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1.1 Objectives 

After going through this chapter students Zill be able to understand: 

x Inner product and norm on Թ௡ 
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x Open and Close subset of Թ௡ and Interior ܣ଴ and boundary ߲ܣ of subset ܣ 

of Թ௡ 

x Operator norm ȁȁܶȁȁ of linear transformation  

x Compactness on Թ௡ 

x Connected subset of Թ௡ 

x Continuous function on Թ௡ 

1.2 Introduction 

This are the generali]e concept Zhich Ze have already study at our graduate level. 
So before going to this chapter one should go through the definition and basic 
e[ample of Vector spaces, Inner product spaces, 1orm linear spaces and Metric 
spaces and also all the above concept over ԹǤ� 

1.3 Inner product and norm on�Թܖ 

Euclidian n-space Թܖ is defined as the set of all n-tuples ሺݔଵǡ ଶǡݔ ǥǥ ǡ  ௡ሻ Zhereݔ
each ݔ௜ᇲ௦�ሺͳ ൑ ݅ ൑ ݊ሻ  is Must a real number. So, Թ௡ ൌ Թ ൈ Թ ൈǥǥǥൈ
Թሺ௡�௧௜௠௘௦ሻ ൌ ሼሺ࢞૚ǡ ࢞૛ǡ ǥǥ ǡ ሻǣ࢔࢞ ࢏࢞ א Թǡ ͳ ൑ ݅ ൑ ݊ሽ. An element of Թ௡ is often 
called point of�Թ௡, and ԹଵǡԹଶǡ Թଷ�are often called the line, the plane, and the space 
respectively. 

If ݔ�denotes the element of Թ௡ then it looN liNe ݔ ൌ ሺݔଵǡ ଶǡݔ ǥǥǥ ǡ  ௡ሻ Zhere eachݔ
 .௜�is a real numberݔ

The point of Թ௡ is also called a vector in Թ௡, as Թ௡�is a vector space �over the real 
number, of dimension n� Zith operations, ݔ ൅ ݕ ൌ ሺݔଵ ൅ ଵǡݕ ଶݔ ൅ ଶǡݕ ǥǥ Ǥ Ǥ ǡ ௡ݔ ൅
ܽ ௡ሻ andݕ Ǥ ݔ ൌ ሺܽݔଵǡ ଶǡݔܽ ǥ Ǥ ǡݔ ௡ሻ Zhereݔܽ ܽ are element of Թ௡ and ݕ �is an element 
of ԹǤ�� 

In this vector space there is the notation of the length of a vector ݔǡ�usually called 
the norm ȁȁݔȁȁ of ݔ�and defined by หȁݔȁห ൌ ඥݔଵଶ ൅ ଶଶݔ ൅ ڮ Ǥ ݊ ௡ଶǤ Ifݔ ൌ ͳǡ�then 
หȁݔȁห ൌ ȁݔȁ �mod of ݔ�, is the usual absolute value of ݔǤ  

1.3.1 Properties of norm on Թ࢔ǣ- 

If ݔǡ  are element of Թ௡ and ܽ�is an element of Թ then the folloZing properties of ݕ
ȁȁ�Ǥ ȁȁ�holds, 

݅ሻ�หȁݔȁห ൒ Ͳ�ܽ݊݀�หȁݔȁห ൌ Ͳ�݂݅�ܽ݊݀����������� ൌ �Ͳ�ሺ������ሻǤ��� 
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݅݅ሻ�หȁݔ ൅ ȁหݕ ൑ หȁݔȁห ൅ ȁȁݕȁȁ 

݅݅݅ሻ�หȁܽǤ ȁหݔ ൌ ȁܽȁǤ ȁȁݔȁȁ 

1.4 Cauchy-Schwar] ineTuality on Թ࢔� 

Statement:- For all ݔǡ �in Թ௡ ݕ ȁσ ௜௡ݕ௜ݔ
௜ୀଵ ȁ ൑ หȁݔȁหǤ หȁݕȁห� eTuality holds if and 

only if ݔ and ݕ are linearly dependent.  

Proof:- If ݔ and ݕ are linearly dependent, then the eTuality clearly holds. 
�ChecN�� 

If not, then ݕߣ െ ݔ ് Ͳ�ሺݎ݋ݐܿ݁ݒሻ��for all ߣ in Թǡ�so Ͳ ൏ หȁݕߣ െ ȁหଶݔ ൌ
σ ሺݕߣ௜ െ ௜ሻଶݔ ൌ௡
௜ୀଵ ଶߣ� σ ௜ଶ௡ݕ

௜ୀଵ െ �ߣʹ� σ ௜௡ݕ௜ݔ
௜ୀଵ ൅ σ ௜ଶ௡ݔ

௜ୀଵ Ǥ 

Therefore the right side is a Tuadratic eTuation in ߣ Zith no real solution, so its 
discriminant must be negative.  

Thus� Ͷ�ሺσ ௜௡ݕ௜ݔ
௜ିଵ ሻଶ െ �Ͷ� σ ௜௡ݔ

௜ୀଵ
ଶ Ǥ σ ௜௡ݕ

௜ୀଵ
ଶ ൏ ͲǤ   

Note:- The Tuantity σ ௜௡ݕ௜ݔ
௜ୀଵ �is called inner product of ݔ�and ݕ and denoted as ൏

ǡݔ ݕ ൐Ǥ 

1.� Open and Closed subsets of Թ࢔ 

The close interval ሾܽǡ ܾሿ has a natural analogue in ԹǤ The close rectangle 
ሾܽǡ ܾሿ ൈ ሾܿǡ ݀ሿǡ defined as the collection of all pairs ሺݔǡ ݔ ሻ Zithݕ א ሾܽǡ ܾሿ�ܽ݊݀ݕ� א
ሾܿǡ ݀ሿ. More generally, if ܣ ؿ Թ௠ and ܤ ؿ Թ௡ǡ then ܣ ൈ ܤ ؿ Թ௠ା௡ is defined as 
set of all ሺݔǡ ሻݕ א Թ௠ା௡ Zith ݔ א ݕ�݀݊ܽ�ܣ א Ǥ In particular, Թ௠ା௡ܤ ൌ Թ௠ ൈ Թ௡Ǥ�� 

The set ሾܽଵǡ ܾଵሿ ൈ ሾܽଶǡ �ܾଶሿ ൈ ǥǥǥ Ǥ Ǥൈ ሾܽ௡ǡ ܾ௡ሿ ؿ Թ௡ is called a closed 
rectangle in Թ௡Ǣ Zhile the set ሺܽଵǡ ܾଵሻ ൈ ሺܽଶǡ ܾଶሻ ൈ ǥǥ Ǥൈ ሺܽ௡ǡ ܾ௡ሻ ؿ Թ௡ is 
called an open rectangle.  

1.�.1 Definition:-  A set ܷ ؿ Թ௡ is called open set  if for each ݔ א ܷ there is an 
open rectangle ܣ such that ݔ א ܣ ؿ ܷǤ  

1.�.2 Definition:-  A subset ܥ of Թ௡�is called closed set if Թ௡̳ܥ is open set. 

E[ample: If ܥ contains finitely many points, then ܥ is closed set.     

1.� Interior and Boundary of subset of Թ࢔ 

If ܣ ؿ Թ௡�and ݔ א Թ௡ǡ�then of three possibilities must holds  
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݅ሻ� There is an open rectangle ܤ�such that ݔ א ܤ ؿ  Set of all such points are� Ǥܣ
called the interior points of ܣ and denoted byܣ�଴�. 

݅݅ሻ� There is an open rectangle ܤ�such that ݔ א ܤ ؿ Թ௡̳ܣǤ �Set of all such points 
are called the E[terior points of A and denoted by ܣ� �. 

݅݅݅ሻ� If ܤ is any open rectangle Zith ݔ א  ܣ contains points of both ܤ ǡ thenܤ
and�Թ௡̳ܣ. �Set of all such points are called the boundary points of ܣ and 
denoted by�߲ܣ�.  

1.7 Operator norm หȁࢀȁห of linear transformation and its 
properties 

1.7.1 Definition:-  Let ܸ and ܹ be a vector space over real field Թǡ and ܶǣ ܸ ՜ ܹ. 
We say that ࢀ is linear if ܶሺݒݏ ൅ ሻݓݐ ൌ Ǥݏ ܶሺݒሻ ൅ Ǥݐ ܶሺݓሻ for all ݏǡ ݐ א Թ and 
�ǡ� א �. 

E[ample:-  Let ܸ ൌ Թ௡ǡܹ ൌ Թ௡Ǥ Define ܶǣԹ௡ ՜ Թ௡ by ܶሺݔሻ ൌ  Then T is .ݔ
linear transformation.  

Note:- Let ࣦሺܸǡܹሻ denote the set of all linear transformation from vector space ܸ 
to vector space ܹǤ One can see each element of ࣦሺԹ௡ǡ Թ௠ሻ as a point of Euclidian 
space Թ௠௡ǡ and thus Ze can speaN of open set in ࣦሺԹ௡ǡԹ௠ሻ, continuous function 
of linear transformation etc. 

1.7.2 Definition:- Let  ܶǣԹ௡ ՜ Թ௡ be a linear transformation. The norm หȁܶȁห of 
ܶ is defined as� หȁܶȁห ൌ ���൛หȁܶሺݒሻȁหǣ ݒ א Թ௡ܽ݊݀�หȁݒȁห ൑ ͳൟǤ  

1.7.3 Properties of norm หȁࢀȁห ofࢀ�: For all linear maps ܵǡ ܶǣԹ௡ ՜ Թ௠ and 
Rǣ Թ௠ ՜ Թ௞ Ze have the folloZing properties of norm 

݅ሻ� หȁܵ ൅ ܶȁห ൑ หȁܵȁห ൅ ȁȁܶȁȁ 

݅݅ሻ หȁܴܵ݋ȁห ൑ หȁܴȁหǤ หȁܵȁห And 

݅݅݅ሻ� หȁܿܶȁห ൌ ȁܿȁหȁܶȁห��ሺܿ א ԹሻǤ 

1.� Compactness onԹ࢔ 

 A collection ࣩ of open sets is called open cover of ܣ�or briefly coverܣ�� if every 
points ݔ א  is in some open sets in the collection ࣩǤ ܣ

E[ample 1: If ࣩ is collection of all open interval ሺܽǡ ܽ ൅ ͳሻ�for ܽ א Թ, then ࣩ is 
a cover of ԹǤ Clearly no finite number of open sets in ࣩ Zill cover ԹǤ 
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E[ample 2: If ࣩ is collection of all open interval �ଵ
௡
ǡ ͳ െ ଵ

௡
� for all integer ݊ ൐ ͳǡ 

then ࣩ is open cover of ሺͲǡ ͳሻǡ but again no finite collection of sets in ࣩ Zill cover 
ሺͲǡ ͳሻǤ 

1.�.1 Definition:-  A subset ܣ ؿ Թ௡ is said to be a compact if every open cover ࣩ 
contains a finite sub collection of open sets Zhich also covers ܣǤ 

E[ample 1: A set Zith finitely many points is compact.     

E[ample 2: Let ܣ is infinite set Zhich contains 0 and the numbers ଵ
௡
  for all integers 

݊. �Reason: If ࣩ is open cover, Ͳ א ܷ for some open set ܷ in ࣩ� there are only 
finitely many pints of ܣ Zhich are not in ܷ, each reTuire at most one more open 
set�. 

Note:- One may also define the compactness as� a subset ݂݋�ܣ��Թ௡ is �seTuentially� 
compact if every seTuence ሺܽ௡ሻ in ܣ has subseTuence ሺܽ௡௞ሻ that converges to limit 
in ܣǤ  

1.� +eine-Borel theorem 

The closed and bounded rectangle of Թ௡ is compact. 

1.�.1 Corollary: - If ܣ ؿ Թ௡ and ܤ ؿ Թ௡ are compact, then ܣ ൈ   .is compact ܤ

1.�.2 Theorem: - A closed and bounded subset of Թ௡ is compact. 

Proof: - If ܣ ؿ Թ௡��is closed and bounded, then ܣ ؿ  for some closed rectangle ܤ
 .ܤ is an open cover of ܣǡ  then ࣩ together Zith Թ௡̳ܣ Ǥ If ࣩ is an open cover ofܤ
Hence a finite number ܷ ଵǡ ܷଶǡ ǥǥ Ǥ Ǥ ǡ ܷ௡ of sets in ࣩ , together Zith Թ௡̳ܣ Zill cover 
Ǥ Then  ଵܷǡܤ ܷଶǡ ǥǥ Ǥ Ǥ ǡ ܷ௡�cover ܣǤ 

1.10 Bol]ano-Weierstrass theorem on Թ࢔ 

Every bounded seTuence of Թ௡ has convergent subseTuence.    

Proof: - A bounded seTuence is contained in a closed and bounded rectangle, Zhich 
is compact. Therefore the seTuence has a subseTuence that converges to a limit in 
the rectangle. 

1.11 Continuous function on Թ࢔ 

A function from Թ୬ to Թ୫��sometimes called a �vector valued� function of n 
variable� is the rule Zhich associates to each points of Թ௡ to some points of Թ௠,   
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a function f associates to ݔ�is denoted by ݂ሺݔሻǤ�We Zrite ݂ǣ�Թ௡ ՜ Թ௠ (reads “f 
taNes Թ௡�into Թ௠”) to indicate that ݂ሺݔሻ א Թ௠�is defined for ݔ א Թ௡Ǥ 

The notation ݂ ǣ ܣ ՜ Թ࢓ indicates that ݂ ሺݔሻ is defined only for [ in the set ܣ, Zhich 
is called the domain of ݂Ǥ If ܤ ؿ ݔ ሻforݔሻ as set of all ݂ሺܤǡ��Ze define ݂ሺܣ א  ,ܤ
and if ܥ ؿ Թ௠�Ze define ݂ିଵሺܥሻ ൌ ሼݔ א ǣܣ ݂ሺݔሻ א   ሽǤܥ

Let ܣ ؿ Թ௡, a function ݂ǣ ܣ ՜ Թ௠ determine ݉ component function 
ଵ݂ǡ ଶ݂ǡ ǥ Ǥ Ǥ ௠݂ǣ ܣ ՜ Թ by ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻǡ ଶ݂ሺݔሻǡ ǥǥ Ǥ Ǥ ǡ ௠݂ሺݔሻሻ.  

The notation ���
௫՜௔

݂ሺݔሻ ൌ ܾ means that Ze can get ݂ሺݔሻ as closed to ܾ as desired, 

by choosing ݔ sufficiently closed to, but not eTual to ܽǤ  

In mathematical terms this means that for every number ߝ ൐ Ͳ there is the number 
ߜ ൐ Ͳ such that หȁ݂ሺݔሻ െ ܾȁห ൏  in the domain of ݂ Zhich satisfy ݔ for all ߝ
 Ͳ ൏ หȁݔ െ ܽȁห ൏  Ǥߜ

A function ݂ ǣ ܣ ՜ Թ࢓ is called continuous at ܽ א ��� if ܣ
௫՜௔

݂ሺݔሻ ൌ ݂ሺܽሻ and simply 

called continuous if it is continuous at each ܽ א   Ǥܣ

Note: - We may also define continuity as, a function ݂ǣ�Թ௡ ՜ Թ௠ is continuous if 
and only if ݂ିଵሺܷሻ is open Zhenever ܷ א Թ௠ is open. 

1.11.1 Theorem: - If ܣ ؿ Թ௡ǡ� a function ݂ǣ ܣ ՜ Թ௠ is continuous if and only if 
for every open set � ؿ Թ୬ there e[ist open set ܷ in Թ௡ such that ݂ିଵሺܷሻ ൌ ܸ ת    Ǥܣ

Proof: - Suppose ݂ is continuous. If ܽ א ݂ିଵሺܷሻǡ�then ݂ሺܽሻ א ܷǤ Science ܷ is 
open, ther is an open rectangle ܤ Zith ݂ሺܽሻ א ܤ ؿ ܷǤ Science f is continuous at ܽ, 
Ze can ensure that ݂ሺݔሻ א  in some sufficiently small ݔ ǡ provided Ze chooseܤ
rectangle ܥ containing ܽǤ We can do this for each ܽ א ݂ିଵሺܷሻǤ Let ܸ be union of 
all such ܥ i.e. ܸ ൌ ڂ ௙షభሺ௎ሻא௔௔ܥ Ǥ Clearly ݂ିଵሺܷሻ ൌ ܸ ת  Ǥ The converse can beܣ
prove similarly.  

1.11.2 Theorem: - If ݂ǣ ܭ ՜ Թ௠ is continuous Zhere ܭ ؿ Թ௡ and ܭ is compact, 
then ݂ሺܭሻ ؿ Թ௠ is compact. 

Proof: - Let ࣩ be an open cover of ݂ሺܭሻǤ For each open set ܷ in ࣩ there is an open 
set ௎ܸ such that ݂ିଵሺܷሻ ൌ ௎ܸ ת  Ǥܭ Ǥ The collection of all ௎ܸ is an open cover ofܭ
Science ܭ�is compact, a finite number of ௎ܸభǡ ௎ܸమǡ ǥǥ Ǥ ǡ ௎ܸ೙�cover ܭǤThen 

ଵܷǡ ܷଶǡ ǥǥ Ǥ ǡ ܷ௡ covers ݂ሺܭሻǤ 
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1.13 Connected subset of Թ࢔ 

A subset ܧ ؿ Թ௡ is said to be disconnected if there e[ist disMoint non-empty open 
sets �or closed sets� ܷ and ܸ �of ܧ� Zithܧ� ൌ ܷ ׫ ܸ.   

A subset ܧ ؿ Թ௡ is said to be connected if it is not disconnected. 

Note: - Let ܧ ؿ Թ௡ǡ a subset ܣ ؿ  or closed� in E if there e[ist� is said to be open ܧ
open �or closed� subset ܤ�of Թ௡ such that ܣ ൌ ܧ ת  Ǥܤ

1.13.1 Proposition: - A subset ܧ ؿ Թ௡ is connected if and only if it is not the union 
of tZo non-empty disMoint closed sets, or eTuivalently, if and only if there e[ist no 
subset of ܧ Zhich is simultaneously open and closed, other than ܧ and ׎Ǥ��    

1.13.2 Proposition: - A subset ܧ ؿ Թ௡ is connected if and only if for every pair 
ܷǡ ܸ of open subset of Թ௡ such that ܧ ؿ ܷ ׫ ܸ and ܷ ת ܸ ת ܣ ൌ  ǡ�then Ze have׎
either ܣ ؿ ܷ or ܣ ؿ ܸǤ 

1.13.3 Theorem: - A subset ܣ�of Թ is connected if and only if it is an interval. 

Proof: - �Direct part� suppose ܣ is not an interval, so there e[ist ܽǡ ܾ א ǡܣ ܽ݊݀�ܿ ב
ܽ ǡ Zithܣ ൏ ܿ ൏ ܾǤ Let ܷ ൌ ሺെλǡ ܿሻ and ܸ ൌ ሺܿǡλሻǤ Then ܷ�and�ܸ are open 
subset of Թ, Zith ܣ ؿ ܷ ׫ ܸ and ܷ ת ܸ ൌ ܽ Ǥ�Science׎ א ܷ ת ܾ �andܣ א ܸ ת  ǡܣ
Ze see from the proposition 1.13.2 that ܣ is disconnected. 

�Converse part� 1oZ suppose that ܣ is an interval, and there e[ists open subset 
ܷ�and�ܸ of Թ such that � ؿ � ׫ �ǡ � ת � ת � ൌ ܷ Ǥ�and neither׎ ת ܸ nor ܣ ת  is ܣ
empty. Let ܽ א ܷ ת ܾ and ܣ א ܸ ת ܽ We may assume that .ܣ ൏ ܾǤ Science ܣ is an 
interval, for eachݐ� Zith ܽ ൑ ݐ ൑ ܾǡ�Ze have ݐ א ݐ and hence either ܣ א ܷ�orݐ� א ܸǤ 
Let ܧ ൌ ሼݐ א ሾܽǡ ܾሿǣ ݐ א ܷሽ�and let ܿ ൌ ܽ Then .ܧ��� ൑ ܿ ൑ ܾǡ so ܿ א ܿ Ǥ Ifܣ א ܸ, 
then ܿ ൐ ܽǡ and ሺܿ െ ߳ǡ ܿ ൅ ߳ሻ ؿ ܸ for some ߳ ൐ Ͳǡ ܸ is open. %ut science ܿ  is least 
upper bound of ܧǡ there e[ist ݐ א ሺܿ െ ߳ǡ ܿሿ Zith ݐ א ܷǤ This contradiction shoZs 
that ܿ ב ܸǤ��IF ܿ א ܷ, then ܿ ൏ ܾ�and ሺܿ െ ߳ǡ ܿ ൅ ߳ሻ ؿ ܷ for some ߳ ൐ ͲǤ %ut then 
there e[ist ݐ ൐ ܿ Zith ݐ א ሾܽǡ ܾሿ ת ܷǡ contadicting the fact that ܿ is an upper bound 
of ܧǤ Thus our assumption that both ܣ ת ܷ and ܣ ת ܸ are non-empty is invalid. 
Thus ܣ is connected. 

1.13.4 Theorem: - Let ܧ ؿ Թ௡ is connected subset and ݂ǣܧ� ՜ Թ is continuous, 
then ݂ሺܧሻ ؿ Թ��is connected. 

Proof: - Let ݂ሺܧሻ is disconnected, then there e[ist open subset ܷ and ܸ of Թ such 
that ݂ሺܧሻ ؿ ܷ ׫ ܸǡ ܷ ת ܸ ת ݂ሺܧሻ ൌ ܷ Ǣ�and׎ ת ݂ሺܧሻ ് ǡ׎ ܸ ת ݂ሺܧሻ ്   Ǥ׎
%ut then ݂ିଵሺܷሻ and ݂ିଵሺܸሻ are open� science f is continuous, 
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 ݂ିଵሺܷሻ ׫ ݂ିଵሺܸሻ ൌ ܷ Ǣ sinceܧ ׫ ܸ� ـ ݂ሺܧሻǡ ݂ିଵሺܷሻ ת ݂ିଵሺܸሻ ൌ �׎  
science ݂ሺܧሻ ת ܷ ת ܸ ൌ   .Ǣ�and neither ݂ିଵሺܷሻ nor ݂ିଵሺܸሻ is empty׎

Thus ܧ is disconnected Zhenever ݂ሺܧሻ is disconnected.    

1.14 Let us sum up 

In this chapter Ze have learnt the folloZing: 
x Inner product and norm on Թ௡, open and closed subset of Թ௡Ǥ 
x Operator norm ȁȁܶȁȁ of linear transformation and its properties.  
x Connectedness and compactness on Թ௡Ǥ 
x Continuous function on Թ௡ and its behavior Zith connected and compact 

subset of Թ௡Ǥ  

1.1� Unit end E[ercise 

1. Define the folloZing terms and find 2 to 3 e[amples for each. 
i� Vector spaces   ii�   Inner product spaces 
iii� 1orm Linear spaces                 iv�   Metric Spaces 

2. Prove the properties of 1.3.1 

3. For ݔ ൌ ሺݔଵǡ ଶሻݔ א ԹଶǤ 
We define� �ሻ�หȁ�ȁห

ଵ
ൌ ȁ�ଵȁ ൅ ȁ�ଶȁ 

                   ��ሻ�หȁ�ȁห
ଶ
ൌ ඥ�ଵଶ ൅ �ଶଶ 

           ���ሻ�หȁݔȁห
ஶ
ൌ ����ሼȁݔଵȁǡ ȁݔଶȁሽ 

Prove that ȁȁǤ ȁȁଵǡ ȁȁǤ ȁȁଶ�and�ȁȁǤ ȁȁஶ define the norms on ԹଶǤ  

1ote� - ȁȁǤ ȁȁଶ is called usual or Euclidean norm. 

4. State and prove the Cauchy- SchZar] ineTuality on Թ௡�Zhere Թ௡�is vector 
space over the field ԧǤ 

5. Prove the folloZing properties of inner product. Consider ݔǡ ݕ א Թ௡ and ܽ in 
ԹǤ 
݅ሻ ൏ ǡݔ ݕ ൐ൌ�൏ ǡݕ ݔ ൐ 
݅݅ሻ ൏ ǡݔܽ ݕ ൐�ൌ ܽǤ൏ ǡݔ ݕ ൐ 

݅݅݅ሻݒሻ ൏ ǡݔ ݕ ൐�ൌ �
หȁݔ ൅ ȁหଶݕ െ หȁݔ െ ȁหଶݕ

Ͷ
��ሺܲݕݐ݅ݐ݊݁݀݅�݊݋݅ݐܽݖ݅ݎ݈ܽ݋ሻ 

6. Prove that ห�ȁȁݔȁห െ หȁݕȁȁ�ห �൑ หȁݔ െ  ȁหǤݕ

7. Prove that ݂ǣ�Թ௡ ՜ Թ defined by ݂ሺݔሻ ൌ ȁȁݔȁȁ is continuous function. 
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8. Let ݂�and ݃ be integrable on ሾܽǡ ܾሿ then prove that, 

 ቚ׬ ݂Ǥ ݃௕
௔ ቚ ൑ ቀ׬ ݂ଶ௕

௔ ቁ
భ
మ Ǥ ቀ׬ ݃ଶ௕

௔ ቁ
భ
మ��This is Cauchy-SchZar] ineTuality in 

integrable space� �Hint:- Consider separately the case Ͳ ൌ ׬ ሺ݂ െ ሻଶ௕݃ߣ
௔  for 

some ߣ א Թ�and Ͳ ൏ ׬ ሺ݂ െ ሻଶ௕݃ߣ
௔  for all ߣ�in ԹǤ 

9. Prove that closed rectangle in Թ௡ is indeed a closed set. 

10. Prove that interior of any set ܣ and e[terior of any set ܣ �i.e. interior of Թ௡̳ܣ� 
are open. 

11. Prove that finite union of open set is open. Also, prove arbitrary union of 
open set is open. 

12.  Prove that finite intersection of open set is open. Does the arbitrary 
intersection of open set is open" 

13. Prove that finite intersection of closed set is closed. Also, prove arbitrary 
intersection of closed set is closed. 

14. Prove that finite unions of closed sets are closed. Does the arbitrary unions 
of closed sets are closed" 

15. Prove that boundary ߲ܣ of set ܣ is closed. 

16. Prove that ሼݔ א Թ௡ǣ หȁݔ െ ܽȁห ൏ ��ሽ is openݎ Zhere ݎ is some positive real 
number. 

17. Find the interior, e[terior and boundary of the folloZing sets. 

݅ሻ�ሼݔ א Թ௡ǣ หȁݔ െ ܽȁห ൏ ͳ�ሽ 

݅݅ሻ�ሼݔ א Թ௡ǣ หȁݔ െ ܽȁห ൌ ͳ�ሽ 

 ݅݅݅ሻ�ሼݔ א Թ௡ǣ Eachݔ�௜�rationalሽ 

18. ChecN that ܶǣ�Թ௡ ՜ Թ௠ǡ�defined as folloZs are linear transformation or not 

݅ሻ�ܶሺݔሻ ൌ ݔ ൅ ͳԹ೙ 

݅݅ሻ�ܶሺݔሻ ൌ �ͲԹ೙ 

݅݅݅ሻ�ܶሺݔሻ ൌ  ݔʹ

19. Let ܵǡ ܶǣԹ௡ ՜ Թ௠ and ܴǣԹ௠ ՜ Թ௞ be the linear map then prove that 
 ܵ ൅ ܶǡ ǡܵ݋ܴ ܽ݊݀�ܿܶ�ሺܿ א Թሻ are also a linear map. 

20. Prove the properties of ȁȁܶȁȁ of 1.7.3 

21. Prove that continuous real values function defined on a compact set is 
bounded �Ref. C.C. Pugh� 
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22.  Prove that the folloZing are eTuivalent for the continuous function 
 ݂ǣ ܣ ؿ Թ௡ ՜ Թ௠ 

i� The ሺ߳ǡ  ሻ- conditionߜ

ii� The seTuential convergence preservation condition 

iii� The closed set condition i.e. inverse image of closed set in Թ௠ is closed 
in ܣ ؿ Թ௡Ǥ 

iv� The open set condition i.e. inverse image of open set in Թ௠ is open in 
ܣ ؿ Թ௡Ǥ �Ref. C.C. Pugh� 

23. Prove that every compact set is closed and bounded. �Ref. C.C. Pugh� 

24. The closed interval ሾܽǡ ܾሿ ؿ Թ is compact. �Ref. C.C. Pugh� 

1.1� References 

1.  C. C. Pugh, Mathematical Analysis, Springer UTM. 

2.  A. %roZder, Mathematical Analysis an Introduction, Springer. 

3.  W. Rudin, Principals of Mathematical Analysis, Mc*raZ-Hill India.  

4.  M. SpivaN, Calculus on Manifolds, Harper-Collins Publishers 
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UNIT 2 
2 

DI))ERENTIATION O) )UNCTIONS 
O) SE9ERAL 9ARIABLES              

Unit Structure 

2.0 ObMectives 

2.1  Introduction 

2.2  Total Derivative 

2.3  Partial Derivatives 

2.4  Directional Derivatives 

2.5  Summary  

2.0 Objectives 

After reading this unit you should be able to  

x define a differentiable function of several variables 

x define and calculate the partial and directional derivatives �if they e[ist� of a 

function of several variables 

x establish the connection betZeen the total, partial and directional derivatives 

of a differentiable function at a point 

2.1 Introduction 

<ou have seen hoZ to e[tend the concepts of limit and continuity to functions 

betZeen metric spaces. Another important concept is differentiation. If Ze try to 

apply this to functions betZeen metric spaces, Ze encounter a problem. We realise 

that apart from the distance notion, the domain and codomain also need to have an 

algebraic structure. So, let us consider Euclidean spaces liNe n . Which have Zhich 

11
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have both metric and algebraic structures. Functions betZeen tZo Euclidean spaces 

are Zhat Ze call functions of several variables.  

