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1.1 OBJECTIVE

*  After going through this chapter you will be able to :
*  Solve any definite integral in interval [a, b].
*  Solve unknown function integral by numerical method.

* Learn different technique for solving definite integral by numerical
method.

* Solve definite integral very efficient way.

1.2 INTRODUCTION

Differentiation and integration are basic Mathematical operation
with a wide range of applications in many areas of science.

In this we are going to explose various ways for approximating the
integral of a function over a given domain. These are various reasing as of
why such approximations can be useful.

1) Not every function can be analytically integrated.

o I'tan x
e.g..jol+x3dxorjo . dx .

i1) Even if a closed integration formula exists it might still not be the most
efficient way of calculating the integral.



iii) It can happen that we need to integrate an unknown function in which
only some examples of the functions are known.

A simpler approach for approximating the value of Ib f(x)dx would be

to complete the product of the value of the function at one of the end points of
the interval by the length of the interval.

In case we choose the end-point where the function is evaluated to be
X = a we obtained

J:.f(x)dxi f(a)(b-a)

This approximation is called rectangular method or the rectangular
quadrature. The points x,,x,,.....,x, that are used in the quadrature formula are

called quadrature points.
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We may approximate the integrate by a linear curve i.e. (y = a + bx) or by
a second degree curve
ie. by (y=a+bx+cx?) .... and soon.
Here we will learn till three degree polynomial by numerical integration
using :
1)  Trapezoidal rule (linear curved)
i1)  Simpson’s one-third rule (second degree)

ii1) Simpson’s third-eight rule (third degree)



1.3 Newton — cote’s quadrature formula :

The newton cote’s is an extremely useful and straight forward family of
numerical integration techniques using this we can derive the all three numerical
integration formula which we need.

Let [ = J.:f(x)dx

Let us divide the interval (a, b) into n — sub intervals of width h. as shown
in figure (1) so thatxo =a,xi =xo+ h,xo=x0+2h ..... + Xxa =x0 + nh =b.

Then [ = J.x0+nhf(x)dx

taking x = x, + ph = dx = hdp
Xo+nh

I= J.xu £ (x, + ph)dph

= By newton’s forward interpolation formula.

n _ A2 b _
=hj.{y0+pAyo+p(p Dy, pp=1)(r-2)
0

o s A3yo+..}dp

Integrating term by term we obtain

2
=nh|y, + gAyO - n(L—.?) A’ yO+MA3yO + }

12 2h

Xo+nh

n(2n-3 n(n-2Y
;[ f(x)dx:nh{yOJrgAyoJr—( - )A2y0+—( > ) A3yo+...}

Which is known as the newton —cote’s quadrature formula using this we
can deduce the following rule takingn=1,2, 3, .....

1.4 Trapezoidal Rule :

Taking n= 1 in newton cote’s formula at the curve (xo, yo) to (x;, y;) as a
straight line.

i.e. polynomial of order are so that higher order difference become zero
we get,



[ () ax= % (ot 2)

Adding these integrals we get
Xo +n h
[ F () e =[O0t 2) + 20053553,

This is known as the trapezoidal rule.

A\y

y=fx) — [~

A\ 4

x,=ax,tn x,+2n x,+ nh X
0 0 0 0

Working of trapezoidal rule. For J.b f (x) dx

Let y = f(x) take n value of x in interval [a, b]

x x| x| x| o X,
YA Vo | Vi| Vof - Y
h
J.:f(x)dng[(yo+yn)+2(y1+y2+ ..... +yn_1)]
where h = b-a

n



Example :

6 1
1) Evaluate -[01
+x

T dx taking h = 1 by using trapezoidal rules.

Solution :
Divide the interval (0, 6) into six parts each of width h = 1. The value of
1
x)= are given below :
f( ) 1+x° 8
x| 0|1 2 3 4 5 6
1 {05(0.11|0.0357| 0.0154 {0.0079 | 0.0046
Yo Vi I Vs Ya Vs Ve
by trapezoidal rule
J. f dx— [y0+yn)+2(y1+y2 ..... +yn_1)J
=3 [(1+0.0046) +2(0.5+0.11+0.0357+0.0154+0.0079) |
= % [(1.0046) + 2(0.669) |
= % [1.0046 + 1.338]
1
=—[2.3426]
2
=1.1713
Ex.2:

Evaluating J.;\/sinercosx dx taking 5 sub-intervals using trapezoidal rules.

Sol" :
Here n=5,a=0,b=1
p=2"0_10_o,
n 5
x|[0] 02 0.4 0.6 0.8 1
1.0857 | 1.1448 [ 1.1790| 1.1891 |1.1755
by trapezoidal rule
b h
Lf(x)dng[(y0+yn)+2(y1+y2+ ..... +yn_1)]
_02 [(1 +1.1755) + 2(1.0857 + 1.1448 +1.790 + 1.1891)]

= 0.1[2.1755 + 2(4.5986) |



=0.1 [2.1755 + 9.1972]
=1.13727

Ex.3:

Evaluate J.fjl dx 5
X

by trapezoidal rule.
6 — coordinate, also determine absolutely error.
Sol" :
Here a=0,b=1,n=5

h= =—=02

b-a 1-0
5

0.9615 [0.8621 | 0.7353 | 0.6098 | 0.5

by trapezoidal rule

S % (1 +0.5) +2(0.9615 + 0.8621 + 0.7353 + 0.6098) |

=0.1[1.5+2(3.1687)]

= 0.1[1.5 + 63374
= 0.78374.

1]

Jof ()=,

Absolute error = % - 0.78374

) 1 ) _ s
o dx = [tan 1(x)]o = tan 1(1)— tan 1(0) =

=0.00165.



1.5

Error in Trapezoidal rule :

1 y=/()

y1=/f)

Tl

Al A2

X=X, X=X, x=b )Tf

“+ The expression of y = f'(x) about x = xoby
Taylor’s theorem is given by
y=r(x)=f(x)+(x=-x) f(x)+ (x —2ch) (%) + e
J.xolf(x)dx = I l{f(xo) + (x > xo) fl(xo) + (x ;!xo)fn( 1) + ... }

.[:f(x)dx= hf (x) +7f1(x0) +%f“(x0) F o

Area of trapezoidal in the interval [x,, x,] is

h
4 :E[yo +y1]

by trapezoidal rule
h
4 =E[f(x0)+f(xo +h)]
by taylor’s Thm
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%{“J#NM+MWM+%f%%w ..... }
{ xo)+h7:f”(x0)+ ..... }

Let ¢ be the error in the interval [x,, x|
£ = J.:Ul f(x)dx - 4
1 1
:M{g—z}f%%)+ .....

-1
=_h3 11 X
()
Similarly :

_1 3 11
g =[S () de—dy = 1 ()
£ = jx“;f(x) dx - 4, =1_—21 w U (x)

' o -1 5 0

8":J.xn4f(x) dx — A, 3, R (x,)

The total error

E=¢& +.te,

8—%[}””( )+ /() + () + +f“(xn_1ﬂ
Choose f 5—max{f“(x0) (%), (%), }

813_123 M (e)n

i (b - "
EISE( hajf (&)

g S—M h ! (e)

12
Which is the required error in trapezoide rule.

Practice Problem :

Evaluate the following integral by using trapezoidal rule.
D[ xtde with n=0 Ans. : 2.68



i) [ B ith 7 = 10 Ans. : 0.4055
04x +5
i) [ e dv with n=6 Ans. : 0.5357

1.6 Simpson’s one third rule :

While taking n = 2 in newton cote’s formula we get

This is known as the Simpson’s one third rule.

In Simpson’s rule the given interval must be divided into even number of
equal sub-interval since we find the area of two strips at 0 time.

Working of Simpson’s one third rule for Ibf(x) dx .
Let y = f(x), taking n — value of x in [a, b].

Xl xg| x| x| Xy e X,

YIYo| M| Vo Vs voeee e Vi

X nh h
I“ f(x)dng[(y0+yn)+4(yl+y3+ ..... +Y,0)+2(y, + Yy +yn_2)]

%o

Where h = b —a / n

Ex.1:

. 8 dx . .
Calculate upto 4 decimal places J. ——— dx by using Simpson’s
> J16x—x7

(1/3)th rule taking n = 5.

Sol":
1
Here f(x)=———— a=3,b=8,n=5,
\J16x — x?
- b—a _ 8-3 _q
n 5
X 3 4 5 6 7 8
0.1601 ] 0.1443 | 0.1348 | 0.1291 | 0.1259 | 0.125
Yo 37 B! Y3 Yy Vs

using Simpson’s (1/3)™ rule.
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= % [(0.160 +0.125) + 4 (0.1443 + 0.1291) + 2 (0.1348 + 0.1259)]
= % [0.2851 +1.0936 + 0.5286]

1
=—1{1.9073
+[1.9073]

=0.6357
Ex.2:

sin® x

Evaluate J.” dx by taking 5 ordinates by Simpson’s (1/3)™ rule.

05+ 4cosx
Sol":

b —

-y
x| 0 % % 3% n {using calculate}

y| 01]0.0639]0.210.2302| 0 in degree mode
Yo B2 Y Y3

We divide the interval (0, 7 ) into 4 - equal part i.e. (5 ordinates).
n

h:

by Simpson’s (1/3)™ rule.

= %A [(0+0) +4(0.0639 +0.2302) + 2(0.2)]

= Z[1.1764 + 0.4]
12
= 0.4127.
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1.7 Error in Simpson’s 1/3" rule :

A

A 4

xi xi +1 x,‘ +2.
Let y = f(x) be a continuous functions and continuous derivation of all

orders in [a, b]. Divide the interval [a, b] into n equal sub-intervals by the points
a=Xy,X,...X,=b&x =x,+ihi=12...n.

The Taylor’s expression of y = f(x) atleast x = x, is

y:f(X)Zf(xo)-i-(x—xo)fl(xo)—l—%f“(xo).k%f“(xo) .....

[ (s = | [ 7 )+ (= ) (1) + o )y }dx

— xf(x0)+ (x —2!360) fl(x0)+ (x —3!360) f“( 0)+ (x _4;60) f111(x0)}

=1 (o = x) S (%) + (x, 2'3%) fH(x)+ (x 3!x°) P (%) + e }

Put X, —x, =2h

=20 () + 201 (x,) + % B (x) + % B0 )

by Simpson’s 1/3™ rule.
h
4 =7 o+ 4y + 3]



12

:g[f(xo) b AL (% + )+ £ (x +2h)]

Using taylor’s thm.

4=t {f(xo) + 4{f(x0) () + 2 () ¢ %f“(xo) b } +

4n’

. S () + =" (%) + e T

F(x0) + 20" (x,) +

_ g {6f(x0) + 61" (x,) + %f (x) + 28" (XO)}

Let &, be the error in the interval [x,,x, |

E = J.:zf(x) dx — 4

5 v 4 5
=h f(‘VU)(E_Ej + .

oo
~907t0)
Similarly
x4 -h v
E = Lz f(x) dx — 4, = 90 f[xzj

% —h’
= | f(x)de = Ay = 7 (%,5)

.. The total error
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-’ n
50 2 ()

—_h5(b—a) W
Esge 5 77

E <

Eé—%h“f”/(e) X, <e<h

Which is the required even in composited Simpson’s 1/3" rule.

1.8 Simpson’s 3/8" rule :

While taking n = 3 in newton’s take formula we set all differences uppers
then 3™ forward difference will becomes zero.

_[:f(x)dx = h{?syo + %(y1 —¥y) + %(

3h

:g[yo +3y1 +3y2 +y3]

Similarly
X6 3h
[ (xyee === [+ 39y + 3y + 0]

) 3h
J.xﬂf(x)dx = Y [yn_3 +3y, ., +3y,, + yn]

[where n is divisible by 3]

We add all above integral

[ r@)ac=["p(x)ax + [ r(x)ds + o [ 1(x)ds

3
=?[(yo 3, F 30 Yy F Vst Y A V) F 2V Ve F Yo 0, ]5)

Working of Simpson’s (3/8)™ rule for J.bf(x)dx
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Let y = f(x) take n- value of x in [a, b]

X x| x| %] o] e x

n

VI Ivol il yyl cooee| oo v,

where 5 = —a.

n

Ex1:

52

Evaluate L loge® dx by Simpson’s (3/8)™" rule taking n = 6 sub interval.
Sol" :
Dividing the interval [4, 5.2] in six equal part taking h = 1 we get f'(x)
value f(x)=loge" are given below.
b-—a 52-4 12

h: =
n 6 6

0.2

X 4 4.2 4.4 4.6 4.8 5.0 5.2
1.3863 | 1.4351| 1.4810| 1.5260 | 1.5686 | 1.6094 | 1.6484

by using Simpson’s (3/8)™ rule.
b 3h
I f(x)dx = ?[(yoern)Jr.’J(y1 F 0 F Y Vs ) F2(Y Ve )]

_3 X80'2 [(1.3863 + 1.6486) + 3(1.4351 + 1.4816 + 1.5886 + 1.6094) + 2(1.5260) ]

= 0.075[3.0349 + 3(6.1147) + 2(1.5260) |

=0.075 [3.0349 +18.3441 + 3.052]

=0.075 x 24.431
=1.8323

Ex2:

Evaluate joo" ¢ dx taking n = 6 by Simpson’s (3/8)" rule.
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Sol":

Here f(x)= e

0.99 | 0.9608 | 0.9139| 0.8521| 0.7788 | 0.6976
Yo N Vs Vs Vs Vs Ve

by using Simpson’s (3/8)™ rule.

_3 Xgo'l [(1+0.6976) + 3 (0.99 + 0.9608 + 0.8521 + 0.7788) + 2 (0.9139)]

= 0.0375 [1.6976 + 10.745 + 1.8278]

=0.0375 x 14.2705
= 0.5351.

1.9 Error in Simpson’s (3/8)th rule :

Let y = f(x) be a continuous function and hence continuous derivatives

of all under in [a, b]. Divide the interval [a, b] into n sub interval by the point
A =Xy, Xjy Xgy ey X,_, & X, =X, + ih i=12,..,n

The taylor’s expansion of y = f(x) about x = x, is

x—xo)2

p= £ = £ () (5= 3) £ () + o () +

Gl oy B8l (o

)= [0 () () () +

(x —x, x—xo)3

) (
)

X - x0)4

f[[[(x0)+ ( 4‘
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Put x; — x, = 3h

9 2 1 27 3 17 81 4 1w 243 5 1w
=3hf(x0)+5h f (x0)+?h f (xo)+ﬁh f (x0)+Eh (%)
(D)

By Simpson’s 3/8" rule

3
4 =§[yo + 3y, + 3y, + 3]

:%[f(xo)+3f(xo+h)+3f(xo+2h)+f(xo+3h)]

Using Taylor’s thm

3h 1 h2 11 h3 111 h4 v
Alzg{f(x0)+3{f(xo)+hf (x0)+7f (xo)+zf (x0)+ﬁf (x0)+...}

1 4h’ 1 8n’ 1 16 4 v 2
+3(f(x0)+2hf (x0)+7f ()CO)'f‘?f (XO)+E}Z f (XO) + ... J

1 9 2 1 27 3 plll 81 4 pIV
+(f(x0)+3hf () + 20 17 (1) + 20 () S () + o j

_ % {Sf(xo) 12 () + 120 17 () + O 17 () + % B (x,) +

9 2 1 9 3 17 27 4 i 33 5 1w
=3hf(x0)+5h f (x0)+§h f (xo)+?h f (x3)+gh (%)

Let E, be the error in the interval [x,, x;]

h
1 =5[(yo +3)+2(3,) ]
%[(0.5+O.1667)+2(0.3333)]
1, =0.6666

-3n’
— 80 hS fIV (xo)
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Similarly
[ (x)dx - 4, = g—g B (%)

T _ __3 5,1V
J.v f(x)dx -4, = 20 7 (x,5)

“n-3

5

h
E<ion /" (s)

5
<—nf" (e
=t (@)
~(b-a)
< 7/ hS 1w e
o /(&)
Which is required error in Simpson’s 3/8"™ rule.

Yo+ nh h
F)ar==[(3e+ ) +40 + Vs + Y5 + et )+ 2(0 + Yy + e+ ¥,) ]
Vo 3

—a

where h = a=v, b=v,.,,

n
In Simpson’s (1/3)™ rule the given interval must be divide into even number of
equal sub intervals.

Ex.1:

The velocity V km/min of a train which strats from rest is given at a fixed
interval of time (min) as follows :

t: 0] 24 (6 |8 (10 (12|14|16 |18 |20
v: 0] 10 |18 |25 {29 |22 |20 |11{05(02| O

Estimate approximately the distance covered in 20 minutes by train.
Sol" :

Let S (km) be the distance covered in t (min) by train
_ds
==V
dt
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ds = vdt
20
-'-S=I0 vdt
by Simpson’s (1/3)rule h=b —a/n
_20-0_,
10
Lh=2.
h
"-J.Oth_g[yOern +4y1+y3 ..... )+2(y2+y4+ ..... )]
2

==[(0+0)+4(10+25+32+11+2)+2 (18 + 24 + 20 +5)

N W

=§[0+4x80+2x72]

= 309.33km.
Hence in 20 mins train covered 309.33 kms distance.

Simpson’s (3/8)th rule :

This is 3™ child of newton cote’s
son =3 we get

Vo+nh 3h

IVD f(v)dtzg[(y0+yn)+3(yl+y2+y4+y5+ ..... )+ 2(ys + Yo + e )]
b-a

n

while applying the Simpson’s (3/8)™ rule the number of sub interval should be
taken as multiple of 3.

where h =

a=y, b= Vosnh

Ex.a):

The water under portion of a water tank is divided by horizontal plane’s
one meters apart into the following areas : 472, 392, 302, 198, 116, 60, 34, 12, 4

sq.m. use the Simpson’s (3/8)" rule to find the volume in cubic meter between
the two extreme ends.

