Chapter 1

Multilinear Algebra

Unit Structure :

1.1 Objective

1.2 k—tensor

1.3 Alternating Tensor
1.4 Wedge Product

1.5 Basis for A¥(V)

1.6 Volume Element of V'
1.7 Chapter End Exercise

1.1 Objectives

After going through this chapter you will be able to:

1. Define a multilinear function, k—tensor, alternating tensor and
wedge product.

2. Learn algebraic properties of alternating tensor and wedge prod-
uct.

3. Identify basis and dimension of subspace of tensor.

4. Learn the concept of volume element.
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1.2 k—tensor

Multilinear Function: If V' is a vector space over R, we will
denote the k—fold product V xV x...xV by V¥. A function 7 : V¥ — R
is called multilinear if for each 7 with 1 < ¢ < k we have

’

T(U17U27 "'7U’i+U;“-7vk) = T(U17U27 ©y Vg, "'7Uk)+T(U17U27 oy Us, "'7Uk)7
T('Ul,UQ, ce, AU, 'avk‘) = CLT(’Ul,'UQ, P ¥ P '7/Uk)'

Example: Consider the function f : R?® — R defined as, f(z,y,2) =
xyz. Show that f is 3—linear.

Solution: We begin by fixing z and z and treat f as a function of one
variable y.

Consider f(z,ay; + Bya, 2) = x(ays + Py2)z

= z(ay1)z + z(By2)z

= ary1z + Prysz

= af(xayla Z) + 6f(xa Y2, Z)

shows that f is linear in .

Similarly we can show that f is linear in  and z variables.

k—tensor: A multilinear function T : V¥ — R is called a k—tensor
on V and the set of all k—tensors denoted by $*(V'), becomes a vector
space over R if for S, T € S*(V) and a € R we define

(S+T)<U17 V2, 0y Uiy ooy Uk) ~ S(Uh V2,05 Ugy ooy Uk)+T(U17 U2y =ey Uiy oy Uk)v

(aS>(U17U27 cy Vg, 'avk’> = aS(UhUQ? c Vg, '7Uk:)-

Tensor Product: There is an operation connecting the various
spaces S*(V). If S € SH(V) and T € S!(V), we define the tensor
product S ® T € I*(V) by

S @ T (v1,V2, Vg U1y -+ + Ukt) = S (01,02, -+, 0) - T(Ugg1,y -+ Ukt -

Note: The order of the factors S and T is crucial here since S ® T’
and T'® S are far from equal.

T® S<U17U27 UL U, '7vl+k> - T(U17U27 t '71)1) ' S(Ul-i-la te '7Ul+k)'

Example: If 51,5, € SH(V),T € S(V), U € (V) and a € R

then Show that

(1) (S1+8)T=80T+S5cT,
(2) SN +T)=ST+S®T,
B) (aS)@T=8S® () =a(S®T),
4) (ST)U=S®((T®U).

4
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Notes:
(1) Both (S®T)®U and S ® (T ® U) are usually denoted simply S®@ T ® U.

(2) higher-order products 77 ® To®, - - - ® T, are defined similarly.
(3) The (V) is just the dual space V*.

Note: Any vector space has a corresponding dual vector space (or dual
space) consisting of all linear forms on. , together with the vector space
structure of pointwise addition and scalar multiplication by constants.

Theorem-01: Let vy, -+, v, be a basis for V| and let ¢1, 9, ---,, be
the dual basis, ¢;(v;) = d;;. Then the set of all k—fold tensor products

807«1®907«2®®g02k7 lgllavzkgn

is a basis for 3*(V'), which therefore has dimension n*.

Proof Note that
Vi & Pis K- (pik(vjlvvjzv' ) Ujk) = 5i1,j1 ’ 62’27]'2 < 6ik7jk

_ Lif gy =40 3 gk = g
0 otherwise.

Step I: Claim: ¢;, ® p;, @ - - - ® ;, span (V).

n

If wy, wy, - - -, wy are k vectors with w; = >~ a;;v; and T is in S*(V),
j=1

then

n
T(wi,w, - wp) = Y iy apg, D0, v, - ;)
Ji:J2,Je=1
and

Wiy ®9012®®901k (wh , Wa, -, wk) = al,jl""ak,jk¢i1®¢i2®"'®¢ik (/U]'17/Uj27 '”Ujk)

1 if gy =das- 3 gk = g,

in @ Pipg @ 0+ @ iy (Vjy, Vjgy -+ V5, ) = i
Pip & Pig 90k(]1 J2 ]’“) {0 otherwise.

= i, QPi, R+ R, (W1, , Wa, -+, Wi) = ay 4, Ck 5, I J1 =115 i = Uk
This gives us

n

T(w17w27'“7wk> = Z T('Uil,viQ,"'Uik>'80i1®30i2®"'®§07;k(’UJl,,WQ,"','lUk).

1,02, ik =1

Thus T'= > T(vi),Vig, -+ Vip) - Qiy @ Piy @+ -+ @ @ .

i1,02, i =1
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Consequently the p;, ® @i, @ -+ - @ p;, span (V).
Step II: Claim: ¢;, ® ¢;, ® - - - ® ¢;, is linearly independent

Suppose now that there are numbers a;, ;,...;, such that

Z Wiy igei Pin @ Piy @ -+ Q @y = 0.

1,820k
Applying both sides of this equation to (vj,,vj,, - - -v;,)
Z Wiy jigif, Pir @ Piy @+ D Py (Uj1>vj2>' ) 'Ujk) =0.
11,021k

This yields aj, j,...;, = 0. Thus the ¢;, ® p;, ® - - - ® ¢;, are lineraly
independent.

hence by step I and II, we conclude
Piy ®S0712®®901ka 1 Sila”'7ik <n
k

is a basis for 3*(V'), which therefore has dimension nF.

Example: Determine which of the following are tensors on R* and
express those in terms of elementary tensors.

(@Y, 2) = 3x1Yy223 — T3y1 24
9(z,y, 2) = 212925 + T3Y124

Solution:

(a) f is a 3-tensor since it is linear with respect to each variable x, y,
z. (Verify)

If w!, w?, w?, w* is the dual basis of the standard basis e;, . . . , e4 in
R*, then

f=3'®uw?euw-—weuw @uw

(b) g is not a tensor since g is not linear as

glax,y, z) = 2ax1ax223 + arsy; 24 = 20* w1 w023 + arsyrzs # ag(z,y, 2).

Example: Consider the following tensors on R?,

f(@,y,2) = 221y220 - Toy321
g(z,y) = w? @ W' - 20 ® W!
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where {w!, w?, w3, w'} is the dual basis of the standard basis {ey, . . . ,
eq} for R Write f®g as a linear combination of elementary 5-tensors.

Solution: (b) Since f = 2w' ® W? ® W? - W?® W ® W,

f®yg

= (2w W ®uw?-w W Rw)® (W w-2w e w

=20 W RuWRuWRuw-4w @w @ uw®w®w +wew
QW W uw -2weweuw ®w ow.

Dual Transformation: If f : V — W is a linear transformation,
a linear transformation

fr QW) — SF(V) is defined by

f*T<U1;U27 T '7Uk> = T(f<vl)7 f(v2>7 Y f(vk))
for T € S*(W) and vy, vg,- - -, v, € V.

Examples:
(1) Show that f*(S®T)= f*S® f*T.
(2) Show that an inner product on V to be a 2-tensor or ( ) € I%(R").

Definition: We define an inner product on V' to be a 2-tensor 7" such
that

T is symmetric, that is T'(v, w) = T'(w,v) for v,w € V and

T is positive-definite, that is T'(u,v) > 0 if v # 0.

We distinguish (, ) as the usual inner product on R™.

Theorem-02: If T is an inner product on V, there is a basis vy, v, - -
-, v, for V such that T'(v;,v;) = d;;.(Such a basis is called orthonormal
with respect to T.) Consequently there is an isomorphism f : R" — V
such that T'(f(x), f(y)) = (z,y) for x,y € R™. In other words f*T =

()

Proof Let wy,wo, - - -, w, be any basis of V. Define
/
wy = Wy,
/
’ T(wl, 'UJQ) ’
Wy = Wo — T 7 ~ Wy,
(wla wl)
/ !
= w T (wy, ws) o T (wy, w3) w
3 — W3 — 7 N W1 — 7 N W,
T(wy,wy) T (wq, ws)
etc.

It is easy to check that T'(w;,w;) = 0 if i # j and

w; # 0 so that T'(w;, w;) > 0.
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’

W

The isomorphism f may be defined by f(e;) = v;.

Now define v; =

Now Consider f*T'(e;, e;) =T (f(e:), f(e:)) = T(vi,v;) = 0i5 = (ei, €5).

1.3 Alternating Tensor

Alternating Tensor: A k—tensor w € S*(V) is called alternating
if
w(“la Vo, *+, Ugy »*+, Uy, '“7vk) = —W(Ul, Vg, *+, Vg, *++, Vg, "'7vk) vvla Vg, *++, Vg eV.

(In this equation v; and v; are interchanged and all other v’s are left
fixed.) The set of all alternating k— tensors is clearly a subspace A*(V)
of S*(V).

Note: A k—tensor w € I*(V) is called symmetric if
w(”l; V2, U4y e, Uy, '”71)]6‘) = w</Ula Vg, o+, Vg, 0, Uy, "'77)16) vvla Vg, =, Vg € V.
Definition: If T € S*(V), we define Alt(T) by
1
Alt(T)(Ula Uy v vy Uk) - E Z Sgh o - T(UU(1)7 Vo (2)5 *° '?vo(k))a
’ ocESk

where Sy is the set of all permutations of the numbers 1 to k.

Note: Recall that the sign of a permutation ¢ denoted sgn o, is
+1 if o is even and —1 is o is odd.

Theorem-03
(1) IfT e %k(V)
(2) Ifwe A¥V)
(3) IfT eSkW)

, then Alt(T) € A*(V).
, then Alt(w) = w.
, then Alt(Alt(T")) = Alt(T).

Proof (1) Let (¢, 7) be the permutation that interchanges ¢ and 7 and
leaves all other numbers fixed. If o € Sy, let o' = o - (4,5). Then

Alt(T>(U17U27 .. .’ij’ Ce Vg, '7Uk‘)

1
= E ngnO'T(UU(1)7UU(2)7'"71)0'(j)7"'7U0'(i)7'"71}0'(]{;))7
) €Sk
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1
=17 2580 0 T, 002 U Ut Ul i)

€Sk
1 ,
=1 2o T 0 Ty vy )
U,GS}C
= —Alt(T) (v, va, « - -, k),
(2) If w e A*(V) and o = (3, ), then
W(Vo(1), Vo(2)s " * s Vo(k)) = 58N 0 - W(V1, Vg, * - -, V).
Since every o is a product of permutations of the form (4, 7), this equa-

tion holds for all 0. Therefore

1
Alt W(U17U27 te '7Uk‘) = E Z sgn o - w(vo(l)avo(Q)v o '7U0'(k))
’ oES

1
= L3 o osgn - w(vr, )

ocESE
— (A)(/Ul,UQ, o '7Uk)'

(3) follows immediately from (1) and (2).(Exercise)

1.4 Wedge product

Wedge product: If w € A*(V) and n € AY(V), then w @ n is
usually not in A* (V). We will therefore define a new product, the
wedge product w An € A¥(V) by

k+10)!
WA= ( k—:_l') Alt(w ®n).

Example: Show that

(W1 +we) An=wi An+wy A,
wA (1 +1m2) =wAm+wAn,
aw An=wAan=alwAn),
wAn=(=1)"nAuw,

frlwnn) = fr(w)Af (),
(WAN)ANO=wA(nAb).

N =

N

AN AN AN AN N
S Ot w
— N N N N N
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Theorem-04

(1) IfSeSHV)and T € SY(V) and Alt(S) = 0, then
AB(S®T)=Alt(T® S) =0.

(2) Alt(Alt(w ®@n) ®0) = Alt(w @ n ® 0) = Alt(w @ Alt(n ® 0)).

(3) IfweA¥V), ne A(V) and § € A™(V), then
|
(wAmAezwA@Aeyzﬁgﬁﬁﬁlmuw®n®m.

