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1.1 Objectives

After going through this chapter students will be able to understand:

Inner product and norm on R"
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. Open and Close subset of R™ and Interior A° and boundary dA of subset A
of R™

o Operator norm ||T|| of linear transformation

. Compactness on R"

o Connected subset of R™

° Continuous function on R"

1.2 Introduction

This are the generalize concept which we have already study at our graduate level.
So before going to this chapter one should go through the definition and basic
example of Vector spaces, Inner product spaces, Norm linear spaces and Metric
spaces and also all the above concept over R.

1.3 Inner product and norm on R"

Euclidian n-space R" is defined as the set of all n-tuples (xq, x5, ... ... , Xn) Where
each x,(1<i<n) is just a real number. So, R* = RXR X ......... X
Rn times) = {(X1, X2, .. ... ,Xn):X; ER,1 <i<n}. An element of R" is often

called point of R™, and R?, R2, R3 are often called the line, the plane, and the space
respectively.

If x denotes the element of R™ then it look like x = (X7, X3, vv v oo , Xn) Where each
X; is a real number.

The point of R is also called a vector in R™, as R" is a vector space (over the real
number, of dimension n) with operations, x + y = (x; + V1, X3 + Vo, vev veevn, Xy +
yn) and a.x = (axq, ax,, ....ax,) where x, y are element of R and a is an element
of R.

In this vector space there is the notation of the length of a vector x, usually called
the norm ||x|| of x and defined by ||x|| =+/x? + xZ + -+.x2. If n = 1, then

||x|| = |x| (mod of x), is the usual absolute value of x.

1.3.1 Properties of norm on R":-

If x, y are element of R™ and a is an element of R then the following properties of
[| - ]| holds,

i) ||x|| > 0and ||x|| =0if and only ifx = 0 (vector).
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i0) |Ix + yl| < |lxl] + 1yl|

ii0) [la.x|| = lal.|Ix]|

1.4 Cauchy-Schwarz inequality on R"

Statement:- For all x,y in R™; |X™, x;;| < |lx]|. |l¥l|; equality holds if and
only if x and y are linearly dependent.

Proof:- If x and y are linearly dependent, then the equality clearly holds.
(Check!)

If not, then Ay — x # 0 (vector) forall 1in R, s0 0 < ||1y — x||2 =
?:1(/1371‘ - xi)z = /12 7l:l=1 YIZ - 2/1 Z?:l xiyi + Z?:l xiz'

Therefore the right side is a quadratic equation in A with no real solution, so its
discriminant must be negative.

Thus; 4 (5%, x;y)% — 4 X1, . 30, v, < 0.

Note:- The quantity Y;7-; x;y; is called inner product of x and y and denoted as <
X,y >.

1.5 Open and Closed subsets of R™

The close interval [a,b] has a natural analogue in R. The close rectangle
[a, b] X [c, d], defined as the collection of all pairs (x,y) with x € [a,b] and y €
[c, d]. More generally, if A € R™ and B ¢ R", then A X B € R™*™ is defined as
setof all (x,y) € R™*" with x € A and y € B. In particular, R™*" = R™ x R".

The set [a;, bi] X [ay, by] X ... X [a,, by] € R™ is called a closed
rectangle in R™; while the set (a;, b;) X (a,, by) X .......xX (a,, b,) € R" is
called an open rectangle.

1.5.1 Definition:- A set U c R" is called open set if for each x € U there is an
open rectangle A such that x € A c U.

1.5.2 Definition:- A subset C of R" is called closed set if R™\C is open set.

Example: If C contains finitely many points, then C is closed set.

1.6 Interior and Boundary of subset of R"

If A € R™ and x € R", then of three possibilities must holds
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i)  There is an open rectangle B such that x € B  A. (Set of all such points are
called the interior points of A and denoted by A°).

ii) There is an open rectangle B such that x € B c R™\A. (Set of all such points
are called the Exterior points of A and denoted by A ).

iii) If B is any open rectangle with x € B, then B contains points of both A
and R™\A. (Set of all such points are called the boundary points of A and
denoted by 0A).

1.7 Operator norm ||T|| of linear transformation and its
properties

1.7.1 Definition:- Let V and W be a vector space over real field R, and T:V — W.
We say that T is linear if T(sv +tw) =s.T(v) +t.T(w) for all s,t € R and
v,wE€eV.

Example:- Let V = R", W = R™ Define T: R" - R™ by T(x) = x. Then T is
linear transformation.

Note:- Let L(V, W) denote the set of all linear transformation from vector space V
to vector space W. One can see each element of L(R"™, R™) as a point of Euclidian
space R™", and thus we can speak of open set in L(R", R™), continuous function
of linear transformation etc.

1.7.2 Definition:- Let T: R™ — R™ be a linear transformation. The norm ||T|| of
T is defined as; ||T|| = sup{||T(v)||:v € R"and ||v|| < 1}.

1.7.3 Properties of norm ||T|| of T: For all linear maps S, T: R™ — R™ and
R:R™ — R we have the following properties of norm

D |1+ Tl < [ISI| + 171l
i) ||RoS|| < |IRI|. [ISI| And

iii) |leTI| = Icl|ITI] (c € R).

1.8 Compactness onR"

A collection O of open sets is called open cover of A(or briefly cover A) if every
points x € A is in some open sets in the collection O.

Example 1: If O is collection of all open interval (a, a + 1) for a € R, then O is
a cover of R. Clearly no finite number of open sets in O will cover R.
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Example 2: If O is collection of all open interval (%, 1- %) for all integer n > 1,
then O is open cover of (0, 1), but again no finite collection of sets in O will cover
(0,1).

1.8.1 Definition:- A subset A € R" is said to be a compact if every open cover O
contains a finite sub collection of open sets which also covers A.

Example 1: A set with finitely many points is compact.

Example 2: Let A is infinite set which contains 0 and the numbers % for all integers

n. (Reason: If O is open cover, 0 € U for some open set U in O; there are only
finitely many pints of A which are not in U, each require at most one more open
set).

Note:- One may also define the compactness as; a subset A of R is (sequentially)
compact if every sequence (a,) in A has subsequence (a,, ) that converges to limit
in A.

1.9 Heine-Borel theorem

The closed and bounded rectangle of R™ is compact.
1.9.1 Corollary: - If A ¢ R" and B ¢ R" are compact, then A X B is compact.
1.9.2 Theorem: - A closed and bounded subset of R" is compact.

Proof: - If A € R" is closed and bounded, then A c B for some closed rectangle
B. If O is an open cover of A, then O together with R™\A is an open cover of B.
Hence a finite number Uy, U, ... ....., U, of sets in O, together with R™\ A will cover
B. Then U,,U,, ........, U, cover A.

1.10 Bolzano-Weierstrass theorem on R"

Every bounded sequence of R™ has convergent subsequence.

Proof: - A bounded sequence is contained in a closed and bounded rectangle, which
is compact. Therefore the sequence has a subsequence that converges to a limit in
the rectangle.

1.11 Continuous function on R"

A function from R" to R™ (sometimes called a (vector valued) function of n
variable) is the rule which associates to each points of R" to some points of R™,
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a function f associates to x is denoted by f(x). We write f: R® - R™ (reads “f
takes R™ into R™”) to indicate that f(x) € R™ is defined for x € R™.

The notation f: A - R™ indicates that f (x) is defined only for x in the set A, which
is called the domain of f. If B © A, we define f(B) as set of all f(x)for x € B,
and if C € R™ we define f~1(C) = {x € A: f(x) € C}.

Let AcR" a function f:A— R™ determine m component function

fufor oo fmi A= Ry f(X) = (fi (), f2(%), oo, fin ().

The notation lim f(x) = b means that we can get f(x) as closed to b as desired,
x—a

by choosing x sufficiently closed to, but not equal to a.

In mathematical terms this means that for every number € > 0 there is the number
6 > 0 such that || flx) - b|| < ¢ for all x in the domain of f which satisfy

0<|lx—all<8.

A function f: A - R™ is called continuous at a € A if lim f(x) = f(a) and simply
x—a

called continuous if it is continuous at each a € A.

Note: - We may also define continuity as, a function f: R™ — R™ is continuous if
and only if f~1(U) is open whenever U € R™ is open.

1.11.1 Theorem: - If A ¢ R", a function f: A = R™ is continuous if and only if
for every open set V. R™ there exist open set U in R™ such that f~1(U) = V n A.

Proof: - Suppose f is continuous. If a € f~1(U), then f(a) € U. Science U is
open, ther is an open rectangle B with f(a) € B < U. Science f is continuous at a,
we can ensure that f(x) € B, provided we choose x in some sufficiently small
rectangle C containing a. We can do this for each a € f~1(U). Let V be union of
all such C i.e. V = Ugef-1(1) Cq- Clearly f~1(U) = V N A. The converse can be
prove similarly.

1.11.2 Theorem: - If f: K - R™ is continuous where K c R" and K is compact,
then f(K) € R™ is compact.

Proof: - Let O be an open cover of f(K). For each open set U in O there is an open
set V; such that f~1(U) = V; N K. The collection of all V;; is an open cover of K.
Science Kis compact, a finite number of Vy Vy, .......,Vy cover K.Then
Uy, U,, ......., Uy, covers f(K).
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1.13 Connected subset of R™

A subset E ¢ R" is said to be disconnected if there exist disjoint non-empty open
sets (or closed sets) U and V (of E) withE = U U V.

A subset E c R" is said to be connected if it is not disconnected.

Note: - Let E c R"™, asubset A C E is said to be open (or closed) in E if there exist
open (or closed) subset B of R™ such that A = E N B.

1.13.1 Proposition: - A subset E € R" is connected if and only if it is not the union
of two non-empty disjoint closed sets, or equivalently, if and only if there exist no
subset of E which is simultaneously open and closed, other than E and @.

1.13.2 Proposition: - A subset E € R" is connected if and only if for every pair
U,V of open subset of R™ such that Ec UUV and U NV N A = @, then we have
eitherAcUorAdcV.

1.13.3 Theorem: - A subset A of R is connected if and only if it is an interval.

Proof: - (Direct part) suppose A4 is not an interval, so there exist a,b € A,and c &
A, with a < c <b. Let U = (=, ¢) and V = (¢,00). Then U and V are open
subset of R, with Ac UUVand UNV = @.Sciencea€ UNAand b € V N A4,
we see from the proposition 1.13.2 that A is disconnected.

(Converse part) Now suppose that A is an interval, and there exists open subset
UandV of Rsuchthat Ac UUV,UNVNA=@.and neitherUNAnorVnNAis
empty. Leta € UNnAand b € V N A. We may assume that a < b. Science 4 is an
interval, foreach t witha <t < b, we have t € A and hence eithert € Uort € V.
LetE ={t € [a,b]:t € U}andletc = supE. Thena < c < b,soc € A. Ifc €V,
thenc > a,and (c — €,c + €) c V for some € > 0,V is open. But science c is least
upper bound of E, there exist t € (¢ — €,c] with t € U. This contradiction shows
thatc € V. IFc € U,thenc < band (c — €, ¢ + €) c U for some € > 0. But then
there exist t > ¢ with t € [a, b] N U, contadicting the fact that ¢ is an upper bound
of E. Thus our assumption that both AN U and A NV are non-empty is invalid.
Thus A is connected.

1.13.4 Theorem: - Let E ¢ R" is connected subset and f: E = R is continuous,
then f(E) c R is connected.

Proof: - Let f(F) is disconnected, then there exist open subset U and V of R such
that f(E)cUUV,UNVNf(E)=0;and UNFf(E)+0,Vnf(E)=+0.
But then f~Y(U) and f (V) are open; science f is continuous,
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AW ufFY(v) =E; since UuV o f(E),f*(U)nf~Y(V) = o,
science f(E) N U NV = @; and neither f~1(U) nor f~1(V) is empty.

Thus E is disconnected whenever f(E) is disconnected.

1.14 Let us sum up

In this chapter we have learnt the following:

o Inner product and norm on R™, open and closed subset of R™.
. Operator norm ||T'|| of linear transformation and its properties.
. Connectedness and compactness on R™.

o Continuous function on R™ and its behavior with connected and compact
subset of R™.

1.15 Unit end Exercise

1. Define the following terms and find 2 to 3 examples for each.
1)  Vector spaces 11) Inner product spaces
i)  Norm Linear spaces iv) Metric Spaces

2. Prove the properties of 1.3.1
3.  Forx = (x1,x,) € R%
We define; i) ||x||1 = x| + |%5]

if) [x]], = vx{ + x5
iii) ||| = max {lxy, |xcz]}

Prove that ||.||1,]|. ||, and ||. || define the norms on R2.

Note; - ||. ||, is called usual or Euclidean norm.

4.  State and prove the Cauchy- Schwarz inequality on R™ where R"™ is vector
space over the field C.

5. Prove the following properties of inner product. Consider x,y € R™ and a in
R.

D<x,y>=<yx>
i)<ax,y>=a.<x,y>
lx + 1| = |Ix = yI|°

4
6. Prove that | [|x]| = |yl | <|lx—¥l.

lHv) <x,y >= (Polarization identity)

7. Prove that f: R™ — R defined by f(x) = ||x|| is continuous function.




Chapter 1: Euclidian Space R"

10.

1.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

Let fand g be integrable on [a,b] then prove that,

1 1
f; f.g| < (f:fz)z . (f: gz)z (This is Cauchy-Schwarz inequality in
integrable space) (Hint:- Consider separately the case 0 = f: (f — Ag)? for
some 2 € Rand 0 < [ (f — Ag)? forall 2in R.

Prove that closed rectangle in R™ is indeed a closed set.

Prove that interior of any set A and exterior of any set A4 (i.e. interior of R™\ 4)
are open.

Prove that finite union of open set is open. Also, prove arbitrary union of
open set is open.

Prove that finite intersection of open set is open. Does the arbitrary
intersection of open set is open?

Prove that finite intersection of closed set is closed. Also, prove arbitrary
intersection of closed set is closed.

Prove that finite unions of closed sets are closed. Does the arbitrary unions
of closed sets are closed?

Prove that boundary dA of set A is closed.

Prove that {x € R™: ||x - a|| < r} is open; where r is some positive real
number.

Find the interior, exterior and boundary of the following sets.
D{xeR™|lx—al| <1}

i) {x e R™|lx —al| =1}

iit) {x € R™: Each x; rational}

Check that T: R™ — R™, defined as follows are linear transformation or not
DT(x) =x+ 1gn

i) T(x) = Ogn

iii) T(x) = 2x

Let S,T:R™ > R™ and R:R™ — R¥ be the linear map then prove that
S+ T,RoS,and cT (c € R) are also a linear map.

Prove the properties of ||T|| of 1.7.3

Prove that continuous real values function defined on a compact set is
bounded (Ref. C.C. Pugh)
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22.  Prove that the following are equivalent for the continuous function
frAcCcR*" > R™

i)  The (g, §)- condition
i1)  The sequential convergence preservation condition

iii)  The closed set condition i.e. inverse image of closed set in R™ is closed
inA c R"

iv)  The open set condition i.e. inverse image of open set in R™ is open in
A c R™ (Ref. C.C. Pugh)

23. Prove that every compact set is closed and bounded. (Ref. C.C. Pugh)
24. The closed interval [a, b] c R is compact. (Ref. C.C. Pugh)

1.16 References
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UNIT 2

2

DIFFERENTIATION OF FUNCTIONS
OF SEVERAL VARIABLES

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Total Derivative

2.3 Partial Derivatives

2.4 Directional Derivatives

2.5 Summary

2.0 Objectives

After reading this unit you should be able to
° define a differentiable function of several variables

o define and calculate the partial and directional derivatives (if they exist) of a

function of several variables

o establish the connection between the total, partial and directional derivatives

of a differentiable function at a point

2.1 Introduction

You have seen how to extend the concepts of limit and continuity to functions
between metric spaces. Another important concept is differentiation. If we try to
apply this to functions between metric spaces, we encounter a problem. We realise
that apart from the distance notion, the domain and codomain also need to have an

algebraic structure. So, let us consider Euclidean spaces likel] . Which have which

11
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have both metric and algebraic structures. Functions between two Euclidean spaces

are what we call functions of several variables.

In this chapter we shall introduce the concept of differentiability of a function of
several variables. The extension of this concept from one to several variables was
not easy. Many different approaches were tried before this final one was accepted.
The definition may seem a little difficult in the beginning, but as you will see, it
allows us to extend all our knowledge of derivatives of functions one variable to
the several variables case. You may have studied these concepts in the third year
of graduation. So, here we shall try to go a little deeper into these concepts, and

deal with vector functions of several variables.

2.2 Total Derivative

To arrive at a suitable definition of differentiability of functions of several
variables, mathematicians had to closely examine the concept of derivative of a
function of a single variable. To decide on the approach to extension of the concept,
it was important to know what was the essence and role of a derivative. So, let us

recall the definition of the derivative of a function £ :[1 —[]

We say that s differentiable at acR, if the limit, lim Ja ”Z‘f (@) exists.

In that case, we say that the derivative of f at a,

/(@)= lim f(‘”hz_f(“) ....... @2.1)

So, we take the limit of the ratio of the increment in f{x) to the increment in x. Now,
when our function is defined on R", the increment in the independent variable will
be a vector. Since division by a vector is not defined, we cannot write a ratio similar
to the one in (2.1). But (2.1) can be rewritten as

lim [/ @+ =/ (a)

h—0 h

- f'(a) ] =0,0r

fim [[@FD—S(@=(D)-h,_

0, or
h—0 h

12
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lim r(hh) — 0, where r(h) = fla+h) — fla) — f'(a).h.

h—0

So, we can write flath) =f(a) + f'(a).h+1(h), ccccveevvneeanenn. (2.2)

where the “remainder” 7(h) is so small, that % tends to zero as /4 tends to zero.

For a fixed a, fla), and f'(a)are fixed real numbers. This means, except for the

remainder, 7(h), (2.2) expresses fla + h) as a linear function of 4. This also helps us
in “linearizing” f. We say that for points close to a, the graph of the function f can

be approximated by a line.

Thus, f'(a) gives rise to a linear function L from [] to [I .

L: [l >3, h— f'(a).h, which helps us in linearizing the given function fnear

the given point a. (2.2) then transforms to

fa+h)y=fa) + L) +rh) e (2.3)

It is this idea of linearization that we are now going to extend to a function of

several variables.

Definition 2.1 Suppose E isan opensetin ", f: E —[1”,and ae E. We say

that f is differentiable at a, if there exists a linear transformation7:[1" —[1",

such that
fim L@@ TWN _ (2.4)
h—0 (IRl

and we write f'(a) =T.
If fis differentiable at every point in E, we say that f'is differentiable in E.

Remark 2.1
i)  Bold letters indicate vectors.

i1)  Since E is open, 37 > 0, such that B(a, ) € E. We choose A, such that
Al <7, so that a + h € E.

13
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iii)  The norm in the numerator of (2.4) is the norm in R™, whereas the one in the

denominator is the norm in R".

iv) The linear transformation T depends on the point a. So, when we have to deal

with more than one point, we use the notation, T, Ts, and so on.
We have seen that in the one variable case, the derivative defines a linear function,

h - f(a).h from R to R. Similarly, here the derivative is a linear transformation

from R" to R™. With every such transformation, we have an associated M X 1l
matrix. The jth column of this matrix is T(ej), where e; is a basis vector in the

standard basis of R".

