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1.0 OBJECTIVES 

After doing this unit, you will be able to: 

 identify partial differential equation of order one. 
 classify different types of partial differential equation 
 solve problems of semi linear and quasilinear problems 
 determine characteristic equations 
 solve Cauchy problem 
 find general solution 
 find complete integral. 

1.1 INTRODUCTION  

A partial differential equation for a function �(��) of m independent 
variables ��(� = 1, 2, 3 … … �) is a relationship between the function 
and its partial derivatives ���, �����, ….. We represent this relationship in 
the form  

����, … … , ��; �; ���, … … ���; �����; ����� … … � = 0                     (1.1) 

Or briefly 

� ���, �, ���, ����� … … � = 0 
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where only a finite number of derivatives occur on the left-hand side and 
the function � is defined over Domain ��. The order of the partial 
derivative is the order of the highest derivatives appearing in the               
function �. 

  A genuine solution of the partial differential equation is a function� =
�(��)defined over a domain � of�� space such that all partial derivative 
of � appearing in the equation exist and are continuous in �, 

���, �(��), ���(��), �����(��), … … � ∈ �� when �� ∈ � and  

� ���, �(��), ���(��), �����(��), … … � = 0 for all �� ∈ �. We also say 
that the function satisfies equation (1.1). we shall refer the genuine 
solution simply as a solution.  

While studying partial differential equations, we shall assume that all 
functions are real valued with real arguments unless otherwise stated.  

The simplest partial differential equations to study are those of the first 
order for the determination of just one unknown function.  Apart from the 
fact that they form the basis of the study of higher order equations called 
hyperbolic equations, they are the simplest kind of equations for which 
method of solutions are available and for which the existence, uniqueness 
and stability can be discussed in detail. In this chapter, we shall present 
some basic result concerning first order partial differential equation.  

1.2 FIRST ORDER PARTIAL DIFFERENTIAL 
EQUATION AND CAUCHY PROBLEM 

In this chapter while dealing with the partial differential equation in two 
independent variables, we shall denote the independent variable by �                  
and �.  

A first order partial differential equation in two unknowns in its most 
general form is given by 

 ���, �, �, ��, ��� = 0                                                                            (1.2) 

where � is a known function of its arguments. 

1.2.1 Classification of partial differential Equation 

Linear equation: when the function � is linear in ��, ��and u. then the 
equation of the form 

 �(�, �)�� + �(�, �)�� = ��(�, �)� + ��(�, �)                                    (1.3) 

is called linear equation. Where �, �, ��, �� will depend on x and y. 
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For example,  

����� + ����� = ��� + ����and ���� + ����� = 3��� + ���.  

Semi linear equation:When the function � is linear in ��, ��then the 
equation of the form 

 �(�, �)�� + �(�, �)�� = �(�, �, �)                                                      (1.4) 

is called semi-linear equation. Wherea and b depend on x and y whereas c 
depends on x, y and u.  

For example,  

�� �� + ��� �� = ����� and 2��� �� + 3��� �� = 5����� 

Quasilinear equation:When the function � is linear in ��, ��then the 
equation of the form 

�(�, �, �)�� + �(�, �, �)�� = �(�, �, �)                                               (1.5) 

Is called quasi linear. Where �, �, � depend on �, � and �. 
For example,  

 ������ + �� �� = ���and (�� − ��)�� + (�� − ��) �� = ��  − ��   

Non-linear equation: When the function � is not linear in ��, ��then the 
equation (1.2) is called non-linear equation. 

For example,  

��� + ����� = �� and ����� + ����� = �� 

The solution � = �(�, �) represents a surface in (�, �, �) space. This 
surface is called integral surface of the partial differential equation.  

 While dealing with partial differential equations appearing in science and 
engineering, we rarely to find out or discuss properties of a solution in its 
most general form. Almost always we deal with those solution of 
differential equations which satisfy certain conditions. In the case of first 
order partial differential equations, the search for these specific solutions 
can be formulated as a Cauchy problem. 

1.2.2. The Cauchy problem 

Consider an interval I on the real line and three arbitrary functions 
��(�), ��(�)��� ��(�) of single variable � ∈ � suchthat the derivatives 
��

� (�)��� ��
� (�) are piecewise continuous and (��

� )� + (��
� )� ≠ 0. 

A Cauchy problem for a first order equation (1.2) is to find the domain D 
in (�, �) plane containing ���(�), ��(�)�for all � ∈ � and a solution 
� = �(�, �) of the equation such that 
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����(�), ��(�)� = ��(�)                                                                       (1.6) 

for all values of � ∈ � . 

Geometrically, � = ��(�), � = ��(�) represents a curve � in (�, �) plane. 
We call the curve datum curve. The Cauchy problem is to determine the 
solution of ���, �, �, ��, ��� = 0 in a neighbourhood of � such that � 
takes prescribed values ��(�) on �.  

The solution of Cauchy problem also involves such questions as the 
conditions on the functions �, ��(�), ��(�)��� ��(�) under which the 
solution exists and its unique.  

1.3 SEMILINEAR AND QUASILINEAR EQUATIONS IN 
TWO INDEPENDENT VARIABLES 

We start with a semi linear equation instead of linear equation as the 
theory of the former does not require any special treatment as compared to 
that of latter. 

1.3.1 Semilinear Equation 

Consider a single first order equation in two independent variables (�, �) 
for a single unknown quantity:  

�(�, �)�� + �(�, �)�� = �(�, �, �)                                                       (2.1) 

We assume that �, �, � are continuously differential functions of their 
arguments and a and b are not simultaneously zero. �, � ∈ ��(��) and 
� ∈ ��(��), where �� and �� are domains in (�, �) plane and (�, �, �) 
space respectively, such that whenever (�, �, �) ∈ ��, (�, �) ∈ ��. 

At a given point (�, �) ∈ ��,  �(�, �)�� + �(�, �)�� represents a 
derivative of �(�, �) in the direction of vector (�(�, �), �(�, �)). 
Therefore, if we consider a one parameter family of curves whose tangent 
at each point is in the above direction i.e. the family of curves defined by 
ordinary differential equation  

��
�� = �(�,�)

�(�,�)              (2.2) 

the variation of u along these curves is given by ��
�� = �� + ��

�� �� =
�������

� , which with the help of (2.1) gives 

��
�� = �(�,�,�)

�(�,�)              (2.3) 

Consider a curve represented by a solution of equation (2.2). we can 
choose a variable � such that the curve has a parametric representation 
� = �(�), � = �(�) and �(�) and �(�) satisfy a pair of ordinary 
differential equations 
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��
�� = �(�, �), ��

�� = �(�, �)         (2.4) 

The variation of u along the curve is given by 

��
�� = �(�, �, �)   (2.5) 

The equations (2.2) or (2.4) are called characteristic   equations. The 
solution of (2.2) can be written in the form   

�(�, �, �) = 0                                                                        (2.6) 

Where C is a constant of integration. This equation represents one 
parametric family of curves with � as a parameter. We call these curves 
the characteristiccurves of the partial differential equation. In the domain 
��consider another curve � = ��(�), � = ��(�) such that it is nowhere 
tangential to characteristic curve.  

Solving (2.4) with the condition � = ��(�), � = ��(�) �� � = 0, we get a 
solution of the form 

� = �(�, �), � = �(�, �)                                               (2.7) 

Because of the equivalence of (2.2) and (2.4), the equation (2.7) also 
represents the one-parameter family of characteristic curves of equation 
(2.1). in the parametric representation of (2.7), � varies along a 
characteristic curve. � remains constant along characteristic curves. The 
equation (2.3) or (2.5) is called compatibility condition along a 
characteristic curve.  

Suppose that �(�, �) is assigned an initial value �� at point 
(��, ��)in(�, �) −plane. Since �(�, �), �(�, �) and �(�, �, �) are �� 
function of their arguments, the initial value problem for the ordinary 
differential equations (2.4) and (2.5) with initial values ��, ��, �� has 
unique solution. Therefore, through the point (��, ��) there passes a 
unique characteristic curve given by 

� = �(��, ��, �), � = �(��, ��, �)                                   (2.8) 

and along this curve  

� = �(��, ��, ��, �)                                       (2.9) 

is uniquely determined by the equation (2.5). This shows that, if � is given 
at any point, it is uniquely determined everywhere along the characteristic 
curve denoted by �� passing through the point, as long as it does not pass 
through a singular point and as long as (�, �, �) remains in ��, where 
�(�, �, �) is defined. This suggests the following method of solution of the 
Cauchy problem. 

We take an arbitrary point ��(��(�), ��(�), �)on the datum curve  �. The 
value of � at �� is ��(�) . solving the characteristic equations and the 
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compatibility condition    with initial values � = ��(�), � = ��(�), � =
��(�) at � = 0, we get  

� = �(��(�), ��(�), �), � = �(��(�), ��(�), �)                              (2.10) 

and   

 � = �(��(�), ��(�), ��(�), �)                                      (2.11) 

Solving the pair of equations (2.10) for � and � in terms of �, � and 
substituting in (2.11) we get a solution of the Cauchy Problem in 
neighbourhood of the curve �. 

 

the method fails if the curve �  coincide with the characteristic curve. 
From the compatibility condition (2.5) we also note that if � is a 
characteristic curve, the variation of the Cauchy data ��(�) on � is 
constrained by the relation (2.5) and so cannot be arbitrarily prescribed             
on it.  

Example 2.1: Solve the Cauchy problem of partial differential equation 

2�� + 3�� = 1,   (2.12) 

with Cauchy data prescribed on the straight line �: � = �� − �� = 0, 
where � and � are constants. A parametric representation of Cauchy data 
is � = ��, � =  ��, �(��, ��) = �(�) 

Solution: Initial values: �� = ��, �� =  ��, � = 0� = 2, � = 3, � = 1 

 

 

Fig 1.1 
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 Characteristic Equations  

��
�� = 2, ��

�� = 3 => �� = 2��, �� = 3�� 

=> � = 2� + ��,  
Applying Initial Conditions, �� = 2 ∗ 0 + �� => �� = �� 

=> � = 2� + ��                                                               (2.13) 

And � = 3� + ��,  
Applying Initial Conditions,�� = 3 ∗ 0 + �� => �� = �� 

=> � = 3� + ��                                                    (2.14) 

��
�� = � => ��

�� = 1 => �� = �� => � = � + �� 

Applying Initial Conditions,�(�) = 0 + �� => �� = �(�) 

=> � = � + �(�) 

Solving � and � from (2.13) and (2.14) 

=> � = 3� − 2�
(3� − 2�) , � = �� − ��

2� − 3� 

Substituting these values in � = � + �(�) 

We get, � = �����
����� + � ������

������   (2.15) 

Provided we assume that  

3� − 2� ≠ 0 (2.16) 

Equation (2.15) represents a genuine solution of the equation (2.12) if the 
given function �(�) is continuously differential. Then �� and �� are �� 
function in the entire (�, �) −plane and satisfy the equation (2.12). 

When the constants � and � are such that3� − 2� = 0, the above method 
of finding the solution breaks down. In this case the straight line � is itself 
a characteristic curve. Along a characteristic curve ��

�� = 2. The 
compatibility condition (2.5) shows that the function �(�) in the above 
Cauchy problem cannot be arbitrarily prescribed but must satisfy the 
relation  

��(�)
�� = �

�                                                                      (2.17) 
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This condition completely determines the function �(�)expect for a 
constant of integration: 

�(�) = �
� �                                                                         (2.18) 

It is simple to check that the characteristic Cauchy problem with the 
Cauchy data  

� = ��, � = 3
2 ��, � = �

2 � 

has a solution of the form 

� = �
� + �(3� − 2�)   (2.19) 

Where �(�) is an arbitrary �� function of � and satisfies �(0) = 0 

This example verifies a general property namely, the solution of a 
characteristic Cauchy problem when it exists, is non unique in that it 
involves an arbitrary function.  

Example 2.2: Solve the Cauchy problem of partial differential equation  

�� + �� = �,  with initial conditions  �(�, 0) = 1.  

Solution: � = 1, � = 1, � = �, 
With initial conditions, �� = �, �� = 0, �� = 1, � = 0  

Characteristic equation: ��
�� = 1 => �� = �� 

=> � = � + �� 

Applying Initial Conditions, � = 0 + �� => �� = � 

=> � = � + � => � = � − �  
��
�� = 1 => � = � + ��, 

Applying Initial Conditions,  0 = 0 + �� => �� = 0 

=> � = �  
��
�� = � => ��

� = �� => ���� = � + �� 

Applying Initial Conditions, ��� 1 = 0 + �� => �� = 0 

log � = � => � = �� 

=> � = �� 
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Example 2.3:Find the characteristic equation of the following PDE 

��� − ��� = 0 

Solution: Characteristic equation  

��
�� = �

� = − �
� => ��� = −��� 

=> ∫ ��� = � −��� 

=> ��

2 = − ��

2 + ������ 

=> �� + �� = � 

This represents equation of circle with centre as origin.  

Example 2.4:Find the characteristic equation of the following PDE   

2���� − (�� + ��)�� = 0 

Solution: � = 2��, � = −(�� + ��) 

��
�� = �

� => ��
�� = − �� + ��

2�� => 2���� = −���� − ���� 

2���� + ���� = −���� 

�(���) = −���� 

Integrating both the sides, 

 ∫ �(���) = � −���� => ��� = − ��

3 + � 

=> ��� + ��

3 − � = 0 

=> 3xy� + �� − � = 0 

EXERCISE 2.1 

1. Find the characteristics of the equation (�� − �� + 1)�� +
2���� = 0 
 

2. Show that characteristic of �� − �� = 0 touches the branch of the 
hyperbola �� = 1 in the first quadrant of the (�, �) −plane at the 
point �(1, 1). Verify that the point P divides the hyperbola into 
two portions such that the Cauchy data prescribed on one portion 
determines the value of � on the other portion.  
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3. Find the solution of ��� − ��� = 0, given that �(�, 0) = �� for  
−∞ < � < ∞ 

 
4. Show that if � is prescribed on the interval 0 ≤ � ≤ 1 of the 

� −axis, the solution of (�� − �� + 1)�� + 2���� = 0 is 
completely determined in the first quadrant of the (�, �) −plane. 
 

5. Find the solution of the partial differential equation 
(� + 1)��� + (� − 1)��� = (� + �)�  satisfying the condition 
�(�, 0) = −1 − � for −1 < � < ∞ 
 

6. Find the solution of the Cauchy problems and the domain in which 
they are determined in (�, �) −plane: 
(i) ��� + ��� = 2� with �(�, 0) = �(�)for � > 0, 
(ii) ��� + ��� = 2� with �(0, �) = �(�)for � > 0, 
(iii) �� + �� = �� with �(�, 0) = 1 ��� − ∞ < � < ∞  

1.3.2 Quasilinear Equations 

Now, we pass on to the general quasilinear equation of the first order  

            �(�, �, �)�� + �(�, �, �)�� = �(�, �, �)                         (2.20) 

where the coefficients � and � depend on the dependent variable u also. 
We assume that �, �, � are �� functions in the domain �� of 
(�, �, �) −space. We recall here the geometrical interpretation of a 
solution � = �(�, �) as a surface in (�, �, �) −space, called integral 
surface. The direction ratio of the normal to the surface are 
���, ��, −1�, so equation (2.20) can be written as (�, �, �). ���, ��, −1� =
0   (2.21) 

where the left-hand side is the scalar product of two vectors, we can 
interpret the equation as being equivalent to a condition that the integral 
surface at each point has the property that the vector (�, �, �) is tangential 
to the surface.  

Monge direction:At any point (�, �, �)in ��, the vector 
(�(�, �, � ), �(�, �, �), �(�, �, �)) defines a direction, called Monge 
direction. Therefore, the coefficients in the equation (2.20) defines a 
direction field i.e. the field of Monge directions in the domain of �� of 
(�, �, �) −space. 

Monge curve: A surface � = �(�, �) is an integral surface if and only if, 
at each point of the surface the tangent plane contains the Monge direction 
at that point.Thus, at a given point (�, �, �) the tangent plane of the 
integral surface has one degree of freedom, i.e. it can rotate about Monge 
direction. A space curve whose tangent at every point coincide with 
Monge direction is called a Monge curve and it determined by the 
equations, 
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��
�(�,�,�) = ��

�(�,�,�) = ��
�(�,�,�)                                                 (2.22) 

This equation also known as Lagrange equation. 

In terms of parameter �, such that �� is the common value of the three 
ratios in (2.22), we can write the characteristic equation and compatibility 
condition respectively as  

��
�� = �(�, �, �), ��

�� = �(�, �, �)                                    (2.23) 

and  

��
�� = �(�, �, �)                                                           (2.24) 

As in §2.1, we consider a surface in ��given by � = ��(��, ��), � =
��(��, ��),  
� = ��(��, ��), such that it nowhere touches the Monge curve. Solving 
the system of equations (2.23) and (2.24), with the condition � =
��(��, ��), � = ��(��, ��), � = ��(��, ��)at � = 0 , we get a 
representation of the Monge curve in the form 

� = �(�, ��, ��), � = �(�, ��, ��), � = �(�, ��, ��)               (2.25)          

The totality of Monge curves form a two-parameter family of curves with 
parameter ��and��.  The projection of a Monge curve on (�, �) −plane is 
called characteristic curve of (2.20). Note that the characteristic equations 
(2.4) of the semilinear equation (2.1) are not coupled with the 
compatibility condition (2.5) and hence can be integrated independently. 
Thus, the one parameter family of characteristic curves of a semilinear 
equation can be drawn once for all without any reference to the 
compatibility condition. For the quasi-linear equation (2.20), the 
characteristic equation and compatibility condition are coupled. Therefore, 
to determine the characteristic in case of the quasi-linear equation, we 
have to draw them by solving the three equations (2.23) and (2.24) 
together. The totality of the characteristic curves in  (�, �) −plane of 
quasilinear equation forms a two-parameter family of curves. For a given 
solution � is a known function of � and �,  and the equation (2.23) for 
characteristics can be solve without any reference to the compatibility 
condition (2.24), as in the case of semilinear equations. In this case 
through any point (�, �), there is only one characteristic curve and the set 
of all characteristic curves from one characteristic curve and the set of all 
characteristic curves form one- parameter family of curves in the 
(�, �) −plane.  

Example 2.5: consider the partial differential equation  

��� + �� = 0 
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The Monge curve through the point (��, ��, ��) is a straight line given by 
the equations   

� − �� = ��(� − ��), � = �� 

The characteristic curves through an arbitrary point (��, ��) in 
(�, �) −plane is the one parameter family of straight line passing through 
the point and depending on the parameter ��. 

Consider a surface generated by a one parameter sub-family of Monge 
curves. The tangent plane at the point of the surface contains the Monge 
direction at that point. Therefore, every surface generated by a one 
parameter sub family of Monge curve is an integral surface of (2.20). the 
converse of this statement is also true. Let � = �(�, �) be an integral 
surface S. Let � = ��(�), � = ��(�),  
� = ��(�) ≡ �(��(�), ��(�)) be a space curve lying on S and suppose the 
function ��(�), ��(�) are so prescribed that the curve is not Monge curve. 
Consider the solution of  

��
�� = ���, �, �(�, �)�, ��

�� = �(�, �, �(�, �))                                 (2.26) 

with � = ��(�), � = ��(�) at � = 0 in the form � = �(�, �), � = �(�, �). 
In (2.26) � is known function of �, � from the equation of integral surface 
�. Then along the one parameter family of curves 

� = �(�, �), � = �(�, �), � = �(�(�, �), �(�, �))                        (2.27) 

with � as parameter lying on �, we have 

��
�� = ��

�� �� + ��
�� �� = ��� + ��� = �(�, �, �)                           (2.28) 

In view of (2.26) and (2.28), we infer that the curves (2.27) are Monge 
curves. These Monge curves generate the integral surface � as �varies. We 
have shown that starting from a non-Monge curve on an integral surface, 
we can determine one parameter sub-family of Monge curve that generate 
the surface.Thusany integral surface S is generated by a family of Monge 
curve depending on a single parameter �. 

      Now we have also proved that through an arbitrary point of an integral 
surface there passes a Monge curve which lies entirely on the integral 
surface. This with the uniqueness theorem of the solution of an initial 
value problem of the ordinary differential equation (2.23) and (2.24) 
implies that if Monge curve is tangential to an integral surface at any 
point, it lies entirely on the integral surface. 

     We can now present a method for the solution of a Cauchy problem for 
the quasilinear equation (2.20). We first note that geometrically � =
��(�), � = ��(�), � = ��(�) represents a curve �in (�, �, �) −space. We 
call this curve initial curve. The datum curve �, on which the Cauchy data 
is prescribed, is the projection of Γ on the (�, �) −plane. A geometrical 
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representation of a Cauchy problem for a first order partial differential 
equation is to find an integral surface of the equation passing through 
initial curveΓ.  The result of the last two paragraphs shows that in the 
order to solve a Cauchy problem we just have to find the surface generated 
by the one parameter family of Monge curves, starting from the points 
���(�), ��(�), ��(�)�, in the form  

� = �(�, �), � = �(�, �), � = �(�, �)                                  (2.29) 

This is a parametric representation of required integral surface. We shall 
again have to exclude datum curve which are tangential to the 
characteristic curves. We present here a precise formation in the following 
theorem.  

Theorem 2.1: Let ��(�), ��(�), and��(�) be continuously differential 
function of � in a closed interval say [0, 1] and �, �, � be functions of 
�, �, � having continuous first order partial derivatives with respect to their 
arguments in some domain �� of (�, �, �) −space containing the initial 
curve  

Γ ∶ � = ��(�), � = ��(�), � = ��(�); 0 ≤ � ≤ 1                        (2.30) 

and satisfying the condition  

���(�)
�� ����(�), ��(�), ��(�)� − ���(�)

�� ����(�), ��(�), ��(�)� ≠ 0.     
(2.31) 

Then there exists a solution � = �(�, �) of the quasi-linear equation (2.20) 
in the neighbourhood of the datum curve �: � = ��(�), � = ��(�), and 
satisfying the condition ��(�) = ����(�), ��(�)�, 0 ≤ � ≤ 1   (2.32) 

Proof: since �, �, � have continuous partial derivative with respect to 
�, �, �; the ordinary differential equation (2.23) and (2.24) have a unique 
continuously differential solution of the form (2.29) satisfying the initial 
condition  

�(0, �) = ��(�), �(0, �) = ��(�), �(0, �) = ��(�)                         (2.33) 

As ��(�), ��(�), and��(�) be continuously differential, the solution (2.29) 
is continuously differential with respect to �. In view of assumption (2.31) 
the Jacobian 

�(�,   �)
�(�,   �) ≡ ��� ��

�� ��� = (��� − ���)                             (2.34) 

does not vanish at � = 0 for 0 ≤ � ≤ 1. Therefore, in the neighbourhood 
of � = 0, we can uniquely solve for � and � in terms of � and � from the 
first two relations in (2.29) and substitute in the third relation to get � as a 
function of � and � 

                i.e. �(�, �) = �(�(�, �), �(�, �))   (2.35) 

mu
no
tes
.in



14 
 

At any point of the datum curve, ����(�), ��(�)� = �(0, �) = ��(�), 
which shows that the initial condition (2.33) is satisfied.  

From (2.24), i.e.�� = �, we have ���� + ���� = � or ��� + ��� = � 
showing that the function �(�, �) given by (2.35) satisfies the equation 
(2.20). 

To prove the uniqueness of the solution we first note that if a Monge curve 
is tangential to an integral surface at any point, it lies entirely on the 
surface. Let us assume now that there are two integral surfaces � and �′ 
passing through the initial curve Γ, given by (2.30). Then for an arbitrary 
given value of �, the Monge curve (2.29) starting from the point 
(��(�), ��(�), ��(�)) lies entirely on both the surfaces � and ��.Hence � 
and �� are generated by same subfamily of Monge curves which implies 
that the two integral surfaces are same.  

Example 2.6: Consider the equation  

��� + �� = 0                                                        (2.36) 

with the Cauchy data �(�, 0) = �, 0 ≤ � ≤ 1. 

prescribed only on a portion of the � −axis. The Cauchy data can be put in 
the form of (2.30): 

� = �, � = 0, � = �, 0 ≤ � ≤ 1(2.37) 

Solving the characteristic equations and compatibility condition 

��
�� = �, ��

�� = 1, ��
�� = 0  

With the initial data we get  

� = �(� + 1), � = �, � = �                                        (2.38) 

The characteristic curve passing through a point � = � on the �-axis is a 
straight line � = �(� + 1). These characteristic for all admissible but 
fixed value of �i.e.0 ≤ � ≤ 1 pass through the same point (0, −1) and 
cover the wedged shaped portion � of the (�, �)-plane bounded by two 
extreme characteristics � = 0 and � = � + 1. � = � in (2.38) shows that 
� is constant in those characteristics, being equal to the abscissa of the 
point where the characteristics intersects the �-axis. The solution is 
determined in the wedged shaped region � as shown in the Fig. 1.2 
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We note two very important aspects of quasi-linear equation from this 
example.  