Proof: (1) Step I: Claim: Alt(S®T) =0

1

AM6®TMMJ%“WW“):(k+D'

Z sgno-(SQT) (Vo(1), Vo (2), s Vo (kt1))-

O'ES;H_l

(k+ DIAIL(S @ T)(vy, vg, - - -, vg + 1)

= Z Sgno - S(UU(l)a Vo(2)s " " % /Uo(k)) ’ T(Uo(k+1)7 Vo(k+2) " % Ua(k-l-l))'

(1)

Case I: If G C Sj.; consists of all 0 whceih leave k+1,k+2,--- k41
fixed, then

Z Sgno - S(Uau), Vs (2)5 " * Ua(k)) : T(Ua(k—i-l)a Vo(k+2)5 " Ucr(k—l—l))
ceG

= Z SgIlO'/ . S(Uo—l(l); UJ/(2), Ceey vo'(k)) . T(U(k+1)a V(k42)y " " " U(k+l))

a/eSk

=0. (Since Alt(S) =0)
Hence by equation (1), Alt(S®T) =0

Case II: Suppose g ¢ G.
Let G-09g={0-0¢:0 € G} and
let Voo (1) Voo(2), * * 5 Vo (k1) = W1, W2 - -5 Wpyt- Then

Z Sgno - S(Uau), Vo(2), " " % Ua(k)) ) T(Ua(k-l-l)u Vo(k+2)s " " " Ua(k+l))

ceG-og

= [s80 0¢ - Z Sgi o - S(wg’(l)a’wa’(z), e '7wg’(k))' T (W1, Whet2, -+ 5 Weet)
o'eq

= 0. (Since Alt(S) = 0)

Hence by equation (1), Alt(S®T) =0

10
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Notice that GNG - 05 = P.
In fact, if 0 € GNG -0y, then 0 = ¢ - oy for some 0 € G and
oo =0-(c)"' € G, a contradiction.

We can then continue in this way, breaking Sy, up into disjoint subsets;
the sum over each subset is 0, so that the sum over Si.; is 0. Hence

Alt(S® T) =0,

Step II: Claim: Alt(7 ® S) = 0 Show similarly as step I. Combining
step I and II, we obtain
Al(S®@T)=Alt(T ® S) = 0.

(2) Step I: Claim: Alt(w ® 1 ® ) = Alt(w ® Alt(n ® 6))
Consider Alt(Alt(n® 0) —n®0) = Alt{Alt(n ® 6)} — Alt(n ® 0).
By theorem (3(III)), we have Alt{Alt(n ® 6)} = Alt(n ® 0),
hence we have

Alt(Alt(n®0) —n®0) = Alt(n® 0) — Alt(n® 6) = 0.
Hence by (1) we have
Alt(w @ [Alt(n®60) —n®0]) =0

Alt(w @ Alt(n ®0)) — Alt(w @n®0) =0
Alt(w @ Alt(n ® 6)) = Alt(w @ n ® 6)

Step II: Claim: Alt(Alt(w ® 1) ®0) = Alt(w ®@n ® 0)
Similarly as per step I.

(k+1+m)!

(3) Step I: Claim: (wAn) A= PRI Alt(w®n ®0).

By definition of wedge product have

(k+1+4+m)!

(wWAN)ANO = ot il -Alt((w An) ®6)

again applying definition of wedge product have

k+1+m)! k+1)!
(wAn)A@z((k+l)!m!) 1{((k!l!)Alt(w®77))®9}
(B I+m) (B!
(WAN)AO = GRS Alt{Alt(w ® n) ® 6}
By 2 above
k+1+m)!

11



CALCULUS ON MANIFOLDS

(k+1+m)!

Step II: Claim: w A (n A f) = PRI Alt(w@n®0).

Similarly as per step I.

Note: (1) wA(nAO)=(wAN)ANd=wAnAEb

and higher-order products w; A ws A - - - A w, are defined similarly.

(2) If an alternating tensor w and 7 are of odd order then wAn = —nAw
(3) If an alternating tensor w is of odd order then w Aw =0

Example: Consider the following tensors on R®

f(l"a?/,Z) = 3T2Y221 - T1Y524
g(x) = 21 + x5

(a) Write Alt f as a linear combination of elementary alternating ten-
SOTS.

(b) Write (Alt f ) A g as a linear combination of elementary alternating
tensors.

Solution:
(a) Recall that if I = (i1,..., ) is an multi-index and

WA AW =l = BAR (WY ® - - @ w) (1.1)

Hence write f as a linear combination of elementary tensors,

f=3l®wuw! —w ®w ®w
Then by equation (2),

Alt f = 3Alt(0? @ w? @w!) — Alt(w! ® W @ w?)
:%uﬂ/\aﬂ/\wl—%(,ul/\cuf’/\w4

= —gw AwS Aw?

= gwl Aw! Awb

(b) Since g = 2w’ + w? so that

(Alt f) A g = gw!' Aw* Aw® A (2w 4 w?)
= 2w Awt Aw® A w?

= —%wl/\w‘l/\uﬁ/\w‘:’

%wl/\w:s/\w‘l/\wg’

Example 2: Let X;, X5, ... , X; € Vand let ¢!, ... ,©F € V*.
Show that p'A ... AQ*(X1, Xa, ... , Xi) = det[¢’(X;)]

Solution:
By definition,

12
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901 ARRA Spk(Xb X27 e Xk) - Lt Alt( - Spk)(le XQa

11!

=4 (sign o) 0" (Xo)) P*(Xo() -+ " (Xow)
K 2uces, \S18 ¥ o(1)) ¥ o(2) ' o(k)
Pl (X)) et (X)
= det

X)) o (X)

1.5 Basis for A*(V)

Theorem-05: The set of all
Pis A¢22AA¢lk7 1§i17i27"'7ik Sn

is a basis for AF(V'), which therefore has dimension

(&)

Proof: Step I: Claim: o;, A, A=A, 1 < 1,09, -1 <n
spans A*(V).

Let vy, vq, - - ‘v, be a basis for V' and let o1, ¢s, - - -¢,, be the dual basis.
If we AF(V) C S%(V), then we can write

Z Qiy ig, iy, Pin ® Pis K- Pig -
11,82, "0
Thus by theorem 3(I1), we have
w = Alt(w Z iy g iy Al (05, @ 01, @ -+ - @ ;).
91,82,
Since by definition of wedge product, each Alt(p;, ® v, ®---® ;) is a
constant times one of the (p;, Ay, A=Ay, ), these elements span A*(V).

Step II: Claim: ¢, Awi, A=~ AN;,, 1 <'iy,19, -+, 1 < nis linearly
independent.
Linear independence is proved as in Theorem-01.

13
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|
Step ITI: Claim: Dimension of A(V) s (3) = 1
As Ak’(V) is set of all alternating k— tensors which is subspace of gka/),
|
clearly Dimension of A*(V) is (}) = m

Note: If V has dimension n, it follows from Theorem-05 that A”(V)
has dimension 1.

Example: Let V be a vector space of dimension n = 3. The space of
alternating 2-tensors A?(V*) has the dimension

3!

dim A?(V*) = (3) = m —

2

3

Theorem-06: Let vy, vq,- - v, be a basis for V' and let w € A"(V).

n
If w; = a;jv; are n vectors in V' then
i—1

=
w(wy, wa, - - -, wy) = det (a;;) - w(vy, vg, - - -, vy).

Proof: Define n € 3"(R"™) by
77((61117012, e '7a1n)7 (@21,%27 T dzn), ) (anlaan%' : '7ann)

=w (Y a1,v5, Y az,v;,- -+, > ay,0;) As w € A"(V) clearly € A"(R™)
son = A -det (a;;) for some A € R and

A= 77(617627 o '7en> - W(Ul,Ug, te '7Un)-

w(wy, wa, -+, wy,) = det (az;) - w(vr, va, -« -, V).

1.6 Volume Element of V

Orientation: Theorem-06 shows that a non zero w € A"(V') splits
the bases of V' into two disjoint groups, those with w(vy, v, -, v,) >0
and those for which w(vy, ve, -+, v,) < 0; if v1, Vg, -+, v, and wy, wa, -+, Wy,
are two bases and A = (a;;) is defined by w; = > a;jv; then vy, vg, -+, vy,
and wy, ws, - - -, w, are in the same group if and only if detA > 0.

This criterion is independent of w and can always be used to divide
the bases of V' into two disjoint groups. Either of these two groups is
called an orientation for V. The orientation to which a basis vy, vg, -, v,

belongs is denoted by [vy, vs, « -+, v,,] and the other orientation is denoted
_[Ula Vo, vy U’n]-
Note: In R" we define the usual orientation as [e1, s, - -, €,].

14
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Volume Element: The fact that dim A"(R") = 1 is obvious since
det is often defined as the unique element w € A™(R™) such that
w(ey, eg,+ -+, e,) = 1. By theorem 6

CU(U)l,wQ, Y wn) == det (az]) : W(el, €2,y en)-
w(wy, wa, - - -, wy,) = det (a;;)
Suppose that an inner product 7" for V is given. If vy, vs,- - -, v, and
w1, Wa, -+ +, W, are two bases which are orthonormal with respect to T,

and the matrix A = (a;;) is defined by w; = ) a;;v;, then
j=1

3
3

= E Qi Qg -

k=1

In other words, if A7 denotes the transpose of the matirix A, then we
have A - AT = I, so det(A) = 1.

It follows from Theorem-06 that if w € A"(V') satisfies w(vy, vg, =+, v,) =
+1, then w(wy,wy, - - -, w,) = +1. If an orientation u for V' has also
been given, it follows that there is a unique w € A™(V) such that
w(vy,ve,- - -, v,) = 1 whenever vy, vy, - -, v, is an orthonormal basis
such that [vy,vq, -, v,] = p.

Note that det is the volume element of R™ determined by the usual
inner product and usual orientation and that |det(vy, vq, - - -, v,)| is the
volume of the paralleopiped spanned by the line segments from 0 to
each of vy, v, - -, v,.

Volume Element of R": If vy, vs, -+, v,_1 € R® and ¢ is defined by

U1
V2

p(w)=det | - |,

Un—1

15
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Then ¢ € A'(V). Therefore there is a unique element z € R™ such

that

(%1
(%)

(w, z) = p(w) = det . ,

Un—1
w

This z is the denoted v; X v9 X - -+ X v,,_1 and called the cross product
of V1,0V, Un—1-

The following properties are immediate from the definition:

(1) Uo(1) X Ug(2) X *+* X VUg(n—1) = 88N O - V1 X U2 X -+ X Up_1,

(2) v X g X+ -+ Xav; X +++ X Vp_1 =a- (V] X Vg X+ XVUy_1),

(3) vy X Vg X -+ X (U 4+ 0;) X -+ X Uy = (V1 X Vg X+ XV X -+ X
Vp1) + (U1 X Vg X =+ X U, X =+ X Up_y).

1.7 Chapter End Exercise

. Let T € S*(W) and S € $'(W). Show that f*(S®T) = f*S®

f*T where f* is a dual transformation of a linear transformation

f:V—-=w.

Let V be a vector space of dimension 5. Find the dimension of
the space of alternating 3—tensor A?(V'). Justify your answer.

. Let w € A*(V), n € A3(V) and 6 € A*(V). Find the wedge

product (wAn)Af in terms of alternating tensor of tensor product
of w, n and 6.

Let S € A¥(V) and T € AY(V) and Alt(T) = 0 then compute
TAS.

Let V be a vector space of dimension 3. Find the dimension of
the space of alternating 2—tensor A*(V). Justify your answer.

. Let w € AY(V), n € A2(V) and 6 € A*(V). Find the wedge

product (wAn)Af in terms of alternating tensor of tensor product
of w, n and 6.

Prove or disprove: An inner product on vector space V to be a
2-tensor.

16



CHAPTER 1. MULTILINEAR ALGEBRA

8. If T € S*(V), then show that Alt(Alt(T)) = Alt(T).
9. Ifwe A*(V), ne AYV) and § € A™(V), then show that

(k+14+m)!

(WAN)ANO = PRI ~Alt(w @ n ®6).

17
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Chapter 2

Differential Forms

Unit Structure :

2.1 Objective

2.2 Basic Preliminaries
2.3 Fields and Forms

2.4 Differential Forms

2.5 Pullback Forms

2.6 Chapter End Exercise

2.1 Objectives

After going through this chapter you will be able to:
1. Learn the concept of tangent space.
2. Define Differential Forms and Pullback Forms.

3. Learn properties of Pullback Forms.

2.2 Basic Preliminaries

1. The Del operator:

2. Gradient:
Suppose f is a function. V f is the gradient of f, sometimes denoted

grad f.
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grad f = Vf——fz—l—@—f +8£

Example: Compute the gradlent of f (x Yy, 2) = wyev’s
Solution: Vf= afz + 8f k; yev 2i+ (xe 4 2xy2e¥’ ) j+k(xyPel’?).

3. Directional derivative
Definition: The directional derivative of f in the direction u, denoted
Dzf, is defined to be,

|u

Example: What is the directional derivative of f(x,y) = x* + zy, in
the direction of +2j at the point (1, 1)7
Solution: Now we first find V f.
Vi= (2, 2) =(25+y,3)
~(31)
Let @ =7 + 2]
] = V12 422 = /5.

\% 3,1)- (1,2
Dﬁf — f_) — ( ) ) ( ) )
] V5

e Properties of the gradient deduced from the formula of Directional
derivatives

_ 5

Vi-d _ |Vcos(6)
Ju |l

1. If # = 0, i.e. u points in the same direction as V f, then Dgzf is

maximum. Therefore we may conclude that,

(i) V f points in the steepest direction.

