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1.1 Introduction

Metric spaces are generalization of real line and the usual distance.
We take the process of generalization one more step ahead when we
eliminate the concept of distance and work with the collection of open
sets. In the chapter on metric spaces we saw several concepts like
closure, interior, boundary, continuity etc. which involve concept of
distance. These concepts can be described equivalently using only open
sets and closed sets. Thus a lot of analysis can be carried out only
knowing the open sets (and the complements of open sets) without
using the notion of distance.
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1.2 Objectives

After going through this chapter you will know:
• Definition and examples of a topological space.
• Definition and examples of basis and subbasis of a topological space.
• Definition and properties of closure of a set.
• Definition and properties of interior of a set.
• Properties of continuous functions.

1.3 Topological spaces

Definition 1. A topology or a topological structure on X is a family
τ of subsets of X satisfying the following axioms:

• ∅ ∈ τ and X ∈ τ.

• If {Gλ : λ ∈ Λ} is a subfamily of τ , then ∪λ∈ΛGλ belongs to τ.
This means τ is closed under the union of arbitrary subfamilies
of it.

• If G1, . . . , Gn belong to τ then ∩1≤k≤nGk belongs to τ. This means
the family τ is closed under intersection over finite subfamilies of
it.

If τ is a topological structure on X then the ordered pair (X, τ) is
called a topological space. Sets belonging to τ are called open sets of
the topological space.

Remark 1.3.1. By definition, a topological space is closed under finite
intersection and arbitrary union. Every metric space is a topological
space. It is easy to check that the collection τ of usual open sets (i.e.
open balls) forms a topology.

Remark 1.3.2. It is important to note that not every topological space
is a metric space. Let X be a set such that |X| > 1. Then τ = {∅, X}
forms a topological space: the first axiom is obvious. The other two
follow by observing that ∅ ∩X = ∅ and ∅ ∪X = X.

If X has more than one element then X cannot be a metric space for
the following reason: recall first that every metric space is Hausdorff.
We will prove here that the topological space (X, τ) is not Hausdorff
which will imply that it is not a metric space. Let x, y be two distinct
elements of X. If X were Hausdorff, we would get disjoint open sets
U1, U2 in X such that x ∈ U1 and y ∈ U2. However, the only open sets
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in (X, τ) are the empty set and X itself. Hence, we cannot get sets U1

and U2 as claimed above.

Examples:

• We will consider here several examples of topologies on X =
{a, b, c}. You should verify yourself that in each of these examples
the above three axioms are satisfied.

– {∅, X}. This is called the indiscrete topology on X.

– {∅, {a}, X}.

– {∅, {a}, {b}, {c}, X}.

– {∅, {a, b}, X}.

– {∅, {a}, {b}, {a, b}, X}.

– {∅, {a}, {a, b}, X}.

– P (X). This is called the discrete topology on X. In this
topology every singleton set is open and hence, every subset
of X open too.

• Let X be a non-empty set. Let τ consist of ∅, X and all subsets
G of X such that X \G is finite. We call this as cofinite topology
on X. Verify that it is a topology.

• Let X be any infinite set. Let τ consist of ∅, X and all subsets G
of X such that X \ G is countable. We call this as cocountable
topology on X. Verify that it is a topology.

• Let X = N. Let In = {1, 2, 3, . . . , n} and Jn = {n, n+1, n+2, . . .}.
Let τ = {∅, I1, I2, I3, . . . ,N}. Let τ1 = {∅, J1 = N, J2, J3, . . .}.
Then τ, τ1 are both topologies on X.

Check Your Progress

• Prove that the cofinite topology and cocountable topology are
actually topologies on X.

• Check that τ, τ1 defined above are actually topologies on X.

All these examples are useful to understand the concept of a topo-
logical space and also to understand the concepts that will follow. We
will now study families of subsets of X that generate a given topology.
This is done via the notion of a base for a topological space.
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1.3.1 Base

Definition 2. Let (X, τ) be a topological space. A base to the topology
τ is a subfamily B of τ having the following property: given any G ∈ τ
there exists a family {Bλ : λ ∈ Λ} ⊆ B such that G = ∪λ∈ΛBλ.

For example the family {{x} : x ∈ X} is a base to the discrete
topology on X. The family {∅, {a}, {b}, X} is a base to the topology
{∅, {a}, {b}, {a, b}, X} on X = {a, b, c}.

Let us prove a theorem that will help us to check if a given family
is a base to a given topology.

Proposition 1.3.1. A family B of subsets of X is a base to a topology
on X if and only if

(i) X = ∪B∈BB.

(ii) If B1 and B2 are in B and if x ∈ B1∩B2 then there exists B ∈ B
such that x ∈ B ⊆ B1 ∩B2.

Proof. Suppose B is a base to a topology τ on X. Now, X ∈ τ and
therefore by the defining property of the base B in τ, there exists a
subfamily {Bλ : λ ∈ Λ} such that X = ∪λ∈ΛBλ = ∪B∈BB. This proves
(i). Next, let B1, B2 be any two elements of B then B1, B2 are open
subsets of (X, τ) and therefore B1∩B2 ∈ τ. Again by defining property
of a base, there exists a family {Bλ : λ ∈ Λ} ⊆ B such that B1 ∩ B2 =
∪λ∈ΛBλ. Consequently, if x ∈ B1∩B2 then there exists λ ∈ Λ such that
x ∈ Bλ(:= B). This completes the proof of (ii).

Conversely, suppose the family B satisfies both the properties above.
Let τ denote the family of subsets of X consisting of the empty set ∅
together with subsets of X of the type G = ∪λ∈ΛBλ where {Bλ : λ ∈ Λ}
is a subfamily of B. By the property (i) of B, X ∈ τ and ∅ ∈ τ.

Clearly the family τ is closed under arbitrary unions. Now let G1

and G2 be any two non empty subsets in the family τ. If x ∈ G1 ∩ G2

then x ∈ G1 and therefore, there exists B1 ∈ B such that x ∈ B1 ⊆ G1.
Similarly if x ∈ G1∩G2 then x ∈ G2 and therefore, there exists B2 ∈ B
such that x ∈ B2 ⊆ G2 which implies x ∈ B1 ∩ B2 ⊆ G1 ∩ G2. By
property (ii) of B, there exists Bx ∈ B such that x ∈ Bx ⊆ B1 ∩ B2 ⊆
G1 ∩ G2. This implies G1 ∩ G2 = ∪{Bx : x ∈ G1 ∩ G2} which means
G1 ∩G2 ∈ τ.

This proves that τ is a topology on X and the way in which τ is
obtained from B implies that B is a base of τ.

Definition 3. A collection C of subsets of X is called a subbasis for the
topological space (X, τ) if every set in τ is a union of finite intersections
of sets in C.
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We do not use subbases extensively in our further discussion. We
move on to our next important concept: the product topology. This is
one of the ways to build new topological spaces out of old ones.

1.4 Product Topology and Subspace

Topology

Let (X, τ) and (Y, τ ′) be topological spaces. The product topology
on X × Y is the topology having as basis the collection B of all sets
of the form U × V, where U is an open subset of X and V is an open
subset of Y.

Theorem 1.4.1. If B is a basis for the topology of X, and C is a basis
for the topology Y, then the collection D = {B×C | B ∈ B and C ∈ C}
is a basis for the topology of X × Y.
Proof. Given any open set W of X × Y and a point x× y of W, there
is a basis element U ×V such that x× y ∈ U ×V ∈ W. Because B and
C are bases for X and Y respectively, we can choose B ∈ B and C ∈ C
such that x ∈ B ⊆ U and y ∈ C ⊆ V. Then x× y ∈ B × C ⊆ W. Thus
D is a basis for X × Y.

We also study another important notion: that of subspace topol-
ogy. A topological structure on a set X induces a topological structure
on any subset Y of X.

Definition 4. Let (X, τ) be any topological space and let Y be a
nonempty subset of X. We consider τY = {G ∩ Y : G ∈ τ}. Then τY
is a topological structure on Y. The topology τY is said to be induced
by topology τ on X. We also say that (Y, τY ) is a subspace of the
topological space (X, τ).

Check Your Progress

• Show that the countable collection {(a, b)× (c, d) | a < b and c <
d, and a, b, c, d ∈ Q} is a basis for the usual topology on R2 i.e.,
the one induced by the usual metric on R2.

• Show that the set of all half open intervals [a, b) with a, b ∈ R is
a basis for the usual (metric) topology on R.

1.5 Open and Closed sets

You have studied neighbourhoods in metric spaces. We extend this
concept to topological spaces.
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Definition 5. Let (X, τ) be a topological space. Let x ∈ X. A subset
N of X is said to be a neighborhood of the point x if there exists
G ∈ τ such that x ∈ G ⊆ N. Note that in general, N need not belong
to τ. It is called open neighborhood if it belongs to τ. Collection of
all neighborhoods of x is denoted by N(x). It is easy to see that a
nonempty subset G of X is open if and only if it is a neighborhood of
each of its point. Let Nx be an open set containing x and contained in
G. Then G = ∪x∈GNx and G is open, being an union of open sets. On
the other hand if G is open then G itself is the neighborhood of each
of its point contained in G.

Examples:

• Let X = {a, b, c} and let τ = {∅, {a}, X} then we have N(a) =
{{a}, {a, b}, {a, c}, X} and N(b) = N(c) = X.

• Let X = N and let τ = {∅, J1, J2, J3, . . . , Jk, . . . , } where Jk =
{k, k + 1, k + 2, . . .}. Then N(1) = {J1} = N, N(2) = {J1, J2},
N(3) = {J1, J2, J3 ∪ {1}}, N(4) = {J1, J2, J3 ∪ {1}, J4 ∪ {1}, J4 ∪
{2}, J4 ∪ {1, 2}}.

Definition 6. Let A be a nonempty subset of (X, τ). A point x ∈ X
is said to be a limit point or an accumulation point of A if for every
neighborhood N of x the set A ∩ (N \ {x}) is non empty. The set of
limit points of A is called the derived set of A and is denoted by A′.
Note that a limit point of a set need not be an element of the set. For
example consider the topological structure defined in example 2 above.
Let A = {2}. The point 1 is a limit point of A but it is not in A.

Definition 7. For any set A in a topological space (X, τ), the closure
of A in X denoted by c(A) is defined as c(A) = A ∪ A′.

Check Your Progress LetX = {a, b, c} and let τ = {∅, {a}, {b}, {a, b}, X}.
Show that {a}′ = {c} and {c}′ = ∅. Find the derived sets of other sub-
sets of X.

Following results are similar to those in a metric space.

Lemma 1.5.1. (i) (∅)′ = ∅.

(ii) If A ⊆ B then A′ ⊆ B′.

(iii) (A ∪B)′ = A′ ∪B′.

Proof. (i) For any neighborhood N of any point x of X we have
∅ ∩N = ∅ and hence ∅ ∩N \ {x} = ∅. This proves (i).

(ii) Let x ∈ A′. Then for any neighborhood N of x we have A ∩N \
{x} 6= ∅. But A is a subset of B. Hence A∩N \{x} ⊆ B∩N \{x}
which gives B ∩N \ {x} 6= ∅ i.e. x ∈ B′. This proves A′ ⊆ B′.
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(iii) We have A ⊆ A ∪ B which give A′ ⊆ (A ∪ B)′ Similarly B ⊆
A ∪ B; which gives B′ ⊆ (A ∪ B)′. These two together give us
A′ ∪B′ ⊆ (A ∪B)′.

To get the reverse inclusion suppose x ∈ (A ∪ B)′ but does not
belong to A′ and B′. Then there exist neighborhoods N1 and N2

of x with A∩N1\{x} = ∅ and B∩N2\{x} = ∅. Let N = N1∩N2.
Then N is a neighborhood of x satisfying A ∩ N \ {x} = ∅ and
B∩N \{x} = ∅ which given (A∪B)∩N \{x} = (A∩N \{x})∪
(B ∩ N \ {x}) = ∅ ∪ ∅ = ∅. This shows that x does not belong
to (A ∪ B)′ This proves (A ∪ B)′ ⊆ A′ ∪ B′ which completes the
proof of (iii).

Definition 8. A set A in a topological space (X, τ) is said to be closed
if A′ ⊆ A.

There is a more simple characterization of closed sets.

Theorem 1.5.1. A set A in (X, τ) is closed if and only if X \A is an
open set in (X, τ).

Proof. Let A be a closed set, which means A ⊆ A. To prove G = X \A
is open in (X, τ). Let y ∈ G. Then y is not in A and hence not in A
because A ⊆ A. Therefore there exists a neighborhood N of y such that
N ∩ A \ {y} = ∅. But y is not in A hence we get, A ∩N = ∅.

Now, by definition of neighbourhood there exists Gy ∈ τ with y ∈
Gy ⊆ N. Now A ∩ N = ∅ implies, A ∩ Gy = ∅; equivalently put, we
have y ∈ Gy ⊆ X \ A.

This proves that for any y ∈ X \ A there exists an open set Gy

satisfying y ∈ Gy ⊆ X \ A. Hence X \ A = ∪{Gy : y ∈ X \ A} which
gives X \ A is an open set in (X, τ).

Conversely, suppose X \ A is open. Then, no point of X \ A is a
limit point of A. Because if y is a point of X \ A then by openness of
X \A, we get that X \A is a neighborhood of y which is disjoint from
A. Therefore y is not a limit point of A. This proves A′ ⊆ A. That is
A is closed.

Next theorem also is familiar to you.

Theorem 1.5.2. • ∅ and X are closed sets in (X, τ).

• Any intersection of closed sets in (X, τ) is a closed set in (X, τ).

• Finite union of closed sets in (X, τ) is a closed set in (X, τ).

Proof. We use the above theorem to prove this.

∅ ∈ τ implies that X\∅ is closed and X ∈ τ implies that ∅ = X\X
is closed.
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•• Let {Cλ : λ ∈ Λ} be a family of closed sets. Then for each
λ ∈ Λ the set Gλ = X \ Cλ is an open set in (X, τ). Hence
∪{Gλ : λ ∈ Λ} ∈ T. But ∪{Gλ : λ ∈ Λ} = X \ ∩{Gλ : λ ∈ Λ}.
This shows that ∩{Cλ : λ ∈ Λ} is closed.

• Let {Ck : k = 1, 2, 3, . . . , n} be a family of closed sets. Let Gk =
X\Ck, 1 ≤ k ≤ n. Then each Gk is open and therefore ∩{Gk : 1 ≤
k ≤ n} is an open set in (X, τ). But ∩1≤k≤nGk = X \ ∪1≤k≤nGk

which shows that ∩1≤k≤nGk is closed. This completes the proof.

Following is another familiar result. We have proved it earlier for
metric spaces.

Theorem 1.5.3. Closure of a set A in (X, τ) is the smallest closed
subset of (X, τ) containing A.

Proof. Let A be the smallest closed set containing A and let c(A) =
A ∪ A′. We will prove:

(i) A ⊆ c(A),

(ii) c(A) ⊆ A.