Sol":

As given condition we can write :

Distance(S) : 1 2 3 4 51617819
Area(A) : 472 (398| 302| 198| 116| 60 | 34|12 (04

Here sub interval are multiple of 3
‘.‘h:b—ar:9—1:1
n 8
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= %1) [(472 + 4) +3(398 + 302 + 116 + 60 + 12) + 2 (198 + 34) ]

_3 [476 + 2664 + 464]
8

=1351.5 cube meters.

Using these three numerical integration techniques. We can evaluate integration
very easily.

Example :

i)

iii)

Evaluate the following integral by using Simpson’s 3/8" rule.

[{—L— dv withn=6 Ans. : 0.912
*(1+x)

J.:(4 + 2sin x) dx withn=6 Ans. : 16.5679
[l (sinx — loge™* ") dx with 12 Ans. : 3.2561

1.10 Review:

1)
2)
3)
4)

Newton’s cote’s formula
Trapezoidal rule & error
Simpson’s (1/3)" rule & error
Simpson’s (3/8)™ rule & error

1.11 Unit End Exercise :

Y

2)

3)

4)

Obtained trapezoidal rule using newton cote’s formula. Obtained error in
composite Trapezoidal rule.

Compute the trapezoidal approximation for J.Ozx/; dx with n = 6. Compare

the estimate with the exact value.

42

Ans.: T =1.81948, exact = T =1.8856, error = 0.035076.

Use Simpson’s (1/3)™ rule to approximate Ij\/; dx with n = 6. Compare

the estimate with the exact value.
Ans.: T=1.8569, E.V.=1.8856, Error =0.01521.

Compare J.;(x2 +x - 1) dx with n = 10 using trapezoidal rule. Compute

the error exactly and the error expression.
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5) Obtain Simpson’s (1/3)rul rule by from newton cote’s formula.
6) Obtain Simpson’s (3/8)th rule by from newton cote’s formula.
7) Obtain error in composite of Simpson’s (1/3) rule.
8) Obtain error in composite of Simpson’s (3/8)™" rule.

9) Compute *(x* = 3x) dx withn=6 by Simpson’s (3/8)" rule.
0

with n = 6 using Simpson’s (1/3)" rule.

6 dx
10) Evaluate J.
O Jx+1

Ans. : 3.2961.

I A XX X4
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Numerical Integration — 11

Chapter Structure

2.1
2.2
2.3
24
24
2.5
2.6
2.7
2.8
2.9

Objective

Introduction

Romberg’s Method

Gaussian Quadrature

Gaussian Quadrature

Gaussian Quadrature for 3 points formula
Numerical evaluation of double integrals
Simpson’s rule for double integrals
Review

Unit & Exercise

2.1

Objective :

After going through this chapter you will able to :
Solve integral equation which hose analytical solution.
Solve multiple integral by using numerical method.
Solve integral by different numerical integral methods.

2.2

Introduction :

Integral equation are of special application in applied mathematics. There
are such integral who have no analytic solution. To solve that we can use
numerical method of integration. Multiple integral equation are difficult to solve
using numerical method. It is easy to solve using this methods we can comparing

with the numerical expect value to find the error.

2.3

Romberg’s Method :

Richardson extrapulation is used as the formation of a numerical

integration called Romberg integration.

Consider the integral

I = J.:f(x)dx
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Let I, I be approximated values of I obtained by using trapezoidal rule

with different sub intervals of width h; & h; respectively.

Let E; & E; be the corresponding errors.
=, The errors in trapezoidal rule is of order h’.

I=1+E =1 +kh
I=1,+E =1, +kh
from equations I & II
I + kbl =1, + kh}

L -1, =k(h - h)

11 — 12
(s = h7)
Substituting value of k in equation (I) we get
=1, +—I; _122 h?
(s = h7)
= (h22 - hlz) I - (11 - 12) hlz/(hz2 - hlz)
I = h2211 — h’12 12
(ks = i)
Put hy =h & h, = h/2 we get
2
— I, -nr
=3
K _ h’
4
I 41, - I,
3

This is known as Romberg’s formula. Working of Romberg’s integration

method difference

h o I(h)=1,

hi2 1(h/2)=1, 112:% 1123:41233—
hi4 1(h/4)=1, 123:% 1234:412343—
M8MM&ﬂ4Q:%;G

where h=5b6 —a.

1

1

1

2

23

1

1234

41234 — 1123

3
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Use Romberg’s formula to evaluate the integral J.;

dx
correct upto 4
1+ x
decimal place.

Sol":

1

Given : integral is j

01 + x
Here a =0,6=1 = h=b-a=1-0=1
1
= X)=
7 f() 1+ x
. x|0 |1
Taking h =1
0.5
.. by trapezoidal rule.

h 1
Il 25[_)/0 +y1]=§[1+ 05]:075

=1, =0.75
. x|[0]1/2 |1
Taking h =1/2
2/3 105
By trapezoidal rule

1, =%[(y0 +3,)+2(»)]

= % [(1+05)+2(2/3)]

1
Taking h = —
g 4

7 7S 7 I

y |1 (0.8 0.6667| 0.5714| 0.5

by trapezoidal rule

h
1 =5[(y0 +3,)+2(n + 3, + )]

é [(1+0.5)+2(0.8 +0.6667 + 0.5714) ]
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Taking

x |0 [0.125] 0.25 | 0.375 0.5 0.625 | 0.75 | 0.875 | 1
y |1 [0.8889| 0.8 |0.7273 [0.6667 | 0.6154 {0.5714 | 0.5333| 0.5

h
14:5[(y0+y8)+2(y1 T VstV s Y +y7)]
= % [(1 + 0.5) + 2(0.8889 + 0.8 + 0.7273 + 0.6667 + 0.6154 + 0.5714 + 0.5333)]

.. by Romberg’s integration method.

h I
1075 |1,=41,~1,/3=06944 | I, = =12 =068
i 41(123) =1y,
41, - I 4r, -1 [y, = ————— =0.6931
% 0.7083 | I, =——2=10.6932 |1, = 7343 2 = 0.6930 3

41, - I
1 e s J
A 0.6970| I,, = ) =0.6931

% 0.6941

Ex.2:

. 2 dx
Use Romberg’s formula to evaluate the integral IO Y correct upto
X"+

4 decimal places.

Sol" :
Given integral J.Oz ‘% 2 Ly
Here a =0 b=2 h=b-a=2-0=2
f(x)=1/x*+2
Taking h =2
0 2
0.5 10.1667
h
11=E(y0+y1)
Taking h =1
0 1 2

0.5]0.333| 0.1667




1, =§[(yo+yl)+2(yz)]
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%[(0.5+0.1667)+2(0.3333)]

1, =0.6666
2

1
Taking h = —
g 2

=3 (0.5+0.1667) = 0.6667

0

0.5

1

1.5 2

0.5

0.4444

0.3333

0.2353 | 0.1667

h
L==[(y+y)+2(3 +y+)]

2

= i [(0.5+0.1667) + 2 (0.4444 + 03333 + 0.2353) ]

|
Taking 7 = —
8Ny
xlolo2s| o5 Jors | 1 125 | 15 | 175 2
0.5 |0.4848 | 0.4444 103902 | 0.3333 | 0.2807 [0.2353 [0.1975 [0.16667
h
1, :5[()/0 + ) F 20 Y+ Vs Y+ Vs + Ve + ;)]
- % [(0.5 + 0.1667) + 2 (0.4848 + 0.4444 + 0.3902 +
0.3333 + 0.2807 + 0.2353 + 0.1975
I, = 0.6749
Taking h = 1
8
x| 0 [0125 [ 025 | 0.375 0.5 0.625 | 0.75 | 0.875 1 1.125 1.25 1.375
¥ 10.5]0.4961 |0.4848 | 0.4671| 0.4444 | 0.4183 | 0.3902 | 0.3616 |0.3333 | 0.3062 | 0.2807 | 0.2570
x| 15 | 1625 | 1875 | 2
0.2353 | 0.1975 |0.1813 |0.1667
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(o + Vi6) + 200 + 0y + Vs + Yy + Vs + Y6 + ¥, +

~
Il
N |

Yo +Vo + Yo+ Vi + Vo + Vi3 Yy + is)]
= % [(0.5 + 0.1667) + 2 (0.4961 + 0.4848 + 0.4671 + 0.4444 + 0.4183 +

0.3902 + 0.3616 + 0.3333+ 0.3062 + 0.2807 + 0.2570 +
0.2353 + 0.2154 + 0.1975 + 0.1813)

. . [, — 1
By Romberg’s integration method (112 = %)

I
0.6667
0.6666 | 1,, = 0.6665

0.6732 | I,,, = 0.6754 | I,,, = 0.6783
0.6749 | I,, = 0.6755 | I,,, = 0.6755| I,,,, = 0.6745

R = =

0.6753 | 1,5 = 0.6754 | I, = 0.6754| I,,,s = 0.6754

I35 = 0.6757

Ex.1:
Evaluate the following integral by Romberg’s method :
Do [ Ans. : 0.7468

24 Gaussian Quadrature :

In general Gaussian quadrature is of the form

J.:w(x) f(x)dx = gakf(xk)

where w(x) > 0 In [a, b] is called the weight function and ay, xx are called
weights and nodes respectively.

Gaussian quadrature function for two points also known as Gauss
Legendre integration method.
Consider the integral

Izj.jlf(x)dx
Let I:iakf(xk)
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=a1f(x1)+a2f(x2) ........... D

Here x, & x, are nodes & a,, a,are weights.

To find 4 unknowns a,, a,, x,, x,. Here we required h
conditions. The condition that equation I is valid where f (x) is a polynomial of
degree < 3.

In this case equation I is true for f(x) =x,x, x, 1.

where f(x)=x’

1
3 3 3 3 3
J._lx dx = ax, +a,x, => ax, +a,x; =0 e (1D
where f(x)=x’
1
sz dx = ax; + a,x; = ax; +a,x; = % ... (I

where f(x)=x
1
J._lx2 dx = ax, + a,x, = ax, +a,x, =0 v (IV)
where f(x)=1
J‘_llldx=a1+a2:al+a2:2 v (V)
Multiply equation (IV) by x; & subtract from (II) we get,
a, x, (x22 - xf) =0
= a,x, (x, —x)(x, +x)=0
sa,=0o0rx,=0o0rx,=0x orx =-x,.
The cases a, =0, x, =0 & x, = x,. Give result to invalid equations.

. we choose x, = —x,
.. from equation IV
ax —ax, =0 e (VD
From equation V & VI we get
a=1& a,=1
From equation III we get

2x12 = %

"t )
We take x, = y\/g & x,==1/3 (ox,=-x)
Substitute the value of a,a, & xx, in equation (I)

f f(x)dx = f(/@) ¥ f(_/ﬁ)

This is known as Gaussian quadrature two points functions.
Note :

Above answer gives solution of J._ll f(x)dx



Ex.1:

Sol":
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we need I:f(x)dx

There are, let x = mt + ¢
Ifx=a=t=-1
fx=b=t=1

Suchthat a = —m + ¢
b=m+c

Solving this equation we get,
b-a = b+a

b

2 2
b-a b+a
X = t+
2 2
.'.dx=b_adt
2

Substituting value of x & dx we get

J.:f(x)dxzj_llf(b;at+b;aj(b;ajdt

Evaluate J.j(2x3 - 3x) dx by two points

Gaussian quadrature formula

Given integral J.;(2x3 - 3x) dx

Gaussian two points quadrature formula is given by

Lreyas=r( Yg)+ (- Vs)

Here f()c)=(2x2 —3x) a=2, b=5
Put xz(b—a)t+(b+a)
2
3t+7
X =
2
dxzﬁ
2

Where x =2 = ¢t =-1
x=5=t=+1
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[l - [2(257] o252 (3) o

- O +420+49 9142113
. 2 2 |2

=3j19t2+33t+28dt
4 I

= [ g(c)ar
Where 9(¢) = % (97 + 33 + 28)

.. by Gaussian two points quadrature formula
-3eVa) - Vs
EVORECORY

((Va) (- Yg) o)
= % [31+31]

— 465
j;(zxz ~ 3x)dx = 46.5

2.5 Gaussian Quadrature for 3 points formula :

Consider the integral

I=J-_11f(x)dx
Let Iziakf(xk)
ie. I=af(x)+af(x,)+af(x) @

Where the nodes x, x, x,& weights a, a, a, are to be determine.

To determine we use some as we had done in Gaussian two point’s
quadrature formula & we get,

o =5 |5 ] sri0r (-]

[Few are left for exercise]
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Ex.2:

Evaluate Il dx

0] by Gaussian 3 points quadrature formula.
+x

Sol":

Given integral I

1+ x
1
= , =0, b=1
f(x) 1+ x ¢
Put xz(b—a)+(b+a)
2
t+1
x:_
2
dxzd%
Where x =0 t=-1
x=1 t=1
J-l dx :J-l d% _J-l dt
xS (Mj_ it+3
2
1
= [ 2(r)ar
1
=13

By Gaussian 3 points quadrature formula

[/ ()= {Sg\/% + 8¢(0) + 5¢ (f%ﬂ
:é {;/ [0+3J+5 izizz

5J5 }

1

9 \/§+3\/_ \/§+3\/§

1[75 8}
=— | — 4+ —

9142 3

f

[ £ (x)dx = 0.4947.
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Ex.2:

Evaluate the following example by two point Gaussian quadrature
formula or three points.

) ‘e dt Ans. : 2 points = 3477.5439
0
3 points = 4967.1067

2.6 Numerical evaluation of double integrals :

If f(x, y) is a continuous function & defined on a closed rectangle.
R{(x,y)/anSb,cSySd} then

JI7 (e, ) dvdy = ﬁf(x, y)dx dy

Hence we are going to double integral using trapezoidal rule &
Simpson’s 1/3™ rule.

Trapezoidal rule of double integral :

Consider [ = J. J.nf(x,y)dxdy where h=x, , —x, & k=y, -,

-

Ay

Vol \\\\\R \\
i

< ] ] ]
<

OV Xi xi+1 xi+2

\/

I= J.://U:f(x, ¥) dx} dy

Apply trapezoidal rules inner integration.

I= J'://*’g [f(xi’y) + 2f(xi+1= y) + f(xi+2’ y)] dy
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.. again applying trapezoidal rule we get,
hk
I= T[f(xi’ yi) + 2f(xi’ yj+1) + f(xi’ yj+2)

+ 2|:f(xi+1’ yj) +2 f(xm’ yj'+1)J+ f(xm’ yj'+2)
+ f(xi+27 yj') + 2f(xi+2’ yj+1)+f(xi+2’ yj+2)]

Continuously working we can solve triple integral also
but it is more complex to solve.

Ex.1:

Evaluate j.j.xz e
33

using trapezoidal rule with 7/ =2 & k=2.

dxdy

Sol" :

77 1

Given integral J.J. — dxdy
23X+

Here h=2 x:3,5 7

k=2 y:3,57

y 3| 5] 7
Y

y, 3| 18] 34] 58
y, 5|34|50| 74
y, 7| 58] 74| 98

.. by trapezoidal rule form multiple integral
hk
I'= 4 [(f(ij) * 2(f(i=j+1)) * f(,-,,-+2))
+2 (f(i+1,j))+ 2f(i+1,j+1) + f(i+1,j+2)

+ (f(i+2, J) + 2f(i+2,j+1) + f(i+2, J+2) )J

2:2 [£(3.3)+2£(3.5) + £(37) + 2(£(8.3) + 27 (3.5) + £(57)) ]

+(£(7,3) +2£(7,5) + f(7,7))]

= 1[ (18 +2(34) + 58) + 2(34 + 2(50) + 74) + (58 + 2(74) + 98) |
=864.
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2.7 Simpson’s rule for double integrals :

It is same as trapezoidal we had done we need to apply Simpson’s 1/3™
rule twice we get,

=5l

+ 4(f(x,»+1 ,y,+1)) + f(x,»+l,y_,+z)) * ('f(‘tz ;) * 4(]?%42’}’.”1)) * f(xwz’y./n)ﬂ

) + 4f(xny_/+1) +f(xny_/+2) ) +4 (f(xi+1ay/)

Ex.:
12
Evaluate ”xy dx dy by Simpson’s rule taking 2 =0.5,k =0.5.
00
Sol" :
12
Given integral [ = J.J.xy dx dy
00
Here #=0.5 x=0,0.5,1
k=1 y=0,05115,2
%/y xl x2 x3
0] 051 1
O[O0l 0[O
v, 105]10]025]| 5
yv, | 1 10] 05] 1
v, [1.5]10]0.75]15
s | 2 10] 1 2
By Simpson’s 1/3™ rule for double integration integral.
hk
=[Gy + £ (o)) + 407 (ro22) + f (o)) + 27 (500) ]
+ 4L (o2) * L (50 05) +4(S (5002) + £ (52 0,)) + 21 (%033 ]
+ f (o) + £ (30 05) + 4(F (0 0,) + £ (3 30) + 2/ (x0,31)) |
_05+05

[(0+0+4(0+0)+0) +4[0+1+4(025+0.75)+2(0.5)]

+[(0+2) +4(0.5+1.5)+2(11) ]

=%[0+24+12]
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=0.25x3%
=1.

2.8 Review:

Romberg’s method of integration.
Gaussian quadrature formula for 2 & 3 points.
*  Multiple integral by trapezoidal rule & Simpson’s 1/3™ rule.

