
 1

UNIT I

1
ARTIFICIAL INTELLIGENCE LAB

Unit Structure
1.0 Objectives
1.1 Introduction
1.2 Logic Programming with PROLOG
1.3 Relationships among Objects and Properties Of Objects
1.4 Problem solving

1.4.1 Water jug problem
1.4.2 Tic-Tac-Toe problem
1.4.3 8-Puzzle Problem

1.5 Summary
1.6 References
1.7 Bibliography
1.8 Unit End Exercises

1.0 OBJECTIVES

After reading this chapter students will be able to:

 Explain the structure of PROLOG

 Describe the logic programming of PROLOG

 Have the knowledge about the objects and its working principles in
PROLOG

 write the applications and problems of Artificial Intelligence
programs using PROLOG

1.1 INTRODUCTION

PROLOG: Programming Logic language was designed in the 1970s by
Alain Colmerauer and a team of researchers

It was possible to use logic to represent knowledge and to write programs.

It uses a subset of predicate logic and draws its structure from theoretical
works of earlier logicians such as Herbrand (1930) and Robinson (1965)
on the automation of theorem proving.

PROLOG supports:

● Natural Language Understanding

mu
no
tes
.in

 2

Artificial Intelligence Lab

● Formal logic and associated forms of programming

● Reasoning modeling

● Database programming

● Expert System Development

● Real time AI programs

1.2 LOGIC PROGRAMMING WITH PROLOG

PROLOG programs are often described as declarative, although they
unavoidably also have a procedural element. Programs are based on the
techniques developed by logicians to form valid conclusions from
available evidence. There are only two components to any program: facts
and rules. The PROLOG system reads in the program and simply stores it.
The user gives the queries which can be answered by the system using the
facts and rules available to it. A simple example, is given below to
illustrate the same.

dog (puppy).

dog (kutty).

dog (jimmy).

cat (valu).

cat (miaw).

cat (mouse).

animal(Y):-dog(Y).

Output:

:- dog(puppy).

Yes

:- cat(kar).

No

PROLOG program, rules and facts, and also the use of queries that make
PROLOG search through its facts and rules to work out the answer.
Determining that puppy is an animal involves a very simple form of
logical reasoning:

Given that any Y is an animal if it is a dog
and
Puppy is a dog
Deduce
Puppy must be an animal

mu
no
tes
.in

 3

Artificial Intelligence &
Machine Learning Lab 1.3 RELATIONSHIPS AMONG OBJECTS AND

PROPERTIES OF OBJECTS

The relationship between the objects and the particular relationship among
the objects are explained through the following example.

Each family has three components: husband, wife and children are objects
of the family. As the number of children varies from family to family the
children are represented by a list that is capable of accommodating any
number of items. Each person is, in turn, represented by a structure of four
components: name or it specifies the working organization and salary. The
family of can be stored in the database by the clause

family(

person(tom, fox, date(7,may,1950), works(bbc,15200)),

person(ann, fox, dat{9,may, 195 1), unemployed),

[person(pat, fox, date(5,may,1973), unemployed),

person(jim, fox, date(S,may,1973), unemployed)]).

This program shall be extended as adding the information on the gender of
the people that occur in the parent relation. This can be done by simply
adding the following facts to our program:

female(pam).

male(tom).

male(bob).

female(liz).

female(pat).

female(ann).

male(jim).

The relations introduced here are male and female. These relations are
unary relations.

A binary relation like parent defines a relation between pairs of objects; on
the other hand, unary relations can be used to declare simple yes/no
properties of objects. The first unary clause above can be read: Pam is a
female. The same information declared in the two unary relations with one
binary relation, sex, instead. An alternative code snippet of program is :

gender(pam, feminine).

gender(tom, masculine).

gender(bob, masculine).

mu
no
tes
.in

 4

Artificial Intelligence Lab

The offspring relation is as the inverse of the parent relation. We could
define offspring in a similar way as the parent relation; that is, by simply
providing a list of simple facts about the offspring relation, each fact
mentioning one pair of people such that one is an offspring of the other.
For example:

offspring(liz, tom).

However, the offspring relation can be defined much more elegantly by
making use of the fact that it is the inverse of parent, and that parent has
already been defined. This alternative way can be based on the following
logical statement:

For all X and Y,

Y is an offspring of X if

X is a parent of Y.

This formulation is already close to the formalism of PROLOG. The
corresponding PROLOG clause which has the same meaning is:

offspring(Y, X) :- parent(X, Y).

This clause can also be read as:

For all X and Y,

if X is a parent of Y then

Y is an offspring of X.

PROLOG clauses : Rules

offspring(Y, X) :- parent(X, Y).

