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1.0 OBJECTIVES 

After reading this chapter students will be able to: 

 Explain the structure of PROLOG 

 Describe the logic programming of PROLOG 

 Have the knowledge about the objects and its working principles in 
PROLOG 

 write the applications and problems of Artificial Intelligence 
programs using PROLOG 

1.1 INTRODUCTION 

PROLOG: Programming Logic language was designed in the 1970s by 
Alain Colmerauer and a team of researchers  

It was possible to use logic to represent knowledge and to write programs.  

It uses a subset of predicate logic and draws its structure from theoretical 
works of earlier logicians such as Herbrand (1930) and Robinson (1965) 
on the automation of theorem proving.  

PROLOG supports:  

● Natural Language Understanding 
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● Formal logic and associated forms of programming  

● Reasoning modeling  

● Database programming  

● Expert System Development 

● Real time AI programs 

1.2 LOGIC PROGRAMMING WITH PROLOG 

PROLOG programs are often described as declarative, although they 
unavoidably also have a procedural element. Programs are based on the 
techniques developed by logicians to form valid conclusions from 
available evidence. There are only two components to any program: facts 
and rules. The PROLOG system reads in the program and simply stores it. 
The user gives the queries which can be answered by the system using the 
facts and rules available to it. A simple example, is given below to 
illustrate the same.  

dog (puppy). 

dog (kutty). 

dog (jimmy). 

cat (valu). 

cat (miaw). 

cat (mouse). 

animal(Y):-dog(Y). 

Output: 

:- dog(puppy). 

Yes 

:- cat(kar). 

No 

PROLOG program, rules and facts, and also the use of queries that make 
PROLOG search through its facts and rules to work out the answer. 
Determining that puppy is an animal involves a very simple form of 
logical reasoning: 

 

 

 

 

Given that any Y is an animal if it is a dog 
and 
Puppy is a dog 
Deduce  
Puppy must be an animal 
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PROPERTIES OF OBJECTS 

The relationship between the objects and the particular relationship among 
the objects are explained through the following example.  

Each family has three components: husband, wife and children are objects 
of the family. As the number of children varies from family to family the 
children are represented by a list that is capable of accommodating any 
number of items. Each person is, in turn, represented by a structure of four 
components: name or it specifies the working organization and salary. The 
family of can be stored in the database by the clause 

family( 

person( tom, fox, date(7,may,1950), works(bbc,15200) ), 

person( ann, fox, dat{9,may, 195 1), unemployed), 

[person( pat, fox, date(5,may,1973), unemployed), 

person( jim, fox, date(S,may,1973), unemployed) ] ). 

This program shall be extended as adding the information on the gender of 
the people that occur in the parent relation. This can be done by simply 
adding the following facts to our program: 

female( pam). 

male( tom). 

male( bob). 

female( liz). 

female( pat). 

female( ann). 

male( jim). 

The relations introduced here are male and female. These relations are 
unary relations.  

A binary relation like parent defines a relation between pairs of objects; on 
the other hand, unary relations can be used to declare simple yes/no 
properties of objects. The first unary clause above can be read: Pam is a 
female. The same information declared in the two unary relations with one 
binary relation, sex, instead. An alternative code snippet of program is : 

gender( pam, feminine). 

gender( tom, masculine). 

gender( bob, masculine). 
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The offspring relation is as the inverse of the parent relation. We could 
define offspring in a similar way as the parent relation; that is, by simply 
providing a list of simple facts about the offspring relation, each fact 
mentioning one pair of people such that one is an offspring of the other. 
For example: 

offspring( liz, tom). 

However, the offspring relation can be defined much more elegantly by 
making use of the fact that it is the inverse of parent, and that parent has 
already been defined. This alternative way can be based on the following 
logical statement: 

For all X and Y, 

Y is an offspring of X if 

X is a parent of Y. 

This formulation is already close to the formalism of PROLOG. The 
corresponding PROLOG clause which has the same meaning is: 

offspring( Y, X) :- parent( X, Y). 

This clause can also be read as: 

For all X and Y, 

if X is a parent of Y then 

Y is an offspring of X. 

PROLOG clauses : Rules 

offspring( Y, X) :- parent( X, Y). 

Difference between facts and rules: A fact is something that is always, 
unconditionally, true. On the other hand, rules specify things that may be 
true if some condition is satisfied. Therefore we say that rules have: 

A condition part and a conclusion part  

The conclusion part is also called the head of a clause and the condition 
part the body of a clause. For example: 

offspring( y, X) :- parent( X, y). 

head body 

If the condition parent( X, Y) is true then a logical consequence of this is 
offspring( Y, X). 

How rules are actually used by PROLOG is illustrated as 

:- offspring( liz, tom). 
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1.4.1 Water jug problem: 

Problem Statement: 

In the water jug problem in Artificial Intelligence, we are provided with 
two jugs: one having the capacity to hold 3 gallons of water and the other 
has the capacity to hold 4 gallons of water. 

There is no other measuring equipment available and the jugs also do not 
have any kind of marking on them. So, the agent’s task here is to fill the 4-
gallon jug with 2 gallons of water by using only these two jugs and no 
other material. Initially, both our jugs are empty. 

So, to solve this problem, following set of rules were proposed: 

Production rules for solving the water jug problem 

Here, let x denote the 4-gallon jug and y denote the 3-gallon jug. 

S.No. Initial State Condition Final state Description of action taken 

1.  (x,y) If x<4 (4,y) Fill the 4 gallon jug completely 

2.  (x,y) if y<3 (x,3) Fill the 3 gallon jug completely 

3.  (x,y) If x>0 (x-d,y) Pour some part from the 4 gallon jug 

4.  (x,y) If y>0 (x,y-d) Pour some part from the 3 gallon jug 

5.  (x,y) If x>0 (0,y) Empty the 4 gallon jug 

6.  (x,y) If y>0 (x,0) Empty the 3 gallon jug 

7.  (x,y) If (x+y)<7 (4, y-[4-x]) Pour some water from the 3 gallon jug to 
fill the four gallon jug 

8.  (x,y) If (x+y)<7 (x-[3-y],y) Pour some water from the 4 gallon jug to 
fill the 3 gallon jug. 

9.  (x,y) If (x+y)<4 (x+y,0) Pour all water from 3 gallon jug to the 4 
gallon jug 

10.  (x,y) if (x+y)<3 (0, x+y) Pour all water from the 4 gallon jug to the 3 
gallon jug 

To solve the water jug problem in a minimum number of moves, 
following set of rules in the given sequence should be performed: 

Solution of water jug problem according to the production rules: 
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S.No. 4 gallon jug 

contents 
3 gallon jug 

contents 
Rule followed 

1. 0 gallon 0 gallon Initial state 
2. 0 gallon 3 gallons Rule no.2 
3. 3 gallons 0 gallon Rule no. 9 
4. 3 gallons 3 gallons Rule no. 2 
5. 4 gallons 2 gallons Rule no. 7 
6. 0 gallon 2 gallons Rule no. 5 
7. 2 gallons 0 gallon Rule no. 9 

On reaching the 7th attempt, the goal state is reached.  
 

Aim: Writing clauses in PROLOG to solve water jug problem  

Software used: SWI-PROLOG 

Program Listing: 

database 

    visited_state(integer,integer) 

predicates 

    state(integer,integer) 

clauses 

    state(2,0). 

    state(X,Y):-  

X < 4, 

not(visited_state(4,Y)), 

assert(visited_state(X,Y)),             

write("Fill the 4-Gallon Jug: (",X,",",Y,") --> (", 4,",",Y,")\n"), 

state(4,Y). 

    state(X,Y):- Y < 3, 

   not(visited_state(X,3)), 

assert(visited_state(X,Y)), 

write("Fill the 3-Gallon Jug: (", X,",",Y,") --> (", X,",",3,")\n"), 

state(X,3). 

    state(X,Y):- X > 0, 

not(visited_state(0,Y)), 
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assert(visited_state(X,Y)), 

write("Empty the 4-Gallon jug on ground: (", X,",",Y,") --> 
(",0,",",Y,")\n"), 

state(0,Y). 

    state(X,Y):- Y > 0, 

not(visited_state(X,0)), 

assert(visited_state(X,0)), 

write("Empty the 3-Gallon jug on ground: (", X,",",Y,") --> 
(",X,",",0,")\n"), 

state(X,0).     

    state(X,Y):- X + Y >= 4, 

Y > 0, 

NEW_Y = Y - (4 - X), 

not(visited_state(4,NEW_Y)), 

assert(visited_state(X,Y)), 

write("Pour water from 3-Gallon jug to 4-gallon until it is full: 
(",X,",",Y,") --> (", 4,",",NEW_Y,")\n"), 

state(4,NEW_Y).   

    state(X,Y):- X + Y >=3, 

X > 0, 

NEW_X = X - (3 - Y), 

not(visited_state(X,3)), 

assert(visited_state(X,Y)), 

write("Pour water from 4-Gallon jug to 3-gallon until it is full: 
(",X,",",Y,") --> (", NEW_X,",",3,")\n"), 

state(NEW_X,3).   

    state(X,Y):- X + Y <=4, 

            Y > 0, 

            NEW_X = X + Y, 

            not(visited_state(NEW_X,0)), 

            assert(visited_state(X,Y)), 

mu
no
tes
.in



 

 8 

Artificial Intelligence Lab 

 

            write("Pour all the water from 3-Gallon jug to 4-gallon: 
(",X,",",Y,") --> (", NEW_X,",",0,")\n"), 

            state(NEW_X,0).    

    state(X,Y):- X+Y<=3, 

            X > 0, 

            NEW_Y = X + Y, 

            not(visited_state(0,NEW_Y)), 

            assert(visited_state(X,Y)), 

            write("Pour all the water from 4-Gallon jug to 3-gallon: 
(",X,",",Y,") --> (", 0,",",NEW_Y,")\n"), 

            state(0,NEW_Y).    

    state(0,2):- not(visited_state(2,0)), 

         assert(visited_state(0,2)), 

       write("Pour 2 gallons from 3-Gallon jug to 4-gallon: (", 0,",",2,") --> 
(", 2,",",0,")\n"), 

          state(2,0). 

state(2,Y):- not(visited_state(0,Y)), 

          assert(visited_state(2,Y)), 

      write("Empty 2 gallons from 4-Gallon jug on the ground: 
(",2,",",Y,") --> (", 0,",",Y,")\n"), 

    state(0,Y). 

goal:- 

    makewindow(1,2,3,"4-3 Water Jug Problem",0,0,25,80), 

    state(0,0).     

1.4.2 Tic-Tac.Toe Problem: 

Aim: Tic-Tac-Toe using A* algorithm. 

Theory: A board game (such as tic-tac-toe) is usually programmed as a 
state machine. Looking on the current-state and therefore the player’s 
move, the game goes into the next-state. 

 tit-tat-toe (or Noughts and crosses, Xs and Os) could be a paper and 
pencil for 2 players, X and O, who take turns marking the areas in an 
exceedingly 3×3 grid.  
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The player who succeeds in putting 3 individual marks in an exceedingly 
horizontal, vertical or diagonal row wins the game. Players shortly 
discover that best play from each party ends up in a draw. 

The game is generalized to an m,n,k-game during which 2 players 
alternate putting stones of their own colour on an m×n board, with the 
goal of obtaining k of their own colour in a row. Tit-Tat-Toe is the (3,3,3)-
game. 

/*A Tic-Tac-Toe program in PROLOG. */   

/*Predicates that define the winning conditions:*/ 

win(Board, Player) :- rowwin(Board, Player). 
win(Board, Player) :- colwin(Board, Player). 
win(Board, Player) :- diagwin(Board, Player). 

rowwin(Board, Player) :- Board = [Player,Player,Player,_,_,_,_,_,_]. 
rowwin(Board, Player) :- Board = [_,_,_,Player,Player,Player,_,_,_]. 
rowwin(Board, Player) :- Board = [_,_,_,_,_,_,Player,Player,Player]. 

colwin(Board, Player) :- Board = [Player,_,_,Player,_,_,Player,_,_]. 
colwin(Board, Player) :- Board = [_,Player,_,_,Player,_,_,Player,_]. 
colwin(Board, Player) :- Board = [_,_,Player,_,_,Player,_,_,Player]. 

diagwin(Board, Player) :- Board = [Player,_,_,_,Player,_,_,_,Player]. 
diagwin(Board, Player) :- Board = [_,_,Player,_,Player,_,Player,_,_]. 

/*Helping predicate for alternating play in a "self" game: */ 

other(x,o). 
other(o,x). 

game(Board, Player):- win(Board, Player), !, write([player, Player, wins]). 

game(Board, Player):-  
other(Player,Otherplayer),  
move(Board,Player,Newboard), 
!, 
display(Newboard), 
game(Newboard,Otherplayer). 

move([b,B,C,D,E,F,G,H,I], Player, [Player,B,C,D,E,F,G,H,I]). 
move([A,b,C,D,E,F,G,H,I], Player, [A,Player,C,D,E,F,G,H,I]). 
move([A,B,b,D,E,F,G,H,I], Player, [A,B,Player,D,E,F,G,H,I]). 
move([A,B,C,b,E,F,G,H,I], Player, [A,B,C,Player,E,F,G,H,I]). 
move([A,B,C,D,b,F,G,H,I], Player, [A,B,C,D,Player,F,G,H,I]). 
move([A,B,C,D,E,b,G,H,I], Player, [A,B,C,D,E,Player,G,H,I]). 
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move([A,B,C,D,E,F,b,H,I], Player, [A,B,C,D,E,F,Player,H,I]). 
move([A,B,C,D,E,F,G,b,I], Player, [A,B,C,D,E,F,G,Player,I]). 
move([A,B,C,D,E,F,G,H,b], Player, [A,B,C,D,E,F,G,H,Player]). 

display([A,B,C,D,E,F,G,H,I]):- 
 write([A,B,C]),nl,write([D,E,F]),nl, 
 write([G,H,I]),nl,nl. 

selfgame :- game([b,b,b,b,b,b,b,b,b],x). 

/* Predicates to support playing a game with the user:*/ 

x_can_win_in_one(Board) :- move(Board, x, Newboard), win(Newboard, 
x). 

/*The predicate orespond generates the computer's (playing o) response from the 
current Board. */ 

orespond(Board,Newboard):-  
   move(Board, o, Newboard), 
   win(Newboard, o), 
   !. 

orespond(Board,Newboard) :- 

   move(Board, o, Newboard),  

   not(x_can_win_in_one(Newboard)). 

orespond(Board,Newboard) :- 

   move(Board, o, Newboard). 

orespond(Board,Newboard) :- 

   not(member(b,Board)), 

   !,  

  write('Cats game!'), nl, 

  Newboard = Board. 

/* Translation  from an integer description  of x's move to a board 
transformation.*/ 

xmove([b,B,C,D,E,F,G,H,I], 1, [x,B,C,D,E,F,G,H,I]). 

xmove([A,b,C,D,E,F,G,H,I], 2, [A,x,C,D,E,F,G,H,I]). 

xmove([A,B,b,D,E,F,G,H,I], 3, [A,B,x,D,E,F,G,H,I]). 

xmove([A,B,C,b,E,F,G,H,I], 4, [A,B,C,x,E,F,G,H,I]). 

xmove([A,B,C,D,b,F,G,H,I], 5, [A,B,C,D,x,F,G,H,I]). 

xmove([A,B,C,D,E,b,G,H,I], 6, [A,B,C,D,E,x,G,H,I]). 
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xmove([A,B,C,D,E,F,b,H,I], 7, [A,B,C,D,E,F,x,H,I]). 

xmove([A,B,C,D,E,F,G,b,I], 8, [A,B,C,D,E,F,G,x,I]). 

xmove([A,B,C,D,E,F,G,H,b], 9, [A,B,C,D,E,F,G,H,x]). 

xmove(Board, N, Board) :- write('Illegal move.'), nl. 

% The 0-place predicate playo starts a game with the user. 

playo :- explain, playfrom([b,b,b,b,b,b,b,b,b]). 

explain :- 

  write('You play X by entering integer positions followed by a period.'), 

  nl, 

  display([1,2,3,4,5,6,7,8,9]). 

playfrom(Board) :- win(Board, x), write('You win!'). 

playfrom(Board) :- win(Board, o), write('I win!'). 

playfrom(Board) :- read(N), 

   xmove(Board, N, Newboard),  

   display(Newboard), 

   orespond(Newboard, Newnewboard),  

   display(Newnewboard), 

   playfrom(Newnewboard). 

1.4.3 8-Puzzle Problem: 

/* This predicate initialises the problem states. The first argument of 
solve/3 is the initial state, the 2nd the goal state, and the third the plan that 
will be produced.  */ 

test(Plan):- 

    write('Initial state:'),nl, 

    Init= [at(tile4,1), at(tile3,2), at(tile8,3), at(empty,4), at(tile2,5), 
at(tile6,6), at(tile5,7), at(tile1,8), at(tile7,9)], 

    write_sol(Init), 

    Goal= [at(tile1,1), at(tile2,2), at(tile3,3), at(tile4,4), at(empty,5), 
at(tile5,6), at(tile6,7), at(tile7,8), at(tile8,9)], 

    nl,write('Goal state:'),nl, 

    write(Goal),nl,nl, 

    solve(Init,Goal,Plan). 
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solve(State, Goal, Plan):- 

    solve(State, Goal, [], Plan). 

/*Determines whether Current and Destination tiles are a valid move.  */ 

is_movable(X1,Y1) :- (1 is X1 - Y1) ; (-1 is X1 - Y1) ; (3 is X1 - Y1) ; (-3 
is X1 - Y1). 

/*This predicate produces the plan. Once the Goal list is a subset of the 
current State the plan is complete and it is written to the screen using 
write_sol */ 

solve(State, Goal, Plan, Plan):- 

    is_subset(Goal, State), nl, 

    write_sol(Plan). 

solve(State, Goal, Sofar, Plan):- 

    act(Action, Preconditions, Delete, Add), 

    is_subset(Preconditions, State), 

    \+ member(Action, Sofar), 

    delete_list(Delete, State, Remainder), 

    append(Add, Remainder, NewState), 

    solve(NewState, Goal, [Action|Sofar], Plan). 

act(move(X,Y,Z), 

    [at(X,Y), at(empty,Z), is_movable(Y,Z)], 

    [at(X,Y), at(empty,Z)], 

    [at(X,Z), at(empty,Y)]). 

/*Check is first list is a subset of the second */ 

is_subset([H|T], Set):- 

    member(H, Set), 

    is_subset(T, Set). 

is_subset([], _). 

/* Remove all elements of 1st list from second to create third. */ 

delete_list([H|T], Curstate, Newstate):- 

    remove(H, Curstate, Remainder), 

    delete_list(T, Remainder, Newstate). 

delete_list([], Curstate, Curstate). 

remove(X, [X|T], T). 
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remove(X, [H|T], [H|R]):- 

    remove(X, T, R). 

write_sol([]). 

write_sol([H|T]):- 

    write_sol(T), 

    write(H), nl. 

append([H|T], L1, [H|L2]):- 

    append(T, L1, L2). 

append([], L, L). 

member(X, [X|_]). 

member(X, [_|T]):- 

    member(X, T). 

1.5 SUMMARY 

This chapter explains how prolog is used in the logical programs. 
Different applications like water jug problem, tic-tac-toe and decision 
making justification problems are described. 

1.6 UNIT END EXERCISES 

1.  Write a PROLOG program to prove a person as a human 

2.  Explain the object and property relations 

3.  Write Towers of Hanoi program to apply PROLOG concept 

1.7 REFERENCES 

1.  Logic Programming with Prolog, Max Bramer, Springer 

2.  Prolog Programming for Artificial Intelligence, E. Kardelj University 
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UNIT II 

2 
INTRODUCTION TO PYTHON 
PROGRAMMING: LEARN THE 

DIFFERENT LIBRARIES  
Unit Structure 
2.1  NumPy 
2.2  Pandas 
2.3  SciPy 
2.4  Matplotlib 
2.5  Scikit Learn. 

2.1 NUMPY 

● Python library is nothing but a ready made moule.  

● This library can be used whenever we want. 

●  If we are writing a code and if a particular requirement arises then 
instead of sitting and writing the whole code we can just use the ready 
made code available in the library.  

● Thus by using the library our time is getting saved in a very 
wonderful manner.  

● We can relate the Python library with the real world book library too. 
So if you imagine a book library it has a whole set of books with it. 
We can choose the book according to our requirements. Similarly in 
the python library we can choose a particular set of code which is 
needed. 

● The extension of library files are “.dll” 

● Full form of dll is Dynamic Load Libraries 

● So whenever we add a library in our program during the execution 
phase it searches it and loads the particular module which is needed. 

● Now in this module we are studying about numpy which is one of the 
libraries in python. 

● NumPy stands for Numerical Python. 

● It is one of the most widely used libray. 
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● As it contains the code related to numerical details it is most popular 
around data science and machine learning as both these fields need a 
lot of numerical logic getting applied in it. 

● It is used whenever the situation in coding arises in working with an 
array. 

● It does have methods that is made up for algebra related logics. 

● This Numpy was made in the year  2005 

● Example: 

 Lets try to insert array using numpy: 

    import numpy as ab 

     ar= ab.array(([1, 2, 3, 4, 5]) 

print(ar) 

print(type(ar)) 

Output: 

[1 2 3 4 5] 

● In the above example in the first line we have imported the library by 
typing numpy. 

● We have given our library a name called as ab, so now in the program 
whenever there is a requirement of numpy we just need to type ab. 

● Then we created the variable called ar then we added array data inside 
the same 

● Then we printed it. 

● So output is printing the array data that has been inserted. 

# The standard way to import NumPy: 

import numpy as np 

# Create a 2-D array, set every second element in 

# some rows and find max per row: 

x = np.arange(15, dtype=np.int64).reshape(3, 5) 

x[1:, ::2] = -99 

x 

# array([[  0,   1,   2,   3,   4], 

#        [-99,   6, -99,   8, -99], 
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#        [-99,  11, -99,  13, -99]]) 

x.max(axis=1) 

# array([ 4,  8, 13]) 

# Generate normally distributed random numbers: 

rng = np.random.default_rng() 

samples = rng.normal(size=2500) 

samples 

Output 

array([ 0.38054775, -0.06020411,  0.07380668, ...,  1.07546484, 

       -0.20855135,  0.09773109]) 

2.2 PANDAS 

● The main role of the pandas library is to analyze the data. 

● It is open source in nature 

● It is used in relational data  

● On the top of Numpy library Pandas library is present. 

● It is very quick in nature. 

● It was made in the year 2008 

● It is very efficient in datas. 

● When it comes to pandas it is not necessary that the data should or 
should belong to a kind of category but instead it allows many. 

● By using pandas you can reshape, analyze, and change your data very 
easily. 

● Pandas supports two data structures: 

1. Series: 

 It is an array. 

 It can hold any kind of data types like integer, float, character etc. 

 It points to the column.  

 Example1 : In the below example each column i.e name and roll no 
points to series. It is written in the following manner in the code: 

 ab=se.Series(df [‘Name’]) 
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 ab=se.Series(df [‘Roll no’]) 

 

Name Roll no 

Madhusri 01 

Srivatsan 22 

Anuradha 6 

Balaguru 55 

 
 Example 2: 

import pandas as ab 

import numpy as sj 

 # Creating empty series 

ser = sj.Series() 

   print(ser) 

# simple array 

data = sj.array(['g', 'e', 'e', 'k', 's'])   

ser = ab.Series(data) 

print(ser) 

 In  the above example two libraries have been imported and are used 
namely numpy and pandas. 

 The library Pandas is getting represented by ab and similarly the 
library numpy is getting represented by sj 

 Then series are created by calling it, so an empty series is called and 
initialized.           
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 Then it is printed then the array is getting added using numpy 

 Then finally they are printed 

 The output  comes out in the below fashion. 

 Output: 

Series([], dtype: float64) 
                                     0    g 
                                     1    e 
                                     2    e 
                                     3    k 
                                     4    s 
                                    dtype: object 
 
2. Data Frame: 

 It handles 3 parts, mainly data, columns and rows. 

 Example: 

import pandas as pd 

   # Calling DataFrame constructor 

df = pd.DataFrame() 

print(df) 

 # list of strings 

lst = ['Madhu, 'For', 'Madhusri', 'is',  

            'portal', 'for', 'students’'] 

   # Calling DataFrame constructor on list 

df = pd.DataFrame(lst) 

print(df) 

Output:Empty DataFrame 

Columns: [] 

Index: [] 

        0 

0   Madhu 

1     For 

2   Madhusri 

3      is 
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4  portal 

5     for 

6   students 

import pandas as pd 

df = pd.read_csv('data.csv') 

print(df.to_string())  

Output: 

 Duration Pulse Maxpulse Calories 
0 60 110 130 409.1 
1 60 117 145 479.0 
2 60 103 135 340.0 
3 45 109 175 282.4 
4 45 117 148 406.0 
5 60 102 127 300.5 
6 60 110 136 374.0 
7 45 104 134 253.3 
8 30 109 133 195.1 
9 60 98 124 269.0 
10 60 103 147 329.3 
11 60 100 120 250.7 
12 60 106 128 345.3 
13 60 104 132 379.3 
14 60 98 123 275.0 
15 60 98 120 215.2 

. 

; 

; 

; 

And so on…. 

2.3 SCIPY 

It falls under NumPy: 

● It uses scientific and mathematical logic. 

● It makes the python very effective as it allows user interaction too. 

● It stands for “Scientific Python” 

● It is open source 

● Manipulating N-dimension array is done through SciPy 
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● Some sub packages of SciPy are as follows: 

● Scipy.clusetr: K mean algorithm and such similar algorithms can be 
done using this library. 

● Scipy.io: Inputs and outputs are handled here 

import scipy 

print(scipy.__version__) 

Output: 

0.18.1 

2.4 MATPLOTLIB 

● It is used to plot graphs  

● John D. Hunter created this 

● It is open source 

● In python you need to install matplotlib pip otherwise the code will 
not execute. To do this go to cmd and go the the folder where python 
is located any type the following command:                                                                                                      

Pip install matplotlib 

                                     

import matplotlib.pyplot as plt 

import numpy as np 

xpoints = np.array([0, 6]) 

ypoints = np.array([0, 250]) 

plt.plot(xpoints, ypoints) 

plt.show() 
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2.5 SCIKIT LEARN 

● It is mainly used in machine learning 

● It has lot of statistics related tools 

● It is open source. 

● By using the Scikit library the efficiency will improve tremendously 
as it is quite accurate. 

● It is very useful in algorithms which are very famous in machine 
learning like K-mean, K-nearest, clustering etc.  

● It is available to everybody so any programmer if he or she feels like 
utilizing it then can use it. 

● Scikit requires Numpy 

● Installation of scikit is must to make the program run, this can be done 
in the following manner. 

pip install -U scikit-learn 

 

● Example: 

from sklearn.datasets import load_iris 

iris = load_iris() 

A= iris.data 

y = iris.target 
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feature_names = iris.feature_names 

target_names = iris.target_names 

print("Feature names:", feature_names) 

print("Target names:", target_names) 

print("\nFirst 10 rows of A:\n", A[:10]) 

Output: 

Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 
'petal width (cm)'] 

Target names: ['setosa' 'versicolor' 'virginica'] 

First 10 rows of X: 

= 
[ 
   [5.1 3.5 1.4 0.2] 
   [4.9 3. 1.4 0.2] 
   [4.7 3.2 1.3 0.2] 
   [4.6 3.1 1.5 0.2] 
   [5. 3.6 1.4 0.2] 
   [5.4 3.9 1.7 0.4] 
   [4.6 3.4 1.4 0.3] 
   [5. 3.4 1.5 0.2] 
   [4.4 2.9 1.4 0.2] 
   [4.9 3.1 1.5 0.1] 
] 

● Features of Scikit learn are as follows: 

● Clustering: Scikit can be applied in clustering algorithm, in clustering 
the grouping is done on the basis of similarities like eg: age, color etc. 

● Cross validation 

● Feature selection 

● Example: 

# importing required libraries 

import pandas as pd 
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from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

# read the train and test dataset 

train_data = pd.read_csv('train.csv') 

test_data = pd.read_csv('test.csv') 

print(train_data.head()) 

# shape of the dataset 

print('\nShape of training data :',train_data.shape) 

print('\nShape of testing data :',test_data.shape) 

# Now, we need to predict the missing target variable in the test data 

# target variable - Item_Outlet_Sales 

# seperate the independent and target variable on training data 

train_x = train_data.drop(columns=['Item_Outlet_Sales'],axis=1) 

train_y = train_data['Item_Outlet_Sales'] 

# seperate the independent and target variable on training data 

test_x = test_data.drop(columns=['Item_Outlet_Sales'],axis=1) 

test_y = test_data['Item_Outlet_Sales'] 

''' 

Create the object of the Linear Regression model 

You can also add other parameters and test your code here 

Some parameters are : fit_intercept and normalize 

Documentation of sklearn Linear Regression:  

https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LinearRegressio
n.html 

 ''' 

model = LinearRegression() 

# fit the model with the training data 

model.fit(train_x,train_y) 

# coefficeints of the trained model 
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print('\nCoefficient of model :', model.coef_) 

# intercept of the model 

print('\nIntercept of model',model.intercept_) 

# predict the target on the test dataset 

predict_train = model.predict(train_x) 

print('\nItem_Outlet_Sales on training data',predict_train)  

# Root Mean Squared Error on training dataset 

rmse_train = mean_squared_error(train_y,predict_train)**(0.5) 

print('\nRMSE on train dataset : ', rmse_train) 

# predict the target on the testing dataset 

predict_test = model.predict(test_x) 

print('\nItem_Outlet_Sales on test data',predict_test)  

# Root Mean Squared Error on testing dataset 

rmse_test = mean_squared_error(test_y,predict_test)**(0.5) 

print('\nRMSE on test dataset : ', rmse_test) 

Output: 

Item_Weight  ...  Outlet_Type_Supermarket Type3 

0     6.800000  ...                              0 

1    15.600000  ...                              0 

2    12.911575  ...                              1 

3    11.800000  ...                              0 

4    17.850000  ...                              0 

[5 rows x 36 columns] 

Shape of training data : (1364, 36) 

Shape of testing data : (341, 36) 
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Coefficient of model: 

 [-3.84197604e+00  9.83065945e+00  1.61711856e+01  6.09197622e+01 

 -8.64161561e+01  1.23593376e+02  2.34714039e+02 -2.44597425e+02 

 -2.72938329e+01 -8.09611456e+00 -3.01147840e+02  1.70727611e+02 

 -5.40194744e+01  7.34248834e+01  1.70313375e+00 -5.07701615e+01 

  1.63553657e+02 -5.85286125e+01  1.04913492e+02 -6.01944874e+01 

  1.98948206e+02 -1.40959023e+02  1.19426257e+02  2.66382669e+01 
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3.0 OBJECTIVES 

This Chapter would make you understand the following concepts: 
 What is a Regression? 

 Types of a Regression. 

 What is the mean of Linear regression and the importance of Linear 
regression? 

 Importance of cost function and gradient descent in a Linear 
regression. 

 Impact of different values for learning rate. 

 What is the mean of logistic regression and the importance of Linear 
regression? 
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 Importance of cost function and gradient descent in a logistic 
regression. 

3.1 INTRODUCTION – REGRESSION 

Regression is a supervised learning technique that supports finding the 
correlation among variables.  

A regression problem is when the output variable is a real or continuous 
value. 

3.1.1 What is a Regression: 

In Regression, we plot a graph between the variables which best fit the 
given data points. The machine learning model can deliver predictions 
regarding the data. In naïve words, “Regression shows a line or curve 
that passes through all the data points on a target-predictor graph in 
such a way that the vertical distance between the data points and the 
regression line is minimum.” It is used principally for prediction, 
forecasting, time series modeling, and determining the causal-effect 
relationship between variables. 

3.2 TYPES OF REGRESSION MODELS 

1. Linear Regression 

2. Polynomial Regression 

3. Logistics Regression 

3.2.1 Linear Regression: 

Linear regression is a quiet and simple statistical regression method used 
for predictive analysis and shows the relationship between the continuous 
variables. Linear regression shows the linear relationship between the 
independent variable (X-axis) and the dependent variable (Y-axis), 
consequently called linear regression. If there is a single input variable (x), 
such linear regression is called simple linear regression. And if there is 
more than one input variable, such linear regression is called multiple 
linear regression. The linear regression model gives a sloped straight line 
describing the relationship within the variables. 