2.9 Unit & Exercise :

1) Evaluate J.Oﬂ sinxdx h =2 by Romberg’s integration method
Ans. : 1.99857

2 Evaluate dx by Romberg’s integration method
1 X y

Ans. : 1.6289
/2
3) J. (x2 +x+ 1) cos xdx by Romberg’s integration method
0
Ans. :2.032

4) For an integral J.: f(x) dx, derive the two point
Gaussian quadrature formula.

5) For an integral J.: f(x) dx, derive the Romberg’s integration method
using trapezoidal rule.

6) For an integral J.: f(x) dx, derive the three point Gaussian

quadrature formula.

22
7) Evaluate Ijx+ y dx dy by trapezoidal rule by taken 4 =k =1.
00

8) Evaluate dx dy by Simpson’s 1/3™ rule by taking 4 =k =1.

23 1

e
1

9) Evaluate Ic%x +3 by two points Gaussian quadrature.
0

cos2x

3
10) Evaluate J. dx dy Gaussian 2 & 3 points formula.

2

t o dx

1 +sinx

11) Evaluate

—

—— by Gaussian 2 & 3 points quadrature formula.
o1 +sinx

0604

12) Evaluate I Isinx cos y dxdy by Trapezoidal & Simpson’s 1/3™ rule, by
00

taking h =k =2.
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55

d.l . . .
13) Evaluate || ———— dxdyusing Trapezoidal rule, by taking h=k =2.
”«/xz + )
Ans. : 4.1345
/2 7m/2
14) Evaluate J. I sin(x+y) dxdy by Simpson’s 13" rule, by taking
0 0
h=k=n/4. Ans. :2.0091

151

15) Evaluate J.J.e”—” dxdy by Trapezoidal & Simpson’s 1/3 rule, by taking
00

h=k=0.5

Ans. : Trapezoidal = 6.2334
Simpson’s = 5.0171.

I A XX X4
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Approximation of function

Chapter Structure

3.1 Objective

3.2 Introduction

3.3 General least squares method

3.4 Fitting of a straight line

3.5 Fitting of a curve of second degree polynomial to fit the second
degree polynomial OR (parabola)

3.6 Fitting of a polynomial of degree M

3.7 Fitting of curve for exponential function

3.8 Review

3.9 Unit End Exercise

3.1 Objective :

After going through this chapter you will be able to :

Fit a straight line by least square.

Fit a second degree polynomial by least square method.
Fitting a polynomial of degree M by least square method.
Fit a curve for exponential function.

L R

3.2 Introduction :

The function approximations needs for many branches of applied
mathematics and computer science. In mathematics, least squares can be applied
to approximating a given functions. The best approximation can be defined as
that which minimizes the difference between the original function and the

approximation we also going to used weighted approximation.

The process of finding the equations of curve of best fit which may be
most useful for predicting the unknown n values is known as curve fitting. Here
we get two value are by observation and other by the predicating value. The

difference between this values is called residual an error.

Thus, the principle of least square’s status that “The sum of the residuals

squares of is minimum”.
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3.3 General least squares method :

Let (x,, y,) where i =1,2, ..., n be given n-points.
To fit the curve

To the given n-points where a, a,, a,, ....., a, are unknowns parameters
whose values are to be determined. Taking x = x; the value of y obtained from
equation (I) we can write as

The quantity y, is called the predicated or expected values of y at point
x = x, and y, is called the observed values of y.

The difference (y, — y,) is called the residual or error corresponding to

1

pomt x = x,.

Let E = E(a,, a,, ....., a; ) be the sum of square of the residual then

E= Z(yi - Y1)2
i=1

by the principle of least square the value of E will be minimum i.e.

OF 0% .. L
oa,

—= 0
oa, 0a,

These equation are called normal equations.
To solve these normal equations with help of given points and we obtain
the values of ¢, where i =1,2, ..., k.

Suppose the values of a, are a, =a,, a, =a, , ....,a, = a,
substitute all these values in equation 1.

Which is required best fitting curve.
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3.4 Fitting of a straight line :

Given the general form of a straight line
y=ax+b
Where a, b are unknown parameters whose values are to be determine.

Let B(x,5), B(%,,05), cooes Po(X05 74 ) s ovves B (5,5 3,)
are the given n-points.

A ﬂ)
82
yn ————————————————————————— I
Yo
| yiax, +b)
P, !
l/ P |
P, i
xl«’ 'xll ]

Taking x = x, the observed value of y is y, and corresponding value on
then fitting of a straight line is y, = ax, + b.
If E, is the residual of approximation at x = x, then
E, =y -Y
Let £ = E(a, b) be the sum of squares of the residuals then

Ezi(y -
_Z[y, ax +b] .......... (I

by principle of least square the values E will be minimum if
E _,
Oa

............... =~ Z[y,. — (ax, + b)]2 -0
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izn;z[y,- —(ax, +8)](-x,) =0
Zn:[x,.y,- —ax} + bxl} ~0

i=1

n n

_ 2
Zx,.yi = Z:ozx1 + bx,
i=1 i=1

Zn:x,.y,. =a Zn:xf +b Z":xi .......... (1IT)
i=1 i=1 i=1

Similarly

Zn:y,. =Zn:ax,. +b

i=1 i=1

ny,=a nx,-+nb .......... (IV)
Qyi=a)

From the equation (III) & (IV) are called normal equation of a straight
line.

Solving these normal equations with the help of given points and we
obtained the valuesof a =a” & b=b"

Ly=ax+h

Which is required best fit of a straight line.

Ex:

Use least squares method to fit a straight line for the following data :

x|3]2|15]-2]05
-1]-05] 1| 2

Also estimate the total error.



Sol":

Equation of straight line

40

y=ax+b . (D
Normal equation of a straight line are
Yy =aXx + bn 1))
Txy = a¥x’ + b¥x 1))
X v Xy
3 2 6
2 -1 -2
1.5 -0.5 2.25 —-0.75
-2 1 -2
0.5 2 0.25 1
Sx=5|Zy=35|Zx"=195|Zxy=225| N=5
We get two equation
35=5a+5% L. (Iv)
2.25=19.5a + 5b . (V)
Solving equation (IV) and (V) we get
a =0.0862 b =0.7862
Put value of ‘a’ and ‘b’ in equation (I)
y =-0.0862x + 0.7862
This is equation straight line
X y Y E = (yi _Y:) Ei2
obseved expected
value value
3 2 0.5276 1.4724 2.1679
2 -1 0.6136 -1.6138 2.6043
1.5 —-0.5 0.6569 —-1.1569 1.3384
-2 1 0.9586 0.0414 0.00071
0.5 2 0.7431 1.2569 1.5798
7.6921
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.. The total error

5
E=)(y-Y) =7.6921
i=1

Casei):
Fitting a straight line for odd numbers i.e. (n = odd number)

The procedure of fitting a straight line by the method of least square for
odd numbers may be simplified as follows :

Where M is the middle term h is difference between any two successive
value.
Here Zx = 0 normal equation can be written as
Yy=nb = b= 2
n
xy

2

Txy=3x’ = a=
zXx

Case ii) :

Fitting a straight line for even numbers of term if n is even them

w25

Where M is the arithmetic mean of two middle values.
h is difference between any two successive value.

Here Zx = 0 normal equation given by
Sy=nb = b=

z
Sxy=aix’ = a= %xz

Ex:
Fit a straight line y = ax + b to the following data :.

2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016
12 16 21 24 28 32 38




Sol":

The value of x is to high
we use change of origin.

42

Here n = 7 which odd number
middle value M = 2013, h=1.

X y X = al _hM x’ XXy
2010 12 -3 9 -36
2011 16 -2 4 -32
2012 21 -1 1 21
2013 24 0 0 0
2014 28 | | 28
2015 32 2 4 64
2016 38 3 9 114

Sy=171| Zx=0 | =28|Zxy=117
Normal equation are
a=22 1T _ 41786
X 28
b= % U . 24.4286

.. The remained best

.. The fit of straight line is

y=ax+b

y =4.1786x + 24.4286

y =4.1786 (%ZOBJ + 24.4286

y =4.1786x — 8411.5218 + 24.4286

y =4.1786x — 8387.0932
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Ex. :

Fit a straight line by method of least squares also find an
estimated value for the year 2020.

Year 20112012 2013 | 2014 | 2015 | 2016
f’roduction)

) 30 35 42 48 53 60
termunits

Sol":

Magnitude of years are high
.. we use charge of origin
Here n = 6 which even

M = Arithmetic mean of middle year

_ 2013 + 2014 20135

h = lyear
X = 2(x— 2013.5)/1

Year | Production | x = 2(x = 2013.5) x’ xy
X Y
2011 30 -5 25 —-150
2012 35 -3 9 —-105
2013 42 -1 1 —42
2014 48 1 48
2015 53 3 9 159
2016 60 5 25 300
Yy = 268 Xx=0 x? =90 | Zxy = 210

.. Normal equation for even numbers of terms
g Ixy 210

—=—=3
2x 70
b= 2y 268 _ 44.67
h 6
.. The best fit of a straight line is
y=ax+b
y=3x +44.67

y =3[2(x - 2013.5)] + 44.67
y = 6x — 12081 + 44.67
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y = 6x —12036.33
Where x = 2020 then

y =6(2020) —12036.33

y =83.67 tones.

3.5 Fitting of a curve of second degree polynomial to fit the
second degree polynomial OR (parabola) :

P()c)zax2 +bx +c .. (D

Where a, b, ¢ are unknown parameters where values are to be determine.

Taking x = x, the observed value of y is y, and corresponding value on
the fitting of a second degree polynomial is

v, =ax’, +bx, +c

If E, is the error of approximation at the points x = x, then,

E =y - Y

This error may be negative or +ve zero.

Let E = E (a, b, ¢) be the sum of squares of residuals then

E= (3 -1)
i=1
= Zn:[y,. — (ax,.2 + bx, + cﬂ2
i=1

By the principle of least squares. The value of E will be minimum.

Le.

Now,

a—Ezo,a—Ezo &a—Ezo
Oa ob oc
% _y

Oa

izn;z[y,- - (arx,.2 + bx, + c)} (_X,-z) ~0

fo, Y, =a¥x! +bIx’ +cxx’ (1)

i=1
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9E _
ob

2 Zn:[yi — (arx,.2 +bx, + c)} (-x,)=0

i=1
Zn:x,. V= aZn:xf + bZn:xf + cZn:x,. ....... (1II)
i=1 i=1 i=1 i=1

0

9E _

=0
oc

n

2 Z[yi - (ax,.2 + bx, + c)} (-1)=0

i=1

Xy, = aZn:xf + bZn:x,. +nc (Iv)
i=1 i=1

The equation (II) (III) (IV) are called normal equation as solve the normal
equations with the helps of given data and we obtain a =a’,b=b" & c =¢’

Put these values in equaton . (D
y=P(x)=adx’+bx+c

Which is required best fit for second degree polynomial.

Ex.:
Fit a second degree parabola using the method of least square.
x |-3(|-1]0]2]|4
-8 [-3[3|8 |11
Sol" :

Let equation of 2nd degree polynomial.
y=ax’+bx+c . D

and normal equation are
Sy=a¥x’ +bEx+nc (I1)

Txy =aix’ + bIX* +cEx (IIT)

X’y = a¥xt + bEX + X (IV)
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X y X X X Xy Xy

-3 -8 9 =27 31 24 72

-1 -3 1 -1 01 03 -03

0 3 0 00 00 00

2 4 8 16 16 24

4 11 16 64 256 44 176
Sx=2|Zy=1|2x" =30 |Zx’ =44 | Zx* =354 | Zxy=87 | =x’y =125

.. Normal equation are

30a+2b+5¢=11 . (V)
44a +30b +2¢+87 (VI)
354q + 44b + 30c =125 ... (V)

Solving equation (V), (VI), (VII) we get
a =-0.2269, b =3.0774, c=2.3303

Put value of a, b, ¢ in equation (I)
y =-0.2269x" + 3.0774x + 2.3303

Which is the required best fit of second degree polynomial.

3.6 Fitting of a polynomial of degree M :

To fit the m™ degree polynomial.
y=P(x)=a,x" +a, x"" +a,,x"7 +. ... +ax+a,

Where a , a

m> “m-1°

a, 5, ....., 4;, d,unknown parameters are whose values to

be determine. Taking x = x, the observed value of y is y, and corresponding
values as the fitting of a m™ degree polynomial is

m m—-1 m=2 1
yvi=a,x'+a, x;" +a,,x " +..+ax, +a,
If E, is the residual of approximation at the point x = x, then,
E =y, -,
This error may be negative an +ve an zero.
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m—1?

Let E =E, (am, A, s Ay gy ey ao) be the sum of squares residual then,

2
m m-1
= Z[y,- - (a,,,x,- +a, X, + ... + ax + a, )J

By principle of least squares the value of E will be minimum,

Ifa—Ezo,a—Ezo, ..... ,a—EzO
Oa oa, , 0a,

n n
Zy,. =na, + q, Zx,. + a2 + e+ @, 32X

i=1 i=1
Similarly

OF

—=0
0Oa,

n
le. V= a2x, + aEx; 4. +a,Ix"
i=1

8_E =0 we get
oa,,

n

m _ m m+l
Zx,. Vi =ax; +aXx; + ... +a,2x;
i=1

The above equation is called normal equation.

Solve the normal equation with the help of given data and we obtain
a — am*, a * * * *

m

=a, 0, =0 e, @, = A , Q) =4 .

m—1

Put all these values in equation veveee (D

Which is required best fit for m™ degree polynomial.
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3.7 Fitting of curve for exponential function :

Let the exponential curve
y= aoebx
taking log on both side we get
log y =loga + bx
We can write this as
y=4A+Bx . 1)

Where y =logy, A =loga, and B=a.
Thus equation is straight line.
. we can use fitting of curve of straight line by least square method.

Similarly we can curve for any exponential curve like
y=ab", y=ax".

Ex.:
Fit a curve of the type y = ae”™ to the following data :
2 6| 10| 14
25132 47|59
Sol" :
Given curve
y =ab*

taking log both sides we get
logy =loga + x logh

Putlogy=Y,A=1loga,x=logx,Y=A+bx ....... (I
This is straight line least square method.

.. Normal equation are

Yy =nAd + bXx

Txy = ASx + bIx’
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x| y | x=logx y=logy x’ xy
2125 0.6931 0.9163 0.4804 | 0.6351
3.2 1.7918 1.1632 3.2105 | 2.0892
10 | 4.7 2.3026 1.5476 5.3020 | 3.5635
14 5.9 2.6391 1.7750 6.9648 | 4.6544
2x=7.4266 | Xy = 5.4021] 15.9577 1 10.9672

.. Normal equation

5.4021 =44 + 7.4266b
10.9672 = 7.4266A4 + 15.9577b

A =0.5482 b =0.4322

Equation become

Y =0.5482 + 0.4322X
But 4 = loge*

. 0.5482 = loge”
a= 605482

a =1.7301

Equation (I) becomes
-y =17301 x =0.4322
Which is the required least fit of curve.

3.8 Review:

We have learn to fit a straight line by least squares method.

We have fit quadratic curve fit by least squares method (second degree).
We have fitting of a polynomial of degree M.

We have fitting of a curve for exponential function.

L
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3.9 Unit End Exercise :

Y

iii)

3)

4)

5)

Fit a straight time y = a + bx for the following data by using least square
method.

x |43 81 7|9

11]10] 14| 12| 18

Year(x) 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015

Production | 2.5 3 42 | 48 | 53| 64 | 73

x [02]104]08] 1|1.2[1.4
314 6|9[13]10

x 2 % 1.5 —%

v U6l | A

Fitting of a second degree curve using the method of least square :

x |[-5|-3[0]8|5
-11[-8|-2

1941] 1951 | 1961 | 1971 | 1981 | 1991 ] 2001
1.1 | 13 | 1.6 2 271 34 | 4.1

Fit the curve X = a + bx” to the following data :

=110]120|30|40] 50
=18 |10|15]|21]30

Fit a curve of the type ¥ = ax” to the following data :

10 ] 20| 30| 40 | 50
35162 9.5] 15.3] 204

The pressure & volume of the gas are relation by the equation pv* =k
where A & k are constant fit this relation for the following data using
principle of least square :



6)

7)

8)

9)
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05 (10 1.5 | 20| 25| 3.0

1.62| 1 |0.75]0.62| 0.52| 0.46

Using ‘Principle of least squares’ fit a straight line y = a + bx for n-points.

Using principle of least squares fit a second degree polynomial
y = ax’ + bx + ¢ for n-points.

Using principle of least squares fit a polynomial of degree M for n-points.

Using principle of least squares fit a straight line for relation y = ab”.

Using principle of least squares for a straight line for relation y = ae”™.

I A XX X4



52

Least squares approximation

Chapter Structure

4.1
4.2
43
4.4
4.5
4.5
4.6
4.7
4.8
4.9

Objective

Introduction

Orthogonal Function

Gram — Schmidt or thogonalizing process
Chebyshev polynomials

Chebyshev polynomials

Discrete Fourier Transforms (DFT)

Fast Fourier Transforms (FFT)

Review

Unit End Exercise

4.1

Objective :

* X ¥ *

After going through this chapter you will be able to :

Fit polynomial for continuous function by least squares method.
Orthogonalization approximation by Gram — Schmidt process.
Fit a curve for chebyshev polynomial by least square method.
Compute different point of sequence by DFT & FFT.

4.2

Introduction :

A more general least squares problems is the weighted least squares
approximation problem. We consider a weight function w (x) to be continuous an

(a, b) with positive mass.

points we assigning weights. If all the data points have amount of weights then

ie. Ibw(x) >0

a

Given set of points (x,, ;) (x,, »,) ..... (x,, »,) to given importance to the

the weights as w(x)=1.

Here w(x) and y are known functions.
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The above (k +1) equations is a system of line equation with (k + 1)
unknowns.

This system has a unique solution.
Let the solution is

Which is required best approximation.