In this chapter Ze shall introduce the concept of differentiability of a function of 

several variables. The e[tension of this concept from one to several variables Zas 

not easy. Many different approaches Zere tried before this final one Zas accepted. 

The definition may seem a little difficult in the beginning, but as you Zill see, it 

alloZs us to e[tend all our NnoZledge of derivatives of functions one variable to 

the several variables case. <ou may have studied these concepts in the third year 

of graduation.  So, here Ze shall try to go a little deeper into these concepts, and 

deal Zith vector functions of several variables. 

2.2 Total Derivative 

To arrive at a suitable definition of differentiability of functions of several 

variables, mathematicians had to closely e[amine the concept of derivative of a 

function of a single variable. To decide on the approach to e[tension of the concept, 

it Zas important to NnoZ Zhat Zas the essence and role of a derivative. So, let us 

recall the definition of the derivative of a function :f o  

We say that f is differentiable at a�R, if the limit,  
0

lim
oh h

afhaf ���� ��  e[ists. 

 In that case, Ze say that the derivative of f at a,  


� �f a    
0

lim
oh h

afhaf ���� ��  .......(2.1� 

So, Ze taNe the limit of the ratio of the increment in f�x� to the increment in x. 1oZ, 

Zhen our function is defined on Rn, the increment in the independent variable Zill 

be a vector. Since division by a vector is not defined, Ze cannot Zrite a ratio similar 

to the one in �2.1�. %ut �2.1� can be reZritten as  

   
0

lim
oh

>
h

afhaf ���� ��   − 
� �f a  @    0, or   

0
lim
oh

> � � � � 
� �.f a h f a f a h
h

� � � @   0, or 
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0

� �lim
h

r h
ho

  0, Zhere r�h�   f�a�h� – f�a� – 
� �f a .h.  

So, Ze can Zrite f�a�h�   f�a� � 
� �f a .h � r�h�, ........................�2.2� 

where the “remainder” r�h� is so small, that � �r h
h

 tends to ]ero as h tends to ]ero. 

For a fi[ed a, f�a�, and 
� �f a are fi[ed real numbers. This means, e[cept for the 

remainder, r�h�, �2.2� e[presses f�a � h� as a linear function of h. This also helps us 

in “linearizing” f. We say that for points close to a, the graph of the function f can 

be appro[imated by a line.  

Thus, 
� �f a  gives rise to a linear function L from to . 

L: o ,   h ՜� 
� �f a .h, Zhich helps us in lineari]ing the given function f near 

the given point a. �2.2� then transforms to  

f�a � h�   f�a� � L�h� � r�h�                          ...........................�2.3� 

It is this idea of lineari]ation that Ze are noZ going to e[tend to a function of 

several variables. 

Definition 2.1 Suppose E is an open set in n , f : E mo , and a E� . We say 

that f is differentiable at a, if there e[ists a linear transformation : n mT o ,   

such that 

0
lim
oh

צሻࢎሺࢀሻିࢇሺࢌሻିࢎାࢇሺࢌצ
צࢎצ

    0                           ......................... �2.4� 

and Ze Zrite 
� �f a    T. 

If f is differentiable at every point in E, Ze say that f is differentiable in E. 

Remark 2.1  

i�  %old letters indicate vectors. 

ii�  Since E is open, ݎ�׌ ൐ Ͳ, such that %�a, r� ؿ E. We choose h, such that 

 .E א�r, so that  a � h > צhצ 
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iii�  The norm in the numerator of �2.4� is the norm in Rm, Zhereas the one in the 

denominator is the norm in Rn. 

iv�  The linear transformation T depends on the point a. So, Zhen Ze have to deal 

Zith more than one point, Ze use the notation, Ta, Tb, and so on. 

 We have seen that in the one variable case, the derivative defines a linear function,  

h ՜ f1�a�.h from R to R. Similarly, here the derivative is a linear transformation 

from Rn to Rm.  With every such transformation, Ze have an associated m  n
matri[. The Mth column of this matri[ is T(ej�, Zhere ej is a basis vector in the 

standard basis of Rn. 

For a given point a, the linear transformation Ta is called the total derivative of f at 

a, and is denoted by f1�a� or Df�a�. We can then Zrite 

 f(a + h) = f(a) + Ta(h) + r(h),where ࢘ሺࢎሻ
�צࢎצ

 ՜ ૙, as h՜ ૙. .. (2.�)                   

We noZ give a feZ e[amples.  

E[ample 2.1 : Consider f: Rn ՜ Rn,  f(x) = a + x, Zhere a is a fi[ed vector in Rn . 

Find the total derivative of f at a point p א Rn, if it e[ists. 

Solution : 1oZ, f(p + h) – f(p) = h.   So, if Ze taNe T to be the identity 

transformation from Rn to Rn, then Ze get                  

      f(p + h) – f(p) – T(h)   0,  and hence 

0
lim
oh

צሻࢎሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌצ
צࢎצ

ൌ 0.                                                

Comparing this Zith 2.5, Ze conclude that the identity transformation is the total 

derivative of  f at the point p. 

E[ample 2.2 : Find the total derivative, if it e[ists, for f : R2՜ R2,  f(x, y) = (x2, y2), 

at a point a   �a1, a2�. 

Solution : If f is differentiable, Ze e[pect Ta to be a 2 2  matri[.   
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Let h = (h1, h2). 1oZ, 

f(a + h) – f(a)   �ሺܽଵ ൅ ݄ଵሻଶǡ ሺܽଶ ൅ ݄ଶሻଶሻ െ ሺܽଵଶǡ ܽଶଶሻ 

                          �ʹܽଵ݄ଵ ൅ ݄ଵଶǡ ʹܽଶ݄ଶ ൅ ݄ଶଶ� 

                          (2ܽଵ݄ଵǡ ʹܽଶ݄ଶ� � �݄ଵଶǡ ݄ଶଶ� 

                         �൬ʹܽଵ Ͳ
Ͳ ʹܽଶ

൰ ൬݄ଵ݄ଶ
൰� �݄ଵଶǡ ݄ଶଶ� 

We taNe Ta   ൬ʹܽଵ Ͳ
Ͳ ʹܽଶ

൰ , and r(h)   �݄ଵଶǡ ݄ଶଶ�, and Zrite  

f(a+h) = f(a) + Ta(h) + r(h), Zhere ࢘ሺࢎሻ
�צࢎצ

 ൌ� ሺ௛భ
మǡ���௛మమሻ

ξሺ௛భమା௛మమሻ
՜ 0, as h՜ ૙. 

Thus Ta is the total derivative of  f at a.  

1oZ that Ze have defined the total derivative, let us see hoZ many of the results 

that Ze NnoZ about derivatives of functions of a single variable, hold for these total 

derivatives. 

Theorem 2.1: If f : Rn ՜ Rm is differentiable at a א Rn, then its total derivative is 

uniTue. 

Proof :  Suppose f has tZo derivatives, T1 and T2 at a, and let   T   T1 – T2. Let h 

  ,Rn א

h ് 0, and t א R, such that t ՜ 0. 

Then th ՜ 0 as  t ՜ 0. 

Since T1 is a total derivative of f at a,  

0
lim
ot

צሻࢎ૚ሺ௧࢘צ
צࢎ௧צ

ൌ ���
0

lim
ot

צሻࢎ૚ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌצ
צࢎ௧צ

ൌ 0 ...................... �2.6�  

Since T2 is also a total derivative of f at a,  

0
lim
ot

צሻࢎ૛ሺ௧࢘צ
צࢎ௧צ

ൌ ���
0

lim
ot

צሻࢎ૛ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌצ
צࢎ௧צ

ൌ  0     ......................�2.7� 
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Thus, צ ሻࢎݐሺࢀ צ���ൌצ ሺࢀ૚ െ ሻࢎݐ૛ሻሺࢀ צ��ൌצ ሻࢎݐ૚ሺࢀ െ ሻࢎݐ૛ሺࢀ  �צ

צ =   ࢇሺࢌ ൅ ሻࢎݐ െ ሻࢇሺࢌ െ ሻࢎݐ૛ሺࢀ െ ሾࢌሺࢇ ൅ ሻࢎݐ െ ሻࢇሺࢌ െ ሻሿࢎݐ૚ሺࢀ  צ

  ൑צ ࢇሺࢌ� ൅ ሻࢎݐ െ ሻࢇሺࢌ െ ሻࢎݐ૛ሺࢀ צ ൅צ ࢇሺࢌ� ൅ ሻࢎݐ െ ሻࢇሺࢌ െ ሻࢎݐ૚ሺࢀ  צ

Therefore, ࢀצሺ௧ࢎሻצ
צࢎ௧צ

 ൑� צሻࢎ૛ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌ�צ
צࢎ௧צ

צࢎ௧צצሻࢎ૚ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌ�צ  +  �
 

Since T is a linear transformation, T(th) = tT(h). Therefore,  

 ȁ௧ȁࢀצሺࢎሻצ
ȁ௧ȁצࢎצ

 ൑� צሻࢎ૛ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌ�צ
צࢎ௧צ

צࢎ௧צצሻࢎ૚ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌ�צ  +  �
. 

So, using �2.6� and �2.7� , Ze get 

0൑�
0

lim
ot

צሻࢎሺࢀצ��
צࢎצ

�൑ �
0

lim
ot

צሻࢎ૛ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌ�צ
צࢎ௧צ

���൅�
0

lim
ot

צሻࢎ૚ሺ௧ࢀሻିࢇሺࢌሻିࢎା௧ࢇሺࢌ�צ
צࢎ௧צ

ൌ��0 

Since  ࢀצሺࢎሻצ
צࢎצ

  is independent of t, this means ࢀצ�ሺࢎሻצ
צࢎצ

 = 0,z 

 Zhich means that צ ሻࢎሺࢀ  .0   צ

1oZ, h Zas any non-]ero vector in Rn. Further, T�0�   0. Hence Ze conclude that 

T�h�   0 for all h א Rn. Thus T   T1 – T2 is the ]ero linear transformation. Thus, 

T1   T2. That is, the derivative is uniTue. 

In the ne[t e[ample Ze find the derivatives of some standard functions. 

E[ample 2.3 :  

i� Find the total derivative f1(a), if f : Rn ՜�Rm , f(x) = c,  

 Zhere c is a fi[ed vector in Rm and  a א�Rn. 

ii�  If   f : Rn ՜�Rm  is a linear transformation,  

 shoZ that Df(a) = f for every a א�Rn . 

 

 

mu
no
tes
.in



17

Chapter 2: Diff erentiation of Functions of Several Variables             

Solution : 

 i�  Since f is a constant function, Ze e[pect its derivative to be the ]ero 
transformation.  

 Here  f(a + h) – f(a) = c – c = 0. 

 If Ze taNe T to be the ]ero transformation, 

 
0

lim
oh

צ௥ሺ௛ሻצ
צ௛צ

ൌ ���
0

lim
oh

צ௙ሺ௔ା௧௛ሻି௙ሺ௔ሻି்ሺ௛ሻצ
צ௛צ

ൌ  0. 

 Hence f1�a� e[ists and is eTual to 0 for every a א Rn. 

ii� Since f is a linear transformation, f(a + h) = f(a) + f(h).   
If Ze taNe T   f, 

 r(h) = f(a + h) �� f(a) �� f(h)   0 ฺ   צ௥ሺ௛ሻצ
צ௛צ

ൌ �Ͳ�Ǥ� 

We have defined the total derivative of a function as a linear transformation. 1oZ 
Ze prove a result about linear transformations Zhich Ze may use later. 

Proposition 2.1: Every linear transformation T from Rn to Rm is continuous on Rn. 

Proof: If T is the ]ero linear transformation, it is clearly continuous.  
If  T ് 0, let p א Rn,  

p = (p1, p2, ..., pn�, and ߝ ൐ Ͳ. Suppose ^e1, e2, ..., en` is the standard basis for Rn. 
Choose ߜ ൌ צ   ȀM, Zhere Mߝ ܶሺ݁ଵሻ צ ൅ צ ܶሺ݁ଶሻ צ ൅....... � צ ܶሺ݁௡ሻ  .צ

If x = (x1, x2, ..., xn) is such that צ ࢞� െ ࢖��  .for i   1, 2, ..., n ߜ � _then _xi – pi ,ߜ � צ

Also, צ ࢞� െ ࢖�� צ�ฺ ߜ � צ ܶሺ࢞ሻ െ �ܶሺܘሻ צ   צ ܶሺܠ െ ሻܘ צ   צ ܶ൫ሺݔଵ െ ૚ࢋଵሻ݌ ൅
ሺݔଶ െ ૛ࢋଶሻ݌ ൅ ൅ڮ ሺݔ௡ െ ൯࢔ࢋ௡ሻ݌ ଵݔ൑ _ሺ  צ െ צ |ଵሻ݌ ܶሺࢋ૚ሻ ଶݔሺ|+ צ െ צ |ଶሻ݌
ܶሺࢋ૛ሻ ௡ݔሺ|+ .......  צ െ צ |௡ሻ݌ ܶሺ࢔ࢋሻ צ)ߜ � צ ܶሺࢋ૚ሻ צ �൅צ� ܶሺࢋ૛ሻ צ+.......+ צ
ܶሺ࢔ࢋሻ  ߝ = (צ

Thus, T is continuous at p. Since p Zas an arbitrary point of Rn, Ze conclude that 
T is continuous on Rn. 

In fact, since ߜ did not depend on p, Ze can conclude that T is uniformly continuous 
on Rn. 
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For functions of a single variable, Ze NnoZ that differentiability implies continuity. 
The ne[t theorem shoZs that this holds for functions of several variables too. 

Theorem 2.2 : If f : Rn ՜�Rm  is differentiable at p, then f is continuous at p. 

Proof : Since f is differentiable at p, there e[ists a linear transformation Tp  such 
that  

0
lim
oh

צሻࢎሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌצ
צࢎצ

ൌ 0.                                                

Thus, ߝ�׊ ൐ Ͳǡ ଵߜ�׌ ൐ Ͳǡ� such that  

צ ݄ �൏צ ��ଵߜ� ࢌצ �ฺ
ሺࢇାࢎሻିࢌሺࢇሻି࢖ࢀሺࢎሻצ

צࢎצ
 ʹȀߝ � 

Choose ߜଶ ൌ ���ሺͳǡ  ଵሻǤ Thenߜ

צ ݄ �൏צ צ�ฺ ��ଶߜ� �݂ሺ݌ ൅ ݄ሻ െ ݂ሺ݌ሻ െ ௣ܶሺ݄ሻ צ�ʹȀߝ� � צ ݄ ൑ צ  ʹȀߝ�

%y Proposition 2.1, Tp is continuous at 0, and Tp�0�   0. So, there e[ists ߜଷ ൐ Ͳǡ 
such that  

צ ࢎ �൏צ צ ฺ �ଷߜ� ሻࢎሺܘ܂ ൏צ  .ʹȀߝ�

1oZ choose ߜ ൌ ���ሺߜଶǡ  ଷሻǤ Thenߜ

צ ࢎ �൏צ � ��ߜ צ�ฺ ࢖ሺࢌ� ൅ ሻࢎ െ ሻ࢖ሺࢌ צ���൑צ ࢖ሺࢌ� ൅ ሻࢎ െ ሻ࢖ሺࢌ െ ሻࢎሺ࢖ࢀ צ �൅࢖ࢀ��ሺࢎሻ     �צ

�  ఌ
ଶ
൅� ఌ

ଶ
ൌ  .ߝ�

Thus, ���
՜૙ࢎ

࢖ሺࢌ ൅ ሻࢎ ൌ   .ሻ, and f is continuous at  p࢖ሺࢌ

With your NnoZledge of functions of one variable, you Zould e[pect that the 

converse of Theorem 2.2 does not hold. That is, continuity does not imply 

differentiability. The folloZing e[ample shoZs that it is indeed so. 

E[ample 2.4 : Consider the function f : R ՜�R2, f(x) = (|x|, |x|). We shall shoZ that 

f is continuous at 0, but is not differentiable there. 

*iven ߝ ൐ Ͳǡ� choose ߜ ൌ  Ȁξʹ. Thenߝ�

צ�ฺ ��ߜ � _]_ ሻݔሺࢌ� צ���ൌצ ሺȁݔȁǡ ȁݔȁሻ �൏צ ξߜଶ ൅ߜ�ଶ� ൌ �ξʹ� ߜ ൌ  .ߝ�

Hence, f is continuous at x   0. 
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1oZ suppose f is differentiable at x   0. Then there e[ists a linear transformation  

T : R ՜  R2, such that    

0
lim
oh

ሺ௛ሻࢀሺ଴ሻିࢌሺ௛ሻିࢌ
௛

   0   ฺ�
0

lim
oh

ሺȁ௛ȁǡȁ௛ȁሻିࢀሺ௛ሻ
௛

   0                                                         

                                      ฺ� ���
௛՜଴

ሺȁ௛ȁ
௛
ሺͳǡ ͳሻ െ ሺͳሻሻࢀ� ൌ ૙                  

Now, (1, 1) and ( −1, −1) are two distinct points in  R2,  

and %��1, 1�, 1� ת�B((−1, −1), 1) = ׎.  For 0 ! ߜ�׌ ,1   ߝ, such that                            

צ ݄ �൏צ ��ߜ� צ�ฺ � ȁ௛ȁ
௛
ሺͳǡ ͳሻ െ ሺͳሻሻࢀ� �൏צ  �2.8� ................………    .ߝ

Putting h   ߜȀʹ in �2.8�, Ze get צ � ȁ௛ȁ
௛
ሺͳǡ ͳሻ െ ሺͳሻሻࢀ� �ൌצ � ԡሺͳǡͳሻ െ ܶሺͳሻԡ ൏ ͳ. 

This means T�1� % א��1 ,�1 ,1�.                                     

Similarly, taking  h =  − ߜȀʹ, Ze get that T�1� א B((−1, −1), 1).  But this contradicts 

the fact that  B((1, 1), 1) and  B(( −1, − 1), 1) are disjoint.  

Thus, f is not differentiable at x   0. 

If   f : Rn ՜�Rm , then, as you NnoZ, Ze can Zrite f = (f1,f2, ...,fm), 

Zhere each fi  : Rn ՜�R,  

i   1, 2,...,m. These fis are called coordinate functions of f. Similarly, a linear 
transformation 

T : Rn ՜�Rm can be Zritten as T   �T1,T2, ...,Tm�, Zhere each Ti is a linear 
transformation from Rn to R. 

Theorem 2.3 : Let   f = (f1,f2, ...,fm) : Rn ՜�Rm, and p א Rn. f is differentiable at p, 
if and only if each fi, 1൑ ݅ ൑ m is differentiable at p. 

Proof : f is differentiable at p if and if there e[ists a linear transformation  
Tp : Rn ՜�Rm, such  

that  
0

lim
oh

צሻࢎሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌצ
צࢎצ

   0,  that is, if only if                                                        
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0
lim
oh

σצ ሾ೘
భ ௙೔ሺ࢖ାࢎሻି௙೔ሺ࢖ሻି்೔ሺࢎሻሿࢋ೔צ

צࢎצ
   0, Zhere ^e1, e2, ..., em` is the standard basis of Rm, 

if and only if, ����
0

lim
oh

ȁ௙೔ሺ࢖ାࢎሻି௙೔ሺ࢖ሻି்೔ሺࢎሻȁ
צࢎצ

i,  1൑ ׊ ,0  �� ݅ ൑ m. 

That is, if and only if each fi is differentiable and Dfi = Ti,  1 ,݅�׊൑ ݅ ൑ m. 

Thus, Df(p) = Tp = (Df1(p), Df2(p), ....., Dfm(p)). 

Theorem 2.4 :  Let f : Rn ՜�Rm and g : Rn ՜�Rm be tZo functions differentiable at 
p א Rn.  If k א R, then f � g and  kf are also differentiable at p. Moreover, 

D�f + g��p�   Df�p� � Dg�p�, and  D�kf��p�   kDf�p�. 

Proof : Let  Df�p�   T1, and Dg�p�   T2. Then T1 � T2 is also a linear transformation 
from Rn to Rm, and 

0�൑� 
0

lim
oh

צሻࢎ૛ሻሺࢀ૚ାࢀሻିሺ࢖ሻሺࢍାࢌሻିሺࢎା࢖ሻሺࢍାࢌሺצ
צࢎצ

 

   
0

lim
oh

צሻሿࢎ૛ሺࢀሻି࢖ሺࢍሻିࢎା࢖ሺࢍሻሿା�ሾࢎ૚ሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌሾצ
צࢎצ

 

൑�� 
0

lim
oh

צሻࢎ૚ሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌצ
צࢎצ

 � 
0

lim
oh

צሻࢎ૛ሺࢀሻି࢖ሺࢍሻିࢎା࢖ሺࢍצ
צࢎצ

   0. 

Therefore,  f + g  is differentiable at p, and  D�f + g��p�   T1 � T2   Df�p� � Dg�p�. 

1oZ, 
0

lim
oh

צሻࢎ૚ሺࢀሻି࢑࢖ሺࢌሻି௞ࢎା࢖ሺࢌ௞צ
צࢎצ

ൌ�_N_ 
0

lim
oh

צሻࢎ૚ሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌצ
צࢎצ

    0. 

Therefore, kf  is also differentiable and  D�kf��p�   kT1   kDf�p�. 

2.3 Partial Derivatives 

We NnoZ that the derivative of a function of one variable denotes the rate at Zhich 

the function value changes Zith change in the domain variable. In the case of 

functions of several variables, change in the domain vector variable means a change 

in any or all of its components. %ut if Ze consider change in only one component 

and study the rate at Zhich the function value changes, Ze get Zhat is NnoZn as 

the partial derivative of the function. Corresponding to each component of the 

variable, there Zill be a partial derivative. Here is the formal definition. 
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Definition 2.2  Let f : E�՜�Rm, Zhere E ك�Rn. Let x = (x1, x2, ..., xn� be an interior 

point of E. Then for every i, i   1, 2, ..., n, the limit 

0
lim
oh

�ሺ୶భǡ୶మǡǥǡ୶౤ሻࢌ�ሺ୶భǡ୶మǡǥǡ୶౟ା୦ǡ୶౟శభǡǥǡ୶౤ሻିࢌ
௛

, if it e[ists, is called the ith partial derivative 

of f Zith respect to [i at [. It is denoted by డ௙
డ௫೔

ǡ ௫݂೔ ǡ ௜݂. We Zrite డ௙ܦ�ݎ݋
డ௫೔

ሺ࢞ሻ to 

indicate the point at Zhich the partial derivative is calculated. 

Remark 2.2 :  

i�  If a function f has partial derivatives at every point of the set E,  

Ze say that f has partial derivatives on E. 

ii�  It is clear from the definition that a partial derivative can be defined at an 

interior point of E, and not on its boundary. 

iii�  If a function has a partial derivative at a point, its value depends on the values 

of the function in a neighbourhood of that point. So, if the function values 

outside this neighbourhood are changed, it does not affect the value of the 

partial derivative. 

The folloZing e[amples Zill maNe the concept clear. 

E[ample 2.� : Find the partial derivative of the function,  f�x, y, z) = xyz + x2z. 

Solution :  This is a real-valued function. <ou are already familiar Zith the partial 

differentiation of such a function.  

 డ௙
డ௫
��  

0
lim
oh

ሺ௫ା௛ሻ௬௭ାሺ௫ା௛ሻమ௭ି௫௬௭ି�௫మ௭�
௛

 = yz + 2xz. Similarly, you can checN that  

fy   xz, and f]   xy + x2. 

Let us taNe a vector-valued function in the ne[t e[ample. 

E[ample 2.� : Find the partial derivatives of the function,  

f : R3 ՜�R2, f(x, y, z) = (xy, z2), if they e[ist. 

Solution : 
0

lim
oh

ቀሺ௫ା௛ሻ௬ǡ௭మቁି�ሺ௫௬ǡ௭మሻ�

௛
   

0
lim
oh

ሺሺ௫ା௛ሻ௬ି௫௬�ǡ���଴ሻ�
௛
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                   �
0

lim
oh

ሺ௫ା௛ሻ௬ି�୶୷�
௛

ǡ
0

lim
oh

�଴�
௛
ሻ   �y, 0�.  

Therefore, డ௙
డ௫
��  �y, 0�. 

Proceeding similarly, Ze find that  డ௙
డ௬
��  �x, 0�, and  డ௙

డ௭
��  �0, 2z�. 

<ou must have observed that the partial derivatives of a vector function are formed 

by taNing the partial derivatives of its coordinate functions. In fact Ze have the 

folloZing theorem, Zhich establishes the connection betZeen differentiability of a 

vector-valued function and the e[istence of partial derivatives of its coordinate 

functions 

Theorem 2.� : Let E be an open subset of Rn, and f : E ՜�Rm.  

Suppose f   �f1,f2, ...,fm� is differentiable at p א E. Then the partial derivatives 

 డ௙೔
డ௫ೕ

 e[ist for i   1, 2,  ..., m, M   1, 2, ..., n. 

Proof : Since f is differentiable at p, there e[ists a linear transformation T,  

such that 
0

lim
oh

צሻࢎሺࢀሻି࢖ሺࢌሻିࢎା࢖ሺࢌצ
צࢎצ

ൌ Ͳ. Let h   teM, Zhere ^e1, e2, ...,en` is the 

standard basis of Rn. Then, h ՜ 0  if and only if t ՜ 0. Thus, 

 
0

lim
ot

צೕሻࢋሺ௧ࢀሻି࢖ሺࢌ࢐൯ିࢋା௧࢖൫ࢌצ
ȁ࢚ȁ

ൌ Ͳ. Therefore, 
0

lim
ot

ሻ࢖ሺࢌ࢐൯ିࢋା௧࢖൫ࢌ

࢚
ൌ T� ௝݁�. 

That is, 

�
0

lim
ot

ሻ࢖૚ሺࢌ࢐൯ିࢋା௧࢖૚൫ࢌ

࢚
ǡ

0
lim
ot

ሻ࢖૛ሺࢌ࢐൯ିࢋା௧࢖૛൫ࢌ

࢚
ǡ ǥ ǡ

0
lim
ot

ሻ࢖ሺ࢓ࢌ࢐൯ିࢋା௧࢖൫࢓ࢌ

࢚
�� 

  T� ௝݁�.           

Hence the limits e[ist, and డ࢏ࢌ
డ௫ೕ

�p� e[ists for all i   1, 2, ..., m. 

Since M Zas arbitrary, Ze conclude that  డ࢏ࢌ
డ௫ೕ

�p� e[ists for all i   1, 2, .., m, M   1, 2, .., n. 

If f : E ՜�Rm, Zhere E is an open subset of Rn, and if f is differentiable at p א E , 

then using Theorem 2.5, the matri[ of the linear transformation T can be Zritten as  
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ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

μ ଵ݂

μݔଵ
ሺ࢖ሻ

μ ଵ݂

μݔଶ
ሺ࢖ሻ Ǥ Ǥ ڄ

μ ଵ݂

μݔ௡
ሺ࢖ሻ

μ ଶ݂

μݔଵ
ሺ࢖ሻ

μ ଶ݂

μݔଶ
ሺ࢖ሻ Ǥ Ǥ Ǥ

μ ଶ݂

μݔ௡
ሺ࢖ሻ

Ǥ
ڄ
μ ௠݂

μݔଵ
ሺ࢖ሻ

μ ௠݂

μݔଶ
ሺ࢖ሻ Ǥ ڄ ڄ

μ ௠݂

μݔ௡
ሺ࢖ሻی

ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

 

This m [ n matri[ is called the -acobian matri[ of f at p, and is denoted by >f’(p�@ 

or >Df(p�@. 

If m   n, the determinant of the -acobian matri[ is called the -acobian of f at p, and 

is denoted by ����డሺ௙భǡ௙మǡǥǡ௙೘ሻሺ௣ሻ
డሺ௫భǡ௫మǡǥ ǡ௫೘ሻ

 .  

