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THE EUCLIDEAN SPACES

Unit Structure :

1.0 Introduction
1.1 The Vector Space n .
1.2 The Inner Product of n .
1.3 The Metric Topology of n .
1.4 Orienting n .
1.5 Exercises

1.0 INTRODUCTION

Differential geometry makes use of a lot of linear algebra and
multi-variable calculus. We utilize this unit consisting of Chapters
1,2,3, of the study material to recollect basic concepts and
elementary results of both, linear algebra and multi-variable
calculus.

To begin with, in this chapter, we will recapitulate elementary
algebra and geometry of the Euclidean Spaces  2,3,4......n n  .
We discuss their basic features ab initio in three parts; (i) the real
vector space structure of n , (ii) the inner product and the resulting
metric topology of n and (iii) its standard orientation.

In Chapter 2 we recall the algebra of linear endomorphisms
of n , reaching finally the group  nSO  of its orientation
preserving linear automorphisms and discuss some of its properties.
Actually we introduce the whole group  nGL  and them

concentrate more on its sub-group  nO  consisting of all
orthogonal automorphisms of n and their matrix representations.
We explain here, the total derivative  Df p of a vector valued
function  f x of a multi-variable  1 2, ,...., nx x x x as a linear
transformation elaborating its role as a local linear approximation to
f in neighborhoods of the point p (in the domain of)

Chapter 3 is a mix-bag of some more linear algebra and a rather
long recap of basic concepts and elementary and yet fundamental
results of differential calculus (such as the inverse function theorem,
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implicit function theorem the rank theorem….). Throughout we are
emphasizing the role of  Df p as a linear transformation
approximating f around p.

In what is to follow, we make use of both-the linear algebra
apparatus and the multi-variable calculus machinery in a crucial
way. For example, we differentiate a curve at a point to get the
tangent line - a linear (and hence a more amicable) curve
approximating the bending and twisting the curve.

Similarly we approximate a (continuously bending) surface
by the tangent plane to the surface at a point of it.

Approximating the non-linear real world by linear objects is
indeed a fruitful, common practice. Differential geometry
emphasizes this practice.

Actually smooth curves in 2 3  and smooth surfaces in
3 are the main geometric objects of our interest but the analysis of

their geometry often leades us to higher dimensional Euclidean
geometry. Therefore we are treating their generality, emphasizing
particular cases of 2 and 3 .

For further details regarding the portion of this unit, the
reader should consult (1) Linear Algen, (2) Undergraduate Analysis,
both books authored by Serg Lang; and of course, the text books
recommended by the University.

1.1 THE VECTOR SPACE n

Throughout this set of notes,  denotes the real number
system (aka the “real line”). Following subsets of it appear here and
there in the text :

  1,2,3,.....


 

 
0

0,1, 2,...., ,.....

U

n

 



 

  ...., 2, 1,0,1,2,.....  

Let n be any integer 2 .
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n stands for the set of all ordered  1 2, ,...., ,x x xn - tuples of
real numbers. For the sake of notational economy, we denote it by
x ; thus;  1 2: , ,... ,....k nx x x x x   the real number kx occupying the
thk place in the n tuple x  above is the thk coordinate of x .

For any  1 2, ,...., nx x x x n - tuples and  1 2, ,...., ny y y y and
for any a , we put :

 1 1 2 2: , ,.... n nx y x y x y x y      

and  1 2: , ,......., na x ax ax ax  

(again, for the notational simplicity, we will often write ax in place
of a x  )

The declaratives  and  give rise to the algebraic operations:

a) addition of vectors :

 
:
,

n n n

x y x y
  

  

  


and b) multiplication of vectors by real numbers :

 
:
,

n n

a x a x
   

  

   


The resulting algebraic system  , ,n   is a real vector space
(and therefore we call its elements vectors. Instead of the complete
triple  , ,n   we will indicate only n , the underlying vector space
operations , being understood.

The dimension of this vector space is n . For, the elements
1 2,, ...., ne e e of n given by

 
 

 

 

1

2

1,0,....,0

0,1,....,0

0,....,1,....,0

0,.......,0

k

th

n

e

e

e

k place

e
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enable us to write every  1 2, ...., n
nx x x x  uniquely in the

form : 1 1 2 2 ..... n nx x e x e x e    and therefore, the set
 1 2, ,..., ne e e consisting of the n vectors is a vector basis of n .

We call  1 2, ,..., ne e e the standard vector basis of n .
It turns out that any n dimensional real vector space can be

identified with n (the identification being by meanse of an
isomorphism of vector spaces). Thus, the Euclidean spaces

 2,3....n n  are prototypes of all finite dimensional real vector
spaces.

Let us note at this stage a slight deviation from the classical
vector notations in case of 2 and 3 :

In the 2-dimensional coordinate geometry we identified a
plane with 2 by meanse of a Cartesian coordinate frame XOY and
then we dealt with the points of the plane in terms of the coordinate
pairs  ,x y w.r.t. our choice frame XOY . Similarly we used to
identify the physical space with 3 by meanse of an orthogonal
coordinate frome O XYZ and the resulting Cartesian coordinates of
a point were  , ,x y z . In the present context, we use the notations
 1 2,x x in place of  ,x y of the planar coordinate geometry and the
triples  1 2 3, ,x x x in place of  , ,x y z . Also instead of the unit vectors
, ,i j k
 

(along the axes of the O XYZ frame) we will bring 1 2 3, ,e e e of
the standard basis.

Also, the arrows , ,u v w
 

over the vectors , ,u v w are banished,
we simply write , ,u v w even though they are vectors.

One more point : We often consider a lower dimensional
m imbedded in a higher dimensional n by meanse of the natural

imbedding map :

taking a point  1 2, ,......, mx x x of m to the point

1 2, ,......, , 0.......0m
n m

x x x


 
 

 
 of n . Thus occasionally we consider the

vector space m as a subspace of a higher dimensional n .
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1.2 THE INNER PRODUCT OF n :

For any  1 2, ...., nx x x x and  1 2, ...., ny y y y in n we
consider the sum : 1 1 2 2 ........ n nx y x y x y   . Denoting it by ,x y we
get the map :

 
, :

, ,

n n

x y x y

   

 

  



Note the following properties of the map ,  :
a) The map ,  is bilinearie i.e.for any , ,x y z in n and for any
a, b, c in  , we have

i) , , ,ax by z a x z b y z  

ii) , , ,x by cz b x y c x z  

b) ,   is symmetric,
, ,x y y x for all ,x y in n and

c) ,   is positive definite i.e.
, 0x x  for all nx and move over
x x    when and only when   0 0 0....0x   

The map , : n n       is called the standard inner
product of n .

In what is to follow, we consider the vector space
n equipped with the inner product ,  i.e we consider the

quadruple  , , , ,n     ; it is the n  dimensional Euclidean space.
For the usual reason, we adopt and use the shorter notation n for
the quadruple.

Thus, the Euclidean space n is not just a barren set, it is a
mathematical space carrying two distinct structures, namely its
n  dimensional real vector space structure together with the
standard inner product of it. Of course, these two structures are
compatible with each other. One manifestation of this compatibility
is the bilineanity of the inner product : the inner product respects the
vector space operations of n . Several other forms of the

mu
no
tes
.in



6

compatibility between the algebraic and geometric features of
n will be witnessed while studying these notes.

We proceed to explain that the inner product of n is
geometric in nature; it gives rise to a metric i.e. a distance function
on n :

For each nx we write x for ,x x .

This gives rise to the function :
 : 0,n

x x

   






We interpret x as the length of the vector x and call the map

 : 0,n    the Euclidean norm on n .

The norm  and the inner product < , > are related by the
following inequality :

Proposition 1 : For every ,x y in n we have ,x y x y and the
equality holds when and only when y ax for some a (i.e. when
x and y are parallel vectors).

The above inequality is variously called the Schwarz
inequality, the Cauchy - Schwarz inequality or the CBS inequality
(CBS being the acronym for Cauchy - Buniyakowski - Schwarz, the
mathematicians who invented this inequality independently.)

Proof : The inequality is a trivial equality in case when either of x, y
is a zero vector, say y = 0. For, in that case, we have

,0 ,0 0

,0 ,0

x x

x x

 

 

Thus ,0 2 ,0x x which implies ,0 0x  . We therefore
proceed to consider 0y  (and therefore 0y  .) Now, for any
a , we have , 0x ay x ay   that is,

2, 2 , 0x x a x y a y y     .

i.e. 2 222 , 0x a x y a y    for any a .
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In particular, for 2

,x y
a

y
 the above inequality reduces to

2 2 2
2

2 4

, ,
2 0
x y x y y

x
y y

   .

Thus,
2

2
2

,
0

x y
x

y
  or equivalenty put, we get

2 2 2,x y x y which gives the desired inequality.

Next if ,x y are parallel, say y ax for some a then we get
y a x and then

2,x y x ax a y

x y

  



Thus when x and y are parallel vector, the Schwarz inequality
becomes equality.

Finally suppose x y x y  with y o and therefore,

0y  . Consider 2

,x y
a

y
 and then we have

2 22

2 2 2
2

2 4

2
2

2

, 2 ,

, ,
2

,

x ay x ay x a x y a y

x y x y y
x

y y

x y
x

y

     

   

 

0 by the assumed equality.

Thus, we have 0x ay x ay    and therefore x ay (with

2

,x y
a

y
 )

The CBS inequality leades us to a geometric interpretation of
the inner product : Already we have treated : ,x x x  as the
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length of the vector nx . Note that this interpretation is consistant
with the usual length (Pythagorean) of a vector in 3 2  .

Secondly consider any pair x, y of non zero vector in n . We

rewrite the CBS inequality in the form
,

1 1
x y
x y

   .

This suggests that we interprete the quantity
,x y
x y

as the

cosine - cos -of the angle-between the vectors x, y.

This consideration inspires us to declare the perpendicularity
relation between vectors in n ; x y if , 0x y  .

Also note that the classical Pythagoream property (about the
lengths of sides of a right angled triangle) continues to hold in the
present (higher dimensional) context : If x, y are any elements of

n with x y then 2 2 2x y x y   .

To see this, consider,

2

2 2

,

2

2 0

x y x y x y

x x x y y y

x y

   

     

   

Thus 2 2 2x y x y   holds for all x, y in n with x y .
Note that the vectors 1 2, ...., ne e e in the standard basis

 1 2, ,..., nE e e e are pairwise orthogonal and each of them has unit
length. We express this property by saying that the standard basis of
n is orthonormal. More generally a subset  of n is orthonormal

if its elements satisfy the following two conditions :

i) 1x  for each x

ii) If x, y are any two distinct elements of  then x y (i.e.
, 0x y  ).

Note that an orthonormal subset  1 2..... nv v v   of n is
linearly independent. For if
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1 1 2 2 0m ma v a v a v    …………………………… (*)
holds for some real numbers 1 2, ,....., ,ma a a then we deduce that
1 2 0ma a a   . To get this take the inner product of the equality(*)
with each 1v to get.

1 1 2 2 ... ... 0i i i i i m m ia v v a v v a v v a v v     

i.e. 20 0 1 0 0i i ma a a a      which gives 0ia  for each
 1i i m  . This justifies our claim that the orthonormal set

 1 mv v   is linearly independent. On the other hand any linearly
independent subset of n gives rise to an orthonormal subset having
as many elements as those of the linearly independent subset. We
prove this fact in the following proposition :

Proposition 2 : Any linearly independent subset  1 2 ,....., mv v v  

of n n gives rise to an orthonormal subset  1 2 ... mf f f    of n in
which each '

1f is a linear combination of  1 2 ,....., iv v v m    .

Proof : 1v being an element of linearly independent set is non zero.

Therefore 1 0v  and therefore 1
1

1

: vf
v

 is a well defined unit

vector.

Next, we consider 2 1 1
2 2 1 1 2 2

1

v v v
v v f f v

v


    . This vector

also is non-zero. (For, otherwise we would get 2 1 1
2 2

1

v v v
v

v


 which

contradicts the linear independence of the elements of the set A. We
put

2 2 1 1
2

2 2 1 1

v v v f
f

v v v f
 


 

Clearly 1 2 1f f  and 1 2f f .

In the neat step, we consider 3v and obtain the vector

3 3 1 1 3 2 2v v f f v f f     from it. Invoking the linear independence of
the set A, we again get that this vector is non-zero. Using this last
observation, we construct :
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3 3 1 1 3 2 2
3

3 3 1 1 3 2 2

v v f f v f f
f

v v f f v f f
   


  

Imitating this procedure successively, we obtain the desired
ortho-normal set  1 2, .... mf f f where the kf for 2 k m  is given
inductively by

1 1 2 2 1 1

1 1 2 2 1 1

...
, ...

k k k k k k
k

k k k k k k

v v f f v f f v f f
f

v v f f v f f v f f
 

 

       


     

This method of obtaining an orthonormal set  1 2, .... mf f f from
a linearly independent set  1 2, .... mv v v of vectors is called the
Gram - Schmidt orthonormalization process. Application of this
process to an arbitrary basis of n enables us to get a new vector
basis which is orthonormal.

1.3 THE METRIC TOPOLOGY OF n :

The inner product ; of n gives rise to a complete
separable metric topology on it in the following way :

For any ,x y in n , we put :
 , ,d x y x y x y x y     

or equivalently    2
1

,
n

j j
j

d x y x y


   . This assignment gives rise

to the map :

 
   
: 0,

, ,

n nd

x y d x y x y

  

  

 



This map is in fact a metric on n :

We readily have :
i)  , 0d x y  for all ,x y in n and  , 0d x y  if and only if x y .
ii)    , ,d x y d y x for ,x y in n .

More over, for any , ,x y z in n , we have
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  22

2

2 2

2 2

,

,

, 2 , ,

2 ,

2

d x z x z

x y y z

x y y z x y y z

x y x y x y y z y z y z

x y x y y z y z

x y x y y z y z

 

   

       

        

      

       

By the CBS inequality.
 

    

2

2
; ,

x y y z

d x y d y z

   

 

Thus       22 , ,d x z d x y d y z   for all , ,x y z in n .
Thereby we get the triangle inequality,
     , ,d x z d x y d y z   for all , ,x y z in n .

Thus, the Euclidean space n is actually a metric base but we
will not indicate its metric. All the topological considerations will be
in reference to this Euclidean metric topology. Among all the
properties of the metric space n , we mention only the following
two :

i) n is a complete metric space;
ii) n is separable.

Property (ii) can be seen here itself : Let n be the set of all
ordered n-types  1 2, ,... na a a of rational numbers. Then the set n is a
countable, and dense subject n and hence n is separable.

We prove property in the following proposition :

Proposition 3 : The metric space n is complete.

Proof : We consider a Cauchy sequence  :kv k  in n . Writing
each term kv in terms of its coordinates  1 2, ;... nk k k kv v v v .

We split the sequence  :kv k  into n sequences of real
numbers:      1 2: , : ...... :nk k kv k v k v k      .
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Note that for each .k  in  and for each  1i i n   we have :
j j
k e k k e kv v v v    ,……………………….. (*)

The inequalities (*) imply that the Cauchy property of
 :kv k  induces Cauchy property in each of the coordinate
sequences :      1 2: , : ...... :nk k kv k v k v k      .

By the completeness of the real line  , we get real numbers
1 2, ,.... nw w w which are limits of the (Cauchy) coordinate sequences :

1 2
1 2lim , lim , ,.... lim n

k k n kk k k
w v w v w v

  
   .

We form the vector  1 2, ,...., .n
nw w w w 

Finally note that  
1

,
n

k kd v w v w


  



which (together with

the above deduction that kv w  as k  for 1 n  ) implies that

kv  .

Thus, each Cauchy sequence  :kv k  in n converges to a
nw and therefore n is complete.

We observe one more property of the metric topology of n .

Let A be any subset of a m and let a be any point of A. Let
1 2, ,... :nf f f A   be functions, all being continuous at a.

Let : nf A    be the map given by
        1 2, ,...... n

nf y f y f y f y  for each y .

Proposition 4 : The map : nf A    is continuous at a.

Proof : Let o be given. Then for o
n


 , continuity of each

 1if i n  at a implies that there exist i o  such that

   i if y f a
n


  for all  ,y a i .

mu
no
tes
.in



13

Consider  1 2min , .... n    . Then o  and  ,y a 

implies   , 1y a i i n   and therefore    i if y f a
n


  for

1 i n  . This set of inequalities implies :

   f y f a  for all  ,y a  proving continuity of f at a.

1.4 ORIENTING n :

Orientation of n and its orientability in two different ways is
yet another aspect of its geometry. Here, we give a brief, heuristic
introduction to the main ideas related to the orientations of n . We
use only elementary geometric concepts. A precise algebraic
formulation of it (in terms of orthonormal transformations of n )
will be given in the next chapter.

The term orientation applies primarily to orthogonal frames in
n . W try to reach the vast expense of n by means of an

orthogonal frame  1 2....s s nf f f F F associated with an orthonormal
vector basis  1 2.... nf f f .

Recall, an orthogonal frame  1 2....s nf f fF is obtained by
laying its axes 1 2..... nOX OX OX along the vectors

1 2 ,.... nf f f respectively.

Schematic depition of an orthogonal frame  1 2....s nf f fF

Fig. 1

Clearly the frame  1 2....s nf f fF and the ordered orthonormal vector
basis  1 2.... nf f f specify each other and therefore, we often talk of
them interchangeably.

We consider various  1 2....s nf f fF
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Of course, there is the standard orthornormal frame
 1 2.... ne e e F introduced earlier. But this particular frame may not

be the best choice to study a specific geometric / physical problem.
For example in studying the rotational motion of a spinning top
(with its nail tip remaining stationary on the ground) we need
consider besides the stationary frame the rotating body frame


sF which is an orthogonal frame fixed in the top and therefore it is a
moving orthogonal frame. And we study the rotational motion of the
top by studying how the body frame  sF changes its orientation with
respect to the stationary frame sF . Thus, we need two distinct
orthogonal frames to study the dynamics of a spinning top.

We therefore consider all orthogonal frames  1 2....s nf f fF and
compare them with the standard frame  1 2.... n se e e F F

Fig. 2 : The stationary frame sF and the body frame  sF

How do we compare two frames?

It is intuitively clear that we can rotate sF about the common
origin and make it coincide with sF . This corresponds to a change
   1 2 3 1 2 3.... ....f f f e e e   of the orthogonal bases associated with the
two frames sF and 0sF .

Recall now the elementary facts of linear algebra. (We will
discuss more about there in the next chapter.)

 Each change of orthonormal basis (and therefore that of the
associated orthonormal frames)    1 2 1 2.... ....n ne e e f f f   gives rise
to a unique orthogonal linear transformation : n nT   given by
 iT e fi for 1 i n  .
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 Each such T has the property det (T)=+1 or -1. We use these
properties to compare two frames. We say that two orthogonal
frames sF and 0sF have the same orientation if det (T) = +1
and they have the opposite orientation if det T = -1.

We regard this classification of orthogonal frames into two
disjoint families as two orientations of the space n ; we call them
the “standard orientation” and the “opposite orientation” of n .
Thus we have the following :

 The standard orientation of n pertains to the orthogonal
frames  1 2 ....s nf f f F with the property that the associated
: n nT   (with   1i iT e f i n    ) has det T = +1.

 The opposite orientation of n pertains to any orthogonal frame
 1 2....s nf f fF with det T = -1.

Thus each Euclidean space n carries two distinct orientations,
namely (a) the standard orientation as described in  and (b) the opposite
orientation described in  .

Applying all this consideration to 3 , our physical space; we
have an equivalent, but rather tangible description in the popular
language : Orthogonal frames being left handed and right handed :

  1 2....s nf f fF is right handed if the frame can be grabed by right
hand so that the thumb points in the direction of 3f .

 On the other hand  1 2....s nf f fF is left handed if it can be grabed
by the left hand so that the thumb (again) points in the direction
of 3f .

Left and Right Handedness of Orthogonal Frames
Figure 3
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Of course the right handed frames determine the standard
orientation of 3 while the left handed frames determine the opposite
orientation of it.

1.5 EXERCISES :

1) Prove that ...n

n
       is a dense subset of

n .

2) Apply Grahm - Schmidt process to obtain orthonormal sets from
the given (linearly independent) subsets :

a)      21,3 ; 2,4  

b)        31,3,1 1,4,1 0,2,1   

c)        31,2,3 , 2,3,1 , 3,1, 2   

3) Prove that any n-dimensional real vector space is isomorphic
with n .

4) Prove that any two vector bases in n have equal number of
elements.

5) Give all the details regarding the proof that  : 0,n nd    
given by  , ,d x y x y x y   in n , is a metric.

6) Describe a real vector space which is not isomorphic with any
n . (Justify your claims)

7) Let : , :n m mf g       be maps such that f is continuous at
a np and g is continuous of  f p q . Prove continuity of

: ngof    at p.
8) Recall : (i) a multi-index is an ordered n-tuple.

 1 2, ,...., n    where each i
 .

ii)
1

n
i

i
 





iii)      1 21
, , ,...,

n i n
i ni

x x x x x x


       

iv) A polynomial in the multi-variable  1 2, ,..., n
nx x x x   is finite

linear combination.   :
m

p x a x
 

 

Prove (a) each monomial : nx   is continuous on n .
b) and therefore each : np   is continuous on n .
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2
ORTHOGONAL TRANSFORMATIONS

Unit Structure :

2.0 Introduction
2.1 Linear Transformation
2.2 Algebra of Matrices
2.3 Determinant of a Linear Endomorphism of n
2.4 Trace of an Operator
2.5 Orthogonal Linear Transformations
2.6 The Total Derivative
2.7 Exercises

2.0 INTRODUCTION

In the preceding chapter, an Euclidean space was introduced
as a mathematical system consisting of the set n carrying three
mutually compatible structures, namely (i) the n-dimensional real
vector space structure, (ii) the inner product giving rise to the metric
topology of n and (iii) the standard orientation of it.

In this chapter we will discuss linear transformations between
Euclidean spaces and their properties. In particular, we will come
across the group  nGL  (    , ,GL n GL n  are other notations for the
same) consisting of bijective linear self maps of the vector space

n (a self-map is a map of the type :f   i.e. a map of a set  to
the same set.) Actually we are moving towards a sub-group

 nSO  (or    , ,SO n SO n etc.) of  nGL  ; it is the group of
symmetries or the automorphisms of the Eudidean space n . These
transformations - being symmetries of n - help us understand the
shapes of geometric objects residing in n : smooth curves, smooth
surfaces, higher dimensional smooth manifolds…. Also, being
automorphisms of the vector space, they play an important role in
the derivation of many results of differential geometry.

We begin with a recall of basic concepts of linear algebra. (:
linear transformations between Euclidean spaces, their matrix
representation, the algebra of linear transformations and its reflectin
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in the albegra of matrices and so on, reaching finally the groups
 SO n ). We will say a little more about the forms of the matrices in
 2SO and  3SO .

We will also recall a bit of differential calculus of vector
valued functions  : n mf     of a multi-variable

 1 2, ,...., nx x x x  . Recalling the definition of the total derivative
 Df p of such a f at a p as a linear transformation from n to

m we take the view-point that differentiation of a function at a point
is a process employed to approximate a general (differentiable) map
locally by a linear transformation. This is an important
interpretation, because we can now use all the machinery of linear
algebra to get information about the local behaviour of such a
f around a point p of its domain of definition.

Basic results of differential calculus mentioned in this chapter
and the next one are : the inverse mapping theorem, the implicit
mapping and the rank theorems Picard’s existence / uniqueness
theorem about the solution of an ODE and so on. We state these
results (they go without proof) here in this set of notes because they
are used here and there in differential geometry and therefore, a
student should know at least the precise enunciations of these results.
Detailed proofs of them are equally important and the reader can
consult a suitable analysis book (e.g. one of the text -books by Serg
Lang)

2.1 LINAR TRANSFORMATIONS

Definition 1 :
a) A linear transformation from n to m is a map :

: n nT  
which satisfies the identity :
     T ax by aT x bT y  

for all ,x y in n and for all a, b in  .

Occasionally we speak of a linear map instead of a linear
transformation.

b) A linear self map : n nT   is called a linear endomorphism (or
often merely an endomorphism) of n . It is also said to be an
operator on n .
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c) A bijective linear endomorphism : n nT   is said to be a
linear automorphism (or only an automorphism) of n

d) A linear map : nT   is called a linear form on n .
We adopt the following notations :
  ,n mL   denotes the set of all linear maps : : n mT   .

 End  n is the set of all linear endomorphisions : n nT  

 Aut  n is the set of all linear automorphisons of n .

  *n denotes the set of all linear forms on n

We note here a few basic properties of linear linear
transformations and their spaces listed above. Most of these
properties are stated here without proof, because they are discussed
routinely in any linear algebra courses. The reason why these
properties are listed here is only to refresh readers memory about the
precise statements and the full import of these properties :

I) If S, T are linear transformations from n to m and if  ,  are
an real numbers then they combine to give a map :

: n mS T     …………………………………. (*)

which is given by :

      S T x S x T         for all nx .

This map S T  is also a linear transformation from n to
m .

II) Let  ,n mL   be the set of all linear transformations from n to
m . Then the operation (*) (described above) combining two linear

transformations S, T and two real number ,  producing the linear
transformation S T  is an algebraic operation giving the set
 ,n mL   the structure of a real vector space. Thus, the set

 ,n mL   together with the operation (*) is a real vector space. We
will prove that the dimension of this vector space is m.n.

III)In particular the set  *n is a vector space and its dimension is
.1 .n n

mu
no
tes
.in



20

We justify this claim by describing a bijective linear map
 *: n n   as follows.

Let  *nT   be arbitrary.

For each  1i i n  we put  i iy T e . We form the vector
 1 2, ,..... ny y y y . Now for each nx we have :

   
     
1 1 2 2

1 1 2 2

1 1 2 2

, ....

....
......

n n

n n

n n

T x T x e x e x e

x T e x T e x T e
x y x y x y
x y

   

  

  

 

Thus, with each  *nT   is associated a ny satisfying.

  , , nT x x y x   .