Ex. :

Construct a least squares linear approximation to the function y = x°

on the interval [0, 1] with respect to the weight function w(x)=1.
Sol" :

Let the linear approximation be
p(x)=ay+ax L @

Where a,, a, are unknown parameter which are to be determine.

Let £ = E(a,, a,) be the sum of squares of residuals, then,

E= I:w(x) [y — p(x)]2 dx

= J.(Il[xz —(a, + alx)]2 dx

By principle of least squares the values of E will be minimum.

a_E =0 and a_E =0
Oa, 0Oa,

.. For 6_E =0
oa,

I;2[x3 —(a, + ax) ] (-1) dx =0

J.l(a0 +ax) dx = J.1x3 dx

0 0
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2
a +—1:l
0 4
4ay + 20,=1 {n
Fora—E:O
0Oa,

J.SZ[JH —(a, + alx)} (—x) dx

J.;(aox + alxz) dx = J.; x* dx

15a, +10a, =1 ... (1)

Solving equation (II) & (I1I) we get
a, =0.8 a =-1.1

Put g, =08 & a, = —1.1 in I we get
p(x) =0.8-1.1x

Which is the remind least square linear or approximation.

4.3 Orthogonal Function :

The set of function {fo(x),fl(x), ..... , f (x)} in [a, b] is called

a set of orthogonal functions, with respect to a weight function w(x), if
b
L w(x) f,(x), fi(x)dx="0 if i#]

G if i=j
Where ¢, is a real positive number further more,

if ¢ L =1LJj=0,1..,n than the orthogonal set is called an orthonormal set.
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Least squares approximation of a function using orthogonal polynomial :

Let y = f(x) be continuous function an [a, b] and it is approximated by
k™ degree polynomial given by,

p(x)=ayp,(x) + ap (x)+ .o+ aqp (x) @

Which orthogonal polynomial and aq,q, ..., aq, are unknown
parameters which are to be determine.

Let £ = E(ay, a,, ....., a;) by the sum of squares of residual then,

b

E = L w(x) [y — P()c)]2 dx
E= J.bw(x) [y - aB(x)+ aB(x)+ ...+ aP (x)]2 dx
By principle of least squares the value of E will be minimum if,

O, _ . O OE

=0,—=0,....., — =0
oa, 0Oa, oa,
Now,
b
8a0 L B (x [y ayP,(x) — a,B(x), ..., ¢, P, (x)] dx =0
b b
I By(x) y dx=w(x) L [aOPO (x) + oo + @, P, (x)] B (x) dx

Since [Pn (x)]zzz is an orthogonal set we have

jb ( )pZ( )dx =c,
& j x)dx =0 i#0
Applying the above orthogonal property we get
J.bw(x)P (x) y dx =c,a,
=— I ) Y.dx

Similarly
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:ZL xX)P(x)« Ydx

In general we have

=—I ydx n=0,1,... k
Where ¢, —J. x) P?(x) dx
Let the values of a, be g, =a,, a, = a,, ....., a, = a, substitute all these
value in equation I, we get p(x) = a,, p,(x)+ a, p,(x) + ..... +a,p,(x)

Which is the required least squares approximation.

4.4 Gram — Schmidt or thogonalizing process :

The classical Gram — Schmidt process can be used for this p starting with
the set of monomials purpose {c, Xy eeeny x”} we can generate the orthonormal set

of polynomials {Pk(x)} with respect to weight function w(x) can be generated
from the relation.

where

Ex. :

Using Gram — Schmidt orthogonal rizing process first three orthogonal
polynomial F,(x), £,(x) and P (x) on [0, 1] with respect to weight function

w(x) =1 using this polynomial obtain the least squares approximation second

degree for the function y = Jx on [0, 1].
Sol" :

Use Gram — Schmidt orthogonalizing process to determine
F(x), R(x), B ().

k-1
x)=x"=>a, f(x) k=1,2,...
r=0

where a,, = I:w(x) x*f7(x) abc/Jjw(x)ff2 (x)dx &
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now f; (x)=x- |:a10 f(:(x)]
where a, = [ (1)x(1)dx/ [[(1)(1)"dx = M /ML

ayy = 12

B W =x=(30)=x-3=2()
Now,

1 (x)=x-— [azofo* (x)+ a, f (x)}

_pm e (¥3)
Whete a = O & (%) =3

1 3_1 2
1) (x=1/2) dx J.o(x 2*}"*

= — =
)(x_zJ dc J.O(xz—x+1/4)dx ; 2

e

say, =1
£ (x)=x=[1/3(1) + (1) (x-1/2)]
=x*—[1/3+ x—1/2]

fi(x)=x"-x-1/6=P(x)
Let P(x)=a,P(x)+aB(x)+aP(x) ... (D

Where q,, a;, a, are unknown parameter whose values are to be

determine.

Using the condition of orthogonality

J.Olw(x) -y P(x)dx

J.:w(x) - P?(x) dx

J,mx @ dx[//z} 2

a, = E

[0 ()
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i [[() Vx (x = 1/2) ax i kj/zz - 2();3//22)1 i E ‘ﬂ _y

(1) (x =1/2) dx {xs e x] 1/3-1/2+1/4

3 2 4

0

J. x(xz—x+1/6)
J. 1)( 2—x—1/6) dx

a, =

J.;(XS/Z - x"? +\/;/6) dx
J.l(x4 —2x° +x° + Ex2 - lx + lj dx
0 3 3 36

L1101 1
{5 2739 36}
_ -U315 4

29 28 7

45 36

Put all values in equation (I) we get

2, 4 4.,
p(x)=§(1)+§(x—1/2)—7(x —x+1/6)

p(x) =0.1714 + 1.3714x — 0.5714x°
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4.5 Chebyshev polynomials :

The set of polynomials defined by 7, (x) = cos[n -cos”' (x)] n>0 on
[-1, 1] are called the chebyshev polynomial of degrees.

It can be written as

T (x)= cos[n - cos™ (x)]
= cosnb n=20,1,...

Where 0 = cos™'x on x = cos0
we derive a recursive relation by noting that

taking n = 0 T,(x)=1
taking n =1 T (x)=x

T, (x)=cos(n+1)6
= cosn0 cos® — sinn Osin6

T, (x) =cos(n—1)0 = cosnBcos + sinnh sin6
ST (x)+ T, (x)=2cosnB cos 6

.. But we know that cos0 =x, so,

T. (x)=2cos0 cos® - T _ (x)
T.(x)=2x-T/(x)-T,_ (x) nx1

This above is a three term recurrence relation to generate the chebyshev
polynomials.

11.5.1 The orthogonal polynomial of the chebyshev polynomial :

1) T,(x) is a chebyshev polynomial of degree n, if n is even than 7, (x) is
even. If n is odd then 7, (x) is odd.

2) | (x)|<1 for x e[-1,1].

3) The chebyshev polynomial 7, (x) are orthogonal with respect to the weight

1
NI

function w(x) = & in the interval [-1,1].

0 if m#n

J."’\/: = 77 if m=n=#0

m if n=m=0
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The first seven chebyshev polynomial are :

It is also possible to express powers of x in terms of chebyshev
polynomials we find

1=T,(x)

x =T(x)

¢ =2 [L () + 7 (+)]

X=1 [0 +37(x)]

—_[T + 4T, (x) + 3T, (x) |

:_[T + 5T, (x) + 107, (x) |

=_[T ) + 6T, (x) + 157, (x) + 107, (x) ]
and so on ...

Ex. :

Use chebyshev polynomial to obtain the least squares approximation of
second degree for the function f(x)=x" on the interval [-1, 1] with respect to

1

J1-x° '

the weight function w(x) =

Sol":

The least square approximation of second degree be
p(x)=aT(x) +aT (x)+ a,T(x) M

Where T, T, T,and chebyshev polynomial & a,, a,, a, are unknown
parameter whose values are to be determine.
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Using the condition of orthogonalizing we obtain

[7,(x) + 30, (x) ] 7 (x) e =

1
I

By property of chebyshev polynomial]

[

=0
a,=0.

[PAOEEACIAO
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S0+ 0]
7/2
=0
. Put a,, a, and a, in equation (I)

P(x) = 07, (x) + 21, (x) + 07, (x)

“P(¥) =3 71 (x)

Which is the required least square approximation.

4.6 Discrete Fourier Transforms (DFT) :

A finite sequence of n real a number is given by

X = {x(O), x(l), ..... , x(n—l)}

The n-points discrete Fourier transform of sequence x is defined by

FUx(k) = X(k) - % nz_lx(J) PRIV

j=0
Where £ =0,1,2,......,n—1
The discrete Fourier transformation of n-points sequence ‘r’ of complex

numbers.
X (k) = {x(O), x(1), o, x(n - 1)}

The n-points inverse discrete Fourier transform of sequence X is defined

by
FX (k) = x(k) = -2 5 x(j) et
n -
Ex.:
Compute the 4 points DFT of sequence x = (3, 4, 5, 6) .
Sol" :

Given real sequence
~x(0)=3,x(1)=4,x(2)=5x(3)=6
.. The 4 points DFT of sequences is given by
1 S i
Fx(k)=x(k)=—= > x(j)e™"*
(0= x(k)= 7 <))
where k=0,1,2,3

Fx(0)= [)C(O)e0 +x(1) €™ + x(2)e™ + x(3)e3"”k/2}

1
2
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ﬂ(x)(o): % [3 + 4™ 4 500k 4 6e3mk/2:|

0)= %[3+4e +5¢" + 6¢” | = [18]=9
9

Fx(2)= % [3 +4(cosz + isinz) + 5(cos 27z + isin27) + 6(cos37w + isin37r):|

Fx(2) =—[3+4 )+ 5(1) + 6(-1)]

F4x(2)=—1
x(3)= % [3 + 4" + e + 637 |
1
3)25[ (-1) +6(-1)]
m(.@):%[ 2+ 2]
Fx(3) i—1

The 4 points DFT of sequence ‘x’ is
Ex. :2

Compute the 4 points inverse DFT of sequences

<[ -3psn)
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Sol":

Given complex sequence is

(-
2x(0)= Y x() =i =14, x(2) = Y. x(3)==i -}

". The 4 points inverse DFT of sequence ‘x’ is defined by

Eflx(k)= x(k) :%i;‘x(]) e—2n'jik/4

Flx (k)= = [x(0)e" + x(1) &2 + x(2)e™ + x(3) 7]

1
2

Eflx(k)=l l+ l_l e—in'k/Z +lem’k + _l_l e—37z'k/2
212 2 2 2

where k=0,1,2,3

Fx(0)= 1 B (112) 0+ &+ (i - 1/2)4

2 22 2
F'x(0)=0

F'x(0)=0

Fix(1) = % {— +(i=1/2) e™+ — & + (=i - 1/2)e-3”/2}
F'x(1)= % B + (1 - %j (=) + %(—1) s (_ l_%j (Z)}
F'x(1)=1
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Ly m2)erm e Lo (ni- 1/2)6-%"]

Ra@)=tt et ]

202 2 2 2

F'x(2)=1

F'x(2)=1

F;—lx(:')) = % {_ + (i—1/2) e3in/2 + % eSi:r + (—i N 1/2)63;';1/2}

Fx(3)=1 1_1_%_%_1+ﬂ
Fox(3)= -1
F'x(3)=-1

.. The 4 points inverse DFT of sequence ‘X’ is x(k) = (O, L1, —1).

4.7 Fast Fourier Transforms (FFT) :

The Fast Fourier Transforms (FFT) is the efficient implementation of the
Discrete Fourier Transforms (DFT).

The FFT was discovered by curvely & Tukar in 1965. The FFT is based
on the following observation.

*  Let data (x,, y,), X, k—n, k=0,1,...,2 , be given and that p & q are
n

exponential polynomial of degree at must (n —1) which interpole part of the

data according to p(xzj)zf(xzj), q(xzj) =f(x2j+1), j=0,1,...,n—1 then

the exponential polynomial of degree at most 2n—1 which interpolates all the
given data is
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P(x,)=1(x) K=0,1...2n-1
By assumption we have

)= L) L 1) o - 2)

n

Proof : Since ™ = (e”‘)n has degree n & p and q have degree atmost n — 1. It is

clear that phase degree at most 2n — 1.
We need to verify the interpolation

p() = (1) plx )+ 2 (1) o -

n
Whel‘e einxk — einkn’/n — (e;z' )k — (_l)k
S P(x)=P(x,) ifk is even
=q(x, —7/n)  ifkisodd

Let k be even i.e. k = 2j then by assumption on P.

P(xzf') = P(xzf') = f(x2/')
Xojl =TT T T T ST Xy,
e To compute for curve vectors.

compute component wise as

A

a, = a e N k=0,1,... N-1

1 n—1
N 75 !
of course. The FFT can be used to compute these co-efficient. There is an
analogs formula for the inverse DFT

4.8 Review:

*  Least square’s method for continuous functions.

*  Approximation using orthogonal function using Gram - Schmidt
orthogonalizing process.

* Chebyshev polynomials & it’s properties.

* Discrete Fourier Transform & Fast Fourier Transform.

* Computing sequences of points by DFT & FFT.
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4.9 Unit End Exercise :

1) Construct a least squares linear approximation to the function y = x”on the
interval [0, 1] with respect to the weight function w(x) =1.

2) Construct a least squares quadratic approximation to the function y = e*on
the interval [0, 1] with respect to the weight function w(x)=1.

3) Obtain the least squares polynomial approximation of degree 2 for the
function y = Jx on it interval [0, 2] with respect to the weight function
w(x) =1.

4) Using the Gram — Schmidt orthogonalizing process compute the first three
orthogonal polynomial p,(x), p,(x) & p,(x), p,(x) which an orthogonal
1

«/1—x2 '

5) Use chebyshev polynomial to obtain the least square approximation of
second degree for the function. F(x)=x" on the interval [-1,1] with

1

w/l—x2 '

an the interval [—1, 1] with respect to the weight function w(x) =

respect to the weight function w(x) =

6) Use chebyshev polynomial to obtain the least squares approximation for the
1

l—xz'

function f(x)=3x" +2x’ + x + 2 function w(x) =

7) Compute the 4 points DFT of sequences x = (1, 2, 3, 4).

8) Use chebyhev polynomial to obtain the least squares approximation for the
function f(x)=5x"+ 6x’ — 5x + 3 on the interval [-1, 1] with respect to

1

«/1—x2 '

the weight function w(x) =

9) Compute the 4 points DFT of sequence x = (0, 1,1, —1).



10)

11)

12)

13)

14)

15)
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Compute the 4 points inverse 0 DFT of sequence
x=(5—-(1+i),-1L,i-1).

Determine the normal equation if the cubie polynomial
y =a, +a,+ax +ax’ is fitted to the data (x,, y,),i=0,1,2, ..., m.

Prove that x’ :% [To(x) +T, (x)]

Prove that T, (x) is a polynomial in x of degree A.

Express the following polynomial as sums of chebyshev polynomials.
a) l+x—-x"+x
b) 1-x*+2x*

Determine the least square method for continuous function in [a, b].

(A X X X4
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Numerical Solution of Differential
Equation — I

Chapter Structure

N

Objective

Introduction

Taylor Series Method
Picards Method

Euler’s Method

Euler’s Modified Formula
Runge — Kutta Method
Review

5.9 Unit End Exercise

th
= W o —

L IR, R B,
o o O\

5.1 Objective :

After going through this chapter you will be able to :

*  Solve non-linear equation of two variables by numerical method.

*  Use iterative technique which gives approximate value of thereat.

*  Solution of initial value problems of ordinary differential equations by
various method.

I)  Taylor’s series method
2)  Picard’s method

3)  Euler’s method

4) R -K method.

5.2 Introduction :

In this chapter we are going to study initial value problem that is the
solution to a differential equation that satisfies a given initial conditions.

The initial value problem of an ordinary first order differential equation

. dx e ..
has the form /_ =l (\ _1') with initial conditions when x = x; and y = y,.
dy

Such differential equations are used to model problems in science and
engineering such problems are too complicated to solve exactly. Thus in such
case we solve that problems using numerical method.



70

5.3 Taylor Series Method :

Consider initial value problem of an first order differential equation.
dy

—=f(xy) (1)

dx

with initial condition y(x,) = y,

If y(x) is the exact solution of differential equation (I) Talyor’s Series of
»(x) about x = x, is given by,

( ST (1n)
x=x,) )
+ T ylll (.\“)

To find y(x) of the first order differential equation.

D f(xy)

dx

m d I d . b, £

dx (" ) o ['[\ R '/]
Lo d . d v. f
SLy= o Jo+ U (- f)

YW= fx+2f v+ v+ K-+ -y,

Use initial condition y(x,) =y, + 0. Obtain y.
these values in equation (II) use get

o vt substitute all

."('\') =Y + (.\' = .\'(,) _\'(], + (.\‘ _ '\‘") L (". _ '\‘“) e

. Yo 3 Yo T .o

Which is the solution of given differential equation (I).

Ex.1:

3 P 5 5 . . o dy >
Using Taylor’s series method. obtain the solution of 7= 3x +y~ and
dx
y=1& x=0.Find the value of y(0.1) compute upto four places of decimals.
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Sol" :
Given equation % =3x + y* with initial condition y(0)=1.
x
dy 2
—=0+(1) =1
=0+ ()
d’y dy
=3+2y— t y(0)=1
dx* " ydx Py y( )
=3+2(1)(1)=5
d’y d’y (dyjz
-2 7| &
ax’ 4 dx’ " dx
=2(1)(5)+2(1) =12
4 3 2 2
d_{zzyd_{”ﬂ d_g +4ﬂd_§
dx dx dx \ dx dx dx
=2(1)(12) +2(1)(5) + 4(1) (5) =54
.. By Talyor’s series method.
2 3 4
X — X, X=X X=X
29 =+ (e ) b by Do) g 2R e
2 3 4
() =1+ (x— oy 4 229 5+(x_|0) 12 (x—'O) 54+ ...