For a given point a, the linear transformation T, is called the total derivative of fat

a, and is denoted by f!(a) or Df{a). We can then write

fla+h) = fla) + Ta(h) + r(h),where % - 0,as h— 0... (2.5

We now give a few examples.

Example 2.1 : Consider f> R" = R", f(x) =a + x, where a is a fixed vector in R" .

Find the total derivative of f'at a point p € R", if it exists.

Solution : Now, f(p + h) — f(p) = h. So, if we take T to be the identity

transformation from R" to R”, then we get

flp +h)—f(p) — T(h) =0, and hence

I @+~ @) -TMI _

h—0 Rl

Comparing this with 2.5, we conclude that the identity transformation is the total

derivative of fat the point p.

Example 2.2 : Find the total derivative, if it exists, for f: R?— R f(x, y) = (x°, y°),

at a point @ = (a1, a2).

Solution : If fis differentiable, we expect T, to be a 2 X 2 matrix.

14
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Let h = (hi1, hz). Now,
fla+h)—fla) = ((ar + h1)? (az + h)?) — (af, a3)

= (2a.hy + h2, 2a,h, + h2)

= (2a,hy, 2a3h,) + (h%, h3)

(2a; O hy 2 12
_< 0 zaz) (h2)+ (h1,h2)

2a, O

We take Ta:( 0 2a

) , and r(h) = (h?, h3), and write
2

_ r(h) _ (h] n)
fla+h) = f(a) + Tu(h) + r(h), where = Jondend) - 0,as h— 0.

Thus T, is the total derivative of fat a.

Now that we have defined the total derivative, let us see how many of the results
that we know about derivatives of functions of a single variable, hold for these total

derivatives.

Theorem 2.1: If f: R" - R™ is differentiable at @ € R", then its total derivative is

unique.

Proof : Suppose fhas two derivatives, Ty and T2 ata, and let T =T —Ts. Let A
ER",

h # 0,and ¢ € R, such that  — 0.
Thenth — 0 as t— 0.

Since T is a total derivative of f at a,

I -y W@t @ T (2.6)
=0 lithll 1—0 ithll
Since T is also a total derivative of fat a,
lra(t)l .. lIf(a+th)—f(a)-T(th)ll _
im — == lim el =0 (2.7)

15
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Thus, | T(th) | = || (T4 — T3)(th) Il = |l T,(th) — T,(th) |l
= fla+th) — f(a) — Ty(th) — [f(a+th) — f(a) — T (th)] |

<I f(a+th)— f(a) —T,(th) | +II f(a+th)— f(a) — T{(th) ||

IIT(L“h)II< Il f(a+th)—f(a)-T(th)ll . Il f(a+th)—f(a)-T1(th)I
ithll  — lithll lithll

Therefore,
Since T is a linear transformation, 7(th) = tT(h). Therefore,

[T I fat+th)-f(a)-To(th)I . I fla+th)—f(a)-T1 (th)l
A1 — lithll lithll

So, using (2.6) and (2.7) , we get

IT(R)I < lim Il f(a+th)—f(a)—T(th)ll + Tim Il f(a+th)—f(a)—T1(th)I — 0

0< Ilim <
t—0 [l t—0 Itk t—0 [Ithll

IT(R)I
IRl

TRl _
Al

Since is independent of t, this means 0,z

which means that || T(h) || = 0.

Now, h was any non-zero vector in R". Further, T(0) = 0. Hence we conclude that
T(h) = 0 for all A € R". Thus T = T — T is the zero linear transformation. Thus,

T1 = T». That is, the derivative is unique.
In the next example we find the derivatives of some standard functions.
Example 2.3 :

i) Find the total derivative fi(a), if f: R" > R™, f{x) = c,

where ¢ 1s a fixed vector in R™ and a € R".
i) If f:R"— R™ is alinear transformation,

show that Df{a) = f for every a € R".

16
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Solution :

1)  Since f is a constant function, we expect its derivative to be the zero

transformation.
Here fla + h) —f(a) =c—c=0.
If we take T to be the zero transformation,

llr(R)I —  lim Ilf (a+th)—f(a)—T ()l — 0
h—0 llhll h—0 IRl

Hence f(a) exists and is equal to 0 for every a € R".

i1)  Since f'is a linear transformation, f(a + h) = f(a) + f(h).
Ifwetake T =f

i ()1l —

r() =fla+h) —fla) ~f(h) =0 = 5= = 0.

We have defined the total derivative of a function as a linear transformation. Now

we prove a result about linear transformations which we may use later.
Proposition 2.1: Every linear transformation T from R” to R™ is continuous on R".

Proof: If T is the zero linear transformation, it is clearly continuous.
If T#0,letp €R",

p = (p1, p2, ..., pn), and € > 0. Suppose {ey, e, ..., ex} is the standard basis for R".
Choose § = ¢/M, where M= T(ey) Il + I T(ex) Il +....... +1 T(ey) Il

Ifx = (x1, x2, ..., xn) issuch that | x — p I <4, then |xi—pi| < fori=1,2, .., n.

Also, x — plI<s§=I1T@X)—TE)I=1TE—-p) Il =I T((x1 —pe; +
(xz —prlez + -+ (x, — Pn)en) I < |G —p)l I1T(e) I +[(xz —p2)| |l
T(ex)) Il ... Hxp =) 1T < SN Te) Il +1T(ex) Il +....... +Il
T(en) ) =¢

Thus, T is continuous at p. Since p was an arbitrary point of R", we conclude that
T is continuous on R".

In fact, since 6 did not depend on p, we can conclude that T is uniformly continuous
on R".

17
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For functions of a single variable, we know that differentiability implies continuity.
The next theorem shows that this holds for functions of several variables too.

Theorem 2.2 : If f: R" — R™ is differentiable at p, then f'is continuous at p.

Proof : Since f is differentiable at p, there exists a linear transformation Tp such
that

If(p+h)—f()-T(WI _ 0

h—0 (IRl

Thus, V € > 0,3 §; > 0, such that

||f(a+h)—"f’E;l)—Tp(h)ll <e)2

Thil< é6; =
Choose 6, = min(1, ;). Then
IhiI< &, =1 fb+h)—f(p)—T,(R) I<(g/2)I Rl < g/2

By Proposition 2.1, T} is continuous at 0, and Tp(0) = 0. So, there exists 3 > 0,
such that

Ilhi< 6 =1 Ty(h) < g/2.
Now choose § = min(d,, 65). Then

lhii<d =1 fo+h)—f@I<I fo+h)—f@)—-T,(W I + T,(h) Il

<Z+i=-e
2 2
Thus, }lln(l) f(p + h) = f(p), and fis continuous at p.

With your knowledge of functions of one variable, you would expect that the
converse of Theorem 2.2 does not hold. That is, continuity does not imply

differentiability. The following example shows that it is indeed so.

Example 2.4 : Consider the function f: R = R? f{x) = (|x|, |x|). We shall show that

f1s continuous at 0, but is not differentiable there.
Given € > 0, choose § = s/\/f. Then
X|<8 =1 fFG) U= (x|,|x) I1<V62+ 62 = V2 § = «.

Hence, f'is continuous at x = 0.

18
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Now suppose f'is differentiable at x = 0. Then there exists a linear transformation
T:R - R? such that

lim fW)-f(0)-T(h) _ 0 = Im (nLIAD-T(h) _ 0

h—0 h h—0 h
Il B _
= }ll_rg(h (L1)y—-T1T) =0

Now, (1, 1) and ( —1, —1) are two distinct points in R?,
and B((1, 1), 1) n B((-1,-1), 1)=@. Fore=1,3 6§ > 0, such that

||

IRI< & =1 2D = TANI<E i (2.8)

Putting h = §/2 in (2.8), we get | %(1, D-TA) = lIL) -TMDI <1

This means T(1) € B((1, 1), 1).

Similarly, taking h= —§/2, we get that T(1) € B((—1, —1), 1). But this contradicts
the fact that B((1, 1), 1) and B((—1, — 1), 1) are disjoint.

Thus, f'is not differentiable at x = 0.

If f:R"— R™,then, as you know, we can write f = (f1,/>, ...,fm),
where each fi - R" — R,

1 =1, 2,...,m. These fis are called coordinate functions of f. Similarly, a linear

transformation

T : R" - R™ can be written as T = (T1,T2, ...,Tm), where each Ti is a linear
transformation from R" to R.

Theorem 2.3 : Let f= (11,2, ....fn) - R" = R™, and p € R". fis differentiable at p,
if and only if each fi 1< i < m is differentiable at p.

Proof : f is differentiable at p if and if there exists a linear transformation
Tp : R" - R™, such

that tm If (p+h)—f(@)-TMI

h—0 kIl

=0, thatis, if only if
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i TV @i @)-TiWlen _

h—0 IRl

, where {ej, ez, ..., e} 1s the standard basis of R™,

Vi, 1<i<m.

lf and Only lf, ]grno |fi(P+h)—fi(P)—Ti(h)| — O

[l
That is, if and only if each f; is differentiable and Dfi = Ti, Vi, I< i <m.

Thus, Df(p) = Ty = (Dfi(p), DAA(P), ..., Dfu(p)).

Theorem 2.4 : Let f: R"— R™ and g : R" — R" be two functions differentiable at
p ER" Ifk€R,then f+gand kfare also differentiable at p. Moreover,

D(f+g)(p) = DA(p) + Dg(p), and D(kf)(p) = kDf(p).

Proof: Let Df{p) =Ti, and Dg(p) = T2. Then Ty + T2 is also a linear transformation
from R" to R™, and

0< lim I(f+g)(p+h)—(f+g)(p)—(T1+T2)(W)Il

h—0 [lAll

= |jm W@+ -f@)-T1 W]+ [g@+h)—g @) -T2 (R

h—0 IRl

< fim Y@ f@-TiWi o leerh—g®) T _
=0 IRl h—0 IRl

Therefore, f+ g is differentiable at p, and D(f+ g)(p) = T1 + T2 = Df(p) + Dg(p).

Now, lim Ikf(p+h)—kf(p)—kT1 (Wl _ k| lim If(p+h)—f@)-T1(WI _ 0.

h—0 (v h—0 IRl

Therefore, if is also differentiable and D(kf)(p) = kT1 = kDf(p).

2.3 Partial Derivatives

We know that the derivative of a function of one variable denotes the rate at which
the function value changes with change in the domain variable. In the case of
functions of several variables, change in the domain vector variable means a change
in any or all of its components. But if we consider change in only one component
and study the rate at which the function value changes, we get what is known as
the partial derivative of the function. Corresponding to each component of the

variable, there will be a partial derivative. Here is the formal definition.

20
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Definition 2.2 Let f: E = R™, where E € R". Let x = (x4, x2, ..., x») be an interior

point of E. Then for every i,1=1, 2, ..., n, the limit

i f(X1,X2,X{+0,Xi41,.Xn)— F(X1,X2,-0Xn)
h—0 h

, if it exists, is called the ith partial derivative

: . ] .,
of f with respect to xi at x. It is denoted by % frpor Dif . We write a_;]:- (x) to
L

R
L

indicate the point at which the partial derivative is calculated.
Remark 2.2 :

1) If a function f has partial derivatives at every point of the set E,

we say that f'has partial derivatives on E.

i1) It is clear from the definition that a partial derivative can be defined at an

interior point of E, and not on its boundary.

ii1)  Ifa function has a partial derivative at a point, its value depends on the values
of the function in a neighbourhood of that point. So, if the function values
outside this neighbourhood are changed, it does not affect the value of the

partial derivative.
The following examples will make the concept clear.

Example 2.5 : Find the partial derivative of the function, f{x, y, z) = xyz + x°z.

Solution : This is a real-valued function. You are already familiar with the partial

differentiation of such a function.

0 . x+h)yz+(x+h)?z—xyz— x%z
of _ m (x+h)yz+(x+h) y
dx h—0 h

= yz + 2xz. Similarly, you can check that
fy=xz, and f, = xy + x°.
Let us take a vector-valued function in the next example.

Example 2.6 : Find the partial derivatives of the function,

f:R’> R’ fix, v, z) = (xy, Z%), if they exist.

(x+h)y,z?)- (xy,z? _
(Cetn)y.z?) (xyz):h-m ((x+R)y-xy, 0)
h h—0 h

Solution : im
h—0
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. (x+h)y— . 0
= (lim ===, lim <) = (v, 0).

h—0 h h—0
of _
Therefore, Pyl (y, 0).

Proceeding similarly, we find that 22 = (x, 0), and 2L = (0, 22).

ay
You must have observed that the partial derivatives of a vector function are formed
by taking the partial derivatives of its coordinate functions. In fact we have the
following theorem, which establishes the connection between differentiability of a
vector-valued function and the existence of partial derivatives of its coordinate

functions

Theorem 2.5 : Let E be an open subset of R”, and f: E — R™.

Suppose f = (fi,f2, ....,fm) is differentiable at p € E. Then the partial derivatives

afi . . .
iemst fori=1,2, .., mj=1,2,..,n
ax]'

Proof : Since f is differentiable at p, there exists a linear transformation T,

such that lim Y@W—f@)-T®I

h—0 Al

standard basis of R". Then, i — 0 if and only if t = 0. Thus,

= 0. Let h = tej, where {es, ez, ....en} is the

If (p+te;)—f()-T(te )l — 0. Therefore, lim f(p+te£)—f(p)

t—0 |t] t—0

That is,

(lim fl(P"‘tej)—fl(P), im fz(P+t€j)—fz(P)“"’ im fm(P+tej)—fm(p))
t—0 t t—0 t t—0 t

=T(e])

. . afi . .
Hence the limits exist, and 6—3’:_(p) exists foralli=1, 2, ..., m.
J

Since j was arbitrary, we conclude that %(p) exists foralli=1,2,..m,j=1,2, .., n.
]

If f: E - R™ where E is an open subset of R”, and if f'is differentiable at p € E ,

then using Theorem 2.5, the matrix of the linear transformation T can be written as
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Chapter 2: Differentiation of Functions of Several Variables

0f af1 fi
x, (») ax, » - . ox, (»)
af, P 0f>
9%, (») ax, ®» - . . o, (»)
o Ofn Ofpm
% (») 9%, ® - - - o, (»)

This m x n matrix is called the Jacobian matrix of f at p, and is denoted by [f’(p)]
or [Dfip)]-

If m = n, the determinant of the Jacobian matrix is called the Jacobian of f'at p, and

a(flﬁfZ"--'fm)(p)

01X Xm)

is denoted by

Thus, if fis differentiable at p, then the total derivative of fat p, T : R" - R™ is

given by the Jacobian matrix. For x = (x1, x2, ..., xx) € R",

X1
X2

T) =[]

*n
When m = 1, fis a real-valued function, and T(ej) = % (p). Hence, the Jacobian
]

matrix of T is the row matrix, [aa—; (p) ;—;2 ») .. aann )]

The vector form, (g (p), ;Tf (p), -, aan (p)) is called the gradient of fat p , and
1 2 n
is denoted by Vf(p), or gradf(p).

If h=(hi ho, ..., hn) € R",

hq
hz

Toh) = [Z-®) 3-@) - 7 ®)]
Iy,
Thus, T(h) = ;—xfl(p)hl + %(p)hz o +;Tfn(p)hn, or Ty(h) = Vf{p)s h.

So, we can say that the total derivative T, of a real-valued function is given by

Ty (h) = Vf(p)e h.
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Example 2.7 : Find the Jacobian matrix of
) fxy) =& e?)

i)  flx, y, z) = (xsinz, —ye°) at (1, 2, —1).
i D =x’ = of1 _ ofi _ 5
Selution : 1) fi(x, y) = x7y, and fx(x, y) = e?. Therefore, === 2xy, o=

0 o and P2 — cov
P ye¥, and 3y xev.

[2xy  x?
Hence, [f(x, y)] = yexy xexy]
9f

Oh _ ¢ on =—si
o Sinyz, and o (1,2,-1) sin2

o _1)=— o 1=
(1,2, )= —cos2, Z1(1,2,~1)=2cos2,

9f2 _1y=q 22 1= _ el 92 )= _0al
5, (1,2, -1)=0, 6y(1,2, D=-e, ~(1,2,-1)=-2¢".

—sin2 —2cos2 2cos2
Thus, [f(1,2,-1)]= ( 0 g1 —2e‘1)

In the next section we shall consider yet another type of derivative.

2.4 Directional Derivatives

Partial derivatives measure the rate of change of a function in the directions of the
standard basis vectors. Directional derivatives measure the rate of change in any

given direction.

Definition 2.3 : Let /: E —» R, where E is an open subset of R". Let u be a unit

vector in R", and p € E. If hrno w exists, then it is called the directional
r—>

derivative of fat p in the direction u. It is denoted by Z—i (p) or fu(p).

Example 2.8 : Find the directional derivatives of the following functions:

i) flx,y)=2xy + 3y’ atp=(1, 1), in the direction of v = (1, 1).
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i) f(x,y)=x% atp=(3,4), in the direction of v= (1, 1).
Solution : i) The unit vector # in the given direction is (%,%). Hence the

R o flanse)- fan
required directional derivative is hrr}) ; )
t—

. f((1+7t2, 1+Tt2))—f(1,1)

t—0 t

2R RS L svEEest2 g

t—0 t t—0 t

i) We have the same unit vector # here. Therefore,

Duf(p) = lim f((3+£' 4+£))—f(3.4) . (3+\/%)2(4+t/\/2)— 36 3372

10 t 1—0 t 2

Example 2.9 : Find the directional derivatives, if they exist, in the following

cases:

x+yifxy=0

1, otherwise }’ at (0, 0), u = (us, u2), [juf| =1

A ={

xy? .
i) flx, y)= {m:lf (x,y) # (0,0

} at (0,0), u= (12, 17/2).
0, if (x¥)=1(00)

Solution: i) ifus# 0,u> %0, fim L& 0Hu)= /OO _ ) 120 (pdep

t—0 t 1—0 t

does not exist. If either u; or u2 is zero, we get the standard basis vectors, (1, 0)

and (0, 1).

F((0+t, 0))- £(0,0) _ limﬂ .
t t->0 t

Ifu=(1,0), lm

f((0, 0+8))-f(0,0) _ 1
. .

Similarly, if u = (0, 1), hm0
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Thus, the directional derivatives in these two directions exist, and are equal to one.
In any other direction, the derivative does not exist. Note that the directional
derivative in the direction (1, 0) is fr, and that in the direction (0, 1) is fy. Thus, this
function has both the partial derivatives at (0, 0).

. . /22 _
0+, 0+5=)]- £(0,0) t2 ¢t
ii) lim O+ 0+) —= lImZE— == lim—2 = N2
t—0 t t—0 t t—0 (2+t2)

Thus, D,A0,0)= 1//2.

In fact, if we take u = (cosf, sinf), then we can show that f has directional
derivative at (0, 0) in the direction of u, whatever be 6. That is, the directional
derivatives of f at (0, 0) exist in all directions. But you can easily show that this
function is not continuous at (0, 0) by using the two-path test. Recall, that you need
to show that the limits of £, at (0, 0) along two different paths are different. Then
by Theorem 2.2 we can conclude that f'is not differentiable at (0, 0).

