it tells where control 
should return after completion of currently called function. Some 
local variables are stored in current frame others are stored in machine 
register. Machine register variables sometimes shifted to the frame to 
create space in register. 

iv. When this function calls another function (nested function) then 
outgoing argument space is used to pass parameters. 

v. Stack pointer is pointing to the first argument passed by calling 
function. On entry of function new frame is allocated and size of that 
frame is subtracted from SP to generate new SP. At this time old SP 
is called Frame Pointer FP. i.e. FP=SP+ frame size. 

vi. When function exits FP is copied back to SP and current FP attains 
old FP value. 

vii. Return address is the address of instruction which is just next to call 
statement in the calling function. 

3.5.2 Frames in the Tiger Compiler 

Including Tiger there are many languages (Pascal, ML), which support 
block structure feature. That feature allow, in nested functions, the inner 
function can also use variables declared in outer function. 

Following arrangements can achieve this. 

i. When a function f is called, it is passed a pointer to the frame of that 
function which enclosed f statistically. This pointer is called static 
link. 

ii. A global array is maintained which contains static nesting depth 
pointers, this array is called Display. 

iii. When a function f is called, all the variables of calling function are 
also passed as extra arguments (and same way passed to nested 
functions of f). This method is called lambda lifting. 

If we uses C functions in Tiger then, Tiger compiler uses standard stack 
frame layout, and abstract semantic analysis module which hides the 
internal representation of the symbol tables. This abstract implementation 
makes module machine independent. 

Tiger compiler have two layers of abstraction between semantic analysis 
and frame layout: 
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semant.c 

translate.h 

translate.c 

frame.h  temp.h 

𝜇 frame.c temp.c 

Fig 3.9 

Here, 

● frame.h and temp.h are interfaces to provide machine independent 
views for memory and register variables. 

● Translate module handles nested scope (block structure feature) by 
using static links and provide abstract interface translate.h to semant 
module. 

● 𝜇 stands for target machines. Abstraction is used to separate source 
code semantics and machine dependent frame layout. So that frame 
module become independent of specific language being compiled. 

3.6 TRANSLATION TO INTERMEDIATE CODE 

After type-checking semantic phase of tiger compiler request to translate 
abstract syntax into abstract machine code which is independent of machine 
target or any source language. It increases portability and modularity. This 
code is called Intermediate Representation (IR).  

Front end of any portable compiler perform analysis: Lexical analysis, 
parsing, semantic analysis, and intermediate representations. The back end 
compiler does optimization of IR and translate it to target machine 
instructions. 

Without IR we require m*n compilers to compile m number of languages 
of n number of machines, whereas m front ends generate one IR only n 
backend compilers are required to convert it into machine code. For e.g. 

 

Fig 3.10 without IR 
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Fig 3.11 with IR 

3.6.1 Intermediate Representation Trees 

In tiger compiler implementation interface tree.h defines intermediate tree 
representation. A good IR must have following qualities: 

 It must be convenient to produce for semantic analysis phase. 
 For all the target machines, it must be convenient to translate it into 

machine code. 
 Code optimizing implementation requires to rewrite the IR, so each 

constructs should have clear and simple meaning. 

3.6.2 Translation into Trees 

In some architectures it is found that complex structures (array subscript, 
procedure call etc.) of abstract syntax tree doesn’t lead to corresponding 
complex machine instructions. These structures are transformed into 
abstract machine instructions. Therefore IR should have individual simple 
things- fetch, store, jump or add and then these abstract instructions are 
grouped together into clumps to form target machine instructions. 

Translation of abstract syntax expression to intermediate tree: 

Expressions: Abstract syntax expression A_exp is represented as T_exp in 
tree language, which computes a value. Those expressions which return no 
value (e.g procedure calls, while statements etc.) are represented as T_stm. 
Expressions with conditional jumps (e.g a>b) are represented as the 
combination of T_stm and Temp_labels (destinations). 

Simple variables: In section 3.4.4 and 3.4.5 semantic analyzer function 
type checks a variable in type environment (tenv) and value environment 
(venv). At this stage semants of exp are modified to generate intermediate 
representation translation. A simple variable v declared in stack frame is 
translated as: 

mu
no
tes
.in



   

 
94 

Design and implementation  
of Modern Compilers 

94 

 

MEM(BINOP(PLUS, TEMP fp, CONST k)) 

Where, mem: content of memory word size. 
BINOP: binary operation 
TEMP fp: temporary frame pointer 
CONST k: offset of variable v in the current frame 
Array variables: All languages handle array elements differently. Like, in 
pascal array variable stands for its content where as in C, array variables are 
like pointer constants. So there is translate function which handles array 
subscripts for records fields, expression etc.  
3.6.3 Declarations 
Modules for type-check Let expressions are enhanced to translate into tree 
expression i.e TransDec and TransExp will accept more arguments now. 
● Variable: as we know transDec updates tenv and venv. Now transDec 

will also return Tr_exp for assignment expressions to perform 
initializations. 

● Function: Each tiger function is translated into assembly language with 
a prologue, a body, and an epilogue.  
Prologue specifies: 
● The beginning of the function and label definition for function 

name. 
● Adjust the stack pointer to allocate new frame. 
● Maintain callee-save registers and return address registers. 
Then comes body of function. 
● After body epilogue comes which specifies: 
● Pops the stack 
● Return value 
● Restore callee save register 
● Reset stack pointer 
● Jump to the return address 
● End of a function 

MEM

BINOP

+ TEMP fp CONST k
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3.7 BASIC BLOCKS AND TRACES 

While translating trees generated by semantic analysis into machine 
language, operators capable on most of the machines are chosen. Some 
aspects of tree languages doesn’t correspond to machine code and interfere 
with compiler optimization. For eg: the order of evaluating subexpression 
of any expression doesn’t matter but if tree expression includes side effects 
ESEQ (expression sequence), CJUMP and CALL then mismatch between 
tree and machine language can occur. Because they make different orders 
of evaluation yielding different results. 

Translation is done in three stages: 

1. A tree is rewritten into equivalent trees i.e canonical trees without 
these SEQ or ESEQ, CALL labels, internal jumps etc. Hence, 
canonical trees have no SEQ or ESEQ 

2. This list of trees is grouped into basic blocks. 

3. Then basic blocks are ordered in such a way that each CJUMP is 
followed by its false label. These arrangements are called traces. 

3.7.1 TAMING CONDITIONAL BRANCHES 

Most of the machine languages doesn’t have direct equivalent of CJUMP 
instruction. In the tree language CJUMP is designed with two way branch, 
i.e it can jump either of two target labels whereas in real machine, the 
conditional jump can either transfer control on true condition or comes to 
immediate next instruction. So to transfer it into machine language every 
CJUMP (condition, Tlabel, Flabel) is arranged in such a way that it is 
immediately followed by its false label Flabel. Then each CJUMP can 
directly be translated as conditional branching with only true label Tlabel.  

