
1

1
GRAPHS

Unit Structure :

1.0 Objectives
1.1 Introduction
1.2 Applications of Graph Theory
1.3 Basic Graph Theory Definitions and Notations
1.4 Different Types of Graph
1.5 Mathematical Representation of Graph
1.6 Isomorphism
1.7 Solved Problems
1.8 Unit End Exercises

1.0 OBJECTIVES

 History and Introduction
 Areas of Application
 Various Definitions and examples pertaining to graphs
 Representation of Graph

1.1 INTRODUCTION

The first occurrence of graph in the Mathematical history is
considered to be the classical “Konigsberg Bridge Problem”. The
problem is stated by the great mathematician L. Euler who lived in
Konigsberg, as below:

“Konigsberg is divided into four parts by river Pregel and
connected by seven bridges. Is it possible to tour Konigsberg along a
path that crosses every bridge once and only once and return to the
starting point?”

mu
no
tes
.in

2

The diagram is given as below.

In proving the fact that the problem is unsolvable, Euler
represented above image in the form of a “graph”, as follows.

The points denote the land and the lines denote bridges.
In fact, rather than only proving that above problem is

unsolvable, Euler introduced type of graphs, which can be traceable by
starting from one point, traversing every line once and returning to the
starting point, which is termed as Euler Graph. In Chapter 4, we shall
discuss Euler Graphs in detail.

In modern times, Graph theory is applicable in many areas,
such as, Chemistry, Electronics, and Networks, to name a few.

In this chapter, we will get acquainted ourselves with
terminology and basic concepts of Graph Theory.

1.2 APPLICATIONS OF GRAPH THEORY

Though graph “theory” appears to be a theoretical and hence
pure mathematical term, we shall be amazed to know the areas in
which it can be applied. In this section, we shall just quote a few in
which graph theory is applied.

1. Graph Theory is helpful in making robots function autonomously.

2. Graph Theory is used to solve actual crimes.

3. Mathematics, often called the universal language, also forms a ridge
between languages. Machine translators use Graph Theory to
achieve good translations efficiently

mu
no
tes
.in

3

4. Descriptions of cellular activity involve a combination of continuous
models. The analysis of cells requires usage of Graph Theory as
well.

5. Researchers use graph theory to find near- optimal solutions saving
industry time and money. (Travelling salesman’s problem, Chinese
postman’s problem)

6. The Graph Theory is applicable in Road and Rail Traffic network.

7. The Graph Theory is applicable in planning tournaments (such as
football, chess)

8. Hierarchy in the office, such as Chairperson is the root and people
work under him are at various level.

9. The Graph Theory is present in the virtual world of internet such
www (world wide web, social networking, searching data, data
mining, and so on.

1.3 BASIC GRAPH THEORY DEFINITIONS AND
NOTATIONS

Definition 1.3.1: Simple Graph: Simple graph is a set G (V(G), E(G)),
V(G) the set of vertices (points) and E(G) the set of edges (lines)
disjoint from V(G), together with an incidence function G, that
associates with each edge of G a distinct unordered pair of vertices of
G.

Definition 1.3.2: Directed Graph: A directed graph or digraph is a
graph G (V, E) in which edges are ordered pairs  ,u v , where ,u v V .
That is if there is an edge from u to v, there may or may not be an edge
from v to u.

Example 1.3.1:

Fig. 1.3

Example 1.3.2

Fig. 1.4

mu
no
tes
.in

4

In the example 1.3.1, graph G has,  V = u,v,w, x, y and

 1 2 3 4 5 6 7 8E = e ,e ,e ,e ,e ,e ,e ,e .

In the example 1.3.2, graph G has,  V = u,v,w, x, y and

 E= uv,uw,vw, xy Note:

1. Typically number of vertices in a graph G is denoted by letter p
and edges by q.

2. A graph in which both vertex set and edge set is finite is called as
finite graph.

3. In this and the subsequent chapters, we shall mainly discuss finite
graphs.

4. The graph with no vertices (and hence no edges) is termed as null
graph.

5. A graph with just one vertex is termed as trivial graph.

6. We are discussing non-trivial and non-null graph.

7. In a graph, if an edge with identical end vertex is called as loop.

8. In a graph, two or more edges with same end vertices are termed
as parallel edges.

9. A graph, in which loop and / or parallel edges are permitted, is
termed as Multigraph.

10. Graph of Fig. 1.6 is a digraph or directed graph.

In the graph of Fig. 1.2, that is the graph of Konigsberg’s
bridge problem, we can observe parallel edges and the graph of Fig.
1.5, there is a loop at vertex u.

Fig. 1.5 Fig. 1.6

Definition 1.3.3: Degree: The degree of a vertex of a graph is the
number of edges incident to the vertex, with loops counted twice. We
denote degree of vertex v in a graph G is denoted by deg G (v).

In Fig.1.3, degree of u is 3, where as in Fig.1.5, degree of u is 4.

Note: In case of directed graph, every vertex has two types of degrees,
in-degree (that is number of edges entering the vertex) and out-degree
(that is number of edges leaving the vertex). For the graph of Fig. 1.6,
in-deg (a) = out-deg (a) = 1; in-deg (b) = 1, out-deg (b) = 2; in-deg (c)
= 3, out-deg (c) = 1; in-deg (d) = 1, out-deg (d) = 2; in-deg (e) = out-
deg (e) = 1; indeg (f) = 0, out-deg (f) = 2.

mu
no
tes
.in

5

Definition 1.3.4: Walk: A walk consists of an alternating sequence of
vertices and edges consecutive elements of which are incident, which
begins and ends with a vertex.

Fig. 1.3, 1 7 7 2ue ve ye ve w is a walk.

Definition 1.3.5: Trail: A trail is a walk in which no edges are repeated.

In Fig. 1.3, 1 2 6 5ue ve we ue y is a trail.

Definition 1.3.6: Path: A path is a trail in which no vertices (except
possibly the end vertices) are repeated.

In Fig 1.3, 1 7 8 3ue ve ye we x is a path.

Definition 1.3.7: Circuit: A circuit is a closed trail (that is end vertices
are same) with at least one edge is known as Circuit.

In Fig. 1.3, 1 7 8 3 4 5ue ve ye we xe ye u is a circuit.

It can also be written, only in terms of vertices as: uvywxyu.

Definition 1.3.8: Cycle: A cycle is a circuit in which no edge is
repeated.

In Fig. 1.3, 1 2 3 4 5ue ve we xe ye u is a cycle.

It can also be written as uvwxyu, in terms of vertices alone.

Definition 1.3.9: Subgraph: A graph H = (H (V), H(E)) is called as
subgraph of G = (G (V), G (E)), if    H V G V and    H E G E .

Fig. 1.6 below is a subgraph of Fig. 1.3.

Fig. 1.6

Let G (V, E) be a graph. We can obtain a subgraph from a
graph in any one of the following ways.

1. A subgraph H, can be obtained by deleting vertex subset U of V
and by deleting all the edges from E which are incident with a
vertex in U.

mu
no
tes
.in

6

2. A subgraph H, can be obtained by deleting an edge set D that is
subset of E and vertex set of H is same as vertex set of G. Such a
subgraph is called as spanning subgraph of G.

Definition 1.3.10: Connected Graph: Graph G is connected if and only
if there exists a walk between any pair of vertices.

Graph in Fig. 1.3 is connected.

Definition 1.3.11: Disconnected Graph: Graph G is disconnected if and
only if there exists at least one pair of vertices which is not connected
by a walk.

Graph if Fig. 1.4 is disconnected, as there is no walk between vertices
u and x.

The distance d(u, v) between two vertices u and v of a graph G is the
length of the shortest path (often termed as geodesic) joining them if
any; otherwise  d u,v = .

In a simple connected graph, distance is a metric; that is for all vertices
u, v, and w,

1.  d u,v 0 and  d u,v 0 if and only if u = v.
2. d(u, v) = d(v, u)
3.      d u,v +d v,w d u,w

The diameter d (G) of a connected graph G is the length of any
longest geodesic. In the graph of Fig. 1.3, d (G) is 2.

Definition 1.3.12: Complement of a Graph: Let G be a simple graph.
The complement G of G is the simple graph whose vertex set is V (that
is same the vertex set of G) and whose edges are the pairs of
nonadjacent vertices of G.

Fig. 1.8 below is the complement of the graph of Fig. 1.3

Fig. 1.8

Definition 1.3.13: Components: Connected component or Component
of a graph is a subgraph in which any two vertices are connected to
each other by paths, and which is connected to no additional vertices in
the supergraph.

mu
no
tes
.in

7

For example graph of Fig. 1.9 below is made up of three components.

Fig. 1.9

Proof: Let G (V, E) be a disconnected and non-trivial graph and GC be
its complement. Let u, v be any two vertices in V. If there is no edge uv
in G, then uv will be an edge in GC. If the edge uv exists in G, then
vertices u and v belong to same component (say H) of G. As G is
disconnected it has at least two components. Let w be a vertex in V
which belongs to a component other than H. Then, there are no edges
uw and wv in G. Hence, uw and wv be edges in GC, and hence we get a
u-v path (u-w-v) in GC.

Thus, any between two arbitrary vertices u, v of V there is a
path in GC. Hence, GC is connected.
Note: The converse of the above result is not true. That is complement
of a connected graph need not be connected. As an example consider
the graphs in the Fig.1.10 below.

G GC
Fig. 1.10

1.4 DIFFERENT TYPES OF GRAPHS

In this section we shall define and draw different types of
graphs which will be useful for us in further discussion.

Definition 1.4.1: Complete Graph: A graph G is said to be complete, if
every vertex of G is connected to every other vertex in the vertex set of
G. 1.5 Mathematical Representation of Graph

Fig. 1.10 (Complete Graph on 6 vertices)

mu
no
tes
.in

8

Definition 1.4.2: Bipartite Graph: A graph G is said to be bipartite, if
vertex set is divided into two disjoint sets such that no two vertices in
the same set are connected.

Fig. 1.11 below is an example of a bipartite graph in which
V =V1 V2 and  V1= v0,v1,v2 and  V2= v3,v4,v5,v6 .

Lemma 1.4.1: If G is a bipartite graph having partitions X and Y, then
   deg deg

v X v Y

v v
 

 
Proof: We shall prove this lemma by induction on number of edges of
G. Let X = r and Y = s , for r, s > 1. (For if r = s = 1, then only one
edge can be drawn and the lemma is trivially true.)

Take subgraph of G consisting of only vertices of G. Now, we shall
start with an induction. Add one edge from any vertex of X and any
vertex from Y. Then,    deg deg

v X v Y

v v
 

  . Now, suppose this is

true for n – 1 edges, then on adding one more edge, exactly 1 is added
to both  deg

v X

v

 as well as  deg

v Y

v

 .

Km,n : If a vertex set of a bipartite graph is partitioned into sets of sizes
m and n, respectively and every vertex in the first set connected to
every vertex in the set two then such a bipartite graph is known as
complete bipartite graph and is denoted by Km,n.

Pn is as a path on n vertices.
Cn is a cycle on n vertices.

It is very interesting to note the following theorems.

Theorem 1.4.1 Let G be a graph in which all vertices have degree at
least two. Then G contains a cycle.

Proof: If G has a loop, it contains a cycle of length one, and if G has
parallel edges, it contains a cycle of length two. So we may assume
that G is simple.

Let 0 1 k-1 kP := v v .. .v v be a longest path in G. Because the degree of vk
is at least two, it has a neighbour v different from vk−1. If v is not on P,
the path 0 1 k-1 kv v .. .v v v is longer than P, which contradicts that P is a
longest path. Therefore, v = vi, for some i, 0 ≤ i ≤ k − 2, and
i i+1 k iv v . . .v v is a cycle in G.

mu
no
tes
.in

9

Theorem 1.4.2: Let G be undirected graph. G is bipartite if and only if
it has no odd cycles.

Proof: Let G be bipartite graph. Let if possible it has an odd cycle. Let
the cycle be v1v2...v2k+1v1. Let the two disjoint vertex sets of G be A
and B. Then, we have 1 3 42v A,v B,v A,v B    , and so on

2k+1 1v A,v B  , a contradiction that G is bipartite, as 1v A as well as

1v B .

Thus, G has no odd cycle.

Conversely, let G has no odd cycles. We have to show that G is
bipartite.

Without loss of generality, let G be connected, as the same logic can be
applied to each of the components.
Choose any vertex v in the vertex set V of G.

Let A be the set of vertices such that the shortest path from v to each of
the vertex in V is of odd length and B be the set of vertices such that
the shortest path from v to each of the vertex in V is of even length.
Then, v B . Also A B V  and A B   .

We shall prove that A, B is the partition of G.

For, if not, there exists two incident vertices x1 and x2, both in
A or both in B. Without loss of generality, let both are in A. Then, x1–v
there is a path of odd length, v–x2 there is a path of odd length and
hence v–x2 – x1 – v is in an odd cycle in G, a contradiction.

Theorem 1.4.1 says that an even graph contains a cycle. Now let us
prove even stronger result. That is an even graph can be partitioned
into cycle and conversely.

Theorem 1.4.3: Let G (V, E) be an even graph. Then the edge set E of
G can be partitioned into cycles such that no two cycles will share an
edge.

Proof: Let G (V,E) be a graph whose vertices are all even. If there is
more than one vertex in G, then each vertex must have degree greater
than 0. Begin at any vertex u. Since the graph is connected (if the
graph is not connected then the argument will be applied to separate
components), there must be an edge {u, u1} for some vertex u1 ≠ u.
Since u1 has even degree greater than 0, there is an edge {u1, u2}.
These two edges make a trail from u to u2. Continue this trail, leaving
each vertex on an edge that was not previously used, until we reach a
vertex v that we have met before. (Note: v may or may not be the same
vertex as u. It does not matter either way.) The edges of the trail
between the two occurrences of v must form a cycle. Call the cycle
formed by this process C1. If C1 covers all the edges of G, the proof is
complete. Otherwise, remove the edges forming C1 from the graph,
leaving graph, say, G1. All the vertices in G1 are still even. So pick

mu
no
tes
.in

10

some vertex u' in G1. Repeat the same process as before, starting with
an edge {u', u'1}. By the same argument, we can generate a new cycle
C2, which has no edges in common with C1. If C2 covers all the rest of
the edges of G, then we are done. Otherwise, remove the edges
forming C2 from the graph, getting graph G2, which again contains
only even vertices. We continue in this way until we have used up all
the edges of G. By this time we have a number of cycles, C1, C2,…, Ck
which between them contain all the edges of G but no two of them
have an edge in common.

The converse of Theorem 1.4.3 is also true and is obvious. The
readers are encouraged to prove the same.

Definition 1.4.3: Regular Graph: A graph is said to be k – regular, if
degree of every vertex v of G is k.

A complete graph on p vertices is p–1 regular. Fig. 1.12 below
gives two examples of 3 – regular graphs.

Fig. 1.12(a) Fig. 1.13(b)

Definition 1.4.4: Tree: A connected graph having no cycle is called
as a tree.

Fig. 1.13 (Tree)

Petersen's Graph : This graph on 10 vertices and 15 edges is very
famous because it tends to be a counter-example to many
generalizations of ideas that work for smaller graphs. As a rule of
thumb, check any conjecture on the Petersen graph before trying to
prove it.

mu
no
tes
.in

11

Fig. 1.14 (Petersen’s Graph)

1.5 MATHEMATICAL REPRESENTATION OF
GRAPH

Even though the pictorial representation of the Graph gives
very good idea of the problem under consideration, to solve the
problem mathematically as well as electronically, we need to have
mathematical representation of the same.

The best way to represent a graph is using matrices. There are
two types of matrices we shall discuss to represent graph, adjacency
matrix and incidence matrix.
Definition 1.5.1: Incidence Matrix: Let G (V, E) be a graph having n
vertices and m edges. The incidence matrix of G is an n m matrix;
MG : = (mve), where mve = x where x is the number of times vertex v is
incident with edge e

The incidence matrix of Fig. 1.3 is

Definition 1.5.2: Adjacency Matrix: Let G (V, E) be a graph having
n vertices. The adjacency matrix of G is an n n matrix; AG : = (muv),
where
muv = 0 if there is no edge from u to v

= 1 if there an edge from u to v
= 2 if u = v and there is a loop from u to itself.

mu
no
tes
.in

12

The adjacency matrix of Fig. 1.3 is

Thus, we observe that in a simple graph, A is symmetric matrix and
sum of the row (/column) elements is degree of the corresponding
vertex.

Now let us prove some results based on the discussion above.

