FOURIER SERIES

Unit Structure

1.1  Periodic function

1.2 Dirichlet’s conditions

1.3 Fourier Series of periodic continuous functions

1.4  Fourier Series of even and odd functions

1.5  Fourier series of periodic functions having arbitrary period

1.1 DEFINITION : PERIODIC FUNCTION :

A real or complex valued function £ is said to be periodic with
period7 >0, if f(x+nt)=f(x), V xand VneZ.

Example: 1) sin (x +2n7 ) =sinx
2) cos(x +2n7)=cosx

hence sinx and cosx are periodic function with period 27 .
The Orthogonality Relations of Trigonometric functions:

0 m#n mn=0,1,2,....
1) Jﬂ cosmxcosnxdx=<m m=n=12,...
N 2 m=n=0
0 m#n mmn=12,...
2) I:Tsinmxsinnxdx= T m=n=12,..

0 m=n=0
3) j cos mxsin nxdx =0, Vm,n=0,1,2,...

0 m=#n

4) J.j; M o dx:{

Definition : Trigonometric Series : A series of the form

2r m=n
a, . .
?+a1 cosx +b, sinx+a, cos2x+b,sin2x+......

where, a,,a,,b,a,,b,,........ ,a b
trigonometric series.



1.2 DIRICHLET’S CONDITIONS :

If f(x) is a periodic function of period 2z defined in the interval

C <x<C+2r where C is any constant then following condition are
known to be Dirichlet’s conditions

i) Function f(x) and its integrals are finite and single valued in the

interval.
ii) Function f(x) has at most finite number of finite discontinuities

in the interval.
iii) Function f(x) has at most finite number of maxima and minima

in the interval.

1.3 FOURIER SERIES OF PERIODIC CONTINUOUS
FUNCTIONS :

Definition : If f(x) is a periodic function of period 27 defined in

the interval C<x<C+2r and satisfies the Dirichlet’s conditions
then, function f(x) can be represented by the trigonometric series

a, ~ . . . .
as ?‘) +Y (a,cosnx+b,sinnx) . This representation of a function
n=1

f(x) as a trigonometric series is known as Fourier series
expansion of function f(x) and its co-efficients 4,,a,,b, are called
Fourier coefficients.

Example :

1) f(x)=tanx cannot be expanded as a Fourier series in the
interval [0,27] since tan% =0,

2) f(x)=e" where a is constant can be expressed in terms of
Fourier series in any interval.

Note : The Fourier series expansion of f(x) converges to

%[f()f ) +f(x’ )] e Right hand limit + left hand limit

> at the point

of discontinuity.
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Calculation of Fourier coefficients :

Let f(x) be a periodic function of period 27 defined in the interval
C<x<C+2r satisfying Dirichlet’s conditions then its Fourier
series expansion is given by

f(x)=%+i(an cos nx + b, sin nx) (1

n=1

1) To calculate Fourier coefficient a,, integrate equation (1) from
CtoC+2rm.

C+2rn a C+2m © C+2rm C+2m
.[ f(x)dx==2 .[ dx+Y |a, j cosnxdx+ b, .[ sin nx dx
c 2 C n=l1 C c

C+2m

[ £(x)dr="[27]+(0+0)=ar

2) To determine the Fourier coefficient ¢, multiply equation (1) by
cosnx and the integrate from C toC+2r .

a N 2 .
f(x)cosnx = 70 cos nx + Z(an cos’ nx +b, sin nx cos nx)

n=1

A n=1 C C

C+2rm a C+2rm © C+2rm C+2n
I S (x)cosnx dx :?() _f cosnxdx+ Y| a, I cos” nxdx +b, J. sinnx cosnx dx
C

1 C+2r1

= a,=— I f(x)cosnx dx

T

3) To determine the Fourier coefficient 5, multiply equation (1) by
sinnx and integrate from C to C+2rx .

Q

C n=1 C

C+2rm C+2m ¢ C+2rm
_ e 2 _
:ao{ cosnx} +3a J‘ sin (2nx) dx+b, J‘ (1 cosnxjdx
2 n c 2

n=1 C C n

C+2m C+27 © C+271 C+2r1
. a, . . .
.[ f(x)smnxdx:? j smnxdx+z a, j cosnx sinnx dx +b, j sin” nx
C

= b =— J. S (x)sinnx dx
C
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Thus we have complete set of formulation for Fourier series
expansion of periodic function f(x) of period 27 satisfying

Dirichlet’s conditions as

f(x) =a—2°+i(an cos nx + b, sin nx)
n=1
where
1 C+2nm
_- d
a, - l f(x) X
1 C+2m
_1 d
4, =— l f(x)cosnxdx
1 C+2m
b =— .[ S (x)sinnx dx forC<x<C+2r
T T
Note :

(1) If C=0then 0<x<27 and

127T
_- d
a, - _([f(x) X
1271'
_1 d
4, =— _([f(x)cosnx x

2z
bnzljf(x)sinnxdx for0<x<2nm
4 0

2) If C=-nthen -z <x<7x then
1 Vg
a():;_[f(x)dx

1 T
=— d
a, ﬂ__[[f(x)cosnx x
bn:%_[f(x)sinnxdx for—-rm<x<rm

1.4 FOURIER SERIES EXPANSION OF EVEN AND ODD
FUNCTIONS :

Definition :
The function f'is said to be even, if f(-x)=f(x), Vx, —c<x<c.

The function f'is said to be odd, if f(—x)=-/(x), Vx, —c<x<c.
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Example : cos0 is even function since cos(—0)=+cos.

sin@ is odd function since sin (—9) =—siné.

Property : If(x)dx: 2£f(x) dx  if fiseven

0 if f'is odd
Hence Fourier series expansion of even function defined in the

interval —z < x <7 is given by

27[
ao—;.([f(x)dx

27T
_Z d
a, ﬂ.([f(x)cosnx x
b =0

.'.f(x)=&+iancosnx -r<x<rm
n=l1

This series is also called as Fourier Cosine series.

Fourier Series expansion of odd function defined in the interval
-n <x<m 1s given by

27 .
a,=0, a, =0, bn=;_([f(x)smnxdx
.‘.f(x)=ibnsinnx —-n<x<rm

n=l1

This series is also known as Fourier Sine series.

1.5 FOURIER SERIES EXPANSION OF A PERIODIC
FUNCTION HAVING ARBITRARY PERIOD:

Let f(x) be a periodic function of period 2L defined in the interval

. L
C <x<C+2L then substitute z:% or x=2
T

when x=C= Zz%zd(say)
when x=C+2L= z=%(C+2L)=d+27r

Thus f(z) is a periodic function of period 27 defined in the
intervald <z<d+2rx.
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Hence Fourier series expansion of a periodic function f(x) of a
period 2L defined in the interval C <x < C+2Lis given by

g ()

where the Fourier coefficients are given by

aoz% j (%) dx

anz% l f(x)cos(ﬂ;jdx

bn=% f f(x)sin(?jdx
Note :

If C=-L then-L<x<L. In this case we can verify whether the
given periodic function is given either even or odd.

Hence Fourier series expansion of even function defined in the
interval —L < x< L is given by

a, zzj.f(x)dx
Z[ cos( jdx
b, =

.‘.f(x)=&+ian cos(mj -L<x<L
2 n=1 L

This series is also called as Fourier Cosine series.

e hlw

Fourier series expansion of odd function defined in the interval
-n <x<m 1s given by

L
a,=0, a,=0, b, zélf(x)sin(?jdx

f(x)=30, sin(?j —L<x<L
n=1

This series is also known as Fourier Sine series.



Examples

Ex. 1. Find Fourier series expansion of f(x

showthatiz+%+—+ ..... =—.
© 3

Solution : - f(—x)=|-x|=x=f(x)
.. f 1s even function.

f(x)cosnxdx

X cos nx dx

_ z{xsmnﬂ  sin nx dx}
T | n

:z O+ cosnx :l
Vs
P ECR
wTin nzﬂ
b _zjﬂf(X)sinnxdx
n_ﬂ_ 0
=0
.'.f(x):@+ y a, cos nx
2 n=1
© 2 —1 n_l
"'|x|:%+;[(+ﬂ}cosnx
Note that (-1)" -1 :{0 if‘n l'S'even
-2 if nis odd

hence replace n by 2n — 1, we have

)=l

-7 <x<7m and



_2(=2)
P 1(21’1 )

-2 cos( 2n-1) x)

Z 2n 1)

|x| %+ cos[2n 1 ]

T2y 2

2w (2n-1)
=z_i[1+i I }
ST e et

o IS }:i
|12 3§ 2
1+1+i ...... _71_2

P 3 5 8

Ex 3. Find Fourier series expansion of f(x)=x* -z<x<r.

. =
Evaluate series at x =z and find Z—z
n

n=1

Solution :

S(x)=x
f(=x)=(=x) =x" = f ()

~. f(x) is even function

a, :;I:f(x) dx

37" 3
:zj P2l 2
T Yo T| 3 o T 3

_27[2
3
T o2
an=—I X~ cosnx dx
o
2 sinnx » ~sinnx
== x? —J. (Zx)dx
T n o Jo p

ZE{O—gIﬂxsinnx dx}
T nee



_2|2 x(—cosnxj J-frcosnxldx”
7| n n o n

o

212 (-1)' +lsinnx|ﬂﬂ

=—|—| -7
T |n n n o n |
ofof =z (-1) 1

i ;(O)H

:4HPUJ
wn n

A=Y

-2

b =0

.. The Fourier Cosine series is given by
a()

(=2

+i(an cosnx +b, sinnx)

n=1

2 w 1)
.'.x2=%+z4( 21) cos nx

n=1 n
atx=rm
2 n 2 2n
2T w4(_1) n T °°4(—l)
= 1) ==
NP e De
o 4 2_7[_2_27r2
;nf” 33
B 1_712
..;nz_ 6

ax

Ex. 4. Compute Fourier series of f(x)=e™ where a is +ve and

hence prove that

: © 2
1:s1nh7ra{1+22(_1)n a }

2 2
na p n +a




Solution : Let

1 T
a, —;L{f(x) dx

/(%)

e

ax

1 =
=—1| e%dx
I
_l e(lX i _i eﬂ.’a _e*ﬂ'(l
Tl a|_ ma 2
= i sinh ra

wa

1 ¢#
=— d.
a, ﬂjlﬂf(x) cos nx dx

1 ¢=
Let an=[=—.[ e” cosnx dx
T /4

1 ax ax
=—| cosnx

T | a

1 I ar —an
=—| cosnwt — —cosnrw

m| a a
=l (_l)n ar _(_1)” e—dﬂ +£

m a a a
=l (_l)n anr _(_l)n e—dﬂ +£

m a a a
_1 () (e“” —e“”)+£x(

T| a a

10

|ZT —I” e—(—sin nx)n dx}
g

. e
Sin nxa

a

(by LIATE)

nrer . ax
+ —j sinnx e“ dx
a -7

4 ax
T e
J.—ﬂ a
-7
ax

T e
J‘—ﬂ a

ax

ncos nx

a

L 1

ncosnx}

_ﬁj‘_ﬂ e™ cosnx dxﬂ

sinh ra
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b, = lf f(x)sinnx dx
71T i (by LIATE)
b, = —Iﬂ e sinnx dx
ﬂ =TT

1 e T re™
S.b =—|sinnx —I —— cos nx.ndx
= g
w

n
T a

:l[O—ﬁr e” cosnx.ndx}
T a’r
=_—n><l " e™ cosnx dx
a mw'*
_ -1y
_ nX /‘{( ) ( ar —air)

_ n(—l)nH (em _e_m) _ (2}2(_1)%1

5 sinh ra
a +n )n

Thus the Fourier series expansion of f is given by

f(x) =%+i(a” cosnx +b, sinnx)

n=1

. © _ n . _ n+l .
eaxs1nh7ra+z[2a( 1) Slnhn'a}cosnx_i_{zn( 1) Smhﬂa}sinnx
wa

s (a2 +n2)7r (a2 +n2)7r
atx=0
_sinhza & 2a(-1)
S +;(a2+n2)ns1nh7m

Hence proved

1 . 2 )
Ex. 6. Show that ;LT [f(x)]z dxz%o+ ;(anZ +an)

where a, & b, are Fourier coefficients of Fourier series expansion of

periodic function f defined in [-7, 7]
(This is known as Parseval’s Identity )
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Solution: The Fourier series expansion of a periodic function f(x)

of period 27 defined in the interval —z < x <z satisfying Dirichlet’s
conditions is given by

f(x) :a_20+ i(an cos nx +b, sin nx)

n=1

On squaring both sides we get

2 0 0
a :
fH(x)==2+> a; cos’ nx+) b sin’ nx

n=1 n=1

o0 0 0
+ Z a,a, cos nx + z a,b, sinnx + 22 a,b, sinnx conx

n=1 n=1 n=1

Assuming term by term integration on R.H.S. of above equation is
permissible.

Integrating both side of above equation with the limit -z to =.
2 0
J: [f()c)]2 dx = J: %) dx + ;af_[ﬂ cos” nx dx
+ ibjf sin’ nx dx + + iaoanr cos nx dx
n=1 T n=1 -

0 0
T . T .
+ z aoan. sin nxdx + 2 Z ab, I sin nx cos nx dx
- -
n=1 n=1

Using orthogonality relations we get

J:[f(x)]z dx=a§7ﬂ+n i(a,f +b,f)
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2

BASIC PROPERTIES OF FOURIER SERIES

Unit Structure

2.1  Complex form of Fourier series
2.2 Properties of Fourier Coefficient
2.3  Riemann Lebesgue Lemma

2.4  Good kernels

2.1 COMPLEX FORM OF FOURIER SERIES :

Let f(x) be a periodic function of period 27 defined in the interval

C <x < C+2r then its Fourier series expansion is given by

f(x)= %+ i(an cosnx + b, sinnx)

n=1

i0 —if
e’ +e
We have cosé =
2
i0 —if
) —e
sinf = -
2i

l

f(X):a—z(’)-i'g |:(a” ;ib”je[”x +£an ;ibnjeinx:|

: f(x) :%J’_ian (ell’l)( ;el"lxj-i_bn (emx ;.emxj
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This is Complex form of Fourier series where, C, is Fourier

coefficient which is given by, C, =2 —2119”
Using value of Fourier coefficient a, & b, we can simplify for C, as.