(ii) The magnitude of V f gives the slope in the steepest direction.

Daf =

= [V f]cos(6)

2. At any point P, Vf(P) is perpendiular to level set through that
point.

4. Divergence:
Definition: The Divergence is given by,

divF=V-F
where F should be vector field.

Example. Compute the divergence of F = (22+y)i + (y*2)] +
(2% +x)k
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Solution: div F = 27 + a%j + 2k (@ )i + (y*2)] + (24+x)k)
= 27x + 2y + 2z.

5. Curl:
Definition: The curl is given by,

curl F=V x F

More specifically, suppose F = (Fy,F5,F3). Then

~

ik

— o o0 0
VxF=|—- — —
% or Jy 0z
N F Iy

The cross product of two vectors is a vector, so curl takes a vector field
to another vector field.

Example. Compute the curl of F = (z24y)i + (y*2)] + (224x)k

5k

Solution: curl F = % a% %

F Fy I3
i J k
|9 92 9
| Oz ) Dz

i 7k
9 90 9
= |0x Oy Oz
of of of
or 0y 0z
]k
o d 0
=9z oy oz|(f)
LN
or 0Oy 0z

But the determinant of a matrix with two equal rows is 0, so the result
is 0.

Example. div(curl F) = 0
Solution: div(curl F') =V - (V x f)
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ik
o o0 0
—v.|= Z =Z
or 0Oy 0z
Fy F, Fj
9 9 9
Jdr 0Oy 0z
-9 79
or 0Oy 0z
N Iy
= 0.

Example. Find Curl(Vf) and Div(Vf)
Solution: Curl(Vf) =V x Vf

~

(fyz - fzy) ; + (fzac - f:cz) .} + (fxy - fyx) k
0

Div(Vf) =V - Vf
000 b o o o,
CNox’ oy’ 027 “0x’ Oy’ Oz
B o*f  0*f O*f
- Oa? + Oy? * 022"

2.3 Fields and Forms

If p € R", the set of all pairs (p,v), for v € R, is denoted R}, and
called the tangent space of R™ at p. This set is made into a vector space
in the most obvious way, by defining

(p,v) + (p,w) = (p,v + w),
a-(p,v) = (p,av).

Vector Field: A vector field is a function F' such that F(p) € R, for
each p € R™. For each p there are numbers F''(p), F?(p), ---, F"(p) such
that

F(p) = Fl(p) : (el)p + FQ(p) ) (62)19 + e F(p) - (en)p-

We thus obtain n component functions F* : R* — R.

Note: (1) The vector field F' is called continuous, differentiable etc., if
the functions F' are.

(2) A vector field defined only on an open subset of R™.

(3) Operations on vectors yield operations on vector field when applied
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at each point separately. For example if F' and GG are vector fields and
f is a function, we define

(F'+ G)(p) = F(p) + G(p),
) =

(F,G)(p) = (F(p),G(p)),
(f - F)(p) = f(p)F(p).
If Fi, Fy, - -+, F,,_1 are vector fields on R", then we can similarly define

(Fy X Fo X -+ X F,,_1)(p) = Fi(p) X Fy(p) x - -+ X F,_1(p).

Gradient, Divergence and Curl: Introduce the formal symbol-

ism
n
=1

The gradient of a scalar field f is defined as Gradf = V f.
The divergence of a vector field F is defined as DivF = > D;F".

i=1
we can write, symbolically, DivF = (v, F').
The curl of a vector field F' is defined as CurlF = vV x F.

If n = 3 we write, in conformity with this symbolism,

(VXF)(p) = (D2 F*=D3F?)(e1)p+(DsF' =Dy F?) (e3)p+(D1 F? =Dy F') (e3),.

2.4 Differential Forms

Differential Forms or k—Forms: A function w with w(p) €

AF(R?) is called a k—form on R", or simply a differential form where
AF (RZ) be the set of all alternating k— tensors which is a subspace of
S*(R?) and R? tangent space of R™ at p.
If o1(p), p2(p ), -+ -, 0n(p) is the dual basis to (e1)p, (€2)p, - - -, (€n)p, then

w(p) = Z Wiy ig,mig * [9011 (p> A @12(]9) ARRRRA iy, <p>] )

11 <t <--<ip

for certain functions wj,,wj,, - - -, w;, -
Note:
1. The form w is continuous, differentiable, etc. if these functions
Wiy, Wiy, * * +, wj, are continuous, differentiable, etc.

2. Let w and 7 be two k— forms then the sum (w+n)(p) = w(p) +n(p).
3. The product (f-w)(p) = f-w(p) and f - w is also written as f A w.
4. Let w be k— form and and 7 be [— forms then wedge product w A n

is (k + 1)— form given by (w A n)(p) = w(p) A n(p).
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5. A arbitrary real valued function f is considered to be a 0—form.

Differential Forms or k—Forms for a function f : R®" — R
: If f: R® — R is differentiable, then Df(p) € A*(R™) i.e. Df(p) is
1—form. A 1—form df, defined by

df (p)(vp) = D f(p)(v) (2.1)

Let us consider in particular the 1—forms dr.
Let ¢ denote the function 7.
Since

dz'(p)(v,) = dr'(p)(v,) = Dr'(p)(v) = ' (2.2)
We see that dz*(p), da?(p), -+, dz"(p) is just the dual basis to (e1),, (€2)p, -

 (€n)p-
Thus every k—form w can be written

w = Z wiliQ...ikdxil Adz A A dat (2.3)

11 <t <l

Note: Thus w = > w;,dx™ is 1—form.
i1
W= Y, Wiyidr' Adx™ is 2—form.
i1<i2 . . .
W= Y Wiisdr Adz" A dz" is 3—form and etc.
11 <t2<i3

Theorem-07: If f: R” — R is differentiable , then
df = Dyf -da* + Dof -da* +---Dyf - da".

In classical notation, df = %dwl + %ﬁ + -+ %dm”
Proof:

df (p)(vy) = Df (p)(vp) = }_ Dif (p) - 0" by equation 1

df (p)(vy) = D Dif (p) - da'(p)(vy) by equation 2

This gives

df = Dif -dazt + Dof - da® + - - D, f - dz" (2.4)
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2.5 Pullback Forms

Differential Forms or k—Forms for a function f:R"” — R™ :
Pullback Forms : Consider a differentiable function f : R* — R™
we have a linear transformation Df(p) : R* — R™. Another minor
modification therfore produces a linear transformation f, : R} — R’ o)
defined by

felvp) = (Df(P)(0)) 5y (2:5)
This linear transformation induces a linear transformation f* : A¥ (R¥(,) —
Ak(]RZ). If wis a k—form on R™ we can therefore define a k—form f*w
on R" by

(f*w)(p) = f*(w(f () (2:6)

Le. if vy, vg, -+, v € R then

f*w<p)(vl>v2> T ?Uk) = w(f(p)(f*(vl)> e af*(vk» (2'7)

Thus if w is a k—form on R™, it can be pullback to R™ by f*w then
J*w is an alternating k—tensor on R} and hence f*w is k—form on R"
and is known as pullback form of w by f

Theorem-08: If f: R" — R™ is differentiable, then

W) fe) = 5 Dyt eded = 5 Sha
(2) [rwr +wp) = f*(wi) + f(w2).

3)  fg-w=(gof) fw.

4)  fflwAan) = fwA fa

p)(vp) = (dx )(f( ) ([ Up) by equation 7
2 ) (f(0))(Df(p)(v) s by equation 5

n n n

= (da')(f(p)) [D_v" - Dif'(p), Y o7 Dif*(p),- -+ > v - D f™(p)

i=1 i=1 =1 f(p)
=2 D
= Z D;f'(p) - d’(p)(v,) by equation 2

Thus

n ; ) fl
= ;Djf dr = Z o dz? (2.8)

7=1
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(2) Let wy and wy be k—forms. Consider

frwr + wa)(p) (v, 02, -+, vp) = (w1 +w2)(f(p))(fe(v1), -+, filvg)) by equation 7
= Wl(f(p))(f*<?)1), T >f*(vk)) + WQ(f(p))<f*(Ul)’ T 7f*('Uk))

= fH(wi) + [ (w2)

(3) Consider

f*(g'W)(p)(vl,ww yor) = (g - w)(f(p))(fe(vr), -+, filor)) by equation 7

= wlg(f()](fe(vi), -+, fu(vg)) since g is 0-form

= wlg o f(p)](fu(v ) -, fe(ur)
= (9o f) f'w

(4) Let w be k— form and and 1 be [— forms then wedge product w An
is (k + 1)— form given by (w A n)(p) = w(p) A n(p).
Consider

frlwAn)(p) (i, 0k, Vkia, 5 Vk)
= (W ADF@)(felvr), - s fulvr)s felvrsr), -+ filvrgn)) by equation 7
= w(f()(felvr), -, felor)) An(f () (felvrin), - felOrsr))
= [fwA
Theorem-09: If f: R"” — R" is differentiable, then
Fr(hdzt Nda® A - Adz™) = (ho f)(detf)(dz' Ada® A - - -da™).
Proof: By theorm 8(/I1), we can write,
fr(hdz* Adx* A -+~ Ndx™) = (ho f)f*(da* Ada® A - - -da™).

then it suffices to show that

frdzt Ada? Ao Ada™) = (detf)dzt Ada® A - - -da”

Let p € R" and let A = (a;;) be the matrix of f'(p). For convenience
we shall omit ”p”. Then

frdet Ada* A Adx™)(er,eq, - - en)
=dx' ANdz® A - ANdax"(f.eq, fuea,- -, fren) by equation 7
=da' Ndz* A - ANda"(Dfy(e;), Dfa(e;), - -, Dfn(e;)) by equation 5

= dz ANdx® A A da" <Z a;16;, Zazgez, cee zn:ameZ)

=1 =1

= det(ay;) - dz' Adx* A--- Adz™(er,eq,- -+ e,) by theorem 6
=det(f)-dz* Adz® A -~ Ada"(e1,eq, - -, €p)
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Example 1: Let w = zydz + 2zdy — ydz € QF(R3) and a: R? —
R? is defined as a(u,v) = (uv,u?, 3u + v). Calculate a*w.

Solution: Instead of thinking of o as a map, think of it as a substition
of varibles:
r=uv,y =u?z=3u+v

dr = %du + a—xdv = vdu 4 udv and similarly,

dy = 2u?éiu and dvz = 3du + dv

Consider,

w = aydr + 2zdy — ydz = (uw)(u?) (vdu + udv) + 2(3u + v)2udu -
u?(3du + dv)

= (uv? + 9u? + 4uv) du + (utv - u?) dv

We conclude that,

afw = o*(zydr + 2zdy — ydz) = (V¥o® + Qu? + duv)du + (utv - u?)
dv.

Example 2: Consider a map F: R3 — R? given as,
F(z,y,2) = (2®+yz, ™)
and 2 form w = uv® du A dv on R%. Then calculate F*w.

Solution: F*w = (2?4yz)e¥¥* d(z?+yz) A de™¥*

= (224y2)e3* (2xdx + 2dy +ydz) A (yze™dr+xz eV dy + rye™dz)
= (2%4yz)e™* (222 2dx Ndy+22°ydxe N dz+22ydy A de+xyzdy A dz +
y’zdz A dr + zyz dz A dy)

= (22 +y2)e'™*((2022-y2*)dx A dy + (22%y-zy?)dz A dz).

2.6 Chapter End Exercise

1. In R3, let w = zydz + 2zdy — ydz and o : R> — R3 be given by
a(u,v) = (uwv,u?, 3u +v). Calculate o*(w).

2. If f:R" — R is differentiable then show that df = %dwl +
x
0 0
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Chapter 3

Exterior Derivatives

Unit Structure :

3.1 Objective

3.2 Exterior Derivative

3.3 Closed and Exact Forms
3.4 Chapter End Exercise

3.1 Objectives

After going through this chapter you will be able to:
1. Define and calculate Exterior Derivative.
2. Learn properties of Exterior Derivative.
3. Identify closed and exact forms.

4. Learn the concept of Star Shaped Set.

3.2 Exterior Derivatives

The operator d which changes 0—forms into 1—forms. If
w= Z Wiy gy AT A dx A -+ o A\ dz'™
11 <t2<i3-ik

be a given k—form, we define a (k+1)—form dw which is the differential
of w, by

dw = Z dwi, iy.ip AdT™ Adx A - A dz'

11 <i2<t3--ik

29



CALCULUS ON MANIFOLDS

Z Z Do (Wiy igoiy,) - dz® Adx™ Adx A~ Nda™ (3.1)

11,02, 1 =1

Theroem-10
(1) d(w+n) = dw+ dn.
(2) If wis a k—form and 7 is a [—form, then
d(wAn) =dwAn+ (—1)*w Adn.
(3) Cocycle condition: d(dw) = 0. Briefly, d* = 0.
(4) If wis a k—form on R™ and f : R"” — R™ is differentiable,
then f*(dw) = d(f*w).