Clearly this y (associated with the  *nT   ) is unique. We

put  O T y . Now we have the map  *: n nO    . It is easy to
prove that this map ( )H is bijective and linear.

IV) a) If : , :n m m kS T       then 0 : n kT S    is also
linear.

b) If : n nT    is bijective linear then its inverse
1 : n nT     also is linear.

V) Let  1 2, ,... nf f f be any vector basis of n and let 1 2, ,..... nv v v be
any vectors in a m . Then there exists a unique linear
: n mT    having the property :   1i iT f v i n    .

The unique linear T is given as follows :
Let 1 1 2 2 ... n nx x f x f x f    be any vector in n . Then by linearity

of T, we have

   
     
1 1 2 2

1 2 2

1 1 2 2

n n

n n

n n

T x T x f x f x f

xT f x T f x T f
x v x v x v
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VI) In particular we consider m = n and in place of
 1 2, ,..., nf f f we take the standard basis  1 2, ,..., ne e e of n . Next for
any pair  , 1 ,i j i j n     , we consider the set  1 2, ,....., nv v v where

i jv e and 0iv  for all other  1 n   . By property (V) above, we
get a unique linear : n n

i jT   satisfying.

 i j k

j

T e o if k i
e if k i

   

   

Thus,  i j i jT x x e  for all nx .

We consider the set  :1 ,i jT i j n  . It is easy to prove that
this set is linearly independent

1
i j ij

i j n
T o

  

 only when all i j o  .

On the other hand we prove that any T is a linear combination
of  :1 ,i jT i j n  : In fact let   1

j n
T ei ij ej for i n



     . Then

1
i j ij

i j n
T T

  

  .

This shows that  :1 ,i jT i j n  is a a vector basis of

End  n and thus it is a vector space having dimension 2n .

VII) Thus, the set End  n carries two kinds of algebraic
operations namely. (a) the vector space operations and (b) the
composition      : n n no End End End      taking a pair S, T to
SoT . Note that ‘o’ distributes over the vector space operations

 S T R S T S R          .

Thus End  n is a real n-dimensional algebra.

VIII) Let  nGL  be the set of all linear automorphisms of n (We

often denote it by  ,GL n  or by  GL n .) The set  nGL  has the
following properties :

i)  nI GL  , (I being the identity transformation on  n .

ii) If   ,nT GL  then  1 nT also GL   

iii) If S, T are both in  nGL  then  nS T GL 
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In other words, the system   ,nGL o is a group. We call it
the n-dimensional general linear group.

2.2 ALGEBRA OF MATRICES :

Matrices are computational counterparts of linear
transformations. With each operator T of n , we associate square
matrix and the neumerical calculations done on matrices given
information about their predessors.

Recall for any m, n in  , a matrix of size m n is an array
1
1
i mij
j n

A a  
 

    of real numbers arranged in m rows and n columns (the

numbers ija being placed at the cross-roads of ith row and jth
column:

11 1 1 1

1 1 1
1
1

1 2

...... .......

.................. ..............
....... ........

.................. ............

.................. ............
, ... .. .......

z j n

i z j in
i mij
j n

m m mj mn

a a a a

a a a a
A a

a a a a

 
 




   










 
 
 
 
 
 
 
 

We often write only ija   instead of 1
1
i mij
j n

a  
 

   whenever the

size of the matrix is understood.

We represent a linear : n mT    by a m n matrix (T) and
use the latter as a computational device to get information of the
linear transformation T.

Recall two matrices ijA a    and ijB b    of the same size are
equal A =B if and only if ij ija b holds for all pairs (i, j) -

 , ,M m n  denotes the set of all real matrices of size m n .

When m = n, we write  ,M n  for the set  , ,M n n  and the
matrices in it are said to be square matrices (of size n n .)

The set  ,M m n has the structure of a real vector space : If

ijA a    ijB b    are any two matrices and if ,  are any two real
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numbers, then we define A B  as the m n matrix ijc C    given
by :

1 , 1ij ij ijc a b i m j n        

Thus A B  is the matrix ij ija b    .

For any pair  , 1 1i j i m j n      , let ijA be the matrix :

there being zeros at all places in ijA except at the  ij th-place
where we have 1.

It now follows that any matrix ijA a     , ,M m n  can be
expressed uniquely as the linear combination.

ij ijA a A 

the sum above extending over all pairs  ij with 1 i m  and
1 j n  and consequently, the vector space  ,M m m has
dimension m.n.

We now recall the multiplication of matrices : for any m,n
and p in  , let  , ,ijA a M m n       , ,jkB b M n p     . Then
the matrix    , ,ikD d M m p   given by

1
ik ij jk

j m
d a b

 

  is defined as

the product D A B  (the factors A, B of D in the indicated order).

Note that both, the products A B and B A are defined only
when m = n = p i.e. when both A, B are square matrices of the same
size. We pursue this case (i.e. of square matrices) by the following
hands-on account :

The set  ,M n  carries the following algebraic operations
(all explained above in the more general context) :

 Addition of matrices :
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: , ,

,

M n M n M n

A B A B

   

  

  



 Multiplication of a matrix by a real number :
   

 
: , ,

,

M n M n

A 

  

     

  



 Multiplication of matrices
     

 
: , , ,

, ,

M n M n M n

A B A B

     

 

  

 

The set  ,M n  together with the above three algebraic
operations is an 2n dimensional associative (real) algebra with
identity (i.e. it is a combination of a 2n -dimensional real vector
space and a ring with identity.)

Thus, on one hand we have the operator algebra Aut  n and
on the other hand, we have the algebra  ,M n  of n n real
matrices. We proceed to explain below that an orthonomal vector
basis of n establishes an isomorphism (of algebras) between the
two.

Thus let  1 2, ,...., nf f fF be an orthonormal basis of n .
Now for a  nT End   and for each  1jf j n  we get the vector

 jT f expressing it as the linear combination :

 
1

1j ij i
i

T f a f j n


     …………………............... (*)

We collect the coefficients ija in (*) above and form the matrix ija  
which we denote by [T] or more accurately by  T F

.

Thus the orthonormal basis of n gives rise to the map

End    ,sn M n 

   A A A
F

We note the following properties of this map -

i) The map is a bijection between  nEnd  and  ,M n 
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ii) The map preserves the algebraic operations on the two sets, that
is, the following equalities hold :
   ,

s
ijF

I     I being the identity operator on n and ij   is the
identity n n matrix :

      S T S T  

    S S  

      S T S T 

These properties-described in (I) and (II) above-taken
together imply that the map (*) is an isomorphism between the two
algebraic systems.

The third proper-property (III) stated below-is about the
dependence of the matrix representation  T F

of an operator T on the
orthonormal basis :F

Let  1 2, ,...., nf f fF and  1 2, ,... ng g gG be two
orthonormal bases of n . If T is any operator on n , then the two
bases associate the matrices  T F

and  T G
. We seek a relation

between the two matrix representation. Towards this aim, we
consider the matrix ijC C    describing the change of the vector
bases F G thus for each ,1j j n   we have :

1

n

j ij i
i

g c f




Applying T to this equality, we get

   
1

n

j ij i
i

T g c T f




Now if   ijT a   F
and   ijT b   G

then we have

   
1 1

n n

i ki k i ki k
k k

T f a f T g b g
 

     and therefore, we get
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1 1

1 1

n n

ej e ij ij
i
n n

ij ki k
i k

b g c T f

c a f

 

 





 

 


Therefore
1 1 1 1

n n n n

ej ke k j ke k
e k k
b c f c a f

   

    


that is,

kl ej k k ej k
k k

c b f a c f      
   

    
 

.

Equating coefficients of each kf , we get
1 1

n n

ke ej ke ejc b a c
 

 
 

.

The above equalities are obtained for each pair (k, j) with
1 ,k j n  and therefore, we get the equality of the matrices :

ke ej ke ej
e e
c b a c         

  that is, we have CB AC .

Now note that C is invertible (it being the matrix onnecting
two vector bases,  and g ) and therefore the last equality implies

1. .B C AC
that is :    1T C T C

G F
.

We summarize it in the third property of matrices :

III) For any two orthonormal bases ,F Gof n and for any operator
T on n , we have :

   1T C T C
G F

C in above being the matrix of the change of vector bases
from F to G .

We use this property crucially in defining the determinant of
an operator T on n .
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2.3 DETERMINANT OF A LINEAR EUDOMORPHISM
OF n :

First we define the determinant of a square matrix and then
extend it to linear endomorphisms.

Recall, first, the permutation group S(n) of set {1,2,….,n}.
Also recall that each  S n  has its signature    1, 1    .

Definition 3 : For a square matrix ijA a    of size n n , the
determinant det(A) is the number

   
 

     1, 2, ,det .......i i n n
S n

A a a a  





   
 

 
 ,1
..........i ii nS n

a 



 



    ………………….. (*)

Now we have a function :

det :  ,M n  

 detA A

We mention (without proof) following three properties of this
function.

1) det (I) =1, I being the identity n n matrix : ijI    
2)    det det detA B A B   for any A, B in  ,M n  and
3) a matrix ijA a    is invertible if an only if  det A o .

Note that property (2) above has the following important
consequence : If C is any invertible n n matrix, then for any n n
matrix A we have the equality :

   1det detA C AC

In fact we have

     
     

1 1

1

det det det

det det det

C AC C AC

C A C

 





  

= det A
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We also have      1 1 11 det det det
det

I C C C
C

    and

therefore  1 1det
det

C
C

  . Applying this result we get :

       
 

1 1det det det det

det

C AC C A C

A

 


We use the property of determinant of square matrices to

define  det T of an operator T on n .

For an orthonormal basis F we consider the matrix  T F
of T

w.r.t. F . Involving the formula  * above, we consider det  T F
and

then we observe that this number, thus arrived at, is actually
independent of the vector basis F used (and therefore, it is actually
an attribute of the operator T itself and not that of its matrix
representation.) For, if g is any other orthonormal basis of n , then
we have :

   1T C T C  
G F

and therefore,

    
 

1det det

det

T C T C

T






G F

F

Thus,    det detT T
F G

for any orthonormal bases F and Gof
n . We define  det T to be this common value :

   det det detT T T  
F G

.

Now we have the function :  det : nEnd    .

This map has the following properties
  det 1I  , I being the identity operator on n

      det det detS T S T  for all S T in  nEnd  .
 An operator T is invertible if and only if  det T O .

 If T is invertible, then    
1 1det

det
T

T
  .
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2.4 TRACE OF AN OPERATOR

There is yet another invariant associated with an operator T
on n , namely its trace. Like the determinant of an operator, we
define it first for a square matrix and then extend it to an operator.

Definition 4 : The trace of a matrix ijA a    -denoted by  tr A - is

given by  
1

n

ii
i

tr A a


  .

Note that for any ijA a    , ijB b   we have
1

n

ik kj
k

AB a b


    


and therefore,

 

 

1 1

1 1

:
n n

ik ki
i k
n n

ki ik
k i

tr AB a b

b a

tr BA

 

 











Thus    tr AB tr BA for any A, B in  ,M n  . We use this
property to define  tr T of an operator T : Choose any orthonormal
basis F and consider   Tr T

F
as defined above. We claim that this

number does not depend on the orthonormal basis F . For, let
F and G be two orthnormal bases with C as the matrix describing
the change F to G . Then for any operator T on n , we have

   1T C T C
G F

and therefore,
    

  
  

1

1,

tr T tr C T C

tr T C C

tr T











G F

F

F

This leades us to the definition
     tr T tr T Tr T 

F G
.

Now, we have the function
 : ntr End  

Two of the, properties of this map are
1)  tr I n
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2)    tr S T tr T S   for any, S, T in  nEnd  .

In what is to follow, we will be using only the standard
orthonormal basis  1 2, ,....., ne e e as a convenient choice and
therefore the matrix representation  T of T will be understood to be
with respect to the standard orthornormal basis    : T T


 .

2.5 ORTHOGONAL LINEAR TRANSFORMATIONS :

We single out a sub-group of the group  nGL  .

Definition : A linear : n nT   is orthogonal if it preserves the
inner product.

   , ,T x T y x y for all ,x y in n .

 nO  denotes the set of all orthorgonal : n nT   .

Note the following elementary properties of orthogonal
transformations.

 A linear : n nT   is orthogonal if and only if it preserves the
Euclidean norm of the vectors.

 As an immediate consequence of the above we get that an
orthogonal T is bijective.

 T is orthogonal if and only if   ,i j ijT e Te  for all
, , 1 ,i j i j n    .

 i) The identity map : nI   is orthogonal
 ii) If T is orthogonal then so is 1T 

 iii) If S, T are orthogonal, then so is SoT .

Thus, the composition operation : ,S T SoT  becomes a
binary operation on the set  nO  in such a way that   ,nO o is a

sub-group of  nGL  . We denote this sub-group by the underlying

set  nO  only and call it the n-dimensional orthogonal group.

We characterize an orthogonal : n nT   in terms of a
property of its matrix.
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Proposition 1 : A linear : n nT   is orthogonal if and only if its
matrix   A T satisfies tA A I .

Proof : Suppose, T is orthogonal. Then for any pair (i, j) with
1 ,i j n   we have

     , ,i j ij i jT e T e e e  

Now    
1 1

,
n n

i ki k j ej
k k

T e a e T e a e
 

      and therefore :

   
1 1

1

,

,

, , ,

,

n n

i j ki k j
k

ki j k
k

ki j k
k

ki kj
k

T e T e a e a e

a a e e

a a

a a



 

  








 







 


 


 


Note that
1

n

ki kj
k
a a


 is the  thij entry in the matrix .tA A . Now

the equalities.

1
1 ,

n

ki kj ij
k
a a i j n



   

1

n

ki kj ij
k
a a 



       
 that is tA A I  .

The proof of the converse is left as an exercise.

We consider the determinant of an orthogonal T. On one
hand   1tA A  for  A T and therefore, we get  det 1tA A  . But

           2det det det det det dett tA A A product A A A A   .Thus

 2det 1A  holds for an orthogonal T with A = det (T). We consider
all orthogonal T with  det 1T   .

Let       : det 1n nSO T O T     .

mu
no
tes
.in



32

Note that because the map  det : nO   is multiplicative,

the set  nSO  is a sub-group of the group  nO  .

Definition : The group  nSO  is the n-dimensional special linear
group.

In the next chapter we will define orientations of n using
the group  nSO  .

2.6 THE TOTAL DERIVATIVE :

Let  be an open subset of n , p a point of  and let
: mf  be any map.

We explain in few words the concept of total derivative of
such a vector valued function of a multi-variable

 1 2... nx x x x   as a linear transformation :   : n mDf p   .

Definition 7 : f is differentiable at p if there exists a linear map
: n mT   such that

     lim
h o

f p h f p T h
O

h

  


Note that the quantity      f p h f p T h
h

  
is defined for

non-zero but small nh and the limit being zero indicates that
     f p h f p T h   is a quantity of second order smallness in

comparison with the “increment” h. Thus differentiability of f at p is
about approximating the variation    f p h f p  of f around p by
the linear map : n mT   .

Recall from analysis that any linear : n mT   is continuous
at O (actually at every point of n ). Consequently for a f ;
differentiable at p ;      f p h f p T h O    and  T h O

as h O implies that    f p h f p O   as h O i.e. f is
continuous at p. Thus, the classical result : differentiability of a
function at a point implies continuity of it at the same point -
continues to hold in the present context also.
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Next, note that if f is differentiable at a p then the linear
T appearing in the definition must be unique. To see this consider
two linear maps 1 2, : n mT T   satisfying :

     

     

1

2

f p h f p T h
O

h

f p h f p T h
O

h

  


  


as h O . Then we get    1 2T h T h
O

h


 as h O . But this implies

1 2T T . To see this, consider any hon-zero 2x . Then for k ,

large enough use consider xh
k

 so that h O as k  . Thus

1 2
x xT T
k k O
x
k

      
     as k 

But    1 2
1 2

x xT T T x T xk k
x x
k

           

Therefore,     1 2
1 2 lim

k

x xT TT x T x k k O
xx
k



            .

This gives    1 2T x T x whenever x o . But
   1 2T o T o o  by the linearity of 1T and 2T . Therefore
   1 2T x T x holds for all nx i.e. 1 2T T .

We call the unique T the total derivative of f at p and denote
it by  Df p . Thus, when f is differentiable at a point p of its
domain, its total derivative  Df p is a linear transformation

  n mDf p   .
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We consider the matrix  Df p   of the total derivative.

Suppose   1
1
i mij
j n

Df p a  
 

    . We ask what are ija . To answer this we

have

       limj t o

f p tej f p
Df p e

t

 
 .

The ith component of this vector equation is
   lim i i

ij t o

f p tej f p
a

t

 


that is  i
ij

j

fa p
x





. Thus we get    i

j

fDf p p
x

 
  

  
. In classical

literature this matrix  i

j

f p
x

 
 
  

is called the Jacobean matrix of the

total derivative  Df p .

In particular if the map f is differentiable at every p then
we get the map  : n mDf L   with the partial derivatives

:i
j

f
x





 .

We say that the map : mf  is continuously differentiable
on  if (i) f is differentiable at every p and if (ii) all the partial

derivatives : 1 ,1i

j

f i m j n
x


      


 are continuous on  .

We will discuss more differential calculus in Chapter 3.

2.7 EXERCISES:

1) Let : n nT   be linear. Prove that there exists a constant
C   such that  T x C x holds for all nx .

Hence or otherwise deduce that any linear : n nT   is
continuous at every point of n .

2) Prove that any linear : nT   satisfies    , ,T s T y x y for

every ,x y in n if and only if  T x x for all nx .
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3) Let  A T for a  nT End  . Suppose A satisfies tA A I .
Prove that T is ortrogonal.

4) Prove that  nO  is a group and  nSO  is a normal sub-group of
it.

5) Prove that  nSO  has exactly two cosets in  nO  .

6) Prove    tr ST tr TS holds for all linear S, : n nT   .

7) Prove : If : n nT   is linear, then  DT p T for every np .

8) Let , mn   be open sets and lot Pbe arbitrary with
 a f p .

Let : , :f g     be maps such that (i) f is differentiable
at p, (ii) g is differentiable at  q f p . Prove that gof is
differentiable at p and derive :        D gof p Dg q Df p  .

9) Prove that  nGL  is an open subset of  nEnd  .
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3
ISOMETRIES OF n , SMOOTH

FUNCTIONS ON n

Unit Structure :

3.0 Introduction
3.1 Isometries of n
3.2 Orientations of n
3.3 Smooth Functions
3.4 Basic Theorems of Differential Calculus
3.5 Exercises

3.0 INTRODUCTION

Having introduced the group  nO  of orthogonal linear
transformation of n , we discuss a larger group of transformations
of a n , namely the group of isometries of n where an isometry of

n is a bijective self map of n which preserves the distance
between its points. First, we derive the basic result describing an
isometry as a rigid motion of n ie. a map which is a composition of
a rotation and a translation in n . We verify that such rigid motions
in n form a group.

In the remaining part, we discuss some basic theorems of
differential calculus. We introduce the function space  C  of
smooth real valued functions of a multivariable ranging in an open
subset  of n .

3.1 ISOMETRIES OF n

Definition 1 : An isometry of n is a bijective map
: n nf   which preserves distance between any two points of n :

   f x f y x y   for all ,x y in n .

Here are some simple facts about the isometries of n :
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 Every orthogonal linear : n nT   is an isometry of n ; for, let
,x y in n be arbitrary. Then we have :
    ,T x y T x y x y x y     

for all ,x y in n i.e.
        ,T x T y T x T y x y x y     

and therefore :
   T x T y x y  

for every ,x y in n
 For each na let : n n

aT   be the map given by
 aT x x a  for every nx . The bijective map aT is called the

translation map in n determined by its element a. Clearly, each
aT is an isometry of n .

 If : n nf   is an isometry of n them its inverse
1 : n nf    also is an isometry of n .

 If , : n nf g   are isometries of n , then so is their
composition : n ng f   

Let  nIso  be the set of all isometries of n . It then follows

that the composition of self maps of n when restricted to  nIso 

becomes a binary operation on  nIso  and the resulting algebraio
system :

  ,0nIso 

is a group. It is the group of isometies of n . It is easy to see that
orthogonal transformations of n constitute a sub group of

  ,0nIso  . Also the set of all translational maps i.e.  : n
aT a is

also another subgroup of the isometry group.

Now, we obtain a result regarding the structure of an isometry
of n .

Let : n nf   be an isometry.

Let  0a f . Define : n nR   by      0R x f x f  for
each nx . Thus, we have :
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0 0

0

0 n
a

f x f x f f

f x f a

T R x x

  

  

  

We prove below that : n nR   is linear and preserves inner
product of n (and therefore is an orthogonal transformation of n ).

Now, for any ,x y in n we have
       f x f y R x R y  

and therefore        R x R y f x f y x y     (since f is
isometry. Thus we have

       , ,R x R y R x R y x y x y       and therefore :

           , 2 , ,R x R x R x R x R y R y 

2 , ,x x x y y y   

i.e.        2 2
2 ,R x R x R y R y 

2 22x x y y    for all ,x y in n ………………..(*)

Recall  0 0R  and therefore

       0 0 0R x R x R x R x x       and similarly

 R y y . Using these results, above yields. …………… (*)

   , ,R x R y x y for all ,x y in n .

We use the identity (**) to deduce linearly of R as follows.

First, note that (**) implies that   :1iT e i n  is
orthonormal. Therefore, for any ,nx we have

       
1

,
n

i i
i

R x R x R e R e




But again by (**) we have      , ,i i iR x R e x e x   for each
i 1 i n  . Therefore

   
1

n

i i
z

R x x R e


 ……………………(***)
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for each nx .

Now for any ,x y in n and for any a, b in  we have

     

   

1

1 1

n

i i i
i
n n

i i i i
i i

R ax by ax by R e

a x R e b y R e



 

  

 



 
   a R x b R y    using …………………… (***)

This prove linearly of R. Thus we have prove above both :
linearly in (***) and inner product preserving property (**) and
therefore T is orthogonal.

Uniqueness of the decomposition 0af T R  is left as an
exercise for the reader.

We summarize this result in the following :

Proposition 1 : Every isometry : n nf   is expressible uniquely
in the form 0af T R where R is an orthogonal transformation of

n and aT is the translation with  0a f .

3.2 ORIENTATIONS OF n :

The concept of orientation of n was introduced in Chapter 1
in terms of families of orthogonal frames of n . It was shown that

n has exactly two orientations. In this chapter we reformulate it
shightly differently so as to involve the group  SO n . We bring
orthonormal bases in place of the orthogonal frames and decompose
the set of all orthonormal bases into two classes, they are
equivalence classes of a certain equivalence relation, the later being
introduced in terms of the group  nSO  .

To begin with, note that each orthogonal frame F in n
determines and is determined by an ordered orthornormal basis
 1 2, ..., nf f f , the ith unit vector if pointing along the i

th axis of F .
Thus there is a 1-1 correspondance between orthogonal frames F in

n and ordered orthonormal vector bases  1 2, ..., nf f f . Now we
consider ordered orthonormal bases instead of orthogonal frames to
specify orientations of n . We make this choice because now we are
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acquainted with the group  nSO  , the elements of the group
enabling us to change from one frame to another similarly oriented
frame.

Let  denote the set of all ordered orthonormal vector bases
of n . We introduce a relation  on the set  as follows : Let
 1 2, ..., nf f f and  1 2, ..., ng g g be any two ordered orthonormal bases.
Then there exists a unique orthogonal linear : n nT   satisfying
 i iT f g for 1 i n  . Moreover, we have :  det 1T   or -1.

We set :    1 2 1 2,...., ,....,n nf f f g g g  if an only if det 1T   .

Clearly the relation  thus defined is an equivalence relation
on  . Therefore it decomposes the set  into disjoint subsets of if
namely the equivalence classes of the relation  :

Each equivalence class is said to determine an orientation of
n .

Finally because det 1T   or -1 for each T  we see that
there are two distinct equivalence classes and hence two distinct
orientations of n .

 The equivalence class containing the standard basis
 1 2, ,....., ne e e .

To describe the other class consider the vector basis
 1 2, ,....., ne e e  of n . Let : n nT   be the linear transformation
of n associated with the change  1 2, ,....., ne e e to  1 2, ,....., ne e e  .
Clearly

and therefore det 1T   . Thus  1 2, ,....., ne e e  belongs to the other
equivalence class ie the other orientation of n . Therefore, we have
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 The equivalence class containing  1 2, ,....., ne e e  is the
opposite orientation of n .

The Groups  2SO  and  3SO  :
We describe these groups in terms of their matrices.

First the matrices in  2SO :

Let  1 2,f f be any orthonomal basis of 2 belonging to the
same orientation class of the standard basis  1 2,e e of 2 .

Let  be the angle between 1e and 1f which is measured

counter-clockwise. Then the matrix of T is
cos sin
sin cos

 
 

 
 
 

.

This shows that  2SO  consists of all 2 2:T   having
matrix representations : (with respect to the standard basis  1 2,e e :

     2 2 cos , sin
: , 2

sin , cos
SO T O T o

 
 

 
   

         
 

Next we describe the group  3SO  by means of the matrix
representations  T of its elements T with respect to the standard
basis  1 2 3, ,e e e : We consider T obtained as the resultant 2 1T T oT of
two rotations where (i) 1T is the rotation of the XOY-plane about the
Z-axis through an angle measured counter clockwise, 2o   
and (ii) 2T is the rotation of the frame about the Y-axis through an
angle o :

The matrices are :
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     3 3

cos cos cos sin sin
: sin cos 0 :

cos sin sin sin cos
SO T O T o  

 

         
         
       

 

3.3 SMOOTH FUNCTIONS :

We return to differential calculus and recall some more
terminology.

Let  be an open subset of n .

For a :f   and for a p , recall that the limits :

   lim i

t o

f p te f p
t

 
are the partial derivatives

   1
i

f p i n
x


  


of f at p .

Suppose the function f is such that    
i

fi p
x



for 1 i n  and

for all p exist. Then we get the functions :

: 1
i

f i n
x


   




from the function f .