These put together will prove A = c(A).
Suppose x ∈ X \ c(A) then x does not belong to A and x does not

belong to A′. Therefore there exists an open set Gx such that x ∈ Gx
and A∩Gx\{x} = ∅. But x is not in A and therefore this set equation
implies, A ∩ Gx = ∅. Note that this also implies that no point of Gx
is a limit point of A. In other words Gx ⊆ X \ A′. On the other hand
A∩Gx = ∅ implies Gx ⊆ X \A′, we get Gx ⊆ X \A∪A′ = X \ c(A).
Thus each point x of X\c(A) has a neighborhood Gx contained entirely
in X \ c(A). Therefore X \ c(A) is an open subset of (X, τ). This means
c(A) is a closed subset of (X, τ) containing A. Now A being the smallest
closed set containing A implies A ⊆ c(A). This proves (i). Also the set

A is closed and hence (A)′ ⊆ A. But A ⊆ A implies A′ ⊆ A
′
. Thus we

have c(A) ⊆ A ∪ A′ ⊆ A. This proves (ii) completing the proof.

1.6 Interior

This concept from metric spaces is extended to topological spaced
as follows.

Let A be a non empty set in (X, τ). We define Interior of A as the
union of all open subsets of A. We denote it by i(A) or A◦. i(A) is an
open set by definition. i(A) is in fact the largest open set contained in
A.
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Theorem 1.6.1. (1.) i(X) = X

(2.) i(A) ⊆ A, for all subsets A of X.

(3.) i(i(A)) = i(A), for all subsets A of X.

(4.) If A ⊆ B then i(A) ⊆ i(B).

(5.) i(A ∩B) = i(A) ∩ i(B), for all subsets A and B of X.

Proof. (1.) X is open. Hence X is the largest open set contained in
X. This proves (1).

(2.) i(A) is a union of subsets of A and hence is a subset of A. This
proves (2).

(3.) i(A) is open. Hence i(i(A)) = i(A).

(4.) i(A) is an open set contained in A. Hence i(A) is an open set
contained in B. This means i(A) is contained in largest open set
contained in B which is i(B).

(5.) A ∩ B ⊆ A which gives i(A ∩ B) ⊆ i(A). Also A ∩ B ⊆ B which
gives i(A∩B) ⊆ i(B). Together these two imply i(A∩B) ⊆ i(A)∩
i(B). Now let y ∈ i(A)∩ i(B). By definition of interior there exist
open setsG andH in (X, τ) satisfying y ∈ G ⊆ A and y ∈ H ⊆ B.
G∩H is an open subset of A∩B hence G∩H ⊆ i(A∩B). This
proves y ∈ i(A ∩ B) and hence i(A) ∩ i(B) ⊆ i(A ∩ B). This
completes the proof.

Definition 9. For any set A in the topological space the set c(A)\ i(A)
is defined as the boundary of A denoted by b(A). It is also called frontier
of A.

Check Your Progress Show that a point x of X is a boundary
point of a subset A of X if and only if N ∩A 6= ∅ and N ∩ (X \A) 6= ∅
for all N ∈ N(x).

1.7 Continuous functions

Now we generalize the concept of continuous functions to topological
spaces.

Definition 10. Let (X, τ), (Y, τ ′) be any two topological spaces and
let f : X → Y be a map. We say f is continuous at a point a of X, if
given any neighborhood Ñ of f(a) there exists a neighborhood N of a

such that f(N) ⊆ Ñ . f is said to be continuous on a subset A of X if
f is continuous at every point a of A.
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Remark 1.7.1. f(N) ⊆ Ñ implies N ⊆ f−1(Ñ) and therefore f−1(Ñ)
becomes a neighborhood of a. Therefore the definition can be restated
as: f is continuous at a if for every neighborhood Ñ of f(a) the set

f−1(Ñ) is a neighborhood of a. Since neighborhoods are supersets open
sets containing that point continuity at a point can be rephrased as :
f is continuous at a if given open set H of (Y, τ ′) with f(a) ∈ H there
exists open subset G of (X, τ) containing a such that f(G) ⊆ H.

We prove some theorems on continuous functions.

Theorem 1.7.1. Let (X1, τ1), (X2, τ2), (X3, τ3) be topological spaces and
let f : (X1, τ1)→ (X2, τ2) and g : (X2, τ2)→ (X3, τ3) be maps such that
f is continuous on X1 and g is continuous on X2 then h = gof :
(X1, τ1)→ (X3, τ3) is continuous on X1.

Proof. Let a ∈ X1. Let f(a) = b. Let Ñ be a neighborhood of g(b) =

g(f(a)). By continuity of g at f(a) = b we have g−1(Ñ) is a neigh-

borhood of b. We have g−1(Ñ) is a neighborhood of b. Also by con-

tinuity of f at a we have f−1(g−1(Ñ)) is a neighborhood of b. But

f−1(g−1(Ñ)) = (g◦f)−1(Ñ) which is a neighborhood of a. Thus we have

verified that, for any neighborhood Ñ of (g ◦ f)(a) the set (gof)−1(Ñ)
is a neighborhood of a. Therefore by the definition it follows that g ◦ f
is continuous at a.

Theorem 1.7.2. Let f : (X, τ) → (Y, τ ′) be any map. The following
conditions on f are equivalent:

(a) f is continuous on X. (i.e. at every point of X).

(b) If H ∈ τ ′ then f−1(H) ∈ τ.

(c) If C is a closed subset of (Y, τ ′) then f−1(C) is a closed subset of
(X, τ).

(d) For any subset A of X, f(c(A)) is a subset of c(f(A)).

Proof. We will prove the implications cyclically.
(a) =⇒ (b). Let f be continuous on X. Let H be an open subset

of (Y, τ ′). Let x ∈ f−1(H). Then f(x) ∈ H ∈ τ ′. This means H is a
neighborhood of f(x). By continuity of f at x, f−1(H) is a neighbor-
hood of x. This proves that f−1(H) is a neighborhood of each of its
point. Hence f−1(H) is an open set of (X, τ).

(b) =⇒ (c). Let C be a closed subset of (Y, τ ′). Then H = Y \ C
is an open subset of (Y, τ ′). By (b) this gives f−1(H) is an open subset
of (X, τ). But f −1 (H) = f−1(Y \ C) = X \ f−1(C). Hence f−1(C) is
a closed subset of (X, τ).
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(c) =⇒ (d). Let A be any subset of X. Let C = c(f(A)). C is a
closed subset of (Y, τ ′). Therefore by (c), f−1(C) is a closed subset of
(X, τ). But we have A ⊆ f−1(f(A)) ⊆ f−1(c(f(A))) = f−1(C).

Now A is a subset of the closed set f−1(C). Hence c(A) ⊆ f−1(C)
which gives f(c(A)) ⊆ f(f−1(C)) ⊆ C. Thus f(c(A)) ⊆ c(f(A)) is
proved.

(d) =⇒ (c). Let C be a closed subset of (Y, τ ′). Let A = f−1(C).
We have f(c(A)) ⊆ c(f(A)) ⊆ c(f(f − 1(C)) ⊆ c(C) = C. Now apply
f−1 to f(c(A)) ⊆ C we get f−1(f(c(A))) ⊆ f−1(C) = A. But c(A) ⊆
f−1(f(c(A))). Therefore we get c(A) ⊆ A. That is, A is a closed subset
of (X, τ).

(c) =⇒ (a). Let x be any point of X and let H be any open subset
of (Y, τ ′) containing f(x). Let C = Y \ H then we have f−1(H) =
X \ f−1(Y \H) = X \ f−1(C). By the result (c), f−1(C) is closed and
hence f−1(H) = X \ f−1(C) is open. This proves that f is continuous
at every point x in X.

Remark 1.7.2. • If (X, τ)→ (Y, τ ′) is continuous and x is a limit
point of x ∈ A ⊆ X then it is not necessary that f(x) is a limit
point of f(A). For example take the constant map from the usual
(or indiscrete) topology to the discrete topology on R. Show that
it is continuous. Now any point in the domain is a limit point of
R but its image is not a limit point of f(R).

• Any function defined on a discrete topological space is continuous.

• If f : (X, τ) → (Y, τ ′) is continuous then A ∈ τ does not mean
f(A) ∈ τ ′.

1.8 Glossary

In this chapter, you have learnt the following:

• Definition of a topological space.

• Base of a topological space.

• Product and subspace topology.

• Open and Closed sets.

• Interior of a set.

• Continuity in topological spaces.
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1.10 Let Us Sum Up

A topological structure on X is a family τ of subsets of X which
contains ∅, X and is closed under the operations of unions over arbitrary
subfamilies of τ and over intersections of finite subfamilies of τ. Any
non empty family of subsets of X generates a unique topology on X. A
subfamily B of τ is called a base of τ if every non-empty set G in τ can
be expressed as a union of a subfamily of B. A subset N of X is called
a neighborhood of x ∈ X if there exists G in τ satisfying x ∈ G ⊆ N.

Associated with any set A in a topological space (X, τ) there is
another set A called derived set of A. The set A′ consists of all limit
points of A; where a limit point of A is a point x of X having the
property that every neighborhood of it contains at least one point of
A which is different from x. A subset A of a topological space X is
said to be closed if A′ is a subset of A. A set is closed if and only if
its complement is open. The set A ∪ A′ is called closure of A and is
denoted by c(A). Closure of a set satisfies following properties.

• c(∅) = ∅.

• A ⊆ c(A), for every A ⊆ X.

• c(c(A)) = c(A), for every A ⊆ X.

• c(A ∩B) = c(A) ∩ c(B) for all A,B ⊆ X.

• c(A) is the smallest closed subset of X containing A.

The definition of a continuous function from one topological space to
another is a generalization of the classical ε− δ definition of continuity
of a real valued function of a real variable. A map f : (X, τ)→ (Y, τ ′)
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is continuous at a point a of X if for any neighborhood Ñ of f(a) in
(Y, τ) there corresponds a neighborhood N of a in (X, τ) such that

f(N) ⊆ Ñ . We say that f is continuous on a subset A of (X, τ) if it
is continuous at every point a of A. Continuity of f on X has several
equivalent forms. Some are listed below.

• f−1(H) ∈ τ for every H ∈ τ ′.

• f−1(C) is a closed subset of (X, τ) whenever C is a closed subset
of (Y, τ ′).

• f(c(A)) ⊆ c(f(A)) for every subset A of X.

1.11 References for further reading

1. W.J. Pervin: Foundations of General Topology, Academic press ,
New York, London.

2. Kelley J.L, General Topology, Van Nostrand Reinhold Co., New
York, 1955.

3. Dugundji J.: Topology, Allyn and Bacon, Boston, 1966.

1.12 Chapter End Exercises

1. There are 26 topologies on X = {a, b, c}. List all of them.

2. Let Y be a non-empty subset of a topological space (X, τ) and
let y ∈ Y. Prove that a subset M of Y is a neighborhood of y in
the subspace (Y, τ ′) if and only if there exists a neighborhood N
of y in (X, τ) such that M = N ∩ Y.

3. Let I be the set of all bounded open intervals and let I∗ be the
subfamily of I consisting of all open intervals of I having rational
end points. Prove that the topology on R generated by I∗ is the
same as that generated by I. (Note that the topology generated
by I is the usual topology of R.)

4. Prove that two bases B and B∗ generate the same topology if
and only if for each x ∈ B ∈ B there exists B∗ ∈ B∗ such that
x ∈ B∗ ⊆ B and to each y ∈ B′ ∈ B∗ there exists B′′ ∈ B such
that x ∈ B′′ ⊆ B′.
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5. Let B be a base to a topological structure τ on X and let Y be a
nonempty subset of X. Let By = {B ∩ Y : B ∈ B}. Is By a base
to the subspace topology τy on Y? Justify.

6. Give an example of a set X and two topologies τ and τ ′ on X
such that τ ∪ τ ′ is not a topology on X.

7. If A is a subset of (X, τ) with the property that B′ ⊆ A ⊆ B for
some subset B of X, prove that A is closed.

8. Let X = N. Let In = {1, 2, 3, . . . , n} and Jn = {n, n+1, n+2, . . .}.
Let τ = {∅, I1, I2, I3, . . . ,N} and τ ′ = {∅, J1 = N, J2, J3, . . .}.
Then check that τ and τ ′ both are topological structures on N.
Find {1}′ with respect to both τ and τ ′.

9. Let f : (X, τ) → (Y, τ ′) be a constant map. Show that f is
continuous.

10. Describe the closure of an infinite set in the co-finite topology.
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Chapter 2

Countability and Separation
Axioms

Chapter Structure
2.1 Introduction
2.2 Objectives
2.3 Homeomorphism and Heredity
2.4 Cardinality
2.5 Separation Axioms
1.6 Hausdroff topological Spaces
2.7 Regular and Normal Topological Spaces
1.8 Glossary
2.9 Bibliography
2.10 Let Us Sum Up
2.11 References for Further Reading
2.12 Chapter End Exercises

2.1 Introduction

The basic definition of a topological structure on a space X is in
terms of a family τ of subsets of X satisfying only three conditions,
namely the three topological axioms and yet it manages to capture in
it the most basic geometric ingredient “neighbourhood” of the real num-
ber systems R,R2 etc. But most of the other mathematically important
properties of these number systems are lost in such a generalization.
We get them back one by one by imposing additional conditions on a
topological structure.
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2.2 Objectives

After going through this chapter you will know:
• Countability axioms and their consequences
• Separation axioms and examples of metric spaces that satisfy them.
• Definition, examples and properties of Hausdorff spaces.
• Regular and normal topological spaces and their properties.

2.3 Homeomorphism and Heredity

The main aim of studying topological spaces is the study of proper-
ties that are invariant under homeomorphism. Homeomorphism is thus
a concept of central importance in topology.

Definition 11. A map f : (X, τ)→ (Y, τ ′) is said to be a homoemor-
phism if f is bijective, f is continuous and f−1 is also continuous.

For example, the identity map from (X, τ) → (X, τ) is clearly a
homeomorphism and composite of two homeomorphisms is a homeo-
morphism. This makes homeomorphism an equivalence relation on the
collection of topological spaces. Also inverse of a homeomorphism is a
homeomorphism.

Definition 12. A property P of topological spaces is said to be a
topological property if P is satisfied by a topological space implies that
it is satisfied by another topological space homeomorphic to it. Also a
property P is called hereditary if P is satisfied by a topological space
implies that it is satisfied by every subspace of it.

Remark 2.3.1. Note that a bijective continuous map need not be a
homeomorphism. Take for example a continuous map f from [−π, π)
to the unit circle S1 in R2 defined by f(x) = (cosx, sinx). f is bijective
and continuous but the inverse of f is not continuous.

2.4 Cardinality

Though cardinality is not our main topic of discussion we need to
revise some results in cardinality to understand the countability axioms.
Cardinality of N, the set of natural numbers and any set which is in
bijection with N is denoted by ℵ0. These sets are called denumerable.