C, = l[l CTﬂf(x) cos mx dy— - CTﬂf(x) sin nx dx}

C T C

C, = —r+2ﬂf(x) (cosnx —isinnx) dx}

1 C+2m

C =— I f(x)e™ dx

C

This is general formula for Fourier coefficient in the complex
form.

Note :

1) The Fourier series coefficients C, in complex form is also
denoted by f'(n).

ie. f(n)=C,=— [ f(x)e™dx

2) If f(x) is a periodic function of period 27 defined in the

interval —z <x<r then f(n)=C, = 2L .[ f(x)e™dx.
T -7

3) We have C, =% ~, and c =% *ib,

=C +C, A =a,

C,—C_ =ib,
b,=—-i(C,-C.,)
C() :&

2

4) Similarly, we can find the Fourier series expansion of a periodic
function f(x) of arbitrary period 2L defined in the interval

C <x<C+2L in complex form of as

0 inwx
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where,

—inmwx

f(n)zCn ZLC]}Lf(x)e L dx

Ex. 1. Find complex form of Fourier series of
g(@)z@ -r<0<r

Solution: We have Fourier coefficient in Complex Fourier series

expansion as
1

€= " g(0)e™do
7[ -7
= ZL "0e™do
7[ T
i —ind |* —inf 4
_Llge] ¢ d@}
2r| —in| _ —in i
B L_ —inm e—imr 1 e
Y _ﬂ —in 7 —in +zn[e ]”}
= L_n e + —me ™ +L(ei”” —e"" ) + L(cos nir —isinnm —cosnm —isinnm)
2z | —in —in n’ n’
- Ly n
e ELez iy
:L 27[ (_l)r‘l+l
2r in
~ (_1)n+l
B in

To find the value C, consider Fourier coefficient in complex form

_ 1 4 —inf
Cn—gjlﬂg(Q)e do

C,= Efﬂg(@) do=0........ {since g is odd function}.
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Thus complex form of Fourier series of a given function is given by
n+l o jng
> (-1
ps e

in

n#o

g(0)=0 atn=0

We have
© _1 n+l e,-ng
(0)-0- 3 L
— in
g(0)=0 at n=0

Since (-1)" =(-1)"as n varies from -ve to +ve integer.
. th th
Hence we can combine n™ term & (-n") term as.

(—l)w1 e _ (—1)"“ (e’”g N e J

mn —in

n+l
= (-1) i(—2isinnd)

n
n+l
= 2(_1) sin n60
n
n+l
g(0)=0 =zﬂsinn9

n=1 n
Note : The function g(6)=6 -z<6<r is odd function. Hence we

can expand this function in terms of Fourier Sine series.

f(x)|2 dx

where C, is complex Fourier coefficient of Fourier series expansion of

Ex. 2. Show that i c,| SZLI”
n=—0m T

periodic function f defined in [-7, 7]

(This relation is known as Bessel’s Inequality. )
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Solution : The complex form of Fourier series expansion of periodic

function f(x) is given by f(x Z Ce™.

n=—00

, -
, z| =zz

A {rt0-gee )7

=f(x)f(x)—Z[Cnf(x) " +C, f(x)efinx}L i C.C, em

N m=n—-N

Consider,

N _
> C, e’”"j
-N

Divide both side of above equation by 27z and integrate within limit
- to 7 also using

1 F —inx _ 1 TN —inx _
[ r@emdr=c, & [ j(x)e" de=Cy and

T 0 m#n
1 el(m—n)xdx:{

27 9= 1 m=n
We obtains
N
1 ZC e’”" = l ‘ dx
27t = 27r

N _ _ J—
—Z(Cncn+cnc”)+2cncn
-N -N

2 SRR ST
x)‘ dx — C, +z C,
-N
1 ‘ dx — Cn ’
271 =~
>0
)c)‘2 dx

Letting N — o we get

C, ? Si.[ﬂﬂ‘f(x)r dx

0

n=—0w0

where C, is complex Fourier coefficient.
This relation is known as Bessel’s Inequality.
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Note :
1 2 1
D e +5;(a

0
n=—000

2

b

n

+

)

1 ¢
ZSEL

n

f(x)|2 dx .

Cﬂ

2

b

n

C

EDI Ay e

2) From above Bessel’s Inequality the series Z|an

are convergent.

2.2 PROPERTIES OF FOURIER COEFFICIENT

The following statements are equivalent

1) 27 Periodic function on R like exponential function.
2) Function defined on the interval of length 27 .

3) Function defined on the unit circle.

Since a point on the unit circle takes the forme”, 6 is real and
unique up to integer multiple of 2z . If F is a function on the circle
then we may define for each real number 6

f(0)=F(")
Observe that (6 +27)= f(0) forall 6.

Thus f s periodic of period 2z . The integrability, continuity and
other smoothness properties of F' are determined by those of f.

Definition : The Fourier coefficient of an integrable periodic
function f are the complex number f (n)defined by the integral.

?(n) = irﬂf(x) e™dx, nez
The L' norm of an integrable periodic function f is given by

1 e=
1A= L1 ()]

The I’ norm of square integrable periodic function f is given by
1
1 ¢n
I~ 551

2 2
f (x)| dxj .
Properties of Fourier Coefficient:

Theorem 1: Suppose that f is an integrable periodic function then

|f(n)|£||f VneZ.

13
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Proof:
We have,

Flny= [ f(x) e dv

Taking mod on both sides

‘f(n)‘ = ifﬂf(x) e ™ dx
P gl lrlle=las {a]fs]<1r)
:% j; f(x)He’"’" dx
since
‘e"”“ = |cos nx —isin nx| = \/cos2 nx+sin’ nx =1

NG e M |
|7 |zls) ez

Theorem 2: Translation Property : Suppose that f 1is an
integrable periodic function. Given a in R. Let f translate function

fas f,(x)=f(x—a) then f’a(n):e"'”"f(n) V nelZ.
Proof : We have,
Fmy=s [ 1z as

= o)== [ (x) e

S [ S ma)e (e fx)= (x-a)

Put x—a=y =>x=a+y
dx=dy
when x=-7, y=-7-a
when x=7, y=n-a

1 cr-a

_ . —in(aer)d
cynl (v)e ly

627[ J.—ﬂﬂ_—aaf(y) e_my dy
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Since 1 is periodic function of period 27 .

o fo(n)=em (ifﬂf(y) e"”ydyj

foln)=e 1,(n)

Theorem 3: Suppose that f is continuous function with continuous
derivative f' then f'(n)=inf(n), VneZ.

Proof : We have,
7 1 4 —inx
f(n)=EJ‘_ﬂf(x)e dx

On integrating by parts

7(n) }[[&] s dx}

Since f is periodic function of period 27 , we have

f(—ﬂ)=f(—7l’+27f)=f(7l’)

t . . .
The 1* term in above equation vanishes

oy

- 7 (n) :%E [" 7 (x)e dx}

o . o 1 4 ' —inx
=—f"(n) S (= f () e a
.'.f(n)=in];(n), V nel
Notation :

- 1
f(n)= 0[—2
i
multiple of R.H.S. i.e. there exist constant C >0 such that
‘f(n)‘ﬁi v large |n|.
n

J as |n|—>oomeans L.H.S. is bounded by constant

2

In general, f(x)= O[ g(x)] as x — ameans for some +ve constant C,

‘f(x)‘SCg

(x)‘ as x > a.

Note : f(x)=0(1) means fis bounded function.
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Theorem 4: Suppose that function fis twice continuously

2
i

|n|—>o. So that Fourier series of f converges absolutely &

differentiable function defined on the circle then ‘ f (n)‘ = O(L} as

uniformly to 1.

Proof : We have
7 1 4 —inx
f(n) ZELIf(x)e dx
Integrating R.H.S. by part

f(n)ﬁ{(f(x)i:}:{l f'(x)dx]

22 /() 119 ] [ €5 f (x)

—in T —In

Since fis periodic function with period 27 . 1* term of R.H.S.
Vanishes

" +1lpr i o
2 =" e™f (x)d
7 f(n) - Lze S (x)dx
Once again integrating by parts,

—inx

2inf ()= (05| [ ()

in T —in
=T

—inx —inx

2w F) (£ (5| <G (a)as

—in T —in
Since 1 is periodic and
(e”"”‘ )ﬂ =™ —¢" =(cosnm —isinnmr)—(cosnm +isinnr)=0
w2mn f(n)= —J:ﬂ f(x)e™ dx
()= ‘_ [ 7 (x)e™ a
(m) <[ |f (x)e™
(n)

< J: f"(x)‘ dx.<C.

where C is a constant and independent of n. and since f is twice

dx ( ‘e‘"’"‘ = l)

continuously differentiable, " is bounded function.
Setting C =27B where, B is bound of f"
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f(n)‘zo{#} as |n| — oo

2.3 THE RIEMANN - LEBESGUE LEMMA :

Statement : If fis integrable function defined on a circle then
f(n)—0 as |n| - oo.
OR

If f is integrable periodic function of period 27 then lim f(n)=0.

[n|—>o0

Proof : Since for any e>0, we can choose a continuous periodic
function g with |/ - g| <e.

Since ‘f(n)‘é”f
=7 (m)-2(n)<|lf ~gl<< ()

, VneZ

i.e. the Fourier coefficient of function fand g differ by less than e.
So that f(n)are eventually less than e in modulus if é(n) —0as

|n| —>o0.
If g is continuous periodic function and a € R then we have

g.(x)=g(x~a)
=g, (n)=e"g(n), VneZ (2)

Choose a =

SR

~8,(n)=(-1)g(n) 3)
We have,

n 1 ¢n
an|<lel, =]

g(x)‘ dx 4)
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Now consider,

22 (n) =[2 (n)+2(n)
=|g(n)-g, (n)| (by equation (3))
<>= " le(x)-g,(x)|dx  (by equation (4))
:i _ﬂﬂ g(x)-g(x—a)|dx
Put a="
2§(n)|$i _ﬂﬂ g(x)—g(x—%j dx

As |n|— a=2 50
n

i)

=[2¢(n) >0 as |n| >

hence, -0

|§(n)|—>0 as |n|—>oo
< By (1),
‘nmf(n):o

nj—n

f(n)|—>0 as |n| > o0

hence proof.

2.4 GOOD KERNELS :

Definition : A family of Kernels {K,(x)}"_ defined on the circle is
said to be family of good Kernel if it satisfies the following property

1 ¢=
1) forall n>1 ,%J:”Kn()()dx:l

2) There exist M > 0 Such that for n>1
J._ﬂ K, (x)| dx<M

3) forevery 6>0, j K, (x)|dx—>o0 asn—>o

53‘):‘37[

Convolution : Let / and g be 27 periodic integrable functions then
the convolution of function fand g on interval [-z,7]is denoted

and defined as



Note : (f*g)=(g*f)

Theorem : Let {K,}  be a family of Good Kernels and f is an
integrable periodic function defined on the circle then

lim(f*K,)(x)=/(x) whenever, f is continuous at x.

If fis continuous everywhere then the above limit is uniform.

Proof : If >0 and f'is continuous at x then we can choose &, So
that |y[<§.

:>‘f(x—y)—f(x)‘<€ (1)
Consider,
(F*K)(3)= £ ()= [ K, (0)f (5= ) dv= ()

(Definition of convolution)

As K, is a good Kemel:>—.[ K, (y)dy=1
1

S-S ()= [ K ) (xmw)dr = (9] K,

=% K,(n)[f (x=2)~f(x)]dy
K f<x>\=;L’;Kn<y>[f<x—y>—f<x>dy]\
— ) s
(IS (=) =1 ()
\y\<5
— I -)- (o)
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Note that
y|<6§=>-6<y<é6

S<|y|<r=>-nm<y<-6 & S<y<nm

.-.\(f*Kn)(x)_f(x)\sij

2B
Kn(y)‘dy+—ﬂ I

2 S<|yl<n

K,(y)|dv (2

Clearly, 1 term is bounded by 62—M (by 2™ property of good
n

Kernel) and by 3" property of Good Kernel for large value of n, 2™
term will be less than €.

Hence for some constant C we have,

(f*Kn)(x)—f(x)‘SCe
=(/*K,)(x)> f(x) as n—>ow.
If fis continuous everywhere then is it uniformly continuous.

Hence, & can be chosen independent of x which proves desired
conclusion.

f*K, > f
ie. lim(f*K,)(x)=/(x)

n—>0
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DIRICHLET KERNEL

Unit Structure
3.1  Dirichlet’s Kernel
3.2 Properties of Dirichlet’s Kernel

3.3  Dirichlet Theorem on point wise convergence of Fourier
series

3.1 DIRICHLET’S KERNEL :

We have complex form of a Fourier series expansion of a periodic
function f of a period 27 defined on [—7,7].

_ ij}(n)eme (1)

The N™ partial sum of Fourier series expansion of a series (1) is
denoted and defined as,

0)= 3, 7(n)e" @

We have Fourier series coefficient.

i n)=% [ r(w)erray (3)

Using equation (3) in equation (2) we have,

_ S L 4 —in¥ in0
—zzﬂj_ﬂf(‘l—’)e d¥ e
—in‘l" in6
27r N(-[ f le) ¢

(J‘ f m(\ye)d\},)
27rN =y \7 -

S, f(0)= EZN:(I f(lP)e"‘"“”)le)
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Put ¥-0=0, d¥=do
When Y=-r7, ®=-7-0
When ¥=n , ®=7-0

n—0

5./(0)=5-3 [ f(0+®)eae

-N —z-0
Since 1 is periodic function of period 27

S, f(6) =$;J.__:f(9+<b)e"'”q’d®

SNf(Q):%.[_:f(QHD)DN(CD)dCD 4)
where D, (@)= ie"”‘b (5)

and it is known as N™ Dirichlet Kernel.

Equation (4) represents N™ partial sum of Fourier series in terms of
Dirichlet Kernel.