This example shows that the existence of all directional derivatives at a point does

not guarantee differentiability there. But we have the following theorem:

Theorem 2.7: Let /: E = R, where E is an open subset of R". If f is differentiable

at p € R", then the directional derivatives of fat p exist in all directions.

Proof : Since f is differentiable at p, there exists a linear transformation,

T: R" — R, such that

h—0 [lRll

Let u be any unit vector in R", and take & = fu. Then h — 0, as ¢t = 0. Therefore,

im If (p+tw)—f (p)-T(tw)]

t—0 |t]

= 0. This means,

m f(p+tw)—f(p)—tT(w)

| = 0. Thatis,
t—0 [t]
lim ZZEOT® ) o Dyfp) = T(U). oo (2.5)

t—0 t
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Since u was an arbitrary unit vector, we conclude that the directional derivatives of

fat p exist in all directions.

Now, if u = (u1, u, ..., un), T(u) =T(user + uzez + ... + unen), where {ej, ey, ..., en}

is the standard basis of R". Therefore, by (2.5),
T(u) =uiT(er) + u2T(ez) + ... + uiT(en)

= u1 D, f(p) +u2 D f(p) + ... + un D¢ f(p)

_ of (p) af (p) af (p)
= uj %, + uz %, + ...+un—axn
=Vf(p)e u
Thus, Duf(p)=Vfip)eu . (2.6)

(2.6) gives an easy way to find a directional derivative of a differentiable function,
if its partial derivatives are known. For example, if f{x, y) = x? + )7, then f; and f;

at (1, 2) are 2 and 4, respectively. So, the directional derivative of f'at (1, 2) in the

2i—3j) -8
Vi3 V13’

direction 2i — 3j is given by (2i + 4j)o (

This concept of directional derivatives can be extended to vector-valued functions.
The directional derivative of a vector-valued function is a vector formed by the
directional derivatives of its coordinate functions. Thus, to find the directional
derivative of f{x, y) = (x + v, x°), at (1, 2) in the direction of (3, 4) , we first find
the directional derivatives of fi(x, y) = x + y, and f2(x, y) = x* . You can check that
these are 7/5 and 6/5, respectively. Therefore, the required directional derivative of

fis (7/5, 6/5).

We have seen in Theorems 2.6 and 2.7, that differentiability of f at a point
guarantees the existence of partial and directional derivatives there. We have also
noted that the converse statements are not true. Our next theorem gives us a

sufficient condition which guarantees the differentiability of a function at a point.

Theorem 2.8 : Let E be an open subset of R", and f': E = R™, f' = (f1./2, ...,fm). If

all the partial derivatives, Dfi(x) of all the coordinate functions of fexist in an open
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set containing a, and if each function Djfi is continuous at a, then f'is differentiable

at a.

Proof : In the light of Theorem 2.3, it is enough to prove this theorem for the case
m = 1. So, we consider a scalar function ffrom R" to R, all whose partial derivatives
Djf are continuous at a. Since E is open, for a given € > 0, we can find r > 0, such

that the open ball,

B(a,r) cE,and || x —a || <t =| Dff(x) —Djf(a) | < e/n, forj =1,2, ..., n.

Now, suppose h = (hi, ha, ..., hy), ||h]| <t. Letvo =0, vi = hie;, v2=v; + hoey, ..,

Va = Vu_1 + hien. Then fla + h) — fla) = ¥7_\[f(a+v;) — f(a+vj_1)]

Since ||vj|| <r, vj € B(a, 1), and since B(a, r) is convex, the line segment joining the

points,

a+vj_randa + v liesinit, forallj=1, 2, ... , n. Therefore, we can apply the Mean

Value Theorem to the j'" term in the sum (2.8), and get

Sfa + vy —fla+vj-1) = hDjf(a + vj—1 + 0;hjey) , for some 6; € (0, 1). Then, using

(2.7), we can write
fta + 1) —fla) - X5—1 hj(Dif)(@)| = [Xj=1 hj(Df) (@ +vj-1 + E;hiej)- Xj—1 hj(D;f)(a)|
<237, hjle < ||hl|e, for all &, such that ||A] <r.

This means that

lim If (a+h)—f(@)—f (Rl

h—0 1

[f (a)] consists of the row, (D;f{a), Dzfa), ..., Duf(a)).

= 0, where f is the linear transformation, whose matrix

Thus, f'is differentiable at a.

Definition 2.4 : A function f: E = R", f = (f1,/>, ...,fm), where E is an open subset
of R", is said to be continuously differentiable, or, a C’ function, if Djfi is

continuous on E forallj,j=1,2,...,n,and forall1,i=1, 2, ..., m.
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The continuity of partial derivatives assumed in Theorem 2.8, is only a sufficient
condition, and not a necessary one. That is, there may be functions which are
differentiable at a point, but do not have continuous partial derivatives there. We

now give you an example, and ask you to work out the details (See Exercise 3.)

Example 2.10 : Consider the function f: R’— R given by

1

xzsini+yzsiny, if xy #0

x2sin=, ifx #0,y =0
f5,) = o 0y
yzsin;, ifx=0,y+0
0, ifx=0=y

This function is differentiable at (0, 0), but neither

.1 1 .
2xsin=—cos—, if x #0
fx = x x , mor

1 1

2ysin—=—cos—, i #0 .

_ fy_{y y y fy 1S
0, ifx=0

0, ify=0

continuous at (0, 0).
Here are some exercises that you should try.
Exercises:
1)  Show that the following function is differentiable at all x in R".
f:R"> R, f{x) =x e T(x), where T : R" > R" is a linear transformation.

2)  Letffx, )= +x x* )% 2x + 3)%), p=(2, 1), v=(4, 5). Compute the
partial derivatives of f; and the directional derivative of fin the direction v,

atp.

3)  Prove the assertions in Example 2.10. (Hint: To show that f is differentiable,

check that f{f, k) - £(0, 0) — hhsiny) + k(ksing) = 0, and so, Df = (hsin, ksin) ).
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2.5 Summary

In this unit we have extended the concept of differentiation from functions of one
variable to functions of several variables. Apart from the total derivatives, we have
also defined partial derivatives, and directional derivatives. We have proved that
differentiability implies the existence of all partial and directional derivatives at a
point, but the converse is not true. As in the case of functions of one variable, we
prove that differentiable functions are continuous, but not vice versa. We have also

derived a sufficient condition for differentiability in terms of the partial derivatives.

O o% % %
XA XA XS X
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UNIT 2

DERIVATIVES OF HIGHER ORDER

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Jacobian Matrix and Chain Rule
3.3 Higher order partial derivatives
3.4 Mean Value Theorem

3.5 Summary

3.0 Objectives

After reading this chapter, you should be able to

differentiate a composite of two vector-valued functions
define and calculate derivatives of higher order
derive the conditions for the equality of mixed partial derivatives

state and prove the Mean Value Theorem

3.1 Introduction

In the last chapter you have seen how functions of several variables are
differentiated. Now we shall start by discussing how a composite function of two
differentiable functions can be differentiated. The Jacobian matrix introduced in

the last chapter proves useful in this.

One of the important applications of derivatives is the location of extreme points
of a function. In the next chapter we are going to see how this concept can be
extended to scalar functions of several variables. But we shall do the necessary
spade-work in this chapter. So, we shall introduce higher order derivatives. We
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shall also study the conditions under which mixed partial derivatives are equal. You
may recall that the Mean Value Theorem was one of the most important theorems
that you studied in Calculus in F. Y. B. Sc. We shall see whether this theorem can
be applied to functions of several variables.

3.2 Jacobian Matrix and Chain Rule

We have seen in Theorem 3.5, that if £ R” — R™, is differentiable at p, then all
partial derivatives of all coordinate functions of f exist at p. That is,
if f=(f1, f2, ..., fm), then Djfi(p) exists foralli=1,2, .., mandallj=1, 2, ..., n.
We have also seen that if {ej, e, ..., en} is the standard basis for R", then

I (p)(e) = (Dfip). DEAP), ... Difnp)).

Y. ase; , Y af @)lels).
If h=J=1 is a vector in R", then f (p)(h) = =1 f ®),

which is a linear transformation from R" to R™, thus has the matrix,

Difi(p) D:fi(p) - - . Dufi(p)
Dif:(p) D:fz(p) - . . Dnfi(p)

Dyfir®) Dafm(@) - - - Dufm(p)

As we have already mentioned in Chapter 3, this m x n matrix, called the Jacobian
matrix, is denoted by [Df{p)]. The k' row of this matrix is the gradient vector,
V fi(p), and the j" column is the image of e; under the linear transformation Df{p).

Thus, the Jacobian matrix of fis formed by all first order partial derivatives of f.
This means, we can write the Jacobian matrix of any function, all of whose partial
derivatives exist. As we have noted earlier, the existence of partial derivatives does
not guarantee differentiability. So, even when a function is not differentiable we
would be able to write its Jacobian matrix, provided all its partial derivatives exist.

Iff: R" — R, then its Jacobian matrix, if it exists, will be a 1 x n matrix, or a matrix
vector.

If £: R"— R™ is differentiable at p € R”, and if h is any vector in R", then f
(p)(h) = [Df{p)lh 1is obtained by multiplying the m x n matrix [Df{p)] with the
n x 1 column matrix A. Thus,
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Chapter 3: Derivatives of Higher Order

If @M = X7 (V@) - h)ejll < T (V) - h)ejll = X7y |(VF () - h)

3

Cauchy-Schwartz inequality for inner products says that |[u - v| <[l u [l v |
Using this we get

If @M< ZF= IVA@I IR 1= R ITET V@)

If we takeM = Y1, [|Vf;(p)]|, then

IfMI<MIRI (3.1)

We have seen in Theorem 3.4 how to get the derivative of the sum of two
differentiable functions, and also that of a scalar multiple of a differentiable
function. The next theorem, which is known as the chain rule, tells us how to get
the total derivative of a composite of two functions.

Theorem 3.1 (Chain Rule) : Let fand g be two differentiable functions, such that

the composite function f - g is defined in a neighbourhood of a point @ € R”.
Suppose g is differentiable at a, g@@) = p, and f is differentiable at
p. Then f-g is differentiable at @, and (feg)'(a)=f'(p)cg'(a)=
[Df(P)][Dg(a)]

Proof : If h is such that || h || is small, then a + h will belong to the above
neighbourhood of a, in which f - g is defined. Now, since g is differentiable at a,
k=g(a+h)—g(a)=g'(a)(W)+I R | E,(h), ... (3.2)

where E,(h) — 0,ash — 0.

fis differentiable at p = g(a), and therefore, fig(a + h)) — f(g(a)) = f(p + k) — f(p)
= )k + || k|| Epy(k), where Euk) — 0, ask — 0.

= (@@l g@+n) —g@] +| k|| Epk)
= (@@)[ 9 @(n) + || h || Eai)] + || k|| Ep(k), using (3.2).

= e@) 9 @m) + f (g@) [ h]| Ea)] + || k|| En(k), since f'(g(a))isa
linear transformation. Thus, we can write f(g(a + h)) — f(g(a)) = f (g(a) g (a)(h)
|Ik||

+1h |1 [ (g(@) Ea(h) + [Ir] E, k)] ifh = 0. ... (3.3)
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To complete the proof we need to show that the vector in the square brackets in

(3.3) tends to zero, as & tends to zero.

We know that E,(h) — 0,ash— 0. ... (*)

Ikl =Ilgt@+h)-g@| = || 9 @) |+ k||l Eah) |, using (3.2).

A Vgjla) '
IfM = -1 2 |[ror| , then using (3.1), we can write || 8 (a)(h) || = M || & ||. Thus,
Ikl = M A + [ kIl Edh) || =1 h| M+ Eoh) ). Therefore,
] _ [Ikl]

||h|| M + || Ea(h) ||. This means that (IRl is bounded. Thus,

| .
il Ep(k) — 0, as h — 0, sinceh — 9 =>k-0= Ep(k) -0 o (F5)

Using (*) and (**), we can say that the term in the square brackets in (3.3) tends to

zero as h — 0. Therefore,

fg(a+h)-f(g(@)-f'(g(@)g’ (@ (n)

—»>0ash—-0
IRl

This shows that f - g is differentiable at @, and (f - g)'(a) = f'(g(a)) ° g'(a)

The Chain Rule can be written in terms of Jacobian matrices as follows:

D(f - 9)(@) = [D(f(g(@))]| [D(g(@))]

Here the product on the right hand side is matrix multiplication. If y = g(x), and z
= f{y), comparing the entries in the matrices in (3.3), we get

=2j- 1ay 9, Where o= = Dy(f - g)u = D; (N and = Dr(9);-

Example 3.1 : Write the matrices for f', g’ and (f - g)’ for the following functions,
and evaluate them at the point (2,5)-f(x,y) = (x+y,x*+y?2x+
3y), g(w,v) = (x,y) = (u?,v°)

Solution : Here fi(x, y) =x +y, f2(x, y) = x> + 17, f3(x, y) = 2x + 3y,

1 1
gi(w,v) =u?> and g,(w,v) =v3 This means, D(f)= <2x 2y>,
2 3

_(2u 0
and D(g) = ( 0 3v2)'
(f - 9)(w,v) = W? + v3,u* + v° 2u? + 3v3).
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Chapter 3: Derivatives of Higher Order

Hence,
2u  3v?
D(f-9)=|4u® 6v°
4u 92

At (u, v)=(2,5), (x, ) =(4, 125). Therefore,

1 1 4 0
D(f)(4,125)=<8 250>,D(g)(2,5)=(0 75),and
2 3

4 75
D(f-9)(2)5) = (32 18750)
8 225

You can now easily verify that D(f - g)(2,5) = [D(f(4,125)][D(g(2,5))].

3.3 Higher Order Partial Derivatives

You are familiar with the concept of partial derivatives. In the last chapter we have
calculated the partial derivatives of some functions of n variables. If you take a look
at those examples, you will realise that the partial derivatives are themselves
functions of n variables. So, we can talk about their partial derivatives. These, if
they exist, will be the second order partial derivatives of the original function. If
we differentiate these again, we will get the third order partial derivatives of the

original function, and so on. We take a simple example to illustrate.

Example 3.2 : Find partial derivatives of all possible orders for the function,
fx, v, z) = (x%y?, 3xy°z, x23).

Solution : Since fis a polynomial function, we do not have to worry about the
existence of partial derivatives. We get fi = (2x)°, 3y’z, 2°), f5 = (2x%, 90z, 0),
£ = (0, 3x)°, 3x2°).

0% f 0
Then, fy, = Xz (2}72, 0,0), fxy = _(

of 0%f
dy )
fxz = (0:33’3' 3Z2)

_ ) = — - = 2
dx _ayax_(4XYJ9y Z,O),

Differentiating f;, we get fix = (4xy, 972, 0), fi» = (2x%, 18xyz, 0), and f;- = (0, 9x)?, 0).

Then differentiating 2 we get for = (0, 3%, 32°), fo = (0, 9%7° 0), and
f2= (0, 0, 6x2).

35



ANALYSIS -1

These are all possible second order derivatives of f. Proceeding in this way, we can
also get oz = (0, 972, 0), fix: = (0, 0, 0), fozz = (0, 0, 6x), and so on. There will be
27 third order partial derivatives of f. See if you can get the remaining.

You know that fiy and f;x differ in the order in which fis differentiated with respect
to the variables x and y. These two derivatives have come out to be equal in
Example 3.2. But you may have seen examples of scalar functions of several
variables, for which the two may not be the same. Here is an example, to jog your
memory.

2_ .2
—xygﬂ); ) for
(x,y) #(0,0), and f(0,00=0. You can easily check that

fhk) —fO,k) _

Example 3.3 : Consider this function f from R? to R, f(x,y) =

fx(0,0) = 0,£,(0,0) = 0, £ (0, k) = limj_,g n —k

£, (h,0) = limyo L2 ;f "0 _

Then,  f,(0,0) = limyo 202 LCD = Jimy =2~ —1, and similarly,
£,2(0,0) = 1.

Thus, the mixed partial derivatives of this function both exist, but are not equal.

Remark 3.1 : If fis a function from R" to R, the partial derivative of f'with respect
to the ith variable, x;, is denoted by Dif, and the partial derivative of Dif with respect
to x; , that is, Dj(Dif) is denoted by Dijif-

The following theorem gives a sufficient condition for the two mixed partial
derivatives of a function to be equal. Since the behaviour of a vector-valued
function is decided by the behaviour of its coordinate functions, it is enough to
derive this sufficient condition for a scalar function. Without loss of generality, we
state the theorem for a function of two variables.

Theorem 3.2 : Let /- R? — R, such that the partial derivatives, Dif, D2f, Di>f'and
D2if exist on an open set S in R% If (a, b)€ S, and Di2f and Daif are both
continuous at (a, b), then Di2f(a, b) = D2if{a, b).

Proof : We choose positive real numbers, 4 and k&, which are small enough so that
the rectangle with vertices (a, b), (a + h, b), (a, b + k), (a + h, b + k) lies within S.

Now we consider a function

A (h,k)=[f(a+h,b+k)— fla+h, b)] - [fa, b+k)— f(a, b)].
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Chapter 3: Derivatives of Higher Order

We also define a function G on [a, a+h], G(x) = f(x, b + k) — f(x, b).

Now we can write & (A, k) = G(a + h) — G(a). Since G is defined in terms of f, and
since f has all the necessary properties, G is continuous on [a, a + k], and is
differentiable in (@, a + h). So, we apply the Mean Value Theorem for functions of
a single variable to G, and get

G(a + h)— G(a) = hG (¢), for some ¢ € (a, a + h). Now G (x) =Dyfx, b + k) —
Dif(x, b). So, we write A (h, k) = G(a + h) — G(a) = h[Difc, b + k) — Dific, b)].

Now D/f (c, y) is a differentiable function of one variable with derivative equal to
Daif. So applying MVT to Dif(c, y) on the interval [b, b + k], we get
A (h,k) = h[Diffc, b + k) — Dif(c, b)] = hkD2if(c, d),.oeoveeeeeeiierenrnnne (3.4)

for some d € (b, b + k).

We now write & (h, k) = [f{a + h, b + k) —fla, b + k)] — [fla + h, b) — f{a, b)], and

define

H(y) =fla + h,y) —fla, y), sothat B (h, k) = H(b + k) — H(b). Using the same
arguments that we used for G, we apply MVT to H, and then to D2f(x, p), we get
A (h, k)= k[Daf(a + h, p) — Daof(a, p)] = khD12f(q, p), «oveveveeenainanannn (3.5)

forsomep € (b, b +k),andqg € (a, a + h).

From (3.4) and (3.5) we get D2if(c, d) = Dif(q, p). Since Diof and Daif are
continuous, taking the limit as (4, k) — (0,0), we get Di2f(a, b) = D2if{(a, b).

As we have mentioned earlier, the conditions of this theorem are sufficient, and not
necessary. In fact, the continuity of just one of the mixed partial derivatives is also
sufficient to guarantee equality. Functions whose partial derivatives are continuous

play an important role in Calculus. We classify these functions as follows:

Definition 3.1 : A function f from R" to R™ is said to be continuously
differentiable, or belong to class C’, if all its partial derivatives Dif‘are continuous.
It is said to belong to class C', if all its second order partial derivatives are
continuous, and so on. If all its partial derivatives of all orders are continuous, then

it is said to belong to class €% .