Proof: (1) Let w and n are k—form. From equation (3), We have
w= Z Wiy igip AT A dT A+ A da'™
11 <9<tz <ip

and
n = Z ’f]il,iz,...<ikdl'i1 N dl’iQ JANEIRIEIVAN dl’zk

11 <t2<13-0)

From equation (9), We have

dw = Z Z Do(Wiy iy ) - dz® Adz™ Adz™ A -+ A da'®

11<to<-<ip a=1

=Y Z Do (Diyigoiy) - dz® A da™ Adz™ A - - A da'

11 <l <--<if a=1

=

d(w‘f‘n) N Z Z Da(wh,i%...ik+77i1<¢2<...<ik)-dma/\dmil /\d{L‘iQ/\"'/\dfilC

11 <t <--<ip a=1

dlw+n) = Z Z Do(Wiy iy ) - dz® Adx™ Adz™ A -+ A da'

i1<12< <t a=1

+ Z Z Do (N ia.- cdz® A drt Adz? A - N datr

11 <t <-<ip a=1

d(w +n) = d(w) + d(n)

(2) Let w is a k—form and 7 is a [—form.
Claim: d(w A7) =dw An+ (=1)*w A dn.
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Case I: Let w and n both are 0—form. Then w = f and n = g for some
scalar field f and g. Consider

dlwnm) =d(fAg) = Di(f-g)da’

=Y (D;f)-gdz' + > f - (Dig)da’
i=1 =1

= (df) Ng+ f A (dg)
= (df) Ng+ (=1)°f A (dg)

Case II: If w = da® Adz®™ A -+ Adz™ and
n = da’* Adx?2 A -+ - A da?t then
since D(1) = 0 all terms vanish, formula is true.

Case III: Let w is a O—form and 7 is a [—form.
Since w is a 0—form, let w = f, for some scalar field f.
Since 7 is a [—form, we have

n= E Nir o, dx?t Ndx?? N - A da?!
J1<j2<js-<ji

dwAn)=d(fAn)=d(f-n)

= Z Z Ds(f - 0jyjoi)da® A da?* A da?> A - A dat

J1<g2<js--<ji p=1

= Z Z[(Dsgf) Miv i L (DaNis i) ]d2? A dz?t A da? A - - - A da®

J1<j2<j3--<ji B=1

= Z Z[(Dlgf) My gorn 27 A AT N dx2 A - A da?
J1<g2<g3-<ji B=1
+ f - (Danjy gygy)da® A da?t A da?? A - A da?']

=df An+ fAdn

=df An+ (=1)°f Adn

Case IV: Let w is a k—form and 7 is a [—form. Let w is k—form, We
have
w= Z Wiy gy AT N dX A -+ - A da'™

11 <i2<iz-<ip

31



CALCULUS ON MANIFOLDS

Since 7 is a [—form, we have

n= > Mg de? Ada® A A da
J1<j2<j3z--<Ji
=
w A n = ( Z Wil,i%..likdxn Adr2 A--- A d.’L'Zk)
11 <t9<t3--<ik
NS e A e )
71<j2<J3--<Ji

=
whn = Z Z (wihi?v'“ik'njhjzy“'jz)dxil/\dZUiQ/\'"/\dﬂfik/\dle/\d,j[ij/\--./\dle

11<t2<i3-<ig j1<j2<jz<ji

d(wAn) = Z Z Z D (Wi g iy, * M o)

11 <t < - <ip J1<j2<--<J; a=1
dx® A dx™ Adz? Ao ANdx A da?t Ada?? A A da!

- Z Z Z wllﬂ?, (77]1 g2, Jz) + (wll,w, ) AND (njhjz,"'jz)]

11 <t <-<ig J1<j2<--<j; a=1
dx® A dx™ Adz? Ao Ndx A da?t A da?? A - A dat

— Z Z Z W“ i, (77j1 7j27"'jl)

11 <ig<--<ip J1<j2<--<j; a=1
dz® Adz Adx? A - Ada™ A det Ada A - A da
+ (Wirigip) A Da(jy jo.gy)dz® Adx™ Adz™ A - -+ Adz™ Adz?t Ada? A - - A da?!]

Z Z Z Wiy iy )AZ* A d™ Adz™ A - - A da'™]

11 <ig <. J1<j2<--j; a=1
A Mgy jorg )t A dz?? A -+ A da?t]
+ (=) *(wiy gy, )T A dx A A d™®] A [Da(Mjy o )T A dz? Adz? A -+ A da?t]
dwAn) =doAn+ (—1)fwAdny
The sign (—1)* added since dz™ A dz A - - - A dz'* is k—form and

Do, (nj, jg,rj,) is 1—form.
(3) Let w is k—form. From equation (3), We have

w= Z Wiy igip AT A dT A - A da'™

11 <t2<1i3-ik

From equation (9), We have

Z Z Do(Wiy iy ) - dz® Adz™ Adz™ A - -+ A dx'
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Operating d again on dw we have

d(dw) = Z Z Z Do (Wi iy )d2P Adz® Adz™ Adz™ A -+ Nz

i1 <in<--ij a=1 =1

In this sum the terms
Dy p(wWiyigiy )dx® A dx® A dz™ A dx® A - - - A dz™ and
Dg.o(Wiyigeiy )dx® A daP A dz™ A dx® A - - - A da'* cancel in pairs since

Do (Wi iy )dx® A dx® A dz™ A dx™ A - - A da'™
= —Dpg o(Wiyigip )dT® N dz’® A dzt A dx A - A dat

and hence

d(dw) =0

(4) Claim: If w is a k—form on R™ and f : R® — R™ is differen-
tiable, then
f1(dw) = d(f*w).

To prove this result let’s apply induction on k.

Step I: Subclaim: Result is true when £ = 0, i.e. if w is a 0—
form.
Since w is a 0— form, w = f for some scalar field f.

Consider f*(dw) = f*(df) = d(*(f)) == d(f*w).

Step II: Suppose result is true when w is a k—form.
i.e. if wis a k—form on R™ then f*(dw) = d(f*w).

Subclaim: Result is true when w is (k+1)—form of the type wAdz".
Consider

fHd(wAda')) = f*(dw A do' + (—=1)*w A d(dz')) by theorm 10(II)
= f*(dw A dx") by theorm 10(III)

= f*(dw) A f*(dz") by theorm 8(IV)

=d(f*w) A f*(dx")) result is true for k-form

= d(f"(w A da))

Example I: Calculate exterior derivatives of the 1— forms z2dz A
dy + (2% + 2y)dz A dz in R3.

Solution: Consider w = 22dx Ady+ (2% +2y)dx Adz be given 2—forms.
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Consider

dw = 2zdz N dzx N\ dy + (2zdz + 2dy) ANdx N\ dz

dw = —2zdx Ndz Ndy + 2zdz Ndx ANdz + 2dy N\ dx N dz
dw = 2zdx Ndy Ndz — 2zdz Ndz \Ndx — 2dx N\ dy N\ dz
dw=2zdx Ndy Ndz — 0 —2dx N\ dy N\ dz

dw =2(z — 1)dx Ndy N dz

Example II: Calculate exterior derivatives of fdg where f and g are
functions.

Solution: Let f = f(z,y,2) and g = g(z, vy, 2)

= dg = g.dx + g,dy + g.dz

Thus we have fdg = f(z,vy, 2) - (g.dx + g,dy + g.dz)

Consider

d(f-dg) =df Ndg+ f Nd(dg) fis0— form

=df Ndg+ f ANd(dg) since d(dg) =0

= (fodx + fydy + f.dz) A (g.dx + g,dy + g.dz)

= fodz A (9.dz + g,dy + g.d2) + f,dy A (g.dx + g,dy + g.dz)

+ f.dz A (g.dx + g,dy + g.dz)

= fo - gzdx Ndx + fr - gyde Ady + [, - g.dx Ndz + f, - gzdy N\ dx

+fy g dyNdy+ fy-g.dy ANdz+ f, - gudz Ndx + f, - gydz ANdy + [ - g.dz N dz
=0+ fo-gydx ANdy+ fo - g.dx Ndz — f, - gzdz N dy + 0

+ fy-9.dyNdz— [, gydv Ndz — f, - g,dy Ndz +0

= (forgy = fy-go)dv Ndy + (fo- 9. — fo - go)dx Ndz + (fy - g — [z gy)dy N dz

Example I1I: If F'is a vector field on R3, define the forms
wp = Fldz + F?dy + F*dz
wi = Fldy Adz + F?dz A dx + Fdo A dy

Prove that
(1) df =wj,aq ; Where f is a scalar field in R?

(2) d(wllp) = wgurl F
(3) d(w%) = (div F)dx ANdy A dz
(4) curl grad f =0
(5) divcurl F =0
Solution:

(1) Let f = f(x,y,2) be a scalar field in R3.
=

_of of of
df = a%al:zc%— ayaly%— azdz

34



CHAPTER 3. EXTERIOR DERIVATIVES

of of of,
ax’ay’az>_gmdf

by definition of wy., we can write df as df = w;,4q ;-

where (

(2) Let w}. = F'dz + F?dy + F3dz be a 1—form. Consider
d(wp) = Fidx A dx + Fydy Adx + Fldz A d
+ F2dx Ndy + Fdy A dy + FZdz A dy
+ Fldz Ndz + Fldy Ndz + Fldz A dz
=0— F dz Ady + Fldz A da
+ F2dx Ady + 0 — F2dy A dz
— Fjdz Ndx 4+ Fdy A dz ++0
= (F} = F))dz Ndy + (F, — F2)dy Ndz + (F} — F))dz A da

where ((F7 — Fy), (F) — F2),(F} = F})) = curl F
by definition of w#., we can write d(wy) as d(wp) = W2, p-

(3) Let w? = Fldy Adz + F?dz A dz + F3dx A dy be given 2—form.
Consider

d(ws) =dF' Ndox ANdy ANdz + dF* Ndy Adz Ade + dF? Adz A de A dy
=dF' Nde ANdy Ndz+dF? ANdx ANdy A dz + dF? Adx A dy A dz
= (dF' +dF? + dF?) Adx A dy A dz
= (div F)dz Ndy N dz
(4) By (2), we have wZ,, n = d(wh)
Replace F' by grad f, we obtain

2 _ 1
Weurl grad f — d(wgrad f)

By (1>7 we have wzurl grad f \— d(d<f)) =0
= curl grad f = 0.

(5) By (3), we have (div F)dz Ady A dz = d(w%)
Replace F' by curl F, we obtain

(div curl F)dx Ady A dz = d(w?,; )

By (2), we have (div curl F)dz Ady A dz = d(d(wk)) =0
= div curl F'=0.

Example 1: Let a = zdx + ydy + 2dz, f = zdv + xdy + ydz and v =
xydz in the following problems.

1. Calculate
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2. Calculate

Example 2: Consider the forms,

w = zydr + 3dy — yzdz,

n = xdx - yz* dy + 2xdz in R3.

Verify by direct computation that

d(dw) =0 and d(w A n) = (dw) An-w A dn.

Example 3: In R?, let w = aydx + 22dy — ydz
Let a: R? — R? be given by the equation,
au,v) = (uv,u?, 3u +v)

Calculate dw, a*w, a*(dw) and d(a*w) directly.

3.3 Closed and Exact Form

Closed Form: A form w is called closed if dw = 0.
Exact Form: A form w is called exact if w = dn, for some 7.

Note: Theorem 10(//7) shows that every exact form is closed since
dw = d(dn) = 0.

Note: Is every closed form is exact?
In general every closed form is not exact.
If w is the 1—form Pdxz + Qdy on R? and is closed, then

dw = (DyPdx + Dy Pdy) A dx + (D1Qdx + DyQdy) A dy
dw = Dy Pdx N\ dx + Dy Pdy N\ dz + D1Qdx N dy + D2Qdy N dy
dw =0 — DyPdx N\ dy + D1Qdx AN dy + 0
dw = (D1Q — DyP)dx N dy

Thus since w is closed dw = 0 = 0 = (D1Q — DyP)dx A dy then
D1Q) = Dy P Thus we have w = Pdx + Qdy is exact if D1Q) = DyP i.e.

00" oP
oxr Oy’
Example II: Let A = R? — 0 and

w=—1Y dx + v dy

xQ—l—yQ x2+y2
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in A. Show that, w is closed but not exact.

Star Shaped Set: Suppose that w = > w;dz" is a 1— form on R". If
i=1

w is exact then w = df = > D;fdx" with assumption f(0) = 0. We
i=1
have

f(tx

§t|&

o= e

/Zsz (tx)x'dt
0

3

=1

1

/Z w;(t Zalt
=1

0

3

= To find f, for a given w such that w = df, we consider the function
lw, defined by

1
:/Zwi(tx)-xdt
o =1

Note that the I, is well defined if w is defined only on an open set
A C R™ with the property that wheneverx € A, the line segment from
0 to = is contained in A. Such an open set is called star shaped with
respect to 0.