BASIC BLOCKS 

In order to determine where to jump in a program we analyze control flow. 
The flow of control in a program doesn’t know whether the jump is for true 
or false value. So control flows sequentially till it faces a jump statement. 
We can group these sequential non branching instructions (without any 
jump) into a basic block and analyze flow of control between these basic 
blocks.  

A basic block is a set of non-branch instructions to be executed sequentially. 
We enter into a basic block at the beginning and exit at the end. i.e 

● First statement of a basic block is a label. 

● There are no other JUMPs, LABELs or CJUMPs. 

● Only the last statement is a jump statement (CJUMP). We 
can say after that control enters into another basic block. 
Where ever a label is found a new basic block is started and 
that basic block ends whenever a JUMP or CJUMP is found. 
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This arrangement is applied to every function body. The last basic block has 
no JUMP at the end, so label done is appended at last to indicate the 
beginning of epilogue. 

TRACES 

Now the order of basic blocks doesn’t affect execution result. Control jumps 
to new appropriate place at the end of each block. So we arrange these 
blocks in such a way that every CJUMP is followed by its false label. Also 
many target labels are immediate next to their unconditional jumps. So that 
deletion of these unconditional JUMPs makes compilation of program 
faster.  

A trace is a order of basic blocks (sequence of statements) that can be 
consecutively executed during the program execution. A program can have 
many traces. While arranging CJUMPs and False-labels, a set of traces 
should cover the program. If we reduce the number of jumps from one trace 
to another, we will have few traces. For example, if blocks b1 ends with a 
jump to b6 and b6 has a jump to b4, then the trace will be b1, b6, b4. Now 
imagine block b4 have last instruction CJUMP (condition, b3,b7). Since it 
can’t be decided at compile time which is false label, by assuming b7 is 
false label and some execution will follow it, we append b7 to our trace b1, 
b6, b4, b7 and b3 will fall under different trace. 

3.8 LIVENESS ANALYSIS 

The front end compiler translates program into an intermediate language 
with many number of temporaries. All of these are never written explicitly. 
But machine has limited number of registers and many temporaries can fit 
into these few registers if all of them are not in use at the same time. Other 
excess temps can be kept in memory. 

Liveness analysis is process of analyzing intermediate representation to find 
which temporary variable are used at the same time and are live. A variable 
is live if its value is needed in future. To analyze this control flow a graph 
is made, which determines the order of statements to be executed. For 
example, in the following flow graph A is live at edge {2, 5, and 5 to 2}. 
Variable B is not live at edge 1, 2, 5 and 6 because it is not used at this time. 
It is assigned into at statement 2, so its live range is {3, 4}. If C is a formal 
parameter, it is live at entry and exit of the code. So only two registers can 
hold values of three variables because variable A and B are not live at same 
time so one register is for A and B and the other is for C. 
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Fig 3.12 flow graph 

3.8.1 SOLUTION OF DATAFLOW EQUATIONS 

The edges that come to any node from predecessor nodes are called in-
edges of that node and the edges that are going towards successor nodes are 
called out-edges of a that node. If any variable is live at any in-edge then it 
is called live-in and if it is live at any out-edge then it is live-out. We can 
analyze liveness of any variable by using two terms: 

Def: def of a variable is the set of those graph nodes which defines that 
variable. 

Uses: use of variable is the set of those variables or graph nodes which uses 
that variable. 
Live range of each variable across the dataflow graph is calculated by 
following equation:  

𝑖𝑛[𝑛] = 𝑢𝑠𝑒[𝑛] ∪ (𝑜𝑢𝑡[𝑛] − 𝑑𝑒𝑓[𝑛]) 
𝑜𝑢𝑡[𝑛] = ⋃௦∈௦௨[]𝑖𝑛[𝑠] 

Where, 
Pred[n]: set of all predecessors of node n 
Succ[n]: set of all successors of node n  
From above equation we can say: 

A variable is live-in at node n, if it is in use set of that node i.e in use[n]. 
If a variable is live-out at n but it is not defined at n i.e not in def[n], then 
this variable must be line-in at n. 

Live-out variable at n is live-in at all nodes s in succ[n]. 
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3.8.2 INTERFERENCE GRAPH CONSTRUCTION 

Liveness information is used in compiler optimization. Some optimization 
algorithms need to know at each node in the flow graph, which set of 
variables are live. Registers are allocated to the temporaries accordingly. If 
we have a set of temporary variables v1,v2,v3,……, which are to be 
allocated to registers r1,r2,r3,……, then the condition due to which we can’t 
allocate same register to v1 & v2 is called an interference. This may occur 
due to overlapping live period i.e v1 & v2 both are live at same time in the 
program. In this case we can’t assign same register to these variables. 
Interference can also occur when any variable v1 is generated by such 
instruction which doesn’t address register r1, in this case v1 and r1 interfere. 
Interference information is represented as matrix of variables by marking x 
on the inference. This matrix can be expressed as undirected graph. Each 
node of graph is representing variables and edge between two nodes 
(variables) represent interference. Interference matrix and corresponding 
graph of fig 3.9 is:- 

 A B C 

A   x 

B   x 

C x x  

 

Fig 3.13 interference representation 

3.8.3 LIVENESS IN THE TIGER COMPILER 

In tiger compiler, first control-flow graph is generated and then liveness of 
a variable is analyzed. This analysis is expressed as interference graph. To 
represent these two types of graph, an abstract data type Graph is created.  

G_Graph()  := function to create empty directed graph. 
G_Node(g,x) := adds new node in graph g with additional information 
x. 
G_addEdge(n,m) := creates directed edge from n to m, now m is available 
in G_succ(n) list and n is present in G_pred(m) list. If instruction n is 
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followed by instruction m (even by a jump), then there will be an edge 
between n and m in the control-flow graph. In flow graph each node 
contains information about the following: 

a) FG_def(n): a set of all temporaries defined at n 

b) FG_use(n): a set of temporary variables used at n 

c) FG_isMove(n): represents any Move instruction at n 

LIVENESS ANALYSIS 

The liveness module takes flow-graph as input and produces: 

● Interference graph  

● List of node-pairs (having Move instruction). These are assigned to 
the same register to eliminate Move) 

What happens if a freshly defined temporary isn't active right away? If a 
variable is defined but never utilized, this is the situation. It appears that 
there is no need to enter it in a register; hence, it will not conflict with any 
other temporary identifiers. However, if the defining instruction is executed 
it will write to a register, which must not contain any other live variables. 
As a result, any live ranges that overlap zero-length live ranges will 
interfere. 