Theorem 1.5.1: The sum of the degrees of the vertices of a graph G is
twice the number of edges. That is: 2deg v q  , where q is number
of edges in the graph.

Proof: Consider incidence matrix M of graph G. Sum of entries in
every row is precisely, deg(v), and hence sum of all the entries in M is
deg However, sum of every column is 2 as every edge has two end

vertices and there are q columns corresponding to q edges and hence
sum of all the entries in M is 2q. Thus, we get the required result.

Corollary 1.5.1: In any graph, the number of vertices of odd degree is
even.
Proof: The proof is obvious, as if such vertices are odd in number then
deg v will be odd, which contradicts Theorem 1.3.1.

If G (V, E) is a graph having no multiple edges, then it can be
represented using Adjacency list, which specifies the list of adjacent
vertices to every vertex in the graph. For example, the adjacency list
for the graph of Fig. 1.3 is:

         u v,w, y ; v u,w, y ;w u,v, x, y ; x w, y and y u,v,w, x    

When a simple graph contains relatively few edges, that is, when it is
sparse, it is usually preferable to use adjacency lists rather than an
adjacency matrix to represent the graph.

Whereas if a simple graph is dense, that is, suppose that it contains
many edges, say, more than half of all possible edges, then using an
adjacency matrix to represent the graph is usually preferable over using
adjacency lists.

Computationally speaking, adjacency matrices are more convenient
than adjacency lists.

mu
no
tes
.in

13

1.6 ISOMORPHISM

Let us have a look at the following graphs.

Fig. 1.15 (a) Fig. 1.15 (b)

If the graph in Fig. 1.15(a) is made up of a string, we can changes the
corners appropriately to get the graph of Fig. 1.15(b). The highlighted
and non-highlighted vertices will correspond in these two graphs.
Thus, we can say these graphs are similar though they do not appear to
be the same. This gives us an intuitive idea about isomorphism.

Now, let us define graph isomorphism formally.

Definition 1.6.1: Isomorphism: Two graphs G1 and G2 are isomorphic
(written as 1 2G G), if and only if there exists a one-to-one
correspondence between their vertex sets, which preserves adjacency.

We make following observations from the definition above.
1. There exists a bijection f, from vertex set V1 of G1 to the vertex set
V2 of G2.

2. Number of vertices and edges in both the graphs are same.
3. If uv is an edge in G1 then f(u) f(v) is an edge in G2.
4. For any vertex v in G1, degree of v in G1 is same as degree of f(v) in
G2.

Once you see that graphs are isomorphic, it is easy to prove it.
However, proving that they are not isomorphic can be sometimes very
complex. It is not practically possible to check all possible
correspondences. Hence, to show that two graphs are non-isomorphic,
we try to find some intrinsic property that differs between the two
graphs in question.

In the following examples we shall check whether given pair of
graphs are isomorphic.

Example 1.6.1:

Fig. 1.16(a) Fig. 1.16(b)

In the figures above, let us have correspondence as:
v0 u0,v1 u2,v2 u4,v3 u1    and v4 u3 . Then, this one to
one correspondence defines isomorphism between these to graphs.

mu
no
tes
.in

14

Example 1.6.2:

Fig. 1.17(a) Fig. 1.17(b)

In the both the graphs of Fig. 1.17, there are 4 vertices and 4 edges
each. However, in Fig. 1.17(a), 2 vertices are of degree 2 and 2 are of
degree 1 and in Fig. 1.17(b), there are 3 vertices of degree 1 and one is
of degree 3. Thus, these two graphs are not isomorphic.

Example 1.6.3:

Fig. 1.18(a) Fig. 1.18(b)

In the both the graphs of Fig. 1.18, there are 6 vertices and 7 edges
each. However, in Fig. 1.15(a), there is one cycle of length 3 and in
Fig. 1.15(b) has no cycle of length 3.

Thus, these two graphs are not isomorphic.

Example 1.6.4:

Fig. 1.19(a) Fig. 1.19(b)

In the both the graphs of Fig. 1.19, there are 8 vertices and 10
edges each. Also there are 4 vertices of degree 3 and 4 of degree 2 in
each of the graphs. However, in Fig. 1.19 (a) degree of vertices 1 and 3
is 2 and both are connected to vertices 2 and 4 of degree 3 and in Fig.
1.19 (b) vertices 3 and 4 are of degree 2 and these are connected to one
vertex of degree 2 and one vertex of degree 3. Hence, we cannot find
one-to-one correspondence between these two graphs and thus they are
not isomorphic.

Definition 1.6.2: Automorphism: An automorphism of a graph is an
isomorphism of a graph to itself.

mu
no
tes
.in

15

In case of a simple graph, automorphism is just a permutation
 of its vertex set which preserves adjacency. The automorphisms of a
graph reflect its symmetries. For example, if u and v are two vertices of
a simple graph, and if there is an automorphism α which maps u to v,
then u and v are alike in the graph, and are referred to as similar
vertices. Graphs in which all vertices are similar, such as the complete
graph Kn, the complete bipartite graph Kn,n are called vertex-transitive.

Fig. 1.20

The grid graphs of Fig. 1.20 have four automorphisms, (1, 2, 3,
4, 5, 6), (2, 1, 4, 3, 6, 5), (5, 6, 3, 4, 1, 2), and (6, 5, 4, 3, 2, 1). These
correspond to the graph itself, the graph flipped leftto-right, the graph
flipped up-down, and the graph flipped left-to-right and up-down,
respectively, illustrated above.

1.7 SOLVED PROBLEMS

1. Let G be a graph which is isomorphic to its complement, then
prove that G must have 4k or 4k+1 vertices for some k.

Solution:
Let    V G = and E G =p q . Since G is isomorphic to its

complement, number of edges in G and GC must be the same. Also,

total number of edges in G and GC together is  1
2

p p 
. Hence,

 1 2
2

p p
q


 . Thus,  1p p  must be divisible by 4.

4p k  or 4 1k  for some k.

2. Draw all non-isomorphic graphs on 4 vertices.

Solution: Following figures give 11 non-isomorphic graphs on 4
vertices.

mu
no
tes
.in

16

3. Which of the following graphs are isomorphic? Which of these are
bipartite? Justify your answer.

G1 G2 G3

Solution: Graph G1 has cycles are of length 4 and no cycle of length 5,
whereas G3 has cycles of length 5 and no cycle of length 4. Hence G1
and G3 are not isomorphic to each other. Now, we shall show that
1 2G G , by giving following vertex sequence.

Now, if f: 1 2G G , by f(i) = i for 1 8i  . Then, f defines an
isomorphism from G1 to G2. Since G2 is isomorphic to G1, it is not
isomorphic to G3. We further observe that G1 (and hence G2) have all
even cycles, so G1 and G2 are bipartite, however, G3 has odd cycles,
hence it is not bipartite.

4. For each of the following sequences of vertices, state whether or not
it represents a walk, trail, path, closed walk, closed trail, or cycle in the
graph of the figure below.
(i) abcefcbd (ii) abcefcd (iii) abcefcdba (iv) bcefcdb (v) bcdb
(vi) abefcd

Solution: From the definitions of walk, trail and path, we can say the
following:

mu
no
tes
.in

17

(i) walk (ii) trail (iii) closed walk (iv) closed trail or circuit (v) closed
path or cycle (vi) none

5. Let A be adjacency matrix of a simple graph G, where aij is relation
between vertices vi and vj. Then (i, j)th term in Ak gives number of
walks of lengths k from vi to vj.

Hence, prove that “A simple graph G with adjacency matrix A
is bipartite if and only if, for each odd integer r, the diagonal entries of
the matrix Ar are all 0”.

Solution : We use induction on k. When k = 1, aij counts the edges
(walks of length 1) from vi to vj. When k > 1, every vi- vj walk of length
k has a unique vertex vr reached one step before the end at vj. By the
induction hypothesis, the number of vi - vr walks of length k – 1 is entry
(i, r) in Ak–1. Thus, the number of vi - vj paths of length k that arrive via
vr on the last step is (i, j)th term in Ak. Thus, counting the vi - vj walks
of length k via Ak–1 by the definition of matrix multiplication, is the
(i,j)th entry in Ak.

By the previous part, (i, i) th entry in Ar counts the closed walks of
length r beginning at vi. If this is always 0, then G has no closed walks
of odd length through any vertex; in particular, G has no odd cycle and
hence is bipartite. Conversely, if G is bipartite, then G has no odd cycle
and hence no closed odd walk, since every closed odd walk contains an
odd cycle.

6. Draw two non isomorphic graphs on 6 vertices such that each has 4
vertices of degree 3 and 2 vertices of degree 2.
Solution: Graph G1 has triangles however graph G2 has no triangle.
Thus, these two graphs are required non isomorphic graphs.

G1 G2

1.8 UNIT END EXERCISES:

1. Prove that a complete graph on p vertices has  1
2

p p 
edges.

2. A graph G has 50 edges, four vertices of degree 2, six of degree 5,
eight of degree 4 and the rest of degree 6. How many vertices does
G have?

3. Prove that the complement of a complement of G is isomorphic to
G.

mu
no
tes
.in

18

4. “If every vertex of G has degree 2 then it contains a cycle”, prove
or disprove.

5. Prove that, every graph has at least two vertices having same
degree.

6. If G(V, E) is a k – regular bipartite graph having partitions A and
B, then show that A B .

7. Draw a graph having an adjacency matrix as given below.

8. Which of the following pairs of graphs are isomorphic? Justify your
answer for every pair.

9. Given n and 0 r n – 1  , where rn is even, define Hr,n the Harary
graph to be an r-regular graph on n vertices, as follows: label the
vertices 0, 1, · · ·, n −1 modulo n, and

If r is even, then join each vertex k to 1
2

k r to 1
2

k r

(excluding self).

If r is odd, then join each vertex k to k to  1 1
2

k r  to

 1 1
2

k r  , then to 1
2

k n .

Draw 4 – regular graph on 7 vertices and 3 regular graph on 8 vertices,
using the definition above.

Will such a graph exist for rn odd? Justify your answer.



mu
no
tes
.in

19

2
CONNECTIVITY

Unit Structure:

2.0 Objectives
2.1 Cut Vertices, Bridges and Blocks
2.2 Menger’s Theorems:
2.3 Construction of Reliable Communication network:
2.4 Dijkstra’s Algorithm:
2.5 Unit End Exercises

2.0 OBJECTIVES

1. Introduction
2. Vertex-edge connectivity
3. Shortest path-Dijkstra’s algorithm
4. Construction of a reliable network
5. Menger's theorem

In the first chapter, we have defined connected graphs and
component. In this chapter, we shall discuss graph connectivity in
more details as it is of great importance in the practical applications. In
the computer network, it will be crucial to know whether data can be
transferred if one of the nodes or links fails. Some connected graphs
can be disconnected by removing some vertices or edges. In this
chapter, we shall understand the concept of connectivity further.

2.1 CUT VERTICES, BRIDGES AND BLOCKS

To understand the importance of connectivity intuitively, let us
have a look at the following graphs of Fig2.1. All the graphs are on 5
vertices.

G1 G2 G3 G4
Fig. 2.1

G1 is a minimal connected graph; deleting any edge disconnects
it. G2 cannot be disconnected by the deletion of a single edge, but can
be disconnected by the deletion of one vertex, its cut vertex. There are
no cut edges or cut vertices in G3, but even so G3 is clearly not as well
connected as G4, the complete graph on five vertices. Thus, intuitively,
each successive graph is better connected than the previous one. We

mu
no
tes
.in

20

now introduce two parameters of a graph, its connectivity and edge
connectivity, which measure the extent to which it is connected.

For any graph G,
 : Minimum degree of the graph.
 : Maximum degree of the graph.
 k: Connectivity of the graph that is minimum number of vertices
that are to be removed to make the graph disconnected or a trivial.

 k': Edge connectivity of the graph that is minimum number of
edges that are to be removed to make the graph disconnected or a
trivial.

Thus, a connected graph is termed as k-connected, if we need
to remove k vertices to disconnect the graph G.

In the graph G1 of Fig. 2.1,  = k = k’ = 1.
In the graph G2 of Fig. 2.1,  = 2, k = 1, k’ = 2.
In the graph G3 of Fig. 2.1,  = 3, k = 0, k’ = 3.

Students are encouraged to find these parameters for the graph G4 of
Fig. 2.1.

Before we proceed to prove some interesting results, let us
define certain terms related to connectivity.

Definition 2.1.1: Cut vertex (Cut point): Let G (V, E) be a connected
graph. Vertex v V , is called as cut vertex, if on removing v along
with all its incident edges from the graph, resulting graph is
disconnected.

Definition 2.1.2: Bridge: Let G (V, E) be a connected graph. An e E
is called as bridge, if on removing e from G, resulting graph is
disconnected.

Definition 2.1.3: Non-separable Graph: A connected, non-trivial graph
having no cut vertices is called as non-separable graph.

Fig. 2.2

mu
no
tes
.in

21

Fig. 2.3

The graph of Fig. 2.3 is 2-connected (i.e. k = 2, e.g., vertices u,
v) and it has k’ = 2 (i.e. on removing edges uy and vx, graph is
disconnected)

Definition 2.1.4: Separation: A separation of G of order k is a pair of
subgraphs (H, K) with H∪ K = G and E(H ∩ K) = ∅ and |V (H) ∩ V
(K)| = k. Such a separation is proper if V (H) \ V (K) and V (K) \ V (H)
are nonempty.

E.g. Separation of graph in Fig. 2.3 is:

Fig. 2.4

Thus, from the definition of a separation, we observe that, a connected
graph has a cut vertex if and only if it has 1 – separation. (i.e.
    1V H V K =).

Definition 2.1.4: Block: A block of a graph is a maximal non-
separable subgraph. If G is non-separable, then G itself is a block.

In the connected graph G having vertex set {v0, v1, v2, v3, v4, v5,
v6, v7, v8, v9} of Fig.2.2, edge v3v5 is a bridge. The subgraphs B1, B2,
B3, and B4 are blocks of the given graph.

We can observe that end vertices of a bridge are cut-vertices
and an edge is a bridge if and only it is not on any cycle.

From the above discussion we can easily prove following
theorems.

Theorem 2.1.1: Let v be a vertex of a connected graph G (V, E). The
following statements are equivalent.
i. v is a cut vertex of G.
ii. There exist vertices u and w, distinct from v such that v is on every
u-w path.

mu
no
tes
.in

22

iii. There exists a partition of the set of vertices V-{v} into subsets U
and W such that for any vertex u U and w W , the point v is on
every u-w path.

Theorem 2.1.2: Let x be an edge of a connected graph G (V, E). The
following statements are equivalent.

i. x is a bridge of G.
ii. x is not on any cycle of G.
iii. There exist vertices u, v of G such that x in on every path joining u
and v.

iv. There exists a partition of V into subsets U and W such that for any
point u U and w W , the edge x in on every path joining u and
w.

Remarks:
 If a block B has at least three vertices, then B is 2-connected.
 If an edge is a block of G, then it is a cut-edge of G

Theorem 2.1.3: Two blocks in a graph share at most one vertex.

Proof: Let, if possible, B1 and B2 are two blocks of G, sharing two or
more vertices. Then the deletion of any one of the vertices will not
disconnect B1 or B2. Thus, B1B2 is a subgraph of G having no cut
vertex and a block of G, which contradicts maximality of B1 and B2.

 Blocks of G partition its edge set.
 If two blocks share a vertex, then it must be a cut-vertex of G.

Definition 2.1.5: Block Graph: Block graph of a graph G is a bipartite
graph H in which one partition set consists of cut vertices of G and the
other has a vertex bi for every block Bi of G. We include (v, bi) as an
edge if cut vertex v is in block Bi.

Let us illustrate the definition with the help of following graph.

Fig. 2.4

mu
no
tes
.in

23

The graph of above Fig.2.4 has four blocks B1, B2, B3, B4 and
three cut vertices v1, v2, v3. Hence, Block graph of the same is as
below:

Fig. 2.5

Theorem 2.1.4: The block graph of a connected graph is a tree.

Proof: We have seen that a block graph of a connected graph is a
bipartite graph. Let B(G) be a block graph of a connected graph G. By
adding edges in a block of G, we do not change B(G), so let us assume
that blocks are complete graphs. Since G is connected, B(G) is also
connected. Now, we shall show that B(G) has no cycle.

Let if possible, it has a cycle C such that its alternate vertices
correspond to cut vertices and blocks of G. It can be shown in the
diagram of Fig. 2.6 below. White points represent vertices with respect
to blocks and black points represent vertices with respect to cut
vertices.