2
y(x)=1+x+%+2x3+%x + ..

For y(0.1) put x =0.1

y(0.1)=1+0.1 +%(0.1)2 +2(0.1)" + = (0.1)" +.....

| \O

=1+ 0.1+ 0.025 + 0.002 + 0.000225

»(0.1) =1.127225.
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5.3.1 Improving Accuracy for Taylor Series Method :

The error in Taylor method is in the order of (x — x, )"H. The accuracy can

be improved by dividing the entire interval into subintervals
(x> %) (%, x,) (x,, x3) ... of equal length and computing y(x,),i=1,2, ..., n

successively using the Taylor series expansion using y(x,) as initial condition we

compute y(x, + 1) it is given by,

1! 2! m!
In above expression put x,,, —x, = 4 where i =0, 1, ....., n—1
- we get
§(52) = 5(3) + 555'(5) + B (5) ot 20 )
i+1 i 1' i 2‘ i) T oeeees m‘ i
Now denote y(x,,)=y(x) =y, y(x,) =y,, above expression
becomes

2 m

h h . .
Vs =Vt v+ o /A S — /" . This formula can be used recursively

to obtain y, values.

5.4 Picards Method :

Consider the differential equation % =f(xy) 1))
x

with initial condition x = x,, y = y,.

Integrating the above equation in the interval (xo, x) we get,

j.dyzj.f(x,y)dx

Xo Xo

o(3) = () = [ (3, 3)
y(x)=y(x))+ I.f(x, y)ydx (I1)

Since y appears under the integral. Since on the eight the integration can
not formed. Thus we shall replace the variable y by constant or a function of ‘x’.
since we know that the initial value of y at x = x,.
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This value we assue as first approximation to the solution.

=y + [ (% 3,) dx

R

To obtain second approximation x = x, put on right hand side of equation

(I) we get,
Y=y, + If(x, W) dx

In this we get y(3), y(4), .....
.. In general

W =y If(x, ") dx

This equation is known as Picard’s method.

Ex.:

Solve the differential equation % = xe’ with y(0)=0 by Picard method
x

find y(0.2). Check the error with analytically.

Sol". :

Given differential equation
dy
— = xe" L
I @
with initial condition y(0)=0 ie. x, =0, y, =0
by Picard’s method
yII = y() + If(x’ yo)dx

X0

=y, + ]C.xey” dx

X0
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2
Put%zt:xdxzdt

Now this integration is more difficult therefore we stop at y(z)

0 _ %

Ly(x)=y
= To find y(0.2) taking x = 0.2 we get,
(02"

y(02)=e R 1=0.0202013.

We shall solve the given equation analytically

L = xe’
dx
e ’dy = xdx

Integrating both side we get,
Ie'—" dy = dex

L, X
e’ =—+c
2

Put x=0,y=0 we get, c =—1

el =1- x%
y= —log(l - x%)

Which is particular solution of d.E.

2 y(02)= —log(l - (O'Z)Zj

=0.0202027
Error =0.0202027 - 0.0202013

=1.4x10"°
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5.5 Euler’s Method :

Euler’s method is the one step method and has limited application because

of it’s law accuracy. Consider the differential equation % = f(x,»)
x

.......... (I) with initial value y(x,) = y,.

Let, x, = x, +ih i=1,23, ...
Integration equation (I) by the limit x, to x,, we get,

]Ldyzjlf(x,y)dx

Xo Xo

y(x)-y(x)= jf(x, y) dx
y(n) = 3(5) + [ £(x. ) ds

y1=y0+J.f(x,y)dx

X0

Assuming that f(x, y) = f(x,, »,) In x, <x<x

SV =Nt J.f(xw yo) dx

Y=Y +f(x0,x0)(xl =x0)
V=¥t hf(xoz yo)
Again integrating equation (I) between x, and x,, we get,

]gdyz]gf(x, ) dx
y(xz)—y(xl)zigf(x,y)dx

.'.y2=yl+ff(x,y)dx

X

S ENT hf(xn yl)

Similarly we can obtain y,, y,, .....

In general y,,, =y, + hf(xn, yn)
This is known as Euler’s formula.
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Ex. : Using Euler’s method find an approximate value y corresponding to x = 2

given that % =3x*+1 with y(1) = 2 taking interval 4 = 0.2 also find error in it.
x

Sol". :

Given differentiable equation is

ﬂ=3x2+1
dx

o f(x,y)=3x" +1 with initial x, =1, y, =2
By Euler’s method
Ven =Yoo thf(x.v) )

Taking n =0, y, =y, + hf(xo, yo)
Put x, =1, y,=2
[ (% 20) = F(L,2)=3(1) +1=4
LY =Yt hf(xo, yo)
y,=2+(02)(4)=28
Taking n =1 in equation (1) we get x, =1+ 0.2=1.2

Y=yt hf(xn yl)
=28+0.2 f(1.2, 2.8)
=2.8+02(3(12) +1)
=3.864.

Taking n = 2 in equation (1) with x, =1.2 + 0.2 =1.4
Ys=y, t hf(xza yz)
=3.864 +0.2 f(1.4, 3.864)
v, =5.24.

Taking n = 3 in equation (1) with x;, =14+ 0.2=1.6
Vi=ys +hf(x;, )
y,=524+02 f(1.6, 5.24)
=6.976.

Taking n = 4 in equation (1) with x, =1.6 + 0.2 =1.8
Vs =Yy + hf(xu y4)
=6.976 + 0.2 /(1.8,6.976).
=9.12.
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~. Thus the required approximate value of y(2)=11.72.
We shall solve the given equation analytically

L =3x* +1

dx

dy =3x" + ldx
Integrating both side

jdy:j3x2+1dx
x3
y=T+x+c

y=x+x+c.

Taking initial value x, =1, y, =2 we get value of ¢

2=(1) +1+c
2-2=c¢
c=0.
y=x+x
y(2)=(2) +2
=8+2
=10

Error = Exact Value — Approximate Value
=10 -9.12
=0.88.

5.5.1 Accuracy of Euler’s Method :

Since Euler’s method use Taylor’s series iteratively, the truncation error
causes loss of accuracy. The truncation introduced by the step itself is known as
the local truncation error and the sum of the propagated error and local error is
called Global Truncation Error.

Consider Taylor’s expansion

2 h3

h
— | A | S 1
yn+1_yn+hyn+2! y,, +3' yn + ...

Since only first two terms are used in Euler’s formula the local truncation

error is given by,

2 3
_ I I
Et,n+1_2_!yn +§yn + ...

The local truncation error of Euler’s method is of the order 4”. If the final
estimation required n steps, the global truncation error at the target point b will be
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1E, [ = Zn:c,.hz =(q+cy+oc,) i’
i=1

. _ 2
~E L =nch

But n = (b B xo%

LE = (b - x,) ch.

5.6 Euler’s Modified Formula :

Consider the differential equation % =f(xy) )
x

with initial condition y(x,) = y,.

Integrating both side between limit x, to we get,
J.dy = J.f(x, y)dx

W=y + If(xa y)dx

%o

.. By trapezoidal rule, we get,
hr,
Y=Y +5[f(x0,yo)+f(xl,y1)] .......... i)

But f (xl, yl) which occurs on the right hand side of equation (II), cannot

be calculate since y, is unknown so first we calculate y, from Euler’s formula.

.. By Euler’s formula
Vi = Yo +hf (x,x,)
Put this value in equation (II) we set first approximation y .

W=Vt g [f(xo, Vo) + f(xv Yo +h f (%o, yO))}

To obtain 2™ approximation to y, i. e. yfz) put y, = yl(l) in right hand side
of equation (II)

)/’12 =)o +§|:f(xoz yo) + f(xn Yo +hf(xoa yo))}

Continuous in this process until y** ~ 3" the (k+1)"approximation to

» is
it =, +%[f(xoa y0)+f(x1,ylkﬂ

In general
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. h
yil{-%—ll :yn +5|:f(xn’ yn)+ f(xn—l’ yn—l)]

Where yi, =y, +hf(x,, »,) [by Euler formula]

Ex.:

Using Euler’s modified formula. Find approximation value of y when

x = 0.3 given that % =x+yand y(0)=1 with A =0.1.
x

Sol". :

Given differential equation is d_y = x + y with initial value condition
X

x,=0and y, =1 & h, =0.1.
S f(xy)=x+y

For 1% approximation :
f(x,3)=0+1=1
Y=Yy +hf (%, 3)
=1+0.1(1)=1.1
f(x ) =/(0,1.1)=11+0.1=12

y11 =Y t g [f(xoa yo) y f(xla yl)]

=1+0.05[1+1.2]
=1.11.

For 2" approximation :
f(x,»)=/,(01,1.11)=1.21
Y=yt hf(xn yl)
=111+ 0.1(121) = 1.231
£ (s 35) = £(02,1231) =02 +1.231 =1.431

h
y; =) +5|:f(x1a y1)+f(x2a yz)]
—1.11+0.05[1.21 +1.431]
Y =1.242.

For 3" approximation :
f(xz, yz) = f(0.2, 1.242) =0.2+1.242 =1.442
Ys=y, t hf(xza yz)
=1.242 + 0.1(1.442)
v, =1.3862.
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£ (x5, ;) =(03,1.3862)
= 0.3 +1.3862
= 1.6862.

y; =), t % [f(xza yz) + f(x3= y3):|
—1.242 + 0.05 [1.442 + 1.6862]
=1.3984.

. The approximate value of y(0.3) =1.3984.

5.7 Runge — Kutta Method :

Runge-Kutta method is also called as RK-method it is the generalization
of the concept used in modified Euler’s method.

The Runge-Kutta method do on required the calculation of higher order
derivatives their designer to give greater accuracy.

First order Runge-Kutta Method :

Consider a differential equation % = f(x,») ()
bs
with initial condition y(x,) = v,
.. By Euler’s formula
NW=»t hf(xo: yo)
y1(x1) =Y T hf(xo: yo)

Taking x, = x, + h we get,
By Taylor’s series
2

h
y(x1)=y0+hyé+5yél+ .....

.. Euler’s method agrees with Taylor’s series upto the first 2 term’s.
Hence Euler’s formula is the first order Runge-Kutta method.

Second Order Runge-Kutta Method :

Consider a differential equation % = f(x,») ()
x

with initial condition y(x,) = y,.

.. By Euler’s modified formula

y1:yo+%

Vot =V T g |:f(xn’ yn) + f(xn+1’ yn+1):|
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i€ Yy =V, + % [/ (s 2) + £ (s B 3, + (1)) ]
Let k =h f(x,, ,)

by = hf[ %0 Yo £ (%00 2,) ]

ky=hf[x,.. % +k]

Putting the values of &, and k, in (II) we get,
1
Vo1 =V, T E (kl + kz)

This is known as Runge-Kutta formula of order.

* 3" Order Runge-Kutta Method :

Consider a differential equation % = f(x,»)
x

with initial condition y(x,) = y,.

To determine y, the 3" order R-K is given by
1

Y=Y, +g(k1 + 4k, + k)

Where & = h f(x,, ,)

h k
kzzhf(x0+5,y0+?lj
ky =hf(x, +h y, + k)

Where k, = h f(x, + h, y,+ k).

5.6.1 4 "™ Order Runge-Kutta Method or Runge-Kutta Method :

Consider a differentiable equation

d .
d_z = f(x, y) with y(x,) = y,.

To determine y, the 4™ order R-K formula is given by

» =y0+%[k1+2k2 + 2k, + 2k + k, |

Where & = h f(x,, )
ky=hf|x +}/,y +£
2 0 2 0 2
k—hfx+y +k/
3 = 0 2° Yo )

ky=hf(xy+h y, +k).

. (D)
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Ex.:

Using R-K method of order 2 approximate value of y where x =1

given that % =3x + y* with initial condition y(1)=1.2.
x

Sol". :
. . . . dy 2
Given differential equation o =3x+y . D
x
Where f(x, y)=3x+ y* with x, =1, y,=1.2 and h=0.1.
o f (3 vo) = £(L,1.2) =3(1) +(1.2)" = 4.44
ok = hf (X, v,) = 0.1x 4.44 = 0.444
S (% +hyy+k )= £(1.1,1.2 + 0.444)
= £(1.1,1.644)
=3(1.1) + (1.644)’
=6.
ky = hf(x,+h, y,+k)=0.1%x6=06
.. By R-K method of 2" order
1
Vi =V, + 5 (kl + kz)
y =12+ % (0.444 + 0.6)
=1.722
Ex.2:

Using R-K method of order 3, approximate value of y when x = 0.2 given

that % = x’ —y with initial condition y(1)=1 and &, =0.1.
x

Sol". :

Given differential equation

dy 2
— =X -
dx Y

o f(x, y)=x*—y with initial x, =1, y, =1

1* approximation and A, = 0.1
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F(x70)= £ (L 1) = (1) =1=0

Lk =hf(x,,)=01x0=0

S (%oums Your ) = S(1L1+1) = (1.1)" =1=0.21

ky =hf(x, +h, y, +k) = f(1.1,1.021)
=(1.1)" - (1.02)
=0.189.

ky = h f(x, +h, y, +k,) = 0.1x0.189 = 0.0189

f(xo + 5 %, +%} = £(1.05,1) = (1.05)" = 1=0.1.25

k, = hf(xo + % v, + %) =0.1x0.1025 = 0.01025

. R-K method of 3" order
1
V=P, +g[k1 + 4k, + k|

Yoy =1+ é [0+ 4 x0.01025 + 0.0189]
=1.00998.
2™ approximation
x, = 1.1, y, =1.00998, 1 =0.1
£ (x5 ») = (1.1)° = 1.00998 = 0.2
k= hf(xy, y,)=0.1x0.2=0.02
S(x 4y, + k) = £(1.2,1.02998) = 0.41002
ky = hf(x +h, y +k)=0.1x0.41002 = 0.041

f(x +h, y, + k) = £(1.2,1.05098)
= 0.38902
ky = hf(x +h, y +k) = 0.1x 038902 = 0.0389

f(xl +%, ¥, +%j = £(1.5,1.01998) = 0.30252

k, = hf(x1 +§, » +%j =0.1x0.30252 = 0.030252
1
L y(02)=y + 6 [kl + hk, + k3]

=1.00998 + % [0.02 + 4 x0.030252 + 0.0389]

= 1.03996
7(0.2)=1.03996
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Ex.3:
Using R-K method of 4 ™ order + 0 Find approximate value of y when
x=0.2 given that d—y = x* + y with initial condition
X

y(0)=1$h=0.1

Sol": Given differential equation

dy 3
—=x"+
dx Y

S f(xy)=x"+y withx, =0,y, =1,k =0.1
1* approximation

[ (%0 70) = £ (0,1)=(0)" +1=1

by = hf (x5, 9,) =0.1x1=0.1

k, =hf(x0+h/2,y0+%j=0.1f(0.05+1.05)

0.1[(0.05)" +1.05

=0.105

k, = hf(x0 +h/2,y, +%j =0.17(0.05+1.0525)

0.1(0.05)" +1.0525 |
—0.10526

ky = hf (x,+h, y, +/) = 0.17(0.1+1.0526)
0.1 (0.1)" +1.10526 |
~0.110626

According to 4" order R-K method

y1=y0+%[kl+2k2+2k3+k4]

1 +é[o.1 +2x0.105 + 2 x 0.10526 + 0.110626]

=1.10591.

2™ approximation
x, =0.1, y, =1.105191, # = 0.1

k= hf(x,)=0.17(0.1,1.10591)
= 0.1[(0.1)" +1.105191]
= 0.1106191.

k, = hf(xl+%, yl+%J = hf(0.15,1.1605)
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= 0.1[(0.15) +1.1605 |
= 0.1163875.

k, =/1f(\ .y +k—J—h/(0 15.1.6338)
=0.1[(0.1)" +1.16338]
5

=0.1166755.

ko= hf (%, Yoo, ) = hf(0.2.1.2218665)
= [ +12218663]

ChENT % [kl + 2k, + 2k, + k-l]

Sy 103191+—[0 1106191+ 2 x 0.1163875 + 2 x 0.116675 + 0.12298]

—1.2218

r(0.2)=12218.

5.8 Review :

In this chapter we learn

* Definition of initial value problem of an ordinary first order differential
equations.

* Solution of initial value problems of ordinary first order differential
equation by various method.

One — steps method :
i)  Taylor’s series method
i1)  Picard’s method
iii)  Euler’s method
iv)  R-K method of 2" order
v)  R-K method of 3™ order
vi)  R-K method of 4" order
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5.9 Unit End Exercise :

1

3)

4)

6)

7

8)

9)

i)
ii)

iii)

10)

- , . . dy .
Use Taylor’s series method to solve the equations T = —xy with »(0) =1
ax

estimate (0.4).

- R . . dy O et e e
Use Taylor’s series method to sole the equation T =2y + 3¢* with initial
dx

»(0) =0 estimate y(0.2) check the error with exact value.

Using Taylor’s series method find y(0.2) by solving differential equation
dy

- =1+ xy where y(0) =2 taking ~=0.1.
dx

Find y(0.2) by Picard’s method given that % = xy with initial condition
dx

»(0) =1 check the error with correct answer.

Find y(0.5)solve the differential y'(x)=xe’ with p(0)=0 by Picard’s
method.

Using Picard’s method solve the differential % - X2 ith »(0)=1
dc  y+x

approximate value of y where x = 0.1.

Using Euler’s method find an approximate value of y corresponding to

% =1.6 given P YO with y(1)=1and h=02.
dx X

. N o e 4 dy .
Using Euler’s modified formula solve T =1-2xy given y=0,at x =0
dx

from x = 0+ 00.6 taking the interval /7 =0.2.