3.9 SUMMARY 

This chapter gives the translation of languages guided by context-free 
grammars. The translation techniques in this chapter are applied for type 
checking and intermediate-code generation in compiler design. The 
techniques are also useful for implementing little languages for specialized 
tasks. To illustrate the issues in compiling real programming languages, 
code snippets of Tiger (a simple but nontrivial language of the Algol family, 
with nested scope and heap-allocated records) are discussed. These code 
snippets can be implemented in C-language or java. For complete code refer 
book by A.Andrew et.al., Modern Compiler Implementation in java (2004). 

3.10 REFERENCE FOR FURTHER READING 

● Modern Compiler Implementation in Java, Second Edition, Andrew 
Appel and Jens Palsberg, Cambridge University Press (2004).  

● Principles of Compiler Design, Alfred Aho and Jeffrey D. Ullman, 
Addison Wesley (1997).  

● Compiler design in C, Allen Holub, Prentice Hall (1990).  

● Mogensen, T. Æ. (2017). Syntax Analysis. In Introduction to 
Compiler Design (pp. 39-95). Springer, Cham. 
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3.11 EXCERCISE 

Q1. What are inherited and synthesized attributes? 

Q2. What is the difference between syntax directed definition and 
syntax directed translation? 

Q3. What are implementation scheme of syntax directed 
translation? 

Q4. Differentiate between L-attributed and S-attributed SDT. 

Q5. How compiler checks declarations and expressions in a 
program?  

Q6. How local variables are managed during function calls? 

Q7. What are blocks and traces? 

Q8.  Write short note on liveness of variables using Tiger compiler. 
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4.0 OBJECTIVES  

After going through this chapter you will be able to understand the 
following concepts in detail:- 

 DAG Representation 
 Dominators 
 Reducible flow graphs 
 Depth-first search 
 Loop invariant computations 
 Induction variable elimination 
 various loop optimizations. 
 Intermediate representation 
 dataflow analyses 
 transformations 
 speeding up and alias analysis. 

4.1 INTRODUCTION  

To create an efficient target language program, a programmer needs more 
than an optimizing compiler. We mention the types of code-improving 
transformations that a programmer and a compiler writer can be expected 
to use to improve the performance of a program. We also consider the 
representation of programs on which transformations will be applied. 

4.2 OVERVIEW 

The code produced by straight forward compiling algorithms can be made 
to run faster or take less space or both. This process is achieved by program 
transformations that are traditionally called optimizations. 

The maximum optimization benefit can be obtained if we can identify the 
frequently executed parts of the program and make these parts as efficient 
as possible. Generally inner loops in the program written using while or for 
statements are good candidates for optimization. 

4.3 THE PRINCIPLE SOURCES OF OPTIMIZATION 

4.3.1 Loop optimization:  

Loop Optimization is the process of increasing execution speed and 
reducing the overheads associated with loops. It plays an important role in 
improving cache performance and making effective use of parallel 
processing capabilities. 
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4.3.2. The DAG representation of basic blocks 

A basic block is a sequence of consecutive statements in which flow of 
control enters at the beginning and leaves at the end without halt or 
possibility of branching except at the end. 

A three address statement x: = y + z is said to define x and use y and z. A 
name in a basic block is said to be live at a given point if its value is used 
after that point in the program perhaps in another basic block. 

A DAG for basic block is a directed acyclic graph with the following labels 
on nodes: 

● The leaves of graph are labelled by unique identifier and that identifier 
can be variable names or constants. 

● Interior nodes of the graph are labelled by an operator symbol. 

● Nodes are also given a sequence of identifiers for labels to store the 
computed value. 

● DAGs are a type of data structure. It is used to implement 
transformations on basic blocks. 

● DAG provides a good way to determine the common sub-expression. 

● It gives a picture representation of how the value computed by the 
statement is used in subsequent statements. 

 

Algorithm for construction of Directed Acyclic Graph : 
There are three possible scenarios for building a DAG on three address 
codes: 
Case 1 –  x = y op z 
Case 2 – x = op y 
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Case 3  –  x = y 
Directed Acyclic Graph for the above cases can be built as follows : 
Step 1 – 
If the y operand is not defined, then create a node (y). 
If the z operand is not defined, create a node for case(1) as node(z). 
Step 2 – 
Create node(OP) for case(1), with node(z) as its right child and node(OP) 
as its left child (y). 
For the case (2), see if there is a node operator (OP) with one child node (y). 
Node n will be node(y)  in case (3). 
Step 3 – 
Remove x from the list of node identifiers. Step 2: Add x to the list of 
attached identifiers for node n. 
Example : 

T0 = a + b         —Expression 1 
T1 = T0 + c       —-Expression 2 
d = T0 + T1        —–Expression 3 
Expression 1 :                   T0 = a + b 

 

Expression 2:                    T1 = T0 + c 
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Expression  3 :   d = T0 + T1     

 

Example : 

T1 = a + b       
T2 = T1 + c      
T3 = T1 x T2     
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Example : 
 T1:= 4*I0 
T2:= a[T1] 
T3:= 4*I0 
T4:= b[T3] 
T5:= T2 * T4 
T6:= prod + T 
prod:= T6 
T7:= I0 + 1 
I0:= T7 
if I0 <= 20 goto 1 

 

Application of Directed Acyclic Graph: 
Directed acyclic graph determines the subexpressions that are commonly 
used. 
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Directed acyclic graph determines the names used within the block as well 
as the names computed outside the block. 
Determines which statements in the block may have their computed value 
outside the block. 
Code can be represented by a Directed acyclic graph that describes the 
inputs and outputs of each of the arithmetic operations performed within the 
code; this representation allows the compiler to perform common 
subexpression elimination efficiently. 
Several programming languages describe value systems that are linked 
together by a directed acyclic graph. When one value changes, its successors 
are recalculated; each value in the DAG is evaluated as a function of its 
predecessors. 

4.3.3 Dominators 

In a flow graph, a node d dominates node n, if every path from initial node 
of the flow graph to n goes through d. This will be denoted by d Dom n. 
Every initial node dominates all the remaining nodes in the flow graph and 
the entry of a loop dominates all nodes in the loop. Similarly every node 
dominates itself. 

Example: 

In the flow graph below,*Initial node, node1 dominates every node. *node 
2 dominates itself *node 3 dominates all but 1 and 2. *node 4 dominates all 
but 1,2 and 3. *node 5 and 6 dominates only themselves, since flow of 
control can skip around either by going through the other. *node 7 
dominates 7,8 ,9 and 10. *node 8 dominates 8,9 and 10. *node 9 and 10 
dominates only themselves. 

 

The way of presenting dominator information is in a tree, called the 
dominator tree, in which 

● The initial node is the root. 

● The parent of each other node is its immediate dominator. 