We say that the function :f   is continuously

differentiable on  if (i)  
i

f p
x



exists for each p , each

 1i i n   and (ii) all the function  : 1
i

f i n
x


   


 are

continuous on  .
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 1C  denotes the set of all continuously differentiable
function on  .

Next, we say that :f   is twice continuously
differentiable on  if (i)  1f C  and (ii) for each 1i i n   ,

 1

i

f C
x


 


. If f is twice continuously differentiable, then it

follows that for each  , 1i j i j n     and for each p ,

   
2 2

;
i j j i

f fp p
x x x x
 


   

1 ,i j n  .

 2C  denotes the space of all twice continuously
differentiable :f   .

Higher order continuously differentiability of :f   is
defined inductively : Suppose k times continuous differentiability of
f on  is defined. Then we say that f is 1k  times continuously

differentiable on  if (i)  
i

f x
x



exists for each x and (ii) the

functions :
i

f
x


 are k times continuously differentiable on  .

If f is k times continuously differentiable on  then it
follows that for any multi-index  1 2, ,..., n    with

1 2 ...... n k      the mixed partial derivative

   
1 2

1 2

:
n

n

D f p f p
x x x

 

       
              

exists for all p and

the resulting function :

 : ;D f p D f p    is continuous on  .

 kC  is the functions space of all k times continuous
differentiable functions :f   . The functions space  kC  has
the structure of a commutative ring with identity; the ring operations
being addition and multiplication of function on  .

Now, we have a decreasing sequence of functions spaces :

     1 2 kC C C         
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We consider the Intersection :

    :kC C k      .

This space contains non-trivial (= non constant) function : In
fact, we have the following :

a) If  1 2, , , n      is any multi-ndex, then the monomial

     1 2

1 2: ; n

nx x x x x       is in  C  .
Consequently any polynomial :  

1 1 m
p x a x

 

  is in  C  .

b) Given any compact k, open with K U   , there exists a
 f C  satisfying :

i) 1f on k   ,
ii) 0f on U    .

Above, we mentioned smooth functions defined on open
subsets of n . In Chapter 8 we will extend the property of
smoothness to functions defined on open subsets of smooth surfaces.

Also, recall the smoothness of vector valued functions
defined on open subsets of n . Let : mf  be any vector valued
functions. Let its components be 1 2, ,..... :mf f f  thus
        1 2, ,..... mf x f x f x f x  for all x . Now we declare that f

is smooth if each of 1... mf f is in  C  in the above sease.
Moreover, for any multi-index  1 2, , , n      we define :

        1 2, ,......, mD f x D f x D f x D f x    for each x .

 D f x is the mixed partial derivative of f at x .

3.4 BASIC THEOREMS OF DIFFERENTIAL
CALCULUS :

We recall here three of the basic theorems of differential
calculus, namely :

 The inverse function theorem,
 The implicit function theorem,
 The rank theorem.
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Of the three of them the first is an independent result of
fundamental nature and the other theorems are deduced from the
first. Other basic theorems of differential calculus such as Picard’s
theorem (regarding the existence and uniqueness of solution of an
ODE), the Frobaneous theorem and so on will be explained in the
latter chapters.

We begin with the first theorem of the above list :

Theorem 1 (The Inverse Function Theorem) :
Let  be an open subset of n , p a point of  and let

: nf  be a smooth map.
Suppose, the derivative   : n nDf p   is a linear

isomorphism. Then there exist open subsets U of  , V of n having
the following properties :

i)  ,p U f p V  

ii)  f U V and

iii) :f U VU  is bijective with the inverse   1 :f V UU


 also

being smooth. (In other words, (iii) means f U is a diffcomorphism
between U and V).

 nc 

Fig. 1 (Inverse Function Theorem)

As explained earlier, the total derivative  Df p is a linear
map approximating the given f in a neighborhood of p and
therefore, some of the properties of the approximating map  Df p
should reflect back on the local behaviour of f around the point p.

The theorem above asserts that indeed, the invertibility of the
approximating linear map  Df p ensures local invertibility of the
function f , the local inverse of f also being smooth.
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A smooth bijective map :f U V with 1 :f V U  also
being smooth is said to be a smooth diffeomorphism between the
sets U and V. Thus, the inverse function theorem asserts that a
smooth map with its derivative at a point being invertible is a (local)
diffeomorphim in a neighborhood of that point.

Next, we discuss the implicit function theorem.

Theorem 2 (The Implicit Function Theorem) :
Let, a) ,m nU C V C      be open subsets. (Here we denote a

point of U by  1 2, ,..., mx x x x and a point of V by  1 2, ,..., ny y y y .)
b)  , : mf f x y U V   be a smooth map.
c) Suppose, for a point  ,p a b U V   the matrix

  1 ,i

i

f a b i j n
y

 
    

is invertible.

Then there exists an open U with a U U  and a smooth
map :g U V which satisfies

i)  g a b and
ii)     , ,f x g x f a b for all x U .

Thus, the theorem asserts that when the condition (c) is
satisfied, the equation     f x y C f a b    can be solved to get the
variable y as a functions (smooth)  y g x satisfying the additional
proviso :  b g a .

This result has applications everywhere in differential
geometry; we explain here only a small aspect of it :

We are given a smooth function

:f   ,

 being an open subset of 3 . For a d  we consider the set
    , , : , ,M x y z f x y z d   . If not empty, then such a
 M M d is often called a level set of the function through the

value d.
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We consider a non-empty level set  M d of the function f
satisfying the additional condition :

 , , 0f x y z
z





for all    , ,x y z M d . Then for any    , ,a b c M d the implicit
function theorem asserts that there exists an open 2Uc with
 ,a b U and smooth map :g U   with  ,g a b c satisfying

  , , ,f x y g x y d on U.
In other words a part of the level set  M d containing a

given  , ,p a b c is the graph of a smooth function g and therefore it
looks like a surface. This observation is used very often in studying
local properties of smooth surfaces.

Finally, we describe the rank theorem.

First recall that a matrix (of size m n ) has rank k if the
matrix contains an invertible sub-matrix of size k k and has no
invertible sub-matrix of size larger than k k .

Now, the theorem :

Theorem : (The Rank Theorem) :

Let : nf  be a smooth map- being an open subset of
m , the map f having the property that   rk Df p k for every
p . Then for every p there exist :
i) an open mU c  with 0 U
ii) an open nV c  with  f p V

iii) a diffeomorphism  :g U g U  with  0g p

iv) a diffeomorphism  : nh V h V  

Such that the map

: nh f g U   

is given by

  1 2 1 2...., ...., , .....m k
n k

h f g x x x x x x o o


 
  
 

  for all  1 2...., mx x x U .
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3.5 EXERCISES :

1) Check if each of the following 3 3:T   is an isometry and then
express each of the T in the form aT R in case T is an isometry :

i)   2 3 3 2, , 2, 4, 3
13 13 13 13
y z y zT x y z x       

 

ii)   3 3, , 5, 2, 4
2 2 2 2
x zT x y z z y x

 
       
 

iii)    , , 4 5 , 4 3 ,5T x y z x y z x y z   

iv)   2 7, , ,
3 3
x zT x y z y

 
   
 

2) Let  1 ,f C p    ( being an open subset of n )

Prove :

a)      
2 1

n

i
fDf p u u p
xi




 for all nu

b)          Df p v w Df p v Df p w     

3) If  2f C  then prove that for every p ,  2D f p is a
symmetric bilinear form.

4) i) Construct a smooth map  : 0 1f   such that

  1f x  if 1x 

0 if 2x 
ii) Using the map f of (i), construct a smooth

 2: 0,1g 

such that  1 01g on B   

 20 0, 4on B    
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4
SMOOTH CURVES

Unit Structure :

4.0 Introduction
4.1 Smooth Curves.
4.2 Curvature and Torsion of Frenet Curves.
4.3 Serret Frenet Formulae.
4.4 Signed Curvature of a Plain Curve.
4.5 Exercises

4.0 INTRODUCTION

In this unit (consisting of this chapter and the next, two) we
study the geometry of smoothly parametrized space curves. (After
discussing such curves, we will give indications of the geometry of
curves in higher dimensional Euclidean spaces also). In this chapter
we begin with basic geometric features of j a smoothly prametrized
space curve, its reparametrization, its unit speed version, a moving
orthonormal frame along it and so on.

Actually, we will consider a smaller class of curves consisting
of Frenet curves and explain how differentiation leades us to
geometric features of such curves. In particular. We introduce the
concepts of curvature and torsion of a curve which are smooth
functions defined along a Frenet curve. Explaining their geometric
significance, we proceed to derive the basic equations - the Serret -
Frenet equations - associated with such curves. It is the central result
of the theory of Frenet curves that the two functions curvature and
torsion functions - of a curve determine the curve uniquely to within
an isometry of 3 . We derive this important result - the fundamental
theorem of curves - using Picard’s existence / uniqueness theorem of
solutions of ODE.

Throughout, we are considering curves which are smooth (=
infinitely differentiable) This assumption (infinite differentaibility of
curves) is superfluous, for, we are using only thrice continuous
differentiability of the parametrized curves. We have adopted here
infinite differentiability as only a convenient set - up to derive the
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basic theory. But on the other hand if a curve is not as much as thrice
continuously differentiable, then some of the tools of differential
calculus may not be applicable.

4.1 SMOOTH CURVES.

In this chapter, I, J, K denote intervals

Definition: A smooth curve is a smooth map

3c : I  

The curve is said to be parametrized by the independent
variables of the map. s is the parameter of the curve and for a
0s I the point c 0( s ) of the curve is said to have the parametric
value 0s .

The set { c( s ) : s I }   is called the trace of the curve c.

For each s I , writing the point c( s ) in terms of its Cartesian
coordinates:    1 2 3c s ( x ( s ), x ( s ), x ( s ))   we get the real valued
function:

1 2 3x : I , x : I , x : I       
Note that the curve 3c : I   is smooth if and only if the

function 1, 2 3x ,x ,x : I R   are smooth.

Let now : J I   be a smooth, strictly monotonic increasing,
bijective function. The curve c and the function  combine to get yet
another curve:

3c c0 : J    

Definition 2: The curve 3c : J   is said to be a reparamentrization
of the curve 3c : I  

If r J is the variable raging in J, then we speak of r as the
new parameter and  the reparametrizing map.

For the curve 3c : I   , we write  c s


for
     2

2

dc s d c s
,c s for etc.

dt ds
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Note that        1 2 3dx s dx s dx s
c s , ,

ds ds ds
 

  
 



     2 2 2
1 2 3
2 2 2

d x s d x s d x s
c( S ) , , etc.

ds ds ds
 

  
 



Definition 3: 3c : I   is said to be (i) regular if  c s 0 for all
s I and (ii) a Frenet curve if  c s and  c s are linearly
independent.

We will consider only smooth Frenet curves.
Definition 4: A Frenet curve is said to be a unit speed curve if
 c s 1.

Below, we show that a Frenet curve can be reparmetrized so
as to make it a unit speed curve.

Let 3c : I   be a Frenet curve.

For an arbitrary chosen 0s I we consider the integral :

 
0

s

s

( s ) c x dr s I     

 s is the (signed) length of the segment of the curve c lying
between the points    0c s and c s  of it. Note the following

  s 0  if 0s s and  s 0 if 0s s

  d ( s ) c s 0
ds

 
  for all s I (by the regularity assumption on c)

and therefore the function  s s  is a strictly monotonic
increasing function on its domain interval I .

 The map  s s  being continuous, its range-we denote it by J
is an interval. Now we have the function :

: I J

which is strictly monotonic increasing and bijcetive function
between I  and J .
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We consider the inverse function 1 : J I ;  We denote it by
 . Thus we get the strictly monotonic increasing, smooth map
: J I  which is bijection between the indicted intervals.

We use  to reparametrize the given curve :
3c c : J    

Finally, we have: For any r J

dc( r )c( r )
dr


 

 dc s ds
ds dr

 

 

 
 

c s
dr
ds
c s
c s










and therefore    
 

dc r c s
1

dr c s
 

 


for all r J , that is, the

reparametrized curve 3c : J   is a unit speed curve. Thus, a regular
curve when re- parametrized by its are-length becomes a unit speed
curve.

Note that we can regain the original curve c from its unit
speed version c :

 1
0c C . 

Therefore, we introduce many of the geometric aspects of the
given curve c in terms of those of its unit speed version. Also. note
that c and its ( unit speed ) reparametrization c , both have the same
trace.

Let us discuss a few simple examples of smooth curves, some
of which are Frenet curves while some of them are not.

 The curve 3c :   given by    2 3 4C s s ,s ,s for s is
smooth but fails to be regular at    C 0 0,0,0 . It is regular
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when restricted to any interval I not containing 0 . In fact
c / I is a Frenet curve for such a I .

 Let 3c : (0, )   be the curve given by

 
2

3/ 2s 2 2c s s, , s s 0
2 3

 
     
 

Then we have    1/ 2c s 1, s, 2 s ,  

  1c s 0,1,
2s

  
 



Clearly  c s and  c s  are linearly independent (i.e. non-
parallel) vectors for every  c s and consequently c is a Frenet curve.

Measuring are length from the C(0 )end, we get

   
0

0
2

s C u du

(1 u )du

s 2s s 0
2







 

   







Putting  s r (  1 s in the above notation) we get :

   s 2r 1 1 r 0    

Therefore, the re-parametrization using r as the new
parameter gives the curve

  3c : 0,  

      
3/ 2

2 2c r 2r 1 1,r 1 2r 1, 2r 1 1
3

 
           
 

 for

r 0 .

We consider a planar curve called the exponential spiral. Its
the curve

2c :  
given by    s sc s e cos s,e sin s , s    
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Fig. 1. The Exponential Spiral
Note that       s sc s e cos s sin s , e cos s sin s    giving

  sc s 2 e  . Therefore c is a regular, but not a unit speed curve.
Moreover, we have

 
s s

c s 2e sin s,2 ecos s    
 



Thus, in fact c is a Frenet curve.

To reparametrize it with respect to its are length we consider
its signal arc length function. Taking    c 0 1,0 as the reference
point, we obtain the (signed) length function given by

   
0
s

r

0
s

r s c dr

2e dr

2e 2



   



 







This gives rs log 1
2

   
 

and therefore, the reparametrization

of the exponential spiral :

r s s sc( r ) 1 cos log 1 , 1 sin log 1
2 2 2 2

                               


The Cycloide :
A wheel of radius a is rolling on the ( horizontal X axis of a

vertical XOY plane , moving with constant velocity  . Then a
point P held fix on the wheel rim traces a curve. This curve is called
a cycloide. Its parametric representation ( Parametrized by the time
t ) is

wtc( t ) wt a cos wt ,a a sin ,t
a
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It is not a unit speed curve It is left as an exercise for the
reader to reparametrize it so as to get a unit speed curve.

Fig. Cycloide
The Elliptical Helix :

It is a curve which climbs up an elliptical cylinder with cross
section

22
2

2 2
xx 1 a b

a b
   

Choosing yet another constant C 0
We get the curve.

3c :  
c( t ) ( a cos t ,b sin t ,c.t ), t .    

The resulting curve is a Frenet curve The reader is invited to
verify this fact and to reparametrize it so as to get a unit speed curve.

4.2 CURVATURE AND TORSION OF FRENET CURVES

Let 3c : I R be a Frenet curve, its parameter being denoted
by s I . As explained in the preceding section, we assume without
loss of generally that it a unit speed curve.
We use the notations:

 c s  for  dc s
ds

 c s for  2

2

d c s
ds

 c s  for  3

3

d c s
ds

and so on.
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Putting    ˆt s c s , we get the tangential vector having unit
length. Moreover    t s c s 0   and is not parallel to  t s In fact,
0i ( s ) t( s );  for, differentiating the identity.

< t( s ),t( s ) >=1

We get 2 <    t s ,t s >=0 and therefore, indeed    t s t s .

Again using    t s c s 0   we introduce

i)    
 
c s

n s
c s





and

ii)      b s t s n s . 

Now we get an orthonormal triade       t s ,n s ,b s of vectors
located at the point  c s of c . We call

  t s the unit tangent to c at  c s

  n s the principal normal to c at  c s

  b s the binormal to c at  c s

 the ordered triple       t s ,n s ,b s is called the Serret - Frenet
frame or the principal triade to c at  c s (Often the Serret -
Frenet frame is referred to as the Frenet Frame. and the scalar
   k s c s  is the curvature of the curve at the point  c s .

At a later stage we will associate one more scalar called the torsion
of c at  c s and denote it by  s ; it quantifies the twisting of the
curve c at the point  c s .

 s

 c s

 b s  t s c

Fig. 3 : The Principle Triade       t s ,n s ,b s 

We proceed to explain how the scalar  k s 0 describes the
bending of the curve C at its point  c s .
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Fix arbitrarily a point say  0c s p of c . Take two more
points  1c s and  2c s on the curve (without loss of generality,
assume that 1 0 2s s s  .) We now prove the following

Proposition 2: suppose  0k s 0. If 1 2s s are near enough to 0s
then      0 1 2c s ,c s ,c s are non- collinear (and therefore there is a
unique circle passing thought them.)

Proof: (By contradiction)
Under contrary assumption, suppose we can choose

parametric values 1 2s s arbitrary near to 0s such that the points
     1 0 2c s ,c s ,c s are collinear. Now, because the (smooth) curve c is
bending continuously, there exist parametric values 1 2r r with

1 1 0 2 2s r s r s    such that the tangent vectors 1 2c( r ) c( r )   are both
parallel to the line L. (The geometric situation is as in Fig.4 below.)

Fig. 4

Recall, 1c( r ) and 2c( r ) are both unit victors and therefore,
their being parallel to the line L implies their equality:

1 2c( r ) c( r )   or equivalently put:

   2 1

2 1

c r c r
0

r r
 




 
…………………………… (*)

Recall, 1 2s s are arbitrarily near to 0s ; we make 1 2s s both
approach 0s indefinitely. Then 1 0 2 0r s ,r s  and therefore the
equation ( ) in the limit becomes

 
   

1 0
2 0

1 2 1 1

r s
2 1r s

c( r ) r c( r ) r
lim 0

r r
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But, the above limit is  0c s , Thus  0c s 0 Thus, we have
arrived at a contradiction to the assumption  0c s 0

Therefore, indeed, when 1 2s , s are near enough to 0s the three
points      0 1 2c s ,c s ,c s are non - collinear 

We consider the circle determined by the (Non - collinear) points
     0 1 2c s ,c s ,c s ; let it be denoted by  0 , 1 2S s s ,s and its centre by
 0, 1 2D s s ,s  .

We prove below that the circle  0 , 1 2S s s ,s takes a limiting
position in the plane through  0c s containing  0t s and  0n s .
Clearly the limiting circle is the best curve reflecting the bending of
the curve cat its point  0c s (The circles  0 , 1 2S s s ,s approximate c
around the point  0c s and the approximation improves as

1 2 0s s s  .

It turns out that radius of this limiting circle is
 0
1

k s
.We prove this

result in the following proposition

Proposition 3:
The circle  0 , 1 2S s s ,s S takes a limiting position in the plane

through  0c s containing  0t s ,  0n s and its radius is
 0
1

k s
.

Proof: Let  0 1 2D D s ,s ,s be the centre of the circle S . For a fixed
pair 1 2s ,s in I (near enough to 0s ) we consider the function:

f : I  
given by    f ( s ) c s D,c s D    

Because the circle S passes through  0C s , 1C( s ) and  2C s ,
we get

     o 1 2f s f s f s 
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Applying mean value theorem of differential calculate to
   if s f s , i 0,1,2,   we get 1 2r r  in I with 1 1 0 2 2s r s r s    such

that

1 2f ( r ) f ( r )  ……………………………………….. (*)

Application of the same theorem to f with ( ) gives
3r I with 1 3 2r r r  such that

3f ( r ) 0 ……………………………………………. (**)

We take limit of ( ) and ( ) as 1 2 0s , s s  and consequently
1 2 3 0r ,r ,r s This gives

   0 0f s 0 f s  

But, we have:

   

   

   

0

0

0 s s

s s

0 0 x s

f s lim f s

lim 2 c s ; c s D

2 c s c s limD









     

    

 





This gives:    0 0 x 0
c s c s limD 0


    ……………………… (***)

Next differentiation of  f s twice gives:

         f s 2 c s ,c s D 2 c s ,c s          

=    2 c s ,c s D 2   

Therefore:
00 f ( s ) 

   
0s s

lim{ 2 c s ,c s D 2 }


     

This gives
 0 0
0

1n( s ),c( s ) limD
k s

    …………………. (****)

Above, we have been writing limD for the limit
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1 0
2 0

0 1 2s s
s s

lim D( s ,s ,s )



Thus, from ( ) we get:
(a) the point limD lies on the line through  0c s and going

perpendicular to the vector  0t s ( equivalently put limD is a point

lying on the line through  0c s and extending in the direction of
 0n s

From  **** we get:

(b)    0
0

1c s limD
k s

  .

The observations (a), and (b) above give:

   
 
0

0
0

n s
limD c s

k s
  .

Therefore the circle  0 1 2S s ,s ,s indeed takes a limiting
position, lying in the plane through  0c s parallel to    0 0t s and n s  in

such a way that its centre is    
 
0

o
0

n s
c s

k s
 . See Fig. 5 below:

Fig. 5

We call the limiting circle the osculating circle of the given curve c
at its point  0c s .
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Here is some more terminology.
 The plane through  c s spanned by  t s and  n s is the
osculating plane of c at its point  c s .

 The plane through  c s spanned by  n s and  b s is the
normal plane to c at its point  c s .

 the plane through  c s spanned by  t s and  b s is the plane
rectifying plane of c at  C s .

Thus, we have obtained above that to within second order of
approximation, the curve seems to live within its osculating plane at
 c s and is approximately a circle - the osculating circle at  c s - and

having radius
 
1
k s

.

Note one more geometric fact: the binormal maintains its
perpendicularity to the osculating plane as we move along the curve.
Therefore the map  s b s describes the movement of the binormal
as its foot traces the curve c while the foot moves forward, the
vector  b s rotates about the tangent line as its axis of rotation; in
other words it describes the twist in the curve We are interested in
the rate of twist- the rotation of the vector  b s . we denote the rate
of rotation of  b s by  s and call it the torsion of the curve c at
the point  c s .

4.3 THE SERRET - FRENET FORMULAE :

In the last section, we singled out a class of regular curves
which we called the Frenet curves and associated with such a

3c : I   the geometric objects namely

(i) a moving orthonormal frame
      s t s ,n s ,b s , s I   

and

ii) The two functions:
 k : I 0, 

c : I  
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describing the bending and twisting of the curves. We now derive
differential equations in the vector fields    s t s , s n s ,  

 s b s , which rolate all the quantities described in (i) and (ii)
above.

We already have:
   t s k( s )n s , s I  

Next, we have  n s 1 i.e.    s ,n s 1    . Differentiating this
identity we get.

   n s ,n s 0 

Therefore the vector  n s is expressible as a linear
combination of     t s ,b s (Here we are using the facts that
      t s ,n s ,b s is an orthonormal vector basis and the vector  s

has no component along n( s ) as derived above) We get.
n( s )=        s t s s b s    ……………………… (*)

for some smooth functions , : I ;    we find these functions.
Taking inner product of the identity ( ) with  t s ,we get

               
   

n s ,t s s t s ,t s s t s ,b s

s . I s .0

       

  

     i.e n s ,t s s   ……………………………. (**)

On the other hand, differentiating the identity
   n s ,t s 0    gives        s ,t s s ,t s 0       

Therefore          s ,t s s ,k s n s 0 i.e         

         n s ,t s k s n s , n s 0       

and therefore

     n s ,t s k s    ……………………….. (***)

Now,
 and ( ) give      n s ,t s k s .    Finally combining

this identity with yields :

         n s k s t s s b s  
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Recall, we have introduced the function  t s as the function
describing the rotation of the unit vector  b s about the vector  t s as
its axis of rotation. Consequently we have the equation :
     b s t s n s  

(the negative sign being introduced as a rotational convenience). On
the other hand, differentiation of the identity    n s ,b s 0   gives

       n s b s n s ,b s 0      

i.e.          n s b s n s , s n s       ………………………. (****)
i.e      n s b s t s   ……………………………… (****)

Again taking inner product of the equation
         n s k s t s t s b s   

with  b s gives      , ;n s b s p s  thus by (****) above we get

   s s  . This gives :
         n s k s t s t s b s   

Thus, we have obtained the triple of ODE
     
         
     

t s k s n s

n s k s t s t s b s

b s t s n s

 

    

 





These equations are often written in the matrix form
 
 
 

 
   

 

 
 
 

t s 0 k s 0 t s
d n s k s 0 s n s
ds
b s 0 t s 0 b s

     
            
          

These equations are called the Serret - Frenet equations of a
(Frenet) curve.

Thus associated with a Frenet curve is a pair of scalar valued
functions, defined along the curve namely the curvature k and the
torsion t . In Chapter 6: we will prove that these two functions
together determine the curve uniquely to within a rigid motion of the
curve.
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4.4 SIGNED CURVATURE FOR A PLAIN CURVE:

For a curve living in a plain the binormal  b s remains a
constant unit vector, namely one of the two unit vectors which are
perpendicular to the plain in which the curve is situated
Consequently the third of the Serret - Frenet equations gives t 0.
On the other hand we can make use of the standard (counter
clockwise) orientation of the plane to refine the (blunt) non- negative
curvature function and make it a function taking both non - negative/
negative values. We ascribe a signature to  k s as follows We
replace the principal normal  n s by the vector  n̂ s (say) which is

obtained by rotating  t s ( about its foot  c s through
2
 the rotation

being anticlockwise (It is here that we are using the standard
orientation of 2 ) Now, we obtain the signed curvature  k s of c at
 c s by using the defining equation:

     c s k s n s 

Fig. 6

For example, the curve   2c s ( s,s ) s   has positive curvature
while the curve   2ĉ s ( s, s ), s    has negative curvature.