 

mu
no
tes
.in



 

 28 

Supervised Learning 

 

The above graph presents the linear relationship between the dependent 
variable and independent variables. When the value of x (independent 
variable) increases, the value of y (dependent variable) is likewise 
increasing. The red line is referred to as the best fit straight line. Based on 
the given data points, we try to plot a line that models the points the best. 

To calculate best-fit line linear regression uses a traditional slope-
intercept form. 

 
y= Dependent Variable. 
 
x= Independent Variable. 
 
a0= intercept of the line. 
 
a1 = Linear regression coefficient. 

3.2.2 Need of a Linear regression: 

Linear regression estimates the relationship between a dependent variable 
and an independent variable. Let’s say we want to estimate the salary of an 
employee based on year of experience. You have the recent company data, 
which indicates that the relationship between experience and salary. Here 
year of experience is an independent variable, and the salary of an 
employee is a dependent variable, as the salary of an employee is 
dependent on the experience of an employee. Using this insight, we can 
predict the future salary of the employee based on current & past 
information. 

A regression line can be a Positive Linear Relationship or a Negative 
Linear Relationship. 

3.2.3 Positive Linear Relationship: 

If the dependent variable expands on the Y-axis and the independent 
variable progress on X-axis, then such a relationship is termed a Positive 
linear relationship. 
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3.2.4 Negative Linear Relationship: 

If the dependent variable decreases on the Y-axis and the independent 
variable increases on the X-axis, such a relationship is called a negative 
linear relationship. 

 

The goal of the linear regression algorithm is to get the best values for a0 
and a1 to find the best fit line. The best fit line should have the least error 
means the error between predicted values and actual values should be 
minimized. 

3.3 COST FUNCTION 

The cost function helps to figure out the best possible values for a0 and a1, 
which provides the best fit line for the data points. 

Cost function optimizes the regression coefficients or weights and 
measures how a linear regression model is performing. The cost function 
is used to find the accuracy of the mapping function that maps the input 
variable to the output variable. This mapping function is also known 
as the Hypothesis function. 

In Linear Regression, Mean Squared Error (MSE) cost function is used, 
which is the average of squared error that occurred between the predicted 
values and actual values. 

By simple linear equation y=mx+b we can calculate MSE as: 

Let’s y = actual values, yi = predicted values 

 

Using the MSE function, we will change the values of a0 and a1 such that 
the MSE value settles at the minima. Model parameters xi, b (a0,a1) can be 
manipulated to minimize the cost function. These parameters can be 
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determined using the gradient descent method so that the cost function 
value is minimum. 

3.3.1 Gradient descent:  

Gradient descent is a method of updating a0 and a1 to minimize the cost 
function (MSE). A regression model uses gradient descent to update the 
coefficients of the line (a0, a1 => xi, b) by reducing the cost function by a 
random selection of coefficient values and then iteratively update the 
values to reach the minimum cost function. 

 

Imagine a pit in the shape of U. You are standing at the topmost point in 
the pit, and your objective is to reach the bottom of the pit. There is a 
treasure, and you can only take a discrete number of steps to reach the 
bottom. If you decide to take one footstep at a time, you would eventually 
get to the bottom of the pit but, this would take a longer time. If you 
choose to take longer steps each time, you may get to sooner but, there is a 
chance that you could overshoot the bottom of the pit and not near the 
bottom. In the gradient descent algorithm, the number of steps you take is 
the learning rate, and this decides how fast the algorithm converges to the 
minima. 

 

To update a0 and a1, we take gradients from the cost function. To find 
these gradients, we take partial derivatives for a0 and a1. 
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The partial derivates are the gradients, and they are used to update the 
values of a0 and a1. Alpha is the learning rate. 

3.3.2 Impact of different values for learning rate: 
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The blue line represents the optimal value of the learning rate, and the cost 
function value is minimized in a few iterations. The green line represents 
if the learning rate is lower than the optimal value, then the number of 
iterations required high to minimize the cost function. If the learning rate 
selected is very high, the cost function could continue to increase with 
iterations and saturate at a value higher than the minimum value, that 
represented by a red and black line. 

3.3.3 Use case: 

In this, I will take random numbers for the dependent variable (salary) and 
an independent variable (experience) and will predict the impact of a year 
of experience on salary. 

3.3.4 Steps to implement linear regression model: 

a) Import some required libraries 
import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

b) Define the dataset 

x= np.array([2.4,5.0,1.5,3.8,8.7,3.6,1.2,8.1,2.5,5,1.6,1.6,2.4,3.9,5.4]) 

y = np.array([2.1,4.7,1.7,3.6,8.7,3.2,1.0,8.0,2.4,6,1.1,1.3,2.4,3.9,4.8]) 

n = np.size(x) 

c) Plot the data points 
plt.scatter(experience,salary, color = 'red') 

plt.xlabel("Experience") 

plt.ylabel("Salary") 

plt.show() 
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The main function to calculate values of coefficients: 

1. Initialize the parameters. 

2. Predict the value of a dependent variable by given an independent 
variable. 

3. Calculate the error in prediction for all data points. 

4. Calculate partial derivative w.r.t a0 and a1. 

5. Calculate the cost for each number and add them. 

6. Update the values of a0 and a1. 

Initialize the parameters: 

a0 = 0                  #intercept` 

a1 = 0                  #Slop 

lr = 0.0001             #Learning rate 

iterations = 1000       # Number of iterations 

error = []              # Error array to calculate cost for each iterations. 

for itr in range(iterations): 

    error_cost = 0 

    cost_a0 = 0 

    cost_a1 = 0 

    for i in range(len(experience)): 

        y_pred = a0+a1*experience[i]   # predict value for given x 

        error_cost = error_cost +(salary[i]-y_pred)**2 

        for j in range(len(experience)): 

          partial_wrt_a0 = -2 *(salary[j] - (a0 + a1*experience[j]))         
#partial derivative w.r.t a0 

            partial_wrt_a1 = (-2*experience[j])*(salary[j]-(a0 + 
a1*experience[j]))   

             #partial derivative w.r.t a1 

cost_a0 = cost_a0 + partial_wrt_a0      #calculate cost for each number 
and add 
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cost_a1 = cost_a1 + partial_wrt_a1      #calculate cost for each number 
and add 

        a0 = a0 - lr * cost_a0    #update a0 

        a1 = a1 - lr * cost_a1    #update a1 

        print(itr,a0,a1)          #Check iteration and updated a0 and a1 

    error.append(error_cost)      #Append the data in array 

 

At approximate iteration 50- 60, we got the value of a0 and a1. 

print(a0) 

print(a1) 

 

Plotting the error for each iteration: 

plt.figure(figsize=(10,5)) 

plt.plot(np.arange(1,len(error)+1),error,color='red',linewidth = 5) 

plt.title("Iteration vr error") 

plt.xlabel("iterations") 

plt.ylabel("Error") 
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Predicting the values: 

pred = a0+a1*experience 

print(pred) 

 

Plot the regression line: 

plt.scatter(experience,salary,color = 'red') 

plt.plot(experience,pred, color = 'green') 

plt.xlabel("experience") 

plt.ylabel("salary") 
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Analyze the performance of the model by calculating the mean 
squared error. 

error1 = salary - pred 

se = np.sum(error1 ** 2) 

mse = se/n 

print("mean squared error is", mse) 

 

Use the scikit library to confirm the above steps: 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error  

experience = experience.reshape(-1,1) 

model = LinearRegression() 

model.fit(experience,salary) 

salary_pred = model.predict(experience) 

Mse = mean_squared_error(salary, salary_pred) 

print('slop', model.coef_) 

print("Intercept", model.intercept_) 

print("MSE", Mse) 
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3.4 WHAT IS LOGISTIC REGRESSION? 

Logistic regression is a supervised learning algorithm that outputs values 
between zero and one. 

3.4.1 Hypothesis: 

The objective of a logistic regression is to learn a function that outputs the 
probability that the dependent variable is one for each training sample. To 
achieve that, a sigmoid / logistic function is required for the 
transformation. 

3.4.2 A sigmoid function: 

 

Visually, it looks like this: 

Fig. 1. Sigmoid Function 

This hypothesis is typically represented by the following function: 

 

Where, 

 θ is a vector of parameters that corresponds to each independent 
variable 

 x is a vector of independent variables 
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3.5 COST FUNCTION 

The cost function for logistic regression is derived from statistics using the 
principle of maximum likelyhood estimation, which allows efficient 
identification of parameters. In addition the covex property of the cost 
function allow gradient descent to work eff ectively. 

 
Where,  

● i is one of the mth training samples 

● hƟ(xi)   is the predicted value for the training sample   

● yi is the actual value for the training sample 

To understand the cost function, we can look into each of the two 
components in isolation: 

Suppose  yi=1: 

if , hƟ(xi)   =1 then the predicon error = 0  

if , hƟ(xi)   =0 then the predicon error approaches infinity 

These two scenarios are represented by the blue line in Figure 2 below. 

Suppose  yi=0: 

if , hƟ(xi)   =0 then the predicon error = 0  

if , hƟ(xi)   =1 then the predicon error approaches infinity 

These two scenarios are represented by the blue line in Figure 2 below. 

 
                             Fig. 2. Logistic Regression Cost Function 
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The logistic regression cost function can be further simplified into a one 
line equation: 

 

The overall objective is to minimise the cost function by iterating through 
diferent values of Ɵ. 

 

3.5.1 Gradient Descent 

The gradient descent algorithm is as follows: 

repeat until convergence 

 

Where, 

● values of j = 0,1, …, n 

● α is the learning rate  

Note: The gradient descent algorithm is identical to linear regression’s 

3.6 LETS SUM UP 

 What is a Regression? 

 Types of a Regression. 

 What is the mean of Linear regression and the importance of Linear 
regression? 

 Importance of cost function and gradient descent in a Linear 
regression. 

 Impact of different values for learning rate. 

 What is the mean of logistic regression and the importance of Linear 
regression? 

 Importance of cost function and gradient descent in a logistic 
regression. 
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3.7 EXERCISES 

 Differentiate the Linear regression and logistic regression with a real 
time example. 

3.8 REFERENCES  

 https://www.studytonight.com/post/linear-regression-and-predicting-
values-based-on-a-training-dataset 

 https://activewizards.com/blog/5-real-world-examples-of-logistic-
regression-application 

 https://www.marktechpost.com/2021/11/12/logistic-regression-with-
a-real-world-example-in-python/ 

 https://www.statology.org/linear-regression-real-life-
examples/#:~:text=For%20example%2C%20researchers%20might%2
0administer,pressure%20as%20the%20response%20variable. 

 https://www.quora.com/What-are-applications-of-linear-and-logistic-
regression 

 https://www.statology.org/logistic-regression-real-life-examples/ 

 https://ncss-wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf 

 https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-
machine-learning/ 

 https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-
on-linear-regression/ 

 http://home.iitk.ac.in/~shalab/regression/Chapter3-Regression-
MultipleLinearRegressionModel.pdf 

 https://www.princeton.edu/~otorres/Regression101.pdf 

 https://towardsdatascience.com/machine-learning-basics-with-the-k-
nearest-neighbors-algorithm-6a6e71d01761 

 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-
machine-learning 

 https://www.analyticsvidhya.com/blog/2021/04/simple-
understanding-and-implementation-of-knn-algorithm/ 
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https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-on-linear-regression/
http://home.iitk.ac.in/~shalab/regression/Chapter3-Regression-MultipleLinearRegressionModel.pdf
http://home.iitk.ac.in/~shalab/regression/Chapter3-Regression-MultipleLinearRegressionModel.pdf
https://www.princeton.edu/~otorres/Regression101.pdf
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4 
SUPERVISED LEARNING 

Unit Structure 
4.0  Objectives 
4.1  Advanced Optimization Algorithms 

4.1.1 Multiclass Classification 
4.1.2 Bias-Variance Tradeo 
4.1.3 Regularization 

4.2  Applications of Linear/Logistic regression. 
4.2.1 Two things you can do using regression are 
4.2.2Application of logistic regression 

4.3  K-nearest Neighbors (KNN) Classification Model 
4.4  Lets Sum up 
4.5  References  
4.6  Exercises 

4.0 OBJECTIVES 

This Chapter would make you understand the following concepts: 
 Advanced Optimization Algorithms 

 Applications of Linear/Logistic regression. 

 KNN- classification 

4.1 ADVANCED OPTIMIZATION ALGORITHMS 

However, gradient descent is not the only algorithm that can minimize the 
cost function. Other advanced optimization algorithms are: 

● Conjugate gradient  

● BFGS  

● L-BFGS  

While these advanced algorithms are more complex and difficult to 
understand, they have the advantages of converging faster and not needing 
to pick learning rate. 

4.1.1 Multiclass Classification: 

One-vs-rest is a method where you turn a n-class classification problem 
into a nth seperate binary classification problem. 
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To deal with a multiclass problem, we then train a logistic regression 
binary classifier  for each class  to predict the probability that y = i. The 
prediction output for a given new input  will be chosen based on the 
classifier that has the highest probability. 

 

where is the  binary classifier 

4.1.2 Bias-Variance Tradeoff :  

Overfing occurs when the algorithm tries too hard to fit the training data. 
This usually results in a learned hypothesis that is too complex, fails to 
generalize to new examples, and a cost funcon that is very close to zero on 
the training set. On the contrary, underfing occurs when the algorithm tries 
too lile to fit the training data. This usually results in a learned hypothesis  

 

that is not complex enough, and fails to generalize to new examples. 

                         Underfitting and Overfitting  

Conceptually speaking, bias measures the difference between model 
predictions and the correct values. Variance refers to the variability of a 
model prediction for a given data point if you re-build the model multiple 
message. 

As seen in Figure 4, the optimal level of model complexity is where 
prediction error on unseen data points is minimized. Below the optimal 
level of model complexity, bias will increase while variance will decrease 
due to a hypothesis that is too simplified. On the contrary, a very complex 
model will result in a low bias and high variance situation 
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Bias-Variance Tradeo 

4.1.3 Regularization: 

For a model to generalize well, regularization is usually introduced to 
reduce over fitting of the training data. 

This is represented by a regularization term, that is added to the cost 
function that penalizes all parameters that are high in value. This leads to a 
simpler hypothesis that is less prone to fitting. The new cost function then 
becomes: 

 

Where, 

● i is one of the  training samples 

● is the predicted value for the training sample i 

● yi is the actual value for the training sample i 

● λ is the regularizaon parameter that controls the tradeoff  between fing 
the training dataset well and having the parameters θ small in values 

● j is one of the  parameter θ 

Overall objecve remains the same:  
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Gradient descent remains the same as well: 

  repeat until convergence 

4.2 APPLICATIONS OF LINEAR/LOGISTIC 
REGRESSION  

Regression models are generally built on historical data which has some 
independent variables and a dependent variable. A dependent variable is a 
characteristic or quantity that you want to measure using the independent 
variables. 

4.2.1 Two things you can do using regression are: 

1.  Find the impact of the dependent variables on the response based on 
the historical data. 

2.  Use this generalization to predict what can happen in the future using 
new cases. 

Linear regression is used when the response is a continuous variable (CV). 
Some examples of CVs are height of a person, sales of a product, revenues 
of a company etc. 

Logistic regression is used when the response you want to predict/measure 
is categorical with two or more levels. Some examples are gender of a 
person, outcome of a football match, etc. 

For example let’s take a scenario where you are analyzing the voting 
patterns of USA to predict who will win the next election.  

In such case you would use: 

1.  Linear Regression: if you want to predict the number of 
people(continuous response) who will vote for democrats/republicans 
in each county/city/state etc., 

2.  Logistic Regression: if you want to predict the probability that a 
certain person will vote for a democrat/republican or not. 

Regressions can be used in real world applications such as: 

1.  Credit Scoring 

2.  Measuring the success rates of marketing campaigns 

3.  Predicting the revenues of a certain product 

4.  Is there going to be an earthquake on a particular day? etc., 
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4.2.2 Application of logistic regression 

Logistic Regression Real Life Example: 1 

Medical researchers want to know how exercise and weight impact the 
probability of having a heart attack. To understand the relationship 
between the predictor variables and the probability of having a heart 
attack, researchers can perform logistic regression. 

The response variable in the model will be heart attack and it has two 
potential outcomes: 

● A heart attack occurs. 

● A heart attack does not occur. 

The results of the model will tell researchers exactly how changes in 
exercise and weight affect the probability that a given individual has a 
heart attack. The researchers can also use the fitted logistic regression 
model to predict the probability that a given individual has a heart 
attacked, based on their weight and their time spent exercising. 

Logistic Regression Real Life Example: 2 

Researchers want to know how GPA, ACT score, and number of AP 
classes taken impact the probability of getting accepted into a particular 
university. To understand the relationship between the predictor variables 
and the probability of getting accepted, researchers can perform logistic 
regression. 

The response variable in the model will be “acceptance” and it has two 
potential outcomes: 

● A student gets accepted. 

● A student does not get accepted. 

The results of the model will tell researchers exactly how changes in GPA, 
ACT score, and number of AP classes taken affect the probability that a 
given individual gets accepted into the university. The researchers can also 
use the fitted logistic regression model to predict the probability that a 
given individual gets accepted, based on their GPA, ACT score, and 
number of AP classes taken. 

Logistic Regression Real Life Example :3 

A business wants to know whether word count and country of origin 
impact the probability that an email is spam. To understand the 
relationship between these two predictor variables and the probability of 
an email being spam, researchers can perform logistic regression. 
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The response variable in the model will be “spam” and it has two potential 
outcomes: 

● The email is spam. 

● The email is not spam. 

The results of the model will tell the business exactly how changes in 
word count and country of origin affect the probability of a given email 
being spam. The business can also use the fitted logistic regression model 
to predict the probability that a given email is spam, based on its word 
count and country of origin. 

Logistic Regression Real Life Example :4 

A credit card company wants to know whether transaction amount and 
credit score impact the probability of a given transaction being 
fraudulent. To understand the relationship between these two predictor 
variables and the probability of a transaction being fraudulent, the 
company can perform logistic regression. 

The response variable in the model will be “fraudulent” and it has two 
potential outcomes: 

● The transaction is fraudulent. 

● The transaction is not fraudulent. 

The results of the model will tell the company exactly how changes in 
transaction amount and credit score affect the probability of a given 
transaction being fraudulent. The company can also use the fitted logistic 
regression model to predict the probability that a given transaction is 
fraudulent, based on the transaction amount and the credit score of the 
individual who made the transaction. 

4.3 K-NEAREST NEIGHBORS (KNN) CLASSIFICATION 
MODEL 

1. Evaluation procedure 1 - Train and test on the entire dataset 

1. Train the model on the entire dataset. 

2. Test the model on the same dataset, and evaluate how well we did by 
comparing the predicted response values with the true response 
values. 

In [1]: 

# read in the iris data 

from sklearn.datasets import load_iris 

iris = load_iris() 
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# create X (features) and y (response) 

X = iris.data 

y = iris.target 

1a. Logistic regression 

In [2]: 

# import the class 

from sklearn.linear_model import LogisticRegression 

# instantiate the model (using the default parameters) 

logreg = LogisticRegression() 

# fit the model with data 

logreg.fit(X, y) 

# predict the response values for the observations in X 

logreg.predict(X) 

Out[2]: 

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 
       1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 

       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 

       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 

       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) 

In [3]: 

# store the predicted response values 

y_pred = logreg.predict(X) 

# check how many predictions were generated 

len(y_pred) 

Out[3]: 

150 

Classification accuracy: 

● Proportion of correct predictions 

● Common evaluation metric for classification problems 
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In [4]: 

# compute classification accuracy for the logistic regression model 

from sklearn import metrics 

print(metrics.accuracy_score(y, y_pred)) 

0.96 

● Known as training accuracy when you train and test the model on 
the same data 

● 96% of our predictions are correct 

1b. KNN (K=5) 

In [5]: 

from sklearn.neighbors import KNeighborsClassifier 

knn = KNeighborsClassifier(n_neighbors=5) 

knn.fit(X, y) 

y_pred = knn.predict(X) 

print(metrics.accuracy_score(y, y_pred)) 

0.966666666667 

It seems, there is a higher accuracy here but there is a big issue of testing 
on your training data 

1c. KNN (K=1) 

In [6]: 

knn = KNeighborsClassifier(n_neighbors=1) 

knn.fit(X, y) 

y_pred = knn.predict(X) 

print(metrics.accuracy_score(y, y_pred)) 

1.0 

● KNN model: 

1. Pick a value for K. 

2. Search for the K observations in the training data that are "nearest" to 
the measurements of the unknown iris 

3. Use the most popular response value from the K nearest neighbors as 
the predicted response value for the unknown iris 
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 This would always have 100% accuracy, because we are testing on 
the exact same data, it would always make correct predictions 

 KNN would search for one nearest observation and find that exact 
same observation 

 KNN has memorized the training set 

 Because we testing on the exact same data, it would always make the 
same prediction 

1d. Problems with training and testing on the same data: 

● Goal is to estimate likely performance of a model on out-of-sample 
data 

● But, maximizing training accuracy rewards overly complex 
models that won't necessarily generalize 

● Unnecessarily complex models overfit the training data 

 

Image Credit: Overfitting by Chabacano. Licensed under GFDL via 
Wikimedia Commons. 

● Green line (decision boundary): overfit 
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 Your accuracy would be high but may not generalize well for future 
observations 

 Your accuracy is high because it is perfect in classifying your training 
data but not out-of-sample data 

● Black line (decision boundary): just right 

 Good for generalizing for future observations 

● Hence we need to solve this issue using a train/test split that will be 
explained below 

2. Evaluation procedure 2 - Train/test split 

1. Split the dataset into two pieces: a training set and a testing set. 

2. Train the model on the training set. 

3. Test the model on the testing set, and evaluate how well we did. 

In [7]: 

# print the shapes of X and y 

# X is our features matrix with 150 x 4 dimension 

print(X.shape) 

# y is our response vector with 150 x 1 dimension 

print(y.shape) 

(150, 4) 

(150,) 

In [8]: 

# STEP 1: split X and y into training and testing sets 

from sklearn.cross_validation import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, 
random_state=4) 

● test_size=0.4 

 40% of observations to test set 

 60% of observations to training set 

● data is randomly assigned unless you use random_state 
hyperparameter 

 If you use random_state=4 

 Your data will be split exactly the same way 
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What did this accomplish? 

● Model can be trained and tested on different data 

● Response values are known for the testing set, and thus predictions 
can be evaluated 

● Testing accuracy is a better estimate than training accuracy of out-of-
sample performance 

In [9]: 

# print the shapes of the new X objects 

print(X_train.shape) 

print(X_test.shape) 

(90, 4) 

(60, 4) 

In [10]: 

# print the shapes of the new y objects 

print(y_train.shape) 

print(y_test.shape) 

(90,) 

(60,) 

In [11]: 

# STEP 2: train the model on the training set 

logreg = LogisticRegression() 

logreg.fit(X_train, y_train) 
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Out[11]: 

LogisticRegression(C=1.0, class_weight=None, dual=False, 
fit_intercept=True, 

          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, 

          penalty='l2', random_state=None, solver='liblinear', tol=0.0001, 

          verbose=0, warm_start=False) 

In [12]: 

# STEP 3: make predictions on the testing set 

y_pred = logreg.predict(X_test) 

# compare actual response values (y_test) with predicted response values 
(y_pred) 

print(metrics.accuracy_score(y_test, y_pred)) 

0.95 

Repeat for KNN with K=5: 

In [13]: 

knn = KNeighborsClassifier(n_neighbors=5) 

knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 

print(metrics.accuracy_score(y_test, y_pred)) 

0.966666666667 

Repeat for KNN with K=1: 

In [14]: 

knn = KNeighborsClassifier(n_neighbors=5) 

knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 

print(metrics.accuracy_score(y_test, y_pred)) 

0.966666666667 

Can we locate an even better value for K? 

In [15]: 

# try K=1 through K=25 and record testing accuracy 
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k_range = range(1, 26) 

# We can create Python dictionary using [] or dict() 

scores = [] 

# We use a loop through the range 1 to 26 

# We append the scores in the dictionary 

for k in k_range: 

    knn = KNeighborsClassifier(n_neighbors=k) 

    knn.fit(X_train, y_train) 

    y_pred = knn.predict(X_test) 

    scores.append(metrics.accuracy_score(y_test, y_pred)) 

print(scores) 

[0.94999999999999996, 0.94999999999999996, 0.96666666666666667, 
0.96666666666666667, 0.96666666666666667, 0.98333333333333328, 
0.98333333333333328, 0.98333333333333328, 0.98333333333333328, 
0.98333333333333328, 0.98333333333333328, 0.98333333333333328, 
0.98333333333333328, 0.98333333333333328, 0.98333333333333328, 
0.98333333333333328, 0.98333333333333328, 0.96666666666666667, 
0.98333333333333328, 0.96666666666666667, 0.96666666666666667, 
0.96666666666666667, 0.96666666666666667, 0.94999999999999996, 
0.94999999999999996] 

In [16]: 

# import Matplotlib (scientific plotting library) 

import matplotlib.pyplot as plt 

# allow plots to appear within the notebook 

%matplotlib inline 

# plot the relationship between K and testing accuracy 

# plt.plot(x_axis, y_axis) 

plt.plot(k_range, scores) 

plt.xlabel('Value of K for KNN') 

plt.ylabel('Testing Accuracy') 

Out[16]: 

<matplotlib.text.Text at 0x111d43ba8> 
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● Training accuracy rises as model complexity increases 

● Testing accuracy penalizes models that are too complex or not 
complex enough 

● For KNN models, complexity is determined by the value of K (lower 
value = more complex) 

3. Making predictions on out-of-sample data: 

In [17]: 

# instantiate the model with the best known parameters 

knn = KNeighborsClassifier(n_neighbors=11) 

# train the model with X and y (not X_train and y_train) 
knn.fit(X, y) 

# make a prediction for an out-of-sample observation 

knn.predict([3, 5, 4, 2]) 

/Users/ritchieng/anaconda3/envs/py3k/lib/python3.5/site-
packages/sklearn/utils/validation.py:386: DeprecationWarning: 

 Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in 
0.19. Reshape your data either using X.reshape(-1, 1) if your data has a 
single feature or X.reshape(1, -1) if it contains a single sample. 

DeprecationWarning) 

Out[17]: 

array([1]) 

4. Downsides of train/test split: 

● Provides a high-variance estimate of out-of-sample accuracy 

● K-fold cross-validation overcomes this limitation 

● But, train/test split is still useful because of its flexibility and speed 

4.4 LETS SUM UP 

 Advanced Optimization Algorithms. 

 Applications of Linear/Logistic regression. 

 KNN- classification. 
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 Appropriate the Linear regression and logistic regression with a real 
time example. 

 Take a real time example and execute about KNN- classification 

4.6 REFERENCES  

 https://www.quora.com/What-are-applications-of-linear-and-logistic-
regression 

 https://www.statology.org/logistic-regression-real-life-examples/ 

 https://ncss-wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf 

 https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-
machine-learning/ 

 https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-
on-linear-regression/ 

 https://towardsdatascience.com/machine-learning-basics-with-the-k-
nearest-neighbors-algorithm-6a6e71d01761 

 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-
machine-learning 

 https://www.analyticsvidhya.com/blog/2021/04/simple-
understanding-and-implementation-of-knn-algorithm/ 
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5 
FEATURES AND EXTRACTION 

Unit Structure 
5.1 Dimensionality reduction 
5.2 Feature selection 
5.3 Normalization 

5.1 DIMENSIONALITY REDUCTION 

Dimensionality reduction eliminates some features of the dataset and 
creates a restricted set of features that contains all of the information 
needed to predict the target variables more efficiently and accurately. 

Reducing the number of features normally also reduces the output 
variability and complexity of the learning process. The covariance matrix 
is an important step in the dimensionality reduction process. It is a critical 
process to check the correlation between different features. 

Correlation and its Measurement: 

There is a concept of correlation in machine learning that is called 
multicollinearity. Multicollinearity exists when one or more independent 
variables highly correlate with each other. Multicollinearity makes 
variables highly correlated to one another, which makes the variables’ 
coefficients highly unstable. 

The coefficient is a significant part of regression, and if this is unstable, 
then there will be a poor outcome of the regression result. 
Multicollinearity is confirmed by using Variance Inflation Factors (VIF). 
Therefore, if multicollinearity is suspected, it can be checked using the 
variance inflation factor (VIF). 

 

Rules from VIF: 

● A VIF of 1 would indicate complete independence from any other 
variable. 

● A VIF between 5 and 10 indicates a very high level of collinearity [4]. 

● The closer we get to 1, the more ideal the scenario for predictive 
modeling. 
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● Each independent variable regresses against each independent 
variable, and we calculate the VIF. 

Heatmap also plays a crucial role in understanding the correlation between 
variables. 

The type of relationship between any two quantities varies over a period of 
time. 

Correlation varies from -1 to +1 

To be precise, 

● Values that are close to +1 indicate a positive correlation. 

● Values close to -1 indicate a negative correlation. 

● Values close to 0 indicate no correlation at all. 

Below is the heatmap to show how we will correlate which features are 
highly dependent on the target feature and consider them. 

The Covariance Matrix and Heatmap: 

The covariance matrix is the first step in dimensionality reduction because 
it gives an idea of the number of features that strongly relate, and it is 
usually the first step in dimensionality reduction because it gives an idea 
of the number of strongly related features so that those features can be 
discarded. 

It also gives the detail of all independent features. It provides an idea of 
the correlation between all the different pairs of features. 

Identification of features in Iris dataset that are strongly correlated: 

Import all the required packages:                                                                                                            

import numpy as np 
import pandas as pd 
from sklearn import datasets  
import matplotlib.pyplot as plt 
Load Iris dataset: 
iris = datasets.load_iris() 
iris.data 
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Iris dataset. 

List all features: 

iris.feature_names 

 

Features of the Iris dataset: 

Create a covariance matrix: 

cov_data = np.corrcoef(iris.data.T)cov_data 

 
Covariance matrix of the Iris dataset. 

Plot the covariance matrix to identify the correlation between features 
using a heatmap: 

img = plt.matshow(cov_data, cmap=plt.cm.rainbow) 
plt.colorbar(img, ticks = [-1, 0, 1], fraction=0.045)for x in 
range(cov_data.shape[0]): 
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    for y in range(cov_data.shape[1]): 
        plt.text(x, y, "%0.2f" % cov_data[x,y], size=12, color='black', 
ha="center", va="center") 
         
plt.show() 

 
Heatmap of the correlation matrix. 

A correlation from the representation of the heatmap: 

● Among the first and the third features. 

● Between the first and the fourth features. 

● Between the third and the fourth features. 

Independent features: 

● The second feature is almost independent of the others. 

Here the correlation matrix and its pictorial representation have given the 
idea about the potential number of features reduction. Therefore, two 
features can be kept, and other features can be reduced apart from those 
two features. 
Feature Selection: 

In feature selection, usually, a subset of original features is selected. 
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Feature selection 

Feature Extraction: 

In feature extraction, a set of new features are found. That is found 
through some mapping from the existing features. Moreover, mapping can 
be either linear or non-linear. 

 
Feature Extraction 

Linear Feature Extraction: 

Linear feature extraction is straightforward to compute and analytically 
traceable. 
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Widespread linear feature extraction methods: 

● Principal Component Analysis (PCA): It seeks a projection that 
preserves as much information as possible in the data. 

● Linear Discriminant Analysis (LDA):- It seeks a projection that best 
discriminates the data. 

What is Principal Component Analysis? 

Principal component analysis (PCA) is an unsupervised linear transformation 
technique which is primarily used for feature extraction and dimensionality 
reduction. It aims to find the directions of maximum variance in high-
dimensional data and projects the data onto a new subspace with equal 
or fewer dimensions than the original one. In the diagram given below, 
note the directions of maximum variance of data. This is represented using 
PCA1 (first maximum variance) and PC2 (2nd maximum variance). 