We have proved that a function in class C’ is differentiable in Theorem 3.8. In
Theorem 3.2 we have seen that the mixed partial derivatives of a function belonging
to class C" are equal.
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In the next chapter we shall see that a C* function, that is a function, all whose
partial derivatives of order up to k are continuous, can be approximated by means
of a polynomial of order k. We shall also discuss the technique to find the maximum

and minimum values of a function belonging to class C .

3.4 Mean Value Theorem

The Mean Value Theorem (MVT) is an important theorem in Calculus. It is used
as a tool to derive many other results. In the last section we have used it in the proof
of Theorem 3.2. In this section we shall see if it also holds good for functions of
several variables. But first, let us recall the one-variable case.

MVT (single variable): If /: [a, b] — R is continuous on [a, b], and differentiable
on (a, b), then there exists ¢ € (a, b), such that f(b) — f(a) = (b - a) £ (c).

If we write b = a + h, then there exists & 0< 6 <1 guch that
fla+h)—f(a) = h [ (a+6h)

Unfortunately, it is not possible to extend this theorem to a function f: R" — R™,
when m > 1. This will be quite clear from the following example.

Example 3.4 : Consider /: [0, 27T ] — R?, f(t) = (cost, sint). This function is
continuous on [0, 27T ] and differentiable on (0, 277 ).

Now, f27 ) —£(0) = (1, 0)— (1, 0) = (0, 0).

f'(t) = ( — sint, cost). For the extension of MVT to hold, we must have
27 ) - f0) = anf (c) for some ¢ in (0, 27T ). So, we should have (0, 0) =27 ( -

sinc, cosc). But this is impossible, since sinc and cosc both cannot be zero.

So, the extension of MVT in its stated form does not hold. But there is a way around
this difficulty. A slightly modified version of MVT does hold true for all functions
of several variables. We now state and prove this modified theorem for functions
from R" to R™. As a special case of this theorem you will realize that MVT holds
for real-valued functions of several variables.

Theorem 3.3 : (Mean Value Theorem) Let f:S — R™, where S is an open subset
of R™. Suppose f'is differentiable on S. Let x and y be two points in S, such that the
line segment joining x and y, L(x, y) = {tx + (1 —¢)y | 0 < t < 1}, also lies in S.

Then for every a € R™, there is a pointz € S,

such that a{f(y) — f(x)} = a {f' () —X)} e (3.6)
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Before we start the proof, let us understand the geometry involved. Let u =y — x.

Then x + tu gives us a point on the line segment L(x, y), if 0 £t = 1. Since S is

open, we can find a 5 > 0, such that B(Ax' 5,) < S, and B(.y’ 5) < S. See Fig.
3.1, in which we show the situation when n = 2. The point p is on the extension of

L(x, y) and is equal tox + (1 + B Ju. Similarly the point ¢ is also on the extension

of L(x, y), and is equal to x — B u for some B >0.

Figure 3.1

Thus we geta B >0, such thatx + tu € S forevery t € (=6, 1+ 5 Now we
start the formal proof.

Proof : Leta € R". We define a function 7: (=8, 1+ ) — R, F(t) = a f(x + t).
This F is a differentiable function on (—65,1+ 5) ,and F' (1) = a, using chain rule.

(Recall, that f'&x +1tW is 3 linear transformation.)

Thus, we can apply MVT for functions of a single variable, and get

F(1)—F(0) =F'(0),forsome 8,0 < 0 <1 ..ccooeivineneiniieieeeeienene (3.7)
Now, F(1) =a-f(x+u)=a- f(y), F(0) =a- f(x), and

FF@@) =a-{f'(x+0uw)y(w)}=a-{f'(2)(y —x)},wherez =x + u € L(x,y)
Therefore, from (6.7) we geta - {f(y) — f(x)} = a-{f' (2)(y — x)}

for some z € S.
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Remark 3.2 :

1)  (3.6) is true for all x, y in S, such that the line segment joining x and y is also
in S. This means, if S is a convex open set in R", then (3.6) will be true for
allx, yin S.

i1)  Iffis areal-valued function, thenm=1,and a € R. Then fora=1 we

have 1. {f(y) = f(0)} = LU (D) (y — x)} = Vf(2) - (¥ — x),

for some z € S.

So, the MVT for functions of a single variable extends directly to real-valued
functions of several variables. We can also directly prove MVT for scalar functions.
The proof runs exactly similar to that of Theorem 3.3, if we puta = 1.

The MVT has a well-known consequence, which we now state:

Theorem 3.4 : Let f: S — R™ where S is an open connected subset of R".

Suppose f is differentiable on S, and f () =0 for every p € S. Then fis a
constant function on S.

Proof : The set S is polygonally connected, since it is open and connected. Let x

and y be two points in S. Then x and y are joined by line segments L1, L2, Ls, ...,

L., lying entirely in S. Suppose Li is a line segment joining p; and pi+7, 1 = P <

r, p1 =X, and pr+1 = y.
Let a € R™. Then using Theorem3.3, we have

a-{fi) —fe)} =a - {f @)1 —pP)}hzi €L
=0, since f'(z;)) =0

This means,

a-{f@)—f@}=a - {f0r+1) —fD} =221 a-{f Pis) — D} =

(3.8) is true for every a in R™. So, in particular, it is true for f(y) — f(x).

Thus,
FO)—fE}- @)= fE}=IfO) — fC)I?=0

So, f(y) = f(x) = 0,0r f(y) = f(x) .

Since x and y were any arbitrary points in S, we have thus proved that f'is a constant

function on S.
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Try a few exercises now.
Exercises :

1)  Find the partial derivatives, Dif, Daf, Di2f'and D21f at (0, 0) , if they exist, for
the following function f from R? to R.

’r: —_ V:

fix, y) = y X*+¥* if(x, ) * (0,0), and f{0, 0) = 0.
2)  Ifu(x, y) =x 72 x(t) = 32 + 4, and y(1) = sin2t, find ¥ (t) and U (1).

3) If ukx,y)=x-2y+3, x=r+s+t y=rs+¢ findu, us and u at
(1,2, 4).

4) Let f:R*— R’ and g: R’ — R’?be two vector functions, defined as:

f(x, y) = (sin(2x + y), cos(x + 2y)), g(r, s, t) = (2r —s — 3t, 1’ — 3st).

1) Write the Jacobian matrices for f and g. If h is the composite function,
f - g, compute the Jacobian matrix of h at the point (1,0, —2).

5) If f is a function from R’ to R, and Dif = 0 at all points, show that f is
independent of the first variable. If Di1f'= D2f= 0 at all points, show that fis
a constant function.

3.5 Summary

In this chapter we have derived the chain rule for differentiation of composite of
two functions. We have also seen that the Jacobian matrix for the composite
function is the product of the Jacobian matrices of the two given functions. We
have defined higher order partial derivatives of functions of several variables. We
have seen functions, whose second order mixed partial derivatives depend on the
order of the variables with respect to which the function is differentiated. On the
other hand, we have derived sufficient conditions for such mixed partial derivatives
to be equal. Finally, through an example we have seen that the Mean Value
Theorem cannot be extended to all vector functions. We have proved a restricted
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form of the MVT for vector functions. Of course, MVT does extend to scalar-
valued functions of several variables. As a result of MVT we have proved that a
function defined on an open connected set is constant, if its derivative is uniformly
zero over its domain.

%
o
%
o
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UNIT 2

APPLICATIONS OF DERIVATIVES

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Taylor’s Theorem

4.3 Maxima and Minima
4.4 Lagrange’s Multipliers
4.5 Summary

4.0 Objectives

After reading this chapter, you should be able to

state Taylor’s theorem for real-valued functions of several variables
obtain Taylor’s expansions for some simple functions
define, locate and classify extreme points of a function of several variables

obtain the extreme values of a function of n variables, subject to some
constraints

4.1 Introduction

In the two previous chapters we have discussed differentiation of scalar and vector
functions of several variables. Now we shall tell you about some applications of
derivatives. In your study of functions of one variable you have seen that a major
application of the concept of derivatives is the location of maxima and minima of
a function. This knowledge is very crucial for curve tracing. Here we shall see how

the

derivatives help us in locating the extreme values of a real-valued function of

several variables. But before we do that, we are going to discuss Taylor’s theorem
and Taylor’s expansions, which help us approximate a function with the help of
polynomials. This knowledge will help us derive some tests for locating and
classifying the extreme points of a function.
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4.2 Taylor’s Theorem

It will be useful to recall Taylor’s theorem for functions of one variable, which you
have studied in F. Y. B. Sc. Here we shall also give you the proof of this theorem.
Our method of proof involves the use of Rolle’s theorem. You have studied this
theorem too in F. Y. We now state Rolle’s theorem, and then move on to Taylor’s
theorem.

Theorem 4.1 (Rolle’s Theorem): If f: [a, b] —
R is continuous on [a, b], differentiable on (a, b),and f(a) =
f(b), then there exists ¢ € (a, b),such that f'(c) =0.

Theorem 4.2 (Taylor’s theorem for real functions of one variable): Let fbe a real-
valued function defined on the open interval (p, g). Suppose f has derivatives of all
orders up to and including n +1 in (p, g). Let a be any point in (p, ¢). Then for any

(x— a) (x— a)"

X € (p, Q). f(x) = fla) +>—=f'(@) +— (@) +.. 4 fW(a) +
x-a)™ a)"" (n+1)
D) ——f (€, e 4.1)

where ¢ € (a, b).

Proof: We now define a new function g on [a, x], or [x, a], according as a <x, or x

<abygo) =+ o) + O prgy b+ O gy o
8= V)™ LA, oo (4.2)

where 4 is a constant, chosen so as to satisfy g(x) = g(a). We can easily write the
expression for 4 by using this condition. We leave this to you as an exercise. See
Exercise 1).

Using the properties of f, we can see that g satisfies all the conditions of Rolle’s
theorem on its domain. Thus, we can conclude that there exists a point ¢ €
(a,x), (or (x,a)) such that g'(c) =

0. Now, differentiating (4.2), we seethat g’'(y) = f'(y) — f'(y) + (x —

— )2 _ 1D
CIE prgyy =D gy 4

N - ="+ (n—1)!

E o) - 4 1 - )

")
n!

= (=" — (n+ DAJ.
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Hence, g'(c) = (x —o)"[

17 (’::(C) — (n+ DA] = 0,

£ )

n!

This means that 4 =

Substituting this value of 4 in (4.2), we get

) =g =

() ()

(x _ a)n+1

(n)
f7e) + (n+1)!

g@ = @

D), thus proving the theorem.

Remark 4.1 : If the function in Theorem 4.2 has derivatives of all orders in (p, g),
then we can write a Taylor expansion as in (7.1) for any n €
N. Further, if all the derivatives of orders are bounded by a positive number M,

that s, if Z£|<M for all n, and at all points in (p,q),

(x—a)™*t a)™t (n+1) (x—a)nt?
then (n+1)! f (C)| = | (n+1)!

{x:|x — a| < R}. Therefore, in this case we can write

— 0 as n — oo for every x in some interval

00 = f@) + 22 /(@) 2 (@) L 0 () ED i ), (43)

(n+1)!

The infinite series in (4.3) is convergent under the given conditions, and is called
the Taylor series of fabout a.

Now, (7.1) can be written as f(x) = Pu(x) + Ru(x), where Py

I!

(x— a) (x a)

fl@+=—"—f"@+ .. + ——f™()

is called the nth Taylor polynomlal of f about a,
(x _ a)rHl

and Rn(x) = (n 1)

£ (¢), is called the remainder.

We now state Taylor’s theorem for functions of two variables, and then find Taylor
expansions of some functions.

Theorem 7.3 (Taylor’s theorem for f: R? — R): Let f be a real-valued C"*?
function on an open convex set E € R?. Let (a, b) € E. Then for any (x,y) € E,
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Then for any (x,y) € E,

fay) = fab)+ (haz+ k) f@b) + 5 (h +k )f(a,b)+...+

1 1

L(hZ+ k%)n fab+ —=(h+ k@) e d, (4.4)

where # =x —a, k =y — b, and (c, d) is some point on the line segment joining (a,
b) and (x, ).

We are not going to prove this theorem. But, note the following points:

1. Recall that fis C"*! means f'has continuous partial derivatives of all orders <
n + 1. This ensures that all the relevant mixed partial derivatives are equal.

2. Eis convex. This guarantees that the line segment joining any two points of E,
lies in E, the domain of 1.

Pulx, ¥) = fla, b)+ (h—+k—)f(a b) + = (h + k2 )f(a,b) +oot

%(h:—x+ka) f(a,b) whereh = x- a,andk = y - b,is called the

n® Taylor polynomial, and

1 d o\t . .
Rn(x,y) = ey (ha +k 5) f(c, d) is called the remainder of order n.

Let us use this theorem to get the expansions of some functions.

Example 4.1: Find the Taylor expansions of the following functions about the
given points up to the third order.

i) S, y) =x> +2x° - 3xy +4x + 5, (a, b)=(1,2)

i1) fx, y) =sin(2x + 3y) (a, b) = (0, 0).

Solution: 1) Since f(x,y) = x> + 2x)° — 3xy + 4x + 5 is a polynomial, it has partial
derivatives of all orders. Further, its partial derivatives of order > 3 are all zero. In
fact, f =3+ 2y -3y +4, fi=4xy—3x, fu=6x, fro=4y—3, fw =4x, frx =6,
foy =0, fuy =4, fiy =0, and all higher partial derivatives are zero. Calculating all
these partial derivatives at (1, 2), we write f(I + h, 2 + k) = 12 + 9h + 5k +

1 1
z(6h2 + 10hk + 4k2) + 5(6}13 + 12hk?) + Rs.
Now, Rz involves all fourth order derivatives, and therefore is zero. Hence,

S0 +h 2+ k) =12+ 9h + 5k +-(6h2 + 10hk + 4k2) + (6} + 12hIF) .
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i)  f(x, y) = sin(2x + 3y) also has derivatives of all orders.
fx =2cos(2x + 3y) =2 at (0, 0), fy=3cos(2x + 3y)=3 at (0, 0),

foo = —4sin(2x + 3y), fiv = — 6sin(2x + 3y), fiy = — 9sin(2x + 3y). These
second order derivatives are all zero at (0, 0).

fox = —8cos(2x + 3y), fuy = —12cos(2x + 3y),
foy = —18cos(2x + 3y), fyyw = —27cos(2x + 3y).

These are, respectively, — 8, — 12, — 18, and — 27 at (0, 0). Thus, f(h, k) = 0 + (2h
+ 3k) + %.0 + %(—8h3 - 3.12h2k - 3.18hk2 - 27h3) + R3, where R3 =

% (h aa_x + k %)4sin(2c + 3d), where (c, d) is some point on the line segment joining
(0, 0) and (h, k).

We are now going to state Taylor’s theorem for real-valued functions of n variables.
For this, let us first take a close look at the Taylor expansion of a function of two

variables.

If we write (v, y) as (@ + h, b + k), we get fla + b, b + k) = fla, b) + (b= +
) 1(, @ 3 \?2 1 ) a\"

ki)f@b) + 5 (haz+ k) f@b)+..t ~ (Aot k) f(ab) +

1 n+1
(he+ k= ) fe, d),

(n+1)!

If we take the variables to x,, x2, instead of x and y, take (a, b) to be (a1, az), and
(h, k) to be

0
fla; +h,a; + hy) = f(ay,a;) + (h1 + h; I )f(apaz)

0x4

+1(h % ih 6)2( ) + -
20\ ax,  Cox flay, az

n

1, o 9 1 9
+E<h1—+hzax) flas,a) + o +1)!<h1 Tt hag ) fle,d)

k

—il(h O i a) (a1, a) + R, (c, d
—k_ 1ax1 zax2 f(ay, a; (c,d)
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ak

where Dlllz e = W'

and iy, iy ..., = 1or2,and the sumis taken

over all

ordered k-tuples (il, Iy o) ik). For example,

> Dilizf(apaz)hilhiz =Dy f (a4, az)h% + Di2f (ay,az)hihy +
D, f (ay, az)hyhy + Dayf(ag,a 5 ) B3

, 0 92 , 02
= h a 2+2h1h2m+h26—xzz f(al,az).

Similarly,

XD i,i.f (a1, az)hi hi,h;, = D111f(al,a2)h13 +

D112f(al,a2)h12 h2 + D121 f(al,a2)hl k2 h1 +

D211 f(al,a2)h2 k12 + D122 f(al,a2)h1h22 +

D212f(a1 a2)h2in.h2 + D221f(a1,a2)h22h1 + D222f(al,a2)h23 =

63
h L o3 T 3h2h2a -+ 3hlh26 e hga—x%)f(m, az) .

You must have noticed that we have added the mixed partial derivative terms, for
example, Diof and D2if, or Dii2f, Di2if, and D21:1f- We could do this, since f€ C®
ensures that that these partial derivatives are equal. Now we state Taylor’s theorem
for real-valued functions of several variables.

Theorem 4.4 :
Let f: E R,where E is a convex open subset of R". Further,
let a = (al,a2,..,an) € E,h = (h1,h2,...,hn) € R" suchthat a + h € D.

If f € Cm,then f(a + h) = X7 =% Dyyy, o f (@, by by,
+Rm—1(C), ........................................................................................ (45)

where iy,i, ...,i; take values from the set {1, 2, ..., n}, and the inner summation
in (4.5) is taken over all possible such k-tuples.

Further, the remainder Rm-1(c) = %Z Dii,.i, f(©hi hi, ..h; . This sum is

taken over all possible m-tuples (is, i, ..., im), Where i1, iz, ..., im take values from
{I, 2, .., n}jand ¢ is some point on the line segment joining a and
a+h.
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This theorem is used to approximate a given function by a polynomial. In the next
section we shall use it to derive conditions for locating and classifying extreme
points of a function.

Exercises: 1) Write the expression for 4 appearing in Theorem 4.2.

4.3 Maxima And Minima

One of the most interesting and well-known applications of Calculus is the location
and classification of extreme points of a function. You have solved many such
problems involving functions of one or two variables. We shall now extend the
definitions of maxima and minima to functions of n variables, and derive suitable
tests for their location.

Definition 4.1 : Let /- R" - R.Apointa €
R" is said to be a local maximum (or relative maximum)if there exists a
neighbourhood N of a, such that f(x) < f(a) foreveryx € N.

f(a) is then called the local or relative maximum value.
A local minimum (or relative minimum) is defined in a similar manner.

You will agree that the function f: R> — R, f(xy, X5, X3, X4, X5) = X2 + x2 + x2 +
x + x2, clearly has a local minimum at (0,0,0,0,0). Can you find an example of a
function with a local maximum? Definition 7.2: A point a € R™ is called a saddle
point of a function f: R™ — R, if every ball B(a, ), > 0, contains points X, such
that f(x) = f(a), and also other points y, such that f(y) < f(a).

In general, it is not easy to spot the local maximum or local minimum merely by
observation. For differentiable functions we can derive tests to locate these values.
You know that in the case of a differentiable function of a single variable, the
derivative vanishes at an extreme point. We have a very similar test for the location
of extreme points of a function of n variables, as you can see in the next theorem.

Theorem 4.5 : If /- R" - R has alocal maximum at
a € R", then Vi = 1, 2,...,n,%(a), if it exists, is equal to zero.
l

Proof: Since f has a local maximum at a,3r > 0,

such that x € B(a,r) = f(x) < f(a).