3.2 PROPERTIES OF DIRICHLET’S KERNEL :

Theorem 1: The N™ Dirichlets’s kernel is given by

N sin(N+;jd)
D, (®)= Zem =

-N sin—®
2

Proof : We have
N
DN (@) — zei/‘l(l’
-N

Dy (®)=(e™ 4+ 4 4l e 4+ +e")
=e

e(nH)iCD

iNe (1+e’¢ +e¥ e+

+ ei(N+2)tI> 2iIND )

2N
:e—iNd)zeind)

n=0

2N

— e N Z(eitb )”

n=0

The above series is a geometric series with first term a=/ and
common ratio =r =¢®, Vr=1.
we have

K
>t ="
n=0

K+1 _1

r—1



Multiply Numerator as well as Denominator by e’

D (q)) B ei(NH)(l) _e—iNd) y e—id)/Z
Ly = - —
et(D _1 e iD/2

i(N+%JCD —i(N+%]CD
—e

iD/2 —id/2
et —e!

e

—e

2
Dy (q)) T gon _lefi(D/Z

2i

. 1
sm(Nanjq) . B
=D, ((D):—l ...{E—_eozsin(b}
sinE(I) 2

Theorem 2: Suppose that fis periodic and integrable then n®
partial sum of Fourier series expansion of f is given by

S0 (1) =5 [ Dy (=2)f (9)dv =Dy (3)f (=) dv

e S,(/)(x)=(Dy=/)(x)=(/*D,)(x)

Proof : The N partial sum of Fourier series is given by

Su(£)(x)= 2 7 (n)e"™ (1)
where f(n)is a Fourier coefficient given by

Fn)=of 1 ()e™ @
Put (2) in (1) we get

S.(N0=2( 5[ A () av e
S, (1)) =3[ 1) ) 6
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Put x—y=z

dy=—dz

When y=rn, z=x-rx
When y=-z, z=x+nx

SN0 = D[ (v-2) e (-a0)

X+

:_Z(I::f(x z)e™ dz)

Since f'is periodic function of period 27 defined on the interval

(.71
N
.'.S :L (I x Z e’”z dz)
2

2

-N

1 N
=Sy (f)(x)= 2_2 " dy 4)

N

Put (3) and (4) we get,

Sy (£)(x)= ig(ff ()" ] :%Zﬁ‘ [" f(x=y)e ay

.. By definition of convolution,

Sy (/)(x)=(/ %Dy )(x)=(Dy /) (*)

Theorem 3: %Iﬂ D, (6)d0=1 where, D, N" Dirichlet Kernel.
ﬂ =TT

Proof : We have N Dirichilet Kernel
N
— z ein@
n=—N

N
Dy(0)= > (cosn@+isinnb)

n=—N
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D, (0)=(cos0+isin0)+ [(cos@ +isi }{0)+(cos(—9)+isi}{(—9))}
+[(cos20+isin20)+(cos(—29)+isin(/20))}+ .........
+[(cosN@+isinN0)+(cos(—N0)+isi/x{(—N9))]

D, (0)=1+2cos0+2c0s20 +.....+2cos NO

N
D, (0)=1+2) cosnd
n=1
On Integrating both side from -z t0 7

J: Dy (0) do zfﬂl do +2grﬂ cosnBdo

[ Dy(0)do=27+2x0... {j cosnGdO:O}

1 ¢=
~— D,(0)do=1
27 oo N( )

Theorem 4: J._ﬂ ‘DN (x)‘ dx>clogN as N —>owhere, C is any

constant and D, (x) is N Dirichlet Kernel

Proof : Step (1)
1 =
We have ||, =EL

f(x)‘ dx

Similarly HDN (JC)H1 = %Jﬁzﬂ

D, (x)‘ dx
Since ‘DN (x)‘ is even,

a0 = 11y () a

sin(N+2jx
We have, D, (x)=——"—

!
sin —x
2

| on sin(N+;jx
TN [ B A
smEx

X
Put ==
> Yy

sodx =2dy
When x=0, y=0
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When x=7, y= %
sin(N+;j(2y)‘

sin y

2dy

: _1
S HC) el

sin(2N+1) y
sin y

2 ¢
=—I/

7z' o

dy (D

Sin y can be approximated as y

ie. siny~y

sin(2N +1) y
y

dy+o(1)

. _2%
Ao =21,

Step (2) :
Put (2N+1)y:t

(2N +1)dy=dt
When y=0, ¢=0

When y:ﬂ'z’ t:(2N+l)ﬂ

2

2va) | sin
¢ dt

. _2 ’
oy (lh=7 { vt aver o0

™ & ﬂsint
o) == [ de+o()
Ty |t
2 %(KH)H sin ¢
D, (x) =— —dt+o(1
ol =2% ] 0
2
Step (3) :
Putt:S+ﬁ
2
dt =ds
Whent:%Kn , S=0
Whent:l(Kqu)n , s="
2 2



: n
5 2N A s1n(S+2j
D, (x)| =— ds+o(1)
-2
2
We have,
sins if K is even {sin(S+n7r)=sinS}
sin(S+ﬁ — ni
2 cos s if K isodd {sin (S+7]=cos}

(S) sins if Kiseven
u =
K cos s if Kisodd

w %
|Dy ()] Z j ~ds +o(1)

The value § +% can be approximated to %

) 1 1
<
Since O_Kn T
— S+7
2 2
g Km_Kn
Kﬂ(S+Kﬂj Kﬂ(S_'_Knj
2 2 2 2
< 5
KnS K*r*
+
2 4
2 _2
The maximum value of +K T lis =~ == “Z
K 4 Kr K'r
2 2
2. 2
Log o Ko S
Kz 4 Kz
2

o0

Also 2% is convergent and Hence bounded.
K=1

)

€)
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w %
[y () %;_J

ds +o(l)
7
. This equation can be Written as
|Dy ()] == > — j S)ds +o(1) 4)
T k= OK

3) Step 4):
Consider, I%”K (S)ds = I%sins ds=1 if K is even and

.[%uK (S)ds= I%cos sds=1 if K is odd use this value in (4).

o

|Dy (x)], = % iv‘, L(1) +0())
K=0 K—
2
Ip, (9], = 2 3£ +00)

|y (x)], = % log N +0(1)

. By using definition of L' nom

1 ¢ 4
vl x)| dx:?logN+ o)
=Dy (%) dr = log N+0(1)

. -

[" Dy (x)|dx=Clog N

Theorem 5: Dirichlet Kernel is not good Kernel.

Proof: By above property of Dirichlet Kernel, the 2™ property of
good Kernel fails and hence Dirichlet Kernel is not good Kernel.

3.3 DIRICHLET’S THEOREM :

Statement : The Fourier series of real continuous periodic function
fwhich has only finite number of relative maxima and minima

converges everywhere to f (and hence converges uniformly)
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OR

Suppose that fis an integrable periodic function that is
differentiable at x =x, then lim S, f (x)=r(x)-
Proof : We have N™ partial sum of integrable periodic function f as
1 ¢n
Suf ()= £ (x=2) Dy (v)dy
at x=1x,

Suf (50) =5 [ S (5 =) Dy (1)

Consider,

Suf (50) = (5) == [ f (30 =) Dy () dv =1 ().

By property of Dirichlet Kernel,

SNf(xo)_f(xo):%J‘;f(xo_y)DN(y)dy_(’zlﬂ‘_[_ﬂﬂf(xo)DN(y)dy]
{.-_iJ:DN (y) dy=1}
1

eGP0 D) ()
= L1 75 2) P ()= Dy () 7 (x)

LT (G ) £ () D ()

2

as again by property of Dirichlet Kernel.

. 1
sinf N+— |y
SNf(xo)_f(xo):iJ._:[f(xo_y)f(xo)] (—IJ dy

sin —
) y

_ ij sinHN+%j y} g(»)dy

I (% )

where, g(y)=

_y)_f(xo
sin%
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f-n)-rw) %A

ie. g(y)= x— 2 2
y sm%

clearly, sin KN - %j y} is bounded near zero and hence integrable on

[-7,7]. Also 2™ factor g(y) is bounded and hence integrable on

in Y
sin
[-7,7] {since fisdiffat x, & Elggy—é =1}
2

Hence it follows that
Syf (%)= f(x,)—>0as N>

= }vlil;lo SNf(xo) = f(xo)

Ex : If f is 2z periodic and piecewise smooth on R then show that

lim SNf(Q):%[f(Q')+f(9+)] and hence show that

N—w

lim S, f (0)=r(06) for every 6 where f is continuous.

Solution : We have,

Step (1) :
[ Dy(@)dd=7..... { |" Dy(0)dw= 27r}

1 ¢ 1
— | D, (®)dDd ==
jznj v (®) 2

o) /(o)
:TJHDN(@)ch_T (D)
Also .TDN (P)dD=n
(07 _/(o)
..TIDN((I))dd)—T 2)
Step (2) :

We have N™ partial sum of Fourier series
1 a
Sof(6)= Ejﬂf((ﬂq))DN (®)do

:iif(9+CD)DN(CD)dd>+i]€f(9+CD)DN(CD)dCD

-
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Consider,
1 - N
SNf(Q)—E[f(Q )+ 7(6")]
1 o 1 ¢
:Zj_ﬂf(mcp DN(qn)dq>+—j f(6+@)D, (®)dd

1 /(0)

- Tj ch+ j D,
1 o ~ 1 X
- “[ro+@)-r(0 )]DN(cD)dq>+g[f(9+q>)—f(9 )| Dy (@)d
4)

Step 3 :

We have,

i(N+1)® __iNO

DN (CD) = i 1

Consider,

J‘j; g (QD) |:ei(N+l)(D N } dd

f(0+®)-1(67)

- —T<®d<0
where g (@)= e’ -1
O+d)-f(OF
f( +@) 1f( ) 0<db<rm
e i

g is well defined function defined on [-7z,7z] and also g is smooth

exceptat @ =0
Also, f(0+®)-f(0)=0 at ®=0.

Hence, g(®) is in %form at ®=0.

-.By applying L' Hospital rule,
f(0+@)-7(67)

lim g(®)= lim

D—>0" D—0" &% -1
 L(050) (0
0" ie' i

Similarly,

lim g(®)= lim 1(0+)-/(0')

D0 O—0" ei(D—l
1 . ' 0
im0+ ®)=0_/(7)
D0~ ie' i

Thus R.H.S. & L.H.S. limit exist.
Hence g is piecewise continuous on [, 7].
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Step (4) : Using equation (4) we have,
$.0) 3 (@)+7(07)]
_ i _Oﬂ g (q)) |:ei(N+l)<I> _ e,-Ncp] dD + i O” g (cp) |:ei(N+l)d>

1 ¢=

_ E " g (CI)) |:ei(N+l)CI> _ e—iN(D:| dd

We have, Fourier coefficient f (n)= %Iﬂ g(®)e™ do
71' =TT

By Riemann Lebesque lemma, f(n)—> o as |n|— .

Consider,
I ¢~ i(N+1)® iND . 7
P " (@) e )dCD—f(N+1)—f(N)
i ig(q))[ei(N“)—eiN(D}dq) —0 asN—>o

Al}iir}OSNf(G)=%[f(9_)+f(9+)]

whenever if f is continuous at ¢ then lim S, f (0)=1(0)

_o N }

)
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FEJER KERNEL

Unit Structure

4.1  Cesaro mean and Cesaro summation
4.2 Fejer’s kernel

4.3  Properties of Fejer’s kernel

4.4  Fejer’s theorem

4.5  Uniqueness theorem

4.6  Weirstrass approximation Theorems

4.1 CESARO MEAN AND CESARO SUMMATION :

Let C,+C,+C, +.....+....= »_C, be aseries of complex numbers.
K=0

h A n
Define n" partial sum by §,=>"C, .
K=0

This series converges to S if ]lvim Sy=5.

The average of 1* N partial sum is denoted and defined by
S, S +S, L+ S
N

N

N-1 0
ie o, = %ZS” is called N" Cesaro Mean of the series Y C, .
n=0 K=0

If o, converges to o as N —>oo then we say that ) C,is Cesaro
N=w

summable to o .

which has no limit since partial sum fluctuate between 0 and 1.
1+0 1
So average value o, = — =5

.. 1
Therefore, above series is Cesaro summable to 5
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4.2 FEJER’S KERNEL

The N™ Cesaro mean of Fourier series is given by

oo f (%)= Sof (x )+Slf(x]3]+....+SN1f(x)
We have, N" partial sum of Fourier series given by Svf=f*D,.