16

m
unote

s.i
n



It can be proved that the set of rational numbers is denumerable. A
set which is either denumerable or finite is called as countable. The set
of real numbers R and any interval in R are uncountable sets. It can
be proved that cardinality of R, R2 and any interval in R are same. We
denote it by C. Continuum hypothesis states that there is no infinite
set having cardinality between ℵ0 and C. An important property of
countable sets is that all its elements can be written in the form of a
sequence.

2.4.1 Countability Axioms

Recall, if N is a neighborhood of x and if M is a subset of X with
N ⊂ M then M also becomes a neighborhood of x. This property of
neighborhoods suggests that we need not know the entire family N(x);
it is enough to single out a subfamily of it which is such that any
neighborhood of x is a superset of a set belonging to the subfamily.
Such a subfamily, say B(x) of N(x), which is capable of describing all
the neighborhoods of x as the supersets of sets belonging to B(x) is
called the base to the neighborhood systems of x. Thus we have two
kinds of bases in our discussion:

• A base to the topological structure τ on X.

• A base to the complete neighborhood system N(x) of a point x
in (X, τ).

It turns out that the two concepts are not independent; the first kind
of base, that is a base to a topological structure determines a base to
the complete neighborhood system N(x) of a point x of X which the
topological structure assigns. Countability axioms are auxiliary axioms
on the topological structure of a topological space which demand that
the two bases be countable.

Definition 13. A base of the neighborhood system N(x) of x is any
subfamily B(x) of N(x) having the following property: If N ∈ N(x)
then, there exists B ∈ B(x) such that B ⊆ N. If all the neighborhoods
in B(x) consist of open sets then we say that B(x) is an open base
of the neighborhood system on x. Note that, if B(x) is a base of the
neighborhood system N(x) of x then so is {i(B) : B ∈ B(x)} which is
an open base.

Here are some illustrative examples of neighborhood bases.

• In case of discrete topology P (X) on a set X, B(x) = {{x}} is a
base to N(x).

• In τ the usual topology on R, B(x) = {(x−1/n, x+1/n) : n ∈ N}
is a countable base to N(x).
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• Let (X, d) be any metric space. Then B(x) = {B(x, 1/n) : n ∈
N} is a countable base to the complete neighborhood system of
each x in X.

Definition 14. We say that the topological space (X, τ) is first count-
able space if for each x in X the complete neighborhood system N(x)
has a countable base. This countable base is called the fundamental
system of neighborhoods of x. We also say that such a space is a C1-
space.

Topological spaces discussed in examples 2 and 3 discussed above
are C1- spaces. In addition the discrete space (X,P (X)) is C1 be-
cause {{x}} is a fundamental system of neighborhoods for any x in
X and the indiscrete space (X, {∅, X}) is C1- spaces because X is
the only neighborhood of every point x in X. If {Nn : n ∈ N} is
a fundamental system of neighborhoods of a point x then putting
Ñ1 = N1 ∩ N2 ∩ N3 · · · we get that {Ñn : n ∈ N} is another count-
able neighborhood base of x in which the neighborhoods decrease with
increasing n : Ñ1 ⊃ Ñ2 ⊃ Ñ3 ⊃ Ñn ⊃ · · · Thus in a C1- space we
can always choose a countable, monotonically decreasing fundamental
neighborhood system of neighborhoods of each of its points. Now we
verify that first countability is a topological property.

Let f : (X, τ) → (Y, τ ′) be a homeomorphism. Let (X, τ) be a
C1-space. We verify that each y ∈ Y has a countable fundamental
neighborhood system. Let x ∈ X satisfy f(x) = y. If Mn = f(Nn)
then for each n, Mn are neighborhoods of y. In fact {Mn : n ∈ N} is a
fundamental neighborhood system of y. This proves that (Y, τ ′) is C1-
space. Thus homeomorphic image of a C1-space (X, τ) is a C1- space.

We will verify that first countability is also a hereditary property.
Let (X, τ) be a C1-space and let Y be a non-empty subset of X. Let
y ∈ Y. Then y ∈ X. By the C1- property of (X, τ), y has a fundamental
neighborhood system {Nn : n ∈ N} in (X, τ). Then {N∗n := Nn∩Y : n ∈
N} is a fundamental neighborhood system of y in (Y, τy). This proves
that the subspace (Y, τy) is also C1- space. Hence it is a hereditary
property.

Definition 15. A topological space (X, τ) is second countable (or sat-
isfies the second countability axiom) if the topology has a countable
base.

A second countable space is first countable, for if B is a countable
basis for (X, τ), then B(x) = {B ∈ B for which x ∈ B} ⊆ B and
hence is countable. Thus, B(x) is a countable base to the complete
neighborhood system N(x) and hence C1- axiom is satisfied.

The converse is not true. A space may be first countable without
being second countable. Consider the discrete topological structure
on R. This topological space (R, P (R)) has no countable base. But
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it is C1- space because for every point x ∈ X the singleton family
{{x}} is a fundamental neighborhood system of x. This shows that
second countability is stronger than first countability. Some examples
of second countable spaces are given below.

• Let X = N. Let In = {1, 2, 3, . . . , n} and Jn = {n, n+1, n+2, . . .}.
Let τ = {∅, I1, I2, I3, . . . , X} and τ ′ = {∅, J1 = N, J2, J3, . . .}.
Then τ and τ ′ are both topological structures on N. Both are
countable families and hence are second countable structures.

• Let (R, d) be the usual metric space. B = {B(x, 1/n) : n ∈
N, x ∈ Q} is a countable base to the metric space. Hence the
usual metric space is second countable.

2.5 Separation Axioms

Definition 16. A topological space (X, τ) is a T0-space if for any two
distinct points x and y in X there exists an open subset of (X, τ) which
contains only one of x and y but not the other.

Here are some examples:

• If X contains at least two points then the indiscrete topologi-
cal space {X, {∅, X}]} is not T0 because an open set will either
contain both the points or contain no points.

• Let X = {a, b, c}. Then τ = {∅, {a, b}, X} is not T0 because the
condition fails for the pair a, b.

• Any metric space satisfies the Hausdorff property and hence is
T0.

• If τ is the co-finite topology on any set having more than element
then it is T0.

• Cocountable topology on R is also a T0 space.

Theorem 2.5.1. • Being T0 is a topological property

• Being T0 is a hereditary property.

Proof. • Let f : (X, τ) → (Y, τ ′) be a homeomorphism. Suppose
(X, τ) is a T0 space. To prove (Y, τ ′) is also T0, consider two
distinct points y1 and y2 in Y. There exist two distinct points x1

and x2 in X satisfying f(x1) = y1 and f(x2) = y2.
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By the T0 property of (X, τ) there exists an open set G of (X, τ)
which contains one of the points x1, x2 avoiding the other. With-
out loss of generality suppose x1 ∈ G and x2 6∈ G. Let f(G) = H.
Then by defining property of the homeomorphism H ∈ τ ′. y1 ∈ H
but y2 6∈ H. This proves (Y, τ ′) is a T0 space.

• Let (X, τ) be a T0 space let Y be a non empty subset of X. We
want to prove that (Y, τy) is a T0 space. Let y1, y2 be two distinct
points of Y. They are also distinct points of the T0 space (X, τ).
Therefore by the T0 property of (X, τ) there is an open subset G
of it, which contains only one of these points. Suppose y1 ∈ G and
y2 6∈ G. Let H = G∩Y. Then H is an open subset of (Y, τy) which
contains y1 but not y2. This proves that (Y, τy) is a T0 space.

Theorem 2.5.2. (X, τ) is a T0 space if and only if distinct one point
subsets of it have distinct closures.

Proof. First suppose that (X, τ) is a T0 space. Let x and y be distinct
points of X. We prove that c({x}) 6= c({y}). Since x 6= y, there exists an
open subset G of (X, τ) with say x ∈ G but y 6∈ G. Now y 6∈ G implies
that the closed set X \ G contains y but does not contain x. Clearly
c({y}) ⊆ X \G and as such x 6∈ c({y}). But c({x}) must contain point
x. This proves c({y}) 6= c({x}).

Conversely, suppose for every pair of points x, y ∈ X with x 6= y we
have the inequality of sets c({x}) 6= c({y}). Then either x 6∈ c({y}) or
y 6∈ c({x}). For if x ∈ c({y}) then {x} ⊆ c({y}) which gives c({x}) ⊆
c({y}).

Similarly y ∈ c({x}) implies c({y}) ⊆ c({x}). These two together
give c({x}) = c({y}), which contradict the assumption. Suppose x 6∈
c({y}). Let G = X \ c({y}). Then G is an open subset of (X, τ). X ∈ G
and y 6∈ G. This proves the T0 axiom for (X, τ).

We now move on to the next separation axiom.

Definition 17. A topological space (X, τ) is T1 space if for any two
points x, y ∈ X there exit two open sets G,H of (X, τ) such that x ∈ G,
y 6∈ G and y ∈ H, x 6∈ H.

Clearly every T1 space is a T0 space. But there are spaces which are
T0 but not T1.

Here are some examples

• Let X = N. Let In = {1, 2, 3, . . . , n}. Let τ = {∅, I1, I2, . . . ,N}.
(X, τ) is T0 but not T1 since there exists an open set that con-
tains 2 but not 1, but there is no open set containing 1 and not
containing 2. This proves that the above space is not T1.
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• Discrete topological space (X,P (X)) and metric spaces are ex-
amples of T1 spaces.

• On X = {a, b, c} we define τ = {∅, {a}, {a, b}, {a, c}, X}. (X, τ)
is T0 but not T1. The pair a, b does not satisfy the requirements
of a T1 space.

Theorem 2.5.3. • A topological space is T1 space if and only if
every one point subset of it is a closed subset.

• In a T1 space (X, τ) if x is a limit point of a subset A of X then
every neighborhood of x contains infinitely many points of A.

Proof. • First we assume that (X, τ) is a T1 space and prove that
for any x ∈ X, {x} is a closed set. Equivalently we prove that
G = X \ {x} is an open set of (X, τ).

Let y ∈ G be arbitrary. Then y 6= x. Therefore by the T1 property
there exists Gy ∈ τ such that y ∈ Gy and x 6∈ Gy. Thus y ∈ Gy ⊆
X \ {x}. Consequently we have X \ {x} = ∪{Gy : y ∈ X \ {x}}.
This shows that X \ {x} is an open set and hence {x} is closed.
Conversely suppose that {x} is closed subset of (X, τ) for every
x ∈ X. Now let x and y be two distinct points of X, then x ∈
X \ {y} = Gx ∈ τ and similarly we have y ∈ X \ {x} = Gy ∈ τ
Thus for the distinct points x and y in X we have the open sets
Gx, Gy with x ∈ Gx, y 6∈ Gx and y ∈ Gy, x 6∈ Gy. This proves
that (X, τ) is a T1 space.

• Suppose x ∈ X is such that a neighborhood N of x contains only
finitely many points of A. Say, A∩N \{x} = {x1, x2, x3, . . . , xn}.
Now being one point subsets of the T1 space each of the sets
{x1}, {x2}, {x3}, . . . , {xn} are closed subsets of (X, τ). Consequently
their union {x1, x2, x3, . . . , xn} is also a closed subset of (X, τ).
This further implies, the set X \ {x1, x2, x3, . . . , xn} is an open
neighborhood of X. The intersection of this neighborhood with
N which is N \ {x1, x2, x3, . . . , xn} is also a neighborhood of x.
A ∩ (N \ {x1, x2, x3, . . . , xn}) \ {x} = ∅.
This is a contradiction to the assumption that x is a limit point
of A. Therefore the assumption that A ∩ N is finite is wrong.
This proves that every neighborhood of x contains infinitely many
points of A.

Like T0, being T1 also is topological and hereditary property. You
can prove this as an exercise. We continue our discussion of separation
axioms in the next section where T2-spaces are discussed with the name
Hausdorff spaces.
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2.6 Hausdorff Topological Spaces

Definition 18. A topological space (X, τ) is said to be Hausdorff space
or a T2 space if for any two distinct points x, y of X there exist open
subsets G,H of (X, τ) such that x ∈ G, y ∈ H and G ∩H = ∅.

Remark 2.6.1. • Axiom T2 is a topological property as well as
hereditary property.

• Axiom T2 is stronger than T1. If a topological space satisfies axiom
T2 then it satisfies axiom T1.

• The converse is not true. On an infinite set the cofinite topology
satisfies T1 axiom but does not satisfy T2 axiom.

• On X = {a, b, c} we can not define a topology which is T1 but
not T2. Because if the topology is T1 then singletons are closed
sets. This means that all the sets having 2 elements are open sets.
This forces the topology to be P (X) which is T2.

• We have proved earlier that every metric space is a Hausdorff
space i.e. satisfies T2 axiom.

Definition 19. A sequence in a metric space (X, τ) is a map a : N→
X. We denote it by the notation (an). The sequence (an) is said to be
convergent to an element l in X if for any neighborhood N of l there
exists n0 ∈ N such that an ∈ N for all n > n0. We use the notation
lim an = l.

Following theorem proves a connection between limit of a sequence
and limit point of a set.

Theorem 2.6.1. If (an) is a sequence of distinct points of A which
converges to l then l is a limit point of A.

Proof. Let N be any neighborhood of l. Since (an) converges to l, there
exists n0 ∈ N such that an ∈ N for all n > n0. But since the sequence
is in A we get an ∈ A∩N, for all n > n0. Moreover all an’s are distinct
implies an 6= l for at least one n > n0. In other words there exists
n > n0 such that an ∈ A ∩ N \ {l}. This proves A ∩ N \ {l} 6= ∅ for
every neighborhood N of l i.e. l is a limit point of A.

In general in a topological space limit of a sequence is not unique and
hence limit is not a well defined concept. For example in the indiscrete
topology (X,P (X)) any sequence converges to each point in the metric
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space. Thus if the set X has more than one point then each sequence
has more than one limit. Another such example is X = {a, b, c} and
τ = {∅, {c}, {a, b}, X}. Now define the sequence {an : n ∈ N} by a2k =
a and a2k+1 = b for all k ∈ N. This sequence converges to both b and c.

Following is an example of a sequence that converges to infinitely
many points.

Let X = N. Let Jn = {n, n + 1, n + 2, . . .} and τ = {∅, J1 =
N, J2, J3, . . .}. Define the sequence (an) by an = n for every n. The
sequence converges to every m ∈ N.

We cannot find such examples in Hausdorff spaces because of the
following

Theorem 2.6.2. In a Hausdorff topological space a convergent se-
quence has a unique limit.

Proof. Let (X, τ) be a Hausdorff space. If possible suppose the sequence
{an : n ∈ N} converge to two different points l and l∗ of X. By the
Hausdorff property there exist open sets G and H of (X, τ) such that l ∈
G, l∗ ∈ H and G∩H = ∅. Now since (an) converges to l there exists n1 ∈
N such that an ∈ G, for all n > n1. Also since (an) converges to l∗ there
exists n2 ∈ N such that an ∈ H, for all n > n2. Let m = max{n1, n2}.
Now for all n > m, n > n1 and n > n2 and so an ∈ G ∩H = ∅. This is
a contradiction which proves uniqueness of limits.

