
Chapter 1

Multilinear Algebra

Unit Structure :
1.1 Objective
1.2 k�tensor
1.3 Alternating Tensor
1.4 Wedge Product
1.5 Basis for ⇤k(V )
1.6 Volume Element of V
1.7 Chapter End Exercise

1.1 Objectives

After going through this chapter you will be able to:

1. Define a multilinear function, k�tensor, alternating tensor and
wedge product.

2. Learn algebraic properties of alternating tensor and wedge prod-
uct.

3. Identify basis and dimension of subspace of tensor.

4. Learn the concept of volume element.
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CALCULUS ON MANIFOLDS

1.2 k�tensor

Multilinear Function: If V is a vector space over R, we will
denote the k�fold product V ⇥V ⇥...⇥V by V k. A function T : V k ! R
is called multilinear if for each i with 1  i  k we have

T (v1, v2, ···, vi+v
0

i
..., vk) = T (v1, v2, ···, vi, ···, vk)+T (v1, v2, ···, v

0

i
, ···, vk),

T (v1, v2, · · ·, avi, · · ·, vk) = aT (v1, v2, · · ·, vi, · · ·, vk).
Example: Consider the function f : R3 ! R defined as, f(x, y, z) =
xyz. Show that f is 3�linear.

Solution: We begin by fixing x and z and treat f as a function of one
variable y.
Consider f(x,↵y1 + �y2, z) = x(↵y1 + �y2)z
= x(↵y1)z + x(�y2)z
= ↵xy1z + �xy2z
= ↵f(x, y1, z) + �f(x, y2, z).
shows that f is linear in y.
Similarly we can show that f is linear in x and z variables.

k�tensor: A multilinear function T : V k ! R is called a k�tensor
on V and the set of all k�tensors denoted by =k(V ), becomes a vector
space over R if for S, T 2 =k(V ) and a 2 R we define

(S+T )(v1, v2, ···, vi, ···, vk) = S(v1, v2, ···, vi, ···, vk)+T (v1, v2, ···, vi, ···, vk),

(aS)(v1, v2, · · ·, vi, · · ·, vk) = aS(v1, v2, · · ·, vi, · · ·, vk).

Tensor Product: There is an operation connecting the various
spaces =k(V ). If S 2 =k(V ) and T 2 =l(V ), we define the tensor
product S ⌦ T 2 =k+l(V ) by

S⌦T (v1, v2, · · ·, vk, vk+1, · · ·, vk+l) = S(v1, v2, · · ·, vk) ·T (vk+1, · · ·, vk+l).

Note: The order of the factors S and T is crucial here since S ⌦ T
and T ⌦ S are far from equal.

T ⌦ S(v1, v2, · · ·, vl, vl+1, · · ·, vl+k) = T (v1, v2, · · ·, vl) · S(vl+1, · · ·, vl+k).

Example: If S1, S2 2 =k(V ),T 2 =l(V ), U 2 =m(V ) and a 2 R
then Show that
(1) (S1 + S2)⌦ T = S1 ⌦ T + S2 ⌦ T,
(2) S ⌦ (T1 + T2) = S ⌦ T1 + S ⌦ T2,
(3) (aS)⌦ T = S ⌦ (aT ) = a(S ⌦ T ),
(4) (S ⌦ T )⌦ U = S ⌦ (T ⌦ U).
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Notes:
(1) Both (S ⌦ T )⌦ U and S ⌦ (T ⌦ U) are usually denoted simply S ⌦ T ⌦ U .
(2) higher-order products T1 ⌦ T2⌦, · · ·⌦ Tr are defined similarly.
(3) The =1(V ) is just the dual space V ⇤.

Note: Any vector space has a corresponding dual vector space (or dual
space) consisting of all linear forms on. , together with the vector space
structure of pointwise addition and scalar multiplication by constants.

Theorem-01: Let v1, ···, vn be a basis for V , and let '1,'2, ···'n be
the dual basis, 'i(vj) = �ij. Then the set of all k�fold tensor products

'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
, 1  i1, · · ·, ik  n

is a basis for =k(V ), which therefore has dimension nk.

Proof Note that

'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
(vj1 , vj2 , · · ·, vjk) = �i1,j1 · �i2,j2 · · · �ik,jk

=

(
1 if j1 = i1; · · ·; jk = ik,

0 otherwise.

Step I: Claim: 'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
span =k(V ).

If w1, w2, · · ·, wk are k vectors with wi =
nP

j=1
aijvj and T is in =k(V ),

then

T (w1, w2, · · ·, wk) =
nX

j1,j2,···,jk=1

a1,j1 · · · ·ak,jkT (vj1 , vj2 , · · ·vjk)

and

'i1⌦'i2⌦···⌦'ik
(w1, , w2, ···, wk) = a1,j1 ····ak,jk'i1⌦'i2⌦···⌦'ik

(vj1 , vj2 , ···vjk)

'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
(vj1 , vj2 , · · ·vjk) =

(
1 if j1 = i1; · · ·; jk = ik,

0 otherwise.

) 'i1⌦'i2⌦···⌦'ik
(w1, , w2, ···, wk) = a1,j1 ····ak,jk if j1 = i1; ···; jk = ik

This gives us

T (w1, w2, ···, wk) =
nX

i1,i2,···,ik=1

T (vi1 , vi2 , ···vik)·'i1⌦'i2⌦···⌦'ik
(w1, , w2, ···, wk).

Thus T =
nP

i1,i2,···,ik=1
T (vi1 , vi2 , · · ·vik) · 'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik

.
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Consequently the 'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
span =k(V ).

Step II: Claim: 'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
is linearly independent

Suppose now that there are numbers ai1,i2···ik such that

nX

i1,i2···ik

ai1,i2···ik'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
= 0.

Applying both sides of this equation to (vj1 , vj2 , · · ·vjk)

nX

i1,i2···ik

ai1,i2···ik'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
(vj1 , vj2 , · · ·vjk) = 0.

This yields ai1,i2···ik = 0. Thus the 'i1 ⌦ 'i2 ⌦ · · · ⌦ 'ik
are lineraly

independent.

hence by step I and II, we conclude

'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
, 1  i1, · · ·, ik  n

is a basis for =k(V ), which therefore has dimension nk.

Example: Determine which of the following are tensors on R4 and
express those in terms of elementary tensors.

f(x, y, z) = 3x1y2z3 � x3y1z4
g(x, y, z) = 2x1x2z3 + x3y1z4

Solution:
(a) f is a 3-tensor since it is linear with respect to each variable x, y,
z. (Verify)
If !1, !2, !3, !4 is the dual basis of the standard basis e1, . . . , e4 in
R4, then

f = 3!1 ⌦ !2 ⌦ !3 � !3 ⌦ !1 ⌦ !4.

(b) g is not a tensor since g is not linear as

g(ax, y, z) = 2ax1ax2z3 + ax3y1z4 = 2a2x1x2z3 + ax3y1z4 6= ag(x, y, z).

Example: Consider the following tensors on R4,

f(x, y, z) = 2x1y2z2 - x2y3z1
g(x, y) = !2 ⌦ !1 - 2!3 ⌦ !1

6

mu
no
tes
.in
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where {!1, !2, !3, !4} is the dual basis of the standard basis {e1, . . . ,
e4} for R4. Write f⌦g as a linear combination of elementary 5-tensors.

Solution: (b) Since f = 2!1 ⌦ !2 ⌦ !2 - !2⌦ !3 ⌦ !1.
f ⌦ g
= (2!1 ⌦ !2 ⌦ !2 - !2 ⌦ !3 ⌦ !1) ⌦ (!2 ⌦ !1-2!3 ⌦ !1)
= 2!1 ⌦ !2 ⌦ !2 ⌦ !2 ⌦ !1 - 4!1 ⌦ !2 ⌦ !2 ⌦ !3 ⌦ !1 + !2 ⌦ !3

⌦ !1 ⌦ !2 ⌦ !1 - 2!2 ⌦ !3 ⌦ !1 ⌦ !3 ⌦ !1.

Dual Transformation: If f : V ! W is a linear transformation,
a linear transformation
f ⇤ : =k(W ) ! =k(V ) is defined by

f ⇤T (v1, v2, · · ·, vk) = T (f(v1), f(v2), · · ·, f(vk))

for T 2 =k(W ) and v1, v2, · · ·, vk 2 V .

Examples:
(1) Show that f ⇤(S ⌦ T ) = f ⇤S ⌦ f ⇤T.
(2) Show that an inner product on V to be a 2-tensor or h i 2 =2(Rn).

Definition: We define an inner product on V to be a 2-tensor T such
that
T is symmetric, that is T (v, w) = T (w, v) for v, w 2 V and
T is positive-definite, that is T (u, v) > 0 if v 6= 0.
We distinguish h , i as the usual inner product on Rn.

Theorem-02: If T is an inner product on V , there is a basis v1, v2, · ·
·, vn for V such that T (vi, vj) = �ij.(Such a basis is called orthonormal
with respect to T.) Consequently there is an isomorphism f : Rn ! V
such that T (f(x), f(y)) = hx, yi for x, y 2 Rn. In other words f ⇤T =
h , i.

Proof Let w1, w2, · · ·, wn be any basis of V . Define

w
0

1 = w1,

w
0

2 = w2 �
T (w

0
1, w2)

T (w
0
1, w

0
1)

· w0

1,

w
0

3 = w3 �
T (w

0
1, w3)

T (w
0
1, w

0
1)

· w0

1 �
T (w

0
2, w3)

T (w
0
2, w

0
2)

· w0

2,

etc.

It is easy to check that T (w
0
i
, w

0
j
) = 0 if i 6= j and

w
0
i
6= 0 so that T (w

0
i
, w

0
i
) > 0.
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Now define vi =
w

0
ip

T (w
0
i
, w

0
i
)
.

The isomorphism f may be defined by f(ei) = vi.

Now Consider f ⇤T (ei, ej) = T (f(ei), f(ei)) = T (vi, vj) = �ij = hei, eji.

1.3 Alternating Tensor

Alternating Tensor: A k�tensor ! 2 =k(V ) is called alternating
if

!(v1, v2, ···, vi, ···, vj, ···, vk) = �!(v1, v2, ···, vj, ···, vi, ···, vk) 8v1, v2, ···, vk 2 V.

(In this equation vi and vj are interchanged and all other v’s are left
fixed.) The set of all alternating k� tensors is clearly a subspace ⇤k(V )
of =k(V ).

Note: A k�tensor ! 2 =k(V ) is called symmetric if

!(v1, v2, ···, vi, ···, vj, ···, vk) = !(v1, v2, ···, vj, ···, vi, ···, vk) 8v1, v2, ···, vk 2 V.

Definition: If T 2 =k(V ), we define Alt(T ) by

Alt(T )(v1, v2, · · ·, vk) =
1

k!

X

�2Sk

sgn � · T (v�(1), v�(2), · · ·, v�(k)),

where Sk is the set of all permutations of the numbers 1 to k.

Note: Recall that the sign of a permutation � denoted sgn �, is
+1 if � is even and �1 is � is odd.

Theorem-03

(1) If T 2 =k(V ), then Alt(T ) 2 ⇤k(V ).
(2) If ! 2 ⇤k(V ), then Alt(!) = !.
(3) If T 2 =k(V ), then Alt(Alt(T )) = Alt(T ).

Proof (1) Let (i, j) be the permutation that interchanges i and j and
leaves all other numbers fixed. If � 2 Sk, let �

0
= � · (i, j). Then

Alt(T )(v1, v2, · · ·, vj, · · ·, vi, · · ·, vk)

=
1

k!

X

�2Sk

sgn � · T (v�(1), v�(2), · · ·, v�(j), · · ·, v�(i), · · ·, v�(k)),
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=
1

k!

X

�2Sk

sgn � · T (v
�
0 (1), v�0 (2), · · ·, v�0 (i), · · ·, v�0 (j), · · ·, v�0 (k)),

=
1

k!

X

�
02Sk

�sgn �
0 · T (v

�
0 (1), v�0 (2), · · ·, v�0 (k)),

= �Alt(T )(v1, v2, · · ·, vk),

(2) If ! 2 ⇤k(V ) and � = (i, j), then

!(v�(1), v�(2), · · ·, v�(k)) = sgn � · !(v1, v2, · · ·, vk).

Since every � is a product of permutations of the form (i, j), this equa-
tion holds for all �. Therefore

Alt !(v1, v2, · · ·, vk) =
1

k!

X

�2Sk

sgn � · !(v�(1), v�(2), · · ·, v�(k))

=
1

k!

X

�2Sk

sgn � · sgn � · !(v1, v2, · · ·, vk)

= !(v1, v2, · · ·, vk).

(3) follows immediately from (1) and (2).(Exercise)

1.4 Wedge product

Wedge product: If ! 2 ⇤k(V ) and ⌘ 2 ⇤l(V ), then ! ⌦ ⌘ is
usually not in ⇤k+l(V ). We will therefore define a new product, the
wedge product ! ^ ⌘ 2 ⇤k+l(V ) by

! ^ ⌘ =
(k + l)!

k!l!
Alt(! ⌦ ⌘).

Example: Show that
(1) (!1 + !2) ^ ⌘ = !1 ^ ⌘ + !2 ^ ⌘,
(2) ! ^ (⌘1 + ⌘2) = ! ^ ⌘1 + ! ^ ⌘2,
(3) a! ^ ⌘ = ! ^ a⌘ = a(! ^ ⌘),
(4) ! ^ ⌘ = (�1)kl⌘ ^ !,
(5) f ⇤(! ^ ⌘) = f ⇤(!) ^ f ⇤(⌘),
(6) (! ^ ⌘) ^ ✓ = ! ^ (⌘ ^ ✓).
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Theorem-04

(1) If S 2 =k(V ) and T 2 =l(V ) and Alt(S) = 0, then
Alt(S ⌦ T ) = Alt(T ⌦ S) = 0.

(2) Alt(Alt(! ⌦ ⌘)⌦ ✓) = Alt(! ⌦ ⌘ ⌦ ✓) = Alt(! ⌦ Alt(⌘ ⌦ ✓)).

(3) If ! 2 ⇤k(V ), ⌘ 2 ⇤l(V ) and ✓ 2 ⇤m(V ), then

(! ^ ⌘) ^ ✓ = ! ^ (⌘ ^ ✓) =
(k + l +m)!

k!l!m!
Alt(! ⌦ ⌘ ⌦ ✓).

Proof: (1) Step I: Claim: Alt(S ⌦ T ) = 0

Alt(S⌦T )(v1, v2, ···, vk+l) =
1

(k + l)!

X

�2Sk+l

sgn�·(S⌦T )(v�(1), v�(2), ···, v�(k+l)).

(k + l)!Alt(S ⌦ T )(v1, v2, · · ·, vk + l)

=
X

�2Sk+l

sgn� · S(v�(1), v�(2), · · ·, v�(k)) · T (v�(k+1), v�(k+2), · · ·, v�(k+l)).

(1)

Case I: If G ⇢ Sk+l consists of all � whcih leave k+1, k+2, · · ·, k+ l
fixed, then

X

�2G

sgn� · S(v�(1), v�(2), · · ·, v�(k)) · T (v�(k+1), v�(k+2), · · ·, v�(k+l))

=
X

�
02Sk

sgn�
0 · S(v

�
0 (1), v�0 (2), · · ·, v�0 (k)) · T (v(k+1), v(k+2), · · ·, v(k+l))

= 0. (Since Alt(S) = 0)

Hence by equation (1), Alt(S ⌦ T ) = 0

Case II: Suppose �0 /2 G.
Let G · �0 = {� · �0 : � 2 G} and
let v�0(1), v�0(2), · · ·, v�0(k+l) = w1, w2 · ··, wk+l. Then

X

�2G·�0

sgn� · S(v�(1), v�(2), · · ·, v�(k)) · T (v�(k+1), v�(k+2), · · ·, v�(k+l))

=

2

4sgn �0 ·
X

�
02G

sgn �
0 · S(w

�
0 (1), w�

0 (2), · · ·, w�
0 (k))·

3

5 · T (wk+1, wk+2, · · ·, wk+l)

= 0. (Since Alt(S) = 0)

Hence by equation (1), Alt(S ⌦ T ) = 0
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Notice that G \G · �0 = �.
In fact, if � 2 G \ G · �0, then � = �

0 · �0 for some �
0 2 G and

�0 = � · (�0
)�1 2 G, a contradiction.