Fig. 2.6

Let cut vertices of G in order along C be v0,v1,v2,,vk,v0, then
v0v1v2...vkv0 is a cycle C  G. If B  C, then B  C is a subgraph of
G consisting of complete graph B together with a cycle C in which one
edge is in B and atleast one edge not in B. Therefore, B  C has no
cut vertex, which contradicts maximality of B.

Now, we shall prove the relationship among k, k’ and  .

Theorem 2.1.5: For any graph G, k  k’  .

Proof: We shall prove second part of the inequality first. If G has not
edges, then k’ = 0. Otherwise, if every edge incident to a vertex of

mu
no
tes
.in

24

minimum degree is removed, the resulting graph is disconnected. In
both these extreme cases, k’  .

Now we shall prove k  k’. Here we need to consider many
cases. If G is disconnected or trivial, k = k’ = 0. If G is connected and
has a bridge at edge e, then k = 1, because either G has a cut-vertex
which is an end vertex of e or G is K2. Finally, let G has edge-
connectivity k’, such that k’ 2. Then, removal of k’ – 1 of these
edges will produce a bridge, say, e = uv. For each of these k’–1 edges,
select an incident vertex different from u or v. Removal of these k’–1
vertices also removes these k’–1 edges and possibly more. If the
resulting graph is disconnected then k < k’. If not, e = uv is still a
bridge in this resulting graph and removal of u or v will result into
either trivial or disconnected graph, giving k  k’.

Following graph in Fig. 2.3 has k = 2, k’ = 3 and  = 4.

Fig. 2.6

2.2 MENGER’S THEOREMS

Menger’s theorem gives characterisation of connectivity of
finite, connected graphs. If u and v are any two vertices in a connected
graph, then two paths connecting u and v are said to be disjoint or
vertex disjoint, if they have no vertex (and hence no edge) in common.
The paths are said to be edge disjoint, if there is no edge common.

Menger discusses minimum number of disjoint paths between
any pair of vertices. Menger proved the results for vertex-connectivity
as well as edge-connectivity.

Before we discuss Menger’s theorem, let us have a look at the
graph of Fig. 2.7 below:

Fig. 2.7

mu
no
tes
.in

25

In the Fig. 2.7, we observe that there are three vertices disjoint
from u to v, viz. u-x-y-t-v, u-zv and u-r-s-v.

Vertex version of Menger’s theorem discusses about the vertex
disjoint path.

Theorem 2.2.1 (Menger’s Theorem – Vertex Form): The minimum
number of vertices separating two non-adjacent vertices s and t is the
maximum number of number of disjoint paths connecting s and t.

Proof: If k vertices separate s and t, then obviously there can be no
more than k disjoint paths. We shall show that these are exactly k. That
is if there are k vertices separate s and t then exactly k internally
disjoint paths separate s and t. This is true if k = 1. So let k > 1 and if
possible the result is wrong. That is it takes less that k disjoint paths to
disconnect s and t. Let h be the smallest such k, and let F be a graph
with the minimum number of vertices for which the theorem fails for
h. We remove edges from F until we obtain a graph G such that h
vertices are required to separate s and t in G but for any edge x of G,
only h – 1 vertices are required to separate s and t in G – x. We first
investigate the properties of this graph G, and then complete the proof
of the theorem.

By the definition of G, for any edge x of G, there exist a set
S(x) of h – 1 vertices which separates s and t in G – x. Now G – S(x)
contains at least one s-t path, since it takes h points to separate s and t
in G. Each such s-t path must contain the edge x = uv, since it is not a
path in G – x. So u, v  S(x) and if u  s, t, then S(x)  {u} separates
s and t in G. If there is a point w adjacent to both s and t in G, then G –
w requires (h – 1) points to separate s and t and so it has h – 1 disjoint
s-t paths. Replacing w, we have h disjoint s-t paths in G. So we have
shown:

(I) No point is adjacent to both s and t in G.
Let W be any collection of h points separating s and t in G. An

s –W path is a path joining s with some wi  W and containing no
other point of W, call the collections of all s-W paths and W-t paths Ps
and Pt, respectively.

Then each s-t path begins with a member of Ps and ends with a
member of Pt because every such path contains a point of W.
Moreover, the paths in Ps and Pt, have the points of W and no others in
common, since it is clear that each wi is in at least one path in each
collection and, if some other point were in both an s-W and a W-t path,
then there would be an s-t path containing no point of W. Finally,
either Ps – W = {s} or Pt – W = {t}, since, if not, then both Ps plus the
lines {w1t, w2t, ...} and Pt plus the lines {sw1, sw2, ...} are graphs with
fewer points than G in which s and t are nonadjacent and h -
connected, and therefore in each there are h disjoint s-t paths.
Combining the s-W and W-t portions of these paths, we can construct
h disjoint s-t paths in G, and thus have a contradiction. Therefore we
have proved:

mu
no
tes
.in

26

(II) Any collection W of h points separating s and t is adjacent either to
s or to t.

Now we can complete the proof of the theorem. Let P =
{s,u1,u2,...t} be a shortest s-t path in G and let u1u2 = x. Note that by (I),
u2  t. Form S(x) = {v1, v2, ..., vk–1} as above, separating s and t in G –
x. By (I), u1t  G and hence by II with W = S(x)  {u1}, svi  G, for
all i. Thus, by (I), vit  G, for every i. However, if we pick W = S(x)
 {u2} instead, we have by (II) that su2  G, contradicting our choice
of P as a shortest s-t path, and completing the proof of the theorem.

Definition 2.2.1: Line Graph: Let G be any graph. Line graph of G,
denoted by L (G) is such that each vertex in L(G) represents an edge in
G and if two edges are adjacent in G then there is an edge between two
vertices of L(G) corresponding to these two edges.

Fig. 2.8 below gives an example of a graph and its line graph.

Fig. 2.8

Theorem 2.2.2 (Menger’s Theorem – Edge Form): A graph G is k-
edge-connected if and only if it contains k edge-disjoint paths between
any two vertices.

Proof: Apply Menger’s theorem-vertex form on the line graph of G.

2.3 CONSTRUCTION OF RELIABLE COMMUNICATION
NETWORK

As we have seen in the first chapter, one of the applications of
graph theory is to represent graph as a communication network. While
constructing this network, it is necessary to make it sure that it does not
get disconnected too often. Higher the connectivity and the edge
connectivity of the network, the more reliable the network is.
Minimum cost spanning tree constructed using Kruskal’s algorithm
(discussed in chapter 3), has connectivity 1 and hence it is not much
reliable. Therefore, we try to generalise the problem.

Let k be given integer and let G be a weighted graph. Our aim
is to find minnimum weight k – connected spanning subgraph. If k = 1,
the problem can be solved using Kruskal’s method. For k > 1, the
problem is difficult and no solution is known. However, if G is a
complete graph having unit weight, then it can be solved by the
method given below.

If G is a complete graph on n vertices having unit weight, then
the problem is simply to find a minimum m–connected (m < n)
spanning subgraph, with as few edges as possible. We shall denote by
f(m, n), the least number of edges an m –connected graph on n vertices

mu
no
tes
.in

27

can have and denote such a graph by Hm,n. Structure of Hm,n depends
on parities of m and n, and we have three cases as below.

Case 1: Let m be even, m=2r. Number the vertices of graph on n
vertices from 0 to n – 1.

Connect vertices i and j if j – i  s (mod n) is such that 0  s  r.

Case 2: Let m be odd, m = 2r + 1 and n even. First draw Hm, n and
then add edges from i to i + (n/2).

Case 3: Let m be odd, m = 2r + 1 and n is also odd. Then H2r+1, n is
constructed first by drawing H2r,n and then by adding edges joining

vertex 0 to vertices 1
2
n  and 1

2
n  and vertex i to vertex 1

2
ni 

 for

11
2
ni 

  .

These three cases are shown in the Fig. 2.9(a), (b) and (c) below.

(a) (b) (c)
Fig. 2.9

2.4 DIJKSTRA’S ALGORITHM

If G (V, E) is any connected graph and u, v are any two
arbitrary vertices in V. Then, there may exist multiple paths from u to
v. One of the very important and practical applications of Graph theory
is to find the shortest path from one vertex (node) to the other. The
term “shortest” may refer to minimum distance, least cost or least time.

One of the most important algorithms which is of prime
importance in Graph Theory is credited to a computer scientist
Dijkstra. Main reason for the popularity of Dijkstra’s algorithm is that
it provides exact optimal solution to a large class of shortest path
problems, and it is important theoretically, practically as well as
educationally.

Before we proceed to discuss the example and algorithm, let us
have a look at its salient features.

 Algorithm gives solution to single source shortest path problems.
 It works on both directed and undirected graphs.
 All edges must have non-negative weights.
 Graph must be connected.

mu
no
tes
.in

28

Before we proceed to the algorithm, let us understand the same
with the help of an example.

Fig. 2.7

Let us say, we have to find minimum distance from v0 to every
other vertex and the shortest path from v0 to every other vertex.

We shall start with vertex v0 and subsequently visit every
vertex and once all the vertices are visited, we will terminate the
procedure.

Let us introduce some parameters for the same.
L(i) : Shortest distance between v0 and vertex i.
V : Set of visited vertices
U : Set of vertices not visited so far
w(i, j): Weight of edge connecting vertices i and j
P(i) : Shortest path from v0 to i.

To begin with, we shall have L(v0) = 0 and L(v1) = L(v2) =
L(v3) = L(v4) = L(v5) = . V = , U = {v0, v1, v2, v3, v4, v5}, P(v1) =
P(v2) = P(v3) = P(v0) = P(v5) = .

Initially, let v0 be only visited vertex and hence V = { v0}. We check all
the edges having one end point in V and other in U for their distances
and update V by picking up vk for which L(vk) is minimum. We keep
on updating paths from v0 to vk every time. We shall continue the
process till all the vertices of the graph are visited.

Step I:
V = { v0 }, P(v0) = { v0 }. Now observe all the vertices adjacent to v0
and update these parameters as below:

L(v1) = min {L(v1), L(v0) + w(v0, v1)} = min{ , 0 + 2} = 2, P(v1) =
{v0, v1}
L(v2) = min {L(v2), L(v0) + w(v0, v2)} = min{ , 0 + 3} = 3, P(v2) =
{v0, v2}

As L(v1) is minimum, V = { v0, v1}.

Step II:
L(v2) = min {L(v2), L(v1) + w (v1, v2)} = min {3, 2 + 6} = 3, P(v2) =
{v0, v2}

mu
no
tes
.in

29

L(v3) = min {L(v3), L(v1) + w (v1, v3)} = min { , 2 + 5} = 7, P(v3) =
{v0, v1, v3}
L(v4) = min {L(v4), L(v1) + w (v1, v4)} = min { , 2 + 3} = 5, P(v4) =
{v0, v1, v4}

As L (v2) is minimum, V = {v0, v1, v2}

Step III:
L(v3) = min {L(v3), L(v2) + w (v2, v3)} = min {7, 3+} = 7, P(v3) = {v0,
v1, v3}
L(v4) = min {L(v4), L(v2) + w (v2, v4)} = min {5, 3+1} = 4, P(v4) = {v0,
v2, v4}

As L(v4) is minimum, V = { v0, v1, v2, v4}

Step IV:
L (v3) = min {L(v3), L(v4) + w (v4, v3)} = min{7, 4+1} = 5, P(v3) = {v0,
v2, v4, v3}
L(v5) = min{L(v5), L(v4) + w (v4, v5)} = min {, 4+4} = 8, P (v5) =
{v0, v2, v4, v5}

As L (v3) is minimum, V = {v0, v1, v2, v4, v3}

Step V:
L(v5) = min {L (v5), L(v3) + w (v3, v5)} = min {8, 5+2} = 7, P(v5) = {v0,
v2, v4, v3, v5}

Thus, V = {v0, v1, v2, v3, v4, v5}.

All the vertices are visited and we have found the shortest path
and distance from v0 to every other vertex.

In fact, what we have presented above is Dijkstra’s shortest
path method.

Now, let us present the steps of the algorithm.

Dijkstra’s Shortest Path Algorithm:
Let G (V, E) be any connected, weighted graph, with GV = {v0,

v1, v2, ..., vn}.

Parameters:
L(vi) : Shortest distance between source s = v0 and vertex vi.
P(vi) : Set of vertices giving shortest path from s to vi.
V : Set of visited vertices
U : Set of vertices not visited so far
w (vi, vj) : weight of an edge from vi to vj.
z : Destination vertex

Initial Values:
V =  , U = GV, L(s = v0) = 0, P(s = v0) = {v0}
L(vi) =  ; for 1  i  n
P(vi) =  ; for 1  i  n

mu
no
tes
.in

30

Procedure:
While z  U
Begin

u : vertex in U with L(u) minimum
V := V  {u}
For every x  U

Begin
If (L(x) > L(u) + w (u, x)) then
(x) := L(u) + w(u, x)
P(x) := P(u)  {x}

End If
End

End

Solved Problems:
1. If G is a bipartite k-regular graph such that k  2, then prove that G
has no bridge.

Solution: We will prove the result by contradiction. Assume G has a
bridge e = uv.

Let’s start with a couple of easy observations. Firstly, note that
a bridge affects only the connected component it belongs to. Every
connected component of a bipartite k regular graph is itself bipartite k-
regular, so we can assume, without loss of generality, that G is a
connected bipartite k-regular graph. Secondly, removal of an edge can
split a connected graph into at most two connected components - to see
why, observe that if we restore the edge, the graph should be
connected, but three or more disjoint components cannot be linked by a
single edge. Now assume G has classes A and B, where u ∈ A and v
∈ B. Removal of e splits G into disjoint components G1 and G2. Let
A0 be the set of vertices of A in G1 and A00 be those in G2 - both these
sets are non-empty. Similarly let B0, B00 be the vertices of B in G1 and
G2 respectively. Observe that the bridge e must be the only edge
linking G1 and G2, and assume without loss of generality that u ∈ A0
and v ∈ B00. Now look at G1, which is a bipartite graph with classes
A0 and B0. Since e is the only edge linking G1 and G2, every other edge
of G incident on A0 or B0 is retained in G1. So every vertex in A0 and
B0 still has degree k in G1, except u which has degree k − 1. Let a :=
|A0 | and b := |B0 |. Since no edge links two vertices in B0 (bipartite
property), the number of edges in G1 is simply kb (every edge is
incident to some vertex in B0, so we can add up the degrees of the
vertices in B0). Similarly, adding up the degrees in A0 instead, the
number of edges is k(a − 1) + k − 1. Equating the two formulae, we
have k(a − 1) + k − 1 = kb, ⇒ k(a − b) = 1. But this implies k = 1,
which contradicts the given condition that k ≥ 2. Hence the bridge
cannot exist.

2. If G is a graph on p vertices such that 1
2
p 

 , then prove that G is

connected.

mu
no
tes
.in

31

Solution: Let, if possible, G is not connected and has at two
components G1 and G2 (same argument can be used, for more than two
components). Let |V(G1)| = r and |V(G2)| = s, such that r  s. Then,

1 11 1
2 2 2
p p pr  

       . A contradiction to given

hypothesis that 1
2
p 

 .

3. If G is k’ edge-connected having q edges and p vertices, then

2
k pq


 .

Solution : From Theorem 2.1.5, we have k’  i.e. pk’  p
As minimum degree of G is  , we have  deg 2p v q   . (By
Theorem 1.5.1)

Thus,
2
k pq


 .

2.5 UNIT END EXERCISES:

1. Find cut vertices and cut edges of the following graphs.

G1 G2 G3

2. Find vertex connectivity (k) and edge connectivity (k’) for the
following graphs.

3. Give an example of a graph for which k < k’ <  .
4. Find blocks of the following graph and hence draw its block graph.

5. Use Dijkstra’s algorithm to find the shortest path from s to t in the
following graph.

mu
no
tes
.in

32

6. If G is a connected graph having a bridge, then show that G has a cut
vertex. Is the converse true? Justify your answer.



mu
no
tes
.in

33

3
TREES

Unit Structure:

3.0 Objectives
3.1 Introduction
3.2 Characterisation of Trees
3.3 Edge Cuts and Bonds
3.4 Graphs and Vector Space
3.5 Cayley’s Formula
3.6 Minimal Cost Spanning Tree and Kruskal’s Algorithm
3.7 Rooted and Binary trees

3.7.1 Breadth First Search
3.7.2 Depth-First Search

3.8 Huffman Codes
3.9 Unit End Exercises

3.0 OBJECTIVES

1. Characterization of trees.
2. Detailed discussion on spanning trees.
3. Kruskal’s algorithm
4. Huffman Code
5. To know edge cuts, bonds, cut vertex and cut edge.
6. Construction of vector space and cycle subspace associated with a
graph

7. Graph traversals

3.1 INTRODUCTION

In the chapter 2, we have defined trees and also its relationship
with block graphs. In this chapter, we shall explore trees in details and
also discuss a few practical applications of the same.