In passing, note the following simple fact : Identify the plane
with the complex plane  . Then rotation of vectors anti - clockwise

through the angle
2
 corresponds to multiplication of the vector (as a

complex number) by the imaginary unit i. This consideration leads to
the definition of the signed curvature:

     d t s k s i t s .
dx
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4.5 EXERCISES :

1) Obtain principle triade of the curves given below at the indicated
points.

a)    2 3, ,c s s s s at  1,1,1

b)    4cos , 4sin ,3c s s s s at  4,0,0

c)    2, 4 , sc s e s e at  1,0,1

2) Reparametrize the following curves so as to get unit speed
curves.

a)    2 2 3, 2 ,3 0c s s s s s  at  1,1,1

b)    os 2 , sin 2 ,0s sc s e c s e s s

c)    4,2 ,3 ,c s s s s
3) Verify that the curve 3:c   given by

  3 2 1cos 2 , cos 2 , sin 2 1 ,
10 5 2

c s s s s s    
 

 is a unit speed curve

and obtain the curvature and torsion function of it.
4) Let 3 3:L   be an isometry of 3 and let 3:c I   be a Frenet
curve.

Prove :
i) Loc is also a Frenet curve
ii) both, c, Loc have the same curvature and torsion functions.

5) Suppose the curve 3:c   has non-vanishing curvature. Prove
that if all osculating planes of c pass through a fixed point, then c
is a plane curve.

6) Calculate the signed curvature function the curves :
i)    2, ,c s s s s O 

ii)    2, ,c s s s s O  
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5
CURVATURE AND TORSION

Unit Structure :

5.0 Introduction
5.1 Curvature and Torsion Functions
5.2 Signed Curvature of a Plane Curve
5.3 Elementary Properties of Curvature and Torsion
5.4 Exercises

5.0 INTRODUCTION

In the last chapter we considered smooth Frenet curves and
defined the curvature and torsion functions of such curves. In
defining these terms, we used the unit speed kind of
paramentrization of the curves in an essential way (for example, we
were using the unit length property of the tangent vector  c s in
getting the perpendicularity    t s n s .) However, curves are
seldom in the unit speed parametrized form. We therefore need
develop equations to calculate these quantities applicable even when
the curves of our interest are arbitrarily parametrized (regular Frenet)
curves.

In this chapter, we develop the desired formulae for the
Frenet curves and then we proceed to study the geometry of such
curves in terms of the curvature and tersion functions.

5.1 CURVATURE AND TORSION FUNCTIONS :

Let 3c : I   be an arbitrarily parametrized regular Frenet
curve; its parameter being denoted by r I . Besides r, we need
consider the natural are-length (and hence unit speed)
parametrization for a while. Thus, we consider 3c : J   the are-
length parameter manifestation of c, the are-length parameter, as
usual, being denoted by s and the reparametrization map being

 : I J : r s    where  is strictly monotonic increasing bijetive
map between the indicated intervals. For the sake of convenience we
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will denote differentiation w.r.t. r by a dot “.” e.g.    d c r
c r

dr
 

 
 



while we will use the derivative notation  d c s
ds


for the are length

parametrization. Now the relations between the two parametrizations
are :

    
  

c r c r

c s r

 







Where we are writing  S r for  r

In terms of these notations, we have :
    

      

c r c s r

dc r c s r s r
ds










   t r s r  ................................................ (*)

         2dc r t s s r s r t s
ds

 
  

         2k s s r n s s r t s 
 

....................... (**)

             

                   

                 

                   

3 3

3

dc r k s s r n s k s s r n s
ds

2 s r s r k s n s s r t s s r s r k s n s
d k s s r n s k s s r k s n s 7 s b s
ds

2 S r s r k s n s s r t s s r s r k s n s

 

  

     

  

   

    

 

    

This                  3 3 3dk s
c r s r t s s r k s s r 3 s r s k s

ds
 

    
 

     

         n s k s t s S r b s 


............................................ (***)

Farming cross product of (*) and (**) we get :

                 3 2c r c r s r k s t s n s s r t s t s    
   

     3s r k s b s 0 


........................ (4*)

And therefore           
3

c r c r s r k s r b s 
  

   
3

s r k s 1 
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Which gives      
   

 
3

c r c r
k r k s r

c r


 

 



Next, taking inner product of (***) with (4*) we get :

           

   

 
   

62

6

6

c r c r ,c r k r t s s r

c r c r
t s c r

c r

 




  

 





Using the above obtained expression for      k r k s r . Thus we

get :  
     

   
2

c r c r ,c r
t r

c r c r






  

 

(Above we have adapted the notation  k r for    k s r .

Thus we have proved the following :

Proposition 1 : The curvature and torsion functions.

 k : I 0, ,t : I   for a regular Frenet curve 3c : I  
are given by :

 
   

 
3

c r c r
k r

c r




 



And  
     

   
2

c r c r ,c r
t r

c r c r






  

 

=
     

   
2

det c r ,c r ,c r

c r c r
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(In the above determinant notation :      det c t ,c t ,c t   the vectors

     c r ,c r ,c r   are in the columns of the matrix      c r ,c r ,c r     .

An Illustrative Example : Obtain the curvature and torsion
functions for the circular helix :

   c r a cos r,a sin r ,br ;r     a and b being both non-zero
constants.

Solution : We have :

   

   

c r a sin r,a cos r ,b

c r a cos r, a sin r ,o

 

  





And    c r a sin r, a cos r,o 


Therefore            2c r c r ab sin r, abcos r,a , c r ,c r ,c r  
    

2 2 2 2 2a b sin r a bcos r 0.a  
2a b

     

 

2 2

2

c r c r a 1 b

b a 1

  

 

 

And    2 2c r a b 


. This gives :

 
 

 

2

3
2 2 2

b a 1
k r

a b





and    

   
2 2

2 2 2 2

a b 1 at r
b a 1 b a 1


 

 

Here is another Illustrate Example :

Calculate k ,t of the space curve :
   r 2c r e ,r ,r ,r  .

Solution : We have :

   r 2c r e ,r ,r

And therefore    rc r e ,1,2r
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   rc r e ,0,2


And    rc r e ,0,0


This gives :    
1 2 3
r

r

e e e
c r c r det e 1 2r

e 0 2

 
    
  

 

  r r2,e 2r 1 , 2e   

And therefore    2r 2c r e 4r 1  


     2r 2c r c r e 4r 8r 5 4      
 

And       2rc r ,c r ,c r e
  

These equalities give :

 
   

 

 
 

3

2r 2

3
2r 2 2

c r c r
k r

c r

e 4r 8r 5 4

e 4r 1




    
 

 



 
     

   

 

3

2r

2r 2

c r c r ,c r
t r

c r c r

e
e 4r 1







 

  

 

5.2 SIGNED CURVATURE OF A PLANE CURVE :

The concept of signed curvature of a plane curve was
introduced in Chapter 4. Here we tarry a while to explain a little
more about the underlying heuristics formula for the same of a
planar, regular but arbitrarily paramethrized Frenet curve.

Thus, let 2c : I   be a Frenet curve, its parameter being
denoted by r. we consider its unit speed parametrization also, the
associated unit speed parameter being (as usual)  S S r . In order
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to employ as few notations as possible, we write both the
parametrizations of the curve by the same symbol    c : c r c r in

the sense        c r c S r c S   being the unit speed version of

 c r and  S S r being the unit speed parametrization map. With
this notational understanding in mind, we write  t r for

    t s r n r for   n s r and so on.

Now returning to the signed curvature we recall that we were
considering rotation of the unit tangent  t r about the point

 c r through the angle
2
 and thus getting  t r . See the figure below:

Thus, at the point  c r of the curve c, we have the two unit

vectors  n r and  t r . Clearly we have either    t r n r as indicated

in part (a) of the figure or    t r n r as shown in part (b).

Now, let us note the difference between the earlier (rather
blunt) case of the non-negative curvature  k s and that of the

present signed curvature   k s .

In defining  k s we compared  c s with the principal normal
 n s :

     c s k s n s


............................................... (*)

While introducing the signed curvature   k s we are comparing  c s


with  t s :
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 c s


=   k s  t s ............................................... (**)

thus arriving at the definition of signed curvature   k s of c at the
point  c s . Consequently in view of the above observation

   n s t s  (as illustrated in cases (a), (b) above) the equations (*)

and (**) give two possibilities :     k s k s  .

Now a few words about the notations : As mentioned above,
we are desirous of using as few notations as possible. Above, we
introduced the notation   k s for the signed curvature besides the
earlier  k s . However, in a plane we will be considering the signed

curvature only and as such the two notations :  k s and   k s are

superflows. We therefore abandon   k s and revert to the old notation
 k s through we are dealing with the signed curvature. Thus from
now-onwards  k s stands for the signed curvature of a planar curve
while in 3 it is the old non-negative curvature. (Also, we continue
with the practice of denoting by a dot : “.” differentiation with

respect to the given parameter, while d
ds
is the differentiation with

respect to the natural are length s of the curve). Now we write the

vector equation      
2

w

d c s
k s t s

ds
  in terms of its components.

 

 
 

 

 

 
 

 

2

22

2
2

12

2 2

1

d c s t s
ds k s
d c s

t s
ds

d c s
dsk s
d c s
ds

                 
 
 

  
 
  

Equivalently, put, we have the pair

     

     

2
1 2

2
2
2 1

2

d c s dc s
k s

ds ds
.......

d c s dc s
k s

ds ds
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The pair  expressed in terms of the given parameters takes
the form :

a)        
2 2

1 1 22

dr d r drc r c r k r c r ,
ds ds ds

     
 

  

b)        
2 2

2 2 22

dr d r drc r c r k r c r
ds ds ds

    
 

  
.

Multiplying (a) by  2c r


and (b) by  1c r


gives :

c)            
2 2

2
1 2 1 2 22

dr d r drc r c r c r c r k r c r
ds ds ds

      
 

    

d)            
2 2

2
2 1 1 2 12

dr d r drc r c r c r c r k r c r
ds ds ds

     
 

    
.

Subtract of (c) from (d) gives :

             
2

2 2
1 2 2 1 1 2

dr drc r c r c r c r k r c r c r
ds ds

              

     
and

therefore :

             2 2
1 2 2 1 1 2

drc r c r c r c r k r c r c r
ds

              

     
; which

in turn gives :

   
 

1 2

3

det c r ,c r
k r

dr
ds

 
   
 
 
 

 

This is the desired formula for the signed curvature  k r of
the planer curve.

Note one more aspect of the signed curvature namely the

general non-negative curvature given by  
   

 
3

c r c r
k r

c r




 



involves differentiation of the curve only but the singed curvature

mu
no
tes
.in



74

 
   

 
3

det c r ,c r
k r

c r

 
  

 


is not only terms of the derivatives    c r ,c r

 

of c, but it takes into consideration the anti-clockwise orientation of
the ambiant space 2 in a crucial way! For defining the signed
curvature, we were considering the anticlockwise rotation of the unit
tangent  t r . Had we chosen to rotate it in the clockwise manner,
the curvature could have changed its sign!

Let us consider two simple examples of curves and calculate
their signed curvature functions.

(I) 2c :   is given by the graph of the cosine curve :
   c r r ,cos r  .

Then we have (i)    c r 1,sin r


(ii)   2c r 1 sin r 


(iii)    c r 0, cos r 


Now     1 0
det c r ,c r det cos r

sin r cos r
            

 
and

therefore the (signed) curvature of this curve is  
 

3
2 2

cos rk r
1 sin r





.

II) 2c :   is given by    r rc r e cos r,e sin r  .

Then we have (i)       r rc r e cos r sin r ,e sin r cos r   


(ii)   rc r 2e


(iii)    r rc r 2e sin r ,2e cos r


Therefore

     
 

r r

r r

e cos r sin r 2e sin r
det c r ,c r det

e cos r sin r 2e cos r
           

 
2r2e .

Therefore  
2r

3r r

2e 1k r
2 2e 2.e

  ...............................
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5.3 ELEMENTARY PROPERTIES OF CURVATURE
AND TORSION

Here is another description of the curvature of a space curve:
The curvature of a curve at a point of it measures angle variation of
the tangent vector per unit length of the are. To be more precise, we
have the following :

Proposition 2 : The curvature  k p of c at a point p of it is given by

 k p =
 q p

lim
p,a




where q is a point on c with  q p, p,q  is

the length of the are of c between its points p, q and  is the angle
between the tangents at p and q.

Proof : The angle  is obtained by using the formula for the angle
in an isoscelese triangle :

   t q t p
sin

2 2
   

 

Therefore
   q p 0 0

2 sin
2 2lim lim lim

p,a sinQ 2 p,q  

 



  

   

   

 

 

0

0

t p t p
1 lim

c p c p
lim

c p

k p





 
 

 








 












Definition 5.1:A regular curve having the property that the tangent
lines at all points of which make a constant angle with a fixed
direction is called a slope line.
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Proposition 3 : (Lancert’s Theorem) a Frennet Curve is a slope line

if and only if the quotient  
 
t s
k s

is constant.

Proof : First, suppose that there exists a constant unit vector e(the
direction) such that  t s ,e is the same for all s. Then we have

 d t s ,e 0
ds

 .

i.e.    k s ,n s ,e 0 and  k s 0 for all s implies  n s ,e 0 .

Differentiating this equation we get        k s ,t s t s b s ,e 0   ;

which gives :  
 

 
 
b s ,et s

k s k s ,e
 .......................................... (*)

Now, the above observation that  n s e for all s implies that
the vector e remains in the rectifying planes. Combining this
observation with the assumption that  t s ,e constant implies that

 b s ,e also is constant. Now (*) above gives constancy of the

function  
 
t s

r
k s

 .

Conversely suppose,  
 
t s
k s

is independent of s and consider

the vector      
   t s

a s b s t s
k s

  . Differentiation of the functions

 s a s gives.

       
     d v s t s

t s n s k s n s
ds k s

0

  





and thus  a s a for a constant vector. The constancy of a and that

of  
 
t s
k s

now implies that the tangent vectors make constant angle

with the vector a and therefore, the curve is a slope line.

Proposition 4 : A Frennet curve 3c : J   lies on a sphere of radius
R 0 if and only if its curvature and torsion functions k ,t , satisfy the
identity
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2

2
22

k s1 R
k s k s t s

 
  
 
 

Proof : First, suppose that the curve c lies on the sphere of radius
 centred at 0. Then we have :     2c s 0,c s 0 R    .

Differentiating this identity w.r.t. s, we get    2 t s ,c s 0 .

The above identity implies that  c s lies in the normal plane :

         c s s s s t s    and   2 2c s R gives

   2 2 2s s R   .

Differentiating the identity    t s ,c s 0 gives

         k s n s ,c s t s ,t s 0  

i.e.            k s n s , s s s b s 1 0     which gives

   
1s
k s

   ............................................................... (*)

Next, differentiating the identity      k s n s ,c s 1 0  gives

                 1k s n s ,c s k s k s t s t s b s ,c s 0    . Which gives

         1k s s k s t s , s 0    and therefore we get

   
   

1

2

k s
s

k s t s
  ....................................................... (**)

These values of    s , s  substituted in the equation

   2 2 2s s    gives :

 
 

   

21
2

2 2

k s1 R
k s t sk s

 
   
 

.

Conversely, suppose the above equation is satisfied.
Differentiating it, we get :

 
 

 
   

 
   

1 1 1

3 2 2

xk s zk s k sd 0
k s s ds k s sk s

 
      

.
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This gives  
 

 
   

1

2

t s k sd
k s ds k s t s

 
   

 
.

Next, consider the vector      
 

 
     
1

2

s k s
a s c s b s

k s k s t s


   .

Differenting it, we get :

       
 

        
 

 
   

       
   

2

2 2

k s t s t s b sk s n s
a s t s

k s k s

k s k s t s n sd b s
ds k s t s k s t s

0

 
  

 
  
 
 






 

Thus,  d c s 0
ds

 and therefore  a s is a constant vector, say

 a s a and then we get :

   
 

 
   

 2

s k s
a c s b s

k s k s s


   


.

This gives :  
 

 
   

2

2

2 2

k s1c s a
k s sk s

 
   
 
 



.

But, by assumption, we have
 

 
   

2

2
2 2

k s1 R
k s k s s

 
  
 
 



therefore, we get   2 2c s a R  i.e. the curve lies on the sphere
centred at a and having radius R .

Proposition 5 : Let c be a closed plane curve.

Then the integral  
C

1 k s ds
2


  is an integer.

Proof :We identify 2 with  .

Also, we recall an elementary result of complex analysis. For
any zx ,e 1  if and only if z 2 im  for some m .

Define    f : 0,L \ 0 by putting
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s

0
f s exp k r dr ; s 0 L   

(Here L is the length of the curve c)
Also, we consider the map  g : 0,L  given by

   
   t s

g s ,s 0,L
f s

  . Then we have,

            
2

g s t s f s f s t s f s    

 

Then we get

         
 

           
 

2

2

t s f s f s t s
g s

f s

ik s t s f s ik s f s t s
f s







 


(Above we are dealing with the signed curvature of c and
therefore              f s k s t s k s it s ik s t s 0    .

Therefore g is a constant function. In particular,    g 0 g L

that is :  
 

 
 

t 0 t L
f 0 f L

 . Now because c is a closed curve, we have

   0t t L which in view of the last equality gives    f 0 f L .

But  f 0 1 and therefore we get  f L 1 i.e.   2

0
exp i k r dr 1 .

Therefore, by the above quoted result, we get  
L

O
i k r dr 2 im   for

some integer m. This gives

 
L

0

1 k r dr m
2

  
   .

Lastly, we prove the following result (which is of
considerable technical importance in geometry / analysis).

Lemma : Let  Q : a b   be a continuously differentiable function.
Suppose the function  f : a,b  given by
      f s exp iQ s s a,b  satisfies :  f a 1 and  f b 1  . Then

 
b

a
f r dr  


and the inequality becomes equality if and only if it is

monotonic and    Q b Q a   .
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Proof :We have :      f s iQ s f s


and therefore :

     

 

   

b b

a a

b

a

f s ds Q s f s ds

Q s ds

Q b Q a





 

 



 



Because    f a 1, f b 1    , there exist integers ,m such
that  Q a 2  and      Q b 2 m 2m 1       .

Therefore    
b

a
f r dr 1 2 l m

.

   

 




The statement regarding the equality follows directly.

5.4 EXERCISES :

1) Compute the curvature and torsion functions of the following
curves.

a)    t t
a aac t t , e e ,0 t

2
     

 


b)       c t a t sin t ,a 1 cos t ,bt b     

c)    2 3c t t ,t ,t t 0  

2) Obtain the principal triade       r t r ,n r ,b r  for the
following curves :
i)    2c r r,r ,2r r 0  

ii)    r rc r 4e ,r ,e 

iii)    c r 2,10 cos r ,5 sin r

iv)    c r a cos r,a sin r,br r ,a,b    being constants.

3) Prove : If all tangent vector (unit length) are drawn from the
origin of the curve    2 3c t 3t ,3t ,2t then their end points are on the
surface of a circular cone having axis x z y 0.  
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4) Let a plane curve be given in polar coordinates  r , by r r  .

Using the notation drr
d 1





prove that the are length of the curve

segment corresponding to  verying in  a,b is given by

b 2 2

a
r r d 
  

 


and the curvature function  k  is :

 
2 2

3
2

2 2

2 r r r rk

r r

 
 

 
 

 

 


.

5) Obtain the curvature function  k  of the curve (called
Archimedean spiral) :  r a ,   a being a constant.

6) If a circle is rolled along a line (without slipping) then a fixed
point on the circle describes a curve called the “cycloide”.

i) Obtain a parameterization of the cycloide generated by a
circle of radius.

ii) Obtain a unit speed parameterization of the same curve.
iii) Obtain expressions for the functions

     s t s , s n s , s b s    for the (unit speed) cycloide of
rad a>0.

iv) Obtain its curvature function.
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6
FUNDAMENTAL THEOREM OF CURVES

Unit Structure :

6.0 Introduction
6.1 The Fundamental Theorem of Curves
6.2 The Initial Value Problem of ODE
6.3 Proof of the Fundamental Theorem
6.4 Illustrative Examples
6.5 Smooth Curves In Higher Dimensional Euclidean Spaces
6.6 A Space-Filling Continuous Curve
6.7 Exercise

6.0 INTRODUCTION

In the preceding chapter we studied that with each Frenet
curve 3c : I   are associated two scalar functions, namely its
curvature function.  k : I 0,  and the torsion function t : I   .
The fundamental theorem of curves, which we will study in this
chapter, deals with the converse : it asserts that the two functions

 k : I 0, ,t : I   determine the curve uniquely to within an
isometry of 3 .

The proof of this important theorem is based on a basic
existence / uniqueness theorem for the theory of ODE, namely the
Picard’s existence / uniqueness theorem on the solution of a first
order ODE. We therefore recall Picard’s theorem (statement only)
and then proceed to prove the fundamental theorem of curves.

After proving the main theorem, we discussed a few exercises
which illustrate various concepts related to space curves we have
come across.

A point regarding our differentiability assumptions need be
explained here : We are assuming throughout that all curves

3c : I   are infinitely differentiable on I, we are also imposing
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regularity conditions on the derivatives :    c t o,c t o 


 for all
t I and so on. Actually, we seldom differentiate curves more than
thrice in deriving any result or in calculating any quantity associated
with a curve. Infinite differentiability of curves is indeed superfluous
but it is used as a general set-up, it can be relaxed to just three times
continuous differentiability (but not any further because we are using
differentiation as a tool involving      c t ,c t ,c t   and their linear
independence and so on.)

For a long time, a curve was considered as a thin line in 2 or
in 3 which was mere a continuous image of an internal. Apart from
the fact that the tools of differential calculus are not applicable to
such curves, there are space filling curves, which shatter the classical
expectation of a curve as a thin line. In 6.6 we discuss (rather
concisely) an example of a fat continuous curve filling a square.

6.1 THE FUNDAMENTAL THEOREM OF CURVES

We begin here with the recall of some of the concepts
associated with a Frenet curve and then (only) state the enunciation
of the fundamental theorem. The proof of the theorem (as explained
above) makes use of Picard’s theorem in ODE and therefore we
discuss Picard’s theorem in the next section (again only the
statement, no proof!) and then develop the proof of the main
theorem in 6.3. It is hoped that this approach will help the reader
develop the context to study the proof of the main theorem.

Recall that a smooth curve : 3c : I   with

   c s 1,c s 0  
 

for all s I gives rise to the two functions :

 curvature k : I 0,    and
torsion t : I    .

These functions and the principal triade       t s ,n s ,b s for
each s I associated with the curve satisfy the ODE called the Serret
- Frenet formulae :

 
 
 

 
   

 

 
 
 

t s o k s o b s
d n s k s o t s n s
ds
b s o t s o b s

     
           
          

Now we ask : Conversely given the following data :
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two smooth functions

k : I o,
t : I

  

  

 





3a point p with a parametric value s I ,           and
 0 0 0an orthonormal triade of vectors t ,n ,b      ,

is there a smooth curve 3c : I   having the given smooth functions
k , as its curvature, and torsion; passing through the point p i.e.
 c s p  and having the principal triade  0 0 0t ,n ,b at its
point  p c s ?

The fundamental theorem gives an affirmative answer.

Theorem 1 (The Fundamental Theorem of Space Curves) : Given :
i) smooth functions :  k : I 0, ,t : I  
ii) 3

0 0p , s I   and
iii) orthonormal vectors  0 0 0t ,n ,b

there exists a unique Frenet curve 3c : I   which has the
properties :

 0c s p 

   0 0 0c has the principal triade t ,n ,s at c s        and
c has,k ,t as its curvature and torsion functions.         

We prove this theorem in 6.3.

6.2 THE INITIAL VALUE PROBLEM OF ODE

We introduce here the initial value problem of ODE and state
without proof the existence / uniqueness theorem regarding the
solution of the initial value problem. The precise statement of the
theorem is to be used in proving the fundamental theorem (of
curves) in the next section.

Let I denote an open interval and let so be an arbitrary point
of it. Let  nA : I M  be any smooth matrix valued map and let

0x be any point of n . We consider the ODE.
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 dx A s X ,
ds

  (X being a variable ranging in n ) and a

solution  t X t of the ODE is required to satisfy  0 0X s x . This
constitutes the initial value problem (I.V.P.) :

   0 0
dx A s X , X s x
ds

   ......................................... (*)

Now, the theorem regarding the existence and uniqueness of
the solution of the I.V.P. (initial value problem) is the following :

Theorem 2 : The initial value problem (*) has a unique solution
nX : I   defined on the whole of the internal I.

Consult Chapter 2 of this series of study material.

6.3 PROOF OF THE FUNDAMENTAL THEOREM

To begin with, we consider the principal triade map
      s t s ,n s ,b s through  0 0 0t ,n ,b of a prospective curve  c s

passing through the given point 0P . Putting

 
 
 
 

t s
X s n s , s I

b s

 
    
  

We treat  X s in two different but equivalent ways, namely :

 Being an ordered triple of vectors in 3 it is a vector in 9 .
 It is also a 3 3 matrix of which the top row consists of the
three components of  t s , the middle row consists of those of
 n s and the bottom row consisting of the components of
 b s ,

 
     
     
     

1 2 2

1 2 3

1 2 3

t s t s t s
X s n s n s n s

b s b s b s

 
   
  

We now consider the initial value problem :

     
0

0 0

0

t
dx A s X s , X s n
ds

b

 
     
  

................................. (*)
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Where  
 

   
 

o k s o
A s k s o t s

o t s o

 
   
  

.

Note that the ODE in (*) is nothing but the system of the
Secret - Frenet equations.

By Theorem 2 above, we get a unique solution
  9X : I M 3,    of the initial value problem (*). Thus we get

the functions.
3

3

3

t : I
n : I
b : I











With      0 0 0 0 0 0t s t ,n s n ,b s b .  