We can then continue in this way, breaking Sk+l up into disjoint subsets;
the sum over each subset is 0, so that the sum over Sk+l is 0. Hence
Alt(S ⌦ T ) = 0.

Step II: Claim: Alt(T ⌦ S) = 0 Show similarly as step I. Combining
step I and II, we obtain
Alt(S ⌦ T ) = Alt(T ⌦ S) = 0.

(2) Step I: Claim: Alt(! ⌦ ⌘ ⌦ ✓) = Alt(! ⌦ Alt(⌘ ⌦ ✓))
Consider Alt(Alt(⌘ ⌦ ✓)� ⌘ ⌦ ✓) = Alt{Alt(⌘ ⌦ ✓)}� Alt(⌘ ⌦ ✓).
By theorem (3(III)), we have Alt{Alt(⌘ ⌦ ✓)} = Alt(⌘ ⌦ ✓),
hence we have

Alt(Alt(⌘ ⌦ ✓)� ⌘ ⌦ ✓) = Alt(⌘ ⌦ ✓)� Alt(⌘ ⌦ ✓) = 0.

Hence by (1) we have

Alt(! ⌦ [Alt(⌘ ⌦ ✓)� ⌘ ⌦ ✓]) = 0

Alt(! ⌦ Alt(⌘ ⌦ ✓))� Alt(! ⌦ ⌘ ⌦ ✓) = 0

Alt(! ⌦ Alt(⌘ ⌦ ✓)) = Alt(! ⌦ ⌘ ⌦ ✓)

Step II: Claim: Alt(Alt(! ⌦ ⌘)⌦ ✓) = Alt(! ⌦ ⌘ ⌦ ✓)
Similarly as per step I.

(3) Step I: Claim: (! ^ ⌘) ^ ✓ =
(k + l +m)!

k!l!m!
Alt(! ⌦ ⌘ ⌦ ✓).

By definition of wedge product have

(! ^ ⌘) ^ ✓ =
(k + l +m)!

(k + l)!m!
Alt((! ^ ⌘)⌦ ✓)

again applying definition of wedge product have

(! ^ ⌘) ^ ✓ =
(k + l +m)!

(k + l)!m!
Alt{((k + l)!

k!l!
Alt(! ⌦ ⌘))⌦ ✓}

(! ^ ⌘) ^ ✓ =
(k + l +m)!

(k + l)!m!

(k + l)!

k!l!
Alt{Alt(! ⌦ ⌘)⌦ ✓}

By 2 above

(! ^ ⌘) ^ ✓ =
(k + l +m)!

k!l!m!
Alt(! ⌦ ⌘ ⌦ ✓)
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Step II: Claim: ! ^ (⌘ ^ ✓) =
(k + l +m)!

k!l!m!
Alt(! ⌦ ⌘ ⌦ ✓).

Similarly as per step I.

Note: (1) ! ^ (⌘ ^ ✓) = (! ^ ⌘) ^ ✓ = ! ^ ⌘ ^ ✓
and higher-order products !1 ^ !2 ^ · · · ^ !r are defined similarly.
(2) If an alternating tensor ! and ⌘ are of odd order then !^⌘ = �⌘^!
(3) If an alternating tensor ! is of odd order then ! ^ ! = 0

Example: Consider the following tensors on R5

f(x, y, z) = 3x2y2z1 - x1y5z4
g(x) = 2x1 + x3

(a) Write Alt f as a linear combination of elementary alternating ten-
sors.
(b) Write (Alt f ) ^ g as a linear combination of elementary alternating
tensors.

Solution:
(a) Recall that if I = (i1,..., ik) is an multi-index and

!i1 ^ · · · ^ !ik = !I := k!Alt(!i1 ⌦ · · ·⌦ !ik) (1.1)

Hence write f as a linear combination of elementary tensors,

f = 3!2 ⌦ !2 ⌦ !1 � !1 ⌦ !5 ⌦ !4

Then by equation (2),

Alt f = 3Alt(!2 ⌦ !2 ⌦ !1)� Alt(!1 ⌦ !5 ⌦ !4)
= 3

3!!
2 ^ !2 ^ !1 � 1

3!!
1 ^ !5 ^ !4

= � 1
3!!

1 ^ !5 ^ !4

= 1
3!!

1 ^ !4 ^ !5

(b) Since g = 2!1 + !3 so that
(Alt f) ^ g = 1

3!!
1 ^ !4 ^ !5 ^ (2!1 + !3)

= 1
3!!

1 ^ !4 ^ !5 ^ !3

= - 13!!
1 ^ !4 ^ !3 ^ !5

= 1
3!!

1 ^ !3 ^ !4 ^ !5

Example 2: Let X1, X2, ... , Xk 2 V and let '1, ... ,'k 2 V ⇤.
Show that '1^ ... ^'k(X1, X2, ... , Xk) = det['i(Xj)]

Solution:
By definition,
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'1 ^ ... ^ 'k(X1, X2, ... , Xk) =
(1+···+1)!

1!···1! Alt('1 ⌦ · · · ⌦ 'k)(X1, X2,
... , Xk)

= k! Alt('1⌦· · ·⌦'k)(X1, X2, ... , Xk)

= k!
k!

P
�2Sk

(sign �) '1(X�(1)) '2(X�(2)) · · · 'k(X�(k))

= det

2

66664

'1(X1) ... '1(Xk)
.
.
.

'k(X1) ... 'k(Xk)

3

77775

1.5 Basis for ⇤k(V )

Theorem-05: The set of all

'i1 ^ 'i2 ^ · · · ^ 'ik
, 1  i1, i2, · · ·, ik  n

is a basis for ⇤k(V ), which therefore has dimension
✓
n

k

◆
=

n!

k!(n� k)!

Proof: Step I: Claim: 'i1 ^ 'i2 ^ · · · ^ 'ik
, 1  i1, i2, · · ·, ik  n

spans ⇤k(V ).
Let v1, v2, · · ·vn be a basis for V and let '1,'2, · · ·'n be the dual basis.
If ! 2 ⇤k(V ) ⇢ =k(V ), then we can write

! =
X

i1,i2,···ik

ai1,i2,···ik'i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
.

Thus by theorem 3(II), we have

! = Alt(!) =
X

i1,i2,···ik

ai1,i2,···ikAlt('i1 ⌦ 'i2 ⌦ · · ·⌦ 'ik
).

Since by definition of wedge product, each Alt('i1 ⌦'i2 ⌦ · · ·⌦'ik
) is a

constant times one of the ('i1^'i2^···^'ik
), these elements span ⇤k(V ).

Step II: Claim: 'i1^'i2^ · · ·^'ik
, 1  i1, i2, · · ·, ik  n is linearly

independent.
Linear independence is proved as in Theorem-01.
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Step III: Claim: Dimension of ⇤k(V ) is
�
n

k

�
=

n!

k!(n� k)!
.

As ⇤k(V ) is set of all alternating k� tensors which is subspace of =k(V ),

clearly Dimension of ⇤k(V ) is
�
n

k

�
=

n!

k!(n� k)!

Note: If V has dimension n, it follows from Theorem-05 that ⇤n(V )
has dimension 1.

Example: Let V be a vector space of dimension n = 3. The space of
alternating 2-tensors ⇤2(V ⇤) has the dimension

dim ⇤2(V ⇤) =
�
3
2

�
=

3!

2!(3� 2)!
= 3

Theorem-06: Let v1, v2, · · ·vn be a basis for V and let ! 2 ⇤n(V ).

If !i =
nP

j=1
aijvj are n vectors in V then

!(w1, w2, · · ·, wn) = det (aij) · !(v1, v2, · · ·, vn).

Proof: Define ⌘ 2 =n(Rn) by
⌘((a11, a12, · · ·, a1n), (a21, a22, · · ·, a2n), · · ·, (an1, an2, · · ·, ann)
= !

�P
a1jvj,

P
a2jvj, · · ·,

P
anjvj

�
As ! 2 ⇤n(V ) clearly ⌘ 2 ⇤n(Rn)

so ⌘ = � · det (aij) for some � 2 R and

� = ⌘(e1, e2, · · ·, en) = !(v1, v2, · · ·, vn).

!(w1, w2, · · ·, wn) = det (aij) · !(v1, v2, · · ·, vn).

1.6 Volume Element of V

Orientation: Theorem-06 shows that a non zero ! 2 ⇤n(V ) splits
the bases of V into two disjoint groups, those with !(v1, v2, · · ·, vn) > 0
and those for which !(v1, v2, ···, vn) < 0; if v1, v2, ···, vn and w1, w2, ···, wn

are two bases and A = (aij) is defined by wi =
P

aijvj then v1, v2, ···, vn
and w1, w2, · · ·, wn are in the same group if and only if detA > 0.

This criterion is independent of ! and can always be used to divide
the bases of V into two disjoint groups. Either of these two groups is
called an orientation for V . The orientation to which a basis v1, v2, ···, vn
belongs is denoted by [v1, v2, ···, vn] and the other orientation is denoted
�[v1, v2, · · ·, vn].

Note: In Rn we define the usual orientation as [e1, e2, · · ·, en].
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Volume Element: The fact that dim⇤n(Rn) = 1 is obvious since
det is often defined as the unique element ! 2 ⇤n(Rn) such that
!(e1, e2, · · ·, en) = 1. By theorem 6

!(w1, w2, · · ·, wn) = det (aij) · !(e1, e2, · · ·, en).

!(w1, w2, · · ·, wn) = det (aij)

Suppose that an inner product T for V is given. If v1, v2, · · ·, vn and
w1, w2, · · ·, wn are two bases which are orthonormal with respect to T ,

and the matrix A = (aij) is defined by wi =
nP

j=1
aijvj, then

�ij = T (wi, wj)

= T (
nX

k=1

aikvk,
nX

l=1

ailvl)

=
nX

k,l=1

aikajlT (vk, vl)

=
nX

k,l=1

aikajl�kl

=
nX

k=1

aikajk.

In other words, if AT denotes the transpose of the matirix A, then we
have A · AT = I, so det(A) = ±1.
It follows from Theorem-06 that if ! 2 ⇤n(V ) satisfies !(v1, v2, ···, vn) =
±1, then !(w1, w2, · · ·, wn) = ±1. If an orientation µ for V has also
been given, it follows that there is a unique ! 2 ⇤n(V ) such that
!(v1, v2, · · ·, vn) = 1 whenever v1, v2, · · ·, vn is an orthonormal basis
such that [v1, v2, · · ·, vn] = µ.
Note that det is the volume element of Rn determined by the usual
inner product and usual orientation and that |det(v1, v2, · · ·, vn)| is the
volume of the paralleopiped spanned by the line segments from 0 to
each of v1, v2, · · ·, vn.

Volume Element of Rn: If v1, v2, · · ·, vn�1 2 Rn and ' is defined by

'(w) = det

0

BBBBBBBB@

v1
v2
·
·
·

vn�1

w

1

CCCCCCCCA

,
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Then ' 2 ⇤1(V ). Therefore there is a unique element z 2 Rn such
that

hw, zi = '(w) = det

0

BBBBBBBB@

v1
v2
·
·
·

vn�1

w

1

CCCCCCCCA

,

This z is the denoted v1 ⇥ v2 ⇥ · · ·⇥ vn�1 and called the cross product
of v1, v2, · · ·, vn�1.

The following properties are immediate from the definition:
(1) v�(1) ⇥ v�(2) ⇥ · · ·⇥ v�(n�1) = sgn � · v1 ⇥ v2 ⇥ · · ·⇥ vn�1,
(2) v1 ⇥ v2 ⇥ · · ·⇥ avi ⇥ · · ·⇥ vn�1 = a · (v1 ⇥ v2 ⇥ · · ·⇥ vn�1),
(3) v1 ⇥ v2 ⇥ · · ·⇥ (vi + v

0
i
)⇥ · · ·⇥ vn�1 = (v1 ⇥ v2 ⇥ · · ·⇥ vi ⇥ · · ·⇥

vn�1) + (v1 ⇥ v2 ⇥ · · ·⇥ v
0
i
⇥ · · ·⇥ vn�1).

1.7 Chapter End Exercise

1. Let T 2 =k(W ) and S 2 =l(W ). Show that f ⇤(S ⌦ T ) = f ⇤S ⌦
f ⇤T where f ⇤ is a dual transformation of a linear transformation
f : V ! W .

2. Let V be a vector space of dimension 5. Find the dimension of
the space of alternating 3�tensor ⇤3(V ). Justify your answer.

3. Let ! 2 ⇤2(V ), ⌘ 2 ⇤3(V ) and ✓ 2 ⇤4(V ). Find the wedge
product (!^⌘)^✓ in terms of alternating tensor of tensor product
of !, ⌘ and ✓.

4. Let S 2 ⇤k(V ) and T 2 ⇤l(V ) and Alt(T ) = 0 then compute
T ^ S.

5. Let V be a vector space of dimension 3. Find the dimension of
the space of alternating 2�tensor ⇤2(V ). Justify your answer.

6. Let ! 2 ⇤1(V ), ⌘ 2 ⇤2(V ) and ✓ 2 ⇤3(V ). Find the wedge
product (!^⌘)^✓ in terms of alternating tensor of tensor product
of !, ⌘ and ✓.

7. Prove or disprove: An inner product on vector space V to be a
2-tensor.
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8. If T 2 =k(V ), then show that Alt(Alt(T )) = Alt(T ).

9. If ! 2 ⇤k(V ), ⌘ 2 ⇤l(V ) and ✓ 2 ⇤m(V ), then show that

(! ^ ⌘) ^ ✓ =
(k + l +m)!

k!l!m!
Alt(! ⌦ ⌘ ⌦ ✓).
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Chapter 2

Di↵erential Forms

Unit Structure :
2.1 Objective
2.2 Basic Preliminaries
2.3 Fields and Forms
2.4 Di↵erential Forms
2.5 Pullback Forms
2.6 Chapter End Exercise

2.1 Objectives

After going through this chapter you will be able to:

1. Learn the concept of tangent space.

2. Define Di↵erential Forms and Pullback Forms.

3. Learn properties of Pullback Forms.

2.2 Basic Preliminaries

1. The Del operator:

r =
@

@x
î+

@

@y
ĵ +

@

@z
k̂ =

✓
@

@x
,
@

@y
,
@

@z

◆
.

2. Gradient:
Suppose f is a function. rf is the gradient of f , sometimes denoted
grad f .
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grad f = rf =
@f

@x
î+

@f

@y
ĵ +

@f

@z
k̂.

Example: Compute the gradient of f(x, y, z) = xyey
2
z

Solution: rf = @f

@x
î+ @f

@y
ĵ + @f

@z
k̂ = yey

2
z î+(xey

2
z+ 2xy2ey

2
z)ĵ+k̂(xy3ey

2
z).

3. Directional derivative
Definition: The directional derivative of f in the direction ~u, denoted
by D~uf , is defined to be,

D~uf =
rf · ~u
|~u|

Example: What is the directional derivative of f(x, y) = x2 + xy, in
the direction of ~i+2~j at the point (1, 1)?
Solution: Now we first find rf .
rf = ( @

@x
, @

@y
) =(2x+ y, x)

=(3,1)
Let ~u = ~i + 2~j
|~u| =

p
12 + 22 =

p
5.