First, we will be enumerating all the trees on n vertices. Before
that, let us draw trees on 7 vertices. A Few of such trees are shown in
Fig. 3.1.

mu
no
tes
.in

34

Following figure gives trees on 7 vertices.

Let us know a few more terms related to tree. As tree is an
acyclic graph, acyclic graphs are called as Forest.

We have seen a spanning subgraph of a graph G in the chapter
1. If a spanning subgraph of a connected graph is a tree, it is called as
spanning tree. Spanning trees are of utmost importance in the
applications of graph theory.

Fig. 3.2(b) below is a spanning tree of the graph of Fig.3.2(a).

We also observe the following facts about trees from the
definition of tree and the discussion so far.

1. In a tree, any two vertices are connected by exactly one path. (For
more than one path would result into a cycle.)

2. From Theorem 1.4.1, we know that if degree of every vertex is at
least two, then the graph contains a cycle. And hence every tree has
at least one vertex of degree at most one. In fact, if the tree is non-
trivial then it has a vertex of degree exactly one. Vertex of degree
one in a tree is termed as leaf.

3. Result: For a tree p = q + 1, or number of vertices is exactly one
more than the number of edges.

Proof: Let T be a tree having p vertices and q edges. If T is trivial,
then p = 1 and q = 0. Hence, the result is true. If T is K2, then p = 2
and q = 1. Again the result holds true. Let T be non-trivial and not K2.
We shall prove the result by induction on number of vertices. Let the
result be true for a tree having less than p vertices. Now, T has p
vertices and it is non-trivial. Hence, it has at least one leaf, say at
vertex v. Then, T – v is again a tree having p – 1 (< p) vertices and q –

mu
no
tes
.in

35

1 edges. By induction hypothesis, p – 1 = (q – 1) + 1. Simplifying we
get p = q + 1, as required.

4. Every non-trivial graph has at least two leaves. This follows easily
from the theorem above, as di = 2q = 2(p – 1).

5. Let e = uv be any edge in tree T. Then, e has to be its cut edge, for
if not, after removing e from T, T will be connected and hence, we
will get a uv path in T – e, a contradiction to property 1 above.

6. Every non-leaf vertex of a tree is its cut vertex. For, let u be a
vertex of a tree having degree at least 2 and v and w are its adjacent
vertices. Then, uv and uw are the only paths from u to v and u to w
respectively. Hence, on removing u from the tree, it becomes
disconnected.

7. Every tree is bipartite. To see that, choose any vertex v from tree.
Now divide vertices of the tree in two sets A and B such that, u 
A, if d(v, u) is even and u  B, if d(v, u) is odd. By this choice,
vA. Thus, A  B = V (vertex set of the tree) and A  B =  .

8. A graph is connected if and only if it has a spanning tree. A
spanning tree is a connected graph. From a connected graph, delete
one edge at a time to remove cycles and we get a spanning tree.

3.2 CHARACTERISATION OF TREES

Theorem 3.2.1: Let G(V, E) be a graph having p vertices and q edges.
The following statements are equivalent for G.

i. G is a tree.
ii. Every two points of G are joined by a unique path.
iii. G is connected and p = q + 1.
iv. G is acyclic and p = q + 1.
v. G is acyclic and any two nonadjacent vertices of G are joined by an
edge e, then G + e has exactly one cycle.

vi. G is connected and every edge of G is in cut edge.

This characterisation of tree can be proved from the discussion so far.

3.3 EDGE CUTS AND BONDS

First, we shall start with edge cuts.
Let G(V, E) be a graph and X, Y by subsets of V, not

necessarily distinct. We denote E[X, Y] to be the set of all edges of G
having one end in X and the other in Y and by e(X, Y) their number. If
X = Y, we simply write as E(X) and e(X) for E[X, X] and e(X, X). If Y
= V – X, the set E[X, Y] is called as the edge cut associated with X and
is denoted by  (X). Obviously,  (X) =  (V – X) and  (V) =  .

Let us illustrate edge cuts with an example.

mu
no
tes
.in

36

G  (u)  (u, v)  (u, x)  (u, w, x)

Fig. 3.3

The minimal edge cut of a graph is called as bond, thus bond is
an edge cut such that none of its edge-subset is an edge cut. To
illustrate, let us have a look at the following figure.

G(V, E)  (u, v, x)  (u, v, x)   (u, y) (not cut)

In the Fig. 3.4,  (u, v, x) is a bond whereas  (u, y) is not as it
has a subset which is an edge cut.

Now we shall discus two important results associated with edge cuts.

3.4 GRAPHS AND VECTOR SPACE

Before, we define a vector space on graph, let us first define a
binary operation - symmetric difference (denoted by), on graphs. Let
G (V, E) be a graph, having p vertices and q edges.

Let E = {e1, e2,, eq}. Let E1 and E2 be two subsets of E. We
define, E1 E2 as:

E1 E2 = E1 E2 – E1 E2. Thus, for a graph in Fig. 3.5 below,
we shall illustrate  .

Fig. 3.5

mu
no
tes
.in

37

E1 E2 E1 E2

Fig. 3.6

Fig. 3.5 shows a graph on 8 vertices and 10 edges. E1 and E2
are two subsets of edge set E of the graph. Then the Fig. 3.6 shows
E1 E2.

E1 = {e1, e2, e4, e5}, E2 = {e2, e5, e7, e8}, then E1 E2 = {e1, e4,
e7, e8}

Notations : If X and Y are two subsets of edge set E of a graph G(V,
E), having p vertices and q edges, we associate vectors X = (x1, x2, ...,
xq) and Y = (y1, y2, ..., yq), such that, xi = 1, yj = 1, if edge xiX, edge
yjY, else xi = 0, yj = 0. We define operation  on the elements of X,
Y with a rule: 1 1 = 0, 0 0 = 0, 1 0 = 1 and 0 1 = 1. Thus, for
the edge sets E1 and E2 in the example above, we have, vector E1 = (1,
1, 0, 1, 1, 0, 0, 0, 0, 0) and vector E2 = (0, 1, 0, 0, 1, 0, 1, 1, 0, 0) and
hence vector E1 E2 = (1, 0, 0, 1, 0, 0, 1, 1, 0, 0). Thus, E1 E2 = {e1,
e4, e7, e8}, as we have obtained earlier.

Thus, the q-vector representing the symmetric difference of q-
vectors E1 and E2 is in fact the q-vector of symmetric difference of E1
and E2. But, E1 and E2 are two subgraphs of G. Hence, we have defined
binary operation on the subgraphs and also represented these
subgraphs in the form of a vector. The set of all 2 q q-vectors, (all
zeros indicate null graph), is a set of all edge induced subgraphs of G.
We denote it by  (G). This set forms a vector space on the field GF(2)
or Z2. This can be easily verified.

1.  (G) is an a belian group under  .
a. Let X, Y be any two vectors (edge sets) in  (G). Then, X Y is also
a vector in  (G), and hence  (G) is closed under  (G).
b. Vector associated with  is (0, 0,, 0) and X  (0, 0,, 0) = X =
(0, 0,, 0). Thus, identity exists.
c. If X is any edge vector, then, X X = 0 (zero vector). This shows
the existence of inverse with respect to  .
d. The operation  is clearly commutative.
2. Scalar multiplication on vectors is distributive.
3. Scalar multiplication is associative.

Also observe that vectors (1, 0, 0, ..., 0) associated with edge
set {e1}, (0, 1, 0,, 0) associated with edge set {e2},, (0, 0,, 0,
1) associated with edge set {eq}, forms a basis for the vector space.
Thus, the dimension of the vector space  (G) is q.

Definition 3.3.1: Fundamental Cycle: Let T be any spanning tree of a
connected graph G.

mu
no
tes
.in

38

Adding just one edge to a spanning tree will create a cycle;
such a cycle is called a fundamental cycle with respect to a spanning
tree T.

There is a distinct fundamental cycle for each edge; thus, there
is a one-to-one correspondence between fundamental cycles and edges
not in the spanning tree. For a connected graph with p vertices, any
spanning tree will have p − 1 edges, and thus, for a graph of q edges
and any one of its spanning trees will have q − p + 1 fundamental
cycles.

Fig. 3.7

Note: Number on the edge indicate just an edge number, so 3 means e3.

In the above Fig. 3.7, T is a spanning tree of graph G and C3, C6, C7
and C8 are fundamental cycles of G with respect to T. (Ci is obtained
from T by adding an edge ei).

For any given spanning tree the set of all q − p + 1 fundamental cycles
forms a cycle basis, a basis for the cycle subspace of  (G).

3.5 CAYLEY’S FORMULA

Cayley's formula counts the number of labelled trees on n
vertices. In other words, it counts the number of spanning trees of a
complete graph Kn. However, it does not count the number of non-
isomorphic trees on n vertices.

Before we proceed to the formula, let us find number of
labelled trees for small values of n such as 2, 3, 4 and then we shall
generalise using Cayley’s formula.

mu
no
tes
.in

39

Fig. 3.8

Let Tn denote number of labelled trees on n vertices. Then, Cayley’s
Formula states that:
Tn = nn – 2.

Now let us count number of labelled trees on n vertices. In fact,
Cayley’s formula gives this count and many proofs of the formula are
available. We shall use the simplest algorithm for counting that is
“Prüfer Encoding”. Before we proceed to the proof of the formula, let
us understand “Prüfer Encoding”.

Prüfer Encoding:
The most straight forward method of showing that a set has a

certain number of elements is to find a bijection between that set and
some other set with a known number of elements. In this case, we are
going to find a bijection between the set of Prüfer sequences and the
set of spanning trees.

A Prüfer sequence is a sequence of n – 2 numbers, each being
one of the numbers from 1 to n. We observe that, there are nn–2 Prüfer
sequences for any given n, where we allow repetitions. The following
is an algorithm that can be used to encode any tree into a Prüfer
sequence. Let Tn be a set of all trees on n vertices.

mu
no
tes
.in

40

Algorithm (Coding):
1. Take any tree, t ∈ Tn, whose vertices are labelled from 1 to n in
any manner.

2. Let i = 1, t1 = t.
3. From ti, choose vertex v with the smallest label whose degree is
equal to 1, and write down the value of its only neighbour, say ai
(1 i  n–1) (We have already shown that any tree must have at
least two leaf vertices).

4. Construct tree ti+1 from ti by removing vertex v and edge vai.
5. Update i to i + 1. Repeat from step 3 for the new, smaller tree.
Continue until only one vertex remains.

6. Drop last neighbour from the list to get a sequence of n – 2
vertices. (In fact, we observe that the last in the least is always the
vertex with the highest label.)

Now, we shall apply this algorithm to a tree on 8 vertices below.

Fig. 3.9
Step 1: Remove vertex v = 1 and a1 = 2
Step 2: Remove vertex v = 2 and a2 = 4
Step 3: Remove vertex v = 3 and a3 = 4
Step 4: Remove vertex v = 6 and a4 = 4
Step 5: Remove vertex v = 4 and a5 = 5
Step 6: Remove vertex v = 7 and a6 = 5
Step 7: Remove vertex v = 5 and a7 = 8

Now, as per the algorithm, we have to drop a7 = 8 and hence
the Prüfer sequence is: {2, 4, 4, 4, 5, 5}.

We observe that the vertex label frequency in the sequence is
deg (vertex) – 1. Also a vertex with degree one never appears in the
sequence.

mu
no
tes
.in

41

Thus, we have seen how to construct a Prüfer Sequence from a tree.
Now is the time to construct a tree from a given Prüfer sequence P.
We shall first discuss the algorithm for the same.
Algorithm (Decoding):
1. P is given Prüfer sequence and L = {1, 2,, n–1, n}.
2. Let j: First label in P and k: the least number in L that does not occur
in P.

3. Connect an edge between j and k.
4. Remove j and k from P and L respectively.
5. Perform steps 2 to 4, till P is non-empty.
6. There will be exactly two numbers in L remaining. Join an edge
between these two.

Thus, we get a tree corresponding to given Prüfer sequence.

Now, let us apply it on the Prüfer sequence P = {2, 4, 4, 4, 5, 5}.
Step 1: P = {2, 4, 4, 4, 5, 5}; L = {1, 2, 3, 4, 5, 6, 7, 8}; j = 2; k = 1
Step 3: P = {4, 4, 4, 5, 5}; L = {2, 3, 4, 5, 6, 7, 8}; j = 4; k = 2
Step 4: P = {4, 4, 5, 5}; L = {3, 4, 5, 6, 7, 8}; j = 4; k = 3
Step 5: P = {4, 5, 5}; L = {4, 5, 6, 7, 8}; j = 4; k = 6
Step 6: P = {5, 5}; L = {4, 5, 7, 8}; j = 5; k = 4
Step 7: P = {5}; L={5, 7, 8}; j = 5; k = 7
Step 8: P =  ; L = {5, 8}
Step 9: Connect edge 5-8.

Fig. 3.10

Following the above steps, we have now reconstructed our
original tree on 8 vertices, as in Fig. 3.9. It may be oriented differently,
but all of the vertices are adjacent to their correct neighbours, and so
we have the correct tree back. Since there were no ambiguities on how

mu
no
tes
.in

42

to encode the tree or decode the sequence, we can see that for every
tree there is exactly one corresponding Prüfer Sequence, and for each
Prüfer Sequence there is exactly one corresponding tree. More
formally, the encoding function can be thought of as taking a member
of the set of spanning trees on n vertices, Tn, to the set of Prüfer
Sequences with n−2 terms, Pn . Decoding would then be the inverse of
the encoding function, and we have seen that composing these two
functions results in the identity map. If we let f be the encoding
function, then the above statements can be summarized as follows:
f: Tn → Pn, f−1 : Pn → Tn , and f−1 ◦ f = I.

Since we have found a bijective function between Tn and Pn ,
we know that they must have the same number of elements. We know
that |Pn| = nn–2 , and so |Tn| = nn–2.

3.6 MINIMAL COST SPANNING TREE AND
KRUSKAL’S ALGORITHM

In many real life problems in Graph Theory, such as,
networking, travelling salesman, it is necessary to find the minimum
cost spanning tree of a graph, where, weight is some value associated
with the graph, which may represent distance, cost etc.

One of the popular algorithms is credited to Kruskal, which
finds minimum cost spanning tree for a given connected graph. We
shall look at the algorithm for a weighted, connected graph G.

Like Dijkstra’s algorithm, it also follows greedy approach. The
fundamental idea behind Kruskal’s algorithm is very simple. Start with
a null graph. At each step, choose an edge which is not added so far
and has the least weight. If this edge forms a cycle then look for the
other edge else add this chosen edge.

Algorithm: The Kruskal Algorithm
Input: a weighted connected graph G = (G, w)
Output: an optimal tree T = (V,T) of G, and its weight w(T)

1: set T :=  , w(T) := 0 (T denotes the edge set of the current graph)
2: while there is an edge e∈ E \ T such that T∪ {e} is the edge set
of a graph do

3: choose such an edge e of minimum weight
4: replace T by T∪ {e} and w (T) by w (T) + w(e)
5: end while
6: return ((V, T), w(T))

Let us apply Kruskal’s algorithm to get the minimum cost
spanning tree as in Fig.3.11.

mu
no
tes
.in

43

Fig. 3.11

1. T =  , w(T) = 0
2. T = {12}, w(T) = 1
3. T = {12, 23}, w(T) = 3
4. T = {12, 23, 67}, w(T) = 6
5. T = {12, 23, 67, 45}, w(T) = 9
6. T = {12, 23, 67, 45, 14}, w(T) = 13
7. Note: Though wt(edge2-5) is 4, it is not chosen as it forms a cycle
8. T = {12, 23, 67, 45, 14, 47}, w(T) = 17
9. Done

Fig. 3.12

Following theorem proves correctness of Kruskal’s algorithm.

Theorem 3.5.1: Minimal cost spanning tree, generated by Kruskal’s
algorithm is optimal.

Proof: Let T be the spanning tree for G generated by Kruskal's
algorithm. Let T’ be a
minimum cost spanning tree for G. Show that both T and T’ have the
same cost. If edges of T and T’ are the same, we are done. Let E(T) 
E(T’).