● Each node d dominates only its descendents in the tree. 
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 The existence of dominator tree follows from a property of dominators; 
each node has a unique immediate dominator in that is the last dominator of 
n on any path from the initial node to n. In terms of the Dom relation, the 
immediate dominator m has the property is d=! n and d Dom n, then d Dom 
m. 

D (1) ={1} 
D (2)={1,2} 
D (3)={1,3} 
D (4)={1,3,4} 
D (5)={1,3,4,5} 
D (6)={1,3,4,6} 
D (7)={1,3,4,7} 
D (8)={1,3,4,7,8} 
D (9)={1,3,4,7,8,9} 
D (10)={1,3,4,7,8,10} 

4.3.4 Reducible flow graphs 

Reducible flow graphs are special flow graphs, for which several code 
optimization transformations are especially easy to perform, loops are 
unambiguously defined, dominators can be easily calculated, data flow 
analysis problems can also be solved efficiently. Exclusive use of structured 
flow-of-control statements such as if-then-else, while-do, continue, and 
break statements produces programs whose flow graphs are always 
reducible. 

The most important properties of reducible flow graphs are that 

1.     There are no jumps into the middle of loops from outside; 

2.     The only entry to a loop is through its header 

Definition: 

A flow graph G is reducible if and only if we can partition the edges into 
two disjoint groups, forward edges and back edges, with the following 
properties. 

 1.     The forward edges from an acyclic graph in which every node can be 
reached from initial node of G. 

2.     The back edges consist only of edges where heads dominate theirs tails. 

Example: The above flow graph is reducible. If we know the relation DOM 
for a flow graph, we can find and remove all the back edges. The remaining 
edges are forward edges. If the forward edges form an acyclic graph, then 
we can say the flow graph reducible. In the above example remove the five 
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back edges 4→3, 7→4, 8→3, 9→1 and 10→7 whose heads dominate their 
tails, the remaining graph is acyclic. 

 4.3.5 Depth-first search 

Depth-first search (DFS) is an algorithm for traversing or searching tree or 
graph data structures. The algorithm starts at the root node (selecting some 
arbitrary node as the root node in the case of a graph) and explores as far as 
possible along each branch before backtracking. 

A depth first ordering can be used to detect loops in any flow graph; it also 
helps speed up iterative data flow algorithms. 

One possible DFS representation of the data flow on left given on the right 
side figure. 

 

4.3.6 Loop-invariant computations 

Definition 
● A loop invariant is a condition [among program variables] that is 

necessarily true immediately before and immediately after each 
iteration of a loop.  

● A loop invariant is some predicate (condition) that holds for every 
iteration of the loop. 

● For example, let’s look at a simple for loop that looks like this: 

● Int j = 9; 

● for (int i=0; i<10; i++)   

● J--; 

● In this example it is true (for every iteration) that i + j == 9. 

● A weaker invariant that is also true is that i >= 0 && i <= 10. 

● One may get confused between the loop invariant, and the loop 
conditional ( the condition which controls termination of the loop ). 

● The loop invariant must be true: 

● before the loop starts  
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● before each iteration of the loop 

● after the loop terminates ( although it can temporarily be false 
during the body of the loop ). 

● On the other hand the loop conditional must be false after the 
loop terminates, otherwise, the loop would never terminate. 

● Usage: 

Loop invariants capture key facts that explain why code works. This means 
that if you write code in which the loop invariant is not obvious, you should 
add a comment that gives the loop invariant. This helps other programmers 
understand the code, and helps keep them from accidentally breaking the 
invariant with future changes. 

A loop Invariant can help in the design of iterative algorithms when 
considered an assertion that expresses important relationships among the 
variables that must be true at the start of every iteration and when the loop 
terminates. If this holds, the computation is on the road to effectiveness. If 
false, then the algorithm has failed. 

Loop invariants are used to reason about the correctness of computer 
programs. Intuition or trial and error can be used to write easy algorithms 
however when the complexity of the problem increases, it is better to use 
formal methods such as loop invariants. 

Loop invariants can be used to prove the correctness of an algorithm, debug 
an existing algorithm without even tracing the code or develop an algorithm 
directly from specification. 

A good loop invariant should satisfy three properties: 

● Initialization: The loop invariant must be true before the first 
execution of the loop. 

● Maintenance: If the invariant is true before an iteration of the loop, 
it should be true also after the iteration. 

● Termination: When the loop is terminated the invariant should tell 
us something useful, something that helps us understand the 
algorithm. 

Loop Invariant Condition:  

Loop invariant condition is a condition about the relationship between the 
variables of our program which is definitely true immediately before and 
immediately after each iteration of the loop.  

For example: Consider an array A{7, 5, 3, 10, 2, 6} with 6 elements and we 
have to find maximum element max in the array.  

max = -INF (minus infinite) 
for (i = 0 to n-1) 
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  if (A[i] > max) 
max = A[i] 

In the above example after the 3rd iteration of the loop max value is 7, which 
holds true for the first 3 elements of array A. Here, the loop invariant 
condition is that max is always maximum among the first i elements of array 
A.  

This technique can be used to optimize various sorting algorithms like – 
selection sort, bubble sort, quick sort etc. 

4.3.7 Induction variable elimination 

A variable x is called an induction variable of loop L every time the variable 
x changes values, it is incremented or decremented by some constant 

Example 1: 
int i, max = 10, r; 
r = max-1; 
for(i=10;i<=r;i++) 
{ 
Printf(“%d”, i); 
} 

In the above code, variable i is called induction variable as values of I get 
incremented by 1, i.e., 0,1,2,3,4,5,6,7,8,9,10 

4.3.8 Some other loop optimizations. 

Loop Optimization Techniques: 

4.3.8.1 Frequency Reduction (Code Motion): 

In frequency reduction, the amount of code in loop is decreased. A 
statement or expression, which can be moved outside the loop body without 
affecting the semantics of the program, is moved outside the loop. 

4.3.8.2 Loop Unrolling: 

Loop unrolling is a loop transformation technique that helps to optimize the 
execution time of a program. We basically remove or reduce iterations. 
Loop unrolling increases the program’s speed by eliminating loop control 
instruction and loop test instructions. 

4.3.8.3 Loop Jamming: 

Loop jamming is the combining the two or more loops in a single loop. It 
reduces the time taken to compile the many number of loops. 
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4.4 DATAFLOW ANALYSIS 

Data flow analysis is a process for collecting information about the use, 
definition, and dependencies of data in programs. The data flow analysis 
algorithm operates on a control flow graph generated from an AST. You 
can use a control flow graph to determine the parts of a program to which a 
particular value assigned to a variable might propagate. 