(i) The domain � in the (�, �)- plane in which the solution is 
determined depends on the data prescribed in the Cauchy problem. 
Had we prescribed �(�, 0) =constant= �

�, say, for 0 ≤ � ≤ 1, the 
characteristic would have been a family of parallel straight lines 
� − 2� = −2� and the domain � would have been a family of 
parallel straight lines � − 2� = −2� and domain � would have 
been the infinite strip bounded by extreme characteristics � −
2� = 0 and � − 2� = −2 as shown in the Fig. 1.3. 

 
(ii) Even though the coefficient in the equation (2.36) and the Cauchy 

data (2.37) are regular, the solution develops a singularity at the 
point (0, −1). Geometrically this is evident from the fact that the 
characteristic which carry different values of � all intersect at 
(0, −1). Analytically, this is clear from the explicit form of 
solution obtained (2.38) after eliminating � and �: 

� = �
���                                                              (2.39) 

The appearance of the singularity in the solution of a Cauchy problem for 
certain Cauchy data is properly associated with non-linear differential 
equations.  

Fig 1.2 
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1.3.3 the characteristic Cauchy problem 

We have just seen that if the datum curve � is such that Cauchy data 
satisfies (2.31), then the unique solution of the Cauchy problem exists in a 
neighbourhood of the curve. Now suppose that 

���(�)
�� ����(�), ��(�), ��(�)� − ���(�)

�� ����(�), ��(�), ��(�)� = 0      
(2.40) 

Everywhere along the curve �, i.e.� is a characteristic curve for a possible 
solution. Let us suppose further that a solution: � = �(�, �), of Cauchy 
problem exists. Then from (2.40) and (2.20) it follows that  

���(�)
�� = �

�� ����(�), ��(�)� = ���
�� ��(��, ��) + ���

�� ��(��, ��) 

must be proportional to ��(��(�), ��(�), ��(�)). Therefore the function 
��(�), ��(�), ��(�) satisfy the equations 

���
�(��(�), ��(�), ��(�)) = ���

�(��(�), ��(�), ��(�))
= ���

�(��(�), ��(�), ��(�)) 

and the initial curve Γ is necessarily a Monge curve.  

Fig  1.3 
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Consider now another curve Γ′ in (�, �, �)- space which is not a Monge 
curve and which intersects Γ at some point. Then we can obtain an integral 
surface �′ passing through Γ�. As on point of Γ lies on �′ the entire original 
initial curve Γ will lie on �′ and hence �′ is an integral surface passing 
through Γ. Consider now another curve Γ", which is not a Monge curve 
and which intersects Γ, but does not lie on �′. Then we get another integral 
surface �" containing Γ and different from �′. 
Therefore, the solution of a characteristic initial value problem, if it exists, 
is nonunique.  

 

1.3.4 General Solution 

Until now we have discussed only those solution of a first order 
differential equation which satisfy certain prescribed conditions (i.e. 
solution of a Cauchy problem). In general, these particular solutions are 
completely determined. For a single quasilinear equation of first order, it 
is possible to get an explicit form of general solution which is define to be 
a solution from which all particular solution can be obtained.  

A relation of the form �(�, �, �) = �, where � is a constant is called a first 
integral of first order ordinary differential equations (2.22)(or (2.23) and 
(2.24)), if the function �(�, �, �) has a constant value along an integral 
curve of (2.22) (i.e. along a Monge curve). It follows, therefore, that if 
�(�, �, �) = �  be a first integral of (2.22) and � = �(�), � = �(�), � =
�(�) be a solution of these equations, then �(�(�), �(�), �(�)) is 
independence of �.  

 The general solution of the ordinary differential equation (2.22) consists 
of any two independent first integrals  

�(�, �, �) = ��      ���      �(�, �, �) = ��                         (2.41) 

Fig 1.4 
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which together also constitute another representation of the two-parameter 
family of Monge curve of (2.20). The surface represented by a first 
integral, say �(�, �, �) = ��, is generated by one parameter family of 
Monge curves by varying a parameter �� and hence represents an integral 
surface of (2.20). now it follows that each one of the two equations in 
(2.41) represents a one parameter family of integral surface of (2.20). 
Next,we prove a theorem which connect the two independent families of 
integral surface two the quasilinear equations.  

Theorem 2.2: if �(�, �, �) = �� and �(�, �, �) = �� be two independent 
first integral of the ordinary differential equation (2.22), and ��� + ��� ≠ 0 
the general solution of the partial differential equation (2.20) is given by  

ℎ(�(�, �, �), �(�, �, �)) = 0                                                  (2.42) 

where ℎ is an arbitrary function. 

Proof: since the first integral �(�, �, �) = �� represents an integral 
surface, the equation (2.20) is satisfied by �� = − ��

��
, �� = − ��

��
. This 

gives 

��� + ��� + ��� = 0                                                          (2.43) 

Similarly  

��� + ��� + ��� = 0                                                           (2.44) 

If �(�, �, �) = 0 be the equation of an integral surface of (2.20), we also 
have    

��� + ��� + ��� = 0                                                           (2.45) 

Since �� + �� + �� ≠ 0, it follows from (2.43)−(2.45) that the Jacobian 
�(�,�,�)
�(�,�,�) ≡ 0. This implies that � = ℎ(�, �) where ℎ is an arbitrary 
function of its arguments, showing that the equation of any integral 
surface is given by (2.42). 

The two-parameter family of Monge curve in (�, �, �) −space is 
represented by the equation (2.41). The integral surface (2.42) is generated 
by one parameter sub-family of the Monge curves, obtained by restricting 
the values of �� and �� by the relation  

ℎ(��, ��) = 0                                                                          (2.46)       

For a given Cauchy problem, it is simple to determine the one parameter 
of subfamily of Monge curves which generate the integral surface passing 
through the initial curve Γ represented by (2.30). The parameter �� and �� 
for which the Monge curve intersect the curve Γ, satisfy 
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�(��(�), ��(�), ��(�)) = �� 

and  

�(��(�), ��(�), ��(�)) = �� 

Eliminating � from these two, we get a relation of the form (2.46) between 
�� and ��. This determines the function ℎ. the solution of the Cauchy 
problem is obtained by solving � in terms of � and � from (2.42).  

Example2.7: Find the general solution of differential equation  

(� + 2��)�� − (� + 2��)�� = �
� (�� − ��)                          (2.47) 

Solution: The characteristic equations and the compatibility conditions 
are ��

����� = ��
�(�����) = ��

�
�(�����) 

To get one first integral we derive from these, 

��� + ���
2�(�� − ��) = 2��

�� − �� => ��� + ���
2� = 2�� 

=> ��� + ��� = 4��� 

Integrating both the sides we get,  

 �(�, �, �) ≡ �� + �� − 4�� = ��                                                (2.48) 

For another independent first integral we derive a second combination  

��� + ���
�� − �� = 2��

�� − �� => ��� + ��� = −�� 

�(�, �, �) ≡ �� + 2� = ��                                                     (2.49) 

The general integral of the equation (2.47) is given by  

ℎ(�� + �� − 4��, �� + 2�) = 0 or �(�� + 2�) = �� + �� − 4��   (2.50) 

where ℎ �� � are arbitrary functions of their arguments. 

Consider a Cauchy problem in which � is prescribed to be zero on the 
straight line � − � = 0. Parametrically, we can write it in the form 

� = �, � = �, � = 0 

From (2.48) and (2.49) we get, 2�� = ��and �� = �� which gives 
�� = 2��. 

Therefore, the solution of Cauchy problem is obtained, when we take 

ℎ(�, �) = � − 2�. This gives � = �
� {�� − �� + 1 − 1}   (2.51) 
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We know that the solution of the Cauchy problem is determined uniquely 
at all points in the (�, �)-plane.  

Example 2.8: Find the general solution of the following quasi linear 
equations.  

a) ���
� �� + �� �� = �� 

Sol: ��
� = ��

� = ��
� => ��

���
�

= ��
�� = ��

�� 

Taking 1st two terms together 

��
���

�

= ��
�� => ���

��� = ��
�� 

=> ���
�� = ��

�  

���� = ���� => ��

3 = ��

3 + � 

=> �(�, �, �) ≡ �� − �� = �� 

Taking 1st and 3rd term together,  

��
���

�

= ��
�� => ��� = ��� => ��

2 = ��

2 + �′ 

�(�, �, �) ≡ �� − �� = �� 

The general solution is ℎ(�� − ��, �� − ��) = 0 

b) ��� + ��� = � 

Solution: ��
� = ��

� = ��
� => ��

�� = ��
�� = ��

�  

Taking first two terms together, ��
�� = ��

�� 

=> �(�, �, �) ≡ 1
� − 1

� = �� 

Taking last two terms together, ��
�� = ��

� => − �
� = ��� � + � 

=> �(�, �, �) ≡ 1
� + ��� � = �� 

The general solution is ℎ ��
� − �

� , �
� + log �� = 0 
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c) tan � �� + tan � �� = tan � 

Solution: ��
��� � = ��

��� � = ��
��� � 

Solving, ��
��� � = ��

��� � 

=> cot � �� = cot � �� 

=> log ���� = log ���� + log � 

=> log ���� = log sin � ∗ �� 

=> ���� = ���� �� => �(�, �, �) ≡ sin �
���� = �� 

Solving ��
��� � = ��

��� � 

=> �(�, �, �) ≡ sin �
sin � = �� 

The general solution is ℎ ���� �
���� , ��� �

��� �� = 0 

d) �� + 3�� = 5� + tan (� − 3�) 

Solution: ��
� = ��

� = ��
������ (����) 

��
1 = ��

3 => 3�� = �� 

=> 3� = � + � => �(�, �, �) ≡ � − 3� = �� 

��
3 = ��

5� + tan(� − 3�) 

=> ��
3 = ��

5� + tanC�
 

�
3 = log(5� + tan ��) ∗ 1

5 + �′ 

�(�, �, �) ≡ 5� − 3 log(5� + tan(� − 3�)) = �� 

The general solution is 

ℎ(� − 3�, 5� − 3 log(5� + tan(� − 3�)) = 0or 

�(� − 3�) = 5� − 3 log(5� + tan(� − 3�) 
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EXERCISE 2.2 

1. Show that all the characteristic curves of the partial differential 
equation (2� + �)�� + (2� + �)�� = � through the point (1, 1) 
are given by the straight line � − � = 0. 
 

2. Discuss the solution of the differential equation ��� + �� = 0,  
� > 0, −∞ < � < ∞ with Cauchy data  
   �(�, 0) = �� − ��for|�| ≤ � 
= 0              for|�| > 0 
 

3. Find the general solution of the equation 
(2� − �)���� + 8(� − 2�)���� = 2(4�� + ��)� 

and deduce the solution of the Cauchy problem when �(�, 0) =
�

��on a portion of the �- axis.  
 

4. Show that the result of elimination of an arbitrary function 
ℎ(�, � ) of two arguments from the relation 
ℎ��(�, � , �), �(�, �, �)� = 0 

1.4 FIRST ORDER NON-LINEAR EQUATIONSIN TWO 
INDEPENDENT VARIABLES 

The most general first order equation, i.e. an equation of the form                                                                                       
 �(�, �, �, � �) = 0    (3.1) where � is a given function of its arguments 
and 

� = ��, � = ��                                                                             (3.2) 

In this section we shall consider a non-linear partial differential equation, 
i.e. equation (3.1) where � is not linear in � and �. we assume here that the 
function � possess continuous second order partial derivatives over a 
domain �� of (�, �, �, �, �)-space with ��� + ��� ≠ 0. Let the projection of 
�� on (�, �, �)-space be denoted by ��. 
1.4.1 Monge strip and Charpit’s Equation 

Let � = �(�, �) represent an integral surface � of (3.1) in (�, �, �)- space, 
then (�, �, −1) are direction ratios of the normal to S.  

The differential equation (3.1) states that at any point �(��, ��, ��)  on S, 
there is a relation between ��and��. This relation  �(��, ��, ��, ��, ��) = 0 
between ��, &�� is not linear. Hence all the tangent to integral surface do 
not pass through the fixed line but form a family of planes enveloping a 
conical surface, called the Monge conewith P as its vertex. The differential 
equation thus assigns a Monge cone at every point, i.e. a field of Monge 
cones in the domain �� of (�, �, �)-space. The problem of solving the 
differential equation (3.1) is to find the surface which fit in the field, i.e. 
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surfaces which touch the Monge cone at each point along a generator. 
Also note that Monge cone need not to be closed.  

Example3.1: Consider the partial differential  

�� − �� = 1                                                                      (3.3) 

At every point of the (�, �, �)-space the relation (3.3) can be expressed 
parametrically as 

�� = cosh � , �� = sinh � − ∞ < � < ∞                     (3.4)     

The equation of tangent planes at (��, ��, ��) are  

(� − ��) cosh � + (� − ��) sinh � − (� − ��) = 0             (3.5) 

The envelope of these planes is �- eliminant of (3.5) and  

(� − ��) sinh � + (� − ��) cosh � = 0                               (3.6) 

Which is obtained by differentiating (3.5) partially with respect to �. 
Therefore, the Monge cone of (3.3) is  

(� − ��)� − (� − ��)� − (� − ��)� = 0                                 (3.7) 

This is the right circular cone with semi vertical angle �
� and whose axis is 

the straight line passing through (��, ��, ��) and parallel to �-axis.  

   Since an integral surface is touched by a Monge curve along a generator, 
we proceed to determine the equations to a generator of the Monge cone 
of (3.1). At a given point (��, ��, ��), the relation between �� and �� can 
be expressed parametrically in the form 

�� = ��(��, ��, ��, �),   �� = ��(��, ��, ��, �)                            (3.8) 

which satisfy  

����, ��, ��, ��(��, ��, ��, �), ��(��, ��, ��, �)� = 0                   (3.9) 

For all values of the parameter � for which  �� and �� in (3.8) are defined.  

     The equations of the tangent planes for � and � + �� are  

��(��, ��, ��, �)(� − ��) + ��(��, ��, ��, �)(� − ��) = � − ��                
(3.10) 

and  

��(��, ��, ��, � + ��)(� − ��) + ��(��, ��, ��, � + ��)(� − ��) = � − �� 

                                                                                                                     
(3.11)       
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The limiting position of the line of intersection of these planes as �� → 0 
is a generator of the Monge cone at (��, ��, ��). Expanding �� and �� in 
(3.11) in powers of ��, using (3.10) and retaining only the first-degree 
terms, we get  

���
�� (� − ��) + ���

�� (� − ��) = 0                                                         (3.12)           

(3.10) and (3.12) are the equations to the generators in the terms of the 
parameter �. We can eliminate the derivatives ���

��  and ���
�� with the help of 

(3.9) which gives 

��
���
�� + ��

���
�� = 0                                                            (3.13) 

From (3.10), (3.12) and (3.13) we get the following equations of the 
generator of the Monge cone at (��, ��, ��) 
����

��
= ����

��
= ����

�������
                                                                   (3.14) 

If we replace � − ��, � − ��, � − ��by ��, ��, ��, respectively, 
corresponding finite infinitesimal moment, � − �� = ��, � − �� =
��, � − �� = ��, from (��, ��, ��) along the generator, then (3.14)tends to  

��
��

= ��
��

= ��
�������

                                                                             (3.15) 

We note that, for quasilinear equation (2.20), equations (3.15) reduce to 
(2.22) showing that the Monge cone degenerates into the Monge line 
element.  

Suppose we are given an integral surface �: � = �(�, �), where �(�, �) 
has continuous second order partial derivatives with respect to x and y. At 
the point of � we know �, � ��� � as function of � and �.Also at each 
point of the surface �, there exist Monge cone which touches the surface 
along a generator of the cone. The line of contact between the tangent 
plane of S and the corresponding cones, that is the generators along with 
the surface is touched, define a direction field on the surface, which is 
called Monge direction on � (Fig. 3.1). Monge direction for a quasilinear 
equation and Monge direction on an integral surface for a non-linear 
equation has the common property that they are special direction 
tangential to the integral surface. However, in the non-linear case, they 
have no exitance of their own but are defined only when an integral 
surface is prescribed.  
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The above direction field also defines a one parameter family of curves on 
�, we call these curves Monge curves on �, and these curves generates �. 
Denoting the ratios in (3.15) by ��, we notice that the Monge curves on � 
can be determined solving the ordinary differential equations 

��
�� = ��(�, �, �(�, �), ��(�, �), ��(�, �) )                                   (3.16) 

and  

��
�� = ��(�, �, �(�, �), ��(�, �), ��(�, �) )                                   (3.17) 

In the form of  

� = �(�, ��, ��),   � = �(�, ��, ��) (3.18) 

and then determining � from 

� = �(�, ��, ��) ≡ �(�(�, ��, ��), �(�, ��, ��))                         (3.19) 

Here (��, ��, �(��, ��))is a point on the surface � and the Monge curve on 
� given by (3.18) and (3.19) passes through the point. Since  

��
�� = ��

��
�� + ��

��
�� 

It follows from (3.18) and (3.19) that along these curves � varies 
according to           

��
�� = ��� + ���(3.20) 

Where � = �(�, �) has been substituted in the expression on the right-
hand side.  

Fig 1.5 
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Example 3.2: consider the function  

� = � cos � + � sin � , � =constant.                        (3.21) 

Which represents an integral surface of the equation  

� ≡ �� + �� − 1 = 0                                                (3.22)        

Then (3.16) and (3.17) give 

��
�� = 2� = 2 cos � 

��
�� = 2� = 2 sin � 

Therefore, the Monge curves of (3.22) on integral surface (3.21) are given 
by  

� = �� + 2� cos � ,   � = �� + 2� sin � 

and 

� = �� cos � + �� sin � + 2� 

     Along the Monge curves on � the variation of � and � are known from 
the expressions � = ��(�(�, ��, ��), �(�, ��, ��)) and 
� = ��(�(�, ��, ��), �(�, ��, ��))  respectively. Now we shall determine 
the rates of change of � and �  along a Monge curve on �. Since (3.1) is 
identically satisfied by � = �(�, �), differentiating with respect to x we 
get the identity  

�� + ���� + ����� + ����� = 0 on �.                                   (3.23) 

Along Monge curve on � 

���
��

= ���
��
�� + ���

��
�� = ����� + ����� 

For sufficiently smooth solution, ��� = ���  so that from (3.23), we get  

��
�� = −(�� + ���)                                                                (3.24) 

Similarly, the variation of � along a Monge curve on � is  

��
�� = −(�� + ���)                                                            (3.25) 

Given an integral surface, we have shown that there exist a family of 
Monge curves, which generate the surface and along which �, �, �, �, � 
vary according to  

��
�� = ��                                                                            (3.26) 
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��
�� = ��                                                                            (3.27) 

��
�� = ��� + ���                                                               (3.28) 

��
�� = −�� − ���                                                               (3.29) 

and  

��
�� = −�� − ���                                                                (3.30) 

We have discussed Monge curves exist only on a given integral surface. 
We now reverse the process by disregarding the fact that the system of 
ordinary differential equations (3.26) to (3.30) was derived with the help 
of integral surface. we call the first two equations (3.26) and (3.27) 
characteristic equations, the last three equations (3.28) - (3.30) 
compatibility conditions and the system formed with all the five equations 
(3.26)-(3.30), Charpit’s  equations. 

A set (�(�), �(�), �(�), �(�), �(�)) of five differential function is said to 
be a strip, if when we consider the curve � = �(�), � = �(�), � = �(�),  
the planes with the normals given by (�(�), �(�), −1) are tangential to it.  

A solution � =  �(�), � =  �(�), � =  �(�), � =  �(�)and � = �(�) of 
the Charpit’s equations satisfied the strip condition  

��
�� = �(�) ��

�� + �(�) ��
��                                                   (3.31) 

Note that not every set of five functions can be interpreted as a strip (Fig. 
3.2). A strip requires that the plane with normal(�, �, −�) be tangent to 
curve, i.e. they must satisfy the strip condition (3.31) and the normal 
should vary continuously along the curve. For a solution of Charpit’s 
equation (3.26)-(3.30), the strip condition is guaranteed by the first three 
equations.  

Along a solution of the Charpit’s equations, we have  

��
�� = ��

��
�� + ��

��
�� + ��

��
�� + ��

��
�� + ��

��
��                                 (3.32) 

which becomes identically equal to zero when we use (3.26) - (3.30). 
Therefore, �remains constant along an integral curve of Charpits 
Equations in (�, �, �, �, �) − space.If � = 0 is satisfied at an integral point 
� = 0, � = 0 everywhere along the solution of Charpit’s equations.  
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The initial value for a solution of Charpit’s equations can be prescribed by 
specifying  �, �, �, �, � on the four-dimensional surface in 
(�, �, �, �, �) −space. Therefore, the system of Charpit’s equations define 
a four-parameter family of strips. From this four-parameter family we 
choose a three parameter sub-family of strips by imposing the condition 
that � = 0 at � = 0. Which implies � = 0along these strips. We call this 
three parameter sub-family of strips Monge strips and the projection on 
(�, �)-plane of the corresponding space curves in (�, �, �)-space, 
characteristic curve. 

We shall show that if a Monge strip, say M has one element (i.e. the values 
of �(�), �(�), �(�), �(�), �(�), ��� ���� �, ��� � = 0 common with an 
integral surface �: �(�, �), then the strip belong entirely to the integral 
surface. let us suppose that at the point �, the integral surface � and the 
strip � has common values of (�, �, �, �, �). Since � is an integral surface, 
we can find a unique Monge curve on � through �. This together with � 
and � at points on this curve, gives a Monge strip �′ on �.Since both strip 
� and �′ satisfy Charpit’s equations (3.26) – (3.30) with the same initial 
condition at �, it follows from the uniqueness theorem of solution of 
ordinary differential equation that � and �’ are the same. As �′ belongs 
entirely to the integral surface, the result follows.  

EXERCISE 3.1 

1. Show that the Monge cone of equation � = �� is an open cone which 
is generated by a one parameter family of straight lines whose one end 
is fixed but the other and moves on a parabola. 
 

2. Consider the partial differential equation � ≡ �(�� + ��) − 1 = 0 
 

 

Fig 1.6 
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(i) Show that the general solution of the Charpit equation is a four 
parameter family of strips represented by  

� = �� + 2
3 ��(2�)

�
� cos � , � = �� + 2

3 ��(2�)
�
� sin � 

� = 2���, � = cos �
√2�  , � = sin �

√2�  

Where ��, ��, �� ��� � are the parameters.  
 

(ii)  Find the three-parameter subfamily representing the totality of all 
Monge strips. 
 

(iii)Show that all characteristic curves consist of all straight line in the 
(�, �)-plane.  