     
Fig 1. PCA – Directions of maximum variance 

It is the direction of maximum variance of data that helps us identify an 
object. For example, in a movie, it is okay to identify objects by 2-dimensions 
as these dimensions represent direction of maximum variance.  Take a look at 
a real-world example of understanding direction of maximum variance in the 
following picture representing Taj Mahal of Agra. The diagram below 
represents the side view of Taj Mahal. There are multiple dimensions 
consisting of information (maximum variance) which helps identify the 
picture as Taj Mahal. 

 
Fig.2 Taj Mahal Side View 
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Take a look the following picture of Taj Mahal from top view. Note that there 
are only fewer dimensions in which information is varying and the variance is 
also not much. Hence, it is difficult to identify from top view whether the 
picture is of Taj Mahal. Thus, top view can be ignored easily. 

 
Fig3. Taj Mahal Top View 

Thus, when training a model to classify whether a given structure is of Taj 
Mahal or not, one would want to ignore the dimensions / features related to 
top view as they don’t provide much information (as a result of low variance). 

How is PCA different than other feature selection techniques? 

The way PCA is different from other feature selection techniques such as 
random forest, regularization techniques, forward/backward selection 
techniques etc is that it does not require class labels to be present (thus 
called as unsupervised). More details along with Python code example will 
be shared in future posts. 

Pca Algorithm for Feature Extraction: 

The following represents 6 steps of principal component analysis (PCA) 
algorithm: 

1. Standardize the dataset: Standardizing / normalizing the dataset is the 
first step one would need to take before performing PCA. The PCA 
calculates a new projection of the given data set representing one or more 
features. The new axes are based on the standard deviation  of the value 
of these features. So, a feature / variable with a high standard deviation 
will have a higher weight for the calculation of axis than a variable / 
feature with a low standard deviation. If the data is normalized / 
standardized, the standard deviation of all fetaures / variables get 
measured on the same scale. Thus, all variables have the same weight 
and PCA calculates relevant axis appropriately. Note that the data is 
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standardized / normalized after creating training / test split. Python’s 
sklearn.preprocessing StandardScaler class can be used for 
standardizing the dataset. 

2. Construct the covariance matrix: Once the data is standardized, the 
next step is to create n X n-dimensional covariance matrix, where n is the 
number of dimensions in the dataset. The covariance matrix stores the 
pairwise covariances between the different features.  Note that a positive 
covariance between two features indicates that the features increase or 
decrease together, whereas a negative covariance indicates that the 
features vary in opposite directions. Python’ s Numpy cov method can 
be used to create covariance matrix. 

3. Perform Eigendecomposition of covariance matrix: The next step is 
to decompose the covariance matrix into its eigenvectors and 
eigenvalues. The eigenvectors of the covariance matrix represent the 
principal components (the directions of maximum variance), whereas the 
corresponding eigenvalues will define their magnitude. Numpy 
linalg.eig or linalg.eigh can be used for decomposing covariance matrix 
into eigenvectors and eigenvalues. 

4. Selection of most important Eigenvectors/Eigenvalues: Sort the 
eigenvalues by decreasing order to rank the corresponding eigenvectors. 
Select k eigenvectors, which correspond to the k largest eigenvalues, 

where k is the dimensionality of the new feature subspace ( ). One 
can used the concepts of explained variables to select the k most 
important eigenvectors. 

5. Projection matrix creation of important eigenvectors: Construct a 
projection matrix, W, from the top k eigenvectors. 

6. Training / test dataset transformation: Finally, transform the d-
dimensional input training and test dataset using the projection matrix to 
obtain the new k-dimensional feature subspace. 

PCA Python Implementation Step-by-Step: 

This section represents custom Python code for extracting the features 
using PCA.  

 
Dataset for PCA 
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Here are the steps followed for performing PCA: 

● Perform one-hot encoding to transform categorical data set to numerical 
data set 

● Perform training / test split of the dataset 

● Standardize the training and test data set 

● Construct covariance matrix of the training data set 

● Construct eigendecomposition of the covariance matrix 

● Select the most important features using explained variance 

● Construct project matrix; In the code below, the projection matrix is 
created using the five eigenvectors that correspond to the top five 
eigenvalues (largest), to capture about 75% of the variance in this dataset 

● Transform the training data set into new feature subspace 

Here is the custom python code (without using sklearn.decomposition PCA 
class) to achieve the above PCA algorithm steps for feature extraction: 

1 # 
2 # Perform one-hot encoding 
3 # 
4 categorical_columns = df.columns[df.dtypes == object] # Find all 

categorical columns 
5  
6  df = pd.get_dummies(df, columns = categorical_columns, 

drop_first=True) 
7 # 
8 # Create training / test split 
9 # 
10 from sklearn.model_selection import train_test_split 
11 X_train, X_test, y_train, y_test = X_train, X_test, y_train, y_test = 

train_test_split(df[df.columns[df.columns != 'salary']], 
12 df['salary'], test_size=0.25, random_state=1) 
13 # 
14 # Standardize the dataset; This is very important before you apply PCA 
15 # 
16 from sklearn.preprocessing import StandardScaler 
17 sc = StandardScaler() 
18 sc.fit(X_train) 
19 X_train_std = sc.transform(X_train) 
20 X_test_std = sc.transform(X_test) 
21 # 
22 # Import eigh method for calculating eigenvalues and eigenvectirs 
23 # 
24 from numpy.linalg import eigh 
25 # 
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27 # 
28 cov_matrix = np.cov(X_train_std, rowvar=False) 
29 # 
30 # Determine eigenvalues and eigenvectors 
31 # 
32 egnvalues, egnvectors = eigh(cov_matrix) 
33 # 
34 # Determine explained variance and select the most important 

eigenvectors based on explained variance 
35 # 
36 total_egnvalues = sum(egnvalues) 
37 var_exp = [(i/total_egnvalues) for i in sorted(egnvalues, 

reverse=True)] 
38 # 
39 # Construct projection matrix using the five eigenvectors that 

correspond to the top five eigenvalues (largest), to capture about 75% 
of the variance in this dataset 

40 # 
41 egnpairs = [(np.abs(egnvalues[i]), egnvectors[:, i]) 
42                 for i in range(len(egnvalues))] 
43 egnpairs.sort(key=lambda k: k[0], reverse=True) 
44 projectionMatrix = np.hstack((egnpairs[0][1][:, np.newaxis], 
45                               egnpairs[1][1][:, np.newaxis], 
46                               egnpairs[2][1][:, np.newaxis], 
47                               egnpairs[3][1][:, np.newaxis], 
48                               egnpairs[4][1][:, np.newaxis])) 
49 # 
50 # Transform the training data set 
51 # 
52 X_train_pca = X_train_std.dot(projectionMatrix) 

 
Python Sklearn Example: 

This section represents Python code for extracting the features 
using sklearn.decomposition class PCA. Here is the screenshot of the data 
used. Salary is the label. The goal is to predict the salary. 
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Here are the steps followed for performing PCA: 

● Perform one-hot encoding to transform categorical data set to numerical 
data set 

● Perform training / test split of the dataset 

● Standardize the training and test data set 

● Perform PCA by fitting and transforming the training data set to the new 
feature subspace and later transforming test data set. 

● As a final step, the transformed dataset can be used for training/testing 
the model 

Here is the python code to achieve the above PCA algorithm 
steps for feature extraction: 

1 # 
2 # Perform one-hot encoding 
3 # 
4 categorical_columns = df.columns[df.dtypes == object] # Find all 

categorical columns 
5   
6 df = pd.get_dummies(df, columns = categorical_columns, 

drop_first=True) 
7 # 
8 # Create training / test split 
9 # 
10 from sklearn.model_selection import train_test_split 
11 X_train, X_test, y_train, y_test = X_train, X_test, y_train, y_test = 

train_test_split(df[df.columns[df.columns != 'salary']], 
12                    df['salary'], test_size=0.25, random_state=1) 
13 # 
14 # Standardize the dataset; This is very important before you apply 

PCA 
15 # 
16 from sklearn.preprocessing import StandardScaler 
17 sc = StandardScaler() 
18 sc.fit(X_train) 
19 X_train_std = sc.transform(X_train) 
20 X_test_std = sc.transform(X_test) 
21 # 
22 # Perform PCA 
23 # 
24 from sklearn.decomposition import PCA 
25 pca = PCA() 
26 # 
27 # Determine transformed features 
28 # 
29 X_train_pca = pca.fit_transform(X_train_std) 
30 X_test_pca = pca.transform(X_test_std) 
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Feature Selection is one of the core concepts in machine learning 
which hugely impacts the performance of your model. The data 
features that you use to train your machine learning models have a huge 
influence on the performance you can achieve. Irrelevant or partially 
relevant features can negatively impact model performance. Feature 
selection and Data cleaning should be the first and most important step of 
your model designing. 

Feature Selection is the process where you automatically or manually 
select those features which contribute most to your prediction variable or 
output in which you are interested in. 

Having irrelevant features in your data can decrease the accuracy of the 
models and make your model learn based on irrelevant features. 

How to select features and what are Benefits of performing feature 
selection before modeling your data? 

• Reduces Overfitting: Less redundant data means less opportunity to 
make decisions based on noise. 

• Improves Accuracy: Less misleading data means modeling accuracy 
improves. 

• Reduces Training Time: fewer data points reduce algorithm 
complexity and algorithms train faster. 

I want to share my personal experience with this. 

I prepared a model by selecting all the features and I got an accuracy of 
around 65% which is not pretty good for a predictive model and after 
doing some feature selection and feature engineering without doing any 
logical changes in my model code my accuracy jumped to 81% which is 
quite impressive 

Now you know why I say feature selection should be the first and most 
important step of your model design. 

Feature Selection Methods: 

I will share 3 Feature selection techniques that are easy to use and also 
gives good results. 

1. Univariate Selection 

2. Feature Importance 

3. Correlation Matrix with Heatmap 
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Let’s have a look at these techniques one by one with an example 

Description of variables in the above file: 

battery_power: Total energy a battery can store in one time measured in 
mAh 

blue: Has Bluetooth or not 

clock_speed: the speed at which microprocessor executes instructions 

dual_sim: Has dual sim support or not 

fc: Front Camera megapixels 

four_g: Has 4G or not 

int_memory: Internal Memory in Gigabytes 

m_dep: Mobile Depth in cm 

mobile_wt: Weight of mobile phone 

n_cores: Number of cores of the processor 

pc: Primary Camera megapixels 

px_height 

Pixel Resolution Height 

px_width: Pixel Resolution Width 

ram: Random Access Memory in MegaBytes 

sc_h: Screen Height of mobile in cm 

sc_w: Screen Width of mobile in cm 

talk_time: The longest time that a single battery charge will last when you 
are 

three_g: Has 3G or not 

touch_screen: Has touch screen or not 

wifi: Has wifi or not 

price_range: This is the target variable with a value of 0(low cost), 
1(medium cost), 2(high cost) and 3(very high cost). 

1. Univariate Selection: 

Statistical tests can be used to select those features that have the strongest 
relationship with the output variable. 
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The scikit-learn library provides the SelectKBest class that can be used 
with a suite of different statistical tests to select a specific number of 
features. 

The example below uses the chi-squared (chi²) statistical test for non-
negative features to select 10 of the best features from the Mobile Price 
Range Prediction Dataset. 

import pandas as pd 
import numpy as np 
from sklearn.feature_selection import SelectKBest 
from sklearn.feature_selection import chi2data = 
pd.read_csv("D://Blogs//train.csv") 
X = data.iloc[:,0:20]  #independent columns 
y = data.iloc[:,-1]    #target column i.e price range#apply SelectKBest 
class to extract top 10 best features 
bestfeatures = SelectKBest(score_func=chi2, k=10) 
fit = bestfeatures.fit(X,y) 
dfscores = pd.DataFrame(fit.scores_) 
dfcolumns = pd.DataFrame(X.columns) 
#concat two dataframes for better visualization  
featureScores = pd.concat([dfcolumns,dfscores],axis=1) 
featureScores.columns = ['Specs','Score']  #naming the dataframe columns 
print(featureScores.nlargest(10,'Score'))  #print 10 best features 

 

Top 10 Best Features using SelectKBest class 

2. Feature Importance: 

You can get the feature importance of each feature of your dataset by 
using the feature importance property of the model. 
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Feature importance gives you a score for each feature of your data, the 
higher the score more important or relevant is the feature towards your 
output variable. 

Feature importance is an inbuilt class that comes with Tree Based 
Classifiers, we will be using Extra Tree Classifier for extracting the top 10 
features for the dataset. 

import pandas as pd 
import numpy as np 
data = pd.read_csv("D://Blogs//train.csv") 
X = data.iloc[:,0:20]  #independent columns 
y = data.iloc[:,-1]    #target column i.e price range 
from sklearn.ensemble import ExtraTreesClassifier 
import matplotlib.pyplot as plt 
model = ExtraTreesClassifier() 
model.fit(X,y) 
print(model.feature_importances_) #use inbuilt class feature_importances 
of tree based classifiers 
#plot graph of feature importances for better visualization 
feat_importances = pd.Series(model.feature_importances_, 
index=X.columns) 
feat_importances.nlargest(10).plot(kind='barh') 
plt.show() 

 

top 10 most important features in data 

3. Correlation Matrix with Heatmap: 

Correlation states how the features are related to each other or the target 
variable. 

Correlation can be positive (increase in one value of feature increases the 
value of the target variable) or negative (increase in one value of feature 
decreases the value of the target variable) 
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Heatmap makes it easy to identify which features are most related to the 
target variable, we will plot heatmap of correlated features using the 
seaborn library. 

import pandas as pd 
import numpy as np 
import seaborn as snsdata = pd.read_csv("D://Blogs//train.csv") 
X = data.iloc[:,0:20]  #independent columns 
y = data.iloc[:,-1]    #target column i.e price range 
#get correlations of each features in dataset 
corrmat = data.corr() 
top_corr_features = corrmat.index 
plt.figure(figsize=(20,20)) 
#plot heat map 
g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn
") 

 

5.3 NORMALIZATION 

Normalization is a technique often applied as part of data preparation for 
machine learning. The goal of normalization is to change the values of 
numeric columns in the dataset to use a common scale, without distorting 
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differences in the ranges of values or losing information. Normalization is 
also required for some algorithms to model the data correctly. 

For example, assume your input dataset contains one column with values 
ranging from 0 to 1, and another column with values ranging from 10,000 
to 100,000. The great difference in the scale of the numbers could cause 
problems when you attempt to combine the values as features during 
modelling. 

Normalization avoids these problems by creating new values that maintain 
the general distribution and ratios in the source data, while keeping values 
within a scale applied across all numeric columns used in the model. 

This component offers several options for transforming numeric data: 

● You can change all values to a 0-1 scale, or transform the values by 
representing them as percentile ranks rather than absolute values. 

● You can apply normalization to a single column, or to multiple 
columns in the same dataset. 

 If you need to repeat the pipeline, or apply the same normalization 
steps to other data, you can save the steps as a normalization 
transform, and apply it to other datasets that have the same schema. 

Normalization Techniques at a Glance: 

Four common normalization techniques may be useful: 

● scaling to a range 

● clipping 

● log scaling 

● z-score 

The following charts show the effect of each normalization technique on 
the distribution of the raw feature (price) on the left. The charts are based 
on the data set from 1985 Ward's Automotive Yearbook that is part of 
the UCI Machine Learning Repository under Automobile Data Set. 

 
Figure 1. Summary of normalization techniques. 
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Scaling to a Range: 

Recall from MLCC that scaling means converting floating-point feature 
values from their natural range (for example, 100 to 900) into a standard 
range—usually 0 and 1 (or sometimes -1 to +1). Use the following simple 
formula to scale to a range: 

\[ x' = (x - x_{min}) / (x_{max} - x_{min}) \] 

Scaling to a range is a good choice when both of the following conditions 
are met: 

● You know the approximate upper and lower bounds on your data with 
few or no outliers. 

● Your data is approximately uniformly distributed across that range. 

A good example is age. Most age values falls between 0 and 90, and every 
part of the range has a substantial number of people. 

In contrast, you would not use scaling on income, because only a few 
people have very high incomes. The upper bound of the linear scale for 
income would be very high, and most people would be squeezed into a 
small part of the scale. 

Feature Clipping: 

If your data set contains extreme outliers, you might try feature clipping, 
which caps all feature values above (or below) a certain value to fixed 
value. For example, you could clip all temperature values above 40 to be 
exactly 40. 

You may apply feature clipping before or after other normalizations. 

Formula: Set min/max values to avoid outliers: 

 
Figure 2. Comparing a raw distribution and its clipped version. 

Another simple clipping strategy is to clip by z-score to +-Nσ (for 
example, limit to +-3σ). Note that σ is the standard deviation. 
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Log Scaling: 

Log scaling computes the log of your values to compress a wide range to a 
narrow range. 

\[ x' = log(x) \] 

Log scaling is helpful when a handful of your values have many points, 
while most other values have few points. This data distribution is known 
as the power law distribution. Movie ratings are a good example. In the 
chart below, most movies have very few ratings (the data in the tail), while 
a few have lots of ratings (the data in the head). Log scaling changes the 
distribution, helping to improve linear model performance. 

 

Figure 3. Comparing a raw distribution to its log. 

Z-Score: 

Z-score is a variation of scaling that represents the number of standard 
deviations away from the mean. You would use z-score to ensure your 
feature distributions have mean = 0 and std = 1. It’s useful when there are 
a few outliers, but not so extreme that you need clipping. 

The formula for calculating the z-score of a point, x, is as follows: 

\[ x' = (x - μ) / σ \] 

Note: μ is the mean and σ is the standard deviation. 
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Figure 4. Comparing a raw distribution to its z-score distribution. 

Notice that z-score squeezes raw values that have a range of ~40000 down 
into a range from roughly -1 to +4. 

Suppose you're not sure whether the outliers truly are extreme. In this 
case, start with z-score unless you have feature values that you don't want 
the model to learn; for example, the values are the result of measurement 
error or a quirk. 

Configure Normalize Data: 

You can apply only one normalization method at a time using this 
component. Therefore, the same normalization method is applied to all 
columns that you select. To use different normalization methods, use a 
second instance of Normalize Data. 

1. Add the Normalize Data component to your pipeline. You can find 
the component In Azure Machine Learning, under Data 
Transformation, in the Scale and Reduce category. 

2. Connect a dataset that contains at least one column of all numbers. 

3. Use the Column Selector to choose the numeric columns to 
normalize. If you don't choose individual columns, by 
default all numeric type columns in the input are included, and the 
same normalization process is applied to all selected columns. 

This can lead to strange results if you include numeric columns that 
shouldn't be normalized! Always check the columns carefully. 

If no numeric columns are detected, check the column metadata to verify 
that the data type of the column is a supported numeric type. 

Tip: 

To ensure that columns of a specific type are provided as input, try using 
the Select Columns in Dataset component before Normalize Data. 

4. Use 0 for constant columns when checked: Select this option when 
any numeric column contains a single unchanging value. This ensures 
that such columns are not used in normalization operations. 
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5. From the Transformation method dropdown list, choose a single 
mathematical function to apply to all selected columns. 

 Zscore: Converts all values to a z-score. 

The values in the column are transformed using the following formula: 

 

Mean and standard deviation are computed for each column separately. 
Population standard deviation is used. 

 MinMax: The min-max normalizer linearly rescales every feature to 
the [0,1] interval. 

Rescaling to the [0,1] interval is done by shifting the values of each 
feature so that the minimal value is 0, and then dividing by the new 
maximal value (which is the difference between the original maximal and 
minimal values). 

The values in the column are transformed using the following formula: 

 

 Logistic: The values in the column are transformed using the 
following formula: 

 

 LogNormal: This option converts all values to a lognormal scale. 

The values in the column are transformed using the following formula: 

 

Here μ and σ are the parameters of the distribution, computed empirically 
from the data as maximum likelihood estimates, for each column 
separately. 

 TanH: All values are converted to a hyperbolic tangent. 

mu
no
tes
.in



 

 77 

Artificial Intelligence & 
Machine Learning Lab 

The values in the column are transformed using the following formula: 

 

6. Submit the pipeline, or double-click the Normalize Data component 
and select Run Selected. 

Data Normalization with Pandas: 

● Pandas: Pandas is an open-source library that’s built on top of 
NumPy library. it is a Python package that provides various data 
structures and operations for manipulating numerical data and 
statistics. It’s mainly popular for importing and analysing data 
much easier. Pandas is fast and it’s high-performance & 
productive for users. 

● Data Normalization: Data Normalization could also be a 
typical practice in machine learning which consists of 
transforming numeric columns to a standard scale. In machine 
learning, some feature values differ from others multiple times. 
The features with higher values will dominate the learning 
process. 

Steps Needed: 

Here, we will apply some techniques to normalize the data and 
discuss these with the help of examples. For this, let’s understand the 
steps needed for data normalization with Pandas. 

1. Import Library (Pandas) 

2. Import / Load / Create data. 

3. Use the technique to normalize the data. 

Examples: 

Here, we create data by some random values and apply some 
normalization techniques to it. 
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# importing packages 
import pandas as pd 
   
# create data 
df = pd.DataFrame([ 
                   [180000, 110, 18.9, 1400],  
                   [360000, 905, 23.4, 1800],  
                   [230000, 230, 14.0, 1300],  
                   [60000, 450, 13.5, 1500]],  
                   columns=['Col A', 'Col B', 
                            'Col C', 'Col D']) 
# view data 
display(df) 

 

Output: 

 
See the plot of this dataframe: 

import matplotlib.pyplot as plt 

df.plot(kind = 'bar') 
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Let’s apply normalization techniques one by one. 

Using The maximum absolute scaling: 

The maximum absolute scaling rescales each feature between -1 and 
1 by dividing every observation by its maximum absolute value. We 
can apply the maximum absolute scaling in Pandas using the .max() 
and .abs() methods, as shown below: 

# copy the data 
df_max_scaled = df.copy() 
   
# apply normalization techniques 
for column in df_max_scaled.columns: 
    df_max_scaled[column] = df_max_scaled[column]  / 
df_max_scaled[column].abs().max() 
       
# view normalized data 
display(df_max_scaled) 

 
Output: 

 

 

mu
no
tes
.in



 

 80 

Features And Extraction 

 
See the plot of this dataframe: 

import matplotlib.pyplot as plt 

df_max_scaled.plot(kind = 'bar') 

 

import matplotlib.pyplot as plt 

df_max_scaled.plot(kind = 'bar') 

 

Output: 

 
Using The min-max feature scaling: 

The min-max approach (often called normalization) rescales the 
feature to a hard and fast range of [0,1] by subtracting the minimum 
value of the feature then dividing by the range. We can apply the 
min-max scaling in Pandas using the .min() and .max() methods. 

# copy the data 

df_min_max_scaled = df.copy() 

# apply normalization techniques 

for column in df_min_max_scaled.columns: 

df_min_max_scaled[column] = (df_min_max_scaled[column] - 
df_min_max_scaled[column].min()) / 
(df_min_max_scaled[column].max() - 
df_min_max_scaled[column].min())     

# view normalized data 

print(df_min_max_scaled) 
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Let’s draw a plot with this dataframe: 

import matplotlib.pyplot as plt 

df_min_max_scaled.plot(kind = 'bar') 

 

 
Using The z-score method: 

The z-score method (often called standardization) transforms the 
info into distribution with a mean of 0 and a typical deviation of 1. 
Each standardized value is computed by subtracting the mean of the 
corresponding feature then dividing by the quality deviation. 

# copy the data 

df_z_scaled = df.copy() 

# apply normalization techniques 

for column in df_z_scaled.columns: 

    df_z_scaled[column] = (df_z_scaled[column] - 
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                            df_z_scaled[column].mean()) / 
df_z_scaled[column].std()     

# view normalized data    

display(df_z_scaled) 

Output: 

 

Let’s draw a plot with this dataframe: 

import matplotlib.pyplot as plt 

df_z_scaled.plot(kind='bar') 

 

 

 

***** 
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6 
TRANSFORMATION 

Unit Structure 
6.1  Introduction 
6.2 Transformers 
6.3 Principle Component Analysis (PCA) 

6.1  INTRODUCTION 

What is AI Transformation?: 

AI transformation is the next step after digital transformation. After a 
company adopts digital processes, the next step is to improve the 
intelligence of those processes. This would increase the level of 
automation as well as the effectiveness of those processes. 

AI transformation touches all aspects of the modern enterprise including 
both commercial and operational activities. Tech giants are integrating AI 
into their processes and products. For example, Google is calling itself 
an “AI-first” organization. Besides tech giants, IDC estimates that at 
least 90% of new organizations will insert AI technology into their 
processes and products by 2025. 

What are the steps to AI transformation?: 

We have listed below a set of the top 6 steps for Fortune 500 firms. 
Smaller firms could skip having in-house teams and strive for less risky 
and less investment heavy approaches such as relying on consultants for 
targeted projects. 

1. Outline your company’s AI strategy: 

An AI strategy should include initiatives which will be uncovered as a 
result of these exercises: 

● Identify your company’s most valuable unique data sources 

● Identify the most important processes which can benefit from 
automation 

● Identify internal resources to drive the AI transformation 

● Set ambitious, time-bound business targets 

 

 

mu
no
tes
.in

https://research.aimultiple.com/ai-is-already-at-the-heart-of-google/
https://www.idc.com/getdoc.jsp?containerId=prUS45613519
https://research.aimultiple.com/ai-consulting/


 

 84 

Transformation 

 

2. Execute pilot projects to gain momentum: 

First few projects should create measurable business value while being 
attainable. This is important for the transformation to gain trust across the 
organization with achieved projects and it creates momentum that will 
lead to AI projects with greater success. 

These projects can rely on AI/ML powered tools in the marketplace or for 
more custom solutions, your company can run a data science 
competition and rely on the wisdom of hundreds of data scientists. These 
competitions use encrypted data and provide a low cost way to find high 
performing data science solutions. 

Implementing process mining is one of those easy-to-achieve and 
impactful projects. With a process mining tool, your business can identify 
existing inefficiencies and automate or improve those processes to achieve 
savings or customer experience improvement. Thus, some process mining 
tools generate a digital twin of an organization (DTO) which provides an 
end-to-end overview of the processes in the company and offers 
simulation capabilities to compare actual and hypothetical scenarios. 

Another easy-to-deploy and impactful project is automating document-
based processes. While digital transformation projects in the 2000s just 
dealt with removing paper from processes, a modern AI/digital 
transformation project would reduce manual labour and automate data 
extraction and processing of document data. 

3. Build an in-house AI transformation team: 

Outsourcing the AI work eases the start of the AI transformation process 
but building an in-house AI transformation team can be more 
advantageous in the long run. If necessary, outsourced partners can help 
train your staff for upcoming projects. 

4. Provide broad AI training: 

Organizations should not expect adequate knowledge about AI 
technologies from their staff. In order to have a successful AI 
transformation, training each employee in accordance with their role can 
be beneficial to achieve objectives. 

● Executives and seniors should have knowledge about what AI can do 
for the enterprise, how to develop an AI strategy and make proper 
resource allocation decisions. 

● Leaders of AI project teams should learn how to set direction for AI 
projects, allocate resources, monitor and track progress. 

● AI engineers should learn how to gather data, train AI models, and 
deliver specific AI projects. 
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5. Develop internal and external communications: 

For the road to success in AI transformation, the organization should 
ensure alignment across the business by improving internal and external 
communication. 

6. Update the company’s AI strategy and continue with AI 
transformation: 

When the team gains momentum from the initial AI projects and forms a 
deeper understanding of AI, the organization will have a better 
understanding of improvement areas where AI can create the most value. 
An updated strategy that considers the company’s track record can set a 
better direction for the company. 

Here are the four types of transformation in more detail: 

Process Transformation: 

A significant focus of corporate activity has been in business processes. 
Data, analytics, APIs, machine learning and other technologies offer 
corporations valuable new ways to reinvent processes throughout the 
corporation—with the goal of lowering costs, reducing cycle times, or 
increasing quality. We see process transformation on the shop floor where 
companies like Airbus have engaged heads-up display glasses to improve 
the quality of human inspection of airplanes. We also see process 
transformations in customer experience, where companies like Domino's 
Pizza have completely re-imagined the food ordering process; Dominos’ 
AnyWare lets customers order from any device. This innovation increased 
customer convenience so much that it helped push the company to 
overtake Pizza Hut in sales. And we see companies implementing 
technologies like robotic process automation to streamline back office 
processes like accounting and legal, for example. Process transformation 
can create significant value and adopting technology in these areas is fast 
becoming table-stakes. Because these transformations tend to be focused 
efforts around specific areas of the business, they are often successfully 
led by a CIO or CDO.    

Business Model Transformation: 

Some companies are pursuing digital technologies to transform traditional 
business models. Whereas process transformation focuses on finite areas 
of the business, business model transformations are aimed at the 
fundamental building blocks of how value is delivered in the industry. 
Examples of this kind of innovation are well-known, from Netflix' 
reinvention of video distribution, to Apple's reinvention of music delivery 
(I-Tunes), to Uber's reinvention of the taxi industry. But this kind of 
transformation is occurring elsewhere. Insurance companies like Allstate 
and Metromile are using data and analytics to un-bundle insurance 
contracts and charge customers by-the-mile—a wholesale change to the 
auto insurance business model.  And, though not yet a reality, there are 
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numerous efforts underway to transform the business of mining to a 
wholly robotic exercise, where no humans travel below the surface.  

The complex and strategic nature of these opportunities require 
involvement and leadership by Strategy and/or Business Units and they 
are often launched as separate initiatives while continuing to operate the 
traditional business. By changing the fundamental building blocks of 
value, corporations that achieve business model transformation open 
significant new opportunities for growth. More companies should pursue 
this path.     

Domain Transformation: 

An area where we see surprisingly little focus—but enormous 
opportunity—is the area of domain transformation. New technologies are 
redefining products and services, blurring industry boundaries and 
creating entirely new sets of non-traditional competitors. What many 
executives don’t appreciate is the very real opportunity for these new 
technologies to unlock wholly new businesses for their companies beyond 
currently served markets. And often, it is this type of transformation is that 
offers the greatest opportunities to create new value.  

A clear example how domain transformation works may be the online 
retailer, Amazon. Amazon expanded into a new market domain with the 
launch of Amazon Web Services (AWS), now the largest cloud 
computing/infrastructure service, in a domain formerly owned by the IT 
giants like Microsoft and IBM. What made Amazon’s entry into this 
domain possible was a combination of the strong digital capabilities it had 
built in storage, computing databases to support its core retail business 
coupled with an installed base of thousands of relationships with young, 
growing companies that increasingly needed computing services to 
grow.  AWS is not a mere adjacency or business extension for Amazon, 
but a wholly different business in a fundamentally different market space. 
The AWS business now represents nearly 60% % of Amazon’s annual 
profit.   

It may be tempting for Executives of non-tech businesses to view the 
experience of Amazon or other digitally-native companies (such as Apple 
or Google that have also expanded into new domains) as special; their 
ability to acquire and leverage technology may be greater than other 
companies. But in today’s digital world, technology gaps are no longer a 
barrier. Any company can access and acquire the new technologies needed 
to unlock new growth—and do so cheaply and efficiently. The building 
block technologies that are unlocking new business domains (artificial 
intelligence, machine learning, internet of things (IOT), augmented reality, 
etc.) can be sourced today not only from the traditional IT supply-base like 
Microsoft or IBM but also from a growing startup ecosystem, where we 
see the greatest innovation taking place. Corporations that know how to 
reach and leverage this innovation efficiently, particularly from new 
sources, are reaping the benefits of new growth.  
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We see (and have helped) numerous industrial companies that have 
undergone domain transformations. ThyssenKrupp, a diversified industrial 
engineering company, broadened its offerings to introduce a lucrative new 
digital business alongside its traditional business. The company leveraged 
a strong industrial market position and Internet of Things (IOT) 
capabilities to help clients manage the maintenance of elevators with asset 
health and predictive maintenance offerings—creating a significant new 
source of revenue beyond the core. In another example, a major equipment 
manufacturer is moving beyond its core machine offerings to introduce a 
digital platform of solutions for its client sites: job-site activity 
coordination, remote equipment tracking, situational awareness, and 
supply chain optimization. The company is moving to become no longer 
merely a heavy equipment provider, but also a digital solutions company.   