Difference between facts and rules: A fact is something that is always,
unconditionally, true. On the other hand, rules specify things that may be
true if some condition is satisfied. Therefore we say that rules have:

A condition part and a conclusion part

The conclusion part is also called the head of a clause and the condition
part the body of a clause. For example:

offspring(y, X) :- parent(X, y).

head body

If the condition parent(X, Y) is true then a logical consequence of this is
offspring(Y, X).

How rules are actually used by PROLOG is illustrated as

:- offspring(liz, tom).

mu
no
tes
.in

 5

Artificial Intelligence &
Machine Learning Lab 1.4 PROBLEM SOLVING

1.4.1 Water jug problem:

Problem Statement:

In the water jug problem in Artificial Intelligence, we are provided with
two jugs: one having the capacity to hold 3 gallons of water and the other
has the capacity to hold 4 gallons of water.

There is no other measuring equipment available and the jugs also do not
have any kind of marking on them. So, the agent’s task here is to fill the 4-
gallon jug with 2 gallons of water by using only these two jugs and no
other material. Initially, both our jugs are empty.

So, to solve this problem, following set of rules were proposed:

Production rules for solving the water jug problem

Here, let x denote the 4-gallon jug and y denote the 3-gallon jug.

S.No. Initial State Condition Final state Description of action taken

1. (x,y) If x<4 (4,y) Fill the 4 gallon jug completely

2. (x,y) if y<3 (x,3) Fill the 3 gallon jug completely

3. (x,y) If x>0 (x-d,y) Pour some part from the 4 gallon jug

4. (x,y) If y>0 (x,y-d) Pour some part from the 3 gallon jug

5. (x,y) If x>0 (0,y) Empty the 4 gallon jug

6. (x,y) If y>0 (x,0) Empty the 3 gallon jug

7. (x,y) If (x+y)<7 (4, y-[4-x]) Pour some water from the 3 gallon jug to
fill the four gallon jug

8. (x,y) If (x+y)<7 (x-[3-y],y) Pour some water from the 4 gallon jug to
fill the 3 gallon jug.

9. (x,y) If (x+y)<4 (x+y,0) Pour all water from 3 gallon jug to the 4
gallon jug

10. (x,y) if (x+y)<3 (0, x+y) Pour all water from the 4 gallon jug to the 3
gallon jug

To solve the water jug problem in a minimum number of moves,
following set of rules in the given sequence should be performed:

Solution of water jug problem according to the production rules:

mu
no
tes
.in

 6

Artificial Intelligence Lab

S.No. 4 gallon jug

contents
3 gallon jug

contents
Rule followed

1. 0 gallon 0 gallon Initial state
2. 0 gallon 3 gallons Rule no.2
3. 3 gallons 0 gallon Rule no. 9
4. 3 gallons 3 gallons Rule no. 2
5. 4 gallons 2 gallons Rule no. 7
6. 0 gallon 2 gallons Rule no. 5
7. 2 gallons 0 gallon Rule no. 9

On reaching the 7th attempt, the goal state is reached.

Aim: Writing clauses in PROLOG to solve water jug problem

Software used: SWI-PROLOG

Program Listing:

database

 visited_state(integer,integer)

predicates

 state(integer,integer)

clauses

 state(2,0).

 state(X,Y):-

X < 4,

not(visited_state(4,Y)),

assert(visited_state(X,Y)),

write("Fill the 4-Gallon Jug: (",X,",",Y,") --> (", 4,",",Y,")\n"),

state(4,Y).

 state(X,Y):- Y < 3,

 not(visited_state(X,3)),

assert(visited_state(X,Y)),

write("Fill the 3-Gallon Jug: (", X,",",Y,") --> (", X,",",3,")\n"),

state(X,3).

 state(X,Y):- X > 0,

not(visited_state(0,Y)),

mu
no
tes
.in

 7

Artificial Intelligence &
Machine Learning Lab

assert(visited_state(X,Y)),

write("Empty the 4-Gallon jug on ground: (", X,",",Y,") -->
(",0,",",Y,")\n"),

state(0,Y).

 state(X,Y):- Y > 0,

not(visited_state(X,0)),

assert(visited_state(X,0)),

write("Empty the 3-Gallon jug on ground: (", X,",",Y,") -->
(",X,",",0,")\n"),

state(X,0).

 state(X,Y):- X + Y >= 4,

Y > 0,

NEW_Y = Y - (4 - X),

not(visited_state(4,NEW_Y)),

assert(visited_state(X,Y)),

write("Pour water from 3-Gallon jug to 4-gallon until it is full:
(",X,",",Y,") --> (", 4,",",NEW_Y,")\n"),

state(4,NEW_Y).