At this stage, we claim that the assumed orthonormility of
 0 0 0t ,n ,b implies orthronomality of       t s ,n s ,b s for each s I .
To get this result, we use the antisymmetry of the matrix  A s , that

is    tA s A s  ; (where  tA s is the transpose of  A s

We have :

            

          

            

            

t t t

t
t

t t

t t t

d d dX s X s X s X s X s X s
ds ds ds

d X s X s X s A s X s
ds

A s X s X s X s A s X s

X s A s X s X s A s X s

      
 

    
 

   

    

             

           

t t

t t

X s A s X s X s A s X s

X s A s X s X s A s X s
0

     

      



This proves constancy of the matrix valued function
   ts X s X s : 
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t t
0 0

0

0 0 0 0

0

X s X S X s X S

t
t ,n ,b n

b

1 0 0
0 1 0 I
0 0 1

 

 
    
  

 
   
  



Thus    tX s X s I  , that is, each  X s is an orthogonal
matrix; in other words for each       s I , t s ,n s ,b s is an
orthonormal triade of vectors.

Finally we get the desired curve 3c : I   by putting :
   

0

s

s
c s p t r dr  

Clearly the curve 3c : I   is well-defined and satisfies; (a)

 0c s p and (b)    c s t s


. Moreover, we have :

                 t s k s n s , n k s t s t s b s , b t s n s        
  

that
is, the curve 3c : I   satisfied the Serret-Frenet equations having
k ,t as its curvature and torsion functions . And then, the initial
conditions - that is,  0c s p ,         0 0 0 0 0 0t s ,n s ,b s t ,n ,b impose
uniqueness on the solution curve c.

Thus, given smooth functions  k : I 0,  and t : I   the
theorem guarantees that there exist curves 3c : I   having k ,t as
their curvature and torsion functions. Next we claim that any two
such curves are related by an isometry of 3 i.e. one curve is the
isometric image of the other. To see this, consider any two such
curves say 3c : I   and 3c : I   choose 0s I arbitrarily.

Let  0p c s and   0p c s  .

We put d p p  that is, p p d  .

Also, let 3 3A :   be the unique orthogonal transformation
having the property :

     0 0 0 0A t t A n n   and   
0 0A b b .
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The vector d and the orthogonal transformation A combine to
give the isometry 3 3L :   where    L x A x d  for every

3x .

We claim Loc c  . To justify this claim, first denote the curve
Loc by * 3c : I   . We have to verify    *c s c s . To verify this

identity, it is enough to verify that both the curves
*

c,c have the
following properties :

i) they both satisfy the Serret-Frenet equations with the same k ,t ,
ii) they pass through the point p and
iii) at p , both of them have the same principal triade.

We leave the verification of these facts as an exercise for the
reader.

6.4 ILLUSTRATIVE EXAMPLES

I) Determine all plane curves 2c : I   satisfying
i)  k s a, a being a constant.

ii)   1k s
s

 for s O

iii)  
 2
1k s 1 s 1
1 s

   


Solution : Clearly because all curves are plain curves, we have t O
and consequently there is only one Serret-Frenet equation :

     dt s
k s n s

ds
 .

Now  t s being a unit vector, we can write it in the form :
      t s cos s , sin s   

 s being the angle between the vector  t s and the X-axis.
Then we have :

      n s sin s ,cos s   
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Consequently, the equation      dt s
k s n s

ds
 takes the form

             d s
sin s , cos s k s sin s ,cos s

ds


        which gives

   d s
k s

ds


 .

Now in case of (i) above we have :
 d s

a
ds




and therefore  s as b   , for some constant b.

This gives       t s cos as b ,sin as b  

Integrating this expression for  t s , we get

   
s

0
c s p t r dr   (because    dc s

t s
ds

 ) being a fixed point

of 3 .

 1 2P p p 

      

     

s

1 2 o

1 2

p , p cos ar b ,sin ar b dr

sin as b cos as b
p , p

a a

    

  
   

 



Therefore      
1 2

sin as b cos as b
c s p , p ,s

a a
  

    
 

 .

ii) Now we have  d s 1 ,s o
ds s


  which gives  s 2 s a   , for

some constant and therefore,       t s cos 2 s a ,sin 2 s a   .

Integrating this equation, we get

     

     
    

s 2
1 2o

s s

1 2 o o

s s

1 2o o

c s p t r dr, p p , p

p , p cos 2 r a dr, sin 2 r a dr

p cos 2 r a dr,p sin 2 r a dr,
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The two definite integrals are left for the reader to evaluate
which he / she can, using methods of calculus (e.g. integration by
parts.)

iii) Now, we have :

 
2

d 1s
ds 1 s





and therefore,    1s sin s   constant.

We choose a frame of reference such that the constant of
integration in above is zero :

   1s sin s  i.e.  s sin s  and therefore   2cos s 1 s  

Now       t s cos s ,sin s  

 21 s ,s 

This gives

      s s2
1 2 o o

c s p p 1 r dr, rdr   

 
2s 2

1 2o

rp 1 r dr,p
2

 
    
 



(Again we leave the evaluation of the above definite integral
be completed by the reader.)

ii) For a plane unit speed curve 2c : I   having curvature function
k : I   and the Serret-Frenet frame     t s ,n s at a point  c s of
it, prove :

 
 

 

 
 
 

0

0

s

s 0
s

0 0
s

o, k r drt s t s1
n s n s! k r dr,o

         
      




 
.

Proof : For s I , let  A s be the 2 2 matrix :

 
 

 
0

0

s

s

s

s

o , k r dr
A s

k r dr , o
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Also, let 2 2X : I ,Y : I    be the functions given by :

 
 

   
 
0

0 0

X s t sA s
n s!Y s 

   
   

    




 
.

Now we have :

    
 
0, k sdA s

,
k s , 0ds

 
   

and


 
 

   
 
0

0 0

X s t sA sd
Y s n sds !

   
   

   




 

   
 

 
 

 
 

   
 

 
 

 
 

0

0 0

0

0 0

0, k s t sA s
k s , 0 n s!

0, k s t sA s
k s , 0 n s!

0, k s X s
k s , 0 Y s





   
       
   

       
   

       

















Now we have :

1) The function  
 
X s

s
Y s
 

  
 

satisfies the ODE

 
 

 
 

 
 

X s 0, k s X sd
Y s k s , 0 Y sds
     

          
and

2)  
 

 
 

0 0

0 0

X s t s
Y s n s
   

   
   

In other words the function on  
 
X s

s
Y s
 

  
 

satisfies the ODE

(1) and the initial conditions (2). Therefore, the equation has the

solution  
 

   
 

   
 

A s 0 0

00 0

X s t s t sA s
e

Y s n s n s!

     
      

     




 

 

 

 

 

0

0

s
0

s

s
0

0s

t sk r dr
1
!

k r dr,
n s
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6.5 SMOOTH CURVES IN HIGHER DIMENSIONAL
EUCLIDEAN SPACES

We describe, in very few words, some of the geometry of
smooth curves nc : I   for n 3 . Our main intention is only to
indicate generalization to higher dimensions of the geometry of the
space curves which we have studied above. We only introduce
concepts and state some of the elementary results, but every thing
going without proof! Interested reader can consult a standard
graduate level book such as : A course in Differential Geometry by
Withelm Klingenberg. (A Springer - Verlag publication).

Now, a smooth curve in n is a smooth map nc : I   .

For a r I writing  c r in terms of the Cartesian coordinates
:         1 2 nc r c r ,c r ........c r we consider the derivatives ;

       

       

 
 

 
 

 
 

 
  

1 2 n

1 2 n

k k k k1 2 m
r r r r

c r c r ,c r ,.......,c r

c r c r ,c r ,.......,c r

c c ,c ,.......,c

 
  
 
 

  
 





  

  



the first one, namely  c r


is the tangent vector to the curve at its
point  c r .

We have the straight-forward generalization of the notion of
reparametrization of c : Let : J I  be a smooth, strictly
monotonic increasing and bijective map. Then the (smooth) curve

nc. : J   is said to be obtained from nc : I   by
reparametrization, the map    : r J r s    being the
parametrization map.

Again for a fixed 0r I (and thereby for a fixed point
 0 0p c r of c) and for a variable   c r r I , the integral
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0 0

jnr r 2

r r
j 1

r c s ds c s ds;


 
      

 
 

 
  r is the signed

length of the segment of the curve with  0c r and  c r as its end
points.

Note that  is a strictly monotonic increasing function

whenever  c r o


for all r I . Also, note that the set
  J r : r I  is an interval.

In the following we consider those nc : I   for which

 c r o


for all r I holds. (which implies that the function
: I J is bijective). We use the strictly monotonic : I J to
reparametrize c:

The reparametrized curve c has the property that  c s 1



for all r J , that is c is a unit speed curve.

Next, to get the n-dimensional analogue of the principal triade
      t p ,n p ,b p of a space curve at a point p of it, we assume the

following property :

For each r I , the set         nc r ,c r ........c r
 

is linearly

independent. Applying the Gram-Schmidt orthogonalization to each

        nc r ,c r ........c r
 

we get the orthonormal set

      1 2 ne r ,e r ........e r with the property that for each    kk n,c r

is a linear combination of      1 2 ke r ,e r ........e r . Now
    1 ne r ........e r thus obtained, is the desired analogue of the

principal triade of a space curve. We call the set  1 2 ne ,e ........e of unit
vector fields along c, the Frenet frame of the curve. Now, we have
the following two results :

Theorem 3 : Let nc : I   be a smooth curve having its Frenet
frame  1 ne ........e . Then there are smooth functions

1 2 nk ,k ........k : I   satisfying the equations :

mu
no
tes
.in



94

The functions ik : I  are called the ith curvatures of c and
the above set of equations are the Frenet equations.

Theorem 4 : (Fundamental Theorem of Curves.) Let
1 2 nk ,k ........k : I   be smooth cures 1 2 n 2k ,k ........k 0  on I. For a
fixed n

0 0r I , p  and for any orthonormal set  10 20 n0e ,e ........e there
exists a unique curve nc : I   parametrized by its are-length r
having the properties :

1)  0 0c r p

2)  10 20 n0e ,e ........e is the Frenet frame of c at p. and
3) 1 2 n 1k ,k ........k : I   are the curvature functions of c.

6.6 A SPACE-FILLING CONTINUOUS CURVE

We conclude this chapter by discussing an example of a
continuous curve which is not a thin line but an area filling map
because it is continuous, lacking any differentiability properties.
This should convince the reader that a curve as a reasonable
geometric object it should be more than a merely continuous map, it
should have, differentiability properties and the successive
derivatives having linear independence.

Theorem (Peano) : There exists a continuous surjective map (= a
curve)      C : 0,1 0,1 0 1 R   

Proof : We obtain the desired C as the uniform limit of a sequence
  kC : 0,1 : k   of continuous maps.
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To construct 1C we sub-divide (a)  0,1 into 23 9 sub-

intervals of equal length : i 1 i 1 i 9
9 9
     

and (b) the rectangle R

into nine Sub-rectangles of equal area as shown in the figure.

We construct 1C by mapping 10,
9

 
  

linearly onto the diagonal

1D of the sub-rectangle 1 , then mapping 1 2
9 9
 
  

linearly onto the

diagonal 2D of the rectangle 2 and so on.

Next we construct 2C in a similar manner : Sub-divide each
i 1 i
9 9
 

  
into nine equal parts, the rectangle R, into nine sub

rectangles of it having equal areas, and mapping the interval
i 1 i
9 9
 

  
onto the nine diagonals of iR in a similar manner.

Using the above procedure we get the sequence
  kC : 0,1 : k   .

Note the following properties of the sequence  kC : k of
curves :

   k k 1
1C t C t k 1
2.3   for all  t 0,1

k k 1k 1 k 1

i iC C ....
3 3 

       
   

 for all k and k 1i 3  and

   k
1C t C t k 1
2 3

  
 for all  k 0,1 and for all k,  in

with k   .
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The last of these properties implies that the sequence
 kC : k is uniformly Cauchy on  0,1 and as such it converges to
a continuous map  C : 0,1   .

Now, C is a continuous curve implies that its trace i.e. the set
    C r : s 0,1 S a compact subset of  . Moreover, this set

contains all the point m m

k ,
3 3

 
 
 

 for mo k , 3 ,m    and therefore,

the set is a dense subset of R. It then follows that this set is the whole
of R i.e. the continuous curve C maps  0,1 onto the rectangle R thus
C is a fat set and not a thin line.

6.7 EXERCISE:

1) Let 3c : I   be a Frenet curve and let 3 3L :   be an
isometry. Prove that both the curves C, Loc have the same curvature
and torsion functions.

2) Is it true that all curves   3C : a b  having common curvature
and torsion functions are isometric?

3) Let  s   be a curve in its natural parametriz ation (=Unit
speed parametrization = are length parametrizational and let  u t be
the same curve but with different parametrization the relation
between then being     u t s t  . Prove :

         
22 2

2 2

d u t ds d sk t n t t t s
dt dt dt


   
 



4) The Darbour vector of a curve with non-vanishing curvature is
the vector d tt kb  . Prove that the Serret-Frenet formulae can be
written in the form :

dt dn dbd t, d n, d b
ds ds ds

       

5) Consider the curves   3c : 0 L   determined by the unit tangent
of a regular curve   3c : 0, L   i.e.    c s t s (unit tangent of c
at the point  c s ). Assume that  k s of c does not vanish anywhere
and prove that c is a regular curve and obtain expressions for its
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curvature and torsion functions     k s ,t s . Investigate     k s ,t s in
case of  c s , the helix :

   c s a cos s,a sin s,bs 

6) Let a plane curve be given in polar coordinates (r,  ) by r=f( ),
 f : 0 : 2  being a smooth function. Prove that the are-length s

between two points      1 1 2 2, f , , f    on the curve  1 2   is

given by    2

1

2 2s f f d



        and the curvature  k  of the

curves give by          

   

21 2

3
2 22

2 f 2 f f f
k

f f

     
 

    

7) Calculate the curvature of the curve given by r a where a is a
positive constant.

8) Let nc : I   be a Frenet curve in n , Prove :

 

  
n 1 n i

ii 1

n t

c

cdet k t

c
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7
REGULAR SURFACES

Unit Structure :

7.0 Introduction
7.1 Local Parametrization
7.2 Transition Functions and their Smoothness
7.3 Smooth Functions of Regular Surfaces
7.4 Exercises

7.0 INTRODUCTION

We think of a surface as a thin, smoothly bending sheet
having no creases, no corners.......; a sheet spreading across a certain
region in the physical space 3 . Clearly we need two parameters -
its coordinates - to specify the points of such a thin sheet. Moreover
we need the coordinate systems which are adapted to the geometry
of such smooth surfaces.

Observing common surfaces such as a sphere, a two
dimensional torus, a cylinder, the Möbius band, a circular cone, etc
we find that indeed such coordinate systems are available a plenty
but only locally on a general surface, that is, each point of a surface
has a small enough neighborhood carrying a reasonable coordinate
system.
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The above observation namely surfaces admitting coordinate
systems only locally - each point has a small enough neighborhood
carrying coordinates-leades as to the concept variously called a local
coordinate system a coordinate chart or a local parametrization.
Thus, mathematically, a smooth surface is a subset M of 3
admitting a nice set of coordinates in a neighborhood of each of its
points. These coordinate systems, being local, are not unique but
they are required to be smoothly related on the overlap of their
domains : one set of coordinates should be smooth functions of the
other coordinates! (This property will be explained in detail at the
right stage.)

Using the local coordinates, we can differentiate functions
defined on a surface and this gives rise to a full-fledged differential
calculus on a surface. The resulting differential calculus is used as a
tool to study the highly sophisticated geometry of a surface-a
smoothly bending, thin portion of 3 . In particular, we study the
curvature properties of such a surface using the techniques of
differential calculus.

In this chapter we introduce the notion of a differential
structure of a surface and then proceed to explain differentiability of
functions, smooth (tangential and normal) vector fields, smooth
linear and bilinear forms on such smooth surfaces and so on. The
chapters next to this will explain the geometric features of smooth
surfaces.

Our discussion involves both the spaces 2 and 3 : we use
coordinates of 2 to (loally) parametize the surface and 3
accommodates the surface. Although 2 is imbedded in 3 , we will
treat them as separate spaces, this is to avoide any notational
confusion (Higher dimensional Euclidean spaces also crop-up here
and there!)

The usual Cartesian coordinates in 2 will be denoted by
   1 2 1 2u ,u , v ,v etc. In 3 we will use the triples such as
   1 2 3 1 2 3x ,x ,x , y , y , y etc. for the Cartesian coordinates.

 r , will be the usual polar coordinates in while

 r , ,  are the familiar spherical polar coordinates in .
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7.1 LOCAL PARAMETRIZATION

Let M be a non-empty subset of 3 . We will consider M
equipped with the subspace topology of 3 . Thus for each p M ,
the sets of the type  M B p, for 0  form a fundamental
neighborhood system of p in the subspace topology of M. (Here, of
course,  B p, is the open ball in 3 , centred at p and having radius

0  ).

Definition 1 : A local parametrization of M around a point p is a
triple  U ,Q,V consisting of :

 An open subset U of 2
 An open neighborhood. V of p (V being open with respect to the
subspace topology of M : V M W  , W being an open
subset of 3 ) and

 A homeomorphism Q :U V , the triple  U ,Q,V having the
properties :

i) 3Q :U  is smooth and
ii) for each q U , the Jacobean matrix of Q at q:

 

   

   

   

1 1

1 2

2 2
Q

1 2

3 3

1 2

Q Qq q

Q QJ q q q

Q Qq q

  
   
  

    
  
 
  

has ran = 2.

Because 1Q :V U  is well defined, for each p V . We write
      1

1 2Q p u p ,u p  and regard     1 2u p ,u p as the coordinates
of p with respect to the local parametrization  U ,Q,V . This
consideration leads  us to the functions :

 1 2u ,u :V  
and the resulting triple   1 2V , u ,u is called a local coordinate chart
on M around the point p; the functions 1 2u ,u :V  being called the
coordinate functions of the coordinate chart.
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Y
Here are some more explanations regarding the notion of a

loal parametrization :

 Recall, in a local parametrization  U ,Q,V the map
 1Q :U V Q V  . As such we may mention either (U,Q) or

 1V ,Q instead of the whole triple. Using yet another
symbol, say  for 1Q , it is found that the pair
    1V , V ,Q  is very useful. The map  associates with

each p V the point (say)  q p  and then we identify the
point p of M with  q p  of U and reard the coordinates

    1 2u q ,u q as the coordinates of the point p M . Thus we
are parametrizing the patch V on M by the coordinates on its
image  V U  .

 M, being a subset of 3 , a point p of M has its natural
Cartesian coordinates       1 2 3x p ,x p ,x p . But it being a
thin sheet (a 2 dimensional geometric object so to speak ) the
coordinates-three of them-are not independent, one of them is
a function of the other two. Thus on the northern hemi-sphere
M give by   3 2 2 2M x, y,z x y z 1, z 0       we have

 2 2z 1 x y    . Cartesian coordinates indeed are not
independent and therefore not very useful in calculations.
Secondly they do not reflect the spherical character of M.
(Indeed navigators do not mention the Cartesian coordinates,
the spherical polar coordinates  ,   the (latitude,
longitude) are their favourite choice!
All in all, the Cartesian coordinates of the ambient space 3
are not used to describe the geometry of M.
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 The main idea behind the new concept of a local
parametrization  U ,Q,V is to put the points p of the part V of
M in 1-1 correspondance with the points q of 2UC by
meanse of the homeomorphism Q so as to use the
independent coordinates  1 2u ,u of the associated point

 1q Q p as the coordinates     1 2u p ,u p of the point p of
our interest. And a careful choice of the coordinates  1 2u ,u
may reflect better on the geometry of the portion V of M.
Thus, for example, on the northern hemi-sphere, we prefer the
independent coordinates  ,   the latitude and longitude-
because they are better suited to the spherical geometry of the
hemi-sphere.

 However, often a single parametrization fails to cover the
whole of M. and we need find a system
  U ,Q ,V :    of local parametrizations which together
cover the surface M, that is,  M U V :  . Such a
collection gives rise to the notion of a differential structure of
M; this notion is explain below.

We first define the simpler concept a surface covered by a
single coordinate chart.

Definition 2 : A parametrized surface is a subset M of 3 which is
covered by a single parametrization i.e. there is a pair  U ,Q
consisting of (i) an open set U of 2 , (ii) a smooth map

3Q :U  such that the following conditions are satisfied.

a)  Q U M
b) Q :U M is a homeomorphism and
c)  QJ q has rank 2 at every q U

Here is an example of a parametrized surface; we consider the
graph of a smooth function of two real variables :

Let U be an open cubset of 2 and let f :U   be any
smooth function. We consider the graph of f i.e. the set 3M  
given by :      1 2 1 2 1 2M u u f u u : u u U     .

Now, let Q :U M be the smooth map given by
    1 2 1 2 1 2Q u u u u , f u u   
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for all  1 2u u U  . Then indeed, Q is a homermorphism between U
and M, moreover the Jacobean of Q at a  1 2u u u U   is the matrix :

 

   
Q

1 2 1 2
1 2

1 0
J u 0 1

f fu ,u u ,u
u u

 
 
 

  
   
   

Clearly, this matrix has rank =2. Therefore, the graph of such
a smooth f :U   is a parametrized surface. For example, take

  2 2 2
1 2 1 2U u u : u u 1     and let f :U  be the smooth map

given by      2 2
1 2 1 2 1 2f u u 1 u u u u U        .

Clearly, the graph of this f is the northern hemisphere of unit
radius. Note that the parametrization of the hemi-sphere using this f
cannot be extended to any larger portion of the sphere. Thus on the
whole sphere, we need more than one local parametrizations to cover
it. This observation motivates the following definition.

We are consisdering a subset M of 3 ; it carrying the
subspace topology of 3 .

Definition 3 : A regular surface is a subset M of 3 having the
following property :

For each p M , there exists a local parametrization
 U ,Q,V on M with p V .

A regular surface is often called a smooth surface.

As observed, we have  Q U V and therefore we often write
only  U ,Q in place of the triple  U ,Q,V .

A collection   D U Q :    with the property
 M U U :  is called a (smooth) coordinate atlas on M.

Thus a parametrized surface is a special case of a regular
surface where a single coordinate chart is covering the underlying
set. Of course we come across plenty of surfaces which are more
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general than parametrized surfaces. We discuss some examples of
them by describing the set M and then specifying a coordinate atlas
on it.

(I) A Sphere :
For a constant a 0 let   2 3

3 2 2 2 2
1 2 3 1M x ,x ,x : x x x a    

We consider the following open cover of the sphere M
consisting of the six open hemi-spheres 1 2 3 4 5 6H ,H ,H ,H ,H ,H , given
by :

     
     
     

1 1 2 3 1 2 1 2 3 1

3 1 2 3 2 4 1 2 3 2

5 1 2 3 3 6 1 2 3 3

H x ,x ,x M ,x 0 ,H x ,x ,x M : x 0

H x ,x ,x M ,x 0 ,H x ,x ,x M : x 0

H x ,x ,x M ,x 0 ,H x ,x ,x M : x 0

     

     

     

Also let   2 2 2 2
1 2 1 2U u u : u u a ;U     is an open subset

of 2 . We consider the following homeomorphism
i :U Hi,1 i 6 :   

      

      

      

      

      

      

1 2

1 2

1 2

1 2

1 2

1 2

2 2 2
1 1 2 1 2 1 2

2 2 2
2 1 2 1 2 1 2

2 2 2
3 1 2 1 2 1 2

2 2 2
4 1 2 1 2 1 2

2 2 2
5 1 2 1 2 1 2

2 2 2
6 1 2 1 2 1 2

u u a u u ,u u ; u u U

u u a u u ,u u ; u u U

u u u , a u u ,u ; u u U

u u u , a u u ,u ; u u U

u u u u , a u u ; u u U

Q u u u u , a u u ; u u U

       

        

       

        

       

       

Then             1 2 3 4 5 6D U , , U , , U , , U , , U , , U ,       is a
coordinate atlas of the sphere M.

(II) The Möbius Band :
Let       2Z 1,1 x, y : y 1,1        .

Define an equivalence relation  on Z by declaring
   x, y x 2, y  for all    x, y 1,1   .
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Let M Z  and : Z M  , the natural projection. M is
given quotient topology of Z by the equivalence relation. Part (b) of
the figure below depicts the Möbius band as a subset of 3 .

Now, let   1V x, y : 1 x 1, 1, y 1        and
  2V x, y : 0 x 2; 1, y 1       .

Also, let    1U 1,1 1,1   and    2U 0,2 1,1  . And finally

let 1 2
1 2
,U U

     . Then it can be seen that

    1 1 2 2D U , U   is a coordinate atlas on the set M.

The set M equipped with D is called the Möbius band.

Here is a geometric description of the Möbius band : We
consider the strip    R 1,1 1,1    . Twisting the strip through 180
we bring the ends    1 1,1   and    1 1,1   together and glue
them in such a way that the end    1 1,1   comes upside down
and is glued to the other end.

An important property of regular surfaces is their
orientability. Orientability property of regular surfaces is explained
in the next chapter. Möbius band is a simple example of an
unoriented surface.

A simplified description of orientability of a surface is that it
admits a continuous (actually a smooth) unit normal field. One can
see that the Möbius band does not admit such a unit normal field
because of the twist applied to the rectangle    1,1 1,1   in getting
the Möbius band out of it. Also note that the Möbius band has only
one side.
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(III) Surfaces of Revolution :
We consider a smooth curve   2c : a,b  in the vertical

XOZ-plane  2  given by       1 3c t x t ,x t , in terms of the two
smooth functions  1 2x ,x : a b  .

Let    U a,b o,   .

We consider 3 3
1 2:U , :U     given by

        1 1 1 3s,t x t cos s,x t sin s,x t  and
            2 1 1 3s,t x t cos s ,x t sin s ,x t      .

Let     3
1 2M U u U c    .

Then it can be seen that    1 1 2 2U Q , U Q  are local
parametrizations on M and     1 1 2 2D U ,Q , U ,Q  is a coordinate
atlas on M; it being the surface of revolution of the curve C about
the Z-axis of 3 .