The lesson is to recognize the new domain opportunities afforded by new 
technologies and understand they can be captured—even by traditional 
incumbents.  Because these opportunities involve re-defining business 
boundaries, pursuing these opportunities often involves Strategy and the 
CEO.  

Cultural/Organizational Transformation: 

Full, long-term digital transformation requires redefining organizational 
mindsets, processes, and talent & capabilities for the digital world. Best-
in-class corporations recognize digital requires agile workflows, a bias 
toward testing and learning, decentralized decision-making, and a greater 
reliance on business ecosystems. And they take active steps to bring 
change to their organizations. Experian, the consumer credit agency and 
one of the most successful digital transformations, changed its 
organization by embedding agile development and collaboration into its 
workflows and by driving a fundamental shift in employee focus from 
equipment to data, company-wide. Similarly, Pitney Bowes, the 100-year 
old postage equipment company, made the successful transition to become 
a “technology company” by promoting a “culture of innovation,” 
according to its head of innovation, and by shifting company values to 
focus on customer-centricity.   

But neither of these companies focused initially on organization and 
culture--being digital isn’t the same as creating value from digital. Instead, 
these companies pulled innovation skills, digital mindsets and agility into 
the corporation on the back of concrete initiatives to drive 
growth. Experian recognized the importance of beginning with a 
lighthouse digital project to create internal APIs. It forced teams to adopt 
digital workflow practices but in doing so demonstrated the power of 
digital to change old organizational norms. Similarly, Pitney Bowes CEO 
Mark Lautenbach began its transformation with a primary focus on 
customer-facing offerings, developing new commerce cloud to allow 
customers to better manage and pay for shipments. “As you’re thinking 
about transforming a company… try to realize those cores, those gems that 
you have that you can pivot off of to create that next chapter,” he told 
Fortune. Progress on business initiatives dragged organizational change 
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like agile development and innovation along. Cultural/organizational 
change is a long-term requirement of success, but best in class companies 
regard the building of these capabilities as a product of, rather than a 
prerequisite for, business transformation initiatives.  

As technology change increases, industries will continue to be forced to 
change. Corporations that regard and pursue digital transformation in a 
multi-dimensional way will find greater success than those that don’t.   

6.2 TRANSFORMERS 

 

Transformers can be understood in terms of their three components: 

1. An Encoder that encodes an input sequence into state representation 
vectors. 

2. An Attention mechanism that enables our Transformer model to focus 
on the right aspects of the sequential input stream. This is used 
repeatedly within both the encoder and the decoder to help them 
contextualize the input data. 

3. A Decoder that decodes the state representation vector to generate the 
target output sequence. 
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Understanding the Training Data: 

Sample data Point: “write a function that adds two numbers”: 

Python Code: 

def add_two_numbers (num1 ,num2 ): 
    sum = num1 + num2  
               return sum 

Tokenizing the Data: 

Our Input(SRC) and Output(TRG) sequence exist in the form of single 
strings that need to be further tokenized in order to be sent into the 
transformer model. 

To tokenize the Input sequence we make use of spacy.  

Input = data.Field(tokenize = 'spacy', 

            init_token='<sos>',  

            eos_token='<eos>',  

            lower=True) 

 
To tokenize our Output sequence we make use of our custom tokenizer 
built upon Python’s source code tokenizer. Python’s tokenizer returns 
several attributes for each token. We only extract the token type and the 
corresponding string attribute in form of a tuple(i.e., (token_type_int, 
token_string)) as the final token. 

Tokenized Input: 

SRC = [' ', 'write', 'a', 'python', 'function', 'to', 'add', 'two', 'user', 'provided', 

 'numbers', 'and', 'return', 'the', 'sum'] 

 
Tokenized Output: 

TRG = [(57, 'utf-8'), (1, 'def'), (1, 'add_two_numbers'), (53, '('), (1, 'num1'),  

(53, ','), (1, 'num2'), (53, ')'), (53, ':'), (4, '\n'), (5, '    '), (1, 'sum'), (53, '='),  

(1, 'num1'), (53, '+'), (1, 'num2'), (4, '\n'), (1, 'return'), (1, 'sum'), (4, ''), (6, 
''), (0, '')] 

Data Augmentations: 

While tokenizing the python code, we mask the names of certain variables 
randomly(with ‘var_1, ‘var_2’ etc) to ensure that the model that we train 
does not merely fixate on the way the variables are named and actually 
tries to understand the inherent logic and syntax of the python code. 
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For example, consider the following program. 

def add_two_numbers (num1 ,num2 ): 

    sum = num1 + num2  

               return sum 

We can replace some of the above variables to create new data points. The 
following are valid augmentations. 

1. 

def add_two_numbers (var_1 ,num2 ): 
    sum = var_1 + num2  
               return sum 

2. 

def add_two_numbers (num1 ,var_1 ): 
   sum = num1 + var_1  
              return sum  

3. 

def add_two_numbers (var_1 ,var_2 ): 
    sum = var_1 + var_2  
               return sum 

 
In the above example, we have therefore expanded a single data point into 
3 more data points using our random variable replacement technique. 

We implement our augmentations at the time of generating our tokens. 

While randomly picking variables to mask we avoid keyword 
literals(keyword.kwlist), control structures(as can be seen in 
below skip_list), and object properties. We add all such literals that need 
to be skipped into the skip_list. 

We now apply our augmentations and tokenization using 
Pytorch’s torchtext.data.Field. 

Output = data.Field(tokenize = augment_tokenize_python_code, 
                    init_token='<sos>',  
                    eos_token='<eos>',  
                    lower=False) 

 
Our tokenized Output after applying tokenization: 

TRG = [(57, 'utf-8'), (1, 'def'), (1, 'add_two_numbers'), (53, '('), (1, 'num1'), 
(53, ','), (1, 'var_1'), (53, ')'), (53, ':'), (4, '\n'), (5, '    '), (1, 'sum'), (53, '='), 
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(1, 'num1'), (53, '+'), (1, 'var_1'), (4, '\n'), (1, 'return'), (1, 'sum'), (4, ''), (6, 
''), (0, '')] 

Feeding Data: 

To feed data into our model we first create batches. The tokenized 
predictions are then untokenized via the untokenize function of Python’s 
source code tokenizer.    

 

Loss Function: 

We have used augmentations in our dataset to mask variable literals. This 
means that our model can predict a variety of values for a particular 
variable and all of them are correct as long as the predictions are 
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consistent through the code. This would mean that our training labels are 
not very certain and hence it would make more sense to treat them to be 
correct with probability 1- smooth_eps and incorrect otherwise. This is 
what label smoothening does. By adding label smoothening to Cross-
Entropy we ensure that the model does not become too confident in 
predicting some of our variables that can be replaced via augmentations. 

 

Now with all our components set we can train our model using 
backpropagation. We split our dataset into training and validation data. 
Our model is trained until our validation loss does not improve any 
further. 

It is important to note that label smoothening leads to much higher loss 
values as compared to models that do not make use of label smoothening. 
But this is as expected as we do not intend to be certain with our label 
predictions. This is particularly the case with variables as there can be 
multiple correct options as long as the predictions are consistent through 
the target code sequence. 

Sample Results: 

Input: “program to sort a list of dictionaries by key” 
Output: 

var_1 ={'Nikhil':{'roll':24 ,'marks':17 }, 
'Akshat':{'roll':54 ,'marks':12 }, 
'Akash':{'roll':15 },'marks':15 }} 
sort_key ='marks' 
res ='marks' 
res =var_2 (test_dict .items (),key =lambda x :x [1 ][sort_key ]) 
print ("The sorted dictionary by marks is : "+str (res )) 

 
Input: “function to sum odd elements of list” 
 
Output: 

def sum_odd_elements (l :list ): 
    return sum ([i for i in l if i %2 = =1 ]) 

 
Input: “program to reverse a string” 
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Output: 

var_1 = 'Today is bad day' 
var_1 [::-1 ] 

6.3 PRINCIPLE COMPONENTS ANALYSIS (PCA): 

Principal Component Analysis is an unsupervised learning algorithm that 
is used for the dimensionality reduction in machine learning. It is a 
statistical process that converts the observations of correlated features into 
a set of linearly uncorrelated features with the help of orthogonal 
transformation. These new transformed features are called the Principal 
Components. It is one of the popular tools that is used for exploratory 
data analysis and predictive modelling. It is a technique to draw strong 
patterns from the given dataset by reducing the variances. 

PCA generally tries to find the lower-dimensional surface to project the 
high-dimensional data. 

PCA works by considering the variance of each attribute because the high 
attribute shows the good split between the classes, and hence it reduces the 
dimensionality. Some real-world applications of PCA are image 
processing, movie recommendation system, optimizing the power 
allocation in various communication channels. It is a feature extraction 
technique, so it contains the important variables and drops the least 
important variable. 

The PCA algorithm is based on some mathematical concepts such as: 

 Variance and Covariance 

 Eigenvalues and Eigen factors 

Some common terms used in PCA algorithm: 

 Dimensionality: It is the number of features or variables present in 
the given dataset. More easily, it is the number of columns present in 
the dataset. 

 Correlation: It signifies that how strongly two variables are related to 
each other. Such as if one changes, the other variable also gets 
changed. The correlation value ranges from -1 to +1. Here, -1 occurs 
if variables are inversely proportional to each other, and +1 indicates 
that variables are directly proportional to each other. 

 Orthogonal: It defines that variables are not correlated to each other, 
and hence the correlation between the pair of variables is zero. 

 Eigenvectors: If there is a square matrix M, and a non-zero vector v 
is given. Then v will be eigenvector if Av is the scalar multiple of v. 

 Covariance Matrix: A matrix containing the covariance between the 
pair of variables is called the Covariance Matrix. 
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Principal Components in PCA: 

As described above, the transformed new features or the output of PCA 
are the Principal Components. The number of these PCs are either equal to 
or less than the original features present in the dataset. Some properties of 
these principal components are given below: 

 The principal component must be the linear combination of the 
original features. 

 These components are orthogonal, i.e., the correlation between a pair 
of variables is zero. 

 The importance of each component decreases when going to 1 to n, it 
means the 1 PC has the most importance, and n PC will have the least 
importance. 

Steps for PCA Algorithm: 

1. Getting the dataset: Firstly, we need to take the input dataset and 
divide it into two subparts X and Y, where X is the training set, and Y 
is the validation set. 

2. Representing data into a structure: Now we will represent our 
dataset into a structure. Such as we will represent the two-dimensional 
matrix of independent variable X. Here each row corresponds to the 
data items, and the column corresponds to the Features. The number 
of columns is the dimensions of the dataset. 

3. Standardizing the data: In this step, we will standardize our dataset. 
Such as in a particular column, the features with high variance are 
more important compared to the features with lower variance. 
If the importance of features is independent of the variance of the 
feature, then we will divide each data item in a column with the 
standard deviation of the column. Here we will name the matrix as Z. 

4. Calculating the Covariance of Z: To calculate the covariance of Z, 
we will take the matrix Z, and will transpose it. After transpose, we 
will multiply it by Z. The output matrix will be the Covariance matrix 
of Z. 

5. Calculating the Eigen Values and Eigen Vectors: Now we need to 
calculate the eigenvalues and eigenvectors for the resultant covariance 
matrix Z. Eigenvectors or the covariance matrix are the directions of 
the axes with high information. And the coefficients of these 
eigenvectors are defined as the eigenvalues. 

6. Sorting the Eigen Vectors: In this step, we will take all the 
eigenvalues and will sort them in decreasing order, which means from 
largest to smallest. And simultaneously sort the eigenvectors 
accordingly in matrix P of eigenvalues. The resultant matrix will be 
named as P*. 
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7. Calculating the new features Or Principal Components: Here we 
will calculate the new features. To do this, we will multiply the P* 
matrix to the Z. In the resultant matrix Z*, each observation is the 
linear combination of original features. Each column of the Z* matrix 
is independent of each other. 

8. Remove less or unimportant features from the new dataset: The 
new feature set has occurred, so we will decide here what to keep and 
what to remove. It means, we will only keep the relevant or important 
features in the new dataset, and unimportant features will be removed 
out. 

Applications of Principal Component Analysis: 

 PCA is mainly used as the dimensionality reduction technique in 
various AI applications such as computer vision, image 
compression, etc. 

 It can also be used for finding hidden patterns if data has high 
dimensions. Some fields where PCA is used are Finance, data mining, 
Psychology, etc. 

We can use principal component analysis (PCA) for the following 
purposes: 

● To reduce the number of dimensions in the dataset. 

● To find patterns in the high-dimensional dataset 

● To visualize the data of high dimensionality 

● To ignore noise 

● To improve classification 

● To gets a compact description 

● To captures as much of the original variance in the data as possible 

In summary, we can define principal component analysis (PCA) as the 
transformation of any high number of variables into a smaller number of 
uncorrelated variables called principal components (PCs), developed to 
capture as much of the data’s variance as possible. 

PCA was invented in 1901 by Karl Pearson and Harold Hotelling as an 
analog of the Principal axis theorem [1] [2] [3]. 

Mathematically the main objective of PCA is to: 

● Find an orthonormal basis for the data. 

● Sort dimensions in the order of importance. 

● Discard the low significance dimensions. 
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● Focus on uncorrelated and Gaussian components. 

Steps involved in PCA: 

● Standardize the PCA. 

● Calculate the covariance matrix. 

● Find the eigenvalues and eigenvectors for the covariance matrix. 

● Plot the vectors on the scaled data. 

Example of a problem where PCA is required: 

There are 100 students in a class with m different features like grade, age, 
height, weight, hair color, and others. 

Most of the features may not be relevant that describe the student. 
Therefore, it is vital to find the critical features that characterize a student. 

Some analysis based on the observation of different features of a student: 

● Every student has a vector of data that defines him the length of m. 
e.g. (height, weight, hair_color, grade,….) or (181, 68, black, 99, ….). 

● Each column is one student vector. So, n = 100. 

● It creates an m*n matrix. 

● Each student lies in an m-dimensional vector space. 

Features to Ignore: 

● Collinear features or linearly dependent features. e.g., leg size and 
height. 

● Noisy features that are constant. e.g., the thickness of hair 

● Constant features. e.g., Number of teeth. 

Features to Keep: 

● Non-collinear features or low covariance. 

● Features that change a lot, high variance. e.g., grade. 

Math Behind PCA: 

It is essential to understand the mathematics involved before kickstarting 
PCA. Eigenvalues and eigenvector play important roles in PCA. 

Eigenvectors and eigenvalues: 

The eigenvectors and eigenvalues of a covariance matrix (or correlation) 
describe the source of the PCA. Eigenvectors (main components) 
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determine the direction of the new attribute space, and eigenvalues 
determine its magnitude. 

The PCA’s main objective is to reduce the data’s dimensionality by 
projecting it into a smaller subspace, where the eigenvectors form the 
axes. However, the eigenvectors define only the new axes’ directions 
because they all have a size of 1. Consequently, to decide which 
eigenvector(s), we can discard without losing much information in the 
subspace construction and checking the corresponding eigenvalues. The 
eigenvectors with the highest values are the ones that include more 
information about the distribution of our data. 

Covariance Matrix: 

The classic PCA approach calculates the covariance matrix, where each 
element represents the covariance between two attributes. The covariance 
between two attributes is calculated as shown below: 

 

Figure 10: The equation to calculate the covariance between two 
attributes. 

Create a matrix: 

import pandas as pd 
import numpy as npmatrix = np.array([[0, 3, 4], [1, 2, 4], [3, 4, 5]])  
matrix 

 
Figure 11: Matrix. 

Convert matrix to covariance matrix: 

np.cov(matrix) 

 

Figure 12: Covariance matrix. 

An exciting feature of the covariance matrix is that the sum of the matrix’s 
main diagonal is equal to the eigenvalues’ sum. 

Correlation Matrix: 

Another way to calculate eigenvalues and eigenvectors is by using the 
correlation matrix. Although the matrices are different, they will result in 
the same eigenvalues and eigenvectors (shown later) since the covariance 
matrix's normalization gives the correlation matrix. 
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Figure 13: Equation of the correlation matrix. 

Create a matrix: 

matrix_a = np.array([[0.1, .32, .2,  0.4, 0.8],  
             [.23, .18, .56, .61, .12],  
             [.9,   .3,  .6,  .5,  .3],   
             [.34, .75, .91, .19, .21]]) 

Convert to correlation matrix: 

np.corrcoef(matrix_a.T) 

 

Figure 14: Correlation matrix: 

How does PCA work?: 

 

Figure 15: Working with PCA [5]. 

The orthogonal projection of data from high dimensions to lower 
dimensions such that (from figure 15): 

● Maximizes the variance of the projected line (purple) 

● Minimizes the MSE between the data points and projections (blue) 

Applications of PCA: 

These are the typical applications of PCA: 

● Data Visualization. 

● Data Compression. 
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● Noise Reduction. 

● Data Classification. 

● Image Compression. 

● Face Recognition. 

Implementation of PCA With Python: 

Implementation of principal component analysis (PCA) on the Iris dataset 
with Python: 

Load Iris dataset: 

import pandas as pd 
import numpy as np 
from sklearn.datasets import load_iris 
from sklearn.preprocessing import StandardScaleriris = load_iris() 
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)df['class'] 
= iris.target 
df 

 

Figure 16: Iris dataset. 

Get the value of x and y: 

x = df.drop(labels='class', axis=1).values 
y = df['class'].values 

Implementation of PCA with a covariance Matrix: 

class convers_pca(): 
    def __init__(self, no_of_components): 
        self.no_of_components = no_of_components 
        self.eigen_values = None 
        self.eigen_vectors = None 
         
    def transform(self, x): 
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        return np.dot(x - self.mean, self.projection_matrix.T) 
     
    def inverse_transform(self, x): 
        return np.dot(x, self.projection_matrix) + self.mean 
     
    def fit(self, x): 
        self.no_of_components = x.shape[1] if self.no_of_components is 
None else self.no_of_components 

        self.mean = np.mean(x, axis=0) 
         
        cov_matrix = np.cov(x - self.mean, rowvar=False) 
         
        self.eigen_values, self.eigen_vectors = np.linalg.eig(cov_matrix) 
        self.eigen_vectors = self.eigen_vectors.T 
         
        self.sorted_components = np.argsort(self.eigen_values)[::-1] 
         
        self.projection_matrix = 
self.eigen_vectors[self.sorted_components[:self.no_of_components]]self.e
xplained_variance = self.eigen_values[self.sorted_components] 

        self.explained_variance_ratio = self.explained_variance / 
self.eigen_values.sum() 

Standardization of x: 

std = StandardScaler() 
transformed = StandardScaler().fit_transform(x) 

PCA with two components: 

pca = convers_pca(no_of_components=2) 
pca.fit(transformed) 

Check eigenvectors: 

cov_pca.eigen_vectors 

Check eigenvalues: 

cov_pca.eigen_values 

Check sorted component: 

cov_pca.sorted_components 

Plot PCA with several components = 2: 

x_std = pca.transform(transformed)plt.figure() 
plt.scatter(x_std[:, 0], x_std[:, 1], c=y) 
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                                        Figure 17: PCA visualization. 
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UNIT V 

7 
UNSUPERVISED LEARNING 

K-MEANS CLUSTERING ALGORITHM 
Unit Structure 
7.0  Objectives 
7.1  Introduction  
7.2  Definition  
7.3  Basic Algorithms 
      7.3.1 K-Means clustering 

7.3.2 Practical advantages 
7.4  Stages  
7.5  Pseudo-code 
7.6  The K-Means Algorithm Fits within the Framework of Cover’s 

Theorem 
7.7  Partitioning Clustering Approach 
7.8  The K-means algorithm: a heuristic method 

7.8.1 How K-means partitions? 
7.8.2 K-means Demo 
7.8.3 Application 

       7.8.4 Relevant issues of K-Means algorithm  
7.9  Lets Sum up 
7.10 Unit End Exercises  
7.11 References 

7.0 OBJECTIVES 

This Chapter would make you understand the following concepts: 

 What is K-Means clustering algorithm 

 Definition of  K-Means clustering algorithm 

 Basics of K-Means clustering 

 Practical advantages of  K-Means clustering algorithm 

 Stages of  K-Means clustering algorithm 

 Pseudo code of  K-Means clustering algorithm 

 The K-Means Algorithm Fits within the Framework of Cover’s 
Theorem 
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 The K-means algorithm: a heuristic method 

 How K-means partitions? 

 K-means Demo 

 Application of K-Means algorithm 

 Relevant issues of K-Means algorithm  

7.1 INTRODUCTION – K-MEANS CLUSTERING 
ALGORITHM 

K-Means Clustering is an unsupervised learning algorithm that is used to 
solve the clustering problems in machine learning or data science. 

7.2 DEFINITION: K-MEANS CLUSTERING 
ALGORITHM 

A prototypical unsupervised learning algorithm is K-means, which is 
clustering algorithm. Given X = {x1,...,xm} the goal of K-means is to 
partition it into k clusters such that each point in a cluster is similar to 
points from its own cluster than with points from some other cluster 

7.3 BASIC ALGORITHMS 

Towards this end, define prototype vectors µ1,...,µk and an indicator vector 
rij which is 1 if, and only if, xi is assigned to cluster j. To cluster our 
dataset we will minimize the following distortion measure, which 
minimizes the distance of each point from the prototype vector: 

 

            where r = { }, µ = {µj}, and   denotes the usual Euclidean 
square norm. 

7.3.1 K-Means clustering: 

The computation is to be performed in an unsupervised manner. In this 
section, we describe a solution to this problem that is rooted in clustering, 
by which we mean the following:  

Clustering is a form of unsupervised learning whereby a set of 
observations (i.e., data points) is partitioned into natural groupings or 
clusters of patterns in such a way that the measure of similarity between 
any pair of observations assigned to each cluster minimizes a specified 
cost function.  
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We have chosen to focus on the so-called K-means algorithm, because it is 
simple to implement, yet effective in performance, two features that have 
made it highly popular. 

Let {Xi }N
i=1 denote a set of multidimensional observations that is to be 

partitioned into a proposed set of K clusters, where K is smaller than the 
number of observations, N. Let the relationship. 

j = C(i),  i = 1, 2, ..., N 

denote a many-to-one mapper, called the encoder, which assigns the ith 
observation xi to the jth cluster according to a rule yet to be defined. To do 
this encoding, we need a measure of similarity between every pair of 
vectors xi and xi’ which is denoted by d(xi, xi’ ).When the measure d(xi, 
xi’) is small enough, both xi and xi’ are assigned to the same cluster; 
otherwise, they are assigned to different clusters. 

To optimize the clustering process, we introduce the following cost 
function (Hastie et al.,2001): 

 

For a prescribed K, the requirement is to find the encoder C(i)=jfor which 
the cost function J(C) is minimized. At this point in the discussion, we 
note that the encoder C is unknown—hence the functional dependence of 
the cost function J on C. 

In K-means clustering, the squared Euclidean norm is used to define the 
measure of similarity between the observations xi and xi’ as shown by 

 

 Hence, 

 

We now make two points:  

1.  The squared Euclidean distance between the observations xi and xi’ is 
symmetric; that is, 

=  

2.  The inner summation reads as follows: For a given , the encoder C 
assigns to cluster j all the observations that are closest to xi. Except 
for a scaling factor, the sum of the observations so assigned is an 
estimate of the mean vector pertaining to cluster j; the scaling factor 
in question is 1/Nj, where Nj is the number of data points within 
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cluster j. On account of these two points, we may therefore reduce to 
the simplified form 

 

where denotes the “estimated” mean vector associated with cluster j4 .In 
effect, the mean may be viewed as the center of cluster j. In light of we 
may now restate the clustering problem as follows: 

Given a set of N observations, find the encoder C that assigns these 
observations to the K clusters in such a way that, within each cluster, the 
average measure of dissimilarity of the assigned observations from the 
cluster mean is minimized. 

Indeed, it is because of the essence of this statement that the clustering 
technique described herein is commonly known as the K-means algorithm.  

For an interpretation of the cost function J(C) we may say that, except for 
a scaling factor 1/Nj, the inner summation in this equation is an estimate 
of the variance of the observations associated with cluster j for a given 
encoder C, as shown by 

 
Accordingly, we may view the cost function J(C) as a measure of the total 
cluster variance resulting from the assignments of all the N observations to 
the K clusters that are made by encoder C. 

With encoder C being unknown, how do we minimize the cost function 
J(C) To address this key question, we use an iterative descent algorithm, 
each iteration of which involves a two-step optimization. The first step 
uses the nearest neighbor rule to minimize the cost function J(C) of with 
respect to the mean vector for a given encoder C. The second step 
minimizes the inner summation with respect to the encoder C for a given 
mean vector .This two-step iterative procedure is continued until 
convergence is attained. 

Thus, in mathematical terms, the K-means algorithm proceeds in two 
steps:  

Step 1: For a given encoder C, the total cluster variance is minimized with 
respect to the assigned set of cluster means ; that is, we perform, the 
following minimization: 

 for a given C 

Step 2: Having computed the optimized cluster means in step 1,we next 
optimize the encoder as follows 
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Starting from some initial choice of the encoder C, the algorithm goes 
back and forth between these two steps until there is no further change in 
the cluster assignments.  

Each of these two steps is designed to reduce the cost function J(C) in its 
own way; hence, convergence of the algorithm is assured. However, 
because the algorithm lacks a global optimality criterion, the result may 
converge to a local minimum, resulting in a suboptimal solution to the 
clustering assignment. 

7.3.2 Practical advantages: 

Nevertheless, the algorithm has |Practical advantages: 

1. The K-means algorithm is computationally efficient, in that its 
complexity is linear in the number of clusters.  

2.  When the clusters are compactly distributed in data space, they are 
faithfully recovered by the algorithm. 

One last comment is in order: To initialize the K-means algorithm, the 
recommended procedure is to start the algorithm with many different 
random choices for the means for the proposed size K and then choose the 
particular set for which the double summation in assumes the smallest 
value  

7.4 STAGES OF K-MEANS CLUSTERING ALGORITHM 

Our goal is to find r and µ, but since it is not easy to jointly minimize J 
with respect to both r and µ, we will adapt a two stage strategy: 

Stage 1:  

              Keep the µ fixed and determine r.  

In this case, it is easy to see that the minimization decomposes into m 
independent problems. The solution for the i-th data point xi can be found 
by setting: 

, 

and 0 otherwise.  

Stage 2:  

Keep the r fixed and determine µ. Since the r’s are fixed, J is an quadratic        
function of µ. It can be minimized by setting the derivative with respect to 
µj to be 0. 
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Rearranging obtains  

Since  counts the number of points assigned to cluster j, we are 
essentially setting µj to be the sample mean of the points assigned to 
cluster j. 

7.5 PSEUDO-CODE 

Detailed pseudo-code can be found in K-Means Algorithms: 

Cluster(X) {Cluster dataset X} 

 Initialize cluster centers µj for j = 1,...,k randomly 

Repeat  

for i = 1 to m do  

Compute j’ = arg   minj=1,...,k d(xi,µj)  

Set rij’ = 1 and rij = 0 for all j’= j  

end for 

 for j = 1 to k do  

Compute µj =  

end for  

until Cluster assignments rij are unchanged  

return {µ1,...,µk} and rij 

The algorithm stops when the cluster assignments do not change 
significantly.  

7.6 THE K-MEANS ALGORITHM FITS WITHIN THE 
FRAMEWORK OF COVER’S THEOREM 

The K-means algorithm applies a nonlinear transformation to the input 
signal x. We say so because the measure of dissimilarity—namely, the 
squared Euclidean distance ,on which it is based—is a nonlinear function 
of the input signal x for a given cluster center xj. Furthermore, with each 
cluster discovered by the K-means algorithm defining a particular 
computational unit in the hidden layer, it follows that if the number of 
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k 

clusters, K, is large enough, the K-means algorithm will satisfy the other 
requirement of Cover’s theorem—that is, that the dimensionality of the 
hidden layer is high enough. We therefore conclude that the K-means 
algorithm is indeed computationally powerful enough to transform a set of 
nonlinearly separable patterns into separable ones in accordance with this 
theorem. Now that this objective has been satisfied, we are ready to 
consider designing the linear output layer of the RBF network. 

7.7 PARTITIONING CLUSTERING APPROACH 

 a typical clustering analysis approach via iteratively partitioning 
training data set to learn a partition of the given data space 

 learning a partition on a data set to produce several non-empty 
clusters (usually, the number of clusters given in advance) 

 in principle, optimal partition achieved via ptimizeg the sum of 

squared distance to its “representative object” in each cluster 

 
e.g., Euclidean distance  d 2 (x,m )= ∑

Ν(xn−mkn )2 

                                                             n=1 

● Given a K, find a partition of K clusters to ptimize the chosen 
partitioning criterion (cost function) 

● global optimum: exhaustively search all partitions 

7.8 THE K-MEANS ALGORITHM: A HEURISTIC 
METHOD 

● K-means algorithm (MacQueen’67): each cluster is represented by the 
centre of the cluster and the algorithm converges to stable centriods of 
clusters. 

● K-means algorithm is the simplest partitioning method for clustering 
analysis and widely used in data mining applications. 

Given the cluster number K, the K-means algorithm is carried out in three 
steps after initialisation: 

Initialisation: set seed points (randomly) 

1. Assign each object to the cluster of the nearest seed point measured 
with a specific distance metric 

2 

 E  K

  

k 
1 

x C

k 

d 2 (x,m ) k 
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2. Compute new seed points as the centroids of the clusters of the 
current partition (the centroid is the centre, i.e., mean point, of the 
cluster) 

3. Go back to Step 1), stop when no more new assignment (i.e., 
membership in each cluster no longer changes) 

7.8.1 How K-means partitions?: 

When K centroids are set/fixed, they partition the whole data space into K 
mutually exclusive subspaces to form a partition. 

A partition amounts to a Voronoi Diagram -Changing positions of 
centroids leads to a new partitioning. 

 
 

7.8.2 K-means Demo: 

 

 

K-means 
Demo 
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7.8.3 Application: 

Colour-Based Image Segmentation Using K-means 

Step 1: Loading a colour image of tissue stained with hemotoxylin and 
eosin (H&E) 

 
 

Colour-Based Image Segmentation Using K-means 

Step 2: Convert the image from RGB colour space to L*a*b* colour space 

● Unlike the RGB colour model, L*a*b* colour is designed to 
approximate human vision. 

● There is a complicated transformation between RGB and L*a*b*. 

(L*, a*, b*) = T(R, G, B). 

(R, G, B) = T’(L*, a*, b*). 

Colour-Based Image Segmentation Using K-means: 

Step 3: Undertake clustering analysis in the (a*, b*) colour space with the 
K-means algorithm 

● In the L*a*b* colour space, each pixel has a properties or feature 
vector:(L*, a*, b*). 

● Like feature selection, L* feature is discarded. As a result, each pixel 
has a feature vector (a*, b*). 

● Applying the K-means algorithm to the image in the a*b* feature space 
where K = 3 by applying the domain knowledge. 

Colour-Based Image Segmentation Using K-means: 

Step 4: Label every pixel in the image using the results from 

K-means clustering (indicated by three different grey levels) 
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Colour-Based Image Segmentation Using K-means: 

Step 5: Create Images that Segment the H&E Image by Colour 

• Apply the label and the colour information of each pixel to achieve 
separate colour images corresponding to three clusters. 

“blue” pixels “white” pixels 

  
“pink” pixels 

 
 

Colour-Based Image Segmentation Using K-means: 

Step 6: Segment the nuclei into a separate image with the L* feature 

• In cluster 1, there are dark and light blue objects (pixels). The dark blue 
objects (pixels) correspond to nuclei (with the domain knowledge). 

mu
no
tes
.in

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html


 

 112 

Unsupervised Learning 
K-Means Clustering 

Algorithm 

 
 

• L* feature specifies the brightness values of each colour. 

• With a threshold for L*, we achieve an image containing the nuclei 
only. 

 
 

7.8.4 Relevant issues of K-Means algorithm 

Computational complexity 

● O(tKn), where n is number of objects, Kis number of clusters, and tis 
number of iterations. Normally, K, t << n. 