Fori = 1,2, ..., n, consider a function g;: (a; — r,a; + r) = R, such that

9i(x) = f(ay,ay, ..., Ai_1,X, Aj11, -, Ay). since f(a) is the local maximum value
of f, gi(a;) is the maximum value of g;. If :—L () exists, then g;(a;) also exists,
and the two are equal. By applying the first derivative test for functions of one

variable to g;,
we get

af o, _
5 (@ = gi(@) =0
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An exactly similar proof will help us conclude that %(a), if it exists, is equal to

zero, even when a is a local minimum of f.

Thus, if f has a local extremum at a, and all the partial derivatives exist at a, then

Vf(a) = 0.

As in the case of functions of one variable, the condition in theorem 4.5 is a
necessary one, and is not sufficient. That is, if all the partial derivatives of a
function at a point a are zero, we cannot say that a is a local maximum or local
minimum point. It may be neither.

An example is the function f- R? > R, f{x, y) = 1 — x* +)°. Here fx = - 2x, and
fyv = 2y. So, fx(0, 0) = 0 and £(0, 0) = 0. But you can see clearly, that f has a
maximum in the direction of the x-axis, and a minimum in the direction of the y-
axis at (0, 0). This means, f has neither a minimum, nor a maximum at (0, 0). In
fact (0, 0) is a saddle point for this function.

Definition 4.3 : Let /- R" —» R be differentiable,and a € R".If %(a) is equal

to zero for i =1, 2, ..., n, then a is called a critical point, or a stationary point

of 1.

Theorem 7.5, tells us to look for extreme points among the critical points of a
function. We shall now see how to classify these points as local maxima, local
minima, or saddle points. This involves second order partial derivatives. This is to
be expected, since in one variable functions too, we have a second derivative test
to classify stationary points. The proof of the test for several variables involves
quadratic forms. You have studied them in T. Y. B. A. /B. Sc. We start with a
definition and recall the relevant results.

Definition 4.4 : If 4 = (ay) is a real symmetric n X n matrix, and x = (x7,x2, ..., Xn)
€ R" then Q(x) = Xi 1 X7-1a;jx;x; is called a quadratic form associated
with A.

We can write Q(x) = xAx". If A is a diagonal matrix, then Q(x) =
™, a;x? is called a diagonal form. Since 4 is real symmetric, its eigen values :

O foreveryx,andQ(x) = 0 = x =

0. Such a quadratic form is said to be positive definite. If all the eigen values of

0 for every x,and Q(x) = 0 = x = 0. Such a quadratic form is called negative

definite.

It may not be very easy to get the eigen values. But we have an easier way to decide.

A principal minor of a square matrix, 4, is the determinant of the matrix obtained
by taking the first £ rows, and the first £ columns of 4, / < k < n.
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If all the principal minors are positive, then the associated quadratic form is positive
definite.

If the principal minors are alternately positive and negative, starting with a negative
minor for k= 1, then the associated quadratic form is negative definite.

If a principal minor of order £ is negative, when £ is an even number, then Q(x)
takes both positive and negative values.

We now use these facts about quadratic forms to derive the second derivative test.
A definition first.

Definition 4.5 : If fis a C° function from R" to R, then the symmetric matrix 4 =

2
H(x) = (a ! (x)) is called the Hessian matrix of f'at x. Thus,

6xi6xj
92f  0%f 9%f \
ﬁ 0x10x>, 0x,0xp
A=Hx) = 5 o
o%f %f o%f
0x10xy 0x20xp E

If a€
R" , the first order Taylor formula for f about a gives us the value of f(a +
h) for small values of ||h||as f(a + h) = f(a) + Vf(a)eh + Ri(c).

If a is a critical point, then Vf (a) = 0, and therefore we get
fla+h)—fla) =Ri(c).

Now, Ry (¢) = = X5D;;f (@ + Oh)h;hj, where 0 < 8 < 1
= —hH(a + 6h)h. We write

1
| h1I? |E(a,0)] = T |>3{D;;f (a + 6h) — Dy (a)}h;h;]

Therefore, |E(a, 0)| < 5-5|Dyjf (@ + 6h) — Dyjf (a)

, whenh # 0. ... ..........(4.6)

Each term in the finite sum on the right hand side

tendstozeroash — O,
since f € C2,and hence the second order derivatives are continuous.

Therefore, E(a,8) — 0,as h = 0. We write % hH(a + 6h)ht =
% hH(a)ht + ||h||2E(a,8),where E(a,0) — 0,as h —0.
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Hence, f(a + h) ~ fla) = + hH(a)ht + ||h||2E(@,6). oo (4.7)

Theorem 7.6 : If / is a function from R" to R, and has continuous second order
partial derivatives in a ball B(a, ») around a stationary point a of f, then

i) fhas arelative minimum at a, if H(a) is positive definite
ii)  fhas arelative maximum at a, if 4(a) is negative definite

ii1)  fhas a saddle point at a, if H(a) has both positive and negative eigen
values.

Proof : Using the notations that we have used in the discussion just before this
theorem,

we can write f(a + ) —ffa) = — hH(a)ht + ||k||2E(a,6).
Since E(a,8) — 0,as h —» 0, we can conclude that the sign of
f(a + h) - f(a)will depend on that of %hH(a)h’ .

1)  This value will be positive for all A, if H(a) is positive definite. Hence, f(a + h)
— f(a) > 0 for all h, such that 0 < ||h|| < r. This tells us that f(a + h) >
f(a) foreveryh € B(a; r), that is , a is a relative minimum point

of f.
The argument for proving ii) and iii) are exactly similar, and we are sure you can
write those.

Remark 4.2 : i) If an even principal minor, that is a principal minor of even order
1s negative, then the point is a saddle point.

i) If detH(a) = 0, the test is inconclusive, and a is called a degenerate
stationary point of f.

Go through the following examples carefully, they illustrate our discussion
here.

Example 4.2: Locate and classify the stationary points of the functions given by
) XH+xy+2x+2y+1, i)x*+y°>—3xy, iii) (x — 1)e?.

Solution : i) Let f(x,y) = ¥’ +xy +2x+ 2y + 1. Thenfi=2x +y + 2, =x+2 f

=f=0 = x+2=0and2x +y+2=0=x=—-2andy = 2
Therefore, fhas only one stationary point, ( — 2, 2). Now, fux = 2, fiy = I, and fyy = 0.
2 1

Thus, H((-2,2))= ({ o). and der (H((~2.2))) = -1.

1 0
Therefore, f'has a saddle point at ( — 2, 2).
ii) Let f{x, y) = x> +y° — 3xy. Then, f = 3x° — 3y, f, = 3y — 3x.

fi=fp=0=y =x2andx =y2 = x =y=00rx =y =1
Therefore, the stationary points are (0, 0)and (1, 1).
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Now, fxx = 6x,fyy = 6y,and fxy = — 3.Hence, H((0,0)) = (_03 _03)
det(H(0, 0)) =-9 <0, and (0, 0) is a saddle point.

H((1,1))= (_63 _63) . The principal minors are 6, and 27. Both are positive, and

hence f'has a local minimum at (1, 1).

i) Let f(x, y) = (x - [)e®. Then fx =e¥(xy—y + 1), fy =x(x-1)e”

f=0= xy-y+1=0andfy =0=x(x —1) =0 =x=00orx=1.
x=0=y=1,and x =1 contradicts fx = 0. So, (0, 1) is the only stationary point.

fa=e@ 07—y ), fo=eVx—1+xXy—xy+x), fiy=x(x-1)ev.

1 -1

Therefore, H((0, 1)) = (_1 0

). det(H(0, 1))=-1<0.

Hence, (0, 1) is a saddle point.

Example 4.3 : Locate and classify the stationary points of f{x, y, z) =

. 2 N2 52
i) xyze X TV TZ

i) X%y + %z + 22 - 8\2x, iii) x*—xy + yz — 6z
Solution : i) i = yze ¥ Y 72" _ 2x2yze X'V 7" = o=X’~¥'-2%, 1 2y
f=e XV 2y (1- 2y2), fz = e XV 2 xy(1 - 222).

Equating to zero these partial derivatives, and solving the resultant equations,
1 1 1

we get (a,0,0),(0,b,0),(0,0,¢), (+ o + 5 + N ), where a, b, ¢ are real

numbers, as the stationary points.

fo= — dxyze™¥ Y720 Qxyz(1 - 2x2) e X7V

2 2 2 2

fo=z(1—2x%) e X V72 _ 2y27(1 - 2x2) e X V7

2 2

fe= e XYy (1 - 2y2) - 2xz2e X TV 2 (1 — )y,

We have indicated the procedure. We are sure now you will be able to get f, fiy,
and f--. Evaluating these second order partial derivatives at the stationary points,
we find,

0 0 0
H((a, 0, 0)) = <O 0 ae‘a2> detH((a, 0, 0)) = 0. Therefore, (a, 0, 0) is a
0 ae @ 0
degenerate point of f. Similarly, (0, b, 0) and ( 0, 0, ¢) are also degenerate points.
3
—/2ez 0 0
1 1 1. _ 3
H(5 %75 = 0 —/2e"2 0
3
0 0 —V2e ™z
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3
The minors of this matrix are —v2e "2, 2e

- 3, —22e” 2 . Therefore, ( ) is a local maximum.

V2’ \F 2
Check the remaining 7 points. You should get local maxima at

(TTT)(WW\/_)(___)

and local minima at (E’E’ﬁ)’ (\/_E'\/_E’ﬁ)’ (ﬁ’\/_i'\/_i)' (ﬁ'ﬁ'ﬁ)'
i) fr =2xy-8V2,fy = x2 + 2yz,fz = y2 +

2z.Equating these to zero,we getxy = 42, x2 = —2yz,y2 =

— 2z.1fx,y,and z are non — zero, we get x = 2\/7,)1 = 2,andz =
— 2.So, the stationary points are (0,0,0) and (2\/5, 2,—2).

You will find that (0, 0, 0) is a degenerate stationary point, and (2v2, 2, — 2) is a
saddle point.

i) fx = 2x—y, fy =-x + 2>, f2 = 3yz> — 6. Equating these to zero, we get (1, 2, 1)

2 -1 0
as the stationary point. Check that H((1, 2, 1)) = (— 1 0 3 ), and the principal
0 3 12

minors are 2, - 1, - 6. Hence, (1, 2, 1) is a saddle point.
See if you can solve these exercises now.

Exercises:

1) Find the stationary points of f{x, y) =) # i) (x ty)e?. ———
x+y -4 x+y -4

2) Find the extreme values of f{x, y) = x? + 7 + 3x37 — 2x.

3) Is (0, 0) an extreme point of 2cos(x + y) + e9?

4) Locate and classify the stationary points of

D/l y) = 2-x)(E-y)(x +y-3), i) fix, y, 2) = dxyz —x? - y? - 27,

iii) f(x, y, z) = 64x°y° — 22 + 16x + 32y + z, V) f{x, v, z) = xyz(x + y+z—1).

4.4 Lagrange’s Multipliers

Look at these situations:

1) A rectangular cardboard sheet is given. We have to make a closed box out of it.
What is the maximum volume that is possible?
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i1) Temperature varies on a metal surface according to some formula. Where do the
maximum and minimum temperature occur on the surface?

In both these problems we have to maximize or minimize a certain function:
volume in the first case, and temperature in the second. So these are max-min.
Problems. But there is a difference between these and the problems considered in
the last section. Here, an additional constraint or condition is imposed. The given
cardboard sheet has a fixed area. The maximum/minimum temperature points are
to be on the given surface.

In this section we shall see how such problems are solved. A very useful method
was developed by Joseph Louis Lagrange. This method gives a necessary condition
for the extreme points of a function. We now state the theorem and then illustrate
its use through some examples.

Theorem 4.7 : Let /' R" — R,and f € C1.Suppose g1,g2,...,gm (m <
n) are functions belonging to C1, which vanish on an open set Ein R".Ifa €

E is an extreme point of f,and if Vg, (a),V g,(a), ..., Vg, (a) are independent
MDigl(a) + A,Dig2(a) + ...+ A, Dign(a) =0, i=1,2,...,n.

We can also write the vector equation Vf(a) + X1 A;Vg;(a) = 0.

When we want to find the extreme values of a function f: R" — R,f €
C1, subject to some constraints, g1(x1,x2,...,xn) =

0,92(x1,x2,...,xn) = 0,...,gm(x1,x2,...,xn) = 0,where m <

n, we set up the n equations Dif (a) + A,Digl(a) +

ADig2(a) + ..+ Ay, Dign(a) =0,i=1,2,...,n.

These n equations, along with the m equations, gi(x1, x2, . .. ,xn) =0, g2(x1, x2, . .
xn) =0, ..., gm(x1, X2, ... ,xn) = 0, are then solved to get the values of the n + m
unknowns, x7, x2, . . . Xn, A1, 4s,..., A;n. The solutions x = (x1, x2, . . . ,xn) are the

stationary points, and contain the extreme points of /.

A, Ay, ..., Ay, are called Lagrange’s Multipliers. We use one multiplier for each
constraint.

To analytically classify these stationary points into local maximum, minimum, or
saddle, is a very complicated process. It is usually easier to look at the physical or
geometrical aspect of the problem to arrive at any conclusion. We now solve a few
problems, so that the entire process is clear to you.

Example 4.4 : Find the dimensions of the box with maximum volume that can be
made with a cardboard sheet of size 12 cm?.

Solution : If the dimensions of the box are x, y, z cms, then its volume V' = xyz c.
cms. And surface area is 2(xy + yz + xz) sq. cms. Here we have to maximize V,
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subject to a constraint 2(xy + yz + xz) = 12, or (xy + yz + xz) = 6. So, f(x, y, z) =
xyz, and

g(x, v, z) =xy +yz + xz— 6. Hence,
Vi(x,y,z) + AVg(x,y,z) = 0 =

fitAgx =0 = yz+ Ay +2) =0, fy+ gy =0 = xz + A(x +
z) =0, fz+1gz =0 = xy + Ax+y)=0.

xyz = —Axy + xz) = —Alxy + yz) = —A(xz + yz).If A = 0,thenV =
0, which is the minimum volume. If 4 # 0, thenxy + xz =xy + yz =xz + yz. That
is, x =y = z (unless, of course, x =y =z = 0).

Therefore, xy + yz +xz2=6 = 3x2 = 6 = x = V2cms.Thus,V = 2v2 c.
cms. is the maximum volume.

Example 4.5 : Find the extreme values of the function given by f(x, v, z) = 2x +y
+ 3z, subject to x? +)° =2, x +z = 5.

Solution : Let gi(x, y, z) =x° +1?—2=0, and g2(x, y, z) =x + z—5=0. Then
Vf+A4,Vg, +A,Vg, = 0 =

fi+tliglx + A,92x = 0 = 2 + 24;x + A, =0

ftAgly + 1,92y =0 = 1 4+ 24,y =0

f: + Aglz + 4,92z = 0 = 3 + A, = 0. Therefore, 4, = —3,24;x =
1,and 24,y =— 1.

/11 = 0 - /12 = _ZBut}\z =
—3.Therefore A, cannot be zero. Hence,x = %, y =
1
%.Substituting these valuesinx2 + y2 = 2,wegetA; =
1

+ % .This gives,x = +1,y = +1. Hence, the stationary points are (1, - 1, 4) and

(-1, 1, 6), and the extreme values are 13 and 17.

Example 4.6 : Find the minimum distance of a point on the intersection of the
planes,

x+y—z=0,and x + 3y + z =2 from the origin.

Solution: The distance of Pk, y, z) from the origin is
x2 + y2+z2 .So, we need to minimize f(x,v,z) = x? + y2+z2, subject to
gi(x,y,z) = x+y—z=0,and
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&y, z)=x+3y+z-2=0.
Vf+1,Vg, +1,Vg, = 0 =
ft+tAglx + 1,92x =0 = 2x + 44 + 1, =0
Hthgly + 2,92y =0 = 2y + 4 + 31, =0

f+Aglz + 4,92z = 0 = 2x- A4 + 4, = 0.

Therefore, x = w Ly = w
(A1=42) Putti . ~ i
5~ -Putting these values inx + y -z = 0,wegetd; + A, = 0.

Therefore, x =0 and y = z. Using thisinx + 3y + z—2=0, we gety =z =Y.
Thus, the stationary point is

(0, 1/2, 1/2). The distance of this point from the origin is % .

Geometrically, the constraints are equations of two planes. There is no maximum
to the distance of a point on their line of intersection from the origin. So, the
stationary point is a minimum point.

Here are some problems you can try.

1) Find the extreme values of the function f(x, y) = xy on the surface
2) Find the extreme values of z = g +§ on the unit circle in the xy-plane.

3) Find the distance of the point (10, 1, — 6) from the intersection of the planes,

x+y+2z=5and 2x -3y +z=12.

4.5 Summary

In this chapter we have introduced Taylor’s theorem for functions of several
variables. We have also seen how to get Taylor polynomials of a given order for a
given function. Of course, to be able to do this, the function must have continuous
partial derivatives of higher orders.

We have then discussed the location of maxima and minima of a real-valued
function of several variables. This has tremendous applications in diverse fields of
study. In particular, we have proved that the extreme points of a function are located
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among the points at which the gradient vector of the function is zero. That is, the
points at which all the first order partial derivatives are zero. The classification of
these points into maxima, minima, or saddle points depends on the signs of the
principal minors of the Hessian matrix.

We pointed out that there are some situations, where we need to find the extreme
values subject to certain constraints. Such problems, and the method of tackling
them is also discussed, and illustrated through some examples.

O o% % <%
XA XS XS X4
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UNIT 3

INVERSE AND IMPLICIT FUNCTION
THEOREMS

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Inverse Function Theorem
5.3 Implicit Function Theorem

54 Summary

5.0 Objectives

After reading this chapter, you should be able to
o state and prove Inverse Function Theorem for functions of several variables
o check if some simple functions are locally invertible

o state and prove Implicit Function Theorem for functions of several variables

5.1 Introduction

In this chapter we introduce two very important theorems. You have not come
across these theorems even for functions of a single variable. In each case, we shall
first discuss the single variable case, and then extend the concept to functions of
several variables. A word of caution : these theorems are not easy. To help you
understand them better, we are going to prove some smaller results, and then use
them in the proof of the theorems. Do study this chapter carefully and we are sure
you would have no difficulty in digesting the concepts.

5.2 Inverse Function Theorem

The inverse function theorem is a very important theorem in Calculus. You may be
familiar with its one dimensional version. Before we introduce the theorem for
functions from R" to R", we shall recall some results about functions of one
variable:
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1)Iff: [a, b] — R is continuous, and f(c) > 0 for some ¢ € (a, b), then 3
€ = 0, sych that

(c™& C+&)S (4, b),andfix)>0 VX € (c—& €+ <) In other
words, we can always find a neighbourhood of the point ¢, in which f{x) has the
same sign as f{c).