 state(X,Y):- X + Y >=3,

X > 0,

NEW_X = X - (3 - Y),

not(visited_state(X,3)),

assert(visited_state(X,Y)),

write("Pour water from 4-Gallon jug to 3-gallon until it is full:
(",X,",",Y,") --> (", NEW_X,",",3,")\n"),

state(NEW_X,3).

 state(X,Y):- X + Y <=4,

 Y > 0,

 NEW_X = X + Y,

 not(visited_state(NEW_X,0)),

 assert(visited_state(X,Y)),

mu
no
tes
.in

 8

Artificial Intelligence Lab

 write("Pour all the water from 3-Gallon jug to 4-gallon:
(",X,",",Y,") --> (", NEW_X,",",0,")\n"),

 state(NEW_X,0).

 state(X,Y):- X+Y<=3,

 X > 0,

 NEW_Y = X + Y,

 not(visited_state(0,NEW_Y)),

 assert(visited_state(X,Y)),

 write("Pour all the water from 4-Gallon jug to 3-gallon:
(",X,",",Y,") --> (", 0,",",NEW_Y,")\n"),

 state(0,NEW_Y).

 state(0,2):- not(visited_state(2,0)),

 assert(visited_state(0,2)),

 write("Pour 2 gallons from 3-Gallon jug to 4-gallon: (", 0,",",2,") -->
(", 2,",",0,")\n"),

 state(2,0).

state(2,Y):- not(visited_state(0,Y)),

 assert(visited_state(2,Y)),

 write("Empty 2 gallons from 4-Gallon jug on the ground:
(",2,",",Y,") --> (", 0,",",Y,")\n"),

 state(0,Y).

goal:-

 makewindow(1,2,3,"4-3 Water Jug Problem",0,0,25,80),

 state(0,0).

1.4.2 Tic-Tac.Toe Problem:

Aim: Tic-Tac-Toe using A* algorithm.

Theory: A board game (such as tic-tac-toe) is usually programmed as a
state machine. Looking on the current-state and therefore the player’s
move, the game goes into the next-state.

 tit-tat-toe (or Noughts and crosses, Xs and Os) could be a paper and
pencil for 2 players, X and O, who take turns marking the areas in an
exceedingly 3×3 grid.

mu
no
tes
.in

 9

Artificial Intelligence &
Machine Learning Lab

The player who succeeds in putting 3 individual marks in an exceedingly
horizontal, vertical or diagonal row wins the game. Players shortly
discover that best play from each party ends up in a draw.

The game is generalized to an m,n,k-game during which 2 players
alternate putting stones of their own colour on an m×n board, with the
goal of obtaining k of their own colour in a row. Tit-Tat-Toe is the (3,3,3)-
game.

/*A Tic-Tac-Toe program in PROLOG. */

/*Predicates that define the winning conditions:*/

win(Board, Player) :- rowwin(Board, Player).
win(Board, Player) :- colwin(Board, Player).
win(Board, Player) :- diagwin(Board, Player).

rowwin(Board, Player) :- Board = [Player,Player,Player,_,_,_,_,_,_].
rowwin(Board, Player) :- Board = [_,_,_,Player,Player,Player,_,_,_].
rowwin(Board, Player) :- Board = [_,_,_,_,_,_,Player,Player,Player].

colwin(Board, Player) :- Board = [Player,_,_,Player,_,_,Player,_,_].
colwin(Board, Player) :- Board = [_,Player,_,_,Player,_,_,Player,_].
colwin(Board, Player) :- Board = [_,_,Player,_,_,Player,_,_,Player].

diagwin(Board, Player) :- Board = [Player,_,_,_,Player,_,_,_,Player].
diagwin(Board, Player) :- Board = [_,_,Player,_,Player,_,Player,_,_].

/*Helping predicate for alternating play in a "self" game: */

other(x,o).
other(o,x).

game(Board, Player):- win(Board, Player), !, write([player, Player, wins]).

game(Board, Player):-
other(Player,Otherplayer),
move(Board,Player,Newboard),
!,
display(Newboard),
game(Newboard,Otherplayer).

move([b,B,C,D,E,F,G,H,I], Player, [Player,B,C,D,E,F,G,H,I]).
move([A,b,C,D,E,F,G,H,I], Player, [A,Player,C,D,E,F,G,H,I]).
move([A,B,b,D,E,F,G,H,I], Player, [A,B,Player,D,E,F,G,H,I]).
move([A,B,C,b,E,F,G,H,I], Player, [A,B,C,Player,E,F,G,H,I]).
move([A,B,C,D,b,F,G,H,I], Player, [A,B,C,D,Player,F,G,H,I]).
move([A,B,C,D,E,b,G,H,I], Player, [A,B,C,D,E,Player,G,H,I]).

mu
no
tes
.in

 10

Artificial Intelligence Lab

move([A,B,C,D,E,F,b,H,I], Player, [A,B,C,D,E,F,Player,H,I]).
move([A,B,C,D,E,F,G,b,I], Player, [A,B,C,D,E,F,G,Player,I]).
move([A,B,C,D,E,F,G,H,b], Player, [A,B,C,D,E,F,G,H,Player]).

display([A,B,C,D,E,F,G,H,I]):-
 write([A,B,C]),nl,write([D,E,F]),nl,
 write([G,H,I]),nl,nl.

selfgame :- game([b,b,b,b,b,b,b,b,b],x).