The initial value problem y' = xy + x> =2 with p(1) =2 find the value of
»(1.2) with 7 =0.2.

Using R-K method 2™ order
Using R-K method 3™ order
Using R-K method 4™ order

Use the Range-Kutta 4™ order method to find y(0.2) with /= 0.1 for the

initial value problem % =4/x +y with p(0)=1.
dx

I XXX X4
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Numerical Solution of Differential
Equation — I1

Unit Structure

6.1 Objective

6.2 Introduction

6.3 Simultaneous First Order Differential Equations
Both Euler’s Method

6.4 Second Order Differential Equation

6.5 Multi-Step Methods (Prediction — Correction Method)

6.6 Adams Baeshforth Moulton Method

6.7 Accuracy of Multi-step Method

6.8 Model Differential Equation

6.9 Model Difference Problem

6.10 Stability of Euler Method

6.11 Review

6.11 Review

6.12 Unit End Exercise

6.1 Objective :

After studying this chapter you will be able to :
*  Solve simultaneous first order differential equations.
*  Solve higher order differential equation.
*  Find solution of initial value problem of ordinary first order differential
equation by multi-step method by :
1)  Milne — Simpson method
2)  Adams Bashfarth maulton method
*  Accuracy of multi-step method.
*  Stability of numerical solution.

6.2 Introduction :

In previous chapter we have solve 1% order differential equation by
different method. Here we are going to solve simultaneous differential equation
with some method also solve higher under different equation take
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d’y
dx’
estimations in one step method we need to use multi-step method by
predication and correction formula.

= f(x, y,z) with given initial condition to prove the efficiency of

6.3 Simultaneous First Order Differential Equations :

Both Euler’s Method :

Taylor’s method, Picard’s method, Euler method and Runge-Kutta
method can be used to find the approximate solution to the system of first order
differential equations.

Consider the first order differential equations.

fl——f(t X, y)
%—g(hw)

with initial condition x=x,y=y, when r=¢ or x(z)=x, and

J’(to) =Yo-
Taking small change, assuming that At =h, Ax =k and Ay = /.
The 4" order R-K method given by

k, = hf(tov Xo» yo)
l, = hg(l‘m Xo» yo)

: 1
kzzhj(toJr%,xo ,y0++%j

k l
ﬁZth(t0+%ax0+2lay0++%j

k 4

t0+%ax0+225y0 + %j
k l

l,=hf to+%,xo+22,y0++ %j

ky = hf(ty+ h, x, +ky, yo+ +15)
Cy=hf(tyg+ h, xy +hy, yo+ +15)

X = X, +%(k1 + 2k, + 2k, + k,)
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y1=y0+é(€1+2€2+2€3+€4)

The extension of the R-K method to a system of n equation is quite

straight forward.
Similarly we solving 1% order differential equation by Taylor’s series

method.

6.3.1 Taylor’s method for simultaneous 1 * order differential equation :

Consider the 1% order differential equation
dx

I t: )
a = h=y)
dy

- = t: )
dt g( ! y)

with initial condition x = x,, y = y, and 7 =¢,. Let h be the small
change then by Taylor’s series expansion,
x =x(t,)=x(t, + h)
2 3

h h
= X(to) + hxl(to) + 5 Xll(fo) + ;

2 3
1 h I h I

N Zy(tl) =y(t0 +h)
2 3

h
=y0+hyé+2—!yél+§y0 +

Using Taylor series method evaluate x(0.3) and »(0.3) given that

% =y + logt and % = cost—x with initial condition x(1)=2 and y(1)=1.
t t

Sol". :

By Taylor series method

2
xlzx(t1)=x0+hxé+%xél+ ............... D

2

h
ylzy(t1)=y0+hyé+5yél+ ............... (In)
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Given differential equation

4

dx
— =y + logt, =Cost — x

dt
f(t, x,y)=y+logt, g(t, x, y)=cost —x
initial value x, =2, y, =1,¢, =1

—y+10gt6ﬁ/ 1)=1+1logl=0
dy /
d—cost—x = cos(

Y =1.4597.
) L
d x ‘+- dr /' =1.4597 +1
dr* =1
X =2.4597 .
2 dzy
Y _ . ) dt -
e sint — x (=1, sinl—1
—1.8415
s d’x
d’x p 1 E 1l 1
= - = —1.8415+1
a7 t=t, " (1)’

=—-0.8415.

. d’x
d’y 3 .
5 = cos t—x" dt { =y =sin (1) - 2.4592

=—3.3006.
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= —2.3006.
4
d'y . ij
“=sinz—x" 4/ =sinl+0.8415
dt t—to
=1.68297.

Put all these value in equation (I) and (II)

% =x(0.2) =2+ (02) (1) + (0'2—2,)2 (2.4597) + (0'3_2‘)3

4
(~1.8415) + (Of‘) (2.3006)
= 2.2466.

3 = 9(02) = 1+ (0.2) (1.4597) + (0';)2 (~1.8415) + (032')3 (=3.3006)

2)*
4!
=1.25082.

—~
(=]

J’_

(1.68297)

R-K method of 4™ order find approximate value of x & y at 7 = 0.1 the

following  system ? =x"+y, % =2x+y> with initial condition
t t

x, =1

Sol". :

Yo=11=0.

To compute x, = x(0.1) and y, = y(0.1) use R-K method of 4™ order.

x1=x0+é[kl+2k2+2k3+k4] .......... )
n=p+ % [0, +20,+20,+0,] L (1)
Given dxdt:x2+y’ dydt=x+y2

f(tO’ Xo> y0)=x2 ) y(toa %05 yo):x+y2,
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with x,=1,y,=11¢=0

k= hf(ty, x5 y,) = (0.1) (xé + yo) =0.1 [(1)2 + 1] =0.2
Im(4,%)

l
klzhf(tOer,onrky,yoJr %)

~0.1g(0.05,1.118,1.176) =0.1| 2(118+(1.761)" ) | = 0.3619
= 0.1 £[0.05,1.1,1.15]
= 0.1[(L1)" + 1.15]
- 0.236.

=(0.1x)(0.05;1.118,1.176)0.1[ 2(1.118+(1.1781) | = 0.3619
= 0.1 g[0.05,1.1,1.15]

=0.1[2(1.1) + (1.15)|

=0.35225.

k l
k3=hf(t0+%,xo+?2,yo+ %j

=(O.1><9)(O.05;1.118,1.176)0.1[2(1.118+(1.1781)2} ~0.3619
= 0.1 £[0.05,1.118,1.761]
= 0.1 (1.118)" + 11761
~ 0.2426.

€3=hg(t0+}/,xo+l%,y0+f%)

ky=hf(ty+h x,+ks,y,+ 1)
= 0.1 £[0.1,1.2426, 1.3619]
= 0.1[(1.2426)" +13619 |
= 0.2906 .
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Cy=hg(ty+h, x,+ky, y,+15)
= 0.1g [0.1,1.2426, 1.3619]

= 0.1g[2(1.2426) + (13619)' |
= 0.4339.

Put all value in equation (I) and (II) we get,

x =1+ % [0.2+2(0.236) +2(0.2426) + 0.2926 |

=1.2416.

y=1+ é [0.3+2(0.35225) +2(0.3619) + 0.4339 |

=1.3604.
2 x(0.1)=12416,  y(0.1)=1.3604.

6.4 Second Order Differential Equation :

Consider the second order differential equation
d’y _ dyj
ar’ _f(x’y’ dr
d
y(XO):ij (d_i}jxxo :yé

Substituting % =z, we get,
X

= r2)

with initial condition y(x,) =y, z(x,) = ¥,-
These constitute system of simultaneous equations.

Ex. :

Use Runge-Kutta method to find »(0.2) for the equation

2
d;::x@_y giventhatyzl,ﬂzo when x =0 with 2 =0.2.
dx dx dx
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Sol". :

Given 2™ order differential equation
dy __dy
_2 =X —
dx dx
. dy
Taking et f(x, y, z) we get,
x

d’y
dx’
with initial condition x =0, y=1,z=0 with 24 =0.2.

=xz-y=g(x,yz2)

ky=hf(x, y,2z)=hz=02x0=0
to=hg(x,y,2)=h(x,z-y)=02(0x0~-1)=0.2

k, (x+/,y+/,z+€/j ( /) 0.2(0 - 0.1) = —0.02
€2=hg(x+y,y+l%,z+€%j=h{x+%(z+M%j—(y+%)}

=0.2[(0+0.1) (0 - 0.01) - 1] = 0.202

f(x+%,y+k%, g/) 02{0—w}_—0.zoz
=hg(x+’/ 4 +€%)=0.2[0.1—0.101,0.99]

= 0.2[-0.0101 - 0.99] = - 0.20002

by = hf (% +hy yo + 9, 20 + £3) = h(z + M,) = 0.2[0 - 0.20002] = —0.040004

0y =hg(x, +h yy +ky, z+05)=02[(0.2) (-0.20002) — (1 - 0.202) ]
= 0.2 [~0.040004 — 0.9798] = —0.2039608
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Put all these value in R-K method of 4™ order
2(02) =y, + é [k, + 2k, + 2k, + k]

=1+ é [0 +2(=0.02) + 2(—0.0202) + (—0.04004) |

=1+ % (~0.120404)

=0.9799.

z(02) =z, + % [0, +20,+20,+ 1]

—1+ % [-0.2 +2(~0.0202) + 2(~0.20002) ~ 0.20396 |

= % [~1.2080008]

=-0.20133.

6.5 Multi-Step Methods (Prediction — Correction Method):

A pair of multi-step methods are used in conjunction with each other,
are for predicting the value of y, , and the other for correcting the predicted

value of y, | such method are called prediction — correction method.
6.5.1 Milne — Simpson Method :

Consider a differential equation

d
d_zzf(x, y) .......... (I)

with initial value y(xo) = %

Integrating equation I with the limit x, and x,

xfdy=xff(x,y)dy

Yo =Dot ff (x,p)ax (I1)

%o

We use newton forward difference interpolation formula in the form
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f(x, y)=f(x0, yo)"' ”Af(xw yO) + n(nzl_ 1) Azf(x()’ yo)

-1 -2
ST I
Taking f(x,, y,) = f, from equation (II)

yn=y0+T{f0+nAfO+n(n2'_1)A2fo+n(n_I;(n_z) AN f, + }dx

where x n
Sx=Xx, +nh X, 0
dx = hdn ; n
4 2 3 .2
.-.y4=y0+h;[m%+n2nAzmwm ..... }m
0

2

4
n 1(n u) 1 (n ; 2 .3
y4=y0+l{nf0+—Af0+—[———jAfo+—[——n +n |Af, +
2 2{3 2 6\ 4 .

neglecting 4™ and higher power of A
.',y4=y0+h{4f0+8Af0 +?A2f0 +§A3f0}
Put A=F -1
y4=y0+§[12f0 +24(E 1) f, + 20(E ~1) f, +8(E - 1) £, |
y4=y0+§[12f0+24(E—1)f0+20(E2 —2E +1)

fo+8(E =3B + 26 -1) £, ]
We know that E[f(x)} = f(x+h)

E[f(XO)] = f(xl), E(x, y) =f

y4=y0+§[12f0+2h(f1—f0)+20(f2—2f1 + 1)+ 8(fs =2/, +3f, = /i) ]
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vo= o+ 3 [85 - 4%, +87]

vo= o+ 52 - i+ 21)]

In general

(yn+1)p =Yoozt % [23";—2 ~ Vo t 2yrlz]

This is known as Milne’s predication method.
6.5.2 Simpson’s Method :

Consider a differential equation

d
d_i::f(x’y) ...........

)

with initial condition y(x,) =y,
Integrating equation (I) between the limit x, to x, we get,

B =y0+J;f(x,y)dx

X0

By Newton’s forward difference interpolation formula.

n(n_l)A2f0+n(n_1)(n_2)A3f0+

f(xay):fo"'nAf(.)"' X 3 SJo Tt

2
n —n
2

y2=yo+fﬁ)+Aﬁ)+ Azf()+%(n3—3nz+2n)A3fO+ ..... dx

" X =X, + nh= dx = ndh limit change

x h
X, 0
X, 2

=3t +2
(n n6+n) p

2 2
n —n
y2=y0+hJ. f0+nAf0+—2 A f, +
0
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n’ 1(n n’ 1(n ’
:yo+h|:nﬁ)+?Aﬂ)+5[?—?jA2ﬁ)+g[T—n3—I’lsz3f0+ ..... :|
Neglecting 3" and higher order difference
Put A=E -1

Y, =y, + i{zfo +2(E-1) f, +%(E—1)2 fo}

=y0+§[6f0+6(E—1)f0+(E2—2E+1)f0}
=y0+g[f0+4El+f2]
y2=yo+§[yé+4yf+y§]
(7) =y + 2 [0+ avt 491

In general
(yn+1)c =V t g |:yr11—1 + 4yr1, + yim}

This is known as Simpson’s correction formula.

Ex. :

Given differential equation
dy 2
— =1+
dx 3
Where y(0)=0 estimate y(0.8) using the Milne Simpson predication

correction method taking /s = 0.2.

Sol".:

Given differential equation

dy 2
—=1+
dx 4
f(x,y)=1+) h=02
x, =0 x, =02 x, =04 x, =0.6

By R-K method of 4" order
v, =0 5, = 02027 y, = 04228 y, = 0.6841
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v = f(x, »)=£(02,0.2027) = 1 + (0.42027)°
= 1.0411.

2

vy = f(x,, »,) = (0.4, 0.4228) = 1 + (0.4228)
=1.1787.

V= f(x, 75) = (0.6, 0.6841) = 1 + (0.6841)’
=1.4679.

Milne predication formula is
4% h

3
4x0.2

3
=1.0238.

Using Simpson’s correction formulas is given by
h
(34)e =y2+§[yi a0+l (10)

vy = f(x. )= /(0.8,1.0238)
=1+ (1.0238)°
= 2.0482.

(i) = v+ —— 201 = ¥4 + 231 ]

=0+ [2(1.0411) — 1.1787 + 2(1.4679) |

(), =1.1787 + 03—2 [1.787 + 4(1.4679) + 2.0482 ]
=1.7853.

We can again use the correction formula II to refine the estimate.
vy = (x4 v4) = £(0.8,1.7853)
=1+ (1.7853)’
=4.1873.

(3,). =1.787 + 03;2 [1.1787 + 4(1.4679) + 4.1873 ]
=1.9278.
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Which is not same again we use
vi=f (x5 y,) = £(038,1.9278)
=1+ (1.9278)’
=4.7164.

(3,). =1.787 + 0;32 [1.1787 + 4(1.4679) + 4.7164 |
=1.9631.

Note :

Milne formula is used to predict the value of y,,,, evaluation of f

i+12

correction of y,,, then to improved value of f;, .

It 1s also possible to use the correction formula repeatedly redefine the
estimate value of y,, |, before moving on to the next stage.

6.6 Adams Baeshforth Moulton Method :

Consider a differential equation

d
d_z:f(xay)zl

with initial condition y(x,) =y,

Integrating equation ‘I” between the limit x, to x, we get,
y1=y0+jf(x,y)dx ......... (1)

Using Newton Beickward difference interpolation formula in the term.

n(n+1
F(x9) = f(x0, y9) + 0V (%, y0)+%vzf(xo, Vo) + e
t n’ +n n +3n° + 2n
y1=y0+J[fo+nvfo+ X V2 £y +7V2f0+ ..... }dx
X h
szj%: " where x, 0
x = hdn

X, 1
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1 2
y1=y0+{hjﬁ)+nm+”2+”v2ﬁ)+ ..... }dx
0

2 2
Neglecting 4™ and higher order and put V =1- E™ we get,

2 3 2 4
y1=y0+h|:l’lj[0 +%Vfo +l[”?+h—Jv2f0+[”?+n3+n2jv3ﬁ)+

=y0+h{f0 +%(1—E‘1)f0+%(1—2E‘1+ E‘2)+

0| W

.%[1—3E1+3E3—E3}f}

=y0+%[24f0+12(f0—f1)+10(f0—2f_1+f_2)+9(f0—3f_1+3f_2+f_3)]

h
V=Y + E[SSfO -59f,+37f, - 9f_3]
Y=Y+ %[55% — 59y + 37y + 9y,

h
(72), = »s + 55 [ 5505 = 5907 + 373 - 9 |
In general

(hur) =3+ 9 (555, =599, + 37y), =9,
» 24

This is known as adam’s basehforths predication formula for correction

formula
Given differential equation
dy
dx - f(xa y)

with initial condition y(x)=y, ...

Integration between limit x, + x, we get,

y1=y0+J.f(an/)dx ........

o

Using Newton Backward difference inter pollution formula
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n(n+1) n(n+1) (n+2)

f(xay):fl+nvf1+TV2fl+ 31 V31+ .....
where n=x—%
1 1)(n+2
e (s Mgy M
X =X +nh where x n
dx = hdn x, -1
x 0

Neglecting 4™ and higher order, we get and put V.=1- E™

yl=y0+h[fl—%(1—E-l)fl—%(1—2E-1+E2)—2—2(1—3E-1+ 3E'2—E'3)}

3= o b on (245 21204 = ) = 206 = 20+ £) =10 =30 + 3 - )]
h
3=y o [96 4190, = 5, - 1]
Y=Y +%[9y} + 19y, = 5y} = ¥, |

h
(¥)e =25 + 2 (93, +19)) = 534 + 3 |
In general
h
(9r)e =20+ g (990 + 190 = 5w+ s |

This is known as Adams — Moultan correction formula.
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Using Adam — Baeshforth Moultan method
b _2y
dx  x
with initial y(1) =2 estimate y(2) assuming A = 0.25.