We now define an important property of a topological space.

Definition 20. We call a topological space (X, τ) separable if there
exists a countable dense subset of it. That is, there exists A = {an :
n ∈ N} satisfying c(A) = X.

The real line is a separable metric space because the set of rational
numbers is a countable dense subset. But R with the co-countable
topology is not a separable topological space. Because if you take a
countable set A then R \ A is a co-countable set. This means R \ A is
open and A is a closed set which gives c(A) = A is a proper subset of
R as R is uncountable.

Lemma 2.6.1. Being separable is a topological property.

Proof. Suppose f : (X, τ) → (Y, τ ′) is a homeomorphism. Suppose
A = (an : n ∈ N) is a countable dense set in X. We want to show that
the countable set B = f(A) is dense in Y. If c(B) is a proper subset of
Y then H = Y \ c(B) is a nonempty subset of (X, τ). Let G = f−1(H).
Then G is a non empty subset of (X, τ). Now f−1(c(B)) = c(f−1(B)) =
c(A) = X. This contradicts that G = X \ f−1(c(B)) 6= ∅. This proves
c(B) = Y which means that the countable subset B of Y is dense in
Y.

23

m
unote

s.i
n



Remark 2.6.2. Being separable is not hereditary.

In fact we can prove that any non-separable topological space is a
subspace of a separable space. Let (Y, τ ′) be a non separable topological
space. Take any object w which is not a member of Y. Let X = Y ∪{w}.
Introduce a topology τ on X as follows: τ = {∅, G ∪ {w} | G ∈ τ ′}.
(X, τ) is a topological space and (Y, τ ′) is a subspace of it. {w} is dense
in (X, τ). This proves that (X, τ) is separable but subspace (Y, τ ′) is
not separable.

Theorem 2.6.3. Every second countable topological space is separable.

Proof. Let (X, τ) be a topological space. Let {Bn : n ∈ N} be a
base to the topology τ. We choose a point bn from each of the non-
empty sets Bn and form a countable set B = {bn : n ∈ N}. This set
must be a dense subset of (X, τ). Because if it is not dense then G =
X \ c(B) is a non-empty open set of (X, τ). But {Bn : n ∈ N} is a base.
Hence a subfamily {Bnk

: k ∈ N} generates G. Hence G = ∪k∈NBnk
.

Hence {bnk
: k ∈ N} ⊆ G. This contradicts the construction of G.

Therefore {bn : n ∈ N} is a countable dense subset of X. Hence (X, τ)
is separable.

2.7 Regular and normal topological spaces

Definition 21. Suppose one point sets are closed in X. Then X is
said to be regular if each pair consisting of one point x and a closed
set B disjoint from x, there exist disjoint open sets containing x and
B respectively. The space is called normal if for each pair A,B of
disjoint closed sets of X there exist disjoint open sets containing A and
B respectively.

Following theorem gives us a characterization of normal and regular
spaces.

Theorem 2.7.1. Let (X, τ) be a topological space in which one point
sets are closed. Then

• X is regular if and only if given a point x of X and a neighborhood
U of x, there is a neighborhood V of x such that c(V ) ⊆ U.

• X is normal if and only if given a closed set A and an open set
U containing A, there is an open set V containing A such that
c(V ) ⊆ U.
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Proof. • Suppose that X is regular and suppose that the point x
and the neighborhood U of x are given. Let B = X \ U ; then
B is a closed set. By hypothesis, there exist disjoint open sets V
and W containing x and B respectively. The set c(V ) is disjoint
from B since if y ∈ B the set W is a neighborhood of y disjoint
from V. Therefore c(V ) ⊆ U as desired.

To prove the converse, suppose the point x and the closed set B
not containing x are given. Let U = X \B. By hypothesis there is
a neighborhood V of x such that c(V ) ⊆ U. The open sets V and
X \ c(V ) are disjoint open sets containing x and B respectively.
Thus X is regular.

• This proof is similar. Just replace the point x by the set A
throughout.

2.8 Glossary

In this chapter, you have learnt the following:

• Homeomorphism between topological spaces.

• Hereditary property of a topological space.

• First and second countable spaces.

• Hausdorff topological space.

• Regular and normal topological spaces.

• Characterization of regular and normal topological spaces.
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2.10 Let Us Sum Up

A topological system is a generalization of the classical number sys-
tem R. But in such a wild generalization many important properties of
the number system are lost. We regain these properties by introducing
a number of additional axioms. There are many types of such axioms.
One such type of axioms are separation axioms. They are denoted by
T0, T1, T2, . . . . They are about enclosing a pair of points in disjoint open
subsets, disjoint closed subsets etc. Of these we study T0, T1 and T2.
These properties are both topological and hereditary.

A T0 space separates a pair of points from the space by a single
open set. A space (X, τ) is T0 if and only if distinct singleton sets have
distinct closures. A space is T1 if given any pair of distinct points there
are open sets each one of them containing one point but not the other.
A topological space is T1 if and only if singleton sets are closed. In a
T1 space if p is a limit point of a set A then every neighborhood of p
contains infinitely many points of A.

A T2 space is also called a Hausdorff space. It separates distinct
points by disjoint open sets. In a Hausdorff space a convergent sequence
has unique limit. Regular and normal spaces satisfy stronger separation
axioms. Countability axioms are other type of auxiliary axioms. We
study first and second countability axioms. Both these axioms are
topological and hereditary. A metric space is called separable if it
has a countable dense subset. A second countable topological space is
separable.

2.11 References for further reading

1. W.J. Pervin: Foundations of General Topology, Academic press ,
New York, London.

2. Kelley J.L, General Topology, Van Nostrand Reinhold Co., New
York, 1955.

3. Dugundji J.: Topology, Allyn and Bacon, Boston, 1966.

2.12 Chapter End Exercises
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1. Show that being T1 is a topological and hereditary property.

2. Show that being T2 is a topological and hereditary property.

3. Let τ be a topology on R generated by the collection {[a, b), a, b ∈
R, a < b}. Prove that (R, τ) is a separable, Hausdorff, first count-
able space.

4. Show that in a separable topological space every collection of
non-empty pairwise disjoint open sets is countable.

5. Prove that (X, τ) is a T1 space if and only if for each x ∈ X,
{x} = ∩{G : G ∈ τ, x ∈ G}.

6. Show that subspace of a regular space is a regular space.

7. Show that if X is regular, every pair of points of X have neigh-
borhoods whose closures are disjoint.

8. Show that if X is normal, every pair of disjoint closed sets have
neighborhoods whose closures are disjoint.

9. Show that a closed subspace of a normal space is normal.

10. Let X be the set of all irrational numbers with usual metric d. Is
(X, d) separable?
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Chapter 3

Compactness

Chapter Structure
3.1 Introduction
3.2 Objectives
3.3 General Definition of Compactness
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3.6 Local Compactness and one-point Compactification
3.7 Lindelof Topological Spaces
3.8 Glossary
3.9 Bibliography
3.10 Let Us Sum Up
3.11 References for Further Reading
3.12 Chapter End Exercises

3.1 Introduction

Compactness is a word we use daily in our life, to indicate that
objects occupy less space. Even in mathematics the word has the same
sense in Rn namely that compact objects are those which are closed
and bounded. However, in an arbitrary topological space such a nice
formulation may fail, as we shall see from examples.

In an arbitrary topological space the correct notion of compactness
is defined in terms of open covers. Using this defintion, we prove that
compactness is preserved under continuous functions and under finite
products. We then move on to the notion of local compactness and also
study spaces which are not too far away from being compact: namely
spaces which admit a one-point compactification.

We also study a notion similar to compactness: namely the notion
of a Lindelöf space.
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3.2 Objectives

After going through this chapter you will know:
• General definition of compactness.
• Continuity preserves compactness.
• A finite product of compact spaces is compact.
• Definition of local compactness.
• Construction of one point compactification.
• Lindelöf Spaces.

3.3 General definition of compactness

Before going to the notion of compactness in topological spaces,
we begin by recalling an important property of real numbers: the
Archimedean property. Let x, y ∈ R with x > 0. Then there exists
a natural number n such that nx > y. Stated in words, this just means
that by taking enough number of units of x, we can get past any given
real number y.

In fact we will often use the following version of this property: if
y ∈ R, there exists ny ∈ N such that ny > y. (Use the above statement
with x = 1.) Before going into the definition of compactness, let us
understand what an open cover of a topological space is.

Definition 22. (Open cover) LetX be a topological space and {Uα}α∈Λ

be a family of open subsets of X. Then {Uα}α∈Λ is said to be an open
cover of X if X ⊂ ∪α∈ΛUα. (Note that this condition is same as saying
X = ∪α∈ΛUα, as Uα ⊂ X, for all α ∈ Λ.)
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From the above definition it is easy to check that {Uα}α∈Λ is an
open cover of X if and only if X = ∪α∈ΛUα, for open subsets Uα of X.

Let us see some examples of open covers:

1. Let X = {1, 2, 3} with the discrete topology. Then {1}, {2, 3} is
an open cover of X.

2. Let X = (0, 1). Let n ≥ 1 and Un = (0, 1
n
). Then {Un} is an open

cover of X.

3. Let X = R. Let n ≥ 1 and Un = (−n, n). Then, {Un} is an open
cover of X.

4. Let X = R2. For n ≥ 1, let Un = {(x, y) | x2 + y2 = n2}. Then
{Un} is an open cover of X.

Check Your ProgressFind other open covers of X in the exam-
ples above, distinct from the given ones.

We now study the definition of compactness for arbitrary topo-
logical spaces: this abstract defintion was first formulated in 1906 by
Maurice Fréchet. (See the website: www : //http − history.mcs.st −
andrews.ac.uk/Biographies/Frechet.html and http : //en.wikipedia.org/wiki/Compactness
for further details.)

Definition 23. Let X be a topological space. X is said to compact
if every open cover of X admits a finite subcover i.e. if there exists a
family {Uα}α∈Λ of open subsets of X such that X ⊂ ∪α∈ΛUα, then there
exist finitely many α1, . . . , αn ∈ Λ such that X ⊂ Uα1 ∪Uα2 ∪ · · · ∪Uαn .
(In this case we say that the family {Uα}α∈Λ admits a finite subcover.)

Remark 3.3.1. The main stress in this definition is on every open
cover. If you are able to prove that a specific open cover of X admits a
finite subcover that does not mean the space is compact. For example,
take X = (0, 1) and for n ≥ 1, Un = (0, 1

n
). Then, clearly U1 is the

finite subcover of X.
On the other hand, if one takes another subcover of X, defined

for n ≥ 1, by Vn = (0, 1 − 1
n
), then this does not admit a finite

subcover: for if there is a finite subcover say Vn1 , Vn2 , . . . , Vnk
, let

nj = max{n1, . . . , nk}. Then, one can check that (0, 1) ⊂ ∪ni
Vni
⊂

Vnj
= (0, 1− 1

nj
), which is impossible by the Archimedean property.

In other words, in order to say that a topological space X is not
compact, it is enough to produce an open cover of X which admits no
finite subcover. For example, the real numbers with the usual metric
topology is not compact. Take the open cover {Un := (−n, n)}n≥1 of
R. This cannot admit a finite subcover, for if it is does, then we would
get R ⊂ (−k, k), for some k ∈ N, which is a contradiction.

Here are easy examples of compact sets:
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Example 1. Every finite set is a compact set. (Since any open cover
of this finite set will require atmost finitely many open sets to cover it.)

Example 2. Let X be a non-empty topological space with indiscrete
topology. Then, X is compact.

Check Your Progress

1. Show that a finite union of compact sets is compact.

2. Show that every subset of the real line R with the finite comple-
ment topology is compact.

3.4 Continuity and compactness

One of the main themes in mathematics is to study objects with
structures and maps between these objects. In topology, the objects
under study are topological spaces and one is more interested in maps
between such spaces that are continuous. This is because continuous
maps preserve many topological properties. For example, we will prove
here that compactness is a property that behaves well with respect to
continuity i.e., continuous image of a compact set is always compact.
This property helps us to get more examples of compact spaces.

Before proving that continuity preserves compactness, let us prove
the following useful result for compactness for subspaces:

Lemma 3.4.1. Let Y be a subspace of X (i.e., Y is a subset of X with
the induced topology.) Then Y is compact if and only if every open
covering of Y by sets open in X contains a finite subcollection covering
of Y.

Proof. We first recall that a subset Vα,Y of Y is open in Y if and only
there exists an open set Vα,X of X such that Vα,Y = Vα,X ∩ Y. (This is
precisely the subspace topology on Y.)

(a) Suppose Y is compact and let {Vα,X}α∈Λ be an open cover of Y
by sets open in X. Then, {Vα,X ∩ Y }α∈Λ be an open cover of Y
by sets open in Y. As Y is compact, we get finitely many α’s
that cover Y. This proves the existence of a finite subcollection
covering of Y.

(b) For the other way, start with an open covering of Y, say {Vα,Y }α∈Λ.
Hence there exists a family of open sets {Vα,X}α∈Λ of X such that
Vα,Y = Vα,X ∩ Y, i.e., Vα,Y ⊂ Vα,X . Then clearly we get:

Y ⊂ ∪α∈ΛVα,Y = ∪α∈Λ(Vα,X ∩ Y ) ⊂ ∪α∈ΛVα,X .
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Thus, we get a covering of Y by open subsets of X. The hypoth-
esis now gives a finite subcollection covering Y, i.e. there exist
α1, . . . , αn such that Y ⊂ Vα1,X ∪ Vα2,X · · · ∪ Vαn,X . Taking inter-
section of both sides with Y, we get that

Y ⊂ (Vα1,X∪Vα2,X · · ·∪Vαn,X)∩Y = ∪ni=1(Vαi,X∩Y ) = ∪ni=1Vαi,Y .

Thus we get a finite subcover of Y, proving that Y is compact.

We will now prove the following:

Lemma 3.4.2. Let X, Y be topological spaces, with X compact. If
f : X → Y is continuous, then f(X) is compact in Y.

Proof. Let {Vα,Y }α∈Λ be an open cover of f(X). Then, it is easy to check
that {f−1(Vα,Y )}α∈Λ is an open cover of X. As X is compact, we get
α1, . . . , αn such that X ⊂ f−1(Vα1,Y )∪f−1(Vα2,Y )∪· · ·∪f−1(Vαn,Y ). By
noting that (f◦f−1)Vαi,Y ⊂ Vαi,Y , we get that f(X) ⊂ Vα1,Y ∪· · ·∪Vαn,Y .
This proves that the continuous image of a compact set is compact.

Example 3. Using Lemma 3.4.2 above, we will prove that the unit
circle S1 is compact. (Recall: S1 := {(x, y) ∈ R2 | x2 + y2 = 1}. )
Let f : R → R2 be given by f(θ) = (cos(θ), sin(θ)). Then, clearly f is
continuous and image of f is S1. In fact by observing that f([0, 2π]) =
S1 and noting that [0, 2π] is a compact subset of R, we have that S1 is
a compact subset of R2.