Before discussing more illustrative examples, let us prove a
result. A variety of subsets of 3 -called level sets of smooth
functions - are regular surfaces. This claim is verified by applying
the result proved in Proposition 1 given below.

Let  be an open subset of 3 and let f :  be a
smooth function. For a constant  , the set :

  M x ; f x   

(if non-empty) is called a level set of the function.

Proposition 1 : Let f ,M , be as above. Suppose M is non-empty
and has the following property :

For each x M , grad         
1 2 3

f f ff x : x , x , x
x x x

   
     

is a

non-zero vector.

Then M is a regular surface.
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Proof : Let  1 2 3p p , p , p be an arbitrary point of M. By assumption
grad   f p 0. Assume, withought loss of generality that

 
3

f p 0
x





.

By the implicit function, there exists an open U 2c and a
smooth function g :U   having the following properties :

a)  1 2p , p U
b)  1 2 3g p , p p

c) for any     1 2 1 2 1 2u u U , u u ,g u u     with
  1 2 1 2f u u ,g u u    .

(In other words, the function g solves the equation  1 2 3f x ,x ,x  

expressing 3x as a function  1 2x ,x .) The properties (a), (b), (c)
imply that putting       1 2 1 2 1 2 1 2u u u u ,g u u u u U        the triple
 U , ,V is a local parametrization on M.

Therefore, M is a regular surface.

As an application of this result, we discuss the following
illustrative examples.

(IV) An ellipsoide  
22 2
31 2

1 2 3 2 2 2

xx xM x ,x ,x , 1
a b c

 
     
 

where

a 0,b 0,c 0     are constants is a regular surface : Take
3 3, f :     be the function  

22 2
31 2

1 2 3 2 2 2

xx xf x ,x ,x
a b c

    and

let 1  . Clearly grad     f p 0,0,0 for any p M and therefore,
M-the ellipsoide-is a regular surface.

V) The Parabolic Hyperboloid :
Let   3 2 2

1 2 3 3 1 2M x ,x ,x ; x x x   

Take 3 3, f :     given by
   2 2 3
1 2 3 3 1 2 1 2 3f x ,x ,x x x x , x ,x ,x    and 0  we see that

(grad f)      2 3p 1, 2 p ,2 p 0,0 0    and therefore, the set M is given
by   3 2 2

1 2 3 3 1 2M x ,x ,x x x x    is a regular surface.
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VI) Example of a set which is not a regular surface :
Let   3 2 2 2

1 2 3 1 2 3N x ,x ,x : x x x   
We contend that this set is not a regular surface. Note that

 O 0,0,0 is a point of N. Now, if N were a regular surface, then
every point of N would have a local parametrization about that point.
We contend that the point  P 0,0,0 of N has no local
parametrization about it.

We justify this claim by contradiction. Assume the point P
has a local parametrization  U , ,V . Without loss of generally we
assume that U is the disc  D o, with    0,0 0,0,0 N   . Now
consider any point 1 2p , p as shown in the figure and let 1 2q ,q be the
points in U=  D 0, with    1 1 2 2q p , q p   

Now the contradiction is : the points, 1 2q ,q in  D 0, can be
joined by a continuous curve c not passing through the point

 q o o  but the curve  c . can not avoide    q 0,0,0 ! 

consequently such a local parametrization around  p 0,0,0 of M
does not exist and therefore N is not a regular surface.

7.2 TRANSITION FUNCTIONS AND THEIR
SMOOTHNESS

At this stage, we study on important aspect of local
coordinates on a regular surface M : Let  ,U  and  W , be local
parametrizations with    Q U W non-empty. Then any point p in
   Q U W =N (say) has two sets of coordinates :

      1
1 2Q p u p ,u p  and       1

1 2p w p ,w p  .
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This gives rise to coordinate functions 1 2u ;u : N  given
by       1

1 2p u p ,u p  and 1 2w ;w : N  given by
      1

1 2p w p ,w p  for all p N .

Now we can see that coordinates in one set are functions of
the coordinates in other set. In fact we have :

        1
1 2 1 1 2 2 1 2 1 2u ,u u w ,w ,u w ,w o w ,w    and

        1
1 2 1 1 2 2 1 2 1 2w ,w w u ,u ,w u ,u u ,u    .

It is an important (but tedius) result that these functions are
smooth functions (of the indicated variables). Here we give a
sketchy proof of this fact.

Proposition 1 : The following functions are smooth :
   
   
   
   

1
1 1 2

1
2 1 2

1
1 1 2

1
2 1 2

u w ,w : N

u w ,w : N

w u ,u : N

w u ,u : N









 

 

 

 









Proof : We prove smoothness of     1 1 2 2 1 2w u ,u , w u ,u on the set
 1 N . (Smoothness of the other two functions is obtained in a

similar proof.). We accomplish this by verifying smoothness of
1o  in a neighborhood of each  1q N .

Thus choose arbitraity a  1q N . Let  1o q p   .

Now recall  J p has rank = 2 and therefore some 2 2 sub-
matrix of the matrix :

 

   

   

   

1 1

1 2
2 2

1 2
3 3

1 2

p p
w w

J p p p
w w

p p
w w



  
   
  

  
  
   
   

is non-singular. Assume without loss of generality that
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1 1

1 2
2 2

1 2

p p
w w

p p
w w

  
   
  
 
  

is non-singular. Let 3 2:   be the projection map given by
   1 2 3 1 2x ,x ,x x ,x  . Then the non-singularity of the above sub-
matrix is the non-singularity of  oJ p  . Therefore, by the inverse
mapping theorem, we get what o  is a local differmorphism in a
neighbourhood of p. This implies the invertibility of  in a
neighbourhood of  p . (Here, we are using local 1-1 ness of both
o  and  .) Now, we have :

 
  

1 1 1

1

o q o o oQ

Ho o oQ

  



      

  

Thus, smoothness of both   1o    and o  -implies
smoothness of the map 1o  which is the map which gives the
change of coordinates    1 2 1 2u ,u w ,w .

For the two parametrizations (U, ),  W , of M with
   Q U W N   the maps

   
   

1 1 1

1 2 1 2

o : N N

u ,u w ,w

      

 
and

   
   

1 1 1

1 2 1 2

o : N N

w ,w u ,u

     

 

both describing the change of coordinates are alled the transition
maps between the sets    1 1N and Q N   . Transition maps describe
one set of coordinates as functions of the other set of coordinates.
And we have proved above that the transition maps are smooth
functions of the coordinates equivalently put: the two sets of
coordinates -  1 2u ,u and  1 2w ,w - are smoothly related.

7.3 SMOOTH FUNCTIONS ON REGULAR SURFACES

Let M be a regular surface.

We will consider only two types of functions and define their
being smooth :

curves c : I M   and
functions f : M   
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Definition 4 : A curve c : I M is smooth if 3c : I   is smooth.

It readily follows that if c : I M is smooth in the sense of
this definition than c : I M is continuous.

Next, let (U, ) be a local parametrization on M with
associated coordinate functions    1 2u : u : U M   . Then the
curve 1oC : I U  can be written in terms of its coordinates :

      1
1 2oC t u t ,u t  for all t I with  c t U . Thus we

get the functions    1 2u t ,u t of the variable t. Now it can be seen that
the curve c is differentiable (= smooth) if both the real valued
functions    1 2t u t ,t u t  of the real variable t I are smooth.

Finally we define smoothness of functions f : M   .

Definitions 5 : f : M   is smooth if for every local
parametrization (U, ) of M, the function 1f o :U   is smooth.

Note that 1f o Q :U   is a function of the two coordinate
variables 1 2u u an U and therefore differentiability of 1f o   is a
familiar concept.

We consider the set  C M of all smooth functions
f : M   . It is easy to see that the operations of addition and
multiplication of functions f : M  give the set  C M the
structure of a commutative and associative ring with identity.

Finally, let  be a non-empty open subset of a regular
surface M. Then it is easy to see that  also is a regular surface. For
if (U, ) is a local paramentrization of M, then putting
   1U U    and 

U
  we get a local parametrization

  U , on  . Such local parametrization   U , on  obtained from
(U, ) of M give a coordinate atlas for  and thus,  becomes a
regular surface in its own right. In particular, the function spaces

 C  for open M are well-defined.

In the next chapter, we will develop differential calculus on
M using these function spaces  C  .
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7.4 EXERCISES

1) Let M be the subset of 3 obtained by rotating the parabola
2

3 1x 4x about the 3x axis. Describe smooth function f : M  
which generates M.

2) The 2-torus 2T is the surface generated by revolving the circle

 2 2 2
1 3x a x b   about the 3x -axis, a,b being constants with a<b.

Exhibit a smooth coordinate atlas on 2T .

3) Although the set   3 2 2 2
1 2 3 3 1 2M x ,x ,x : x x x    is not a

regular surface (as explained above) prove that its subset
  M M 0  is a regular surface.

4) Prove that a circular cylinder is a surface and describe a smooth
atlas on it.

5) Let M be a regular surface and  an open subset of M. Let
f : M   be a smooth map. Prove that f  is smooth on  .

6) Let 1M and 2M be regular surfaces, with 1 2M M open in both
1M and 2M . Prove 1 2M M is a regular surface.

7) Let M be a regular surface and let f ,g : M   be smooth
functions.
Prove :
a) f g is smooth on M.
b) f g is smooth on M.
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8
CALCULUS ON REGULAR SURFACES

Unit Structure :

8.0 Introduction
8.1 The Tangent Spaces  3pT 

8.2 The Tangent Space  pT M
8.3 Another Description of Tangent Vectors
8.4 Smooth Vector Fields
8.5 Smooth Forms on M
8.6 Exercises

8.0 INTRODUCTION

Having introduced regular surfaces M and the function spaces
 C  for various open M we consider some more concepts

contributing to the calculus on a regular surface, namely : the
tangent spaces  pT M for p M , smooth vector fields on open
subsets  of M smooth linear and bilinear forms and their properties
and so on. The resulting calculus is then used as a tool to study the
geometry of M. The primary geometri features of a regular surface
M are two smooth symmetric bilinear forms the first fundamental
form I and the second fundamental forms II - they will be introduced
in the next chapter.

8.1 THE TANGENT SPACES  3pT 

In differential geometry, geometric object are highly
localized. In particular, we need consider the classical vectors - the
directed segments in 3 being located at various points of 3 . Thus
for a point 3p and for a vector x in 3 , we consider the ordered
pair  p,x ; it represents the vector x not emanating from the origin
of 3 but located at (or having its foot at) the point p.

 3pT  denotes the set of all such ordered pairs

  3p x : x  
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  3p 

Clearly for a fixed point p in 3 , the set  3pT  is in 1-1
correspondence with 3 :

 
 

3 3
pT

x p,x





 

Therefore the familiar inner product space structure of 3
induces an inner produce space structure on  pT :

      p,x p, y p,x y  

    a p,x p,a x ,a  

    p,x , p, y x, y

8.2 THE TANGENT SPACE  pT M

Let p be a point of the regular surface M.

Definition : A Vector    3pp,x T  is tangential to M at the point
p of M if there exists a smooth curve  c : , M   for some 0 

with the properties :      dcc 0 P,c 0 0 x
dt

    
 


.

 pT M denotes the set of all    3pp,x T  which are
tangential to M at p. we prove below that  pT M is a two-
dimensional subspace of the vector space  3pT  . Towards this aim,
consider a local paramentrization  U , of M with

   p U : 0 p    . Recall that the derivative map

       3o p* o : D o T U T      is an injective linear map. We

prove now that it maps    2 2
o oT T U   onto  pT M . To see
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this, consider a    pp,x T M . By definition of a tangential vector
there exists a smooth curve  c : , M   with  c 0 p and

 c 0 x


. Assume without loss of generality that    c t U for all t
in  ,  . Now using bijective property of  , consider

 c : , U   such that c c  . Let  c o  . This  oT U and
   * o x   . Thus proves that    o p* :T U T M  is surjective -

Consequently     o p* T U T M  is a linear subspace of  3pT  .

Clearly, the above result implies that the map
     o p* O :T U T M  is an isomorphism and therefore  pT M is a

two dimensional subspace of  3pT  . We restate this fact in the
following :

Proposition 1 : For each  pp M ,T M  is a two dimensional
subspace of  3pT  .

There is yet another noteworthy fact, namely the coordinate
chart  U , around a p M gives rise to a vector basis of  pT M :

Consider the curves    1 2: n,n U , : n,n U      for small
enough n 0 ; which are given by :

         1 2s s,0 s 0,s . s n,n       . We have
       1 20 1,0 , 0 0,1     which are vectors in  oT U constituting a

vector basis of  oT U consequently the vectors.

           1 2
1 1

* *0 0 0 , 0 0 0
u u
                

 
form a vector

basis of  pT M .

Note that the maps :
   n,n M ;s s,o  and    n,n M ;s o,s  

are two smooth curves passing through p and giving the basic

tangent vectors    
1 2

0,0 , 0,0
u u
 
 

respectively and therefore they

are vectors tangential to M at p.
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Also, it is important to note that  p U was arbitrary point
of  U and therefore the above discussion lead us to two vector
fields on  U , both tangential to M at the points of  U : For each

 1 2u u ,u U  (and not only  0,0 as above) the vectors

   
1 2

u , u
u u
 
 

are tangential to M at the point   p u  . Thus we get

two tangential vector fields
1 2

,
u u
 
 

on  V U  such that at each

point   p u  of V,    
1 2

a , a
u u
 
 

form a vector basis of   pT M .

There is one more point pertaining to the notation which we

explain right here : We adapt the notations    
1 2

p , p
u u
 
 

for the

vectors    
1 2

u , u
u u
 
 

respectively at the point   p u V   .

These notations - the pair    
1 2

p , p
u u

  
   

representing

tangent vectors but partial differentiations in appearance are adapted
everywhere in mathematical literature because vectors operate on
functions by differentiation. We will explain more about this
notational convention below, but at this stage but we note that

because    
1 2

p , p
u u
 
 

is a vector basis of  pT M for any point p

of  U V  , any vector    pp,x T M is expressible as a linear

combination :    1 2
1 2

a p a p
u u
 


 

for a unique pair 1 2a a of real

number.

Now, about the action of a tangent vector on a smooth
function : Let    pp,x T M and let f be a smooth function defined
on an open W M with p W . These two entities combine to
produce the real number (denoted in differential calculus by)

 xD f p the derivative of f at p along x. It is obtained as follows.

Choose a smooth curve  C : , W   with  c o p and  c o x


.
Then we lay :

    x t 0

dD f p f c t
dt 
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Now, let  U , be any chart around p, its coordinate
functions being 1 2u u . Using these coordinates, we write :

      1 2c t c t ,c t ,

Then we have :

       

       

1 2t o t o

1 2
1 2

d df c t f c t ,c t ,
dt dt

f fc 0 p c 0 p
u u

 
 

 
 

 

 

But, we also have  dcx 0
dt



       1 2
1 2

c 0 p c 0 p
u u
 

 
 

 

and therefore, we get;

           x 1 2
1 2

D f p C o p C o o f
u u

  
    

 

     1 2
1 2

f fc 0 p c p
u u
 

 
 

 
.

To conclude, we have the following :

Given a point p M and a pair of local coordinates  1 2u u
around p (determined by a local parametrization  U , , we have the
following :

 Any    pp,x T M can be expressed uniquely in the form

     1 2 1 2
1 2

p,x a p a p a ,a
u u
 

  
 

in  .

 If f :W   is a smooth function, its domain of definition W
being an open subset of M with p W and if  U , is a local
parametrization around p, its coordinates being  1 2u u then
the real number  xD f p - the derivative of f at p along x - is

given by        x 1 2
1 2

f fD f p a p a p
u u
 

 
 

where

   1 2
1 2

fx a p a p
u u
 

 
 

.

 The resulting map    xD p :C W  has the following
properties.
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i)         x x xD af bg p aD f p bD g p   for all f ,g in  C W

and a, b in 
ii)                 x x xD f g p D f p g p f p D g p    for all f ,g
in  C W

iii) If f :W ; g :W    are smooth functions, W and W being
open neighborhoods of p, then f g on W W implies :

     x xD f p D g p

 For any    p,x , p, y in  pT M , a, b in  ,

            x yax byD f p a D f p b D f p     holds for all

 f C W (W being an open neighborhood of p).

The last property implies that any smooth f :W   gives
rise to a linear form on  pT M ; we will denote it by  df p . Thus the
linear form  df p :  pT M  is given by :

       

   

x

1 2
1 2

df p p,x D f p
f fx p x p
u u



 
 

 

for all        1 2 p
1 2

p,x x p x p T M
u u
 

  
 

.

In particular, the coordinate functions 1 2u u of a local
parametrization  U , around p give rise to the linear forms

   1 2du p ,du p on  pT M . Note that    1 2du p ,du p satisfy

   1 ij
j

du p p
u

 
    

and consequently we get :

         1 2
1 2

f fdf p p du p p du p
u u
 

   
 

for any smooth

f :W   .

Definition 2 : The linear form  df p :  pT M  is called the
differential of f at the point p.

8.3 ANOTHER DESCRIPTION OF TANGENT VECTORS

Above we have defined a    pp,x T M as a vector 3x
placed at p for which there corresponds a smooth curve
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 c : , M   with  c 0 p and  c 0 u


. The vector thus defined
(tangential to M at p) operates on smooth functions f : M  
producing real numbers   xD f p given by.

     x t o

dD f p f C t
dt 



This action of  p,x on smooth f has the following
properties (as we have noted them above) :

i) If f , g in  C M are such that f g in some neighborhood of
p, then   xD f p =    xD g p .

ii)           x x xD af bg p a D f p b D g p     for all f ,g in
 C M and for all a, b in  .

iii)                 x x xD f g p D f p g p f p D g p    for all f ,g
in  C W .

We prove below that conversely, properties (1) , (2) and (3)
above specify the vector    pp,x T M completely. To be precise,
we prove the following.

Proposition 2 : Let  L :C M  be an operator satisfying the
following conditions :

1) If f , g are such that f g in some open neighborhood of
p, then    L f L g .

ii) Let       L af bg a L f p b L g     for all f ,g in  C M and
for all a, b in 

iii) Let          L f g L f g p f p L g   for all f ,g in  C M

Then there exists a unique 3x , tangential to M at p such
that      xL f D f p for all  f C M

Next, to prove the existence of such of  p,x , note the
following two properties :

 The result is a local result in the sense that by property (1) of
L, the value  L f for any  f C M depends on the
variation of f within (an arbitrarity chosen) neighborhood
of p.
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Accordingly, we can chose a local parametrization  U , on
M with (i)  U B 0,  for some o  and (ii)  Q 0 p and then for
 U ; by property (1) of L, the behaviour of f outside  U does
not affect  L f .

If f  constant c (say), then  L f 0 .

For, taking f g 1  we have :
         2L 1 L 1 L 1 1 1 L 1 2L 1      , thus    L 1 2L 1 and

therefore  L 1 0 .

Now    L C C L 1 0  

Thus,  L C 0 for any constant function f C .

Now, for the above described choice of  U , consider the
finite Taylor expansion of a f around p

           1 2 1 1 2 2
1 2

f ff u u f p u p p u p p
u u
 

     
 

    
2

i i j j ij
i , j 1

u p u p g u


   for some smooth functions

ijg :U  .

Applying the operator L to this identity, we get :

            

     

     

       

 

1 2 2 2
1 2

i i j j ij
i j

j j i i ij
j i

1 2 2 2
1 2

1
1

f fL f L f p L u p p L u p p
u u

u p p p g p

u p p p g p

f f0 L u p p L u p p O
u u

fx p x
u

 
    

 

  

  

 
     

 


 


 

 

 2
2

f p
u



where we are putting    1 1 1 2 2 2x L u p ; x L u p     . We form the

vector      1 2 p
1 2

x x p x p T M
u u
 

  
 

to get      xL f D f p for

all  f C M .
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8.4 SMOOTH VECTOR FIELDS

A vector field on M is an assignment X, assigning a vector
 X p to each  p M ;X p being tangential to M at

   pp : X p T M for each p M .

A vector field X on M and a smooth function f : M  
combine to produce a function on M, - we denote it by  X f where
for each p M the real number    X f p is given by :

      xX f p D f p

where    pX p T M is given by    X p p,x .

Now let  U , be any local parametrization on M is; its
coordinate functions being  1 2u u . Then for each  p U we have:

         1 2
1 2

X p X p p X p p
u u
 

 
 

with 1 2X , X being smooth

functions on  U V M   . Therefore, for any smooth f : M   ,

we get            1 2
1 2

X f p X p p X p p
u u
 

 
 

for every  p U .

It now follows that  X f is smooth if the function f is smooth. We
are interested in vector fields X on M which produce smooth
functions.

Definition 3 : A vector field X on M is smooth if  X f : M  is
smooth whenever f : M   is smooth.

 X M denotes the set of all smooth vector field X on M.

It now follows that a vector field X on M smooth (i.e.
 X X M ) if it satisfied the follows condition : For any local

parametrization  U , , the representation : 1 2
1 1

X X X
u u
 

 
 

has

the coefficient function 1 2X ,X :U  be smooth. It can be verified
that the set  X M has the following algebric property :

If X, Y are smooth vector fields on M and if f, g are smooth
functions on M, then the vector field fX , gY is also a smooth
vector field on M.

mu
no
tes
.in



122

Thus the set  X M of smooth vector fields on M is a module
over the ring  C M of smooth functions.

Above, we considered smooth vector fields on a regular
surface M. Since every non-empty open subset  of M because a
regular surface, we have the well-defined concept of smooth vector
fields on an open subset  of M. We denote the resulting

 C  module by  X  .

8.5 SMOOTH FORMS ONM

We consider now objects which are dual to the vector fields,
they are called smooth one-forms on M. First, (an arbitrary) one
form on M is an assignment of a liner form    pw p :T M  to
each p M . We denote the collection   w p : p M by w.

Now, note that a vector field X on M and a one-form
  w w p : p M  on M combine to give a function f : M   : For

each p M , we evaluate the one form    pw p :T M  on the
vector    pX p T M to get the real number     w p X p  ; we
put       f p w p X p . This gives the function :

f : M   ;     p w p X p

We will be interested in those 1-forms to which differential
calculus can be applied in a reasonable way. This motivates the
following definition :

Definition 4 : A 1-form w on M is smooth if for every smooth
vector field X on M, the function  w X :M  is smooth on M.

Now, we have the following list of simple facts related to
smooth 1-forms and smooth vector fields on M :
1) If w, n are two smooth 1-forms and if f ,g : M   are any two
smooth functions then the combination fw gn given by

           *f w gn p f p w p g p n p T p , p M       
 


is a smooth 1-

form on M.

Therefore, the set of all smooth 1-forms on M is a module
over the ring  C M .
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2) For any p M , the forms      1 2 pdu p ,du p :T M   form a
vector basis of the dual space  *

pT m , (of  p M ) and therefore, if w
is a 1-form on M, then for each p M we every p M , we seet that
the 1-form w gives rise to two functions f ,g : M   such that holds
for every p M and thus we have : 1 2w fdu gdu  .

3) Note further that
1

w f
u

 
  

and
1

w g
u

 
  

consequently, if w

is a smooth 1-form on M then f,g (as above) must both be smooth

4) Now consider 1 2w fdu gdu  and on arbitrary smooth vector

field
1 2

X h k ,h,k : M
u u
 

  
 

 being both smooth functions.

Then we have  w X fh gk  .

Consequently, we have : w is smooth if and only if both, f, g
are smooth functions. It also follows that the set of smooth 1 forms
is a module over the ring  C M if w,n are smooth 1-forms and f, g
are smooth functions on M, then fw gn is a smooth form on M.

5) If w is a smooth 1-form on M and if  is an open subset of M,
then the restriction of w to  is a smooth 1-form on  .

6) And a smooth function f : M   gives rise to a smooth 1-form

1 2
1 2

f fdu du
u u
 


 

on M, we denote it by df and call it the differential

of f, thus,  
1 2

f fdf X g h
du du
 

    with
1 2

X g h
du du
 

  .

We also consider smooth, symmetric 2 forms on M. first
recall a few algebraic terms.

Let E be a finite dimensional real vector space.
A bilinear form on  is a map    , : ; x, y x, y    

which is linear in each of the two vector variables x, y ranging on  .

A bilinear form , :   is said to be
 Symmetric if x, y y, x   holds for all x, y in  .
 Positive definite if x, x 0  for x and x, x 0  only
when x 0 .

 An inner product on  if ,  is both symmetric and positive
definite.
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Let  1 2 ne ,e ,....,e be a vector basis of  , putting ij i ja e ,e for

1 i j n   , we get the matrix ija   of ,  with respect to the vector
basis  1 2 ne ,e ,....,e . Note that -

i) ij i j
1 i , j n

x, y a x y
 

   where
n

i i
i 1

x x e


 and
n

i i
i 1

y y e


 .

ii) ,  is symmetric if and only if ji jia a holds for all
i, j ,1 i, j n  .

Now, we introduce the notion of a smooth, symmetric bilinear
form on a regular surface.

Definition 5 : A bilinear form on a regular surface M is a rule-
denoted by B - which associates with each p M , a bilinear form
B(p) on the tangent space  pT M :

          p pB p :T M T M ; u,v B p u,v  

A bilinear form B on M and two tangent fields X, Y on M
combine to produce a function  B X Y : M  :

For each p M the bilinear form      p pB p :T M T M 
evaluated over      pX p ,Y p T M gives, the real number
      B p X p ,Y p  . This specifies the function
           B X ,Y : M : B X ,Y p B p X p ,Y p  for every p M .

It now follows that the following identities hold :

    B fX ,gY f gB X ,Y  for all functions f ,g : M   and
for all vector fields X, Y on M.

 i)      1 2 1 2B X X ,Y B X ,Y B X ,Y  

ii)      1 2 1 1 2B X ,Y Y B X Y B X ,Y    for all vector fields

1 2 1 2X ,X X ,Y ,Y ,Y

Here is an example of an important bilinear form on M : Let,
for each p M ,      p pI p :T M T M  be given by :

     pp
I p v,w v,w v,w T M   .