Given differential equations

dy _ 2y
dx x

2
.'.f(x,y)z %

with initial condition y(1) =2
nx, =1 Vo =2

By using R-K method of 4™ order we get,
x, =1 x =125 x,=15, x,=L175
Yo=2, 3 =313, y, =45, y, =613

yé=f(x0,yo)=2>1<2=4

v=f(xn) = £(125,3.13) = 26:13) 5 08
W= f () = £(15,45) =2 T;LS 6

W= F( ) = £(175,6.13) = 22013 _ 7 6057

By Adams — Bushforth predication formula

h
(34), = 25 + 5 [5594 = 5954 + 3751 =933

(), = 6.13+ % [55 % 1.0057 — 59(6) + 37(5.008) — 9(4)]

=8.0113.

vy = f(x, ) = £(2,8.0113) = % =8.0113

Adoms — Bashfourth correction formula

h
() =25+ 5 [ #1900 =50 + 4]
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(3,). =6.13 + % [9(8.0113) +9(7.0057) - 5(6) + (5.008) ]

= 8.0073.
Hence, y(2)=8.0073.

6.7 Accuracy of Multi-step Method :

We know that for each differential equation there is an optimum steps
size h. if his also large, accuracy diminished and if it too small round off error
would dominate and reduce accuracy.

By computing the predicated used corrected values ofy, ,, we can

1

estimates the size and sign of error.
Let’s denote the predicated value ( yn+1) and corrected value ( ;V,m) .
P c
Similarly denote the truncation error in predicated value by E,, and corrected

value by E,_ .
Etp D (yn+l)p

E.=y=(v.),
Where y denotes the exact value of y of x , then differences between
the error is
Etp -E, = (yrH—l)C - (yn+1)p
A large difference indicates that step size is too large. In such cases we

must reduce the size of h.
Both the Milne and Simpson formula are of order 4* and their error

terms are of order 4.
The truncation error in Mile’s formula is

28
£o= ()00 n
The truncation error in Simpson’s formula’s
_ 1 5 5
Etc - E(y )(62) h
Let’s assume that

(91) (ys) = (ys) (92)

v =28
Etc

E,=-28E,

1=
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~E,~E, = (y"“)c - (ym)p becomes
= E.~28E,=(7,0), = (),

= 29E, = (7,0), = (1a),

~(D), = (D),

29
If the answer is required to a precision of a decimal digits then

_ |(yn+1)c - (yn+1)p|
\ 29
(). = (M), <29% 0.5x 107 15x 107

Similarly for Adams — Bashfourth method we get,

(er)e = (), < % x0.5x10 ~7 %10

Etc =

<0.5x10™

|Etc

6.7 Stability :

Stability of a numerical method ensures that small changes in the initial
conditions should not lead to large changes in the solution. This is particularly
important as the initial conditions. May not be given exactly. The approximate
solution computed with error in initial conditions is further used as the initial
condition for computing solution at the next grid point. This accounts for large
deviation in the solution started with small initial errors also round off error’s
in computations may also affect the accuracy of the solutions at a grid point.

Euler method is found to stable :

Stability is the necessary and sufficient condition for convergence.

6.7.1 Stability of Numerical Solutions :

Consider a differential equation
dy
— = x’
5= ()

with initial condition y(x,)= y,.
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The solution with nearby initial values are close +0"" is called the
stable. If the solution with near by initial values diverse from y(x) then the

solution is unstable.
For e.g. % — y — 1 with initial condition »(0) =1
Exact solution of given DE is
- o
log(y—1) = x + logc
y=1=1+ce
By initial condition y(0)=1
y(O) =1+ ce’

y(x) =1
Which is exact solution of given differential equation if »'(0)=1.0001
then find for the same y(0)=1.0001.
y(O) =1+ ce’
1.0001 =1+ €’
¢ =0.0001+0
y(x) =1.0001.

The exact solution of this differential equation is y(x) =1 where ¢ =0.
However if we use other initial values ¢+ 0 and the solution with
diverge from the y(x)=1.

It is difficult to obtain accurate numerical solution to an unstable initial
value problem. If a small numerical error occur solution diverge from the two
solution.

6.8 Model Differential Equation :

Consider the model first order differential equation

dy
2 _,
dx Y
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with initial condition y(0) =y, where 2 is constant and it may be oral
as complex number

dy
Zoa
dx Y

il = Adx
y
Integrating both sides

[~ [2ax
y
logy = Ax + logce
y(x)=ce™ L (II)
To find ‘c’ use y(0)=10
2 (0) =ce’
Yo =C.
Put y, = ¢ in equation (II) we get,
y(x) = yoelx

Which is exact solution of differential equation.
- If <0, a small change in the initial condition causes only small

change in the solution and therefore the problem is a stable problem.
- If >0 large changes in solutions will occurs and the problem is

unstable.

6.9 Model Difference Problem :

Consider the model difference problem
Voa=ky, n=123,...
Where the iitial value y, is given as 6 is complex number
~Ey —ky =0
(E-k)y,=0
Auxiliary equation is
E-k=0
LE=k
CeF=4k" and P+ F =0
The complete solution is
y, =C+F + P+F
y, =4 D
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To find Aput4=0

v, = Ak’
Yo =4

Put this value in equation I
Yo =Yy

The solution is bounded if |6| <1 which is the solution of difference

equation.
The connection between the exact solution and the difference solution is
clear if we evaluate the exact solution at the points x, =nh where

n=1223,... and 4> 0.
y=ye"
y(x,)=e"y,
o =(e") w0
Y, =k,

,_k:elh

If exact solution is bounded then |o|= ‘e‘h ‘ <1. this is possible if
Re(Ah)=4h<0.

1.e. in the 47 — A,h plane the region of stability of the exact solution is
the left half plane as shown in fig.

A 7\‘2}1

Stability region of exact solution.
A single step method is called
i)  Also olutely stable if |k| <1
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ii) Relatively stable if |k| < e
iii)  Periodically stable if || <1 and 2 is purely imaginary.

6.10 Stability of Euler Method :

Given differential equation is

dy

Dy

dx 7

with initial condition y(0) = y,

f(x, y) =y
By Euler’s method state that
Vo1 =Yy ¥ hf(xn’ y,,)
=y, thiy,
=y, (1 + hd)
Vori = ky,
Where k =1+ 1h.
.. The solution of this differential equation is y, = k"y,.

Since the exact problem has an exponentially decaying solution for
A <0, a stable numerical method should exhibit the same behavior.

. In order to ensure stability of Euler’s method we need that the so called
growth factor |A4|| <1
Sy, >0 as n oo if [k =1+ Ak <1

Here we discuss the following cases.

Casel:

If A isreal and A <0 then
lo| =1 + 2k <1
=-1<1+ Ah<1
=-2<Ah<0
. -2
wn<.

Thus Euler’s method is only conditionally stable. i.e. the step size has to
be choosen sufficiently small to ensure stability. The set of Az function the
growth factor is less than are is called the linear stability domain D.
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Casell :

A 1s purely imaginary

k| = [t + Ak = |1 + i2h] = 1+ (A,h) > 1

Euler method’s unstable where 2 is ure imaginary.
CaseIlII :

A 1s a complex number
Letz=1¢€ec

S+ A <1

:>|1+(21+i12)h|<1
= |1+ (Ah +idh)| <1
JO+ 1Y (Y <1

(Ah+1)" +(4,h) <1
A rather small circular subset of the left half of the complex plane.

Diagram

Im(A, h)

AITTTTITn Re
LD

Stability region of Euler method.
where A =-1
1-2]<1
L-l<l-h<1
-2<h<0
L0<h<?2
.. Euler method is stable inside the circle.
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6.11 Review

)
if)

In this chapter we have learn

Simultaneous first under differential equation solution by numerical
method.

Solution of second order differential equations by numerical method.
Multi-step method : (Predication — correction method)

Milne — Simpson Method
Adam — Bashfourth Maulton Method

Accuracy of multi-step method.
Stability.

6.12 Unit End Exercise :

1)

2)

3)

4)

Using Taylor’s series method evaluate x(0.2) and y(0.2) given that

%_yzef%er:sint with x(0)=land J’(O)ZO'

Using Taylor’s series method compute x(0.1) and »(0.1) correct upto
h-decimal places given that % =y —tand % =x+¢ with x(0)=1 and
t

y(0)=1.

Using R-K method of 4™ order find the approximate value of x and y at

t = 0.1 the following system % =2x+y, % =x-3y with x, =1 y,=0.

2
= = x+ S with
t t
x(0)=1,x'(0) =0 taking » = 0.1 to find x(0.2) and x'(0.2).

Using R-K method solve the differential equation




5)

6)

7)

8)

9

10)

11)
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Use Taylor’s series method to find x(0.2)and x'(0.2) given that
d’x (dx

Sl e
dt dt

2
) — x> with x(O) =1 and xl(O) =0 with /1 =0.2.

Use Taylor series method to find the value of y at t = 0.1 correct upto
2

d’y

t2

decimal place if y satisfies the equations =ty given that % =, y=1
t

when =2 with 2#=0.1.

Given that % =x’+ y* —2with y(«0)=1.09, y(0.1)=1, y(0.2) = 0.89 and
x

»(0.3)=0.7605 use Milne’s Simpson’s method to determine y(0.4)
correct to 4 decimal places.

Given %zx—yz with »(0)=0 evaluate y(0.8) using Milne —
X

Simpson’s method obtain the starting values from Euler’s method.

Using Adam - Bashforth method determine y(4.4) given that
5xy' +y* =2 with y(4)=1
(4.1) =1.0049, y(4.2) =1.0097, y(4.3) = 1.0143.

Given & = _ * with

dx
»(0) =1, y(0.2) =1.2186, y(0.4) = 1.4681, (0.6) =1.7378 compute y(0.8)
and y(1.0) by Adam — Bashforth method correction upto 4™ decimal

places.

Determine Milne Simpson’s method to solve ordinary differential
equation with initial condition y(x,) = y,.



12)

13)

14)
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Determine Adams — Moultan correction formula solve 1% order
differential equation with initial condition y(x,) = y,.

Determine Adams — Bashforth predication formula to solve 1% order
differential equation with initial condition y(x,) = y,.

Determine accuracy of multi-step method of Milne’s Simpson’s method.
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Numerical Solutions of Partial
Differential Equations

Unit Structure

7.0
7.1
7.2
7.3
7.4
7.5
7.6

7.7

7.8
7.9

Objective
Introduction
Finite Difference Approximations to Derivatives
Laplace Equation of Two Dimension
Jacobi’s Iteration Formula
One Dimensional Heat Equation (Parabolic Equation)
Crank — Nicholson Difference Method

2
ax[j U under the conditions
One Dimensional Wave Equation (Hyperbolic Equation)
Review

Given One Dimensional Heat Equation

7.10 Unit End Exercise

7.0 Objective :

After studying this chapter you will be able to :

*

%
%
%

Solve partial differential equation by numerical method.
Solve Laplace equation using numerical method.

Sole heat equation of one dimension by numerical method.
Solve wave equation of are dimension by numerical method.

7.1 Introduction :

Partial differential equations are used in a number of physical problems

such as fluid flow heat transfer, solid mechanics and biological process. There
are three types of equations. Hyperbolic equations are most commonly
associated with advection, parabolic equations are most commonly associated
with diffusion and elliptic equation are most commonly associated with steady
states of either parabolic or hyperbolic parabolic problems classification of
general linear partial differential equations.
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General partial differential equation is of the form.

%y 0’y 0’y dy
D —
A(x, y) P + B(x, y) ooy + C(x, y) PE + (x, y) o

)

+ E(X,y)%-i- F(x,y)u+ G(x, y)=0

Where U is or known function of x and yand A, B, C, D, E, F
and G are also functions.
This equations is called
1) Elliptic : If B> - 44C <0

2 2
For eg. 0 [j + 0 Ij =0 Laplace equations
oy
o’U  o°’U . )
—+ ——= f(x, y) Poisson’s equations
ax2 ay2 f( y) q

2) Parabolic : If B> —44C =0

2
Foreg.6—U=C2(3[2J

oy X

are dimensional heat conduction equation.

3) Hyperbolic : If B> —44C >0

2 2
For eg. ou_ c? oy the wave equation.
2 ax2

7.2 Finite Difference Approximations to Derivatives :

Let the Parabolic : If (x, y) plane be divided into a network of
rectangles of sizes Ax=h and Ay=k by drawing the sets of lines

/Grid point

o

A
v

D

q
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The point of intersection of these families of lines are called mesh
points, lattice points on grid points.
Let U(x, y) Bethe function of the variable x and y
U(x+h, y) - U(x, y) + O(h)
o h
Expand U(x + A, y) in Taylor’s series expansion

U(x+h,y)=U(x, y)+ hU, +2—!Uxx+ .....

Ulx+hy) - U(x ) =U +h—Uxx+
h 2!
“UL = U(x+h,y2—U(x,y) +0(h)
This is forward difference approximation for Ux. Similarly we have the

approximation.
U - U(x, y) - U(x—h, y) + O(h)
o h
This is backward difference approximation for Ux.
U(x+h, y) = U(x=h, y)+ O(hz)
o 2h
This is central difference approximation for Ux.
Let U(x, y)=U(ih,ij)=U(i, j)
_U(i+L, j) - U(i,j) + O(h)
h
Ux = U )~ U(ih_l’ /) +O(h) for backward

U(i+1, j)-U(i—-1,j) + O(#’
Ux = (i+1 ) 2(; i)+ ( ) for central
U(i—l,]) 2U(2l ])+U(1+1 ]) O(hz)
h
Similarly we have the approximation

Ui, j+1) = U(i.J) +0O(k) for forward

for forward

Uxx =

Uy =

) -
h

Uy = CIUY) ;( J=1) +0O(k) for backward
)

CU(i, j+l ku(l J-1) +0(k) for central
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ul(i, j-1)-2U(i,j)+ U(i, j+1
Uyy = D) ]gf) (i, j+1)

+O(k2)

7.3 Laplace Equation of Two Dimension :

Consider the Laplace equation of two diameter are given by,
Uxx + Uyy =0 e (D

Consider a square region R for which U(x, y) is known at the

boundary and divide R into small squares of side h as shown in fig. where
b, b,, ....., b, are boundary values.

b13 b12 b11 b10 b9
U, U U
b14 - K bs
b15 U4 Us U6 b_/
U U U
6 2 3
by b,
b b, b, b, b,
We know that
U, .
Uwx=U,;-2U,; + ’“% oo (ID)
uU..,-2U0 . +U. .
Uyy = —L2 kz’” i e (D)
Replace (II) and (III) in equation (I) we get,
U(i—l,j) - 2Ui,j + Ui+1,j U(i,j—l) - 2Ui,j + Ui,j+1 —0 (IV)

n k
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For value of % =k 1.e. for square grid of the mesh size 4 equation
can be written as
Uu,,-20,+U,,+U,,, -2U0, ,+U
1
2=y (U, +U

=0

i,j+1
i+l j + Ui,j—l + U,',j+1:| Ceeees (V)

These shows that the values of U(x, y) is the average of its four

L]

neighbors to the East, West, North, South is called standard five points formula
[S, F, P, F].
This formula is also known as Liebman’s averaging procedure.

Note :

The Laplace equation remains unchanged when coordinate are rotated
through 45°.

A formula similar to the (VI) is sometimes used with convenience it is
given as
+ U,

i+l,j-1

+ U.

U, = i (U g T U 0) e (VD)

i+1,j+1

This is known as diagonal five point formula as these points Lies on the
diagonals (DFPE). But it is less accurate than standard five point’s formula.

(i+1, j+1) 1 (i+1, j+1)
\\ P
N rd
~N e
ST yEagy
~ // E(ls.])
< 1< >
// \\
- N
rd ~
// \\
7 N
7 ~
(-1, j-1) | (i+1,j-1)

We use the following five point formula to set the initial value of U at
the centre.

Uszi(b1+b5+b9+bl3)
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Then the approximate values of U, U,, U, U, are calculated by the

diagonal five point formula.

U, %(b + b, + b + by)
U, =— (b, + by + b, + Uy)
U, =— (bs +Us + b, + by)

Uy =—(Us + b, +b, + 1)

The values of the remaining interion poimnt i.e. U,,U,, U, and U, are

obtained by the standard five point formula.

Uzzi(b3+U3+U5+U1)

U4=i(U1+U5+U7+b15)

Uézi(U3+b7+U9+U5)

ngi(U5+U9+bH+U7)

Thus we obtain all iitial values U,, U,, U,....U, once their accuracy

can be improved by the repeated application of either Jacobi iteration formula
as Gauss — Seidel iteration formula.

7.4 Jacobi’s Iteration Formula :

Let U" be the nth iterative value of U, then Jacobi’s iterative

procedure is given below.

U(n-%—l _

LJ

n n n n
|:U +Ul+lj+Uljl+Ulj+l:|

i-1,j

4>|_

* Gauss — Seidel Method :

This method utilizes the latest iterative value available and scans
the mesh points symmetrically from left to right along successive rows.
The formula is given below.

Ui+ ! [U"” +U",  + Ut
l,j) 4

-1, j i+l,j i, j-1

n
+ Ul j+1:|
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Ex. :

Solve Laplace equation Uxx + Uyy =0 in the domain of the figure given
below by Gauss — Seidel method.