D~uf =
rf · ~u
|~u| =

(3, 1) · (1, 2)p
5

=
p
5.

• Properties of the gradient deduced from the formula of Directional
derivatives

D~uf =
rf · ~u
|~u| =

|rf ||~u|cos(✓)
|~u| = |rf |cos(✓)

1. If ✓ = 0, i.e. ~u points in the same direction as r f , then D~uf is
maximum. Therefore we may conclude that,
(i) rf points in the steepest direction.
(ii) The magnitude of rf gives the slope in the steepest direction.

2. At any point P , rf(P ) is perpendiular to level set through that
point.

4. Divergence:
Definition: The Divergence is given by,

div ~F = r · ~F

where ~F should be vector field.

Example. Compute the divergence of ~F = (x2+y)̂i + (y2-z)ĵ +
(z2+x)k̂
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Solution: div ~F = @

@x
î + @

@y
ĵ + @

@z
k̂ · ((x2+y)̂i + (y2-z)ĵ + (z2+x)k̂)

= 2x + 2y + 2z.

5. Curl:
Definition: The curl is given by,

curl ~F = r⇥ ~F

More specifically, suppose ~F = (F1,F2,F3). Then

r⇥ ~F =

��������

î ĵ k̂
@

@x

@

@y

@

@z
F1 F2 F3

��������

The cross product of two vectors is a vector, so curl takes a vector field
to another vector field.

Example. Compute the curl of ~F = (x2+y)̂i + (y2-z)ĵ + (z2+x)k̂

Solution: curl ~F =

��������

î ĵ k̂
@

@x

@

@y

@

@z
F1 F2 F3

��������

=

��������

î ĵ k̂
@

@x

@

@y

@

@z
x2 + y y2 � z z2 + x

��������
= î-ĵ+k̂ = (1, -1, 1).

Example. Show that curl grad f = ~0
Solution: curl grad f = r ⇥ r f

=

����������

î ĵ k̂
@

@x

@

@y

@

@z
@f

@x

@f

@y

@f

@z

����������

=

����������

î ĵ k̂
@

@x

@

@y

@

@z
@

@x

@

@y

@

@z

����������

(f).

But the determinant of a matrix with two equal rows is 0, so the result
is ~0.

Example. div(curl ~F ) = 0
Solution: div(curl ~F ) = r · (r ⇥ f)
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= r ·

��������

î ĵ k̂
@

@x

@

@y

@

@z
F1 F2 F3

��������

=

���������

@

@x

@

@y

@

@z
@

@x

@

@y

@

@z
F1 F2 F3

���������
= 0.

Example. Find Curl(rf) and Div(rf)
Solution: Curl(rf) = r ⇥ rf
= (fyz - fzy) î + (fzx - fxz) ĵ + (fxy - fyx) k̂
= 0

Div(rf) = r · rf

= (
@

@x
,
@

@y
,
@

@z
) · (@f

@x
,
@f

@y
,
@f

@z
)

=
@2f

@x2
+

@2f

@y2
+

@2f

@z2
.

2.3 Fields and Forms

If p 2 Rn, the set of all pairs (p, v), for v 2 Rn, is denoted Rn

p
, and

called the tangent space of Rn at p. This set is made into a vector space
in the most obvious way, by defining

(p, v) + (p, w) = (p, v + w),

a · (p, v) = (p, av).

Vector Field: A vector field is a function F such that F (p) 2 Rn

p
, for

each p 2 Rn. For each p there are numbers F 1(p), F 2(p), · · ·, F n(p) such
that

F (p) = F 1(p) · (e1)p + F 2(p) · (e2)p + · · ·, F n(p) · (en)p.

We thus obtain n component functions F i : Rn ! R.

Note: (1) The vector field F is called continuous, di↵erentiable etc., if
the functions F i are.
(2) A vector field defined only on an open subset of Rn.
(3) Operations on vectors yield operations on vector field when applied
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at each point separately. For example if F and G are vector fields and
f is a function, we define

(F +G)(p) = F (p) +G(p),

hF,Gi(p) = hF (p), G(p)i,
(f · F )(p) = f(p)F (p).

If F1, F2, · · ·, Fn�1 are vector fields on Rn, then we can similarly define

(F1 ⇥ F2 ⇥ · · ·⇥ Fn�1)(p) = F1(p)⇥ F2(p)⇥ · · ·⇥ Fn�1(p).

Gradient, Divergence and Curl: Introduce the formal symbol-
ism

O =
nX

i=1

Di · ei.

The gradient of a scalar field f is defined as Gradf = Of .

The divergence of a vector field F is defined as DivF =
nP

i=1
DiF i.

we can write, symbolically, DivF = hO, F i.
The curl of a vector field F is defined as CurlF = O⇥ F .
If n = 3 we write, in conformity with this symbolism,

(O⇥F )(p) = (D2F
3�D3F

2)(e1)p+(D3F
1�D1F

3)(e2)p+(D1F
2�D2F

1)(e3)p.

2.4 Di↵erential Forms

Di↵erential Forms or k�Forms: A function ! with !(p) 2
⇤k(Rn

p
) is called a k�form on Rn, or simply a di↵erential form where

⇤k(Rn

p
) be the set of all alternating k� tensors which is a subspace of

=k(Rn

p
) and Rn

p
tangent space of Rn at p.

If '1(p),'2(p), · · ·,'n(p) is the dual basis to (e1)p, (e2)p, · · ·, (en)p, then

!(p) =
X

i1<i2<···<ik

!i1,i2,···,ik · ['i1(p) ^ 'i2(p) ^ · · · ^ 'ik
(p)] ,

for certain functions !i1 ,!i2 , · · ·,!ik
.

Note:
1. The form ! is continuous, di↵erentiable, etc. if these functions
!i1 ,!i2 , · · ·,!ik

are continuous, di↵erentiable, etc.
2. Let ! and ⌘ be two k� forms then the sum (!+⌘)(p) = !(p)+⌘(p).
3. The product (f · !)(p) = f · !(p) and f · ! is also written as f ^ !.
4. Let ! be k� form and and ⌘ be l� forms then wedge product ! ^ ⌘
is (k + l)� form given by (! ^ ⌘)(p) = !(p) ^ ⌘(p).
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5. A arbitrary real valued function f is considered to be a 0�form.

Di↵erential Forms or k�Forms for a function f : Rn ! R
: If f : Rn ! R is di↵erentiable, then Df(p) 2 ⇤1(Rn) i.e. Df(p) is
1�form. A 1�form df , defined by

df(p)(vp) = Df(p)(v) (2.1)

Let us consider in particular the 1�forms d⇡i.
Let xi denote the function ⇡i.
Since

dxi(p)(vp) = d⇡i(p)(vp) = D⇡i(p)(v) = vi (2.2)

We see that dx1(p), dx2(p), ···, dxn(p) is just the dual basis to (e1)p, (e2)p, ··
·, (en)p.
Thus every k�form ! can be written

! =
X

i1<i2<···ik

!i1i2···ikdx
i1 ^ dxi2 ^ · · · ^ dxik (2.3)

Note: Thus ! =
P
i1

!i1dx
i1 is 1�form.

! =
P

i1<i2

!i1i2dx
i1 ^ dxi2 is 2�form.

! =
P

i1<i2<i3

!i1i2i3dx
i1 ^ dxi2 ^ dxi3 is 3�form and etc.

Theorem-07: If f : Rn ! R is di↵erentiable , then

df = D1f · dx1 +D2f · dx2 + · · ·Dnf · dxn.

In classical notation, df =
@f

@x1
dx1 +

@f

@x2
x2 + · · ·+ @f

@xn
dxn

Proof:

df(p)(vp) = Df(p)(vp) =
nX

i=1

Dif(p) · vi by equation 1

df(p)(vp) =
nX

i=1

Dif(p) · dxi(p)(vp) by equation 2

This gives

df = D1f · dx1 +D2f · dx2 + · · ·Dnf · dxn (2.4)
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2.5 Pullback Forms

Di↵erential Forms or k�Forms for a function f : Rn ! Rm :
Pullback Forms : Consider a di↵erentiable function f : Rn ! Rm

we have a linear transformation Df(p) : Rn ! Rm. Another minor
modification therfore produces a linear transformation f⇤ : Rn

p
! Rm

f(p)

defined by
f⇤(vp) = (Df(p)(v))f(p) (2.5)

This linear transformation induces a linear transformation f ⇤ : ⇤k(Rm

f(p)) !
⇤k(Rn

p
). If ! is a k�form on Rm we can therefore define a k�form f ⇤!

on Rn by
(f ⇤!)(p) = f ⇤(!(f(p))) (2.6)

i.e. if v1, v2, · · · , vk 2 Rn

p
then

f ⇤!(p)(v1, v2, · · · , vk) = !(f(p)(f⇤(v1), · · · , f⇤(vk)) (2.7)

Thus if ! is a k�form on Rm, it can be pullback to Rn by f ⇤! then
f ⇤! is an alternating k�tensor on Rn

p
and hence f ⇤! is k�form on Rn

and is known as pullback form of ! by f

Theorem-08: If f : Rn ! Rm is di↵erentiable, then

(1) f ⇤(dxi) =
nP

j=1
Djf i · dxj =

nP
j=1

@f i

@xj
dxj.

(2) f ⇤(!1 + !2) = f ⇤(!1) + f ⇤(!2).
(3) f ⇤(g · !) = (g � f) · f ⇤!.
(4) f ⇤(! ^ ⌘) = f ⇤! ^ f ⇤⌘.

Proof(1)

f ⇤(dxi)(p)(vp) = (dxi)(f(p))(f⇤vp) by equation 7

= (dxi)(f(p))(Df(p)(v))f(p) by equation 5

= (dxi)(f(p))

"
nX

j=1

vj ·Djf
1(p),

nX

j=1

vj ·Djf
2(p), · · ·,

nX

j=1

vj ·Djf
m(p)

#

f(p)

=
nX

j=1

vj ·Djf
i(p)

=
nX

j=1

Djf
i(p) · dxj(p)(vp) by equation 2

Thus

f ⇤(dxi) =
nX

j=1

Djf
i · dxj =

nX

j=1

@f i

@xj
dxj (2.8)
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(2) Let !1 and !2 be k�forms. Consider

f ⇤(!1 + !2)(p)(v1, v2, · · · , vk) = (!1 + !2)(f(p))(f⇤(v1), · · · , f⇤(vk)) by equation 7

= !1(f(p))(f⇤(v1), · · · , f⇤(vk)) + !2(f(p))(f⇤(v1), · · · , f⇤(vk))
= f ⇤(!1) + f ⇤(!2)

(3) Consider

f ⇤(g · !)(p)(v1, v2, · · · , vk) = (g · !)(f(p))(f⇤(v1), · · · , f⇤(vk)) by equation 7

= ![g(f(p))](f⇤(v1), · · · , f⇤(vk)) since g is 0-form

= ![g � f(p)](f⇤(v1), · · · , f⇤(vk))
= (g � f) · f ⇤!

(4) Let ! be k� form and and ⌘ be l� forms then wedge product !^ ⌘
is (k + l)� form given by (! ^ ⌘)(p) = !(p) ^ ⌘(p).
Consider

f ⇤(! ^ ⌘)(p)(v1, · · · , vk, vk+1, · · · , vk+l)

= (! ^ ⌘)(f(p))(f⇤(v1), · · · , f⇤(vk), f⇤(vk+1), · · · , f⇤(vk+l)) by equation 7

= !(f(p))(f⇤(v1), · · · , f⇤(vk)) ^ ⌘(f(p))(f⇤(vk+1), · · · , f⇤(vk+l))

= f ⇤! ^ f ⇤⌘

Theorem-09: If f : Rn ! Rn is di↵erentiable, then

f ⇤(hdx1 ^ dx2 ^ · · · ^ dxn) = (h � f)(detf 0
)(dx1 ^ dx2 ^ · · ·dxn).

Proof: By theorm 8(III), we can write,

f ⇤(hdx1 ^ dx2 ^ · · · ^ dxn) = (h � f)f ⇤(dx1 ^ dx2 ^ · · ·dxn).

then it su�ces to show that

f ⇤(dx1 ^ dx2 ^ · · · ^ dxn) = (detf
0
)dx1 ^ dx2 ^ · · ·dxn.

Let p 2 Rn and let A = (aij) be the matrix of f
0
(p). For convenience

we shall omit ”p”. Then

f ⇤(dx1 ^ dx2 ^ · · · ^ dxn)(e1, e2, · · ·, en)
= dx1 ^ dx2 ^ · · · ^ dxn(f⇤e1, f⇤e2, · · ·, f⇤en) by equation 7

= dx1 ^ dx2 ^ · · · ^ dxn(Df1(ei), Df2(ei), · · ·, Dfn(ei)) by equation 5

= dx1 ^ dx2 ^ · · · ^ dxn

 
nX

i=1

ai1ei,
nX

i=1

ai2ei, · · ·,
nX

i=1

ainei

!

= det(aij) · dx1 ^ dx2 ^ · · · ^ dxn(e1, e2, · · ·, en) by theorem 6

= det(f
0
) · dx1 ^ dx2 ^ · · · ^ dxn(e1, e2, · · ·, en)
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Example 1: Let ! = xydx + 2zdy � ydz 2 ⌦k(R3) and ↵: R2 !
R3 is defined as ↵(u, v) = (uv, u2, 3u+ v). Calculate ↵⇤!.

Solution: Instead of thinking of ↵ as a map, think of it as a substition
of varibles:
x = uv, y = u2, z = 3u+ v
Then,

dx =
@x

@u
du +

@x

@v
dv = vdu+ udv and similarly,

dy = 2udu and dz = 3du+ dv
Consider,
! = xydx + 2zdy � ydz = (uv)(u2) (vdu + udv) + 2(3u + v)2udu -
u2(3du+ dv)
= (u3v2 + 9u2 + 4uv) du + (u4v - u2) dv
We conclude that,
↵⇤! = ↵⇤(xydx + 2zdy � ydz) = (u3v2 + 9u2 + 4uv)du + (u4v - u2)
dv.

Example 2: Consider a map F : R3 ! R2 given as,

F (x, y, z) = (x2+yz, exyz)

and 2 form ! = uv3 du ^ dv on R2. Then calculate F ⇤!.

Solution: F ⇤! = (x2+yz)e3xyz d(x2+yz) ^ dexyz

= (x2+yz)e3xyz (2xdx+zdy+ydz) ^ (yzexyzdx+xz exyzdy + xyexyzdz)
= (x2+yz)e4xyz(2x2zdx ^dy+2x2ydx ^ dz+z2ydy ^ dx+xyzdy ^ dz +
y2zdz ^ dx + xyz dz ^ dy)
= (x2+yz)e4xyz((2x2z-yz2)dx ^ dy + (2x2y-zy2)dx ^ dz).

2.6 Chapter End Exercise

1. In R3, let ! = xydx+ 2zdy � ydz and ↵ : R2 �! R3 be given by
↵(u, v) = (uv, u2, 3u+ v). Calculate ↵⇤(!).

2. If f : Rn ! R is di↵erentiable then show that df =
@f

@x1
dx1 +

@f

@x2
x2 + · · ·+ @f

@xn
dxn
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Chapter 3

Exterior Derivatives

Unit Structure :
3.1 Objective
3.2 Exterior Derivative
3.3 Closed and Exact Forms
3.4 Chapter End Exercise

3.1 Objectives

After going through this chapter you will be able to:

1. Define and calculate Exterior Derivative.

2. Learn properties of Exterior Derivative.

3. Identify closed and exact forms.

4. Learn the concept of Star Shaped Set.

3.2 Exterior Derivatives

The operator d which changes 0�forms into 1�forms. If

! =
X

i1<i2<i3···ik

!i1,i2,···ikdx
i1 ^ dxi2 ^ · · · ^ dxik

be a given k�form, we define a (k+1)�form d! which is the di↵erential
of !, by

d! =
X

i1<i2<i3···ik

d!i1,i2,···ik ^ dxi1 ^ dxi2 ^ · · · ^ dxik
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d! =
X

i1,i2,···ik

nX

↵=1

D↵(!i1,i2,···ik) · dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik (3.1)

Theroem-10
(1) d(! + ⌘) = d! + d⌘.
(2) If ! is a k�form and ⌘ is a l�form, then

d(! ^ ⌘) = d! ^ ⌘ + (�1)k! ^ d⌘.
(3) Cocycle condition: d(d!) = 0. Briefly, d2 = 0.
(4) If ! is a k�form on Rm and f : Rn ! Rm is di↵erentiable,

then f ⇤(d!) = d(f ⇤!).