[f*D )]+[f>!<D1 (x)]+ ...... +[f>!<DN_1 (x)]
N

oy f(x

N—
ie. F,( :% (x) is called the N™ Fejer’s kernel .
n=0

4.3 PROPERTIES OF FEJER’S KERNEL

Theorem 1: The N" is Fejer’s kernel is given by

. Z(ij
sin”| ——
2

FN(X)%W
2

Proof : We have,

o . 2i
Nsin—x| =0
X —IX
1 N ™ o2 _ T g2
Fy (x) =
) 2i
Nsin n=0
1 DN-l —ix N-1
_ ezzemx_ez Ze—mx
2iNsin—x n=0 n=0
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Both of above series are in geometric progressive

for 1% series, Common ratio = r = ¢,

for 2™ series, Common ratio r =¢ "

L

Note that, |+ =1
. K K+1 _1
~U n=t
sing ;r p—
. \N AN
ol (&™) —1 —ix ) —1
Fy (x) =—— e’ L ,»x) —e? &
2iNsin—x e" -1 e” -1
B 1 eiNx _1 ~ —iNx _1
2iN sin - ei7 (ei" —1) e? (e""“ —1)
_ 1 eiNx _1 ~ e*iNx_l
2iN sin e% _e;zl)C eizlx —e% |
_ 1 eiNx _1 —IiNx _1
2iN sin > e% _e%x e% e%x
B 1 eiNx +e iNx _2
(21’)2 Nsin — sin —
2
1 iNx —iNx
= (4™ =2
(21’)2 N sin’ %( )
1 iNx —iNx 2
FN(X)=ﬁ(€2 —e? )
(2i) Nsin %
iNe —iNe )2
_ 1 e? —e?
N sin? % 2i
. 2 Nx
1 Sin 7
Fy (x) =
N sinzf
2
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Theorem 2: The N Cesaro sum of Fourier series of continuous
periodic function f'is given by
1 ¢~ 1
GNf(x)=EL,FN (x=0)f()dr="r] () f (x—y)dy
where, F, is N" Fejer’s kernel.

ie. o f (x)=(Fy *f)(x)=(f *Fy)(x)

Proof : We have N partial sum of Fourier series is given by

1

Suf (5) =5 [ Dy (r=2) f () v =]

"Dy (y) f(x-y)dy

where, D,, is N" Dirichlet Kernel.
Taking summation on both side.
N-1 7
ZS f Z J. D x y dy
n=0 _,

=i§LDﬂ (¥)S(x=y)dy
N-1 1 N-1 N-1

28 ()= [ 2D, (=) ()= [ 3D, () (v

n

We have N Cesaro sum of Fourier series f o, f = iZS and also

we have, Fejer’s Kernel £, (x)=

1

NS (x) == [ N B (v=0) £ ()

:i NF, (y)f(x—y)dy

Loy f(x)= EL,FN (x=»)f(y)dy= iIZFN (») f(x=y)dy
Thus o, f(x)=F, * f(x)=f*Fy(x)

Theorem 3: —.[ Fy(x)dx=1 where F, (x) is N™ is Fejer’s kernel

N-

Proof : N" Fejer’s Kernel is given by, F, Z

Now integrating using limit —x to 7



n=0
:%g.[ﬂnl)”(x)dx
& 1
S| 2(271)=—27ZN=27Z
/1:() N
L[ Fy(x)dr=1

. 27t
Hence proved,

Theorem 4: ]lvlm Fy(x)dx=0if 0<s <.
- b<M<n

Proof : We have, N" Fejer Kernel

. 2 Nx
sin” ——
2

FN(x)=
Nsin? X
2

. L9 X .
The maximum value of sin® 5 1S one.

. X . e
Also, sin’  increases as x goes away from the origin in [-x,7x].

Hence, F (x)< where 6 <|x|<x

N sin® —
2
= J. Fy(x)dx—0 as N > .
S<|xj<m
Theorem 5: Fejer Kernel F, (x) is good kernel
Proof : Since we have
1) Fy(x)=0 v x
2) —j Fy(x)dx=1
3) 3IM >0 such that Jlﬂ ‘FN (x)‘ dx<M
4) for every & >0, j ‘FN (x)‘ dx—>0 as N —ow

83‘):‘ <r

Thus Fejer’s Kernel is good kernel.
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4.4 FEJER’S THEOREM :

Theorem: If f is integrable on the circle then Fourier Series of f
is Cesaro summable to f at every point of continuity of f.
Moreover, if is continuous on the circle then Fourier series of f is
uniformly Cesaro summable to f

Proof :

Step (1) : If f is integrable function defined on the circle then it can
be approximated as a Fourier series

0
f(x)= 3 a,e™
n=—on

The N™ Cesaro mean of Fourier Series is given by
I N-1

GNf('x)=_ZSn f('x)
N n=0

Where, S, f(x) is N Partial sum of Fourier series.

N" Cesaro mean of Fourier series of f can be written as
convolution
onf(x)=(f*Fy)(x)

where, F, is N" Fejer kernel

Step(2) :

We have property of good kernel i.e. let {K,}  be a family of good
kernel and f is integrable function defined on the circle then
lim(f*K,)(x)=[(x)

Whenever, f is continuous at x.

Moreover, if f is continuous everywhere then above limit is
uniform.

Step(3): We know that N” Fejer kernel F, is good kernel
.. By property mention in step (2) we can write

lim (f*Fy)(x)=f(x)
= lim o, f(x)=f(x)

Hence, Fourier series of an integrable function defined on the circle
is Cesaro summable to f at every point of continuity Also, by

step(2), if f is continuous on the circle then the Fourier series of f
is uniformly Cesaro summable to 1.
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Fejer’s Theorem: Alternative Form
Alternatively the statement of Fejers theorem may be written as

Statement : If fis continuous and periodic then averages o, f of
partial sum of Fourier series of fconverges uniformly to f as
N —> .

ie. limoy f(x)= /(%)

Proof : Claim: o, f — fas N >

ie. lima, /(x)=f(x)

We have N™ Cesaro mean of Fourier series of £ is given by,
oo f(x)= —J. Fy(y)f(x=y)dy

Consider,

oy f(x =—I Fy( —y)dy - %:)IZFN(y)dy

:%f”ﬂFN(y)f(x—y)dy—lfﬂﬂFw(y)f(x)dy

-1 CE () f(x-y)- f(x)]dy
0uf ()= f()=5- [ B F(x-2)-1 ()]
”\y\qs
v [ AO[G-)-r@]d O

For any choice of 6 such that o <& <z . By the properties of Fejer
Kernel, the 1" integral,

1

— [ ) f(x=y)- ]dy has modulus bounded by — sup
2 2

‘y‘<b

{1 (e=y) =1 (x) /]y <5} @)

A continuous periodic function is uniformly continuous so given
e>o, we fix § so small so that the bound of equation (2) is % VN.

The modulus of 2™ integral % I Fy(D)[f (x=»)=f(x)]dy is
nﬁ‘ykn
1
bounded by E2sup{‘f(y)‘} I Fy(y)dy 3)

S<|yl<n
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For large N, the bound of equation (3) is % :
Since ]{,13‘010 .[ F,(y)dy=0

8‘y‘<ﬂ
Now using equation (1), (2) and (3),

e €
GNf(X)—f(x)<E+E=€ as N > o
}vig,loaf\’f(x) = f(x)

Alternative Proof of Fejer’s Theorem

Step 1: We have theorem

Let {K,}” be a family of Good Kernels and f is an integrable
periodic function defined on the circle then

lim(f*K,)(x)=/(x) whenever, f is continuous at x.

n—>0

If fis continuous everywhere then the above limit is uniform.

Step 2: We know that Fejer Kernel is a good kernel and hence by
above theorem, we have

lim(f*F,)(x)=f(x) whenever, f is continuous at x.

If fis continuous everywhere then the above limit is uniform.

Step 3: We also know that, o f (x)=F, * f(x) =/ *F, (x)
Hence by above step 2, we have

limo, f(x)=f(x) whenever, f is continuous at x.

If fis continuous everywhere then the above limit is uniform.

4.5 UNIQUENESS OF FOURIER SERIES

Theorem : If 1 is integrable periodic function defined on the circle
and f(n)=0Vn then f=0 at all points of continuity of a
function f.
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Proof : We have N" partial sum of Fourier series of f
N A .
Suf(x)= 2 f(n)e"™
n=—N
Since f‘(n)zO Vn
S8y f(x)=0Vn (1)

i.e. all partial sum of Fourier series of function f are zero
th . . .
Also, we have N Cesaro mean of Fourier series of function f.

1 N-1
O'Nf(x) = N%Snf(x)
By equation (1)
GNf(x)=0 Vn (2)

i.e. N Cesaro mean of Fourier series of fare zero we have,
property of Fejer Kernel.

GNf(x)zf*FN (x)
By equation (2)

f*F, (x) =0

= f(x)=0 (" Fy>0)

Uniqueness of Fourier Series :

Since Fourier series of a continuous periodic function f converges
to f, the function f is uniquely determined by its Fourier
coefficients.

If f and g are two functions having same Fourier coefficients then
functions f and g are necessarily equal ie. if f(n)=g (n) then
f=g=0 X

S f-g=0 {By above then i.e. if f(n)=0= f=0}

=f=g

4.6 THE WEIERSTRASS APPROXIMATION
THEOREM :

Statement :

Any continuous periodic function f can be approximated by
trigonometric polynomial.

OR
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If f is continuous function defined on the interval [-z,z] with

f(-n)=f(n) and e> 0then there exist trigonometric polynomial P
such that |f(x)—p(x)|<e, —n<x<n

Proof :
By Fejer’s Theorem, if f is continuous and periodic then averages

o,/ of partial sum of Fourier series of function f converges
uniformly to 1.

ie. |0Nf(x)—f(x)|<e for e>0 —-n<x<n

Here, o, f(x) itself proves existence of trigonometric polynomial

P(x).
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POISSON KERNEL

Unit Structure

5.1  Abel mean and Abel summation
5.2 Poisson Kernel

5.3  Properties of Poisson Kernel

5.4  Abel summability of Fourier series

5.1 ABEL MEAN AND SUMMATION :

Definition : A series of complex number ' C, is said to be Abel
k=0

Summable to S if for every 0<r </ the series A(r)= ch r s

k=0

convergent and if lin} A(r)=S. The quantity A(r) is called Abel

mean of the series.

Example : consider the Series

1-0+3 45 ememenee =S (-1 (k1)

k=0

:>A(x)=§i(—Lf(k+1)rk

]
C(1+r)

_ 1
iy ()=

Hence Series 1-2+3-4+5-6+........ 1s Abel summable to 5

5.2 POISSON KERNEL

The Poisson kernel is denoted and defined as P.(6)= )’ r e

Definition : Let us define Abel Mean of the Fourier series

f(0)= Y a,e"
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where, a, is Complex Fourier coefficient, is given by
A41(0)= r"a,e"

Since n takes positive and negative integer value, we consider |n|
here. Here f is integrable and |a,| a complex Fourier coefficient

which is uniformly bounded. Hence Series A4 f(6) converges
absolutely and uniformly for each », 0<r<1.

Theorem: The Abel Mean can be written as convolution of periodic
integrable function f and the Poisson kernel P (8) as

4.1 (0)=(/*R)(6)
Proof : We have,

41(0)=3 g e
where, complex lgourier coefficient

a,=F(m)== ] 1) o
A f(0)= i ! (ijf(q))em d¢Jeme

-3 (i [ reg)em? dd’j

n 00

= 3 [ p)e vy

n=-x

_Ln N r\ﬂ\ in(6-¢)
- j f(¢)(2 e d¢j

n=-—x

o0
since we have, Poisson Kernel P(0)=" " ¢"°

n=0o

LA S(0)=— [ 1(0) P(O-4)do

A.1(8)=(/*P),(8)=(F*/)(8)

5.3 PROPERTIES OF POISSON KERNEL

1-7°

Theorem 1: If 0 <r < then Poisson kernel P.(0)= 5
1-2rcosO+r
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Proof: We have by definition of poisson kernel

R(e): Z I"M eine

n=-—ow

R,(e): rn ein9+zrn e—ine (1)

n=0 n=1

Both of above Series are geometric Series.
For 1* Series,

Firstterm =a=1 and Common Ratio =R = re¢'’
|R|=‘reie‘=|r|‘eie‘<1
Since 0<r<I=|r|<1 &[] =1

d .
For 2" Series,
First team = a=re™ and Common ratio = R=re "
|R| :‘reie‘ =|r| ‘e"ie‘ <1
. . . . t .
We have sum of infinite term of geometric Series whose 1 team is a

and common ratio is R is given by S, = l—aE , provided |R|< 1.

Use this in equation (1)

1 re™"
P(0)= —+ .
(0 1-re® 1-re™

1-re® +re® —17
i0

—re'® + 77
1-r

i —i0
1_2{@%}%
2

B 1-7° . cose_e"e+e”'e
1-2rcos0+r’ ’ 2

Theorem 2: The Poisson kernel P.(6)>0

B 1—re

Proof:
1-7°
1-2rcos0+r’
Since 0<r<I = 1-r'>0
Also —1<cos®<1 . Hence in any case
1-2rcos®+r’ >0

P(0)= . 0<r<I

Hence P.(0)>0.



51

Theorem 3: Zi I P(6)d0=1 where P.(0) is the Poisson kernel
T -n

Proof:

2
Po)=— 17"

1-2rcos®+r’

PO —

e 1-2rcosO+r’

do

Since P(6) is even function

jp(e)de 2j

do
1- 2rc059+r

Also we can write

I[P,(e)dezz(gjn 1-r deJ

I—2rcose+r2

3 N

do 1
y 1— 2rcos€)+r @

By applying contour integration Method
Put Z=¢° = |7|=

dz=i¢' d0 =iz do

dZ—dG
iz
i0 -0 Z+—
cosf=5—"¢ =z
2 2
Put in (1)
K 1-7 dz
I=|P(9)do= i
_j > (0) j ; >
T Z+7
1-2r Z 47
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_.[ dz
z— I’Z —}"+l’Z

]J' 1—r°

I== d. 2
=z’ (147 )z —r : (2)

To Find poles and residues :

Let —r22+(1+r2)z—r=0

22+ z+rz—r=o0
rz(r—z)—(r—z)zo
(rz—l)(r—z)zo

1
= z=r and z=— are poles
r

Since |z[=|r|<1, z=r lies inside circle C(|z|:1).

[21=

1 >1, so z _1 lies outside circle C.
r r

By Cauchy Residue theorem,

-7 1
I = 2rix| li -r)y—
I * mxizlgfl(z r) (Z—I’)(I—I’Z)j
2
=1—r X 2771 X
I 1-r
=2r

2

From (1), J._ﬂ P (6)d6=2n
1 o=
—| P(0)do=1
:>27r - (9)

Theorem 4: For 6 >0, I |P |d9—>0 asr —1

53‘9‘371
Proof :
1-7°

P(O)=

r() 1—2rcosO+r*
l—2rcos@+r2:(l—r)2+2r(1—0050)
As r—>1, 1-2rcos0+r> =2(1-cos0)

, 0<r«l
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which is bounded as cos® is bounded.
Hence

1-7°

P(0)<
3
(as 6 approaches towards n, cos® decreases)

[ projao<] -1

3<l6|<n C5

—>0as r—1

Theorem 5: The Poisson Kernel is a good kernel.

Proof: Since we have proved

1) P(6)>0
] T
2)%_[[13(9)619_1

3) 3 M >0 Suchthat V 0<r<I
[1R(0)|do <M

4) forevery 6>0, j

SS‘S‘Sn

R(G)Ide -0 asr—1

Hence Poisson Kernel is a good kernel.