 

1.4.2 Solution of a Cauchy Problem 

  If there exits an integral surface passing through a space curve Γ:  
  � = ��(�), � = ��(�), � = ��(�);                                            (3.33) 

The first order partial derivatives � = ��(�) and � = ��(�), evaluated 
from the equation of integral surface at the point of Γ, satisfy the equation 
(3.1), i.e.      ����(�), ��(�), ��(�), ��(�), ��(�)� = 0                       (3.34) 

Moreover since ��(�) = �(��(�), ��(�)), differentiating with respect to 
�, we find the strip condition with respect to �: 

��
� (�) = ��(�)��

� (�) + ��(�)��′(�) = 0    (3.35) 

is satisfied at every point of Γ. Therefore, irrespective of choice of �, we 
can now solve for ��(�) and ��(�) from (3.34) and (3.35) to get an initial 
strip  

� = ��(�), � = ��(�), � = ��(�), � = ��(�), � = ��(�)           (3.36) 

We solve the Charpit’s equations (3.26)-(3.30) with initial values of 
�, �, �, � and � at � = 0 given by (3.36) and get the Monge strips starting 
from the various points of Γ. Since ��, �� satisfy the strip condition (3.35) 
with respect to �, these Monge strips smoothly join to form a surface. Due 
to (3.34), F is identically zero along each Monge strip, hence the surface 
thus generated is integral surface of (3.1) passing through Γ. We note that 
there can be more than one integral surface passing through Γ, since there 
can more than one pair of function ��(�), ��(�) satisfying the equations 
(3.34) and (3.35). However, once a set of values �� and �� ae selected, we 
expect to get a unique solution of Cauchy problem. In order that the 
solution exists and unique, it will be necessary to impose some restriction 
on the initial curve Γ. 
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Theorem 3.1: suppose the function �(�, �, �, �, �) ∈ ��(��) where �� is a 
domain in (x, y, u, p, q)-space. Further suppose that along a datum curve 
� = ��(�), � = ��(�) on � = {�: 0 ≤ � ≤ 1} the initial value � = ��(�) 
are assigned. Let the function ��(�), ��(�), ��(�) belong to ��(�); the 
functions ��(�), ��(�), satisfying two equations (3.34) and (3.35), belongs 
to ��(�) and the set ���(�), ��(�), ��(�), ��(�), ��(�)� ∈ �� for � ∈ � 
and satisfies  

���
�� ��(��, ��, ��, ��, ��) − ���

�� ��(��, ��, ��, ��, ��) ≠ 0                (3.37) 

Then we can find a domain � in (�, �)-plane containing the datum curve 
and a unique solution in �:  

� = �(�, �)                                                      (3.38) 

such that for � ∈ � 

����(�), ��(�)� = ��(�)                                          (3.39) 

�����(�), ��(�)� = ��(�)and�����(�), ��(�)� = ��(�)   (3.40) 

Proof: since the function appearing on a right hand side of the Charpit’s 
equation (3.26)-(3.30) belong to ��(��) and  
��(�), ��(�), ��(�), ��(�), ��(�) 

are ��(�), there exists a unique solution of the Charpit’s equation with 
initial condition (�, �, �, �, �) = (��(�), ��(�), ��(�), ��(�), ��(�)) at 
� = 0: 

� = �(�, �), � = �(�, �), � = �(�, �), � = �(�, �), � = �(�, �)         
(3.41) whose partial derivative with respect to � and � exists and 
continuous.  

  From (3.26), (3.27) and (3.37) it follows that  

�(�,�)
�( �,�) (�� � = 0) =  ���

�� ��(��, ��, ��, ��, ��) − ���
�� ��(��, ��, ��, ��, ��) ≠

0 (3.42) 

Therefore, there exists a neighbourhood �(��, ��) of a point 
(��(�), ��(�)) on the datum curve in (�, �)-plane (corresponding to 
� = 0, such that in �(��, ��) we can solve the first two equations of 
(3.41) uniquely in the form 

� = �(�, �), � = �(�, �)                                            (3.43) 

Substituting (3.43) in the expressions of �, � and � in (3.41) we get  

� = ���(�, �), �(�, �)� ≡ �(�, �)                      (3.44) 

� = ���(�, �), �(�, �)� ≡ �(�, �)                       (3.45) 

mu
no
tes
.in



31 
 

� = ���(�, �), �(�, �)� ≡ �(�, �) (3.46) which are continuously 
differential differentiable function of � and �. we shall now show that 
(3.44) is the solution the Cauchy problem. It is obvious that on the datum 
curve � = 0, the function (3.44) takes the prescribed value ��(�). Further, 
on the family of Monge strip (3.41), �(�, �, �, �, �) has a constant value 
�(��, ��, ��, ��, ��)which is zero i.e.  

���, �, �(�, �), �(�, �), �(�, �)� = 0 ��� ∈ �(��, ��)         (3.47) 

Therefore, the function �(�, �) in (3.44) is a solution of the differential 
equation (3.1) provided, we can show that  

��(�, �) = �(�, �), ��(�, �) = �(�, �)                       (3.48) 

Consider the function  

�(�, �) = �� − ��� − ���                                     (3.49) 

whose value, �(0, �),  on the datum curve is zero. Differential (3.49) with 
respect to  

��
�� = ��� − ���� − ���� − ���� − ���� 

= �
�� (�� − ��� − ���) + ���� + ���� − ���� − ���� 

  = 0 + ���� + ���� + ��(�� + ���) + ��(�� + ���) 

where we have used the Charpit’s equation in the result. Adding and 
subtracting ���� we get,  

��
�� = ����� + ���� + ���� + ���� + ����� − ���−��� − ��� + ��� 

= �� − ��� 

Since � identically zero along each of the Monge strips (3.14), �� ≡ 0. 
The function �now satisfies the following linear homogeneous ordinary 
differential equation  

��
�� = −��(�, �)�                                           (3.50) with solution 

� = �(0, �) exp�− ∫ ��(�, �)�
�  ���                     (3.51) 

Since �(0, �) = 0, �(�, �) = 0 for all values of (�, �) such that (�, �) ∈
�(��, ��) 

Therefore,  

�� = ��� + ���                                                      (3.52) 
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From the Charpit’s Equation, we also have 

�� = ��� + ���                                                     (3.53) 

From (3.44) we get,  

�� = ���� + ���� = ��(��� + ���) + ��(��� + ���) 

= ������ + ����� + ������ + ����� 

= � ��
�� + � ��

�� = �. 1 + �. 0 = �(�, �) = �(�, �) (3.54) where we have 
used the expressions of � and � from the first two equations (3.41). 
similarly, we can show that 

�� = �(�, �)       (3.55) 

Therefore from (3.47) it follows that �(�, �) given by (3.44) is a solution 
of the differential equation (3.1), in the domain �(��, ��). 
To prove the uniqueness of the solution, let us assume that �� is another 
integral surface represented by the solution � = �′(�, �) of the Cauchy’s 
problem. The surface �′can be covered by the family of Monge strips after 
solving (3.16) and (3.17) with � replaced by �′. These Monge strips 
satisfy the same initial condition at their point of intersection with the 
initial curve Γ, as the strips (3.14). from the uniqueness theorem for a 
solution of the Charpit’s ordinary differential equations, it follows that this 
family of Monge strips on the integral surface �′ must be the same as the 
strips (3.41). Therefore, the integral surface � coincide with �′, i.e.� = �′ 
in �(��, ��) 

Example 3.1:Consider the equation  

�� + �� = 1                                    (3.56) 

And straight line in (�, �)- plane.  

� = �� ≡ � sin � cos � , � = �� ≡ � sin � sin �                (3.57) 

On which � prescribed by  

� = �� ≡ � cos �                                     (3.58)  

where � and � are constants. 

 The Monge cone at (��, ��, ��) is the envelope of the planes  

(� − ��) cos � + (� − ��) sin � − (� − ��) = 0 

The Monge cone is therefore represented by the equation  

(� − ��)� + (� − ��)� = (� − ��)� 
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which gives a right circular cone with vertex at (��, ��, ��), axis parallel to 
�-axis and semi vertical angle ��.  

 

For the initial strip we have to solve the equations  

��
� + ��

� = 1                                              (3.59) 

and 

�� sin � cos � + �� sin � sin � = cos �                       (3.60) 

If � < �
�, the equations (3.59) and (3.60) do not possess a real solution for 

�� and ��showing that the solution of Cauchy problem does not exist. This 
can be explained from the fact that the space curve given by (3.57) and 
(3.58) through which the integral surface should pass, lies in the interior of 
the Monge cone at the origin. Naturally it is not possible for an integral 
surface to touch the Monge cone along a generator of the cone and also to 
pass through a line within it.  

For �\4 < � < �/2, we get two sets of values of �� and �� 

�� = cot � cos � ± sin � (1 − cot� �)�/�                                 (3.61) 

�� = cot � sin � ∓ cos � (1 − cot� �)�/�                               (3.62) which 
is independent of �. 
The Charpit’s equations are 

��
�� = 2� ,    ��

�� = 2� 

      Fig 1.7 
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��
�� = 2(�� + ��) = 2(1) = 2, using (3.56) 

��
�� = 0and  ��

�� = 0 

Solving thesewith the initial values (3.57), (3.58), (3.61) and (3.62), we 
get 

� = 2��� + � sin � cos � , � = 2��� + � sin � sin � , � = 2� + � ����,  
� = ��, � = ��  (3.63) 

Eliminating � and � from (3.63) we get the two solution of Cauchy 
problem corresponding to the two sets of values of �� and ��.  

� = cot � (� cos � + � sin �) ± �1 − cot� �  (� sin � − � cos �)              
(3.64) 

They represent two planes which pass through the initial line Γ and touch 
the Monge cones along two generators.  

1.4.3 Solution of a Characteristic Cauchy Problem 

We have seen that when the condition (3.37) is satisfied, i.e. when the data 
is such that datum curve � in (�, �)-plane is nowhere tangential to the 
characteristic curve for a possible solution of the Cauchy problem exists 
and unique. However, when ����

� (�) − ����
� (�) = 0 hold everywhere 

along � and the initial manifold �: (��(�), ��(�), ��(�), ��(�), ��(�)) 
belongs to the integral surface �, then following the arguments of §3.1 for 
the derivation of Charpit’s equation (3.26) – (3.30) we can show that the 
strip � must be a Monge strip on � with the parameter � replaced by �. 
Hence in exception case, ����

� − ����
� = 0, a necessary condition for the 

existence of a solution of the Cauchy problem is that the initial strip � is a 
Monge strip. This condition is also sufficient. In fact, if this condition is 
satisfied, there exist not only one but an infinite number of solutions of the 
characteristic Cauchy problem.  

If ����
� − ����

� = 0 and the initial strip is not a Monge strip, then it 
follows from above that there exists no solution of the Cauchy problem 
having continuous derivatives up to second order in the neighbourhood of 
the datum curve.  

EXERCISE 3.2 

1. Solve the Cauchy problems:  
(i) �

� (�� + ��) = � with Cauchy data prescribed on the circle 
�� + �� = 1 by �(cos � , sin �) = 1, 0 ≤ � ≤ 2� 

(ii) �� + �� + �� − �
�� �� − �

�� − � = 0, with Cauchy data 
prescribed on �-axis by �(�, 0) = 0 
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(iii) 2�� − � = 0, with Cauchy data prescribed on �-axis by 
�(0, �) = ��

�  
(iv) 2��� + �� − � = 0, with Cauchy data �(�, 1) = − �

� 
 

2. Consider two parameter family of functions � = �(�, �, �, �) 
where � is a known functions of its arguments and �, � are 

parameters. If the rank of the matrix ��� ��� ���
�� ��� ���

� is 2, show 

that the result of elimination of � and � from the relation 
�(�, �, �, �) = �, ��(�, �, �, �) = ��, 
��(�, �, �, �) = �� leads to a first non-linear equation  

���, �, �, ��, ��� = 0 
 

3. Two first order partial differential equations are said to be 
compatible, if they have a common solution. Show that the necessary and 
sufficient condition for two equations �(�, �, �, � , � ) = 0 and 
�(�, �, �, � , � ) = 0 to be compatible is that  
�(�,�)
�(�,�) + � �(�,�)

�(�,�) + �(�,�)
�(�,�) + � �(�,�)

�(�,�) = 0  is satisfied either identically or as 
a consequence of relations � = 0 and � = 0.  

 
1.5  COMPLETE INTEGRAL 
 
 In problem 2 in Exercise 3.2 we saw that the result of elimination of two 
arbitrary constants � and � from a relation 
� = �(�, �, �, �)                                                (4.1)  
leads to a non-linear equation  
���, �, �, ��, ��� = 0                                       (4.2) 
We note that (4.1) satisfied (4.2) for all values of � and �.  
 
We shall show that a solution of the form (4.1) and (4.2) is sufficiently 
general in the sense of all other solution of this equation can be obtained 
from it merely by simple operation of differentiation and elimination of 
the constants.  
 
 Definition: A two parameter family of solution (4.1) of the equation (4.2) 
is called complete integral of the equation if the rank the matrix 

��� ��� ���
�� ��� ���

� is 2 in an appropriate domain of the variables �, �, �, �. 
       The condition that the above matrix has rank 2 assures that the 
function � depends on two independent parameters and elimination of 
� and � from (4.1) and  
�� = ��(�, �, �, �), �� = ��(�, �, �, �)                    (4.3) 
 leads to equation (4.2). 
 Note 1: If � and � be combined into one parameter � = �(�, �), then two 
rows of the matrix become linearly dependent and its rank becomes one.  
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2: If the rank is two, � and � can solved from (4.3) and these can be 
substituted in (4.1). 
 
1.5.1 Determination of complete integral 
 
It is simple to determine a complete integral for a given partial differential 
equation (4.2). the problem of Exercise 3.2 gives the condition for the 
existence of a common solution of two equations ���, �, �, ��, ��� = 0 
and ���, �, �, ��, ��� = 0. Once these two equations have a common 
solution, we first solve them simultaneously for ��and�� in terms of �, � 
and �.  
�� = ℎ(�, �, �)and�� = �(�, �, �) 
and then the differential relation 
ℎ(�, �, �)�� + �(�, �, �)�� = ��                                (4.4)  
will possess an integrating factor and can be integrated giving a relation 
between �, � and � and an arbitrary constant �. Therefore, a complete 
integral of (4.2) can be determined if we can determine a compatible 
equation �(�, �, �, �, � ) = 0 containing an arbitrary constant �. But this is 
simple since the result of problem 3.2 shows that any � satisfying the 
equation:  

��
��
�� + ��

��
�� + ���� + ���� ��

�� − (�� + ���) ��
�� − ��� + ���� ��

�� = 0 

(4.5) 
would be a compatible equation.  
 
This is the first order linear homogeneous partial differential equation for 
� in five independent variables  �, �, �, � and �. For the equation (4.5), the 
characteristic equations and compatibility conditions are  
��
��

= ��
��

= ��
�������

= ��
�(������) = ��

�(������)                            (4.6) 

 
Since the compatibility condition implies that � =constant on the 
characteristic curve in (�, �, �, �, �)-space, it follows that if we can get any 
first integral, say �(�, �, �, �, �) = � of the characteristic equations, then 
� ≡  �(�, �, �, �, �) − � = 0 is the required equation containing an 
arbitrary constant � and compatible with ���, �, �, ��, ��� = 0 
 
The characteristic equations of (4.5) are nothing but the Charpit’s 
equations (3.26) - (3.30) of the equation (4.2) 
 
Example 4.2: Find the complete integral of the partial differential equation  
���� + ���� − 4 = 0.                                                                        (4.7) 
Solution:Charpit’s equation for the given PDE,  

��
2��� = ��

2��� = ��
2(���� + ����) = ��

−2��� = ��
−2��� 

We take the relation ��
���� = ��

���� which gives 
� ≡ �� =constant= �, say.                                                   (4.8)       
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Taking one of the value of � and � from (4.7) and (4.8) and substituting in 
(4.4), we get  

�� = �
� �� + √4 − ��

� �� 

Integrating this we get a complete integral  
� = � log � + �4 − �� log � + � 

Containing two arbitrary constants � and �. 
Example 4.3 Find the complete integral of the PDE � = �� + �� + �� +
��. 

Solution: �(�, �, �, �, �) = 0 

� = �� + �� + �� + �� − � = 0 

�� = �, �� = �, �� = −1, �� = � + 2�, �� = � + 2� 

Charpit’s equation for the given PDE,       

��
−� + � = ��

−� + � = ��
�(� + 2�) + �(� + 2�) = ��

� + 2� = ��
� + 2� 

Taking ��
� = ��

� ,  

�� = 0, �� = 0 => � = �, � = � 

Complete integral � = �� + �� + �� + ��. 

 
EXERCISE 1.1 

 
1. Show that the compete integral of  
a) �(�, �) = 0, where � involves only � and � and ���, �(�)� = 0 is 

� = �� + �(�)� + �.  
b) � ≡ �(�, �) − �(�, �) = 0 is obtained by solving � and � from 

�(�, �) = �, �(�, �) = � and integrating �� = ��� + ���.  
c) � ≡ � − �� − �� − �(�, �) = 0 is � = �� + �� + �(�, �) 
2. If independent variable � and � do not appear in the equation 

�(�, �, ��) = 0, then show that the complete integral can be obtained 
by solving � form �(�, �, ��) = 0, taking � = �� and integrating 
�� = ��� + ���. 

Note: These all are standard results and can be used to find complete 
integral of any PDE satisfying the given condition.  
 
1.5.2 Solution of a Cauchy Problem 
Once we know a complete integral, we can find solution of the Cauchy 
problem.  
 
We are required to construct an integral surface � of (4.2) passing through 
an initial curve  
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Γ: � = ��(�), � = ��(�), � = ��(�)     (4.9) 
  At the point of intersection of Γ and any member of (4.1) the parameter 
� satisfies  
�(��(�), ��(�), �, �) = ��(�) (4.10)  
Differentiating both the sides with respect to � 

�
�� �(��(�), ��(�), �, �) = ��′(�)                             (4.11)  

Eliminating � from these two equations we get a relation between � and 
�. which is required integral surface.  

Example 4.4: Solve the Cauchy problem 

2��� + �� = �                                                (4.12)  

with Cauchy data �(�, 1) = − �
� 

Solution:  Cauchy data can be put in the form 

� = ��(�) ≡ �, � = ��(�) = 1, � = ��(�) ≡ − �
� �                                   

(4.13) 

To derive a complete integral, the Charpit’s equations: 

��
4�� = ��

� = ��
4��� + �� = ��

−2�� + � = ��
0  

Which gives a compatible equation  

� = �                                                             (4.14) 

Containing an arbitrary constant. From (4.12) and (4.26), we get  

� = �����
��                                                        (4.15) 

The complete integral is given by  

�� = ��� + ���  
�� = �� − ��

2� �� + ��� => �� − � ��
�� − �� = ��

√2� => �� − ��

= ��
2 + � 

=> �� − �� − �
� − ��

�
= 2��                             (4.16) 

Substituting (4.13) in (4.16), 

(� + � + �)� = 2��                                                             (4.17)  
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Which after differentiating with respect to � gives  

2(� + � + �) = 2�     (4.18) 

Eliminating � from (4.17) and (4.18), we get  

� = −2� 

Substituting this value of � in (4.16), we get the solution of Cauchy 
problem 

� = ��
�(���). 

EXERCISE 1.2 

1. Use the method of complete integrals to solve the following Cauchy 
problems:  

i) 2�� − � = 0, �(�, 1) = �
� � 

ii) � − � = �
� (�� + ��), �(�, �) = ��

�  ��� − ∞ < � < ∞   
iii) �� + �� = �, �(cos � , sin �) = 1 ��� 0 ≤ � ≤ 2� 
iv) � = �� + �� + � + � − 2��, �(�, �) = 2� ��� − ∞ < � < ∞   
2. Given any two complete integrals � = �(�, �, �, �), � = �(�, �, �, �) 

of a first order partial differential equation, show that one complete 
integral can be derived from the other.  

3. Find the complete integral of 4(� + �)(� − �� − ��) = 1.  

1.6  LET US SUM UP: 

 In this unit two main types of partial differential equations, semilinear and 
quasi linear, out of fourare discussed. Cauchy problem and its 
characteristics is discussed. General solution can be determined.  We have 
also discussed Monge curve and Charpit’s equation.  Solution of 
characteristic Cauchy problem and complete integral is discussed.  
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2 
SECOND ORDER PARTIAL 

DIFFERENTIAL EQUATIONS 
Unit structure  

2.0  Objectives   

2.1   Introduction  

2.2 Classification of second order partial differential equation in two  
independent variables. 

2.3 Classification of partial differential equation in more than two 
independent variables 

2.4.1 The Cauchy problem 

2.4.2 The Solution of Cauchy’s Problem 

2.5 Method of reduction to normal form 

2.6 Potential Theory and Elliptical differential Equation.  

2.7 Harmonic function  

2.8  Poisson’s formula  

2.9  Let's sum up  

2.10 List of references 

2.11 Bibliography 

2.1 OBJECTIVE  

After doing this unit, you will be able to: 

 Classify the 2nd order PDE in two variables into hyperbola, 
parabola and ellipse 

 Classify the 2nd order PDE in more than two variables 
 Find the characteristics equations of all three types of PDE. 
 To solve the Cauchy’s problem. 
 To reduce the 2nd order PDE in its normal form.  
 To find the potential equations. 
 To study about harmonic function. 
 To derive Poisson’s integral formula. 
 To learn about Maximum - minimum properties  
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2.1 INTRODUCTION  

We have studies in previous chapter about first order partial differential 
equation and its types, Cauchy equation and how to find the general 
solution of this. Now we will learn about second order partial differential 
equation in two variables and its classification also study the partial 
differential equation more than two variable.  

2.2 CLASSIFICATION OF SECOND ORDER PARTIAL 
DIFFERENTIAL EQUATION IN TWO 
INDEPENDENT VARIABLES. 

Consider a general partial differential equation of second order for a 
function of two independent variables � and � in the form: 

�� + �� + �� + �(�, �, �, �, �) = 0                                                     (1.1)      

Where �, �, � are continuous functions of � and � only possessing partial 
derivatives defined in some domain D on �� −plane. 

And � = ���
��� , � = ���

���� , � = ���
���,   Then (1.1) is said to be  

(i) Hyperbolic at a point (�, �) in domain D if 
�� − 4�� > 0 

(ii) Parabolic at a point (�, �) in domain D if 
�� − 4�� = 0 

(iii) Elliptic at a point (�, �) in domain D if 
�� − 4�� < 0 

Note that the type of (1.1) is determine solely by its principal part 
(�� + �� + ��, which involves the higher order derivative of �) and that 
the type will generally change with the position in the �� −plane unless 
�, �, � are constants.  

Remark: some authors use � in place of �. Then we will have 

� = ���
���  , � = ���

���� , � = ���
��� 

Examples:  

i) Consider the one-dimensional wave equation���
��� = ���

���i.e.� − � = 0 

Sol.  Comparing it with (1.1), here , � = 1, � = 0, � = −1 

�� − 4�� = 0 − 4(1)(−1) = 4 > 0, so the given equation is hyperbolic. 

ii) Consider the one dimensional diffusion equation  
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iii) Consider the two-dimensional Laplace equation���
��� + ���

��� = 0 �. �. � +
� = 0 

Sol.  Comparing it with (1.1), here , � = 1, � = 0, � = 1 

�� − 4�� = 0 − 4(1)(1) = −4 < 0,so the given equation is elliptic.  

Ex.2. classify the following partial differential equations.  

i) 2 ���
��� + 4 ���

���� − 3 ���
��� = 2 

Sol: � = 2, � = 4, � = −3 

�� − 4�� = 16 − 4 ∗ 2 ∗ −3 = 16 + 24 = 40 > 0 =>hyperbolic 

ii) ���
��� + 4 ���

���� + 4 ���
��� = 0 

� = 1, � = 4, � = 4, �� − 4�� = 16 − 4 ∗ 1 ∗ 4 = 0=> parabolic  

iii) ��� − (�� − ��)� − ��� + �� − �� = 2(�� − ��) 

Sol.: � = ��, � = −(�� − ��), � = −�� 

�� − 4�� = {−(�� − ��)}� − 4 ∗ �� ∗ −��, 
= {(�� − ��)}� + 4���� = �� + �� − 2���� + 4���� 

= �� + �� + 2���� = (�� + ��)� > 0 =>hyperbolic 

iv) �(�� − 1)� − (���� − 1)� + �(�� − 1)� + �� + �� = 0 

Sol.: (���� − 1)� − 4�(�� − 1) ∗ �(�� − 1) 

= (���� − 1)� − 4��(�� − 1)� 

= (�� − 1)�(�� + 1)� − 4��(�� − 1)� 

= (�� − 1)�{(�� + 1)� − 4��} 

= (�� − 1)�{���� + 1 + 2�� − 4��} 

= (�� − 1)�{���� + 1 − 2��} 

= (�� − 1)�(�� − 1)� = (�� − 1)� > 0 => ℎ���������  

2.3 CLASSIFICATION OF SECOND ORDER PARTIAL 
DIFFERENTIAL EQUATION IN THREE 
INDEPENDENT VARIABLES. 

A linear partial differential equation of the second order in three 
independent variables ��, �� ��� ��, is given by,  
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∑ ∑ ���
���

������
�
���

�
��� + ∑ ��

��
���

�
��� + �� = 0                 (1.2)  

Where ����= �� ��, �� ��� � are constant or some functions of independent 
variables ��, ��, ��and � is thedependent variable.   

Since ��� = �� �, � = ������×� is real and symmetric of order 3 × 3. The 
eigen values of matrix � are roots of the characteristic equation of �, 
namely |� − ��| = 0. 

  With the help of matrix �, (1.2) is classified as follows 

i) If the eigen values od � are non-zero and have same sign, 
except precisely one of them then (1.2) is known as hyperbolic 
type of equation.  

ii) If |�| = 0,i.e. anyone of the eigen value of A is zero, then (1.2) 
is known as parabolic type of equation.  

iii) If all the eigen values of A are non-zero and of the same sign, 
then  (1.2) is known as elliptic type of equation.  
 