10 20

10 20

20 10

20 10

Sol". :

n+1 _

[10+10+U"+U ]

n+1 _

4>|-|>|~

[20+20+U"+1 + Ul ]

[—|

104104+ Ut + u |
4
g = 1 [20 +20 + U 4 gl ]
4
We use SFPF
Uij ~ |:Ui—1,j + Ui+1,j + Ui,j—l + Ui,j+1:|
and DFPF as
1
U.=—|U
il

ij i1, j-1 + Ui—l,j+1 + Ui—l,j—l + Ui+1,j+1}

Now initially U, =0,U, =0,U,=0,U, =0,

First Iteration :

ul! %[10+0+10+0] 5
vy %[20+0+20+5]—1125
Uy %[10+1125+10+0] 7.8125



uy

Second Iteration :

U =
Uy =
U(
Uy =
Third Iteration :
U(
Uy =
Uy =
uy) =
Fourth Iteration :
U =
Uy =
U(

Uy =

121

= i [20 + 7.8125 + 20 + 5] =13.20

[10 +10 +11.25+13.20] = 11.1125
[20 + 20 +11.1125 + 7.8125] = 14.73

[10 +10 +14.73 +13.20] = 11.98

-bl»—‘ -bl»—‘ -bl»—‘ -lkl»—‘

[20 +20 +11.1125 +11.98] = 15.77

[10 +10 +14.73 +15.77] = 12.63
[20 + 20 +12.63 +11.98] =16.15
[10 +10 +16.15 +15.77] =12.98

[20+20+1263+1298]—1640

-bl'—‘-lkl'—‘-bl'—‘-bl'—‘

[10 +10 +16.15 +16.40] = 13.14
[20 +20 +13.14 +12.98] =16.53

[10 +10 +16.53 + 16.40] = 13.23

-bl»—‘ -bl»—‘ -bl»—‘ .|>|»—~

[20 +20 +13.14 +13.23] =16.59
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Fifth Iteration :

uv i[lo+10+1653+1659]—1328

o) i[zo+20+1328+1323]_1663

U = 1110 +10 +16.63 +16.59] = 13.31
4

(% l[20+20+1328+1331]—1665
4

Sixth Iteration :

Ul 3[10+10+1653+1655]—1333

Uy i[20+20+1332+1331]—1666

Uy %[10+10+1667+1665]—1333

Uy = 1[20+20+1332+1333]_1666
4

- U, =13.33,U, =16.66, U, = 13.33, U, = 16.66.
Ex.2:

Solve Uxx + Uyy =0 by 4 1.e. bman iteration process for the domain of
the figure given below :

0 50 100 50 0
100 Y, Y, U 100
200 Y Us U 200
100 U Y, Y 100

0 50 100 50 0
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Sol". :

We use standard five point formula

1
U, T4 |:Ui—1,j + Uiy + Ui U"’f“]

and diagonal five point formula

U..:%[U + U,

ij i-1,j+1 + Ul -1, j+1 + Ui+1,j—1 + Ui+1,j+l:|

Values given on the figure are symmetrical about middle line
U, =U,=U,=U,and U,=U, & U, = U,.
U, = i [200 +100 + 200 + 100] =150 [Standard formula]

U, = % [0+200+150 +100]=112.5 [Diagonal formula]

. Similarly U, =U, =U,=U, =1125
U, = i [100 +112.5 + 150 +122.5]
=118.75.

U, = U, =118.75

U, = % [112.5+ 200 +112.5 +150]

=143.75.
U, =U, =143.75
- U, =1125,U, =118.75, U, = 112.5, U, = 143.75, U, =150,
U, =143.75, U, =112.5, U, =118.75, U, = 112.5.

Now by Gauss — Seidel Method :
UZ-+1 — l |:U(n+1 + Un + U n+1 + Un :|

4 i-1,j i+l,j ljl i,j+1

(n+1 _ l n
Ul 4[100+U +50+Uj |
— Ung—I) — U(SVH—I) — Ugn-#l)
ul —% U+ U 100 + U ]

Ugn-%—l)



1

UE{H—I) _ Z |:2OO + U;z n U§n+1) + U(7n+1)i|

— U(6n+1)

n+ 1 n+ n+ n+ n+
[J(5 I)ZZ[UE 1)+U2 1)+U(2 1)+U§; 1):|

First Iteration we get,

Similarly the Liebman’s iteration are given by,

1

Ul = 1100 +118.75 + 50 + 143.75]

=103.125.

1

o) = - [103.125 +103.125 +100 + 150]

=114.06.

- UV =ul =114.06

1

U = - [200+150+103.125 +103.125]

=139.06.

~UP =Ul =139.06.

1
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U = - [139.06 +139.06 +114.06 +114.06]

=126.56.

Iteration U, =U, =U, = U, U, = U Uy U,
2nd 100.8 106.9 132.1 119.5
3m 97.3 103.5 128.8 116.2
4™ 95.6 101.9 126.9 1144
5t 94.7 101.0 726 135.5
6" 94.2 100.5 125.5 113
7% 94 100.3 125.3 112.8
g™ 93.9 100.2 125.2 112.7
9t 93.9 100.1 125.1 112.6

S U, =U,=U, =U, =93.9

U, = U, =100
U, =U, =125.1
U, =1126.
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7.5 One Dimensional Heat Equation (Parabolic Equation) :

Consider a one dimensional heat equation
2
97 _ Y
Ox ot
with initial condition U(x,0)= f(x) and boundary conditions
U(0,¢)=T, and U(L, 1) =T,.
Divide xt — plane into small rectangles of size # and & in x and
t directions respectively
Let U(x, ) =U(ih, jk) where i, j =0,11,72, .....
We write partial derivative in equation (I) we get,
62)/ B Ui—l,j — 2Uij +U.

i+l,j
ox’ n
and au _ Y =Yy
ot k
.. From equation (I)
ou oU
a —_—
ot ox’
o Uij+1 B Uij _ Ui—l,j B ZUi,j + Ui+1,j
k h’
k
(Ui,j+1 - Uij) = W (Ui—l,j - 2Ui,j + Ui+1,j)
Put A =k / ak’ o (D)
We get,
Ui,j+1 - Ui,j = A(Ui—l,j - 2Ui,j + Ui+1,j)
U =AU, +(1-22)U,;+AU,, ... (1)

It gives formula for unknown temperature U at (i, j+1) when

i,j+1
reaming values are known. Hence the method is called explicit method. These

method is valid U< A < % choose k in such a way that co-efficient of U, ; in

equation (I1I) will become zero.

ie. 1—21:0:/1:%

put A = % in equation (II1) we get,
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1k
2 ak’

2
k:ah

2
.. Equation (III) reduce to the form

1
Ui,j+1 = 5 Ui—l,j + Ui+1,j
(IV)
This is called the Bendre Schmidt or Schmidt recurrence relation.

1
Ui,j+1 = E Ui—l,j + Ui+1,j
Given the values of U at the interval points when the boundary

conditions are known.

7.6 Crank — Nicholson Difference Method :

2
Oy is replaced

2
X

Crank — Nicholson proposed a method in which

by the average of its finite difference approximation on the ;”and (;+ l)th

rows thus.
@zy n l Ui—l,j + 2Ui,j + Ui+1.j n Ui—l’Uj—l - 2Ui,j+1 + Ui+1,j+1
ot 2 h’ W
.. heat equation
2
a 6_U + 0 J; can be written as
ot Ox
a Ui‘j+1 + Ui,j _ l Ui—l,j - 2Ui,j + Ui+1,j _ Ui—l,j+1’ 2Ui,j+1 + Ui+1,j+1
k 2 h? W
U +U = k Ui—l,j - 2Ui,j + Ui+1,j _ Ui—l,j—l’ 2Ui,j+1 + Ui+1,j+1
i,j+1 ij = 206]12 hz hz
Put A = LZ
ah
2 |:Ui,j+1 + Uij:' =2 |:Ui—1,j - 2Ui,j + Ui+1,j - Ui—l,j—l’ 2Ui,j+1 + Ui+1,j+1]
S2(1+A) U, - A[UHJH + UW] =2(1-4)U,, +4 [UMJ + UMJ]

This 1s known as “Crank — Nicolson” Difference formula.
This formula is convergent for all values of 4.
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To choose the value of k in such away that the co-efficient of U, ; in

equation (I) will become zero i.e. 1 =1.
k
S l=
ah’
k=ah’
For k = ah* equation (I) become reduce to

U + U, + U

i,j+1 i+l,j i-1,j+1 i+1,j+1:| ‘

=%[U,._Lj +U

Ex. :

20U _ U
ox? ot

When 0<t<l5 and O<x<h with  initial
U(x, 0) =50(h — x) 0 < x < & and the boundary conditions.
u(0,¢)=0 0<t<15
U(h,t)=0 0<t<15
Using Schmidt method.

Solve one dimensional heat equation

Sol". :

Given equation
WU _au
o’ ot
with heat equation we get,

o =2, h=1, k:é

2 1 2
W) gs
2k 2x2
The bender Schmidt equation

Ui,j+1 = % |:Ui—1,j + Ui+1,j:|

U(x, 0)=50(/ - x) £=025  Ax=t=1

Where i =0, 1,2, 3,4 and j =0.25, 0.50, 0.75,1.00, 1.25,1.5.

U(x, 0)=50(h—x) = U, , =50(h i)

condition
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U(0,0)=0 U(L,0)=50(4 —1) =150
U(2,0)=50(4—1)=100

U(3,0)=50(4-3)U(4,0)=50(4-4)=0

Thus we can generate successfully U(x, 7)

i 0 1 2 3 4
0.00 0 150 100 50 0
0.25 0 50 100 50 0
0.50 0 50 50 50 0
0.75 0 25 25 25 0
0.10 0 12.5 25 12.5 0
1.25 0 12.5 12.5 12.5 0
1.3 0 6.25 12.5 6.25 0

S U5 =625U, =125U,  =6.25.
77 Gi . . . U _au
.7 Given One Dimensional Heat Equation == under

the conditions.

U(x,0)=20 for 0<x<3and U(0,¢)=0
U(3,7)=30 for >0 taking h=1,k=1 and using Crank —
Nicolson method to compute ‘U’ for one formed step on.

Sol".:
Crank — Nicolson difference formula is given by

200+ 4) U, =AUy + U, =20+ 4) U, +A[ U, + U, ]
.......... )

Giventhat a =1, h=1k =1

k __1

al® A1)
Put A =1in equation (I) we get,
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4 Ui,j+1 - [Ui—l,j+1 + Ui+,j+1:| = |:Ui—1,j + Ui+1,j]
1
= [U

.......... (I1)
U(x,0)=20= U(ih,0)=20=U,, =20=i=0,1,2,3

+ U + Ui—l,j+1 + Ui+1,j+1:|

i-1,j i+l,j

° 1
U(3, ) =30 = U(3h, 3k) =30
Up,y =30= U, , =30.

20 20 20

\4
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The mesh point U, and U,, we need to find using equation (II)

1
U1,1 :Z[Uo,o + Uz,o,s + UO,] + U2,1:|

U, =i[20+20+0+u2,1]

4(U,,)=40+U,,

4(U,,)-U,, =40 (111)
For U,

U,, =%[ULO +U,,+U,, +U,, |

U, =i[20+20+UU +30]

U,,=70+U,,

U,,-U,=70 V)

Solving equation (III) and (IV) we get,
U,,=1533

U,, =21.33.

7.8 One Dimensional Wave Equation (Hyperbolic
Equation) :

. : : . 90°U _ou
Consider a one dimensional wave equation Y under the
t

boundary  condition U(0,7)=U,U(L¢)=0 and initial conditions
U(x, 0) = f(x), Ut(x, 0) = g(x).

Divide xt — plane with small rectangles of sides # and k in x and ¢
directions resp.

Let U(x,t)=U(ih,ik) where i, j=0+1+ 2. First we unite initial and
boundary conditions in difference notations.

U(0,£)=0=U(0, jk)=0=U,, =0

U(A, 1) =0= U(nk, jk)=0 where ¢ = nh

2 U, =0
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U(x, 0) =7 (x)= U(ih,0) = f(ih)
U, , = f(ih)
U, (x,0)=g(x)= Y~ Yy = g(ih)

2k
[ B
ot 2k

Partial derivative of second order is given by

o*U (S
o - D 72Ut 1%
o’U U, .,

o*U o*U
: and >
ot

Put in equation (I) we get,

Ox
a’ |:Ui—1,j B 2Uij + Ui+1,j:| _ |:Ui,j—1 B 2Uij + Ui,j+1:|
n’ - K’

212
;[UMA—2Uy+Uwﬂ}=gﬁ;[UHd—2UU+UHW}
Put/l:a—k

h

2Ua=2(0-A)U, + 2[U, + U, -0 L]

i,j+1
(11I)
This scheme is called the explicit scheme for one dimensional wave
equation.
Equation (III) is valid where 0 < A <1 and invalid where 4 > 1.
In case of 1 =1 we get equation (I1I)

Ui,j+1 = Ui—l,j + Ui+1,j - Y

Ex. :
Solve U _ = U, with conditions

U(x,0) =0,U(L,¢)=0,U(x,0) = @ and U(x, 0)=0 taking ~=0.1 and
k=0.1for 0<¢<02.
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Sol". :

Given equation U _ =U

23

o’U _o°U
Le. —=—
Ox ot
Cat o1 gk _1xO1_
h 0.1
Where A =1 solution of value equation is
Ui,j+1 = Ul -1,/ + UH—I Ni - Ui,j—l

U(0,1)=U(L,#)=0,U(o, j) =0 and U(o, j) =

U(x, 0) — x(l——x)

2
, i(1-1)

u(i, 0) =

U(0.1,0) _OMI=00) o4

U(0.2,0) _02(1202) o

Similarly we get

U(0.3,0) =0.105, 4(0.4,0) = 0.12
U(0.5,0) =0.125,  U(0.6,0) = 0.12
U(0.7,0) = 0.105

Now, U, (x,0)=0
U .,-U

=0
”HTUfOI"]ZO(tZO)U

Putting j = 0 in equation (I) we get,
Ui =Ulo+ Ui~ Uy
2U,; =U 1 + Ui [ U, = Ui—1:|

-'-U,',l = % |:U,'_1,0 + Ui+1,0}

) 1
Now, fori=1 U, = 5 [UO,O + UZ’O}

=%[0 +0.80]

=0.040.
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Fori=2 U2,1 = % |:U1,0 + U3,0}

- L10.045+ 0.105]
2

= 0.075.
. 1
FOI’ 1= 3 U3’1 = 5 |:U2,0 + U4,0:|
_ % [0.08 + 0.120]
0.1,
Fori=4 U41 == |:U3,0 + U5,0:|
_ % [0.105 + 0.125]
= 0.115.
Fori=5

U5,1 = % [U4‘0 + U‘%O}

4 % [0.12 + 0.12]
~0.12.

Fori=6 U6’1 = % |:U5,0 + U7,0]

~ L10.125 + 0.105]
2
= 0.115.

Putting j =2 in equation (II) we get,
Ui,2 = Ui—l,l +U,, - Ui,O
For i=1 U,=U,+U,, -U,
=0+ 0.075-0.045
=0.03.
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Fori=2 U,,=U,+U,, -U,,
=0.040 + 0.100 - 0.08
=0.060.

Fori=3 U,,=U,, +U,, - U,
= 0.075 +0.115 - 0.105
= 0.085.

For 1= 4 U4,2 = U3,1 + Us,l - U4,0
=0.1+0.12-0.12
=0.1.

Fori=5 U5,2 = U4,1 + U6,1 - US,O
=0.115+0.115-0.125
=0.105.

.U, =003,U,, =006, U,, =0985,U,, =0.1, U, = 0.105.

7.9 Review :

In this chapter we have learn,

Classification of partial differential equation.

Numerical methods of solving elliptic partial differential equation.
Numerical methods by solving parabolic partial differential equations.
Numerical methods of solving hyperbolic partial differential equations.

* ¥ % *

7.10 Unit End Exercise :

2 2
0 EJ + g[j = 0 at the interior mesh

X V
p + s of the square region with boundary p + s shown in fig.

1)  Solve the Laplace equations

0 10 20 30 40
" U, U, U, 50
30 U, U. U, 60
40 U, U, U, 20

50 60 70 80 90



2)

3)

4)

3)

6)

7)
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The temperature U in the steady heat below in a square plate
bounded by x=0,y=0,y=x=4 satisfies Laplace equation
U U _

e + o 0.

_ 2
0 2U = a—U under the condition
Ox ot

U(0,£)=0=U(1¢) for +>0 take h= Y, k=1 and use
36

explicit method to compute U for one time step only.

Given one — dimensional heat

Using Schmidt method find the values of U(x,¢) satisfying the

40°U _oU

parabolic equation 2 o subject to the conditions.
X t

2

Given one — dimensional heat equation E;[j =aa—[tj under the
s

conditions U(x, 0) =40 for 0<x<3 and

U(0,7)=0,U(3,7)=60 for r>0 take h=1, k=1 and use Crank
Nicolson method to compute x for one time step only.

2
5[2J:6_U (0<x<land?<0)
ox ot

given that U(x,0)=100x for 0<x <1 and U(0,7)=0=U(L,¢)
for + >0 take A= y, k= % and compute U for one time step

Solve by Crank Nicolson method

only.

60°U _ o°U

e or*
conditions U(0,7)=0=U(5,¢/) and U(x,0)=x"-5x" for
0<x<5 forr>0and U,(x,0)=0 for 0<x<5.

under the

Given one dimensional wave equation



8)

9)

10)

11)

12)
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. . . 0'U_oU . .
Given hyperbolic equation = - o subject to the condition
X

U(0,7)=0=U(1,¢) for t>0 and U,(x,0)=sin’zx for 0<x <1
take 7 =0.25 for k£ =0.2 and use explicit method to compute U

for two time steps.
Derive the five point formula for Laplace’s equation.

What is Crank — Nicholson Method? Why is it known as implicit
method?

What is Bender — Schmidt recurrence equation? Derive the
formula.

Discuss the impact of size of the incremental width Az for the
time variable on the solution of a heat flow equation.

*e 000