Thus, if f is differentiable at p, then the total derivative of f at p, T : Rn ՜�Rm is 

given by the -acobian matri[. For x   �x1, x2, ..., xn� א Rn,  

T�x�   >f’(p�@ቌ

௫భ
௫మ
ǤǤ
Ǥ
௫೙

ቍ. 

When m   1, f is a real-valued function, and T�ej�    డ୤
డ௫ೕ

ሺ࢖ሻ. Hence, the -acobian 

matri[ of T is the roZ matri[, > డ୤
డ௫భ

ሺ࢖ሻ�� డ௙
డ௫మ

ሺ࢖ሻ��ǥ�� డ௙
డ௫೙

ሺ࢖ሻ@. 

The vector form, � డ୤
డ௫భ

ሺ࢖ሻǡ డ௙
డ௫మ

ሺ࢖ሻǡ ǥ ǡ డ௙
డ௫೙

ሺ࢖ሻ� is called the gradient of f at p , and 

is denoted by ׏f(p), or gradf(p). 

If  h = (h1, h2, ..., hn� א Rn,  

Tp�h�     > డ௙
డ௫భ

ሺ࢖ሻ�� డ௙
డ௫మ

ሺ࢖ሻ��ǥ�� ப୤
ப୶౤

ሺ࢖ሻ@ ൮

௛భ
௛మ
ǤǤ
Ǥ
௛೙

൲. 

Thus, T�h�     డ௙
డ௫భ

ሺ࢖ሻ݄ଵ �൅�
డ௙
డ௫మ

ሺ࢖ሻ݄ଶ ൅��ǥ�൅
డ௙
డ௫೙

ሺ࢖ሻ݄௡,   or Tp�h�   ׏f(p)x  h. 

So, Ze can say that the total derivative Tp of a real-valued function is given by  

Tp �h�   ׏f(p)x�h.  
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E[ample 2.7 : Find the -acobian matri[ of    

i�  f�[, y�   �x2y, exy�    

ii�   f�x, y, z�   �xsinz, �yez� at �1, 2, �1�. 

Solution : i� f1�x, y) = x2y,  and  f2�x, y) = exy.  Therefore, డ௙భ
డ௫

   2xy, డ௙భ
డ௬

   x2,  

డ௙మ
డ௫
�  yexy, and  డ௙మ

డ௬
   xexy.  

Hence, >fi�x, y�@   ൤ ݕݔʹ ଶݔ
௫௬݁ݕ  ௫௬൨݁ݔ

డ௙భ
డ௫

   sinyz, and డ௙భ
డ௫
���1, 2, �1�   � sin2 

 డ௙భ
డ௬

 �1, 2, � 1�   � cos2,   డ௙భ
డ௭

 �1, 2, � 1�   2 cos2,    

 డ௙మ
డ௫
���1, 2, �1�   0,  డ௙మ

డ௬
 �1, 2, � 1�   � e-1,   డ௙మ

డ௭
 �1, 2, � 1�   � 2e-1. 

Thus, >fi�1, 2, � 1�@   ቀെ݊݅ݏʹ െʹ�ܿݏ݋ʹ ʹݏ݋ܿ�ʹ
Ͳ െ݁ିଵ െʹ݁ିଵቁ    

In the ne[t section Ze shall consider yet another type of derivative. 

2.4 Directional Derivatives 

Partial derivatives measure the rate of change of a function in the directions of the 

standard basis vectors. Directional derivatives measure the rate of change in any 

given direction. 

Definition 2.3 : Let f : E ՜ R, Zhere E is an open subset of Rn. Let u be a unit 

vector in Rn, and p א E. If 
0

lim
ot

௙ሺ࢖ା௧࢛ሻି�௙ሺ࢖ሻ
௧

 e[ists, then it is called the directional 

derivative of f at p in the direction u. It is denoted by డ௙
డ௨
ሺ݌ሻ or fu(p). 

E[ample 2.� : Find the directional derivatives of the folloZing functions: 

i� f�x, y)   2xy + 3y2 at p   �1, 1�, in the direction of v   �1, 1�. 
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ii� f(x, y�   x2y  at p   �3, 4�, in the direction of v   �1, 1�. 

Solution : i�  The unit vector u in the given direction is � ଵ
ξଶ
ǡ ଵ
ξଶ

�. Hence the 

reTuired directional derivative is 
0

lim
ot

௙൬ሺଵǡଵሻା�௧ሺ భ
ξమ
ǡ భ
ξమ
ሻ൰ି�௙ሺଵǡଵሻ

௧
. 

   
0

lim
ot

௙൬ቀଵା ೟
ξమ
ǡ���ଵା ೟

ξమ
ቁ൰ି�௙ሺଵǡଵሻ

௧
 

   
0

lim
ot

ଶሺଵା ೟
ξమ
ሻమାଷሺଵା ೟

ξమ
ሻమିହ

௧
     

0
lim
ot

ହξଶ௧ାହ௧మȀଶ
௧

    5ξʹ. 

 

ii�  We have the same unit vector u here. Therefore, 

Duf(p)    
0

lim
ot

௙൬ቀଷା ೟
ξమ
ǡ���ସା ೟

ξమ
ቁ൰ି�௙ሺଷǡସሻ

௧
    

0
lim
ot

ቀଷା ೟
ξమ
ቁ
మ
ሺସା௧Ȁξଶሻି�ଷ଺

௧
   ଷଷξଶ

ଶ
. 

E[ample 2.� : Find the directional derivatives, if they e[ist, in the folloZing 

cases:                                                         

i� f�x, y�   ൜ݔ ൅ ǡݕ ݕݔ�݂݅ ൌ Ͳ
ͳǡ ݁ݏ݅ݓݎ݄݁ݐ݋ ൠ,   at �0, 0�,  u   �u1, u2�, __u__   1 

ii� f�x, y�     ൝
௫௬మ

௫మା௬ర
ǡ ݂݅�ሺݔǡ ሻݕ ് ሺͲǡͲሻ

Ͳǡ���������݂݅�ሺݔǡ ሻݕ ൌ ሺͲǡͲሻ
ൡ       at �0,0�,   u   �1�ξʹ, 1�ξʹ�. 

Solution: i�   if u1 ് 0, u2 ് 0,    
0

lim
ot

௙൫ሺ଴ା௧௨భǡ���଴ା௧௨మሻ൯ି�௙ሺ଴ǡ଴ሻ
௧

     
0

lim
ot

ଵ�ି�଴
௧

 , Zhich 

does not e[ist. If either u1 or u2 is ]ero, Ze get the standard basis vectors, �1, 0�  

and �0, 1�. 

If u   �1, 0�,   
0

lim
ot

௙൫ሺ଴ା௧ǡ���଴ሻ൯ି�௙ሺ଴ǡ଴ሻ
௧

     ���
௧՜଴

௧�ି�଴
௧

     1. 

Similarly, if u   �0, 1�,  
0

lim
ot

௙൫ሺ଴ǡ���଴ା௧ሻ൯ି�௙ሺ଴ǡ଴ሻ
௧

     1. 
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Thus, the directional derivatives in these tZo directions e[ist, and are eTual to one. 

In any other direction, the derivative does not e[ist. 1ote that the directional 

derivative in the direction �1, 0� is fx, and that in the direction �0, 1� is fy. Thus, this 

function has both the partial derivatives at �0, 0�. 

ii�   ���
௧՜଴

௙൬ቀ଴ା ೟
ξమ
ǡ���଴ା ೟

ξమ
ቁ൰ି�௙ሺ଴ǡ଴ሻ

௧
        ���

௧՜଴

೟యȀమξమ
೟మ
మ శ

೟ర
ర

�ି�଴

௧
        ���

௧՜଴

ξଶ
ሺଶା௧మሻ

    1�ξʹ. 

Thus,   Duf�0, 0�    1�ξʹ. 

In fact, if Ze taNe u   �cosߠ, sinߠ�, then Ze can shoZ that f has directional 

derivative at �0, 0� in the direction of u, Zhatever be ߠ. That is, the directional 

derivatives of f at �0, 0� e[ist in all directions. %ut you can easily shoZ that this 

function is not continuous at �0, 0� by using the tZo-path test. Recall, that you need 

to shoZ that the limits of f, at �0, 0� along tZo different paths  are different. Then 

by Theorem 2.2 Ze can conclude that f is not differentiable at �0, 0�. 

This e[ample shoZs that the e[istence of all directional derivatives at a point does 

not guarantee differentiability there. %ut Ze have the folloZing theorem: 

Theorem 2.7: Let f : E ՜ R, Zhere E is an open subset of Rn. If f is differentiable 

at p א Rn, then the directional derivatives of f at p e[ist in all directions. 

Proof : Since f is differentiable at p, there e[ists a linear transformation,  

T: Rn ՜ R, such that  

                
0

lim
oh

ȁ௙ሺ࢖ାࢎሻି௙ሺ࢖ሻି்ሺࢎሻȁ
צࢎצ

ൌ Ͳ. 

Let u be any unit vector in Rn, and taNe h   tu. Then h ՜ 0, as t ՜ 0. Therefore, 

0
lim
ot

ȁ௙ሺ࢖ା௧࢛ሻି௙ሺ࢖ሻି்ሺ௧࢛ሻȁ
ȁ௧ȁ

ൌ Ͳ.   This means,        

 
0

lim
ot

ȁ ௙ሺ࢖ା௧࢛ሻି௙ሺ࢖ሻି௧்ሺ࢛ሻ
ȁ௧ȁ

ȁ ൌ Ͳ.   That is, 

0
lim
ot

௙ሺ࢖ା௧࢛ሻି௙ሺ࢖ሻ
௧

ൌ T�u�,   or,  Duf(p�   T�u�.  ...................... �2.5�  

mu
no
tes
.in



27

Chapter 2: Diff erentiation of Functions of Several Variables             

Since u Zas an arbitrary unit vector, Ze conclude that the directional derivatives of 

f at p e[ist in all directions. 

1oZ, if  u = (u1, u2, ..., un�, T�u�   T� u1e1 +  u2e2 + ... + unen�, Zhere ^e1, e2, ..., en` 

is the standard basis of Rn. Therefore, by �2.5�, 

T�u�   u1T�e1� � u2T(e2) + ... + unT(en) 

           u1 ܦ௘భf(p) + u2 ܦ௘మf(p) + ... +  un ܦ௘೙f(p) 

           u1�డ௙ሺ௣ሻడ௫భ
  �  u2��డ௙ሺ௣ሻడ௫మ

  �  ... � un�డ௙ሺ௣ሻడ௫೙
 

f(p)x׏                u     

Thus,   Duf(p�   ׏f(p)x  u                            ........................   �2.6� 

�2.6� gives an easy Zay to find a directional derivative of a differentiable function, 

if its partial derivatives are NnoZn. For e[ample, if f�[, y�   x2 + y2, then fx and fy 

at �1, 2� are 2 and 4, respectively. So, the directional derivative of f at �1, 2� in the 

direction 2i – 3M is given by   �2i � 4M�ל ሺଶ௜ିଷ௝
ξଵଷ

ሻ   ି଼
ξଵଷ

. 

This concept of directional derivatives can be e[tended to vector-valued functions. 

The directional derivative of a vector-valued function is a vector formed by the 

directional derivatives of its coordinate functions. Thus, to find the directional 

derivative of  f(x, y) = (x + y, x2), at �1, 2� in the direction of �3, 4� , Ze first find 

the directional derivatives of f1�x, y) = x + y, and f2(x, y) = x2 . <ou can checN that 

these are 7�5 and 6�5, respectively. Therefore, the reTuired directional derivative of 

f is �7�5, 6�5�. 

We have seen in Theorems 2.6 and 2.7, that differentiability of f at a point 

guarantees the e[istence of partial and directional derivatives there. We have also 

noted that the converse statements are not true. Our ne[t theorem gives us a 

sufficient condition Zhich guarantees the differentiability of a function at a point. 

Theorem 2.� : Let E be an open subset of Rn, and f : E ՜�Rm, f = (f1,f2, ...,fm�. If 

all the partial derivatives, Djfi(x) of all the coordinate functions of f e[ist  in an open 
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set containing a, and if each function DMfi is continuous at a, then f is differentiable 

at a. 

Proof : In the light of Theorem 2.3, it is enough to  prove this theorem for the case 

m   1. So, Ze consider a scalar function f from Rn  to R, all Zhose partial derivatives 

DMf are continuous at a. Since E is open, for a given 0 ! ߝ, Ze can find r ! 0, such 

that the open ball,  

%�a, r� ؿ    .�n, for M    1, 2, ... , nߝ � _ � r ฺ_ Djf(x) � Djf(a� and __ x – a __ ,ܧ

.                                                                                                         ................. �2.7� 

1oZ, suppose h = (h1, h2, ... , hn),  __h__ � r.  Let v0 = 0, v1 = h1e1, v2 = v1 + h2e2, .. ,  

vn = vn – 1 + hnen.    Then  f(a + h) – f(a)   σ ሾ݂൫ࢇ ൅ ࢜࢐൯ െ �݂ሺࢇ ൅ ࢜࢐ି૚ሻሿ௡
௝ୀଵ .   

.                                                                                                           .............. �2.8� 

Since __vj|_ � r, vj א %�a, r�, and since %�a, r� is conve[, the line segment Moining the 

points,  

a+ vj – 1 and a + vj  lies in it, for all M   1, 2, ... , n. Therefore, Ze can apply the Mean 

Value Theorem to the Mth term in the sum �2.8�, and get 

f(a + vj) – f(a + vj − 1) = hjDjf(a + vj – 1 + ߠ௝hjej) , for some ߠ௝  Then, using    .�1 ,0� א

�2.7�, Ze can Zrite 

_f(a + h) – f(a) � σ ௝݄ሺ�୨݂ሻ௡
௝ୀଵ (a)|   _σ ௝݄ሺ�୨݂ሻ௡

௝ୀଵ  (a + vj − 1 +  ߠ௝hjej )- σ ௝݄ሺ�௝݂ሻ௡
௝ୀଵ (a)|  

                                                  ൑ ଵ
௡
σ ȁ ௝݄ȁߝ௡
௝ୀଵ  ൑ ȁȁࢎȁȁߝ, for all h, such that __h__ � r. 

This means that   

0
lim
oh

צሻࢎሺ′ࢌሻିࢇሺࢌሻିࢎାࢇሺࢌצ
צࢎצ

ൌ 0, Zhere ݂ ′ is the linear transformation, Zhose matri[ 

>݂ ′ሺࢇሻ@ consists of the roZ, �D1f(a), D2f(a), ...., Dnf(a)). 

Thus, f is differentiable at a. 

Definition 2.4 : A function f : E ՜�Rm, f = (f1,f2, ...,fm), Zhere E is an open subset 

of Rn, is said to be continuously differentiable, or, a C1 function, if DMfi  is 

continuous on E for all M, M   1, 2, ..., n, and for all i, i   1, 2, ..., m. 
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The continuity of partial derivatives assumed in Theorem 2.8, is only a sufficient 

condition, and not a necessary one. That is, there may be functions Zhich are 

differentiable at a point, but do not have continuous partial derivatives there. We 

noZ give you an e[ample, and asN you to ZorN out the details �See E[ercise 3.� 

E[ample 2.10 : Consider the function f : R2→ R given by 

f(x, y)   

ە
ۖ
۔

ۖ
ݔۓ

ଶ݊݅ݏ ଵ
௫
൅ ݊݅ݏଶݕ ଵ

௬
ǡ���݂݅ݕݔ�� ് Ͳ

݊݅ݏଶݔ ଵ
௫
ǡ���݂݅ݔ�� ് Ͳǡ ݕ ൌ Ͳ

݊݅ݏଶݕ ଵ
௬
�ǡ���݂݅ݔ� ൌ Ͳǡ ݕ ് Ͳ

Ͳǡ���݂݅ݔ� ൌ Ͳ ൌ ݕ

 

This function is differentiable at �0, 0�, but neither 

 ௫݂ ൌ � ቊʹ݊݅ݏݔ
ଵ
௫
െ ݏ݋ܿ ଵ

௫
ǡ���݂݅ݔ� ് Ͳ

Ͳǡ ݔ�݂݅ ൌ Ͳ
, nor ௬݂ ൌ � ቊ

݊݅ݏݕʹ ଵ
௬
െ ݏ݋ܿ ଵ

௬
ǡ���݂݅ݕ� ് Ͳ

Ͳǡ ݕ�݂݅ ൌ Ͳ
�is 

continuous at �0, 0�. 

Here are some e[ercises that you should try. 

E[ercises:  

1� ShoZ that the folloZing function is differentiable at all x in Rn. 

     f : Rn ՜ f(x) = x�x  ,ࡾ�  T�x�,  Zhere T : Rn ՜�Rn  is a linear transformation. 

2� Let f(x, y�   �x3 + x, x2 – y2, 2x + 3y3�,  p   �2, 1�, v   �4, 5�. Compute the 

partial derivatives of f, and the directional derivative of f in the direction v, 

at p.  

3� Prove the assertions in E[ample 2.10. �Hint: To shoZ that f is differentiable, 

checN that f(h, k)  - f(0, 0) – h(hsinଵ
௛
) + k(ksinଵ

௞
)   0, and so, Df   �hsinଵ

௛
, ksinଵ

௞
) �. 
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2.� Summary 

In this unit Ze have e[tended the concept of differentiation from functions of one 

variable to functions of several variables. Apart from the total derivatives, Ze have 

also defined partial derivatives, and directional derivatives. We have proved that 

differentiability implies the e[istence of all partial and directional derivatives at a 

point, but the converse is not true. As in the case of functions of one variable, Ze 

prove that differentiable functions are continuous, but not vice versa. We have also 

derived a sufficient condition for differentiability in terms of the partial derivatives. 

��

�������
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UNIT 2 
3 

DERI9ATI9ES O) +I*+ER ORDER 

Unit Structure  

3.0  ObMectives 

3.1  Introduction 

3.2  -acobian Matri[ and Chain Rule 

3.3  Higher order partial derivatives 

3.4  Mean Value Theorem 

3.5  Summary 

3.0 Objectives 

After reading this chapter, you should be able to  

x differentiate a composite of tZo vector-valued functions 

x define and calculate derivatives of higher order 

x derive the conditions for the eTuality of mi[ed partial derivatives 

x state and prove the Mean Value Theorem 

3.1 Introduction                                                                                                      

In the last chapter you have seen hoZ functions of several variables are 
differentiated. 1oZ Ze shall start by discussing hoZ a composite function of tZo 
differentiable functions can be differentiated. The -acobian matri[ introduced in 
the last chapter proves useful in this.  

One of the important applications of derivatives is the location of e[treme points 
of a function. In the ne[t chapter Ze are going to see hoZ this concept can be 
e[tended to scalar functions of several variables. %ut Ze shall do the necessary 
spade-ZorN in this chapter. So, Ze shall introduce higher order derivatives. We 

31
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shall also study the conditions under Zhich mi[ed partial derivatives are eTual. <ou 
may recall that the Mean Value Theorem Zas one of the most important theorems 
that you studied in Calculus in F. <. %. Sc. We shall see Zhether this theorem can 
be applied to functions of several variables. 

3.2 Jacobian Matri[ and Chain Rule                           

We have seen in Theorem 3.5, that if f: Rn  Rm, is differentiable at p, then all 
partial derivatives of all coordinate functions of f e[ist at p. That is,  
if f = (f1, f2, ... , fm�, then Djfi(p) e[ists for all i   1, 2, ..., m and all M   1, 2, ..., n. 
We have also seen that if ^e1, e2, ..., en` is the standard basis for Rn, then 

 (p)(ej) = (Djf1(p), Djf2(p), ..., Djfm(p)). 

If  h     is a vector in Rn, then (p)(h)      (p), 
Zhich is a linear transformation from Rn to Rm, thus has the matri[,   

 

 

As Ze have already mentioned in Chapter 3, this m [ n matri[, called the -acobian 
matri[, is denoted by >Df(p�@. The Nth roZ of this matri[ is the gradient vector,  

fk(p�,  and the Mth column is the image of ej under the linear transformation Djf(p). 

Thus, the -acobian matri[ of f is formed by all first order partial derivatives of f. 
This means, Ze can Zrite the -acobian matri[ of any function, all of Zhose partial 
derivatives e[ist. As Ze have noted earlier, the e[istence of partial derivatives does 
not guarantee differentiability. So, even Zhen a function is not differentiable Ze 
Zould be able to Zrite its -acobian matri[, provided all its partial derivatives e[ist.  

If f : Rn  R, then its -acobian matri[, if it e[ists, Zill be a 1 [ n matri[, or a matri[ 
vector.  

If  f : Rn  Rm  is differentiable at p Rn, and if h is any vector in Rn, then 
(p)(h) = >Df(p)@h  is obtained by multiplying the m [ n matri[ >Df(p�@ Zith the  
n [ 1 column matri[ h. Thus,  

f

R
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צצሻࢎሻሺ࢖ᇱሺࢌצצ ൌ σ�௝ୀଵ௠צצ ԝԝ൫׏ ௝݂ሺ࢖ሻ ή צצ࢐ࢋ൯ࢎ ൑ σ௝ୀଵ
௠ ԝצצ൫׏ ௝݂ሺ࢖ሻ ή צצ࢐ࢋ൯ࢎ ൌ σ௝ୀଵ

௠ ԝห൫׏ ௝݂ሺ࢖ሻ ή  ,൯หࢎ

Since 

צצ௝ࢋצצ ൌ ͳǡ �ͳ ൑ ݆ ൑ � 

Cauchy-SchZart] ineTuality for inner products says that ȁ࢛ ή ࢜ȁ ൑צ ࢛ צצ ࢜  Ǥצ
Using this Ze get 

צצሻࢎሻሺ࢖ᇱሺࢌצצ ൑ σ௝ୀଵ
௠ ԝ׏צצ ௝݂ሺ࢖ሻצצ צ ࢎ צൌצ ࢎ צ σ௝ୀଵ

௠ ԝ׏צצ ௝݂ሺ࢖ሻצצ. 

If Ze taNe� ൌ σ୨ୀଵ
୫ ԝ׏צצ�୨ሺܘሻצצ, then 

צצሻࢎሻሺ࢖ᇱሺࢌצצ ൑ � צ ࢎ     �3.1� .........................                                                         צ

We have seen in Theorem 3.4 hoZ to get the derivative of the sum of tZo 
differentiable functions, and also that of a scalar multiple of a differentiable 
function. The ne[t theorem, Zhich is NnoZn as the chain rule, tells us hoZ to get 
the total derivative of a composite of tZo functions. 

Theorem 3.1 �Chain Rule� : Let f and g be tZo differentiable functions, such that 

the composite function ݂ ή ݃ is defined in a neighbourhood of a point a Rn. 
Suppose g is differentiable at a, g(a) = p, and f is differentiable at  
p. Then ݂ ή ݃ is differentiable at a, and ሺࢌ ל ሻࢇሻᇱሺࢍ ൌ ሻ࢖ᇱሺࢌ ל ሻࢇᇱሺࢍ ൌ
ሾࢌ�ሺ࢖ሻሿሾࢍ�ሺࢇሻሿ 

Proof : If ࢎ is such that צ ࢎ ࢇ is small, then צ ൅  Zill belong to the above ࢎ
neighbourhood of ܽ, in Zhich ݂ ή � is defined. 1oZ, since ݃ is differentiable at ࢇ, 
࢑ ൌ ࢇሺࢍ ൅ ሻࢎ െ ሻࢇሺࢍ ൌ צሻ൅ࢎሻሺࢇᇱሺࢍ ࢎ צ  �3.2�ሻ,                                .......ࢎሺࢇࡱ

Zhere  Ea(h)  0, as h  0. 

f is differentiable at p = g(a�, and therefore, f(g(a + h)) – f(g(a)) = f(p + k) – f(p) 
= (p)(k) + || k || Ep(k),   Zhere   Ep(k)  0,           as k  0. 

= (g(a))[ g(a + h) – g(a)] + || k || Ep(k) 

= (g(a))[ (a)(h) + || h || Ea(h)]  + || k || Ep(k), using �3.2�. 

= (g(a)) (a)(h) + (g(a)) [|| h || Ea(h)] + || k || Ep(k),   since �g�a�� is a 
linear transformation. Thus, Ze can Zrite f(g(a + h)) – f(g(a)) = (g(a)) (a)(h) 

+ || h ||> (g(a)) Ea(h) +  Ep(k)@, if h  0.                               …….�3.3� 

R

[
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To complete the proof Ze need to shoZ that the vector in the sTuare bracNets in 
�3.3� tends to ]ero, as h tends to ]ero. 

We NnoZ that Ea(h)  0, as h  0.                                               ..............�
� 

__ k || = || g(a + h) – g(a) ||  || (a)(h) || + || h || || Ea(h) __, using �3.2�. 

If M   , then using �3.1�, Ze can Zrite __ �a��h� __  M __ h __. Thus, 
 __ k __   M __ h || + || h || || Ea(h) __   __ h __ �M � __ Ea(h) __�. Therefore, 

  M � __ Ea(h� __. This means that   is bounded. Thus, 

   0,  as  h  0,  since h  0 .  ....�

� 

Using �
� and �

�, Ze can say that the term in the sTuare bracNets in �3.3� tends to 
]ero as  h 0 . Therefore,  

௙ሺ௚ሺ௔ା௛ሻሻି௙ሺ௚ሺ௔ሻሻି௙ᇲሺ௚ሺ௔ሻሻ௚ᇲሺ௔ሻሺ௛ሻ
צ௛צ

՜ Ͳ as ݄ ՜ Ͳ 

This shoZs that ݂ ή ݃ is differentiable at a, and ሺࢌ ή ሻࢇሻᇱሺࢍ ൌ ሻሻࢇሺࢍᇱሺࢌ ל  ሻࢇᇱሺࢍ

The Chain Rule can be Zritten in terms of -acobian matrices as folloZs: 

�ሺࢌ ή ሻࢇሻሺࢍ ൌ ቂ� ቀࢌ൫ࢍሺࢇሻ൯ቁቃ ൣ�൫ࢍሺࢇሻ൯൧. 

Here the product on the right hand side is matri[ multiplication. If y = g(x), and z 
= f(y), comparing the entries in the matrices in �3.3�, Ze get 

ப௭೔
ப௫ೖ

ൌ σ௝ୀଵ
௡ ԝ ப௭೔

ப௬ೕ

ப௬ೕ
ப௫ೖ

ǡ � Zhere � ப௭೔
ப௫ೖ

ൌ �୩ሺ݂ ή ݃ሻ୧ǡ
ப௭೔
ப௬ೕ

ൌ �௝ሺ݂ሻ୧, and  ப௬ೕ
ப௫ೖ

ൌ �୩ሺࢍሻ୨. 

E[ample 3.1 : Write the matrices for ࢌᇱǡ ࢌᇱ and ሺࢍ ή  ,ሻᇱ for the folloZing functionsࢍ
and evaluate them at the point ሺʹǡͷሻ ڄ ݂ሺݔǡ ሻݕ ൌ ሺݔ ൅ ǡݕ ଶݔ ൅ ଶǡݕ ݔʹ ൅
ሻǡݕ͵ ݃ሺݑǡ ሻݒ ൌ ሺݔǡ ሻݕ ൌ ሺݑଶǡ  ଷሻݒ

Solution : Here f1(x, y) = x + y, f2(x, y) = x2 + y2, f3(x, y) = 2x + 3y,  

ଵ݃ሺݑǡ ሻݒ ൌ ǡݑଶ and ݃ଶሺݑ ሻݒ ൌ ଷǤ This means, �ሺ݂ሻݒ ൌ ൭
ͳ ͳ
ݔʹ ݕʹ
ʹ ͵

൱,  

and �ሺ݃ሻ ൌ ቀʹݑ Ͳ
Ͳ  .ଶቁݒ͵

ሺࢌ ή ǡݑሻሺࢍ ሻݒ ൌ ሺݑଶ ൅ ଷǡݒ ସݑ ൅ ଺ǡݒ ଶݑʹ ൅   ଷሻǤݒ͵
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Hence, 

�ሺࢌ ή ሻࢍ ൌ ൭
ݑʹ ଶݒ͵
Ͷݑଷ ͸ݒହ
Ͷݑ ͻݒଶ

൱ 

At �u, v)   �2, 5�,  �x, y�   �4, 125�. Therefore, 

�ሺ݂ሻሺͶǡͳʹͷሻ ൌ ൭
ͳ ͳ
ͺ ʹͷͲ
ʹ ͵

൱ ǡ �ሺ݃ሻሺʹǡͷሻ ൌ ቀͶ Ͳ
Ͳ ͹ͷቁ, and  

�ሺࢌ ή ሻሺʹǡͷሻࢍ ൌ ൭
Ͷ ͹ͷ
͵ʹ ͳͺ͹ͷͲ
ͺ ʹʹͷ

൱ 

 
<ou can noZ easily verify that �ሺ݂ ή ݃ሻሺʹǡͷሻ ൌ ሾ�ሺ݂ሺͶǡͳʹͷሻሿሾ�ሺ݃ሺʹǡͷሻሻሿ. 