Local optimum 

● sensitive to initial seed points 

● converge to a local optimum: maybe an unwanted solution 

Other problems 

● Need to specify K, the number of clusters, in advance 

● Unable to handle noisy data and outliers (K-Medoids algorithm) 

● Not suitable for discovering clusters with non-convex shapes 

 the K-mean performance? 

Two issues with K-Means are worth noting.  

First, it is sensitive to the choice of the initial cluster centers µ. A number 
of practical heuristics have been developed. For instance, one could 
randomly choose k points from the given dataset as cluster centers. Other 
methods try to pick k points from X which are farthest away from each 
other. 

Second, it makes a hard assignment of every point to a cluster center. 
Variants which we will encounter later in the book will relax this. Instead 
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of letting rij ∈ {0,1} these soft variants will replace it with the probability 
that a given xi belongs to cluster j.  

The K-Means algorithm concludes our discussion of a set of basic 
machine learning methods for classification and regression. They provide 
a useful starting point for an aspiring machine learning researcher.  

7.9 LET’S SUM UP 

We will have a clear idea about Definition , Basic Algorithms, Stages  and 
Pseudo code of  K-Means clustering algorithm. 

7.10 UNIT END EXERCISES 

 Take a Data set available and execute on different inputs of K-Means 
clustering algorithm. 

7.11 REFERENCES 

 https://www.javatpoint.com/k-means-clustering-algorithm-in-
machine-learning 

 https://towardsdatascience.com/k-means-clustering-algorithm-
applications-evaluation-methods-and-drawbacks-aa03e644b48a 

 https://www.analyticsvidhya.com/blog/2021/11/understanding-k-
means-clustering-in-machine-learningwith-examples/ 

 https://www.geeksforgeeks.org/k-means-clustering-introduction/ 

 https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-
means-clustering-algorithm 
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K- MEDOID CLUSTERING ALGORITHM 
Unit Structure 
8.0  Objectives 
8.1  Definition –  K-Medoid  clustering algorithm 
8.2  Introduction - K-Medoid  clustering algorithm 
8.3  K-Means & K-Medoids Clustering- Outliers Comparison 

8.4  K-Medoids - Basic Algorithm 
8.5  K-Medoids - Pam Algorithm 

8.5.1 Typical Pam Example.8.6 Advantages And Disadvantages Of 
Pam 

8.7  CLARA – Clustering Large Applications 
8.7.1 CLARA Algorithm 

8.8  Comparison CLARA Vs PAM 
8.9  Applications 
8.10  General Applications of Clustering 
8.11  Working of the K-Medoids approach 

8.11.1  Complexity of K-Medoids algorithm 
8.11.2  Advantages of the technique 

8.12  Practical Implementation 
8.13  Lets Sum up 
8.14  Unit End Exercises 
8.15  References  

8.0 OBJECTIVES 

This Chapter would make you understand the following concepts: 

 What is K-Medoid  clustering algorithm 

 Definition of  K-Medoid  clustering algorithm 

 Comparison of  K-Medoid  clustering algorithm 

  K-Medoid  Basic  algorithm 

 K-Medoid  PAM algorithm 

 Clara – Clustering Large Applications 

 Working and Practical Implementation 
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ALGORITHM 

K-Medoids is a clustering algorithm resembling the K-Means clustering 
technique. It falls under the category of unsupervised machine learning.  

8.2 INTRODUCTION - K-MEDOID CLUSTERING 
ALGORITHM 

 It majorly differs from the K-Means algorithm in terms of the way it 
selects the clusters’ centres. The former selects the average of a cluster’s 
points as its centre (which may or may not be one of the data points) while 
the latter always picks the actual data points from the clusters as their 
centres (also known as ‘exemplars’ or ‘medoids’). K-Medoids also 
differs in this respect from the K-Medians algorithm which is the same as 
K-means, except that it chooses the medians (instead of means) of the 
clusters as centres. 

The mean in k-means clustering is sensitive to outliers. Since an object 
with an extremely high value may substantially distort the distribution of 
data. Hence we move to k-medoids. Instead of taking mean of cluster we 
take the most centrally located point in cluster as it’s center. These are 
called medoids. 

8.3 K-MEANS & K-MEDOIDS CLUSTERING- 
OUTLIERS COMPARISON 

 

 
 

  
8.4 K-MEDOIDS - BASIC ALGORITHM 

Input: Number of K (the clusters to form) 
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Initialize: Select K points as the initial representative objects i.e initial K-
medoids of our K clusters. 

Repeat:  Assign each point to the cluster with the closest medoid m.  

Randomly select a non-representative object oi 

Compute the total cost of swapping S, the medoid m with oi 

If S < 0: 

Swap m with oi to form new set of medoids. 

Stop when convergence criteria is meet. 

8.5 K-MEDOIDS - PAM ALGORITHM 

 
 

PAM stands for Partitioning Around Medoids. 

GOAL: To find Clusters that have minimum average dissimilarity 
between objects that belong to same cluster. 

Algorithm: 

1. Start with initial set of medoids. 

2. Iteratively replace one of the medoids with a non-medoid if it reduces 
total sum of SSE of resulting cluster. 

SSE is calculated as below: 
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medo id of Ci 

8.5.1 Typical Pam Example: 

 

 

 

K-Medoids (Pam) Example: 

For K = 2 

Randomly Select m1 = (3,4) and m2 =(7,4)  

Using Manhattan as similarity metric we get, 

C1 = ( o1, o2, o3, o4 ) 
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C2 = ( o5, o6, o7, o8, o9, o10) 

Compute absolute error as follows: 

E = (o1-o2) + (o3-o2) + (o4-o2)  + (o5-o8) +(o6-o8)+(o7-o8) +(o9-o8) + 
(o10-o8) 

 E = (3+4+4) + (3+1+1+2+2)   

    Therefore,   E = 20 

Swapping o8 with o7 

Compute absolute error as follows: 

E = (o1-o2) + (o3-o2) + (o4-o2) + (o5-o7) +(o6-o7)+(o8-o7) +(o9-o7) + 
(o10-o7) 

E = (3+4+4) + (2+2+1+3+3) 

Therefore, E = 22 

Let’s now calculate cost function S for this swap, S = E for (o2,07) - E for 
(o2, o8) 

S = 22- 20 

Therefore S > 0, 

This swap is undesirable  

8.6 ADVANTAGES and DISADVANTAGES of PAM: 

Advantages: 

● PAM is more flexible as it can use any similarity measure.  

● PAM is more robust than k-means as it handles noise better. 

Disadvantages: 

PAM algorithm for K-medoid clustering works well for dataset but cannot 
scale well for large data set due to high computational overhead. 

Pam Complexity : O(k(n-k)
2 

) this is because we compute distance of n-k 
points with each k point, to decide in which cluster it will fall and after 
this we try to replace each of the medoid with a non medoid and find it’s 
distance with n-k points. 

To overcome this we make use of CLARA 
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● Improvement over PAM 

● Finds medoids in a sample from the dataset 

● [Idea]: If the samples are sufficiently random, the medoids of the 
sample approximate the medoids of the dataset 

● [Heuristics]: 5 samples of size 40+2k gives satisfactory results 

● Works well for large datasets (n=1000, k=10) 

8.7.1 Clara Algorithm: 

1. Split randomly the data sets in multiple subsets with fixed size 
(sampsize) 

2. Compute PAM algorithm on each subset and choose the corresponding 
k representative objects (medoids). Assign each observation of the 
entire data set to the closest medoid. 

3. Calculate the mean (or the sum) of the dissimilarities of the 
observations to their closest medoid. This is used as a measure of the 
goodness of the clustering. 

4. Retain the sub-dataset for which the mean (or sum) is minimal. A 
further analysis is carried out on the final partition. 

8.8 COMPARISON CLARA vs PAM 

Strength: 
 deals with larger data sets than PAM 

 CLARA Outperforms PAM in terms of running time and 
quality of clustering 

Weakness: 

 Efficiency depends on the sample size 

 A good clustering based on samples will not necessarily 
represent a good clustering of the whole 
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8.9 APPLICATIONS 

 
Social Network: 

 

              Document                                  Clustering 
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1. Recognition 

2. Spatial Data Analysis 

a. create thematic maps in GIS by clustering feature spaces 

b. detect spatial clusters and explain them in spatial data mining 

1. Image Processing 

2. Economic Science (especially market research) 

3. WWW 

a. Document classification 

b. Cluster Weblog data to discover groups of similar access patterns 

8.11 WORKING OF THE K-MEDOIDS APPROACH 

The steps followed by the K-Medoids algorithm for clustering are as 
follows: 

1. Randomly choose ‘k’ points from the input data (‘k’ is the number of 
clusters to be formed). The correctness of the choice of k’s value can be 
assessed using methods such as silhouette method. 

2. Each data point gets assigned to the cluster to which its nearest medoid 
belongs. 

3. For each data point of cluster i, its distance from all other data points is 
computed and added. The point of ith cluster for which the computed 
sum of distances from other points is minimal is assigned as the medoid 
for that cluster. 

4. Steps (2) and (3) are repeated until convergence is reached i.e. the 
medoids stop moving. 

8.11.1 Complexity of K-Medoids algorithm: 

The complexity of the K-Medoids algorithm comes to O(N2CT) where N, 
C and T denote the number of data points, number of clusters and number 
of iterations respectively. With similar notations, the complexity K-Means 
algorithm can be given as O(NCT). 

8.11.2 Advantages of the technique: 

Mean of the data points is a measure that gets highly affected by the 
extreme points. So in K-Means algorithm, the centroid may get shifted to a 
wrong position and hence result in incorrect clustering if the data has 
outliers because then other points will move away from. On the contrary, a 
medoid in the K-Medoids algorithm is the most central element of the 
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cluster, such that its distance from other points is minimum. Since 
medoids do not get influenced by extremities, the K-Medoids algorithm is 
more robust to outliers and noise than K-Means algorithm.  

The following figure explains how mean’s and medoid’s positions can 
vary in the presence of an outlier. 

 

Besides, K-Medoids algorithm can be used with arbitrarily chosen 
dissimilarity measure (e.g. cosine similarity) or any distance metric, unlike 
K-Means which usually needs Euclidean distance metric to arrive at 
efficient solutions. 

K-Medoids algorithm is found useful for practical applications such as 
face recognition. The medoid can correspond to the typical photo of the 
individual whose face is to be recognized. But if K-Means algorithm is 
used instead, some blurred image may get assigned as the centroid, which 
has mixed features from several photos of the individual and hence makes 
the face recognition task difficult. 

8.12 PRACTICAL IMPLEMENTATION 

Here’s a demonstration of implementing K-Medoids algorithm on a 
dataset containing 8*8 dimensional images of handwritten digits. The task 
is to divide the data points into 10 clusters (for classes 0-9) using K-
Medoids. The dataset used is a copy of the test set of the original 
dataset available on UCI ML Repository. The code here has been 
implemented in Google colab using Python 3.7.10 and scikit-learn-extra 
0.1.0b2 versions.  

Step-Wise Explanation of The Code Is As Follows: 

1. Install:  

scikit-learn-extra Python module, an extension of scikit-learn designed for 
implementing more advanced algorithms that cannot be used by mere 
inclusion of scikit-learn in the code.  

!pip install scikit-learn-extra 
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2. Import required libraries and modules: 

 import numpy as np 

 import matplotlib.pyplot as plt 

 from sklearn_extra.cluster import KMedoids 

 #Import the digits’ dataset available in sklearn.datasets package 

 from sklearn.datasets import load_digits 

 “”” 

 Instead of using all 64 attributes of the dataset, we use Principal 
Component Analysis (PCA)  to reduce the dimensions of features set such 
that most of the useful information is covered. 

 “”” 

 from sklearn.decomposition import PCA 

 “”” 

 Import module for standardizing the dataset i.e. rescaling the data such 
that its has mean of 0 and standard deviation of 1 

 “”” 

 from sklearn.preprocessing import scale  

3. Prepare the input data: 

 #Load the digits dataset  

 dataset = load_digits() 

 #Standardize the data 

 digit_data = scale(dataset.data) 

 “”” 

Compute number of output classes i.e. number of digits for which we have 
the data (here 10 (0-9)) 

 “”” 

 num_digits = len(np.unique(dataset.target))  

4. Reduce the dimensions of the data using PCA: 

 red_data = PCA(n_components=2).fit_transform(digit_data) 

 “”” 

 PCA constructs new components by linear combinations of original 
features. ‘n_components’ parameter denotes the number of newly formed 
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html
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components to be considered. fit_transform() method fits the PCA 
models and performs dimensionality reduction on digit_data. 

 “””  

5. Plot the decision boundaries for each cluster. Assign a different 
color to each for differentiation: 

 h = 0.02 #step size of the mesh  

 #Minimum and maximum x-coordinates 

 xmin, xmax = red_data[:, 0].min() - 1, red_data[:, 0].max() + 1 

 #Minimum and maximum y-coordinates 

 ymin, ymax = red_data[:, 1].min() - 1, red_data[:, 1].max() + 1 

 xx, yy = np.meshgrid(np.arange(xmin, xmax, h), np.arange(ymin, ymax, 
h))  

6. Define an array of K-Medoids variants to be used: 

We have used three different distance metrics (Manhattan distance, 
Euclidean distance and Cosine dissimilarity/distance) for computing 
the distance of each data point from every other data point while selecting 
the medoid. 

Visit this page to know about the distance metrics used in detail. 

The parameters we have specified in the KMedoids() method have the 
following significance: 

● metric – distance metric to be used (default: ‘euclidean’) 

● n_clusters – number of clusters to be formed and hence the number of 
medoids (one per cluster) (default value: 8) 

● init – ‘heuristic’ method used for medoid initialization 

 For each data point, itd distance from all other points is computed and 
the distances are summed up. N_clusters number of points for which such 
a sum of distances are minimum, are chosen as medoids. 

● max_iter – maximum number of the algorithm’s iterations to be 
performed when fitting the data 

The KMedoids() method of scikit-learn-extra by default used 
the PAM (Partition Around Medoids) algorithm for finding the 
medoids. 

 models = [ 

     ( 

         KMedoids(metric="manhattan", n_clusters=num_digits,  
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https://www.cs.umb.edu/cs738/pam1.pdf


 

 125 

Artificial Intelligence & 
Machine Learning Lab 

         init="heuristic", max_iter=2),"Manhattan metric", 

     ), 

     ( 

         KMedoids(metric="euclidean", n_clusters=num_digits,   

         init="heuristic", max_iter=2),"Euclidean metric", 

     ), 

     (KMedoids(metric="cosine", n_clusters=num_digits, init="heuristic",  

      max_iter=2), "Cosine metric", ), 

 ]  

7. Initialize the number of rows and columns of the plot for plotting 
subplots of each of the three metrics’ results: 

 #number of rows = integer(ceiling(number of model variants/2)) 

 num_rows = int(np.ceil(len(models) / 2.0)) 

 #number of columns 

 num_cols = 2  

8. Fit each of the model variants to the data and plot the resultant 
clustering: 

 #Clear the current figure first (if any) 

 plt.clf() 

 #Initialize dimensions of the plot 

 plt.figure(figsize=(15,10)) 

 “”” 

The ‘models’ array defined in step (6) contains three tuples, each having a 
model variant’s parameters and its descriptive text. We iterate through 
each of the tuples, fit the data to the model and plot the results. 

 “”” 

 for i, (model, description) in enumerate(models): 

     # Fit each point in the mesh to the model 

     model.fit(red_data) 

    #Predict the labels for points in the mesh 

     Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) 

     # Put the result  into a color plot 

     Z = Z.reshape(xx.shape) 
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   #Subplot for the ith model variant 

     plt.subplot(num_cols, num_rows, i + 1) 

   #Display the subplot 

     plt.imshow( 

         Z,    #data to be plotted 

         interpolation="nearest", 

    #bounding box coordinates (left,right,bottom,top) 

         extent=(xx.min(), xx.max(), yy.min(), yy.max()), 

         cmap=plt.cm.Paired,  #colormap 

         aspect="auto", #aspect ratio of the axes 

         origin="lower",  #set origin as lower left corner of the axes 

     ) 

     plt.plot( 

         red_data[:, 0], red_data[:, 1], "k.", markersize=2, alpha=0.3 

     ) 

     # Plot the centroids as white cross marks 

     centroids = model.cluster_centers_ 

     plt.scatter( 

         centroids[:, 0], 

         centroids[:, 1], 

         marker="x", 

         s=169,  #marker’s size (points^2) 

         linewidths=3, #width of boundary lines 

         color="w",  #white color for centroids markings 

         zorder=10,  #drawing order of axes     ) 

     #describing text of the tuple will be title of the subplot 

     plt.title(description)   

     plt.xlim(xmin, xmax)  #limits of x-coordinates 

     plt.ylim(ymin, ymax)  #limits of y-coordinates 
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     plt.xticks(())    

     plt.yticks(()) 

 #Upper title of the whole plot 

 plt.suptitle( 

    #Text to be displayed 

     "K-Medoids algorithm implemented with different metrics\n\n", 

     fontsize=20,  #size of the fonts 

 ) 

 plt.show()  

8.13 LET’S SUM UP 

We will have a clear idea about: 

 What is K-Medoid  clustering algorithm 

 Definition of  K-Medoid  clustering algorithm 

 Comparison of  K-Medoid  clustering algorithm 

  K-Medoid  Basic  algorithm 

 K-Medoid  PAM algorithm 

 Clara – Clustering Large Applications 

 Working and Practical Implementation 

8.14 UNIT END EXERCISES 

 Take a Data set available and execute on different inputs of K-Medoid  
clustering algorithm. 

8.15 REFERENCES 

● http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedo
ids/Kmeans_Kmedoids.html 

● https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-
and-practical-examples/ 

● https://towardsdatascience.com/understanding-k-means-k-means-
and-k-medoids-clustering-algorithms-ad9c9fbf47ca 

● https://iq.opengenus.org/k-medoids-clustering/ 

● https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-
and-practical-examples/ 

***** 
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CLASSIFYING DATA USING SUPPORT 

VECTOR MACHINES (SVMS): SVM-RBF 
KERNELS 

Unit Structure 
9.0  Introduction to SVMS  
9.1  What Is A Support Vector Machine, And How Does It Work? 
9.2  What Is The Purpose of SVM? 
9.3  Importing Datasets 
9.4  The Establishment of A Support Vector Machine 
9.5  A Simple Description of The SVM Classification Algorithm 
9.6  What Is The Best Way To Transform This Problem Into A Linear 

One? 
9.7  Kernel For The Radial Basis Function (RBF) And Python Examples 
9.8  Build A Model With Default Values For C And Gamma 
9.9  Radial Basis Function (RBF) Kernel: The Go-To Kernel 
9.10  Conclusion 
9.11  References 

9.0 INTRODUCTION TO SVMS  

Support vector machines (SVMs, also known as support vector networks) 
are supervised learning models with related learning algorithms for 
classification and regression analysis in machine learning. A Support 
Vector Machine (SVM) is a discriminative classifier with a separating 
hyperplane as its formal definition. In other words, the algorithm produces 
an ideal hyperplane that categorizes fresh samples given labeled training 
data (supervised learning). 

9.1 WHAT IS A SUPPORT VECTOR MACHINE, AND 
HOW DOES IT WORK? 

An SVM model is a representation of the examples as points in space, 
mapped so that the examples of the different categories are separated by as 
wide a gap as possible. SVMs may do non-linear classification, implicitly 
translating their inputs into high-dimensional feature spaces, in addition to 
linear classification. 
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An SVM training algorithm creates a model that assigns new examples to 
one of two categories, making it a non-probabilistic binary linear 
classifier, given a series of training examples that are individually 
designated as belonging to one of two categories. 

Before you go any further, make sure you have a basic knowledge of this 
topic. In this article, I'll show you how to use machine learning techniques 
like scikit-learn to classify cancer UCI datasets using SVM. 

Numpy, Pandas, matplot-lib, and scikit-learn are required. 

Let's look at a simple support vector categorization example. To begin, we 
must first generate a dataset: 

Implemention in python 
# importing scikit learn with make_blobs 

from sklearn.datasets.samples_generator import make_blobs 

# creating datasets X containing n_samples 

# Y containing two classes 

X, Y = make_blobs(n_samples=500, centers=2, 

 random_state=0, cluster_std=0.40) 

import matplotlib.pyplot as plt 

# plotting scatters 

plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring'); 

plt.show() 

Output: 
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Support vector machines consider a region around the line of a particular 
width in addition to drawing a line between two classes. Here's an 
example of how it may appear: 

# creating line space between -1 to 3.5 

xfit = np.linspace(-1, 3.5) 

# plotting scatter 

plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring') 

# plot a line between the different sets of data 

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]: 

 yfit = m * xfit + b 

 plt.plot(xfit, yfit, '-k') 

 plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', 

 color='#AAAAAA', alpha=0.4) 

plt.xlim(-1, 3.5); 

plt.show() 

 

9.3 IMPORTING DATASETS 

Support vector machines, which optimize a linear discriminant model 
reflecting the perpendicular distance between datasets, have this 
understanding. Let's now use our training data to train the classifier. We 
must first import cancer datasets as a CSV file, from which we will train 
two features out of all the features. 

# importing required libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 
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  # reading csv file and extracting class column to y. 

x = pd.read_csv("C:\...\cancer.csv") 

a = np.array(x) 

y  = a[:,30] # classes having 0 and 1 

  # extracting two features 

x = np.column_stack((x.malignant,x.benign)) 

  # 569 samples and 2 features 

x.shape  

print (x),(y) 

[[  122.8   1001.  ] 

 [  132.9   1326.  ] 

 [  130.    1203.  ] 

 ...,  

 [  108.3    858.1 ] 

 [  140.1   1265.  ] 

 [   47.92   181.  ]] 

array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., 
         0.,  0.,  0.,  0.,  0.,  0.,  1.,  1.,  1.,  0.,  0.,  0.,  0., 

         0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0., 

         0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  1.,  1.,  1.,  1., 

         1.,  0.,  0.,  1.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  1., ...., 

         1.]) 

9.4 THE ESTABLISHMENT OF A SUPPORT VECTOR 
MACHINE 

These locations will now be fitted with a Support Vector Machine 
Classifier. While the mathematical specifics of the likelihood model are 
fascinating, we'll save those for another time. Instead, we'll approach the 
scikit-learn algorithm as a black box that performs the aforementioned 
work. 

# import support vector classifier  

# "Support Vector Classifier" 

from sklearn.svm import SVC   

clf = SVC(kernel='linear')  
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# fitting x samples and y classes  

clf.fit(x, y)  

The model can then be used to forecast new values after it has been fitted: 

clf.predict([[120, 990]]) 

clf.predict([[85, 550]]) 

array([ 0.]) 

array([ 1.]) 

Let's have a look at the graph to see what this means. 

 

9.5 A SIMPLE DESCRIPTION OF THE SVM 
CLASSIFICATION ALGORITHM 

Assume we have a set of points that are divided into two classes. We want 
to split those two classes so that we can accurately assign any new points 
to one or the other in the future. 

The SVM algorithm seeks out a hyperplane that separates these two 
classes by the greatest margin possible. A hard margin can be utilized if 
classes are entirely linearly separable. Otherwise, a soft margin is 
required. 

Note that support vectors are the points that end up on the margins. 
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Hard-margin: 

 

The SVM method is used to separate the two classes of points. Scenario 
with a tight margin.  

● The "H1" hyperplane is incapable of accurately separating the two 
classes; hence it is not a suitable solution to our problem. 

● The "H2" hyperplane accurately splits classes. The distance between 
the hyperplane and the nearest blue and green points, on the other 
hand, is extremely small. As a result, there's a good risk that any 
future new points may be classified erroneously. The algorithm, for 
example, would allocate the new grey point (x1=3, x2=3.6) to the 
green class when it is evident that it should belong to the blue class 
instead. 

● Finally, the "H3" hyperplane appropriately and with the greatest 
possible margin divides the two classes (yellow shaded area). A 
solution has been discovered! 

It's worth noting that determining the maximum feasible margin allows for 
a more accurate classification of additional data, resulting in a far more 
robust model. When utilizing the "H3" hyperplane, you can see that the 
new grey point is correctly allocated to the blue class. 

Soft-Margin: 

It may not always be possible to completely separate the two classes. In 
such cases, a soft-margin is employed, with some points permitted to be 
misclassified or to fall within the margin (yellow shaded area). This is 
where the "slack" value, represented by  ξ  (xi). 
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The SVM method is used to separate the two classes of points. Scenario 
with a soft margin.  

The green point inside the margin is treated as an outlier by the "H4" 
hyperplane in this case. As a result, the support vectors are the two green 
spots closest to the main group. This increases the model's resilience by 
allowing for a bigger margin. 

Note that you may tweak the hyperparameter C to decide how much you 
care about misclassifications (and points inside the margin) in the 
algorithm. C is essentially a weight that has been assigned to. A low C 
wants to categorize all training instances correctly, producing a closer 
match to the training data but making it less robust, whereas a high C 
strives to classify all training examples correctly, producing a closer fit to 
the training data but making it less robust. 

While a high C value will likely result in higher model performance on the 
training data, there is a substantial risk of over fitting the model, which 
will result in poor test data outcomes.  

Kernel Trick:  

SVM was previously explained in the context of linearly separable blue 
and green classes. What if we wanted to use SVMs to solve non-linear 
problems? How would we go about doing that? The kernel technique 
comes into play at this point. A kernel is a function that takes a nonlinear 
problem and converts it to a linear problem in a higher-dimensional space. 
Let's look at an example to demonstrate this method. 
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Assume you have two classes, red and black, as indicated in the 
diagram below: 

 
Data in its original two-dimensional form. 

As you can see, red and black points are not linearly separable because 
there is no way to construct a line that separates these two classes. We can, 
however, distinguish them by drawing a circle with all of the red dots 
inside and the black points outside. 

9.6 WHAT IS THE BEST WAY TO TRANSFORM THIS 
PROBLEM INTO A LINEAR ONE? 

Make a third dimension out of the sum of squared x and y values: 

z = x² + y² 

We can now design a hyperplane (flat 2D surface) to separate red and 
black points using this three-dimensional space with x, y, and z values. As 
a result, the SVM classification algorithm is now available. 

9.7 KERNEL FOR THE RADIAL BASIS FUNCTION 
(RBF) AND PYTHON EXAMPLES 

The default kernel in sklearn's SVM classification algorithm is RBF, 
which can be defined using the formula: 

 

Where gamma can be adjusted manually and must be greater than zero. In 
sklearn's SVM classification method, the default value for gamma is: 
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Briefly: 

||x - x'||² Between two feature vectors, 2 is the squared Euclidean distance 
(2 points). Gamma is a scalar that expresses how powerful a single 
training sample (point) can be. 

As a result of the above design, we can control the influence of specific 
points on the overall algorithm. The bigger the gamma, the closer the other 
points must be to have an impact on the model. In the Python examples 
below, we'll see how adjusting gamma affects the results. 

Setup: 

The following data and libraries will be used: 

● Kaggle chess  games  data 

● Scikit-learn library for separating the data into train-test samples, 
creating SVM classification models, and model evaluation 

● Data manipulation with Pandas and Numpy 

Let’s import all the libraries: 

make optimal hyperplanes using matplotlib function. 

import pandas as pd # for data manipulation 

import numpy as np # for data manipulation 

from sklearn.model_selection import train_test_split # for splitting the 
data into train and test samples 

from sklearn.metrics import classification_report # for model evaluation 
metrics 

from sklearn.svm import SVC # for Support Vector Classification model 

import plotly.express as px  # for data visualization 

import plotly.graph_objects as go # for data visualization 

After you've saved the data to your machine, use the code below to ingest 
it. We also get a few new variables that we can use in the modeling. 

# Read in the csv 

df=pd.read_csv('games.csv', encoding='utf-8') 

# Difference between white rating and black rating - independent variable 

df['rating_difference']=df['white_rating']-df['black_rating'] 

# White wins flag (1=win vs. 0=not-win) - dependent (target) variable 

df['white_win']=df['winner'].apply(lambda x: 1 if x=='white' else 0) 
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# Print a snapshot of a few columns 

df.iloc[:,[0,1,5,6,8,9,10,11,13,16,17]] 

 
Let's now write a few functions that we may use to generate different 
models and plot the results. 

This function divides the data into train and test samples, fits the model, 
predicts the outcome on a test set, and calculates model performance 
metrics. 

def fitting(X, y, C, gamma): 

    # Create training and testing samples 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=0) 

    # Fit the model 

    # Note, available kernels: {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, 
‘precomputed’}, default=’rbf’ 

    model = SVC(kernel='rbf', probability=True, C=C, gamma=gamma) 

    clf = model.fit(X_train, y_train) 

 

    # Predict class labels on training data 

    pred_labels_tr = model.predict(X_train) 

    # Predict class labels on a test data 
    pred_labels_te = model.predict(X_test) 

 

    # Use score method to get accuracy of the model 

    print('----- Evaluation on Test Data -----') 

    score_te = model.score(X_test, y_test) 
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    print('Accuracy Score: ', score_te) 

    # Look at classification report to evaluate the model 

    print(classification_report(y_test, pred_labels_te)) 

    print('--------------------------------------------------------') 

   print('----- Evaluation on Training Data -----') 

    score_tr = model.score(X_train, y_train) 

    print('Accuracy Score: ', score_tr) 

    # Look at classification report to evaluate the model 

    print(classification_report(y_train, pred_labels_tr)) 

    print('--------------------------------------------------------') 

     

    # Return relevant data for chart plotting 

    return X_train, X_test, y_train, y_test, clf 

 

With the test data and model prediction surface, the following function 
will create a Plotly 3D scatter graph. 
 

def Plot_3D(X, X_test, y_test, clf): 

             

    # Specify a size of the mesh to be used 

    mesh_size = 5 

    margin = 1 

 

    # Create a mesh grid on which we will run our model 

    x_min, x_max = X.iloc[:, 0].fillna(X.mean()).min() - margin, X.iloc[:, 
0].fillna(X.mean()).max() + margin 

    y_min, y_max = X.iloc[:, 1].fillna(X.mean()).min() - margin, X.iloc[:, 
1].fillna(X.mean()).max() + margin 

    xrange = np.arange(x_min, x_max, mesh_size) 

    yrange = np.arange(y_min, y_max, mesh_size) 

    xx, yy = np.meshgrid(xrange, yrange) 

             

    # Calculate predictions on grid 

    Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] 

    Z = Z.reshape(xx.shape) 
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    # Create a 3D scatter plot with predictions 

    fig = px.scatter_3d(x=X_test['rating_difference'], y=X_test['turns'], 
z=y_test,  

                     opacity=0.8, color_discrete_sequence=['black']) 

 

    # Set figure title and colors 

    fig.update_layout(#title_text="Scatter 3D Plot with SVM Prediction 
Surface", 

                      paper_bgcolor = 'white', 

                      scene = dict(xaxis=dict(backgroundcolor='white', 

                                              color='black', 

                                              gridcolor='#f0f0f0'), 

                                   yaxis=dict(backgroundcolor='white', 

                                              color='black', 

                                              gridcolor='#f0f0f0' 

                                              ), 

                                   zaxis=dict(backgroundcolor='lightgrey', 
                                              color='black',  

                                              gridcolor='#f0f0f0',  

                                              ))) 

    # Update marker size 

    fig.update_traces(marker=dict(size=1)) 

 

    # Add prediction plane 

    fig.add_traces(go.Surface(x=xrange, y=yrange, z=Z, name='SVM 
Prediction', 

                              colorscale='RdBu', showscale=False,  

                              contours = {"z": {"show": True, "start": 0.2, "end": 0.8, 
"size": 0.05}})) 

fig.show()  

9.8 BUILD A MODEL WITH DEFAULT VALUES FOR C 
AND GAMMA 

Let's create our first SVM model with the 'rating difference' and 'turns' 
fields as independent variables (attributes/predictors) and the 'white win' 
flag as the target. 
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Note that we're cheating a little because the final number of moves won't 
be known until after the match. As a result, if we were to make model 
predictions before the match, we wouldn't be able to use 'turns.' However, 
this is merely for demonstration purposes, therefore we'll use it in the 
examples below. 

The code is brief because we're using our previously defined 'fitting' 
function. 