An execution path (or path) from point p1 to point pn is a sequence of points 
p1, p2, ..., pn such that: 

for each i = 1, 2, ..., n − 1, either 1 pi is the point immediately preceding a 
statement and pi+1 is the point immediately following that same statement, 

                     or 

pi is the end of some block and pi+1 is the beginning of a successor block. 

In general, there is an infinite number of paths through a program and there 
is no bound on the length of a path. Program analyses summarize all 
possible program states that can occur at a point in the program with a finite 
set of facts. 

No analysis is necessarily a perfect representation of the state. 

Process of dataflow analysis: 

1) Build a flow graph(nodes = basic blocks, edges = control flow) 
2) set up a set of equations between in[b] and out[b] for all basic blocks 

b. 
 Effect of code in basic block: 

● Transfer function fb relates in[b] and out[b], for same b. 

● Effect of flow of control: 

● Relates out[b], in[b] if b1 and b2 are adjacent 

3) Find a solution to the equations 

 Static Program vs. Dynamic Execution:- 
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● Statically: Finite program 
● Dynamically: Can have infinitely many possible execution paths 
● Data flow analysis abstraction: 
● For each point in the program: 

combines information of all the instances of the same program point. 

4.4.1 Intermediate representation for flow analysis 

A compiler transforms the source program to an intermediate form that is 
mostly independent of the source language and the machine architecture. 
This approach isolates the front-end and the back-end. 
The portion of the compiler that does scanning, parsing and static semantic 
analysis is called the front-end. 
The translation and code generation portion of it is called the back-end. 
The front-end depends mainly on the source language and the back-end 
depends on the target architecture. 
More than one intermediate representation may be used for different levels 
of code improvement. A high level intermediate form preserves source 
language structure. Code improvements on loop can be done on it. 
A low level intermediate form is closer to target architecture.  
Parse tree is a representation of complete derivation of the input. It has 
intermediate nodes labeled with non-terminals of derivation.This is used 
(often implicitly) for parsing and attribute synthesis. 
A syntax tree is very similar to a parse tree where extraneous nodes are 
removed. 
It is a good representation that is close to the source-language as it preserves 
the structure of source constructs. 
It may be used in applications like source-to-source translation, or syntax-
directed editor etc. 

Linear Intermediate Representation:- 

Both the high-level source code and the target assembly codes are linear in 
their text. 
The intermediate representation may also be linear sequence of codes. with 
conditional branches and jumps to control the flow of computation. 

A linear intermediate code may have one operand address a , two-address 
b, or three-address like RISC architectures. 

GCC Intermediate Codes:- 

The GCC compiler uses three intermediate representations: 

1. GENERIC - it is a language independent tree representation of the 
entire function. 
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2. GIMPLE - is a three-address representation generated from 
GENERIC.  

3. RTL - a low-level representation known as register transfer language. 

Consider the following C function. 
double CtoF(double cel) { return cel * 9 / 5.0 + 32 ;} 
C program with if:- 
#include <stdio.h> 
int main()  
{ 
int l, m ; 
scanf("%d", &l); 
if(l < 10) m = 5*l; 
else m = l + 10; 
printf("l: %d, m: %d\n", l, m); 
return 0; 
} 
C program with for:- 
#include <stdio.h> 
int main()  
{ 
int n, i, sum=0 ; 
scanf("%d", &n); 
for(i=1; i<=n; ++i) sum = sum+i; 
printf("sum: %d\n", sum); 
return 0; 
} 

Representation of Three-Address Code:- 

Any three address code has two essential components: operator and 
operand. 
There can be at most three operands and one operator. 
The operands are of three types, a name from the source program, a 
temporary name generated by the compiler or a constant a. 
a There are different types of constants used in a programming language. 
There is another category of name, a label in the sequence of three-address 
codes. 
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A three-address code sequence may be represented as a list or array of 
structures. 

Quadruple:- 

A quadruple is the most obvious first choice.  

It has an operator, one or two operands, and the target field. 

Triple:- 

A triple is a more compact representation of a three-address code. 
It does not have an explicit target field in the record. 

When a triple u uses the value produced by another triple d, then u refers to 
the value number (index) of d. 

Example:- 

t1 = a * a 
t2 = a * b 
t3 = t1 + t2 
t4 = t3 + t2 
t5 = t1 + t4 

Indirect Triple:- 

It may be necessary to reorder instructions for the improvement of 
execution. 
Reordering is easy with a quad representation, but is problematic with triple 
representation as it uses absolute index of a triple. 
As a solution indirect triples are used, where the ordering is maintained by 
a list of pointers (index) to the array of triples. 
The triples are in their natural translation order and can be accessed by their 
indexes. 
But the execution order is maintained by an array of pointers (index) 
pointing to the array of triples. 

Static Single-Assignment (SSA) Form:- 

This representation is similar to three-address code with two main 
differences. 
Every definition a has a distinct name (virtual register). 
Each use of a value refers to a particular definition. 
e.g. t7= a + t3. 
If the same user variable is defined on more than one control paths a, they 
are renamed as distinct variables with appropriate subscripts. 
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When more than one control-flow paths join, a φ-function is used to 
combine the variables. 
The φ-function selects the value of its arguments depending on the control-
flow path (data-flow under control-flow). 
Each name is defined at one place a. Use of a name contains information 
about the location of its definition (data-flow). 
SSA-form tries to encode data-flow under flow-control. 
Consider the following C code: 
for(f=i=1; i<=n; ++i) f = f*i; 
 
The corresponding three-address codes and SSA codes are as follows. 

i = 1 i0 = 1 
f = 1 f0 = 1 
L2: if i>n goto - if i0 > n goto L1 
L2: i1 = 
φ(i0, i2) 
f1 = 
φ(f0, f2) 
f = f*i f2 = f1*i1 
i = i + 1 i2 = i1 + 1 
goto L2 if i2 <= n goto L2 
L1: i3 = 
φ(i0, i2) 
f3 = 
φ(f0, f2) 

4.4.2 Various data flow analyses  

A data-flow value for a program point represents an abstraction of the set 
of all possible program states that can be observed for that point The set of 
all possible data-flow values is the domain for the application under 
consideration Example: for the reaching definitions problem, the domain of 
data-flow values is the set of all subsets of definitions in the program A 
particular data-flow value is a set of definitions IN[s] and OUT[s]: data-
flow values before and after each statement s The data-flow problem is to 
find a solution to a set of constraints on IN[s] and OUT[s], for all statements. 

Two kinds of constraints : 

Those based on the semantics of statements (transfer functions) 

Those based on flow of control  
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● A DFA schema consists of: 

● A control-flow graph  

● A direction of data-flow (forward or backward)  

● A set of data-flow values 

● A confluence operator (normally set union or intersection)  

● Transfer functions for each block  

We always compute safe estimates of data-flow values  
A decision or estimate is safe or conservative, if it never leads to a change 
in what the program computes (after the change)  
These safe values may be either subsets or supersets of actual values, based 
on the application 
Basic Terminologies – 
Definition Point: a point in a program containing some definition. 
Reference Point: a point in a program containing a reference to a data item. 
Evaluation Point: a point in a program containing evaluation of 
expression. 