The matrix � can be remembered as  

� = �
�����.  �� ��� �����.  �� ��� �����.  �� ���
�����.  �� ��� �����.  �� ��� �����.  �� ���
�����.  �� ��� �����.  �� ��� �����.  �� ���

� 

Ex.1.�������� �ℎ� ���  ��� + ��� = ��� 

Sol.:��� + ��� − ��� = 0 

� = �
1 0 0
0 1 0
0 0 −1

� 

Characteristic equation of �, 

�� − ��(�)�� + (��� + ��� + ���)� − |�| = 0   
�� − �� + (−1 − 1 + 1)� + 1 = 0 

=> �� − �� − � + 1 = 0 

=> ��(� − 1) − 1(� − 1) = 0 

(� − 1)(�� − 1) = 0  
=> ( � − 1)(� − 1)(� + 1) = 0  

=> � = 1, 1, −1 

It is showing that all eigen values are non-zero and have the same sign 
except one. Hence the given equation is hyperbolic type. 
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Ex.2.��� + ��� + ��� + ��� + ��� = 0 

Sol.:The given equation can be rewritten as ��� + 0. ��� + 0. ��� +
0. ��� + ��� + ��� + 0. ��� + ��� + ��� = 0 

The matrix A of the given equation is as follows 

� = �
1 0 0
0 1 1
0 1 1

� 

Determinant of A, |�| = 0 

 =>given equation is parabolic type.  

Ex.3. Classify   ��� + 2��� + ��� = 2��� + 2��� 

Sol.:the given can be rewritten as  

��� + 2��� + ��� − ��� − ��� − ��� − ��� = 0 

� = �
1 −1 0

−1 2 −1
0 −1 1

�,  

|�| = 1(2 − 1) + 1(−1 − 0) + 0 = 1 − 1 = 0 

=>given equation is parabolic type 

Ex4.: classify the following equations.  

i) ��� + ��� + ��� = 0 
ii) ��� + ��� = �� 
iii) 3��� + 3��� + 4��� + 8��� + 4��� = 0 

Sol.: Try yourself.                     

Ans.:  i) elliptic    ii) parabolic   iii) hyperbolic  

2.4.1 THE CAUCHY’S PROBLEM  

We start with the general quasilinear second order equation for a function 
�(�, �) of two independent variables: 

�� � + 2 � �� � + � �� � = �(1) 

where �, �, �, � depend on �, �, �, ��, ��. The Cauchy problem consists in 
finding a solution of (2.4.1) with given values of � and its normal 
derivative on a curve � in the (�, �) plane. 

Let the parametric representation of � be: � = ��(�), � = ��(�), � ∈ �, 
where � is aninterval on the real line. We are given two functions ��(�) 
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and ��(�), � ∈ � The Cauchy problem consists in finding a solution 
�(�, �) of (2.4.1) which satisfies the following conditions: 

����(�), ��(�)� = ��(�), � ∈ �and  ��
�� ���(�), ��(�)� = ��(�), � ∈ �(2) 

where �
�� denotes a normal derivative to �. 

For discussion of the Cauchy problem here, we assume that �, �, � and � 
are analyticfunctions, regular in some domain �. Our aim is to examine 
whether there exists a unique analytic solution of (2.4.1), which takes 
given values on C. To do so, we formally construct a solution using a 
Taylor's series expansion about any point of �. The first step in such a 
solution is to show that the partial derivatives of � of all orders are 
uniquely determined at every point of � Let suffix 0 denote the values of 
partial derivatives of � at point of �i.e.����(�), ��(�)� = ��(�),  and so 
on. Then ���(�) and ���(�)satisfy the following linear equations: 

��
� ���(�) + ��

� ���(�) = ��′(�) 

and −��
� ���(�) + ��� ���(�) = ���

� + ��
� ∗ ��(�)   (3) 

where a prime ( ′ )denotes differentiation with respect to �. Except at 
points where ��

�  and ��
� vanish simultaneously ��� and ��� can be 

determined uniquely. 

Regarding second order derivatives, namely, ����(�) and ����(�) and 
����(�) they can be determined as solutions of the linear equations: 

�����(�) + 2�����(�) + �����(�) = � 

��
� (�)����(�) + ��

� (�)����(�) = {���(�)}′ 

��
� (�)����(�) + ��

� (�)����(�) = {���(�)}′   (4) 

These equations determine ����(�), ����(�) ��� ����(�) uniquely 
provided the determinant of the coefficient matrix is nonzero. This 
requires that 

���
�� − 2���

� ��
� + ���

�� ≠ 0 

Or�(−��
� , ��

� ) ≠ 0   (5) 

where � is the characteristic quadratic form.Further we can show that the 
derivatives of � of all orders can be uniquely determined at points of � 
provided 

�(−��
� , ��

� ) ≠ 0 

In this way we can formally develop a unique Taylor's series expansion 
solution in the neighbourhood of any point of � satisfying the given 
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conditions on C. The difficulty is to show that such an expansion is 
convergent in some region around C.  The Cauchy-Kowalewski method 
(see Garabedian, 1964) provides a majorant series ensuring convergence. 

On the other hand, if �(−��
� , ��

� ) = 0,  then the partial derivatives of � on 
the curve C cannot be determined uniquely. The exceptional curves C, on 
which if � and its normal derivative are prescribed, no unique solution of 
(1) can be found satisfying these conditions, are called characteristic 
curves. These curves satisfy the homogencous equation 

�(−��
� , ��

� ) = 0. 

If the curve �: � = ��(�), � = ��(�) in the (�, �) plane is given by the 
equation �(�, �) =constant.  

By eliminating �, then � satisfied the PDE ����, ��� =
0 on�(�, �) =constant             (6) 

Since − ���

��� = ��
��

= − ��
�� 

From the result it follows that there are two distinct families of 
characteristic curves satisfying equation (6), if the equation is hyperbolic. 
There are precisely �(�, �) =constant and �(�, �) =constant, � and � are 
referred as characteristic variable or coordinates.  

For the hyperbolic equation in its normal form, namely,   

��� + ���, �, �, ��, ��� = 0                                                   (7)        

�(�, �) =constant and �(�, �) =constanare the characteristic curves. If, 
for example in the Cauchy problem � and��are proscribed on a 
characteristic carve. C: � =constant, then we cannot determine ���  
uniquely on � = constant from the given equation (since the coefficient of 
���is zero in the linear second order equation (7)). Since � and ��are 
prescribed on � =constant as ��(�) and ��(�), say, respectively, � and 
��can be computed on � =constant and the equation (7) will reduce to the 
compatibility condition 

��(�) + �(�, �, ��, ��, ��
� ) = 0 

on � =constant. Compatibility conditions to be satisfied on charactoristic 
curves are typical, as tho equation gives no additional information in this 
case (like the value of use in equation (7)), but merely insists on a relation 
between already known quantities. If the compatibility condition is 
satisfied there will be an infinity of solutions of the Cauchy problem 
(choosing ���  arbitrarily in (7)), or else there will be no solution. The 
above discussion holds for data prescribed on � = constant as well. For a 
hyperbolic equation, we have two compatibility conditions, one each on 
the characteristic curves � =constant and � =constant. For a parabolic 
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equation, we have one compatibility condition on the single family of 
characteristic curves. 

In the canonical elliptic form, ��� and ���can always be determined 
Whenever � and its normal derivative are prescribed on any curve in the 
(�, �) −plane, since ����, ��� ≠ 0 on any real curve �(�, �) = constant. 
We can always find a unique solution for the. Cauchy problem in this 
case. 

In the case of � independent variables, those surfaces 
�(��, ��, … … . ��) = 0,  on which, when the function and its normal 
derivative are prescribed, no unique solution, exists satisfying the 
prescribed conditions, are called characteristic surfaces. Following a 
similar process, as in the case of two independent variables, it follows that 
� satisfies the equation ,namely 

��(�) = ��������� = 0 �� � = 0 

The characteristic condition ��(�) = 0 is required to be satisfied on �=0  
but this does not require that � satisfies the equation ��(�) =
0identically.  

EXERCISE 2.1 

1. Let �(�, �) satisfy the equation 
��� − 2��� + ��� + 3�� − � + 1 = 0 

in a region of the (�, �) plane. Classify the equation and find its 
characteristics. Construct a solution, if it is exists, for each of the 
Cauchy data: 
(i) � = 2, �� = 0 on the line � = 0 
(ii) � = 2, �� = 0 on the line � + � = 0 

2.4.2 THE SOLUTION OFCAUCHY’S PROBLEM 

Consider the second order partial differential equation 

�� + �� + �� + �(�, �, �, �, �) = 0(1) 

In which �, �, � are functions of � ��� � only. The Cauchy problems 
consists of the problem of determining the solution of (1) such that on a 
given space curve � it takes on prescribed value of � ��� ��

��, where � is 
the distance measured along the normal to curve.  

As an example of Cauchy’s problem for second order partial differential 
equation, consider the following problem. 

To determine the solution of ���
��� = ���

��� which of the following data 
prescribed on the x-axis. �(�, 0) = �(�), ��(�, 0) = �(�). Observe that y-
axis is the normal to the given curve(x-axis here). 
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Characteristic equation and characteristic curves: 

Corresponding to equation (1), consider the � −quadratic 

��� + �� + � = 0           (2) 

Where �� − 4�� ≥ 0, (2) has real roots. Then the ordinary differential 
equations 

��
�� + �(�, �) = 0       (3) 

are called the characteristic equations.  

The solution of (3) are known as characteristic curves or simply the 
characteristics of the second order partial differential equation (1). 

Now consider the following cases: 

Case 1: if �� − 4�� > 0 (i.e. if (1) is hyperbolic), then equation (2) has 
two distinct real roots �� ��� �� say so that we have two characteristic 
equations  

��
�� + ��(�, �) = 0, ��

�� + ��(�, �) = 0   

Solving these we get two distinct families of characteristic curves.  

Case2. if �� − 4�� = 0 (i. e. if (1) parabolic),then equation (2) has two 
equal real roots each �, so that we have only one characteristic equation 
��
�� + �(�, �) = 0 

Solving these we get only one family of characteristic curve.  

Case 3. if �� − 4�� < 0 (i.e. if (1) is elliptic), then equation (2) has no 
real roots i.e., two complex roots. Hence there are no real characteristics. 
Thus, we get two distinct families of complex characteristic curves when 
(1) is elliptic.   

Ex.1. Find the characteristics of ��� − ��� = 0 

Sol:� = ��, � = 0, � = −�� 

�� − 4�� = 0 − 4(��)(−��) = 4���� > 0 , hence the given equation is 
hyperbolic everywhere except on the co-ordinate axes � = 0 and � = 0.  

The � −quadratic is ��� + �� + � = 0 

i.e.,���� − �� = 0 

=> �� = ��

�� => � = ± �
�are two distinct roots. Corresponding 

characteristics equation are  
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��
�� + �

� = 0  ��� ��
�� − �

� = 0  

=> ��
�� = − �

�  and ��
�� = �

� 

=> ��� = −��� ��� ��� = ��� 

Integrating, �� + �� = ��and �� + �� = ��, which are required family of 
Characteristic Curves. 

  Ex.2. Find the characteristics of ��� + 2��� + ��� = 0 

Sol: � = ��, � = 2��, � = �� 

�� − 4�� = 4���� − 4(��)(��) = 0, hence the given equation is 
hyperbolic.  

The � −quadratic is ��� + �� + � = 0 

=> ���� + 2��� + �� = 0 

=> (�� + �)� = 0 => � = − �
� , − �

� 

��
�� − �

� = 0 => ��
� = ��

� => log � = log � + log � => � = �� this is 
required family of Characteristic Curves. Here it represents a family of 
straight lines passing through the lines.  

Ex.3. Find the characteristics of 4� + 5� + � + � + � − 2 = 0 

Sol.: Try yourself.                                                   Ans.: � − � = ��, � −
�
� = �� 

Ex.4. Find the characteristics of (sin� �)� + (2 cos �)� − � = 0 

Sol.: Try yourself. Ans: � + ����� � − cot � = �� , � + ����� � +
cot � = �� 

2.5 METHOD OF REDUCTION TO NORMAL FORM  

Consider the second order partial differential equation of the type  

�� + �� + �� + �(�, �, �, �, �) = 0, where �, � , �  are continuous 
function of x and y possessing continuous partial derivative of as high an 
order as necessary. There is a certain method to solve different types of 
PDE’s which we are going to discuss in detail as follows.  
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2.5.1 working rule for reducing a hyperbolic equation to its normal 
form  

Step1. let the given equation �� + �� + �� + �(�, �, �, �, �) = 0, (1)  

be hyperbolic so that �� − 4�� > 0 

Step 2.Write � −quadratic equation            ��� + �� + � = 0   (2) 

Let �� ��� �� be its two distinct roots.  

Step 3. Then corresponding characteristic equations are  

��
�� + �� = 0  and ��

�� + �� = 0. 

Solving these, we get ��(�, �) = �� and ��(�, �) = ��   (3) 

Step4. We select �, � such that � = ��(�, �) and � = ��(�, �)   (4) 

Step5.Using relation (4), find �, �, �, �, � in terms of � ��� � . 

Step6. Substituting the value of�, �, �, �, � obtained in step 4 in equation 
(1) and simplifying we shell get the following canonical form of (1): 

���
���� = � ��, �, �, ��

�� , ��
��� 

Ex.1. Write a canonical form of ���
��� − ���

��� = 0 

Sol: Re writing the given equation � − � = 0 ------(1) 

�� − 4�� = 0 − 4(1)(−1) = 4 > 0 =>hyperbolic 

�� + 0 ∗ � − 1 = 0 => �� = 1 => � = ±1 

Characteristic equation ��
�� + 1 = 0 => �� + �� = 0 => � + � = �� 

And��
�� − 1 = 0 => �� − �� = 0 => � − � = �� 

Let � = � + �, � = � − �  

Jacobian form of u and v =�
��
��

��
��

��
��

��
��

� = � 1 1
−1 1� = 1 + 1 = 2 ≠  0 

=>u and v are independent function. 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 1 + ��
�� ∗ −1 = ��

�� − ��
�� 

=> ��
�� = ��

�� − ��
�� => �

�� = �
�� − �

�� 
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� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� + ��
�� 

=> ��
�� = ��

�� + ��
�� => �

�� = �
�� + �

�� 

� = ���
��� = �

�� ���
��� = � �

�� − �
��� ���

�� − ��
���

= ���
��� − ���

���� − ���
���� + ���

��� 

� = ���
��� − 2 ���

���� + ���
��� 

� = ���
��� = �

�� ���
��� = � �

�� + �
��� ���

�� + ��
��� = ���

��� + 2 ���
���� + ���

��� 

Using these values in eq. (1) the required canonical form is  

���
��� − 2 ���

���� + ���
��� − ����

��� + 2 ���
���� + ���

���� = 0 

���
��� − 2 ���

���� + ���
��� − ���

��� − 2 ���
���� − ���

��� = 0 

=> −4 ���
���� = 0 => ���

���� = 0which is required equation. 

Ex.2.� − � + � − � �1 + �
�� + ��

�� = 0 ---------(1) 

Sol:�� − 4�� = (−1)� − 0 = 1 > 0 => this is hyperbolic.  

0 ∗ �� − � + 1 = 0 => � = 1 corresponding ch eq. � + � = �� 

��� � = � + �, � = � ----(2) 

Jacobian form of u and v =�
��
��

��
��

��
��

��
��

� = �1 1
1 0� = −1 ≠ 0 

v and u are independent functions.  

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 1 + ��
�� ∗ 1 

=> ��
�� = ��

�� + ��
�� => �

�� = �
�� + �

�� ---------(3) 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� 

=> ��
�� = ��

�� => �
�� = �

�� ---------(4) 
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� = ���
���� = �

�� ���
��� = � �

�� + �
��� ���

��� = ���
��� + ���

���� --------(5) 

� = ���
��� = �

�� ���
��� = �

�� (��
��)= ���

��� ------(5) 

Using the values �, �, � , � in eq. (1) 

���
��� − ���

��� − ���
���� + ��

�� + ��
�� − ��

�� �1 + 1
�� + ��

�� = 0 

���
���� = ��

�� + ��
�� − ��

�� − 1
�

��
�� + ��

�� 

���
���� = ��

�� − �
�

��
�� + ��

�� which is required equation.  

2.5.2 working rule for reducing a parabolic equation to its normal 
form  

Step1.  let the given equation �� + �� + �� + �(�, �, �, �, �) = 0,                
(1)  

be hyperbolic so that �� − 4�� = 0 

Step 2. Write � −quadratic equation            ��� + �� + � = 0 (2) 

Let � be its root.  

Step 3. Then corresponding characteristic equation is 

��
�� + � = 0. 

Solving this, we get �(�, �) = �  (3) 

Step4. We select �, � such that � = ��(�, �) and � = ��(�, �)   (4) 

Where ��(�, �) is an arbitrary function of x and y and is independent of 
��(�, �). for this verify that Jacobian J of � and � given by (4) is non – 
zero.  

� = �(�,�)
�(�,�) = �

��
��

��
��

��
��

��
��

� = ��
�� ∗ ��

�� − ��
�� ∗ ��

�� ≠ 0                         (5) 

Step5.Using relation (4), find �, �, �, �, � in terms of � and � . 

Step6. Substituting the value of�, �, �, �, � obtained in step 4 in equation 
(1) and simplifying we get the following canonical form of (1). 

���
��� = � ��, �, �, ��

�� , ��
���   �� ���

��� = � ��, �, �, ��
�� , ��

��� 
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Ex.1.Reduce  � + 2� + � = 0 to its canonical form.  

Sol: � + 2� + � = 0 − − − − − − − −(1) 

�� − 4�� = 4 − 4 = 0, the given equation is parabolic.     

1 ∗ �� + 2� + 1 = 0 => (� + 1)� = 0 => � = −1, −1  
��
�� − 1 = 0 => � − � = � 

Let � = � − �, � = � -----------(2) 

Jacobian form of u and v =�
��
��

��
��

��
��

��
��

� = �−1 1
0 1� = −1 ≠ 0 u and v are 

independent. 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = − ��

�� 

��
�� = − ��

�� => �
�� = − �

�� -------(3) 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 1 + ��
�� ∗ 1 

=> ��
�� = ��

�� + ��
�� => �

�� = �
�� + �

��-------(4) 

 � = ���
��� = �

�� ���
��� = �− �

��� �− ��
��� = ���

���--------(5) 

� = ���
���� = �

�� ���
��� = − �

�� ���
�� + ��

��� = − ���
��� − ���

����-----(6) 

� = ���
��� = �

�� ���
��� = � �

�� + �
��� ���

�� + ��
��� = ���

��� + 2 ���
���� + ���

���------(7) 

Using the values �, �, � in equation (1), we get the required equation, 

���
��� − 2 ���

��� − 2 ���
���� + ���

��� + 2 ���
���� + ���

��� = 0 

=> ���
��� = 0 

Ex.2.��� − 2��� + ��� − ���

� � � − ��

� � = 0 

Sol:��� − 2��� + ��� − ���

� � � − ��

� � = 0   (1)  

�� − 4�� = 4���� − 4���� = 0  => this equation is parabolic. 

The � −quadratic equation ��� + �� + � = 0 reduces to  
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���� − 2��� + �� = 0 => (�� − �)� = 0 => � = �
� , �

� 

The corresponding characteristic equation is ��
�� + �

� = 0 => ��

� + ��

� = �� 

Let � = ��

� + ��

� , � = ��

� − ��

�    (2) 

Jacobian form of u and v =�
��
��

��
��

��
��

��
��

� = �� �
� −�� = −�� − �� = −2�� ≠

0 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = � ���

�� + ��
���                                                       

(3) 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = � ���

�� − ��
���                                                       

(4) 

� = ���
��� = �

�� ���
��� = �

�� �� ���
�� + ��

����

= ��
�� + ��

�� + � � �
�� ���

�� + ��
��� ��

�� + �
�� ���

�� + ��
��� ��

��� 

= ��
�� + ��

�� + �� ����
��� + 2 ���

���� + ���
����      using (2)                           (5) 

� = ���
��� = �

�� �� ���
�� − ��

���� = ��
�� − ��

�� + � �
�� ���

�� − ��
���,  by (4) 

= ��
�� − ��

�� + � � �
�� ���

�� − ��
��� ��

�� + �
�� ���

�� − ��
��� ��

��� 

= ��
�� − ��

�� + �� ����
��� − 2 ���

���� + ���
����                                                             

(6) 

And � = ���
���� = �

�� ���
��� = �

�� �� ���
�� − ��

���� = � � �
�� ���

�� − ��
��� ��

�� +
�

�� ���
�� − ��

��� ��
��� 

� = �� ����
��� − ���

����                                                                                          
(7) 

Using (3), (4),(5), (6) and (7) in (1) and simplifying, we get  

4���� ����
���� = 0 so that ���

��� = 0, which is the required canonical form.  

 

mu
no
tes
.in



56 
 

2.5.3 working rule for reducing elliptic equation to its normal form  

Step 1.�� + �� + �� + �(�, �, �, �, �) = 0-------(1) 

 be elliptic so that  �� − 4�� < 0 

Step.2. write � −quadratic  ��� + �� + � = 0  --------(2) 

Then �� and �� be two distinct roots.  

Step 3. Then the corresponding characteristic equations are ��
�� + �� =

0  ��� ��
�� + �� = 0   

Solving these we get ��(�, �) + ���(�, �) = ��and��(�, �) − ���(�, �) =
��--------(3) 

Step 4.We select u and v such that  

� = ��(�, �) + ���(�, �) and � = ��(�, �) − ���(�, �)--------(4) 

Step 5.Let � ��� � are new real independent variables such as � = � +
�� ��� � = � − �� 

Where � = ��(�, �), � = ��(�, �) 

Step 6.Find values�, �, �, �, � in terms of � and �. 

Step 7.Substitution the values of �, �, �, �, �  in equation (1) and 
simplifying we shall get the following canonical form, 

���
��� + ���

��� = � ��, �, �, ��
�� , ��

��� 

Ex.1. Reduce the PDE in canonical form � + ��� = 0 

Sol:� + ��� = 0 ---------(1) 

�� − 4�� = 0 − 4�� = −4�� < 0 => which is elliptic equation.  

��� + �� + � = 0 => �� + �� = 0 => � = ±��   

Characteristic equation��
�� + �� = 0 => � + ���

� = �� 

 and ��
�� − �� = 0 => � − ���

2 = �� 

Let � =  � + � ��

� and � = � − � ��

�  

Choose � = �, � = ��

�  
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Jacobian of �, �=�
��
��

��
��

��
��

��
��

� = �0 1
� 0� = −� ≠ 0 =>α and β are 

independent. 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 0 + ��
�� ∗ � => ��

�� = � ��
�� 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 1 + ��
�� ∗ 0 => ��

�� = ��
�� => �

��
= �

�� 

� = ���
��� = �

�� ���
��� = �

�� �� ��
��� = ��

�� ∗ ��
�� + �

�� ���
���

= ��
�� + � �

�� ���
��� 

= ��
�� + � � �

�� ���
��� ∗ ��

�� + �
�� ���

��� ∗ ��
���

= ��
�� + � � �

�� ���
��� ∗ 0 + �

�� ���
��� ∗ �� 

� = ��
�� + �� � �

�� ���
���� = ��

�� + �� ���
��� 

� = ���
��� = �

�� ���
��� = �

�� ���
��� = ���

��� 

Using these values of r and t in equation (1) 

� + ��� = 0 => ��
�� + �� ���

��� + �� ���
��� = 0 => ��

�� + �� ����
��� + ���

����
= 0 

���
��� + ���

��� = − 1
��

��
�� 

=> ���
��� + ���

��� = − �
��

��
��, which is required canonical form of given 

equation. 

Ex.2. find the canonical for of� + ��� − � = 0 

Sol: � + ��� − � = 0                                                                ----------(1) 

�� − 4�� = 0 − 4�� = −4�� < 0 => given equation is elliptic. 