# Select data for modeling 

X=df[['rating_difference', 'turns']] 

y=df['white_win'].values 

# Fit the model and display results 

X_train, X_test, y_train, y_test, clf = fitting(X, y, 1, 'scale') 

The function prints the following model evaluation metrics: 

 
SVM model performance metrics. 

We can see that the model's performance on test data is similar to that on 
training data, indicating that the default hyperparameters allow the model 
to generalize well. 

Now we'll use the Plot 3D function to see the prediction: 

Plot_3D(X, X_test, y_test, clf) 
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SVM classification model prediction plane using default hyperparameters. 

Note that the top black spots are actual class=1 (white won), whereas the 
bottom black points are actual class=0 (white did not win). Meanwhile, the 
surface represents the model's chance of white wine. 

While the probability varies locally, the decision boundary is about x=0 
(i.e., rating difference=0) because this is where the probability crosses the 
p=0.5 line. 

SVM MODEL 2 — GAMMA = 0.1 

Let's examine what happens if we set gamma to a relatively high value. 

 
SVM model performance metrics with Gamma=0.1. 
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As can be shown, raising gamma improves model performance on training 
data but degrades model performance on test data. The graph below 
explains why this is the case. 

 
Prediction plane for a gamma=0.1 SVM classification model. Colorscale='Aggrnyl' 

was used in the featured image. 

Rather than a smooth prediction surface, we now have one that is highly 
"spiky." We need to look into the kernel function a little more to see why 
this happens. 

When we use a high gamma value, we are telling the function that the 
close points are significantly more crucial for the prediction than the far 
points. As a result, we see these "spikes" since the prediction is based on 
individual points in the training instances rather than the environment. 

Reducing gamma, on the other hand, tells the function that when 
generating a forecast, it's not only the specific point that matters, but also 
the points around it. Let's look at another case with a low gamma value to 
see if this is correct. 

SVM MODEL 3— GAMMA = 0.000001 

Let’s rerun the functions: 
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SVM model performance metrics with Gamma=0.000001.  

Reducing gamma improved the model's robustness, as expected, with an 
increase in model performance on the test data (accuracy = 0.66). The 
graph below shows how much smoother the prediction surface has gotten 
after giving the spots further away more influence. 

 

Prediction plane for SVM classification model with gamma=0.000001.. 
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C.  Hyperparameter Adjustment: 

I chose not to add examples in this tale using various C values because it 
impacts the smoothness of the prediction plane similarly to gamma, but for 
different reasons. You may observe for yourself by using the "fitting" 
function with a value of C=100. some points permitted to be misclassified 
or to fall within the margin (yellow shaded area) this increases the model's 
resilience by allowing for a bigger margin. 

9.9 RADIAL BASIS FUNCTION (RBF) KERNEL: THE 
GO-TO KERNEL 

We're working on a non-linear dataset with a Machine Learning technique 
like Support Vector Machines, but you can't seem to figure out the correct 
feature transform or kernel to employ. Fear not, because the Radial Basis 
Function (RBF) Kernel is here to save the day. 

Due to its resemblance to the Gaussian distribution, RBF kernels are the 
most generic form of kernelization and one of the most extensively used 
kernels. For two points X1 and X2, the RBF kernel function computes 
their similarity, or how near they are to one other. This kernel can be 
expressed mathematically as follows: 

 
Where, 

1. ‘σ’ is the variance and our hyper parameter 
 

2.  ||X₁ - X₂|| is the Euclidean (L₂-norm) Distance between two points X₁ 
and X₂ 

Let d₁₂ be the distance between the two points X₁ and X₂, we can now 
represent d₁₂ as follows: 

 
Fig 2: In space, the distance between two points is called the distance between two 

points in space. 
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The following is a rewrite of the kernel equation: 

 

The RBF kernel can have a maximum value of 1 when d12 is 0, which 
means that the points are equal, i.e. X1 = X2.  

1.  There is no distance between the points when they are the same, 
therefore they are incredibly comparable. 

2.  The kernel value is less than 1 and close to 0 when the points are 
separated by a wide distance, indicating that the points are dissimilar. 

Because we can see that as the distance between the point’s increases, they 
become less similar, distance can be regarded of as an analogue to 
dissimilarity. 

 
Fig 3: As distance grows, similarity reduces. 

Finding the proper value of “to determine which points should be regarded 
comparable is critical, and this can be proved on a case-by-case basis.. 

a] σ = 1 

When σ = 1, σ² = 1 and the RBF kernel’s mathematical equation will be as 
follows: 

 

The curve for this equation is shown below, and we can see that the RBF 
Kernel reduces exponentially as the distance rises, and is 0 for distances 
larger than 4. 

 
Fig 4: RBF Kernel for σ = 1 [Image by Author] 
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1.  We can see that when d₁₂ = 0, the similarity is 1, and when 
d₁₂ exceeds 4 units, the similarity is 0.  

2.  We can see from the graph that if the distance between the points is 
less than 4, the points are similar, and if the distance is larger than 4, 
the points are dissimilar. 

b] σ = 0.1 

When σ = 0.1, σ² = 0.01 and the RBF kernel’s mathematical equation will 
be as follows: 

 

For σ = 0.1, the width of the Region of Similarity is the smallest, therefore 
only extremely close points are considered comparable. 

 
Fig 4a: RBF Kernel for σ = 0.1 

1.  The curve is severely peaked, with a value of 0 for distances larger 
than 0.2. 

2.  Only if the distance between the points is less than or equal to 0.2 is 
the pair considered comparable. 

b] σ = 10 

When σ = 10, σ² = 100 and the RBF kernel’s mathematical equation will 
be as follows: 

 
 
For σ = 100, the width of the Region of Similarity is enormous, allowing 
for the comparison of points that are far apart. 
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Fig 5: RBF Kernel for σ = 10 

1.  The curve has a great width. 

2.  For distances up to 10 units, the points are deemed comparable; but, 
for distances greater than 10 units, they are considered distinct. 

The width of the Region of Similarity changes as changes, as shown in the 
examples above. 

Using hyperparameter tuning approaches such as Grid Search Cross-
Validation and Random Search Cross-Validation, you may find the 
appropriate for a particular dataset. 

The RBF Kernel is well-known due to its resemblance to the K-Nearest 
Neighbor Algorithm. Because RBF Kernel Support Vector Machines only 
need to store the support vectors during training and not the complete 
dataset, it has the advantages of K-NN and avoids the space complexity 
problem. 

The RBF Kernel Support Vector Machines are included in the scikit-learn 
toolkit and have two hyperparameters: 'C' for SVM and "for the RBF 
Kernel. In this case, is inversely proportional to. 
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Fig 6: RBF Kernel SVM for Iris Dataset 

The RBF Kernel Support Vector Machines are included in the scikit-learn 
toolkit and have two hyper parameters: 'C' for SVM and " for the RBF 
Kernel. In this case, is inversely proportional to. 

9.10 CONCLUSION  

A Support Vector Machine (SVM) is a discriminative classifier with a 
separating hyperplane as its formal definition. An SVM training algorithm 
creates a model that assigns new examples to one of two categories, 
making it a non-probabilistic binary linear classifier. To train the 
classifier, we must first import the cancer datasets as a CSV file. We then 
extract two features out of all the samples and train them on top of each 
other. The SVM algorithm seeks out a hyperplane that separates these two 
classes by the greatest margin possible. 

A hard margin can be utilized if classes are entirely linearly separable. 
Otherwise, a soft margin is required. Let's have a look at the graph to see 
what this means. The SVM method is used to separate the two classes of 
points. In such cases, a soft margin is employed, with some points 
permitted to be misclassified or to fall within the margin (yellow shaded 
area) This increases the model's resilience by allowing for a bigger 
margin. 
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10.0 OBJECTIVES   

This chapter will enable students to:  

● Make use of Data sets in implementing the machine learning 
algorithms  

● Implement the machine learning concepts and algorithms in any 
suitable language of choice. 

Data sets can be taken from standard repositories or constructed by the 
students. 

10.1 DECISION TREE 

Objectives: This chapter will enable students to:  

● Make use of Data sets in implementing the machine learning 
algorithms  

● Implement the machine learning concepts and algorithms in any 
suitable language of choice. 

Data sets can be taken from standard repositories or constructed by the 
students. 

Introduction:  

Decision-tree algorithm falls under the category of supervised learning 
algorithms. It works for both continuous as well as categorical output 
variables. Makes use of the Tree representation. Can be used for 
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Decision Tree classification. Given a decision tree, how do we predict an outcome for a 
class label? We start from the root of the tree. CART stands for 
Classification and Regression Trees. 

For example, consider a dataset of cats and dogs, with their features. The 
label here is accordingly "cat", or "dog", and the goal is to identify the 
animal based on its features, using a decision tree. Say, if at a particular 
node in the tree, the input to a node contains only a single type of label, 
say cats, we can infer that it is perfectly grouped, or "unmixed".  On the 
other hand, if the input contains a mix of cats and dogs, we would have to 
ask another question about the features in the dataset that can help us 
narrow down, and divide the mix further to try and "unmix" them 
completely. 

# Program to implement decision tree in Python 

# Importing the required packages 

import numpy as np 

import pandas as pd 

from sklearn.metrics import confusion_matrix 

from sklearn.cross_validation import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import classification_report 

# Function importing Dataset 

def importdata(): 

balance_data = pd.read_csv('decisiontree.data, sep= ',', header = None) 

 # Printing the dataswet shape 

 print ("Dataset Length: ", len(balance_data)) 

 print ("Dataset Shape: ", balance_data.shape) 

 # Printing the dataset obseravtions 

 print ("Dataset: ",balance_data.head()) 

 return balance_data 

 

# Function to split the dataset 

def splitdataset(balance_data): 

 # Separating the target variable 
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 X = balance_data.values[:, 1:5] 

 Y = balance_data.values[:, 0] 

 # Splitting the dataset into train and test 

 X_train, X_test, y_train, y_test = train_test_split  

(X, Y, test_size = 0.3, random_state = 100) 

  return X, Y, X_train, X_test, y_train, y_test 

 # Function to perform training with giniIndex. 

def train_using_gini(X_train, X_test, y_train): 

 # Creating the classifier object 

 clf_gini = DecisionTreeClassifier(criterion = "gini", 

   random_state = 100,max_depth=3, min_samples_leaf=5) 

 # Performing training 

 clf_gini.fit(X_train, y_train) 

 return clf_gini 

 # Function to perform training with entropy. 

def tarin_using_entropy(X_train, X_test, y_train): 

 # Decision tree with entropy 

 clf_entropy = DecisionTreeClassifier( 

   criterion = "entropy", random_state = 100, 

   max_depth = 3, min_samples_leaf = 5) 

 # Performing training 

 clf_entropy.fit(X_train, y_train) 

 return clf_entropy 

# Function to make predictions 

def prediction(X_test, clf_object): 

 # Predicton on test with giniIndex 

 y_pred = clf_object.predict(X_test) 

 print("Predicted values:") 

 print(y_pred) 
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 # Function to calculate accuracy 

def cal_accuracy(y_test, y_pred): 

  print("Confusion Matrix: ", 

  confusion_matrix(y_test, y_pred))  

 print ("Accuracy : ", 

 accuracy_score(y_test,y_pred)*100) 

  print("Report : ", 

 classification_report(y_test, y_pred)) 

# Driver code 

def main(): 

  # Building Phase 

 data = importdata() 

 X, Y, X_train, X_test, y_train, y_test = splitdataset(data) 

 clf_gini = train_using_gini(X_train, X_test, y_train) 

 clf_entropy = tarin_using_entropy(X_train, X_test, y_train) 

 # Operational Phase 

 print("Results Using Gini Index:") 

 # Prediction using gini 

 y_pred_gini = prediction(X_test, clf_gini) 

 cal_accuracy(y_test, y_pred_gini) 

 print("Results Using Entropy:") 

 # Prediction using entropy 

 y_pred_entropy = prediction(X_test, clf_entropy) 

 cal_accuracy(y_test, y_pred_entropy) 

 # Calling main function 

if __name__=="__main__": 

 main() 
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A supervised learning algorithm. Makes use of the Tree representation. 
Can be used for classification. 

10.2 ENSEMBLE TECHNIQUES – BAGGING 

# importing utility modules 

# download the train data set from 
“https://www.kaggle.com/hesh97/titanicdataset-traincsv” 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

# importing machine learning models for prediction 

import xgboost as xgb 

# importing bagging module 

from sklearn.ensemble import BaggingRegressor 

# loading train data set in dataframe from train_data.csv file 

df = pd.read_csv("train_data.csv") 

# getting target data from the dataframe 

target = df["target"] 

# getting train data from the dataframe 

train = df.drop("target") 

# Splitting between train data into training and validation dataset 

X_train, X_test, y_train, y_test = train_test_split 

(train, target, test_size=0.20) 

# initializing the bagging model using XGboost as base model with default 
parameters 

model = BaggingRegressor(base_estimator=xgb.XGBRegressor()) 

# training model 

model.fit(X_train, y_train) 

# predicting the output on the test dataset 

pred = model.predict(X_test) 
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value 

print(mean_squared_error(y_test, pred_final)) 

10.3 ENSEMBLE TECHNIQUES – BOOSTING 

# importing utility modules 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

# importing machine learning models for prediction 

from sklearn.ensemble import GradientBoostingRegressor 

# loading train data set in dataframe from train_data.csv file 

df = pd.read_csv("train_data.csv") 

# getting target data from the dataframe 

target = df["target"] 

# getting train data from the dataframe 

train = df.drop("target") 

# Splitting between train data into training and validation dataset 

X_train, X_test, y_train, y_test = train_test_split 

(train, target, test_size=0.20) 

# initializing the boosting module with default parameters 

model = GradientBoostingRegressor() 

# training the model on the train dataset 

model.fit(X_train, y_train) 

# predicting the output on the test dataset 

pred_final = model.predict(X_test) 

# printing the root mean squared error between real value and predicted 
value 

print(mean_squared_error(y_test, pred_final)) 
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# importing utility modules 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

# importing machine learning models for prediction 

from sklearn.ensemble import RandomForestRegressor 

import xgboost as xgb 

from sklearn.linear_model import LinearRegression 

# importing stacking lib 

from vecstack import stacking 

# loading train data set in dataframe from train_data.csv file 

df = pd.read_csv("train_data.csv") 

# getting target data from the dataframe 

target = df["target"] 

# getting train data from the dataframe 

train = df.drop("target") 

# Splitting between train data into training and validation dataset 

X_train, X_test, y_train, y_test = train_test_split 

(train, target, test_size=0.20) 

# initializing all the base model objects with default parameters 

model_1 = LinearRegression() 

model_2 = xgb.XGBRegressor() 

model_3 = RandomForestRegressor() 

# putting all base model objects in one list 

all_models = [model_1, model_2, model_3] 

# computing the stack features 

s_train, s_test = stacking(all_models, X_train, X_test, y_train, 
regression=True, n_folds=4) 
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final_model = model_1 

# fitting the second level model with stack features 

final_model = final_model.fit(s_train, y_train) 

# predicting the final output using stacking 

pred_final = final_model.predict(X_test) 

# printing the root mean squared error between real value and predicted 
value 

print(mean_squared_error(y_test, pred_final)) 

10.5 ENSEMBLE TECHNIQUES – VOTING 

# importing utility modules 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import log_loss 

# importing machine learning models for prediction 

from xgboost import XGBClassifier 

from sklearn.linear_model import LogisticRegression 

# importing voting classifier 

from sklearn.ensemble import VotingClassifier 

# loading train data set in dataframe from train_data.csv file 

df = pd.read_csv("train_data.csv") 

# getting target data from the dataframe 

target = df["Weekday"] 

# getting train data from the dataframe 

train = df.drop("Weekday") 

# Splitting between train data into training and validation dataset 

X_train, X_test, y_train, y_test = train_test_split(train, target, 
test_size=0.20) 

# initializing all the model objects with default parameters 

model_1 = LogisticRegression() 
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model_2 = XGBClassifier()  

# Making the final model using voting classifier 

final_model = VotingClassifier( 

 estimators=[('lr', model_1), ('xgb', model_2), ('rf', model_3)], 
voting='hard') 

# training all the model on the train dataset 

final_model.fit(X_train, y_train) 

# predicting the output on the test dataset 

pred_final = final_model.predict(X_test) 

# printing log loss between actual and predicted value 

print(log_loss(y_test, pred_final)) 

10.6 RANDOM FOREST- BAGGING ATTRIBUTE 
BAGGING AND VOTING FOR CLASS SELECTION 

Random forest is like bootstrapping algorithm with Decision tree (CART) 
model. Suppose we have 1000 observations in the complete population 
with 10 variables. Random forest will try to build multiple CART along 
with different samples and different initial variables. It will take a random 
sample of 100 observations and then chose 5 initial variables randomly to 
build a CART model. It will go on repeating the process say about 10 
times and then make a final prediction on each of the observations. Final 
prediction is a function of each prediction. This final prediction can simply 
be the mean of each prediction.  

Random Forest- bagging Attribute bagging and voting for class selection 

# importing utility modules 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import log_loss 

# importing machine learning models for prediction 

from sklearn.ensemble import RandomForestClassifier 

# loading train data set in dataframe from train_data.csv file 

df = pd.read_csv("train_data.csv") 

# getting target data from the dataframe 

target = df["Weekday"] 
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train = df.drop("Weekday") 

# Splitting between train data into training and validation dataset 

X_train, X_test, y_train, y_test = train_test_split(train, target, 
test_size=0.20) 

# initializing all the model objects with default parameters 

model_3 = RandomForestClassifier() 

# training all the model on the train dataset 

final_model.fit(X_train, y_train) 

# predicting the output on the test dataset 

pred_final = final_model.predict(X_test) 

# printing log loss between actual and predicted value 

print(log_loss(y_test, pred_final)) 

example 2:  

import pandas as pd  

import numpy as np  

dataset = pd.read_csv('/content/petrol_consumption.csv')  

dataset.head() 

X = dataset.iloc[:, 0:4].values  

y = dataset.iloc[:, 4].values 

from sklearn.model_selection import train_test_split  

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=0) 

# Feature Scaling  

from sklearn.preprocessing import StandardScaler  

sc = StandardScaler()  

X_train = sc.fit_transform(X_train)  

X_test = sc.transform(X_test) 

from sklearn.ensemble import Random Forest Regressor  

regressor = Random Forest Regressor(n_estimators=20,random_state=0)  
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regressor.fit(X_train, y_train)  

y_pred = regressor.predict(X_test) 

from sklearn import metrics  

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, 
y_pred))  

print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))  

print('Root Mean Squared Error:',  

np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

Using Random Forest for Classification:  

import pandas as pd  

import numpy as np  

dataset = pd.read_csv('/content/bill_authentication.csv')  

dataset.head() 

X = dataset.iloc[:, 0:4].values  

y = dataset.iloc[:, 4].values 

from sklearn.model_selection import train_test_split  

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=0) 

# Feature Scaling  

from sklearn.preprocessing import StandardScaler  

sc = StandardScaler()  

X_train = sc.fit_transform(X_train)  

X_test = sc.transform(X_test) 

from sklearn.ensemble import Random Forest Classifier  

classifier = RandomForestClassifier(n_estimators=20, random_state=0)  

classifier.fit(X_train, y_train)  

y_pred = classifier.predict(X_test) 

from sklearn.metrics import classification_report, confusion_matrix, 
accuracy_score  

print(confusion_matrix(y_test,y_pred))  

print(classification_report(y_test,y_pred))  
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from sklearn.ensemble import Random Forest Classifier  

classifier = Random Forest Classifier(n_estimators=200, random_state=0)  

classifier.fit(X_train, y_train)  

y_pred = classifier.predict(X_test) 

10.7 SUMMARY  

Ensemble means a group of elements viewed as a whole rather than 
individually. An Ensemble method creates multiple models and combines 
them to solve it. Ensemble methods help to improve the 
robustness/generalizability of the model. In this chapter, we had discussed 
some methods with their implementation in Python. 
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UNIT VIII 

11 
BOOSTING ALGORITHMS 

Unit Structure 
11.0 Boosting Algorithms  
11.1 How it works  
11.2 Types of boosting Algorithms  
11.3 Introduction to AdaBoost Algorithm  
 11.3.1 What is AdaBoost Algorithm  
 11.3.2 How it works  
 11.3.3 What is AdaBoost algorithm used for  
 11.3.4 Pros and Cons  
 11.3.5 Pseudocode of AdaBoost  
11.4 Gradient Boosting Machines Algorithm  
 11.4.1 Implementation  
 11.4.2 Implementation using Scikit learn  
 11.4.3 Stochastic Gradient Boosting  
 11.4.4 Shrinkage  
 11.4.5 Regularization  
 11.4.6 Tree constraints  

11.0 BOOSTING ALGORITHM 

Boosting algorithms are the exceptional algorithms that are utilized to 
enhance the existing result of the data model and assist to fix the errors. 
[1,4,7] They utilize the concept of the weak learner and strong learner 
discussion through the weighted average values and higher votes values 
for prediction. They use decision stamp, margin maximizing classification 
for processing purpose. Machine learning algorithms like AdaBoost or 
Adaptive boosting Algorithm, Gradient, XG Boosting algorithm and 
Voting Ensemble are used to follow the process of training for predicting 
and fine-tuning of the result. [1,4,7] 

Example: 

Let’s understand this with an example of the email, which recognize 
whether the email, is a spam or not?  It can be recognized it by the 
following conditions: 

Spam: 

 If an email contains lots of source like that means it is spam. 
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 If an email contains only one file image, then it is spam. 

 If an email contains the message of “You Own a lottery of $xxxxx”, 
that means it is spam. 

Not Spam: 

 If an email contains some known source, then it is not spam. 

 If it contains the official domain like educba.com, etc., that means it is 
not spam. 

The above-mentioned rules are not that powerful to recognize the spam or 
not; hence these rules are called as weak learners. 

To convert weak learner to strong learner, combine the prediction of the 
weak learner using the following methods. 

 Using weighted average. 

 Consider prediction has a higher vote. 

Consider the above 5 rules; there are 3 votes for spam and 2 votes for not 
spam. As there is high vote for spam, we consider it as spam. 

11.1 HOW IT WORKS? 

To choose the right distributions follow the steps as specified: 

Step 1: The base Learning algorithm combines each distribution and 
applies equal weight to each distribution. 

Step 2: If any prediction occurs during the first base learning algorithm, 
then we pay high attention to that prediction error. 

Step 3: Repeat step 2 until the limit of the Base Learning algorithm has 
been reached or high accuracy. 

Step 4: Combines the entire weak learner to create one strong prediction 
rule. 

11.2 TYPES OF BOOSTING ALGORITHM 

1. AdaBoost (Adaptive Boosting) algorithm 

2. Gradient Boosting algorithm 

3. XG Boost algorithm 

4. Voting Ensemble 
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An adaBoost calculation can be utilized to boost the execution of any 
machine learning calculation. Machine Learning has gotten to be a capable 
tool which can make predictions based on a huge sum of data. It has ended 
up so well known in later times that the application of machine learning 
can be found in our day-to-day exercises [1,4,7].  A common illustration 
of it is getting proposals for items whereas shopping online based on the 
past things bought by the client. Machine Learning, frequently alluded to 
as predictive analysis, can be characterized as the capability of computers 
to memorize without being programmed unequivocally. As a substitute, it 
utilizes the algorithms to analyze input data to foresee output inside an 
specified range [1,4,7].  

11.3.1 What is AdaBoost Algorithm?: 

Boosting originated from the question of whether a set of weak classifiers 
could be converted to a strong classifier or not? A weak learner is a learner 
who is better than random guessing. AdaBoost transforms weak learners 
or predictors to strong predictors in order to solve problems of 
classification [1,4,7]. 

For classification, the final equation can be put as below: 

 

Here fm designates the mth weak classifier, and Ѳm represents its 
corresponding weight. 

11.3.2 How it works?: 

AdaBoost can be used to improve the performance of machine learning 
algorithms. It is used best with weak learners, to achieve high accuracy 
[1,4,7].  Consider a data set containing n number of points: 

 

-1 represents negative class, and 1 indicate positive. It is initialized as 
below, the weight for each data point as: 

 

If we consider iteration from 1 to M for m, we will get the below 
expression: 

First, we have to select the weak classifier with the lowest weighted 
classification error by fitting the weak classifiers to the data set. 
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Then calculating the weight for the mth weak classifier as below: 

 

The weight is positive for any classifier with an accuracy > 50%, becomes 
larger if the classifier is more accurate, and negative if the classifier has an 
accuracy < 50%. The prediction can be combined by inverting the sign. By 
inverting the sign of the prediction, a classifier with a 40% accuracy can 
be converted into a 60% accuracy [1,4,7].   

Updating the weight for each data point as below: 

 

Zm is here the normalization factor. It makes sure that the sum total of all 
instance weights becomes equal to 1. 

11.3.3 What is AdaBoost Algorithm Used for?: 

AdaBoost can be used for face detection as it appears to be the standard 
algorithm for face detection in images. It employs a rejection cascade 
comprising of numerous layers of classifiers. As the detection window is 
not recognized at any layer as a face, it gets rejected. The first classifier in 
the window discards the negative window keeping the computational cost 
to the least. Even if AdaBoost combines the weak classifiers, the 
principles of AdaBoost are utilized to find the best features to utilize in 
each layer of the cascade [1,4,7]. 

11.3.4 Pros and Cons: 

Pros: 

AdaBoost Algorithm is it is fast, simple and easy to program. It has the 
flexibility to be combined with any machine learning algorithm, and 
doesn’t need to tune the parameters except for T. It has been extended to 
learning problems beyond binary classification, and it is versatile as it can 
be used with text or numeric data [1,4,7]. 

Cons: 

Weak classifiers being too weak can lead to low margins and overfitting 
[1,4,7]. 

11.3.5 Pseudocode of AdaBoost [2,3,6]: 

1. Initially set uniform example weights. 
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2. for Each base learner do: 

 Train base learner with a weighted sample. 

 Test base learner on all data. 

 Set learner weight with a weighted error. 

 Set example weights based on ensemble predictions. 

3. end for 

Implementation of AdaBoost Using Python: 

Step 1: Importing the Modules: 

Import the required packages and modules. 

In Python we have the AdaBoostClassifier and AdaBoostRegressor classes 
from the scikit-learn library. As we deal we would import 
AdaBoostClassifier. The train_test_split method is used to split our dataset 
into training and test sets. We also import datasets, from which we will 
use the the Iris Dataset [2,3,6]. 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn import metrics 

Step 2: Exploring the data: 

This dataset contains four features about different types of Iris flowers 
(sepal length, sepal width, petal length, petal width). The target is to 
predict the type of flower from three possibilities: Setosa, Versicolour, and 
Virginica. The dataset is available in the scikit-learn library, or you can 
also download it from the UCI Machine Learning Library [2,3,6]. 

Next, we make our data ready by loading it from the datasets package 
using the load_iris() method. We assign the data to the iris variable [2,3,6]. 

Further, we split our dataset into input variable X, which contains the 
features sepal length, sepal width, petal length, and petal width. 

Y is our target variable, or the class that we have to predict: either Iris 
Setosa, Iris Versicolour, or Iris Virginica. Below is an example of what 
our data looks like. 
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Step 3: Splitting the data: 

Splitting the dataset into training and testing datasets is a good idea to see 
if our model is classifying the data points correctly on unseen data [2,3,6]. 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)  

Split the dataset into 70% training and 30% test. 

Step 4: Fitting the Model: 

Building the AdaBoost Model. AdaBoost takes Decision Tree as its 
learner model by default. We make an AdaBoostClassifier object and 
name it abc [2,3,6]. Few important parameters of AdaBoost are : 

 base_estimator: It is a weak learner used to train the model. 

 n_estimators: Number of weak learners to train in each iteration. 

 learning_rate: It contributes to the weights of weak learners. It uses 1 
as a default value. 

abc = AdaBoostClassifier(n_estimators=50, 

                         learning_rate=1) 

We then go ahead and fit our object abc to our training dataset. We call it 
a model. 

model = abc.fit(X_train, y_train) 
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Step 5: Making the Predictions: 

Our next step would be to see how good or bad our model is to predict our 
target values. 

y_pred = model.predict(X_test) 

Step 6: Evaluating the model: 

The Model accuracy will tell us how many times our model predicts the 
correct classes. 

print("Accuracy:", metrics.accuracy_score(y_test, y_pred)) 

Output: 

Accuracy:0.8666666666666667 

An  accuracy of 86.66%  is achieved.  

11.4 GRADIENT BOOSTING ALGORITHM 

Gradient boosting algorithm is a machine learning technique used to 
define loss function and reduce it [4,7,8]. It is also used to solve problems 
of classification using various prediction models involving the following 
steps: 

1. Loss Function: 

The use of the loss function depends on the type of problem. The 
advantage of gradient boosting is that there is no need for a new boosting 
algorithm for each loss function [4,7,8]. 

2. Weak Learner: 

In gradient boosting, decision trees are used as a weak learner. A 
regression tree is used to give true values, which can be combined together 
to create correct predictions. Like in the AdaBoost algorithm, small trees 
with a single split are used, i.e. decision stump. Larger trees are used for 
large levels I,e 4-8 levels [4,7,8]. 

3. Additive Model: 

In this model, trees are added one at a time. existing trees remains the 
same. During the addition of trees, gradient descent is used to minimize 
the loss function. 

The Gradient Boosting Machine is a powerful ensemble machine learning 
algorithm that uses decision trees. 

Gradient boosting is a generalization of AdaBoosting, improving the 
performance of the approach and introducing ideas from bootstrap 
aggregation to further improve the models, such as randomly sampling the 
samples and features when fitting ensemble members. 
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Gradient boosting performs well, if not the best, on a wide range of tabular 
datasets, and versions of the algorithm like XGBoost and LightBoost often 
play an important role in winning machine learning competitions [4,7,8]. 

Gradient Boosting ensemble is an ensemble created from decision trees 
added sequentially to the model. 

11.4 GRADIENT BOOSTING MACHINES ALGORITHM 

Gradient boosting refers to a class of ensemble machine learning 
algorithms that can be used for classification or regression predictive 
modeling problems. 

Gradient boosting is also known as gradient tree boosting, stochastic 
gradient boosting, and gradient boosting machines. Models are fit using 
any arbitrary differentiable loss function and gradient descent optimization 
algorithm. This gives the technique its name, “gradient boosting,” as the 
loss gradient is minimized as the model is fit, much like a neural network 
[4,7,8]. 

Gradient boosting works by building weak prediction models sequentially 
where each model tries to predict the error left over by the previous model. 
Because of this, the algorithm tends to over-fit rather quick.  

Implementations of the algorithm: 

1. Gradient Boosting from scratch 

2. Using the scikit-learn in-built function. 

In gradient boosting decision trees, we combine many weak learners to 
come up with one strong learner. The weak learners here are the individual 
decision trees. All the trees are connected in series and each tree tries to 
minimise the error of the previous tree. Sequential boosting algorithms are 
slow to learn, but highly accurate [1,4,7].  

Image('residual.png') 

 

The weak learners are fit in such a way that each new learner fits into the 
residuals of the previous step so as the model improves. The final model 
aggregates the result of each step and thus a strong learner is achieved. A 
loss function is used to detect the residuals. Mean squared error (MSE) is 
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used for a regression task and logarithmic loss (log loss) is used for 
classification tasks [1,4,7]. 

Learning rate and n_estimators (Hyperparameters): 

Hyperparemetes are key parts of learning algorithms which influence the 
performance and accuracy of a model. Learning rate and n_estimators are 
two basic hyperparameters for gradient boosting decision trees. Learning 
rate, signified as α, basically implies how quick the show learns. Each tree 
added modifies the overall model. The size of the modification is 
controlled by learning rate. Learning rate is proportional to model learns. 
The advantage of slower learning rate is that the model becomes more 
robust and efficient [1,4,7].  

Note: 

Problem in gradient boosting decision trees is overfitting due to addition 
of too many trees whereas in random forests, addition of too many tress 
won’t cause overfitting.  