3.3 +igher Order Partial Derivatives                           

<ou are familiar Zith the concept of partial derivatives. In the last chapter Ze have 
calculated the partial derivatives of some functions of n variables. If you taNe a looN 
at those e[amples, you Zill realise that the partial derivatives are themselves 
functions of n variables. So, Ze can talN about their partial derivatives. These, if 
they e[ist, Zill be the second order partial derivatives of the original function. If 
Ze differentiate these again, Ze Zill get the third order partial derivatives of the 
original function, and so on. We taNe a simple e[ample to illustrate.   

E[ample 3.2 : Find partial derivatives of all possible orders for the function, 
 f(x, y, z) = (x2y2, 3xy3z, xz3). 

Solution : Since f is a polynomial function, Ze do not have to Zorry about the 
e[istence of partial derivatives. We get fx = (2xy2, 3y3z, z3), fy = (2x2y, 9xy2z, 0),  
  fz = (0, 3xy3, 3xz2). 

Then, ௫݂௫ ൌ
பమ௙
ப௫మ

ൌ ሺʹݕଶǡ ͲǡͲሻǡ � ௫݂௬ ൌ ப
ப௬
ቀப܎
ப௫
ቁ ൌ பమ܎

ப௬ ப௫
ൌ ሺͶݕݔǡ ͻݕଶݖǡ Ͳሻǡ�

௫݂௭ ൌ ሺͲǡ͵ݕଷǡ  ଶሻݖ͵

Differentiating fy, Ze get fyx = (4xy, 9y2, 0�,   fyy = (2x2, 18xyz, 0�, and fyz = (0, 9xy2, 0�. 

Then differentiating fz Ze get fzx = (0, 3y3, 3z2�,  fzy = (0, 9xy2, 0�, and   
fzz = (0, 0, 6xz). 
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These are all possible second order derivatives of f. Proceeding in this Zay, Ze can 
also get fxyz = (0, 9y2, 0),   fyxz = (0, 0, 0),   fzzz = (0, 0, 6x), and so on. There Zill be 
27 third order partial derivatives of f. See if you can get the remaining. 

<ou NnoZ that fxy and fyx   differ in the order in Zhich f is differentiated Zith respect 
to the variables [ and y. These tZo derivatives have come out to be eTual in 
E[ample 3.2. %ut you may have seen e[amples of scalar functions of several 
variables, for Zhich the tZo may not be the same. Here is an e[ample, to Mog your 
memory. 

E[ample 3.3 : Consider this function � from ܴଶ to ܴǡ ݂ሺݔǡ ሻݕ ൌ ௫௬൫௫మି௬మ൯
௫మା௬మ

 for 

ሺݔǡ ሻݕ ് ሺͲǡͲሻ, and ݂ሺͲǡͲሻ ൌ Ͳ. <ou can easily checN that 

௫݂ሺͲǡͲሻ ൌ Ͳǡ ௬݂ሺͲǡͲሻ ൌ Ͳǡ ௫݂ሺͲǡ ݇ሻ ൌ ���௛՜଴ ԝ
݂ሺ݄ǡ ݇ሻ െ ݂ሺͲǡ ݇ሻ

݄
ൌ െ݇ 

௬݂ሺ݄ǡ Ͳሻ ൌ ���௞՜଴ ԝ
݂ሺ݄ǡ ݇ሻ െ ݂ሺ݄ǡ Ͳሻ

݇
ൌ ݄ 

Then, ௫݂௬ሺͲǡͲሻ ൌ ���௞՜଴ ԝ
௙ೣ ሺ଴ǡ௞ሻି௙ೣ ሺ଴ǡ଴ሻ

௞
ൌ ���௞՜଴ ԝ

ି௞ି଴
௞

ൌ െͳ, and similarly, 

௬݂௫ሺͲǡͲሻ ൌ ͳǤ 

Thus, the mi[ed partial derivatives of this function both e[ist, but are not eTual.  

Remark 3.1 : If f is a function from Rn to R, the partial derivative of f Zith respect 
to the ith variable, xi, is denoted by Dif, and the partial derivative of Dif Zith respect 
to xj , that is, DM�Dif�  is denoted  by DMif. 

The folloZing theorem gives a sufficient condition for the tZo mi[ed partial 
derivatives of a function to be eTual. Since the behaviour of a vector-valued 
function is decided by the behaviour of its coordinate functions, it is enough to 
derive this sufficient condition for a scalar function. Without loss of generality, Ze 
state the theorem for a function of tZo variables. 

Theorem 3.2 : Let f : R2  R, such that the partial derivatives, D1f, D2f, D12f and 
D21f e[ist on an open set S in R2. If �a, b�   S, and D12f and D21f are both 
continuous at �a, b�, then D12f(a, b)   D21f(a, b). 

Proof :   We choose positive real numbers, h and k, Zhich are small enough so that 
the rectangle Zith vertices �a, b), (a + h, b), (a, b + k), (a + h, b + k� lies Zithin S. 

1oZ Ze consider a function  

�h, N�   >f�a � h, b � N� – f�a � h, b�@ – >f�a, b � N� – f�a, b�@. 

mu
no
tes
.in



37

Chapter 3: Derivatives of Higher Order

We also define a function * on >a, a+h@,  *�[�   f�[, b � N� – f�[, b�.  

1oZ Ze can Zrite �h, k�   *�a + h� – *�a�. Since * is defined in terms of f, and 
since f has all the necessary properties, * is continuous on >a, a + h@, and is 
differentiable in �a, a + h�. So, Ze apply the Mean Value Theorem for functions of 
a single variable to *, and get 

*�a + h� – *�a)   h �c�, for some c  (a, a + h). 1oZ �x�   D1f(x, b + k) – 
D1f�x, b). So, Ze Zrite   �h, k) = *�a + h� – *�a� = h>D1f(c, b + k) – D1f�c, b)@. 

1oZ D1f (c, y) is a differentiable function of one variable Zith derivative eTual to 
D21f. So applying MVT to D1f(c, y� on the interval >b, b + k@, Ze get  

�h,k) = h>D1f(c, b + k) – D1f(c, b)@ = hkD21f(c, d),...............................�3.4� 

for some d  (b, b + k). 

We noZ Zrite �h, k) = [f(a + h, b + k) – f(a, b + k)] – [f(a + h, b) – f(a, b)], and 
define 

H�y) = f(a + h, y) – f(a, y),  so that   �h, k) = H(b + k) – H(b�. Using the same 
arguments that Ze used for *, Ze apply MVT to H, and then to D2f(x, p�, Ze get 

�h, k)= k>D2f(a + h, p) – D2f(a, p)@ = khD12f(q, p), ……………………�3.5� 

for some p  (b, b + k�, and q  (a, a + h).                           

From �3.4� and �3.5� Ze get D21f(c, d) = D12f(q, p). Since D12f and D21f are 
continuous, taNing the limit as �h, k�  �0,0�, Ze get D12f(a, b)   D21f(a, b). 

As Ze have mentioned earlier, the conditions of this theorem are sufficient, and not 
necessary. In fact, the continuity of Must one of the mi[ed partial derivatives is also 
sufficient to guarantee eTuality. Functions Zhose partial derivatives are continuous 
play an important role in Calculus. We classify these functions as folloZs: 

Definition 3.1 : A function f from Rn to Rm is said to be continuously 
differentiable, or belong to class C1, if all its partial derivatives  Dif are continuous. 
It is said to belong to class C’’, if all its second order partial derivatives are 
continuous, and so on. If all its partial derivatives of all orders are continuous, then 
it is said to belong to class . 

We have proved that a function in class C1 is differentiable in Theorem 3.8. In 
Theorem 3.2 Ze have seen that the mi[ed partial derivatives of a function belonging 
to class C’’ are eTual. 
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In the ne[t chapter Ze shall see that a CN function, that is a function, all Zhose 
partial derivatives of order up to N are continuous, can be appro[imated by means 
of a polynomial of order N. We shall also discuss the techniTue to find the ma[imum 
and minimum values of a function belonging to class C’’.   

3.4 Mean 9alue Theorem                           

The Mean Value Theorem �MVT� is an important theorem in Calculus. It is used 
as a tool to derive many other results. In the last section Ze have used it in the proof 
of Theorem 3.2. In this section Ze shall see if it also holds good for functions of 
several variables. %ut first, let us recall the one-variable case. 

M9T �single variable�: If f : >a, b@  R is continuous on >a, b@, and differentiable 
on �a, b�, then there e[ists c  (a, b), such that f�b� – f�a�   �b - a� �c�. 

If Ze Zrite b = a + h, then there e[ists , such that 
 f�a � h� – f�a� = h .  

Unfortunately, it is not possible to e[tend this theorem to a function f : Rn  Rm, 
Zhen m ! 1. This Zill be Tuite clear from the folloZing e[ample. 

E[ample 3.4 : Consider f : >0, 2 @  R2, f�t� = (cost, sint�. This function is 

continuous on >0, 2 @ and differentiable on �0, 2 �.  

1oZ, f(2 ) – f(0)   �1, 0� – �1, 0�   �0, 0�. 

(t) = ( − sint, cost). For the extension of MVT to hold, we must have  

f(2 ) – f(0) = 2 (c� for some c in �0, 2 �. So, Ze should have �0, 0�   2 � � 
sinc, cosc). %ut this is impossible, since sinc and cosc both cannot be ]ero. 

So, the e[tension of MVT in its stated form does not hold. %ut there is a Zay around 
this difficulty. A slightly modified version of MVT does hold true for all functions 
of several variables. We noZ state and prove this modified theorem for functions 
from Rn to Rm. As a special case of this theorem you Zill reali]e that MVT holds 
for real-valued functions of several variables.  

Theorem 3.3 : �Mean Value Theorem�  Let ݂ǣ ܵ ՜ Թ௡, Zhere S is an open subset 
of Թ௡. Suppose f is differentiable on S. Let x and y be tZo points in S, such that the 
line segment Moining x and y, L�x, y�   ^tx + �1 � t�y _ Ͳ ൑ ݐ ൑ ͳ`, also lies in S. 
Then for every a  Rm, there is a point z  S,  
such that a{f(y) – f(x)} =  a { (z)(y � x�`           ........................................�3.6� 
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%efore Ze start the proof, let us understand the geometry involved. Let u = y – x. 
Then x + tu gives us a point on the line segment L�x, y), if  0  1. Since S is 

open, Ze can find a  ! 0, such that   S, and  S. See Fig. 
3.1, in Zhich Ze shoZ the situation Zhen n   2. The point p is on the e[tension of 

L�x, y) and is eTual to x + (1 + )u. Similarly the point q is also on the e[tension 

of L�x, y�, and is eTual to  x – u for some  ! 0. 

 

     p 

                                                                        

                                                             
  

 

 

)igure 3.1 

Thus Ze get a  ! 0, such that x + tu  S for every t . 1oZ Ze 
start the formal proof. 

Proof : Let a  Rn. We define a function F :   R, F(t) = a f(x + tu�. 

This F is a differentiable function on , and (t) = a, using chain rule.      

 �Recall, that  is a linear transformation.�                                                  

Thus, Ze can apply MVT for functions of a single variable, and get 

ሺͳሻܨ െ ሺͲሻܨ ൌ ǡߠ ሻ, for someߠᇱሺܨ Ͳ ൏ ߠ ൏ ͳ ........................................... �3.7� 

���ǡ ሺͳሻܨ ൌ ࢇ ή ሺ࢞ࢌ ൅ ࢛ሻ ൌ ࢇ ή ሺ࢟ሻǡࢌ ሺͲሻܨ� ൌ ࢇ ή  ሺ࢞ሻ, andࢌ

ሻߠᇱሺܨ ൌ ࢇ ή ሼࢌᇱሺ࢞ ൅ ሻሺ࢛ሻሽ࢛ߠ ൌ ࢇ ή ሼࢌᇱሺࢠሻሺ࢟ െ ࢞ሻሽ, Zhere ࢠ ൌ ࢞ ൅ ࢛ߠ א ሺ࢞ǡܮ ࢟ሻ 

Therefore, from �6.7� Ze get ࢇ ή ሼࢌሺ࢟ሻ െ ሺ࢞ሻሽࢌ ൌ ࢇ ή ሼࢌᇱሺࢠሻሺ࢟ െ ࢞ሻሽ  

for some ࢠ א �. 

 

 

)

p 

q 

Y 

X 
S 
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Remark 3.2 :   

i�  �3.6� is true for all x, y in S, such that the line segment Moining x and y is also 
in S. This means, if S is a conve[ open set in Rn, then �3.6� Zill be true for 
all x, y in S. 

ii�  If f is a real-valued function, then m   1, and a  R. Then for a   1 Ze 
have 1. ሼ݂ሺ࢟ሻ െ ݂ሺ࢞ሻሽ ൌ ͳǤ ሼ݂ᇱሺܢሻሺ࢟ െ ࢞ሻሽ ൌ સ݂ሺࢠሻ ή ሺ࢟ െ ࢞ሻ, 
 for some ࢠ א �. 

So, the MVT for functions of a single variable e[tends directly to real-valued 
functions of several variables. We can also directly prove MVT for scalar functions. 
The proof runs e[actly similar to that of Theorem 3.3, if Ze put a   1. 

The MVT has a Zell-NnoZn conseTuence, Zhich Ze noZ state: 

Theorem 3.4 :  Let f : S  Rm, Zhere S is an open  connected subset of Rn. 
Suppose f is differentiable on S, and     0 for every p  S. Then f is a 
constant function on S. 

Proof : The set S is polygonally connected, since it is open and connected.  Let x 
and y be tZo points in S. Then x and y are Moined by line segments L1, L2, L3, ... , 
Lr, lying entirely in S. Suppose Li is a line segment Moining pi and pi+1, 1 
r, p1 = x, and pr+1 = y.   

Let ܽ א ܴ௠. Then using Theorem͵Ǥ͵, Ze have 

ܽ ή ሼ݂ሺ݌௜ାଵሻ െ ݂ሺ݌௜ሻሽ �ൌ ܽ ή ሼࢌᇱሺܢ௜ሻሺ࢖௜ାଵ െ ௜ሻሽǡ࢖ ௜ݖ א �௜
�ൌ Ͳǡ since ࢌᇱሺܢ௜ሻ ൌ ૙  

This means, 

ܽ ή ሼ݂ሺݕሻ െ ݂ሺݔሻሽ ൌ ܽ ή ሼ݂ሺ݌௥ାଵሻ െ ݂ሺ݌ଵሻሽ ൌ σ ԝ௥
௜ୀଵ ܽ ή ሼ݂ሺ݌௜ାଵሻ െ ݂ሺ݌௜ሻሽ ൌ

Ͳ……ሺ͵Ǥͺሻ  

ሺ͵Ǥͺሻ is true for every ܽ in ܴ௠. So, in particular, it is true for ݂ሺݕሻ െ ݂ሺݔሻ.  

Thus, 
ሼ݂ሺݕሻ െ ݂ሺݔሻሽ ή ሼ݂ሺݕሻ െ ݂ሺݔሻሽ ൌצ ݂ሺݕሻ െ ݂ሺݔሻ ଶൌצ Ͳ 

 So, ݂ሺݕሻ െ ݂ሺݔሻ ൌ Ͳǡ or ݂ሺݕሻ ൌ ݂ሺݔሻ .  

Since x and y Zere any arbitrary points in S, Ze have thus proved that f is a constant 

function on S.   
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Try a feZ e[ercises noZ. 

E[ercises : 

1� Find the partial derivatives, D1f, D2f, D12f and D21f  at �0, 0� , if they e[ist, for 
the folloZing function f from R2 to R.   

 f(x, y) =  y  , if (x, y)  (0, 0), and f(0, 0) = 0. 

2� If u(x, y) = x +y2, x(t) = 3t2 + 4, and y(t) = sin2t, find �t� and �t�. 

3� If  u(x, y) = x – 2y + 3, x = r + s + t,  y = rs + t2,  find ur, us and ut at  
�1, 2, 4�.  

4� Let  f : R2  R2, and  g : R3  R2 be tZo vector functions, defined as: 

       f(x, y) = (sin(2x + y), cos(x + 2y)),  g(r, s, t) = (2r – s – 3t, r2 – 3st). 

i� Write the -acobian matrices for ݂ and ݃Ǥ If ݄ is the composite function, 
݂ ή ݃, compute the -acobian matri[ of ݄ at the point ሺͳǡͲǡ െʹሻ. 

5� If f  is a function from R2 to R, and D1f   0 at all points, shoZ that f is 
independent of the first variable. If D1f   D2f   0 at all points, shoZ that f is 
a constant function. 

3.� Summary                                                                                             

In this chapter Ze have derived the chain rule for differentiation of composite of 
tZo functions. We have also seen that the -acobian matri[ for the composite 
function is the product of the -acobian matrices of the tZo given functions. We 
have defined higher order partial derivatives of functions of several variables. We 
have seen functions, Zhose second order mi[ed partial derivatives depend on the 
order of the variables Zith respect to Zhich the function is differentiated. On the 
other hand, Ze have derived sufficient conditions for such mi[ed partial derivatives 
to be eTual. Finally, through an e[ample Ze have seen that the Mean Value 
Theorem cannot be e[tended to all vector functions. We have proved a restricted 
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form of the MVT for vector functions. Of course, MVT does e[tend to scalar-
valued functions of several variables. As a result of MVT Ze have proved that a 
function defined on an open connected set is constant, if its derivative is uniformly 
]ero over its domain. 

 

��������
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UNIT 2 
4 

APPLICATIONS O) DERI9ATI9ES  
Unit Structure  

4.0  ObMectives 

4.1  Introduction 

4.2  Taylor’s Theorem 

4.3  Ma[ima and Minima 

4.4  Lagrange’s Multipliers 

4.5  Summary 

4.0 Objectives 

After reading this chapter, you should be able to  

x state Taylor’s theorem for real-valued functions of several variables 

x obtain Taylor’s expansions for some simple functions  

x define,  locate and classify e[treme points of a function of several variables 

x obtain the e[treme values of a function of n variables, subMect to some 
constraints 

4.1 Introduction                                                                                        

In the tZo previous chapters Ze have discussed differentiation of scalar and vector 
functions of several variables. 1oZ Ze shall tell you about some applications of 
derivatives. In your study of functions of one variable you have seen that a maMor 
application of the concept of derivatives is the location of ma[ima and minima of 
a function. This NnoZledge is very crucial for curve tracing. Here Ze shall see hoZ 
the derivatives help us in locating the e[treme values of a real-valued function of 
several variables. But before we do that, we are going to discuss Taylor’s theorem 
and Taylor’s expansions, which help us approximate a function with the help of 
polynomials. This NnoZledge Zill help us derive some tests for locating and 
classifying the e[treme points of a function. 

43

mu
no
tes
.in



44

A1AL<SIS - I

4.2 Taylor’s Theorem                                                                               

It will be useful to recall Taylor’s theorem for functions of one variable, Zhich you 
have studied in F. <. %. Sc. Here Ze shall also give you the proof of this theorem. 
Our method of proof involves the use of Rolle’s theorem. You have studied this 
theorem too in F. Y. We now state Rolle’s theorem, and then move on to Taylor’s 
theorem. 

Theorem 4.1 (Rolle’s Theorem): If f: >a, b@ ՜
�����ࡾ��������������ሾܽǡ ܾሿǡ ������������������ሺܽǡ ܾሻǡ ����݂ሺܽሻ �ൌ
�݂ሺܾሻǡ ������������������ܿ� א � ሺܽǡ ܾሻǡ ����������݂ᇱ(c)   0.  

Theorem 4.2 (Taylor’s theorem for real functions of one variable): Let f be a real-
valued function defined on the open interval �p, q�. Suppose f has derivatives of all 
orders up to and including n �1 in �p, q�. Let a be any point in �p, q�. Then for any 

+ p, T�, f(x) = f(a)� א ]
�1
ax � ݂ᇱ(a) +

�2
�� 2ax � ݂ᇱᇱሺܽሻ�൅�Ǥ Ǥ Ǥ ൅

�
��

n
ax n� ݂ሺ௡ሻሺܽሻ �൅

��1�
�� 1

�
� �

n
ax n

݂ሺ௡ାଵሻ(c),………………………………………………………...�4.1�  

 Zhere c א �a, b�.  

Proof: We noZ define a neZ function g on >a, x@, or >x, a@, according as a � x, or x 

� a, by g(y) = f(y) +
�1

�� yx �
݂ᇱሺݕሻ �൅

�2
�� 2yx �
݂ᇱᇱሺݕሻ�൅�Ǥ Ǥ Ǥ ൅

�
��

n
yx n� ݂ሺ௡ሻሺݕሻ �൅

�ሺݔ െ  �4.2�ሻ௡ାଵA,   …………………………………………………………....ݕ

Zhere A is a constant, chosen so as to satisfy  g(x) = g(a). We can easily Zrite the 
e[pression for A by using this condition. We leave this to you as an e[ercise. See 
E[ercise 1�.  

Using the properties of f, Ze can see that g satisfies all the conditions of Rolle’s  
theorem on its domain. Thus, Ze can conclude that there e[ists a point c א
�ሺܽǡ ሻǡݔ ሺ���ሺݔǡ ܽሻሻ�����������݃ᇱሺܿሻ �ൌ
�ͲǤ ���ǡ ����������������ሺͶǤʹሻǡ������������݃ᇱሺݕሻ �ൌ � ݂ᇱሺݕሻ �െ�݂ᇱሺݕሻ �൅�ሺݔ� െ

ሻݕሻ�݂ᇱᇱሺݕ� �െ�ሺݔ� െ ሻݕሻ�݂ᇱᇱሺݕ� �൅ �
�2

�� 2yx �
݂ᇱᇱᇱሺݕሻ�െ�Ǥ Ǥ Ǥ െ

��1�
�� �1�

�
� �

n
yx n

�݂ሺ௡ሻሺݕሻ �൅ �

�
��

n
yx n�

݂ሺ௡ାଵሻሺݕሻ�Ȃ�ሺ݊� ൅ �ͳሻሺݔ െ  .ሻ௡Aݕ

   ሺݔ െ �ሻ௡ሾݕ
�

���1�

n
yf n�

െ� (n + 1)A]. 
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Hence,  ݃ᇱሺܿሻ �ൌ � ሺݔ െ ܿሻ௡ሾ��
�

���1�

n
cf n�

 − (n + 1)A] = 0.  

This means that A = 
�

���1�

n
cf n�

 

Substituting this value of A in �4.2�, Ze get  

f(x) = g(x) =  

g(a) = f(a)+
�1
ax � ݂ᇱ(a) +

�2
�� 2ax � ݂ᇱᇱሺܽሻ�൅�Ǥ Ǥ Ǥ ൅

�
��

n
ax n� ݂ሺ௡ሻሺܽሻ �൅

��1�
�� 1

�
� �

n
ax n

݂ሺ௡ାଵሻ(c), thus proving the theorem. 

 

Remark 4.1 : If the function in Theorem 4.2 has derivatives of all orders in �p, q�, 
then Ze can Zrite a Taylor e[pansion as in �7.1� for any n א
Ǥࡺ� 	������ǡ ������������������������� orders are bounded by a positive number ܯ, 

that is, if ௗ೙௙
ௗ௫೙

൏פ ǡ݌for all ݊, and at all points in ሺ ܯ   ,ሻݍ

then ቚሺ௫ି௔ሻ
೙శభ

ሺ௡ାଵሻǨ
݂ሺ௡ାଵሻሺܿሻቚ ൑ ቚሺ௫ି௔ሻ

೙శభ

ሺ௡ାଵሻǨ
ቚ ՜ Ͳ as ݊ ՜ λ for every ݔ in some interval 

ሼݔǣ ȁݔ െ ܽȁ ൏ ܴሽǤ Therefore, in this case Ze can Zrite 

 ݂ሺݔሻ ൌ ݂ሺܽሻ ൅ ௫ି௔
ଵǨ

݂ᇱሺܽሻ ሺ௫ି௔ሻ
మ

ଶǨ
݂ᇱᇱሺܽሻ ǥ ሺ௫ି௔ሻ೙

௡Ǩ
݂ሺ௡ሻሺܽሻ ሺ௫ି௔ሻ

೙శభ

ሺ௡ାଵሻǨ
݂ሺ௡ାଵሻሺܿሻǡ ǥ,...(4.3) 

The infinite series in �4.3� is convergent under the given conditions, and is called 
the Taylor series of f about a. 

1oZ, �7.1� can be Zritten as  f(x) = Pn(x) + Rn(x�, Zhere Pn(x) =  f�a� �
�1
ax �

݂ᇱ�a� �
�2

�� 2ax � ݂ᇱᇱሺ�ሻ ൅�ǥ�൅
�

��
n

ax n�
݂ሺ୬ሻሺ�ሻ  

is called the nth ܉�ܜܝܗ܊܉�܎�܎ܗ�ܔ܉ܑܕܗܖܡܔܗܘ�ܚܗܔܡ܉܂ǡ�

�����ܴ݊ሺݔሻ �ൌ ��
��1�

�� 1

�
� �

n
ax n

݂ሺ௡ାଵሻ(c�, is called the remainder. 

We now state Taylor’s theorem for functions of two variables, and then find Taylor 
e[pansions of some functions. 

Theorem ͹Ǥ͵ (Taylor’s theorem for ݂ǣ ܴଶ ՜ ܴሻǣ Let ݂ be a real-valued �୬ାଵ 
function on an open conve[ set � ك ଶ. Let ሺܽǡࡾ ܾሻ א �. Then for any ሺݔǡ ሻݕ א �, 
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�������������ሺݔǡ ሻݕ א ��ǡ� 

݂ሺݔǡ ሻݕ ൌ �݂ሺܽǡ ܾሻ ൅�ቀ݄ డ
డ௫
൅ ݇ డ

డ௬
ቁ ݂ሺܽǡ ܾሻ ൅� ଵ

ଶǨ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
ଶ
݂ሺܽǡ ܾሻ ൅�ǥ�൅

� ଵ
௡Ǩ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
௡
݂ሺܽǡ ܾሻ ൅�� ଵ

ሺ௡ାଵሻǨ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
௡ାଵ

f(c, d),               ...........�4.4� 

Zhere h = x – a, k = y – b, and �c, d� is some point on the line segment Moining �a, 
b� and �x, y�. 

We are not going to prove this theorem. %ut, note the folloZing points: 

1. Recall that f is Cn�1  means f has continuous partial derivatives of all orders ൑ 
n � 1. This ensures that all the relevant mi[ed partial derivatives are eTual. 

2. E is conve[. This guarantees that the line segment Moining any tZo points of E, 
lies in E, the domain of f. 

Pn(x, y) = f(a, b)+ (h డ
డ௫
൅ ݇ డ

డ௬
ሻ݂ሺܽǡ ܾሻ �൅� ଵ

ଶǨ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
ଶ
݂ሺܽǡ ܾሻ �൅�ǥ�൅

� ଵ
௡Ǩ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
௡
݂ሺܽǡ ܾሻ��������݄� ൌ �Ȃݔ� �ܽǡ ����݇� ൌ �Ȃݕ� �ܾǡ �������������� 

nth Taylor polynomial, and 

�ܴ݊ሺݔǡ ሻݕ �ൌ � ଵ
ሺ௡ାଵሻǨ

ቀ݄ డ
డ௫
൅ ݇ డ

డ௬
ቁ
௡ାଵ

f(c, d)  is called the remainder of order n. 

Let us use this theorem to get the e[pansions of some functions. 

E[ample 4.1: Find the Taylor e[pansions of the folloZing functions about the 
given points up to the third order. 

i�         f(x, y) = x3 + 2xy2 – 3xy + 4x + 5,    (a, b)   �1, 2� 

ii� f(x, y) = sin(2x + 3y)        (a, b)   �0, 0�.  

Solution: i� Since f(x,y) = x3 + 2xy2 – 3xy + 4x + 5 is a polynomial, it has partial 
derivatives of all orders. Further, its partial derivatives of order ! 3 are all ]ero. In 
fact, fx = 3x2 + 2y2 – 3y + 4, fy = 4xy – 3x,  fxx = 6x,  fxy = 4y – 3,  fyy = 4x,  fxxx = 6,  
fxxy = 0,  fxyy = 4,  fyyy = 0, and all higher partial derivatives are ]ero. Calculating all 
these partial derivatives at �1, 2�, Ze Zrite f(1 + h, 2 + k) = 12 + 9h + 5k + 
ଵ
ଶǨ
ሺ͸݄ʹ� ൅ �ͳͲ݄݇� ൅ �Ͷ݇ʹሻ �൅� ଵ

ଷǨ
(6h3 + 12hk2) + R3 . 