Theorem-11 : Poincaré Lemma If A C R" is an open set star-
shaped with respect to 0, then every closed form on A is exact.

Proof: Let w be [—form

Z wiliQ...ildxil Adz2 A - Adzt

11 <t <-4

Define a function (I — 1)—forms I from [—forms w (for each ), such
that I(0) = 0 and w = I(dw) + d(Iw) for any form w.
Since A is star-shaped we can define

1

I
Z Z(—l)a—1 /tl_lwiliQ...il(tx)dt z'dz' - Adxie A Adz"

11 <ig<-1p a=1 0

(3.2)
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Note that the symbol daie indicates that it is omitted. Now let’s con-
sider d(Iw(x)), note that

d[(wiyiy, (t2)) 2o da’™ - - - Adzie A - - - A da']
= (Wiyigei, (t2))d[] A da™ - - Adie A+ A da™
+ d(Wiyiy..q, (t)) 2 dz™ - - - Adzie A - A da
= (=11 (Wi, (t2))d2™ -+ AdT"™™ A -+ A dx
+ Zt - Dj(Wiyigiy (tz)) 2" da™ A+ A dzie A - - - A dz
j=1
since o running from 1 to [ and

(—=1)*"! added because of (a — 1) permutations of dz*
hence d(Iw(z)) becomes

1
d(Iw(z)) =1- Z /tl_lwim.l.il (ta)dt | da™ - - - Adz"™ A - - A da"
11 <i2< 4] 0
1

! n
- Z ZZ(_l)a_l /tlewi1i2~--il(tx)dt zledx - Adzie A A da

i1 <ig<-iy a=1 j=1 0

(11)

Using equation (9), consider dw as

Z Z Dj<wi1i2“-il)dxj Adx™ ANdz? A - Adat

i <ig<--iy j=1

Applying I to the (I + 1)—form dw, as per definition of I we obtain
[—form as

Z Z /tlx]D Wiyigiy) (tT)dE | dz™ A+ - Adx' A~ A dz"

11 <io<--1; j=1

1

— Z z:(—l)o‘_1 /tle(wi1i2...il)(tx)dt giodad Ada™ A Adaie A - A dat
1a=1

11<9 j=1 « 0
(12)
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Adding equations (11) and (12), the triple sums cancel, and we obtain
1
d(Iw) + d(dw) = Z [- /tl_l(wiliz...il)(m)dt dz™ Adx A - - Adz”

11 <t <-9 0

+ Z Z /tlij Wiyigiy) (tx)dt | dz™ A dx™ A - A dz"
11 <ta<--1; j=1
1

d . . ,

= > / p — [tM(wiyiges) (E2)]dE | dz?t A dazi A - - A da

11 <t2<-++4] 0
= Z (Wiyigeiy) dT™ Adz™ A - - A dz™

i1<i2<~~-il
=w.
Thus we have w = d({w) + d(dw) since w is closed dw = 0.
Thus w = d(Iw) hence w is exact.

3.4 Chapter End Exercise

1. Is the 1—form w = (2% + y?)dx + 2xydy closed and exact? Justify
your answer.

2. Let w be a any 3—form. Prove or disprove: d(dw) = 0.

—yd d
((yzx——:-:g)y) in A. Prove or disprove:
Z Y

w is closed and exact in A.

3. Let A=R? —0 and w =

4. In R3, let w = aydx + 2zdy — ydz and o : R? — R3 be given by
a(u,v) = (uv,u?, 3u +v). Calculate a*(dw).

5. State the necessary condition for every closed form on A C R” to
be exact. Is the 1—form w = (14 e*)dy + €*(y — x)dy closed and
exact? Justify your answer.

6. If wis a 0—form and 7 is a [—form, then show that d(w A n) =
dw An+ (—=1)*w A dn.

7. If F is a vector field on R3. Let w}. = Fldx + F%dy + F3dz and
wh = Fldy Ndz+ F?dz ANdz + F?dz A dy then show that d(w}) =
2
Weurl F-

8. Show that every exact form is closed. Is the converse true? Justify
your answer.
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Chapter 4

Basics of Submanifolds of R"

Unit Structure :

4.1 Objective

4.2 Basic Preliminaries

4.3 Manifolds in R"

4.4 Manifolds in R"™ without boundary
4.5 Manifolds in R™ with boundary
4.6 Fields and Forms on Manifolds
4.7 Orientation of Manifolds

4.8 Chapter End Exercise

4.1 Objectives

After going through this chapter you will be able to:

1. Define a manifolds with and without boundary.
2. Learn the concepts of Coordinate system and M conditions.

3. Learn the properties of tangent space of manifolds and vector field
on manifolds.

4. Identify orientation of Manifolds.

4.2 Basic Preliminaries

Smooth map: A mapping f of an open set U C R” into R™ is
called smooth if it has continuous partial derivatives of all orders.

Note: For partial derivatives domain of f is essentially required to be
open.
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Diffeomorphism: A smooth map f : X — Y of subsets of two eu-
clidean spaces is a diffeomorphism if it is bijective and if the inverse
f7' 1Y — X is also smooth. X and Y are diffeomorphic if such a
map exists.

OR

If U and V are open sets in R", a differentiable function h : U — V
with a differntiable inverse h=! : V' — U, will be called a diffeomor-
phism.

(“Differntiable” hencefoth, means “C>”.)

Exercise: Give an example of differomorphism.

4.3 Manifolds in R"

A subset M of R™ is called a k—dimensional manifold in R"™ if for
every point x € M, the following condition is satisfied
Condition M: If there is an open set U containing x, an open set
V C R", and a diffeomorphism A : U — V such that

RUNM)=VAR < {0}) ={yeV iy =y =...=y" =0}
i'e‘ (y17... 7yk7yk+17... ’yn) _> (yl’... 7yk707... 70)
OR

A subset M of a euclidean space R” is known as a k—dimensional man-
ifold if it is locally diffeomorphic to R¥.

Note that, local referring to behaviour only in some neighborhood of a
point.

Submanifolds: If M; and M, are both manifolds in R™ and M; C
My then M, is known as submanifold of Ms.

Note:
(1) M is itself submanifold of R™.
(2) Any open set of M is submanifold of M.
(3) A point in R” is a 0—dimensional manifolds.
(4) An open subset in R™ is an n—dimensional manifolds.

Theorem-01: Let A C R" be open and let g : A — R? be a differen-
tiable function such that ¢'(z) has rank p whenever g(x) = 0.
Then ¢'(0) is an (n — p)—dimensional manifold in R".

Proof: Step I: Consider following theorem from Real Analysis
Subclaim: Theorem: Let f : R" — RP be a continuously differen-
tiable function in an open set containing a where p < n. If f(a) =0
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and the p x n matrix D;f*(a) has rank p then there is an open set
A C R” containing a and a differentiable function A : A — R” with
differentiable inverse such that

th(:LJ?wZa e 7$n) = (xn—p+17$n—p+2’ e 7$n)'
Add proof of above theorem.

Step II: By applying above theorem and by definition of manifold we
can conclude that ¢g='(0) is an (n — p)—dimensional manifold in R™.

Example: Show that the n—Sphere S", defined as {z € R"*! : |z| =
1} is n—dimensional manifold.

Solution: Apply above theorem (1) by considering S™ = g~1(0), where
g : R"™ — R is defined by g(z) = |z|> — 1.

Note that n is replaced by n + 1,

p=1,

g(0) = 0.

By theorem (1), Sphere S™ is (n —p) = (n + 1 — 1) = n dimensional
manifold.

Theorem-02: A subset M of R" is a k—dimensional manifold if and
only if for each point x € M the following “coordinate condition”is
satisfied:

Coordinate condition C: There is an open set U containing x, an
open set W C R*, and a 1 — 1 differentiable function f : W — R" such
that

(1) fW)=MnU,
(2)  f'(y) has rank k for each y € W,
(3) f7t: f(W) — W is continuous.
note that, such a function f is called a coordinate system around x.

Proof: Step I: Assume that M is a k—dimensional manifold in R".
Claim: Each point z € M satisfies the coordinate condition.

Since M is k—dimensional manifold in R™ by definition each point
x € M satisfies the following condition

If there is an open set U containing x, an open set V' C R”, and a
diffeomorphism A : U — V such that

RUNM)=VAR < {0}) ={yeV iy =y =...=y" =0}

Let W = {a € R : (a,0) € h(M)}.
Define f : W — R" by f(a) = h™(a,0).
Clearly
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(1) Since h : U =V = h™Y(V) = U and

(a,0) € h(M) = h™(a,0) = M

hence f(W)=MNU,

(2) Since h is diffomorphism, f~! is continuous and

(3) If H : U — R” is defined by H(z) = (h'(2),- - -, h*(2)),
then H(f(y)) =y for ally € W (.- Since f = h™!)
Therefore on differentiating by using chain rule we obtain
H'(f(y))- f'(y) = I and f'(y) must have rank k.

Thus each point © € M satisfies the coordinate conditions.

Step II: Suppose that f: W — R” satisfies coordinate conditions.
Claim: M is a k—dimensional manifold in R™.

Let f(y) = .
Assume that the matrix (D;f*(y)), 1 < 4,7 < k has a non-zero deter-
minant.

Define g : W x R** — R" by g(a,b) = f(a) + £(0,b).
Then detg (a,b) = det (D, f*(a)),
so det g (y,0) # 0.

Now lets use Inverse Function Theorem as

Inverse Function Theorem: Suppose that f : R* — R™ is continu-
ously differentiable in an open set containing a and det f'(a) # 0. Then
there is an open set V' containing a and open set W containing f(a)
such that f : V — W has a continuous inverse f~! : W — V which
is differentiable and for all y € W satisfies (f~1) (y) = [f"(f~*(y))] "

By Inverse Function Theorem

There is an open set Vll containing (y,0) and an open set VQ/ contain-
ing g(y,0) = x such that g : V, — V, has a differentiable inverse
h:V, =V,

By third coordinate condition, f~! is continuous,

{f(a) : (a,0) € V/} = U N f(W) for some open set U (By first coordi-
nate condition).

Let Vo =V, NU and Vi = g~ 1(V2).

Then Vo N M is exactly {f(a) : (a,0) € Vi} = {g(a,0) : (a,0) € Vi},
where M C R™ So

h(Von M) =g ' (VoN M) since h =g !
=g ({9(a,0) : (a,0) € Vi}) = ({(a,0) : (a,0) € V1})
=11 N (R* x {0}).

hence by definition M is a k—dimensional manifold in R".
Note: If f; : W, C R¥ — R™ and f, : Wy, C RF — R” are two
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coordinate systems, then

foto fit fil(fo(Wa)) — R

is differentiable with non-singular Jacobian. If fact, f,'(y) consists of
the first & components of h(y).

4.4 Manifolds of R"” without boundary

Manifolds in R" without boundary: Let £ > 0. Suppose that
M is a subspace of R™ having the following property:
For each p € M, there is an open set V' containing p that is open in M,
a set U that is open in R*, and a continuous map f : U — V carrying
U onto V in a 1 — 1 fashion such that

(1) fisof class C"
(2) Df(x) has rank k for each x € U,
(3) f~':V — U is continuous.

Then M is called a k— manifold without boundary R" of class C". The
map f is called a coordinate patch on M about p.

Example 1: Let a : R — R? be given by a(t) = (¢3,¢?). Let M
be image set of a. Is M 1—manifold without boundary in R?? Justify
your answer.

Solution: Let « : R — R? be given by a(t) = (t3,¢?) is a 1 — 1 map.
Clearly
(1) «is of class C*™
(2) a7 ':V — U is continuous where U is open in R and V is open in R?,
(3) Da(t) = (3t*, 2t) has not rank 1 at ¢t = 0.

hence M not 1—manifold without boundary in R2.

Example 2: Let 8 : R? — R? be given by B(z,y) = (z(2* +
v, y(z? +9%), (z2 +?),). Let M be image set of 5. Is M 2—manifold
without boundary in R3? Justify your answer.

Solution: Let 3 : R? — R3 be given by B(x,y) = (z(2* + y?), y(2* +
v?), (z% +9?%),) is a 1 — 1 map. Clearly
(1) pis of class C*
(2) B7':V — U is continuous where U is open in R and V is open in R?,
[ (@ + y?) + 222 21y 21
(3) Dﬁ(t) - 2l’y (xZ +y2) +2y2 2y
Dp(t) has not rank 2 at 0.
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hence M not 2—manifold without boundary in R3.

Example 3: Let v: R — R? be given by ~v(t) = (sin2t)(] cost |
,sint) for 0 < ¢t < w. Let M be image set of 7. Is M 1—manifold
without boundary in R3? Justify your answer.