 

 

4.4.3 Transformations using dataflow analysis  

In order to do code optimization and a good job of code generation , 
compiler needs to collect information about the program as a whole and to 
distribute this information to each block in the flow graph. A compiler could 
take advantage of “reaching definitions” , such as knowing where a variable 
like debug was last defined before reaching a given block, in order to 
perform transformations are just a few examples of data-flow information 
that an optimizing compiler collects by a process known as data-flow 
analysis. 
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Data-flow information can be collected by setting up and solving systems 
of equations of the form : 

out [S] = gen [S] U ( in [S] - kill [S] ) 

This equation can be read as “ the information at the end of a statement is 
either generated within the statement , or enters at the beginning and is not 
killed as control flows through the statement.” Such equations are called 
data-flow equation. 

1.     The details of how data-flow equations are set and solved depend on 
three factors. The notions of generating and killing depend on the 
desired information, i.e., on the data flow analysis problem to be 
solved. Moreover, for some problems, instead of proceeding along 
with flow of control and defining out[S] in terms of in[S], we need to 
proceed backwards and define in[S] in terms of out[S]. 

2.     Since data flows along control paths, data-flow analysis is affected by 
the constructs in a program. In fact, when we write out[s] we 
implicitly assume that there is unique end point where control leaves 
the statement; in general, equations are set up at the level of basic 
blocks rather than statements, because blocks do have unique end 
points. 

3.     There are subtleties that go along with such statements as procedure 
calls, assignments through pointer variables, and even assignments to 
array variables. 

Points and Paths: 

Within a basic block, we talk of the point between two adjacent statements, 
as well as the point before the first statement and after the last. Thus, block 
B1 has four points: one before any of the assignments and one after each of 
the three assignments. 
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Now let us take a global view and consider all the points in all the blocks. 
A path from p1 to pn is a sequence of points p1, p2,….,pn such that for each 
i between 1 and n-1, either 

1. Pi is the point immediately preceding a statement and pi+1 is the point 
immediately following that statement in the same block, or 

2. Pi is the end of some block and pi+1 is the beginning of a successor 
block. 

Reaching definitions 

A definition of variable x is a statement that assigns, or may assign, a value 
to x. The most common forms of definition are assignments to x and 
statements that read a value from an i/o device and store it in x. These 
statements certainly define a value for x, and they are referred to as 
unambiguous definitions of x. There are certain kinds of statements that 
may define a value for x; they are called ambiguous definitions. 

The most usual forms of ambiguous definitions of x are: 

1. A call of a procedure with x as a parameter or a procedure that can 
access x because x is in the scope of the procedure. 

2. An assignment through a pointer that could refer to x. For example, 
the assignment *q:=y is a definition of x if it is possible that q points 
to x. we must assume that an assignment through a pointer is a 
definition of every variable. 

We say a definition d reaches a point p if there is a path from the point 
immediately following d to p, such that d is not “killed” along that path. 
Thus a point can be reached by an unambiguous definition and an 
ambiguous definition of the appearing later along one path. 
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Data-flow analysis of structured programs: 

Flow graphs for control flow constructs such as do-while statements have a 
useful property: there is a single beginning point at which control enters and 
a single end point that control leaves from when execution of the statement 
is over. We exploit this property when we talk of the definitions reaching 
the beginning and the end of statements with the following syntax. 

S->id: = E| S; S | if E then S else S | do S while E 
E->id + id| id 

Expressions in this language are similar to those in the intermediate code, 
but the flow graphs for statements have restricted forms. 
We define a portion of a flow graph called a region to be a set of nodes N 
that includes a header, which dominates all other nodes in the region. All 
edges between nodes in N are in the region, except for some that enter the 
header. The portion of flow graph corresponding to a statement S is a region 
that obeys the further restriction that control can flow to just one outside 
block when it leaves the region. 

We say that the beginning points of the dummy blocks at the statement’s 
region are the beginning and end points, respective equations are inductive, 
or syntax-directed, definition of the sets in[S], out[S], gen[S], and kill[S] 
for all statements S. gen[S] is the set of definitions “generated” by S while 
kill[S] is the set of definitions that never reach the end of S. 

Consider the following data-flow equations for reaching definitions : 

 

Observe the rules for a single assignment of variable a. Surely that 
assignment is a definition of a, say d. Thus 
gen[S]={d} 
On the other hand, d “kills” all other definitions of a, so we write 
Kill[S] = Da - {d} 
Where, Da is the set of all definitions in the program for variable a. 
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Under what circumstances is definition d generated by S=S1; S2? First of 
all, if it is generated by S2, then it is surely generated by S. if d is generated 
by S1, it will reach the end of S provided it is not killed by S2. Thus, we 
write 
gen[S]=gen[S2] U (gen[S1]-kill[S2]) 
Similar reasoning applies to the killing of a definition, so we have 
Kill[S] = kill[S2] U (kill[S1] - gen[S2]) 
Conservative estimation of data-flow information: 

There is a subtle miscalculation in the rules for gen and kill. We have made 
the assumption that the conditional expression E in the if and do statements 
are “uninterpreted”; that is, there exists inputs to the program that make 
their branches go either way. 

We assume that any graph-theoretic path in the flow graph is also an 
execution path, i.e., a path that is executed when the program is run with 
least one possible input. When we compare the computed gen with the 
“true” gen we discover that the true gen is always a subset of the computed 
gen. on the other hand, the true kill is always a superset of the computed 
kill. 

These containments hold even after we consider the other rules. It is natural 
to wonder whether these differences between the true and computed gen 
and kill sets present a serious obstacle to data-flow analysis. The answer lies 
in the use intended for these data. 

Overestimating the set of definitions reaching a point does not seem serious; 
it merely stops us from doing an optimization that we could legitimately do. 
On the other hand, underestimating the set of definitions is a fatal error; it 
could lead us into making a change in the program that changes what the 
program computes. For the case of reaching definitions, then, we call a set 
of definitions safe or conservative if the estimate is a superset of the true set 
of reaching definitions. We call the estimate unsafe, if it is not necessarily 
a superset of the truth. 

Returning now to the implications of safety on the estimation of gen and 
kill for reaching definitions, note that our discrepancies, supersets for gen 
and subsets for kill are both in the safe direction. Intuitively, increasing gen 
adds to the set of definitions that can reach a point, and cannot prevent a 
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definition from reaching a place that it truly reached. Decreasing kill can 
only increase the set of definitions reaching any given point. 