Let e be a minimum cost edge such that eE(T’) and eE(T).
On including e in E(T’), cycle is created. Let ee1e2...ek be the cycle
created. This cycle should have an edge, say ej, which does not belong
to T. Now, w(ej)  w(e), else Kruskal’s algorithm would select this
edge. Consider tree T’’ = E(T’)  {e} – {ej}. (Here cycle created by e
is broken by ej to get another spanning tree T’’). Also, w(T’’)  w(T’),
which does not have e. Repeat this process for all such edges in T – T’
to eventually get T from T’ without changing the weight. Thus, T is
optimal.

mu
no
tes
.in

44

3.7 ROOTED AND BINARY TREES

A rooted tree T(x) is a tree T with a specified vertex x, called
the root of T. An orientation of a rooted tree in which every vertex but
the root has in-degree one is called a branching. We refer to a rooted
tree or branching with root x as an x-tree or x-branching, respectively.

Fig. 3.13

In the Fig. 3.13 above, R is root having in-degree 0 and out-degree 3.
The vertices a1, a2 and a3 have in-degree 1 and out-degrees 2, 1 and 3
respectively. Vertices l1, l2, l3, l4, l5 and l6 have in-degree 1 each and
out-degree 0. Vertices having out degree 0 are termed as leaves.

Vertices a1, a2 and a3 are called as children of R and R is the
parent of these vertices. Vertices a1, a2 and a3 are siblings, as they
have same parent.

Thus, rooted tree is a directed graph.

Binary trees are special kind of rooted trees. In binary trees there are
maximum 2 children to any vertex. Vertex having no child is as before
termed as leaf.

Fig. 3.14(a) Fig. 3.14(b)

Rooted trees and branching are effective tools in designing of
efficient algorithms for the purpose of reachability. There are certain
terminologies exclusively associated with rooted binary trees.

 The depth of a node is the number of edges from the root to the
node.

mu
no
tes
.in

45

 The height of a node is the number of edges from the node to the
deepest leaf.

 The height of a tree is a height of the root. (Thus, height of tree in
Fig. 3.14(a) is 2)

 A complete binary tree is a binary tree, which is completely filled,
with the possible exception of the bottom level, which is filled
from left to right. (Fig. 3.14(b))

As graphs and trees have many real life applications, the vertices
are usually used to store some data and we may need to search or
traverse to the node to access the data. Hence, traversal is of utmost
importance in graphs and trees. Now, shall look at some algorithms for
the tree and graph traversals.

3.7.1 Breadth First Search:
In most types of tree-search, the criterion for selecting a vertex

to be added to the tree depends on the order in which the vertices
already in the tree T were added. A tree-search in which the adjacency
lists of the vertices of T are considered on a first-come-first-served
basis, that is, in increasing order of their time of incorporation into T,
is known as breadth-first search. In order to implement this algorithm
efficiently, vertices in the tree are kept in a queue; this is just a list Q
which is updated either by adding a new element to one end (the tail/
rear of Q) or removing an element from the other end (the head/front
of Q). At any moment, the queue Q comprises all vertices from which
the current tree could potentially be grown.

Initially, at time t = 0, the queue Q is empty. Whenever a new
vertex is added to the tree, it joins Q. At each stage, the adjacency list
of the vertex at the head of Q is scanned for a neighbour to add to the
tree. If every neighbour is already in the tree, this vertex is removed
from Q. The algorithm terminates when Q is once more empty. It
returns not only the tree (given by its predecessor function p), but also
records the level of each vertex in the tree and, more importantly, their
distances from r in G. It also returns a function t which records the
time of incorporation of each vertex into the tree T. We keep track of
the vertices in T by colouring them black. The notation G(x) signifies a
graph G with a specified vertex (or root) x. Recall that an x-tree is a
tree rooted at vertex x.

Algorithm: Breadth-First Search (BFS)
Input: a connected graph G(r)
Output: an r-tree T in G with predecessor function p, a level function
l, such that l(v) = dG(r,v) for all v∈ V , and a time function t
1: set i := 0 and Q := 
2: increment i by 1
3: colour r black
4: set l(r) := 0 and t(r) := i
5: append r to Q
6: while Q is nonempty do
7: consider the head x of Q
8: if x has an uncoloured neighbour y then
9: increment i by 1

mu
no
tes
.in

46

138 6 Tree-Search Algorithms
10: colour y black
11: set p(y) := x, (y) := (x) + 1 and t(y) := i
12: append y to Q
13: else
14: remove x from Q
15: end if
16: end while
17: return (p,l, t).

Before we discuss the algorithm in detail, let us first implement it on
the following graph.

Fig. 3.15

Now, let us apply BFS on the Fig. 3.15.

mu
no
tes
.in

47

Q:   1  12  123  1234  12345  2345  23456 
234567 34567  345678  3456789  456789  45678910
 5678910  567891011  67891011  6789101112 
789101112  89101112  9101112  910111213  10111213
 111213  1213  13   .

Based on this, the highlighted edges in the Fig. 3.15 show the BFS
tree.

3.7.2 Depth-First Search
Depth-first search is a tree-search in which the vertex added to

the tree T at each stage is one which is a neighbour of as recent
addition to T as possible. In other words, we first scan the adjacency
list of the most recently added vertex x for a neighbour not in T. If
there is such a neighbour, we add it to T. If not, we backtrack to the
vertex which was added to T just before x and examine its neighbours,
and so on. The resulting spanning tree is called a depth-first search tree
or DFS-tree.

This algorithm may be implemented efficiently by maintaining
the vertices of T whose adjacency lists have yet to be fully scanned,
not in a queue as we did for breadth-first search, but in a stack. A stack
is simply a list, one end of which is identified as its top; it may be
updated either by adding a new element as its top or else by removing
its top element. In depth-first search, the stack S is initially empty.
Whenever a new vertex is added to the tree T, it is added to S. At each
stage, the adjacency list of the top vertex is scanned for a neighbour to
add to T. If all of its neighbours are found to be already in T, this
vertex is removed from S.

The algorithm terminates when S is once again empty. As in
breadth-first search, we keep track of the vertices in T by colouring
them black. Associated with each vertex v of G are two times: the time
f(v) when v is incorporated into T (that is, added to the stack S), and
the time l(v) when all the neighbours of v are found to be already in T,
the vertex v is removed from S, and the algorithm backtracks to p(v),
the predecessor of v in T. The time increments by one with each
change in the stack S. In particular, f(r) = 1, l(v) = f(v) + 1 for every
leaf v of T, and l(r) = 2n.

Algorithm: Depth-First Search
Input: a connected graph G
Output: a rooted spanning tree of G with predecessor function p, and
two time functions f and l.
1: set i := 0 and S := 
2: choose any vertex r (as root)
3: increment i by 1
4: colour r black
5: set f(r) := i
6: add r to S (that is push r on stack S)
7: while S is nonempty do
8: consider the top vertex x of S
9: increment i by 1

mu
no
tes
.in

48

10: if x has an uncoloured neighbour y then
11: colour y black
12: set p(y) := x and f(y) := i
13: add y to the top of S (that is push y on stack S)
14: else
15: set l(x) := i
16: remove x from S (that is pop x from the stack S)
17: end if
18: end while
19: return (p, f, l)

Now, let us apply DFS above for the graph below:
Highlighted edges in the graph indicate DFS tree.

Fig. 3.16

Note: Unused columns are used to indicate push and pop.

mu
no
tes
.in

49

3.8 HUFFMAN CODES

In Computer Science, it is required to encode the text into a bit-
string. Suppose, we want to encode all the alphabets in English (where
no distinction is made between lowercase and uppercase letters). We
can represent each letter with a bit string of length five, because there
are only 26 letters and there are 32 bit strings of length five (E.g.
00000, 00001, 00010, so on, the count is 25). The total number of bits
used to encode data is five times the number of characters in the text
when each character is encoded with five bits. Is it possible to find a
coding scheme of these letters such that, when data are coded, fewer
bits are used? We can save memory and reduce transmittal time if this
can be done.

We now introduce an algorithm that takes as input the
frequencies (which are the probabilities of occurrences) of symbols in
a string and produces as output a prefix code that encodes the string
using the fewest possible bits, among all possible binary prefix codes
for these symbols. This algorithm, known as Huffman coding, was
developed by David Huffman. This algorithm assumes that we already
know how many times each symbol occurs in the string, so we can
compute the frequency of each symbol by dividing the number of
times this symbol occurs by the length of the string. Huffman coding is
a fundamental algorithm in data compression, the subject devoted to
reducing the number of bits required to represent information.
Huffman coding is extensively used to compress bit strings
representing text and it also plays an important role in compressing
audio and image files. Given symbols and their frequencies, our aim is
to construct a rooted binary tree where the symbols are the labels of the
leaves. The algorithm begins with a forest of trees each consisting of
one vertex, where each vertex has a symbol as its label and where the
weight of this vertex equals the frequency of the symbol that is its
label. At each step, we combine two trees having the least total weight
into a single tree by introducing a new root and placing the tree with
larger weight as its left subtree and the tree with smaller weight as its
right subtree. Furthermore, we assign the sum of the weights of the two
subtrees of this tree as the total weight of the tree. The algorithm is
finished when it has constructed a tree, that is, when the forest is
reduced to a single tree.

Algorithm: Huffman Code:
Input: Huffman(C: symbols ai with frequencies wi , i = 1, . . . , n)
F := forest of n rooted trees, each consisting of the single vertex ai and
assigned weight wi
Output: Huffman code of every symbol
Procedure:
while F is not a tree

Replace the rooted trees T and T’ of least weights from F with
w(T) ≥ w(T’) with a tree having a new root that has T as its left
subtree and T’ as its right subtree.

Label the new edge to T with 0 and the new edge to T’ with 1.
Assign w(T) + w(T’) as the weight of the new tree.

mu
no
tes
.in

50

End while;
Assign the Huffman code for the symbol ai as the concatenation of the
labels of the edges in the unique path from the root to the vertex ai.

Let us understand the algorithm better with the help of an example.

Use Huffman coding to encode these symbols with given frequencies:
a: 0.20, b: 0.10, c: 0.15, d: 0.25, e: 0.30, f: 0.12. What is the average
number of bits required to encode a character?

In the Step V, we get the necessary coding tree. The codes are as
below:
a: 000; b: 111; c: 001; d: 10; e: 01; f: 110

Average number of bits required is:
3 x 0.2 + 3 x 0.1 + 3 x 0.15 + 2 x 0.25 + 2 x 0.3 + 3 x 0.12 = 2.81

Note that Huffman coding is a greedy algorithm. Replacing the two
subtrees with the smallest weight at each step leads to an optimal code
for these symbols can encode these symbols using fewer bits.

Solved Problems:
1. The complete bipartite graphs K1,n, known as the star graphs. Prove
that the star graphs are the only complete bipartite graphs which are
trees.
Solution: The number of edges in a star graphs is n – 1. Also one
partite has 1 vertex and the other has n vertices, no two vertices in the
second partition can be connected and hence star graph is acyclic and
connected. Thus, it is a tree. N Now, in Km, n, with m, n > 0 degree of
every vertex is at least two. Hence it has a cycle. So it cannot be a tree.

mu
no
tes
.in

51

3.9 UNIT END EXERCISES:

1. Let G be a connected graph which is not a tree and C be a cycle in
G. Prove that complement of any spanning tree of G contains an edge
of C.
2. Prove Theorem 3.2.1.
3. Find minimum cost spanning tree for the following graph using
Kruskal’s algorithm.

4. Like Kruskal’s algorithm, Prim’s algorithm too find minimum cost
spanning tree. However, in Prim’s algorithm, at every step, we add an
edge having least cost provided when an edge is added cycles is not
formed. (E.g. in the above graph, we start with edge CD, followed by
CB, BA, DF, however, AD is not chosen as a cycle is formed.) Find
minimum cost spanning tree for the following graph using Prim’s
algorithm.

mu
no
tes
.in

52

5. Draw BFS tree for the following graph.

6. Draw DFS tree for the following graph.

7. Use Huffman coding to encode these symbols with given
frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30, F: 0.07, G:
0.08. What is the average number of bits required to encode a symbol?
8. Find Prüfer sequence for the tree below.

9. Decode the Prüfer sequence (1, 1, 1, 1, 6, 6, 5)



mu
no
tes
.in

53

4
EULERIAN AND HAMILTONIAN

GRAPHS
Unit Structure:

4.0 Objectives
4.1 Introduction
4.2 Randomly Eulerian Graphs
4.3 Chinese Postman Problem
4.4 Hamiltonian Graph
4.5 Degree Majorisation
4.6 Travelling Salesman’s Problem:
4.7 Unit End Exercises

4.0 OBJECTIVES

1. Definition and characterisation of Eulerian graph

2. Fleury’s algorithm

3. Application of Eulerian graph: Chinese postman’s problem

4. Definition of Hamiltonian graph

5. Sufficient and necessary conditions for Hamiltonian graphs

6. Degree majorisation

7. Application of Hamiltonian graph: Travelling salesman’s problem

4.1 INTRODUCTION

In chapter one, we have seen that the Konigsberg’s bridge
problem, devised by Euler, gave birth to Graph Theory. While proving
non-existence of the necessary path, Euler defined a class of graphs,
which are now termed as Eulerian graphs. In this chapter, we shall
discuss Eulerian graphs in detail.

Speaking plainly, in a graph, if you start from any vertex and
without lifting your pencil and traversing all the edges exactly once, if
you can come back to the starting vertex, you have come across an
Eulerian graph and you have traversed an Eulerian circuit. To explain
further, let us have a look at the graph if Fig. 4.1 below.

mu
no
tes
.in

54

Fig. 4.1

In the Fig. 4.1 above, if we start at vertex v1, we can take the
route as v1v2v3v4v5v6v3v1. Thus, the graph of Fig. 1.4 is Eulerian. Now,
let us define Eulerian graphs formally.

Definition 4.1.1: Eulerian Trail: In a connected graph G, a path that
visits every edge exactly once is termed as an Eulerian Trail.

Definition 4.1.2: Eulerian Circuit: In a connected graph G, circuit in
which every edge is traversed exactly once is termed as Eulerian
circuit.

Definition 4.1.3: Eulerian Graph: A connected graph having Eulerian
circuit is called as Eulerian graph.

The graph in Fig. 4.1 is Eulerian.

A traversable graph is one that can be drawn without taking a
pen from the paper and ithout retracing the same edge. In such a case
the graph is said to have an Eulerian trail.

Characterisation of Eulerian graph:
While showing that there no path that crosses all the bridges

exactly once, in the Konigsberg’s bridge problem, Euler represented
the bridges in the form of a graph as we have seen in Fig. 1.2. He
stated that any graph to be traversed in this manner has to be even.
Thus, we have a very important property of Eulerian graph as below:

Theorem 4.1: A graph is Eulerian if and only if it is connected and
even.

Proof: Suppose a graph G is Eulerian. Since G is Eulerian, it has
Eulerian circuit and Eulerian circuits are connected. Hence, G is
connected. Now, let v be any vertex in G. Let us traverse Eulerian
circuit from v. For traversing all the edges, a vertex is entered and left,
contributing two to the degree of any vertex. This is true whenever we
traverse a vertex (note that a vertex may occur multiple times in the
Eulerian circuit). At the end, we return to v, contributing two to degree
of v as well. Thus, degree of every vertex is even.

Conversely, let G be even and connected graph. We shall prove
that it is Eulerian, that is it has an Eulerian cicuit. Suppose that graph G
is connected and its all the vertices are even. If there is more than one
vertex in G, then each vertex must have degree greater than 0. Begin at

mu
no
tes
.in

55

a vertex v. As we know, a graph with even vertices partitions into
cycles (Theorem 1.4.3), we know that v will be on at least one cycle.
Since G is connected, there must be an edge {v, v1} for some vertex
v1≠v. Since v1 has even degree greater than 0, there is an edge {v1,
v2} where v2 ≠ v1. These two edges make a trail from v to v2.
Continue this trail, leaving each vertex on an edge that was not
previously used, until returning to v. This is always possible, because v
is on a cycle. Call the circuit (cycle is a circuit) formed by this process
C1. If C1 covers all the edges of G, then we are done. Otherwise,
remove all the edges that contribute to C1 from G, leaving the graph
G0. The remaining vertices are still even, and since G is connected
there is some vertex u in both G0 and C1. Repeat the same process as
before, beginning at u. The new circuit, C2, can be added to C1 by
starting at v, moving along C1 to u, travelling around C2 back to u and
then along the remainder of C1 back to v. Repeat this process, adding
each new circuit found to create a larger circuit. Since G is finite, this
process must end at some point, and the resulting circuit will be an
Eulerian circuit.

If an Eulerian graph is small then in general it is straight
forward to find an Eulerian circuit. But that need not be the case
always. In such situation Fleury’s algorithm comes to help us. It finds
Eulerian circuit, given any Eulerian graph.