Solution: Let v : R — R? be given by «(t) = (sin2¢t)(| cost |,sint)
isal—1map for 0 <t < 7m. Clearly
(1) v is of class C!

(2) Dy(t) = (sin2t)(] sint |,cost) 4+ (2cos 2t)(| cost |,sint) has rank 1 for all .
(3) Since image of smaller interval U which contains — is not open in M hence

~~1:V — U is not continuous where V' is open in R?,

hence M not 1—manifold without boundary in R3.

4.5 Manifolds of R"” with boundary

Half Space: The half-space H* C R* is defined as {z € R* : 2% >

0}.

Manifold with Boundary: A subset M of R” is a k—dimensional
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manifold-with boundary if for every point & € M either condition (M)
or the following condition is satisfied:

Condition M’: There is an open set U containing x, an open set
V C R", and a diffeomorphism A : U — V such that
h(UNM) = VN(H*x{0}) ={y € V : ¥ > 0, and ¢! = ¢ = ... = ¢ = 0}

and h(z) has k'™ component = 0.
The set of all points x € M for which condition M’ is satisfied is called
the boundary of M and denoted OM.

Note: Conditions (M) and (M’) cannot both hold for the same x.

Examples: (1) Let o : R — R? be the map a(t) = (¢,t?). Let
M be image set of a. Show that M 1—manifold in R? covered by the
single coordinate patch a.

(2) Let 8 : H' — R? be the map S(t) = (£,t?). Let N be image set of
(. Show that N is 1—manifold in R2.

(3) Show that unit circle S is a 1—manifold in R

(4) Show that the function « : [0, 1] — S* given by a(t) = (cos 27t, sin 27t)
is not a coordinate patch on S!.

4.6 Fields and Forms on Manifolds

Tangent Space of M: Let M be a k—dimensional manifold in R"
and let
f: W — R"™ be a coordinate system around x = f(a).
Since f'(a) has rank &, the linear transformation f, : RF — R” is 1—1,
and f,(R¥) is a k—dimensional subspace of R".
If g: V — R" is another coordinate system, with x = ¢(b), then

9*(Rllf) = f*(f_l 0g) * (R]lf) = f*(RS)
Thus the k—dimensional subspace f.(R¥) does not depend on the co-
ordinate system f. This subspace is denoted M,, and is called the
tangent space of M at x.

Note: There is a natural inner product 7,., on M,., induced by that on
R,
if v, w € M,, define T,(v, w) = (v, w),.

Vector field on M: Suppose that A is an open set containing M,
and F is a differentiable vector field on A such that F(z) € M,, for
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each x € M. If f: W — R" is a coordinate system, there is a unique
differentiable vector field G on W such that f.(G(a)) = F(f(a)) for
each a € W. such a function F' is called a vector field on M.

Note: (1) we define F' to be differentiable if G is differentiable.

(2) Note that our definition does not depend on the coordinate system
chosen.

ifg:V — R"and g.(H (b)) = F(g(b)) for allb € V, then the component
functions of H(b) must equal the component functions of G(f~!(g(b))),
so H is differentiable if G is differentiable.

p—form on M: A function w which assigns w(z) € AP(M,) for each
x € M is called a p—form on M.
If f: W — R"is a coordinate system, then f*w is a p—form on W.

Note: (1) We define w to be differentiable if f*w is differentiable.
(2) A p—form w on M can be written as

w= Z wiliQ...ipdx“ Adz2 A - A dx.

i <ig<--<ip
here the functions wj,,...;, are defined only on M.

Theorem-03: There is a unique (p + 1)—form dw on M such that for
every coordinate system f : W — R™ we have f*(dw) = d(f*w).

Proof: If f : W — R" is a coordinate system with x = f(a) and

V1, Vg, -+ +, Upy1 € M, there are unique wy, ws, - - -, wyy 1 in R such that
[ (w;) = ;.
Define dw(x)(vy, va, - -+, vpy1) = df*(w)(a)(w, wa, - - -, Wpt1)-

One can check that this definition of dw(z) does not depend on the
coordinate system f, so that dw is well-defined.
Moreover, it is clear that dw has to be defined this way, so dw is unique.
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4.7 Orientable Manifolds

Consistent: For each tangent space M, of a manifold M, it is
necessary to choose an orientation p,. Such choices are called consistent
provided that for every coordinate systems f : W — R"™ and a,b € W
the relation

[f-((ex)a), ful(€2)a), - - - ful(er)a) = ti5a)
holds if and only if

[fe((e1)s), fu((e2)s), - - -, ful(er)s) = K@)

Orientation Preserving: Suppose orientations j, have been cho-
sen consistently. If f: W — R" is a coordinate system such that

[f+((ex)a), fx((€2)a), - - - ful(€r)a) = pf(a)

for one, and hence for every a € W, then f is called orientation-
preserving.

Note: (1) If f is not orientation-preserving and 7" : R¥ — R¥ is a linear
transformation with det 7'= —1, then f o7 is orientation-preserving.
(2) Therefore there is an orientation-preserving coordinate system around
each point.

(3) If f and g are orientation-preserving and x = f(a) = ¢(b), then the
relation

[f.((er)a), ful(ez)a), - fuller)a)] = pa = [g-((€1)b), g.((e2)D), -+, g+ ((ex)D)]

implies that

(g7 of)((er)a), (g7 o f)ul(e2)a), - (g™ o f)u((er)a)] = [(e1)D, (e2)D, -, (ex)b,
so that det (g7 o f) > 0.

Orientable Manifold: A manifold for which orientations pu, can
be chosen consistently is called orientable, and a particular choice of
the p, is called an orientation p of M. A manifold together with an
orientation p is called an oriented manifold.

Outward Unit Normal: If M is a k—dimensional manifold-with-
boundary and x € M, then (OM),, is a (k—1)—dimensional subspace
of the k—dimensional vector space M,. Thus there are exactly two
unit vectors in M, which are perpendicular to (OM),. They can be
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distinguished as follows.

If f: W — R"is a coordinate system with W C H* and f(0) = =,
then only one of these unit vectors is f.(vo) for some vy with v* < 0.
This unit vector is called the outward unit normal n(zx).

Note: Outward unit normal does not depend on the coordinate system

f.

Induced Orientation: Suppose that p is an orientation of a k—
dimensional manifold with-boundary M. If x € OM, choose vy, vs, - -

Vg—1 € (OM),, so that [(n(z),wy,wr,- - ,wk—1] = pe. If it is also
true that [(n(x),wy,ws, - - -, wg_1] = i, then both [vy, ve, - -+ vk_;] and
[(w1, w1, -+, wg_1] are the same orientation for (9M),. This orientation

is denoted (Ou),. The orientations (Ou)., for x € OM, are consistent
on M. Thus if M is orientable, OM is also orientable, and an orienta-
tion p for M determines an orientation du for OM, called the induced
orientation.

Note: If we apply these definitions to H* with the usual orientation,
we find that the induced orientation on RF"1 = {(z € H* : 2% = 0} is
(—1)* times the usual orientation.

Example: Show that the Mdbius strip is a non-orientable manifold.

4.8 Chapter End Exercise

1. Define diffeomorphism and give an example of diffeomorphism.
Justify your answer.

2. Show that unit circle S! is a 1—manifold in R
3. Let v : R — R? be given by () = (sin2t)(| cost |,sint) for
0 <t <m Let M be image set of . Is M 1—manifold without
boundary in R3? Justify your answer.
4. Let f:R!' — R! is given by
-1
e=>, x>0,
0, x <0
Prove or disprove: f is diffeomorphism.

5. Let 8: H' — R? be the map [(t) = (t,t?). Let N be image set
of 3. Show that N is 1—manifold in R2.
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. Prove or disprove: the Mobius strip is a orientable manifold.

. Is the n—Sphere S, defined by {z € R""! : |z| = 1} a n—dimensional
manifold? Justify your answer.

. Let v : R — R? be given by ~v(¢) = (sin2t)(| cost |,sint) for
0 <t < m Let M be image set of v. Is M 1—manifold without
boundary in R3? Justify your answer.

. Show that there is a unique (p + 1)—form dw on M such that for
every coordinate system f: W — R™ we have f*(dw) = d(f*w).
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Chapter 5

Stokes’s Theorem

Unit Structure :

5.1 Objective

5.2 Basic Preliminaries

5.3 The Integral of k—forms

5.4 Stokes’s Theorem for Integral of k—forms
5.5 Stokes’s Theorem on Manifolds

5.6 The Volume Element

5.7 Chapter End Exercise

5.1 Objectives

After going through this chapter you will be able to:
1. Define a integral of k—forms.

2. Learn the concepts of line integral, surface integral and volume
integral.

3. Learn the properties of the volume element.

5.2 Basic Preliminaries

n—fold product: [0,1]" denotes the n—fold product and is given
by
[0,1]" =1[0,1] x [0,1] x -+ x [0, 1]

Singular n—cube: A singular n—cube in A C R" is a continuous
function C': [0,1]" — A.

Note: Let R? and [0, 1]° both denote {0}.
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Standard n—cube: The standard n—cube 1™ : [0, 1] — R™ defined
by I"(z) = x for z € [0, 1]™.

Definitions and Properties:

1. The vector field F' is known as solenoidal if DivF = 0.

2. The vector field F is known as irrotational if CurlF’ = 0.

3. If the vector field F is solenoidal then by Divergence theorem

/div Fdv = /(F,n>dA—0.

M oM

4. If the vector field F is irrotational then by Stokes theorem

/((V x F),n)dA = /<F, T)ds = 0.

M oM

5. If the line integral of a vector field is independent of path then such
a vector fields are called conservative.

6. A conservative vector fields are irrotational and an irrotational vec-
tor fields are also conservative if domain is simply connected.

5.3 The Integral of k—form

The Integral of k—form on the cube [0, 1]*: If w is a k—form
on [0,1]%, then w = fda' Adz® A --- A da* for a unique function f. We

define
[e=]
[0,1]%

[0,1]*

We could also write this as

/ fdzt Adx® A - - da® = / f(zt 2% 2 datda? - - - da®

[0,1] (0,1}

The Integral of k—form on the singular k—cube c: If wis a
k—form on A and c is a singular k—cube in A, we define

/w: / c'w.
c [0,1]*
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Note, in particular, that

/fdxl/\dﬁ/\---/\dx’f: /(]k)*f(dxl/\de/\---/\dxk)
Ik

[0,1]F
= / flt 2%, aMdatda? - - - da®. (1)
[0,1]%

Note: (1) A 0—form w is a function; if ¢ : {0} — A is a singular
O—cube in A. We define
[ =wteto)

[

(2) The integral of w over a k—chain ¢ = ) a;¢; is defined by

c/w:zaiq/w

(3) The integral of a 1—form over a 1— chain is often called a line
integral.

If Pdx+Qdy is a 1—form on R? and ¢ : [0, 1] — R? is a singular 1—cube
(a curve), then one can prove that

/ Pdz+Qdy = lim Y _[c! (t:)—c! (ti-1)]- Plc(t)+[c* (t:) = (tim1)]-Q(c(t))
i=1

where tg,t1, - -, t, is a partition of [0,1], the choice of ¢ in [t;_,1;] is

arbitrary, and the limit is taken over all partition as the maximum of

[ti—1,t;] goes to 0.

5.4 Stokes’s Theorem for Integral of
k—forms

Theorem-15: Stokes Theorem If w is a (k—1)—form on an open
set A C R™ and c is a k—chain in A, then

/dw:/w.
c oc

Proof: Suppose first that ¢ = I* and w is a (k — 1)—form on [0, 1]*.
Then w is the sum of (k — 1)—forms of the type

w:fdxl/\de/\---c?x\i/\---dxk
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Note that
/ I@’a)*(fdxl/\dﬁ/\u-/\jx\i/\..‘/\dxk)
[0,1]+-1
0 if i # j,
- f f(l'1,$2,---,a,---7$k)dl‘ldx2-..dxk lszl
[0,1]%
Therefore

/fdxl/\de/\---d/x\i/\---/\dxk

oIk

=30 S W [ Iy (et Ada® A A A i)

k
j=1 a=0,1

on expanding summation and using equation (1)

= (1) / flat 2?1, a®)datda? - - - da®

(0,1]*

+ (=1)* / flxt 2?40, aF)datda? - - - dat. (2)

[0,1]

On the other hand,

/d(fdxlAdsz.--JinA-..Ada;k): / D fdzi Adat Ada® A---dai A -+ - A dat

= (1)t / D;f.