��� + �� + � = 0 => �� + �� = 0 => � = ±��  
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��
�� + �� = 0 => ��

� + ��� = 0 => ���� + �� = �� 

 and ��
�� − �� = 0 => ���� − �� = �� 

Let � = ���� + ��, � = ���� − �� 

Let � = log � , � = � 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 0 + ��
�� ∗ 1 = ��

�� => ��
�� = ��

�� =

> �
�� = �

�� 

� = ��
�� = ��

�� ∗ ��
�� + ��

�� ∗ ��
�� = ��

�� ∗ 1
� + ��

�� ∗ 0 = 1
�

��
�� => ��

�� = 1
�

��
�� 

� = ���
��� = �

�� ���
��� = �

�� ���
��� = ���

��� 

� = ���
��� = �

�� ���
��� = �

�� �1
�

��
��� = �

�� �1
�� ��

�� + 1
�

�
�� ���

��� 

= − 1
��

��
�� + 1

� − 1
��

��
��

+ 1
� � �

�� ���
��� �1

�� + �
�� ���

��� ∗ 0� � �
�� ���

��� ��
��

+ �
�� ���

��� ��
��� 

� = − 1
��

��
�� + 1

� �1
�

���
���� = − 1

��
��
�� + 1

��
���
��� 

Using these values in equation(1),  

 � + ��� − � = 0 => ���
��� + �� �− 1

��
��
�� + 1

��
���
���� − � = 0 

���
��� − ��

�� + ���
��� − �� = 0 

=> ���
��� + ���

��� = ��
�� + �� 

Ex.3.  If the reduced canonical form is ���
���� = 0 find its solution. 

Sol.: Integrating w. r. t. u ,��
�� = �(�), � =arbitrary function.  
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Integrating w. r. t. v,  � = ∫ �(�)�� + �(�),where f is arbitrary function.   
� = �(�) + �(�) 

=> � = �(� − �) + �(� + �) it is the required general solution.  

EXERCISE 2.2 

Reduce the following equation into their normal forms.  

Q.1.��� − ��� + �� − �� = �� 

Q.2. � + 2�� + ��� = 0 

Q.3. � − 4� + 4� = 0 

Q.4. �� + � = �� 

2.6 POTENTIAL THEORY AND ELLIPTICAL 
DIFFERENTIAL EQUATION:  

Boundary data rather than initial data serve to fix properly the solution of 
an elliptic differential equation. It is usually necessary to find an answer 
"in the large," namely in the domain bounded by a closed boundary, and 
this need for "global" constructions, rather than "local" treatment makes it 
especially difficult to study nonlinear elliptic equations. We shall restrict 
ourselves mainly to the linear potential equation or Laplace's equation in 
$m$-space variables. The boundary value problems of potential theory are 
suggested by physical phenomena from such varied field as electrostatics, 
steady heat conduction and incompressible fluid flow.  

Boundary Value Problems and Cauchy Problem 

The general linear homogeneous second order partial differential equation 
in � −space variables ��, ��, ��, … … … . . �� is 

�� ≡ �������� + ����� + �� = 0, �, � = 1,2, … … �             (1) 

where the coefficients ���, �� and � are continuous functions of the 
independent variables ��, ��, ��, … … … . . �� and��� = ���. Equation (1) 
is said to be elliptic in a domain � of � −dimensional space, when the 
quadratic form 

�(�) = �������                                             (2) 

can be expressed as the sum of squares with coefficients of the same sign, 
or equivalently, �(�) is either positive or negative definite in �. The 
simplest case is that of the Laplace equation or potential equation: 

Δ�� = �����  = 0                                          (3) 

i.e.����� + ����� + ����� + ⋯ … … ����� = 0 
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We shall first state three boundary value problems associated with Laplace 
equation and then consider the Cauchy problem. Let � be a domain in 
(��, ��, ��, … … … . . ��) −space bounded by a piecewise smooth boundary 
��.Let continuous boundary values be prescribed on ��, by means of a 
function �.  

1st order BVP (Dirichlet problem):The first boundary value problem, 
also called the Dirichlet problem, requires a solution � of the Laplace 
equation (3) in the domain �,  which is continuous in � + �� and 
coincides with � on ��i.e. 

� = � �� ��                                                (4) 

2nd order BVP (Neumann problem):It requires the determination of 
solution � in the domain �, which is continuous with first order partial 
derivatives in � + ��, such that the normal derivative ��

��of � on ��takes 
prescribed values �, i.e.  harmonic function �(�, �)satisfies 

��
�� = �on ��    (5) 

where �
�� is the directional derivative along outward normal and �� must 

have a continuously normal. 

 3rd order BVP (Robin Problem):It is a modification of the first two 
BVP where the solution �(�, �) is a linear combination of � ��� ��

��, takes 
prescribed value of ��i.e. 

��
�� + �� = ��� ��                                  (6)         

where � is a constant.  
Before we discuss the Cauchy problem, we shall examine, in general, the 
requirements to be satisfied by' a reasonable mathematical problem. There 
are two requirements: 

1. Existence requirement:-There is at least one � satisfying the equation 
and the given boundary/Cauchy data. 

2. Uniqueness requirement:-There is utmost one such �. 
If the mathematical problem is to be also physically realistic an extra 
requirement has to be satisfied: 

3. Stability requirement:-Small changes in the boundary or Cauchy data 
result in small changes in the solution �.  
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The first two requirements ensure the existence and uniqueness of the 
solution of a mathematical problem, while all three requirements ensure, 
further, stability or continuous dependence on given data for a physical 
problem. If the three requirements are satisfied by a problem, it is said 
towell posed.  

The Cauchy-Kowalewski theorem shows that the solution of an analytic 
Cauchy problem for an elliptic equation exists and is unique. However, a 
Cauchy problem for Laplace's equation is not always well posed. 

Hadamard gave an example of a Cauchy problem, which violates the 
stability requirement. Consider the Laplace equation in two independent 
variables �, � with the following initial conditions: 

(a) �(�, 0) = 0, ��(�, 0) = 0 
(b) �(�, 0) = 0, ��(�, 0) = ��� ��

�                                                             
(7) 

A solution satisfying condition (a) is 

�(�, �) = 0                                                      (8)       
A solution satisfying condition (b) is 

�(�, �) = �
�� sin �� sinh ��                                   (9) 

For sufficiently large �,  the Cauchy or initial values (a) and (b) are 
arbitrarily cluse, but the sulutions are not, since sinh �� behaves like 
���for large �. 
Having noted that a Cauchy problem could be illposed for an elliptic 
equation, we shall concentrate our attention hereafter only on the three 
boundary value problems mentioned earlier and show that they are really 
wellposed. 

2.7 HARMONIC FUNCTION  

A function �(�) is called harmonic function in �, if �(�) ∈ ��in � +
�� ∈ �� and ∆�� = 0 in �. 
In case of two or three variable, the general solution of potential equation 
can easily be obtained.For � = 2, (�� = �, �� = � ), �. �.  ��� + ��� = 0 , 
this is the real and imaginary part of any analytic function of the complex 
variable � + ��. For � = 3, (�� = �, �� = �, �� = �), consider an 
arbitrary function �(�, �) analytic in the complex variable � for fixed real 
�. Then, for arbitrary values of �, both the real and imaginary parts of the 
function: 

� = �(� + �� cos � + �� sin � , �  )                              (10) 
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of the real variable �, �, � are solution of the equation Δ� = 0. Further 
solutions may now be obtained by superposition.   

� = ∫ �(� + �� cos � + �� sin � , � )�
� ��                       (11) 

If �(�, � ) is a solution of Laplace’s equation in the domain D of 
(�, �)plane,  the function.  

�(�, �) = � � �
�� , �

��� , �� = �� + ��,       (12) 

Also satisfies the potential equation and is in the domain �′ obtain from D 
by inversion with respect to unit circle.  

In general, m-dimension, if �(��, �� … . . ��) satisfies potential equation in 
a bounded domain D then 

� = � ���
�� , ��

�� … … … . . ��
�� � , ��

� + ��
� + ⋯ … … … + ��� = ��         (13)      

 also satisfies the potential equation and is regular in the region �′ 
obtained from � by inversion with respect to m-dimensional unit sphere. 
Therefore, except for the ����, the harmonic character of the function is 
invariant with respect to sphere. Besides, the harmonic property is retained 
completely under rotations, translations and simple reflections across 
planes.  

2.8 POISSON’S FORMULA 

Ex. Dirichlet problem for a circle in the �, � −plane.  

Sol: let a circle C is given by |�| = �, � = � + �� 

                                                                                                                                                                  
B 

��

��  

 

                                                                 A 

                                                     oo    00 

 

 

 

Fig.  � and �
�

��  are inverse point with respect to �: |�| = � 

 

 

   A 

W 

O 
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The problem is to find �(�, �) �. �. ∆�� = 0 => ��� + ��� = 0,  

�ℎ��� � = �(�)�� �. 
� = ���� �� �. 

Let �(�) be analytical function in the region enclosed by C s.t. the real 
part of �(�) �� |�| = � �� �(�) 

 Let��be a complex number in that region. The inverse point of ��w.r.t. to 
C is �

�

����� which lies outside C. According to Cauchy integral formula  

�(��) = �
��� ∫ �(�)

����
��� -----(1) 

0 = �
��� ∫ �(�)

�����
�������

� ��  -------(2) 

Equation (1) – equation (2) 

�(��) = 1
2�� � � �(�)

� − ��
− �(�)

�� − ��

������
� ��

�

= 1
2�� � � 1

(� − ��) − ���
(���� − ��)� �(�)��

�
 

= 1
2�� � �(���� − ��) − ��� (� − ��)

(� − ��)(���� − ��) � �(�)��
�

= 1
2�� � � ���� − �� − ��� � + ��� ��

−�(�� + ����� ) + ��� �� + ����� �(�)��
�

 

= 1
2�� � � −(�� − ��� ��)

−{�(�� + ����� ) − ��� �� − ����}� �(�)��
�

 

�(��) = �
��� ∫ � (����������)

{�(����������)�������������}� �(�)���  --------(3) 

We know that � ���� �� � ��� �� ���� ������ � 

Let � = ����, �� = ���� => |��| = � => ��
� = �� => ��� �� = ��  , � <

� 

From eq. 

(3) ������� = �
��� ∫ � (�����)

�����(�����)��������������������� ����������������
�  

Taking real part  

�(�, �) = (�����)
�� ∫ � �(�)��

{��������� ���(���)}�
��

�   ----------(4) 
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Where �� = �� + ��, tan � = �
� 

Eq. (4) is called Poisson’s integral formula in 2D.  

Maximum principle:suppose that �(�, �) be harmonic in a bounded 
domain � and continuous in �� = � ∪ �� then �(�, �) attains its 
maximum on the boundary �� �� �. 
Minimum principle: suppose that �(�, �) be harmonic in a bounded 
domain � and continuous in �� = � ∪ �� then �(�, �) attains its 
minimum on the boundary �� �� �. 

2.9 LET US SUM UP: 

In this unit we have learnt to identify different 2nd order PDE, to find the 
characteristic curve and to solve Cauchy’s problem. We also discussed to 
how to reduce the PDE’s in its normal form.   
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3 
GREEN FUNCTIONS I 

Unit Structure: 

3.1 Objectives 

3.2 Introduction 

3.3 Singularity functions and the fundamental solution, 

3.4 Green functions 

3.5 Greens identities 

3.6 Lets sum up 

3.7 Unit End exercise 

3.8 Reference 

3.1 OBJECTIVES 

After going through this chapter students will be able to: 

 Singularity functions. 
 The fundamental solution of Laplace equation. 
 Definition of Green functions using fundamental solution. 
 Green’s first identity. 
 Green’s second identity 

3.2 INTRODUCTION 

Singularity functions are used in the solution of differential equations in 
which the known terms are non-smooth in the independent variable. In 
particular, these functions are particularly useful in the study of bars, 
shafts, and beams subjected to non-smooth loading, such as point loading 
and distributed loading, that exhibits finite jumps. 

The method of Green’s functions is an important technique for solving 
boundary value and, initial and boundary value problems for partial 
differential equations.We shall learn Green’s function method for finding 
the solutions of partial differential equations. This is accomplished by 
constructing Green’s theorem that is appropriate for the second order 

mu
no
tes
.in



66 
 

differential equations. These integral theorems will then be used to show 
how BVP and IBVP can be solved in terms of appropriately defined 
Green’s functions for these problems. More precisely, we shall study the 
construction and use of Green’s functions for the Laplace, the Heat and 
the Wave equations. 

3.3 SINGULARITY FUNCTIONS AND THE 
FUNDAMENTAL SOLUTION: 

Singularity functions are discontinuous functions or their derivatives are 
discontinuous. A singularity is a point at which a function does not 
possess a derivative. In other words, a singularity function is 
discontinuous at its singular points. Hence a function that is described by 
polynomial in t is thus a singularity function. The commonly used 
singularity functions are:  

Step Function, Ramp Function, and Impulse Function. 

Step Function: One of the most common singularity functions is the 
Heaviside* step function H(x), defined as 

�(�) = �0,
1,

� � < 0
� > 0                                                        (1) 

 

                                             y 

 

                                                                                                 x = 1 

 

 

0 x      
 

Figure 1 The Heaviside step function H(x) 

Note that the Heaviside function H(x) is undefined at x = 0, although it is 
sometimes taken to be equal to�

�. Clearly, the Heaviside function H(x− a) 
is analogous to the function plotted in Fig. 1,only shifted so as undergo the 
step at x = a. 
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Ramp Function:The integral of the Heaviside step function is the ramp 
function written as< � >. With Eq. (1) taken into account, the ramp 
function is given by 

< � >= �0,
�,

� ≤ 0
� > 0

�                                                   (2) 

                                                                y 

 

 

 

 

0 x 
 

Figure 2 The ramp function 

It is easy to see that the ramp function can be raised to any positive power, 
with 

< � >�= � 0,
��,

� ≤ 0
� > 0  ��� � > 1�                                (3) 

While H(x) does not have a derivative in the usual sense of a smooth 
function, such a derivative can be defined as what in mathematics is 
termed a distribution from the limit of a sequence of continuous 
approximations to the discontinuous step function,as shown in Fig.3 below 

     Y                                                               y 

 

                    11/w 

 

        0    (a-w)                    a                           0              (a-w)   a                x 

(i)                                                                  (ii) 

     Figure 3 Ramp approximation to the step function and its derivative 

 The function depicted in Fig. 3(i) may be expressed as 

��(� − �) = 1
� [< � − � + � > −< � − � >] 
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and it becomes H(x− a) in the limit as ω → 0, that is, 

�(� − �) = � < � − � >
��  

Impulse Function (Dirac delta function):The derivative of ��(� − �) 
(depicted in Fig. 3(ii) is, in accordance with 

�
�� ��(� − �) = 1

� [�(� − � + �) − �(� − �)] 

and in the limit as ω → 0 it formally becomes (by the standard definition 
of the derivative) the derivative of H(x− a), that is, 

�
�� �(� − �) = �(� − �) 

This limit is known as the Dirac delta function and is usually denoted       
δ(x− a). 

We now turn to studying Laplace’s equation  

∆u = 0  

and its inhomogeneous version, Poisson’s equation,  

−∆u = f.  

We say a function u satisfying Laplace’s equation is a harmonic function. 

3.3.1 The Fundamental Solution of Laplace’s equation:  

Consider Laplace’s equation inℝ�, 

∆u = 0 x ∈ ℝ� .  

Clearly, there is a lot of functions u which satisfy this equation. In 
particular, any constant function is harmonic. In addition, any function of 
the form �(�) = ���� + ���� + ⋯ . . +����  for constants �� is also a 
solution. Of course, we can list a number of others. Here, however, we are 
interested in finding a particular solution of Laplace’s equation which will 
allow us to solve Poisson’s equation. 

Given the symmetric nature of Laplace’s equation, we look for a radial 
solution. That is, we look for a harmonic function u on ℝ� such that u(x) 
= v(|x|). In addition, to being a natural choice due to the symmetry of 
Laplace’s equation, radial solutions are natural to look for because they 
reduce a PDE to an ODE, which is generally easier to solve. Therefore, we 
look for a radial solution. 
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If u(x) = v(|x|), then 

��� = ��
|�|  �′(|�|)         �ℎ���  |�| ≠ 0 

⟹ ����� = 1
|�| ��(|�|) − ���

|�|�  �′(|�|)  + ���

|�|�  �′′(|�|)          �ℎ���  |�|
≠ 0                         

Therefore, 

In ℝ� the solutions �(|�|) of the potential equation ∆� = 0, which depend 
only on the distance � = |�| ≠ 0 of a fixed point x from a fixed point a, 
given by the equation  

∆� = � − 1
|�| ��(|�|) +  �′′(|�|) 

Letting � = |�| ≠ 0, we see that u(x) = v(|x|), is a radial solution of 
Laplace’s equation implies v satisfies 

� − 1
� ��(�) +  �′′(�) = 0 

Therefore, 
�′′(�) = � − 1

� ��(�) 

 
                                                                     ⟹   ���(�)

��(�) = ���
�  

⟹ log ��(�) = (� − 1)��� � + � 

⟹ ��(�) = �
���� 

Therefore,  

�(�) = �
������ + ��                          � = 2

��
(� − 2)���� + ��                � ≥ 3� 

From these calculations, we see that for any constants  ��, ��, the function 

�(|�|) = �
�����|�| + ��                          � = 2

��
(���)|�|��� + ��                       � ≥ 3�     (I) 
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for x ∈ℝ�, |�| ≠ 0 is a solution of Laplace’s equation in ℝ� − {0}. We 
notice that the function u defined in (I) satisfies ∆u(x) = 0for |�| ≠ 0, but 
at x = 0, ∆u(0) is undefined. 

Therefore, these solution exhibits so called characteristic singularity at 
� = 0. We defined as 

�(�) =
⎩
⎨
⎧ −1

2� ���|� − �|                         � = 2
1

�(� − 2)��
|� − �|���               � ≥ 3

� 

Where �� is the surface area of the unit sphere in n-dimensions given by 

�� = 2(�)
�
�

� ��
��� for singularity function ∆u =0. 

�(�)has the property that � ∈ �� and ∆S =0 for � ≠ �, with the 
singularity � = �.  

For  � = 3, �(�) correspond physically to the gravitational potential at the 
point x of a unit mass  concentrated at the point a. Every solution of a 
potential equation ∆u =0 in D of the form 

�(�, �) = �(�) + �(�),     � ∈ � 

Define the function�(�)as follows. For� ≠ 0, let  

�(�) =
⎩
⎨
⎧ −1

2� ���|�|                         � = 2
1

�(� − 2)��
|�|���               � ≥ 3

� 

As we will show in the following claim, �(�)satisfies −∆��(�)= ��. For 
this reason, we call �(�)the fundamental solution of Laplace’s equation. 

Theorem: For �(�) satisfies  −∆� �(�) = �� in the sense of 
distributions. That is,  for all � ∈ �, − ∫ �(�)∆��(�)�� = �(0).ℝ�  

Proof: Let �∅be the distribution associated withthe fundamental 
solution ∅. That is let �∅: � → ℝ  be define such that  

(�∅ , � ) =  � �(�)�(�)��
ℝ�
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for all � ∈ �. Recall that the derivative of a distribution F is defined as the 
distribution G such that 

(�, �) = −(�, ��) 

for all � ∈ �. Therefore, the distributional Laplacian of � is defined as the 
distribution �∆∅,  such that 

(�∆∅, �) = (�∅, ∆�) 

for all � ∈ �. We will show that 

(�∅, ∆�) = −(��, �) = −�(0) 

and, therefore,(�∆∅, �) = −�(0). 

which means −∆� �(�) = ��in the sense of distributions. By definition, 

(�∅, ∆�) = � �(�)�(�)��
ℝ�

 

Now, we would like to apply the divergence theorem, but � has a 
singularity at x = 0. We get around this, by breaking up the integral into 
two pieces: one piece consisting of the ball of radius δ about the origin, 
B(0, δ) and the other piece consisting of the complement of this ball in ℝ� 
. Therefore, we have 

(�∅, ∆�) = � �(�)�(�)��
ℝ�

 

= � �(�)∆�(�)��
�(�,�)

+ � �(�)∆�(�)��
ℝ���(�,�)

= � + � 

We look first at term I. For n = 2, term I is bounded as follows 

�− � 1
2� ���|�|∆�(�)��

�(�,�)
� ≤ �|∆�|�� � � ���|�|��

�(�,�)
� 

≤ � �� � ���|�|��
�(�,�)

��

�
� ≤ � log|�|��. 
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For n ≥ 3, term I is bounded as follows, 

�− � 1
�(� − 2)��

|�|���∆�(�)��
�(�,�)

� ≤ �|∆�|�� � � |�|�����
�(�,�)

� 

≤ ��(�) � � ��
�

�
= ��(�)

2 �� 

Therefore, as δ →0�, |I| → 0.Next, we look at term J. Applying the 
divergence theorem, we have 

� �(�)∆��(�)��
ℝ���(�,�)

= � ∆��(�)�(�)��
ℝ���(�,�)

− � ��(�)
�� �(�)��(�)

�(ℝ���(�,�))

+ � �(�) ��(�)
�� ��(�)

�(ℝ���(�,�))
 

= − � ��(�)
�� �(�)��(�)

�(ℝ���(�,�))
+ � �(�) ��(�)

�� ��(�)
�(ℝ���(�,�))

 

= �� + �� 

Using the fact that∆� ∅(�) = 0 for � ∈ ℝ� − �(0, �) 

We first look at term  ��. Now, by assumption, g ∈ D, and, therefore, g 
vanishes at ∞. Consequently, we only need to calculate the integral over 
∂B(0, ∈) where the normal derivative ν is the outer normal to ℝ� − B(0, 
δ). By a straightforward calculation, we see that 

∇�∅(�) = −�
��(�)|�|�. 

The outer unit normal to ℝ� − B(0, δ).onB(0, δ)is given by 

� = −�
|�| 

Therefore, the normal derivative of  ∅ on B(0, δ)   is given by 

��(�)
�� = � −�

��(�)|�|�� . �−�
|�|� = 1

��(�)|�|��� 
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Therefore, �� can be written as 

− � ��(�)
�� �(�)��(�)

�(�,�)
= − � 1

��(�)|�|��� �(�)��(�)
�(�,�)

 

= − � �(�)��(�)
�(�,�)

 

Now if g is a continuous function, then 

− ∫ �(�)��(�) → −�(0)�(�,�) as � → 0. 

Lastly, we look at term�� . Now using the fact that g vanishes as |x| → 
+∞, we only need to integrate over ∂B(0, δ). Using the fact that g ∈ D, 
and, therefore, infinitely differentiable, we have 

� �(�) ��(�)
�� ��(�) =

�(�,�)
���(�)

�� �
����(�,�)

� �(�)��(�)
�(�,�)

 

 

≤ � � �(�)��(�)
�(�,�)

 

Now first, for n = 2, 

∫ |�(�)|��(�)�(�,�) = � ∫ ����|�|���(�)�(�,�)  ≤ �� |log|�||. 

Next, for n ≥ 3, 

� |�(�)|��(�)
�(�,�)

= � � 1
|�|��� ��(�) ≤ �

����
�(�,�)

� ��(�)
�(�,�)

= �
����  ��(�)���� ≤ ��. 

Therefore, we conclude that term �� is bounded in absolute value by 

�� |log|�||for� = 2 

��for� ≥ 3 

Therefore, |��| → 0 as � → 0� 
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Combining these estimates, we see that 

� �(�)∆��(�)�� = lim
�→�� � + �� + �� = −�(0).

ℝ�
 

Hence prove. 

Theorem : Assume � ∈ ��(ℝ�)and has compact support. Let 

�(�) = � ∅(� − �)�(�)��
ℝ�

 

where∅ is the fundamental solution of Laplace’s equation. Then 

a) � ∈ ��(ℝ�) 
b) −∆� = � in ℝ�. 

Proof: a) By a change of variables, we write 

�(�) = � ∅(� − �)�(�)��
ℝ�

= � ∅(�)�(� − �)��
ℝ�

 

Let  �� = (0, … .1,0,0 … ) 

be the unit vector in ℝ� with a 1 in the ith slot. Then 

�(� + ℎ��) − �(�)
ℎ = � ∅(�) ��(� + ℎ�� − �) − �(� − �)

ℎ � ��
ℝ�

 

Now � ∈ ��implies 

��(�������)��(���)
� � → ��

���
(� − �)asℎ → 0 

uniformly on ℝ� . Therefore, 

��
���

(�) = � ∅(�) ��
���

(� − �)��
ℝ�

 

Similarly, 
���

������
(�) = � ∅(�) ���

������
(� − �)��

ℝ�
 

This function is continuous because the right-hand side is continuous. 

b) By the above calculations and theorem  1, we see that 

∆��(�) = � ∅(�)∆��(� − �)��
ℝ�

= −�(�) 
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3.4 GREEN FUNCTIONS:  

We are interested in solving the following problem. Let Ω⊂ ℝ� be an 
open, bounded subset of ℝ� . 