Lemma 3.4.3. Every closed subset of a compact space is compact.

Proof. Let X be a compact space and let F be a closed subset of X. Let
{Vα}α∈Λ be an open cover of F. Note that by the definition of subspace
topology on F, there exist open subsets Uα of X for each α ∈ Λ with
the property that Vα = Uα ∩ F.

Since F is closed, F c is open and {Uα}α∈Λ ∪ F c is an open cover,
say R of X. As X is compact, R admits a finite subcover R′.

If F c ∈ R′, then it is easy to check that {Uα∩F := Vα | Uα ∈ R′\F c}
gives an open cover of F. If F c 6∈ R′, then {Uα ∩ F := Vα | Uα ∈ R} is
an open cover of F.

Lemma 3.4.4. Every compact subset of a Hausdorff space is closed.

Proof. Let C be a compact subset of a Hausdorff space X. We will
prove that X \ C is open, which will prove C is closed in X.

Let x be a point of X \ C. For each point y ∈ C, using the Haus-
dorff property, choose disjoint neighbourhoods Ux, Vy in X of x and y
respectively. Then R = {Vy | y ∈ C} is an open covering of C and
as C is compact, this open cover admits a finite subcover of C, say
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Vy1 , . . . , Vyn . Hence the open set V := Vy1 ∪ · · · ∪ Vyn contains C. Let
U := Uy1 ∩ · · · ∩ Uyn . Clearly U being a finite intersection of open sets
is open in X. Also, U ∩ V = ∅. (For if there exists r ∈ U ∩ V, then
r ∈ Vyi for some 1 ≤ i ≤ n and r ∈ Uyi for all 1 ≤ i ≤ n implies that
r ∈ Uyi ∩ Vyi , which is not possible as Uyi ∩ Vyi = ∅.)

Check Your Progress

1. Show from first principles (i.e., using the definition of compact-
ness) that R with the usual topology is not compact. (Hint: It is
enough to produce an open cover which does not admit a finite
subcover.)

2. Show that closed subsets of compact sets are compact. (Hint:
Imitate the proof in Lemma 3.4.3.)

3.5 Finite products and compactness

Compactness is preserved under taking finite products i.e., product
of finitely many compact topological spaces is compact. This imme-
diately implies for example that the torus i.e., S1 × S1 is compact in
R2 and so is the unit cube in R3, being the finite product of the unit
interval [0, 1] with itself.

In order to prove this result, we require a technical lemma, called
the Tube Lemma. Before proving this lemma, we define a few terms.

Definition 24. Let X, Y be topological spaces. If x0 ∈ X, the set
x0×Y is called a slice of X×Y. If W is an open subset of X containing
x0, the set W × Y is called a tube about x0 × Y.

Here is a picture to illustrate the above concepts:
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Lemma 3.5.1. Let X, Y be topological spaces. Then the projection
maps p1 : X × Y → X and p2 : X × Y → Y are continuous in the
product topology. Let x0 ∈ X. Then the slice x0 × Y is homeomorphic
to Y. In particular, if Y is compact, then the slice x0 × Y is a compact
subset of X × Y, where X × Y is given the product topology.

Proof. Consider the projection map p2 : x0 × Y → Y by p2(x0, y) = y.
We will check that p2 is continuous by checking that the inverse image of
an open set V of Y is open in x0×Y . For this note that p−1

2 (V ) = x0×V,
which is open in x0× Y. Clearly p2 is injective as well as surjective and
hence it is a bijection. We now need to prove that the direct image
of a basic open subset in x0 × Y is open in Y. This will then prove
that x0×Y is homeomorphic to Y and Y compact implies that x0×Y
is compact as well, since compactness is preserved under continuous
maps.

Note that a set is open in x0× Y if and only if it is the intersection
of an open set in X × Y with x0 × Y. Hence, it can be checked (recall
basic open sets) that W ⊂ x0×Y is open if and only if there exist open
subsets Vi of Y such that W = ∪i(x0×Vi). Then, clearly p2(W ) = ∪iVi,
is an open subset of Y, proving that p2 is a homeomorphism.

Lemma 3.5.2. (Tube Lemma) Let X, Y be topological spaces with Y
compact. If N is an open subset of X × Y containing the slice x0 × Y,
then N contains a tube W×Y about x0×Y, where W is a neighbourhood
of x0 in X.

Proof. Cover the slice x0×Y by basis elements U×V, with U×V lying
in N. (Here U, V are open subsets of X and Y respectively and X×Y is
given the product topology. This can be achieved, as x0 × Y ⊂ N and
N is an open set in the product topology.) By Lemma 3.5.1, x0 × Y
being compact admits a finite subcover by these basic elements, say
U1×V1, . . . , Un×Vn. As Ui are open in X, so is their finite intersection
U1 ∩ · · · ∩ Un, say W. As x0 ∈ Ui, for all 1 ≤ i ≤ n, we get that
x0 ∈ ∩ni=1U: = W.

We now claim that the tube W × Y ⊂ N, by proving that Ui × Vi
cover W × Y, i.e., we prove that W × Y ⊂ ∪ni=1(Ui × Vi).

For this, let (w, y) ∈ W × Y. Consider the point (x0, y), i.e. the
point with the same y co-ordinate as the point we started with. Then,
(x0, y) ∈ Uj × Vj for some j, as Ui × Vi is a cover of x0 × Y. Then,
(w, y) ∈ Uj × Vj, as w ∈ W implies that w ∈ Uj too. This proves that
W × Y ⊂ ∪ni=1(Ui × Vi) ⊂ N.

Here is a picture of what tube lemma achieves:
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Remark 3.5.1. One has a more general theorem which says that an
arbitrary product of compact spaces is compact too. This theorem is
known as Tychonoff’s theorem. The proof of this is beyond the scope
of these notes, but it is a very useful theorem.

We use the Tube lemma now to prove that the product of two
compact spaces is again compact. The result for finitely many compact
spaces then follows by induction.

Theorem 3.5.1. Let X, Y be compact topological spaces. Then their
Cartesian product X × Y (with the product topology) is also compact.

Proof. Let R be an open cover of X×Y. Given x0 ∈ X, the slice x0×Y
is compact by Lemma 3.5.1. Hence, there exist finitely many open
subsets, say U1, . . . , Un ofR which cover x0×Y. Then, N := U1∪· · ·∪Un
is an open set containing the slice x0×Y. Hence, by Tube Lemma, there
exists a tube sayWx0×Y around x0×Y, contained inN. Clearly, Wx0×Y
has a finite subcover, as Wx0 × Y ⊂ N = U1 ∪ · · · ∪ Un.

Now for each x ∈ X, repeat the procedure above to get a tube
Wx × Y containing the slice x × Y. Now observe that {Wx|x ∈ X} is
an open cover of X, as Wx are open in X by construction. As X is
compact, there exist x1, . . . , xn ∈ X such that X ⊂ Wx1 ∪ · · · ∪Wxn .
Hence,

X × Y ⊂ (Wx1 × Y ) ∪ · · · ∪ (Wxn × Y ).

As each of Wxi × Y has a finite cover, so does X × Y. Hence, X × Y is
compact.

Check Your Progress

1. Let f be a continuous real-valued function on [a, b]. Prove that
the graph of f , i.e., the set {(x, f(x)) | x ∈ [a, b]} is a compact
subset of R2.

2. State true or false with correct justification (if false, give a counter-
example): An arbitrary union of compact sets is compact.
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3.6 Local compactness and one-point

compactification

There is another more useful notion of compactness called local
compactness. This is a weaker notion than compactness. We shall see
examples of spaces which are locally compact but not compact.

Definition 25. (Local Compactness) A topological space X is said to
be locally compact at x ∈ X if there is some compact subset C of X
that contains a neighbourhood of x. If X is locally compact at each of
its points, then X is said to be locally compact.

Every compact space is locally compact, because the compact subset
C containing a neighbourhood of x in X can be taken to be the whole
space X itself. The converse need not hold: for example, R with the
usual topology is locally compact but not compact.
Check Your Progress

1. Verify that R is locally compact but not compact.

2. Prove that the space Q of rationals is not locally compact.

3. The infinite dimensional product space RN is not locally compact.

Definition 26. Let X be a topological space and x ∈ X. We say x
has a local base of compact neighbourhoods, if x has arbitrarily small
compact neighbourhoods in X.

Lemma 3.6.1. Let X be a regular space and suppose X is locally com-
pact at x. Then, x has a local base of compact neighbourhoods in X.

Proof. Let X be regular and locally compact at x. Then x has a com-
pact neighbourhood C in X. Let U ⊂ C be a neighbourhood of x in
X. By regularity, there exists a closed neighbourhood F of x such that
F ⊂ U. Note that F ∩C ⊂ U is a closed neighbourhood of x in F, since
C is closed in X.

Since F is compact, so is F ∩C. Thus, we get a chain of decreasing
compact neighbourhoods x ∈ F ∩ C ⊂ C. Repeat the argument above
with F = F ∩ C, to get a local base of compact neighbourhoods for
x ∈ X.

Sometimes your space need not be compact, but adding just one
point to it makes it compact. For example, consider the open interval
(0, 1) as a string of thread. If you are able to fuse the two ends of it, by
joining 0 and 1 together, then you would get a circle, which is now a

37

m
unote

s.i
n



compact space! Thus by adding one point suitably you are sometimes
able to get a compact space out of your old space. Such a process is
called as one point compactification.

More precisely, the mathematical definition goes as follows:

Definition 27. (One point compactification) Let X be a locally com-
pact Hausdorff space. Choose y not in X. (It is a convention to denote
such a y by the symbol ∞.) Consider the set Y = X ∪ {∞}. Declare
the following subsets of Y to be open:

(a) U , with U open in X. (We call these open sets of Type I.)

(b) Y \ C, with C compact subset of X. (We call these open sets of
Type II.)

We will check below that Y becomes a topological space when the
above sets are declared as open sets. Such a space Y is called a one-
point compactification of X.

Proposition 3.6.1. Let Y be the set defined above with the open sets
of the two types. Then, Y is a topological space.

Proof. We need to check the following axioms for open sets:

1 Finite intersection of open sets in Y is again an open set in Y.

2 Arbitrary union of open sets in Y is again an open set in Y.

Before we check the first axiom, we make the following observations:

1(a) Let U1, U2 be both open sets of Type I. Then clearly, U1 ∩ U2 is
again an open set of Type I.

1(b) Let U1 be an open set of Type I and U2 be an open set of Type
II. We will prove that U1 ∩ U2 is again an open set in Y. Since
U2 is of Type II, there exists a compact subset C2 of X such that
U2 = Y \C2. Hence, U1∪U2 = U1∪(Y \C2) = U1∪(X \C2). Note
that as C2 is compact subset of a Hausdorff space, hence closed
in X. Thus, X \C2 is open in X and hence U1 ∪ (X \C2) is open
of Type I.
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1(c) Let U1, U2 be both open sets of Type II i.e, there exist compact
sets C1, C2 ∈ X such that U1 = Y \ C1 and U2 = Y \ C2. Hence,
U1 ∪ U2 = Y \ (C1 ∩ C2). As a finite intersection of compact sets
is again compact, we observe that U1 ∪U2 is an open set of Type
II.

Now let U1, U2, . . . , Un be open subsets of Y. By rearranging the
indices that occur namely, 1, 2, . . . , n, we may assume that U1, . . . , Un1

are of Type I; Un1+1, Un1+2, . . . , Un are of Type II, for some 1 ≤ n1 ≤ n.
Using the observation above, we see that U1∩· · ·∩Un1 is again a subset
of Type I and Un1+1 ∩ · · · ∩ Un is again a subset of Type II.

Hence, U1 ∩ · · · ∩ Un is again an open subset of Y, proving that the
first axiom for open sets holds in Y.

We now check that an arbitrary union of open subsets of Y is open
in Y by making the following observations:

1(a) Let {Uα}α∈Λ be a family of open sets of Type I. Then clearly,
∪α∈ΛUα is again an open set of Type I.

1(b) Let {Uα}α∈Λ be a family of open sets of Type I and {Uβ}β∈Λ′ be
a family of open subsets of Type II.

We will prove that (∪α∈ΛUα)∪(∪β∈Λ′Uβ) is again an open set in Y.
For this observes that (∪α∈ΛUα)∪ (∪β∈Λ′Uβ) equals U ∪ (Y \C) =
Y \ (C \ (U ∩C)). Now note that U ∩C is open in C and hence,
C \ (U ∩ C) is closed in C and hence compact, as C is compact.
Thus, (∪α∈ΛUα) ∪ (∪β∈Λ′Uβ) is a set of Type II and hence open.

1(c) Let {Uβ}β∈Λ′ be a family of open sets of Type II. Then ∪β∈Λ′Uβ
is again an open set of Type II as this equals ∪β∈Λ′Y \ Cβ, for
compact subsets Cβ of X. This union now equals Y \ ∩β∈Λ′Cβ.
Now note each Cβ is a compact subset of the Hausdorff space X
and hence is closed in X. Hence, ∩β∈Λ′Cβ is a closed subset of X.
Moreover, for a fixed β0 ∈ Λ, ∩β∈Λ′Cβ ⊂ Cβ0 and hence we have
a closed subset of a compact set and hence ∩β∈Λ′Cβ is a compact
subset of X. This implies that we get that ∪β∈Λ′Uβ is an open set
of Type II.

Using these observations, it easily follows that an arbitrary union
of open sets is again open.

Remark 3.6.1. Every space admits a unique one point compactifica-
tion upto homeomorphism.

Here is an example to keep in mind:
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Example 4. One-point compactification of (0, 2π) is homeomorphic
with the circle S1.

Define a map f : (0, 2π) ∪ {∞} → S1 by: f(θ) = (cos(θ), sin(θ)),
for all x ∈ (0, 2π) and f(∞) = (1, 0). Clearly, f is a bijection.

We now prove that f is continuous. Let V ⊂ S1 be open. Then,
either (1, 0) 6∈ V or (1, 0) ∈ V. If (1, 0) 6∈ V, then V is an arc of S1

not containing (1, 0) and hence f−1(V ) is of the form (θ1, θ2) for some
θ1 < θ2 ∈ (0, 2π). In this f−1(V ) is an open subset of (0, 1).

If (1, 0) ∈ V, then there exists an arc around (1, 0) contained in V.
Thus, this arc consists of some points in the first quadrant and some
points in the fourth quadrant, which are determined by angles θ1 < θ2

with θ1 > 0 and θ2 < 2π. Thus, in this case f−1(V ) = {∞} ∪ (0, θ1) ∪
(θ2, 2π). Clearly, then f−1(V ) = Y \C, where C is the compact subset
[θ1, θ2] of (0, 1). This finishes the proof that f is continuous.