5.4 ABEL SUMMABILITY OF FOURIER SERIES:

Theorem: The Fourier Series of an integrable function on circle is
Abel summable to f at every point of continuity, Moreover, if f is

continuous on the circle then the Fourier series of fis uniformly
Abel summable to 1.

Proof: Step 1: We have, Abel mean of the function f(6)which is
approximated by the Fourier series where f is integrable function
defined on the circle.

£0)= S a, e

40)=3 Ma, e
Abel Mean of Fourier Series of f can be written as convolution

A4.f(0)=(f*F) ()
Where, P.(6) is the Poisson kernel
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Step 2 : We have property of a good kernel,
Let {K,} , be a family of good kernel and / is integrable function
defined on the circle then

lim (f*K,)(x)=f(x)

whenever, f is continuous atx . If f is continuous everywhere then
above limit is uniform.

Step 3: We know that Poisson kernel P(6) is a good kernel

Therefore by above property mention in step (2)
lim(f*F)(0)=7(0) 0<r<l

= lim 4, /(6)=f(0)

Hence, Fourier series of an integrable function defined on the circle
is Abel summable to f at every point of continuity.

Also, by step (2)
If f is continuous on the circle then the Fourier series of f is
uniformly Abel summable to 1.

Ex: If P.(0)denotes the Poisson kernel, show that the function

01P (0
u(r,0) :%, 0<r<1I, 0eR satisfies
2 2
() Au=0 in thedisc where A= 419 4 1 O
or~ ror r 00
(i1) lim u(r,0)=0for each 0
r—l
However u is not identically zero.

Solution: (i) We have P, (0)= )’ pll e
On differentiating w.r.t 6, we have

a{Pée(e)} _ n_iw il o0

o{P (9 o ’
M(r,e) :M: Z inr"?‘ emG (1)
00 ~
2 2
Consider Au :%Jrla_” i Ou

+ [
or’ ror r’ oo’
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On differentiating (1) term by term, we obtain

. . \3
. ln|n| . mn .
=2 -1
Jn=2l 4in® 1] ino (in) Sl gin®

Au:in‘n(n—l) +

r r

r r

. . \3
Au ={in‘n(n—])‘+mr+@r2}rn2eme

Au = {in‘n(n —1)‘+in|n|—in3} yin=2 gin®

Au=20

2
(ii)We have P (0)=——"_ 0<r<I
1-2rcos@+r

u(r,e)za{e(e)}_a{ I }

09 _8_9 1-2rcos0+r’
(I—rz)(erin 0)
2
(1—2rcos9+r2)
Consider

u(r,0)=-

(l—rz)(2rsin0)

lim u(r,0) = lim -

2
rol e (1—2rcos€+r2)
lim u(r,0)=0
r—l

Since 0 <r <1 u is not identically zero.
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DIRICHLET PROBLEM

Unit Structure

6.1  Laplacian operator and Harmonic functions
6.2  Dirichlet problem for the unit disc

6.3  The Solution for Dirichlet problem

6.4  The Poisson integral

6.1 LAPLACIAN OPERATOR AND HARMONIC
FUNCTIONS:

Two dimensional transient (time dependent) heat equation is given
by

Ou o'u o ou

ota a7 &

ox~ Oy k ot
where u (x,y,t)1s the temperature at point (x,y) at time .

Transient means temperature depends on time. The ocd&k are
physical quantities namely specific heat and thermal conductivity of
the material respectively.

If temperature is independent of time then %:0 and such a
t

physical situation is known as steady state. Hence above Heat
Equation can be written as

o’ 8)/2 -
This equation is known as Laplace equation.
Laplace equation can be written as :

0

2 2
Au= 8_124 + a—L; =0
ox~ Oy
2 2
The Operator A = e +— 1is known as Laplacian operator.

The Solution of Laplace equation Au=0 is known as Harmonic
function.
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6.2 DIRICHLET’S PROBLEM FOR UNIT DISC:

Consider unit disc in the plane D = {(x,y) eR /¥ +y’ < 1} whose
boundary is unit circle C = {(x,y) eR*/x*+y* = 1} :

In polar co - ordinate (7,0) with 0<r <1 & 0<0<2r, we have unit
disc D={(r,6)/0<r<1, 0<6<2n} whose boundary is a unit circle

C={(r,9)/r=1,0£9<2n}.

The boundary value problem Au=0 with u= f(0) at

r=1, 0<6<2n is known as Dirichlet problem in the unit disc.
2 2

Note: The Laplace equation Au =0 where A= 6—2+8¥2 which is in

ox~ 0Oy

Cartesian form can be convert in terms of polar form (»,0) as
oO’'u lou 1 &u
Sttt oy

or” ror r 00

: o° 10 10

1.C. A=—2+——+—2—2

or’ ror r-o6

=0

6.3 SOLUTION OF DIRICHLET PROBLEM FOR UNIT
DISC:

Problem Statement:
Consider unit disc D={(r,0)/0<r<1, 0<6<2n}
whose boundary is unit circle
C={(r,0)/r=10<0<2n
The governing steady-state heat equation given by the Laplace
equation
Au=0
oO’u 1ou 1 0u
Le. —+——+———=0 1
o’ ror oo M

subjected to boundary condition.,
u=£(0) at r=1,0<6<2n (2)

Solution: Let us apply separation of variables method to solve
Dirichlet problem.

Let u(r,0)=F(r)G(0) 3)

where , F(r) is some function of » and G(0)is some function of 6
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Using equation (3) in equation (1)

0’ 10 1 &
—(FG)+——(FG)+—=—(FG)=0
Orz( / r@r( / r2692( /
1 1
F'G+-F'G+—FG"=0
r r
F"G+£F’G:—LZFG”

r r
Divide both sides by FG

F”G+1F’G —LZFG”
r __r
FG FG
F"+£F’ _LZGN
r____r
F G
rF"+F' -G"
rF G
rF"+F'  —-G"
F rG
rZF”+rF'_—G”
F G

which is separation form of given D.E.

Since r and 6 are independent variables we can write
P F'"+rF' _=G"

=\ 4
7 c 4)
Where A is constant
Consider, —G'(O)_,
G(9)

= G"(0)+1G(0)=0
= (D’ +1)G(0) cohere,Dz% (%)

Consider Auxiliary equation D’+A=0
=D’ =-)
Since G is a function of ® and 0<0<2n 1i.e. G 1is defined on a

circle i.e. G is periodic of paired 2n
=>A20

leth=m’ , mez
D’ =—m’

SD=xmi
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Hence solution of equation (5) can be written as
G(0)=AcosmB+ Bsinm0

Or G(0)=Ae"’ +Be ™’

where 4 & B are constants.
Now consider,

7’2F”(r)+rF'(r):)L
F(r)
FPE"r)+rF'(r)=\AF(r)=0
put r=e e z=logr
= r.F’(r)zDF(z)
r’.F"(r)=D(D—-1)F(z)

where D = 4
dr

Put these values in equation (7)
D(D—-1)F(z)+DF(z)-\F(z)=0
(D> ~D+D-)\)F(z)=0
(D’ -1)F(z)=0
Auxiliary equation

D’ -1=0

D’=\A=m’

D=1tm
. F(x)=Ce"™ +De ™

where C and D arbitrary constants.

Put Z =logr
F(r) — Cemlogr + De—mlogr
~F(r)=Cr" +Dr™

F(r):Crm+2m
B

(6)

(7

(®)

Using equation (6) and (8) in (3) i.e. u(r,0)=F(r)G(6) we have

u(r,0)= (cr"’ + ij (Ae””e + Be’[’”e)
r

Since 0<r<I

©)

as r — 0 then Qm — o0 and F will be unbounded at center and hence

-
arbitrary constant D =0.
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.. Solution (9) can be written as
u(r,0)=Cr"(Ae™® +Be ™)

u(r,6)=Er‘m‘ e’ mez (10)
where E is new constant combining all the solutions
u(r,0)= Z amr‘m‘ ™ (11)

where a,, is arbitrary constant.

Equation (11) gives general solution of Dirichlet problem to find
particular solution we need to find constants a, which can be

determined by boundary condition given by equation (2), u= f(6)
at r=1.

S u(1,0)=Y a, " (12)

The above equation is complex form of Fourier series of periodic
function f(0) of period 2x.

Hence, a, is a Fourier coefficient which is given by,

127[ .
=— [ f(6)e™" db 13
a, anf( )e (13)

6.4 THE POISSON INTEGRAL:

Theorem: Let f be integrable function define on the unit circle

then the function u defined in the unit disc given by the Poisson
integral as u(r,0)=(f*P.)(0)has the following property

1) u has two continuous derivatives in the unit disc and satisfies
Au =0 (i.e. u satisfies Laplace equation)

2) If 0 is any point of continuity of function f then
lim u(r,0)=f(0)

If £ is continuous everywhere then this limit is uniform .

3) If 1 is continuous then u('r,0)1s the unique solution to the steady

state heat equation equation in the disc which satisfies above
condition (1) & (2).
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Proof :
Step (1) :

Claim : u(r,0) has two continuous derivatives in unit disk and it

satisfies Laplace equation
we have, u(r,0)=(f*P.)(6)

Fix p <1 inside each disc r<p </ centered at origin.

The Series u Can be differentiated term by term and the
differentiated series is uniformly and absolutely convergent. Thus,
u can be differentiated twice. (Infact, wucan be differentiated
infinitely many times) and since this holds for for all p</, we can
conclude that u is twice differentiable inside the unit disc.
2 2

In polar co- ordinates we have Au= a%+l a—M+ iz 0 Li

o~ ror r 09
Put u=(/*P)(6)
Term by term differentiation gives us Au =0

Step (2) :

Claim :

a) 1irr11u(r,9) = /(0), whenever f is continues at 0.

b) If f is continuous everywhere then above limit is uniform.
We have, property of a good kernel,

Let {Kn}:: , be a family of good kernel and 1 is integrable function
defined on the circle then

lim (f*K,)(x)=f(x)

whenever, f is continuous atf. If f is continuous everywhere then
above limit is uniform.

We know that Poisson kernel P.(6) is a good kernel Therefore by
above property mention in step (2)
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lim(f*F)(0)=1(0) 0<r<l
:>Zrli’)’11 u(r,O):f(O)
whenever, 1 is continuous atx. If f is continuous everywhere then

above limit is uniform.
Hence claim.

Step (3) :
Suppose v(r,0)is another solution of steady state heat equation
Av =0 in the unit disc and converges to f as r — I

i.c. lim V(r,0)=f(6)

Sub claim: V(r,0)=u(r,0)
For each fix » with 0<r <1 the function V(r,0)has a Fourier series
expansion

0

Vir.6)=> a,r)e"’

n=—ow

U4

a"(x):2_]n I V(r,0)e"do

Since V(r,0) satisfies Laplace equation

. o’v lov 1 &

1e. —S+——+— =0 1
o’ ror roe M

Put v=a,(r)e"’ —0<n<®

) Ji ) —n’ )
a,"(r)e"’ +=a,'(r)e"’ +——a,(r)e"" =0
r r

) Ji ) n2 .
an H(r)elnG +*a,, r(r)eme__zan(r)etnG :0
r r

2

.‘.an"(r)+ian'(r)—n—zan(r)=0 2)
r r

The solution of above equation (2) is given by,
a(r)=Ar"+Br" :.n#0 {seesolution of Dirchlet problem}

where 4, & B, are arbitrary constants.

To evaluate constant A, and B, we observe that 4 (r) is bounded

because v is bounded
Since,

B
a,(r)=Ayr"+—=
r

Since a, (r) bounded B, =0
Hence, B, =0
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Also to find 4, if we take limit » — 7 Since v converges uniformly
to f, we can write A, as a Fourier coefficient

_ ] f —in@
An_z—nj;f(e)e do

By similar arguments above formula holds for » =0 Hence, for each
0<r<1, the Fourier Series of v is given by u(r,0). So by the

uniqueness of Fourier series of continuous function, we must have,
v(r,0)=u(r,0)

Note: If u Satisfies Laplace equation Awu =0 in the unit disc and
converges to zero uniformly as »— 7 then u must be identically
zero. However if uniform convergence is replaced by pointwise
convergence then this conclusion may fail.

Ex 1: In a semicircular plate of radius 1 cm, the bounding diameter
is kept at 0°C and the circumference is at fixed temperature u,C

until steady state condition revels. Find the temperature distribution
in the semi - circular plate.

Solution : The steady state temperature with the semi - circular plate
is given by Laplace equation (Polar form)

u I1ou 1 0u

—t——+—5—=0 1
o’ ror r oo M

where, u(r,0) represent temperature within semi-circular plate with

boundary condition
u(r,0)=u(r,m)=>0 2)
u(1,0)=u, 3)

We have general solution of dirichelet problem as

o0
u(r,8)= Z a, phl gime

m=—x0

This solution may be written as

u(r,G):Z(Amcosm9+Bmsinm9)r‘m‘ (4)

m=0
where 4, & B, are arbitrary constants.
u(r,0)=0 i.e.u=0at0=0

=0=4, cos0
=4,=0
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put in (4)
u(r,0)=> B, r" sinm0 (5)

m=0

Now u(r,m)=0 iec.atu=0at0=rn
0=B, Sin(mn)r"

= Sin(mn)=0

= MmN =nmn n=0,12,......
ilem=n

Also from (3)

u(1,6)=u, Where r=1, u=u,
put in (5)

u():ZBm sin mO

m=0

Which represents the sine series and B, represent the Fourier
coefficient of sine series.

B, zzjuo sinm0 do
n 0

B - —2u, (cos me]“

T m ),

2 e 1y 1)
m

Put this value of B, in equation (5)

u(r,e):z %[1—(—1)’”]sinm6rm
m=0 m
The solution is not defined at m =0
B, zzj.uo sinm 0 do
n 0
Put m=0

B, zzjuo sinmBdo =10
Tc()

cu(r,0)= zﬂ[l—(—z )" ] sinm0r"
m=1 m

I1-(-1)"=0 if miseven

=2 if mis odd
du, & sin [(2m—1)0]r""!

Which gives temperature distribution u(r,0) within the semicircular
plate.
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Ex. 2: Solve Dirichlet Problem on unit disc defined by
D={r0)/0<r<l, 050<2n}

Whose boundary is unit circle C={(r,0)/r=1, 0<0<2x}
Subject to boundary condition u =sin6 on C.