 Consider� −∆� = �         � ∈  Ω
  � = �              � ∈  �Ω

�         (I) 

Suppose we can solve the problem, 

� −∆��(�, �) = ��         � ∈  Ω
      �(�, �) = 0                � ∈  �Ω

� 

for each � ∈ Ω. Then, formally, we can say that for u a solution of (I) 

�(�) = � ���(�)��
�

 

= − � ∆��(�, �)�(�)��
�

 

= � �(�, �)�(�)�� −
�

� ��
�� (�)�(�)��(�)

��
 

Now, we do know that the fundamental solution of Laplace’s equation 
∅(�) satisfies 

−∆� �(�) = ��and−∆� �(� − �) = �� 

 

Recalling the definition of distributional derivative, we will start by 
looking at 

�(�) = � �(� − �)∆��(�)��
�

 

We would like to integrate this term by parts. However, we know that 
�(� − �) has a singularity at y = x. 

We already find the fundamental solution of Laplace’s equation. i.e. 

�(�) =
⎩
⎨
⎧ −1

2� ���|�|                         � = 2
1

�(� − 2)��
|�|���               � ≥ 3

� 
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Applying the divergence theorem, we have 

� �(� − �)∆��(�)��
�

= − � ��(� − �)
�� �(�)��(�)

�(���(�,�))

+ � �(� − �) ��(�)
�� ��(�)

�(���(�,�))
 

Using theorem 1 we conclude that for any� ∈ ��(Ω�) 

�(�) = ∫ ��(� − �) ��(�)
�� − ��(���)

�� �(�)� ��(�)�(�) − ∫ �(� −�
�)∆��(�)��  (III) 

We would now like to use the representation above formula to solve (I) 

We proceed as follows. For each � ∈ Ω, we introduce a corrector function 
ℎ�(�)which satisfies the following boundary-value problem, 

� ∆�ℎ�(�) = 0                     � ∈ Ω,
ℎ�(�) = �(� − �)           � ∈ �Ω

�                        (IV) 

Now suppose we can find such a (smooth) function ℎ� which satisfies 
(IV). Then using the same analysis as above, we have 

� ℎ�(�)∆��(�)��
�

= � ∆�ℎ�(�)�(�)��
�

− � �ℎ�(�)
��  �(�)��(�)

��

+ � ℎ�(�) ��(�)
�� ��(�)

��
 

Now using the fact that ℎ�is a solution of (IV), we conclude that 

∫ ��(� − �) ��(�)
�� − ���(�)

��  �(�)� ��(�)�� + − ∫ ℎ�(�)∆��(�)�� = 0�                               
(V) 

Now subtracting (V) from (III), we conclude that 

�(�) = � ���(� − �)
�� − �ℎ�(�)

�� �  �(�)��(�)
��

− � [�(� − �) − ℎ�(�)]∆��(�)��
�
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Let �(�, �) = �(� − �) − ℎ�(�)Then, u can be written as 

�(�) = � ���(�, �)
�� �  �(�)��(�)

��
− � [�(�, �)]∆��(�)��

�
 

Definition:We define this function G as the Green’s function for Ω. That 
is, the Green’s function for a domain Ω ⊂ℝ� is the function defined as 

�(�, �) = �(� − �) − ℎ�(�)�, � ∈  Ω, � ≠  � 

Where � is the fundamental solution of Laplace’s equation and for each x 
∈ Ω, h x is a solution of (V). We leave it as an exercise to verify that G(x, 
y) satisfies (II) in the sense of distributions. 

Polar form of Green’s function: 

In this case we want to solve 

∆� = �,       lim
�→�

(�(�, �) − ��(�, �)�����) = 0 

In general, solutions to ∆u = fbehave like u ∼ A log r + B as r → ∞. The 
condition just ensures that B = 0. Again we look for a Green’s function of 
the form � = �(|� − �|) = �(�)so that in polar coordinates 

1
� ����(�)�� = 0     �� � ≠ 0, 

lim
�→�

(�(�) − ������′(�)) = 0 

The general solution is 

� = �� log � + �� 

Where �� = 0, we get 

1 = � ���
�� (�, �)�� = � �� �� = 2���

����
 

Where B is the unit disk, so that�� = �
��. Thus the Green’s function 

is�(�, �) = ���|���|
�� , and the solution to given equation is 

�(�) = � ���|� − �|�(�)
2�  ���

ℝ�
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It is sometimes useful to write G in polar coordinates. Using the law of 
cosines for the distance |� − �|, one gets 

�(�, �; ��, ��) = 1
4� log(�� + ��

� + 2���cos (� − ��)) 

Example :Let ℝ� � be the upper half-plane in ℝ� . If ℝ� � = {(��, ��) ∈
ℝ�: �� > 0} than find Green’s function. 

Solution:We need to find a corrector functionℎ� for each x ∈ℝ� � , such 
that 

� ∆�ℎ�(�) = 0                     � ∈ ℝ� � ,
ℎ�(�) = �(� − �)           � ∈ �ℝ� �

� 

Fix x ∈ℝ� � We know∆��(� − �) = 0 for all� ≠ �. Therefore, if we 
choose � ∉  Ω, then ∆��(� − �) = 0 for all � ∈  Ω. Now, if we choose 
� = �(�) appropriately � ∉  Ω such that  

�(� − �) = �(� − �)for � ∈ �Ω, then ℎ�(�) = �(� − �(�)). 

Recall that for n = 2, 

�(� − �) = −1
2�  ���|� − �| 

Consequently, for� = (��, ��) ∈ ℝ�,� we see that for all � ∈ �ℝ� � . 

|� − �| = |(��, 0) − (��, ��)| = |(��, 0) − (��, −��)| = |� − ��| 
 Where �� = (��, −��)is the reflection of x in the plane. 

Therefore,ℎ�(�) = �|� − ��|we have found a corrector function for ℝ�,�  

Therefore, a Green’s function for the upper half-plane is given by 

�(�, �) = �(� − �) −  �(� − ��) = ��
�� [���|� − �| − ���|� − ��|]. 

3.5 GREENS IDENTITIES:  

Green’s identities provide the main energy estimates for the Laplace and 
Poisson equations. 

Green’s first identity: 

First recall the Divergence Theorem: 

Let � be a bounded solid  region with a piecewise �� boundary surface 
��. Let n be the unit outward normal vector on ��. Let f be any �� vector 
field on �� = � ∪ ��. Then  
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� ∇��⃗  .  � �� = � �. � ��
���

 

Where �� is the volume element in � and �� is the surface element on 
��. 

By integrating the identity 

∇��⃗ . ��∇��⃗  �� = ∇��⃗  � . ∇��⃗  � + �∆� 

Over � and applying the divergence theorem, we gets 

� � ��
��  �� = � ∇��⃗  � . ∇��⃗  � �� + � �∆� ��

����
 

Where ��
�� = � .  ∇��⃗  �  is the directional derivative in the outward normal 

direction. 

This is Green’s first identity. 

Green’s second identity: 

Switch � and � in Green’s first identity, then subtract it from the original 
form of the identity. The result is 

�(�∆� − �∆�)�� = � �� ��
�� − � ��

���  ��
���

 

This is Green’s second identity. It is valid for any pair of function �and �. 

Special boundary conditions can be imposed on the functions to make the 
right hand side of these identity zero, so that  

� �∆� �� = � �∆� ��
��

 

Definition: A boundary condition is called symmetric for the operator ∆ 

on  � if         ∬ �� ��
�� − � ��

���  ���� = 0 for all pairs of functions � and � 
that satisfy the boundary condtion. 

Note: Dirichlet, Neumann, and Robin BCs are symmetric. 

Example: Show that Green’s functions are symmetric. 

Solution: To show that Green’s functions are symmetric, i.e. 

For all , � ∈ Ω, � ≠ � , �(�, �) = �(�, �) 
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Let  �(�) = �(�. �)  and �(�) = �(�, �) 

Now we will show that �(�) = �(�) ⟹ �(�, �) = �(�, �). 

By definition of Green’s function  

�(�, �) = �(� − �) − ℎ�(�)�, � ∈  Ω, � ≠  � 

Whereℎ�(�) satisfies� ∆�ℎ�(�) = 0                     � ∈ Ω,
ℎ�(�) = �(� − �)           � ∈ �Ω

� 

Therefore, for � ∈ �Ω 

�(�) = �(�. �) = �(� − �) − ℎ�(�) = �(� − �) − �(� − �) = 0  

�(�) = �(�. �) = �(� − �) − ℎ�(�) = �(� − �) − �(� − �) = 0  

Further, ∆�� = 0 for � ≠ � and ∆�� = 0 for � ≠ �.  

Now v is smooth, except near z = x, while w is smooth, except near z = y. 

Define the region�� = Ω − [�(�, �) − �(�, �)]for � > 0. 

Our functions are smooth. Therefore, integration by parts as follows, 

� ∆�� �� =
��

� �∆� �� − � � ��
��  ��(�) +

���
� ��

�� � ��(�)
�����

 

Using the fact that ∆v = 0 = ∆w on�� , we conclude that 

� � ��
��  ��(�) =

���
� ��

�� � ��(�)
���

 

Using the fact that v = 0 = w on ∂ Ω, we conclude that 

� ���
�� � − � ��

���  ��(�) =
��(�,�)

� �� ��
�� − ��

�� ��  ��(�)
��(�,�)

 

where� denotes the inward pointing unit vector field on ∂B(x, �) ∪ ∂B(y, 
�). Now we claim that as � → 0�, the left-hand side converges to w(x), 
while the right-hand side converges to v(y). 

For the terms on the left-hand side, we first look at∫ �� ��
���  ��(�)��(�,�)  

Now w is smooth near x. Therefore,��
��is bounded near ∂B(x, �). 

�(�) = �(�. �) = �(� − �) − ℎ�(�) 
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Therefore, on∂B(x, �),�(�) ≈ �
���� 

�� �� ��
���  ��(�)

��(�,�)
� ≤ �  ���

��(�, �)|�| �  ��(�)
��(�,�)

= ����� 

���
��(�, �)|�| → 0 ��  � → 0 

Now ∫ ���
�� ��  ��(�)��(�,�) = ∫ ��∅

�� (� − �) − ���

�� (�)� � ��(�)��(�,�)  

First, using the fact that ℎ� is smooth and w is smooth near x, we see that 

�� ��ℎ�

�� (�)� � ��(�)
��(�,�)

� ≤ � �  ��(�)
��(�,�)

≤ ����� 

Therefore, ∫ ����

�� (�)� � ��(�)��(�,�) → 0  �� � → 0. 

For the other term, we see that 

� ��∅
�� (� − �)� �(�) ��(�) = 1

��(�)��(�,�)
� 1

|� − �|��� �(�) ��(�)
��(�,�)

 

= 1
��(�)���� � �(�) ��(�)

��(�,�)
 

� �(�) ��(�)
��(�,�)

→ �(�)   ��  � → 0 

Hence the left-hand side converges to �(�). 

Similarly, the right-hand side converges to v(y). 

Hence prove, 

Proposition:A Green function has the following property. In the case n = 
2 we assumediam Ω < 1.   0 < �(�, �) < �(|� − �|),    �, � ∈ Ω , � ≠ �. 

Proof. Since �(�, �) = �(|� − �|) + ∅(�, �) 

andG(y, x) = 0 if y ∈ ∂Ω and x ∈ Ω we have for y ∈ ∂Ω 

∅(�, �) = −�(|� − �|) 

From the definition of �(|� − �|)it follows that ∅(�, �)< 0 if x∈ ∂Ω. Thus, 
since ∆�∅ = 0 in Ω, the maximum-minimum principle implies that 
∅(�, �)<0  for all y, x ∈ Ω. Consequently 

�(�, �) < �(|� − �|),    �, � ∈ Ω , � ≠ � 
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It remains to show that 

.   0 < �(�, �),    �, � ∈ Ω , � ≠ � 

Fix x ∈ Ω and let Bρ(y) be a ball such that Bρ(y) ⊂ Ω for all 0 < ρ < ρ0. 
There is a sufficiently small ρ0> 0 such that for each ρ, 0 < ρ < ρ0,  

G(x, y) > 0 for all y ∈Bρ(y), � ≠ � 

see property (iii) of a Green function.  

Since ∆�G(x,y) = 0in Ω \ Bρ(y)  

G(x, y) > 0 if x∈ ∂Bρ(y)  

G(x, y) = 0 if x∈ ∂Ω 

it follows from the maximum-minimum principle that  

G(x, y) > 0 on Ω \ Bρ(y). 

Hence prove. 

Example: consider a sphere with center at origin and radius ‘a’ apply the 

divergence theorem to the sphere  and show that ∇� ��
�� = −4��(�). 

where�(�) is  a Dirac delta function. 

Solution: Applying divergence theorem to  

���� �1
�� = ∇ �1

�� 

� ∇. ∇ �1
��  ��

�
= � ∇ �1

��
�

 . � �  �� 

Where � �  is an outward drawn normal. If � = �(�, �, ∅), then  

���� � =  ���
��
�� + ��� 1

�
��
�� + �∅� 1

�  ���� ��
�∅ , 

Hence ∬ ∇ ��
���  . ���  �� = ∬ �

�� ��
���   �� = ∬ ���

�� ��   �� = ���
��� × 4��� =

−4� 

By properties of  ∇� ��
��, Its integral over any sphere with center at the 

origin is −4�. 

Hence we say that ∇� ��
�� = −4��(�). 
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Theorem: If G is continuous and ��
�� has discontinuity at ‘r’. than show that 

lim
�→�

� ��
��  �� = 1.

��
 

Proof:  Let V be a sphere with radius � bounded by ��. 

We already know that G satisfies ∇�� = �(� − �). 

Integrating both sides over the sphere V, we get 

� ∇�� �� = 1
�

 

Which can be written aslim
�→� ∭ ∇�� �� = 1�  

Applying divergence theorem we get,  

lim
�→�

� ��
��  �� = 1.

��
 

Hence prove. 

3.6 LETS SUM UP 

In this chapter we have learnt the following: 

 Singularity functions. 
 The fundamental solution of Laplace equation. 
 Definition of Green functions using fundamental solution. 
 Green’s first identity. 
 Green’s second identity. 
 The use of Green’s function to solve partial differential equations. 

3.7 UNIT END EXERCISE 

1. Find the fundamental solution of Laplace equation. 

2. State and prove Green’s first identity. 

3.  Find the Green’s function for the first quadrant in XY-plane. 

4. State and prove symmetric property of Green’s function. 

5. Show that Green’s function is unique. 

6. Find the Fundamental Solution of the Laplace Operator for n = 3. 
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3. Find the Green’s function for the first quadrant of ℝ�, namely the 
domain 

Ω = {(�, �) ∈ ℝ�| � > 0, � > 0} 
8. Find the Green’s function for the upper half ball��(0, �) in ℝ�. 

9. Show that the Fundamental Solution of the Laplace Operator is given 
by 

�(�) =
⎩
⎨
⎧ 1

2� log �                     �� � = 2
1

(2 − �)��
����        �� � ≥ 3

� 

10.Use the method of images to find the Green’s function for Laplace’s 
equation to infinite 

strip  � < � < �  in the (�, �)-plane. 

3.8 REFERENCE 

 Phoolan Prasad &Renuka Ravindran, Partial Differential 
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 Yehuda Pinchover and Jacob Rubistein, An Introduction to Partial 
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
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4 
GREEN’S FUNCTION II 

Unit Structure: 

4.1 Objectives 

4.2 Introduction 

4.3 Green’s function for m-dimensions sphere of radius R 

4.4 Green’s functions Dirichlet problem in the plane,  

4.5 Neumann’s function in the plane. 

4.6 Lets sum up 

4.7 Unit End exercise 

4.8 Reference 

4.1 OBJECTIVES: 

After going through this chapter students will be able to: 

 To provide an understanding of, and methods of solution for, the most 
important types of partial differential equations that arise in 
Mathematics. 

 Use Green's functions to solve Laplace’s equation. 
 Use Green’s functionto solve Laplace’s equation for m-dimensions 

sphere of radius R. 
 Use Green’s functions to solve Dirichlet problem in the plane. 
 Use Green’s functions  to solve Neumann’s problem in the plane. 

4.2 INTRODUCTION: 

In general the type of conditions that may be applied depends on the 
applications that are involved. In practices two types of boundary 
conditions are commonly considered. The first one is known as the 
homogeneous Dirichlet boundary condition which states that � is zero on 
� and second one is known as the homogeneous Neumann condition 
which is stats that ∇� is zero on �. When � satisfies these homogeneous 
boundary condition. We obtained representation formula for problems on 
ℝ�. We now fix Ω to bean bounded open domain in ℝ� with smooth 
boundary �Ω.We will try to build Green’s function using the ideas 
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developed so far. Later, we will check directly that the derived 
representation formula gives the solution. We will also use the reflection 
idea about the boundary of the domain. 
 
4.3 GREEN’S FUNCTION FOR N-DIMENSIONS 

SPHERE OF RADIUS R: 

Let Bn(0, 1) be the unit ball in ℝ� . We look for a formula for the solution 
of Laplace’s equation in Bn(0, 1) with Dirichlet boundary conditions, 

� ∆� = 0          � ∈ ��(0,1)
� = �           � ∈ ���(0,1)

�       (I) 

if u is a solution of (I), then u will have the form 

�(�) = − � �(�) ��
�� (�, �)��(�)

���(�,�)
 

Now we just need to calculate ��
��on ∂Bn(0, 1) where G is a Green’s 

function for Bn(0, 1). As shown above, 

�(�, �) = ∅(� − �) −  ∅(|�|(� − �∗)) 

is a Green’s function for the unit ball in ℝ� where 

�∗ = �
|�|� 

is the point dual to x. We consider the case when n ≥ 3. The case n = 2 can 
be handled similarly. For n ≥ 3, we have 

∅(�) = �
��(�)

�
|�|���⟹    ∇∅(�) = ��

��(�)|�|� 

Therefore,∇∅(� − �) = �(���)
��(�)|���|� 

While∅�|�|(� − �∗)� = �
��(�)

�
�|�|(���∗)���� =  �

|�|���  ∅(� − �∗) 

Therefore, 

∇�∅�|�|(� − �∗)� = −1
|�|���

(� − �∗)
��(�)|� − �∗|� 

= −�|�|� − �
��(�)�|�|(� − �∗)�� 
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                   = −�|�|� − �
��(�)|� − �|� 

Now, the unit normal to Bn(0, 1) is given by 

� = �
|�| = � 

Therefore, the normal derivative of G(x, ·) on ∂Bn(0, 1) is given by 

��
�� (�, �) = �∅(� − �)

�� −  �∅(|�|(� − �∗))
��  

= −(� − �)
��(�)|� − �|�  . � + �|�|� − �

��(�)|� − �|�  . � 

= |�|� − 1
��(�)|� − �|� 

Therefore, the solution formula for (I) is given by 

�(�) = − � �(�) ��
�� (�, �)��(�)

���(�,�)
 

= 1 − |�|�

��(�) � �(�)
|� − �|� ��(�)

���(�,�)
 

We can use this formula to derive the solution formula for Laplace’s 
equation on the ball of radius r with Dirichlet boundary conditions, 

� ∆� = 0          � ∈ ��(0, �)
� = �           � ∈ ���(0, �)

�                                          (II) 

Suppose u is a solution of (II), then��(�) = �(��)is a solution of (I) with 
boundary data 

��(�) = �(��). Therefore, by our work above, we see the formula for ��  is 
given by 

��(�) = 1 − |�|�

��(�) � ��(�)
|� − �|� ��(�)

���(�,�)
 

= 1 − |�|� � �(��)
|� − �|� ��(�)

���(�,�)
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  = 1 − |�|� � �(��)
���

� − ��
� ��(��)

���(�,�)
 

= ��(1 − |�|�) � �(��)
|�� − ��|� ��(��)

���(�,�)
 

�(��) = (�� − |��|�)
��(�)� � �(�)

|� − ��|� ��(�)
���(�,�)

 

which implies the solution formula for (II) is given by 

�(�) = (�� − |�|�)
��(�)� � �(�)

|� − �|� ��(�)
���(�,�)

 

This representation formula is called Poisson’s formula for the ball. The 
function 

�(�, �) = (�� − |�|�)
��(�)�|� − �|� 

is called Poisson’s kernel for the ball. 

Example 1:Let ℝ��  be the upper half-space in ℝ�, 

ℝ�� = {(��, ��, … , ��) ∈ ��: �� > 0} 

Find Poisson’s formula and Poisson’s kernel be the upper half-space inℝ�� . 

Solution:G is a Green’s function for ℝ�� . As shown above, 

�(�, �) = ∅(� − �) −  ∅(� − ��) 

Where �� = (��, ��, ��, … … ����, − ��) and ∅ is the fundamental solution 
of Laplace’s equation in ℝ� . Our proposed solution has the form 

�(�) = − � �(�) ��
�� (�, �)��(�)

�ℝ��
+ � �(�)�(�, �)��

ℝ��
 

Now, we calculate ��
�� on {�� = 0} to find an explicit formula for solutions 

to 

� ∆� = 0          � ∈ Ω
� = �           � ∈ �Ω� 

Now  �∅
���

(�) = ���
��(�)|�|� 
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Therefore, the normal derivative of G on {�� = 0} is given by 

��(�, �)
�� = �∅(� − �)

���
− �∅(� − ��)

���
 

= �� − ��
��(�)|� − �|� − �� − ���

��(�)|� − ��|� 

= −2��
��(�)|� − �|� 

Therefore, if u is the solution of Laplace’s equation on the upper half-
space Ω with Dirichlet boundary conditions, then we suspect that u will 
have the form 

�(�) = 2��
��(�) � �(�)

|� − �|� ��(�)
�ℝ��

 

This is called Poisson’s formula for the half-spaceℝ�� . The function 

�(�, �) = 2��
��(�)|� − �|� 

is called Poisson’s kernel for the half-space ℝ�� . 

4.4 GREEN’S FUNCTIONS DIRICHLET PROBLEM IN 
THE PLANE: 

Consider the Dirichlet problem for the Poisson equation 

∆� = �            � ∈ � 

    � = �             � ∈ ��  

where � is a bounded planar domain with a smooth boundary ��. The 
fundamental solution of the Laplace equation plays an important role in 
our discussion. Recall that this fundamental solution is defined by 

∅(�, �) = −1
2�  ��� � = −1

4� l og (�� + ��) 

The fundamental solution is harmonic in the punctured plane, and it is a 
radially symmetric function with a singularity at the origin. Fix a point 
(�, �) ∈ ℝ�. Note that if u(x, y) is harmonic, then u(x − a , y − b) is also 
harmonic for every fixed pair (a, b). We use the notation 

∅(�, �; �, �) = ∅(� − �, � − �) 
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We call ∅(�, �; �, �) the fundamental solution of the Laplace equation 
with a pole at (�, �). 

The function∅(�, �; �, �) is harmonic for any point (�, �) in the plane such 
that (�, �) ≠ (�, �)For ε > 0, set. 

�� = �(�, �) ∈ �, �(� − �)� + (� − �)� < ε�,       �� = �\�� 

Let � ∈ ��(��). We use the second Green identity  in the domain �� where 
the function �(�, �) = ∅(�, �; �, �)) is harmonic to obtain 

�(∅∆� − �∆∅)���� = � (∅��� − ���∅)��
 ��� ��

 

Therefore, 

�(∅∆�)���� = �(∅��� − ���∅)�� + �(∅��� − ���∅)��
����� ��

 

Let ε tend to zero, recalling that the outward normal derivative (with 
respect to the domain  ��) on the boundary of �� is the inner radial 
derivative pointing towards the pole (a,b). 

We obtain�∫ (∅���)�����
� ≤ �ε|���ε| → 0       �� ε → 0 

� �(���∅)��
���

� = 1
2�� �(�)�� → �(�, �)        �� � → 0

���

 

Therefore 

�(�, �) = ��∅(� − �, � − �)��� − ���∅(� − �, � − �)���
��

− ��∅(� − �, � − �)�∆� ����
�

 

is called Green’s representation formula for Dirichlet problem in the 
plane. 

 The function∅[�](�, �) = − ∫ �∅(� − �, � − �)��(�, �)����� .is called 
the Newtonian potential off.  
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Example2 : Determine the Green’s function for Dirichlet problem for a 
circle given by  

∇�� = 0,     � < � 

� = �(�)  ��   � = �. 

Solution:Let �(�, �) and Q(��, �′) have position vectors � and ��. 

Let �� be the inverse of � with respect to the circle so that �� . ��� = �� 

and �� has coordinate ���
�� , ��. 

Now we construct the Green’s Function � such that 

� = ��� 1
|� − ��| + � 

Let � = ��� ��. �′� �� � so that it can be verified that ∇�� = 0. 