Computation of in and out: 

Many data-flow problems can be solved by synthesized translation to 
compute gen and kill. It can be used, for example, to determine 
computations. However, there are other kinds of data-flow information, 
such as the reaching-definitions problem. It turns out that in is an inherited 
attribute, and out is a synthesized attribute depending on in. we intend that 
in[S] be the set of definitions reaching the beginning of S, taking into 
account the flow of control throughout the entire program, including 
statements outside of S or within which S is nested. 

The set out[S] is defined similarly for the end of s. it is important to note 
the distinction between out[S] and gen[S]. The latter is the set of definitions 
that reach the end of S without following paths outside S. Assuming we 
know in[S] we compute out by equation, that is 

Out[S] = gen[S] U (in[S] - kill[S]) 

Considering cascade of two statements S1; S2, as in the second case. We 
start by observing in[S1]=in[S]. Then, we recursively compute out[S1], 
which gives us in[S2], since a definition reaches the beginning of S2 if and 
only if it reaches the end of S1. Now we can compute out[S2], and this set 
is equal to out[S]. 

Consider the if-statement. we have conservatively assumed that control can 
follow either branch, a definition reaches the beginning of S1 or S2 exactly 
when it reaches the beginning of S. That is, 

in[S1] = in[S2] = in[S] 
 If a definition reaches the end of S if and only if it reaches the end of one 
or both sub-statements; i.e, 
out[S]=out[S1] U out[S2] 

Representation of sets: 

Sets of definitions, such as gen[S] and kill[S], can be represented compactly 
using bit vectors. We assign a number to each definition of interest in the 
flow graph. Then bit vector representing a set of definitions will have 1 in 
position I if and only if the definition numbered I is in the set. 

The number of definition statement can be taken as the index of statement 
in an array holding pointers to statements. However, not all definitions may 
be of interest during global data-flow analysis. Therefore the number of 
definitions of interest will typically be recorded in a separate table. 

A bit vector representation for sets also allows set operations to be 
implemented efficiently. The union and intersection of two sets can be 
implemented by logical or and logical and, respectively, basic operations in 
most systems-oriented programming languages. The difference A-B of sets 
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A and B can be implement complement of B and then using logical and to 
compute A 

Local reaching definitions: 

Space for data-flow information can be traded for time, by saving 
information only at certain points and, as needed, recomputing information 
at intervening points. Basic blocks are usually treated as a unit during global 
flow analysis, with attention restricted to only those points that are the 
beginnings of blocks. 

Since there are usually many more points than blocks, restricting our effort 
to blocks is a significant savings. When needed, the reaching definitions for 
all points in a block can be calculated from the reaching definitions for the 
beginning of a block. 

Use-definition chains: 

It is often convenient to store the reaching definition information as” use-
definition chains” or “ud-chains”, which are lists, for each use of a variable, 
of all the definitions that reaches that use. If a use of variable a in block B 
is preceded by no unambiguous definition of a, then ud-chain for that use of 
a is the set of definitions in in[B] that are definitions of a.in addition, if there 
are ambiguous definitions of a ,then all of these for which no unambiguous 
definition of a lies between it and the use of a are on the ud-chain for this 
use of a. 

Evaluation order: 

The techniques for conserving space during attribute evaluation, also apply 
to the computation of data-flow information using specifications. 
Specifically, the only constraint on the evaluation order for the gen, kill, in 
and out sets for statements is that imposed by dependencies between these 
sets. Having chosen an evaluation order, we are free to release the space for 
a set after all uses of it have occurred. Earlier circular dependencies between 
attributes were not allowed, but we have seen that data-flow equations may 
have circular dependencies. 

General control flow: 

Data-flow analysis must take all control paths into account. If the control 
paths are evident from the syntax, then data-flow equations can be set up 
and solved in a syntax directed manner. When programs can contain goto 
statements or even the more disciplined break and continue statements, the 
approach we have taken must be modified to take the actual control paths 
into account. 

Several approaches may be taken. The iterative method works arbitrary 
flow graphs. Since the flow graphs obtained in the presence of break and 
continue statements are reducible, such constraints can be handled 
systematically using the interval-based methods. However, the syntax-
directed approach need not be abandoned when break and continue 
statements are allowed. 
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4.4.4 Speeding up dataflow analysis 

There are several ways to speed up the evaluation of dataflow equations. 

4.4.4.1 Bit vectors 

● Many dataflow analyses can be expressed using simultaneous 
equations on finite sets. 

● A set S over a finite domain can be represented by a bit vector. 

● The ith bit in the vector is a 1 if the element i is in the set S. 

● In the bit-vector representation, 

1. unioning two sets S and T is done by a bitwise-or of the bit 
vectors, 

2. intersection can be done by bitwise-and, 
3. set complement can be done by bitwise complement, and so on. 

 If the word size of the computer is W, and the vectors are N bits long, then 
such a merging operation needs a sequence of N/W instructions. 

● Of course, 2N/W fetches and N/W stores will also be necessary, as 
well as indexing and loop overhead. 

It would be inadvisable to use bit vectors for dataflow problems where the 
sets are expected to be very sparse (so the bit vectors would be almost all 
zeros), in which case a different implementation of sets would be faster. 

4.4.4.2 Basic blocks 

● Suppose we have a node n in the flow graph that has only one 
predecessor, p, and p has only one successor, n. 

● we can combine the gen and kill effects of p and n and replace nodes 
n and p with a single node. 

● Such a single node is called a basic block. 

● A basic block is a sequence of statements that is always entered at the 
beginning and exited at the end, that is: 

1. The first statement is a label. 
2. The last statement is a jump or cjump. 
3. There are no other labels, jumps, or cjumps. 

● The algorithm for dividing a long sequence of statements into basic 
blocks is quite simple. The sequence is scanned from beginning to 
end; 

1. whenever a label is found, a new block is started (and the 
previous block is ended); 
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2. whenever a jump or cjump is found, a block is ended (and the 
next block is started). 

3. If this leaves any block not ending with a jump or cjump, then 
a jump to the next block’s label is appended to the block. 

4. If any block has been left without a label at the beginning, a new 
label is invented and stuck there. 

We introduce a new label done which mean the beginning of the 
epilogue, and put a jump(name done) at the end of the last block. 