Proof: (1) Let ! and ⌘ are k�form. From equation (3), We have

! =
X

i1<i2<i3···<ik

!i1,i2,···ikdx
i1 ^ dxi2 ^ · · · ^ dxik

and

⌘ =
X

i1<i2<i3···ik

⌘i1,i2,···<ik
dxi1 ^ dxi2 ^ · · · ^ dxik

From equation (9), We have

d! =
X

i1<i2<···<ik

nX

↵=1

D↵(!i1,i2,···ik) · dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik

d⌘ =
X

i1<i2<···<ik

nX

↵=1

D↵(⌘i1,i2,···ik) · dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik

)

d(!+⌘) =
X

i1<i2<···<ik

nX

↵=1

D↵(!i1,i2,···ik+⌘i1<i2<···<ik
)·dx↵^dxi1^dxi2^···^dxik

d(! + ⌘) =
X

i1<i2<···<ik

nX

↵=1

D↵(!i1,i2,···ik) · dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik

+
X

i1<i2<···<ik

nX

↵=1

D↵(⌘i1,i2,···ik) · dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik

d(! + ⌘) = d(!) + d(⌘)

(2) Let ! is a k�form and ⌘ is a l�form.
Claim: d(! ^ ⌘) = d! ^ ⌘ + (�1)k! ^ d⌘.
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Case I: Let ! and ⌘ both are 0�form. Then ! = f and ⌘ = g for some
scalar field f and g. Consider

d(! ^ ⌘) = d(f ^ g) =
nX

i=1

Di(f · g)dxi

=
nX

i=1

(Dif) · gdxi +
nX

i=1

f · (Dig)dx
i

= (df) ^ g + f ^ (dg)

= (df) ^ g + (�1)0f ^ (dg)

Case II: If ! = dxi1 ^ dxi2 ^ · · · ^ dxik and
⌘ = dxj1 ^ dxj2 ^ · · · ^ dxjl then
since D(1) = 0 all terms vanish, formula is true.

Case III: Let ! is a 0�form and ⌘ is a l�form.
Since ! is a 0�form, let ! = f , for some scalar field f .
Since ⌘ is a l�form, we have

⌘ =
X

j1<j2<j3···<jl

⌘j1,j2,···jldx
j1 ^ dxj2 ^ · · · ^ dxjl

d(! ^ ⌘) = d(f ^ ⌘) = d(f · ⌘)

=
X

j1<j2<j3···<jl

nX

�=1

D�(f · ⌘j1,j2,···jl)dx� ^ dxj1 ^ dxj2 ^ · · · ^ dxjl

=
X

j1<j2<j3···<jl

nX

�=1

[(D�f) · ⌘j1,j2,···jl + f · (D�⌘j1,j2,···jl)]dx
� ^ dxj1 ^ dxj2 ^ · · · ^ dxjl

=
X

j1<j2<j3···<jl

nX

�=1

[(D�f) · ⌘j1,j2,···jldx� ^ dxj1 ^ dxj2 ^ · · · ^ dxjl

+ f · (D�⌘j1,j2,···jl)dx
� ^ dxj1 ^ dxj2 ^ · · · ^ dxjl ]

= df ^ ⌘ + f ^ d⌘

= df ^ ⌘ + (�1)0f ^ d⌘

Case IV: Let ! is a k�form and ⌘ is a l�form. Let ! is k�form, We
have

! =
X

i1<i2<i3···<ik

!i1,i2,···ikdx
i1 ^ dxi2 ^ · · · ^ dxik
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Since ⌘ is a l�form, we have

⌘ =
X

j1<j2<j3···<jl

⌘j1,j2,···jldx
j1 ^ dxj2 ^ · · · ^ dxjl

)
! ^ ⌘ = (

X

i1<i2<i3···<ik

!i1,i2,···ikdx
i1 ^ dxi2 ^ · · · ^ dxik)

^(
X

j1<j2<j3···<jl

⌘j1,j2,···jldx
j1 ^ dxj2 ^ · · · ^ dxjl)

)

!^⌘ =
X

i1<i2<i3···<ik

X

j1<j2<j3···<jl

(!i1,i2,···ik ·⌘j1,j2,···jl)dxi1^dxi2^···^dxik^dxj1^dxj2^···^dxjl

d(! ^ ⌘) =
X

i1<i2<···<ik

X

j1<j2<···<jl

nX

↵=1

D↵(!i1,i2,···ik · ⌘j1,j2,···jl)

dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik ^ dxj1 ^ dxj2 ^ · · · ^ dxjl

=
X

i1<i2<···<ik

X

j1<j2<···<jl

nX

↵=1

[D↵(!i1,i2,···ik) ^ (⌘j1,j2,···jl) + (!i1,i2,···ik) ^D↵(⌘j1,j2,···jl)]

dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik ^ dxj1 ^ dxj2 ^ · · · ^ dxjl

=
X

i1<i2<···<ik

X

j1<j2<···<jl

nX

↵=1

[D↵(!i1,i2,···ik) ^ (⌘j1,j2,···jl)

dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik ^ dxj1 ^ dxj2 ^ · · · ^ dxjl

+ (!i1,i2,···ik) ^D↵(⌘j1,j2,···jl)dx
↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik ^ dxj1 ^ dxj2 ^ · · · ^ dxjl ]

=
X

i1<i2<···ik

X

j1<j2<···jl

nX

↵=1

[D↵(!i1,i2,···ik)dx
↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik ]

^ [(⌘j1,j2,···jl)dx
j1 ^ dxj2 ^ · · · ^ dxjl ]

+ (�1)k[(!i1,i2,···ik)dx
i1 ^ dxi2 ^ · · · ^ dxik ] ^ [D↵(⌘j1,j2,···jl)dx

↵ ^ dxj1 ^ dxj2 ^ · · · ^ dxjl ]

d(! ^ ⌘) = d! ^ ⌘ + (�1)k! ^ d⌘

The sign (�1)k added since dxi1 ^ dxi2 ^ · · · ^ dxik is k�form and
D↵(⌘j1,j2,···jl) is 1�form.

(3) Let ! is k�form. From equation (3), We have

! =
X

i1<i2<i3···ik

!i1,i2,···ikdx
i1 ^ dxi2 ^ · · · ^ dxik

From equation (9), We have

d! =
X

i1,i2,···ik

nX

↵=1

D↵(!i1,i2,···ik) · dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik

32

mu
no
tes
.in



CHAPTER 3. EXTERIOR DERIVATIVES

Operating d again on d! we have

d(d!) =
X

i1<i2<···ik

nX

↵=1

nX

�=1

D↵,�(!i1i2···ik)dx
�^dx↵^dxi1^dxi2^ · · ·^dxik .

In this sum the terms
D↵,�(!i1i2···ik)dx

� ^ dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik and
D�,↵(!i1i2···ik)dx

↵ ^ dx� ^ dxi1 ^ dxi2 ^ · · · ^ dxik cancel in pairs since

D↵,�(!i1i2···ik)dx
� ^ dx↵ ^ dxi1 ^ dxi2 ^ · · · ^ dxik

= �D�,↵(!i1i2···ik)dx
↵ ^ dx� ^ dxi1 ^ dxi2 ^ · · · ^ dxik

and hence

d(d!) = 0

(4) Claim: If ! is a k�form on Rm and f : Rn ! Rm is di↵eren-
tiable, then
f ⇤(d!) = d(f ⇤!).
To prove this result let’s apply induction on k.

Step I: Subclaim: Result is true when k = 0, i.e. if ! is a 0�
form.
Since ! is a 0� form, ! = f for some scalar field f .
Consider f ⇤(d!) = f ⇤(df) = d(f ⇤(f)) == d(f ⇤!).

Step II: Suppose result is true when ! is a k�form.
i.e. if ! is a k�form on Rm then f ⇤(d!) = d(f ⇤!).

Subclaim: Result is true when ! is (k+1)�form of the type !^dxi.
Consider

f ⇤(d(! ^ dxi)) = f ⇤(d! ^ dxi + (�1)k! ^ d(dxi)) by theorm 10(II)

= f ⇤(d! ^ dxi) by theorm 10(III)

= f ⇤(d!) ^ f ⇤(dxi) by theorm 8(IV)

= d(f ⇤!) ^ f ⇤(dxi)) result is true for k-form

= d(f ⇤(! ^ dxi))

Example I: Calculate exterior derivatives of the 1� forms z2dx ^
dy + (z2 + 2y)dx ^ dz in R3.

Solution: Consider ! = z2dx^dy+(z2+2y)dx^dz be given 2�forms.
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Consider

d! = 2zdz ^ dx ^ dy + (2zdz + 2dy) ^ dx ^ dz

d! = �2zdx ^ dz ^ dy + 2zdz ^ dx ^ dz + 2dy ^ dx ^ dz

d! = 2zdx ^ dy ^ dz � 2zdz ^ dz ^ dx� 2dx ^ dy ^ dz

d! = 2zdx ^ dy ^ dz � 0� 2dx ^ dy ^ dz

d! = 2(z � 1)dx ^ dy ^ dz

Example II: Calculate exterior derivatives of fdg where f and g are
functions.

Solution: Let f = f(x, y, z) and g = g(x, y, z)
) dg = gxdx+ gydy + gzdz
Thus we have fdg = f(x, y, z) · (gxdx+ gydy + gzdz)
Consider

d(f · dg) = df ^ dg + f ^ d(dg) f is 0� form

= df ^ dg + f ^ d(dg) since d(dg) = 0

= (fxdx+ fydy + fzdz) ^ (gxdx+ gydy + gzdz)

= fxdx ^ (gxdx+ gydy + gzdz) + fydy ^ (gxdx+ gydy + gzdz)

+ fzdz ^ (gxdx+ gydy + gzdz)

= fx · gxdx ^ dx+ fx · gydx ^ dy + fx · gzdx ^ dz + fy · gxdy ^ dx

+ fy · gydy ^ dy + fy · gzdy ^ dz + fz · gxdz ^ dx+ fz · gydz ^ dy + fz · gzdz ^ dz

= 0 + fx · gydx ^ dy + fx · gzdx ^ dz � fy · gxdx ^ dy + 0

+ fy · gzdy ^ dz � fz · gxdx ^ dz � fz · gydy ^ dz + 0

= (fx · gy � fy · gx)dx ^ dy + (fx · gz � fz · gx)dx ^ dz + (fy · gz � fz · gy)dy ^ dz

Example III: If F is a vector field on R3, define the forms

!1
F
= F 1dx+ F 2dy + F 3dz

!2
F
= F 1dy ^ dz + F 2dz ^ dx+ F 3dx ^ dy

Prove that
(1) df = !1

grad f
where f is a scalar field in R3

(2) d(!1
F
) = !2

curl F

(3) d(!2
F
) = (div F )dx ^ dy ^ dz

(4) curl grad f = 0
(5) div curl F = 0

Solution:

(1) Let f = f(x, y, z) be a scalar field in R3.
)

df =
@f

@x
dx+

@f

@y
dy +

@f

@z
dz
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where (
@f

@x
,
@f

@y
,
@f

@z
) = grad f

by definition of !1
F
, we can write df as df = !1

grad f
.

(2) Let !1
F
= F 1dx+ F 2dy + F 3dz be a 1�form. Consider

d(!1
F
) = F 1

x
dx ^ dx+ F 1

y
dy ^ dx+ F 1

z
dz ^ dx

+ F 2
x
dx ^ dy + F 2

y
dy ^ dy + F 2

z
dz ^ dy

+ F 3
x
dx ^ dz + F 3

y
dy ^ dz + F 3

z
dz ^ dz

= 0� F 1
y
dx ^ dy + F 1

z
dz ^ dx

+ F 2
x
dx ^ dy + 0� F 2

z
dy ^ dz

� F 3
x
dz ^ dx+ F 3

y
dy ^ dz ++0

= (F 2
x
� F 1

y
)dx ^ dy + (F 3

y
� F 2

z
)dy ^ dz + (F 1

z
� F 3

x
)dz ^ dx

where ((F 2
x
� F 1

y
), (F 3

y
� F 2

z
), (F 1

z
� F 3

x
)) = curl F

by definition of !2
F
, we can write d(!1

F
) as d(!1

F
) = !2

curl F
.

(3) Let !2
F
= F 1dy ^ dz + F 2dz ^ dx+ F 3dx^ dy be given 2�form.

Consider

d(!2
F
) = dF 1 ^ dx ^ dy ^ dz + dF 2 ^ dy ^ dz ^ dx+ dF 3 ^ dz ^ dx ^ dy

= dF 1 ^ dx ^ dy ^ dz + dF 2 ^ dx ^ dy ^ dz + dF 3 ^ dx ^ dy ^ dz

= (dF 1 + dF 2 + dF 3) ^ dx ^ dy ^ dz

= (div F )dx ^ dy ^ dz

(4) By (2), we have !2
curl F

= d(!1
F
)

Replace F by grad f , we obtain
!2
curl grad f

= d(!1
grad f

)
By (1), we have !2

curl grad f
= d(d(f)) = 0

) curl grad f = 0.

(5) By (3), we have (div F )dx ^ dy ^ dz = d(!2
F
)

Replace F by curl F , we obtain
(div curl F )dx ^ dy ^ dz = d(!2

curl F
)

By (2), we have (div curl F )dx ^ dy ^ dz = d(d(!1
F
)) = 0

) div curl F = 0.

Example 1: Let ↵ = xdx+ ydy + zdz, � = zdx+ xdy + ydz and � =
xydz in the following problems.

1. Calculate
(a) ↵ ^ �
(b) ↵ ^ �
(c) � ^ �
(d) (↵+�) ^ (↵+�)
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2. Calculate
(a) d↵
(b) d�
(c) d(↵ + �)
(d) d(x↵)

Example 2: Consider the forms,
! = xydx+ 3dy � yzdz,
⌘ = xdx - yz2 dy + 2xdz in R3.
Verify by direct computation that
d(d!) = 0 and d(! ^ ⌘) = (d!) ^ ⌘ - ! ^ d⌘.

Example 3: In R3, let ! = xydx+ 2zdy � ydz
Let ↵: R2 ! R3 be given by the equation,
↵(u, v) = (uv, u2, 3u+ v)
Calculate d!, ↵⇤!, ↵⇤(d!) and d(↵⇤!) directly.

3.3 Closed and Exact Form

Closed Form: A form ! is called closed if d! = 0.

Exact Form: A form ! is called exact if ! = d⌘, for some ⌘.

Note: Theorem 10(III) shows that every exact form is closed since
d! = d(d⌘) = 0.

Note: Is every closed form is exact?
In general every closed form is not exact.
If ! is the 1�form Pdx+Qdy on R2 and is closed, then

d! = (D1Pdx+D2Pdy) ^ dx+ (D1Qdx+D2Qdy) ^ dy

d! = D1Pdx ^ dx+D2Pdy ^ dx+D1Qdx ^ dy +D2Qdy ^ dy

d! = 0�D2Pdx ^ dy +D1Qdx ^ dy + 0

d! = (D1Q�D2P )dx ^ dy

Thus since ! is closed d! = 0 ) 0 = (D1Q � D2P )dx ^ dy then
D1Q = D2P Thus we have ! = Pdx+Qdy is exact if D1Q = D2P i.e.
@Q

@x
=

@P

@y
.