1oZ, R3 involves all fourth order derivatives, and therefore is ]ero. Hence, 

 f(1 + h, 2 + k) = 12 + 9h + 5k + ଵ
ଶǨ
ሺ͸݄ʹ� ൅ �ͳͲ݄݇� ൅ �Ͷ݇ʹሻ �൅� ଵ

ଷǨ
(6h3 + 12hk2) . 
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ii� f(x, y) = sin(2x + 3y�  also has derivatives of all orders.  

fx = 2cos(2x + 3y)   2 at �0, 0�,  fy = 3cos(2x + 3y)   3 at   �0, 0�, 

fxx = � 4sin(2x + 3y), fxy = � 6sin(2x + 3y),  fyy = � 9sin(2x + 3y�. These 
second order derivatives are all ]ero at �0, 0�. 

fxxx = � 8cos(2x + 3y), fxxy = � 12cos(2x + 3y),                              

 fxyy = � 18cos(2x + 3y), fyyy = � 27cos(2x + 3y). 

 These are, respectively, � 8, � 12, � 18, and – 27 at �0, 0�. Thus, f(h, k) =  0 + (2h 
+ 3k) + ଵ

ଶǨ
Ǥ Ͳ� ൅� ଵ

ଷǨ
ሺ��ͺ݄͵�Ȃ �͵Ǥͳʹ݄ʹ݇�Ȃ �͵Ǥͳͺ݄݇ʹ�Ȃ �ʹ͹݄͵ሻ �൅ �ܴ͵ǡ �������͵� ൌ

�ଵ
ସǨ
ሺ� డ

డ௫
൅ ݇ డ

డ௬
�4sin�2c � 3d�, Zhere �c, d� is some point on the line segment Moining 

�0, 0� and �h, N�. 

We are now going to state Taylor’s theorem for real-valued functions of n variables. 
For this, let us first taNe a close looN at the Taylor e[pansion of a function of tZo 
variables. 

If Ze Zrite �x, y� as �a + h, b + k�, Ze get f(a + h, b + k) =  f(a, b) + (h డ
డ௫
൅

݇ డ
డ௬
ሻ݂ሺܽǡ ܾሻ �൅ � ଵ

ଶǨ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
ଶ
݂ሺܽǡ ܾሻ�൅�Ǥ Ǥ Ǥ ൅� ଵ

௡Ǩ
ቀ݄ డ

డ௫
൅ ݇ డ

డ௬
ቁ
௡
݂ሺܽǡ ܾሻ �൅

�� ଵ
ሺ௡ାଵሻǨ

ቀ݄ డ
డ௫
൅ ݇ డ

డ௬
ቁ
௡ାଵ

f(c, d),                            

If Ze taNe the variables to x1, x2, instead of x and y, taNe �a, b� to be �a1, a2�, and 
�h, k� to be   

݂ሺܽଵ ൅ ݄ǡ ܽଶ ൅ ݄ଶሻ ൌ ݂ሺܽଵǡ ܽଶሻ ൅ ൬݄ଵ
μ
μݔଵ

൅ ݄ଶ
μ
μݔଶ

൰ ݂ሺܽଵǡ ܽଶሻ 

൅
ͳ
ʹǨ
൬݄ଵ

μ
μݔଵ

൅ ݄ଶ
μ
μݔଶ

൰
ଶ

݂ሺܽଵǡ ܽଶሻ ൅  ڮ

൅
ͳ
݊Ǩ ൬

݄ଵ
μ
μݔଵ

൅ ݄ଶ
μ
μݔଶ

൰
௡

݂ሺܽଵǡ ܽଶሻ ൅
ͳ

ሺ݊ ൅ ͳሻǨ ൬
݄ଵ

μ
μݔଵ

൅ ݄ଶ
μ
μݔଶ

൰
ଶ

݂ሺܿǡ ݀ሻ

ൌ ෍ ԝ
௡

௞ୀ଴

ԝ
ͳ
݇Ǩ ൬

݄ଵ
μ
μݔଵ

൅ ݄ଶ
μ
μݔଶ

൰
௞

݂ሺܽଵǡ ܽଶሻ ൅ ܴ௡ሺܿǡ ݀ሻ

ൌ ෍ ԝ
௡

௞ୀ଴

ԝ
ͳ
݇Ǩ
෍ ௜భ௜మǥ௜ೖ݂ሺܽଵǡܦ� ܽଶሻ݄௜భ݄௜మ ǥ ݄௜ೖ ൅ ܴ௡ሺܿǡ ݀ሻ
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where ܦ௜భ௜మǥ௜ೖ ൌ
பೖ

ப௫೔భ ப௫೔మǥಢೣ೔ೖ
, and ݅ଵǡ ݅ଶǡ ǥ ǡ ݅௞ ൌ ͳ or 2, and the sum is taken 

over all 
ordered k-tuples ൫݅ଵǡ ݅ଶǡ ǥ ǡ ݅௞൯Ǥ For example, 

σ ௜భ௜మ�ሺ�ଵǡܦ� �ଶሻ݄௜భ݄௜మ ൌ ଵ՝݂ሺܽଵǡܦ ܽଶሻ݄ଵଶ ൅ ଵଶ݂ሺܽଵǡܦ ܽଶሻ݄ଵ݄ଶ ൅
ଶ՝݂ሺܽଵǡܦ ܽଶሻ݄ଶ݄ଵ ൅  ଶଶ݂ሺܽ௟ǡ a �ଶ ) ݄ଶଶܦ

 

ൌ ቆ݄ଵଶ
μଶ

μݔଵଶ
൅ ʹ݄ଵ݄ଶ

μଶ

μݔଵ μݔଶ
൅ ݄ଶଶ

μଶ

μݔଶଶ
ቇ ݂ሺܽଵǡ ܽଶሻǤ 

Similarly, 

σܦ௜భ௜మ௜య݂ሺܽଵǡ ܽଶሻ݄௜భ݄௜మ݄௜య�� ൌ ͳͳͳ݂ሺܽͳǡܦ� ܽʹሻ݄ͳ͵� ൅
ͳͳʹ݂ሺܽͳǡܦ� ܽʹሻ݄ͳʹ�݄ʹ� ൅ ͳʹͳ�݂ሺܽͳǡܦ� ܽʹሻ݄ͳ�݄ʹ�݄ͳ� ൅
ͳͳ�݂ሺܽͳǡʹܦ� ܽʹሻ݄ʹ�݄ͳʹ� ൅ ͳʹʹ�݂ሺܽͳǡܦ� ܽʹሻ݄ͳ݄ʹʹ� ൅
ͳʹ݂ሺܽͳǡʹܦ� ܽʹሻ݄ʹ�݄ͳ�݄ʹ� ൅ ͳ݂ሺܽͳǡʹʹܦ� ܽʹሻ݄ʹʹ�݄ͳ� ൅ ሺܽͳǡ݂ʹʹʹܦ� ܽʹሻ݄ʹ͵� ൌ

��ሺ݄ଵଷ
డయ

డ௫భయ
൅ ͵݄ଵଶ݄ଶ

డయ

డ௫భమడ௫మ
൅ ͵݄ଵ݄ଶଶ

డయ

డ௫భడ௫మమ
൅ ݄ଶଷ

డయ

డ௫మయ
 )f(a1, a2) . 

<ou must have noticed that Ze have added the mi[ed partial derivative terms, for 
e[ample, D12f and D21f, or  D112f , D121f, and D211f. We could do this, since f א  ஶܥ�
ensures that that these partial derivatives are equal. Now we state Taylor’s theorem 
for real-valued functions of several variables. 

Theorem 4.4 :  

Let f : E  ࡾ�ǡ��������������nǤࡾ��������������������� 	������ǡ� 

�ࢇ����� ൌ ሺܽͳǡ ܽʹǡ ǥ ǡ ܽ݊ሻ א ��ǡ �ࢎ ൌ � ሺ݄ͳǡ ݄ʹǡ ǥ ǡ ݄݊ሻ א nǡࡾ� ����ࢇ�������� ൅ �ࢎ� א �Ǥ�� 

�����݂� א ǡ݉ܥ� �����݂ሺࢇ� ൅ ሻࢎ� �ൌ �σ ଵ
௞Ǩ
σܦ௜భ௜మǥ௜ೖ

௠ିଵ
௞ୀ଴ ݂ሺࢇሻ݄௜భ݄௜మǤ Ǥ Ǥ ݄௜ೖ  

+ Rm-1(c),           ........................................................................................ �4.5� 

Zhere  ݅ଵǡ ݅ଶǡ�Ǥ Ǥ Ǥ ǡ ݅௞  taNe values from the set ^1, 2, ..., n`, and the inner summation 
in �4.5� is taNen over all possible such N-tuples. 

Further, the remainder Rm-1(c) =  ଵ
௠Ǩ
σܦ௜భ௜మǥ௜೘ ݂ሺࢉሻ݄௜భ݄௜మ ǥ ݄௜೘.  This sum is 

taNen over all possible m-tuples �i1, i2, ..., im�, Zhere i1, i2, ..., im taNe values from 
^1, 2, ..., n`,and c is some point on the line segment Moining a and 
a + h. 
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This theorem is used to appro[imate a given function by a polynomial. In the ne[t 
section Ze shall use it to derive conditions for locating and classifying e[treme 
points of a function. 

E[ercises: 1� Write the e[pression for A appearing in Theorem 4.2. 

4.3 Ma[ima And Minima                                                                        

One of the most interesting and Zell-NnoZn applications of Calculus is the location 
and classification of e[treme points of a function. <ou have solved many such 
problems involving functions of one or tZo variables. We shall noZ e[tend the 
definitions of ma[ima and minima to functions of n variables, and derive suitable 
tests for their location. 

Definition 4.1 : Let f : Rn ՜ Ǥࡾ� �ࢇ�������� א
��������������������nࡾ������������ሺ�������������������ሻ�������������������
ǡࢇ������������������� ����������݂ሺ࢞ሻ �൑ �݂ሺࢇሻ�����������࢞�    .N א

f(a) is then called the local or relative ma[imum value. 

A local minimum �or relative minimum� is defined in a similar manner.  

<ou Zill agree that the function ݂ǣ ହࡾ ՜ ǡࡾ ݂ሺݔଵǡ ଶǡݔ ଷǡݔ ସǡݔ ହሻݔ ൌ ଵଶݔ ൅ ଶଶݔ ൅ ଷଶݔ ൅
ସଶݔ ൅  ହଶ, clearly has a local minimum at ሺͲǡͲǡͲǡͲǡͲሻ. Can you find an e[ample of aݔ
function Zith a local ma[imum" Definition ͹Ǥʹǣ A point ܽ א ܴ௡ is called a saddle 
point of a function ݂ǣ ܴ௡ ՜ ܴ, if every ball �ሺࢇǡ ሻǡݎ ݎ ൐ Ͳ, contains points ࢞, such 
that ݂ሺ࢞ሻ ൒ ݂ሺࢇሻ, and also other points ࢟, such that ݂ሺ࢟ሻ ൑ ݂ሺࢇሻ. 

In general, it is not easy to spot the local ma[imum or local minimum merely by 
observation. For differentiable functions Ze can derive tests to locate these values. 
<ou NnoZ that in the case of a differentiable function of a single variable, the 
derivative vanishes at an e[treme point. We have a very similar test for the location 
of e[treme points of a function of n variables, as you can see in the ne[t theorem. 

Theorem 4.� : If  f : Rn ՜ �����������ࡾ���������������� 

�ࢇ א �݅�׊���������nǡࡾ� ൌ �ͳǡ ʹǡ Ǥ Ǥ Ǥ ǡ �ǡ డ௙
డ௫೔

�a�, if it e[ists, is eTual to ]ero. 

Proof: Since � has a local ma[imum at ࢇǡ ݎ׌ ൐ Ͳ,  
such that ࢞ א �ሺࢇǡ ሻݎ ฺ ݂ሺ࢞ሻ ൑ ݂ሺࢇሻ. 
For ݅ ൌ ͳǡʹǡ ǥ ǡ �, consider a function ݃௜ǣ ሺܽ௜ െ ǡݎ ܽ௜ ൅ ሻݎ ՜  such that ,ࡾ
݃௜ሺݔሻ ൌ ݂ሺܽଵǡ ܽଶǡ ǥ ǡ ܽ௜ିଵǡ ǡݔ ܽ௜ାଵǡ ǥ ǡ ܽ௡ሻǤ since ݂ሺܽሻ is the local ma[imum value 
of ݂ǡ ௜݃ሺܽ௜ሻ is the ma[imum value of ݃௜. If 

ப௙
ப௫೔

ሺܽሻ e[ists, then ݃௜ᇱሺܽ௜ሻ also e[ists, 
and the tZo are eTual. %y applying the first derivative test for functions of one 
variable to ݃௜, 
 Ze get 
μ݂
μݔ௜

ሺࢇሻ ൌ ௜݃
ᇱሺܽ௜ሻ ൌ Ͳ 
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An e[actly similar proof Zill help us conclude that డ௙
డ௫೔

�a�, if it e[ists, is eTual to 

]ero, even Zhen a is a local minimum of f. 

Thus, if f has a local e[tremum at a, and all the partial derivatives e[ist at a, then  
 .f(a)   0ࢺ

As in the case of functions of one variable, the condition in theorem 4.5 is a 
necessary one, and is not sufficient. That is, if all the partial derivatives of a 
function at a point a are ]ero, Ze cannot say that a is a local ma[imum or local 
minimum point. It may be neither.  

An e[ample is the function f : R2 ՜ R,  f(x, y) = 1 – x2 + y2.  Here fx = - 2x, and  
 fy = 2y. So, fx�0, 0�   0 and fy�0, 0�   0. %ut you can see clearly, that f has a 
ma[imum in the direction of the [-a[is, and a minimum in the direction of the y-
a[is at �0, 0�. This means, f has neither a minimum, nor a ma[imum at �0, 0�. In 
fact �0, 0� is a saddle point for this function.    

Definition 4.3 : Let f : Rn ՜ �������������������ǡࡾ� �ࢇ���� א nǤࡾ� ���� డ௙
డ௫೔

�a� is eTual 

to ]ero for i   1, 2, ..., n, then a is called a critical point, or a stationary point  
of f. 

Theorem 7.5, tells us to looN for e[treme points among the critical points of a 
function. We shall noZ see hoZ to classify these points as local ma[ima, local 
minima, or saddle points. This involves second order partial derivatives. This is to 
be e[pected, since in one variable functions too, Ze have a second derivative test 
to classify stationary points. The proof of the test for several variables involves 
Tuadratic forms. <ou have studied them in T. <. %. A. �%. Sc. We start Zith a 
definition and recall the relevant results. 

Definition 4.4 : If  A = (aij� is a real symmetric n [ n matri[, and  x = (x1, x2, ..., xn) 
א nǡࡾ� �����ܳሺ࢞ሻ �ൌ �σ σ ܽ௜௝ݔ௜ݔ௝௡

௝ୀଵ
௡
௜ୀଵ   is called a Tuadratic form associated 

with A. 

We can Zrite Q(x) = xAxt.  If A is a diagonal matri[, then Q(x)   
σ ܽ௜௜ݔ௜ଶ௡
௜ୀଵ ���������������������������Ǥ ����������������������ܣ��ǡ ������������������

�Ͳ�����������࢞ǡ ����ܳሺ࢞ሻ �ൌ �Ͳ� ฺ �࢞� ൌ
�૙Ǥ �����������������������������������������������������Ǥ ���������������������������
�Ͳ�����������࢞ǡ ����ܳሺ࢞ሻ �ൌ �Ͳ� ฺ x = 0. Such a Tuadratic form is called negative 
definite. 

It may not be very easy to get the eigen values. %ut Ze have an easier Zay to decide. 

A principal minor of a sTuare matri[, A, is the determinant of  the matri[ obtained 
by taNing the first k roZs, and the first k columns of A, 1 ൑ �݇ ൑ n.  
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If all the principal minors are positive, then the associated Tuadratic form is positive 
definite. 

If the principal minors are alternately positive and negative, starting Zith a negative 
minor for k   1, then the associated Tuadratic form is negative definite. 

If a principal minor of order k is negative, Zhen k is an even number, then Q(x) 
taNes both positive and negative values.  

We noZ use these facts about Tuadratic forms to derive the second derivative test. 
A definition first. 

Definition 4.� : If f is a C2 function from Rn to R, then the symmetric matri[ A = 

H(x) = ൬డ
మ௙ሺ࢞ሻ

డ௫೔డ௫ೕ
൰  is called the +essian matri[ of f at x. Thus, 

A = H(x) =    

ۉ

ۈ
ۇ

డమ௙
డ௫భమ

�� డమ௙
డ௫భడ௫మ

� ڮ డమ௙
డ௫భడ௫೙

ڭ ڰ ڭ
డమ௙

డ௫భడ௫೙
�� డమ௙
డ௫మడ௫೙

ڮ డమ௙
డ௫೙మ ی

ۋ
ۊ

. 

If  a א
n�ǡࡾ� �ࢇሺ݂�����������������������ࢇ�������݂����������������������������������� ൅
�ࢇȁȁ�����݂ሺࢎሻ���������������������ȁȁࢎ� ൅ ሻࢎ� �ൌ �݂ሺࢇሻ �൅   .R1(c) + ࢎሻxࢇሺ݂ࢺ�

If a is a critical point, then ݂ࢺሺࢇሻ   0, and therefore Ze get   

 f(a + h) − f(a)  = R1(c).    

1oZ, ܴଵሺܿሻ ൌ
ଵ
ଶǨ
σσܦ௜௝݂ሺࢇ ൅ ሻ݄௜ࢎߠ ௝݄, Zhere Ͳ ൏ ߠ ൏ ͳ 

ൌ ଵ
ଶǨ
ࢇሺܪࢎ ൅ ௧Ǥࢎሻࢎߠ � We Zrite 

צ ࢎ ଶצ ȁܧሺࢇǡ ሻȁࣂ �ൌ
૚
ʹǨ
หσσ൛ܦ௜௝݂ሺࢇ ൅ ሻࢎߠ െ ሻൟ݄௜ࢇ௜௝݂ሺܦ ௝݄ห

൑
ͳ
ʹǨ
σσหܦ௜௝݂ሺࢇ ൅ ሻࢎߠ െ ሻหࢇ௜௝݂ሺܦ צ ࢎ ଶצ

 

Therefore, ȁܧሺࢇǡ ሻȁߠ ൑ ଵ
ଶǨ
σσหܦ௜௝݂ሺࢇ ൅ ሻࢎߠ െ ሻหǡࢇ௜௝݂ሺܦ � when ࢎ ് ૙Ǥǥǥǥǥ Ǥ ሺͶǤ͸ሻ 

���������������������������������������������������� 

�ࢎ����������������� ՜ �૙ǡ�
������݂ א ǡʹܥ� ������������������������������������������������������Ǥ� 

���������ǡ ǡࢇሺܧ ሻߠ �՜ �૙ǡ ࢎ��� ՜ ૙Ǥ��������� ଵ
ଶǨ
ࢇሺܪࢎ� ൅ �ݐࢎሻࢎߠ ൌ

�ଵ
ଶǨ
�ݐࢎሻࢇሺܪࢎ� ൅� ȁȁࢎȁȁʹܧሺࢇǡ ሻǡߠ ǡࢇሺܧ������ ሻߠ �՜ �૙ǡ ࢎ�ݏܽ ՜0.  
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   Hence, f(a + h) – f(a) =  ଵ
ଶǨ
�ݐࢎሻࢇሺܪࢎ� ൅� ȁȁࢎȁȁʹܧሺࢇǡ        �4.7�.................           .(ߠ

Theorem 7.� : If f  is a function from Rn to R, and has continuous second order 
partial derivatives in a ball %�a; r� around a stationary point a of f, then 

i) f has a relative minimum at a, if H(a) is positive definite 

ii) f has a relative ma[imum at a, if h(a) is negative definite 

iii� f has a saddle point at a, if H(a� has both positive and negative eigen 
values. 

Proof : Using the notations that Ze have used  in the discussion Must before this 
theorem,  
Ze can Zrite f(a + h) – f(a) =  ଵ

ଶǨ
�ݐࢎሻࢇሺܪࢎ� ൅� หȁࢎȁหʹܧሺࢇǡ  ���ሻǤߠ

����ǡࢇሺܧ�� ሻߠ ՜ �૙ǡ ࢎ��� ՜ ૙ǡ�����������������������������������
݂ሺࢇ� ൅ ሻ�Ȃࢎ� �݂ሺࢇሻ������������������������ ଵ

ଶǨ
 hH(a)ht .  

i� This value Zill be positive for all h, if H(a� is positive definite. Hence, f(a + h) 
– f(a) ! 0 for all h, such that 0 � __h|| < r. This tells us that f(a + h) ൒
�݂ሺࢇሻࢎ������������   a; r�, that is , a is a relative minimum point�% א
of f. 

The argument for proving ii� and iii� are e[actly similar, and Ze are sure you can 
Zrite those. 

Remark 4.2 : i� If  an even principal minor, that is a principal minor of even order 
is negative, then the point is a saddle point. 

ii� If detH(a)   0, the test is inconclusive, and a is called a degenerate 
stationary point of f. 

*o through the folloZing e[amples carefully, they illustrate our discussion 
here.     

E[ample 4.2: Locate and classify the stationary points of the functions given by 

i� x2 + xy + 2x + 2y + 1,   ii� x3 + y3 – 3xy,    iii� (x − 1)exy. 

Solution : i� Let  f(x, y) =  x2 + xy + 2x + 2y + 1.  Then fx = 2x + y + 2,  fy = x + 2. fx 
= fy = 0  ฺ �ݔ� ൅ �ʹ� ൌ �Ͳǡ �ݔʹ���� ൅ �ݕ� ൅ �ʹ� ൌ �Ͳ� ฺ x = − 2 and y = 2. 
Therefore, f has only one stationary point, ( − 2, 2). Now, fxx = 2, fyy = 1, and fxy = 0. 

Thus, H(( −2, 2)) = ቀʹ ͳ
ͳ Ͳቁ, and det (H(( − 2, 2))) =  −1. 

Therefore, f has a saddle point at ( − 2, 2). 

ii� Let f(x, y) = x3 + y3 – 3xy. Then, fx = 3x2 – 3y, fy = 3y2 – 3x. 

fx = fy = 0 ฺ �ݕ� ൌ ǡʹݔ� �ݔ���� ൌ ��ʹݕ� ฺ �ݔ� ൌ ݕ� ൌ �Ͳǡ �ݔ�ݎ݋ ൌ �ݕ� ൌ �ͳǤ� 
���������ǡ ��������������������������ሺͲǡ Ͳሻ����ሺͳǡ ͳሻǤ�� 
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���ǡ �ݔݔ݂ ൌ �͸ݔǡ �ݕݕ݂ ൌ �͸ݕǡ �ݕݔ݂���� ൌ �െ�͵Ǥ �����ǡ ሺሺͲǡܪ Ͳሻሻ �ൌ � ቀ Ͳ െ͵
െ͵ Ͳ ቁ. 

 det(H�0, 0��   - 9 � 0, and �0, 0� is a saddle point. 

H��1, 1��   ቀ ͸ െ͵
െ͵ ͸ ቁ . The principal minors are 6, and 27. %oth are positive, and 

hence f has a local minimum at �1, 1�.        

iii� Let f(x, y) = (x - 1)exy.  Then fx = exy(xy – y + 1),  fy = x(x - 1)exy 

 fx = 0 ฺ �Ȃݕݔ� �ݕ� ൅ �ͳ� ൌ �Ͳǡ �ݕ݂���� ൌ �Ͳ� ฺ �ݔሺݔ� െ �ͳሻ �ൌ �Ͳ� ฺ x = 0, or x = 1. 

x   0 ฺ y   1, and x   1 contradicts fx = 0. So,  �0, 1� is the only stationary point. 

fxx = exy(y + xy2 – y2 + y),  fxy = exy(x – 1 + x2y – xy + x),  fyy = x2(x - 1)exy. 

Therefore, H��0, 1��    ቀ ͳ െͳ
െͳ Ͳ ቁ .  det(H�0, 1��   - 1 � 0.  

Hence, �0, 1� is a saddle point. 

E[ample 4.3 : Locate and classify the stationary points of  f(x, y, z) =   

i) xyz݁ି௫మି௬మି௭మ, 

ii)  x2y + y2z + z2 - 8ξʹx,   iii)  x2 – xy + yz3 – 6z. 

Solution :  i� fx = yz݁ି௫మି௬మି௭మ െ ௫మି௬మି௭మି݁ݖݕʹݔʹ� �ൌ � ݁ି௫మି௬మି௭మyz(1 – 2x2) 

fy = ݁ି௫మି௬మି௭మݖݔሺͳ�Ȃ ሻǡʹݕʹ� �ݖ݂ ൌ � ݁ି௫మି௬మି௭మݕݔሺͳ�Ȃ  ���ሻǤʹݖʹ�

������������������������������������������ǡ �����������������������������������ǡ�
�������ሺܽǡ Ͳǡ Ͳሻǡ ሺͲǡ ܾǡ Ͳሻǡ ሺͲǡ Ͳǡ ܿሻǡ ሺേ ଵ

ξଶ
�ǡ േ ଵ

ξଶ
�� ǡ േ ଵ

ξଶ
��, Zhere a, b, c are real 

numbers, as the stationary points. 

fxx =  − 4xyz݁ି௫మି௬మି௭మ �െ ሺͳ�Ȃݖݕݔʹ�  ሻ�݁ି௫మି௬మି௭మʹݔʹ�

fxy = z(1 – 2x2)�݁ି௫మି௬మି௭మ �െ ሺͳ�Ȃݖʹݕʹ�  ,ሻ�݁ି௫మି௬మି௭మʹݔʹ�

fyz =  ݁ି௫మି௬మି௭మݔሺͳ�Ȃ ሻ�Ȃʹݕʹ�   .௫మି௬మି௭మ(1 – 2y2)ି݁ʹݖݔʹ�

We have indicated the procedure. We are sure noZ you Zill be able to get  fxz, fyy, 
and fzz. Evaluating these second order partial derivatives at the stationary points, 
Ze find, 

 H((a, 0, 0��   ൭
Ͳ Ͳ Ͳ
Ͳ Ͳ ܽ݁ି௔మ

Ͳ ܽ݁ି௔మ Ͳ
൱  detH((a, 0, 0��   0. Therefore, �a, 0, 0� is a 

degenerate point of f. Similarly, �0, b, 0� and � 0, 0, c� are also degenerate points. 

H�� ଵ
ξଶ
ǡ ଵ
ξଶ
ǡ ଵ
ξଶ
ሻሻ �ൌ �൮

െξʹ݁ି
య
మ Ͳ Ͳ

Ͳ െξʹ݁ି
య
మ Ͳ

Ͳ Ͳ െξʹ݁ି
య
మ

൲�Ǥ� 
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������������������������������ െ ξʹ݁ି
ଷ
ଶǡ ʹ�

െ �͵ǡ െʹξʹ݁ି
ଷ
ଶǤ ���������ǡ ൬

ͳ
ξʹ

ǡ
ͳ
ξʹ

ǡ
ͳ
ξʹ

൰ �������������������Ǥ 

���������������������͹�������Ǥ �������������������������������� 

ሺ ଵ
ξଶ
ǡ ିଵ
ξଶ
ǡ ିଵ
ξଶ
ሻǡ ሺିଵ

ξଶ
ǡ ଵ
ξଶ
ǡ ିଵ
ξଶ
ሻǡ ሺିଵ

ξଶ
ǡ ିଵ
ξଶ
ǡ ଵ
ξଶ
ሻǡ

��������������������ሺ ଵ
ξଶ
ǡ ିଵ
ξଶ
ǡ ଵ
ξଶ
ሻǡ ሺ ଵ

ξଶ
ǡ ଵ
ξଶ
ǡ ିଵ
ξଶ
ሻǡ ሺିଵ

ξଶ
ǡ ଵ
ξଶ
ǡ ଵ
ξଶ
ሻǡ ሺିଵ

ξଶ
ǡ ିଵ
ξଶ
ǡ ିଵ
ξଶ

�. 

ii� fx = 2xy - 8ξʹ�ǡ �ݕ݂ ൌ �ʹݔ� ൅ ǡݖݕʹ� �ݖ݂ ൌ �ʹݕ� ൅
Ǥݖʹ� ����������������������ǡݕݔ�������� ൌ �Ͷξʹǡ �ʹݔ ൌ �െʹݖݕ�ǡ �ʹݕ ൌ
�െ�ʹݖǤ ǡݔ��� ǡݕ ��������ݖ���� െ ����ǡݔ�������� ൌ �ʹξʹǡ �ݕ ൌ �ʹǡ �ݖ���� ൌ
�െ�ʹǤ ��ǡ ��������������������������ሺͲǡ Ͳǡ Ͳሻ������ሺʹξʹ, 2, − 2). 

<ou Zill find that �0, 0, 0� is a degenerate stationary point, and �2ξʹ, 2, − 2) is a 
saddle point. 

iii� fx = 2x – y, fy = - x + z3,  fz = 3yz2 – 6. ETuating these to ]ero, Ze get �1, 2, 1� 

as the stationary point. ChecN that H��1, 2, 1��   ൭
ʹ െͳ Ͳ
െͳ Ͳ ͵
Ͳ ͵ ͳʹ

൱, and the principal 

minors are 2, - 1, - 6. Hence, �1, 2, 1� is a saddle point. 