Solution : Consider Dirichlet Problem on unit disc D whose
boundary is unit circle C given by Au =0 subject to u=sin6 onC. .
We have general solution of Dirichlet problem,

u(r,e)zZ(Amcosm6+Bmsinm9)r”’ (1)

m=0

On the boundary C we have u=sin6 at r=1
sin@zZ(Amcosm9+Bmsinm6)

m=0

Which is a Fourier series expansion where, 4 & B, represents
fourier coefficients.

2n
4, =L (0)cosmo o
n 0

]27[
=—J.sin600sm9d6
Tc()

A, =0 ... { By Orthogonality property of circular function}

2n
B, =L f(0)sinmodo
TCO
JZT[
z—jsinesinm9d9=0
n()

:zj.nsin 6-sin(m6) do
T 0

_0 m=#1
1 m=1

B =1 & B, =0 VYV m=#l
&A,=0 vV m
 u(r,0)=Brsin® =rsin0

Ex. 3: Find the solution of Dirichelet problem on unit disc D whose
boundary is unit circle C as defined before subjected to boundary
conditions.

u, 0<0<m
f(9)={_

u, n<0<2n
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Solution : We have dirichlet problem Au =0
2 2
Where A :8—2+l i+128—2
or”~ r or r°00
onunitdisc D={(r,0)/0<r<1, 0<6<2n}
Whose boundary is unit circle C={(r,0)/r=1, 0<0<2n} subject

to boundary condition

u, 0<0<m

f(8)= {
We have general solution of Dirichlet problem

u(r,e):Z(Am cosO+ B, sinm0)r"

m=0

-u, t<0<2n

atr=1

u(1,9)=1(6)
.'.f(e):i(Amcosm9+Bm sinm©)

(1

which is Fourier Series expansion of f(6) where A, & B, are
Fourier coefficients

2n
we have , 4, :i'[f(e)-cos(me)de
T

0

kg 2n
A, zijul) cosm9+—j—u0 cosm0do
TCO T n

_ﬂ[sinm OT _@[Sinm@}h

T m |, =« m

=0

27
B, =ijf(e)smmede
TE()

b 2n
:ij.uosinmeqLiJ.—uo sinm 0 d0
L) T

m 2n
_u,| —cosm0 u,| —cosmo
T m ) T T .

ul) m ul) m
=%[(—1) —1]+%[1—(—1) ]
2Uy (0 AN
=~ (1-(-1))
at m=20
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]271

B,=—[ (6) 0.d60=0
TE{)

Also,
1-(-1) =2 if misodd

=0 if miseven

B =
" (2m+1)7:

f(0)= Z _,)
_ 4u, zsm[(Zm—])e] Jam=1

T =1 2m_1

Sin [(Zm—]) e] r2m—1
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HILBERT SPACES

Unit Structure

7.1  Hilbert Spaces - Definition and its properties

7.2 Standard examples of Hilbert spaces

7.3  Properties of Hilbert Space

7.4  Cauchy - Schwarz inequality

7.5  Orthonormal basis

7.6  Equivalent characterization: Bessel’s inequality and
Parseval’s identity

7.1 DEFINITION: HILBERT SPACE

Definition 1 :

Let H be a complex Banach space then H is called Hilbert space if
(x,y) associated to each of two vectors x & ye H in such a way that

D) (xy)=(rx)
i1) <ax+ﬁy,z>=a<x,z>+ﬂ<y,z>
i) <x,x> = “x“2 Vx,v,z e H

for all scalars a,

Definition 2 :
The vector space with their inner product and norm satisfying :

1.€.

1) The inner product is strictly positive definite.
ie ||x[=0=x=0

i1) The vector space is complete.

Every Cauchy sequence in the norm converges to a limit in the

vector space, is called Hilbert Space.
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Definition 3 :

A set H is called Hilbert Space if it satisfied the following properties
1) His a vector space over C (or Rz)

i1) H is an inner product space satisfying.
a) (f,g)=(g f) (conjugate symmetry)
b) (af+Bg.h)=a(f,h)+pB (g h) (linearity property)

c) <f,f>20 VfeH, f,g.heH,a,BeC

if) Let [ £]=(/./)"

|/|=0 if and only if /=0 i.e. Inner product is strictly positive
definite.

iv) The Cauchy - Schwarz inequality and Triangle inequality
Cauchy - Schwarz inequality

(&)l <711l
Triangle inequality
|7 +el<l/1+lel vr gt

V) H is complete in the metric d(f,g)= ||f— g||

Note : In the above definition of Hilbert space, the Cauchy-Schwarz
inequality and triangle inequality are direct consequence of property
() & (1D).

7.2 EXAMPLES OF HILBERT SPACE :

1) The space R’
Let X =(x,%,,.ccccc0r X,

Y=(y1,y2, ....... ,yd)
Then inner product of X & Y
(X,Y)=xy +x,y, +....+x,y, and

- (X, x)"

= \/xf +X5 ot X5
Which is usual Euclidean distance .

|x
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2) The space C’
Let Z=(z,,zy5uces 2, )

Then (z,w) = z,W, +z,W, +.....+z,w, and

1Z]=(2,2)? =(27 + ...t 2,7, )

_ 2
ZZ=|Z|

3) The sequence space (*(Z)
The sequence space ¢>(Z) over C is set of all infinite sequences of

complex nuUMber as (.....a_,,...d_,dy, a4,y ) such that

B=(...b.,b,,b,....) be the elements in (*(Z)
Then (4,B)=>a,b,

nez

. G o
1= (4.4 =( S, | <[ Zla |
4) The sequence space (*(N)

The sequence space (*(N) over C is set of all infinite sequence of

..... ) one sided such that Y |a,|* <o

neN

complex number as (a,, a,,......a

|4] = (4, A)% - (iaﬁ” j :(i . zji

5) Square Integrable function L’ (E).
Let E be measurable subset of R? with m(E)>0. Let L*(E) denote
the space of square integrable function that are supported on E.
i.e. I’(E)= {f supported on E such that ﬂf(x)‘2 dx <o}
E
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The norm & Inner product is defined as

<f>g>=£f(x)g(x)d

1| ) 769 ] ~(flreor ]

7.3 PROPERTIES OF HILBERT SPACE:

Theorem 1: Let X,Y,ZecH «,pf,y are scalars then

i) (aX-BY.Z)=a(X,Z)-B(Y,Z)

i) (X,BY+yZ)=B(X.Y)+7(X,Z)

iii) (X, BY -yZ)=B(X.Y)-7(X.Z)
(X,

iv) (X,0)=0=(0,X),VXeH

Proof :
1)Consider

(aX—-BY.Z)=(aX+(-B)Y.Z)
<

=B{(Y, X)+y(Z,X)
=B(Y. X)+7(Z,X)
=B(Y,. X)+7(Z,X)
=B(X.Y)+7(X.Z)
iii) (X, BY -YZ)=(X,BY +(-yZ))

=B (X, V) +(~r)(x,Z
=B (X, V) +(-1)y(x,Z)
=F{x.¥)-y(x.2)
=B(X.Y)-7(X,Z)
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Definition : Orthogonality : Let V be vector space over R(C)with
inner product and associated norm |¢|. The two element X and Y are
said to be orthogonal if (X,Y)=0and we write X 1Y .

Theorem 2: The Pythagorean Theorem :
IfX &Y eH are orthogonal then | X + Y| =[ x| +|¥[ =[x - Y|’

Proof :

X +Y[ =(X+Y, X +Y) = (X, X)+(X,Y)+(Y,X)+(Y,Y)

=[P+ (ry) (v x) o
Since X LY . (X,Y)=(Y,X)=0
e =g ey
| X =Y =(X-¥, X -¥)=(X,X)~(X,7)~(¥,X)+(¥.Y)
=[xl -0-0+[rf

Since X LY

(X,Y)=(Y,X)=0

=y =X

7.4 THE CAUCHY - SCHWARZ INEQUALITY :

Theorem 3: Forany X,Y e H
(x.1)[<]x] |

Proof : Case (i) if Y =0 [Y|=0 and
(X,Y)=(X,0)=0.

and obviously Cauchy - Schwarz inequality holds.

Case (i) If Y =0

For any scalar 4 we have

(X+AY,X+AY)>0 ....... {+ve definite prop.}
(X, X+AY)+A(Y, X +AY)>0...... {Linearity prop.}
(X, X)+2 (X, Y)+ (Y, X)+ 22 (Y,Y) >0
T+ 2012 X+ T 20

(X.7)

Since Y #0 put A=——>
o
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e =TIy BT g

¥l P ()
e o
iy ¥ ¥
g o 1L
g

T I 2|
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Theorem 4: Triangle Inequality :

Proof:||X+Y|| =(X+Y,X+7Y)
= (X, X)+{X,Y)+(Y, X)+(Y.Y)
s {ry) =)

((x.x)=

= |(x.r)+(rx) <[] ]+ (]
= oy <X 20 x| i+ e
=[x+ Y[ < (1] +)

=[x +r|<|x]+]7|

Theorem S: Parallelogram Law

If X,Y € H then
o + Y+ -y = 2fx |+ 2y

Proof :
Consider,

X+ +|x -Y[ = (X +V, X +¥)+(X -V, X -Y)
=(X, X)+(X,Y)+(Y,X)+(Y,Y)
+{(X,X)—(X,Y)-(Y,X)+(Y,Y)
=2[x[ +2[rf
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7.5 ORTHONORMAL BASIS :

Definition : A finite or countably infinite subset {ee,......} of
Hilbert Space H is said to be orthonormal if

<e e>— 1 whenk=1
REEV0 whenk # 4

and ||e,||=1 Vk
i.e. Each e, has unit norm and is orthogonal to e, whenever & # /.

Property: Let H be a non-zero Hilbert space so that the class of all
its orthonormal set is non-empty. This class is a partially ordered set
w.r.t. set inclusion relation.

Definition :
An orthonormal set {e }in Hilbert space H is said to be complete if

it is maximal in partial order set i.e. if it is impossible to adjoin the
vector e to collection {e,} in such a way that {e,e,} is an orthonormal

set which properly contains {e }.

Theorem : Every non-zero Hilbert space contains a complete
orthonormal set.

Proof :

We know that

i) An orthonormal set {e} in Hilbert space H is said to be complete
if it is maximal in partial order set w.r.t. set inclusion relation.

i1) Zorn’s Lemma states that if P is partially ordered set in which
every chain has an upper bound then P posses a maximal
element.

ii1) Since the union of any chain of orthonormal set is clearly an
upper bound for the chain in the partially ordered set of all
orthonormal set.

The above three statements shows that every non-zero Hilbert space
contains complete orthonormal set.
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Theorem : If {¢,}  is orthonormal and /=) a,e, € H where sum

is finite then | /| = Z:|ak|2 :

Proof :
I =(r.0)=(Eae. Yae)
:Zakaf<ek7ef>
:Z|a,{|2 ..... {(ek,e»:lk:l

Orthonormal Basis:
Given an orthonormal subset {ee,..}={¢}  of Hilbert Space H

Spans H i.e. Linear Combination of elements in {e,,e,......; are dense
in H and {e,e,....} are linearly independent then we say that

{e,,e,.....} is an orthonormal basis for H.

Note : For any feH and {e}  is orthonormal basis for H then

o0
f:Zakek, a, eC
k=1

i.e. fcan be written as linear combination of elements in{e,,e,......} .

(g
~>a(ee,)

k=1
When {for k=j (e;¢;)=1& for k= j, (e..e;) =0}
1.€. <f,ej>=a/

Hence, whenever [ =Y a.e, then q, =(f.e,).

k=1

Consider,

7.6 EQUIVALENT CHARACTERIZATION :

Theorem : The following property of an orthonormal set {e,{}f:1 are
equivalent.

1) Finite linear combination of elements in {e,}" are dense in H.

2) If feHand <f,e./.>:0v1 then /=0.
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3) If feHand SNf:iakek then S, (f)— / as N — oo in norm of
k=1
Hilbert space H.
4) If a, =(f.e,) then | f| Z|ak|.

Proof : Step (1) : (1)=(2)
o0
Given : finite linear combination of elements in {ek} el are dense

in H.
Let f e H and <f,ej>:0Vj

Claim: /=0
Proof : Since finite linear combination of elements in {e }  are

dense in H, there exist a sequence {g,}of elements in H which is

finite linear combination of elements in {e |  such that

I/ -,

—0 aS n—> ™.

Since <f,ej>:0 v

=(f,g,)=0 Vn... {:. g, is finite linear combination of elements in

{ek}le}

By Cauchy - Schwarz inequality.

Consider,
AP =(r.0)=(Fof &) <A -,
WS =g)=(f 1) +(f--¢.)
=(f./)-(f.g,)
=(1.f)  {{/.g,)=0}

Letting n — o
I =0 {lr-gl—>0asn—o}
1=
S f=0

Step 2 : (2)=(3)
Given feH<fe>=0 VvV j then f=0

Also we have S, f = Zakek where, a, =(f,e,).

k=1



Claim : HSN(f)—fH—w AS N 5o

Consider,

jf_SN(f)J—SN(f)
By Pythagorean theorem,
717 =l =5y (O +llsy (O
=8y (N + S

N
=111 2 X Jaf

K=1
Letting N — o

i|ak|2 < ||f||2 {This is known as Bessel’s Inequality}
K=1

Bessel’s inequality implies that series Z|ak|2 is convergent.
K=1

Therefore, partial sum {S, ()} forms Cauchy seq. in H.

N M
z a,€, — Z a,€;
k=1 K=l
N
z a.e,

K=M+1

Since [, (£)=S, (/)=

N>M

= i |ak |2 whenever N > M

K=M+1



78

Since H is complete 3 g e H such that S, (f)—>g as N > .
Fix j and note that for all sufficiently larger N,

<f—SN(f),ej>=<f,ej>—<SN(f),ej>
:a/.—<2akek,ej>

=a,—a,...(orthonormality)
=0
Since S, (f)— g we can write

(f-g.e)=0 V¥
= f-g=0.ccciiii.. {By given hypothesis (2)}
o f=g (f.e,)=0,Y = f=0

Hence S, (f)— f as N >
ie |Sy(f)-f|—>0as N>
Step 3: (3) =(4)

Given feH SN(f)=iakek

HSN(f)—fH—m as N > o

Claim : ||f| = ;|ak|2

We have || /[ =[/-S, (f)||2 +Zi|ak|2

Letting N — o and using HSN (f)—f”—)O as N — o
1A =2l
K=1

This is known as Parseval’s Identity.