The basic idea behind Fleury’s algorithm is very simple. Start
with any vertex u, the next vertex v is chosen in such way that uv is not
a bridge unless there is no other option. Let us first write down the
steps of the algorithm and then apply on the graph of Fig. 4.1.

Fleury’s Algorithm:

Input: A connected even graph G and a vertex u of G

Output: An Eulerian circuit C of G starting (and ending) at u
1: set C := u, x := u, F := G
2: while ∂F (x)   do
3: choose an edge e := xy ∂F (x), where e is not a cut edge of F
unless there is no alternative
4: replace uCx by uCxey, x: = y, and F:= F – e
5: end while
6: return C

Let us apply the algorithm on Fig, 4.1.

mu
no
tes
.in

56

In the last step we get the necessary Eulerian circuit:
v1v3v4v5v6v3v2v1.

Following theorem gives the proof of correctness of Fleury’s
algorithm.

Theorem 4.2: If G is an even and connected graph, then the circuit C,
returned by Fleury’s algorithm is an Eulerian circuit.

Proof: The sequence C is initially a trail, and remains one throughout
the procedure because Fleury’s Algorithm always selects an edge of F
(that is, an as yet unchosen edge) which is incident to the terminal
vertex x of C. Moreover, the algorithm terminates when ∂F(x) =  , that
is, when all the edges incident to the terminal vertex x of C have
already been selected. Because G is even, we deduce that x = u; in
other words, the trail C returned by the algorithm is an Eulerian circuit.

Now, we shall show that C has all the edges of G. Let us
assume contrary.

Let C = {v0v1v2....vkvk+1....vnv0}. Let F = G – E(C).

 E(F)   . Hence there are vertices of positive degree in F. In fact
every vertex in F has even degree, since F is obtained from G by
deleting edges of a circuit. Let S = {vF: degF(v) > 0}. Let H be a
subgraph of G induced by the vertex set S. Then, v0V–S, as we
terminate the algorithm once  F(v0) =  .

mu
no
tes
.in

57

Graph induced by S Graph induced by V – S

Fig. 4.2

Let vk be the last vertex in C such that vkS. Then vk–1  V–S
and ek+1 = vkvk+1 is the only edge joining S induced subgraph and V–S
induced subgraph. Therefore, i. ek+1 is a bridge in F.

Next, since every vertex of H has positive degree, there exists
an edge e, incident with vk in H. It is not a bridge of H since every
vertex of H has even degree. Hence e is not a bridge of F either as
HF. Now, while executing (k+1)th iteration, we preferred to choose
ek+1 to e, thus ii. ek+1 is not a bridge in F (by Fleury’s rule).

(i) and (ii) contradict. (Refer Fig. 4.2)

4.2 RANDOMLY EULERIAN GRAPHS

We have seen the traceability of Eulerian graph. In fact,
Fleury’s algorithm gives a systematic way of traversing an Eulerian
graph to get an Eulerian circuit. Now, let us look at a very interesting
class of Eulerian graph and that is randomly Eulerian graph.

An eulerian graph G is randomly Eulerian from a vertex v of G
if the following procedure always results in an eulerian circuit of G:

Begin a trail at v by choosing any edge incident with v. Next
(and at each step thereafter), the trail is continued by selecting any
edge not already chosen which is adjacent with the edge most recently
selected. The process terminates when no such edge is available.
Equivalently, a graph G is randomly Eulerian from v if every trail of G
beginning at v can be extended to an Eulerian circuit of G.

Before, we proceed to prove the results about randomly
Eulerian graphs, let us look at the examples of Eulerian graphs which
are (or are not) randomly Eulerian.

mu
no
tes
.in

58

Fig. 4.3

In the graphs of Fig. 4.3, we observe that, G0 is not randomly
Eulerian, G1 is randomly Eulerian only from u3, G2 is randomly
Eulerian from u1 and u6 and G3 is randomly Eulerian from all its
vertices.

Explanation:
1. In G0, trail u1u2u3u5u4u3u1u5u6u4u2 cannot be extended to Eulerian
circuit.
2. In G1, trail u1u2u3u1 cannot be extended to Eulerian circuit.
3. In G2, trail u2u6u3u1u2 cannot be extended to Eulerian circuit.

(Note: The trick for verification is very simple. While applying
Fleury’s algorithm to find Eulerian circuit, if bridge is encountered
then traverse the bridge instead of other non-bridge option.)

Theorem 4.3: An Eulerian graph G is randomly Eulerian for a vertex v
if and only if v is on every cycle of G.

Proof: Since Eulerian graph is even, it can be partitioned into cycles
(Theorem 1.4.3).

Let G be randomly Eulerian for a vertex v. Let, if possible, there is a
cycle C of which does not contain v. Let G1 = G – C. Since G and C
are Euler graphs, so is G1 (as it too will have all vertices of even
degree). G1 need not be connected but it should have a maximal
connected component G(v) that includes vertex v. Then the sum, G2 =
G(v) + C has to be connected Eulerian graph.

With this background, we shall observe the following properties.

1. An Eulerian graph G is randomly Eulerian for a vertex v if and only
if v is on every cycle of G.

mu
no
tes
.in

59

2. If a graph G has exactly two odd vertices u and v, then G is
randomly traversable from u to v if and only v is on every cycle of G.

4.3 CHINESE POSTMAN PROBLEM

A Chinese mathematician called Kuan Mei-Ko was interested
in a postman delivering mail to a number of streets such that the total
distance walked by the postman was as short as possible. How could
the postman ensure that the distance walked was a minimum?

The problem defined above is termed as Chinese Postman Problem.

In this type of problems, we can represent the route with a
graph and check if is traversable.

If it is an Eulerian graph then we know we can traverse easily
and the minimum distance will be same as sum of weights of all the
edges.

If the graph is not an Eulerian graph, it will have odd vertices.
We know that a graph has even number of odd vertices. So in that case
we pair up the vertices, which contribute the least distance and add up
to the total weight of the graph to get the minimum distance.

This is an idea behind the algorithm to solve the Chinese
Postman Problem.

In the following example a postman has to start at A, walk
along all 13 streets and return to A. The numbers on each edge
represent the length, in metres, of each street. The problem is to find a
trail that uses all the edges of a graph with minimum length.

Before we proceed to solve the problem, let us have a look at
the pre-requirements for the algorithms and then the steps of the
algorithm.

We have seen that any graph as even number of odd vertices.
Let us find out how many pairs are possible when there are 2n odd
vertices.

1. Suppose there are 2 odd vertices a1 and a2. Then only one pair is
possible.

2. Suppose there are 4 odd vertices a1 a2, a3 and a4. Then three pairs
are possible. E.g. {a1a2, a3a4}, {a1a3, a2a4} and {a1a4, a2a3}
(i.e. 3 x 1)

3. Suppose there are 6 odd vertices a1, a2, a3, a4, a5 and a6. Then, 15
pairs are possible, as a1 can be paired with 5 other vertices and
remaining four vertices can be paired in 3 x 1 pairs, so total pairs
are 5 x 3 x 1 = 15.

4. We continue this way, for 8 odd vertices, 7x5x3x1 = 105 pairs are
possible.

5. For 2n vertices, (2n – 1) x (2n – 3) x ... x 3 x 1 pairs are possible.

mu
no
tes
.in

60

Now that we know how to count number of odd pairs, let us
understand the algorithm.

Algorithm:
1. List all odd vertices.
2. List all possible pairings of odd vertices.
3. For each pairing find the edges that connect the vertices with the
minimum weight.

4. Find the pairings such that the sum of the weights is minimised.
5. On the original graph add the edges that have been found in Step 4.
6. The length of an optimal Chinese postman route is the sum of all the
edges added to the total found in Step 4.

7. A route corresponding to this minimum weight can be easily found.

Let us implement the same on Fig. 4.4.

1. There are only two odd vertices, viz. A and H. So just one pair is
possible.

2. Minimum cost from A to H is 160 (A – B – F – H).
3. Draw the additional edges on the original graph along this path.
(Fig. 4.5)

4. The minimum cost for this problem is sum of all weights of original
graph and 160, which is 840 + 160 = 1000.

5. One possible path is ABEFBDACGHCDFH-FBA.
To find the route of the postman, one has to simply add the extra edges
with reference to the minimum distance so that all the vertices have
even degree and find an Eulerian circuit from the starting (odd) vertex.

mu
no
tes
.in

61

4.4 HAMILTONIAN GRAPH

A path having connecting all the vertices of a connected graph
is called as Hamiltonian path and a cycle through all the vertices of a
graph is termed as Hamiltonian cycle. Hamilton described this graph,
in the form of a puzzle. He drew a dodecahedron and put pins at five
consecutive vertices of the same. Other player has to put the pins to
complete a spanning cycle. A dodecahedron with its spanning cycle
(highlighted) is shown in Fig. 4.6 below.

We can make very interesting observations of Hamiltonian graphs.
1. A complete graph on n vertices, where n3
2. A cycle on n vertices is Hamiltonian.
3. Though every Eulerian graph need not be Hamiltonian, line graph of
a every Eulerian graph is Hamiltonian.

4. If G is Hamiltonian then the graph obtained by adding edges to non-
adjacent vertices of G, remains Hamiltonian.

5. Every non-Hamiltonian graph can be converted into Hamiltonian by
adding edges into it. (This is true because complete graph is
Hamiltonian)

Definition: A graph G is said to be maximal non-Hamiltonian, if it not
Hamiltonian and on adding an edge between any pair of its non-
adjacent vertices, it becomes Hamiltonian.
The graph in Fig. 4.7 below is maximal non-Hamiltonian.

Fig. 4.7

Like Eulerian graph, Hamiltonian graph has no elegant
characterisation. However, there are some necessary and some
sufficient conditions to determine whether given graph is Hamiltonian.

mu
no
tes
.in

62

Now, we shall prove a necessary condition for a graph to be
Hamiltonian.

Theorem: If G is Hamiltonian, then for every non-empty subset
SV(G), c(G – S)  | S |. (c(G – S) is number of distinct components
obtained after removing S from G).

Proof: Let G be Hamiltonian. Let   SV(G). Let wS. Let C be
Hamiltonian cycle of G beginning at w. Let c(G – S) = k.

If k = 1, then S being non-empty set we readily see that | S |1 = k.

Now let k > 1 and G1, G2, ..., Gk be the components of G – S.

Fig. 4.8

Before we proceed, let us give some orientation to C.

(Fig. 4.9). Let ui be the last vertex of C that belongs to Gi.

Let vi be the next vertex of C that comes after ui (this is
possible due to the orientation given to C). Obviously, vi can not
belong to Gi. This is because ui is the last vertex in Gi. Also vi cannot
belong to any other Gj, for 1 jk. For else components Gi and Gj will
be connected; however all the components are mutually disjoint.
Hence, viS. Also, vi vj for i j. (Fig. 4.8 and Fig. 4.10). This is
because uiviE(G) for every i.

Therefore, for each i, viS | S |k.

mu
no
tes
.in

63

Thus, we have proved a necessary condition for a graph to be
Hamiltonian. As a result, the contra positive of this condition, “Let G
be a connected graph. If there exists a subset S of V, such that c(G – S)
> | S |, then G is non-Hamiltonian”, can be useful to show that a graph
is not Hamiltonian. We shall check this with the help of an example
below. (Fig. 4.11)

However, the condition that we have proved is necessary condition for
a graph to be Hamiltonian and not sufficient. The reader can verify that
Petersen’s graph satisfies the necessary condition of Theorem 4,
however the graph is not Hamiltonian.

Now, we shall prove the sufficient conditions for a graph to be
Hamiltonian.

Dirac’s theorem gives a sufficient condition for a graph to be
Hamiltonian,

Theorem: (Dirac’s Theorem): If a connected graph G has n 3 vertices
and degree of every vertex is at least , then it has Hamiltonian cycle.

Proof: We shall prove the result by contradiction. Let, if possible, G be
a graph having n3 vertices such that degree of every vertex is at least

2
n , but it has no Hamiltonian cycle.

Let P p1p2...pk be the longest path in G. If p1 is connected to a vertex
v not on path P, then vp1p2...pk will be longer than P, hence p1 has all
its adjacent vertices in path P. Same argument holds true for pk as well.
Thus, p1 and pk are adjacent to vertices on P itself and not outside the

path. As deg(p1)  2
n and p1 cannot be adjacent to itself k 2

n +1.

So we claim that there is some value of j (1 jk) such that pk
is adjacent to pj and p1 is adjacent to pj+1 (Fig. 4.8). Suppose the claim
is not true. Then since all the adjacent vertices of p1 lie on P, there
must be at least deg(p1) vertices that are not adjacent to pk and
similarly there must be at least deg(pk) vertices that are not adjacent to

mu
no
tes
.in

64

p1. Thus the path P must have at least deg(p1) + deg(pk) + 1 = n + 1
vertices, which contradict that there are n vertices.
This gives us cycle C : pj+1pj+2...pk–1pkpjpj–1pj–2...p1 pj+1.
Now, we shall show that C is the Hamiltonian cycle of G.

Let, if possible, G – C is non-empty. Then, there is a vertex v in G – C
such that v is connected to C at some vertex pi (this is because G is
connected) and hence path starting from v and through pi around the
cycle C is longer than P which contradicts our choice of P.

Hence C is the necessary Hamiltonian cycle.
Thus, from the above theorem, we observe that Dirac’s theorem

gives sufficient condition for a graph to be Hamiltonian. However, this
condition is not necessary, as reader can readily see that a cycle Cn

(n5) is Hamiltonian but  (Cn) = 2 < 2
n .

Definition: Closure of a Graph: Let G be a graph on n vertices. If there
is a pair of nonadjacent vertices u1 and v1 such that deg(u1) + deg(v1)
n, then join u1 and v1 by an edge to form a super graph G1 of G. In
G1, if there is a pair of non-adjacent vertices u2 and v2 such that
deg(u2) + deg(v2)n, then join u2 and v2 by an edge to form a super
graph G2 of G1.

Continue this process till no such pair exists. Then the graph so formed
is called as closure of G and is denoted by c(G).

We shall understand the definition with the help of an example in Fig.
4.9 below.

Fig. 4.13

mu
no
tes
.in

65

Bondy-Chvatal Theorem: Let G be a simple graph on n vertices and u
and v be nonadjacent vertices in G such that d(u) + d(v) n, then G is
Hamiltonian if and only if G + uv is Hamiltonian.

Proof: If G is Hamiltonian, then G + uv is Hamiltonian.

Conversely, let G + uv is Hamiltonian. Let, if possible, G is not
Hamiltonian.

Since G + uv is Hamiltonian and G is not, every Hamiltonian cycle of
G + uv contains edge uv. Thus, there is a Hamiltonian path u = v1-v2-
v3-...-vn = v in G. Define sets S and T as:
S = {vi : uvi + 1 E(G)} and T = {vi : vivE(G)}.

Since v S  T, |S U T| < n. (i.e. number of vertices in S U T is less
than n).

Also |S  T| = 0, for if there is a vertex vi S T, the there will be a
Hamiltonian cycle v1v2...vivnvn–1...vi+1v1 which belongs to G, which is
not possible by our assumption.

deg(u) + deg(v) = |S| + |T| = |S T| – |S T| < n.

This contradicts given condition that d(u) + d(v) n.

Thus, our assumption is wrong. Therefore, G is Hamiltonian.

Theorem: A graph G is Hamiltonian if and only if its closure is
Hamiltonian.

Proof: If G is Hamiltonian, then obviously closure of G is Hamiltonian.

Let closure of G is Hamiltonian. Let closure of G is made by
successively adding edges uv (where d(u) + d(v) n) and we obtain a
sequence G1, G2,, Gk. Then, by successively applying Theorem on
Gk, Gk–1, ..., G1, we can prove that G is Hamiltonian.

4.5 DEGREE MAJORISATION

A sequence of real numbers (p1, p2, ..., pn) is said to be
majorised by another such sequence (q1, q2, ..., qn) if piqi for 1 in.

A graph G is said to be majorised by other graph H, if |V(G)| =
|V(H)| and a non-decreasing degree sequence of G is majorised by that
of H.

As an example, observe the graphs C5 and K2, 3 of Fig. 4.14
below.

mu
no
tes
.in

66

Theorem: Let G be a simple graph having degree sequence (d1, d2, ...,
dn), where d1d2 ...dn and n3. Suppose there is no value of m for
which dmm and dn – m < n – m. Then G is Hamiltonian.

Proof: Let G be a simple graph that follows the hypothesis given in the
theorem statement.