See  if you can solve these e[ercises noZ. 

E[ercises: 

1� Find the stationary points of  f(x, y) = i) 
422 �� yx

x    ii) (x + y)exy. 
422 �� yx

x  

2� Find the e[treme values of  f(x, y) = x2 + y3 + 3xy2 – 2x. 

3� Is �0, 0� an e[treme point of 2cos�x + y) + exy? 

4� Locate and classify the stationary points of  

i� f(x, y) = (2 - x)(4 - y)(x + y - 3),  ii� f(x, y, z) = 4xyz – x4 – y4 – z4,   

iii� f(x, y, z) = 64x2y2 – z2 + 16x + 32y + z,  iv� f(x, y, z) = xyz(x + y+ z – 1). 

4.4 Lagrange’s Multipliers                                                                      

LooN at these situations: 

i� A rectangular cardboard sheet is given. We have to maNe a closed bo[ out of it. 
What is the ma[imum volume that is possible" 
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ii� Temperature varies on a metal surface according to some formula. Where do the 
ma[imum and minimum temperature occur on the surface" 

In both these problems Ze have to ma[imi]e or minimi]e a certain function: 
volume in the first case, and temperature in the second. So these are ma[-min. 
Problems. %ut there is a difference betZeen these and the problems considered in 
the last section. Here, an additional constraint or condition is imposed. The given 
cardboard sheet has a fi[ed area. The ma[imum�minimum temperature points are 
to be on the given surface. 

In this section Ze shall see hoZ such problems are solved. A very useful method 
Zas developed by -oseph Louis Lagrange. This method gives a necessary condition 
for the e[treme points of a function. We noZ state the theorem and then illustrate 
its use through some e[amples. 

Theorem 4.7 : Let f : Rn ՜ ǡࡾ� ����݂� א ͳǤܥ� ��������݃ͳǡ ݃ʹǡ Ǥ Ǥ Ǥ ǡ ݃݉�ሺ݉� ൏
�݊ሻ���������nǤࡾ���������������������������������ͳǡܥ������������������� �ࢇ��� א
��������������������������݂ǡ ߘ������� ଵ݃ሺࢇሻǡ ሻǡࢇଶሺ݃ߘ Ǥ Ǥ Ǥ ǡ ������������������ሻࢇ௠ሺ݃ߘ
ሻࢇͳሺ݃݅ܦଵߣ� �൅ߣ�ଶ݃݅ܦʹሺࢇሻ�൅�Ǥ Ǥ Ǥ ൅ߣ�௠Digm(a) = 0,    i   1, 2, . . . , n. 

We can also Zrite the vector eTuation ݂׏ሺࢇሻ �൅�σ ௜௡݃ߘ௜ߣ
ଵ (a) = 0. 

When Ze Zant to find the e[treme values of a function  f : Rn ՜ ǡࡾ� ݂� א
ͳǡܥ� ���������������������������ǡ ݃ͳሺݔͳǡ ǡʹݔ Ǥ Ǥ Ǥ ǡ ሻ݊ݔ �ൌ
�Ͳǡ ݃ʹሺݔͳǡ ǡʹݔ Ǥ Ǥ Ǥ ǡ ሻ݊ݔ �ൌ �Ͳǡ Ǥ Ǥ Ǥ ǡ ݃݉ሺݔͳǡ ǡʹݔ Ǥ Ǥ Ǥ ǡ ሻ݊ݔ �ൌ �Ͳǡ����������� ൏
��ǡ݂݅ܦ��������������������������ሺࢇሻ �൅ߣ�ଵ݃݅ܦͳሺࢇሻ �൅
ሻ�൅�Ǥࢇሺʹ݃݅ܦଶߣ� Ǥ ൅ߣ�௠Digm(a) = 0, i   1, 2, . . . , n. 

These n eTuations, along Zith the m eTuations,   g1(x1, x2, . . . ,xn) = 0, g2(x1, x2, . . 
. ,xn) = 0, . . . , gm(x1, x2, . . . ,xn) = 0, are then solved to get the values of the n � m 
unNnoZns, x1, x2, . . . ,xn, ߣଵǡ ଶǡߣ Ǥ Ǥ Ǥ ǡ  ௠. The solutions x = (x1, x2, . . . ,xn) are theߣ
stationary points, and contain the e[treme points of f .  

ଵǡߣ ଶǡߣ Ǥ Ǥ Ǥ ǡ  ௠ are called Lagrange’s Multipliers. We use one multiplier for eachߣ
constraint. 

To analytically classify these stationary points into local ma[imum, minimum, or 
saddle, is a very complicated process. It is usually easier to looN at the physical or 
geometrical aspect of the problem to arrive at any conclusion. We noZ solve a feZ 
problems, so that the entire process is clear to you.  

E[ample 4.4 : Find the dimensions of the bo[ Zith ma[imum volume that can be 
made Zith a cardboard sheet of si]e 12 cm2. 

Solution : If the dimensions of the bo[ are x, y, z  cms, then its volume V = xyz  c. 
cms. And surface area is 2�xy + yz + xz) sT. cms. Here Ze have to ma[imi]e V, 
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subMect to a constraint 2�xy + yz + xz�   12, or �xy + yz + xz�   6. So, f(x, y, z) = 
xyz, and  

g(x, y, z) = xy + yz + xz – 6. Hence,  

ǡݔሺ݂ࢺ ǡݕ ሻݖ �൅ ǡݔሺ݃ࢺߣ� ǡݕ ሻݖ �ൌ �૙� ฺ 

fx + ݔ݃ߣ� ൌ �Ͳ�� ฺ �ݖݕ� ൅ �ݕሺߣ� ൅ ሻݖ� �ൌ �Ͳǡ �ݕ݂ ൅ �ݕ݃ߣ� ൌ �Ͳ�� ฺ �ݖݔ� ൅ �ݔሺߣ� ൅
ሻݖ� �ൌ �Ͳǡ���݂ݖ� ൅ �ݖ݃ߣ� ൌ �Ͳ�� ฺ �ݕݔ� ൅  .0 = (x + y)ߣ�

xyz = െߣሺݕݔ� ൅ ሻݖݔ� �ൌ ��െߣሺݕݔ� ൅ ሻݖݕ� �ൌ �െߣሺݖݔ� ൅ ሻǤݖݕ� �ߣ���� ൌ �Ͳǡ �����ܸ� ൌ
�Ͳǡ���������������������������Ǥ ߣ���� ് 0, then xy + xz = xy + yz = xz + yz. That 
is, x = y = z �unless, of course, x = y = z = 0�.  

Therefore, xy + yz + xz = 6 ฺ �ʹݔ͵� ൌ �͸� ฺ �ݔ� ൌ �ξʹ����Ǥ ����ǡ ܸ� ൌ �ʹξʹ c. 
cms. is the ma[imum volume. 

E[ample 4.� : Find the e[treme values of the function given by f(x, y, z) = 2x + y 
+ 3z, subMect to x2 + y2 = 2, x +z = 5. 

Solution : Let g1(x, y, z) = x2 + y2 – 2   0, and g2(x, y, z) = x + z – 5   0. Then 

݂ࢺ ൅ ࢺଵߣ ଵ݃ ൅ ଶ݃ࢺଶߣ �ൌ �૙� ฺ 

fx + ߣଵ݃ͳݔ� ൅ߣ�ଶ݃ʹݔ� ൌ �Ͳ�� ฺ �ʹ� ൅ �ݔଵߣʹ� ൅ߣ�ଶ = 0 

 fy + ߣଵ݃ͳݕ� ൅ߣ�ଶ݃ʹݕ� ൌ �Ͳ�� ฺ �ͳ� ൅  0 =  ݕଵߣʹ�

fz + ߣଵ݃ͳݖ� ൅ߣ�ଶ݃ʹݖ� ൌ �Ͳ�� ฺ �͵� ൅ߣ�ଶ �ൌ �ͲǤ������������ǡ ଶߣ �ൌ �െ�͵ǡ �ݔଵߣʹ ൌ
�ͳǡ  .1 − =  ݕଵߣʹ�����

ଵߣ �ൌ �Ͳ� ଶߣ�ฺ �ൌ �െʹǤ ����ɉଶ �ൌ
�െ͵Ǥ ����������ɉଵ���������������Ǥ�������ǡ �ݔ ൌ � ଵ

ଶఒభ
ǡ �ݕ ൌ

� ିଵ
ଶఒభ

Ǥ �ʹݔ����������������������������� ൅ �ʹݕ� ൌ �ʹǡ �������ɉଵ �ൌ

�േ ଵ
ଶ
Ǥ ����������ǡ �ݔ ൌ �േͳǡ �ݕ ൌ  1, - 1, 4� and� Hence, the stationary points are .1ט�

� - 1, 1, 6�, and the e[treme values are 13 and 17. 

E[ample 4.� : Find the minimum distance of a point on the intersection of the 
planes,  

x + y – z   0, and x + 3y + z   2 from the origin. 

Solution: The distance of P(x, y, z) from the origin is 
ඥݔଶ ൅ ଶ�Ǥݖଶ൅ݕ ��ǡ ���������������������݂ሺݔǡ ǡݕ ሻݖ �ൌ � ଶݔ ൅   ଶ, subMect toݖଶ൅ݕ
g1(x, y, z) =  x + y – z = 0, and 
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g2(x, y, z) = x + 3y + z – 2 = 0.  

݂ࢺ ൅ ࢺଵߣ ଵ݃ ൅ ଶ݃ࢺଶߣ �ൌ �૙� ฺ 

fx + ߣଵ݃ͳݔ� ൅ߣ�ଶ݃ʹݔ� ൌ �Ͳ�� ฺ �ݔʹ� ൅ߣ�ଵ �൅ߣ�ଶ = 0 

fy + ߣଵ݃ͳݕ� ൅ߣ�ଶ݃ʹݕ� ൌ �Ͳ�� ฺ �ݕʹ� ൅ߣ�ଵ �൅  ଶ = 0ߣ͵�

fz + ߣଵ݃ͳݖ� ൅ߣ�ଶ݃ʹݖ� ൌ �Ͳ�� ฺ ଵߣ��Ȃݔʹ� �൅ߣ�ଶ �ൌ �ͲǤ� 

���������ǡ �ݔ ൌ � ିሺఒభାఒమሻ
ଶ

� ǡ �ݕ ൌ � ିሺఒభାଷఒమሻ
ଶ

 ,  

z = ሺఒభିఒమሻ
ଶ

� Ǥ �ݔ������������������������� ൅ �Ȃݕ� �ݖ� ൌ �Ͳǡ�������ɉଵ �൅�ɉଶ   0. 
Therefore, x   0 and y = z. Using this in x + 3y + z – 2   0, Ze get y = z   ò.  

Thus, the stationary point is  

�0, 1�2, 1�2�. The distance of this point from the origin is ଵ
ξଶ

 . 

*eometrically, the constraints are eTuations of tZo planes. There is no ma[imum 
to the distance of a point on their line of intersection from the origin. So, the 
stationary point is a minimum point. 

Here are some problems you can try. 

1� Find the e[treme values of the function f(x, y) = xy on the surface 

 
28

22 yx
�    1.  

2� Find the e[treme values of z   
32
yx

�  on the unit circle in the xy-plane.  

3) Find the distance of the point (10, 1, − 6) from the intersection of the planes,  

x + y + 2z   5 and 2x – 3y + z   12. 

4.� Summary 

In this chapter we have introduced Taylor’s theorem for functions of several 
variables. We have also seen hoZ to get Taylor polynomials of a given order for a 
given function. Of course, to be able to do this, the function must have continuous 
partial derivatives of higher orders.  

We have then discussed the location of ma[ima and minima of a real-valued 
function of several variables. This has tremendous applications in diverse fields of 
study. In particular, Ze have proved that the e[treme points of a function are located 
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among the points at Zhich the gradient vector of the function is ]ero. That is, the 
points at Zhich all the first order partial derivatives are ]ero. The classification of 
these points into ma[ima, minima, or saddle points depends on the signs of the 
principal minors of the Hessian matri[. 

We pointed out that there are some situations, Zhere Ze need to find the e[treme 
values subMect to certain constraints. Such problems, and the method of tacNling 
them is also discussed, and illustrated through some e[amples. 

 

��������
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UNIT 3 
� 

IN9ERSE AND IMPLICIT )UNCTION 
T+EOREMS 

Unit Structure 

5.0  ObMectives 

5.1  Introduction 

5.2  Inverse Function Theorem 

5.3  Implicit Function Theorem 

5.4  Summary 

 

�.0 Objectives 

After reading this chapter, you should be able to  

x state and prove Inverse Function Theorem for functions of several variables 

x checN if some simple functions are locally invertible  

x state and prove Implicit Function Theorem for functions of several variables 

�.1 Introduction                                                                                        

In this chapter Ze introduce tZo very important theorems. <ou have not come 
across these theorems even for functions of a single variable. In each case, Ze shall 
first discuss the single variable case, and then e[tend the concept to functions of 
several variables. A Zord of caution : these theorems are not easy. To help you 
understand them better, Ze are going to prove some smaller results, and then use 
them in the proof of the theorems. Do study this chapter carefully and Ze are sure 
you Zould have no difficulty in digesting the concepts.  

�.2 Inverse )unction Theorem                                                                

The inverse function theorem is a very important theorem in Calculus. <ou may be 
familiar Zith its one dimensional version. %efore Ze introduce the theorem for 
functions from Rn to Rn, Ze shall recall some results about functions of one 
variable: 

59
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1� If f : >a, b@  R is continuous, and f(c) ! 0 for some c  (a, b), then  
such that  

�c ) (a, b), and f(x) ! 0   (c ). In other 
Zords, Ze can alZays find a neighbourhood of the point c, in Zhich f(x) has the 
same sign as f(c). 

2� If f : >a, b@  R is a continuously differentiable function, and  for 
some  
c  (a, b), then using 1� Ze can prove that  such that f is an inMective 
function on  
�c ) (a, b�. Further,  f-1: f(c )  
(c )  is differentiable at f(c) ,  
The statement in 2� is the inverse function theorem. 1ote that Ze do not NnoZ 
Zhether the inverse of f e[ists on >a, b@. %ut Zhat this theorem tells us, is that if  

, then f is  “locally invertible” at c. For e[ample, Ze NnoZ that the 
function f : >0, 2 @  R, f(x) = sinx    does not have an inverse. %ut   

is a continuous function, and  .  So, the theorem says 

that f is locally invertible at . That is, Ze can find a neighbourhood N of  , such 
that f restricted to N has an inverse. ChecN that f is inMective Zhen restricted to N   

� �, and hence has an inverse on N. 

We shall noZ see if this theorem e[tends to functions of several variables. Let us 
start Zith a definition. 

Definition �.1 : Let f : E  Rn, Zhere E  Rn. If f  C1, f is said to be locally 
invertible at a  E, if there e[ists a neighbourhood N1 of a, N1  E, and a 
neighbourhood N2 of f(a), such that f(N1) = N2,  f is inMective on N1, and f-1 : N2  
N1 is a C1 function. 

We shall soon state and prove the inverse function theorem. In the proof, Ze are 
going to use some minor results. <ou have already studied some in the earlier 
chapters of this course. 1e[t Ze state and prove one other result, Zhich Zill be 
useful to us. 

Theorem �.1 : Let f = (f1 f2, . . . , fn) : E  Rn,  Zhere E is an open set in Rn. 
Suppose f  C1. If the -acobian of f, J(a)  0 for some a  E, then f is inMective 
on a neighbourhood of a in E. 

) )

) )
)
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 Proof : If  X1, X2, . . . , Xn  E, Ze consider a point X = (X1, X2, . . . , Xn)  
, Zhose first n coordinates are the coordinates of X1, the ne[t n are the coordinates 
of  X2, and so on. We define a function, M, such that  

j(X) = det[Djfi(Xi)] = det  .     

1oZ, the function j, being an nîn determinant, is a polynomial of its n2 entries, and 
each entry,  is a continuous function, since f  C1. Thus, j is a continuous 
function on its domain. We Zrite A = (a, a, . . . , a�. Then j(A) = det[Djfi(a)] = J(a) 

 0. 1oZ, since f C1, all the entries of j(A) are continuous, and hence, j(A) is 
also continuous. The continuity of j(A) ensures that there e[ists a neighbourhood N 
of A, such that j(X)  0 , if X  N. 

In other Zords, there e[ists a conve[ neighbourhood Na of a, such that  j(X)  0 , if  

X = (X1, X2, . . . , Xn) is a point, for Zhich Xi  Na  for every i   1, 2, . . . , n.    
                                                         ..........�5.1� 

This Na is the reTuired neighbourhood. We have to shoZ that f is inMective on Na. 
For this, suppose x, y  Na , such that f(x) = f(y�. Then fi(x) = fi(y)  for every i   1, 
2, . . . , n.    

Then, using the Mean Value Theorem for scalar fields �See RemarN 6.2 ii�.�, Ze 
get 

fi(x) − fi(y) = fi(ci)  (x − y)    fi(ci)  (x − y)   0 for some ci on the line 
segment Moining x and y. So, if x – y  0, then  fi(ci)   0 for some ci on the line 
segment Moining x and y, that is, in the neighbourhood Na, since Na is conve[. This 
means, Djfi(ci�   0 for every M, 1 . Thus, if C = (c1, c2, . . 
. , cn), then j(C) = det[Djfi(ci)]   0. %ut this contradicts �5.1�. So, Ze conclude that 
x – y   0, Zhich proves that f is inMective on Na. 

Remark �.1 : i� A function may not be inMective on its entire domain. %ut if its 
-acobian is non-]ero at a point, then it is inMective on a neighbourhood of that point. 
In other Zords, it is locally inMective. 

ii� If the -acobian is non-]ero, then the linear transformation Df, Zhich represents 
the derivative of f, is non-singular, and hence, is a linear isomorphism. 

E[ample �.1 : a� Consider the function f(x, y) = (excosy, exsiny). This function is 
not inMective, since f(x, 0) = f(x, 2 �. %ut,  

X

f f
fmu

no
tes
.in



62

A1AL<SIS - I

J(x, y)      e2x  0. Thus, f is locally inMective at each point in R2. 

Here Ze have a function, Zhich is locally inMective at every point of its domain, but 
is not inMective on the domain. 

b�   Consider the function f(x, y) = (x3, y3), defined on R2. The -acobian of this 
function is ]ero at �0, 0�. %ut the function is locally invertible at �0, 0�. In fact, it is 
an invertible function. 

Theorem �.2 �The Inverse Function Theorem�: Let f = (f1, f2, . . . , fn)  C1, 
 f: E  Rn , Zhere E is an open set in Rn. Let T   f�E�. Suppose J(a�  0 for some 
a  E. Then there e[ists a uniTue function f-1 from < to ;, Zhere ; is open in E, 
< is open in T, such that 

i� a  ;, f(a)  <,  ii� <   f�;�,  iii� f is inMective on ;,  iv� f-1: <  ;, f-1�<�   
;,  v� f-1  C1 on <. 

Proof : Using Theorem 5.1, Ze can conclude that f is inMective on a neighbourhood 
N of a in E. So, f : N  f(N) is biMective, and hence has an inverse, f-1 : f(N)  N. 
Let r ! 0 be such that    N. Since   is compact in Rn , Ze use Theorem 
3.4.1 to conclude that  f�  �  is also compact in Rn . 1oZ f is continuous and 
inMective on the compact set   . Hence, using Theorem 3.4.2, Ze can say that 
f-1 is continuous on f�  �.   

 1oZ, %�a, r� is an open set in  ,  and therefore,  

�%�a, r�� is open in f� �. That is, f�%�a, r�� is open in f� �.  

Also, f(a)  f�%�a, r��. Therefore, there e[ists a  ! 0, such that %�f(a), �  

 f�%�a, r��. 

TaNe ;   f-1�%�f(a), ��, and  <   %�f(a), �. Then ; and < satisfy i�, ii�, iii� and 
iv� in the statement of the theorem.  

To prove the last assertion v� in the statement, Ze have to shoZ that all the partial 
derivatives of all the component functions of f-1 are continuous on <. For this Ze 
first define the function  j(X) = det[Djfi(xi)] , as in Theorem 5.1. Here X = (X1, X2, 
. . . , Xn). Then, as before, there is a neighbourhood Na of a, such that j(X)  0, 
Zhenever each Xi  Na. We can assume that the neighbourhood N  Na. This 
ensures that j(X)  0, Zhenever each Xi   . 

NNN
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1oZ Ze first prove that Dif-1 e[ists on <. Let y  <, and consider 

t
yfteyf i ���� 11 �� �� , 

  Zhere ei is the ith coordinate vector, and t is a scalar. Let x = f-1(y), and  
= f-1(y + tei). Then  

f( ) – f(x) = tei. Thus, fi( ) – fi(x) = t, and  fj( ) – fj(x) = 0, Zhen i  M. 

%y applying Mean Value Theorem �RemarN 6.2 ii��, Ze can Zrite       

 
�
t

xfxf mm ���� 


 fm�xm)  
t

xx �


 ,    m   1, 2, . . . , n. Here xm is a point on the 

line segment Moining x and . 

So, Ze get a system of  n eTuations �for the n values of m�. The left hand side of an 
eTuation in this system is 1, if m   i, otherZise it is 0. The right hand side is of the 
form  

D1fm(xm) 
t

xx 1



1 �

� D2fm(xm) 
t

xx 2


2 �  � . . . � Dnfm(xm) 

t
xx nn �




,   m   1, 2, . . . , n.   

The determinant of this system of linear eTuations is j(X), Zhich Ze NnoZ is non-

zero. Hence we can solve it by Cramer’s rule and get the variables  
t

xx jj �



  as the 

Tuotient of tZo determinants. Then, as t tends to ]ero,  approaches x, and hence, 
each xm also approaches x. The determinant in the denominator, j(X)   det[Djfi(xi)]  
then approaches J(x), the -acobian of f at x, Zhich is again non-]ero. Thus, as t 

tends to ]ero, the limit of 
t

xx jj �



  e[ists. That is,  
t

yfteyf i

t

����
lim

11

0

��

o

��   

e[ists. Thus, Dif-1(y) e[ists for all i, and for all y in <. 

We have obtained the partial derivatives of the components of f-1 as Tuotients of 
tZo determinants. The entries in these determinants are partial derivatives of the 
components of f, Zhich are all continuous. Since a determinant is a polynomial of 
its entries, Ze conclude that the partial derivatives of f-1 are continuous on <.  

E[ample �.2 : ShoZ that the function f: R2  R2, f(x, y) = (2xy, x2 – y2)  is not 
invertible on  R2, but is locally invertible at every point of E   ^�x, y� _ x ! 0`. Also 
find the inverse function at one such point. 

Solution : Here f�1, 1�   f( − 1, − 1) = (2, 0). Therefore f is not inMective, and hence 
is not invertible on R2. On the other hand, if �x, y�  E, then  

(((( ) ((((((( ) (((( )

f

.
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J(x, y) =  = − 4(x2 + y2)  0. Hence by the inverse function theorem, 
 f is locally invertible.  

Suppose  f(x, y) = (u, v).  If  �x, y�  E,  then y  
x

u
2

, and v = x2  . Therefore, 4x4 - 

4x2v – u2   0. Thus, x2   
2

22 uvv ��  , and     x   �
2

22 uvv �� �1�2,   

y   u�2v � 2 �−1�2 

�.3 Implicit  )unction Theorem                                                              

 If  x2 + y2   0, find   . <ou must have done e[ercises liNe this in your under-
graduate classes. Here, Ze taNe f(x, y) = x2 + y2, and find fx = 2x, and  fy = 2y. Then 

dx
dy    2x/2y = x/y. Of course, y cannot be ]ero.  

While doing this e[ercise, actually Ze have used a theorem, the implicit function 
theorem. To recall, in this setting, a function Zhich can be Zritten as y = g(x�, is 
called an e[plicit function, and one Zhich can be e[pressed only as f(x, y)   0, is 
called an implicit function. The implicit function tells us that under certain 
conditions, Ze can e[press an implicit function as an e[plicit one, and then Ze can 

use this e[pression to find  
dx
dy  . 

In this section Ze are going to discuss this implicit function theorem for functions 
of several variables. %efore Ze state and prove the general case, Ze first prove the 
case for functions involving only tZo variables, x and y. 

Theorem �.3 : Let f be a real-valued C1 function, defined on the product , 
Zhere  and  are tZo intervals in R. Let �a, b�  , and f(a, b)   0, but 
fy(a, b)  0. Then there   e[ists an interval I in R, containing a, and a C1 function 
g : I R, such that g(a) = b, and  

f(x, g(x))   0 for all x  I. 

Proof : We consider a function, h:   R2, given by h(x, y) = (x, f(x, y)). If 
Ze Zrite   

 h   � �, the -acobian matri[ of h is  

R
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Jh(x, y)       .  The determinant of this matri[,   is not ]ero at 

�a, b�. Thus, h is a C1 function, Zith a non-]ero -acobian at �a, b�. Therefore, by the 

inverse function theorem, Theorem 5.2 , Ze can conclude that h is locally invertible 

at �a, b�. Let u   � � be the local inverse of h. <ou Zill agree that  �x, y�   

x for all x and y in R. That is,  

u(x, y) = (x, (x, y)) for all x and y in R.  We noZ define g as, g(x) = (x, 0), 
and shoZ that it has all the reTuired properties. 

1oZ, since h(a, b) = (a, 0), u(a, 0) = (a, b). This means, �a, 0�   b. Thus, g(a) 
= b. 

Also, (x, 0) =  h(u(x, 0)) = h(x, (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies 
that 

 f(x, g(x))   0.  

Since u is a C1 function, g is also C1. Differentiating  f(x, g(x))   0 Zith respect to 
x using chain rule, Ze get  D1f(x, g(x)) + D2f(x, g(x)) (x)   0, and thus, 

(x)   
���,�
���,��

2

1

xgxfD
xgxfD�

,  since D2f(x, g(x))  0.  

%asically, this theorem tells us that under certain conditions, the relation  
f(x, y) = 0, betZeen x and y can be e[plicitly Zritten as y = g(x). 

Remark �.2  :  If instead of fy(a, b)  0, Ze taNe the condition fx(a, b)  0, then 
Ze can e[press x as an e[plicit function of y. 

E[ample �.3  : Can f(x, y) = x3 + y3 – 2xy be e[pressed by an e[plicit function  
y = g(x) in a neighbourhood of the point �1, 1�" 

Solution : 1ote that f�1,1�   0, and fy = 3y2 – 2x   1 at �1, 1�. Further, f is a 
 C1 function on R2. Therefore, Ze can apply Theorem 5.3, and conclude that there 
e[ists a uniTue function g, defined on a neighbourhood of 1, such that g�1�   1. 

Also, (x)    
xy
yx

23
23

2

2

�
�

  in this neighbourhood.   

E[ample �.4  : ChecN Zhether Theorem 5.3 can be applied at all points, Zhere  

f(x, y) = x2 – y2   0. 
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Solution : x2 – y2 = 0 is true at points (0, 0), (1, 1),(1, −1), ( −1, 1), and ( −1, −1). fy 
= −2y, and fx = 2x. At the point �0, 0�, fx and fy  are both ]ero, and hence Ze cannot 
apply the theorem. At all the remaining points, the function satisfies all the 
conditions of Theorem 5.3, and hence it can be applied. <ou Zill agree that at each 
of these points, Ze Zill get either  

g(x) = x, or g(x) = − x. 

We noZ go a step further, and consider a real-valued function of several variables. 

Theorem �.4 : Let f be a real-valued C1  function, defined on an open set, U, in Rn. 
Let  

a = (a1, a2, ... , an-1)  Rn-1, such that �a, b�  U,  f(a, b)   0, and Dnf(a, b)  0. 
Then there e[ists a uniTue C1function g, defined on a neighbourhood N of a, such 
that g(a) = b, and  

f(x, g(x))   0 for all x  N. 

Proof : We consider a function h : U  Rn−1 [ R, defined by h(x, y) = (x, f(x, y)). 
If Ze Zrite h = (h1, h2, ... , hn), then hi(x, y) = xi, for 1  i  n – 1, and hn(x, y) = 
f(x, y). Therefore, the -acobian matri[ of h is given by 

       

The determinant of this matri[ is Dnf, Zhich is non-]ero. Therefore, Ze can apply 
the inverse function theorem �Theorem 5.2�, and conclude that h is locally 
invertible at �a, b�. If u is the local inverse of h, and Ze Zrite u = (u1, u2), then you 
Zill see that u1(x, y) = x for all �x, y�. Thus, u(x, y) = (x, u2(x, y)) for all �x, y�. We 
noZ define g(x) = u2(x, 0�, and shoZ that this has the reTuired properties. 

1oZ, u(a, 0�   �a, b�. This gives g(a) = u2(a, 0) = b. 