Example II: Let A = R2 � 0 and

! =
�y

x2 + y2
dx+

x

x2 + y2
dy
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in A. Show that, ! is closed but not exact.

Star Shaped Set: Suppose that ! =
nP

i=1
!idxi is a 1� form on Rn. If

! is exact then ! = df =
nP

i=1
Difdxi with assumption f(0) = 0. We

have

f(x) =

1Z

0

d

dt
f(tx)dt

=

1Z

0

nX

i=1

Dif(tx)x
idt

=

1Z

0

nX

i=1

!i(tx)x
idt

) To find f , for a given ! such that ! = df , we consider the function
I!, defined by

I!(x) =

1Z

0

nX

i=1

!i(tx) · xidt,

Note that the I! is well defined if ! is defined only on an open set
A ⇢ Rn with the property that wheneverx 2 A, the line segment from
0 to x is contained in A. Such an open set is called star shaped with
respect to 0.

Theorem-11 : Poincaré Lemma If A ⇢ Rn is an open set star-
shaped with respect to 0, then every closed form on A is exact.

Proof: Let ! be l�form

! =
X

i1<i2<···il

!i1i2···ildx
i1 ^ dxi2 ^ · · · ^ dxil .

Define a function (l � 1)�forms I from l�forms ! (for each l), such
that I(0) = 0 and ! = I(d!) + d(I!) for any form !.
Since A is star-shaped we can define

I!(x) =
X

i1<i2<···il

lX

↵=1

(�1)↵�1

0

@
1Z

0

tl�1!i1i2···il(tx)dt

1

Axi↵dxi1 ···^ddxi↵^···^dxil

(3.2)
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Note that the symbol ddxi↵ indicates that it is omitted. Now let’s con-
sider d(I!(x)), note that

d[(!i1i2···il(tx))x
i↵dxi1 · · · ^ddxi↵ ^ · · · ^ dxil ]

= (!i1i2···il(tx))d[x
i↵ ] ^ dxi1 · · · ^ddxi↵ ^ · · · ^ dxil

+ d(!i1i2···il(tx))x
i↵dxi1 · · · ^ddxi↵ ^ · · · ^ dxil

= (�1)↵�1 · l · (!i1i2···il(tx))dx
i1 · · · ^dxi↵ ^ · · · ^ dxil

+
nX

j=1

t ·Dj(!i1i2···il(tx))x
i↵dxi1 ^ · · · ^ ddxi↵ ^ · · · ^ dxil

since ↵ running from 1 to l and

(�1)↵�1 added because of (↵� 1) permutations of dxi↵

hence d(I!(x)) becomes

d(I!(x)) = l ·
X

i1<i2<···il

0

@
1Z

0

tl�1!i1i2···il(tx)dt

1

A dxi1 · · · ^dxi↵ ^ · · · ^ dxil

+
X

i1<i2<···il

lX

↵=1

nX

j=1

(�1)↵�1

0

@
1Z

0

tlDj!i1i2···il(tx)dt

1

Axi↵dxi1 · · · ^ddxi↵ ^ · · · ^ dxil

(11)

Using equation (9), consider d! as

d! =
X

i1<i2<···il

nX

j=1

Dj(!i1i2···il)dx
j ^ dxi1 ^ dxi2 ^ · · · ^ dxil

Applying I to the (l + 1)�form d!, as per definition of I we obtain
l�form as

I(d!) =
X

i1<i2<···il

nX

j=1

0

@
1Z

0

tlxjDj(!i1i2···il)(tx)dt

1

A dxi1 ^ · · · ^ dxi↵ ^ · · · ^ dxil

�
X

i1<···il

nX

j=1

lX

↵=1

(�1)↵�1

0

@
1Z

0

tlDj(!i1i2···il)(tx)dt

1

Axi↵dxj ^ dxi1 ^ · · · ^ ddxi↵ ^ · · · ^ dxil

(12)
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Adding equations (11) and (12), the triple sums cancel, and we obtain

d(I!) + d(d!) =
X

i1<i2<···il

l ·

0

@
1Z

0

tl�1(!i1i2···il)(tx)dt

1

A dxi1 ^ dxi2 ^ · · · ^ dxil

+
X

i1<i2<···il

nX

j=1

0

@
1Z

0

tlxjDj(!i1i2···il)(tx)dt

1

A dxi1 ^ dxi2 ^ · · · ^ dxil

=
X

i1<i2<···il

0

@
1Z

0

d

dt
[tl(!i1i2···il)(tx)]dt

1

A dxi1 ^ dxi2 ^ · · · ^ dxil

=
X

i1<i2<···il

(!i1i2···il) dx
i1 ^ dxi2 ^ · · · ^ dxil

= !.

Thus we have ! = d(I!) + d(d!) since ! is closed d! = 0.
Thus ! = d(I!) hence ! is exact.

3.4 Chapter End Exercise

1. Is the 1�form ! = (x2+ y2)dx+2xydy closed and exact? Justify
your answer.

2. Let ! be a any 3�form. Prove or disprove: d(d!) = 0.

3. Let A = R2 � 0 and ! =
(�ydx+ xdy)

(x2 + y2)
in A. Prove or disprove:

! is closed and exact in A.

4. In R3, let ! = xydx+ 2zdy � ydz and ↵ : R2 �! R3 be given by
↵(u, v) = (uv, u2, 3u+ v). Calculate ↵⇤(d!).

5. State the necessary condition for every closed form on A ⇢ Rn to
be exact. Is the 1�form ! = (1+ ex)dy + ex(y� x)dy closed and
exact? Justify your answer.

6. If ! is a 0�form and ⌘ is a l�form, then show that d(! ^ ⌘) =
d! ^ ⌘ + (�1)k! ^ d⌘.

7. If F is a vector field on R3. Let !1
F
= F 1dx+ F 2dy + F 3dz and

!2
F
= F 1dy^dz+F 2dz^dx+F 3dx^dy then show that d(!1

F
) =

!2
curl F

.

8. Show that every exact form is closed. Is the converse true? Justify
your answer.
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Chapter 4

Basics of Submanifolds of Rn

Unit Structure :
4.1 Objective
4.2 Basic Preliminaries
4.3 Manifolds in Rn

4.4 Manifolds in Rn without boundary
4.5 Manifolds in Rn with boundary
4.6 Fields and Forms on Manifolds
4.7 Orientation of Manifolds
4.8 Chapter End Exercise

4.1 Objectives

After going through this chapter you will be able to:

1. Define a manifolds with and without boundary.

2. Learn the concepts of Coordinate system and M conditions.

3. Learn the properties of tangent space of manifolds and vector field
on manifolds.

4. Identify orientation of Manifolds.

4.2 Basic Preliminaries

Smooth map: A mapping f of an open set U ⇢ Rn into Rm is
called smooth if it has continuous partial derivatives of all orders.

Note: For partial derivatives domain of f is essentially required to be
open.
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Di↵eomorphism: A smooth map f : X �! Y of subsets of two eu-
clidean spaces is a di↵eomorphism if it is bijective and if the inverse
f�1 : Y �! X is also smooth. X and Y are di↵eomorphic if such a
map exists.
OR
If U and V are open sets in Rn, a di↵erentiable function h : U ! V
with a di↵erntiable inverse h�1 : V ! U , will be called a di↵eomor-
phism.

(“Di↵erntiable”hencefoth, means “C1”.)

Exercise: Give an example of di↵eromorphism.

4.3 Manifolds in Rn

A subset M of Rn is called a k�dimensional manifold in Rn if for
every point x 2 M , the following condition is satisfied
Condition M: If there is an open set U containing x, an open set
V ⇢ Rn, and a di↵eomorphism h : U ! V such that

h(U \M) = V \ (Rk ⇥ {0}) = {y 2 V : yk+1 = yk+2 = · · · = yn = 0}.

i.e. (y1, · · · , yk, yk+1, · · · , yn) �! (y1, · · · , yk, 0, · · · , 0)
OR
A subset M of a euclidean space Rn is known as a k�dimensional man-
ifold if it is locally di↵eomorphic to Rk.
Note that, local referring to behaviour only in some neighborhood of a
point.

Submanifolds: If M1 and M2 are both manifolds in Rn and M1 ⇢
M2 then M1 is known as submanifold of M2.

Note:
(1) M is itself submanifold of Rn.
(2) Any open set of M is submanifold of M .
(3) A point in Rn is a 0�dimensional manifolds.
(4) An open subset in Rn is an n�dimensional manifolds.

Theorem-01: Let A ⇢ Rn be open and let g : A ! Rp be a di↵eren-
tiable function such that g

0
(x) has rank p whenever g(x) = 0.

Then g�1(0) is an (n� p)�dimensional manifold in Rn.

Proof: Step I: Consider following theorem from Real Analysis
Subclaim: Theorem: Let f : Rn ! Rp be a continuously di↵eren-
tiable function in an open set containing a where p  n. If f(a) = 0
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and the p ⇥ n matrix Djf i(a) has rank p then there is an open set
A ⇢ Rn containing a and a di↵erentiable function h : A ! Rn with
di↵erentiable inverse such that

foh(x1, x2, · · · , xn) = (xn�p+1, xn�p+2, · · · , xn).

Add proof of above theorem.

Step II: By applying above theorem and by definition of manifold we
can conclude that g�1(0) is an (n� p)�dimensional manifold in Rn.

Example: Show that the n�Sphere Sn, defined as {x 2 Rn+1 : |x| =
1} is n�dimensional manifold.

Solution: Apply above theorem (1) by considering Sn = g�1(0), where
g : Rn+1 ! R is defined by g(x) = |x|2 � 1.
Note that n is replaced by n+ 1,
p = 1,
g(0) = 0.
By theorem (1), Sphere Sn is (n � p) = (n + 1 � 1) = n dimensional
manifold.

Theorem-02: A subset M of Rn is a k�dimensional manifold if and
only if for each point x 2 M the following “coordinate condition”is
satisfied:

Coordinate condition C: There is an open set U containing x, an
open set W ⇢ Rk, and a 1� 1 di↵erentiable function f : W ! Rn such
that

(1) f(W ) = M \ U,
(2) f

0
(y) has rank k for each y 2 W ,

(3) f�1 : f(W ) ! W is continuous.
note that, such a function f is called a coordinate system around x.

Proof: Step I: Assume that M is a k�dimensional manifold in Rn.
Claim: Each point x 2 M satisfies the coordinate condition.
Since M is k�dimensional manifold in Rn by definition each point
x 2 M satisfies the following condition

If there is an open set U containing x, an open set V ⇢ Rn, and a
di↵eomorphism h : U ! V such that

h(U \M) = V \ (Rk ⇥ {0}) = {y 2 V : yk+1 = yk+2 = · · · = yn = 0}.

Let W = {a 2 Rk : (a, 0) 2 h(M)}.
Define f : W ! Rn by f(a) = h�1(a, 0).
Clearly
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(1) Since h : U ! V ) h�1(V ) = U and
(a, 0) 2 h(M) ) h�1(a, 0) = M
hence f(W ) = M \ U ,
(2) Since h is di↵omorphism, f�l is continuous and
(3) If H : U ! Rk is defined by H(z) = (h1(z), · · ·, hk(z)),
then H(f(y)) = y for all y 2 W (* Since f = h�1)
Therefore on di↵erentiating by using chain rule we obtain
H

0
(f(y)) · f 0(y) = I and f

0
(y) must have rank k.

Thus each point x 2 M satisfies the coordinate conditions.

Step II: Suppose that f : W ! Rn satisfies coordinate conditions.
Claim: M is a k�dimensional manifold in Rn.
Let f(y) = x.
Assume that the matrix (Djf i(y)), 1  i, j  k has a non-zero deter-
minant.
Define g : W ⇥ Rn�k ! Rn by g(a, b) = f(a) + f(0, b).
Then detg

0
(a, b) = det (Djf i(a)),

so det g
0
(y, 0) 6= 0.

Now lets use Inverse Function Theorem as

Inverse Function Theorem: Suppose that f : Rn �! Rn is continu-
ously di↵erentiable in an open set containing a and detf 0(a) 6= 0. Then
there is an open set V containing a and open set W containing f(a)
such that f : V �! W has a continuous inverse f�1 : W �! V which
is di↵erentiable and for all y 2 W satisfies (f�1)0(y) = [f 0(f�1(y))]�1.

By Inverse Function Theorem
There is an open set V

0
1 containing (y, 0) and an open set V

0
2 contain-

ing g(y, 0) = x such that g : V
0
1 ! V

0
2 has a di↵erentiable inverse

h : V
0
2 ! V

0
1 .

By third coordinate condition, f�1 is continuous,
{f(a) : (a, 0) 2 V

0
1} = U \ f(W ) for some open set U (By first coordi-

nate condition).
Let V2 = V

0
2 \ U and V1 = g�1(V 2).

Then V2 \ M is exactly {f(a) : (a, 0) 2 V1} = {g(a, 0) : (a, 0) 2 V1},
where M ⇢ Rn So

h(V2 \M) = g�1(V2 \M) since h = g�1

= g�1({g(a, 0) : (a, 0) 2 V1}) = ({(a, 0) : (a, 0) 2 V1})
= V1 \ (Rk ⇥ {0}).

hence by definition M is a k�dimensional manifold in Rn.

Note: If f1 : W1 ⇢ Rk �! Rn and f2 : W2 ⇢ Rk �! Rn are two
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coordinate systems, then

f�1
2 � f1 : f�1

1 (f2(W2)) ! Rk

is di↵erentiable with non-singular Jacobian. If fact, f�1
2 (y) consists of

the first k components of h(y).

4.4 Manifolds of Rn without boundary

Manifolds in Rn without boundary: Let k > 0. Suppose that
M is a subspace of Rn having the following property:
For each p 2 M , there is an open set V containing p that is open in M ,
a set U that is open in Rk, and a continuous map f : U ! V carrying
U onto V in a 1� 1 fashion such that

(1) f is of class Cr

(2) Df(x) has rank k for each x 2 U ,
(3) f�1 : V ! U is continuous.

Then M is called a k� manifold without boundary Rn of class Cr. The
map f is called a coordinate patch on M about p.

Example 1: Let ↵ : R �! R2 be given by ↵(t) = (t3, t2). Let M
be image set of ↵. Is M 1�manifold without boundary in R2? Justify
your answer.

Solution: Let ↵ : R �! R2 be given by ↵(t) = (t3, t2) is a 1� 1 map.
Clearly
(1) ↵ is of class C1

(2) ↵�1 : V ! U is continuous where U is open in R and V is open in R2,
(3) D↵(t) = (3t2, 2t) has not rank 1 at t = 0.

hence M not 1�manifold without boundary in R2.

Example 2: Let � : R2 �! R3 be given by �(x, y) = (x(x2 +
y2), y(x2 + y2), (x2 + y2), ). Let M be image set of �. Is M 2�manifold
without boundary in R3? Justify your answer.

Solution: Let � : R2 �! R3 be given by �(x, y) = (x(x2 + y2), y(x2 +
y2), (x2 + y2), ) is a 1� 1 map. Clearly
(1) � is of class C1

(2) ��1 : V ! U is continuous where U is open in R and V is open in R2,

(3) D�(t) =


(x2 + y2) + 2x2 2xy 2x

2xy (x2 + y2) + 2y2 2y

�

D�(t) has not rank 2 at 0.
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hence M not 2�manifold without boundary in R3.

Example 3: Let � : R �! R2 be given by �(t) = (sin 2t)(| cos t |
, sin t) for 0 < t < ⇡. Let M be image set of �. Is M 1�manifold
without boundary in R3? Justify your answer.