We shall show that its closure is complete and hence by Theorem we
can say that G is Hamiltonian.

Let, if possible, closure of G, (say G’) is not complete. We shall denote
degree of a vertex v in G’ by d’(v). Let u and v be two non-adjacent
vertices in G’, such that, d'(u) d’(v) (A)

We choose these two such that d’(u) + d’(v) is as large as possible.
Since G’ is not Hamiltonian, d'(u) + d’(v) < n (B)

Now, let S be set of vertices in V – {v} which are not adjacent
to v and T be set of vertices in V – {u} which are not adjacent to u in
G’. Then we have | S | = n – 1 – d’(v) and | T | = n – 1 – d’(u) (C)

Further, by the choice of u and v, each vertex in S has degree at
most d’(u) and each vertex of T {u} has degree at most d’(v). Set m
= d’(u).

Then, by (A), d’(v) < m – n.

By (B) and (C) S and hence G’ has at least m vertices of degree at most
m.

Also by (B) and (C), T {u} and hence G’ has n – m vertices
of degree less than n – m.

Because G is a spanning subgraph of G’, the same is true for G.

Thus, dmm and dn–mn – m. But this is contrary to the
hypothesis since by (A) and (B), m < n/2. Hence, G’ is complete and G
is Hamiltonian.

Now we shall prove a very important theorem about
Hamiltonian graphs by Chvátal.

Before we proceed, let us first introduce the notion of “join” of
two graphs.

mu
no
tes
.in

67

Let G and H be two disjoint graphs. Join of G and H, denoted
by G  H, is obtained by connecting every vertex of G to each and
every vertex of H.

Now, for 1m < n/2, define Cm, n as  2
C

m m n mK K K   . For

example  1,5 1 1 3
CC K K K   and  2,5 2 2 1

CC K K K   are shown
in Fig.4.15.

We observe that Cm, n is non-Hamiltonian. This is because, if
we take set S to be a set of m vertices having degree n – 1, (e.g. Km),
then on removing S from Cm,n, we get m + 1 components. Thus, by
contra positive of Theorem (necessary condition for a graph to be
Hamiltonian), we see that Cm,n is non-Hamiltonian.

Theorem: (Chvátal’ theorem): If G is non Hamiltonian simple graph
with n3 then G is degree majorised by some Cm,n.

Proof: Let G be a non Hamiltonian simple graph with degree sequence
(d1, d2, ..., dn), where d1d2 ... dn and n3. Then by Theorem, there
exists m < n/2 such that dmm and dn–mn – m. Therefore, (d1, d2, ...,
dn) is majorised by the sequence (m, ...,m, n – m – 1, ..., n – m – 1, n –
1, ..., n – 1) with m terms equal to m (contribution from C

mK), n – 2m
terms equal to n – m (Contribution from Kn–2m) and m terms equal to n
– 1 (Contribution from Km), which is a degree sequence of Cm, n.

Theorem: If G is a simple graph with n3, such that   1
2
nE G    

 
,

then G is Hamiltonian. In fact, only non Hamiltonian simple graphs

having n vertices and 1
2
n   

 
edges are C1, n and for n = 5, C2, 5.

Proof: Let G be a non Hamiltonian graph. Then we shall show that

E(G) is at most 1
2
n   

 
. Since G is non Hamiltonian, it degree

majorised by some Cm, n by Chvátal’s theorem. Hence,

mu
no
tes
.in

68

If we observe (A), equality holds if m = 1 and for m = 2, n = 5
and hence G has same degree sequence as that of C1, n and C2,5
respectively. In both the cases, 1,nG C or 2,5G C .

Thus, from the above result, we say that maximum number of
edges in a simple non Hamiltonian graphs having n vertices, is

1 1
2
n    

 
.

4.6 TRAVELLING SALESMAN’S PROBLEM:

Now, we shall look at an important application of Hamiltonian
graph that is Travelling salesman’s problem.

A travelling salesman wishes to visit a number of towns and
return to his starting point.

Given the travelling times between two towns, how should he
plan his itinerary so that he visits each town exactly once and travels
for the least time? In graphical terms, we have to find the minimum
weight Hamiltonian cycle in a weighted complete graph.

In contrast to the Chinese Postman Problem, there is no
efficient algorithm to solve travelling salesman’s problem.

The approach can be start with any vertex and find all possible
Hamiltonian cycles from that vertex and find total cost for each of the
cycle. However, this approach needs (n – 1)! computations which is
very large as value of n gets moderately big. Hence the approach is not
practicable.

In the light of above discussion, what we try to find is a
reasonably good (not necessarily an optimal) solution.

Fig. 4.16

mu
no
tes
.in

69

Let us represent the above graph in the form of matrix.

Now, let Hamiltonian cycle begins at A. So from A we choose
a vertex which is at the minimum distance, so it D, in this problem.
Now scan D’s row for the least weight. It is 36 for C (we cannot
choose 2, as A is chosen). We keep on scanning next row for the least
possible weight value, avoiding earlier chosen vertex or formation of
cycle that has less number of vertices than a complete cycle.

A cycle that is obtained for the problem of Fig.4.16 is A-D-C-
B-F-E-A having reasonably optimal weight as 191.

Please note that this may not be an actual optimal weight.

4.7 UNIT END EXERCISES:

1. Ore’s Theorem states that “If a connected graph G has n3 vertices
and for every pair u, v of non-adjacent vertices, deg(u) + deg(v) n,
then G is Hamiltonian”. Prove this theorem.

2. Give two examples of maximal non-Hamiltonian graphs.
3. Draw a graph corresponding to the following degree sequences or if
no graph exists, justify:
(i) (2, 2, 2, 2)
(ii) (1, 2, 3, 4)
(iii) (2, 2,3, 3)
(iv) (1, 1, 1, 2)

4. Prove or disprove: Two graphs with the same degree sequence are
isomorphic.



mu
no
tes
.in

5
Matching and Ramsey

Theory

Unit Structure :
5.1 Introduction
5.2 Matching In Bipartite Graphs
5.3 Independent sets and covering
5.4 The Personnel Assignment Problem
5.5 Ramsey Number
5.6 Unit End Exercise

5.1 INTRODUCTION

Matching theory is used to find the similarity between the graphs.
It is an important tool in the fields like computer vision and pattern
recognition. Matching has applications in flow networks, scheduling
and planning, modeling bonds in chemistry, graph coloring, the stable
marriage problem, neural networks in artificial intelligence and more.
In image recognition applications, the results of image segmentation
in image processing typically produces data graphs with number of
vertices much larger than in the model graphs data expected to match
against. Perfect Matching theory is also known as graph isomorphism
problem. Many graph matching algorithm exist in order to optimize
for the parameters.
First we have to go through some definitions.

Definition 1. Matching in Graph: A matching in graph G is a
set M = {e1, e2, e3, · · · , ek} of edges such that each vertex v 2 V (G)
appears in at most one edge of M i.e ei \ ej = �, for all i, j.
The size of matching is the number of edges that appears in the match-
ing.

70

mu
no
tes
.in

Definition 2. M- Saturated vertex: A vertex v is called as M-
saturated if for some e = {xy}, e 2 M .
If x is not saturated then it is unsaturated. 2 | M | =number of M-
saturated vertices.

Definition 3. Perfect Matching: A perfect matching in a graph G is
a matching in which every vertex of G appears exactly once, i.e Which
saturates every vertex or a matching of size exactly n

2 .

Definition 4. Maximum Matching: A matching m is called maxi-
mum if no other matching in G has a larger size.

Definition 5. Maximal Matching: A matching m is called maximal
if M [{e} is not a matching for any e 2 E(G).

Definition 6. M- alternating Path: Let M be a matching in a graph
G . A path P in G is said to be M-alternating if every other edge in P
appear in M.

Definition 7. M- augmenting Path: An M-augmenting path is an
M-alternating path P = {v1, v2, v3, · · · , vk} such that both v1, vk are
not vertices in M.

Theorem 5.1.1. Berg theorem: Let M be matching in a graph G
Then M is a maximum matching if and only if there does not exist any
M- augmenting path in G.

Proof. Suppose that M is a matching in G, such that there exist an
M-augmenting path say P. Notice that P must have odd length. Since
its edges alternate between edges in M and edges in G\M , and further
both begins and ends with edges from G \ M . Let M 0 be the set of
edges in P that are not in M. Then notice that | M 0 |>| M | and M 0

is a matching in G. so M is not a maximum matching. Hence if M is a
maximum matching, there can not be any M-augmenting path in G.
Conversely assume that M is a matching having no M-augmented path
in G. Let M2 be a maximum matching in G. Note that by above argu-
ment , there is no M2 augmenting path in G.
Let H be the sub graph of G having E(H) = {e 2 M but e /2 M2}[{e 2
M2 but e /2 M} . Let us consider the possible components of H. Note
that every vertex has degree 0, 1, or 2 in H. Vertices of degree 0 are
disregarded as their components are trivial. If a component has all ver-
tices of degree 2. It must be an even cycle alternating between edges
of M and edges of M2. If a components has a vertex degree 1 it must
be a path, alternating between edges of M and edges of M2. Note that
neither M nor M2 has an augmented path G, we must have that such a
components begins with an edge from one matching and ends with an
edge from other matching.
In either cases every non trivial component of H has exactly half of its

71

mu
no
tes
.in

edges from M and exactly half of its edges from M2. Hence we must
have that | M \M2 |=| M2 \M |. Hence
| M |=| M \M2 | + | M \M2 |=| M \M2 | + | M2 \M |=| M2 |.
and thus M is also a maximum matching in G.

5.2 MATCHING IN BIPARTITE
GRAPHS

Let G be a graph with vertex set partitioned into two subsets A and
B such that every edges in G has one end points in A and the other in
B. Such graph is called as Bipartite graph. We will use the notation
G(A, B) for bipartite graph.
Suppose that A and B are subsets of G. We can say that A can match
with B if there exist a Matching M = {e1, e2, e3, · · · , ek} such that each
ei has one vertex in A and the other in B and every vertex in A and B
appears in the matching.

5.2.1 Neighbour set of S in Graph G:

N(v)={u 2 V (G) | u is adjacent to v} is called as the set of neighbour
of v.
Given a set S ⇢ V (G), we write N(S) = [v2SN(v) is the set of vertices
that are adjacent to atleast one vertex in S.

Theorem 5.2.1. Hall’s Theorem Let G(A, B) be a bipartite graph.
Suppose that | A || B |. Then there exists a matching M of size | A |
in G if and only if for every subset S ⇢ A, we have that | N(S) |�| S |.
In particular, If | A |=| B |, then G has a perfect matching under this
condition.

Proof. Let A = {u1, u2, · · · , uk} and B = {v1, v2, · · · , vl} with k  l.
First suppose that there exist a matching M of size | A | in G. Since
G is bipartite, every edges of M includes one vertex of A. By possible
relabeling of B, suppose that M = {e1, e2, · · · , ek} where ei = {ui, vi}
for each i.

Let S ⇢ A with S = {us1 , us2 , · · · , ust}. Then vsj 2 N(S) for all
1  j  t. and hence | N(S) |� t =| S |.
Converse we prove by induction on | A |. First , note that if | A |= 1,
the theorem is trivial.
Let us assume that the theorem holds for | A |= k � 1.
Let G(A, B) be a bipartite graph with | A |= k satisfying Hall’s condi-
tion. we consider two cases.

72

mu
no
tes
.in

Case 1 For every proper subset S of A, | N(S) |�| S | +1.

Consider u1, without loss of generality suppose that u1 is adjacent
to v1 (and possibly some other vertices also). Consider the subgraph
H of G on A \ {u1}, B \ {v1}, i.e remove both vertices u1 and v1 from
consideration. Let S be a subset of A \ {u1}. Then note that NH(S) is
either equal to NG(S) or has been reduced in size by 1 due to removal
of v1. In either case, | NH(S) |�| NG(S) | �1 �| S |. And hence H
satisfies Hall’s condition. We can therefore obtain a matching in H of
size | A | �1 by the induction hypothesis. adding the edge {u1, v1} to
such a matching produces a matching in G of size | A |.

Case 2: A contains a proper subset S having | S |=| N(S) |.

Note that since S is a proper subset of A, by induction hypothesis
we have that the subgraph of G on (S, N(S)) satisfies Hall’s condition
and hence we may find a matching on this subgraph of size | S |. Let H
be the subgraph of G on (A\S,B \N(S)): Note that we have removed
the same number of vertices from both A and B.
Let T be a subset of A \ S. Then notice that NG(S [T) = NG(S) [
NH(T) and these two neighborhoods are disjoint. Furthermore by Hall’s
condition we have | NG(S [T) |�| S [T |=| S | + | T |.
Therefore | NH(T) |=| NG(S [T) | � | NG(S) |�| S | + | T | � |
S |=| T | . and hence H satisfies Hall’s condition. We thus can find a
matching in H of size | A \S |. Taking the union of this matching with
the matching on S gives a matching in G of size | A | as desired.

Some obvious features of perfect Matching:
(1) If G has an odd number of vertices, then it has no perfect matching.
(2) If G has any isolated vertices then it has no perfect matching.
(3) If G has a component of odd size, then it has no perfect matching.

Notation: For any given graph G, o(G) denote the number of odd
components of G.

Theorem 5.2.2. Tutte’s Theorem: Let G be a graph . Then G
contains a perfect matching if and only if for every proper subset S ⇢
V (G) we have o(G \ S) | S |.
Proof. We first consider the forward implication. Suppose that G con-
tains a perfect matching M. Let S = {v1, v2, · · · , vk} ⇢ V (G) be a
proper subset of V(G). let G1, G2, · · · , Gn be the odd components of
G \ S. Since Gi is odd, some vertex ui of Gi must be matched under
M with a vertex vi of S.
) , o(G \ S) = n | S |

73

mu
no
tes
.in

Let us now consider the backward implication. Let G be a graph
on n vertices. We shall prove this by induction on n. Note the base
case is when n=2. Then G is K2. It satisfies Tutte’s condition and has
a perfect matching. Thus theorem hold for n=2.
We assume that if graph has n-2 or fewer vertices (note , we may delete
two vertices since no odd graph has a perfect matching and hence n is
even.) then the theorem holds.
Now we have a graph G on n vertices in which Tutte’s condition is
satisfied. We consider two case:
case 1: For every proper subset S of V(G), O(G \ S) | S | �1.
Note that as n is even, we must have that o(G \ S) and | S | are of
the same parity. so infact we have o(G \ S) | S | �2 for every proper
subset of V(G).
Fix an edge uv and consider H = G \ {u, v} having n-2 vertices. Let
T ⇢ V (H). Note that o(H \ T) = O(G \ (T [{u, v})) | t [{u, v} |
�2 =| T |. Hence H satisfies tutte’s criterion and thus H has a perfect
matching M 0. Taking M = M 0 [{uv} yields a perfect matching in G.
case 2: There exist a proper subset S of V(G) with o(G \ S) =| S |.
Let S be the largest proper subset of V (G) having o(G \ S) =| S |= k
and let S = {v1, v2, · · · , vk}. We first claim that G \ S contains only
odd components. Let if H be an even component of G \ S. Then
fix any vertex u0 2 V (H). Note that H \ {u0} must have atleast
one odd component as it has an odd number of vertices and hence
| S [{u0} |� o(G \ (S [{u0})) �| S [{u0} | . yielding a strictly larger
set satisfying the hypothesis of the case. Hence no even component
exist.
Let G1, G2, · · · , Gk be the k-components of G \ S and each of these is
odd. Create a bipartite graph B as follows.

Let V=S and let U = {u1, u2, · · · , uk}. Put an edges uivj in B if vj
is adjacent to some vertex in Gi.

Claim: B satisfies Hall’s criterion.

Suppose T is a proper subset of U with | T |= t. Suppose that
| N(T) |<| T |. Let S 0 = {vi1 , vi2 , · · · , vir} = N(T) ⇢ S, with
r < t. Note that for each ui 2 T , we have that Gi is a compo-
nent of G \ S 0. since it is adjacent to no other vertices in S. Hence
o(G \ S 0) � t > r =| S 0 |. This is a contradiction of Tutte’s condition.
Hence B satisfies Hall’s criterion.
Therefore , there exist a perfect matching M in B. Without loss of gen-
erality by relabel the components of G \ S so that we have, for every
vi 2 S. That vi is adjacent to some vertex of Gi call this vertex as ui.