Also, (x, 0) = h(u(x, 0)) = h(x, (x, 0)) = h(x, g(x)) = (x, f(x, g(x))). This implies 
that 

 f(x, g(x)) = 0.  

E[ample �.� : E[amine Zhether the function f(x, y, z) = x2 + y2 – 4  can be 
e[pressed as a function  y = g(x, z) in a neighbourhood of the point �0, -2, 0�. 
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Solution : We note that f(0, −2, 0) = 0, and D2f = 2y = − 4 at (0, −2, 0). So, applying 
the implicit function theorem, there exists the required neighbourhood of (0, −2, 0). 
In fact, you can checN that in the neighbourhood, N = B((0, − 2, 0), 1), we can 
e[press the function as y = − (4 – x2)1�2 . 

Here are some e[ercises that you should try : 

1� Determine Zhether the folloZing functions are locally invertible at the given 
points : 

i) f(x, y) = (x3y + 3, y2)      at �1, 3� 

ii� f(x, y, z) = (excosy, exsinz, z)    at �1, 1, 1�. 

2� For each of the folloZing functions, shoZ that the eTuation f(x, y, z)   0 defines 
a continuously differentiable function z = g(x, y), in a neighbourhood of the given 
point: 

i� f(x, y, z) = x3 + y3+ z3 – xyz – 2  ,         �1, 1, 1� 

ii� f(x, y, z) = x2 + y3 – xysinz ,                �1, - 1, 0�. 

That brings us to the end of this chapter. We hope you have studied the concepts 
carefully, and have understood them.  

�.4 Let Us Sum Up                                                                                   

In this chapter Ze have discussed tZo very important theorems: the inverse function 
theorem, and the implicit function theorem. The proofs of these theorems are a little 
complicated. So Ze have tried to go step by step from functions of one variable to 
functions of many variables.  

The Inverse Function Theorem: gives the conditions under Zhich a function, even 
though not invertible on its domain, is seen to be locally invertible. The -acobian 
of the function being non-]ero at a point ensures the local invertibility of the 
function in a neighbourhood of that point. 

The Implicit Function Theorem: gives the conditions, under Zhich an implicit 
relationship  betZeen variables can be e[pressed in an e[plicit manner. Here, again, 
the -acobian plays an important role. 

 

������ 
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Unit Structure  

6.1 Introduction 

6.2 Partition 

6.3 Riemann Criterion 

6.4 Properties of Riemann Integral  

6.5 RevieZ 

6.6 Unit End E[ercise 

�.1 Introduction 

The Riemann integral dealt Zith in calculus courses, is Zell suited for computations 
but less suited for dealing Zith limit processes.  

%ernhard Riemann in 1868 introduced Riemann integral. He need to prove some 
neZ result about Fourier and trigonometric series. Riemann integral is based on 
idea of dividing. The domain of function into small units over each such unit or 
sub-interval Ze erect an appro[imation rectangle. The sum of the area of these 
rectangles appro[imates the area under the curve.  

As the partition of the interval becomes thinner, the number of sub-interval 
becomes greater. The appro[imating rectangles become narroZer and more 
precise. Hence area under the curve is more accurate. As limits of sub-interval tends 
to ]ero, the values of the sum of the areas of the rectangles tends to the value of an 
integral. Hence the area under curve to be eTual to the value of the integral. 

%efore going for e[act definition of Riemann e[plained the folloZing definitions.  

 

�.2 Partition 

A closed rectangle in n  is a subset A of n  of the forms.  
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> @ > @ > @1 1 2 2, , .... ,n nA a b a b a b u u u  Zhere i ia b� � . 1ote that  

� �1 2, ,...., nx x x A�  iff i i ia x b id d � .  

The points 1 2, ,...., nx x x  are called the partition points.  

The closed interval > @ > @ > @1 0 1 2 1 2 1, , , ,......, ,n n nI x x I x x I x x�   are called the 

component internal of > @,a b .  

Norm : The norm of a portion P is the length of the largest sub-internal of P and is 
denoted by P . 

)or e[ample : Suppose that 1 0 1, ,.... kP t t t is a partition of > @1 1,a b  and 

2 0 ,...., rP S S is a partition of > @2 2,a b . Then the partition � �1 2.P P P  of 

> @ > @1 1 2 2, ,a b a bu  divides the closed rectangle > @ > @1 1 2 2, ,a b a bu into .r-gub 

rectangles. 

In general if iP  divides > @,i ia b  into ik  sub-interval then � �1,.... nP P P 

> @ > @1 1, .... ,n na b a bu u  into 1 2..... nK k k k  sub-rectangle. These sub-rectangles are 

called sub-rectangles of the partition p.  

Refinement :  

Definition : Let A be a rectangle in n  and :f Ao  be a bounded function and 
P be partition of A for each sub-rectangles of the partition.  

� � � �^ `
> @1

inf :

. . . ,s s

ms f f x x S

g l b of f on x x�

 �

������������ � � � �
 

� � � �^ `
> @1

sup :

. . . ,s s

Ms f f x x S

l u b of f on x x�

 �

������������ � � � �
 

Zhere 1,2,....,S n  

The loZer and upper sums of f for ‘p’ are defined by  

� � � � � �, s
s

L f p m f sQ ¦  and � � � � � �, s
s

U f p M f sQ ¦  

Since s sm M�  Ze have � � � �, ,L f p U f pd  
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Refinement of a partition : Let � �1 2, ,..., nP P P P and � �
 
 

1 ,..., nP P P  be partition 

of a rectangle A in n . We say that a partition 
P  is a refinement of P  if 
P P�
. 

If 1P  and 2P  are tZo partition of A then 1 2P P P  is also a partition of A is called 

the common refinement of 1P  and 2P . 

A function :f Ao  is called integrable on the rectangle A in n  if 
 
f is 
bounded . .g l b?  of the set of all upper sum of 
 
f  and . .l u b  of the set of all loZer 
sum of 
 
f  e[ist.  

Let � � � �^ `inf ,U f U f p  

      � � � �^ `sup ,L f L f p  

If � � � �U f L f is called 
 
f  is R-integrable over A.  

?if can be Zritten as � � � �
A

U f L f f  ³ . 

Theorem : 

Let P and Pc  be partitions of a rectangle A in n . If Pc  refines P  then shoZ that 
� � � �, ,L f p L f Pcd and � � � �, ,U f P U f pc d . 

Proof :  

Let a function :f Ao  is bounded on A P  	 
P  are tZo partition of A and Pc  
is retinement to P.  

Any subrectangle S of Pc  is union of some subrectangles  

1 2, ,...., ks s s  of Pc  and � � � � � � � �1 2 ..... kV S V s V s V s � � � . 

1oZ � � � �^ ` � �^ `inf � inf �s im f f x x s f x x s � d �   

� � � � 1,....,
is sm f m f i k? d �����������   

 

� � � � � �, s
s p

L f p m f V s
�

 ¦  

� � � � � � � � � �� �1 ....s s km f V s m f V s V s?  � �  

                        � � � � � � � �
1 1 .....

ks s km f V s m f V sd � �  
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The sum of LHS for all subrectangle is  of Pc  Zill get � �,L f Pc .  

� � � �1, ,L f p L f p? d  

1oZ, � � � �^ `sup �sM f f x x S �  

                     � �^ `sup � if x x St �  

� � � � 1,...,s si
M f M f i Kt ��������   

� � � � � �, s
s p

U f p m f V s
�

 ¦  

1oZ, � � � � � � � � � � � �� �1 2 ....i kMs f V S Ms f V S V S V S � � �  

                              � � � � � � � � � � � �1 2..... ....s s kMs f V s M f V s M f V sd � � � �  

TaNing the of L.H.S. for all subrectangle iS  of Pc  Zill get 

� � � � � �, , ,U f P U f P U f Pc c? t . 

Theorem : 

Let 1P  	 2P  be partitions of rectangle A 	 :f Ao  be bounded function. ShoZ 

that � � � �2 1, ,L f P U f Pd  	 � � � �1 2, ,L f P f Pd . 

Proof : 

Let a function :f Ao be a bounded find 1P  	 2P  are any tZo partition  
of A.  

Let 1 2 P P P  

P?  is a refinement of both 1P  	 2P  

 � � � �1, ,U f P U f Pd ……….. (I) 

 � � � �2, ,U f P U f Pd ……….. (II) 

 � � � �1, ,L f P L f Pt ……….. (III) 

 � � � �2, ,L f P L f Pt ……….. (IV) 

? We get � � � � � � � �1 2, , , ,U f P U f P L f P L f Pt t t . 

Hence � � � �1 2, ,U f P L f Pt  

Similarly, � � � � � � � �2 2 1, , , ,U f P U f P L f P L f Pt t t . 

Hence, � � � �2 1, ,U f P L f Pt  
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Theorem : 

Let a function :f Ao  be bounded on A then for any 0,�! �a partition P on A 

such that � � � �,U f P U f� �� and � � � �,L f P L f! �� 

Proof : 

Let a function :f Ao  be bounded on A � � � �^ `inf ,U f U f P  and 

� � � �^ `sup ,L f L f P  for any 0,�! � partitions 1P  	 2P  of A such that 

� � � �1,U f P U f� �� 	 � � � �2,L f P L f! ��.  

Let 1 2P P P  the common refinement of 1P  and 2P . 

� � � � � �
� � � � � �

1

2

, ,

, ,

U f P U f P U f

L f P L f P L f

d d ��

t ! ��
 

? � � � �,U f P U f� �� 

� � � �,L f P L f! �� 

�.3 Riemann Criterion 

Let A be a rectangle in n  A bounded function :f Ao  is integrable iff for 

every 0�! , there is a partition P of A such that � � � �, ,U f P L f P� ��. 

Proof : 

Let a function :f Ao  is bounded.  

� � � �^ `inf ,U f U f P  

� � � �^ `sup ,L f L f P  

Let f  be integrable of A 

� � � �U f L f?   

for any 0,�! ���  a partition P on A such that � � � �, 2U f p U f� ��  and 

� � � �, 2L f p L f! �� . 

� � � �, 2U f p U f?  ��  	 � � � �, 2L f p L f� � � �� . 
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� � � � � � � �, , 2 2U f p L f P U f L f? � � �� � �� . 

� � � �,U f p L f? � �� 

Conversely,  

Let for any 0,�! ���  a partition P on A such that � � � �, ,U f p L f P� ��. 

� � � � � � � � � � � �, ,U P f U f U f L f L f L f P� � � � � ��ª º ª º ª º¬ ¼ ¬ ¼ ¬ ¼  

Since  � � � �, ,U f P U f o� t  

          � � � �U f L f o� t  

and  � � � �,L f L f P o� t  

?Ze have, � � � �o U f L fd � �� 

Since � is arbitrary, � � � �U f L f  

?f is integrable over A. 

E[ample 1 

Let A be a rectangle in n  and :f Ao  be a constant function. ShoZ that f is 

integrable and � �.
A

f CV A ³  for some C� .  

Solution : 

� �f x C x A ���� �  

f?  is bounded on A 

 

Let P be a partition of A 

� � � �^ `
� � � �^ `

inf �

sup �
s

s

m f f x x s C

M f f x x s C

 �  

 �  
 

� � � � � � � � � �, s
S S

L f P m f V S C V S CV A?    ¦ ¦  

� � � � � � � � � �, s
S S

U f P M f V S C V S CV A   ¦ ¦  
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� � � � � �U f L f CV A?   �  

f?  is integrable over A. 

? by Reimann criterion, 0��  s.t. 

� �.
A

f CV A ³  for some C� .  

E[ample 2 : 

Let > @ > @: 0,1 0,1F X o  

� �,
1
o if x is rational

f x y
if x is irrational
��� � � �­

 ® ��� � � �¯
 

Show that ‘f’ is not integrable.  

Solution : 

Let P be a partition of > @ > @0,1 0,1u  into S subport of P.  

TaNe any point � �1 1,x y S� �  such that x is rational.  

� �,f x y o?   and � �1 1,x y S� �  such that 1x , is irrational � �1 1, 1f x y?   

� � � �^ `
� � � �^ `

inf � 0

sup � 1
s

s

m f f x x S

M f f x x S

?  �  

��  �  
 

� � � � � �

� � � � � �

� � � �
� � � �

, 0

, 1

1, 0

s
S

s
S

L f P m f V S

U f P M f V S

U f L f

U f L f

  

?   

?   

�����? z

¦

¦  

f?  is not integrable > @ > @0,1 0,1u  

�.4 Properties of Riemann Integral  

1� Let :f Ao be integrable and g f  e[cept at finitely many points shoZ 

that g is integrable and 
A A

f g ³ ³ . 

Proof : 

Since f is integrable over A.  
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? by Riemann Criterion, �  a partition P of A. 

Such that � � � �, ,U f P L f P� �� ……… (I) 

Let Pc  be a refinement of P, such that 

1� x A� �  Zith � � � �f x g xz�� , it belongs to 2n  subrectangles of Pc  

2� � � � �12n
V S

d u�

�
�

�
 

Where d   numbers of points in A at Zhich f gz  

           
� �^ ` � �^ `
� �^ ` � �^ `

sup inf

inf sup
x Ax A

x A x A

u g x f x

g x f x
��

� �

 �

 �
 

? Pc  is refines P, Ze have 

    
� � � � � � � �
� � � � � � � �
, , , ,

, , , ,

L f P L f P U f P U f P

U f P L f P U f P L f P

c cd d d

c c? � d � ��
 

1oZ 

 � � � �, ,U g P U f Pc c�  

     � � � �� � � �� �
1

d

ij ij ij
i

Ms g Ms f V s
 

 �¦ ¦  

On other rectangle, f g and so � � � �ij ijMs g Ms f .  

� � � �^ `supij
x A

Ms g g x
�

d 	 � � � �^ ` � � � �^ `inf infij ijx A x A
Ms f f x Ms f f x

� �
t � d  

   � � � �ij ijMs g Ms f u� d  

� � � � � �
2

1 1
, ,

nd

ij
i j

U g P U f P u V S
  

§ ·
c c? � d ¨ ¸

© ¹
¦ ¦  

Let � �^ ` � � � �
2

1 1

1 1
sup , , 2 .

nd
n

ij
i j

V V S U g P U f P uV d u v
 �

 d � d d¦¦  ……. (II) 

1oZ similarly Ze get � � � �1 1, , 2nL g P L f P d V� t  ……... (III) by (II) & (III� Ze 

get.  
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� � � � � � � �
� �

� �
� �

1 1 1 1

1

, , , 2 , 2

2
2

2
2 2 2 2

n n

n

n

n

U g P L g P U f P d u L f P d

d u V

d u
d u

- -

�

� d � � �

�
����������������������������������d � �

� �� � �
����������������������������������d � �  �

�

 

� � � �1 1, ,U g P L g P? � �� 

 %y Reimann Criterion * is integrable by eTuation �II� 

 
1 1

1 1

, , 2

, , 2

n

n

U g P U f P d uv

U g P U f P d u
 

1ote that � � � �1 1, , 2n
A

g U g P U f P d u-d d �³  

                                      � �1, 2
2

nL f P d u-�
d � �  

                                       � � � �
1

1

2, 2 2

n

n

d uL f P
d u�

��� � �
�

 

                      

� �
� �

1

1

, 2 2
,

A

L f P

L f P

f

� �� � �

� ��

� ��³

 

  This is true for any 0�!  

  
A A

g fd³ ³  ………………….. (IV) 

1oZ � � � �, , 2
A

g L g P L f P �c ct t �³  

                              
� �,

2
A A

U f P

f f

ct

�t ! �³ ³  

� �^ `inf ,

2

A

A A

f U f P

g f

?  

�����? ! �

³

³ ³
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?This is true for any 0�!  

 
A A

g f? t³ ³ ……… (V) 

?from �IV� 	 �V� Ze get 

 
A A

g f ³ ³  

2� Let :f Ao  be integrable, for any partition P of A and sub-rectangle S, 
shoZ that  

i� � � � � � �s s sm f m g m f g� d �  and  

ii� � � � � � �s s sM f M g M f g� t �  

Deduce that  

 � � � � � �, , ,L f P L g P L f g P� d �  and  

 � � � � � �, , ,U f g P U f P U g P� d �  

Solution :  

Let P be a partition of A and S be a Subrectangle 

� � � �^ `
� � � �

inf �s

s

m f f x x S

m f f x x S

?  �

���� d � �
 

Similarly � � � �sm g g x x Sd � �  

� � � � � � � �s sm f m g f x g x x S? � d � � �  

� � � �s sm f m g� �  is loZer bound of  

� � � �^ ` � �� �^ `� �f x g x x S f g x x S� �  � �  

� � � �s sm f m g� �  is loZer bound of  

� � � �^ ` � �� �^ `� �f x g x x S f g x x S� �  � �  

� � � � � �� �^ `
� �

inf �s s

s

m f m g f g x x S

m f g

� � d � �

����������������������������� �
 

� � � � � �s s sm f m g m f g? � d �  
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ii� � � � �^ `�Ms f sub f x x s �  

 � � � �Ms f f x x s� t ���� �  

Similarly � � � �Ms g g x x St � �  

� � � � � � � �Ms f Ms g f x g x x S? � t � � �  

� � � �Ms f Ms g� �  is upper bound of  

� � � �^ ` � �� �^ `� �f x g x x S f g x x S� �  � �  

� � � � supMs f Ms g� � t � �� �^ ` � ��f g x x S Ms f g� �  �  

� � � � � �Ms f Ms g Ms f g? � t �  

Hence,  

  

� � � � � � � �� � � �

� �� � � �

� �

, ,

,

s p

s p

L f P L g P Ms f Ms g V S

Ms f g V S

L f g P

�

�

�  �

������������������������������d �

������������������������������� �

¦

¦  

� � � � � �
� � � � � � � �� � � �

� �� � � �

� �

, , ,

, ,

,

s

s

L f P L g P L f g P

U f P U g P Ms f Ms g V S

Ms f g V S

U f g P

? � d �

�  �

������������������������������t �

������������������������������t �

¦

¦
 

� � � � � �, , ,U f P U g P U f g P� t �  Proved. 

 

3� Let :f Ao be integrable, 	 :g Ao  integrable than shoZ that f g�   

is integrable and � �
A A A

f g f g�  �³ ³ ³ . 
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Proof : 

Let P be any partition of A then 

� � � � � � � � � � � �, , , , , ,U f g P L f g P U f P U g P L f P L g P� � � d � � �ª º¬ ¼  

� � � � � � � �, , , ,U f P U g P L f P L g Pd � � � …………………….. (I) 

f?  is integrable.  

%y Rieman interion for given 0,�! �� a partition P, of A such that 

� � � �1 1, , 2U f P L f P �� �  ……………………….………….… (II) 

Similarly g is integrable for 0,�! �� a partition 2P  of A such that 

� � � �2 2, , 2U g P L f P �� �  ……………………………………… (III) 

Then 

1 2P P P  is a refinement of both 1 2	P P . 

� � � �

1, , �L f P L f P? d  � � � �


1, ,U f P U f Pt  	 � � � �

2, , �L g P L f Pd  

� � � �

2, ,U g P U g Pt ………………………………………….. (IV) 

� � � � � � � �
 

1 12 , , , ,U f P L f P U f P L f P?� ! � t �  

� � � � � � � �
 

2 22 , , , ,U g P L g P U g P L g P� ! � t � ……………….. (V) 

The eTuation I is true for any partition P of A.  

In general, it is true for partition 
P  of A  

� � � �
� � � � � � � �


 



 
 
 


, ,

, , , ,

2 2

U f g P L f g P

U f P L f P U g P L g P

? � � �

���d � � �

����� ��  �

 

� � � �
 
, ,U f g P L f g P? � � � ��  

%y Riemann Criterian f g�  is integrable. 

Let 0�  since ^ `sup ,
A

f f P ³  so a�  partition P such that � �1, 2
A

f f P �� �³ . 
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Similarly a�  partition 2 3, ,.... nP P P  of A S 

� �

� �

� �

2

3

4

, 2

, 2

, 2

A

A

A

g L g P

U f P f

U g P g

�� �

������ � �

������ � �

³

³

³

 

Let 1 2 3 4P P P P P . 

Then � � � �1, ,2 2
A

f f P L f P� �� � d �³  

Similarly � �, 2
A

g L g P �� �³  

� �, 2
A

U f P f �� �³  and � �, 2
A

U g P g �� �³   

� � � � � �, , ,
A A A

f g L f P L g P L f g P f g� ��� � d � d �³ ³ ³  

                  

� �
� � � �

,

, ,

2 2
A A

A A

U f g P

U f P U g P

f g

f g

d �

d �

� �� � � �

� � ��

³ ³

³ ³

 

A A A A A

f g f g f g? � �� � � � ��³ ³ ³ ³ ³  

This is true for any 0�!  

A A A A A A A A

f g f g f g f g f g? � d � d � � �  �³ ³ ³ ³ ³ ³ ³ ³  

4� Let :f Ao be integrable for any constant C, shoZ that � �
A A

Cf C f ³ ³  

Proof : 

Let C�  
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Case 1  

Let 0�!  and suppose 0C ! . 

Let P be a partition of A and S be a subrectangle of P.  

 

� � � �� �^ `
� �^ `
� �^ `

� �

sup �

sup �

sup �

sM Cf Cf x x S

Cf x x S

C f x x S

CMs f

 �

�������������� �

�������������� �

�������������� 

 

Similarly,  

� � � �sms Cf Cm f  

� � � � � � � � � �

� �

,

,
S S

U Cf P Ms Cf v S C Ms f v S

C U f P

?   

������������������ ��

¦ ¦
 

Similarly � � � �, ,L Cf P C L f P �  

f?  is integrable for above 0,�� � a partition P of A such that 
� � � �, ,U f P L f P C� ��  

� � � � � � � �
� � � �

, , , ,

, ,

U Cf P L Cf P CU f P C L f P

C U f P L f P

C CC

? �  � � �

�������������������������������������� �ª º¬ ¼
��������������������������������������� u  

 

%y Riemann Criteria.  

� �Cf is integrable  

for 0, a�! ��  partition P of A such that  

� � � �

� �

� �

, ,

,

,

A A

A

A

A A A A

C f C f C L f P L Cf PC

Cf U Cf P

CU f P C f C

f Cf C f C fC C

§ ·��� � � �  ¨ ¸
© ¹

��������������������d d

§ ·��������������������� � � �¨ ¸
© ¹

§ · § ·� �? � � � �  ��¨ ¸ ¨ ¸
© ¹ © ¹

³ ³

³

³

³ ³ ³ ³
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This is true for any 0��  

� �
A A A

A A

C f Cf C f

Cf C f

d d

?  

³ ³ ³

³ ³
 

Case II 

1oZ suppose 0C �  

Let P be a partition of A and S be any subrectangle in P.  

� � � �Ms Cf C Ms f?  � and  

� � � �sm Cf C Ms f �  

� � � �, ,L Cf P CU f P?  � and  

� � � �, ,U Cf P C L f P �  

f?  is integrable for above 0,�! ��a partition P of A such that  

� � � � � �, ,U f P L f P C
�� � �  

� � � � � � � �
� � � �

, , , ,

, ,

U Cf P L Cf P C L f P CU f P

C U f P L f P

C C

? �  � � �

�������������������������������������� � �ª º¬ ¼
���������������������������������������� � �

����������������������������������������

 

%y Riemann Criteria � �Cf is integrable.  

for 0,�! �� a partition P of A such that 
A A A

C f Cf C f��� � ��³ ³ ³ . 

This is true for every 0�!  

A A A

A A

C f Cf C f

Cf C f

� d �

�������?  

³ ³ ³

³ ³
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E[ample 3: 
Let , :f g A Ro  be integrable 	 suppose f gd  shoZ that 

A A

f gd³ ³ . 

Solution : 
%y definition � �^ `inf ,

A

f U f P ³  and � �^ `inf ,
A

g U g P ³ . 

Let P be any partition of A 	 S be any subrectangle in P  
as f gd  

� � � �
� � � �
� �^ ` � �^ `
, ,

inf , inf ,

s sm f m g

U f P U g P

U f P U g P

d

? d

d

 

This is true for any partition 

A A

f g? d³ ³  

E[ample 4: 

If :f Ao  is integrable shoZ that if is integrable and 
A A

f fd³ ³ . 

Solution : 
� Suppose f is integrable first Ze have to shoZ that f  is integrable.  

 Let P be a partition of A 	 S be subrectangle of P then  

 

� � � �^ `
� �^ `
� �^ `

� �

sup �

sup �

sup �

Ms f f x x S

f x x S

f x x S

Ms f

 �

�������������� �

�������������� �

�������������� 

 

Similarly  
� � � �Ms f Ms f  

� � � � � � � � � �

� � � � � �

� � � �� � � � � � � �� � � �

� � � �

,

,

, ,

s s
S S

s
S

s s s s
P P

U f P M f V S M f V S

L f P m f V S

M f m f V S M f m f V S

U f P L f P

  �

 �

? � � d � �

����������������������d �

¦ ¦

¦

¦ ¦
 

f?  is integrable, for 0,�! �� a partition P such that � � � �, ,U f P L f P� ��. 

� � � � � � � �, , , ,U f P L f P U f P L f P? � d � ��  
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?%y Riemann criteria 

f  is integrable over . 

1oZ � �^ `inf ,
P

A

F U f P ³  

                

� � � �

� � � �

� �

inf

inf

inf

sP S P

sP

sP P

M f V S

M f V S

M f V S

�

 

 

 

¦

¦

¦

 

 
� �

� �^ `

inf

inf ,

s
P
M f V S

U f P

d

 

¦
 

A A

f f?  ³ ³  

E[ample �: 

Let :f Ao  and P be a partition of A shoZ that f is integrable iff for each sub-

rectangle S the function f s Zhich consist of f restricted to S is integrable and that 

in this case 
SA S

ff s ¦³ ³ . 

� Suppose :f Ao  is integrable.  

Let P be a partition of A 	 S be a sub-rectangle in P.  

1oZ to shoZ that �f Ss o  is integrable.  

Let 0,�! �� a partition Pc  of A such that � � � �, ,U f P L f Pc� �� � f?  is 

integrable� 

Let P P Pc c  then 1P  is refinement of both P 	 Pc . 

� � � �1, ,U f P U f Pc? t  	 � � � �1, ,L f P L f Pc d  

� � � � � � � �1 1, , , ,U f P L f P U f P L f Pc c? � d � ��………………… (I) 

1P  is refinement of P 

S  is union of some subrectangle of 1P  say 
1i

S U si
 

 .  
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� � � � � � � �� � � �
1

1 1, , s s
S P

U f P L f P M f m f V S
�

?�! �  � �¦  for all rectangle.  

      
� � � �� � � �

� � � �
1

, ,

i

k

i s
i
Ms f m f V S

f fU P L PS S

 

t � �

 �

¦
 

?%y Riemann Criterion 

 f
S?  is integrable.  

Conversely, Suppose f S is integrable for each S P� . 

To shoZ that f is integrable. 

Let 0,�! �� partition SP  of S such that  

� � � �, ,S S
f fU P L P ks s� ��  ………………………………. (II) 

f
S?  is integrable for each S P�  Zhere K is number of rectangle in P.  

Let 1P  be the partition of A obtained by taNing all the subrectangle defined in the 
partition SP . 

There is a refinement 1
SP  of SP  containing subrectangles in 1P . 

� � � �1 1, ,S SU f s P L f s P k? � �� …………………………… (III) 

� � � � � � � �� � � �1 1
1 1

1 1 1, ,
S S

S P

U f P L f P M f m f V S
�

? �  � �¦  

  

� � � �� � � �

� � � �� �

1
1 1

1 1

1 1, ,

,

S

s
S P S P

S S
S P

S P

Ms f m f V S

U f s P L f s P

k

k k

� �

�

�

§ ·
 � �¨ ¸¨ ¸

© ¹

 �

� �

� � ��

¦ ¦

¦

¦
 

?%y Riemann Criterian f is integrable.  
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Let 0�!  

  

� �

� � � �
1 1

1

,

S

S
S P S PS

s
S P S P

f S k L f S P

m f V S

� �

� �

§ ·
�� �¨ ¸

© ¹
§ ·

c����������������������������� ¨ ¸¨ ¸
© ¹

¦ ¦³

¦ ¦
 

Let 1P  be a partition of A, obtained by taNing allthe subrectangle defined in SP . 

� �� � � �

� � � �

� � � �

� � � �

1
1 1

1
1 1

1
1 1

1

1 1

1

1

, ,

s
S P S PS

A

s
S P

s
S P S P

f S k m f V S

L f P f U f P

M f V S

M f V S

� �

�

� �

§ ·
? �� � �¨ ¸

© ¹

�������������������������������� � �

����������������������������������� �

§ ·
������������������������������ �¨ ¸

© ¹

¦ ¦³

³

¦

¦ ¦

 

� �� �, S
S P S P S

S P S PA

CU f S P f S k

f S C f f S

� �

� �

§ ·
? � �¨ ¸

© ¹

? �� � ��

¦ ¦ ³

¦ ¦³ ³ ³
 

This is true for all 0�!  