This gives rise to the following map

I:    X M X M : 

mu
no
tes
.in



125

         I X ,Y p I p X p ,Y p for all p M and for all
smooth vector fields X,Y on M.

This biliner form is called the first fundamental form of the
surface. Read more about it in Chapter 9.

8.6 EXERCISE :

1) For smooth vector fields X, Y on M and for smooth functions
f ,g ,h : M   , verify the following identies.

a)      X f .g X f g f X g   

b) If  X f 0 for all smooth f : M   , then X 0

c)      X af bg aX f bX g  

2) Let X, Y be smooth vector fields on M giving the map
   L :C M C M  :

       L f X Y f Y X f 

Verify that L satisfies the properties (a), (b) (c) of exercise (1)
above, using Proposition 2 deduce that L gives rise to a smooth vetor
field on M. We denote this vector field by  X ,Y and call it the Lie-
prodct of X, Y in that order. It is also call the Lie-bracket of X, Y.

3) Prove that the operation of forming Lie-bracket  X ,Y of two
vector fields X,Y has the following properties :

i)  X ,Y =  Y X 

ii)      fX ,Y f X ,Y Y f X 

iii)      X Y ,Z Y , Z ,X Z , X ,Y O            

4) Prove that combing a smooth 1-form w with a smooth vector
field X on M produces the functions  w X which is smooth and the
operation    w,X w X is bilinear.
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9
PARAMETRIZED SURFACES

Unit Structure :

9.0 Introduction
9.1 An Oriented Parametrized Surface
9.2 The First Fundamental Form
9.3 The Shape Operator
9.4 Covariant Differentiation
9.5 Parallel Transport
9.6 Geodesics
9.7 Exercises

9.0 INTRODUCTION

In this chapter and the next, we will study some of the
elementary aspects of the geometry of an oriented regular surface M.
To begin with we wil discuss the geometry of such a M only at the
local level, that is, the geometric structure of a small enough piece of
a surface in the form of an open neighbourhood of a point of it. After
getting familier with the local geometry, we will consider geometric
properties of M as a whole and prove some basic results about them.

Accordingly we begin with a surface element in the form
already introduced where it was termed a parametrized surface.
Recalling the related concepts and explaining them again in the
present context, we introduce two basic geometric ingradients of a
parametrized surface namely the first and second fundamental forms
I and II on the tangent bundle  T M of M. Both of them are
symmetric two forms on  T M . These forms will lead us to a
number of geometric concepts on M : length of a smooth curve on
M, covariant differentiation of vector fields, parallel transport of
tangent vectors along smooth curves on M, geodesic curves on M,
principal curvature of M at a point of it, the Gaussian and mean
curvature tensor of M and so on. We introduce the intrinsic nature of
some of the geometric properties and conclude the next chapter with
the important theorem : Gauss’ theorema egragium.
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9.1 AN ORIENTED PARAMETRIZED SURFACE

Let M be a parametrized surface, its parametrization being
 U ,F ; thus U is an open subset of 2 , and 3F :U   is a smooth
map having the properties :

  F U M and F :U M is a homeomorphism, and
 The Jacobean  FJ q has rank = 2 at every q U

Now, using the homeomorphism F :U M , we identify
each point p of M with the point  1F p q  of  2U c and regard
the native coordinates     1 2u q ,u q as the coordinates of p assigned
by the parametrization  U ,F .

Thus, there are two sets of coordinates on M :
i) The Cartesian co-ordinates       1 2 3x p ,x p ,x p given by the
(Cartersian) Co-ordinate system of the ambinat space 3 and

ii) the co-ordinates     1 2u p ,u p determined by a parametrization
 U ,F on M.

The co-ordinates  1 2u ,u are independent and are often better
adapted to the geometry of M while the Cartesian co-ordinates -
being coordinates of the ambient space 3 - are often used as
reference coordinates only. Thus, for a q U we have :

        1 2 3F q x q ,x q ,x q , Cartesian coordinates of
 Q q p M  .

       31 2

1 1 2 1

xx xF q q , q , q
u u u u

  
      

       31 2

2 2 2 2

xx xF q q , q , q
u u u u

  
      

and so on.

Note that we have adapted the notations     1
1

p or p
u





and     2
2

p or p
u





for    
1 2

F Fq , q
u u
 
 

respectively and in view of

these notations, the rank condition - rank of  FJ q be 2 - is
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equivalent to the requirement that the vectors    
1 2

F Fq , q
u u
 
 

be

independent elements of the tangent space  pT M . Also, keep in

mind that the pair    
1 2

q , q
u u

  
   

has to play a double role (i) as a

vector basis of  pT M and (ii) as differential operators operating on

smooth functions f : M  giving real numbers    
1 2

f fq , q
u u
 
 

.

(In thse notations, the point p Q appears but it is considerd to be
identified with  q : p F q ).

Let us now consider vector fields on M, first those vector
fields which are tangential to M.

Recall, a vector field tangential to M (or a tangent field on M)
is a rule X associating with each p M a vector    pX p T M .

Now since    
1 2

q , q
u u

  
   

is a basis of the vector space.  pT M ,

such a  X p can be expressed uniquely as a linear combination :

     1 2
1 2

X p X p X p
u u
 

 
 

   1 2X p ,X p being real numbers. This way the vector field
gives rise to the well-defined functions 1 2X ,X : M  the vector
field then being expressible in the form :

1 2
1 2

X X X
u u
 

 
 

.

We regard the vector field X smooth if both the functions
1 2X X are smooth on M. Now, for any smooth function f : M   ,

the vector field operates on f producing a smooth function
 X f : M given by :

      

       1 2
1 2

X f p X p f
f fX p p X p p ; p M
u u



 
   

 

.
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On the other hand we have vector fields on M which are
perpendicular to M : A smooth map 3Y : M   considered as a
vector field on M (ie for each p M the vector  Y p being
considered located at p) is normal to M if    pY p T M for each
p M . For example the vector field Y given by

     
1 2

F FY p q q
u u
 

 
 

(with  F q p ) for each p M is such a

normal vector field on M. In particular the vector field N on M given

by  

   

   
1 2

1 2

p p
u uN p , p M
p p

u u

 


 
 

 


 

has the unit normal property.

Consequently for each p M , the triple      
1 2

p , p ,N p
u u

  
   

forms a vector basis of  3pT  and the subset    
1 2

p , p
u u

  
   

is a

vector basis of the subspace  pT M of  3pT  . On account of this
property the unit normal field N on M orients the parametrized
surface M. In what is follow, we will consider M to be oriented by
this normal field N.

9.2 THE FIRST FUNDAMENTAL FORM

Now we consider the standard inner product ., of 3 which
incudces the inner product

p
, on each  3pT  . We restrict

p
; to

the subspace  pT M of  3pT  and denote it by  I p . Thus, for
each p M , we have the symmetric, positive definite bilinear form
     p pI p :T M T M  given by       I p p v , p w v,w    for
every pair    p v , p w   of vectors tangential to M at p.

Having introduced the inner product  I p on  pT M , we will
write only v,w in place of the full form       I p p v , p w   . This is
meant to simplify the notation whenever the point p of tangency of
the vectors    p,v , p,w   is understood.

We consider the entire collection     I p : p M as a single
entity and denote it by I.
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Definition 1 :    I I p : p M  is the first fundamental form of
the surface.

For each p I , putting      ij
i j

g p p , p
u u
 


 

   
1 2

F Fp , p
u u
 


 

for p M ,1 i, j 2     , we get the matrix valued

function.

      p p 2g :U T M T M : p M M    .

It is the matrix of the first fundamental form.

Now if
i i i

X Xi ,Y Yi
u u
 


   are two smooth vector fields

(tangential to M) then we get the map  I X ,Y : M   given by :

      

       

       

     

i j
i ji j

j
ij i j

j ij
ij

I X ,Y p X p ,Y p

X p p , Y p p
u u

Xi p Y p p , p
u u

Xi p Y p g p



 


 

 


 



 





We need consider the inverse of each  ijg p ;   we denote the

resulting matrix by  ijg p   , thus we have :    kj
ik ij

k
g p g p   .

Let us consider following examples of surfaces and obtain the
first fundamental forms for each of them :

(I) The (oriented) graph of a smooth functions : f :U   ;
U being an open subset of 2

Now,      1 2 1 2 1 2M u ,u , f u ,u : u ,u U  .

The parametrization map 3F :U   is :
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      1 2 1 2 1 2 1 2F u ,u u ,u , f u ,u p, u ,u U    .

Therefore,
1 2 1 2

f f, ,1
u u u u

    
       

and then

  1 2

2 2

1 2

f f, ,1
u u

N p
f f 1
u u

     
            

the right hand side of the above equally being evaluated at the point
  1 2 1 2p u ,u , f u ,u for  1 2u ,u U .

Also, we have :
2 2

11 22
1 1

f fg 1 ,g 1
u u

    
          

and 12 21
1 2

f fg g ,
u u
 

 
 

and

therefore the matrix of the first fundamental form of the surface :

2

1 1 2
ij 2

1 2 2

f f f1 , ,
u u u

g
f f f, , 1
u u u

    
            

           

(II)A particular case of the above is the hemisphere of radius a o :

   3 2 2 2 2 2 2
1 2 3 1 2 3 1 2M x ,x ,x : x x a ; x a x x       

Now we have :   2 2 2 2
1 2 1 2U u ,u ;u u a    and the map

f :U   is    2 2 2
1 2 1 2f u ,u a u u    . Finding expressions for the

unit normal map  p N p , the matrix  ijg p   of the first
fundamental form etc are left for the reader as an exercise.

(III) Let 2U   and let 2 3F :   be the map given by
   2 2 3
1 2 1 1 2 1 2F u ,u u ,u u ,4u u   ,   2

1 2u u  . Now we have :

mu
no
tes
.in



132

 F 1 2 1
2

1 2

1 0
J u u 2u 1

8u 3u

 
    
  

for all   2
1 2u u  ; the matrix clearly has

rank = 2 (because its submatrix
1

1 0
2u 1
 
 
 

is non singular) at every

  2
1 2u u  . Consequently the set M :

    2 2 3 2
1 1 2 1 2 1 2M u ,u u ,4u u : u ,u   

is a parametrized surface.

Now, we have
i) 3F :U M   is given by    2 2 3

1 2 1 1 2 1 2F u ,u u ,u u ,4u u   ,

ii) The vectors    1 1
1

F u 1,2u ,8u
u





and  22
2

F 0,1,3u
u





span the

tangent space  pT M where  1 2p F u ,u ;
iii) The unit normal field N on M is given by

 
  
  

2 2
1 2 2

22 2 2
1 2 2

2u 3u 4 , 3u ,1
N p

4u 3u 4 9u 1

 


  
and

iv) The matrix of the first fundamental forms is :
 

 

2 2
1 1 2

2 4
1 2 2

1 68u , 2u 1 12u

2u 1 12u , 1 9u

  
 
   

(IV) We consider a unit speed curve 3C : I   and the associated
binormal field 3b : I   along it. Associated with the pair (a, b) is
the parametrized surface M :     M C r sb r : r I ,s   

Putting U I  , let 3F :U   be given by
       F r,s C r sb r , r ,s I    .

Then we have :        F r,s t r s r n r
r


  



   F r,s b r
r






Clearly,    F Fr,s , r ,s
r s

 
 

are livearly independent vectors

and consequently (U,F) is a parametrization of the set M. Moreover,
the unit normal field N on M is given by :
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  22

s r t r r
N p

s r 1

    
 

while the matrix of the first fundamental form is  221 s r , 0
0, 1

  
 
  

we resume our study of a parametrized surface M having its
parametrization (U, F) :

Let  S 2 be the unit sphere in 3 i.e.

    3 2 2 2
1 2 3 1 2 3S 2 x x ,x : x x x 1     

Shifting the unit normal  N p from the point p of M and
relocating it at 3O we get the map (denoted by the same letters) :

 N :M S 2

We call this map the Gauss Map of the surface M. note that
the Gauss map on the unit

  3 2 2 2
1 2 3 1 2 3 3M x x ,x : x x x 1,x o       is the identity map

on M while that on the hemi sphere of radius

  3 2 2 2 2
1 2 3 1 2 3 3a 0 : M x x ,x : x x x a ; x 0        is :   pN p

a
 for

p M .

Illustrative examples (I) --- (IV) above describe the Gauss
map of their surfaces.

9.3 THE SHAPE OPERATOR

We differentiate the Gauss map-defined above-at a point p of
M with respect to the vectors  pv T M . The resulting linear map -
the differential of the Gauss map at p-has important geometric
prosperties; we describe them below.

Let p be a point of M and let  pv T M . We consider the
derivative   vD N p . Thus, we choose a smooth  C : , M  

with  C 0 p and  C 0 v


. Then we have

      t o
dD,N p N C t
dt 
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Note that      pD,N p T M . For, we have

   N C t ,NC t 1


for  t ,   and therefore

     t o

d N C t ,N C p 0
dt 



i.e.      t o

d2 N C t ,N C p 0
dt 



i.e.      oD N p ,N p O

the perpendicularity of    D,N p with  N p now implies
   D,N p is in  pT M . Thus, the Gauss map, when differentiated at
a p M gives the linear map :

   
  

p pT M T M

v D,N p



 

In what is to follow, we consider the map   v D,N p ,
the negative sign attached here is only to follow the standard practice
in mathematics literature. We denote the resulting (linear) map
by pL :

   p p pL :T M T M

Definition 2 :
The linear map    p p pL :T M T M is called the shape

operator of M at the point p.

The shape operator pL is also called the Weingarten map of M
at p.

Considering the Weignarten map pL along with the linear
product  I p of  pT M , we haave the important property of it :

Proposition 1 : pL is a self-adjoint linear endomorphism of the inner
product space     pT M ,I p .
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Proof : Since    
1 2

p , p
u u

  
   

is a vector basis of  pT M it is

enough to verify the following equalities :

       p p
i j i j

L p , p p ,L p
u u u u

      
              

for 1 i, j 2 

Proof :We have :

 
 
 

 
i

p p
i u

i

L p D N
u

N p
u











 



and therefore,

       

       

   

p
i j i j

2

i j i j

2

i j

N FL p , p p p
u u u u

F FN p , p N p , p
u u u u

F0 N p , p
u u

    
      

  
 

   


 

 

The first summond above is O, because    
i

FN q , q 0,
u





(  
i

F q
u



being tangential to M at q while N(q) is perpendicular to the

whole space  qT M ). Thus

       
2

p
i j i j

FL p , p N p , p
u u u u

   
     

.

Similarly we get :

       

   

2

p
i j i j

2

i j

Fp ,L p N p , p
u u u u

FN p , p
u u

   
      




 

Combining these two equalities, we get

       p p
i j i j

L p , p p ,L p
u u u u

     
           

which leades

us to the self adjointness of pL .
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Next, we wish to find the matrix of pL with respect to the

vector basis    
1 2

p , p
u u

  
   

of  pT M .

Suppose    p
ki k

L p , ik p
u u

  
    
 (of course, the

summation being over k 1,2 .) Taking inner product of the above

equality with  
j

p
u



, we get      p k j
ki j

L p , p ai gk p
u u

  
   
 .

But we already have

       
2

p
i j i j

FL p , p N p , p
u u u u

   
     

and therefore the

above equation gives      
2

k j
ki j

FN p , p i gk p
u u


 
   .

Let  ijg p   be the inverse of the matrix  ijg p   . Using this
inverse matrix, we get

         
2

je jk
k j

j jki j

e
ik k

k

ie

FN p , p g p i gk p g p
u u


  
 

  

 

 



Thus      
2

kj
ij

k i k

FN p , p g p
u u


 
  ......................... (*)

This gives the matrix ij   of the Weingarten map pL .

Let us consider the following illustrative examples : M being
the graph of a smooth function f :U   , (as usual U being an open
subset of 2 ).

Now, we have the parametrisation map 3F :U   given by
      1 2 1 2 1 2 1 2F u ,u u ,u , f u ,u u ,u U   .

Writing
2

1 2 ij
1 2 i j

f f ff f , f i, j x
u u u u
  

      
   

etc.
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i)
 

2 2
ij2 1 2 2 1 2

ij 2 22 2
1 2 2 1 2 11 2

1 f , f f 1 f , f f1g g
f f , 1 f f f , 1 f4 f f

     
                  

ii)    
 

 
   

1 1 2 2 1 2

2 2 2 2 2 2
1 2 1 2 1 2

f u ,u f u ,u 1N p , ,
1 f f 1 f f 1 f f

            

and

iii)  
2

ij
i j

F O,O, f
u u



 

Substituting these expressions in the formulae (*) we get :
 
 
 
 
 
 

2
11 2 12 1 2

11 3
2 2 2
1 2

2
12 1 11 1 2

12 3
2 2 2
1 2

2
21 2 22 1 2

21 3
2 2 2
1 2

f 1 f f f f

1 f f

f 1 f f f f

1 f f

f 1 f f f f

1 f f

   
 

 

 
 

 

 
 

 

and
 
 

2
22 2 22 1 2

22 3
2 2 2
1 2

f 1 f f f f

1 f f

 
 

 

Taking 2f :   given by   2 2
1 2 1 1f u u u u   we get :

i) 1 1 2 2f 2u , f 2 u   

ii) 11 22 12 21f 2 f , f f O   

iii)    
3 3

2 2 2 22 2
1 2 1 21 f f 1 4u 4u     and therefore

 
 

 

2
2 1 2

p 3 22 2 2
1 2 21 2

4 1 4u 16u u1L ,
16u u 4 1 4u1 4u 4u

  
          

.

We combine the Weingartain maps    p p pL :T M T M and
the first fundamental form    p p pp

I ,:T M T M        to

get a bilinear map      p pII p :T m T m    for each p M as
follows : If v, w are vectors in  pT m , then

         p pII p v,w I p L v ,w L v ,w  .
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We denote the collection   II p : p M by II and call it the
second fundamental form on M.

Note that the second fundamental form II combines two
smooth vector field X, Y on M and produces a smooth function
 X ,Y : M  which is given by :

        pX ,Y p L X p ;Y p p M    .

Because I is bilinear and each pL is self-adjoint, we get the
following identities :

    II X ,Y II Y ,X , X ,Y   being smooth vector fields on M.
      fX gY ,Z f X ,Z g Y ,Z     

Second fundamental form is used to express curvature
properties of M, we will discuss this point in the next chapter.

9.4 COVARIANT DIFFERENTIATION

Given a smooth tangent field X on M and a  pv T M

covariant differentiation is a process producing a vector - denoted by
 v X  in  pT M .

Recall: To a  pv T M there corresponds a smooth

 C : , M   having the properties    C 0 p,C 0 v 


. The two -
X, and C - Combine to give the smooth map

    t X C t ;t ,   .

Differentiation of it gives       3v p
dD X X C t T
dt

   . Note

that though  vD X is a vector located at p, it is not (in general)
tangential to M at p.

To get a vector tangential to M at p, we project it down in the
subspace  pT M of  3pT  ; that is let      3

p pp :T T M  be

the desired projection thus,        p w w w,N p N p   for all

 3pw T  . Now, we set
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v
t o

v v v

dX C t
X p

dt

p D X D X D X ,N p N p



 
     

 
   

Definition 3 :  v X is the covariant derivative of X with respect to
 pv T M .

The covariant derivative has the following properties

        v wav bw X a X b X     for all v,w in  pT M a, b in
 and for all smooth vector fields X on M.

      v v vX Y X Y     for all  pv T M and for all
smooth vector fields X and Y.

          v v vf X D f X p f p X     for all  pv T M and
for all smooth vector fields X (Recall  vD f is the usual

directional derivative of     v t o

df : D f f C t
dt 

 .

All these properties follow from (i) the properties of

    v t o

dD f f C t
dt 

 and (ii) the linearity of the map

     3
p pp :T T M  .

For a  pv T M and for a tangential vector field X on M we
intend to express    v pX T M  using the vector basis

   
1 2

p , p
u u

  
   

.

We adapt the notations i for
1u




and  i p for

   
i

p , i 1,2
u





only for a short while.

Let      1 1 2 2 p 1 2v v p v p T M ,v v      and let

1 1 2 2X X X    be a vector field on M with 1 2X ,X : M  being
smooth functions.

mu
no
tes
.in



140

Now, we have :
       

     

21v 1 1 1 2 2 2 1 1 2 2p

1 1
1 2 1

1 2

X v X X v X X

X Xv p v p p
u u

          

  
     

     

           
         

1 1

2 2

2 2
1 2 2

1 2

1 1 1 1 2 2p p

2 1 1 2 2p p

X Xv p v p p
u u

v X p v X p

v X p v X p

 

 

  
     

      

   

Therefore, we need express each    
i jp  as a linear

combination of  1 p and  2 p . Suppose :

           
i

1 2
j ij 1 ij 2p p p p p        where  1

ij p ,  2
ij p

are real numbers. (Indeed they depend on i, j and p). Also, we write

       
i

2

jp
i j

F p N p
u u 


   

 
.

Where  is some real number. Combining the above two equalities,

we get            
2

1 2
ij 1 ij 2

i j

F p p p p p N p
u u


      
 

........... (1)

Note right here that    
2 2

i j j i

F Fp p
u u u u
 


   

implies

   1 1
ij jip p   and    2 2

ij jip p   .

Taking inner product of the equation (1) with  k p , we get :

           
2

1 2
k ij 1k ij 2k

i j

F p , p p g p p g p
u u


   
 

........... (2)
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On the other hand, we have :

             

     

           

2 2

k k
i j i j j i k

2

j k j
i i k

1 2ik
j ik 1 ik 2

i

F F F Fp , p p p , p p , p
u u u u u u u

Fp , p , p
u u u
g p p , p p p p
u

    
   

      

 
    

  


       



          1 2ik
ik 1 j ik 2 j

i

g p p g p p g p
u


  


Combining (2) and (3) above, we get :

             1 2 1ik
ik 1k ij 2k ik 1 j

i

g0 p p g p p g p p g p
u


   


   2
ik 2 jp g p

Making cyclic permutations in  i, j,k we get two more
equalities :

                 1 2 1 2ki
jk 1i jk 2i ji 1 j ji 2k

j

g p p g p p g p p g p p g p
u


     




and

                 ij 1 2 1 2
ki 1 j ki kj 1k kj 2

k

g
p p g p p g j p p g p p g i p

u

      




The operation  yields :

           

 

kj ijik 1 2
ij 1k ij 2k

i j k

2

ij k
1

g p gg p
p 2 p g p 2 g p

u u u

2 g p


 
     

  

  




This        kj ijik
ij ki

j k

g p gg p
p 2 g p

u u u
 

   
    




.

Multiplying the above equation by kmg and summing the
resulting equations for k 1,2 we get
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kj ijik km km
ij k

k ki j k

km
ij k k

k k

g p gg p1 g p p g p g p
2 u u u

p g g p g p

  
    

    
    
 



 

 





 

 

 

ij em

m
ij

p

p

  

 

 



This gives us the desired formula :

         ijki ikm km
ij

k i j k

gg p g p1p g p p
2 u u u

  
    

    
 ............. (*)

Definition 4 :   k
ij p 1 ij k 2    are called the Christoffel Symbols

of the surface M at the point p.

We thus get the function : k
ij : M  .

Their defining property being :  
2

k
i ij

k 1
j k



     .

Now fro any  
2 2

i i j i
2 1 j 1

v v p . X X
 

      , we have

   

       

         

       

i

v i j ji p
i j

j
i j i j j

i j ii

j kk
i k i ij k

i j k iji i

kk
i i j ij k

k i iji

X v X

X
v p p v X p p

u
XXv p p v p p p

u u

Xv p v X p p p
u





 
    

 


    



    

 

 
     

 

  

 

  

Thus          kk
v i i j ij k

k i iji

XX v p v X p p p
u

 
      

   .

The derivation (*) above gives a set of handy formulae to
calculate the Christoffel symbols. In particular, applying them to the
surfaces M which are graphs of functions f :U   , we can obtain
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these functions k
ij , for example, the formulae can be applied to

obtain k
ij on a hemisphere 2 2 2 2

1 2 3x x x a   , or on a surface of
revolution such as 2 2

3 1 2x x x  and so on. This is left as exercises for
the reader.

Also, above we were considering the covariant different
differentiatie  v X of X at a point. The concept generatizes
immediately : Given a pair of smooth vector fields say X, Y on M,
differentiate one of them say X with respect to the other, obtaining a
new vector field Z on M given by      Y pZ p X  . It can be
verified that the resulting Z is a smooth vector field. We denote Z by

 Y X it is the covariant derivative of X with respect to Y.

9.5 PARALLEL TRANSPORT

We new use covariant differentiation (the Christoffe symbols
k
ij ) to move tangent vectors along smooth curves on M the
movement preserving their tangentially, their length and the angle
between two of them.

To be more specific, let c : I M be a smooth curve,

 op c t , and    1 2
i 2

v v p v p
u u
 

 
 

tangential to M at p. we want

to transfer v from  op c t to each point  c t of the curve in such a
way that it is tangential to M at  c t , its length remaining unaltered.
This mode of transport of v then generates a vector field X along c
i.e. a map :        c tt I X t T M  with  X t v and  oX t v .
We then say that the vector field X is obtained from v by parallel
transporting v along c. Such a vector field is obtained by solving a
pair of first order liner ODE (involving the Christoffe symbols k

ij .)
and using the vector v (which is to be parallel transported) as the
initial condition of the linear ODE.

Writing            1 2
1 2

X t X t c t X t c t
u u
 

 
 

, we get the

(unknown function 1 2X ,X : I  . Now, we consider the initial
value problem :
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1 1
ij j 1 o 1

ij

2 2
ij j 2 o 2

ij

dX t
c t X t 0,X t v

dt
dX t

c t c t X t 0,X t v
dt


    



    








............. (*)

(In above      1 o 2 o
1 2

v v c t v c t
u u
 

 
 

)

Note that this initial value problem (*) is equivalent to :

 
   0

C t
X t o,X t v   ......................................................  1*

By Picards theorem, the above initial value problem (*) (or
equivalent version  1* of it) has a unique solution :

3X : I  

We say that the vector      C tX t T M is obtained from the
vector v by parallel transporting it to  c t along c.