� = ��� �. �′�
�. ��  

On the circle � = �, 

� = ��� �′�
�� = l og1 = 0 

However ��� = �� + �′� − 2��′c os (�� − �) 

�′�� = ��

�� + �′� − 2 ��

� �′c os (�� − �) 

Replace value of �� and �′� in � = ��� �.���
�.��  we get, 

� = 1
2  ��� �

��

�� ���

�� + �′� − 2��′c os (�� − �)�
�� + �′� − 2��′c os (�� − �) � 

= 1
2  ��� �

��� + ��

��  �′� − 2 ��

� �′c os (�� − �)�
�� + �′� − 2��′c os (�� − �) � 
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But On the circle � = �, 

���
��������

= −(�� − ��)
�[�� − 2�����(�� − �) + ��] 

 

Therefore, �(�, �) = �����

��� ∫ ��������
[���������(����)���] .��

�  

The Eigen function method:  

Consider the eigen value problem associated with the operator ∇� in the 
domain ℝ. i.e. 

∆�∅ + �∅ = 0         inℝ 

∅ = 0in ∂ℝ 

Let ��� be the eigen values and ∅�� be the corresponding eigen 
functions. Suppose we give furior series expression to � and � in terms of 
the eigen functions ∅�� in the following form: 

�(�, �, �, �) = � � ���(�, �)∅��(�, �)
��

 

�(� − �, � − �) = � � ���(�, �)∅��(�, �)
��

 

Where ��� = �
‖∅��‖� ∬ �(� − �, � − �)∅��(�, �)���� = ∅��(�,�)

‖∅��‖�ℝ  

‖∅��‖� = � ∅���

ℝ
���� 

∴   ∇�∅�� + ���∅�� = 0 

We obtain     ∇� ∑ ∑ ���(�, �)∅��(�, �)�� = ∑ ∑ ���(�, �)∅��(�, �)��  

− � � ������(�, �)∅��(�, �) = ∑ ∑ ∅��(�, �)∅��(�, �)��
‖∅��‖�

��
 

From which we get 

���(�, �) = −∅��(�, �)
���‖∅��‖� 
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Hence the required Green’s function for the Dirichlet problem in the form 

�(�, �, �, �) = ∑ ∑ ∅��(�,�)∅��(�,�)��
���‖∅��‖� . 

If eigen value  ��� = ���
� �

�
+ ���

� �
�
 and corresponding eigen function 

∅�� = ��� ����
� � ��� ����

� �  where �, � = 1,2, … … … … 

Therefore Green’s function for the Dirichlet problem in the form can be 
written as, 

�(�, �, �, �) = −4
�� � �

��� ����
� � ��� ����

� �

���
� �

�
+ ���

� �
�

�

���

�

���
��� ����

� � ��� ����
� �. 

Example 3:Using Green’s function method Solve PDE, 

∇�� = −�� s in(��)s in (2��)in0 < � < 1,   0 < � < 2 

With the initial  boundary condition  �(�, 0) = 0;   �(�, 2) = 0, 0 < � <
1 

�(0, �) = 0;   �(1, �) = 0,   0 < � < 2. 

Solution: Here � = 1, � = 2  and �(�, �) = −�� s in(��)s in (2��) 

We have Green’s function for the Dirichlet problem in the form can be 
written as, 

�(�, �, �, �) = −4
�� � �

��� ����
� � ��� ����

� �

���
� �

�
+ ���

� �
�

�

���

�

���
��� ����

� � ��� ����
� �. 

�(�, �, �, �) = −2 � �
��� ����

� � ��� ����
� �

���
� �

�
+ ���

� �
�

�

���

�

���
��� ����

1 � ��� ����
2 �. 

By definition of Green’s function, 

�(�, �) = � � −2 � �
��� ����

� � ��� ����
� �

���
� �

�
+ ���

� �
�

�

���

�

���
��� ����

1 � ��� ����
2 �

�

�

�

�
× −�� s in(��)s in (2��) 
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�(�, �)

= 8 � � 1
4�� + �� �� s in(��) s in(���) ��

�

�
� �� s in(2��) s in ����

2 � ��
�

�
�

�

���

�

���
× s in(��)s in (2��) 

�(�, �) = 1
2 � 8

4(1�) + (4�)� s in(��)s in (2��) 

�(�, �) = 1
5 s in(��)s in (2��) 

Example 4: Let Ω be the triangle on ℝ� with vertices (-1, 0), (1, 0) and (0, 
√3 ). Solve the following Dirichlet problem  

−∆� = 2 in Ω 

   � = 0  on    �Ω. 

Solution: We first need to find equations of sides of triangle. 

Equations of sides of triangle are � = 0,    � + √3 � − √3 = 0,      � −
√3 � − √3 = 0. 

Thus the solution has the following form 

�(�, �) = ���,    � + √3 � − √3�(,      � − √3 � − √3) 

Now we need to determine constant ′�� which fulfilled the boundary 
condition. 

A direct calculation is given by  

−∆� = 4√3� = 2  

∴ � = 1
2√3 

 

Therefore the solution is  

�(�, �) = �
2√3 �,    � + √3 � − √3��,      � − √3 � − √3�. 
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4.5 NEUMANN’S FUNCTION IN THE PLANE: 

We move on to present an integral representation for solutions of the 
Neumann problem for the Poisson equation: 

∆� = �            � ∈ � 

��� = �             � ∈ �� 

Where � is a bounded planar domain with a smooth boundary ��. The 
fundamental solution of the Laplace equation plays an important role in 
our discussion. Recall that this fundamental solution is defined by 

∅(�, �) = −1
2�  ��� � = −1

4� l og (�� + ��) 

for any closed curve  that is fully contained in D. 

The fundamental solution is harmonic in the punctured plane, and it is a 
radially symmetric function with a singularity at the origin. Fix a point 
(�, �) ∈ ℝ�. Note that if u(x, y) is harmonic, then u(x − a , y − b) is also 
harmonic for every fixed pair (a, b). We use the notation 

∅(�, �; �, �) = ∅(� − �, � − �) 

We call ∅(�, �; �, �) the fundamental solution of the Laplace equation 
with a pole at (�, �). 

The function∅(�, �; �, �) is harmonic for any point (�, �) in the plane such 
that (�, �) ≠ (�, �)For ε > 0, set. 

�� = �(�, �) ∈ �, �(� − �)� + (� − �)� < ε�,       �� = �\�� 

Let � ∈ ��(��). We use the second Green identity  in the domain �� where 
the function �(�, �) = ∅(�, �; �, �)) is harmonic to obtain 

�(∅∆� − �∆∅)���� = � (∅��� − ���∅)��
 ��� ��

 

Therefore, 

�(∅∆�)���� = �(∅��� − ���∅)�� + �(∅��� − ���∅)��
����� ��

 

Let ε tend to zero, recalling that the outward normal derivative (with 
respect to the domain  ��) on the boundary of �� is the inner radial 
derivative pointing towards the pole (a,b). 
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We obtain�∫ (∅���)�����
� ≤ �ε|���ε| → 0       �� ε → 0 

� �(���∅)��
���

� = 1
2�� �(�)�� → �(�, �)        �� � → 0

���

 

Therefore 

�(�, �) = ��∅(� − �, � − �)��� − ���∅(� − �, � − �)���
��

− ��∅(� − �, � − �)�∆� ����
�

 

Enables us to reproduce the value of an arbitrary smooth function u at any 
point (a,b) in D provided that ∆� is given in D, and u and ���are given on 
∂D. For the Neumann problem, u is not known on ∂D. 

Let h(x, y; a, b) be a solution (depending on the parameter (a, b)) of the 
following Neumann problem: 

∆ℎ(�, �; �, �) = 0(�, �) ∈ � 

��ℎ(�, �; �, �) = ��∅(�, �; �, �) + 1
�              (�, �) ∈ �� 

Where L is the length of ∂D. Substituting u = 1 into the Green 
representation formula we get  

� ��∅(�, �; �, �) �� = −1
��

 

Therefore, the  above boundary condition  a sufficient condition for the 
solvability of the problems to ∫ ��� �� = 0.∅  

Definition:A Neumann function for a domain D and the Laplace operator 
is the function 

�(�, �; �, �) = ∅(�, �; �, �) − ℎ(�, �; �, �)(�, �), (�, �) ∈ �,
(�, �) ≠ (�, �) 

whereℎ(�, �; �, �) is a solution of 

∆ℎ(�, �; �, �) = 0(�, �) ∈ � 

��ℎ(�, �; �, �) = ��∅(�, �; �, �) + 1
�              (�, �) ∈ �� 
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i.e. a Neumann function satisfies 

∆�(�, �; �, �) = −�(� − �, � − �)(�, �) ∈ � 

        ���(�, �; �, �) = −1
�                                       (�, �) ∈ ��     

Therefore 

�(�, �) = � �(�, �; �, �)
��

 ���(�, �)��

− � �(�, �; �, �)∆�(�, �)���� + 1
� � � ��

���
 

We obtain the following representation formula for solutions of the 
Neumann problem. 

Note: 

i) The kernel N is not called the Green function of the problem, 
since N does not satisfy the corresponding homogeneous 
boundary condition. There is no kernel function that satisfies 

∆�(�, �; �, �) = −�(� − �, � − �)(�, �) ∈ � 
                             ���(�, �; �, �) = 0                                      (�, �)

∈ ��     
ii) The Neumann function is determined up to an additive 

constant. In order to uniquely define N it is convenient to use 
the normalization 

� �(�, �; �, �)
��

�� = 0 

 
iii) The third term in the representation formula (4.32) is 

�
� ∫ � ���� , the average of u on the boundary, which is not 
given. But since the solution is determined up to an additive 
constant, it is convenient to add the condition 

� �(�, �)�� = 0
��

 

and then the problem is uniquely solved, and the corresponding integral 
representation uniquely determines the solution. 

Example5 : Consider the Neumann boundary value problem for Laplace’s 
equation in the upper half plane ∇�� = 0 in � > 0 with ��

�� = − ��
�� = �(�) 

on � = 0. 
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Solution: Draw boundary value condition  and add image to make 

on the boundary condition:

 

 

�(�, �, �

Note that��
�� = ��

�� �(��

And as required Neumann boundary value problem,

��
���

= −��
�� ���

=

Then, since �(�, 0, �,

�(�, �)
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Draw boundary value condition  and add image to make ��
��

on the boundary condition: 

Figure 1 

, �) = − 1
4� l og[(� − �)� + (� − �)�]

+ − 1
4� l og [(� − �)� + (� + �)�] 

� �(���)
( ��)��(���)� + �(���)

(���)��(���)�� 

And as required Neumann boundary value problem, 

= 1
4� � −2�

(� − �)� + (�)� + 2�
(� − �)� + (�)�� = 0

�) = − �
�� l og[(� − �)� + (�)�] 

( ) = � �(�)
��

��
l og[(� − �)� + (�)�] �� 

��
�� = 0 

 

0. 
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Therefore we can write,  

�(�, �) = � �(�)
��

��
l og[(� − �)� + (�)�] �� 

We have not given condition on � and ��
�� at infinity. For instance we can 

think of the boundary of the upper half plane as a semi-circle with 
� → +∞. 

 

                                        Figure 2 

Green’s theorem in the half-disc for � and � is 

� (�∇�� − �∇��)�� = � �� ��
�� − � ��

��� ��
�

.
�

 

Example 6: Interior Neumann problem for Laplace’s equation in a disc, 

∇�� = �
�

�
�� �� ��

��� + �
��

���
��� = 0in � < �,           ��

�� = �(�) on � = �. 

Solution: Here we need, 

∆�� = −�(� − �)�(� − �) + �
�with ���

���
���

= 0. 

Where � = ��� is the surface area of the disc. In order to deal  with this 

term we solve the equation ∇��(�) = �
�

�
�� �� ��

��� = �
��� 

⟹ �(�) = ��

4��� + ������ + �� 

And take the particular solution with �� = �� = 0. Then add in source at 
inverse point and an arbitrary function ℎ to fix the symmetry and 
boundary condition of �. 
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�(�, �, �, ∅) = −1
4� ���[�� + �� − 2��c os (�

− ∅)] −1
4� ��� ���

�� ��� + ����

�� − 2��c os (� − ∅)��

+ ��

4��� + ℎ 

So, ��
�� = ��

��
�������� (��∅)

������������ (��∅) − �
�� �

������
� ���(��∅)

�����
� �����

� ���(��∅)
� + �

���� + ��
�� 

���
���

���
= −1

2�
� − � c os(� − ∅) + ��

� − �c os (� − ∅)
�� + �� − 2��c os (� − ∅) + 1

2�� + �ℎ
�� 

 

���
���

���
= −1

2�� + 1
2�� + �ℎ

�� 

And ���
���

���
= 0 implise ��

�� = 0  on the boundary ,  

then put ℎ = �
�� ����� �� � 

So,  
�(�, �, �, ∅) = ��

�� ���[�� + �� − 2��c os (� − ∅)] ��
�� ��� ���

�� ��� + ����

�� −

2��c os (� − ∅)�� +              ��

 ����on � = �. 

��|��� = −1
4�  ���[�� + �� − 2��c os (� − ∅)�] + 1

4� 

��|��� = −1
2� ����[�� + �� − 2�� c os(� − ∅)] − 1

2� 

Then �(�, ∅) = �� + ∫ �(�)��
�

��|��� ��� 

�(�, ∅) = �� − �
2� � ����[�� + �� − 2�� c os(� − ∅)] − 1

2� �(�)��
��

�
 

Now recall the Neumann problem compatibility condition; 

� �(�)�� = 0
��

�
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Indeed ∫ ∇�� �� = ∫ ��
��  ����  

From divergence theorem,  

� �(�)�� = 0
��

�
 

So the term involving ∫ �(�)����
� in the solution �(�, ∅) vanishes, hence  

�(�, ∅) = �� − �
2� � ���[�� + �� − 2�� c os(� − ∅)]�(�)��

��

�
 

Or 

�(�, �) = �� − �
2� � ���[�� + �� − 2�� c os(� − ∅)]�(∅)�∅

��

�
 

4.6 LETS SUM UP: 

In this chapter we have learnt the following: 

 Use Green's functions to solve Laplace’s equation. 
 Use Green’s function to solve Laplace’s equation for m-

dimensions sphere of radius R. 
 Use Green’s functions  to solve Dirichlet  problem in the plane. 
 Use Green’s functions  to solve Neumann’s problem in the plane. 

4.7 UNIT END EXERCISE: 

1. Prove that the Neumann function for the Poission equation is 
symmetric. 

2. Find the Green’s function for the Dirichlet problem on the rectangle 
�: 0 ≤ � ≤ �, 0 ≤ � ≤ � described by the PDE (∇� + �)� = 0  in � 
and the initial boundary condition � = 0 on ��. 

3.  Use Green’s function technique to solve the Dirichlet problem for a 
semi-infinite space. 

4. Find the Green’s function for Boundary value problem ∇�� = � in the 
quadrant  

� > 0, � > 0. 
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5.  Prove that Exterior Neumann problem for Laplace’s equation in a 
disc,  

�(�, �) = �� − �
2� � ���[�� + �� − 2�� c os(� − ∅)]�(∅)�∅

��

�
 

 

6. Solve the Neumann problem in the quarter-plane {x >0, y >0}. 
 

7. Use the Green’s function method to find the solution of the Neumann 
boundary value problem : 

∇�� = 0,       0 < � < 1, 0 < � < 1 
�(�, 0) = �(�, 1) = 0,            0 < � < 1, 
�(0, �) = �(1, �) = 0,            0 < � < 1. 

 
8. Solve the following Dirichlet problem, 

−∆� = 0in�(0,1) 
�(�, �) = ������ + ������on� = 1 
Where � = (��, ��) = (�����, �����) and � and � are constants. 
 

9. Find a bounded solution to the following Dirichlet problem outside a 
unitball in ℝ�: 

−∆� = 0,     � < 1 
��|��� = 2

5 + 4��
 

Where � = |�|. 
 

10. Let � be the solution of  
−∆� = 0inℝ��  
� = �  on�ℝ��  
Given by the Poisson formula for the half-space. Assume � is 
bounded and �(�) = |�|for � ∈ �ℝ�� , |�| ≤ 1. Show that �� is not 
bounded near � = 0. 

4.8 REFERENCE 

 Phoolan Prasad & Renuka Ravindran, Partial Differential 
Equations, Wiley Eastern Limited, India 

 Yehuda Pinchover and Jacob Rubistein, An Introduction to Partial 
Differential Equations, Cambridge University Press 

 


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5 
THE DIFFUSION EQUATION& 
PARABOLIC DIFFERENTIAL 

EQUATIONS 
Unit Structure: 

5.1 Objectives 

5.2 Introduction 

5.3 Existence and Uniqueness theorem for initial value problem in an 
infinite domain 

5.4 Existence and Uniqueness theorem for initial value problem in semi-
infinite domain 

5.5 One dimensional Heat equation 

5.6 Maximum and Minimum Principle for the Heat equation 

5.7 One dimensional wave equation 

5.8 Lets sum up 

5.9 Unit End exercise 

5.10 Reference 

5.1 OBJECTIVES: 

After going through this chapter students will be able to: 

 Existence and Uniqueness theorem for initial value problem in an 
infinite domain and semi-infinite domain. 

 One dimensional Heat equation and also solve its initial value 
problem. 

 Maximum and Minimum principle for the heat equation. 
 One dimensional wave equation and also solves its initial value 

problem. 
 Solve one dimensional PDE by method of separation of variables. 

5.2 INTRODUCTION: 

In this chapter we are going to look at one of the more common methods 
for solving simple partial differential equations. The method we will be 
taking a look at is that of Separation of Variables. 
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We will do a partial derivation of the heat equation that can be solved to 
give the temperature in a one dimensional rod of length L. In addition, we 
give several possible boundary conditions that can be used in this 
situation. We do a partial derivation of the wave equation which can be 
used to find the one dimensional displacement of a vibrating string. 

Model heat flow in a one-dimensional object (thin rod). Place rod along x-
axis, and let 

�(�, �)be a temperature in rod at position �, time �. 
Under ideal conditions (e.g. perfect insulation, no external heat sources, 
uniform rod material), one can show the temperature must satisfy 

�� = ��∇�    (theone-dimensional heat 
equation)  

The constant �� is called the thermal diffusivity of the rod. 

Now we will discuss existence and uniqueness theorem for IVP in infinite 
and semi-infinite domain. 

5.3 EXISTENCE AND UNIQUENESS THEOREM FOR 
INITIAL VALUE PROBLEM IN AN INFINITE 
DOMAIN:  

We will start out by considering the temperature in a 1-D rod of length L. 
What this means is that we are going to assume that the bar starts off at 
� = 0 and ends when we reach = �. We are also going to so assume that 
at any location, x the temperature will be constant at every point in the 
cross section at that x. 

We have learn the Green’s function, using Green’s function for the 
problem of heat flow in an infinite rod, the position of the rod coincide 
with X-axis and rod is homogeneous. Also heat is uniformly supply to it in 
cross section area in time � > 0. �(�, �)  is the temperature at the point � at 
time � without loss of heat through boundary condition. Then the problem 
can be described by PDE, 

�� = �∆��          − ∞ < � < ∞,      � > 0 

Initial boundary condition� (�, �) = �(�)        − ∞ < � < ∞. 

Suppose the Fourier transform of �(�, �)  is �(�, �). 

i.e. �[�(�, �)] = �(�, �) − �
√�� ∫ �(�, �)�� �� ���

��  

Taking the Fourier transform of  �� = �∆��   and summing that �, �� →
0, as |�| → ∞ we get 

�� + ���� = 0. 
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Its solution is given by  

�(�, �) = �(�)������ 

When �(�) is an arbitrary function to be determined from the initial 
condition as follows. 

�(�, 0) = �[�(�, 0)] = 1
√2� � �(�, 0)��� �� ��

�

��
 

= 1
√2� � �(�)��� �� ��

�

��
= �(�). 

Hence,                                      �(�, �) = �(�)������ 

Hence by convolution theorem, 

�(�, �) = �(�) × ���(������) 

= 1
2√��� � �(�) exp�− (� − �)�

4�� �  ��
�

��
 

=  � �(� − �, ��) �(�)��
�

��
 

is called the Green’s function for  heat transfer in infinite domain of road. 

Now we consider the case � = 1 and 

�(�) = � 0              � < 0
�               � > 0

� 

�(�, �) = �
2√�� � ���

�

�
�− (� − �)�

4�� � �� 

Put � = ����
�√� � 

�(�, �) = �
√� � ���� ��

�

��
�√��

 

= �
√� � � ���� �� + � ���� ��

�

�

�

��
�√��

� 
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= �
2 + �

√� � ���� ��

�
�√��

�
 

= �
2 �1 + ��� � �

2√��� 

Where ���  is the error function. 

5.4 EXISTENCE AND UNIQUENESS THEOREM FOR 
INITIAL VALUE PROBLEM IN SEMI-INFINITE 
DOMAIN: 

Now using Green’s function for the problem of heat flowin semi-infinite 
rod, the position of the rod coincide with X-axis and rod is homogeneous. 
Also heat is uniformly supply to it in cross section area in time � > 0. A 
boundary condition at the finite end � = 0  and other end condition ∞. The 
initial condition on the temperature  distribution �(�, �) can be described 
by, 

�(�, 0) = ��(�)        0 < � < ∞ 

There are various boundary conditions that can be prescribed at the end 
� = 0. 
Ist condition: The temperature is prescribed at  � = 0 for all time �(0, �) =
�(�). 
 IInd condition: The flux of heat across � = 0 is prescribed for all time. i.e. 
��(0, �) = �(�). 

IIIrd condition: The flux of heat across � = 0 is propositional to the 
difference between the temperature at � = 0 and the surrounding medium. 
i.e.  

��(0, �) + � �(0, �) = � 

We define a function �(�, �) called the derived singularity function 

�(�, �) = �
� �(�, �) = −2��(�, �).    � > 0,   � > 0 

The properties of �(�, �)  are given by  

∫ �(�, �)�� = 1�
� andlim�→�� ∫ �(�, �)�� = 1 ,�

�  � > 0 

Using these propertieswe get the relation, 

� �(�, �)�� = erf� �2�√�� = 2
√� � ���� ��

�

�
�√��

�

�
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Where the complementary error function, ����  (�) is defined by 
erf� (�) = 1 − erf (�). 

Theorem : If �(�) ∈ � for  0 < � < ∞ and �(0) = 0 than �(�, �) =
∫ �(�, � − �)�(�)���

�   satisfies the heat equation in 0 < � < ∞, � < � <
∞ and 

Case I)  lim�→�� �(�, �) = �(�)         0 < � < � 

Case II) lim�→�� �(�, �) = 0                 0 < � < ∞ 

Both the case is uniformly continuous. Where �  is a constant. 

Proof:�(�, �) satisfies the heat equations for � > 0. 
We shall first prove case II: 

Let ∈> 0 such that we can determine a �, 

|�(�)| < �           0 < � < �. 

Hence for 0 < � < �, 

�(�, �) = �� �(�, � − �)�(�)��
�

�
�

≤ � �(�, �)|�(� − �)|�� < ∈ � �(�, �
�

�
)�� =∈

�

�
 

For a specific value of �, its holds for all �. Hence proved. 

To prove case I: 

Let ∈> 0 such that we can determine a � which is independent to �  on 
0 ≤ � ≤ � and              0 < � < �, 

|�(�, �) − �(�)| <∈ 

For any ∈> 0, let �� be such that |�(�)| < ∈
� 

Whenever |�| < ��  due to uniform continuity of �(�)in 0 ≤ � ≤ �, 

We can choose ��, so that we also have  

|�(� − �) − �(�)| < ∈
�Whenever |�| < ��,  0 ≤ � ≤ �. 

Now divide 0 ≤ � ≤ � into two sub-interval 0 ≤ � ≤ ��and �� ≤ � ≤ �, 
we have 

|�(�, �) − �(�)| <∈for all � > 0. 
In �� ≤ � ≤ �, 
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�(�, �) − �(�) = � �(�, � − �)�(�)�� − � �(�, �)�(�)��
�

�

�

�
 

= � �(�, �)�(� − �)�� − � �(�, �)�(�)��
�

�

�

�
 

= � �(�, �)[�(� − �) − �(�)]�� − �(�) � �(�, �)��
�

�

�

�
 

∴  |�(�, �) − �(�)| < ∈
2 � �(�, �)�� + 3� � �(�, �)��

�

��

�

�
 

Where � = Sup�����|�(�)|. 