Solution: Let � : R �! R2 be given by ↵(t) = (sin 2t)(| cos t |, sin t)
is a 1� 1 map for 0 < t < ⇡⇡. Clearly
(1) � is of class C1

(2) D�(t) = (sin 2t)(| sin t |, cos t) + (2 cos 2t)(| cos t |, sin t) has rank 1 for all t.

(3) Since image of smaller interval U which contains
⇡

2
is not open in M hence

��1 : V ! U is not continuous where V is open in R2,

hence M not 1�manifold without boundary in R3.

M Uo 

T/2 0 
T 

4.5 Manifolds of Rn with boundary

Half Space: The half-space Hk ⇢ Rk is defined as {x 2 Rk : xk �
0}.

Manifold with Boundary: A subset M of Rn is a k�dimensional
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manifold-with boundary if for every point x 2 M either condition (M)
or the following condition is satisfied:

Condition M’: There is an open set U containing x, an open set
V ⇢ Rn, and a di↵eomorphism h : U ! V such that

h(U\M) = V \(Hk⇥{0}) = {y 2 V : yk � 0, and yk+1 = yk+2 = ··· = yn = 0}

and h(x) has kth component = 0.
The set of all points x 2 M for which condition M 0 is satisfied is called
the boundary of M and denoted @M .

Note: Conditions (M) and (M 0) cannot both hold for the same x.

Examples: (1) Let ↵ : R �! R2 be the map ↵(t) = (t, t2). Let
M be image set of ↵. Show that M 1�manifold in R2 covered by the
single coordinate patch ↵.

(2) Let � : H1 �! R2 be the map �(t) = (t, t2). Let N be image set of
�. Show that N is 1�manifold in R2.

(3) Show that unit circle S1 is a 1�manifold in R2.

(4) Show that the function ↵ : [0, 1] �! S1 given by ↵(t) = (cos 2⇡t, sin 2⇡t)
is not a coordinate patch on S1.

4.6 Fields and Forms on Manifolds

Tangent Space of M : Let M be a k�dimensional manifold in Rn

and let
f : W ! Rn be a coordinate system around x = f(a).
Since f

0
(a) has rank k, the linear transformation f⇤ : Rk

a
! Rn

x
, is 1�1,

and f⇤(Rk

a
) is a k�dimensional subspace of Rn

x
.

If g : V ! Rn is another coordinate system, with x = g(b), then

g⇤(Rk

b
) = f⇤(f

�1 � g) ⇤ (Rk

b
) = f⇤(Rk

a
)

Thus the k�dimensional subspace f⇤(Rk

a
) does not depend on the co-

ordinate system f . This subspace is denoted Mx, and is called the
tangent space of M at x.

Note: There is a natural inner product Tx, on Mx, induced by that on
Rn

x
,

if v, w 2 Mx, define Tx(v, w) = hv, wix.

Vector field on M : Suppose that A is an open set containing M ,
and F is a di↵erentiable vector field on A such that F (x) 2 Mx, for
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each x 2 M . If f : W ! Rn is a coordinate system, there is a unique
di↵erentiable vector field G on W such that f⇤(G(a)) = F (f(a)) for
each a 2 W . such a function F is called a vector field on M .

Note: (1) we define F to be di↵erentiable if G is di↵erentiable.
(2) Note that our definition does not depend on the coordinate system
chosen.
if g : V ! Rn and g⇤(H(b)) = F (g(b)) for all b 2 V , then the component
functions of H(b) must equal the component functions of G(f�1(g(b))),
so H is di↵erentiable if G is di↵erentiable.

p�form on M : A function ! which assigns !(x) 2 ⇤p(Mx) for each
x 2 M is called a p�form on M .
If f : W ! Rn is a coordinate system, then f ⇤! is a p�form on W .

Note: (1) We define ! to be di↵erentiable if f ⇤! is di↵erentiable.
(2) A p�form ! on M can be written as

! =
X

i1<i2<···<ip

!i1i2···ipdx
i1 ^ dxi2 ^ · · · ^ dxip .

here the functions !i1i2···ip are defined only on M .

Theorem-03: There is a unique (p+ 1)�form d! on M such that for
every coordinate system f : W ! Rn we have f ⇤(d!) = d(f ⇤!).

Proof: If f : W ! Rn is a coordinate system with x = f(a) and
v1, v2, · · ·, vp+1 2 Mx, there are unique !1,!2, · · ·,!p+1 in Rk

a
such that

f ⇤ (!i) = vi.
Define d!(x)(v1, v2, · · ·, vp+1) = df ⇤(!)(a)(!1,!2, · · ·,!p+1).
One can check that this definition of d!(x) does not depend on the
coordinate system f , so that d! is well-defined.
Moreover, it is clear that d! has to be defined this way, so d! is unique.
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4.7 Orientable Manifolds

Consistent: For each tangent space Mx of a manifold M , it is
necessary to choose an orientation µx. Such choices are called consistent
provided that for every coordinate systems f : W ! Rn and a, b 2 W
the relation

[f⇤((e1)a), f⇤((e2)a), · · ·, f⇤((ek)a) = µf(a)

holds if and only if

[f⇤((e1)b), f⇤((e2)b), · · ·, f⇤((ek)b) = µf(b).

Orientation Preserving: Suppose orientations µx have been cho-
sen consistently. If f : W ! Rn is a coordinate system such that

[f⇤((e1)a), f⇤((e2)a), · · ·, f⇤((ek)a) = µf(a)

for one, and hence for every a 2 W , then f is called orientation-
preserving.

Note: (1) If f is not orientation-preserving and T : Rk ! Rk is a linear
transformation with det T = �1, then f � T is orientation-preserving.
(2) Therefore there is an orientation-preserving coordinate system around
each point.
(3) If f and g are orientation-preserving and x = f(a) = g(b), then the
relation

[f⇤((e1)a), f⇤((e2)a), ···, f⇤((ek)a)] = µx = [g⇤((e1)b), g⇤((e2)b), ···, g⇤((ek)b)]

implies that

[(g�1�f)⇤((e1)a), (g�1�f)⇤((e2)a), ···, (g�1�f)⇤((ek)a)] = [(e1)b, (e2)b, ···, (ek)b],

so that det (g�1 � f)0 > 0.

Orientable Manifold: A manifold for which orientations µx can
be chosen consistently is called orientable, and a particular choice of
the µx is called an orientation µ of M . A manifold together with an
orientation µ is called an oriented manifold.

Outward Unit Normal: If M is a k�dimensional manifold-with-
boundary and x 2 @M , then (@M)x, is a (k�1)�dimensional subspace
of the k�dimensional vector space Mx. Thus there are exactly two
unit vectors in M , which are perpendicular to (@M)x. They can be
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distinguished as follows.
If f : W ! Rn is a coordinate system with W ⇢ Hk and f(0) = x,
then only one of these unit vectors is f⇤(v0) for some v0 with vk < 0.
This unit vector is called the outward unit normal n(x).
Note: Outward unit normal does not depend on the coordinate system
f .

Induced Orientation: Suppose that µ is an orientation of a k�
dimensional manifold with-boundary M . If x 2 @M , choose v1, v2, · ·
·, vk�1 2 (@M)x, so that [(n(x),!1,!1, · · ·,!k�1] = µx. If it is also
true that [(n(x),!1,!1, · · ·,!k�1] = µx, then both [v1, v2, · · ·, vk�1] and
[(!1,!1, · · ·,!k�1] are the same orientation for (@M)x. This orientation
is denoted (@µ)x. The orientations (@µ)x, for x 2 @M , are consistent
on @M . Thus if M is orientable, @M is also orientable, and an orienta-
tion µ for M determines an orientation @µ for @M , called the induced
orientation.

Note: If we apply these definitions to Hk with the usual orientation,
we find that the induced orientation on Rk�1 = {(x 2 Hk : xk = 0} is
(�1)k times the usual orientation.

Example: Show that the Möbius strip is a non-orientable manifold.

4.8 Chapter End Exercise

1. Define di↵eomorphism and give an example of di↵eomorphism.
Justify your answer.

2. Show that unit circle S1 is a 1�manifold in R2.

3. Let � : R �! R2 be given by �(t) = (sin 2t)(| cos t |, sin t) for
0 < t < ⇡. Let M be image set of �. Is M 1�manifold without
boundary in R3? Justify your answer.

4. Let f : R1 �! R1 is given by

f(x) =

8
<

:
e

�1
x2 , x > 0,

0, x  0

Prove or disprove: f is di↵eomorphism.

5. Let � : H1 �! R2 be the map �(t) = (t, t2). Let N be image set
of �. Show that N is 1�manifold in R2.
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6. Prove or disprove: the Möbius strip is a orientable manifold.

7. Is the n�Sphere Sn, defined by {x 2 Rn+1 : |x| = 1} a n�dimensional
manifold? Justify your answer.

8. Let � : R �! R2 be given by �(t) = (sin 2t)(| cos t |, sin t) for
0 < t < ⇡. Let M be image set of �. Is M 1�manifold without
boundary in R3? Justify your answer.

9. Show that there is a unique (p+1)�form d! on M such that for
every coordinate system f : W ! Rn we have f ⇤(d!) = d(f ⇤!).
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Chapter 5

Stokes’s Theorem

Unit Structure :
5.1 Objective
5.2 Basic Preliminaries
5.3 The Integral of k�forms
5.4 Stokes’s Theorem for Integral of k�forms
5.5 Stokes’s Theorem on Manifolds
5.6 The Volume Element
5.7 Chapter End Exercise

5.1 Objectives

After going through this chapter you will be able to:

1. Define a integral of k�forms.

2. Learn the concepts of line integral, surface integral and volume
integral.

3. Learn the properties of the volume element.

5.2 Basic Preliminaries

n�fold product: [0, 1]n denotes the n�fold product and is given
by

[0, 1]n = [0, 1]⇥ [0, 1]⇥ · · ·⇥ [0, 1]

Singular n�cube: A singular n�cube in A ⇢ Rn is a continuous
function C : [0, 1]n �! A.

Note: Let R0 and [0, 1]0 both denote {0}.
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Standard n�cube: The standard n�cube In : [0, 1]n �! Rn defined
by In(x) = x for x 2 [0, 1]n.

Definitions and Properties:
1. The vector field ~F is known as solenoidal if Div~F = 0.
2. The vector field ~F is known as irrotational if Curl~F = 0.
3. If the vector field ~F is solenoidal then by Divergence theorem

Z

M

div Fdv =

Z

@M

hF, nidA = 0.

4. If the vector field ~F is irrotational then by Stokes theorem

Z

M

h(O⇥ F ), nidA =

Z

@M

hF, T ids = 0.

5. If the line integral of a vector field is independent of path then such
a vector fields are called conservative.
6. A conservative vector fields are irrotational and an irrotational vec-
tor fields are also conservative if domain is simply connected.

5.3 The Integral of k�form

The Integral of k�form on the cube [0, 1]k: If ! is a k�form
on [0, 1]k, then ! = fdx1 ^ dx2 ^ · · · ^ dxk for a unique function f. We
define Z

[0,1]k

! =

Z

[0,1]k

f.

We could also write this as

Z

[0,1]k

fdx1 ^ dx2 ^ · · ·dxk =

Z

[0,1]k

f(x1, x2, · · ·, xk)dx1dx2 · · · dxk.

The Integral of k�form on the singular k�cube c: If ! is a
k�form on A and c is a singular k�cube in A, we define

Z

c

! =

Z

[0,1]k

c⇤!.
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Note, in particular, that
Z

Ik

fdx1 ^ dx2 ^ · · · ^ dxk =

Z

[0,1]k

(Ik)⇤f(dx1 ^ dx2 ^ · · · ^ dxk)

=

Z

[0,1]k

f(x1, x2, · · ·, xk)dx1dx2 · · · dxk. (1)

Note: (1) A 0�form ! is a function; if c : {0} ! A is a singular
0�cube in A. We define

Z

c

! = !(c(0))

(2) The integral of ! over a k�chain c =
P

aici is defined by
Z

c

! =
X

ai

Z

ci

!

(3) The integral of a 1�form over a 1� chain is often called a line
integral.
If Pdx+Qdy is a 1�form on R2 and c : [0, 1] ! R2 is a singular 1�cube
(a curve), then one can prove that

Z

c

Pdx+Qdy = lim
nX

i=1

[c1(ti)�c1(ti�1)]·P (c(ti))+[c2(ti)�c2(ti�1)]·Q(c(ti))

where t0, t1, · · ·, tn is a partition of [0, 1], the choice of ti in [ti�1, ti] is
arbitrary, and the limit is taken over all partition as the maximum of
[ti�1, ti] goes to 0.

5.4 Stokes’s Theorem for Integral of
k�forms

Theorem-15: Stokes Theorem If ! is a (k�1)�form on an open
set A ⇢ Rn and c is a k�chain in A, then

Z

c

d! =

Z

@c

!.

Proof: Suppose first that c = Ik and ! is a (k � 1)�form on [0, 1]k.
Then ! is the sum of (k � 1)�forms of the type

! = fdx1 ^ dx2 ^ · · ·cdxi ^ · · ·dxk
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Note that

Z

[0,1]k�1

Ik(j,↵)
⇤
(fdx1 ^ dx2 ^ · · · ^ cdxi ^ · · · ^ dxk)

=

8
<

:

0 if i 6= j,R

[0,1]k
f(x1, x2, · · ·,↵, · · ·, xk)dx1dx2 · · · dxk if j = i.

Therefore

Z

@Ik

fdx1 ^ dx2 ^ · · ·cdxi ^ · · · ^ dxk

=
kX

j=1

X

↵=0, 1

(�1)j+↵

Z

[0,1]k�1

Ik(j,↵) ⇤ (fdx1 ^ dx2 ^ · · ·cdxi ^ · · · ^ dxk)

on expanding summation and using equation (1)

= (�1)i+1

Z

[0,1]k

f(x1, x2, · · ·, 1, · · ·, xk)dx1dx2 · · · dxk

+ (�1)i
Z

[0,1]k

f(x1, x2, · · ·, 0, · · ·, xk)dx1dx2 · · · dxk. (2)

On the other hand,

Z

Ik

d(fdx1 ^ dx2 ^ · · ·cdxi ^ · · · ^ dxk) =

Z

[0,1]k

Difdx
i ^ dx1 ^ dx2 ^ · · ·cdxi ^ · · · ^ dxk

= (�1)i�1

Z

[0,1]k

Dif.

By Fubini theorem and the fundamental theorem of calculus in one
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dimension
Z

Ik

d(fdx1 ^ dx2 ^ · · ·cdxi ^ · · ·dxk)

= (�1)i�1

Z

[0,1]

Z

[0,1]

· · ·(
Z

[0,1]

Dif(x
1, x2, · · ·,↵, · · ·, xk)dxi)dx1dx2 · · · cdxi · · · dxk

= (�1)i�1

1Z

0

1Z

0

· · ·
1Z

0

[f(x1, x2, · · ·, 1, · · ·, xk)� f(x1, x2, · · ·, 0, · · ·, xk)]dx1dx2 · · · dxk.

= (�1)i�1

Z

[0,1]k

f(x1, x2, · · ·, 1, · · ·, xk)dx1dx2 · · · dxk

+ (�1)i
Z

[0,1]k

f(x1, x2, · · ·, 0, · · ·, xk)dx1dx2 · · · dxk.

Thus by equation (2) we have
Z

Ik

d! =

Z

@Ik

!.

Note: If c is an arbitrary singular k�cube, working through the
definitions will show that

Z

@c

! =

Z

@Ik

c⇤!.

Therefore
Z

c

d! =

Z

Ik

c⇤(d!) =

Z

Ik

d(c⇤!) =

Z

@Ik

c⇤! =

Z

@c

!.

Finally, if c is a k�chain
P

aici, we have
Z

c

d! =
X

ai

Z

ci

d! =
X

ai

Z

@ci

! =

Z

@c

!.