At this stage, we improve our notation slightly : Taking into
consideration the initial condtion  oX t v , we write vX for X .
Thus each    

oc tv T M gives rise to the vector field 3
vX : I 

having the properties :

i)      v c tX t T M for each t I ,
ii)

 
 v

c t
X t 0 

iii) If v, w are in    
oc tT M a, b in  , then av bw v wX aX bX  

iv) For any v,   oc tw T M , the associated vector fields v wX ,X satisfy

the identity    v wX t ,X t v,w that is, the parallel transport of
any two vectors v,   oc tw T M , pressures the angle between them

(throughout the transport along c.)

To justify this last property, we have :

   
 

   

 
 

 

   

v w v w
c t

v w
c t

w v

d X t ,X t X t ,X t
dt

X t , X t

0, X t X t 0

0
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Therefore        v w v o w oX t ,X t X t ,X t v,w 

This completes the verification of the claim that the parallel
transport preserves the inner product. In particular we have :

a)  vX t v i.e. parallel transport preserves the length of the
vectors and
b) If  t is the angle between  vX t and  wX t then

     
   
   
   

v w

v w

v o w o

v o w o

X t ,X t
Cos t

X t X t

X t ,X t
X t X t

 



 oCos t  for all t and therefore    ot t   i.e. parallel
transport of tangent vectors along a smooth curve preserves the
angle between them.

9.6 GEODESICS

Geoddesics are smoth curves on a surface which have parallel
tangent fields.

Definition 5 : A smooth curve c : I M satisfying
 

 
C t

c t O   
 





is called a geodesic curve (or simply a geodesic)

Equivalently put, a smooth curve c : I M the second

derivative  c t


of which is along the normal to the surface is a
geodesic.

Writing              1 2 1 2 2 2c t c t ,c t u c t u c t  we have

     

         
1 2

1 2
1 2

c t c t ,c t

c t c t
c t c t

u u

   
 

 
 

 

  

 

and therefore we have

 
             

           

1
i j1 ij

C t ij u1

2
i j2 ij

ij u2

c t c t c t c t c t c t

c t c t c t c t c t
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Now
 

 
c t

c t O   
 




yields.

        1
i j1 ij

ij
c t c t c t c t O  
  

        2
i j2 ij

ij
c t c t c t c t O  
  

And then the existence and uniqueness theorem of solution of
the second order ODE with a prescribed initial conditions gives the
following result.

Theorem 1 : Given p M , and the  pv T M there exists a unique
geodesic curve  p ,vc c : I M  (I being an open interval containing
0) having the following properties :

1) c is defined on the largest open interval I.

2)  c 0 p and  c 0 v


.

9.7 EXERCISES :

1) Let p, a, b be any vectors in 3 and let 2 3F :   be the map
given by  F u,v p ua vb   for   2u,v  .

Prove :
i) 2 ,F   give rise to a parametrized surface if and only if

a b 0  .
ii) Putting c a b  , prove that a 3w is a point of the surface

 2M F  if and only if c; w p 0   .

2) For each of the following surfaces obtain the matrix ijg   , its

determinant ijg det g    the inverse matrix ijg   and the unit
normal N :

a)    F u,v Rcosu cos v,R sinu,cos v, R sinv   

b)    F u,v u cos v;u sinv,bv

c)       F u,v R r cosu cos v, R r cosu sinv,r sinu    

R, r being constants.
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3) Calculate  kij for the surfaces M = Graph (f)  2f :U   
being given by

a)      
2 2

2
u v

f u,v u,v
2


  

b)      3 2 3f u,v u 2uv 4uv v u,v 2     

4) Let 2 3F :   be given by      2 2F u,v u,v,u v u,v   .

Obtain
i) Expression for  kij for the surface  2M F 
ii) Derive equations for the geodesics on the above surface.

5) Obtain equations for the geodesics on the sphere (part of it)
parametrized by the usual longitude-lattitude angles  u,v :

   F u,v cos v cosu,cos v sinu,sin v

and prove that the great ciucles are the geodesic curves on the
sphere.
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10
CURVATURE OF A REGULAR SURFACE

Unit Structure :

10.0 Introduction
10.1 The Normal Curvature
10.2 Principal Directions / Principal Curvatures :
10.3 The Riemannian Curvature Tensor
10.4 Locally Parametrized Smooth Surfaces
10.5 Exercises

10.0 INTRODUCTION

We study now the main geometric feature of a regular surface
M, namely, its curvature. First, we introduce a number of scalar
quantities defined at each point p of M, namely.

i) the normal curvature of M along a tangential direction at p;
ii) the principal curvatures of M at p and
iii) the Gaussian and mean curvatures of M at a p.

And then we intro the Riemann curvature tensor which is a
biquadratic form on the tangent bundle of M. it is the carrier of
complete information about the curvature properties of the surface
M. Next, explaining the intrinsic / exterensic nature of geometric.
properties of M, we conclude the chapter by proving the important
result - the Theorema Egragium of C.F. Gauses - that the Gaussian
curvature function is an intrinsic property of a regular surface.

Throughout this chapter, a regular surface is a subset M of 3
with F :U M as its parametrization, its orientation being
specified by a given unti normal field 3N : M   .

10.1 THE NORMAL CURVATURE

Let p be a point of M and let v be a unit vector tangential to
M at p; it is to be treated as a direction vector (tangential to M) at p.
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We choose a smooth unit speed curve :

 c : , M   satisfying  c o p and  c o v


.

Assuming  c 0 o


we get the curvature  k p of c at p, which

given by :      c 0 k p n p


where  n p is the principal normal to c
at  c 0 p .

Now we have two unit vectors located at the point p, namely :
i) the principal normal  n p of c at p and
ii) the unit normal  N p to M at p.

In general, the two vectors are distinct.

We consider the decomposition of  c 0


into its components :
one along the normal  N p and the other in the tangent plane

 pT M of M :

        

        

          

c o c 0 tan c 0 normal

c 0 tan c 0 ,N p N p

c 0 tan k p n p ,N p N p

 

 

 

  

 



This equality gives :
       k p n p k p n p (tangential)+        k p n p ,N p N p .

Now, note the following :

      

         

    

   

     

t O

t 0
t O

t O

p

dc ,N p c t ,N c t
dt
d dc t ,N c t c 0 , N c t
dt dt

d0 c 0 , N c t
dt

c 0 ,L c 0

II p c 0 ,c 0
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Where, of course,    p p pL :T M T M is the shape operator
and      p pII p :T M T M  is the second fundamental form of
M; both at the point p.

Thus, the normal part of the curavature  k p depends only on

the direction  v c 0


of c at p and not on the (whole) curve c: If c

and c are two curves on M with    c o p c o   and    c o v c o 
  ,

then  k p (normal) =   k p (normal). This is naturally so, because,
while passing through p in the direction v, the curve can wiggle on
the surface thus affecting the tangential component (in the surface
M) of its curvature but its normal bending being forced by the
bending of M in the direction v at p. As such it (the normal part
 k p (normal)) is attributed to the curvature property of M at p in the

direction  v c 0  
 


; we call it the normal curvature of M at p in the

direction v. We adapt the notation vk for the normal curvature.

Above we have derived the equality    vk II p v,v

This result is often called Musiner’s Theorem.

Consider the following simple cases :

 If M is a plane, then for any  c : , M   we have  c o o


  k c o o and consequently the normal part of it is zero

0k 0 for any unit vector  pv T M .
 Let M be a sphere of radius A>o and let p be a point of M.
Then for any unit vector v tangential to the sphere M at p, we
consider the great circle c : M through p having tangent

vector v at p. Now, we know that     OPn p N p
a

 


and

  1k p
a

 , consequently, v
1k
a



Let M be the circular cylinder of radius a>o. We consider a
point p M and a unit vector v tangential to the cylinder at
the point p. As usual,  N p is the unit normal to the cylinder
at the point p. Thus, we have the two unit vectors, v and
 N p determining a plane  through the point p. Note that

the intersection M  is an ellipse E passing through p and
the given vector v is tangential to the ellipse at the point p.
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Let  be the angle between the plane and  N p . Clearly we
can take the ellipse E for the curve  c : ,  . Now note that

the curvature of E at the point p is   cosk p
a


 and the angle

between  N p and v is  and consequently, the desired
normal curvature vk of M at p in the direction v is given by :

2

v
cosk
a


 .

We summarise the above discussion and formulate the
definition.

Let p be a point of a regular surface M and v, a unit vector
tangential to M at p. Choosing a smooth curve  c : ,  with

   c o p,c o v 


we consider its curvature  k p at p and the fraction

   k p v,N p . We find that it depends only on the bending property
of M at p in the direction v and not on the chosen curve :
      k p v,N p II p u,v . This leades us to the following
definition :

Definition 1 : Given  pv T M with v 1 the number

    vk p v,N p k is the normal curvature of M at p in the direction
v.

Here is another realization of vk : We consider the plane P
through p containg the vector v and  N p . It intersects the surface
M along a smooth curve  c : , M   . Obviously c passes through
p and has unit tangent v at p.
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We consider its curvature  k p and the associated quantity

         k p v,N p II c 0 ,c 0 u,v    
 

 
giving us the normal

curvature vk of M at p along v.

10.2 PRINCIPAL DIRECTIONS / PRINCIPAL
CURVATURES

Above we have obtained the expression :
 
 

v

p p

k II u,v

I L u,v L u,u



 

for the normal curvature of M at p along v; which involves the shape
operator    p p pL :T M T M . We consider the eigenvalues and
eigen-vectors of it. Recall pL is self-adjoint and therefore its ei-
genvalues are real. We have the following two cases :

 pL has a single (real) eigen-value say  and therefore,

pL I  , I being the identity operator of  pT M . In this case,
every unit vector  pv T M is an eigen-vector of

 p pL : L v v 

 pL has two distinct (real) eigen-values say ,  with    .
Let u, v be the unit vectors in  pT M corresponding to the
eigen-values :  pL u v  and  pL U v  .

In the first case, that is when pL has a single eigenvaue  , the
point p is said to be an umbitic point of M. For such an umbilic point
p of M, we have :

If  pv T M with v 1 , then  pL u v  and therefore
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v

p

k II u,v

L v ,U

v,U

U ,U





 

 

 
This shows that the normal curvature vk of M at an umbilic

point is the same in all directions at p.

Here are simple examples of umbilic points.
i) On a plane P in 3 , any point p P is an umbilic point with

vk 0 for every unit vector  pv T P .
ii) Any point P on a sphere S of radius a > 0 is an umbilic point

with v
1k
a

 for every unit vector  pv T S .

iii) Let M be the surface of revolution generated by rotating the
parabola 2z x ,x  about the Z-axis. Then the point

 p 0,0,0 is n umbilic point. (In fact it is the only umbilic point
on the surface).

(Perhaps the above claim is clear to the reader, but we advise
him / her to verify it mathematically in an exercise.)

In the other case, namely, when pL has two distinct
eigenvalues ,  with    . let u, v be unit eigenvectors of , 
respectively (i.e.    p pL u u,L v v    .) then as seen above we have

uk   and vk   . Moreover u v and consequently, any unit vector
 pw T P can be expressed uniquenly in the form :

w cos u sin v     where  is the angle between u and w. Now, the
normal curvature wk of M at p in the direction w is given by

 
   

 
   

w p

p

2
p p

2
p p

2 2

2 2

2 2

k L w,w

L cos u sin u , cos u sin v

cos L u ,u sin cos L u,v

cos sin L u ,u sin L u ,v

cos u,u 0 0 sin v,v

cos u,u sin v,v

cos sin
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(In above the middle terms are zero each because  pL u ,v =

v,u 0   because u, v and for the same reason  pL u ,v 0 ).
Thus we get that the normal curvature wk along such a
 w cos u sin v    is given by 2 2

wk cos sin    .

This formula for wk which express wk as a linear combination
of the distinguished normal curvatures u vk ,k involving the angle  ,
is known as the Euler’s formula.

Now in view of Euler’s formula, it is clear that the eigen-
values ,  of the shape operator pL are respectively the minimum
and maximum of the set   w pk : w T M ; w 1  .

Definition 2 : Suppose,  p M is not an umbilic point. Then the
unit eigen-vectors u, v belonging to the minimum and maximum of
the normal curvatures ,  are called the principal curvature
directions of the surface M at the point p.

Definition 3 : Let ,  be the minimum and maximum values of the
normal curvature of M at p. Then the quantities;

 

   

K p
1H p
2

  

  

are called respectively the Gaussian curvature and the mean
curvature of M at the point p.

Note that when p is not an umbilical point of M, then the
principal curvature directions u, v at p form an orthonormal basis of

    pT M , I P and the matrix of the shape operator pL with respect

to this orthonormal basis  u,v is
0

0
 
  

and consequently we have

:
i)   pK p det L and

ii)    p1H p trace L
2



We extend the above definition to an umbilic point also :
Now we have     the constant value wk for all unit vectors
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 pw T M and we them have :   2 2K p     and

   1H p
2

       .

Thus, we have :
1) In case of a plane P in 3 , at any point p of P, we have :

p o   and consequently    K p 0 H p  .
ii) Let M be the sphere of radius a > O. Then for any p M , have

1
a

    and therefore   2

1K p
a

 and   1H p
a

 .

iii) Let M be a circular cylinder of radius a > 0.

then at a point p of it, the principal directions are :
a) The line 1L through p, parallel to the axis of the cylinder and
b) The line 2L tangential to the cylinder at the point p and per
pendicular to 1L .

The principal curvatures are 0  (the curvature of the line

1L ) and
1
a

  , the curvature of the cylinder) and therefore, we get :

 K p 0 and   1H p
2a

 .

iv) We consider upper half of the ellipsoide :

 
2 2 2

3
2 2 2

x y zM x, y,z : 1, z O
a b c

 
       
 

 a, b, c being

constants with a b c 0   . Let p be the point  p 0,0,c .

Note that  pT M is the plane through p which is parallel to the
XOY plane and the unit normal to M at p is the vector (0,0,1)
located at the point p.

Now recall, for each unit vector  pw T M we consider the
plane  P w through p containing  N p and w. The intersection
 P w N is the half part of an ellipse through the point p and the

curvature of this are (of the ellipse) at p is the normal curvature of
the ellipsoide M at p in the direction w. in particular we consider the
unit vectors  u 1,0,0 and  v 0,1,0 both located at the point
 o,o,c of M.
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Clearly  P u M is the ellipse :  
2 2

3
2 2

x zx,0,z 1
a c

 
   

 
 and

its curvature at the point  o,o,c is 2
c
a .

Similarly  P u M is the ellipse :  
2 2

3
2 2

y zo, y,z 1
b c

 
   

 


and its curvature at the point  0,0,c is 2
c
b .

Also note that the shape operator pL has eigen-vectors (1,0,0)
and (0,1,0) at  p 0,0,c and the respective eigen-values

2
c
a , 2

c
b . Therefore, the vectors    u 1,0,0 v 0,1,0   are the

principal directions of normal curvature and 2
c
a , 2

c
b are the

principal normal curvatures of the ellipsoide M at the point
 p 0,0,c . It now follows that the Gaussian and mean curvatures

are given by :  
2

2 2
cK p

a b





and   2 2

c 1 1H p
2 a b
    

 
.

10.3 THE RIEMANNIAN CURVATURE TENSOR

We introduce now the sophishicated curvature tensor on a
smooth, parametrized surface M. Being a smoothly verying field of
biquadratic forms on all the tangent spaces  pT M of M, it encodes
all the curvature properties of the surface (and many more geometric
properities of such a M. Naturaly it has very fine algetraic /
geometric / analytical features. A comparesnsive study of it therefore
leades one far beyond the scope of the syllabus; we cannot cover the
topic completely here. Instead, we introduce it very briefly and
mention some of its properties and relate the tensor to the Gaussian
curvature of M. We then proceed to prove the grand “theorema
egregium” of Gauss explaining the intrinsic nature of the geometry
of M.

To begin with recall the equations (already explained) :

a)
2

ij ij
i j e

F L N
u u u
 

  
   


and

b) j
i

ji j

N FL i, j, 2
u u
 

  
  

where the functions ijL : M   have the properties :
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i) for each  j
ip M , L p    is the matrix of the shape operator

   p p pL :T M T M with respect to the vector basis

   
1 2

F Fp , p
u u

  
   

of  pT M and

ii) the functions j
i ijL ,L are related as follows :

j jk k
i ik ij ik j

k k
L g L ,L g L    .

Now, differentiating part (a) of (*) we get :

3 2
ij ij

ij ij k
k i j k k k

m
ij m

ij k km
m mk m

ij m
ij k
mk m

m
ij

ij k
k

LF F F NL N L
u u u u u u u u u

F FL L N
u u u

L FN L L
u u

u

    
   

        

   
       

 
 

 


   



 

  



 



  


 







m m

ij k
m m

ij
ij k

k

FL L
u

L
L

u

     
 

    

 












Similarly, we have :

m3
kj m m

kj i kj i m
mi k j i

F L L F
u u u u

             
  




kj
kj i

i

L
L L N

u
 

   
 




…………………… (***)

The subtraction (**) - (***) gives
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3 3

k i j i k j

m m
kj kj m m

kj k kj i
m k i

m m
ij k kj i

m

ij kj
ij ke kj ie

k i

F F
u u u u u u

u u

FL L L L
u

L L
L L L L N

u u

 


     

            
    

  
        

 



 
 



 



Now we must have
3 3

k i j i k j

F F O
u u u u u u
 

 
     

and therefore

we get :
m m
ij kj m m m m

ij k kj i ij k kj i
k i

L L L L O
u u

 
              

 


along with
ij kj

ij ke kj ie
k i

L L
O

u u
 

            


.

We use the identity (***) written equivalently in the
following way

m m
ij kj m m m m

ij k kj i ij k kj i
k i

L L L L
u u

 
             

 


.

Also reorganizing the indices i k , j ,m    wer write :

ij m mik
ijk ik mj ij mk

mj k k

R
u u

           


  



all the indices

i, j , k , ,m    taking the values 1,2 .

Note that the functions ijkR : M   satisfy : ijk ikjR R   .

The collection  ijkR : 1 i, j,k , 2   are components of a
geometric object (related to M) called the curvature tensor of M.

We also introduce the functions ijkR : M 1 i, j,k , 2     by
m

ijk ijk
m

R g mR  .
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Note that we can retrieve ijkR
 from ijkR by m

ijk mijk
m

R g R  .

This is indeed so, because the matrices ijg   and ijg   are the
inverses of each other.

Now the equality :
m m
ijk ik j ij kmR L L L L 

multiplied by mg and then summed over m 1,2 gives :

ijk ik jm ij kmR L L L L  .

In particular, we have  21212 22 11 21R L L L 

ijdet L   

Thus, for any p M , we have
   

   

1212 ij

k
i kj

k

R p det L p

det L p g p

   
 

   


   
   

   

j
i ij

ij

ij

det L p det g p

det L p det g p

K p det g p

      
      

    

 K p being, of course, the normal curvature of M at its point

p. Thus, we have obtained    
 

1212

ij

R p
K p

det g p


  
………………… (G)

This is offen called Gauss’ formula for the normal curvature.

For the sake of convenience, we will refer to the Gauss
formula by the symbol (G).

Now, looking at the right hand side of (G) we notice that it is
a complex expression involving the entries ijg of the first

fundamental form and their partial derivatives
2

ij ij

k k i

g g
u u u
 


  

. The

functions ijg are obtained by varying the parametrization maps

1 2 3F F F  on the surface and all the partial derivatives too are
obtained by differentiating the i ijF ,g etc.
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Consequently we infer that the Gaussian curvature  K p of M
at p is calculated by taking measurements on the surface and not
referring to the ambient space 3 .

On the other hand, there are geometric quantities pertaining to
M which involve the ambian space also : For example the unit
normal and its variation on the surface refer to the external space.

We call geometric quantities intrinsic to M if they are
obtained by taking measurements taken strictly on the surface M.
Thus, a geometric quantity is intrinsic if it is expressible in terms of
the first fundamental form of the surface.

Above we have explained the proof (!) of the following :

Theorema Egregium of Gauss : Gaussian curvature of a
surface is an intrinsic property of a surface.

(Here “Egregium” means “extraordinary”.)

And then let us note a property of surfaces which is not
“intrinsic”.

We consider the flat rectangle
  R x, y,0 : 0 x 1,0 y 2      in the XOY plane  2  .

We roll it up in the form of the circular cylinder :

  M x,cos y, sin y : 0 x 1,0 y 2       

Note that we obtained M from R without crumpling the paper
(or without causing any kind of damage to the paper and
consequently any measurements taken on the surface either in its
rectangular form or in its cylindrical form are the same.
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Geometrically, both the suffaces , R M have the same first
fundamental form.

But the mean curvature of R 0 while that of the cylinder is
0 1 1 0
2 2


  .

The above example shows that the mean curvature of a
surface is not an intrinsic property of surfaces. It dependes on the
way in which it is imbedded in the ambient space (i.e. the space 3 ).

10.4 LOCALLY PARAMETRIZED SMOOTH SURFACES

In the preceeding part of this chapter, we considered smooth
surfaces M which were covered by single parametrizations
   U ,F : M F U . But we come across surfaces which are
parametrized only locally; such surfaces are overwheming in
mathematics. We introduce the concept here formally.

Let M be a non-empty subset of 3 . We consider M give the
subspace topology of 3 .

By a smooth, local parametrization on M, we mean a pair
(U,F) consisting of an open subset U of  and a smooth map

3F :U   , the pair having the following properties :

i)  F U is an open subset of M and the  F :U F U is a
homeomorphism.
ii) For each q U , the Jacobean map   2 3

FJ a :   is injective
(equivalently put, it has rank 2)

A smooth atlas on M is a collection   D U ,F :   of
smooth local parametrizations  U ,F  on M with the property :

  U F U : M    .

A smooth, locally parametrized surface is a set M on which is
specified a smooth atlas D. We indicate it by the notation  M ,D .
The collection D is called a smooth atlas of the surface and an
element  U ,F D   is often called a coordinate chart of  M ,D .
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Thus a (smooth) parametrized surface is a particular case of a
 M ,D in which D has only one element  U ,F . (We often speak of
 M ,D being covered by a single coordinate chart.) But, of course, a
set M may not be covered by a single coordinate chart. Moreover,
there are subsets of 3 which are so scattered in 3 that they do not
admit any smooth atlas.

We conclude this chapter by describing a smooth atlas on a
sphere of radius a > o and then generalizing this in the form of a
result which gives a large variety of locally parametrized surfaces :

Let   2 2 2 2M x, y,z : x y z a   

We consider the open cover  U ,U ,V ,V ,W ,W      of M
where :

     
     
     

U x, y,z M ,z o ,U x, y,z M ,z o

V x, y,z M , y o ,V x, y,z M , y o

W x, y,z M ,x o and W x, y,z M ,x o

 

 

 

     

     

      

Also let   2 2 2D u,v ,u v a    ; it is an open subset of
2 .

Now define F : D U ,F : D U    by

         2 2 2 2 2 2F u,v u,v, a u v F u,v u,v, a u v          and

G : D V ,G : D V     by

         2 2 2 2 2 2G u,v u, a u v ,u G u,v u, a u v ,u         

and finally, H : D W ,H : D W     by

         2 2 2 2 2 2H u,v a u v ,u,v , H u,v a u v ,u,v         .

Then       U ,F , V ,G , W ,H      is a smooth atlas on the
sphere M.

Verification of this claim is left as an exercise for the reader.

Now, the following result.
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Proposition 1 : Let W be an open subset of 3 and f :W   a
smooth function. For a , let     M x, y,z W : f x, y,z a   .
Suppose M satisfies :    f p o,o,o  for each p M .

Then M carries a smooth atlas D.

We give a sketchy proof below :

Proof : Let  1 2 3p p , p , p M  .

Then  f p o  . Assume without loss of generality that

 f p O
x





. Then by implicit function theorem there exists an open
2

pU   with  1 2p , p U and a smooth p pg :U  satisfying

  pf x, y,g x, y a for all   px, y U and  p 1 2 3g p p p .

Define 3
p pG :U   by putting     p pG x, y x, y,g x, y for

all   px, y U . Then  p pU ,G is a local parametrization of M around

the point p. And then   p pU ,G : p MD=

is the desired smooth atlas on M.

10.5 EXERCISES :

1) Let M be the surface of revolution given by
      F b, r t cos ,r t sin t : t I ,O 2          for a given

r : I   , Prove that the Gaussian curvature K and mean curvature
H functions are given by

   

   

       

   

2
2

2

2
2

r t
K t ,

r t 1 r t

r t r t 1 r t1H t,
2
r t 1 r t

 
  
 

 
 

  
 





 



2) Let S be the surface of reolution given by
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1F t, sin t sin ,sin t cos t ,cos t log tan
2

t , 0, 0,2
2

           
      

 
Show that the surface has constant Gaussian curvature K 1  .

3) Let M be the ellipsoid :

 
2 2

2 y zM x, y,z : x 1
2 3

 
    
 

Prove that none of the points    1 2p 1,0,0 , p 0, 2 ,0 , 

 3p 0,0, 3 is an umbilic point.

4) Prove that (0,0,0) is the umbilic point of the surface
2 2z x y  and calculate the normal curvature of it at (0,0,0).

5) Find principal curvatures and principal directions of the
following surfaces at a point of them
i) a circular cylinder
ii) the saddle surface z xy

6) Let : I M  be a smooth curve. Show that the normal curvature
of M at a point of  in the direction  (at that point) is given by :

 K k cos     where k   is the curvature of  (as a curve in
3 ) and  is the angle between the surface normal N and the

principal normal vector of the curve  .
7) Find the normal, curvature of the surface  z f x, y at a point p
of it in the direction of the unit vector (a, b, c).

8) Let M be the hyperbolic paraboloid.  21z y
2

 . Show that the

normal curvature of M at (0,0,0) along a unit vector
 v cos , sin ,0    is :

  2 2
nk v cos sin cos 2      
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