Step 4 : (4) = (1)

2 2
I =2l
=1

Claim : finite /.c. of elements in {e, }, are dense in H.
We have from equation

AP =l =85 (N + Zles
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as N — o, we have Parseval’s identity.

A1 = 2ol
=|f=Sy(f))>0as N>

Since each S, (/) is finite linear combination of elements in {e,} .

Hence finite linear combination of elements in {e | are dense
in H.

Ex 1: Let H be Hilbert Space. Show that for any x,ye H

|2

(e y) =t o =yl il ] i —iv
Solution:

Consider [x+ | =|x=y[ +i[x+i[ —ix—iv[
=[]+l + (xp)+{0)

LI+ = 0) = (,3)

+i[ {x+iy,x+iy}]

—i[ {x—iy,x—iy} ]

=2(x, 9)+ 2{p, ) +1| ol + (i) + (i, ) + (i, )|
i [+ i)+ (=i ) (i) |

=2(x, )+ 2(p )i [ =i (e, 2)+ i)+ |
=i [l + i ) =i (3,2) + o ]
=2(x,2)+2(3,%)+ (%, 2) = (3,2) + (x,7) = (3,x)
=4(x,y)

Ex 2: Let {¢,e,,....e,} be a finite orthonormal set in a Hilbert space
H. If x is any vector in H. Then show that

n
> [xe ) <l
i=1

Also show x—ZnXx, e)e L e, foreachj.

i=1
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Solution : Consider

2
n
x=Y (x.e)e

i=1

0<

j=1 i=1 i=1 j=1

= =D e ) (e - D e ) (rre) + D (e ) (xrer)

i=1 i=1 i=1

n n

=l =3 [(x.e | = Dolixe ) < ol
i=1 i=1

Consider <x—i<xl,e,.>e,.,e/_>

i=1

)
:<x,ej>—[Z::<x,e,-><e,,e,>
:<x,ej>—<ej,ej><X,€,>
= x,ej>—<x,ej>

Ex 3: Let H be Hilbert space. Let {¢,} be an orthonormal set in H.
Then show that the following conditions are equivalent.

1) {e} is complete
2) xL{e}then x=0

3) If xe H then sz(x,ei>ei

4) If xe H then ||x||2 = Z‘(x,ei>‘2
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Solution :

Step -1: (1)=(2)
Let {¢,} be complete.
Suppose x Le Vi
Sub claim - x=0

Suppose that x =0

X
Define e=—

I
Clearly (e,e;)=0(..x Le)Vi. Thus {ee} is orthonormal set which
properly contains {e, }
Which is contradiction to {e,} be complete.
Hence our assumption is wrong.

=>x=0
Step - 11 : (2)=(3)
Suppose x Le Vi then x=0

Sub claim : x=> (x,¢)e

We know that x—) (x,e,)e, is orthogonal to {e,}
By hypothesis, x—> (x,e)e, =0

=x=) (xe)e,

Step III : (3)= (4)
Suppose for xe H,x=) (x,e e,

Sub claim : ||x||2 = Z‘<x’ei>‘2

Consider ||x||2 = (x,x)
=<Z<x,e[>e[,z<)€,€,->ep>
=Z<x’ef>z<x’ef><ef’ef>

J

=Z<xa€f>W1

i

( {ei} orthonormal set)

= Z‘(x,e[>‘2
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Step IV : (4)=(1)

o =2 fwe)f

Sub claim : {¢} is complete.

Suppose x e H,

Suppose {e} is not complete then it is proper subset of an
orthonormal set {e,,e}. Since e L ¢ Vi

Put x =e in above identity.

= el =X [(e.e)f
- 202

=0
This is contradiction to e is a unit vector
Hence our assumption is wrong.

Thus {e,} is complete.

Note : Let {¢,} be complete orthonormal set in Hilbert space H. Let
x be an arbitrary vector in H. Then (x,e) are Fourier coefficients of

x and the expression x=> (x,¢, )¢ is called Fourier series expansion
i

of x and the equation, x| =Y"|(x.e >|2 is called Parseval’s identity.

(all w.r.t. complete orthonormal set {e,} under consideration.)

Ex 4: If {¢}" is an orthonormal set in Hilbert space H and if x is

any vector in H then S = {el. Kx,el.> # 0} is either empty or countable.

Solution :
2
Kx,el. >‘2 >ﬂ} We have

For each +ve integer n, consider S, ={e,.
n

Bessel’s inequality.
< 2
3t <bf
Bessel’s inequality gives us, S, contains at most (n—1) vectors since

S={Js,. S is either empty or countable.

n=1

Ex 5: Show that a closed convex subset C of a Hilbert space H
contains a unique vector of smallest norm.
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Solution : We recall from the definition in Problem 32-5 that since
C is convex, it is non-empty and contains (x+y)/2 whenever it

contains x and y. Let d = inf {|x|:xeC}. There clearly exists a
—d . By the convexity

>d, so H(xm+xn)H22d.

sequence {x,} of vectors in C such that
of C, (x,+x,)/2 is in C and H(xm+xn)/2

Using the parallelogram law, we obtain

xl’l

"= 20, [ 20, -+
<2|x, [ +2|x,|" —4d*;
and since 2|[x, | +2||x,|" —4d> — 2d* +2d* -4d* =0, it follows that

xm - xn

{x,} is a Cauchy sequence in C. Since H is complete and C is closed
C is complete, and there exists a vector x in C such that x, — x. It is
clear by the fact that |x|=|limx,| =lim|x,| =4 thatx is a vector in C

with smallest norm. To see that x is unique, suppose that x' is a
vector in C other than x which also has norm d. Then (x+x")/2 is

also in C, and another application of the parallelogram law yields.

T
2 2

112

X—X

2

x+x'
2

2 2
<M +ﬂ =d?,
2 2

which contradicts the definition of d.
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HILBERT SPACE I’ [-x, 7]

Unit Structure

8.1  Hilbert Spaces L*[0,27]or L*[-7,7]

8.2  Existence of orthonormal basis

8.3  Orthonormal basis for L°[0,27|or L’[-7,7]

8.4  Mean Square Convergence
8.5  Best Approximation Lemma

8.1 HILBERT SPACE [*[-7, ]

Consider the Hilbert space L*, associated with measure space [0,27]

where measure is Lebesgue measure and integrals are Lebesgue
integrals. This space essentially consist of all complex functions f

defined on [0,27] which are Lebesgue measurable and square
integrable.

i.e. T|f(x)|2 dx <0

Its norm and inner product is defined as ||/, = (_[Ozﬂ

f()c)|2 dx

)%

2

(f.g)=] 1 (x) g(x)ax

0

inx

The function {e } where n=0,%1,+2,.... forms an orthonormal

27
2 2 _
) ) o T m=n
basis for H since I e™ e ™ dx =
0 0 m#n

eimc
(x)=E,n el

For any fel’, the number, C,=(fe,) =%J.02ﬂ f(x)e™dx gives
T

This gives us e,

Fourier coefficient of the Fourier series expansion of f given by,

1 S inx
f(x):ﬁ Z, Coe™.
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Definition:
The Hilbert Space L*[0,2z]or L*[-7,x].

Let R denote set of complex valued Riemann integrable functions
defined on a circle then the inner product and norm is defined as

1

(1) 5= [ roje@)a0 ana |1~ L |0 ao |

27 5 27 5

Similarly, for interval [-7,7].

T

()= | rie(@)a0 ana |1, Ir(o) ao]

-t

8.2 EXISTENCE OF ORTHONORMAL BASIS OF
HILBERT SPACE

Theorem : Any Hilbert Space has on orthonormal basis.

Proof : The proof of this theorem is follows from gram Schmidt
process.

Given finite family of elements {f,,f.....,f,} , the span of this

family is set of all elements which are finite linear combination of
elements {f, f5......, f;} We denote it by span {f,, f;......, /. } . Now we

construct a sequence of orthonormal vectors say e, e,...... such that
span ({e,.e,......e,})=span {f,, fy...... f,} ¥V nzl.

Let us prove this by induction on n.

Step 1 : By Linear independent hypothesis, f, #0 then we can take

g
1/

€=

found such that span ({e,,e,......e,})=span { £, fy..... f;}.
Claim : span ({e,e,......¢,, })=span {f,, fy.oecce, fr1}

k
1e. e, = fi., +Zajej
j=1
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= (erve,)= <fk+1+2a e >
(e )+ Xlaene,)

Jj=1

~(fue )+ Y feve
() = {frre, ) e,

To have : <eM, > 0 v

We must have <fk+1,ej> =—a,

J

This choice of a,,for 1< <k assure that e, is orthogonal to

(o)

Moreover, our linear independent hypothesis assure that e, =0

Hence, the choice of ¢, , is ¢,,, = —

ek+l

Hence span({e.e,......e,}) =span { f;, fr...... f, } .

Thus, Every Hilbert space has an orthonormal Basis.

Example: Consider, Hilbert space H. Transform Basis { £,, f;......, /, }
into orthonormal basis where, £, =(1,-11), f, =(2,1,0), f; =(-1-L1).
(Take Euclidean inner product)

Solution:

b o= -0 (1 1)
B 72 BN E R SVERRVERNE

k
2) Using ¢, = fi, +D e,
j=1

€, :f2_<f2’el>el
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k
3) Using e, = f,,+ 2 a,
=1

e :f3_<f3 el>el_<f3 ez>ez
. (—1 2 3]
€3 =| Q"

777

e—i—(_l 2 3]
Yole | \Via7Via T Via

8.3 ORTHONORMAL BASIS OF *[-7,7]:

Theorem 1: The sets {e"”x}i_w& {cosnx}” Ufsinnx}”  are
complete orthonormal basis for L*[-7,7]. Also the sets {cosnx}

& {sinnx}” are complete orthogonal basis for L*[0,7].

Proof : Consider, ¥, (x)=¢™

Let fELz[—ﬂ,ﬂ]

Let e>0 (small)

Claim : N" partial sum of Fourier series of f approximate f in norm

within € when N is sufficiently large.
ie. S,/ —f|<e as N—>w.

We can find 27 periodic function f possessing derivatives of all
order such that H =7 H < % .

Let C, =(27) (f.%¥,)

1 T —inx _ -1
{CnZEI”f(x)e dx-(27r) <f,en>}
and C, =(27r)71< 7 ,l//n> be Fourier coefficients of f&f

respectively.
We know that Fourier series ) C ¥ — f uniformly.

Hence it converges to f in norm.

~ N ~
If we take N sufficiently large then || /' — ZC”‘P” <§
-N
By Bessel’s inequality
N N 2 N )
YEw,->C,| <Y|¢,-c,
-N -N -N
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Consider,
ro3ew, =(f—f)+(f—i@n‘l’nj+(i@‘l‘n—iCn‘Pnj

Taking norm on both side
Now using triangle inequality.

N - - N N N
||f_ZCnTn SHf_fH+ f_zcn\}ln + chl}ln_zcnlpn
_N -N -N -N
e € €
<—4+—+—=¢
3 3 3

This proves completeness of set {‘{’n}z{em} in L’[-n,x].

Completeness of {cos nx}

]
n=

 U{sinnx}” in L’[-z,7] can be derived

by completeness of {e’”‘} .

Similarly, completeness of {cosnx} & {sinnx} in I*[-z,z] can be

prove by considering even & odd extension of feL’[0,27] to
[-7,7].

Theorem 2: Let H=I'[-z,x| and f,(¢1)=€™ for n=0,£1£2,...
and 7e[-z, 7| then {f, (t)jn=0,£1,2,...}is an orthonormal basis

for I’[-7,7].
Proof :

Step 1 : Lets verify {fn (t)|n= O,il,ﬁ,......} is orthonormal

1 f 1 T int _imt
U fu) =z [ 1O ()= [ e e
ZZL einl —imt dt
T
:Lﬂe i(n-m)t dt
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_L ei(n—m)t 4

o i(n—m) y

:; i(n—m)m _ —i(n—-m)m
27i(n—m) [e € J

S cos(n—m)m+isin(n—m)mw—cos(n—m)x+isin(n—m)x
S Leos(rmisinn-m)x—cos(n—m)xisin(n-m) ]

_ 2isin(n—m)z
- 2ri(n—m)
_sin(n—m)z
- m(n—m)
=0
{Since n#meZ and sinkr =0 keZ}

.'.(fn,fm>:O, n#m

Now consider,

Y

2 1
Llly =<fn,fn>=gjf”(t), (1) dt
:é]ieim e ™ it
1
=E[ﬂ+n]:l

<fn,fn>:1 Vn

Hence,

<fn,fm>=0, n#m and =1 Vn.

Jala

Thus, set {fn (t)|n =0,+1, J_rZ,......} is orthonormal.

Step 2 : Claim : {f, (¢)|n=0,+1,%2,....} is basis for H = I*[-7,x].

Since {f,(¢)|n=0,+1,%2,...} is linearly independent and it spans
H=L[-z,z], hence {f,(¢)jn=0+1%2,..}is  basis  for
H=1I [—7[,7?] .
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1 cosnt sinnt
e \/; ,\/; .....

orthonormal basis for I’ [-7,7].

Theorem 3: The set {

Prove of this theorem is similar to above theorem so left as an
exercise

8.4 MEAN SQUARE CONVERGENCE:

Consider space R of integrable functions define on the circle.

Let ¢,(0)=¢"™, n is an integer then clearly, Set {e,} _is
orthonormal.
2

Consider, (f,eﬁz%_[f(@)éw 40
n

0

1271 )
=— [ r(0)e™ ao
[ 70)

= f(n)=a, {Fourier coefficient}

where, f(n)or a, is Fourier coefficient of complex Fourier series of
function f.