5.5 Stokes’s Theorem on Manifolds

If ! is a p�form on a k�dimensional manifold with boundary M
and c is a singular p�cube in M , we define

Z

c

! =

Z

[0,1]p

c⇤! (3)
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Note: (1) In the case p = k it may happen that there is an open set
W � [0, 1]k and a coordinate system f : W ! Rn such that c(x) = f(x)
for x 2 [0, 1]k.
(2) IfM is oriented, the singular k�cube c is called orientation-preserving
if f is orientation-preserving.

Theorem (16): If c1, c2 : [0, 1]k ! M are two orientation preserving
singular k�cubes in the oriented k�dimensional manifold M and ! is
a k�form on M such that ! = 0 outside of c1([0, 1]k)\ c2([0, 1]k)), then

Z

c1

! =

Z

c2

!

Proof: We have
Z

c1

! =

Z

[0,1]k

c⇤1(!) by equation (3)

Z

c1

! =

Z

[0,1]k

(c�1
2 � c1)⇤c⇤2(!)

Note that c�1
2 � c1 is defined only on a subset of [0, 1]k and the sec-

ond equality depends on the fact that ! = 0 outside of c1([0, 1]k) \
c2([0, 1]k)).)

It therefore su�ces to show that
Z

[0,1]k

(c�1
2 � c1)⇤c⇤2(!) =

Z

[0,1]k

c⇤2(!) =

Z

c2

!.

If c⇤2(!) = fdx1 ^ fdx2 ^ · · · ^ fdxk and c�1
2 � c1, is denoted by g, then

by Theorem (9) we have

(c�1
2 � c1)⇤c⇤2(!) = g⇤(fdx1 ^ fdx2 ^ · · · ^ fdxk)

= (f � g) · detg0
.dx1 ^ dx2 ^ · · · ^ dxk

= (f � g) · |detg0 |.dx1 ^ dx2 ^ · · · ^ dxk,

where detg
0
= det(c�1

2 � c1)
0
> 0.

On integrating both sides over [0, 1]k, we obtain

Z

[0,1]k

(c�1
2 � c1)⇤c⇤2(!) =

Z

[0,1]k

(f � g) · |detg0 |.dx1 ^ dx2 ^ · · · ^ dxk (4)

Now lets apply following theorem to equation (4)
Let A ⇢ Rn be an open set and g : A �! Rn is 1 � 1 continuously
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di↵erentiable function such that detg0(x) 6= 0 for all x 2 A. If f :
g(A) �! R is integrable then

Z

g(A)

f =

Z

A

(fog) | detg0 |

Above theorem and equation (4) shows that

Z

[0,1]k

(c�1
2 � c1)⇤c⇤2(!) =

Z

[0,1]k

fdx1 ^ dx2 ^ · · · ^ dxk

Z

[0,1]k

(c�1
2 � c1)⇤c⇤2(!) =

Z

[0,1]k

c⇤2(!) =

Z

c2

!

Note: (1) Let ! be a k�form on an oriented k�dimensional manifold
M . If there is an orientation-preserving singular k�cube c in M such
that ! = 0 outside of c([0, 1]k), we define

Z

M

! =

Z

c

!.

Theorem (15) shows
R

M

! does not depend on the choice of c.

(2) Suppose that ! is an arbitrary k�form onM . There is an open cover
O of M such that for each U 2 O there is an orientation-preserving
singular k�cube c with U ⇢ c([0, 1]k). Let � be a partition of unity for
M subordinate to this cover. We define

Z

M

! =
X

'2�

Z
' · !

Theorem-16: Stokes Theorem on Manifolds: If M is a com-
pact oriented k�dimensional manifold with boundary and ! is a (k �
1)�form on M , then

Z

M

d! =

Z

@M

!.

(Here M is given the induced orientation.)

Proof: Case I: Suppose that there is an orientation-preserving singu-
lar k�cube in M � @M such that ! = 0 outside of c((0, 1)k).
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By Theorem (15) and the definition of d! we have

Z

c

d! =

Z

[0,1]k

c⇤(d!) by equation (3)

=

Z

[0,1]k

d(c⇤!) by theorem (14)

=

Z

@Ik

(c⇤!) by theorem (15)

=

Z

@c

! by equation (3)

Then Z

M

d! =

Z

c

d! =

Z

@c

! = 0.

since ! = 0 on @c.
On the other hand,

R

@M

! = O since ! = 0 on @M .

Suppose that there is an orientation-preserving singular k�cube in M
such that c(k, 0) is the only face in @M , and ! = 0 outside of c([0, 1]k)
Then Z

M

d! =

Z

c

(d!) =

Z

@c

! =

Z

@M

!.

Case II: The general case: There is an open cover O of M and a
partition of unity � for M subordinate to O such that for each ' 2 �
the form ' · ! is of one of the two sorts already considered. We have

0 = d(1) = d

 
X

'2�

'

!
=
X

'2�

d(')

so that X

'2�

d(') ^ � = 0.

Since M is compact, this is a finite sum and we have

Z

M

X

'2�

d(') ^ � = 0.
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Therefore
Z

M

d! =
X

'2�

Z

M

' · d!

=
X

'2�

Z

M

d' ^ ! + ' · d! since d' = 0

=
X

'2�

Z

M

d(' · !)

=
X

'2�

Z

@M

' · !

=

Z

@M

!.

5.6 The Volume Element

The Volume Element Let M be a k�dimensional manifold (or
manifold with boundary) in Rn, with an orientation µ. If x 2 M , then
µx and the inner product Tx we defined previously determine a volume
element !(x) 2 ⇤k(Mx). We therefore obtain a nowhere-zero k�form
! on M , which is called the volume element on M (determined by µ)
and denoted dV , even though it is not generally the di↵erential of a
(k � 1)�form.

The volume ofM is defined as
R

M

dV , provided this integral exists, which

is certainly the case if M is compact.

Note: (1) Volume is usually called length or surface area for one
and two-dimensional manifolds, and dV is denoted ds (the ”element
of length”) or dA [or ds] (the ”element of (surface) area”). (2) Con-
sider the volume element of an oriented surface (two-dimensional man-
ifold) M in R3. Let n(x) be the unit outward normal at x 2 M . If
! 2 ⇤2(Mx) is defined by

!(v, w) = det

2

4
v
w

n(x)

3

5 ,

then !(v, w) = 1 if v and w are an orthonormal basis of Mx with
[v, w] = µx. Thus dA = !.

On the other hand, !(v, w) = hv⇥w, n(x)i by definition of v⇥w. Thus
we have dA(v, w) = hv ⇥ w, n(x)i. Since v ⇥ w is a multiple of n(x)
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for v, w 2 M , we conclude that dA(v, w) = |v ⇥ w| if [v, w] = µx. (3)
If we wish to compute the area of M , we must evaluate

R

[0,1]2
c⇤(dA) for

orientation-preserving singular 2�cubes c. Define

E(a) = [D1c
1(a)]2 + [D1c

2(a)]2 + [D1c
3(a)]2.

F (a) = [D1c
1(a) ·D2c

1(a)] + [D1c
2(a) ·D2c

2(a)] + [D1c
3(a) ·D2c

3(a)]

.G(a) = [D2c
1(a)]2 + [D2c

2(a)]2 + [D2c
3(a)]2.

Then

c⇤(dA)((e1)a, (e2)a, ) = dA(c⇤(e1)a, c⇤(e2)a, )

= |(D1c
1(a), D1c

2(a), D1c
3(a)) · (D2c

1(a), D2c
2(a), D2c

3(a))|
=
p

E(a)G(a)� F (a)2

Thus Z

[0,1]2

c ⇤ (dA) =
Z

[0,1]2

p
E(a)G(a)� F (a)2.

Theorem-18: Let M be an oriented two-dimensional manifold (or
manifold with boundary) in R3 and let n be the unit outward normal.
Then

(1) dA = n1dy ^ dz + n2dz ^ dx+ n3dx ^ dy.
Moreover, on M we have
(2) n1dA = dy ^ dz.
(3) n2dA = dz ^ dx.
(4) n3dA = dx ^ dy.

Proof: Equation (1) is equivalent to the equation

dA(v, w) = det

2

4
v
w

n(x)

3

5 ,

This is seen by expanding the determinant by minors along the bottom
row.

To prove the other equations, let z 2 R3
x
. Since v⇥w = ↵n(x) for some

↵ 2 R, we have

hz, n(x)i · hv ⇥ w, n(x)i = hz, n(x)i↵ = hz,↵n(x)i = hz, v ⇥ wi.

Choosing z = e1, e2, and e3 we obtain (2), (3) and (4).

A word of caution; if ! 2 ⇤2(R3
a
) is defined by

! = n1(a) · dy(a)^ dz(a) + n2(a) · dz(a)^ dx(a) + n3(a) · dx(a)^ dy(a),
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it is not true, for example, that n1(a).w = dy(a)^dz(a). The two sides
give the same result only when applied to v, w 2 Ma.

5.7 Chapter End Exercise

1. State and prove the Stokes theorem for any 3�forms !.

2. Consider vector field ~F = (y+ z)i+(z+x)j+(x+ y)k. Is vector
field ~F solenoidal and irrotational? Justify your answer.

3. Let M be a two-dimensional manifold in R3. Compute the area
of M over orientation preserving singular 2�cubes c.

4. Consider an orientation-preserving singular k�cube in M � @M
such that ! = 0 outside of c((0, 1)k) where M is a compact ori-
ented k�dimensional manifold with boundary and ! is a (k �
1)�form on M then show that

R

M

d! =
R

@M

!.
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Chapter 6

Classical Theorems

Unit Structure :
6.1 Objective
6.2 Classical Theorems
6.3 Applications of classical theorem
6.4 Chapter End Exercise

6.1 Objectives

After going through this chapter you will be able to:

1. Evaluation of a line integral using Green’s Theorem.

2. Evaluation of a volume integral using Divergence Theorem.

3. Evaluation of a surface integral using Stoke’s Theorem.

4. Learn a concept of conservative fields.

6.2 Classical Theorems

Theorem-19: Green’s Theorem: Let M ⇢ R2 be a compact
two-dimensional manifold with boundary. Suppose that ↵, � : M ! R
are di↵erentiable. Then
Z

@M

↵dx+ �dy =

Z

M

(D1� �D2↵)dx ^ dy =

ZZ

M

✓
@�

@x
� @↵

@y

◆
dxdy

(HereM is given the usual orientation, and @M the induced orientation,
also known as the counter clockwise orientation.)
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Proof: We have the Stoke’s theorem on Manifolds as
If M is a compact oriented k�dimensional manifold with boundary and
! is a (k � 1)�form on M , then

Z

M

d! =

Z

@M

!.

Let ! = ↵dx+ �dy
) d! = D1↵dx ^ dx+D2↵dy ^ dx+D1�dx ^ dy +D2�dy ^ dy
) d! = �D2↵dx ^ dy +D1�dx ^ dy
) d! = (D1� �D2↵)dx ^ dy
Substitute in above toke’s theorem on Manifolds we obtain

Z

@M

↵dx+ �dy =

Z

M

(D1� �D2↵)dx ^ dy =

ZZ

M

✓
@�

@x
� @↵

@y

◆
dxdy

Theorem-20: Divergence Theorem: Let M ⇢ R3 be a compact
three-dimensional manifold with boundary and n the unit outward nor-
mal on @M . Let F be a di↵erentiable vector field on M . Then

Z

M

div Fdv =

Z

@M

hF, nidA.

This equation is also written in terms of three di↵erentiable functions
↵, �, � : M ! R:

ZZZ

M

✓
@↵

@x
+

@�

@y
+

@�

@z

◆
dV =

ZZ

@M

(n1↵ + n2� + n3�)dS.

Proof: Define ! on M by ! = F ldy ^ dz + F 2dz ^ dx+ F 3dx ^ dy
Then d! = div FdV . See example III(3) of Unit 2
According to Theorem-18, on @M we have

n1dA = dy ^ dz,

n2dA = dz ^ dx,

n3dA = dx ^ dy.

Therefore on @M we have

hF, nidA = F 1n1dA+ F 2n2dA+ F 3n3dA,

Since F = (F 1, F 2, F 3) and n = (n1, n2, n3)

hF, nidA = F 1dy ^ dz + F 2dz ^ dx+ F 3dx ^ dy,

hF, nidA = !.
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We have the Stoke’s theorem on Manifolds as
If M is a compact oriented k�dimensional manifold with boundary and
! is a (k � 1)�form on M , then

Z

M

d! =

Z

@M

!.

Thus using values of ! and d! in the above theorem, we obtain

Z

M

divF dV =

Z

@M

hF, nidA.

Theorem-21: Stokes’ Theorem: Let M ⇢ R3 be a compact ori-
ented two-dimensional manifold with boundary and n the unit outward
normal on M determined by the orientation of M . Let @M have the
induced orientation. Let T be the vector field on @M with ds(T ) = 1
and let f be a di↵erentiable vector field in an open set containing M .
Then Z

M

h(O⇥ F ), nidA =

Z

@M

hF, T ids.

This equation also written as

Z

@M

↵dx+�dy+�dz =

ZZ

M


n1

✓
@�

@y
� @�

@z

◆
+ n2

✓
@↵

@z
� @�

@x

◆
+ n3

✓
@�

@x
� @↵

@y

◆�
dS

Proof: Define ! on M by ! = F ldx+ F 2dy + F 3dz.
Since O⇥ F = (D2F 3 �D3F 2, D3F 1 �D1F 3, D1F 2 �D2F 1)
it follows that on M we have

h(O⇥ F ), nidA = (D2F
3 �D3F

2)n1dA+ (D3F
1 �D1F

3)n2dA+ (D1F
2 �D2F

1)n3dA

According to Theorem-18, on @M we have

n1dA = dy ^ dz,

n2dA = dz ^ dx,

n3dA = dx ^ dy.

Therefore on M we have

h(O⇥ F ), nidA
= (D2F

3 �D3F
2)dy ^ dz + (D3F

1 �D1F
3)dz ^ dx+ (D1F

2 �D2F
1)dx ^ dy

= d!. See example III(2) of Unit 2
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On the other hand, since ds(T ) = 1, on @M we have

T1ds = dx,

T2ds = dy,

T3ds = dz.

Therefore on @M we have

hF, T ids = F lT 1ds+ F 2T 2ds+ F 3T 3ds = F ldx+ F 2dy + F 3dz = !

We have the Stoke’s theorem on Manifolds as
If M is a compact oriented k�dimensional manifold with boundary and
! is a (k � 1)�form on M , then

Z

M

d! =

Z

@M

!.

Thus using values of ! and d! in the above theorem, we obtain
Z

M

h(O⇥ F ), nidA =

Z

@M

hF, T ids.

6.3 Applications of classical theorem

Example 1: State and verify Green’s Theorem in the plane forH
(3x2 - 8y2)dx + (4y � 6xy)dy where C is boundary of the region

bounded by x � 0, y  0 and 2x� 3y = 6.

Solution: Here closed curve C consists of straight lines OB, BA and
AO, where coordinates of A and B are (3, 0) and (0, -2) respectively.
Let R be the region bounded by C.
Then by Green’s Theorem in plane, we have,
H
(3x2 - 8y2)dx+(4y�6xy)dy =

RR
R
[
@

@x
(4y�6xy) -

@

@y
(3x2 - 8y2)]dxdy........(1)

=
RR

R
(�6y + 16y)dxdy

=
RR

R
(10y)dxdy

= 10
R 3

0 dx
R 0

1
3 (2x�6)ydy

= 10
R 3

0 dx = -20
Now we evaluate L.H.S. of (1) along OB, BA and AO.
Along OB, x = 0, dx = 0and y varies from 0 to -2.
Along BA, x=1

2(6 + 3y), dx=3
2dy and y varies -2 to 0.

and along AO, y = 0, dy = 0 and x varies from 3 to 0
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L.H.S of (1) =
H
(3x2 - 8y2)dx+ (4y � 6xy)dy

=
R
OB

(3x2 - 8y2)dx+(4y�6xy)dy+
R
BA

(3x2 - 8y2)dx+(4y�6xy)dy+
R
AO

(3x2

- 8y2)dx+ (4y � 6xy)dy
=
R �2

0 4ydy +
R 0

�2 [98(6 + 3y)2 - 12y2+4y-18y-9y2]dy+
R 0

3 3x
2dx

= [2y2]�2
0 +

R 0

�2 [98(6 + 3y)2 - 12y2+4y-18y-9y2]dy + [x3]03
= [2(4)] +

R 0

�2 [98(6 + 3y)2 - 21y2-14y]dy + [0-27]
= -19+27-56+28
= -20
with help of (2) and (3), we find that (1) is true and so Green’s Theorem
is verified.