Let Y = (0, 2π) ∪ {∞}. We will now prove that the direct image of
an open subset of Y under f is again open. Similar to the case above,
it is easy to check that if U is an open subset of (0, 2π), then f(U) is
open in S1. Let U be an open subset of (0, 2π) ∪ {∞} containing ∞.
Then, U is of the form Y \ C, for some compact subset C of X, then
f(U) = f(Y ) \ f(C). As C is compact and we have proved that f is
continuous, we get that f(C) is compact and hence closed in S1. Hence,
f(U) = S1 \ f(C) is an open subset of S1, proving that f is an open
map. This completes the proof that f is a homeomorphism.

We now study the basic properties of one-point compactification.

Theorem 3.6.1. Let X be a locally compact Hausdorff space which is
not compact. Let Y be the one-point compactification of X. Then, Y is
a compact, Hausdorff space; X is a subspace of Y, the set Y \X consists
of a single point and X = Y.

Proof. We will prove first that X is a (topological) subspace of Y i.e.,
we will prove a set is open in X if and only if it is the intersection with
X of some open set in Y. Let U ⊂ X be open. Then, clearly U = Y ∩U,
and U is open in Y by the topology on Y. Conversely, let U = V ∩X,
for an open set V in Y. Since open sets in Y are of two types, suppose
V is of the first type: i.e., let V = U1, for some open subset U1 of X.
Then clearly V is open in X.

Suppose V is of the second type i.e., V = (Y \ C) ∩X, for some C
compact in X. Then, V = (Y ∩X) \ (C ∩X) = X \C = Cc, as C ⊂ X.
Since C is a compact subset of a Hausdorff space, it is closed in X and
hence Cc is open in X, proving that V is open in X.

We will now prove that ∞ is a limit point of X and this will imply
X = Y. For this we need to show that every open subset around ∞
intersects X in a point different from ∞. For this observe that every
open subset around ∞ is the complement in Y of a compact subset C
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of X. As X is not compact, C is a proper subset of X and hence the
complement X \ C contains at least one point. This then implies that
every open subset around ∞ intersects X in a point different from ∞,
proving that ∞ is a limit point of X.

Clearly, Y \ X is the single point infinity and it now remains to
prove that Y is compact and Hausdorff. First we prove compactness
of Y . Let R be an open covering of Y. As ∞ should belong to this
collection, R contains an open subset of Type II, say of the form Y \C,
with C compact in X. Now take all members of R other than Y \ C
and intersect them with X. They form a collection of open sets in X
covering C. Compactness of C implies that there exist finitely many of
them covering C. Take the corresponding finitely many elements of R
alongwith Y \ C to get an open cover of Y.

Let us now check that Y is Hausdorff: let x, y ∈ Y. If both x, y lie
in X, then X Hausdorff implies that there exist disjoint open sets U, V
in X such that x ∈ U and y ∈ V. If x ∈ X and y = ∞, then local
compactness of X allows us to choose a compact set C in X containing
a neighbourhood U of x. Then, U and Y \C are disjoint neighbourhoods
of x and ∞ respectively in Y.

Check Your Progress

1. Prove that the composition of two homeomorphisms is again a
homeomorphism.

2. Show that the one-point compactification of (0, 1) is also homeo-
morphic to S1. (Hint: Use that (0, 1) and (0, 2π) are homeomor-
phic and use the exercise above.)

3. Check that the open sets in X described in Theorem 3.6.1 above
do give a topology on X.

3.7 Lindelöf Topological Spaces

Definition 28. A topological space X is said to be a Lindelöf space,
if every open cover of X admits a countable subcover.

Lemma 3.7.1. The Lindelöff property is preserved under continuous
functions i.e., if X is a Lindelöf topological space and f : X → Y is
continuous, then f(X) is Lindelöf.

Proof. Let X be a Lindelöf space and f : X → Y be continuous. We
will prove that f(X) is Lindelöf. Let {Vα}α∈Λ be an open cover of
f(X). Then, it is easy to check that {f−1(Vα)}α∈Λ is an open cover
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of X. As X is Lindelöf, {f−1(Vα)}α∈Λ admits a countable subcover,
say {f−1(Vαi

)}αi∈Λ,i∈N. Then it can be checked that (Vαi
)αi∈Λ,i∈N is a

countable subcover of {Vα}α∈Λ for f(X). This proves that f(X) is Lin-
delöf.

Check Your Progress

• Show that if A is a closed subspace of a Lindelöf topological space
X, then A is Lindelöf.

• Show that if X is compact and Y is Lindelöf, then X × Y is
Lindelöf.

Theorem 3.7.1. For a metric space (X, d) the following are equivalent:

(a) (X, d) is Lindelöf.

(b) (X, d) is separable.

(c) (X, d) is second countable.

Proof. (a) =⇒ (b) Let (X, d) be a Lindelöf metric space. We need
to show that X has a countable dense subset. For each n ∈ N, let
Cn = {B(x, 1

n
) | x ∈ X}. Then, clearly Cn is an open cover of X. As

X is Lindelöf, there exists a countable subcover Dn = {B(xni,
1
n
) | i ≥

1, i ∈ N} of Cn, for a fixed n. Let D = {xn,i | n ∈ N, i ∈ N}. Clearly
D is a countable subset of X, as D is a countable union of countable
sets. We will now show that D is dense in X, which will prove that
(X, d) is separable.

Let y ∈ X. We will prove that for every r > 0, B(y, r) ∩ D 6= ∅,
which will prove that D is dense in X. To see this, choose m ∈ N such
that 1

m
< r. Then, B(y, 1

m
) ⊆ B(y, 1

r
). Since for this m, Dm is a cover

of X there exists k ∈ N, such that y ∈ B(xm,k,
1
m

) ∈ Dm which means
that d(y, xm,k) <

1
m

i.e., d(xm,k, y) < 1
m

i.e., xm,k ∈ B(y, 1
m

) ⊆ B(y, r).
Thus xm,k ∈ B(y, r) ∩ D, proving that B(y, r) ∩ D 6= ∅, as required.

(b) =⇒ (c) We will prove that if (X, d) is a separable metric
space, then it is second countable. Let (X, d) be a separable metric
space i.e., there exists a subset A of X such that A is countable and
c(A) := A = X. Consider B := {B(x, r) | x ∈ A; r ∈ Q; r > 0}. Clearly,
B is a countable collection of open sets in X. We will show that B is a
basis for (X, d), which will prove that (X, d) is second countable.

For this, let x ∈ X and let U be an open set in X such that x ∈ U.
We will prove that there exists B ∈ B such that x ∈ B ⊆ U. Since x ∈ U
and U is open, there exists r > 0, r ∈ Q such that x ∈ B(x, r) ⊆ U.
As A = X, there exists a ∈ A such that a ∈ A ∩ B(x, r) \ {x}. Let
B = B(a, r

2
). Then, B belongs to B and using the triangle inequality,

it is easy to check that x ∈ B ⊆ U. This prove that B is a countable
basis for (X, d), proving that (X, d) is second countable.
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(c) =⇒ (a) Let (X, d) be a second countable space. Let {Ui}i∈I
be an open cover of X. Since X has a countable basis, denote this by
{Vn}n∈N, where Vn are open subsets of X. Let S = {n ∈ N | Vn ⊆
Ui for some i ∈ I}. Clearly, S is countable as a subset of a countable
set is countable. Using the fact that {Vn}n∈S is a basis of X, it is easy
to check that {Vn}n∈S is an open cover of X. For each n ∈ S, choose
i(n) ∈ I such that Vn ⊆ Ui(n), for some i(n) ∈ I. Then, {Ui(n)}n∈S
gives the required countable subcover of X, proving that X is Lindelöf.
(Note here that we did not use the fact that X was a metric space.
Thus this result is more general, but here we will restrict ourselves to
metric spaces.)

In general, Lindelöff property is not hereditary. Here is a counter-
example. Let X be an uncountable set and let x0 ∈ X. Let τ = {A ⊆
X | x0 6∈ A}. It can be checked that τ is indeed a topology on X. It is
also easy to check that X is Lindelöf, in fact X is compact. It can now
be checked that (Y, τY ) with Y = X \ {x0} with the subspace topology
τY is not Lindelöf.

In general, even a finite product of Lindelöff spaces is not Lindelöff.
Other results regarding these spaces are very technical. We shall not
go into further details about this property, but the interested reader
can look up the references for further reading.

3.8 Glossary

In this chapter, you have learnt the following:

• Open covers and finite subcover of a given cover.

• Definition of Compactness: Every open cover has a finite sub-
cover.

• Continuous image of a compact set is compact.

• Closed subset of a compact topological space in compact.

• Tube lemma.

• Products of finitely many compact spaces is compact.

• Local compactness: every point x is contained in a compact set
containing a neighbourhood of x.

• A regular space, locally compact at x, admits a local base of
compact neighbourhoods of x.

• One-point compactification.
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• Basic properties of one-point compactification.

3.9 Bibliography
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3.10 Let Us Sum Up

In this chapter, we first learn the abstract definition of compactness.
A topological space is said to be compact, if every open cover of it ad-
mits a finite subcover. Compactness is a nice property of a topological
space, as it is preserved under continuity and finite products. These
properties help us to get more examples of compact spaces, like the
unit circle S1 and the torus, S1 × S1. One important ingredient in the
proof of the second property (namely, finite product of compact spaces
is compact) is the Tube Lemma.

Sometimes, a topological space may fail to be compact, but it may
be locally compact i.e., every point has a compact neighbourhood. For
example, the real line with the usual topology is locally compact, but
not compact. Out of such locally compact spaces, some spaces are not
very far away from being compact. These spaces can then be made
compact by adding one point and defining a suitable topology on this
new space, such that it becomes compact. This process is called the
Alexandroff one-point compactification. We have studied the properties
of one-point compactification and seen one explicit example of such a
compactification.

3.11 References for further reading

1. George Simmons: Topology and Modern Analysis, TataMcgraw-
Hill.
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2. M. A. Armstrong: Basic Topology, Springer UTM

3. W.J. Pervin: Foundations of General Topology, Academic press ,
New York, London.

4. Kelley J.L, General Topology, Van Nostrand Reinhold Co., New
York, 1955.

5. Wolfgang Thorn: Topological Structures; Holt, Rinehart and
Winston, New York, Chicago.

3.12 Chapter End Exercises

1. Show that an arbitrary intersection of compact sets is again a
compact set.

2. This is a generalization of the above exercise: Let f : X → Y,
with Y compact. Then f is continuous if and only if the graph
of f, Gf := {(x, f(x)) | x ∈ X} is closed in X × Y.

3. Show that the one-point compactification of R is homeomorphic
to S1.

4. A relation C on a set X is said to be a simple order if it has the
following properties:

(a) (Comparibility) For every x, y ∈ X for which x 6= y, either
xCy or yCx holds.

(b) (Non-reflexivity) For no x ∈ A does the relation xCx hold.

(c) (Transitivity) If xCy and yCz, then xCz.

A set X with a simple order is said to have the least upper bound
property if every non-empty subsetX0 ofX that is bounded above
has a least upper bound.

Show that every simply ordered set with the least upper bound
property is locally compact.

5. Consider the set Q of all rational numbers as a metric space with
the usual metric given by d(p, q) = |p− q|. Let E be the set of all
p ∈ Q such that 2 < p2 < 3. Show that E is closed and bounded
in Q, but not compact.

6. Suppose that M is compact and f : M → N is continuous, one-
one and onto. Prove that f is a homeomorphism.
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7. Show that if Y is compact, then the projection π1 : X × Y → X
is a closed map i.e., π1 carries closed sets to closed sets.

8. Prove that local compactness is preserved under continuous, open
functions.

9. Let X be an infinite set with a distinguished point x0. Let T
consist of the empty set and all subsets of X containing x0. Prove
that (X, T ) is a locally compact space.

10. Let K ⊂ R consist of 0 and the numbers 1
n
, for all n ≥ 1. Prove

that K is a compact subset of R.
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Chapter 4

Compact and Complete
Metric Spaces

Chapter Structure
4.1 Introduction
4.2 Objectives
4.3 Equivalent formulations of Compactness for Metric Spaces
4.4 Compact in Rn iff Closed and Bounded
4.5 Completeness and Completion in Metric Spaces
4.5.1 Compete Metric Spaces
4.5.2 Completion of a Metric Space
4.6 Lebesgue Covering Lemma
4.7 Uniform Continuity Theorem
4.8 Glossary
4.9 Bibliography
4.10 Let Us Sum Up
4.11 References for Further Reading
4.12 Chapter End Exercises

4.1 Introduction

The aim of this unit is to give for metric spaces other equivalent
formulations of compactness: sequential compactness and limit point
compactness. The main theorem here is that a subset E of Rn is com-
pact if and only if E is closed and bounded in Rn. We then study
complete metric spaces and characterize them in terms of compactness
and total boundedness. We briefly study the notion of completion of a
metric space. We then try to understand compactness better using the
notion of Lebesgue covering. This helps us to prove a very important
theorem: every continuous map from a compact metric space to any
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other metric space is uniformly continuous.

4.2 Objectives

After going through this chapter you will be able to:
• Give various equivalent definitions of compactness for metric spaces.
• Show E ⊂ Rn is compact if and only if it is closed and bounded.
• Define complete metric spaces and completion of a metric space.
• State Lebesgue covering lemma and find Lebesgue number of a cov-
ering.
• Prove uniform continuity theorem.

4.3 Equivalent formulations of

compactness for metric spaces

In the previous chapter, we have studied the notion of compactness
using open covers. However, checking whether a space is compact via
this definition may not be always be easy and so, one tries to see if there
are other equivalent definitions which might work. In this section we
study these other notions of compactness: sequential and limit point
compactness and prove that all three definitions of compactness are
equivalent for metric spaces.

Definition 29. (Sequentially compact) Let Y be a topological space.
Y is said to be sequentially compact, if every sequence in Y has a
convergent subsequence.

Definition 30. (Limit point compact) Let Y be a topological space.
Y is said to be limit point compact if every infinite subset of Y has a
limit point.

We state a helpful lemma which is a consequence of sequential com-
pactness.

Lemma 4.3.1. Let X be sequentially compact. Then for every ε > 0,
there exists a finite covering of X by ε-balls.

Proof. We prove the contrapositive of this statement: if there exists
ε > 0 such that X cannot be covered by finitely many ε-balls, then X
is not sequentially compact.

Suppose X cannot be covered by finitely many ε-balls. We shall
construct an infinite sequence of points (xn) such that (xn) has no
convergent subsequence. Start with any x1 ∈ X. Then, there exists x2 ∈
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X \ B(x1, ε). (This is so as by assumption, X cannot be covered by a
single ball B(x1, ε).) Having chosen x1, x2, . . . , xn continue by induction
to get xn+1 6∈ B(x1, ε) ∪B(x2, ε) · · · ∪B(xn, ε).

The choice of xn’s implies that d(xn+1, xi) ≥ ε, for all 1 ≤ i ≤ n.
Hence the sequence (xn) can have no convergent subsequence.