2)Iff: [a, b] — R is a continuously differentiable function, and flc)#0 for
some

¢ € (a, b), then using 1) we can prove that 3 € = 0, guch that fis an injective
function on

(c™& ¢+&) S (@ b). Further, fI. flc=& c+e) =
(c™& €+ ¢ ) is differentiable at f{c) ,

The statement in 2) is the inverse function theorem. Note that we do not know
whether the inverse of f exists on [a, b]. But what this theorem tells us, is that if
f€) #0 then fis “locally invertible” at c. For example, we know that the

function f : [0, 2T ] — R, f{x) = sinx does not have an inverse. But
. f (T) =1s0
f'@)=cosx isqcontinuous function,and 7 13/~ 2 . So, the theorem says

T T

that f'is locally invertible at 3. That 1s, we can find a neighbourhood N of 5, such

that frestricted to N has an inverse. Check that fis injective when restricted to N =
1
4,51
( 12 ), and hence has an inverse on N.

We shall now see if this theorem extends to functions of several variables. Let us
start with a definition.

Definition 5.1 : Let f: E — R", where EE R". Iff€ C/, fis said to be locally
invertible at a € E, if there exists a neighbourhood N; of @, N; € E, and a
neighbourhood N: of f{a), such that f{N;) = Nz, fis injective on N7, and ! : N> —
Niis a C' function.

We shall soon state and prove the inverse function theorem. In the proof, we are
going to use some minor results. You have already studied some in the earlier
chapters of this course. Next we state and prove one other result, which will be
useful to us.

Theorem 5.1 : Letf=(f1 /> ..., fr) - E— R", where E is an open set in R".
Suppose f€ C’. If the Jacobian of £, J(@) * 0 for some a € E, then f'is injective
on a neighbourhood of @ in E.
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2
Proof : If X1, X5, ..., X, € E, we consider apoint X = (X7, Xo,..., X € R™

, whose first n coordinates are the coordinates of X7, the next n are the coordinates
of X3, and so on. We define a function, j, such that

D, fiXy) D:fiXy) .. . . DyfiXy)
Dif:(X2) D:fs(X2) . . . Dnpfa(X3)
J(X) = det[Difi(Xi)] = det DyfnXn) DnfuXn) . - - Dnfa(Xn)/

Now, the function j, being an nxn determinant, is a polynomial of its n’ entries, and
each entry, D;ifi(X:) is a continuous function, since f€ C!. Thus, is a continuous
function on its domain. We write 4 = (@, a, . . ., a). Then j(A) = det/Difi(a)] = J(a)
# 0. Now, since £ S (/, all the entries of j(4) are continuous, and hence, j(4) is

also continuous. The continuity of j(4) ensures that there exists a neighbourhood N

of A, such that j(X) * 0,ifX€ N.

In other words, there exists a convex neighbourhood N, of @, such that j(X) * 0, if

This N is the required neighbourhood. We have to show that f'is injective on Na.
For this, suppose x, y € Na, such that f(x) = f{y). Then fi(x) = fi(y) foreveryi=1,
2,...,n.

Then, using the Mean Value Theorem for scalar fields (See Remark 6.2 1i).), we
get

fix) = i) =Y ficc)® x—p) = YV fife) ® (x —y) =0 for some ¢; on the line
segment joining x and y. So, if x —y ¥ 0, then V fi(c;) = 0 for some ¢; on the line
segment joining x and y, that is, in the neighbourhood N, since N. is convex. This
means, Djfi(ci) = 0 for every j, 1<) =1, 1=i<n Thus,ifC=(cscy..
., ¢n), then j(C) = det[Djfi(c;)] = 0. But this contradicts (5.1). So, we conclude that
x —y =0, which proves that f'is injective on Na.

Remark 5.1 : 1) A function may not be injective on its entire domain. But if its
Jacobian is non-zero at a point, then it is injective on a neighbourhood of that point.
In other words, it is locally injective.

i1) If the Jacobian is non-zero, then the linear transformation Df, which represents
the derivative of £, is non-singular, and hence, is a linear isomorphism.

Example 5.1 : a) Consider the function f(x, y) = (e*cosy, e*siny). This function is
not injective, since f(x, 0) = f{x, 2™ ). But,
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e*cosy -—e*siny
exsiny e*cosy| = # (), Thus, fis locally injective at each point in R?.

J(x, y) =

Here we have a function, which is locally injective at every point of its domain, but
is not injective on the domain.

b) Consider the function f{x, y) = (x°, )°), defined on R?. The Jacobian of this
function is zero at (0, 0). But the function is locally invertible at (0, 0). In fact, it is
an invertible function.

Theorem 5.2 (The Inverse Function Theorem): Let £ = (f1, 2, . . ., fo) € C/,
f*E— R", where E is an open set in R". Let T = {E). Suppose J(a) * 0 for some
a € E. Then there exists a unique function £/ from Y to X, where X is open in E,
Y is open in T, such that

)a€ X fla) € Y, i) Y = AX), iii) fis injective on X, iv) fL: Y= X, fI(Y)=
X, vV)f'€ C'onY.

Proof : Using Theorem 5.1, we can conclude that fis injective on a neighbourhood
NofainE. So, f: N~ f{N) is bijective, and hence has an inverse, f/ : f{N) — N.
Letr> 0 be such that Bla,r) € N, Since Bla.r] is compact in R" , we use Theorem

3.4.1 to conclude that f{B{@T) ) is also compact in R" . Now f'is continuous and

injective on the compact set B(@. T} Hence, using Theorem 3.4.2, we can say that
fis continuous on f{Blar) ),

Now, B(a, r) is an open set in Bl@.T) | and therefore,

(1) (B(a, 1)) is open in f{B(@. 1)) That is, f{iB(a, 1)) is open in AAB(@T)),
Also, f(a) € f(B(a,r)). Therefore, there exists a § > 0, such that B(f{a), 6 )
< f(B(a, 1)).

Take X = £1(B(f{a), 6 ), and Y = B(f{a), 6 ). Then X and Y satisfy 1), ii), 1i1) and
iv) in the statement of the theorem.

To prove the last assertion v) in the statement, we have to show that all the partial
derivatives of all the component functions of f*! are continuous on Y. For this we
first define the function j(X) = det/D;fi(xi)] , as in Theorem 5.1. Here X = (X7, X3,
..., Xy). Then, as before, there is a neighbourhood N of a, such that j(X) * 0,
whenever each X; € N.. We can assume that the neighbourhood N € N.. This

ensures that j(X) ¥ 0, whenever each X; € Blar)
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Now we first prove that Dif! exists on Y. Let y € Y, and consider

[ rte)- ()

t

h

where e; is the i" coordinate vector, and ¢ is a scalar. Let x = f/(y), and

X'= 1y + te;). Then

X' ) —f(x) = tei. Thus, fiX ) —fitx) = t,and fi(X ) — fi(x) = 0, wheni # j.

By applying Mean Value Theorem (Remark 6.2 ii)), we can write

f’"(x)t_f’”(x)= V fu(xm) al t_x , m=1,2,...,n. Here x, is a point on the

line segment joining x and X .

So, we get a system of n equations (for the n values of m). The left hand side of an
equation in this system is 1, if m = i, otherwise it is 0. The right hand side is of the
form

Xy —X X, — X
It 1+D2fm(xm) S

xl‘l B xl‘l

Difn(Xm) + ...+ Dufn(Xm) , m=1,2,...,n.

The determinant of this system of linear equations is j(X), which we know is non-

as the

zero. Hence we can solve it by Cramer’s rule and get the variables

quotient of two determinants. Then, as 7 tends to zero, X ' approaches x, and hence,
each x,, also approaches x. The determinant in the denominator, j(X) = det/Dfi(xi)]
then approaches J(x), the Jacobian of f at x, which is again non-zero. Thus, as ¢

X.—X. _1 N
/L exists. That is, limf tee)-f ()

tends to zero, the limit of
t—0 t

exists. Thus, Dif'!(y) exists for all i, and for all yin Y.

We have obtained the partial derivatives of the components of £/ as quotients of
two determinants. The entries in these determinants are partial derivatives of the
components of f, which are all continuous. Since a determinant is a polynomial of
its entries, we conclude that the partial derivatives of £/ are continuous on Y,

Example 5.2 : Show that the function f* R = R? f{x, y) = (2xy, x* —)?) is not
invertible on R?, but is locally invertible at every point of E = {(x, ) | x> 0}. Also
find the inverse function at one such point.

Solution : Here f{1, 1) =f({—1,— 1) =(2, 0). Therefore f'is not injective, and hence
is not invertible on R?. On the other hand, if (x, y) € E, then
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2y 2x
Jx, y) = fox -2yl = — 4(x? + ?) ¥ 0. Hence by the inverse function theorem,

f1s locally invertible.
Suppose f{x, y) = (u, v). If (x, ) € E, theny =2i, and v = x? . Therefore, 4x* -
X

v+ +u’ v+ +u’ 2
- b

4x’v —u?=0. Thus, x> = ———— ,and x=( 5

# 2 2
y=uv+2 vetu )2

5.3 Implicit Function Theorem

dy
If x> +3?=0, find dx . You must have done exercises like this in your under-
graduate classes. Here, we take f{x, y) = x° + )7, and find fx = 2x, and f; = 2y. Then

@ 2x/2y = x/y. Of course, y cannot be zero.

dx
While doing this exercise, actually we have used a theorem, the implicit function
theorem. To recall, in this setting, a function which can be written as y = g(x), is
called an explicit function, and one which can be expressed only as f(x, y) =0, is
called an implicit function. The implicit function tells us that under certain
conditions, we can express an implicit function as an explicit one, and then we can

: . d
use this expression to find =\

dx

In this section we are going to discuss this implicit function theorem for functions
of several variables. Before we state and prove the general case, we first prove the
case for functions involving only two variables, x and y.

Theorem 5.3 : Let f'be a real-valued C' function, defined on the product I1 xI ,

where I1 and Iz are two intervals in R. Let (a, b) € 1 XL and f{a, ) = 0, but
fy(a, b) ¥ 0. Then there exists an interval I in R, containing @, and a C’ function

g: 17 R, such that g(a) = b, and
fix, g(x)) =0 forallx € L

Proof : We consider a function, A: I1 xI, — R?, given by h(x, y) = (x, f(x, y)). If
we write

h = (h1, hz2), the Jacobian matrix of & is
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dhy 08h,

(§ E) (fif &) of

Jn(x, y) =\ax “av/ = \dx 9v/ The determinant of this matrix, dx is not zero at
(a, b). Thus, & is a C! function, with a non-zero Jacobian at (a, b). Therefore, by the
inverse function theorem, Theorem 5.2 , we can conclude that 4 is locally invertible
at (a, b). Let u = (¥1-Uz2) be the local inverse of 4. You will agree that %1 (x, y) =

x for all x and y in R. That is,

u(x, y) = (x, Yz (x, y)) for all x and y in R. We now define g as, g(x) = Yz (x, 0),
and show that it has all the required properties.

Now, since k(a, b) = (a, 0), u(a, 0) = (a, b). This means, ¥z (a, 0) = b. Thus, g(a)
=b.

Also, (x, 0) = h(u(x, 0)) = h(x, Yz (x, 0)) = h(x, g(x)) = (x, f{x, g(x))). This implies
that

Jtx, g(x)) = 0.

Since u is a C! function, g is also C/. Differentiating f{x, g(x)) = 0 with respect to
x using chain rule, we get Dif(x, g(x)) + Daf{x, g(x))9 ' (x) =0, and thus,

_ —D(f(xg(x)

i =
D, f(ngly) O Doffx, g(x)) * 0.

9 (x)

Basically, this theorem tells us that under certain conditions, the relation
f(x, ) = 0, between x and y can be explicitly written as y = g(x).

Remark 5.2 : Ifinstead of fi(a, b) ¥ 0, we take the condition fy(a, b) * 0, then
we can express x as an explicit function of y.

Example 5.3 : Can f{x, y) = x* + ° — 2xpy be expressed by an explicit function
y = g(x) in a neighbourhood of the point (1, 1)?

Solution : Note that f{1,1) = 0, and £, = 3)” — 2x = 1 at (1, 1). Further, fis a
C' function on R?. Therefore, we can apply Theorem 5.3, and conclude that there
exists a unique function g, defined on a neighbourhood of 1, such that g(1) = 1.
3x* -2y

Also, 9 “(x) =
® 3y*-2x

in this neighbourhood.

Example 5.4 : Check whether Theorem 5.3 can be applied at all points, where

S 3) =5 =7 =0,
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Solution : x? —y? = 0 is true at points (0, 0), (1, 1),(1, =1), (=1, 1), and (—1, =1). ,
= —2y, and fr = 2x. At the point (0, 0), f+ and f, are both zero, and hence we cannot
apply the theorem. At all the remaining points, the function satisfies all the
conditions of Theorem 5.3, and hence it can be applied. You will agree that at each
of these points, we will get either

g(x) =x,org(x) =—x.
We now go a step further, and consider a real-valued function of several variables.

Theorem 5.4 : Let f'be a real-valued C’ function, defined on an open set, U, in R".
Let

a=(ay a, ..., ar-;) € R™! such that (a, b) € U, f{a, b) =0, and Dyf{a, b) * 0.
Then there exists a unique C'function g, defined on a neighbourhood N of a, such
that g(a) = b, and

f(x, g(x)) =0 forallx € N.

Proof : We consider a function 2 : U = R"! x R, defined by h(x, y) = (x, f(x, y)).
If we write b = (hi, ha, ..., hn), then hi(x, y) =x;, for 1 = 1= n—1,and h(x, y) =
f(x, v). Therefore, the Jacobian matrix of 4 is given by

( 1 0 e e 0 \
0 1 . 0
Jp =
0 1 0
\D:f Df . . Duf)

The determinant of this matrix is D,f, which is non-zero. Therefore, we can apply
the inverse function theorem (Theorem 5.2), and conclude that & is locally
invertible at (a, b). If u is the local inverse of A, and we write u = (u;, uz), then you
will see that u;(x, y) = x for all (x, y). Thus, u(x, y) = (x, uz(x, y)) for all (x, y). We
now define g(x) = uz(x, 0), and show that this has the required properties.

Now, u(a, 0) = (a, b). This gives g(a) = uz(a, 0) = b.

Also, (x, 0) = h(u(x, 0)) = h(x, Yz (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies
that

ftx, g(x) = 0.

Example 5.5 : Examine whether the function f{x, y, z) = x> + y° — 4 can be
expressed as a function y = g(x, z) in a neighbourhood of the point (0, -2, 0).
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Solution : We note that /{0, =2, 0) =0, and D2f = 2y = — 4 at (0, —2, 0). So, applying
the implicit function theorem, there exists the required neighbourhood of (0, —2, 0).

In fact, you can check that in the neighbourhood, N = B((0, — 2, 0), 1), we can
express the function as y = — (4 —x?)!? |
Here are some exercises that you should try :

1) Determine whether the following functions are locally invertible at the given
points :

Yfxy) =y +3) at(l,3)
11) f(x, y, z) = (e*cosy, e'sinz, z) at(1,1,1).

2) For each of the following functions, show that the equation f{x, y, z) = 0 defines
a continuously differentiable function z = g(x, y), in a neighbourhood of the given
point:

Dfx,yz2)=x+y+27-xz-2, (1,11
i) fix, y, z) = x> +y° — xysinz , (1,-1,0).

That brings us to the end of this chapter. We hope you have studied the concepts
carefully, and have understood them.

5.4 Let Us Sum Up

In this chapter we have discussed two very important theorems: the inverse function
theorem, and the implicit function theorem. The proofs of these theorems are a little
complicated. So we have tried to go step by step from functions of one variable to
functions of many variables.

The Inverse Function Theorem: gives the conditions under which a function, even
though not invertible on its domain, is seen to be locally invertible. The Jacobian
of the function being non-zero at a point ensures the local invertibility of the
function in a neighbourhood of that point.

The Implicit Function Theorem: gives the conditions, under which an implicit
relationship between variables can be expressed in an explicit manner. Here, again,
the Jacobian plays an important role.

O o% % <%
P 00 00 o0
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Unit Structure

6.1 Introduction

6.2 Partition

6.3 Riemann Criterion

6.4 Properties of Riemann Integral
6.5 Review

6.6 Unit End Exercise

6.1 Introduction

The Riemann integral dealt with in calculus courses, is well suited for computations
but less suited for dealing with limit processes.

Bernhard Riemann in 1868 introduced Riemann integral. He need to prove some
new result about Fourier and trigonometric series. Riemann integral is based on
idea of dividing. The domain of function into small units over each such unit or
sub-interval we erect an approximation rectangle. The sum of the area of these
rectangles approximates the area under the curve.

As the partition of the interval becomes thinner, the number of sub-interval
becomes greater. The approximating rectangles become narrower and more
precise. Hence area under the curve is more accurate. As limits of sub-interval tends
to zero, the values of the sum of the areas of the rectangles tends to the value of an
integral. Hence the area under curve to be equal to the value of the integral.

Before going for exact definition of Riemann explained the following definitions.

6.2 Partition

A closed rectangle in R” is a subset A of R" of the forms.
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A=[a,,b|x[a,,b,]x...x[a,,b,] where a, <b, € R . Note that

n’

(%, Xy, X, ) € A iff @, <x, <DV,
The points x,,x,,....,x, are called the partition points.

The closed interval Ilz[xo,xl],lzz[xl,xz], ...... v :[xnfl,xn]are called the

component internal of [a,b].

Norm : The norm of a portion P is the length of the largest sub-internal of P and is
denoted by |P].

For example : Suppose that P =t,f,..5,is a partiion of [a,5] and
P, =S,,....,S,is a partition of [a,,b,]. Then the partition P=(F.P,) of
[a,,b]x[a,,b,] divides the closed rectangle [a,,b ]x[a,,b,]into Kr-gub

rectangles.

In general if P divides [al.,bl.] into k, sub-interval then P=(P,...P)

1

[a,.b]%...x[a,,b,] into K =kpk,....k, sub-rectangle. These sub-rectangles are

n

called sub-rectangles of the partition p.

Refinement :

Definition : Let A be a rectangle in R” and f: 4 >R be a bounded function and
P be partition of A for each sub-rectangles of the partition.

ms(f):inf{f(x):xeS}
=glb.of fon [xsfl,xs]

Ms(f)=sup{f(x):xeS|
=lub.of fon [xs—l’x.v]

where S=12,.....,n

The lower and upper sums of f for ‘p’ are defined by
Zm )and U(f,p) ZM v(s)

Since m, <M wehave L(f,p)<U(f,p)
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Refinement of a partition : Let P=(B,B,...,P,)and P" = (Pl*,..., Pn) be partition

PERIITE I

of arectangle A in R”. We say that a partition P’ is a refinement of P if P P

If P and P, are two partition of A then P = F, U P, is also a partition of A is called

the common refinement of £ and P,.

A function f:A4—R is called integrable on the rectangle A in R" if 'f'is
bounded .. g.[.b of the set of all upper sum of ' /' and /u.b of the set of all lower

sum of ' /' exist.
Let U(f)=inf{U(f,p)}
L(f)= sup{L(faP)}

IfU(f)=L(f)iscalled 'f" is R-integrable over A.
.. if can be written as U(f):L(f):If.
A

Theorem :

Let Pand P’ be partitions of a rectangle A in R". If P’ refines P then show that
L(f.p)<L(f,P)and U(f,P)<U(f,p).

Proof :

Let a function f: A >R isboundedon A P & P are two partition of A and P’

is retinement to P.