[0,1]

[0,1]*

By Fubini theorem and the fundamental theorem of calculus in one
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dimension

/d(fdxl Adz? A - -dai A - - -da®)

/ / / D;f(x 2P daYdotda? - - dai - - - da*

[0, 1] [0 1]

= (_1)i—1//. . ./[f(f,ﬁ’ o1y 2f)y = fat 2?0, 2] datde? -

00 0
= (1)t / flzt 2?1, a®)datda® - - - dat
[0,1]%
+ (—1)* / flzt 2?0, aM)datda® - - - da.
[0,1]%

Thus by equation (2) we have

oo

oIk

Note: If ¢ is an arbitrary singular k—cube, working through the

definitions will show that
/ w = / c'w.

oIk

C/dw:I[c*(dw) / c'w) /cw—/

oIk

Therefore

Finally, if ¢ is a k—chain > a;c;, we have

furmTofa=Eafon fo

dc;

- dx®.

5.5 Stokes’s Theorem on Manifolds

If w is a p—form on a k—dimensional manifold with boundary M
and c is a singular p—cube in M, we define

for [

[0,1]7
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Note: (1) In the case p = k it may happen that there is an open set
W D [0, 1]* and a coordinate system f : W — R™ such that c(z) = f(x)
for z € [0, 1]".
(2) If M is oriented, the singular k—cube ¢ is called orientation-preserving
if f is orientation-preserving.

Theorem (16): If ¢1,c; : [0,1]F — M are two orientation preserving

singular k—cubes in the oriented k—dimensional manifold M and w is
a k—form on M such that w = 0 outside of ¢;([0, 1]*) N o ([0, 1]%)), then

c1 c2

Proof: We have

/w = / ¢ (w) by equation (3)

[0,1]*
Ju= [ (@ oaraw
c1 [0,1]*

Note that ¢,' o ¢; is defined only on a subset of [0,1]F and the sec-
ond equality depends on the fact that w = 0 outside of ¢;([0,1]¥) N

c2((0,1)%)).)

It therefore suffices to show that
[ @tearae = [ aw - [
[0,1]k [0,1]% co

If cj(w) = fdat A fdz? A--- A fda* and c; ' o ¢p, is denoted by g, then
by Theorem (9) we have

(62_1 o) cl)*c;(u}) — g*(fdxl A fdx2 A A fdl’k)
= (fog)- detg .dz* Adx® A--- A daF
=(fog)- ]detgl].dxl ANdz? A - - A dat,

where detg’ = det(c;' oc;) > 0.
On integrating both sides over [0, 1]¥, we obtain

/ (e 0 cr) chw) = / (fog)- |detg'|.da* Ada® A--- Ada*  (4)
[0,1]% [0,1]%

Now lets apply following theorem to equation (4)
Let A C R™ be an open set and g : A — R™ is 1 — 1 continuously
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differentiable function such that detg’(z) # 0 for all z € A. If f :
g(A) — R is integrable then

/g(A)f:A(f09)|detg"

Above theorem and equation (4) shows that

/(621061)*63(w):/fdxl/\d:cz/\~~~/\d:c’C

[0,1] [0,1]%
[0,1]F [0,1]% co2

Note: (1) Let w be a k—form on an oriented k—dimensional manifold
M. If there is an orientation-preserving singular k—cube ¢ in M such
that w = 0 outside of ¢([0, 1]¥), we define

fon o

M c

Theorem (15) shows [ w does not depend on the choice of c.
M

(2) Suppose that w is an arbitrary k—form on M. There is an open cover
O of M such that for each U € O there is an orientation-preserving
singular k—cube ¢ with U C ¢([0, 1]*). Let ® be a partition of unity for
M subordinate to this cover. We define

o5 o

M ped

Theorem-16: Stokes Theorem on Manifolds: If M is a com-
pact oriented k—dimensional manifold with boundary and w is a (k —

1)—form on M, then
/dw = /w.

M oM

(Here M is given the induced orientation.)

Proof: Case I: Suppose that there is an orientation-preserving singu-
lar k—cube in M — M such that w = 0 outside of ¢((0,1)%).

59



CALCULUS ON MANIFOLDS

By Theorem (15) and the definition of dw we have

/dw = / c*(dw) by equation (3)

c [0,1]%

= / d(c*w) by theorem (14)
[0,1]*

= /(c*w) by theorem (15)

oIk

= /w by equation (3)
Oc

/dw:/dw:/w:o.
M c oc
since w = 0 on OJc.

On the other hand, [ w = O since w =0 on M.
oM

Then

Suppose that there is an orientation-preserving singular k—cube in M
such that ¢k, 0) is the only face in OM, and w = 0 outside of ¢([0, 1]¥)

Then
fars oo fu- [

dc oM

Case II: The general case: There is an open cover O of M and a
partition of unity ® for M subordinate to O such that for each ¢ € ®
the form ¢ - w is of one of the two sorts already considered. We have

0=d(1) =d<290> =D _d()

ped ped

so that

D d(p) Ad =0.

ped
Since M is compact, this is a finite sum and we have
/ > dp) A =0.
A{@EQ
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Therefore

/dw:;/@-dw

M

:Z/dgp/\w+cp-dw since dp =0

<p6<I>M

5.6 The Volume Element

The Volume Element Let M be a k—dimensional manifold (or
manifold with boundary) in R", with an orientation p. If x € M, then
1 and the inner product T, we defined previously determine a volume
element w(z) € A*(M,). We therefore obtain a nowhere-zero k—form
w on M, which is called the volume element on M (determined by p)
and denoted dV', even though it is not generally the differential of a
(k —1)—form.

The volume of M is defined as [ dV, provided this integral exists, which
M
is certainly the case if M is compact.

Note: (1) Volume is usually called length or surface area for one
and two-dimensional manifolds, and dV is denoted ds (the ”element
of length”) or dA [or ds] (the ”element of (surface) area”). (2) Con-
sider the volume element of an oriented surface (two-dimensional man-
ifold) M in R3. Let n(z) be the unit outward normal at x € M. If
w € A%*(M,) is defined by

w,w)=det | w |,

then w(v,w) = 1 if v and w are an orthonormal basis of M, with
[v,w] = piz. Thus dA = w.

On the other hand, w(v,w) = (v x w,n(z)) by definition of v x w. Thus
we have dA(v,w) = (v X w,n(x)). Since v X w is a multiple of n(z)
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for v,w € M, we conclude that dA(v,w) = |v x w| if [v,w] = ps. (3)
If we wish to compute the area of M, we must evaluate [ ¢*(dA) for
[0,1]2

orientation-preserving singular 2—cubes c. Define

E(a) = [Dic!(a)]* + [Dic*(a))* + [Dic’(a)]*.

F(a) = [Dic'(a) - Dyc'(a)] + [D1c*(a) - Dac*(a)] + [Dic(a) - Dac’(a)]
G(a) = [Dac'(a)* + [Dac*(a)]” + [Dac’(a)]*.
Then

¢"(dA)((e1)a; (€2)ar) = dA(ci(e1)a, C(€2)a)
= |(Dyc*(a), Dic*(a), Dic(a)) - (Dayc'(a), Dac?(a), Doc?(a))|
= VE(a)G(a) — F(a)?

Thus

/ ¢ % (dA) = / VE@C(@) = FlaP.
[

[0,1])2 0,1]2

Theorem-18: Let M be an oriented two-dimensional manifold (or
manifold with boundary) in R? and let n be the unit outward normal.

Then
(1) dA = n'dy A dz + n?*dz A dz + nidx A dy.
Moreover, on M we have
(2) n'dA = dy A dz.
(3) n*dA = dz Ndx.
(4) n*dA = dx A dy.

Proof: Equation (1) is equivalent to the equation

v
dA(v,w) =det | w |,
n(z)

This is seen by expanding the determinant by minors along the bottom
TOW.

To prove the other equations, let z € R3. Since v x w = an(z) for some
a € R, we have

(z,n(2)) - (v xw,n(x)) = (z,n(x))a = (2, an(z)) = (2,0 X w).
Choosing z = ey, e5, and ez we obtain (2), (3) and (4).
A word of caution; if w € A*(R?) is defined by

w = n'(a)-dy(a) Adz(a) +n?*(a) - dz(a) Adx(a) + n?(a) - dz(a) A dy(a),
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it is not true, for example, that n'(a).w = dy(a) Adz(a). The two sides
give the same result only when applied to v, w € M,.

5.7 Chapter End Exercise

1. State and prove the Stokes theorem for any 3—forms w.

2. Consider vector field F = (y+ 2)i+ (2 +2)j + (x +y)k. Is vector
field F’ solenoidal and irrotational? Justify your answer.

3. Let M be a two-dimensional manifold in R3. Compute the area
of M over orientation preserving singular 2—cubes c.

4. Consider an orientation-preserving singular k—cube in M — oM
such that w = 0 outside of ¢((0,1)¥) where M is a compact ori-
ented k—dimensional manifold with boundary and w is a (k —

1)—form on M then show that [dw= [ w.
M oM
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Chapter 6

Classical Theorems

Unit Structure :

6.1 Objective

6.2 Classical Theorems

6.3 Applications of classical theorem
6.4 Chapter End Exercise

6.1 Objectives

After going through this chapter you will be able to:
1. Evaluation of a line integral using Green’s Theorem.
2. Evaluation of a volume integral using Divergence Theorem.
3. Evaluation of a surface integral using Stoke’s Theorem.

4. Learn a concept of conservative fields.

6.2 Classical Theorems

Theorem-19: Green’s Theorem: Let M C R? be a compact
two-dimensional manifold with boundary. Suppose that o, 5 : M — R
are differentiable. Then

/ad:v + Bdy :J(Dlﬁ — Dya)dx N dy = 4/ (% — g—;) dzdy

oM

(Here M is given the usual orientation, and M the induced orientation,
also known as the counter clockwise orientation.)
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Proof: We have the Stoke’s theorem on Manifolds as
If M is a compact oriented k—dimensional manifold with boundary and
wis a (k—1)—form on M, then

[ [

M oM

Let w = adx + Bdy

= dw = Diadx N\ dx + Dyady N dx + DiSdx A dy + DoSdy A dy
= dw = —Dyadx N\ dy + D1 5dx A dy

= dw = (D18 — Dya)dx N dy

Substitute in above toke’s theorem on Manifolds we obtain

/ adz + Bdy = A[(Dlﬁ — Dya)dz A dy = 4/ (g—f - %) dxdy

oM

Theorem-20: Divergence Theorem: Let M C R?® be a compact
three-dimensional manifold with boundary and n the unit outward nor-
mal on OM. Let F be a differentiable vector field on M. Then

/div Fdv = /(F,n}dA.
M oM

This equation is also written in terms of three differentiable functions
a,B,v: M — R:

///(80‘ a-B+@)dv //na—i—nZB—l—n’y)

Proof: Define w on M by w = Fldy A dz + F?dz A dx + F3dx A dy
Then dw = div F'dV. See example 111(3) of Unit 2
According to Theorem-18, on M we have

n'dA = dy A dz,
n?dA = dz A dz,
n*dA = dx A dy.

Therefore on OM we have
(F,n)dA = F'n'dA + F?n*dA + F3n?dA,
Since F = (F', F?, F?) and n = (n',n* n%)
(F,n)dA = F'dy A dz + F?*dz A dx + F*dx A dy,
(F,n)ydA = w.
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We have the Stoke’s theorem on Manifolds as
If M is a compact oriented k—dimensional manifold with boundary and
wis a (k—1)—form on M, then

[ [

M oM

Thus using values of w and dw in the above theorem, we obtain

/ divF dV = / (F,n)dA.

M oM

Theorem-21: Stokes’ Theorem: Let M C R? be a compact ori-
ented two-dimensional manifold with boundary and n the unit outward
normal on M determined by the orientation of M. Let OM have the
induced orientation. Let T be the vector field on OM with ds(T) =1

and let f be a differentiable vector field in an open set containing M.
Then

J((V x I),n)dA 284<F, T)ds.

This equation also written as

o B oo Oy I Oa
B (O 0P o (O Oy 3 (9P Y@
/adx+ﬁdy+7dz// [n (ay 8z>+n (82 8m)+n (837 83/)] »
M

oM

Proof: Define w on M by w = Fldx + F?dy + F3dz.
Since V x F' = (D2F3 - D3F2, DgFl — D1F3, D1F2 — DgFl)
it follows that on M we have

(V x F),n)dA = (DyF?® — DsF*)n'dA + (DsF' — D1 F*)n*dA + (D F? — Dy FY)n*dA

According to Theorem-18, on M we have

n'dA = dy A dz,
n?dA = dz A dx,
n3dA = dx A dy.

Therefore on M we have

((Vx F),n)dA
= (DyF® — D3F?)dy A dz + (D3F' — D1 F?)dz A dx + (D1 F? — DoFY)dx A dy
= dw. See example II1(2) of Unit 2
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On the other hand, since ds(T") = 1, on OM we have

Tids = dx,
Thds = dy,
Tzds = dz.

Therefore on OM we have
(F,T)ds = F'T'ds + F*T?ds + F*T%ds = F'dx + F?dy + F?dz = w

We have the Stoke’s theorem on Manifolds as
If M is a compact oriented k—dimensional manifold with boundary and
wis a (k—1)—form on M, then

[ao= [

M oM

Thus using values of w and dw in the above theorem, we obtain

/((v X F),n)dA /<F, T)ds.