The above three notions of compactness are in general not equiv-
alent. The class of metric spaces is a good class of topological spaces
where the three notions of compactness agree. In fact, the three no-
tions of compactness are equivalent for a slightly bigger class, namely
for the class of metrizable spaces. (See the book by James Munkres for
the definition and further details.) We prove some implications of this
equivalence below:

Theorem 4.3.1. Let (X, d) be a metric space. Then one has the fol-
lowing implications:

(1) X is compact implies X is limit point compact.

(2) X is limit point compact implies X is sequentially compact.

Proof. • We will first prove X compact implies X limit point com-
pact.

Let X be compact and let A be an infinite subset of X. We have to
prove that A has a limit point in X. We prove the contrapositive
of this statement: if A has no limit point in X, then A is finite.

Assume A has no limit point. Then A contains all its limit points
and is hence closed. Thus A is a closed subset of a compact space
and hence itself compact. Since no a ∈ A is a limit point of A,
there exists a neighbourhood Ua of a disjoint from A \ {a}. In
fact, Ua = {a}, for if it contains any other b 6= a, then it would
not be disjoint from A \ {a}. Clearly, R := {Ua | a ∈ A} is an
open covering of A. Since A is compact, R has a finite subcover,
say Ua1 , . . . , Uan . Hence, A ⊂ Ua1 ∪· · ·∪Uan = {a1, . . . , an}. Since
every subset of a finite set is again finite, we get that A is finite,
as required.

• We now prove X limit point compact implies X is sequentially
compact.

We will prove that every sequence in Y has a convergent sub-
sequence. Let (xn)n∈N be a sequence in Y. Consider the set
A = {xn | n ∈ N}. We make two cases: A is finite or A is
infinite.

– Suppose A be finite. We claim that there exists x such that
x = xn, for infinitely many n ∈ N. To see this, define f : N→
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A by f(n) = xn. Then, N = ∪x ∈ Af
−1(x). If the number of

elements in f−1(x) had been finite for every x ∈ A, then
we would get that the set of natural numbers is a finite
set, which is a contradiction. Hence, there exists x ∈ A
such that f−1(x) is an infinite subset of N i.e., there exist
infinitely many n such that f(n) := xn = x. Now it is obvious
that (xn)n∈f−1(x), being the constant sequence is a convergent
subsequence of (xn)n∈N.

– Suppose A is infinite. As X is limit point compact by as-
sumption, we have that A has a limit point, say x. We will
now define a subsequence of (xn) converging to x as follows:
since x is a limit point of A, B(x, 1), the ball around x of
radius 1 contains a point of A other than x. Thus, one can
choose n1 such that xn1 ∈ B(x, 1). Applying inductively the
same argument again, given a positive integer ni−1 we can
choose an index ni > ni−1 such that xni

∈ B(x, 1/i). (The
guarantee that ni > ni−1 is due to the fact that A is infinite.)

The choice of xni
now implies that the subsequence xn1 , xn2 , . . .

converges to x in A.

Having come this far, it is natural to ask if a metric space (X, d)
is sequentially compact then is it compact too? The answer is yes,
but requires the notion of Lebesgue number of a covering. This will
be developed in the last section of this chapter and we will then prove
that sequential compactness implies compactness for metric spaces.

In general, the above implications need not hold. We will now see
some examples of these.

Example 5. Let X be a two-point space in the indiscrete topology.
Then, X × N is limit point compact but not compact.

Lemma 4.3.2. Let X be a sequentially compact topological space. Then,
X is limit point compact.

Proof. Let A be an infinite subset of X. Then, A contains a sequence in
X. Since X is sequentailly compact, this sequence in A has a convergent
subsequence. The limit of this convergent subsequence is a limit point
of A.

4.4 Compact in Rn if and only if closed

and bounded
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In this section, we are going to characterize compact sets in Rn.
Before proving that, let us recall some basic notions related to metrics
on Rn. First recall the definition of a metric:

Definition 31. A metric on a set X is a function d : X × X → R
having the following properties:

• For all x, y ∈ X, d(x, y) ≥ 0 where equality holds if and only if
x = y.

• For all x, y ∈ X, d(x, y) = d(y, x).

• For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y). (This inequality is
called the triangle inequality.)

Check Your Progress

1. For x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn, check

that d(x, y) = (
∑

i(xi − yi)
2)

1
2 is a metric. (This is called the

Euclidean metric on Rn.)

2. For x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn, check
that ρ(x, y) = max{|xi − yi|} is also a metric on Rn.

3. With notations as above, show that ρ(x, y) ≤ d(x, y) ≤
√
nρ(x, y).

4. Use the fact above to prove that the topologies induced by the
Euclidean metric and the square metric are the same.

5. Also show that the topologies induced by the Euclidean metric
and square metric are same as the product topology on Rn.

We will prove an important theorem in this section. The ideas in
here are also used once again in the later sections. This theorem also
has an important application: it helps us to characterize completely
compact subsets of Rn.

We fix up some notation:

Definition 32. If a < b, the set of all points in R satisfying a ≤ x ≤ b
is called a closed interval.

Lemma 4.4.1. Let {In} be a sequence of closed intervals in R such
that for all n ∈ N, In ⊇ In+1. Then, ∩∞i=1In 6= ∅.

Proof. The proof is based on the least upper bound property (lub prop-
erty) of real numbers. If In = [an, bn], let E be the set of all an. Then
E is non-empty and bounded above by b1, for example. Let x be the
least upper bound of E, which exists as E is a non-empty bounded
subset of R. Now observe that for all m,n ∈ N an ≤ an+m ≤ bn+m ≤ bm
which then implies that x ≤ bm for each m, x being the least among
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upper bounds of E. By definition, am ≤ x, for all m ∈ N. Thus, for all
m ∈ N, x ∈ [am, bm] := Im, proving that x ∈ ∩∞i=1In. This proves that
∩∞i=1In 6= ∅.

Theorem 4.4.1. Every closed and bounded interval in R is compact.

Proof. Let I = [a, b] be a closed and bounded interval in R. Then, for
all x, y ∈ I, |x− y| ≤ b− a. Let b− a = δ. We will prove I is compact.
Suppose not, i.e., suppose that there exists an open cover {Gλ}λ∈Λ of
I which contains no finite subcover of I. Let c be the mid-point of
[a, b] i.e., c = a+b

2
. Then, clearly I = [a, c] ∪ [c, b]. Then atleast one of

the intervals [a, c] or [c, b] cannot be covered by any finite collection of
{Gλ}λ∈Λ, (otherwise so would be I.) Denote the interval which cannot
be covered by any finite collection by [a1, b1] and apply the above ar-
gument again to this interval I1 := [a1, b1]. Next subdivide I1 as above
to get an I2 ⊂ I1 which cannot be covered by any finite collection of
{Gλ}λ∈Λ. Thus continuing further, we get a sequence of closed intervals
In satisfying the requirements of Lemma 4.4.1 and also having for all
x, y ∈ In, |x− y| ≤ 2−nδ. By Lemma 4.4.1, there exists a point x lying
in In for all n ∈ N. Since {Gλ}λ∈Λ is an open cover of I, there exists
an α such that x ∈ Gα with Gα ∈ {Gλ}λ∈Λ. Since Gα is open, there
exists r > 0 such that |y−x| < r implies that y ∈ Gα. By Archimedean
property, there exists n ∈ N large such that 2−nδ < r. This then implies
that In ⊂ Gα, which contradicts the choice of In.

Hence, I is compact.

Theorem 4.4.2. A subset A of Rn is compact if and only if it is closed
and bounded (in the euclidean metric d or the square metric ρ.)

Proof. It is enough to prove that A is bounded under d. This follows
from the inequalities ρ(x, y) ≤ d(x, y) ≤

√
nρ(x, y) as A is bounded

under d if and only if it is bounded under ρ.
Let A be a compact subset of Rn. By Lemma3.4.4, it is closed in Rn.

Consider the collection of open sets {Bρ(0,m) | m ∈ N}. Clearly this
is a nested open cover of Rn and its intersection with A gives a nested
open cover of A. Compactness of A implies that there exists a finite
subcover of A indexed by m1,m2, . . . ,mn. Let s = max{m1, . . . ,mn}.
Then, it is clear that A ⊂ Bρ(0, s), proving that A is bounded under ρ.

Conversely, suppose that A is closed and bounded in ρ i.e., suppose
ρ(x, y) ≤ N for every pair of points x, y ∈ A. Choose x0 ∈ A and let
ρ(x0, 0) = b. Then, ρ(x, 0) ≤ ρ(x, x0) + ρ(x0, 0) ≤ N + b, for every
x ∈ A. Let P = N + b. Then A ⊂ [−P, P ]n. Since [−P, P ]n is a cube
in Rn, it is compact, being a finite product compact subsets of R. (See
Theorem 3.5.1.) As A is a closed subset of this compact set, A is also
closed in Rn. (See Lemma 3.4.3.)
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4.5 Completeness and completion in

metric spaces

We will study another very helpful notion in this section: complete-
ness. The word “completeness” is used in mathematics in the same
sense as in English: absence of gaps. We will then study the relation
between compactness and completeness by introducing a geometric con-
cept of total boundedness.

In the earlier chapters, we have studied the notion of one-point
compactification, which helps us to get a compact space out of a non-
compact one. Here too, we will “complete” spaces that are not com-
plete: for example the set of rational numbers is not a complete metric
space and its completion gives us the real line. Though the formal def-
inition may look very intimidating, the underlying idea is simple: one
is just trying to fill up the gaps in a space which is not complete.

4.5.1 Complete metric spaces

Before we go to complete metric spaces, we look at the notion of total
boundedness.

Definition 33. Let (X, d) be a metric space. A subset A of X is said to
be totally bounded if given ε > 0 there exist a finite number of subsets
A1, . . . , An of X such that diamAk < ε (for all 1 ≤ k ≤ n) and such
that A ⊂ ∪nk=1Ak.

Theorem 4.5.1. If a subset A of a metric space (X, d) is totally
bounded, then A is bounded.

Proof. IfA is totally bounded, then there exist nonempty subsetsA1, A2, . . . , An
of X such that diamAk < 1, for all 1 ≤ k ≤ n and A ⊂ ∪nk=1Ak. For each
k between 1 and n let ak ∈ Ak be any point. Let D =

∑n−1
i=1 d(ai, ai+1).

Now let x, y ∈ A. Then, without loss of generality there exist
1 ≤ l ≤ m ≤ n such that x ∈ Al and y ∈ Am. Then, d(x, y) ≤ d(x, al)+∑m−1

t=l d(at, at+1)+d(am, y). Since diamAt < 1, we have d(x, al), d(am, y) <
1. Hence, d(x, y) < 1 + D + 1 = D + 2, for all x, y ∈ A. This proves
that A is bounded.

We state without proof an important equivalent condition for total
boundedness in metric spaces. (For details see the book by Goldberg,
Methods of Real Analysis.)

Theorem 4.5.2. Let (X, d) be a metric space. A subset A of X is
totally bounded if and only if every sequence of points of A contains a
Cauchy subsequence.
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Using Theorem 4.5.2, we show that bounded need not imply totally
bounded.

Example 6. Consider the metric space l2, consisting of all sequences
(xn) such that

∑
x2
n <∞. Then, l2 is a metric with d(x, y) := ||x−y||2,

where for a sequence s = (sn) ∈ l2, ||s||2 = (
∑∞

i=1 s
2
n)

1
2 . For each i ∈ N,

let ei be the sequence all whose terms are zero, except the i-th term
which is one. Let E be the set of all ei as above. Then one can
easily check that for j 6= k, d(ej, ek) = ||ej − ek||2 =

√
2. Thus, E

is bounded with diameter
√

2. However E is not totally bounded as
e1, e2, . . . cannot have any Cauchy subsequence, since d(ej, ek) =

√
2,

which remains quite large.

4.5.2 Completion of a metric space

Definition 34. (Completion of a metric space) Let (X, d1) and (Y, d2)
be two metric spaces.

• An isometric imbedding of X into Y is a map f : X → Y such
that d2(f(x), f(x′)) = d1(x, x′), for all x, x′ ∈ X.

• If there exists an isometric imbedding f of (X, d1) into a complete
metric space (Y, d2) such that f(X) is dense in Y, then (Y, d2) is
called a completion of (X, d1).

A trivial examples of an isometric imbeddings is that of the identity
map from R to itself.

The main theorem of this section is to prove the existence of a
completion of a metric space (X, d1). Before that we outline the con-
structions and state certain results required in the construction. The
completion of a metric space is a certain quotient space of the space
of all Cauchy sequences in X. (The material in this section depends
heavily on Section 4 of the book by K. D. Joshi, Introduction to Gen-
eral Topology. Readers are requested to look up the section there for
further details.)

Let us recall the definition of a Cauchy sequence.

Definition 35. Let (X, d) be a metric space. A sequence (xn) in X is
said to be Cauchy, if for every ε > 0 there exists an integer N ∈ N such
that d(xn, xm) < ε for all n,m ≥ N.

We now introduce a relation on the set of Cauchy sequences. The
equivalence classes under this relation will help us to get a complete
metric space out of our given space.

Definition 36. Let (X, d) be a metric space. A sequence (xn) in X is
said to be Cauchy, if for every ε > 0 there exists an integer N ∈ N such
that d(xn, xm) < ε for all n,m ≥ N.
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Definition 37. Two Cauchy sequences (xn), (yn) in (X, d) are said to
be equivalent, if d(xn, yn)→ 0 as n→∞.

It is easy to check that the above relation is an equivalence relation
and let S denote the set of equivalence classes of Cauchy sequences in
(X, d). Given a Cauchy sequence x = (xn), let x̂ denote the image of x
in S. We are now in a position to state the main theorem:

Theorem 4.5.3. Let S be the set of Cauchy sequences in a metric
space (X, d). Let X̂ denote the set of all equivalence classes of S under
the relation above. We can make X̂ into a metric space by defining
e([x̂], [ŷ]) = limn→∞ d(xn, yn). Let h : X → X̂ be given by h(x) = [x̂].
Then, X̂ is the completion of the metric space (X, d).

Proof. To prove the theorem, we need to prove several things. We will
only list them here first and ask to readers to supply details themselves
one by one.

• Proving that the relation on S is an equivalence relation.

• Proving the function e is well-defined.

• Proving that the function e is a metric.

• Proving that h is an isometric imbedding.

• Proving that h(X) is dense in X̂.

• Proving that X̂ is a complete metric space.

Remark 4.5.1. The property of completion is slightly different from its
sister property of compactness: compactness is a topological property,
but completion is not a topological concept i.e., it is not invariant
under homeomorphism. For example, there is a homeomorphism f :
(−π

2
, π

2
)→ R with R is complete but (−π

2
, π

2
) not complete.

4.6 Lebesgue Covering Lemma

In this section, we seek a measure of how big sets can be. This
quantification is made more precise using the notions of diameter of a
set and associating a number to every covering of a compact topolog-
ical space. (See http : //en.wikipedia.org/wiki/Henri Lebesgue for
more details on the mathematician Lebesgue, after whom this lemma
is named.)

We begin with the definition of the diameter of a bounded set:
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Definition 38. Let A be a bounded subset of a metric space (X, d).
Then, diameter ofA, denoted by diam(A) is defined to be lub{d(a1, a2) | a1, a2 ∈
A}.