We know that lim�→�� ∫ �(�, �)�� = 1 ,�
�  � > 0 and ∫ �(�, �)���

��
< ∈

�� 

But for sufficiently small �,we have the result 

|�(�, �) − �(�)| <∈for0 < � < � and 0 ≤ � ≤ � 

Hence the solution is given by  

�(�, �) = � �(�, � − �)�(�)��
�

�
. 

This result gives solution of Ist condition that the problem of finding the 
temperature of semi-infinite rod whose initial temperature � = 0 is 
everywhere zero and whose temperature at finite end � = 0 is prescribed 
by all the � as �(�). 
For IIndcondition : The temperature of semi-infinite rod arises when initial 
temperature � = 0 is everywhere zero and whose temperature at finite end 
� = 0 is prescribed by all the � as �(�) and �(0) = 0. 

Here �(�, �) = −2 ∫ �(�, � − �)�(�)���
�  is the solution for 0 < � < ∞,

0 < � < � where � is a constant. Here �(�, �) is satisfies the heat 
equation. 

We have lim�→�� �(�,   0�) = 0 for 0 ≤ � ≤ ∞ 

Also ��(�, �) = −2 ∫ ��(�, � − �)�(�)���
� = ∫ �(�, � − �)�(�)���

�  

��(�, �) → �(�)as� → 0�, 0 < � < �. 
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IIIrd condition: The flux of heat across � = 0 is propositional to the 
difference between the temperature at � = 0 and the surrounding medium. 
i.e.  

��(0, �) + � �(0, �) = � 

Here �(�, �) is the solution of the diffusion equation satisfying the 
condition 

�(�, 0) = 0, � ≥ 0;   ��(0, �) + ��(0, �) =  ∅(�), � ≥ 0 .  
Where � is positive constant and ∅(�) is continuous.  

 Therefore,  �� − �� = ∫  ∅(�)�
�  �(�, � − �)�� 

Till that we have consider initial temperature distribution is Zero. 

Now we have to consider the case of non-zero initial distribution and zero 
boundary condition at � = 0. i.e.  

�(�, 0) = ��(�)         0 ≤ � < ∞ 

|��(�)| < ����� 

And one of the following boundary conditions: 

IVth condition: �(0, �) = 0                          0 < � < ∞. 
Vth condition:  ��(0, �) = 0                         0 < � < ∞. 
VIth condition: ��(0, �) − ��(0, �) = 0     0 < � < ∞. 
In IVth condition we extend ��(�) as an odd function, we get 

��(�) = −��(−�)for� < 0. 
Then the solution of the initial value problem in −∞ < � < ∞ is given by  

�(�, �) = � �(� − �, �)��(�)��
�

��
 

= � [�(� − �, �) − �(� + �, �)]
�

�
��(�)�� 

Since �(0 − �, �) − �(0 + �, �) = 0 the boundary condition �(0�, �) = 0  
is automatically satisfies.  

In Vth condition we extend ��(�) as an even function of � for � < 0, 
��(�) = ��(−�)for� < 0. 
 

mu
no
tes
.in



110 
 

Then the solution is given by  

�(�, �) = � [�(� − �, �) − �(� + �, �)]
�

�
��(�)�� 

Since ��(0 − �, �) − ��(0 + �, �) = 0 the boundary condition �(0�, �) =
0  is automatically satisfies. 

In VIth condition we extend ��(�) as 

��(−�) = ��(�) + 2� ��� ∫ ������(�)���
� for� ≥ 0. 

In order to satisfies boundary condition  

��(0, �) − ��(0, �) = 0     0 < � < ∞. 
Than the solution is given by  

�(�, �) = �[�(� − �, �) − �(� + �, �)]
�

�
��(�)��

+ 2� � �(� + �, �)���
�

�
� ������(�)   �� ��

�

�
 

A linear combination of solution of one of the problem condition I, II, and 
III with ��(�) = 0 and one of the conditions IV, V, VI lead us to the 
general mixed initial boundary value problems for the heat equation for 
semi-infinite rod. 

5.5 ONE DIMENSIONAL HEAT EQUATION: 

We now begin to study finite difference method for time-dependent PDE 
where variations in space are related to variation in time.  

The diffusion equation is of the form 

�� = �∆� � 

Taking � = 1 by suitable change in � or �.This is called as heat equation. 

The one-dimensional diffusion equation for �(�, �) is 

�� = ���� 

Where � is diffusion constant. 

Now solving heat equationby separation of variable method 

Let    �(�, �) = �(�) �(�)  ≠ 0                          (*) 

i.e. � = �� 
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Differentiate the separated solution (*) once with respect to t and twice 
with respect to x and substitute these derivatives into the PDE. We then 
obtain 

 

��� = ��′′� 

Now, usingthe separation of variables step. 

�′′
� =  �′

�� = −�� 

Where � is positive constant. 

Now we get following ODE’s  

i) ��� + ��� = 0                0 < � < � 
ii) �� + ���� = 0                     � > 0 

Solution of (i) is � = � cos �� + � sin �� 

     Solution of (ii) is � = �������  

Therefore the general solution is  

� = (� cos �� + � sin ��)(�������) 

If the boundary conditions�(0, �) = 0           � ≥ 0 

   �(�, �) = 0           � ≥ 0 

With initial condition  �(�, 0) = �(�)          0 ≤ � ≤ �. 
Then �(0) = 0 ⟹ � = 0. 
�(�) = 0 ⟹ � sin �� = 0as� ≠ 0 

∴    sin �� = 0 

Thus � = ��
�   for � = 1, 2, 3, … .. 

Substituting these � in solution we get 

��(�) = �� sin ����
� � 

��(�) = ������� �� �� �� 

Hence the non-trivial solution of the heat equation which satisfies the two 
boundary condition. 

��(�, �) = ��(�)��(�) 
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��(�, �) = ������� �� �� �� sin ����
� �for� = 1, 2, 3, … .. 

Where �� = ���� is an arbitrary constant. 

By the principle of superposition implies that any linear combination  

�(�, �) = � ��(�, �)
�

���
 

=  � ������� �� �� �� sin ����
� �

�

���
 

Which satisfies the initial condition if 

�(�, 0) = �(�) = ∑ �� sin ����
� ��

��� . 

This hold true if �(�) can be represented by a Fourier  Sine series   with 
coefficient  

�� = �
� ∫ �(�)�

� sin ����
� � ��. 

Hence,  

�(�, �) = � �2
� � �(�)

�

�
sin ����

� � ��� ����� �� �� �� sin ����
� �

�

���
 

is the general solution of the heat conduction equation of the function f 
with respect to the eigenfunctions of the problem, and  ��, n = 1, 2 . . . are 
called Fourier coefficientsof the series. 

Example 1: Solve the heat problem  

�� = ���           0 < � < �, � > 0 

�(0, �) = �(�, �) = 0            � ≥ 0 

�(�, 0) = �(�) = �
�                                  0 ≤ � ≤ � 2�
� − �                         � 2� ≤ � ≤ �

� 

Solution: The formal solution of heat equation is  

�(�, �) = � �2
� � �(�)

�

�
sin ����

� � ��� ����� �� �� �� sin ����
� �

�

���
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�� = 2
� � �(�)

�

�
sin ����

� � �� = 2
� � �(�) sin �� ��

�

�
 

 

�� = 2
� � � sin �� �� +

� ��

�

2
� �(� − �) sin �� ��

�

� ��
 

 

�� = 4
��� sin ���

2 � 

Thus the formal solution is  

 

�(�, �) = � � 4
��� sin ���

2 �� ��(�)�� sin(��)
�

���
 

 

But 

sin ���
2 � =  � 0                       � = 2�

(−1)���            � = 2� − 1� 

Where � = 1,2,3, … .. 
Therefore we can write solution as 

� ��(�, �)
�

���
= 4

� � � (−1)���

(2� − 1)� sin �(2� − 1)�
2 �� ��(����)�� sin((2�

�

���
− 1)�) 

Example 2: Solve the heat problem  

 

�� = 3���           0 < � < 2,   � > 0 

�(0, �) = �(2, �) = 0            � > 0 

�(�, 0) = 50            0 < � < 2. 
Solution: Comparing with heat equation we get, 

� = √3  ��� � = 2 
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�(�) = 50 = 200
� � 1

� sin ����
2 �

�

���
 

Since, 

�� = ���
� = √3 ��

2  

 

We obtained the solution  

 

�(�, �) = ���
� ∑ �

� �������� �� sin ����
� ��

��� . 

5.6 MAXIMUM AND MINIMUM PRINCIPLE FOR THE 
HEAT EQUATION: 

We shall prove the maximum and minimum properties of the heat 
equation. These properties can be used to prove uniqueness and 
continuous dependence on data of the solutions of these equations. To 
begin with, we shall first prove the maximum principle for the 
inhomogeneous heat equation (F �= 0). 

Theorem: (The maximum principle) : Let �: 0 ≤ � ≤ �, 0 ≤ � ≤ � be a 
closed region and let �(�, �) be a solution of  

�� − ����� = �(�, �),         (�, �) ∈ �    (I) 

Which is continuous in the region R. if � < 0 in R, then �(�, �) attains its 
maximum valus on � = 0, � = 0 or � = � and not in the interior of the 
region or at � = �. If � > 0 in R, then �(�, �) attains its minimum values 
on � = 0, � = 0 or � = � and not in the interior of the region or at � = �. 
Proof: We shall show that if a maximum or minimum occurs at an interior 
point 0 < �� < �and 0 < �� < �, then we will arrive at contradiction. Let 
us consider the following cases: 

Case-I: first, consider the case with � < 0. Since �(�, �) is continuous in a 
closed and bounded region in R, �(�, �) must attain its maximum in R. Let 
(��, ��) be the interior maximum point. Then we must have 

���(��, ��) ≤ 0,         ��(��, ��) ≥ 0       (II) 

Since ��(��, ��) = 0 = ��(��, ��), we have ��(��, ��) = 0if �� < �. 

If �� = �, the point (��, ��) = (��, �) is on the boundary of R, then we 
claim that 

��(��, ��) ≥ 0. 
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As � may be increasing at (��, ��). Substituting II in I , we find that the 
left side the equation I is non-negative while the right side is strictly 
negative. This leads to a contradiction and hence, the maximum must be 
assumed on the initial line or on the boundary.  

Case –II : Consider the case with � > 0. Let there be an interior minimum 
point (��, ��) in R such that  

���(��, ��) ≥ 0,         ��(��, ��) ≤ 0     ( III) 

Note that the inequalities III  is same as II with the signs reversed. Again 
arguing as before, this leads to a contradiction, hence the minimum must 
be assumed on the line or on the boundary.   

Note : when � = 0i.e. for homogeneous equation, the inequalities II at a 
maximum or III at a minimum do not leads to a contradiction when they 
are inserted into I as ��� and�� may both vanish at (��, ��). 

Below, we present a proof of the maximum principle for the homogeneous 
heat equation. 

Theorem : (The maximum principle): Let �: 0 ≤ � ≤ �, 0 ≤ � ≤ � be a 
closed region and let �(�, �) be a solution of  

�� = �����,         (�, �) ∈ �      (IV) 

Which is continuous in the closed region R.  The maximum and minimum 
values of u(x, t)are assumed on the initial line t = 0or at the points on the 
boundary x = 0or x = L. 

Proof. Let us introduce the auxiliary function 

�(�, �) = �(�, �)+∈ ��      (V) 

Where ∈> 0 is a constant and usatisfies IV. Note that �(�, �)is continuous 
in R and 

hence it has a maximum at some point (��, ��) in the region R. 

Assume that (��, ��) is an interior point with 0 < �� < �and0 < �� < �. 
Then we 

find that 

��(��, ��) ≥ 0,         ���(��, ��) ≤ 0     (VI) 

Since u satisfies IV, we have 

�� − ����� = �� − ����� − 2�� ∈= −2�� ∈< 0   (VII) 
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Substituting VI into IV and using VII now leads to 

0 ≤ �� − ����� < 0, 
which is a contradiction since the left side is non-negative and the right 
side is strictly 

negative. Therefore, �(�, �)assumes its maximum on the initial line or on 
the boundary 

since�satisfies I with F <0. 

Let� = max{�(�, �)} on � = 0, � = 0 and � = �. 
i.e. Mis the maximum value of u on the initial line and boundary lines. 
Then 

�(�, �) = �(�, �)+∈ ��  ≤ �+∈ ��,    for0 ≤ � ≤ �, 0 ≤ � ≤ � (VIII) 

Since v has its maximum on t = 0, x = 0, or x = L, we obtain 

�(�, �) = �(�, �)−∈ ��  ≤ �(�, �) ≤ �+∈ ��   (IX) 
Since � is arbitrary, letting � → 0, we conclude that 

�(�, �) ≤ �for all (�, �) ∈ �,      (X) 
Hence proof. 

As a consequence of the maximum principle, we can show that the heat 
flow problem has 

a unique solution and depend continuously on the given initial and 
boundary data. 

Theorem : ( uniqueness) Let ��(�, �) and ��(�, �) be the solution of the 
following problem  

�� = �����      0 < � < �, � > 0, 

�(0, �) = �(�),   �(�, �) = ℎ(�), (XI) 

�(�, 0) = �(�), 
Where �(�), �(�) and ℎ(�) are given function. then��(�, �) = ��(�, �), for 
all 0 ≤ � ≤ � and � ≥ 0. 
Proof: Let ��(�, �) and ��(�, �) be the solution of  the given XI problem. 

Set �(�, �) = ��(�, �) − ��(�, �). Then �  satisfies  

�� = �����      0 < � < �, � > 0, 

�(0, �) = ,   �(�, �) =,  (XI) 

�(�, 0) = 0, 
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By the maximum principal we have, 

�(�, �) ≤ 0, ⟹  ��(�, �) ≤ ��(�, �)for all 0 ≤ � ≤ � and � ≥ 0. 
Similarly we have �� = �� − ��, for that we get 

⟹  ��(�, �) ≤ ��(�, �)for all 0 ≤ � ≤ � and � ≥ 0 

Therefore we have 

⟹  ��(�, �) = ��(�, �)for all 0 ≤ � ≤ � and � ≥ 0 

Hence it has unique solution. 

5.7 ONE DIMENSIONAL WAVE EQUATION: 

We write the wave equation as  

��� = ��∇�for−∞ < � < ∞. 
This is the simplest second order equation. 

��� − ��∇� = � �
�� − � �

��� � �
�� + � �

��� = 0. 

This means that starting from a function �(�, �) you compute �� + ��� 
call the result for �(�, �) than you compute  �� − ��� and you get zero 
function. 

The general solution is  

�(�, �) = �(� + ��) + �(� − ��).                               (XII) 

Where � and � are two arbitrary function of a single variable. 

Initial value problem is to solve the wave equation 

��� = ��∇�for−∞ < � < ∞. 
 With the initial conditions �(�, 0) = ∅(�),    ��(�, 0) = �(�) 

Where ∅ and � are arbitrary functions of �. There is one and only one 
solution of this problem. 

Proof: Let if ∅(�) = sin � and �(�) = 0 then  �(�, �) = sin � cos ��. 

The solution of above IVP is easily found from the general solution 
formula (XII)  replacing� = 0, we get 

∅(�) = �(�) + �(�)          (XIII)  

Then using the chain rule we differentiate (XII) with respect to � and put 
� = 0, to get 

�(�) = ���(�) − ���(�) (XIV) 
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Lets regards XIII and XIV as two equations for the two unknown 
functions �and �. To solve them change the name of variable as same 
neutral �to �.  

Now we differentiate XIII and divide  XIV by  � to get 

∅� = �� + �′and�
�  � = �� − �′ 

Adding and subtracting the last pair of equations, we get 

�� = �
� �∅� + �

��and�� = �
� �∅� − �

�� 

Integrating we get, 

�(�) = 1
2  ∅(�) + 1

2� � � + �
�

�
 

And  

�(�) = 1
2  ∅(�) − 1

2� � � + �
�

�
 

Where A and B are constant because of  XIII we have A + B = 0. This 
tells us what � and � are in general formula XII. Substituting � = � + �� 
into � and � = � − �� into � we get 

�(�, �) = 1
2  ∅(� + ��) + 1

2� � �
����

�
+ 1

2  ∅(� − ��) − 1
2� � �

����

�
 

This simplifies to  

�(�, �) = 1
2 [∅(� + ��) + ∅(� − ��)] + 1

2� � �(�)��
����

����
 

This is called D’Alembert’s the solution for initial value problem of one 
dimension wave equation. 

Example 3: Consider the Cauchy problem  

��� = ���           − ∞ < � < ∞,    � > 0 

With boundary condition:  

�(�, 0) = �(�) = �
0                         − ∞ < � < −1
� + 1                      − 1 ≤ � < 0

1 − �                       0 ≤ � ≤ 1
0                                  1 < � < ∞

� 
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��(�, 0) = �(�) = �
0                           − ∞ < � < −1
1                               − 1 ≤ � ≤ 1
0                                   1 < � < ∞

� 

a) Evaluate ��1, 1 2� �. 
b) Discuss the smoothness of the solution �. 

Solution: a) Using D’Alembert formula of one dimension wave equation 
we get 

�(�, �) = 1
2 [∅(� + ��) + ∅(� − ��)] + 1

2� � �(�)��
����

����
 

� �1, 1
2� =

� ��
�� + � ��

��
2 +  12 � �(�)��

� ��

� ��

 

Since �
� > 1, it  follows that � ��

�� = 0. On other hand 0 ≤ �
�  ≤ 1, 

therefore � ��
�� = �

�. 

� �(�)��
� ��

� ��

= � 1 �� = �1 − 1
2� = 1

2 .
�

� ��

 

Hence  

� �1, 1
2� =

0 + �
�

2 +  12 �1
2� = 1

4 + 1
4 = 1

2 . 

b) The solution is not classical, since � ∉  �� . Yet �is a generalized 
solution of the problem. Note that although  � is not continuous, 
nevertheless the solution �is a continuous function. The 
singularities of the solution propagate along characteristics that 
intersect the initial line  � = 0 at the singularities of the initial 
conditions. Theseare exactly the characteristics � ± � =  −1, 0, 1. 
Therefore, the solution is smooth in a neighborhood of the point 
�1, �

�� which does not intersect thesecharacteristics. 

Method of Separation of Variables for one-dimensional Wave 
equation: 

PDE ��� − ����� = 0    0 ≤ � ≤ �,         � > 0 

Boundary condition: �(0, �) = 0           � > 0 
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To obtained separation of variables solution we assume 

���� =  ����′′ 

i.e.���
� = ���

��� = � 

Case-I:  When � > 0, taking � = �� we get 

��� − ��� = 0 

��� − ����� = 0 

The solution in the form 

� = ����� + ������ 

� = ������ + ������� 

Therefore, �(�, �) = (����� + ������)(������ + �������) 

Now using boundary condition’s 

�(0, �) = (�� + ��)(������ + �������) 

This implies that  �� + �� = 0, also 

�(�, �) = 0⟹ ����� + ������ = 0. 
This gives non-trivial solution if and only if 

� 1 1
��� ����� = 0 

⟹���� = 1 or�� = 0 
This implies that  � = 0,  since � cannot be zero, which is against the 
case-I assumption. 
Hence solution is not acceptable.    
Case-II: When � = 0, we get 
��� = 0     and       ��� = 0. 
Their solutions are formed to be  
� = �� + �,          � = �� + �. 
Therefore required solution of the PDE is 

�(�, �) = (�� + �)(�� + �) 
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Using boundary conditions we get, 

�(0, �) = 0 = �(�� + �) ⟹ � = 0. 

�(�, �) = 0 = ��(�� + �) ⟹ � = 0. 
Hence only trivial solution is possible. 

Case-III: When � < 0,  taking � = −��, we get 

��� + ��� = 0;         ��� + ����� = 0. 
Their general solution is given by  

�(�, �) = (�� cos �� + �� sin ��)(�� cos ��� + �� sin ���) 

Using the boundary condition :�(0, �) = 0 we get �� = 0. 

�(�, �) = 0we get sin �� = 0  ⟹ �� = ��
� ,     � = 1,2,3, … … …. 

Hence the possible solution  

��(�, �) = sin ����
� � ��� cos �����

� � + �� sin �����
� ��          �

= 1,2,3, … … … …. 
Using superposition principle, we get 

�(�, �) = � sin ����
� � ��� cos �����

� � + �� sin �����
� ��

�

���
 

The initial condition gives  

�(�, 0) = �(�) = � �� sin ����
� �

�

���
 

Which is half-range of Fourier sine series, where  

�� = 2
� � �(�) sin ����

� � ��
�

�
 

Also we get  

��(�, 0) = �(�) =  � �� sin ����
� � ����

� �
�

���
 

Which is also half-range of Fourier sine series, where  

�� = 2
��� � �(�) sin ����

� � ��
�

�
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Hence the required solution is obtained.  

Example 4: Solve the one-dimensional wave equation ��� = 16���for0 <
� < 2,     � > 0. 

The boundary conditions: �(0, �) = �(2, �) = 0. 
The initial conditions: i) �(�, 0) = 6 sin �� − 3 sin 4��.   ii) ��(�, 0) = 0. 
Solution: The general solution of 1-dimensional wave equation is given 
by  

�(�, �) = (�� cos �� + �� sin ��)(�� cos ��� + �� sin ���) 

Using boundary condition :�(0, �) = 0 for all � gives  

��(�� cos ��� + �� sin ���) = 0 

Which implies that�� = 0. 
�(2, �) = 0for all � gives 

�� sin �� (�� cos ��� + �� sin ���) = 0 

For non-trivial solution sin 2� = 0 ⟹ � = ��
�  for some integer �. 

��(�, �) = sin ����
2 � (�� cos(2���) + �� sin(2���)) 

Now insert the initial condition ��(�, 0) = 0 for all 0 < � < 2. 

�� = sin ����
2 � (−2���� sin(2���) + 2���� cos(2���)) 

��(�, 0) = sin ����
2 � (2����) = 0 ⟹ � = 0. 

Finally using the initial condition �(�, 0) = 6 sin �� − 3 sin 4�� 

We get �(�, �) = ∑ sin ����
� ��

���  

Hence we get,  

�(�, �) = 6 sin �� cos 4�� − 3 sin 4�� cos 16��. 

5.8   LETS SUM UP: 
 

In this chapter we have learnt the following: 

 Definition diffusion equation. 
 1-dimensional heat equation and its solution by separation of variable 

method: 
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 Existence and Uniqueness theorem for initial value problem for 
infinite and semi-infinite domain. 

 Maximum and Minimum principle for heat  equation. 
 1- dimensional wave equation and its solution by separation of 

variable method 
 

5.9  UNIT END EXERCISE: 
 
1. Let �(�, �) be the solution of the Cauchy problem 

��� = 9���           − ∞ < � < ∞,      � > 0 

�(�, 0) = �(�) = � 1              |�| ≤ 2
0                |�| > 2

� 

��(�, 0) = �(�) = � 1              |�| ≤ 2
0                |�| > 2

� 

a) Evaluate�(0, �
� ). 

b) Discuss the large time behavior of the solution. 
c) Find the maximum value of �(�, �) and point when this 

maximum is achieved.  
d) Find all the point when � ∈ ��. 

 
2. Obtain the solution of the wave equation  

��� = ����� 

Under the following conditions: 

i) �(0, �) = �(2, �) = 0. 
ii) �(�, 0) = ���� ���

� �. 
iii) ��(�, 0) = 0. 
3. Solve the following heat problem: 

 

�� = 1
4 ���              0 < � < 1,    � > 0. 

��(0, �) = ��(1, �) = 0               � > 0 
�(�, 0) = 100�(1 − �),            0 < � < 1 

 
4. Use the maximum/minimum principle to show that the solution u 

of the problem: 
�� =  ���              0 < � < �,    � > 0. 
��(0, �) = ��(1, �) = 0               � > 0 

�(�, 0) = sin � + 1
2 sin 2� ,            0 < � < � 

Satisfies 0 ≤ �(�, �) ≤ �√�
� ,     � > 0. 
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5. Solve the one-dimensional wave equation ��� = 4��� for 0 < � <
1,     � > 0. 

��(0, �) = ��(1, �) = 0       � ≥ 0 
�(�, 0) = �(�) = ���� ��        0 ≤ � ≤ 1. 

��(�, 0) = �(�) = ���� �� cos ��        0 ≤ � ≤ 1. 
 

6. Prove that the solution we found by separation of variables for the 
vibration of a free 
string can be represented as a superposition of a forward and a 
backward wave. 

7. Show that the solution of the 1-dimensional wave problem if it is 
exists, is unique. 

8. State and prove maximum and minimum principle. 
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