M oM

6.3 Applications of classical theorem

Example 1: State and verify Green’s Theorem in the plane for
$(32% - 8y*)dz + (4y — 6zy)dy where C is boundary of the region
bounded by z > 0, y < 0 and 2z — 3y = 6.

Solution: Here closed curve C consists of straight lines OB, BA and
AO, where coordinates of A and B are (3, 0) and (0, -2) respectively.
Let R be the region bounded by C.

Then by Green’s Theorem in plane, we have,

0 0
$ (322 - 8y*)dx+(4dy—6zy)dy = ffR[%(ély—ny) - a—y(BxQ - 8y?)|dxdy........ (1)
= [[5 (=6y + 16y)dzdy
= Iz glOy)d%dy
=10 [y dz f%(zx—e)ydy
=10 J; dz = -20
Now we evaluate L.H.S. of (1) along OB, BA and AO.
Along OB, x = 0, dx = Oand y varies from 0 to -2.
Along BA, x:%(fi + 3y), dx:%dy and y varies -2 to 0.
and along AO, y =0, dy = 0 and x varies from 3 to 0
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L.H.S of (1) = $(32? - 8y*)dx + (4y — 6xy)dy
= fOB(Sgc2 - 8y?)da—+(4y—6xy)dy+ [ ,(32? - 8y?)da+(4y—6xy)dy+ [, , (32>
- 8y? )d:c + (4y — 6:Uy)dy
= fo 4ydy + f 2(6 + 3y)* - 12y2+4y—18y—9y2]dy—|—f303x2dx
>+ f 6 + 3y)? - 12y%+4y-18y-9y*|dy + [2*]3

+ 12, 6 + 3y)? - 2132-14y]dy + [0-27]
= —19+27 56+28
= -20
with help of (2) and (3), we find that (1) is true and so Green’s Theorem
is verified.

Example 2: Verify Stoke’s theorem for the vector field F=@Q2z—y)
- y2%j - y?zk over the upper half of the surface 22+y%+22=1 bounded
by its projection on xy-plane.

Solution: Let S be the upper half of the surface z2+y*+22=1. The
boundary CorS is a circle in the xy plane of radius unity and centre O.
The equation of C are 2?+y?> =1, 2 =0

whose parametric form is = = cos(t), y = sin(t), z =0, 0 < t < 27.
Jo F.dr= Jo [(2z — V)i - y22j - y?zk] - [deitdyj+dzk]

= [ (22 — y)da - yz*dy - y*zdz]

= [ [(2z — y)dxsince on C, z = 0 and 2z = 0

= 0% [2cos(t) — sin(t)] % dt

= fo% 2cos(t) — sin(t)](—sin(t))dt

= fo —sin(2t)-sin(t)]dt

OQW [— sm(2t)+—1_m;(2t) |dt

_ [0052(215) +§_ sini?t) ]37T
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= M- =T, (1)
Consider, A
; j i
= 0 0 0 . . .
CurlF = | — — = | = (-2yz+2y2)i+(0-0)7+(0+1)k=k
Ox 0 0z

2x -y —y2? A—zy2
CwlF -n=Fk-n=n-k A
ffSCurlF-ﬁds:ffSﬁ-k;ds:ffRﬁ.kd%: de;
where R is the projection of S on zy-plane.
= A \}1367 dxdy
= f_l 21 — x2dx
= 4f01 V1 —az2dz
= 4[EVT=2 + Jsin~ (@)
= 4[3][3]
=
From (1) and (2), we have,

=

f F . dr = CurlF - fds which is the stoke’s theorem.

Example 3: Verify the divergence theorem for the function F= 2x2yi-
y?j+4x22k taken over the region in the first octant bounded by 242>
=9 and x = 2.

Solution: ([, V - Fdv =[] (% z—i—ayj—i-azk) (222yi-y2 ) +4x22k)dV

’.
A
003 E D
2.0,0)
o ( 00..
\//A >
(0,3,0) \
/s B
K/
Y

= [[[ (4zy — 2y + 8xz)dxdyd=
= [P f2dy [V (day — 2y + 8x2)dz
- f02dxf03dy[(4xyz — 2yz + 4x2%)]y o-v?
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:fOdef(? [(4zy\/9 — y2 — 2y/9 — 32 + 42(9 — y*)]dy

= [y da[—%3(9— y?)% + 2(9 — y*)% + 362y — 2]

= [2(0+ 0+ 108z — 362 + 362 — 18)dx

= [ (108z — 18)dx

— 216-36

— 180

Here, ffSFnds—ffOABCF nds—l—ffOCEF nds—i—ffOADE

ids + [[iup F-ivds+ [[appe F - 7ds
Consider,

[ spee Feit ds — [fappe (222yi-y?j+4x22k) - it dS.ocveererenenns (1)
Normal vector

=V¢ = (%%+aﬁy3+%l%)(y2 +22-9) =2yj + 22k
2yj'+2zl§; B y}—l—zl;: B yj—l—zfc B

ViR 42 2 V9

Unit normal vector = n

yj + 2k
3
From (1),
2 9n - yj + zk
ffBDEC <2x2y@_y2]—|—4X22]§) . T ds = % ffBDEC (—y3—|—4xz3)ds
dxdy

=3 Jlpppe (P+422%)—
3
2 3, 2
= fO dx fO (——+4:CZ ) dy
z
by substitution, y = 3sin(f), z = 3cos(6))
= fo dr fo M—Mx(%os 0)]

3cos (6

= fo dx((-27)(2)+108z(%))
= fo (-18+72x)dx

S (2)
Consider, R
ffOABC (2a2yi-y?] + 4x22k) - (-k)ds
oape 4xz? = 0. (3) because in OABC zy-plane, z =0
Con81der A
ffOADE (222 yz y2) + 4x2%k) - (-))ds
oapp Y ds= 0. (4) because in OADE zz-plane, y =0
Con81der
ffOCE (2a2yi-y?) + 4x22k) - (-i)ds
oop - 20%yds=0................ (5) because in OCE yz-plane, z = 0
C0n31der
[[inp Co2yi-y?) + 4a2%k) - (1)ds
= ffA 222yds
= ffABD 2z ydydz
= fo dz [, Vo2 )2 ydy because in ABD plane, z = 2
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2
3 Y /92

=38 fo dz[?]og i

=4 f03 dz(9 - 2%)

3
4

= 4]27-9]

on adding (2), (3), (4), (5) and (6), we get

[f F-ivds =108+ 0+ 0+ 0+ 72 = 180......(7)
from (1) to (7), we have, [[[,, V- FAV = [[, F-i ds
Hence the theorem is verified.

Example 4: Evaluate [, A - # ds where A = 18zi - 12j + 3yk and S
is the part of the plane 2z + 3y + 62 = 12 included in the first octant.

Solution: Here A = 18zi - 125 + 3yl§:

Y
A

B

0 -

Given surface f(z,y,2) = 2x + 3y + 62 - 12 A
Normal vector = V f= (145 7+ k) (22 + 3y + 62 - 12) = 2043 +6k
7 = unit normal vector at any point (x,y, z) of 2x + 3y + 6z = 12

2%+3j+6k 1, . . .
_ SO EON 2 9i 4 35 + 6k

VAF9+16 7
and dS — da:dAy _ dxdy _ dxdy _ zda:dy
-k %(2€+3j+6l%).1% g 6
Consider,
I/ A-fds= [ (1821 - 125 + 3y/%)%(2i +3j + 6k) g dxdy

dxdy

— [ (362 — 36 + 18y)
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= [J (62 — 6 + 3y)dzdy
putting the value of 6z = 12 — 2x — 3y, we get,

= [ [3022) (19923464 3y) dady
= f06 foé(w*h) (6 — 2x)dzdy
_ f06 6 — 20)dx f0§(1272:1:) dy

L(12—2z
—fo —2xdx()§(122)
= fo 3(12 — 2z)da
1
=3 0 (4:1; — 362 + 72)d
1
=3 [— — 1822 + 724l
72
= o [+9+6
=24

Example 5: Show that [, Fids = 3, where F =dzzi - y2) + yzk
and S is the surface of the cube bounded by the planes x = 0, z = 1,
y=0,y=1,2=0and z = 1.

Solution: ffs Fi ds

i
F E

O > C eY
v A B

= ffOABC Fei ds + ffDEF ﬁﬁ d5+ff0AGF i d5+ffBCED F-i
ds+[[1npe Fnds—l—ffOCEF N ds......... (1)
Consider,

ffOABC F-i dSA ) o
= [Joupc (zzi - y*5 + yzk)(-k) dvdy
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f f —yz)dzdy
0 (as z =0)

ConsiderL

ffDEFG F-n dSA X o

= [fppre Aazi - y?j + yzk)-(k) dedy
= f{DPfFG yzdxdy

= folfo y(12) dzdy

= [y do (50

2

Consider, [[,,qp Fi ds
= [Joacr (4zi - y?5 + yzk)-(-5) dwdz

Consider, ffBCED Fvds = [[popp (A2t - y?] + yzk)-(j) dwdz
= ffBCED -y°) drdz
= fo I (- dxdz ...... (asy =1)

Consider, [[,50a F-i ds
= [Jappe (4zzi - y%5 + YZk)‘() dydz
= ff drzdydz = fo fo 1) zdydz......(as z = 1)

Consider, [focpp Fids = Jocer (4zi - y2) + yzk)-(-i) dydz
= folfol - dxzdydz......(as x = 0)
=0

putting all values in equation (1),
[fs Foivds = 2.

Example 6: Using Green’s theorem, evaluate [, (z°y dz + x*dy)
where C' is the boundary described counter clockwise of the triangle
with vertices (0,0), (1,0) and (1,1).

Solution: By Green’s theorem, we have,
7y ax + ray) = -z xdy

c 2y d 2d R (2 2) dxd

= fol (2¢ - 2?) dz [ dy

Jo (2 - 2%) d [y

01 (2 - 2?)(z) dx

Il
Slos—S

) T _
m Jf+x2+y2 dywhereC—ClLJ

Cy with Op: 22 +9y?> = 1land Cy: x =2, -2 and y = 2, -2.

Example 7: Evaluate §,, -
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N (1.1)

W

O
4l (0, 0) (1, 0)

Solution: Consider fc -

X
— d
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=/ ( dxdy

x2 + y2)2

Example 8: Directly or by Stoke’s theorem, evaluate [[ curl 7 - n
dS, ¥ = yi+zj+xk, S is the surface of the paraboloid z = 1 - 22 - y2,
23 > 0 and 7 is the unit vector normal to S.

Solution:
VXt#=-i-]-

Obviously, n = i

(VT -n=(-i-j-k) - -k=-1

[Jg (V x0) - nds= [[y(-1) dedy = - [[g dedy = - 7 (1)> = - =.

~

6.4 Chapter End Exercise

1. IfF = 2y - 3] + 2%k and S is the surface of parabolic cylinder
y? = 8z in the first octant bounded by the planes y = 4 and z = 6
then evaluate [[, F' -7 dS. [ Ans. 132 ]

2. If F = (22°-32)i - 2xy] - 4xk then evaluate [[[,, V x F dV where
V' is the closed region bounded by planes © =0, y =0, z = 0 and
2042y +z=4[Ans. 5(j- k)]

3. Evaluate [[[,, (22 + y)dV where V' is the closed region bounded
by the cylinder 2 = 4 — 22 and the planes z = 0, y = 0, y = 2
and z = 0.[ Ans. ]

4. Either directly or by Green’s theorem, evaluate the line integral
Jo €7 (cos(y)dxz—sin(y)dy) where C'is the rectangle with vertices
(0, 0) (, O) ( 7)and (0, 5).[ Ans.2(1-e77) ]

T3

5. Use the Green’s theorem in a plane to the evaluate the integral
Jol(222- y?)dz+(x*+y?)dy] where C' is the boundary in the zy-
plane of the area enclosed by the z-axis and the semi-circle z? +
y* = 1 in the upper half zy-plane.[ Ans. % |

6. If F = 3yi - zyj + yz2k and S is the surface of the parboloid 2z
=22 + o> bounded by z = 2, show by using Stoke’s theorem that
ffscurlx F-dS=20n7

T F = (x—2) i+ (2% + y2) J + 3xy2 k and S is the surface
of the cone z = a - \/2? + y? above the zy-plane, show that [
curl F - dS = 3”“
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8. Let M C R? be a compact three-dimensional manifold with bound-
ary and n the unit outward normal on M. Let F be a differen-
tiable vector field on M. Then show that

///(8]” 8f2 aaf?))dV //nf +n®f2 +n’f)dS

9. Let M C R? be a compact three-dimensional manifold with bound-
ary and n the unit outward normal on M. Let F be a differen-
tiable vector field on M. Then show that

/ div Fdv = / (F,n)dA.

M oM
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