Let us first show that we can find a perfect matching in Gj\uj for all

74

mu
no
tes
.in

j. If | V (Gj) |= 1 then we are done. if not , suppose that | V (Gj) |� 3.
Let H = Gj \ {uj}. Let W ⇢ V (H) be a proper subset. Note that
O(H \W) = o(G\ (S [{uj}[W))� (k� 1). Since we have all the odd
components G1, G2, · · · , Gk. Excepting Gj counted in the right hand
side, which can be rectified by simply subtracting k-1. Moreover due
to maximality of S. We have o(G\ (S[{uj}[W)) <| S[{uj}[W |=|
W | +k+1 and hence o(H \W) <| W | +k+1� (k�1) =| W | +2. As
o(H \W) and | W | must have same parity. This implies o(H \W) |
W |. Hence H satisfies Tutte’s criterian. Thus by induction we can
form a perfect matching in H.

By performing the above procedure. We thus can form a perfect
matching Mj in Gj \ {uj} for all j. Taking M1 [M2 [· · · [Mj [
{u1v1, u2v2, · · · , ukvk} yields a perfect matching in G.

5.3 Independent sets and covering

Definition 8. Independent set(Stable set): Let G(V, E) be a
graph. A independent set is a subset C of V such that no two ver-
tices of C are adjacent in G.
An independent set is maximum if G has no independent set C’ with
| C 0 |>| C |.

Definition 9. Vertex cover:A vertex cover is a set W of V such that
every edge of G has atleast one end in W.

Definition 10. Edge cover:A edge cover is a subset F of E such that
for each vertex v there exist e 2 F satisfying v 2 e .
Note: An edge cover can exist only if G has no isolated vertices.

Notation:
↵(G) = max{| C | / C is a independent set.}

⌧(G) = min{| W | / W is a vertex cover}

v(G) = max{| M | / M is a Matching}

⇢(G) = min{| F | / F is an edge cover}
Note: ↵(G)  ⇢(G) and v(G)  ⌧(G)

Theorem 5.3.1. A set C ⇢ V is an independent set of G if and only
if V \ C is a vertex covering of G.

75

mu
no
tes
.in

Proof. By definition , C is an independent set of G if and only if no
edge of G has both ends in Cor equivalently if and only if each edge
has atleast one end in V \ C. But this is so if and only if V \ C is a
vertex covering of G.

Corollary 5.3.1. ↵(G) + ⌧(G) = n.

Proof. Let C be a maximum independent set of G and W be a minimum
vertex covering of G. Then by above theorem V \W is an independent
set and V \ C is a vertex covering.
Therefore n� ⌧(G) =| V \W | ↵(G) · · · (1).

n� ↵(G) =| V \ C |� ⌧(G) · · · (2).
From (1) and (2) we have ↵(G) + ⌧(G) = n.

Theorem 5.3.2. (Gallai’s theorem): If G=(V, E) is a graph with-
out isolated vertices then v(G) + ⇢(G) =| V | .

Proof. Let M be a matching of size v(G). Let U be the set of M- un-
saturated vertices (vertices which are not end point of any edge in M).
Since G has no isolated vertex and M is maximum, there exist a set E’
of | U | edges, one incident with each vertex in U. Clearly, M [E 0 is
an edge covering of G, and so
⇢(G) | M [E 0 |= v(G) + (n� 2v(G)) = n� v(G)
⇢(G) + v(G)  n · · · (1)
Now let L be a minimum edge covering of G, set H=G[L] and let M be
a maximum matching in H. Denote the set of M-unsaturated vertices
in H by U. Since M is maximum, H[U] has no links and therefore
| L | �v(G) =| L \M |�| U |= n� 2v(G)
| L | + | M |� n
Because H is a subgraph of G, M is a matching in G and so

⇢(G) + v(G) �| L | + | M |� n
⇢(G) + v(G) � n · · · (2)

from (1) and (2) we get

⇢(G) + v(G) = n

Let M be a matching and K be a covering such that | M |=| K |
then, M is a maximum matching and K is a minimum covering.

Proof. If M’ is a maximum matching and K’ is minimum covering then
| M || M 0 || K 0 || K |

Since | M |=| K |, it follows that | M |=| M 0 | and | K |=| K 0 |.

76

mu
no
tes
.in

Theorem 5.3.3. Koings matching Theorem: In a bipartite graph,
the number of edges in a maximum matching is equal to the number of
vertices in a minimum covering.

Proof. Let G be a bipartite graph with bipartition (X, Y) and let M’ be
a maximum matching of G. Let U be the set of M’- unsaturated vertices
in X and Let Z be the set of all vertices connected by M’-alternating
paths to vertices of U. Let set S = Z \X and T = Z \ Y .
Then by Hall’s theorem, we have that every vertex in T is M’-saturated
and N(S)=T. Define K 0 = (X \ S) [T . Every edge of G must have
atleast one of its ends in K’ or otherwise, there would be an edge with
one end in S and one end in Y \ T , contradicting N(S)=T. Thus K’ is
a covering of G and Clearly | M 0 |=| K 0 |. By above lemma K’ is a
minimum covering. The theorem follows.

Theorem 5.3.4. Konigs’s edge covering theorem: In a bipartite
graph G with no isolated vertex, the number of vertices in a maximum
independent set is equal to the number of edge in a minimum edge
covering.

Proof. let G be a bipartite graph with no isolated vertex, By Gallai’s
theorem, we have ↵(G)+ ⌧(G) = v(G)+⇢(G) and since G is bipartite ,
it follows from Konig’s matching theorem v(G) = ⌧(G). Thus ↵(G) =
⇢(G).

5.4 The Personnel Assignment problem:

In a certain company , n workers X1, X2, · · · , Xn are available
for n jobs y1, y2, · · · , yn, each worker being qualified for one or more
of these jobs. Can all the men be assigned, one man per job, two jobs
for which they are qualified? This is the personnel assignment problem.

We construct a bipartite graph G with bipartition (X, Y), where
X = {x1, x2, · · · , xn} , Y = {y1, y2, · · · , yn} and xi is joined to yj if
and only if worker xi is qualified for job yj. The problem becomes one
of determining whether or not G has a perfect matching. According to
Hall’s theorem either G has such a matching or there is a subset S of
X such that | N(S) |<| S |. Now we present an algorithm to solve the
personnel assignment problem.

Algorithm: Start with an arbitrary matching M.

(1) If M saturates every vertex in X then stop otherwise, Let u be
an M-unsaturated vertex in X. Set S = {u} and T = �.

77

mu
no
tes
.in

(2) If N(S)=T then | N(S) <| S, Since | T |=| S | �1 then stop. since
by Hall’s theorem there is no matching that saturates every vertex in
X. Otherwise , let y 2 N(S) \ T .

(3) If y is M-saturated, let yz 2 M . Replace S by S [{z} and T
by T [{y} and go to step2. (observe that | T |=| S | �1 is maintained
after this replacement.) Otherwise, let P be an M-augmenting (u-y)
path. Replace M by M 0 = M�E(P) and go to step 1.

Consider a graph given below with initial matchingM = {x2y2, x3y3, x5y5}.

assignment 1.jpg
An M-alternating tree is grown, starting with x1 and the M-augmenting
path x1y2x2y1 found. as shown in figure below.

This result in a new matching M 0 = {x1y2, x2y1, x3y3, x5y5}

as shown in figure below.

An M’-alternating tree is now grown from x4. Since there is no M’-
augmenting path with origin x4, the algorithm terminates.

78

mu
no
tes
.in

The set S = {x1, x3, x4} with neighbour set N(S) = {y2, y3} shows that
G has no perfect matching.

Flow Chart of Hungarian Method:

5.5 Ramsey Number

Definition 11. Clique: A clique of a simple graph G is a subset S of

79

mu
no
tes
.in

V(G) such that any two vertices of S are adjacent.

S is a clique of G if and only if S is an independent set of Gc .
If G has no large cliques, then G has a large independent set.
The above remark was first proved by Ramsey (1930).

Question:
Among 6 people , there are either 3 who know each other or 3 who

do not know each other.
Proof: Let 1,2,3,4,5,6 be the 6 people. Consider these 6 people as ver-
tices of graph. i vertex is connected to j vertex by an edge then it means
i and j know each other. otherwise they do not know each other. Let
us select vertex 1 and join the with some of remaining vertices. By pi-
genhole principle, either 1 knows 3 people or 1 does not know 3 people
i.e 1 is connected to either 3 vertices or not connected to 3 vertices by
an edge.

Case1: If 1 is adjacent to three vertices .
If 1 is adjacent to three vertices say a, b, c. If two of a, b, c are adjacent
then 1 with those two vertices form K3. This means 1 and other two
people know each other.

Otherwise if none of a, b, c are adjacent. Then we get three isolated
vertices, i.e we get three people they do not know each other.
Case2: 1 is not adjacent to three vertices.
If 1 is not adjacent to three vertices a, b, c. If two of a, b, c are not
adjacent then we get three vertices isolated. means Three people do
not know each other.

Definition 12. If we color the edges of Kn with red or blue, then there
is ethier a set of r vertices such that edges among them are colored red
or a set of b vertices such that edges among them are colored blue.

Definition 13. Ramsey Numbers: For any positive integers k and
l � 2 there exist a smallest integer t=r(k, l) such that any graph on t
vertices contains either a clique of k vertices or an independent set of l
vertices.

r(1,l)=r(k,1)=1
r(2, l)=l, r(k, 2)=k, r(k, l)=r(l, k)

Theorem 5.5.1. For any two integers k � 2 and l � 2 then prove
that r(k, l)  r(k, l � 1) + r(k � 1, l). Furthermore, if r(k, l � 1) and
r(k � 1, l) are both even, then strict inequality holds .

Proof. Let G be a graph on r(k, l � 1) + r(k � 1, l) vertices, and let
v 2 V . We distinguish two cases:

80

mu
no
tes
.in

Case1: v is non adjacent to a set of atleast r(k, l � 1) vertices.
G[S] contains either a clique of k vertices or an independent set of l�1
vertices and therefore G[S [{v}] contains either a clique of k vertices
or an independent set of l vertices.

Case2: v is adjacent to a set T of atleast r(k � 1, l) vertices.
G[T] contains either a clique of k-1 vertices or an independent ser of l
vertices.
Therefore G[T [{v}] contains either a cilque of k vertices of an inde-
pendent set of l vertices.
Since one of case(1) and case(2) must hold because the number of ver-
tices to which v is non adjacent plus the number of vertices to which v
is adjacent is equal to r(k, l � 1) + r(k � 1, l)� 1.

Proof. Thus r(k, l)  r(k, l � 1) + r(k � 1, l)
Now suppose that r(k, l-1) and r(k-1, l) are both even and let G be
a graph on r(k, l � 1) + r(k � 1, l) � 1 vertices. Since G has an odd
number of vertices, then some vertices v is of even degree; in particular
, v cannot be adjacent to precisely r(k�1, l)�1 vertices. Consequently,
either case1 or case2 of above holds and therefore G contains either a
clique of k vertices or an independent set of l vertices.
Thus r(k, l)  r(k, l � 1) + r(k � 1, l)� 1 as stated.

Theorem 5.5.2. Prove that r(3, 3) = 6, r(3, 4) = 9, r(3, 5) = 14,
r(4, 4) = 18.

Proof. (1): From Theorem above we can get, r(3, 3)  r(3, 2)+r(2, 3) =
3 + 3 = 6 · · · (1)
From figure below , The 5 cycle contains no clique of three vertices and
no independent set of three vertices.

It shows that r(3, 3) � 6 · · · (2).
from (1) and (2) r(3, 3) = 6

Proof. (ii) From Theorem above we can get, r(3, 4)  r(3, 3)+r(2, 4)�
1 = 6 + 4� 1 = 9 · · · (1)

81

mu
no
tes
.in

The graph of figure below , contains no clique of three vertices and no
independent set of four vertices.

It shows that r(3, 4) � 9 · · · (2).
from (1) and (2)
r(3, 4) = 9

Proof. (iii) From Theorem above we can get
r(3, 5)  r(3, 4) + r(2, 5) = 9 + 5 = 14 · · · (1)
The graph of figure below , contains no clique of three vertices and no
independent set of five vertices.

It shows that r(3, 5) � 14 · · · (2).
from (1) and (2)
r(3, 5) = 14

Proof. (iv) From Theorem above we can get
r(4, 4)  r(4, 3) + r(3, 4) = 9 + 9 = 18 · · · (1)
The graph of figure below , contains no clique of four vertices and no
independent set of four vertices.

82

mu
no
tes
.in

It shows that r(4, 4) � 18 · · · (2).
from (1) and (2)
r(4, 4) = 18

Definition 14. Ramsey graph:A (k, l)- Ramsey graph is a graph on
r(k, l) � 1 vertices that contains neither a clique of k vertices nor an
independent set of l vertices.
Such a graph exist for all k � 2 and l � 2. All the graph shown in the
above theorem represent Ramsey- graph.

Theorem 5.5.3. r(k, l) 
�
k+l�2
k�1

�
.

Proof. We will prove this by induction on k, l. First consider the base
case as k=l=2. r(2, 2) = 2 

�
2+2�2
2�1

�
.

Now assume the relation holds for all k=x-1, l=y and k=x , l=y-1 cases.
We now prove result holds for k=x, l=y.
By using above theorem and Pascal’s rule
r(k, l)  r(k � 1, l) + r(k, l � 1) 

�
(k�1)+l�2
(k�1)�1

�
+
�
k+(l�1)�2

k�1

�
=

�
k+l�2
k�1

�

r(k, l) 
�
k+l�2
k�1

�

Theorem 5.5.4. Prove that r(k, k) � 2
k
2 .

Proof. Since r(1, 1) = 1 and r(2, 2) = 2, we may assume that k � 3.
Let Sn the set of simple graphs with vertex set {v1, v2, · · · , vn} and Sn

k

the set of those graphs in Sn that have a clique of k vertices.
As each subset of the

�
n

2

�
possible edges vivj determines a graph in Sn.

Therefore, | Sn |= 2(
n
2) · · · (1)

Similarly, the number of graphs in Sn having a particular set of k ver-

tices as a clique is 2(
n
2)�(

k
2).Since there are

�
n

k

�
distinct k-elements sub-

sets of {v1, v2, v3, · · · , vn}. we have,

| Sn

k |
�
n

k

�
.2(

n
2)�(

k
2) · · · (2)

Dividing (2) by (1) we get,
|Sn

k|
|Sn| 

�
n

k

�
.2�(

k
2) < n

k
.2

�(k2)
k!

Proof. Suppose , now that n < 2
k
2

|Sn
k|

|Sn|  2
k2
2 .2

�(n2)
k! = 2

k
2

k! < 1
2

83

mu
no
tes
.in

Therefore, fewrer than half of the graph in Sn contains a clique of k-
vertices. Also, fewer than half of the graphs in Sn contains an inde-
pendent set of k - vertices. Hence some graph in Sn contains neither a
clique of k- vertices nor an independent set of k vertices. Because this
holds for any n < 2

k
2 , we have r(k, k) � 2

k
2

Corollary 5.5.1. If m = min{k, l}, then r(k, l) � 2
m
2 .

Theorem 5.5.5. r(k1, k2, · · · , km)  r(k1 � 1, k2, · · · , km) + r(k1, k2 �
1, · · · , km) + · · ·+ r(k1, k2, · · · , km � 1)�m+ 2

Theorem 5.5.6. r(k1 + 1, k2 + 2, · · · , km + 1)  (k1+k2+···+km)!
k1!.k2!.k3!.....km!

5.6 Chapter End Exercise

1. Show that every k-cube has a perfect matching (k � 2).

2. Find the number of di↵erent perfect matchings in K2n and Kn,n.

3. Show that a tree has at most one perfect matching.

4. Deduce Hall’s theorem from Konig’s theorem.

5. Derive Hall’s theorem from Tutte’s theorem.

6. Show that a tree G has a perfect matching if and only if o(G\v) =
1 for all v 2 V .

7. Describe how the Hungarian method can be used to find a maxi-
mum matching in a bipartite graph.

8. Show that G is bipartite if and only if ↵(H) � 1
2v(H) for every

subgraph H of G.

9. Show that G is bipartite if and only if ↵(H) = ⇢(H) for every
subgraph H of G such that �(H) > 0.

10. Show that, for all k and l, r(k, l) = r(l, k).

11. Let rn denote the Ramsey number r(k1, k2, · · · , kn) with ki = 3
for all i. (a) Show that rn  n(rn�1 � 1) + 2. (b) Noting that
r2 = 6, use (a) to show that rn � [n!e] + 1. (c) Deduce that
r3 � 17.

12. Deduce that r(2n + 1, 2n + 1) � 5n + 1 for all n � 0.

84

mu
no
tes
.in

	Insert from: "COVER PAGE NEW English.pdf"
	Page 1