Consider the N" partial Sum, S, (/)= a,e,

‘n‘SN
Then orthonormal property of family {e,}and the fact that
(f.e,)=a, gives that the difference /-, (/)is orthogonal to e, i.e.
f=Sy(f)Le, V|n|<N.

Since (=S, (f).e,)=(f.e,)=(Sy(f)-e,)

= an - Z amem ’ en
‘m‘SN
= an _Zam <em’en>

P {(qﬂg>=lm=n}

=0m=n
=0

Hence, (f-S,(f))is orthogonal to e,, V|rg|<N

= [ = ane”]is orthogonal to )" b,e, where, b, is complex.

‘n‘SN ‘n‘SN
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We have, f=/-> ae + > be

‘n‘SN n‘<N
2

.. By Pythagorean theorem,

=/ - Z%a

n‘<N

+ Z bnen

‘n‘SN

2
when a, =b, the orthogonal property of family {e,} _ gives us

2, e, =Z

n‘<N ‘n‘SN

2

2

2

VE=lr-s. (k3

This is called mean square approximation.

8.5 BEST APPROXIMATION LEMMA :

Statement: If f is integrable function defined on a circle with

ZC@

Fourier co-efficient «, then Hf =Sy (f )H
|nj<N

for any

complex number ¢,. Moreover, equality holds when
c, =a, V|n|SN.

Proof :
Consider
f=>ce=r- z (a,—b,)e, where a,—b, =c,
|n|<N <N
f_zcnenzf_z n n+zbnen

‘n‘SN ‘n‘SN ‘n‘SN

Taking norm on both sides.

f=2cel=|f-2 ae+D be

‘n‘SN ‘n‘SN n‘<N

Since a, is Fourier coefficient ) a.e, =S, (/)
‘I‘I‘SN

=Hf—S Zbe

In<N

Hf— See

‘n‘SN

Also we have f—S, (/) is orthogonal to ) bee, .

‘n‘SN
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By Pythagorean theorem.

2

=[r=su (£ +

2

Hf— S e,

‘n‘SN

Z bn en

‘n‘SN

This statement gives us, |/ — > ce,

‘n‘SN

2[ /=8, (/)]

when ¢, ,=a, where, a, 1is Fourier coefficient given.
c,=a,—b =b =0

:»uf—sNu)H:Hf—zcnen

‘n‘SN
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RIESZ FISHER THEOREM

Unit Structure :
9.1 Completeness of I’ (R")

9.2 Bessel’s inequality for L’ [-r, 7] function
9.3  The Riesz Fisher Theorem

9.4  Unitary Isomorphism

9.5  Separability of L’ [, 7]

9.1 COMPLETENESS OF L (R*) :

Theorem : The space L (R") is complete in its metric.
Proof : Let {f,}” be a Cauchy sequence in *.

Consider { £ }::1 be a subsequence of {f,}” with the property

n=1

S =L [£270 VEk=1 (1
Let £ (x)= £, (x)+ X (£ (+)- 1, (+) @)
and g(x)=[, () + 2|1, (-1, (+) 3)

Consider partial sum

Sf +Z( nkl - nk x))
()2

The triangle 1nequa11ty implies that

+Zz* {by (1}

and S, g(x

nkl - ”k X)|

Isi (g)]<

nk 1
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Letting K — o and applying monotone convergence theorem we
have,

[lef <=0
Since k >0 250
“[sc ()]s, ()]

- k" partial sum of g is finite

.. g 1s square summable & hence square integrable

= [[gf <0
{by (2) & (3)
3|f|£g
:J.|f|2<oo
= fel’(R)

In particular, the series defining f converges almost everywhere and
since (k—l)'h partial sum of this series is precisely f, , we have,

f,, = f(x) almost everywhere for all x.

To show f, — f in LZ(IR")

-5,/ =g) V&

Applying dominated convergence theorem, we obtain,

We have,

£ =10
as k— .

Since { fn}:l1 is Cauchy sequence for given €>0,3 N such that

f=5l<5-

If n, is chosen, so that n, > N

fu =2 11<%
.. By triangle inequality

5= A=) =045 - Al <54+ 54 =<

|/, = f||<e whenever n> N

n,m=>N

+

Hence sequence {/,} — f in LZ(R“ )

s (R”’) is complete.
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9.2 BESSEL’S INEQUALITY FOR I’ [-7,7] :

If /' is L’ -periodic function then Z‘ f (n)‘2 <|f ||§ :

Proof : Let f—S,(f)=g where S,(f) is N™ partial sum of f i.e.
N A .
Sv(f)= 2 f(n)e™.
n=—N

Consider,
(g.e,)=(/=5v(f).e,)
=(f.e.)=(Sv(/)-e)

Q

Consider,
2 2

712 =lsy (1) +el,

=(Sy(f)+&:Sy(f)+g)
=(Sy (/):Sy (L) +(Sy (/). 2)+(g.Sy () +(g.8)
=(Sy (/).5: (/) +{2.8)
{(g.e,)=0
:><g,2f(n)e >=0
=(2.5,(/))=0

AR =]ss O+l
s W
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Consider,

[y (O = (86 ()54 (1))

Il
/\

iMM= 2

> =

)

Il
M=
\\
=
~
=
Il
M=
T~
=

|
=

Substituting (2) in (1) we get
U= 217 o
Writing N — oo
S |70 <1

Thus we proved,

>

2
<I11:

9.3 THE RIESZ FISHER THEOREM:

Statement : Suppose that f is I’-periodic function then the N™
partial sum of its Fourier Series S, (/) converges to fin L’ (I) where

[=[-m,7x].
ie. }viE;HSN (f)-r],=0
Moreover, i ’ f (n)‘2 =|f ||§ {Parseval’s identity}

Conversely, suppose that {a,}  is two sided complex sequence

. . . 2 . .
which is square summable i.e. ) |a,| <oothen there is unique

function fin £’ (I) that has a, as its Fourier coefficient.

Proof : Step (1) : Let fe*(I)
Given e>o0 choose a continuous periodic function g such

Then S, (f)-f], =[Sy (/&) +Sx(g)-(/—2)-¢g],
=[Sy (£)= 11, =[Sy (£ =), +[Sv (¢)-gl, +[g - 71
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We have HSN (f)” <| 7|

S[sy (=)<l -l

LSy () =11, <1 gl +]Sy (€) g, <l 71,
<[sy(g)-g|, +2<..... from(1)

Sy ()= £, <2e+]Sy ()4,

Since g is continuous periodic function,
HSN (g)- g”z <e forlarge N

S (f)=1], <3¢
.'.HSN(f)—fuz—>0asN—>oo

s lim s, ()= 1], =0
Step (2) We have

f=Sy(f)LS,(f)ie. f—Sy(f) isorthogonal to S, (f).
.. By Pythagorean theorem,

2

;

78 =1 =50 (A s (1)
Also we have |S, (f)”j = Z‘f”(n)r

We get | /1, ==, (N + |7 ()
Letting N — o and using lim H =S (f )H22 =0

=S

(This is known as Parseval’s Identity)

Step (3) Converse part :
Suppose that (a, )::_w is square summable two sided sequence of

complex numbers.
N
Let f, (x)= z a,e™ .
n=—N
The orthonormality of exponential function e, implies that for M<N.

I =sulb= 3 laf {Ir =32

M<n|<N
By the assumption of square summability i.e. Z|an|2 <o,

a, a

n

* parseval's identity} and a, = .
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The right side of above equation converges to zero as M,N — . i.e.
|lfy=ful,>0as N,M — .

~.{ f,}is Cauchy sequence in L’ (7).
Let f be the limit
By orthonormality, (fy.e,)=a, VN&n

Letting N — oo
]lvi£130<fN,en>: a, Vn
.'.<f,en>:an Vn

1 I f(x)e™ dx=a, Vn

= a,is Fourier coefficient of Fourier series of function f. Also by

uniqueness of Fourier series, we can conclude that there exists
unique f whose Fourier coefficient is a, .

9.4 UNITARY ISOMORPHISM :

Unitary Mappings : Suppose H & H’ be two given Hilbert spaces
with respect to inner product (-,-), & (-,-),, and corresponding norm

[, & I

A mapping U : H — H'is called unitary mapping if
1) U is linear
ie. U(af+pg)=aU(f)+BU(g) where a,B are scalars &

f.,geH.
2) U is bijection
3) |l =11, e

Note :

1) Since unitary mapping U is bijective, its inverse U™ : H' — H is
also unitary mapping. (prove it)

2) Property (3) of wunitary mapping implies that
(Ur.Ug), =(f.g), Yf.geH

Unitary Isomorphism : Two Hilbert spaces H & H' are said to be
unitarily equivalent or unitary isomorphic if 3 a unitary mapping
U:H—>H'.

Note : Unitary isomorphism of Hilbert spaces is an equivalence
relation
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Theorem : Any two infinite dimensional Hilbert spaces are unitary
equivalent or unitary isomorphic.

Proof : If H & H'are two infinite dimensional Hilbert spaces.

Consider the mapping U:H — H' defined as if f :Zakek then

k=1

U(f)=g Where,g:iake;, geH' feH.

k=1

Claim : U:H — H' is unitary
1) U(af+Bh)=aU(f)+pU(h), f,heH,a,p are scalars.

Let f:Zakek, h=
k=1

o0
b.e,
- =1

Consider

U(af+ph)=U

=aU(f)+BU(h)

2) Claim U is bijective
Clearly, U(f)=U(h)

U(Tae)=U(The)

Zake,’c = Zbke,'c

=a,=b  Vk

=f=h

= U is one—one
For any g=)» ae,eH', we have f[=) ae €H such that
U(f)=g=Uisonto.
Clearly U is invertible
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3) Claim [ur]],, =|/],
Consider, f = iakek =>U(f)= iake,’c
k=1 k=1

o, =[S

..... {By parseval's identily}

....{again by parseval's identily}

H

=[1.

Hence by (1), (2) & (3) U:H — H' is unitary and hence H & H' are
unitary isomorphic.

Theorem : Suppose f eL’[-z,z]| then the mapping f —{a,} is
unitary correspondence between L'[-z,7| & square summable

sequence (*(Z).
Proof :
Step (1) : Let H = L’[—x, x| with inner product
1 T
(f,g>=g_fﬂf(x)g(x)dx

Let fel’ [—n,n]

Let [e,]”, is an orthonormal basis for H.

o0
f=2akek, a,eC

k=1

Step (2) : Let H' = (*(Z) (sequence space) defined as

*(2)= {( ..... a_,,a,,a;....)|a; € C&i al < oo} with  inner
n=1
product.
<a’b> = Z a;by

k=+o0

Step (3) Consider a mapping U:H—>H' such that
f—{a,},feH&{a,}cH

U(Zakek)z {ak}

Claim : U:H — H' is unitary



101

1) Sub-claim : U is linear
ie. Ulaf+pBg)=aU(f)+pU(g) a.B scalar f,geH

Let f:iakek, gzibkek
U(af+pg)=U(af+pBg)
(aZakek+ﬁZbkek)
(Z(aak +ﬁbk)ek)

= {aak +ﬂbk}

2) Sub-claim : U is bijective
i.e. U is one-one and onto.
Clearly, U is one-one

Since U(f)=U(g)
U(Zakek) zU(Zbkek)
={a,}={b}

=a, =b, VK
32akek =Zbkek = f =g=Uisone—one

To Prove U is onto

=Syt =

2
Consider,

© N
Z a.e, — Z a,e;
= )
. 2
Z a;é,

k=N+l1

o0
n=N+1

If {a,} € (*(z) then

5, ()-8, ) S-S
ﬁ: @8

k=M +1

4l 2
= 2 la| <o

k=M +1

|Sx (f)=Sy (f)| =0 as N,M —> o,

2

al’l

2

N>M

2
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Hence completeness of [’ guarantee that, there is f e L’ such that
lf=Syf|—0as N—>o.

As f has {a,} as its Fourier coefficient we can conclude that
f —{a,} is onto (By the uniqueness of Fourier coefficient)

Hence U is bijective

3) Claim : U], =1,

Consider, |{Uf ||2Hl =
=(a,.qa,
=2.4,4,
= z 2
=111,

Hence by (1), (2) & (3), U:H — H' is unitary mapping.

2
H

a/‘l

an

9.5 SEPARABLE HILBERT SPACE:

Definition : The space H is said to be separable if their exist
countable collection {f,}of elements in the space H such that there

linear combination are dense in space H.

Theorem : A Hilbert Space H is separable if and only if it has
countable orthonormal basis.

Proof : Step 1: Suppose that Hilbert space H is separable.

Claims : Hilbert space H has countable orthornormal basis.
Suppose Hilbert space H has uncountable orthornormal basis say

{ea }aEA

Then ||ea—eﬂ||>l, Va,peA & a=p

:S(ea,%jﬂS(eﬁ,%j=(D Va,feA&a+ .

Hence there exist an uncountable family of disjoint open sphere with
radius Y.

= H is not separable which is a contradiction to our assumption.
Hence Hilbert space H has countable orthonormal basis.

Step (2) Converse part
Hilbert Space H has countable orthonormal basis
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Claim : Hilbert space H is separable.
Let H has a countable orthornormal basis say {e, } .

Let feH
r=3{fe)e VfeH
(f.e,)=a,
r=Yae,

= feH 1is a cluster point (i.e. limit point) of set of linear
combination of elements of {e,}.

Since {e,} is complete orthonormal basis, set of linear combination
of elements of {e,}contains countable dense set of linear

combination of {e,} with rational coefficients.

Hence H is separable Hilbert space.

Theorem : Hilbert Space L*[-7,7] is separable.

Proof : Step (1) : Let H =L*[-x, 7]
We know that Hilbert space L’[-z,7] has an orthonormal basis
{f,ln=0,£1,42,.....} .

Where, f, (t):%
n

,neZ,te[—n,n].

Since set of integer is countable, hence set of orthonormal basis
{f,[n=0,£1,£2,....... } is countable.

Step (2) : If Hilbert Space H has a countable orthonormal basis then
H is separable.

Step (3) : Hilbert Space I’ |-z, 7] has a countable orthonormal basis.
Hence H is separable.