Any subrectangle S of P’ is union of some subrectangles
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The sum of LHS for all subrectangle s, of P will get L(f,P").
L(f.p)<L(f.p")
Now, M, (f)=sup{f(x);xeS}
>sup{ f'(x);xeS,}
M, (f)=M (f) Vi=l..K

=2.m (S (s)

sep

Now, Ms, () (S)=Ms(f)(V(S,)+V (S,)+...+V (S,))

SMs(fYV(8))H oot M (LI (85)+oct M (S)V (s5,)
Taking the of L.H.S. for all subrectangle S, of P" will get
U(f,P)..U(f,P)2U(f,P).
Theorem :
Let p & P, be partitions of rectangle A & f: 4—R be bounded function. Show
that L(f, P)<U(f.R) & L(f.R)<U(f.P).
Proof :

Let a function f:A4—>Rbe a bounded find P
of A.

Let P=PUP,

& P, are any two partition

.. P is arefinement of both p & P,

U(f,P)SU(f.B)--eeeennnnn )
U(f,P)SU(f,B)-.eeennnnn (1)
L(f.P)2L(f.B) e (111)
L(f.P)2L(f\B) oo )

s Weget U(f,B)2U(f,P)2L(f,P)=L(f.P).

Hence U(f,B)=L(f.B)
Similarly, U(f,,B)>U(f,P)=L(f,.P)=L(f.P).
Hence, U(f,P)=L(f.R)
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Theorem :

Let a function f: 4— R be bounded on A then for any > 0,3a partition P on A
such that U(f,P)<U(f)+€ and L(f,P)>L(f)-€

Proof :

Let a function f:4—>R be bounded on A U(f):inf{U(f,P)} and
L(f):sup{L(f,P)} for any e>0,3 partitions 2 & P, of A such that
U(f,B)<U(f)+e & L(f.B)>L(f)-€.

Let P=FUP, the common refinement of p and P,.

U(f.P)<U(f.B)<U(f)+e
L(f.P)2L(f.B)>L(f)-<

~U(fP)<U(f)+e
L(f.P)>L(f)-€

6.3 Riemann Criterion

Let A be a rectangle in R" A bounded function f:A4—R is integrable iff for
every €> 0, there is a partition P of A such that U( f,P)—L(f,P)<e.

Proof :

Let a function f: 4 — R is bounded.
U(f)=inf{U(/.P)}
L(f)=sup{L(/.P)}

Let / be integrable of A
~U(f)=L(f)

for any €>0, 3 a partition P on A4 such that U(f,p)<U(f)+¢€/2 and
L(f.p)>L(f)—€/2.

~U(f.p)=U(f)+€/2 & —L(f,p)<-L(f)+€/2.
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“U(f,p)-L(f.P)<U(f)+€/2—L(f)+€/2.
'.U(f,p)—L(f)<e

Conversely,

Let for any €>0, 3 a partition P on A such that U( f, p)—L(f,P)<e

[U(P.1)=U(N]+[U(N-LN)]+[L()-L(sP)]<e
Since U(f,P)-U(f)>o,
U(f)-L(f)=o0
and L(f)-L(f,P)=o0
-.we have, 0 <U(f)—L(f)<e
Since e is arbitrary, U(f)=L(f)
~.fis integrable over A.

Example 1

Let A be a rectangle in R" and f: 4 >R be a constant function. Show that f is
integrable and If = C.V(A) for some CeR.
A

Solution :
f (x) =C Vxed

.. f is bounded on A

Let P be a partition of A

m,(f)=inf{f(x);xes}=C
M (f)= sup{ (x );xes}zC
~L(f,P) Zm V(S)=CDV(S)=cv(4
U(f.P)=X M (f)V(S)=CD V(S)=CV (4
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~U(f)=L(f)=CV(4)
.. [ 1s integrable over A.

.. by Reimann criterion, €<0 s.t.

_[fZC.V(A) for some CeR.
A

Example 2 :
Let F:[0,1]X[0,]] >R

o if xis rational

f(x,y>={

Show that ‘f* is not integrable.

1 if xisirrational

Solution :
Let P be a partition of [O, 1] X [O,l] into S subport of P.
Take any point E(X1 , yl) €S such that x is rational.

f(x,y) =0 and El(xl,yl) € S such that x,, is irrational .". f(xl,yl) =1

.. f 1s not integrable [O,I]X[O,l]

6.4 Properties of Riemann Integral

1) Let f: A— Rbe integrable and g = f except at finitely many points show
that g is integrable and I f= I g.
A A

Proof :

Since f'is integrable over A.
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.. by Riemann Criterion, 3 a partition P of A.
Such that U(f,P)—L(f,P)<€ ......... 1))
Let P’ be a refinement of P, such that

1) Vxed with f(x)# g(x),itbelongs to 2" subrectangles of P’

S

) V)< gy

Where d = numbers of points in A at which f#g

u= sup{g(x)} —ixrelg{f(x)}

! —gf {g(x)f-sup{/ (x)]

.. P’ is refines P, we have

L(f,P)<SL(f,P)<U(f,P)<U(f,P)
U(f.P)-L(f,P)<U(f,P)-L(f,P)<e

Now

U(g.P)-U(/.P)
i(Z( —Ms, (f))V(Si/))

~- On other rectangle, f'=gandso Ms; ( g) = Ms; ( f ) .
s, (g) < sup{g(x)} & Ms, (f)zint { (x)f = Ms, (/) <inf {1 (x)}

xeAd

M, (2) - Ms, (1) <u

~U(g.P)-U(f.P si(iu}/(&j)

Let ¥ =sup{V (s, )} SU(g,Pl)—U(f,Pl)siim/sdz"u.v ....... (I

i=l j-1
Now similarly we get L(g,P')~L(f.P")=d2"¢V ......... (III) by (II) & (III) we
get.

75



M.SC. (MATHEMATICS)

U(g.P')-L(g.P')<U(f.P')+d2'ud—L(f,P')-d2"(9

U(g,Pl)—L(g,P1><e
By Reimann Criterion G is integrable by equation (II)

U g,P —U f,P' <d2"uv
U g P <U f,P" +d2"ud

Note that [g <U(g,P')<U(f,P')+d2"ud
A
sL(f,P1)+§+d2”u19
<L(f,P1)+7 d2"u e

2" B (ut)
<L(f,P‘)+%+%
<L(f.P')+e
<jf+e

This is true for any €>0

[ f=inf{U(f.P)}

.'.£g>J;f—%
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.. This is true for any >0

[g=]f V)
s from (IV) & (V) we get

Jesls

2) Let f:4—R be integrable, for any partition P of A and sub-rectangle S,

show that
i) ms(f)+ms(g)Sms(f+g) and

i) M (f)+M (g)>M,(f+g)

Deduce that
L(f,P)+L(g,P)SL(f+g,P) and

U(f+g.P)<U(f,P)+U(g.P)

Solution :

Let P be a partition of A and S be a Subrectangle

~m (f)=inf{f(x);xeS}
:ms(f)ﬁf(x)‘v’xeS

Similarly m, (g)<g(x)vxeS
som (f)+m (g)< f(x)+g(x)vxeS
= m(f)+m,(g) is lower bound of
/() +g(x)ivest={(f+g)(x)ixes]
= m,(f)+m,(g) is lower bound of
)+g(x)xest={(f+g)(x):xeS]
(

{f(x
=m,(f)+m (g)<inf{(f+g)(x)ixeS|
=m ([ +g)

m (f)+m, (g)<m (f+g)
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i) Ms(f)=sub{f(x);xes}
= Ms(f)> f(x) Vxes
Similarly Ms(g)>g(x)vxeS
o Ms(f)+Ms(g)> f(x)+g(x)¥xesS
= Ms( f)+Ms(g) is upper bound of
(£ (x)+g(x)ixes}={(r+&)(x):wes)
= Ms(f)+Ms(g)=sup {(f+g)(x):ixeS|=Ms(f+g)

.'.Ms(f)+Ms(g)ZMs(f+g)

Hence,
L(f,P)+L(g.P) :;(Ms(f)+Ms(g))V(S)
s;(Ms(ﬂg))V(S)

<L(f+g,P)

U(f,P)+U(g,P)=U(f+g,P) Proved.

3) Let f:4—Rbe integrable, & g: 4— R integrable than show that ' +g

is integrable and J(f+g)=jf+'[g.
A A A
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Proof :

Let P be any partition of A then
U(f+g.P)-L(f+gP)<U(f.P)+U(g.P)-[L(f.P)+L(g.P)]

SU(f,P)+U(g.P)=L(f.P)=L(&P).ccccvreeeiiaanee. 0))

. f 1is integrable.
By Rieman interion for given €>0,3 a partition P, of A such that

U(fsR)=L(fsR)<Fh wooomremorieeiineieeeec (IT)

Similarly - gis integrable for €>0,3 a partition P, of A such that

U(ZB)=L(fB)<Sy covoeeeeieieieeeeee (1)

Then P" = BUP, is a refinement of both P, & P, .

L(f.R)<L(f.P");  U(f.B)2U(f.P") &  L(g.B)<L(f.P):
g,ZZ( P (IV)

€/2>U(f.R)- (fP) U(f.P)-L(f.P)
€/2>U(g.R)-L(g.B)2U(g. P )~L(g.P" ). .o (V)
The equation I is true for any partition P of A.

In general, it is true for partition P~ of A

U(f+g.P)-L(f+g.P")

sU(f,P*)—L(f,P*)+U(g,P*)—L(g,P*)
<e/2+€/2=¢€

U(f+g.P)-L(f+g.P")<e

By Riemann Criterian f + g is integrable.

Let €/0 since If=sup{f,P} so Ja partition P such that J-f<(f,Pl)+%.
A A
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Similarly Ja partition P, P,...P, of A'S

'[g<L(g,PZ)+%
U(f.R)<[f+%

A

U(g.P)<[2+%
Let P=PRUP,UP,UP,.
Then [ £ <(f,R)+S4 <L(f.P)+%)
Similarly Ig<L(g,P)+€/2

U(f,P)<_[f+% and U(g,P)<jg+62

[f+[g—e<L(f,P)+L(g.P)<L(f+g.P)<[f+g

.'.J.f+Ig—eIf+g<If+Ig—e

This is true for any >0

cJrefes|rre<]refe=[rre=[r+sg

4)  Let f:A— Rbe integrable for any constant C, show that I (cf)=cC
A

Proof :

Let CeR

[r

A
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Case 1
Let €>0 and suppose C > 0.

Let P be a partition of A and S be a subrectangle of P.

M (Cf) :sup{(Cf)(x);x eS}
:sup{Cf(x);xeS}
:Csup{f(x);xeS}
:CMs(f)

Similarly,
ms(Cf)=Cm,(f)
U(Cf,P) ZMS Cf)v CZMS
=C U( f,P)
Similarly L(Cf,P)=CL(f,P)

- f is integrable for above <0,3 a partition P of A such that

U(f,P)-L(f,P)<€/C

U(Cf,P)-L(Cf,P)=CU(f,P)-CL(f.P)
=C[U(f.P)=L(/.P)]

:CXE/C:C

By Riemann Criteria.
(Cf)is integrable

for > 0,3 a partition P of A such that

CIf—ezC(jf—%]<CL(f,P):L(Cf,P)

S!CfSU(Cf,P)
<CU(f,P)<CUf+€/C}
.'.Uf—e/c]<_[Cf<C(£f+€/C,J=CJ;f+e
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This is true for any €<0
cfr<f(cr)=cr

A A A
~far=cfr

A A
Case I1

Now suppose C <0

Let P be a partition of A and S be any subrectangle in P.
~.Ms(Cf)=C Ms(f)and

m,(Cf)=CMs(f)

~.L(Cf,P)=CU(f,P)and

U(Cf,P)=CL(f,P)

.. [ 1s integrable for above e> 0, Ja partition P of A such that
— S
U(f,P)-L(f,P)< %—C)

~U(Cf,P)-L(Cf,P)=CL(f,P)-CU(f,P)
==ClU(f.P)=L(/.P)]

<—CE/_C
S

<

By Riemann Criteria (Cf') is integrable.
for €>0,3 a partition P of A such that C[ f—e< [Cf <C[ f+e.
A A A

This is true for every €>0
cjf<ICfS—cjf
A A A
~er=cfrs
A A
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Example 3:
Let f,g:4— R be integrable & suppose f < g show that J-f < jg .
A A

Solution :
By definition [ f =inf {U(f,P)} and [g=inf{U(g,P)}.
A A

Let P be any partition of A & S be any subrectangle in P

as f<g
m (f)<m,(g)
U(/,P)<U(g,P)

mf{ P)} <inf{U (g, P)}

This is true for any partition
J- f< I g

A A
Example 4:

If /' 4A— R is integrable show that if is integrable and

Solution :

= Suppose f1s integrable first we have to show that | f | is integrable.

Let P be a partition of A & S be subrectangle of P then
Ms(|f|)=sup{\f |
=sup{|/|(x):xe S}
=[su {f eS|
=[Ms(/)

Similarly
Ms(|/1) =[Ms (/)

U(111:7)= 2, ()7 (5)= Z, ()P (5)
L(f1.P)= 2l (17 (5)
2. (=l ()Y (5) S (M. ()| ()7 (5)

<U(f,P)-L(f.,P)
-, f is integrable, for €> 0,3 a partition P such that U( f,P)—L(f,P)<e
U(|f].P)-L(f].P)<U(f.P)-L(f.P)<e
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.. By Riemann criteria

| f | is integrable over R.

[F

A

~finf U (£.P)

Now

SeP

~linf 0, (£)7 (5)
= n}fZP:MS |f|V(S)‘

= il}fZMs(f)V(S)‘

<inf Y M |f]V(S)

=inf{U(|/],P)}

[r

A

=£|f|

Example S:
Let f: A— R and P be a partition of A show that f'is integrable iff for each sub-

rectangle S the function % which consist of frestricted to S is integrable and that
oo o~ (f
in this case If—z_[ K
A S s
= Suppose f: A—>R is integrable.
Let P be a partition of A & S be a sub-rectangle in P.
Now to show that f% ;8§ > R is integrable.
Let €>0,3 a partition P’ of A such that U(f,P)—L(f,P')<e (.. f is

integrable)
Let P'=PUP' then P, is refinement of both P & P'.

~U(f,P)2U(f.R) & L(f.P)<L(f.R)
JU(fSB)=L(f,B)SU(f, P )=L(f,P')<€.evviiviiiiaa 1))
"' B is refinement of P

~»§ is union of some subrectangle of £, say S = [!1 Si.
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. e>U(f,B)=L(f.B)=D. (M (f)=m,(f))V(S) for all rectangle.

SeR,

.. By Riemann Criterion
% is integrable.

Conversely, Suppose % is integrable for each S e P.

To show that fis integrable.

Let e>0, 3 partition P, of S such that

U(%,PS)—L(%,PS)<e/k ..................................... a0

% is integrable for each § € P where K is number of rectangle in P.

Let P' be the partition of A obtained by taking all the subrectangle defined in the
partition P .

There is a refinement P, of P, containing subrectangles in P'.

CU(f)s P =L(f /s P) <€k oo, (110)

SU(fP)=L(fP)= 3 (M () =my (1)) (S')

step!

= Z{ > (Ms' (f)=m, (1)) V(SI)J

SeP\ s'ep}

:Z(U(f/s,R;)—L(f/S’PS]))

SeP

<> elk

SeP

<k,elk<e

.. By Riemann Criterian f'is integrable.
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Let e>0

5[ sts-e|<Zetr15.8)

SeP\ § SepP

<Z{ > m, (f)V(S')]

SeP SIEPS1

Let P' be a partition of A, obtained by taking allthe subrectangle defined in P, .

sepr/S e/k] > (m, (D)7 (s')

step!

<L(f.P')<[f<uU(r.P)
= > M (£)V(s')

=i§%mwﬂ
;( (f]S,P, Sep(jf/“%]
.'.S;jf/S ecjf<S;jf/S+e

This is true for all >0

SN rIs<[r<X /s

SeP SeP g
j f=x[r/s
SeP g
Example 6:

Let f: A— R be a continues function show that f'is integrable on A.

Solution :

Let f: A— R be a continuous function to show that fis integrable.

Let €>0, since A is closed rectangle it is closed and bounded in R".

.. A 1s compact.

-+ [ 1s continuous function on compact set = £ is uniformly continuously on R.
.. for the above €>0,36 >0 such that Vx,g € 4,

Pe=yl<8=[r(x)-f (¥)|<e/V(4).
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Let P be a partition of A such that side length of each subrectangle is less than

§/\n .

If x, y €S for some subrectangles S then

||x—y|| = \/(x1 -9 )2 +ot(x, -, )2

“(¥5) -0

7 ()= ()| <&/v (4)

- § is compact
. f 1s continuous

.. f attains its bound in S.
Let S,,S,,.....,S, be the subrectangle in A. Then for 1<i<k,3x,y, €S, such that
Ms,(f)=1f(x)m,(f)=1(5)-

SU(FP)=L(fP) =3 (Ms,(1)=m, (£))V(S)

i=1

.. By Riemann Criterion f'is integrable.
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6.5 Review

After reading this chapter you would be knowing.

¢ Defining R-integral over a rectangle in R”

RS

% Properties of R-integrals

¢ R-integrabal functions

% Continuity of functions using R -intervals.

6.6 Unit End Exercise

)

1)

110)

V)

V)

Let f;[O,l]x[O, 1] — R be defined by
f(x,y):OifOSyS%
=3if % <y<l
show that fis integrable.
Let O be rectangle in R" & f;0 — R be any bounded function.
a)  Show that for any partition P of O L(f, P) < U(f, P)

b)  Show that upper integral of function f exit.

Let f'be a continuous non-negative function on [0,1] and suppose there exist

X, €[a,b]such that f(x,)>0 show that If(x) dx>a.
0

Let / be integrable on [a,b] and F:[a,b]—)R and F" (x)=f(x) then
prove that jf(x) dx=F(b)-F(a)

Which of the following functions are Riemann integrable over [O,l]. Justify

your answer.

a) The characteristic function of the set of rational number in [0,1].

b) f(x)zxsinyx for 0<x<1

£(0)=3
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VI) Prove that if fis R -integrable then | f | is also R-integrable is the converse

true? Justify your answer.

VII) Show that a monotone function defined on an interval [a,b] is R-inegrable.

VIII) A function f ;[O, 1] —Ris defined as f (x) = 3"1_1 ‘v’%ﬂ <x< % where
nelN
/(0)=0

1
show that f'is R-integrable on [0,1] & calculate — .[ f (x) dx .
0

IX) f (x) = x|_xJ Vx e [1,3] where |_xj denotes the greatest integer not greater
than x show that f'is R-integrable on [1,3] .

X) A function f;[a,b] — R is continuous on [a,b] f(x) >0 Vx e[a,b] and

_lff(x)dx=0 show that f(x)=0 Vxe[a,b].

a

O % o% &%
O 09 00 0
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UNIT 4

MEASURE ZERO SET

Unit Structure

7.1 Introduction

7.2 Measure zero set

7.3 Definition

7.4  Lebesgue Theorem (only statement)
7.5  Characteristic function

7.6 FUBIN’s Theorem

7.7  Reviews

7.8 Unit End Exercises

7.1 Introduction

As we have seen, we cannot tell if a function is Riemann integrable or not merely
by counting its discontinuities one possible alternative is to look at how much space
the discontinuities take up. Our question then becomes : (i) How can one tell
rigorously, how much space a set takes up. Is there a useful definition that will
concide with our intuitive understanding of volume or area?