S P S P S

S PA S

f S f f S

f f S
� �

�

? d d

?  

¦ ¦³ ³ ³

¦³ ³
 

E[ample �: 

Let :f Ao  be a continues function shoZ that f is integrable on A.  

Solution :  

Let :f Ao  be a continuous function to shoZ that f is integrable.  

Let 0�! , since A is closed rectangle it is closed and bounded in n . 

A?  is compact.  

f  is continuous function on compact set f� is uniformly continuously on . 

?for the above 0, 0G�! �� !  such that , ,x g A� �  

� � � � � �x y f x f y V AG� � � � �� . 
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Let P be a partition of A such that side length of each subrectangle is less than 
nG . 

  If ,x y S� for some subrectangles S then 

� � � �2 2
1 1 .... n nx y x y x y�  � � � �  

           
2

Sn
n

G§ ·�  ¨ ¸
© ¹

 

� � � � � �f x f y V A� ��  

 

S  is compact 

f?  is continuous 

f?  attains its bound in S. 

Let 1 2, ,....., kS S S  be the subrectangle in A. Then for 1 , ,i i ii k x y S� � �� �  such that 

� � � � � � � �i i si iMs f f x m f f y  . 

� � � � � � � �� � � �
1

, ,
i

k

i s i
i

U f P L f P Ms f m f V S
 

? �  � �¦  

  

� � � �� � � �

� � � � � � � �
� �

� � � �

1

1

k

i i i
i
k k

i i
i V A

f x f y V S

V S V S
V A V A

V A
V A

 

 

 �

� �
� �

�
� ��

¦

¦ ¦  

?%y Riemann Criterion f is integrable.  
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�.� Review 

After reading this chapter you Zould be NnoZing.  

� Defining R-integral over a rectangle in n  

� Properties of R-integrals 

� R-integrabal functions 

� Continuity of functions using -intervals.  

�.� Unit End E[ercise 

I� Let > @ > @� 0,1 0,1f u o  be defined by  

 
� � 1, 0 0 3

13 13

f x y if y

if y

 � � d d

������������� � � d d
 

 shoZ that f is integrable.  

II� Let Q  be rectangle in n 	 �f Qo  be any bounded function.  

 a� ShoZ that for any partition P of Q  � � � �, ,L f P U f P�  

 b� ShoZ that upper integral of function f e[it.  

III� Let f be a continuous non-negative function on > @0,1  and suppose there e[ist 

> @0 ,x a b� such that � �0 0f x !  shoZ that � �
0

f x dx a� !³ . 

IV�  Let f  be integrable on > @,a b  and > @: ,F a b o  and � � � �1F x f x  then 

prove that � � � � � �
a

f x dx F b F a�  �³  

V� Which of the folloZing functions are Riemann integrable over > @0,1 . -ustify 

your ansZer.  

 a� The characteristic function of the set of rational number in > @0,1 . 

 b� � � sinf x x xy  for 0 1x� �  

  � �0 3f   
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VI� Prove that if f is -integrable then f  is also R-integrable is the converse 

true" -ustify your ansZer.  

VII� ShoZ that a monotone function defined on an interval > @,a b  is R-inegrable.  

VIII� A function > @� 0,1f o is defined as � � 1 1

1 1 1
3 3 3n n nf x x� � � � d  Zhere 

n��   

 � �0 0f   

 shoZ that f is R-integrable on > @0,1  	 calculate � �
1

0

f x dx� �³ . 

I;� � �f x x x « »¬ ¼  > @1,3x� � Zhere x« »¬ ¼  denotes the greatest integer not greater 

than x  shoZ that f is R-integrable on > @1,3 . 

;� A function > @� ,f a b o  is continuous on > @,a b  � � 0f x t  > @,x a b� �  and 

� � 0
b

a

f x dx�  ³  shoZ that � � 0f x   > @,x a b� � . 

��
������ 
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UNIT 4 
7 

MEASURE =ERO SET 

Unit Structure  

7.1 Introduction  

7.2 Measure ]ero set  

7.3 Definition  

7.4 Lebesgue Theorem �only statement� 

7.5 Characteristic function  

7.6 FUBIN’s Theorem 

7.7 RevieZs  

7.8 Unit End E[ercises  

7.1 Introduction  

As Ze have seen, Ze cannot tell if a function is Riemann integrable or not merely 
by counting its discontinuities one possible alternative is to looN at hoZ much space 
the discontinuities taNe up. Our Tuestion then becomes : �i� HoZ can one tell 
rigorously, hoZ much space a set taNes up. Is there a useful definition that Zill 
concide Zith our intuitive understanding of volume or area" 

At the same time Ze Zill develop a general measure theory Zhich serves as the 
basis of contemporary analysis.  

In this introductory chapter Ze set for the some basic concepts of measure theory.  

7.2 Measure =ero Set  

Definition : 

A subset ‘A’ of n  said to have measure ‘O’ if for every 0�!  there is a cover 

^ `1 2, ....U U  of A by closed rectangles such that the total volume � �
1i
v Ui

f

 

��¦ . 

90
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Theorem : 

A function ‘f’ is Riemann integrable iff ‘f’ is discontinuous on a set of Measure 
]ero.  

A function is said to have a property of Continuous almost everyZhere if the set on 
Zhich the property does not hold has measure ]ero. Thus, the statement of the 
theorem is that ‘f’ is Riemann integrable if and only if it is continuous atmost 
everyZhere.  

Recall positive measure : A measure function > @: 0,u M o f  such that 

� �
11

i i
ii

V u V u
f f

  

§ ·
 ¨ ¸

© ¹
¦ . 

E[ample 1:  

1� “Counting Measure” : Let X be any set and � �M P X the set of all subsets : 

If E X�  is finite, then � � � �E EP K  if E X�  is infinite, then � �EP  f  

2� “Unit mass to 0x  - Dirac delta function” : Let X be any set and � �M P X  

choose 0x X� set.  

 
� � 0

0

1
0

E if x E
if x E

P  ��� � �

���������� �� � �
 

E[ample 2: 

ShoZ that A has measure ]ero if and only if there is countable collection of open 
rectangle 1 2, ,....V V  such that iA V� �  and � �iV v ��¦ . 

 

Solution : 

Suppose A has measure ]ero.  

For 0,�! �� countable collection of closed rectangle 1 2, ,....V V  such that 
1

i
i

A V
f

 

�

and � �
1 2i

i
V V

f

 

�
�¦ . 

For each i , choose a rectangle iu such that i iu v�  and � � � �2i iV u V vd . 
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Then 
1 1
i i

i i

A v u
f f

  

� �  and � � � � � �
1 1 1

2i i i
i i i
V u V u V v

f f f

   

d d¦ ¦ ¦  

� �
1

2 2
2i

i
v u

f

 

�
d �  �¦  

1ote that  : iu  are open rectangles in n  conversely,  

Suppose for 0,�! � countable collection of open rectangles 1 2, ,....u u  such that 

1
i

i

A u
f

 

�  and � �
1

i
i
V u

f

 

��¦ .  

For each ,i  consider i iV u  then iV  is a closed rectangle and � � � �i iV v V u . 

Then 
1 1

i i
i i

A u v
f f

  

� �  and � � � �
1 1

i i
i i
V v V u

f f

  

 ��¦ ¦ . 

A has measure ]ero.  

Note : Therefore Ze can replace closed rectangle Zith open rectangles in definition 
of measure ]ero sets.  

E[ample 3: 

ShoZ that a set Zith finitely many points has measure ]ero.  

Solution : 

Let ^ `1,...., mA a a  be finite subset of n .  

Let � �1 20, , ,.....,i i i ina a a a�!   and  

1 1

1 11 1

1 1, ...
2 2 2 2

n n

i ii iVi a a� �

ª º� �§ · § ·« » � � u¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

 
1 1

1 1

1 1... ,
2 2 2 2

n n

in ini ia a� �

ª º� �§ · § ·« »u � �¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

 

Then � �
1

1 1
1 2 2

n n

i i
i

V Vi � �
 

� �§ ·  ¨ ¸
© ¹

�  

Clearly ia Vi�  for 1 i md d  

1

m

i

A Vi
 

? �  and � � 1 1
1 1 1

1 1
2 2 2

m m

i i
i i i
V Vi

f

� �
   

�
 ���� ��� ��¦ ¦ ¦  

?%y definition of measure of ]ero 

? A has measure of ]ero.  
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E[ample 4: 

If 1 2 3 ....A A A A  and each Ai  has measure ]ero, then shoZ that A has 
measure ]ero. 

Solution : 

Let 0�! and 1 2 ....A A A  Zith each Ai  has measure ]ero.  

 Each Ai  has measure ]ero for 1,2,....i   �  a cover ^ `1 2, ,....,i i inu U U�  of Ai  

%y closed rectangle such that � �
1

, 1,2,....
2ii i

i
V u i

f

 

�
� �  ¦  

Then the collection of iiU  is cover A 

� �
1 1 2i i

i i
V V

f f

  

�
? � ��¦ ¦  

Thus 1 2 ....nA A A A  has measure ]ero.  

E[ample �: 

Let nA��  be a Rectangle shoZ that A does not have measure ]ero. %ut Aw  has 
measure ]ero.  

Proof : 

Suppose A has measure ]ero. 

 A is a rectangle in n  

� � 0V A? !  

Choose 0�!  such that � �V A��  …………………….. (I) 

A has measure ]ero 

�  countable collection of open rectangle ^ `iu  such that 
1

i
i

A u
f

 

�  and � �iV u ��¦  

 A is compact  

This open cover has a finite subcover after renaming. We may assume that 
^ `1 2, ,.... ku u u  is subcover of the cover ^ `iu . 
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1
i

i

A u
f

 

? � . 

Let P be partition of A that contains all the vertices all 
 1iu s i���   to N. Let 

1 2, ,...., nS S S  denote the subrectangle of partitions.  

� � � � � � � �
1 1 1

n k

j i i
j i i

V A V S V u V u
f

   

?  d � ��¦ ¦ ¦   

Zhich is a contradiction to �I� 

? A does not have measure ]ero.  

 1ote that Aw  is a finite union of set of the form 
> @ > @ > @1 1, , ..... , ,i i n nB a b a b a b u u u �� . % can be covered by are closed rectangle. 

> @ > @ > @1 1, ..... , ..... ,i i n nB a b a a a bG G� u u u u . 

Then � �V BG  depend on G  and � � 0V BG o as 0G o . 

BG?  has measure ]ero 

?%oundary of A � �Aw  is finite union of measure ]ero.  

A?w  has measur5e ]ero. 

E[ample �: 

Let nA��  Zith Aq z� . ShoZ that A does not measure ]ero.  

Solution : 

Let nA�� , Zith Aq z�  

Let x A� q  

?�  0r ! , such that � �, ,B x r Ad  %ut 

� � ^ `

1

, �

�
n

i i
i

B x r y A y x r

y A y x r
 

 � � �

­ ½������������ � � �® ¾
¯ ¿

¦
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A?  does not have measure ]ero.  

E[ample 7: 

ShoZ that the closed interval > @,a b  does not have measure ]ero.  

Solution : 

Suppose ^ ` 1i i
u

 
 be a cover of > @,a b  by open intervals.  

> @,a b  is compact this open cover has a finite subcover.  

After renaming, Ze may assume ^ `1 2, ,...., nu u u is the subcover of ^ `iu  of > @,a b  

We may assume each iu intersect > @,a b  �otherZise replace iu Zith > @,iu a b � 

Let 
1

n

i
i

u u
 

  

If u is not connected then > @,a b  is contained in one of connected component of u.  

> @, ia b u� �  for some i  

> @, ja b u?  �  for i jz  

Which is not possible  

u?  is connected 

u�  is an open interval say � �,u c d  Then as > � � �, ,a b u c d�   

� �iV u d c b a�  � ! �¦  

In particular Ze cannot find an open cover of > @,a b Zith total length of the cover 

2
b a�

� . 

> @,a b?  does not have measure ]ero.  
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E[ample �: 

If > @0,1A�  is the union of all open intervals � �,i ia b  such that each rational number 

in �0,1� is contained in some � �,i ia b . If � �
1

1
i

T bi ai
f

 

 � �¦  then shoZ that the 

boundary of A does not have measure ]ero.  

Solution : 

We first shoZ that > @0,1 ?A Aw   

1ote that ?A A Aw  q  

A  is open A A� q   

Also > @0,1Q A�  

> @0,1Q A? �  

> @0,1 A? �  

%ut > @ > @0,1 0,1A A� � �  

> @
> @
0,1

0,1 ?

A

A A

?  

?w  
 

Let 1 0T� � !  

If Aw  has measure ]ero then since 0,�! � a cover of Aw  Zith open intervals such 
that sum of length of intervals 1 T� �  

Aw  is closed and bounded  

A�w  is compact 

��  finite subcover ^ ` 1

n
i i
u

 
 for Aw  

� � 1iu T? � �¦  

1ote that � �^ `1�1 � ,i i i i
u i n a b f

 
� d d  cover > @0,1  and sum of lengths of these open 

intervals is less than 1 1T T� �   Zhich is not possible as 

> @ � �^ `10,1 � 1 � ,i i i i
u i n a b Af

 
� �� d d �� ?w  does not have measure ]ero. 
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7.3 Definition  

A subset ‘A’ of n  has content ‘O’ if for every 0�! , there is a finite cover 

^ `1 2, ,....., nu u u  of A by closed rectangles such that � �
1

n

i
i
V u

 

��¦  

Remark : 

1� If A has content O, then A clearly has measure O.  

2� Open rectangles can be used instead of closed rectangles in the definition.  

E[ample �: 

If A is compact and has measure ]ero then shoZ that A has content ]ero.  

Solution : 

Let A be a compact set in n  

Suppose that A has measure ]ero 

?�  a cover ^ `1 2, ,....u u of A such that � �
1

i
i
V u

f

 

��¦  for every 0�! . 

A  is compact, a finite number 1 2, ,....., nu u u  of iu  also covers A and 

� � � �
1 1

n

i i
i i
V u V u

f

  

� ��¦ ¦  

A?  has content ]ero.  

E[ample 10 : 

*ive one e[ample that a set A has measure ]ero but A does not have content ]ero.  

Solution : 

Let > @0,1A Q  

Then A is countable 

A�  has measure ]ero 

1oZ to shoZ that A does not have content ]ero.  

Let > �^ `, �1i ia b i nd d  be cover of A  

> @ > @, .... ,i i n nA a b a b? �  
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> @ > @1 1, .... ,n nA a b a b? �  

%ut > @0,1A   

> �� �
1

, 1
n

i i
i

a b
 

? !¦  

In particular, Ze cannot find a finite cover for A such that � �
1

1, 2
n

i i
i

a b
 

�¦  

A?  does not have content ]ero.  

E[ample 11: 

ShoZ that an unbounded set cannot have content ]ero. 

Solution : 

Let nA��  be an unbounded set.  

To shoZ that A does not have content ]ero 

Suppose A has content ]ero for 0,�! � finite cover of closed rectangles ^ ` 1

k
i i
u

 
 of 

A such that 
1

k

i
i

A u
 

�  and � �
1

k

i
i
V u

 

��¦ . 

Let > @ > @1 1, .... ,i i i in inu a b a b u u  

Let ^ `1 2min , ,.....i i i kia a a a  

      ^ `1 2ma[ , ,.....i i i kib b b b  

then > @ > @1 1, .... ,i n nu a b a b� u u  

> @ > @1 1, .... ,n nA a b a b? � u u  

A?  is bounded  

Which is contradiction  

A?  does not have content ]ero.  
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E[ample 12: 

:f Ao  is non-negative and 0
A

f  ³  Zhere A is rectangle, then shoZ that 

� �^ `� 0x A f x� z  has measure ]ero.  

Solution : 

For � �^ `1, �nn A x A f x n�  � �  

1ote that � �^ ` � �^ `, 0 � 0x A f x x A F x� z  � !  

^ f  is non-negative` 

� �^ `
1 1

1� n
n n

x A f x An
f f

  

 � !   

We have to shoZ that nA  has measure ]ero 

0
A

f  ³  and � �^ `inf , 0
P

A

f U f P  ³ for 0,�! � a partition P such that 

� �,U f P n��  

Let S be a subrectangle in P 

if � � 1
n sS A M f nz�� d  

clearly ^ `� nS P S A� z� covers nA  and 

� � � � � � � �

� �
� �

1 1

,

s s
S P S P

n

V S M f V S M f
n n

f P n

V S
S A
s p

� �

§ ·� � !¨ ¸
© ¹

������������������ ��

? ��

��� z �
��� �

¦ ¦

¦  

%y definition nA has content ]ero 

nA�  has measure ]ero  

� �^ `, 0x A f x? � z is countable union of measure ]ero set.  

� �^ `� 0x A f x? � z  has measure ]ero.  
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 Oscillation � �,o f a  of ‘f’ at a 

? for 0G ! , Let � � � �^ `, , sup � 	M a f f x x A x aG G � � � � �  

� � � �^ `, , inf � 	m a f f x x A x aG G � � � � �  

The oscillation � �,o f a  of f at a defined by 

� � � � � �� �, lim , , , ,
o

o f a M a f m a f
G

G G
o

 �  

This limit alZays e[ist since � � � �, , , ,M a f m a fG G�  decreases as G  decreases.  

Theorem : 

Let A be a closed rectangle and let :f Ao  be a bounded function such that 

� �,O f x �� for all x A�  shoZ that there is a partition P of A Zith 

� � � � � �, ,U f P L f P V A� ��� . 

Proof : 

 Let � � � � � �� �, lim , , , ,
O

x A U f x M x f m x f
G

G G
o

� � ��� � ��  

?�  a closed rectangle xu  containing x  in its interior such that u ux xM M� �� by 

definition of oscillation.  

^ `�xu x A? �  is a cover of A 

A?  is compact 

�This cover has a finite subcover say ^ `1 2, ,....,x x xku u u  

1

k

i
xi

A u
 

? � . 

Let P be a partition for A such that there each subrectangle ‘S’ of P is contained in 
some xi

u  then � � � �s sM f m f� �� for each subrectangle ‘S’ in f  

� � � � � � � �� � � �

� �

� �

, , s s
S P

S P

U f P L f P M f m f V S

V S

V A

�

�

? �  � �

����������������������

����������������������

¦

¦  
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7.4 Lebesgue Theorem (Only Statement) 

Let A be a closed rectangle and :f Ao  is bounded function. Let ^B x � f is 

not continuous at [`. Then f is integrable iff % is a set of measure ]ero  

7.� Characteristic )unction  

Let nC � . The characteristics function cF of C is defined by � � 1c x if x CF  ��� � �  

          0 if x C ��� � �  

If C A��� Zhere A is a closed rectangle and :f Ao  is bounded then 
C

f³  is 

defined as c
C

f F³  provided cf F�³ is integrable >i.e. if f and cF  are integrable@ 

Theorem : 

Let A be a closed rectangle and C A��� . ShoZ that the function :c AF o is 
integrable if and only if Cw  has measure ]ero.  

Proof : 

To shoZ that :C AF o  is integrable iff Cw  has measure ]ero.  

%y Lebesgue theorem, it is enough to shoZ that ^ : cC x A Fw  � is discontinuous` 

Let a C� q��  an open rectangle ‘u’ containing a such that u C�  

� � 1c n n UF?  ��� �  

cF�  is continuous at a.  

Let � �a Ext c�   E[terior of C 

>%y definition union of all open sets disMoints from C@ 

E[t �C� is an open set  

�  an open rectangle u containing such that � �U Ext c�  

� � 0c n n uF?  ��� �  
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cF�  is continuous at a 

If a c�w  then cF  is continous at a ……………………. (I) 

Let a c�w �  for any open rectangle U Zith a in its interior contains a point y C� q  
	 a point nz c�  

� � � �1	 0c cy zF F?    

cF?  is not continuous at a 

^ : cc x A F?w  � is discontinuous at x ` 

?%y Lebesgue Theorem.  

cF  is interrable if and only if cw  has measure ]ero.  

Theorem : 

Let A be a closed rectangle and C A���  

If C is bounded set of measure ]ero and c
A

F³ e[ist then shoZ that 0c
A

F  ³ .  

Proof : 

C A� be a bounded set Zith measure ]ero.  

Suppose c
A

F³ e[ist cF� is integral 

To shoZ that 0c
A

F  ³  

Let P be a partition of A and S be a subrectangle in P.  

S does not have measure ]ero  

S� �C  

x S�� � but x C�  

� �
� �

0

0
c

s c

x

m

F

F

?  

�  
 

This is true for any subrectangle S in P 
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� � � � � �, 0c s cL P m V CF F?   ¦  

This is true for any partition P 

� �^sup , �c c
A

L P PF F?  ³  is partition of` 

c
A

OF  ³  

7.� )ubini’s Theorem 

Fubini’s Theorem reduces the computation of integrals over closed rectangles in 
, 1n n ! to the computation of integrals over closed intervals in . Fubini’s 

Theorem is critically important as it gives us a method to evaluate double integrals 
over rectangles Zithout having to use the definition of a double integral directly.  

If :f A Ro  is a bounded function on a closed rectangle then the least upper bound 
of all loZer sum and the greatest loZer bound of all upper sums e[ist. They are 
called the loZer integral and upper integral of f and is denoted by 

A

L F³  and 
A

U F³  

respectively.  

Fubini’s Theorem 

Statement : Let nA�  and nB�  be closed rectangles and let :f A Bu o  

be integrable for x A� , Let :xg Bo be defined by � � � �,xg y F x y  and let  

� � � �

� � � �

,

,

x
B B

x
B B

x L g L f x y dy

u x U g U f x y dy

  �

  �

³ ³

³ ³
 

Then  and  are integable on A and � �
A B A A B

f L L f x dy dx
u

§ ·
  �¨ ¸

© ¹
³ ³ ³ ³  

       � � � �,
A B A A B

f u x dx U f x y dy dx
u

§ ·
 �  �¨ ¸

© ¹
³ ³ ³ ³  

Proof : 

Let AP  be a partition of A and BP  be a partition of %. Then � �,A BP P P is a partition 

of A Bu  

Let AS  be a subrectangle in AP  and BS  be a subrectangle in BP  
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Then by definition,  

A BS S S u  is a subrectangle in P 

� � � � � �

� � � �

1

A B
B B

s
S P

s s A B
S P

L f P m f V S

m f V S S
�

u
�

 

������������� u

¦

¦
 

            � � � � � �
A B

A A B B

s s B A
S P S P

m f V S V Su
� �

§ ·
 �¨ ¸

© ¹
¦ ¦ …………………. (I) 

For � � � �,
A B BA s s s xx S m f M gu� �  

?For ,Ax S�  

� � � � � � � �
A B B

B B

s s A B s x B
S P

m V S V S m g V Su
�

? � d¦ ¦  

                            � � � �,x B x
B

L g P L g L x d  ³  

This is true for any x A�  

� � � � � � � �

� �� � � �

,
A B

A A B B

A
A A

s s B A
S P S P

s A
S P

L f P m f V S V S

m L x V S

u
� �

�

§ ·
?  �¨ ¸

© ¹
��������������d

¦ ¦

¦
 

             � �� �, AL x P  ……………………………………… (II) 

?From �I� 	 �II� 

, , AL f P L x P  ………………………………………… (III) 

1oZ , S
S P

U f P M f V s�  

               
A B

A A
B B

S S A B
S P
S P

M f V S S�  

               
A B

A A B B

S S B A
S P S P

M f V S V S� �  …………….. (IV) 
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For ,
A B BA S S S xx S M f M g  

For Ax S , 

    
,

A B B

B B B B

S S B S x B
S P S P

x B x
B

M f V S M g V S

u g P u g x

� �

�������
 

This is true for any x A .  

A B

A A B B

S S B A
S P S P

M f V S V S� �  

          
A

A A

S A
S P

M u x V S�  

          , Au x P  ……………………………………….. (V) 

from �IV� 	 �V� 

 , , AU f P U u x P ……………………………. (VI) 

 %y �III� 	 �VI� 

, , ,A AL f P L x P u L x P  

             , ,Au x P U f P  ………………………… (VII) 

Also  

, , , ,A A AL f P L x P L x P u x P ………  �VIII� 

f  is integrable  

sup , inf ,

sup , inf ,
BA

PP A B

A APP A B

L f P U f P f

L x P u x P f
 

x  is integrable 

,
A B A A B

f x L f x y dx�  ………………………. (IX) 
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Also by �VIII� 	 �I;� 

sup , inf ,
AA

A APP A B

L L x P U u x P f  

u x  is integrable.  

,
A B A A B

f u x dx U f x y dx� �  

Hence Proved 

Remark : 

The Fubini’s theorem is a result which gives conditions under which it is possible 
to compute a double integral using interated integrals, As a conseTuence if alloZs 
the under integration to be changed in iterated integrals.  

,

,

A B B B

B A

f L f x y dx dy

U f x y dx dy

� �

�������� � �

 

These integrals are called iterated integrals.  

E[ample 13: 

Using Fubini’s theorem show that 12 21D f D f  if 12D f  and 21D f  are 

continuous.  

Solution : 

 Let A R  and :f A  continuous 

T.P.T 12 21D f D f  

Suppose 12 21D f D f  

0 0,x y�  in domain of f such that  

12 21 0D f a D f a  

Zithout loss of generality, 12 21 0D f a D f a  or 

12 21 0D f D f a  ………………………………….. (I) 
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12 21 , 0
A

D f D f x g  

Let , ,A a b c d  

 By Fubini’s Theorem 

21 21

2 2

, ,

, ,

, , , ,

d b

A c a
d

c

D f x y D f x y dx dy

D f b y D f g y dy

f b d f b c f a d f a c

� �

���� � �  

Similarly,  

12

21 12

21 12

, , , , ,

, ,

, 0

A

A A

A

D f x y f b d f b c f a d f a c

D f x y D f x y

D f D f x y

 

Which is contradiction to �I� 

12 21D f D f  proved 

E[ample 14: 

Use Fubini’s Theorem to compute the following integrals.  

1� 
211

2 2
0 0

.
1

x dy dxI
x y

 

Solution : 

 

2

2

2

11

2 2
0 0

11

2 2
0 0

11
1

2 2
0 0

.
1

1

1 tan
1 1

x

x

x

dy dxI
x y

dydx
x y

ydx
x x

���

���
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1

2
0

1. .
41

dx
x

 

              

1

2
0

1
2

0

4 1

log 1
4

log 1
4

dx
x

x x

x

 

ii) 
1 1 2

0

sin
2y

xI dy dx�  

Solution : 

 , � 1,0 1C x y y x y  

By Fubini’s Theorem 

1 1 2

0

1 2

0 0
1 2

0
0
1 2

0

sin
2

sin
2

sin
2

sin
2

y

x

x

xI dxdy

x dxdy

x y dx

xx dx

�

��� �

��� �

��� �

             

Put 
2

,
2
x t  

x   1 

t  0 
2  
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2
2
x dx dt

dtxdx
 

2 2
2

0
0 0

1 1sin sin cos

1 10 1

dtI t t dt t�

����������������������

 

7.7 Reviews  

After reading this chapter you Zould be NnoZing.  

x Definition of Measure ]ero set and content ]ero set.  

x Oscillation ,O f a  

x Find set contain measure ]ero on content ]ero 

x Statement of Lebesgue Theorem 

x Definition of characteristic function 	 its properties.  

x Fubini’s Theorem & its examples.  

7.� Unit End E[ercises  

1. If B A  and A has measure ]ero then shoZ that 	 has measure ]ero. 

2. ShoZ that countable set has measure ]ero.  

3. If A is non-empty open set, then shoZ that A is not of measure ]ero.  

4. *ive an e[ample of a bounded set C if measure ]ero but C  does not have 
measure ]ero.  

5. ShoZ by an e[ample that a set A has measure ]ero but A does not have 
content ]ero.  

6. Prove that 1 1, .... ,n na b a b  does not have content ]ero if i ia b  for each 

i . 

7. If C is a set of content ]ero shoZ that the boundary of C has content ]ero.  
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8. *ive an e[ample of a set A and a bounded subset C of A measure ]ero such 
that c

A

does not e[ist.  

9. If f 	 g are integrable, then shoZ that gf  is integrable.  

10. Let 0,1U be the union of all open intervals ,i ia b such that each rational 

number in 0,1  is contained in some ,i ia b . ShoZ that if cf e[cept on 

a set of measure ]ero, then f is not integrable on 0,1 . 

11. If : , ,f a b a b  is continuous� then shoZ that 

, ,
b b b b

a x a x

f x y dx dy f x y dy dx� � �  

12. Use Fubini’s theorem, to compute 
2 2

0 0

sin xdy dx
x y

 

13. Let 1,1 0, 2A  and :f A  defined by , sin xf x y x y ye  

compute 
A

f  

14. Let , , sinf x y z z x y  and 0, , 0,12 2A   

computer 
A

f .  
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