Algorithm: 

Let’s say the output model $y$ when fit to only 1 decision tree, is given by 
$$A_1 + B_1x +e_1 

where $e1$ is there sidual from this decision tree. In gradient boosting, we 
fit the consecutive decision trees on there sidual from the last one [1,4,7]. 
So when gradient boosting is applied to this model, the consecutive 
decision trees will be mathematically represented as: 

e_1 = A_2 + B_2x + e_2 

e_2 = A_3 + B_3x + e_3 

Note that here we stop at 3 decision trees, but in an actual gradient 
boosting model, the number of learners or decision trees is much more 
[1,4,7]. The final model of the decision tree will be given by: 

y = A_1 + A_2 + A_3 + B_1x + B_2x + B_3x + e_3 $$ 

11.4.1 Implementation: 

Implementation from Scratch 

Consider simulated data as shown in scatter plot below with 1 input (x) 
and 1 output (y) variables.  
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Calculate error residuals. Actual target value, minus predicted target value 
[e1= y – y_predicted1 ] 

Fit a new model on error residuals as target variable with same input 
variables [call it e1_predicted] 

Add the predicted residuals to the previous predictions [y_predicted2 = 
y_predicted1 + e1_predicted] 

Fit another model on residuals that is still left. i.e. [e2 = y – y_predicted2] 
and repeat steps 2 to 5 until it starts overfitting or the sum of residuals 
become constant. Overfitting can be controlled by consistently checking 
accuracy on validation data. 
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The code above is a very basic implementation of gradient boosting trees. 
The actual libraries have a lot of hyperparameters that can be tuned for 
better results. This can be better understood by using the gradient boosting 
algorithm on a real dataset. 

11.4.2 Implementation using Scikit-learn: 

Using the PIMA Indians Diabetes dataset, which has information about a 
an individual’s health parameters and an output of 0 or 1, depending on 
whether or not he has diabates. The task here is classify a individual as 
diabetic, when given the required inputs about his health.  
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The accuracy is 73%, which is average. This can be improved by tuning 
the hyperparameters or processing the data to remove outliers. 
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Improving perfomance of gradient boosted decision trees [1,4,7]: 

Gradient boosting algorithms are prone to overfitting and consequently 
poor perfomance on test dataset. There are some pointers you can keep in 
mind to improve the perfomance of gradient boosting algorithm. 

11.4.3 Stochastic Gradient Boosting: 

Stochastic gradient boosting involves sub sampling the training dataset 
and training individual learners on random samples created by this sub 
sampling. This reduces the correlation between results from individual 
learners and combining results with low correlation provides us with a 
better overall result.  

11.4.4 Shrinkage: 

The predictions of each tree are added together sequentially. Instead, the 
contribution of each tree to this sum can be weighted to slow down the 
learning by the algorithm. This weighting is called a shrinkage or a 
learning rate. Using a low learning rate can dramatically improve the 
perfomance of your gradient boosting model. Usually a learning rate in the 
range of 0.1 to 0.3 gives the best results [1,4,7].  

11.4.5 Regularization: 

L1 and L2 regularization penalties can be implemented on leaf weight 
values to slow down learning and prevent over-fitting. Gradient tree 
boosting implementations often also use regularization by limiting the 
minimum number of observations in trees’ terminal nodes. 

11.4.6 Tree Constraints: 

There are a number of ways in which a tree can be constrained to improve 
performance. 

 Number of trees 

 Tree depth 

 Minimum improvement in loss 

 Number of observations per split 

 

 

 

 

***** 
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12 
EXAMPLES 

Unit Structure  
12.0 Examples  
12.1  Example 1  
12.2  Example 2  
12.3  Gradient Boosting for classification  
12.4  Gradient Boosting for regression  
12.5  Gradient Boosting hyperparameters  
12.6 Explore number of Samples  
12.7 Explore Number of features  
12.8 Explore learning rate  
12.9 Explore Tree depth  
12.10 Grid search hyperparameters  

 12.1 EXAMPLE 1  

Gradient Boosting is a popular boosting algorithm. In gradient boosting, 
each predictor corrects its predecessor’s error. There is a technique called 
the Gradient Boosted Trees whose base learner is CART (Classification 
and Regression Trees) [5]. 

The below diagram explains how gradient boosted trees are trained for 
regression problems. 

 

Gradient Boosted Trees for Regression: 

The ensemble consists of N trees. Tree1 is trained using the feature matrix 
X and the labels y. The predictions labelled y1(hat) are used to determine 
the training set residual errors r1. Tree2 is then trained using the feature 
matrix X and the residual errors r1 of Tree1 as labels. The predicted 
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results r1(hat) are then used to determine the residual r2. The process is 
repeated until all the N trees forming the ensemble are trained [5]. 

There is an important parameter used in this technique known as 
Shrinkage. 

Shrinkage refers to the fact that the prediction of each tree in the 
ensemble is shrunk after it is multiplied by the learning rate (eta) which 
ranges between 0 to 1. There is a trade-off between eta and number of 
estimators, decreasing learning rate needs to be compensated with 
increasing estimators in order to reach certain model performance. Since 
all trees are trained now, predictions can be made [5]. 

Each tree predicts a label and final prediction is given by the formula, 

y(pred) = y1 + (eta *  r1) + (eta * r2) + ....... + (eta * rN) 

The class of the gradient boosting regression in scikit-learn is 
GradientBoostingRegressor. A similar algorithm is used for 
classification known as GradientBoostingClassifier. 

 

12.2 EXAMPLE 2 

Gradient Boosting Scikit-Learn API: 

Using a modern version of the library by running the following script: 
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Running the script will print your version of scikit-learn. 

Gradient boosting is provided via the Gradient Boosting Regressor and 
Gradient Boosting Classifier classes. 

Both models operate the same way and take the same arguments that 
influence how the decision trees are created and added to the ensemble. 

Randomness is used in the construction of the model. This means that 
each time the algorithm is run on the same data, it will produce a slightly 
different model. 

When using machine learning algorithms that have a stochastic learning 
algorithm, it is good practice to evaluate them by averaging their 
performance across multiple runs or repeats of cross-validation. When 
fitting a final model, it may be desirable to either increase the number of 
trees until the variance of the model is reduced across repeated 
evaluations, or to fit multiple final models and average their predictions 
[3,9]. 

Let’s take a look at how to develop a Gradient Boosting ensemble for both 
classification and regression. 

12.3 GRADIENT BOOSTING FOR CLASSIFICATION [1, 
4, 7] 

In this section, we will look at using Gradient Boosting for a classification 
problem. 

First, we can use the make_classification() function to create a synthetic 
binary classification problem with 1,000 examples and 20 input features. 

The complete example is listed below. 

 

Running the example creates the dataset and summarizes the shape of the 
input and output components. 

1. (1000, 20) (1000,) 
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Next, we can evaluate a Gradient Boosting algorithm on this dataset [3,9].. 

We will evaluate the model using repeated stratified k-fold cross-
validation, with three repeats and 10 folds. We will report the mean and 
standard deviation of the accuracy of the model across all repeats and 
folds [1]. 

 

Running the example reports the mean and standard deviation accuracy of 
the model. 

Gradient Boosting ensemble with default hyperparameters achieves a 
classification accuracy of about 89.9 percent on this test dataset. 

Mean Accuracy: 0.899 (0.030) 

First, the Gradient Boosting ensemble is fit on all available data, then the 
predict() function can be called to make predictions on new data. 

The example below demonstrates this on our binary classification dataset. 

 

Running the example fits the Gradient Boosting ensemble model on the 
entire dataset and is then used to make a prediction on a new row of data, 
as we might when using the model in an application. 
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Predicted Class: 1 

Now that we are familiar with using Gradient Boosting for classification, 
let’s look at the API for regression. 

12.4 GRADIENT BOOSTING FOR REGRESSION 

Using make_regression() function to create a synthetic regression problem 
with 1,000 examples and 20 input features. 

The complete example is listed below. 

 

Running the example creates the dataset and summarizes the shape of the 
input and output components. 

1. (1000, 20) (1000,) 

Next, we can evaluate a Gradient Boosting algorithm on this dataset. 

As we did with the last section, we will evaluate the model using repeated 
k-fold cross-validation, with three repeats and 10 folds. We will report the 
mean absolute error (MAE) of the model across all repeats and folds. The 
scikit-learn library makes the MAE negative so that it is maximized 
instead of minimized. This means that larger negative MAE are better and 
a perfect model has a MAE of 0. 

The complete example is listed below [1]. 

 

Running the example reports the mean and standard deviation accuracy of 
the model. 
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In this case, we can see the Gradient Boosting ensemble with default 
hyperparameters achieves a MAE of about 62. 

1. MAE: -62.475 (3.254) 

We can also use the Gradient Boosting model as a final model and make 
predictions for regression. 

First, the Gradient Boosting ensemble is fit on all available data, then the 
predict() function can be called to make predictions on new data. 

The example below demonstrates this on our regression dataset [1]. 

 

Running the example fits the Gradient Boosting ensemble model on the 
entire dataset and is then used to make a prediction on a new row of data, 
as we might when using the model in an application. 

Prediction: 37 

Now that we are familiar with using the scikit-learn API to evaluate and 
use Gradient Boosting ensembles, let’s look at configuring the model [1]. 

12.5 GRADIENT BOOSTING HYPERPARAMETERS 

The number of trees can be set via the “n_estimators” argument and 
defaults to 100. 

The example below explores the effect of the number of trees with values 
between 10 to 5,000. 
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Running the example first reports the mean accuracy for each configured 
number of decision trees. 

In this case, we can see that that performance improves on this dataset 
until about 500 trees, after which performance appears to level off. Unlike 
AdaBoost, Gradient Boosting appears to not overfit as the number of trees 
is increased in this case [1]. 
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A box and whisker plot is created for the distribution of accuracy scores 
for each configured number of trees. 

We can see the general trend of increasing model performance and 
ensemble size. 

 

Box Plot of Gradient Boosting Ensemble Size vs. Classification Accuracy 

12.6 EXPLORE NUMBER OF SAMPLES 

The number of samples used to fit each tree can be varied. This means that 
each tree is fit on a randomly selected subset of the training dataset [1, 4, 
7]. 

Using fewer samples introduces more variance for each tree, although it 
can improve the overall performance of the model. 

The number of samples used to fit each tree is specified by the 
“subsample” argument and can be set to a fraction of the training dataset 
size. By default, it is set to 1.0 to use the entire training dataset. 

The example below demonstrates the effect of the sample size on model 
performance [1, 4, 7]. 
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In this case, we can see that mean performance is probably best for a 
sample size that is about half the size of the training dataset, such as 0.4 or 
higher [1, 4, 7]. 
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Box Plot of Gradient Boosting Ensemble Sample Size vs. Classification 
Accuracy 

12.7 EXPLORE NUMBER OF FEATURES [1, 4, 7] 

The number of features used to fit each decision tree can be varied. 

Like changing the number of samples, changing the number of features 
introduces additional variance into the model, which may improve 
performance, although it might require an increase in the number of trees. 

The number of features used by each tree is taken as a random sample and 
is specified by the “max_features” argument and defaults to all features in 
the training dataset. 

The example below explores the effect of the number of features on model 
performance for the test dataset between 1 and 20. 
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A box and whisker plot is created for the distribution of accuracy scores 
for each configured number of trees [1, 4, 7]. 

We can see the general trend of increasing model performance perhaps 
peaking around eight or nine features and staying somewhat level. 
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Box Plot of Gradient Boosting Ensemble Number of Features vs. 
Classification Accuracy 

12.8 EXPLORE LEARNING RATE [1, 4, 7] 

Learning rate controls the amount of contribution that each model has on 
the ensemble prediction. Smaller rates may require more decision trees in 
the ensemble, whereas larger rates may require an ensemble with fewer 
trees. It is common to explore learning rate values on a log scale, such as 
between a very small value like 0.0001 and 1.0. The learning rate can be 
controlled via the “learning_rate” argument and defaults to 0.1. 

The example below explores the learning rate and compares the effect of 
values between 0.0001 and 1.0. 
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This highlights the trade-off between the number of trees (speed of 
training) and learning rate, e.g. we can fit a model faster by using fewer 
trees and a larger learning rate. 

 

A box and whisker plot is created for the distribution of accuracy scores 
for each configured number of trees. 

 

Box Plot of Gradient Boosting Ensemble Learning Rate vs. Classification 
Accuracy 

12.9 EXPLORE TREE DEPTH [1, 4, 7] 

Like varying the number of samples and features used to fit each decision 
tree, varying the depth of each tree is another important hyperparameter 
for gradient boosting. 

The tree depth controls how specialized each tree is to the training dataset: 
how general or overfit it might be. Trees are preferred that are not too 
shallow and general and not too deep and specialized. 

Gradient boosting performs well with trees that have a modest depth 
finding a balance between skill and generality [1, 4, 7]. 

Tree depth is controlled via the “max_depth” argument and defaults to 3. 

The example below explores tree depths between 1 and 10 and the effect 
on model performance. 
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Running the example first reports the mean accuracy for each configured 
tree depth. 

Performance improves with tree depth, perhaps peaking around a depth of 
3 to 6, after which the deeper, more specialized trees result in worse 
performance. 
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A box and whisker plot is created for the distribution of accuracy scores 
for each configured tree depth. 

We can see the general trend of increasing model performance with the 
tree depth to a point, after which performance begins to degrade rapidly 
with the over-specialized trees. 

 

Box Plot of Gradient Boosting Ensemble Tree Depth vs. Classification 
Accuracy 
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Gradient boosting can be challenging to configure as the algorithm as 
many key hyperparameters that influence the behavior of the model on 
training data and the hyperparameters interact with each other. 

As such, it is a good practice to use a search process to discover a 
configuration of the model hyperparameters that works well or best for a 
given predictive modeling problem. Popular search processes include a 
random search and a grid search. 

In this section we will look at grid searching common ranges for the key 
hyperparameters for the gradient boosting algorithm that you can use as 
starting point for your own projects. This can be achieving using the 
GridSearchCV class and specifying a dictionary that maps model 
hyperparameter names to the values to search. 

In this case, we will grid search four key hyperparameters for gradient 
boosting: the number of trees used in the ensemble, the learning rate, 
subsample size used to train each tree, and the maximum depth of each 
tree. We will use a range of popular well performing values for each 
hyperparameter. 

Each configuration combination will be evaluated using repeated k-fold 
cross-validation and configurations will be compared using the mean 
score, in this case, classification accuracy. 

The complete example of grid searching the key hyperparameters of the 
gradient boosting algorithm on our synthetic classification dataset is listed 
below. 
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Running the example many take a while depending on your hardware. At 
the end of the run, the configuration that achieved the best score is 
reported first, followed by the scores for all other configurations that were 
considered. 

A configuration with a learning rate of 0.1, max depth of 7 levels, 500 
trees and a subsample of 70% performed the best with a classification 
accuracy of about 94.6 percent. 

The model may perform even better with more trees such as 1,000 or 
5,000 although these configurations were not tested in this case to ensure 
that the grid search completed in a reasonable time. 
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UNIT IX 

13 
XG BOOST 

Unit Structure  
13.1 XG Boost  
 13.1.0 Boosting  
 13.1.1 Using XGBoost in Python  
 13.1.2 k- fold cross validation using XGBoost  
 13.1.3 XGBoost Installation Guide  
13.2 Voting Ensembles  
 13.2.1 Voting ensemble for classification  
 13.2.2 Hard voting ensemble for classification  

13.1 XG BOOST 

Extreme Gradient Boosting (XG Boost) is an upgraded implementation of 
the Gradient Boosting Algorithm, which is developed for high 
computational speed, scalability, and better performance [1-4,7]. 

XG Boost has various features, which are as follows: 

1. Parallel Processing 

2. Cross-Validation 

3. Cache Optimization 

4. Distributed Computing 

XGBoost is becoming popular: 

 Speed and performance  

 Core algorithm is parallelizable  

 Consistently outperforms other algorithm methods 

 Wide variety of tuning parameters 

XGBoost (Extreme Gradient Boosting) belongs to a family of boosting 
algorithms and uses the gradient boosting (GBM) framework at its core. It 
is an optimized distributed gradient boosting library. But wait, what is 
boosting? Well, keep on reading. 
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13.1.0 Boosting [1-4,7]: 

Boosting is a sequential technique which works on the principle of an 
ensemble. It combines a set of weak learners and delivers improved 
prediction accuracy. At any instant t, the model outcomes are weighed 
based on the outcomes of previous instant t-1. The outcomes predicted 
correctly are given a lower weight and the ones miss-classified are 
weighted higher. Let's understand boosting in general with a simple 
illustration. 

 

Four classifiers (in 4 boxes), shown above, are trying to classify + and - 
classes as homogeneously as possible. 

1. Box 1: The first classifier (usually a decision stump) creates a vertical 
line (split) at D1. It says anything to the left of D1 is + and anything to the 
right of D1 is -. However, this classifier misclassifies three + points. 

Note: a Decision Stump is a Decision Tree model that only splits off at 
one level, therefore the final prediction is based on only one feature. 

2. Box 2: The second classifier gives more weight to the three + 
misclassified points (see the bigger size of +) and creates a vertical line at 
D2. Again it says, anything to the right of D2 is - and left is +. Still, it 
makes mistakes by incorrectly classifying three - points. 

3. Box 3: Again, the third classifier gives more weight to the three - 
misclassified points and creates a horizontal line at D3. Still, this classifier 
fails to classify the points (in the circles) correctly. 
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4. Box 4: This is a weighted combination of the weak classifiers (Box 1,2 
and 3). As you can see, it does a good job at classifying all the points 
correctly. 

That's the basic idea behind boosting algorithms is building a weak model, 
making conclusions about the various feature importance and parameters, 
and then using those conclusions to build a new, stronger model and 
capitalize on the misclassification error of the previous model and try to 
reduce it. Now, let's come to XGBoost. To begin with, you should know 
about the default base learners of XGBoost: tree ensembles. The tree 
ensemble model is a set of classification and regression trees (CART). 
Trees are grown one after another ,and attempts to reduce the 
misclassification rate are made in subsequent iterations. Here’s a simple 
example of a CART that classifies whether someone will like computer 
games straight from the XGBoost's documentation. 

If you check the image in Tree Ensemble section, you will notice each tree 
gives a different prediction score depending on the data it sees and the 
scores of each individual tree are summed up to get the final score. 

13.1.1 Using XGBoost in Python [1-4,7]: 

import the Boston Housing dataset and store it in a variable called boston.  

from sklearn.datasets import load_boston 

boston = load_boston() 

The boston variable itself is a dictionary, so you can check for its keys 
using the .keys() method. 

print(boston.keys()) 

dict_keys(['data', 'target', 'feature_names', 'DESCR']) 

You can easily check for its shape by using the boston.data.shape attribute, 
which will return the size of the dataset. 

print(boston.data.shape) 

(506, 13) 

As you can see it returned (506, 13), that means there are 506 rows of data 
with 13 columns. Now, if you want to know what the 13 columns are, you 
can simply use the .feature_names attribute and it will return the feature 
names. 

print(boston.feature_names) 

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 
'PTRATIO' 

 'B' 'LSTAT'] 
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The description of the dataset is available in the dataset itself. You can 
take a look at it using .DESCR. 

print(boston.DESCR) 

Boston House Prices dataset 

=========================== 

Notes: 

------ 

Data Set Characteristics:   

: Number of Instances: 506 

: Number of Attributes: 13 numeric/categorical predictive 

: Median Value (attribute 14) is usually the target 

: Attribute Information (in order): 

    - CRIM    per capita crime rate by town 

- ZN       proportion of residential land zoned for lots over 25,000 sq.ft. 

- INDUS    proportion of non-retail business acres per town 

- CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 
otherwise) 

- NOX      nitric oxides concentration (parts per 10 million) 

- RM       average number of rooms per dwelling 

- AGE      proportion of owner-occupied units built prior to 1940 

- DIS      weighted distances to five Boston employment centres 

- RAD      index of accessibility to radial highways 

- TAX      full-value property-tax rate per $10,000 

- PTRATIO  pupil-teacher ratio by town 

- B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by 
town 

- LSTAT    % lower status of the population 

- MEDV     Median value of owner-occupied homes in $1000's 

: Missing Attribute Values: None 

Now let’s convert it into a pandas DataFrame! For that you need to import 
the pandas library and call the DataFrame() function passing the argument 
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boston.data. To label the names of the columns, use the .columnns 
attribute of the pandas DataFrame and assign it to boston.feature_names. 

import pandas as pd 

data = pd.DataFrame(boston.data) 

data.columns = boston.feature_names 

Explore the top 5 rows of the dataset by using head() method on your 
pandas DataFrame. 

data.head() 

 

You'll notice that there is no column called PRICE in the DataFrame. This 
is because the target column is available in another attribute called 
boston.target. Append boston.target to your pandas DataFrame. 

data['PRICE'] = boston.target 

Run the .info() method on your DataFrame to get useful information about 
the data. 

data.info() 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 506 entries, 0 to 505 

Data columns (total 14 columns): 

CRIM  506 non-null float64 

ZN        506 non-null float64 

INDUS  506 non-null float64 

CHAS  506 non-null float64 

NOX   506 non-null float64 

RM     506 non-null float64 

AGE   506 non-null float64 

DIS         506 non-null float64 

RAD    506 non-null float64 
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TAX    506 non-null float64 

PTRATIO  506 non-null float64 

B           506 non-null float64 

LSTAT      506 non-null float64 

PRICE       506 non-null float64 

dtypes: float64(14) 

memory usage: 55.4 KB 

Turns out that this dataset has 14 columns (including the target variable 
PRICE) and 506 rows. Notice that the columns are of float data-type 
indicating the presence of only continuous features with no missing values 
in any of the columns. To get more summary statistics of the different 
features in the dataset you will use the describe() method on your 
DataFrame. 

Note that describe() only gives summary statistics of columns which are 
continuous in nature and not categorical. 

data.describe() 

 

If you plan to use XGBoost on a dataset which has categorical features 
you may want to consider applying some encoding (like one-hot encoding) 
to such features before training the model.  

Without delving into more exploratory analysis and feature engineering, 
you will now focus on applying the algorithm to train the model on this 
data. 

Install python libraries like xgboost on your system using pip install 
xgboost on cmd. 
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XGBoost's hyperparameters: 

At this point, before building the model, you should be aware of the tuning 
parameters that XGBoost provides. Well, there are a plethora of tuning 
parameters for tree-based learners in XGBoost and you can read all about 
them here. But the most common ones that you should know are: 

learning_rate: step size shrinkage used to prevent overfitting. Range is 
[0,1] 

max_depth: determines how deeply each tree is allowed to grow during 
any boosting round. 

subsample: percentage of samples used per tree. Low value can lead to 
underfitting. 

colsample_bytree: percentage of features used per tree. High value can 
lead to overfitting. 

n_estimators: number of trees you want to build. 

objective: determines the loss function to be used like reg:linear for 
regression problems, reg:logistic for classification problems with only 
decision, binary:logistic for classification problems with probability. 

XGBoost also supports regularization parameters to penalize models as 
they become more complex and reduce them to simple (parsimonious) 
models [1-4,7]. 

gamma: controls whether a given node will split based on the expected 
reduction in loss after the split. A higher value leads to fewer splits. 
Supported only for tree-based learners. 

alpha: L1 regularization on leaf weights. A large value leads to more 
regularization. 

lambda: L2 regularization on leaf weights and is smoother than L1 
regularization. 

It's also worth mentioning that though you are using trees as your base 
learners, you can also use XGBoost's relatively less popular linear base 
learners and one other tree learner known as dart. All you have to do is set 
the booster parameter to either gbtree (default),gblinear or dart. 

Now, you will create the train and test set for cross-validation of the 
results using the train_test_split function from sklearn's model_selection 
module with test_size size equal to 20% of the data. Also, to maintain 
reproducibility of the results, a random_state is also assigned. 
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Well, you can see that your RMSE for the price prediction came out to be 
around 10.8 per 1000$. 

13.1.2 k-fold Cross Validation using XGBoost [1-4,7]: 

In order to build more robust models, it is common to do a k-fold cross 
validation where all the entries in the original training dataset are used for 
both training as well as validation. Also, each entry is used for validation 
just once. XGBoost supports k-fold cross validation via the cv() method. 
All you have to do is specify the nfolds parameter, which is the number of 
cross validation sets you want to build. Also, it supports many other 
parameters (check out this link) like: 

num_boost_round: denotes the number of trees you build (analogous to 
n_estimators) 

metrics: tells the evaluation metrics to be watched during CV 

as_pandas: to return the results in a pandas DataFrame. 

early_stopping_rounds: finishes training of the model early if the hold-
out metric ("rmse" in our case) does not improve for a given number of 
rounds. 

seed: for reproducibility of results. 

This time you will create a hyper-parameter dictionary params which 
holds all the hyper-parameters and their values as key-value pairs but will 
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exclude the n_estimators from the hyper-parameter dictionary because you 
will use num_boost_rounds instead. 

You will use these parameters to build a 3-fold cross validation model by 
invoking XGBoost's cv() method and store the results in a cv_results 
DataFrame. Note that here you are using the Dmatrix object you created 
before. 

params = {"objective":"reg:linear",'colsample_bytree': 0.3,'learning_rate': 
0.1, 

                'max_depth': 5, 'alpha': 10} 

cv_results = xgb.cv(dtrain=data_dmatrix, params=params, nfold=3, 

                    
num_boost_round=50,early_stopping_rounds=10,metrics="rmse", 
as_pandas=True, seed=123) 

cv_results contains train and test RMSE metrics for each boosting round. 

cv_results.head() 

 

Extract and print the final boosting round metric. 

print((cv_results["test-rmse-mean"]).tail(1)) 

49    4.031162 

Name: test-rmse-mean, dtype: float64 

You can see that your RMSE for the price prediction has reduced as 
compared to last time and came out to be around 4.03 per 1000$. You can 
reach an even lower RMSE for a different set of hyper-parameters. You 
may consider applying techniques like Grid Search, Random Search and 
Bayesian Optimization to reach the optimal set of hyper-parameters. 

Visualize Boosting Trees and Feature Importance [1-4,7]: 

You can also visualize individual trees from the fully boosted model that 
XGBoost creates using the entire housing dataset. XGBoost has a 
plot_tree() function that makes this type of visualization easy. Once you 
train a model using the XGBoost learning API, you can pass it to the 
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plot_tree() function along with the number of trees you want to plot using 
the num_trees argument. 

xg_reg = xgb.train(params=params, dtrain=data_dmatrix, 
num_boost_round=10) 

Plotting the first tree with the matplotlib library: 

 

 

These plots provide insight into how the model arrived at its final 
decisions and what splits it made to arrive at those decisions. 

Another way to visualize your XGBoost models is to examine the 
importance of each feature column in the original dataset within the 
model. 

One simple way of doing this involves counting the number of times each 
feature is split on across all boosting rounds (trees) in the model, and then 
visualizing the result as a bar graph, with the features ordered according to 
how many times they appear. XGBoost has a plot_importance() function 
that allows you to do exactly this. 
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As you can see the feature RM has been given the highest importance 
score among all the features.  

Example 2: 

XGBoost Regression API [1-4,7] 

XGBoost can be installed as a standalone library and an XGBoost model 
can be developed using the scikit-learn API. 

Install the XGBoost library.  

sudo pip install xgboost 

You can then confirm that the XGBoost library was installed correctly and 
can be used by running the following script. 

# check xgboost version 

import xgboost 

print(xgboost.__version__) 

Running the script will print your version of the XGBoost library you have 
installed. 

Your version should be the same or higher. If not, you must upgrade your 
version of the XGBoost library. 

If you do have errors when trying to run the above script, I recommend 
downgrading to version 1.0.1 (or lower). This can be achieved by 
specifying the version to install to the pip command, as follows: 

sudo pip install xgboost==1.0.1 
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If you require specific instructions for your development environment, see 
the tutorial: 

13.1.3 XGBoost Installation Guide [1-4,7]: 

The XGBoost library has its own custom API, although we will use the 
method via the scikit-learn wrapper classes: XGBRegressor and 
XGBClassifier. This will allow us to use the full suite of tools from the 
scikit-learn machine learning library to prepare data and evaluate models. 

An XGBoost regression model can be defined by creating an instance of 
the XGBRegressor class; for example: 

... 

# create an xgboost regression model 

model = XGBRegressor() 

You can specify hyperparameter values to the class constructor to 
configure the model. 

Perhaps the most commonly configured hyperparameters are the 
following: 

n_estimators: The number of trees in the ensemble, often increased until 
no further improvements are seen. 

max_depth: The maximum depth of each tree, often values are between 1 
and 10. 

eta: The learning rate used to weight each model, often set to small values 
such as 0.3, 0.1, 0.01, or smaller. 

subsample: The number of samples (rows) used in each tree, set to a 
value between 0 and 1, often 1.0 to use all samples. 

colsample_bytree: Number of features (columns) used in each tree, set to 
a value between 0 and 1, often 1.0 to use all features. 

For example: 

... 

# create an xgboost regression model 

model = XGBRegressor(n_estimators=1000, max_depth=7, eta=0.1, 
subsample=0.7, colsample_bytree=0.8) 

Good hyperparameter values can be found by trial and error for a given 
dataset, or systematic experimentation such as using a grid search across a 
range of values. 
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Randomness is used in the construction of the model. This means that 
each time the algorithm is run on the same data, it may produce a slightly 
different model. 

When using machine learning algorithms that have a stochastic learning 
algorithm, it is good practice to evaluate them by averaging their 
performance across multiple runs or repeats of cross-validation. When 
fitting a final model, it may be desirable to either increase the number of 
trees until the variance of the model is reduced across repeated 
evaluations, or to fit multiple final models and average their predictions. 

Let’s take a look at how to develop an XGBoost ensemble for regression. 

XGBoost Regression Example [1-4,7]: 

In this section, we will look at how we might develop an XGBoost model 
for a standard regression predictive modeling dataset. 

First, let’s introduce a standard regression dataset. 

We will use the housing dataset. 

The housing dataset is a standard machine learning dataset comprising 506 
rows of data with 13 numerical input variables and a numerical target 
variable. 

Using a test harness of repeated stratified 10-fold cross-validation with 
three repeats, a naive model can achieve a mean absolute error (MAE) of 
about 6.6. A top-performing model can achieve a MAE on this same test 
harness of about 1.9. This provides the bounds of expected performance 
on this dataset. 

The dataset involves predicting the house price given details of the 
house’s suburb in the American city of Boston. 

Housing Dataset (housing.csv) [1-4,7]: 

Housing Description (housing.names) 

No need to download the dataset; we will download it automatically as 
part of our worked examples. 

The example below downloads and loads the dataset as a Pandas 
DataFrame and summarizes the shape of the dataset and the first five rows 
of data. 

# load and summarize the housing dataset 

from pandas import read_csv 

from matplotlib import pyplot 

# load dataset 
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url = 
'https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv' 

dataframe = read_csv(url, header=None) 

# summarize shape 

print(dataframe.shape) 

# summarize first few lines 

print(dataframe.head()) 

Running the example confirms the 506 rows of data and 13 input variables 
and a single numeric target variable (14 in total). We can also see that all 
input variables are numeric. 

(506, 14) 

 0 1 2 3 4 5 ... 8 9 10 11 12 13 
0 0.00632 18.0 2.31 0 0.538 6.575 ... 1 296.0 15.3 396.90 4.98 24.0 
1 0.02731 0.0 7.07 0 0.469 6.421 ... 2 242.0 17.8 396.90 9.14 21.6 
2 0.02729 0.0 7.07 0 0.469 7.185 ... 2 242.0 17.8 392.83 4.03 34.7 
3 0.03237 0.0 2.18 0 0.458 6.998 ... 3 222.0 18.7 394.63 2.94 33.4 

4 0.06905 0.0 2.18 0 0.458 7.147 ... 3 222.0 18.7 396.90 5.33 36.2 

[5 rows x 14 columns] 

Next, let’s evaluate a regression XGBoost model with default 
hyperparameters on the problem. 

First, we can split the loaded dataset into input and output columns for 
training and evaluating a predictive model. 

... 

# split data into input and output columns 

X, y = data[:, :-1], data[:, -1] 

Next, we can create an instance of the model with a default configuration. 

... 

# define model 

model = XGBRegressor() 

We will evaluate the model using the best practice of repeated k-fold 
cross-validation with 3 repeats and 10 folds. 

This can be achieved by using the RepeatedKFold class to configure the 
evaluation procedure and calling the cross_val_score() to evaluate the 
model using the procedure and collect the scores. 