● Taking reaching definitions as an example, we can combine all the 
statements of a basic block as follows: 

1. Consider what definitions reach out of the node n: 

 out[n] = gen[n] ∪ (in[n] − kill[n]) 
2. We know in[n] is just out[p]; therefore 

 out[n] = gen[n] ∪ ((gen[p] ∪ (in[p] − kill[p])) − kill[n]) 

3. By using the identity (A ∪ B) − C = (A − C) ∪ (B − C) and then 

 (A − B) − C = A − (B ∪ C), we have 

 out[n] = gen[n] ∪ (gen[p] − kill[n]) ∪ (in[p] − (kill[p] ∪ kill[n])) 

4. If we regard p and n as a single node pn, the appropriate gen and 
kill sets for pn are: 

gen[pn] = gen[n] ∪ (gen[p] − kill[n]) 

kill[pn] = kill[p] ∪ kill[n] 

The control-flow graph of basic blocks is much smaller than the 
graph of individual statements. 

● The multipass iterative dataflow analysis works much faster on basic 
blocks. 

● Once the iterative dataflow analysis algorithm is completed, we may 
recover the dataflow information of an individual statement (such as 
n) within a block (such pn in our example) as follows: 

1. start with the in set computed for the entire block and, 

2. apply the gen and kill sets of the statements that precede n in 
the block. 

4.4.4.3 Ordering the nodes 

● If we could arrange that every node was calculated before its successors 
in a forward dataflow problem, the dataflow analysis would terminate 
in one pass through the nodes. 
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● This would be possible if the control-flow graph had no cycles. 

● quasi-topologically sorting a cyclic graph by depth-first search helps to 
reduce the number of iterations required on cyclic graphs;  in quasi-
sorted order, most nodes come before their successors. 

● Information flows forward quite far through the equations on each 
iteration. 

1. Depth-first search topologically sorts an acyclic graph graph, or 
quasi-topologically sorts a cyclic graph, quite efficiently. 

2. Using sorted, the order computed by depth-first search, the iterative 
solution of dataflow equations should be computed as 

 

There is no need to make in a global array, since it is used only locally in 
computing out. 

● For backward dataflow problems such as liveness analysis, we use a 
version of Algorithm 11 starting from exit-node instead of start-node, 
and traversing predecessor instead of successor edges. 
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4.4.4.4 Work-list algorithms 

● If any out set changes during an iteration of the repeat-until loop of 
an iterative solver, then all the equations are recalculated. 
 Most of the equations may not be affected by the change. 

● A work-list algorithm keeps track of just which out sets must be 
recalculated. 

Whenever node n is recalculated and its out set is found to change, all the 
successors of n are put onto the work-list (if they’re not on it already). 

4.4.4.5 Use-def and def-use chains 

● Use-def chains: a list of the definitions of x reaching that use for each 
use of a variable x. 
Information about reaching definitions can be kept as use-def chains, 
Use-def chains do not allow faster dataflow analysis per se, but allow 
efficient implementation of the optimization algorithms that use the 
results of the analysis. 

● A generalization of use-def chains is static single-assignment form. 
SSA form not only provides more information than use-def chains, 
but the dataflow analysis that computes it is very efficient. 

● Def-use chains: a list of all possible uses of that definition for each 
definition. 
SSA form also contains def-use information. 

4.4.4.6 Wordwise approach 

● Bit vector approach + basic block approach + worklist approach + 
wordwise 

● Wordwise approach deals with the largest chunk of a bit vector which 
can be processed in one machine operation. 

● Typically, a machine word 
1. Select a word. 
4. Process it over required area of a control flow graph 

● Wordwise approach results in considerable savings in the work to be 
performed since all parts may not require processing for all nodes of 
the control flow graph. 

4.5 ALIAS ANALYSIS 

If two or more expressions denote the same memory address we can say 
that the expressions are aliases of each other. 

How do aliases arise? 
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● Pointers 

● Call by reference (parameters can alias each other or non-locals) 

● Array indexing 

● C union, Pascal variant records, Fortran EQUIVALENCE and 
COMMON blocks 

Alias analysis techniques are usually classified by flow-sensitivity and 
context-sensitivity. They may determine may-alias or must-alias 
information. The term alias analysis is often used interchangeably with 
points-to analysis, a specific case. 

Alias analysers intend to make and compute useful information for 
understanding aliasing in programs. 

Example code: 
p.foo = 1; 
q.foo = 2; 
i = p.foo + 3; 
There are three possible alias cases here: 
The variables p and q cannot alias (i.e., they never point to the same memory 
location). 
The variables p and q must alias (i.e., they always point to the same memory 
location). 
It cannot be conclusively determined at compile time if p and q alias or not. 

If p and q cannot alias, then i = p.foo + 3; can be changed to i = 4. If p and 
q must alias, then i = p.foo + 3; can be changed to i = 5 because p.foo + 3 = 
q.foo + 3. In both cases, we are able to perform optimizations from the alias 
knowledge (assuming that no other thread updating the same locations can 
interleave with the current thread, or that the language memory model 
permits those updates to be not immediately visible to the current thread in 
absence of explicit synchronization constructs).  

On the other hand, if it is not known if p and q alias or not, then no 
optimizations can be performed and the whole of the code must be executed 
to get the result. Two memory references are said to have a may-alias 
relation if their aliasing is unknown. 

In alias analysis, we divide the program's memory into alias classes. Alias 
classes are disjoint sets of locations that cannot alias to one another. For the 
discussion here, it is assumed that the optimizations done here occur on a 
low-level intermediate representation of the program. This is to say that the 
program has been compiled into binary operations, jumps, moves between 
registers, moves from registers to memory, moves from memory to 
registers, branches, and function calls/returns. 
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There are two ways for Alias Analysis: 
Type-based alias analysis 
Flow-based alias analysis 

4.6 SUMMARY 

 An optimizing compiler is a compiler that tries to minimize or maximize 
some attributes of an executable computer program. Common requirements 
are to minimize a program's execution time, memory footprint, storage size, 
and power consumption (the last three being popular for portable 
computers). 

Compiler optimization is generally implemented using a sequence of 
optimizing transformations, algorithms which take a program and transform 
it to produce a semantically equivalent output program that uses fewer 
resources or executes faster. 

Data-flow optimizations, based on data-flow analysis, primarily depend on 
how certain properties of data are propagated by control edges in the 
control-flow graph. 

We have learnt about various techniques of loop optimization and dataflow 
analysis as applicable for compiler design. 

4.7 REFERENCES FOR FURTHER READING  

Compilers – Principles, Techniques and Tools. By – Alfred Aho, Ravi 
Sethi, Jeffrey D. Ulman 

4.8 UNIT END EXERCISES 

 

1. For the above graph find the live expressions at the end of each block. 
2. For the above graph find the available expressions  
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3. Are there any expressions which may be hoisted in above example, if 
so hoist them 

4. Is there any constant folding possible in above graph. If so, do it. 
5. Eliminate any common sub-expressions in the above figure 
6. In the above figure, what is the limit flow graph? Is the flow graph 

reducible. 
7. Give an algorithm in time O(n) on an n-node flow graph to find the 

extended basic block ending at each node. 
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