Example 2: Verify Stoke’s theorem for the vector field ~F = (2x� y)̂i
- yz2ĵ - y2zk̂ over the upper half of the surface x2+y2+z2=1 bounded
by its projection on xy-plane.

Solution: Let S be the upper half of the surface x2+y2+z2=1. The
boundary CorS is a circle in the xy plane of radius unity and centre O.
The equation of C are x2+y2 = 1, z = 0
whose parametric form is x = cos(t), y = sin(t), z = 0, 0 < t < 2⇡.R
C

~F · ~dr =
R
C
[(2x� y)̂i - yz2ĵ - y2zk̂] · [dxî+dyĵ+dzk̂]

=
R
C
[(2x� y)dx - yz2dy - y2zdz]

=
R
C
[(2x� y)dxsince on C, z = 0 and 2z = 0

=
R 2⇡

0 [2cos(t)� sin(t)]dx
dt
dt

=
R 2⇡

0 [2cos(t)� sin(t)](�sin(t))dt

=
R 2⇡

0 [�sin(2t)-sin2(t)]dt

=
R 2⇡

0 [�sin(2t)+1�cos(2t)
2 ]dt

= [ cos(2t)2 + t

2 -
sin(2t)

4 ]2⇡0
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= 1
2 + ⇡ - 1

2 = ⇡...........(1)
Consider,

Curl~F =

��������

î ĵ k̂
@

@x

@

@y

@

@z
2x� y �yz2 �zy2

��������
= (-2yz+2yz)̂i+(0-0)ĵ+(0+1)k̂=k̂

Curl~F · n̂ = k̂ · n̂ = n̂ · k̂RR
S
Curl~F · n̂ds =

RR
S
n̂ · k̂ds =

RR
R
n̂ · k̂ dx

n̂

dy

k̂

where R is the projection of S on xy-plane.

=
R 1

�1

R p
1�x2

�
p
1�x2 dxdy

=
R 1

�1 2
p
1� x2dx

= 4
R 1

0

p
1� x2dx

= 4[x2
p
1� x2 + 1

2sin
�1(x)]10

= 4[12 ][
⇡

2 ]
= ⇡
From (1) and (2), we have,R
C

~F · ~dr = Curl~F · n̂ds which is the stoke’s theorem.

Example 3: Verify the divergence theorem for the function ~F = 2x2yî-
y2ĵ+4xz2k̂ taken over the region in the first octant bounded by y2+z2

= 9 and x = 2.

Solution:
RRR

V
r · ~FdV =

RRR
( @

@x
î+ @

@y
ĵ+ @

@z
k̂) · (2x2yî-y2ĵ+4xz2k̂)dV

=
RRR

(4xy � 2y + 8xz)dxdydz

=
R 2

0 dx
R 3

0 dy
Rp9�y2

0 (4xy � 2y + 8xz)dz

=
R 2

0 dx
R 3

0 dy[(4xyz � 2yz + 4xz2)]
p

9�y2

0
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=
R 2

0 dx
R 3

0 [(4xy
p

9� y2 � 2y
p

9� y2 + 4x(9� y2)]dy

=
R 2

0 dx[�
4x
2

2
3(9� y2)

3
2 + 2

3(9� y2)
3
2 + 36xy � 4xy3

3 ]

=
R 2

0 (0 + 0 + 108x� 36x+ 36x� 18)dx

=
R 2

0 (108x� 18)dx
= 216-36
= 180
Here,

RR
S

~F ·n̂ ds =
RR

OABC

~F · n̂ ds +
RR

OCE

~F · n̂ ds +
RR

OADE

~F ·
n̂ ds +

RR
ABD

~F · n̂ ds +
RR

BDEC

~F · n̂ ds
Consider,RR

BDEC

~F ·n̂ ds =
RR

BDEC
(2x2yî-y2ĵ+4xz2k̂) · n̂ ds.........................(1)

Normal vector
= r� = ( @

@x
î+ @

@y
ĵ+ @

@z
k̂)(y2 + z2 � 9) = 2yĵ + 2zk̂

Unit normal vector = n̂ =
2yĵ + 2zk̂p
4y2 + 4z2

=
yĵ + zk̂p
y2 + z2

=
yĵ + zk̂p

9
=

yĵ + zk̂

3
From (1),
RR

BDEC
(2x2yî-y2ĵ+4xz2k̂) · yĵ + zk̂

3
ds = 1

3

RR
BDEC

(-y3+4xz3)ds

= 1
3

RR
BDEC

(-y3+4xz3)
dxdy
z

3

=
R 2

0 dx
R 3

0 (-
y3

z
+4xz2) dy

by substitution, y = 3sin(✓), z = 3cos(✓))

=
R 2

0 dx
R ⇡

2
0 [�27sin3(✓)

3cos(✓) +4x(9cos2✓)]

=
R 2

0 dx((-27)(23)+108x(23))

=
R 2

0 (-18+72x)dx
= 108......................................(2)
Consider,RR

OABC
(2x2yî-y2ĵ + 4xz2k̂) · (-k̂)ds

=
RR

OABC
4xz2 = 0.................(3) because in OABC xy-plane, z = 0

Consider,RR
OADE

(2x2yî-y2ĵ + 4xz2k̂) · (-ĵ)ds
=
RR

OADE
y2 ds= 0.................(4) because in OADE xz-plane, y = 0

Consider,RR
OCE

(2x2yî-y2ĵ + 4xz2k̂) · (-̂i)ds
=
RR

OCE
- 2x2yds= 0.................(5) because in OCE yz-plane, x = 0

Consider,RR
ABD

(2x2yî-y2ĵ + 4xz2k̂) · (̂i)ds
=
RR

ABD
2x2yds

=
RR

ABD
2x2ydydz

=
R 3

0 dz
R p

9�z2

0 2(2)2 ydy because in ABD plane, x = 2
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= 8
R 3

0 dz[
y2

2
]
p
9�z2

0

= 4
R 3

0 dz(9 - z2)

= 4[9z -
z3

3
]30

= 4[27-9]
= 72.....................................(6)
on adding (2), (3), (4), (5) and (6), we getRR

S

~F · n̂ ds = 108 + 0 + 0 + 0 + 72 = 180......(7)

from (1) to (7), we have,
RRR

V
r · ~FdV =

RR
S

~F ·n̂ ds
Hence the theorem is verified.

Example 4: Evaluate
RR

S

~A · n̂ ds where ~A = 18zî - 12ĵ + 3yk̂ and S
is the part of the plane 2x+ 3y + 6z = 12 included in the first octant.

Solution: Here ~A = 18zî - 12ĵ + 3yk̂

Given surface f(x, y, z) = 2x + 3y + 6z - 12
Normal vector =r f = ( @

@x
î+ @

@y
ĵ+ @

@z
k̂)(2x + 3y + 6z - 12) = 2̂i+3ĵ+6k̂

n̂ = unit normal vector at any point (x, y, z) of 2x + 3y + 6z = 12

=
2̂i+ 3ĵ + 6k̂p
4 + 9 + 16

=
1

7
(2̂i+ 3ĵ + 6k̂)

and dS =
dxdy

n̂ · k̂
=

dxdy
1

7
(2̂i+ 3ĵ + 6k̂) · k̂

=
dxdy
6

7

=
7

6
dxdy

Consider,
RR

S

~A · n̂ ds =
RR

(18zî - 12ĵ + 3yk̂)
1

7
(2̂i+ 3ĵ + 6k̂)

7

6
dxdy

=
RR

(36z � 36 + 18y)
dxdy

6
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=
RR

(6z � 6 + 3y)dxdy
putting the value of 6z = 12� 2x� 3y, we get,

=
R 6

0

R 1
3 (12�2x)

0 (12-2x-3y-6+3y)dxdy

=
R 6

0

R 1
3 (12�2x)

0 (6� 2x)dxdy

=
R 6

0 (6� 2x)dx
R 1

3 (12�2x)

0 dy

=
R 6

0 (6� 2x)dx (y)
1
3 (12�2x)
0

=
R 6

0 (6� 2x) 1
3(12� 2x)dx

=
1

3

R 6

0 (4x2 � 36x+ 72)dx

=
1

3
[
4x3

3
� 18x2 + 72x]60

=
72

3
[4-9+6]

= 24

Example 5: Show that
RR

S

~F ·n̂ ds = 3
2 , where

~F = 4xzî - y2ĵ + yzk̂
and S is the surface of the cube bounded by the planes x = 0, x = 1,
y = 0, y = 1, z = 0 and z = 1.

Solution:
RR

S

~F ·n̂ ds

=
RR

OABC

~F ·n̂ ds +
RR

DEFG

~F ·n̂ ds+
RR

OAGF

~F ·n̂ ds+
RR

BCED

~F ·n̂
ds+

RR
ABDG

~F ·n̂ ds+
RR

OCEF

~F ·n̂ ds.........(1)

Consider,RR
OABC

~F ·n̂ ds

=
RR

OABC
(4xzî - y2ĵ + yzk̂)(-k̂) dxdy
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=
R 1

0

R 1

0 (�yz)dxdy
= 0 (as z = 0)

Consider,RR
DEFG

~F ·n̂ ds

=
RR

DEFG
(4xzî - y2ĵ + yzk̂)·(k̂) dxdy

=
RR

DEFG
yzdxdy

=
R 1

0

R 1

0 y(1) dxdy

=
R 1

0 dx [y
2

2 ]
1
0

= 1
2

Consider,
RR

OAGF

~F ·n̂ ds

=
RR

OAGF
(4xzî - y2ĵ + yzk̂)·(-ĵ) dxdz

= 0

Consider,
RR

BCED

~F ·n̂ ds =
RR

BCED
(4xzî - y2ĵ + yzk̂)·(ĵ) dxdz

=
RR

BCED
(-y2) dxdz

=
R 1

0

R 1

0 (-1) dxdz......(as y = 1)
= -1

Consider,
RR

ABDG

~F ·n̂ ds

=
RR

ABDG
(4xzî - y2ĵ + yzk̂)·(̂i) dydz

=
RR

4xzdydz =
R 1

0

R 1

0 4(1) zdydz......(as x = 1)
= 2

Consider,
RR

OCEF

~F ·n̂ ds =
RR

OCEF
(4xzî - y2ĵ + yzk̂)·(-̂i) dydz

=
R 1

0

R 1

0 - 4xzdydz......(as x = 0)
= 0
putting all values in equation (1),RR

S

~F ·n̂ ds = 3
2 .

Example 6: Using Green’s theorem, evaluate
R
C

(x2y dx + x2dy)
where C is the boundary described counter clockwise of the triangle
with vertices (0,0), (1,0) and (1,1).

Solution: By Green’s theorem, we have,R
C
(x2y dx + x2dy) =

RR
R
(2x - x2) dxdy

=
R 1

0 (2x - x2) dx
R

x

0 dy

=
R 1

0 (2x - x2) dx [y]x0
=
R 1

0 (2x - x2)(x) dx
= 5

12

Example 7: Evaluate
H
C
-

y

x2 + y2
dx +

x

x2 + y2
dy where C = C1 [

C2 with C1: x2 + y2 = 1 and C2: x = 2, -2 and y = 2, -2.
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Solution: Consider
H
C
-

y

x2 + y2
dx +

x

x2 + y2
dy

=
RR @

@x

x

(x2 + y2)
+

@

@y

y

(x2 + y2)
dxdy

=
RR (x2 + y2)1� 2x(x)

(x2 + y2)2
+

(x2 + y2)1� 2y(y)

(x2 + y2)2
dxdy

=
RR x2 + y2 � 2x2

(x2 + y2)2
+

x2 + y2 � 2y2

(x2 + y2)2
dxdy

=
RR y2 � x2

(x2 + y2)2
+

x2 � y2

(x2 + y2)2
dxdy

75

mu
no
tes
.in



CALCULUS ON MANIFOLDS

=
RR 0

(x2 + y2)2
dxdy

= 0

Example 8: Directly or by Stoke’s theorem, evaluate
RR

S
curl ~v · n̂

dS, ~v = yî+zĵ+xk̂, S is the surface of the paraboloid z = 1 - x2 - y2,
z3 � 0 and n̂ is the unit vector normal to S.

Solution:
r ⇥ ~v = - î - ĵ - k̂
Obviously, n̂ = k̂
(r ⇥ ~v) · n̂ = (- î - ĵ - k̂) · k̂ = -1RR

S
(r ⇥ ~v) · n̂ ds =

RR
S
(-1) dxdy = -

RR
S
dxdy = - ⇡ (1)2 = - ⇡.

6.4 Chapter End Exercise

1. If ~F = 2yî - 3ĵ + x2k̂ and S is the surface of parabolic cylinder
y2 = 8x in the first octant bounded by the planes y = 4 and z = 6
then evaluate

RR
S

~F · n̂ dS. [ Ans. 132 ]

2. If ~F = (2x2-3z)̂i - 2xyĵ - 4xk̂ then evaluate
RRR

V
r ⇥ ~F dV where

V is the closed region bounded by planes x = 0, y = 0, z = 0 and
2x+ 2y + z = 4.[ Ans. 8

3(ĵ - k̂) ]

3. Evaluate
RRR

V
(2x+ y)dV where V is the closed region bounded

by the cylinder z = 4 � x2 and the planes x = 0, y = 0, y = 2
and z = 0.[ Ans. 80

3 ]

4. Either directly or by Green’s theorem, evaluate the line integralR
C
e�x (cos(y)dx�sin(y)dy) where C is the rectangle with vertices

(0, 0), (⇡, 0), (⇡, ⇡

2 ) and (0, ⇡

2 ).[ Ans.2(1-e�⇡) ]

5. Use the Green’s theorem in a plane to the evaluate the integralR
C
[(2x2- y2)dx+(x2+y2)dy] where C is the boundary in the xy-

plane of the area enclosed by the x-axis and the semi-circle x2 +
y2 = 1 in the upper half xy-plane.[ Ans. 4

3 ]

6. If ~F = 3yî - xyĵ + yz2k̂ and S is the surface of the parboloid 2z
= x2 + y2 bounded by z = 2, show by using Stoke’s theorem thatRR

S
curl ⇥ ~F · dS = 20 ⇡

7. If ~F = (x � z) î + (x3 + yz) ĵ + 3xy2 k̂ and S is the surface
of the cone z = a -

p
x2 + y2 above the xy-plane, show that

RR
S

curl ~F · dS = 3⇡a4

4 .
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8. LetM ⇢ R3 be a compact three-dimensional manifold with bound-
ary and n the unit outward normal on @M . Let F be a di↵eren-
tiable vector field on M . Then show that
ZZZ

M

✓
@f 1

@x
+

@f 2

@y
+

@f 3

@z

◆
dV =

ZZ

@M

(n1f 1 + n2f 2 + n3f 3)dS.

9. LetM ⇢ R3 be a compact three-dimensional manifold with bound-
ary and n the unit outward normal on @M . Let F be a di↵eren-
tiable vector field on M . Then show that

Z

M

div Fdv =

Z

@M

hF, nidA.
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