Examples:

(1) Let X = R with the absolute metric. Let A = [0, 1]. Then,
diam(A) := lub{|x − y| | x, y ∈ A}. Note that for all x, y ∈ A,
|x − y| ≤ 1. It is also easy to check that one is the least upper
bound of A. Hence, diam(A) = 1.

(2) Let X = R2 with the usual distance metric. Let A = S1.
Then, diam(S1) := lub{d(x, y) | x, y ∈ S1}. By definition of
S1, If x = (x1, x2) and y = (y1, y2) then we have d(x, y) =√

(x1 − y1)2 + (x2 − y2)2 ≤ 2. Also, note that the pair of point
(−1, 0) and (1, 0) are at a distance 2, proving that 2 is the diame-
ter. (This matches with our usual notion of diameter from school
days.)

Definition 39. Let R be an open covering of the metric space (X, d).
If there exists δ > 0 such that for each subset of X having diameter
less than δ, there exists an element of R containing it, then δ is called
a Lebesgue number for the covering R.

The main aim of this section is to prove the existence of a Lebesgue
number for compact metric spaces. Before we do this, we prove that
sequential compactness guarantees the existence of a Lebesgue number
for every open covering of X.

Lemma 4.6.1. Let X be a sequentially compact space and let R be any
open cover of X. Then R has a Lebesgue number δ.

Proof. We shall prove the contrapositive of this statement: suppose
there is no δ > 0 such that every set of diameter less than δ lies in at
least one element of R implies X is not sequentially compact.

Now suppose there is no such δ, i.e., for each δ > 0, there exists a
subset of X having diameter less than δ which does not lie inside any
element of R. In particular, for each n ∈ N we can choose a set Cn
having diameter less than 1

n
which is not contained in any element of

R. Choose for each n a point xn ∈ Cn.
We claim that such a chosen sequence (xn) has no convergent subse-

quence. For suppose (xn) had a subsequence (xni
) converging to x. Now

x lies in some element A ⊂ R. As A is open, there exists ε > 0 such that
B(x, ε) ⊂ A. Choose i large enough so that d(xni

, x) < ε
2

and 1
ni
< ε

2
.

Now Cni
lies in the 1

ni
neighbourhood of xni

and hence Cni
⊂ B(x, ε).

Then, Cni
⊂ A, contradicting the choice of the sets Cn.
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Check Your ProgressThe proof above is a nice illustration of
one of the ways of attacking a problem in mathematics: the existen-
tial approach. The above proof asserts the existence of a δ without
actually telling how one can find or construct it. Such a method of
proof was first developed by one of the influential and universal math-
ematicians of the nineteenth and twentieth centuries, David Hilbert.
(See https : //en.wikipedia.org/wiki/David Hilbert). During those
days, Hilbert was criticized for such a method of proof and in fact he
was told by Gordan (another great mathematician) that this was not
mathematics, but it was theology. Later, however Hilbert’s method of
thought became a very important way for going about a proof, specially
in pure mathematics. Many of the proof in mathematics today are of
this kind and one then often needs to write down algorithms to make
the computations explicit.

Can you find at least two more examples of such existential proofs?
(Hint: Linear Algebra).

Let us now prove that for a metric space (X, d) sequential compact-
ness implies compactness. (See Theorem 4.3.1.)

Theorem 4.6.1. Let (X, d) be a metric space. If (X, d) is sequentially
compact, then (X, d) is compact.

Proof. Let R be an open covering of X. Since X is sequentially com-
pact, by Lemma 4.6.1 R has a Lebesgue number δ. Apply Lemma 4.3.1
with ε = δ/3, to get a finite covering of X by balls of radius δ/3. Each
of these balls has diameter atmost 2δ/3 < δ so we can choose for each
of these balls an element of R containing it. Thus, we get a finite
subcollection of R that covers X, proving that X is compact.

Remark 4.6.1. The property of completion is slightly different from its
sister property of compactness: compactness is a topological property,
but completion is not a topological concept i.e., it is not invariant
under homeomorphism. For example, there is a homeomorphism f :
(−π

2
, π

2
)→ R with R is complete but (−π

2
, π

2
) not complete.

We can now record the Lebesgue covering lemma for compact spaces.
The proof of it follows immediately from the facts proved above.

Lemma 4.6.2. Let R be an open covering of the metric space (X, d).
If X is compact, there is a δ > 0 such that for each subset of X having
diameter less than δ, there exists an element of R containing it. Such
a number δ is called a Lebesgue number for the covering R.

Here is an important consequence of completeness:

Theorem 4.6.2. Let (X, d) be a complete metric space. For each n ∈ N
let Fn be a closed and bounded subset of X such that F1 ⊃ F2 ⊃ · · · ⊃
Fn ⊃ Fn+1 ⊃ · · · and diam(Fn)→ 0 as n→∞. Then ∩∞n=1Fn contains
precisely one point.
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Proof. For each n ∈ N let an be any arbitrary point of Fn. Then as
the Fn’s form a nested sequence, we get an, an+1, an+2, . . . ∈ Fn, i.e.,
an+k ∈ Fn for all k ≥ 0. (Call this property P.)

Since the diameter of Fn’s tends to zero as n tends to infinity, given
ε > 0 there exists an integer N ∈ N such that diam(Fn) < ε and
aN , aN+1, aN+2, . . . all lie in FN . Thus for m,n ≥ N we have d(an, am) ≤
diam(FN) < ε. This proves that {an}∞n=1 is a Cauchy sequence. Since
X is complete this Cauchy sequence converges to a point, say a in X.
By property P and the fact that a ∈ X, we get that a is a limit point of
Fn, for every n ≥ 1 and for every closed subset Fn. Since for all n ≥ 1,
Fn is closed, we get that a ∈ Fn for all n ≥ 1. This shows that ∩∞n=1Fn
is non-empty.

We now prove uniqueness: if there exist a, b ∈ X such that both
a, b ∈ ∩∞n=1Fn, then there exists a K such that d(a, b) > diam(FK) for
K sufficiently large. Thus, b cannot lie in ∩∞n=1Fn, a contradiction.

Here is an important theorem which relates the various concepts
that you have studied till now:

Theorem 4.6.3. A metric space (X, d) is compact if and only if (X, d)
is complete and totally bounded.

Proof. • Let (X, d) be compact. By Theorem 4.6.1 it is enough to
prove that every sequence (xn) has a subsequence which converges
to a point of X.

Suppose that for each point x ∈ X, there exists an open ball Bx

which contains x for only finitely many values of n. The family
of all such Bx would then be an open cover of X By hypothesis,
X would then be covered by a finite number of Bx, which is
impossible as the union of finitely many Bx would contain only
finitely many xn.

Hence there exists x ∈ X such that every open ball around x
contains xn for infinitely many n. Hence there exists n1 such that
xn1 ∈ B(x, 1), there exists n2 > n1 such that xn2 ∈ B(x, 1

2
), and

continuiung for any k, there exists nk > nk−1 such that xnk
∈

B(x, 1
k
). This subsequence (xnk

) of (xn) converges to the point x
in X, thus proving that X is complete.

• Let (X, d) be complete and totally bounded. Suppose X is not
compact, i.e. there exists an open cover R of X such that no
finite number of sets of R form a cover of X.

As X is totally bounded, it can be written as a union of a finite
number of bounded subsets each of whose diameter is less than
one. Then, one of these subsets, say A1 cannot be covered by
finitely many subsets of R. (Else X would be covered by finitely
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many subsets of R.) As diamA1 = diamA1, A1 is a closed subset
of X with diameter less than one and which cannot be covered
by a finite number of sets from R.

Since A1 is itself totally bounded, the same reasoning shows that
there exists A2 ⊂ A1 such that diamA2 <

1
2

and A2 cannot be
covered by finitely many elements of R. Proceed inductively to
get a nested family of closed subsets of X such that A1 ⊃ A2 ⊃
· · ·An ⊃ An+1 · · · with diamAn < 1

n
and such that no finite

number of sets in R form a covering of any An. By Theorem
4.6.2, ∩∞n=1An contains precisely one point, say x. Since R is a
covering of X, there is a set G ⊂ R such that x ∈ G. Since G is
open, there exists r > 0 such that B(x, r) ⊂ G. Now if N ∈ N
is such that 1

N
< r, then diamAN < 1

N
< r. Since x ∈ AN , we

have AN ⊂ B(x, r) ⊂ G. Thus, G alone covers AN . This is a
contradiction to the fact that finitely many subsets of R cannot
cover AN . This contradiction completes the proof of the theorem.

4.7 Uniform continuity theorem

Using the notion of Lebesgue covering that we have developed, we
prove that every continuous function from a compact metric space to
another metric space is uniformly continuous. We begin by recalling
the definitions of continuity and uniform continuity.

Definition 40. (Continuity) Let (X, d1) and (Y, d2) be metric spaces.
We say f : X → Y is continuous at x0 ∈ X, if for every ε > 0 there
exists δ > 0 such that d1(x, x0) < δ implies d2(f(x), f(x0)) < ε. The
function f is said to be continuous if it is continuous at every point of
X.

Note that in this definition, δ depends in general on ε as well as x.

Definition 41. (Uniform continuity) Let (X, d1) and (Y, d2) be metric
spaces. We say f : X → Y is uniformly continuous on X, if for every
ε > 0 there exists δ > 0 such that for all x, y ∈ X, d1(x, y) < δ implies
d2(f(x), f(y)) < ε.

Note that in the definition of uniform continuity the δ chosen de-
pends only on ε: ie., it is independent of the choice of x ∈ X. Thus
in this case, the same δ works impartially for every x ∈ X, hence the
name uniform continuity.

Example 7. We give two examples here: one of a uniformly continuous
function and another of a function which is not uniformly continuous.
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• (Uniformly continuous) Let f : R → R be given by f(x) = 2x.
Then, for every ε > 0, the choice δ = ε/2 is such that |x−y| < ε/2
implies that |f(x) − f(y)| = 2|x − y| < (2ε)/2 < ε. Since δ is
independent of the choice of the point x chosen, we conclude that
f is continuous.

• (Not uniformly continuous) Let S = {x ∈ R | x > 0}. Define
g : S → R by g(x) = 1

x
. Then, we want |g(x) − g(y)| = |y−x

xy
| =

|y−x|
|xy| < ε, whenever |x − y| < δ. Since this should work for all

x, y, we may choose δ < x2ε. This equation tells that δ depends
on both x, ε and cannot be made independent of x. For if δ were
independent of x, then δ < x2, for every x, however small. Hence,
δ = 0, a contradiction. Hence the function g is not uniformly
continuous. A simple pictorial illustration below explains how
the choice of δ depends on x ∈ R.
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Check Your Progress

1. Prove that every uniformly continuous function is continuous.
The converse need not hold.

2. Show that the function f(x) = 1
1+x2

for x ∈ R is uniformly con-
tinuous on R.

3. Show that the function h(x) = 1
x2

is uniformly continuous on the
set K = [1,∞) but not uniformly continuous on (0,∞).

Theorem 4.7.1. (Uniform continuity theorem) Let (X, dX), (Y, dY ) be
metric spaces with X compact. Let f : X → Y be a continuous map.
Then f is uniformly continuous.

Proof. To prove f is uniformly continuous, we will prove that given
ε > 0, there exists δ > 0 such that for any x1, x2 ∈ X, dX(x1, x2) < δ
implies dY (f(x1), f(x2)) < ε.

Given ε > 0, consider the open covering of Y by B(y, ε/2), balls of
radius ε/2 around y. Hence, f(X) ⊂ Y = ∪y ∈ YB(y, ε/2). Hence,

X ⊂ f−1(∪y ∈ YB(y, ε/2)) ⊂ ∪y ∈ Y f
−1(B(y, ε/2)).

As f is continuous, we have f−1(B(y, ε/2)) is an open subset X. This
proves that R = {f−1(B(y, ε/2)) | y ∈ Y } is an open cover of X.

Let δ be the Lebesgue covering of this open covering R. Then if
x1, x2 ∈ X are such that dX(x1, x2) < δ, then the set {x1, x2} has
diameter less than δ. Hence its image {f(x1), f(x2)} lies in some ball
B(y, ε/2). Then, dY (f(x1), f(x2)) < ε. This proves that f is uniformly
continuous.
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4.8 Glossary

In this chapter, you have learnt the following:

• Sequential compactness and limit point compactness.

• Equivalence of compactness, sequential compactness and limit
point compactness in metric spaces.

• A subset of Rn is compact if and only if it is closed and bounded.

• Complete metric space and completion of a metric space.

• Lebesgue number and Lebesgue covering lemma.

• Uniform continuity and the fact that every continuous function
from a compact metric space to another metric space is uniformly
continuous.
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4.10 Let Us Sum Up

In this chapter we first learnt various equivalent notions of compact-
ness for metric spaces. Compactness was also characterized in terms
of completeness and total boundedness. We then defined the notion
of a Lebesgue covering and this gave rise to the notion of Lebesgue
number of covering. The main theorem was that every sequentially
compact space has a Lebesgue number. Since the notions of sequential
compactness and compactness are equivalent in metric spaces, this also
shows that compact metric spaces have a Lebesgue number. Existence
of this Lebesgue number then helps us to prove an important theorem
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about continuous functions from a compact metric space to another
metric space: these functions are also uniformly continuous.

4.11 References for further reading
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Oxford University Press.

4. Willard, S., General Topology, Dover Books on Mathematics.

5. Kumaresan, S., Topology of Metric Spaces, Morgan and Claypool.

4.12 Chapter End Exercises

1. Show that if f, g are uniformly continuous on R then so is f + g.

2. If f(x) = x and g(x) = sin(x) then show that both f, g are
uniformly continuous on R but their product fg is not uniformly
continuous on R.

3. Show that if f and g are uniformly continuous on R and if they are
both bounded on R, then their product fg is uniformly continuous
on R.

4. Prove that if f, g are uniformly continuous on R, then so is their
composition f ◦ g.

5. Prove that the completion of a totally bounded metric space is
compact.

6. Let (X, d) be a metric space and let C(X) be the space of all
bounded real-valued functions on X with a metric e defined by
e(f, g) = sup{|f(x) − g(x)| |x ∈ X}. Fix a ∈ X. For x ∈ X,
define hx : X → R by hx(u) = d(x, u) − d(a, u). Prove that
hx ∈ C(X).

7. With notations as in the above exercise, define h′ : X → C(X)
by h′(x) = hx. Prove that h′ is an isometric imbedding of X into
C(X).
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8. Prove that a metric space X is complete, if it contains a dense
subset D such that every Cauchy sequence in D has a limit point
in X.

9. Prove the converse of the above statement.

10. Let X = (0, 1) with metric d given by d(x, y) = | 1
x
− 1

y
|. Show

that the sequence { 1
n
, n ∈ N} is not a Cauchy sequence in (X, d).

(Recall that the sequence is a Cauchy sequence in the usual met-
ric.)
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