At the same time we will develop a general measure theory which serves as the
basis of contemporary analysis.

In this introductory chapter we set for the some basic concepts of measure theory.

7.2 Measure Zero Set

Definition :

A subset ‘A’ of R” said to have measure ‘O’ if for every €>0 there is a cover

{U,,U,....} of A by closed rectangles such that the total volume » v(Ui)<e.

i=1
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Theorem :

A function ‘f* is Riemann integrable iff ‘f” is discontinuous on a set of Measure
Zero.

A function is said to have a property of Continuous almost everywhere if the set on
which the property does not hold has measure zero. Thus, the statement of the
theorem is that ‘f” is Riemann integrable if and only if it is continuous atmost
everywhere.

Recall positive measure : A measure function u:M —)[0,00] such that
V(Uuij:ZV(u[).
i=1 i=1

Example 1:

1) “Counting Measure” : Let X be any set and M = P(.X)the set of all subsets :
If Ec X is finite, then p(E)=n(E) if Ec X is infinite, then p(E)=o0

2) “Unit mass to x, - Dirac delta function” : Let X be any set and M =P(X )

choose x, € X set.
u(E)=1 if x,€E
=0ifxyeE
Example 2:

Show that A has measure zero if and only if there is countable collection of open
rectangle V,,V,,.... such that A c UV, and ZV(Vi) <e.

1

Solution :

Suppose A has measure zero.

For >0, 3 countable collection of closed rectangle V,,V,,.... such that 4 U V.

—

and iV(Vi)<§.
-1

For each i, choose a rectangle v, such that u, 2 v, and V' (u,) <2V (v,).
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Note that : u; are open rectangles in [1 " conversely,

Suppose for €>0,3 countable collection of open rectangles u,,u,,.... such that
AgUui and ZV(u[)<e.
i=1 i=1

For each i, consider ¥, =u, then ¥, is a closed rectangle and ¥V (v,) =V ().

1

0

v, and Z::V(vi) = ZV(ui) <e.

i=1

Cs

Then A Uui C
i=1

]
_

I
A has measure zero.

Note : Therefore we can replace closed rectangle with open rectangles in definition
of measure zero sets.

Example 3:
Show that a set with finitely many points has measure zero.

Solution :

Let A={a,,....,a,} be finite subset of R".

Q122500 > “in

Let €>0,a, =(a,.q, a, ) and

Clearly a, € Vi for 1<i<m

m o0

_._AngJVi and Zm:V(Vi)=Z:2[€+1 <E~ZZ,~1+1 <eé<e
i=1 =

i=l1 i=1

.. By definition of measure of zero

‘. A has measure of zero.
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Example 4:

If A=4UA,UA4,U.... and each 4i has measure zero, then show that A has

measure z€ro.

Solution :

Let e>0and A= A4 U4, U.... with each 4i has measure zero.

- Each Ai has measure zero for i =1,2,.... 3 acover {u,,U,,...,U,} of 4i

By closed rectangle such that ZV(uii) < ;, i=12,..

i=1
Then the collection of U, is cover A
V()< S e
i=1 i=1 2

Thus 4= A4,UA,UA4,.... has measure zero.

Example 5:

Let Ac R” be a Rectangle show that A does not have measure zero. But 04 has
measure zero.

Proof :

Suppose A has measure zero.

-+ Ais arectangle in R”

=V (A4)>0

Choose €>0 such that €<V (A) ..o D

-~ A has measure zero

i

3 countable collection of open rectangle {u,} such that A< U u, and DV (u,)<e
i=1

-+ A is compact
This open cover has a finite subcover after renaming. We may assume that

{u,,u,,...1,} is subcover of the cover {u,}.

i
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9]
nAcC Uui .
i=1

Let P be partition of A that contains all the vertices all u,'s i=1 to k. Let

S.,S,,.....8, denote the subrectangle of partitions.

which is a contradiction to (I)
.. A does not have measure zero.

Note that 04 is a finite union of set of the form

By =[a,,b]x...x[a,a,;]x...x[a,.b,].

Then ¥ (B;) depend on & and V' (B;)—>0as 6 —0.
.. B; has measure zero

~.Boundary of A (0A4) is finite union of measure zero.

.. 0A has measur5e zero.

Example 6:

Let Ac R" with 4°# . Show that A does not measure zero.
Solution :

LetAcR", with A°#J

Let xe A°

=3 >0, such that B(x,r)< 4, But

B(x,r):{yeA;

y—x||<r}

={yeA;i|yi—xi|<r}
i=1
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If f A has measure zero

then B (x,r) has measure zero
which is not possible as
B(x,r)is Rectangle

.. A does not have measure zero.
Example 7:

Show that the closed interval [a,b] does not have measure zero.

Solution :

Suppose {u,}  be a cover of [a,b] by open intervals.
[a,b] is compact this open cover has a finite subcover.
After renaming, we may assume {u,,u,,....,u, } is the subcover of {x,} of [a,b]

We may assume each u; intersect [a,b] (otherwise replace u; with u, N[a,b])

Let u = Uui
i=1
If u is not connected then [a,b] is contained in one of connected component of u.
= [a,b] cu, for some i
.‘.[a,b]ﬂuj = fori#j

Which is not possible

..u 18 connected
= u is an open interval say u =(c,d) Then as [a,b) cu=(c,d)
:ZV(u[)=d—c>b—a

In particular we cannot find an open cover of [a,b] with total length of the cover

b—a
<
2

~.[a,b] does not have measure zero.
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Example 8:

If Ac [O, 1] is the union of all open intervals (al. , b,-) such that each rational number

o0

in (0,1) is contained in some (a,,b,). If 7= (bi—ai)<1 then show that the
i=1

boundary of A does not have measure zero.

Solution :

We first show that 04 =[0,1]\ 4

Note that 04 = 4\ A°
‘wAisopen = A°=A4

Also oN[0,1]c 4

~oNnfo,1]c 4
~[0,1]c 4

But Ac[0,1]= A4 <[0,1]

. A=[0,1]
~o4=[0,1]\ 4
Let e=1-T>0

If 04 has measure zero then since €> 0,3 a cover of 04 with open intervals such
that sum of length of intervals <1-7

*» 04 1is closed and bounded

= 04 is compact

—> 3 finite subcover {u,}  for 04

2 0(u)<1-T

Note that {ui;ISi <n;(a,.b, )Zl} cover [0,1] and sum of lengths of these open

intervals is less than 1-7+7=1 which is not possible as

[0,1]< U{ui; 1<i<n; (a,b, )Zl} .. 0A does not have measure zero.
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7.3 Definition

A subset ‘A’ of R” has content ‘O’ if for every €>0, there is a finite cover

{t,,15,.....,u,} of A by closed rectangles such that Zn: V(u)<e

=1
Remark :

1) If A has content O, then A clearly has measure O.

2) Open rectangles can be used instead of closed rectangles in the definition.
Example 9:

If A is compact and has measure zero then show that A has content zero.

Solution :

Let A be a compact setin R”

Suppose that A has measure zero

.3 acover {u,u,,....; of A such that iV(ui) <e forevery €>0.

i=1

of u, also covers A and

.. A has content zero.
Example 10 :
Give one example that a set A has measure zero but A does not have content zero.

Solution :
Let 4=[0,1]NO
Then A is countable

= A has measure zero

Now to show that A does not have content zero.

Let {[a,,5,);1<i<n| be cover of A

nAc[a,b]U....U][aq,.b,]
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nAc [al,bl]U....U[an,bn]

But ;lz[O,l]
gf([ai,bi)) >1

In particular, we cannot find a finite cover for A such that Zﬁ (ai,bi) < %

i=1
.. A does not have content zero.
Example 11:
Show that an unbounded set cannot have content zero.

Solution :
Let Ac R" be an unbounded set.

To show that A does not have content zero

Suppose A has content zero for €> 0,3 finite cover of closed rectangles {ui}f:1 of

k k
Asuch that Ac| Ju, and Y 7 (u, ) <e.

i=1 i=l1

Let u, =[a,.,b, |x...x[a,.b,]
Let a, =min{a,,a,,.....a,|
b, =max {B;,b,,,....b,}
then Uy, = [a,.b ]x....x[a,.b,]
nAca,b]x...x[a,,b,]

.. A is bounded
Which is contradiction

.. A does not have content zero.
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Example 12:

f:4A—0] is non-negative and .[ f =0 where A is rectangle, then show that

{x ed; f(x)# } has measure zero.

Solution :

For neD,Aﬂ={xeA;f(x)<%}
Note that {xeA,f(x);tO}:{xeA;F(x)>0}

{~> f is non-negative}

=Q{xeAf /} UA

We have to show that 4, has measure zero

[f=0 and [f= inf {U(/,P)}=0for €>0,3 a partition P such that
Y 4

U(f,P)<e/n

Let S be a subrectangle in P

it SN4, #@=>M,(f)<V

clearly {S e P;SN A, # O} covers 4, and

n

Z )<D. M, (f ( Ms(f)>lj

sep N SeP n

<U(f,P)<e/n
.'.ZV(S)<€

SNA4,#J
SeEp

By definition A4, has content zero
= A, has measure zero
{x ed, f(x)# O} is countable union of measure zero set.

{x ed; f(x)# 0} has measure zero.
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* Oscillation o( f,a) of ‘f" ata
- for >0, Let M(a,f,é'):sup{f(x);xeA&|x—a|<5}
m(a,f,5)=inf{f(x);xeA&|x—a|<5}

The oscillation o( f,a) of fat a defined by
O(faa):Liirol(M(aafaé‘)_m(aafaé‘))

This limit always exist since M (a, f,6)—m(a, f,5) decreases as & decreases.

Theorem :

Let A be a closed rectangle and let f: 4 —[] be a bounded function such that
O(f,x) <e for all xeA show that there is a partition P of A with

U(f,P)-L(f,P)<eV(A4).
Proof :

Let xeA:>U(f,x)<e:>Liilg(M(x,f,é)—m(x,f,é))<e

.3 aclosed rectangle u, containing x in its interior such that M, -M, <e by

definition of oscillation.
~{u,;x e A} is acover of A
.. 4 1s compact

= This cover has a finite subcover say {u,,,u )

x12 % x29° 2 xk

k
nAC qui :
i=1

Let P be a partition for A such that there each subrectangle ‘S’ of P is contained in
some u, then M (f)—ms (f) <e for each subrectangle ‘S’ in
l

~U(fP)=L(f.P)=2 (M, (f)=m, (£))V(S)

SeP

<e ZV(S)

SeP

<e-V(A)
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7.4 Lebesgue Theorem (Only Statement)

Let A be a closed rectangle and f: 4 —>R is bounded function. Let B = {x ; f1s

not continuous at x}. Then f'is integrable iff B is a set of measure zero

7.5 Characteristic Function

Let C < R". The characteristics function y, of Cis defined by y,(x)=1 if xeC
=0 if xgC
If Cc Awhere A is a closed rectangle and f: 4—R is bounded then _[ f s
C

defined as I f x. provided J. f - x.1s integrable [i.e. if fand y, are integrable]
C

Theorem :

Let A be a closed rectangle and Cc 4. Show that the function y,:4—0 is

integrable if and only if 0C has measure zero.
Proof :

To show that y.: A4 — R is integrable iff OC has measure zero.

By Lebesgue theorem, it is enough to show that 0C = {x € A: g, 1s discontinuous }
Let a € C°= 3 an open rectangle ‘u’ containing a such that u c C

.‘.Zc(n):l VnelU

= ¥. 1s continuous at a.

Let a € Ext(c)= Exterior of C

[By definition union of all open sets disjoints from C]
Ext (C) is an open set

3 an open rectangle u containing such that U Ext(c)

5 x.(n)=0 Vneu
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= X, 1s continuous at a
If agOc then y, iscontinousata ...........c.c...coeuene. D

Let a € Oc = for any open rectangle U with a in its interior contains a point y € C°

& a point z € R” |c

S x.(v)=1& x.(2)=0
.. X. 1s not continuous at a

~.0c={xe A: g, is discontinuous at x }

.. By Lebesgue Theorem.
X. is interrable if and only if Oc has measure zero.

Theorem :

Let A be a closed rectangle and Cc 4

If C is bounded set of measure zero and I . exist then show that j X.=0.
A A

Proof :

C < Abe a bounded set with measure zero.

Suppose J X. exist = y.is integral
A
To show that J x.=0
A

Let P be a partition of A and S be a subrectangle in P.
"+ S does not have measure zero

=S Z£C

=>IxeSbut xegC

(x):O

A
=m (y.)=0

This is true for any subrectangle S in P
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S L(x,P)=>m (x.)V(C)=0
This is true for any partition P

J.;(C = sup{L(;(C,P);P is partition of}
A

[z.=0

A

7.6 Fubini’s Theorem

Fubini’s Theorem reduces the computation of integrals over closed rectangles in
R",n>1to the computation of integrals over closed intervals in R. Fubini’s

Theorem is critically important as it gives us a method to evaluate double integrals
over rectangles without having to use the definition of a double integral directly.

If /: A— R is abounded function on a closed rectangle then the least upper bound
of all lower sum and the greatest lower bound of all upper sums exist. They are

called the lower integral and upper integral of f and is denoted by LI F and U J-F
A A

respectively.

Fubini’s Theorem

Statement : Let A R" and B R" be closed rectangles and let /: AxB —>R
be integrable for x € 4, Let g, : B— Rbe defined by g, (y)=F(x,y) and let

((x)=L]g =L f(xy)dy

u(x)=U|[g =U[f(x.y)dv

Then ¢ and y are integable on A and I f =.[L = I[Ljf(x) dy}dx

AxB A A B

.[f:_[”(x)dx:_[[UI[f(X,y)dy]dx

AxB A A

Proof :

Let P, be a partition of A and P, be a partition of B. Then P =(P,, P, ) is a partition
of AxB

Let S, be a subrectangle in P, and S, be a subrectangle in P,
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Then by definition,

S =8,xS§, is a subrectangle in P

L(£iP)=2m (f)V(S)

SeP

= Z my s, (f)V(SA XSB)

SpePy

=2 ( D m ., (f)V(SB)jV(S,,) ...................... I

S, P\ Spehy

For xeS,,m .. (f)cM, (g.)

~.For xeS§,

L2 m V(S V(S5)< 2 m, (8,)V (Ss)

SpePy
=L(g,.P)<L[g =L(x)
B

This is true for any x € 4

)= S [ S <f>V<sB>]V<sA>

SyeP \ Sgeby

< > m (L(x)V(S,)

S, ePy

=L(0(X),P,) oo (1)
- From (I) & (ID)

L foP S L X P, oo (I11)

Now U f,P =Y Mg [ Vs

SepP

= Z Mg o [V S,xS,

S, €EP,
NS

=SS M FV S, VS, e av)

S, EP\SpePy
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For xESA’MSAxSB f ZMSB g,

~Forxes§,,

ZMSAxSB fVs, = ZMSB g VS

SpEPy SpEPy

=u g.hb zufgxzu x
B

This is true forany x € 4.

SUD M5 £V S,

S, €EP, [SBGPB

VS,

EZMSAux Vs,

S,€P,
=u x ,P,
from (IV) & (V)
Uu f,Pp>Uux,P,
.. By (II) & (VI)

L f,P <L({x,P, <ulL x,P,

<ul x,P, <U f,P .coceviiiiiinn.

Also
L f,P<L/({x,P, <L px,P, <ulx,P,

.. f 1is integrable

sgp L f,P :1r113f u f,pP :ff

AxB

:SIPJpLﬁx,PA :i%fuﬁx,PA :ff

A

.U x 1isintegrable

[r=fee=]

AxB A A

Lffx,y
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Also by (VIII) & (IX)

sup L L x,P =inf Uux,P, = [f

Py AxB

c.u x 1s integrable.

iff:fuxdx:f

AxB A A

dx

Uffx,y

Hence Proved
Remark :

The Fubini’s theorem is a result which gives conditions under which it is possible
to compute a double integral using interated integrals, As a consequence if allows
the under integration to be changed in iterated integrals.

Jr=]

AxB B
B

These integrals are called iterated integrals.

Lffx,ydxdy
B

Uffx,ydxdy
A

Example 13:

Using Fubini’s theorem show that D,,f =D, f if D, f and D, f are

continuous.
Solution :

= Let ACR and f:4— R continuous

T.P.T D,f =D, f
Suppose Dy, f = D, f
..3Xx,,¥, in domain of f such that
D,f a —D,fa =0
without loss of generality, D,,f a —D,,f a >0 or

Dof —Dyf @ >0 oo 1)
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f Dlzf_D21f x,g >0
4

Let A= a,b x ¢,d

.". By Fubini’s Theorem

d b
fDZIf X,y :ffDmf X,y dxdy
A c a

d

= [ D.f by -D.f gy dy
=fbd —f bc —f ad +f a,c
Similarly,
fDlzf x,y =f bd —f b,c —f a,d +f a,c
A
-'-szlf X,y :fDlzf X,y

A A
:>f D, f—=D,f x,y =0

A
Which is contradiction to (I)
D,/ =D, f| proved

Example 14:

Use Fubini’s Theorem to compute the following integrals.
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1

= [ax

0

‘er

=glog[\/;+l]

Solution :

C= xy;y<x<1,0<y<I

By Fubini’s Theorem

&

1
:g log x++/1+x°
0

X=y
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27X e — di
2
xa’x:ﬂ
T
7 ) 7 ) 1 i
[:fsmt—:— sintdt— —cost 7?2
T w T 0
0 0
T T

7.7 Reviews

After reading this chapter you would be knowing.
e Definition of Measure zero set and content zero set.

e Oscillation O f,a

¢ Find set contain measure zero on content zero
e Statement of Lebesgue Theorem
e Definition of characteristic function & its properties.

e Fubini’s Theorem & its examples.

7.8 Unit End Exercises
1. If BC A and A has measure zero then show that & has measure zero.
2. Show that countable set has measure zero.

3. If A is non-empty open set, then show that A is not of measure zero.

4.  Give an example of a bounded set C if measure zero but AC does not have
measure zero.

5. Show by an example that a set A has measure zero but A does not have
content zero.

6.  Provethat a.,b, X...x a,,b, does nothave content zero if a, <b, for each
i.

7.  If Cis a set of content zero show that the boundary of C has content zero.
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8.

10.

11.

12.

13.

14.

Give an example of a set A and a bounded subset C of A measure zero such

that f X, does not exist.
A

If f & g are integrable, then show that f, is integrable.

Let U = 0,1 be the union of all open intervals a,,b, such that each rational

number in 0,1 is contained in some a,,b, . Show that if f = x_except on

a set of measure zero, then f is not integrable on 0,1 .

If frabxab —R is continuous; then show

]]f X,y dxdy:j]f X,y dydx

Use Fubini’s theorem, to compute f dy f SIY v
0 0 X+y

LetA= —1,1 x 0,wr/2 and f:A—R defined by f x,y =xsiny—

compute f f
A

Let f x,y,z =zsin x+y and 4= 0,7 x[—V,%}x 0,1

computer f f.
A

O o% % %
0P 00 00 00

that

ye'
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