Model performance will be evaluated using mean squared error (MAE). 
Note, MAE is made negative in the scikit-learn library so that it can be 
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maximized. As such, we can ignore the sign and assume all errors are 
positive. 

... 

# define model evaluation method 

cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) 

# evaluate model 

scores = cross_val_score(model, X, y, 
scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) 

Once evaluated, we can report the estimated performance of the model 
when used to make predictions on new data for this problem. 

In this case, because the scores were made negative, we can use the 
absolute() NumPy function to make the scores positive. 

We then report a statistical summary of the performance using the mean 
and standard deviation of the distribution of scores, another good practice. 

... 

# force scores to be positive 

scores = absolute(scores) 

print('Mean MAE: %.3f (%.3f)' % (scores.mean(), scores.std()) ) 

Tying this together, the complete example of evaluating an XGBoost 
model on the housing regression predictive modeling problem is listed 
below. 
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scores = cross_val_score(model, X, y, 
scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) 

# force scores to be positive 

scores = absolute(scores) 

print('Mean MAE: %.3f (%.3f)' % (scores.mean(), scores.std()) ) 

Running the example evaluates the XGBoost Regression algorithm on the 
housing dataset and reports the average MAE across the three repeats of 
10-fold cross-validation. 

In this case, we can see that the model achieved a MAE of about 2.1. 

This is a good score, better than the baseline, meaning the model has skill 
and close to the best score of 1.9. 

Mean MAE: 2.109 (0.320) 

We may decide to use the XGBoost Regression model as our final model 
and make predictions on new data. 

This can be achieved by fitting the model on all available data and calling 
the predict() function, passing in a new row of data. 
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13.2 VOTING ENSEMBLES [1-4,7] 

A voting ensemble (or a “majority voting ensemble“) is an ensemble 
machine learning model that combines the predictions from multiple other 
models. 

It is a technique that may be used to improve model performance, ideally 
achieving better performance than any single model used in the ensemble. 

A voting ensemble works by combining the predictions from multiple 
models. It can be used for classification or regression. In the case of 
regression, this involves calculating the average of the predictions from 
the models. In the case of classification, the predictions for each label are 
summed and the label with the majority vote is predicted. 

Regression Voting Ensemble: Predictions are the average of contributing 
models. 

Classification Voting Ensemble: Predictions are the majority vote of 
contributing models. 

There are two approaches to the majority vote prediction for classification; 
they are hard voting and soft voting. 

Hard voting involves summing the predictions for each class label and 
predicting the class label with the most votes. Soft voting involves 
summing the predicted probabilities (or probability-like scores) for each 
class label and predicting the class label with the largest probability. 

Hard Voting: Predict the class with the largest sum of votes from models 
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Soft Voting: Predict the class with the largest summed probability from 
models. 

A voting ensemble may be considered a meta-model, a model of models. 

As a meta-model, it could be used with any collection of existing trained 
machine learning models and the existing models do not need to be aware 
that they are being used in the ensemble. This means you could explore 
using a voting ensemble on any set or subset of fit models for your 
predictive modeling task. 

A voting ensemble is appropriate when you have two or more models that 
perform well on a predictive modeling task. The models used in the 
ensemble must mostly agree with their predictions. 

Use voting ensembles when: 

 All models in the ensemble have generally the same good 
performance. 

 All models in the ensemble mostly already agree. 

Hard voting is appropriate when the models used in the voting ensemble 
predict crisp class labels. Soft voting is appropriate when the models used 
in the voting ensemble predict the probability of class membership. Soft 
voting can be used for models that do not natively predict a class 
membership probability, although may require calibration of their 
probability-like scores prior to being used in the ensemble (e.g. support 
vector machine, k-nearest neighbors, and decision trees). 

Hard voting is for models that predict class labels. 

Soft voting is for models that predict class membership probabilities. 

The voting ensemble is not guaranteed to provide better performance than 
any single model used in the ensemble. If any given model used in the 
ensemble performs better than the voting ensemble, that model should 
probably be used instead of the voting ensemble. 

This is not always the case. A voting ensemble can offer lower variance in 
the predictions made over individual models. This can be seen in a lower 
variance in prediction error for regression tasks. This can also be seen in a 
lower variance in accuracy for classification tasks. This lower variance 
may result in a lower mean performance of the ensemble, which might be 
desirable given the higher stability or confidence of the model. 

Use a voting ensemble if: 

 It results in better performance than any model used in the ensemble. 

 It results in a lower variance than any model used in the ensemble. 

A voting ensemble is particularly useful for machine learning models that 
use a stochastic learning algorithm and result in a different final model 
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each time it is trained on the same dataset. One example is neural 
networks that are fit using stochastic gradient descent. 

Another particularly useful case for voting ensembles is when combining 
multiple fits of the same machine learning algorithm with slightly different 
hyperparameters. 

Voting ensembles are most effective when: 

 Combining multiple fits of a model trained using stochastic learning 
algorithms. 

 Combining multiple fits of a model with different hyperparameters. 

A limitation of the voting ensemble is that it treats all models the same, 
meaning all models contribute equally to the prediction. This is a problem 
if some models are good in some situations and poor in others. 

An extension to the voting ensemble to address this problem is to use a 
weighted average or weighted voting of the contributing models. This is 
sometimes called blending. A further extension is to use a machine 
learning model to learn when and how much to trust each model when 
making predictions. This is referred to as stacked generalization, or 
stacking for short. 

Extensions to voting ensembles: 

 Weighted Average Ensemble (blending). 

 Stacked Generalization (stacking). 

Voting Ensemble Scikit-Learn API [1-4,7]: 

Voting ensembles can be implemented from scratch, although it can be 
challenging for beginners. 

The scikit-learn Python machine learning library provides an 
implementation of voting for machine learning. 

It is available in version 0.22 of the library and higher. 

First, confirm that you are using a modern version of the library by 
running the following script: 

# check scikit-learn version 

import sklearn 

print(sklearn.__version__) 

Running the script will print your version of scikit-learn. 

Your version should be the same or higher. If not, you must upgrade your 
version of the scikit-learn library. 
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Voting is provided via the VotingRegressor and VotingClassifier classes. 

Both models operate the same way and take the same arguments. Using 
the model requires that you specify a list of estimators that make 
predictions and are combined in the voting ensemble. 

A list of base models is provided via the “estimators” argument. This is a 
Python list where each element in the list is a tuple with the name of the 
model and the configured model instance. Each model in the list must 
have a unique name. 

 

Now that we are familiar with the voting ensemble API in scikit-learn, 
let’s look at some worked examples. 

13.2.1 Voting Ensemble for Classification [1-4,7]: 

First, we can use the make_classification() function to create a synthetic 
binary classification problem with 1,000 examples and 20 input features. 

The complete example is listed below. 

# test classification dataset 

from sklearn.datasets import make_classification 

# define dataset 
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X, y = make_classification(n_samples=1000, n_features=20, 
n_informative=15, n_redundant=5, random_state=2) 

# summarize the dataset 

print(X.shape, y.shape) 

Running the example creates the dataset and summarizes the shape of the 
input and output components. 

(1000, 20) (1000,) 

Next, we will demonstrate hard voting and soft voting for this dataset. 

13.2.2 Hard Voting Ensemble for Classification [1-4,7]: 

We can demonstrate hard voting with a k-nearest neighbor algorithm. 

We can fit five different versions of the KNN algorithm, each with a 
different number of neighbors used when making predictions. We will use 
1, 3, 5, 7, and 9 neighbors (odd numbers in an attempt to avoid ties). 

Our expectation is that by combining the predicted class labels predicted 
by each different KNN model that the hard voting ensemble will achieve a 
better predictive performance than any standalone model used in the 
ensemble, on average. 

First, we can create a function named get_voting() that creates each KNN 
model and combines the models into a hard voting ensemble. 
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We can then create a list of models to evaluate, including each standalone 
version of the KNN model configurations and the hard voting ensemble. 

This will help us directly compare each standalone configuration of the 
KNN model with the ensemble in terms of the distribution of classification 
accuracy scores. The get_models() function below creates the list of 
models for us to evaluate. 

 

Each model will be evaluated using repeated k-fold cross-validation. 

The evaluate_model() function below takes a model instance and returns 
as a list of scores from three repeats of stratified 10-fold cross-validation. 

# evaluate a give model using cross-validation 

def evaluate_model(model, X, y): 
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cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, 
random_state=1) 

scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, 
n_jobs=-1, error_score='raise') 

 return scores 

We can then report the mean performance of each algorithm, and also 
create a box and whisker plot to compare the distribution of accuracy 
scores for each algorithm. 

# compare hard voting to standalone classifiers 
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Running the example first reports the mean and standard deviation 
accuracy for each model. 

Note: Your results may vary given the stochastic nature of the algorithm 
or evaluation procedure, or differences in numerical precision. Consider 
running the example a few times and compare the average outcome. 

We can see the hard voting ensemble achieves a better classification 
accuracy of about 90.2% compared to all standalone versions of the 
model. 

 

A box-and-whisker plot is then created comparing the distribution 
accuracy scores for each model, allowing us to clearly see that hard voting 
ensemble performing better than all standalone models on average. 
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First, the hard voting ensemble is fit on all available data, then the 
predict() function can be called to make predictions on new data. 

 

Running the example fits the hard voting ensemble model on the entire 
dataset and is then used to make a prediction on a new row of data, as we 
might when using the model in an application. 

Predicted Class: 1 

Soft Voting Ensemble for Classification 

We can demonstrate soft voting with the support vector machine (SVM) 
algorithm. 

The SVM algorithm does not natively predict probabilities, although it can 
be configured to predict probability-like scores by setting the “probability” 
argument to “True” in the SVC class. 

We can fit five different versions of the SVM algorithm with a polynomial 
kernel, each with a different polynomial degree, set via the “degree” 
argument. We will use degrees 1-5. 

Our expectation is that by combining the predicted class membership 
probability scores predicted by each different SVM model that the soft 
voting ensemble will achieve a better predictive performance than any 
standalone model used in the ensemble, on average. 

First, we can create a function named get_voting() that creates the SVM 
models and combines them into a soft voting ensemble. 
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We can then create a list of models to evaluate, including each standalone 
version of the SVM model configurations and the soft voting ensemble. 

This will help us directly compare each standalone configuration of the 
SVM model with the ensemble in terms of the distribution of classification 
accuracy scores. The get_models() function below creates the list of 
models for us to evaluate. 

 

 return models 

We can evaluate and report model performance using repeated k-fold 
cross-validation as we did in the previous section. 

Tying this together, the complete example is listed below. 
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Running the example first reports the mean and standard deviation 
accuracy for each model. 
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Note: Your results may vary given the stochastic nature of the algorithm 
or evaluation procedure, or differences in numerical precision. Consider 
running the example a few times and compare the average outcome. 

We can see the soft voting ensemble achieves a better classification 
accuracy of about 92.4% compared to all standalone versions of the 
model. 

 

A box-and-whisker plot is then created comparing the distribution 
accuracy scores for each model, allowing us to clearly see that soft voting 
ensemble performing better than all standalone models on average. 

 

If we choose a soft voting ensemble as our final model, we can fit and use 
it to make predictions on new data just like any other model. 

First, the soft voting ensemble is fit on all available data, then the predict() 
function can be called to make predictions on new data. 
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Running the example fits the soft voting ensemble model on the entire 
dataset and is then used to make a prediction on a new row of data, as we 
might when using the model in an application. 

Predicted Class: 1 

Voting Ensemble for Regression 

We will look at using voting for a regression problem. 

First, we can use the make_regression() function to create a synthetic 
regression problem with 1,000 examples and 20 input features. 

The complete example is listed below. 

# test regression dataset 

from sklearn.datasets import make_regression 

# define dataset 

X, y = make_regression(n_samples=1000, n_features=20, 
n_informative=15, noise=0.1, random_state=1) 

# summarize the dataset 

print(X.shape, y.shape) 

Running the example creates the dataset and summarizes the shape of the 
input and output components. 

(1000, 20) (1000,) 
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We can demonstrate ensemble voting for regression with a decision tree 
algorithm, sometimes referred to as a classification and regression tree 
(CART) algorithm. 

We can fit five different versions of the CART algorithm, each with a 
different maximum depth of the decision tree, set via the “max_depth” 
argument. We will use depths of 1-5. 

Our expectation is that by combining the values predicted by each 
different CART model that the voting ensemble will achieve a better 
predictive performance than any standalone model used in the ensemble, 
on average. 

First, we can create a function named get_voting() that creates each CART 
model and combines the models into a voting ensemble. 

 

We can then create a list of models to evaluate, including each standalone 
version of the CART model configurations and the soft voting ensemble. 

This will help us directly compare each standalone configuration of the 
CART model with the ensemble in terms of the distribution of error 
scores. The get_models() function below creates the list of models for us 
to evaluate. 
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We can evaluate and report model performance using repeated k-fold 
cross-validation as we did in the previous section. 

Models are evaluated using mean absolute error (MAE). The scikit-learn 
makes the score negative so that it can be maximized. This means that the 
reported MAE scores are negative, larger values are better, and 0 
represents no error. 

Tying this together, the complete example is listed below. 
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Running the example first reports the mean and standard deviation 
accuracy for each model. 

Note: Your results may vary given the stochastic nature of the algorithm 
or evaluation procedure, or differences in numerical precision. Consider 
running the example a few times and compare the average outcome. 

We can see the voting ensemble achieves a better mean squared error of 
about -136.338, which is larger (better) compared to all standalone 
versions of the model. 

 

A box-and-whisker plot is then created comparing the distribution 
negative MAE scores for each model, allowing us to clearly see that 
voting ensemble performing better than all standalone models on average. 

mu
no
tes
.in



 

 223 

Artificial Intelligence & 
Machine Learning Lab 

 

If we choose a voting ensemble as our final model, we can fit and use it to 
make predictions on new data just like any other model. 

First, the voting ensemble is fit on all available data, then the predict() 
function can be called to make predictions on new data. 

The example below demonstrates this on our binary classification dataset. 

 

Running the example fits the voting ensemble model on the entire dataset 
and is then used to make a prediction on a new row of data, as we might 
when using the model in an application. 

Predicted Value: 141.319 

***** 
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14.1 DEPLOY YOUR MACHINE LEARNING MODELS 
[12] 

Machine learning deployment is the process of deploying a machine 
learning model in a live environment. The model can be deployed across a 
range of different environments and will often be integrated with apps 
through an API. Deployment is a key step in an organisation gaining 
operational value from machine learning. 

Machine learning models will usually be developed in an offline or local 
environment, so will need to be deployed to be used with live data. A data 
scientist may create many different models, some of which never make it 
to the deployment stage. Developing these models can be very resource 
intensive. Deployment is the final step for an organisation to start 
generating a return on investment for the organisation. 

However, deployment from a local environment to a real-world 
application can be complex. Models may need specific infrastructure and 
will need to be closely monitored to ensure ongoing effectiveness. For this 
reason, machine learning deployment must be properly managed so it’s 
efficient and streamlined. 
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This guide explores the basic steps required for machine learning 
deployment in a containerised environment, the challenges organisations 
may face, and the tools available to streamline the process. 

14.1.0 How to deploy machine learning models [12]: 

Machine learning deployment can be a complex task and will differ 
depending on the system environment and type of machine learning 
model. Each organisation will likely have existing DevOps processes that 
may need to be adapted for machine learning deployment. However, the 
general deployment process for machine learning models deployed to a 
containerised environment will consist of four broad steps. 

 The four steps to machine learning deployment include: 

 Develop and create a model in a training environment. 

 Test and clean the code ready for deployment. 

 Prepare for container deployment. 

 Plan for continuous monitoring and maintenance after machine 
learning deployment. 

Create the machine learning model in a training environment 

Data scientists will often create and develop many different machine 
learning models, of which only a few will make it into the deployment 
phase. Models will usually be built in a local or offline environment, fed 
by training data. There are different types of machine learning processes 
for developing different models. These will differ depending on the task 
the algorithm is being trained to complete. Examples include supervised 
machine learning in which a model is trained on labelled datasets or 
unsupervised machine learning where the algorithm identifies patterns and 
trends in data. 

Organisations may use machine learning models for a range of reasons. 
Examples include streamlining monotonous administrative tasks, fine-
tuning marketing campaigns, driving system efficiency, or completing the 
initial stages of research and development. A popular use is the 
categorisation and segmentation of raw data into defined groups. Once the 
model is trained and performing to a given accuracy on training data, it is 
ready to be prepared for deployment. 

14.1.1 Test and clean code ready for deployment [12]: 

The next step is to check if the code is of sufficient quality to be deployed. 
This is to ensure the model functions in a new live environment, but also 
so other members of the organisation can understand the model’s creation 
process. The model is likely to have been developed in an offline 
environment by a data scientist. So, for deployment in a live setting the 
code will need to be scrutinised and streamline where possible. 
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Accurately explaining the results of a model is a key part of the machine 
learning oversight process. Clarity around development is needed for the 
results and predictions to be accepted in a business setting.  For this 
reason, a clear explanatory document or ‘read me’ file should be 
produced. 

There are three simple steps to prepare for deployment at this stage: 

 Create a ‘read me’ file to explain the model in detail ready for 
deployment by the development team. 

 Clean and scrutinise the code and functions and ensure clear naming 
conventions using a style guide. 

 Test the code to check if the model functions as expected. 

14.1.2 Prepare the model for container deployment [12]: 

Containerisation is a powerful tool in machine learning deployment. 
Containers are the perfect environment for machine learning deployment 
and can be described as a kind of operating system visualisation. It’s a 
popular environment for machine learning deployment and development 
because containers make scaling easy. Containerised code also makes 
updating or deploying distinct areas of the model straightforward. This 
lowers the risk of downtime for the whole model and makes maintenance 
more efficient. 

The containers contain all elements needed for the machine learning code 
to function, ensuring a consistent environment. Numerous containers will 
often make up machine learning model architecture. Yet, as each container 
is deployed in isolation from the wider operating system and 
infrastructure, it can draw resources from a range of settings including 
local and cloud systems. Container orchestration platforms like 
Kubernetes help with the automation of container management such as 
monitoring, scheduling, and scaling. 

14.1.3 Beyond machine learning deployment [12]: 

Successful machine learning deployment is more than just ensuring the 
model is initially functioning in a live setting. Ongoing governance is 
needed to ensure the model is on track and working effectively and 
efficiently. Beyond the development of machine learning models, 
establishing the processes to monitor and deploy the model can be a 
challenge. However, it’s a vital part of the ongoing success of machine 
learning deployment, and models can be kept optimised to avoid data drift 
or outliers. 

Once the processes are planned and in place to monitor the machine 
learning model, data drift and emerging inefficiencies can be detected and 
resolved. Some models can also be regularly retrained with new data to 
avoid the model drifting too far from the live data. Considering the model 
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after deployment means machine learning will be effective in an 
organisation for the long term. 

14.1.4 Challenges for machine learning deployment [12]: 

The training and development of machine learning models is usually 
resource-intensive and will often be the focus of an organisation. The 
process of machine learning deployment is also a complex task and 
requires a high degree of planning to be effective. Taking a model 
developed in an offline environment and deploying it in a live 
environment will always bring unique risks and challenges. A major 
challenge is bridging the gap between data scientists who developed the 
model and the developers that will deploy the model. Skillsets and 
expertise may not overlap in these distinct areas, so efficient workflow 
management is vital. 

Machine learning deployment can be a challenge for many organisations, 
especially if infrastructure must be built for deployment. Considerations 
around scaling the model to meet capacity add another layer of 
complexity. The effectiveness of the model itself is also a key challenge. 
Ensuring results are accurate with no bias can be difficult. After machine 
learning deployment, the model should be continuously tested and 
monitored to drive improvements and continuous optimisation. 

The main challenges for machine learning deployment include [12]: 

 A lack of communication between the development team and data 
scientists causing inefficiencies in the deployment process. 

 Ensuring the right infrastructure and environment is in place for 
machine learning deployment. 

 The ongoing monitoring of model accuracy and efficiency in a real-
world setting can be difficult but is vital to achieving optimisation. 

 Scaling machine learning models from training environment to real-
world data, especially when capacity needs to be elastic. 

 Explaining predictions and results from a model so that the algorithm 
is trusted within the organisation. 

 Products for streamlining machine learning deployment 

Planning and executing machine learning deployment can often be a 
complex task. Models need to be managed and monitored to ensure 
ongoing functionality, and initial deployment must be expertly planned for 
peak efficiency. Products like Seldon Deploy provide all the elements for 
a successful machine learning deployment, as well as the insight tools 
needed for ongoing maintenance. 

The platform is language-agnostic, so it is prepared for any model 
developed by a development team. It can easily integrate deployed 
machine learning models with other apps through API connections. It’s a 
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platform for collaboration between data scientists and the development 
team, helping to simplify the deployment process. 

Seldon Deploy features for machine learning deployment include [12]: 

 Workflow management tools to test and deploy models and make 
planning more straightforward. 

 Integration with Seldon Core, a platform for containerised machine 
learning deployment using Kubernetes. It converts machine learning 
models in a range of languages ready for containerised deployment. 

 Accessible analytics dashboards to monitor and visualise the ongoing 
health of the model including monitoring data drift and detecting 
anomalies 

 Innate scalability to help organisations expand to meet varying levels 
of capacity, avoiding the risk of downtime. 

 The ability to be installed across different local or cloud systems to fit 
the organisation’s current system architecture. 

14.2 WAYS TO DEPLOY MACHINE LEARNING 
MODELS IN PRODUCTION  

Deploy ML models and make them available to users or other 
components of your project[12] 

 

Deploying machine learning models as web services [12]: 

The simplest way to deploy a machine learning model is to create a web 
service for prediction. In this example, we use the Flask web framework to 
wrap a simple random forest classifier built with scikit-learn. 

14.2.1 To create a machine learning web service, you need at least 
three steps [12]: 

The first step is to create a machine learning model, train it and validate its 
performance. The following script will train a random forest classifier. 
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Model testing and validation are not included here to keep it simple. But 
do remember those are an integral part of any machine learning project. 

 

In the next step, we need to persist the model. The environment where we 
deploy the application is often different from where we train them. 
Training usually requires a different set of resources. Thus this separation 
helps organizations optimize their budget and efforts. 

Scikit-learn offers python specific serialization that makes model 
persistence and restoration effortless. The following is an example of how 
we can store the trained model in a pickle file. 

from sklearn.externals import joblib 

joblib.dump(classifier, 'classifier.pkl') 

Finally, we can serve the persisted model using a web framework. The 
following code creates a REST API using Flask. This file is hosted in a 
different environment, often in a cloud server. 

 

The above code takes input in a POST request through 
https://localhost:8080/predict and returns the prediction in a JSON 
response. 
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14.2.2 Deploying machine learning models for batch prediction [12]: 

While online models can serve prediction, on-demand batch predictions 
are sometimes preferable. 

Offline models can be optimized to handle a high volume of job instances 
and run more complex models. In batch production mode, you don't need 
to worry about scaling or managing servers either. 

Batch prediction can be as simple as calling the predict function with a 
data set of input variables. The following command does it. 

prediction = classifier.predict(UNSEEN_DATASET) 

Sometimes you will have to schedule the training or prediction in the 
batch processing method. There are several ways to do this. My favorite is 
to use either Airflow or Prefect to automate the task. 

import requests 

from datetime import timedelta, datetime 

import pandas as pd 

from prefect import task, Flow 

from prefect.schedules import IntervalSchedule 

@task(max_retries=3, retry_delay=timedelta(5)) 

def predict(input_data_path:str): 

    """ 

    This task load the saved model, input data and returns prediction. 

    If failed this task will retry 3 times at 5 min interval and fail 
permenantly. 

    """ 
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The above script schedules prediction on a weekly basis starting from 5 
seconds after the script execution. Prefect will retry the tasks 3 times if 
they fail. 

However, building the model may require multiple stages in the batch 
processing framework. You need to decide what features are required and 
how you should construct the model for each stage. 

Train the model on a high-performance computing system with an 
appropriate batch-processing framework. 

Usually, you partition the training data into segments that are processed 
sequentially, one after the other. You can do this by splitting the dataset 
using a sampling scheme (e.g., balanced sampling, stratified sampling) or 
via some online algorithm (e.g., map-reduce). 

The partitions can be distributed to multiple machines, but they must all 
load the same set of features. Feature scaling is recommended. If you used 
unsupervised pre-training (e.g., autoencoders) for transfer learning, you 
must undo each partition. 

After all the stages have been executed, you can predict unseen data with 
the resulting model by iterating sequentially over the partitions. 

14.2.3 Deploying machine learning models on edge devices as 
embedded models [12]: 

Computing on edge devices such as mobile and IoT has become very 
popular in recent years. The benefits of deploying a machine learning 
model on edge devices include, but are not limited to: 
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Reduced latency as the device is likely to be close to the user than a server 
far away. 

Reduce data bandwidth consumption as we ship processed results back to 
the cloud instead of raw data that requires big size and eventually more 
bandwidth. 

Edge devices such as mobile and IoT devices have limited computation 
power and storage capacity due to the nature of their hardware. We cannot 
simply deploy machine learning models to these devices directly, 
especially if our model is big or requires extensive computation to run 
inference on them. 

Instead, we should simplify the model using techniques such as 
quantization and aggregation while maintaining accuracy. These 
simplified models can be deployed efficiently on edge devices with 
limited computation, memory, and storage. 

We can use the TensorFlow Lite library on Android to simplify our 
TensorFlow model. TensorFlow Lite is an open-source software library 
for mobile and embedded devices that tries to do what the name says: run 
TensorFlow models in Mobile and Embedded platforms. 

The following example converts a Keras TensorFlow model. 
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1.  Ensemble learning can only be applied to supervised learning 
methods. 

A. True 

B. False 

2.  Ensembles will yield bad results when there is significant diversity 
among the models. 

Note: All individual models have meaningful and good predictions. 

A. true 

B. false 

3.  Which of the following is / are true about weak learners used in 
ensemble model? 

1. They have low variance and they don’t usually overfit 

2. They have high bias, so they can not solve hard learning problems 

3. They have high variance and they don’t usually overfit 

A. 1 and 2 

B. 1 and 3 

C. 2 and 3 

D. none of these 

4.  Ensemble of classifiers may or may not be more accurate than any of 
its individual model. 

A. true 

B. false 

5.  If you use an ensemble of different base models, is it necessary to 
tune the hyper parameters of all base models to improve the ensemble 
performance? 

A. yes 

B. no 

C. can’t say 

6.  Generally, an ensemble method works better, if the individual base 
models have ____________? 
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Note: Suppose each individual base models have accuracy greater 
than 50%. 

A. less correlation among predictions 

B. high correlation among predictions 

C. correlation does not have any impact on ensemble output 

D. none of the above 

7.  In an election, N candidates are competing against each other and 
people are voting for either of the candidates. Voters don’t 
communicate with each other while casting their votes. Which of the 
following ensemble method works similar to above-discussed election 
procedure? 

Hint: Persons are like base models of ensemble method. 

A. bagging 

B. boosting 

C. a or b 

D. none of these 

8.  Suppose there are 25 base classifiers. Each classifier has error rates of 
e = 0.35. 

Suppose you are using averaging as ensemble technique. What will be 
the probabilities that ensemble of above 25 classifiers will make a 
wrong prediction? 

Note: All classifiers are independent of each other 

A. 0.05 

B. 0.06 

C. 0.07 

D. 0.09 

9.  In machine learning, an algorithm (or learning algorithm) is said to be 
unstable if a small change in training data cause the large change in 
the learned classifiers.True or False: Bagging of unstable classifiers is 
a good idea 

A. true 

B. false 

10. Which of the following parameters can be tuned for finding good 
ensemble model in bagging based algorithms? 
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1. Max number of samples 

2. Max features 

3. Bootstrapping of samples 

4. Bootstrapping of features 

A. 1 and 3 

B. 2 and 3 

C. 1 and 2 

D. all of above 

11. How is the model capacity affected with dropout rate (where model 
capacity means the ability of a neural network to approximate 
complex functions)? 

A. model capacity increases in increase in dropout rate 

B. model capacity decreases in increase in dropout rate 

C. model capacity is not affected on increase in dropout rate 

D. none of these 

12. Dropout is computationally expensive technique w.r.t. bagging 

A. true 

B. false 

13. Suppose, you want to apply a stepwise forward selection method for 
choosing the best models for an ensemble model. Which of the 
following is the correct order of the steps? 

Note: You have more than 1000 models predictions 

1. Add the models predictions (or in another term take the average) 
one by one in the ensemble which improves the metrics in the 
validation set. 

2. Start with empty ensemble 

3. Return the ensemble from the nested set of ensembles that has 
maximum performance on the validation set 

A. 1-2-3 

B. 1-3-4 

C. 2-1-3 

D. none of above 
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14. Suppose, you have 2000 different models with their predictions and 
want to ensemble predictions of best x models. Now, which of the 
following can be a possible method to select the best x models for an 
ensemble? 

A. step wise forward selection 

B. step wise backward elimination 

C. both 

D. none of above 

15. Below are the two ensemble models: 

1. E1(M1, M2, M3) and 

2. E2(M4, M5, M6) 

Above, Mx is the individual base models. 

Which of the following are more likely to choose if following 
conditions for E1 and E2 are given? 

E1: Individual Models accuracies are high but models are of the same type 
or in another term less diverse 

E2: Individual Models accuracies are high but they are of different types 
in another term high diverse in nature 

A. e1 

B. e2 

C. any of e1 and e2 

D. none of these 

16. In boosting, individual base learners can be parallel. 

A. true 

B. false 

17. Which of the following is true about bagging? 

1. Bagging can be parallel 

2. The aim of bagging is to reduce bias not variance 

3. Bagging helps in reducing overfitting 

A. 1 and 2 

B. 2 and 3 

C. 1 and 3 

mu
no
tes
.in



 

 243 

Artificial Intelligence & 
Machine Learning Lab 

D. all of these 

18. Suppose you are using stacking with n different machine learning 
algorithms with k folds on data. 

Which of the following is true about one level (m base models + 1 
stacker) stacking? 

Note: Here, we are working on binary classification problem 

All base models are trained on all features 

You are using k folds for base models 

A. you will have only k features after the first stage 

B. you will have only m features after the first stage 

C. you will have k+m features after the first stage 

D. you will have k*n features after the first stage 

19. Which of the following is the difference between stacking and 
blending? 

A. stacking has less stable cv compared to blending 

B. in blending, you create out of fold prediction 

C. stacking is simpler than blending 

D. none of these 

20. Which of the following can be one of the steps in stacking? 

1. Divide the training data into k folds 

2. Train k models on each k-1 folds and get the out of fold predictions 
for remaining one fold 

3. Divide the test data set in “k” folds and get individual fold 
predictions by different algorithms 

A. 1 and 2 

B. 2 and 3 

C. 1 and 3 

D. all of above 

21. Which of the following are advantages of stacking? 

1) More robust model 

2) better prediction 
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3) Lower time of execution 

A. 1 and 2 

B. 2 and 3 

C. 1 and 3 

D. all of the above 

22. Which of the following are correct statement(s) about stacking? 

A machine learning model is trained on predictions of multiple machine 
learning models 

A Logistic regression will definitely work better in the second stage as 
compared to other classification methods 

First stage models are trained on full / partial feature space of training data 

A. 1 and 2 

B. 2 and 3 

C. 1 and 3 

D. all of above 

23. Which of the following is true about weighted majority votes? 

1. We want to give higher weights to better performing models 

2. Inferior models can overrule the best model if collective weighted 
votes for inferior models is higher than best model 

3. Voting is special case of weighted voting 

A. 1 and 3 

B. 2 and 3 

C. 1 and 2 

D. 1, 2 and 3 

24. Which of the following is true about averaging ensemble? 

A. it can only be used in classification problem 

B. it can only be used in regression problem 

C. it can be used in both classification as well as regression 

D. none of these 

25. How can we assign the weights to output of different models in an 
ensemble? 

mu
no
tes
.in



 

 245 

Artificial Intelligence & 
Machine Learning Lab 

1. Use an algorithm to return the optimal weights 

2. Choose the weights using cross validation 

3. Give high weights to more accurate models 

A. 1 and 2 

B. 1 and 3 

C. 2 and 3 

D. all of above 
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