/* Predicates to support playing a game with the user:*/

x_can_win_in_one(Board) :- move(Board, x, Newboard), win(Newboard,
x).

/*The predicate orespond generates the computer's (playing o) response from the
current Board. */

orespond(Board,Newboard):-
 move(Board, o, Newboard),
 win(Newboard, o),
 !.

orespond(Board,Newboard) :-

 move(Board, o, Newboard),

 not(x_can_win_in_one(Newboard)).

orespond(Board,Newboard) :-

 move(Board, o, Newboard).

orespond(Board,Newboard) :-

 not(member(b,Board)),

 !,

 write('Cats game!'), nl,

 Newboard = Board.

/* Translation from an integer description of x's move to a board
transformation.*/

xmove([b,B,C,D,E,F,G,H,I], 1, [x,B,C,D,E,F,G,H,I]).

xmove([A,b,C,D,E,F,G,H,I], 2, [A,x,C,D,E,F,G,H,I]).

xmove([A,B,b,D,E,F,G,H,I], 3, [A,B,x,D,E,F,G,H,I]).

xmove([A,B,C,b,E,F,G,H,I], 4, [A,B,C,x,E,F,G,H,I]).

xmove([A,B,C,D,b,F,G,H,I], 5, [A,B,C,D,x,F,G,H,I]).

xmove([A,B,C,D,E,b,G,H,I], 6, [A,B,C,D,E,x,G,H,I]).

mu
no
tes
.in

 11

Artificial Intelligence &
Machine Learning Lab

xmove([A,B,C,D,E,F,b,H,I], 7, [A,B,C,D,E,F,x,H,I]).

xmove([A,B,C,D,E,F,G,b,I], 8, [A,B,C,D,E,F,G,x,I]).

xmove([A,B,C,D,E,F,G,H,b], 9, [A,B,C,D,E,F,G,H,x]).

xmove(Board, N, Board) :- write('Illegal move.'), nl.

% The 0-place predicate playo starts a game with the user.

playo :- explain, playfrom([b,b,b,b,b,b,b,b,b]).

explain :-

 write('You play X by entering integer positions followed by a period.'),

 nl,

 display([1,2,3,4,5,6,7,8,9]).

playfrom(Board) :- win(Board, x), write('You win!').

playfrom(Board) :- win(Board, o), write('I win!').

playfrom(Board) :- read(N),

 xmove(Board, N, Newboard),

 display(Newboard),

 orespond(Newboard, Newnewboard),

 display(Newnewboard),

 playfrom(Newnewboard).

1.4.3 8-Puzzle Problem:

/* This predicate initialises the problem states. The first argument of
solve/3 is the initial state, the 2nd the goal state, and the third the plan that
will be produced. */

test(Plan):-

 write('Initial state:'),nl,

 Init= [at(tile4,1), at(tile3,2), at(tile8,3), at(empty,4), at(tile2,5),
at(tile6,6), at(tile5,7), at(tile1,8), at(tile7,9)],

 write_sol(Init),

 Goal= [at(tile1,1), at(tile2,2), at(tile3,3), at(tile4,4), at(empty,5),
at(tile5,6), at(tile6,7), at(tile7,8), at(tile8,9)],

 nl,write('Goal state:'),nl,

 write(Goal),nl,nl,

 solve(Init,Goal,Plan).

mu
no
tes
.in

 12

Artificial Intelligence Lab

solve(State, Goal, Plan):-

 solve(State, Goal, [], Plan).

/*Determines whether Current and Destination tiles are a valid move. */

is_movable(X1,Y1) :- (1 is X1 - Y1) ; (-1 is X1 - Y1) ; (3 is X1 - Y1) ; (-3
is X1 - Y1).

/*This predicate produces the plan. Once the Goal list is a subset of the
current State the plan is complete and it is written to the screen using
write_sol */

solve(State, Goal, Plan, Plan):-

 is_subset(Goal, State), nl,

 write_sol(Plan).

solve(State, Goal, Sofar, Plan):-

 act(Action, Preconditions, Delete, Add),

 is_subset(Preconditions, State),

 \+ member(Action, Sofar),

 delete_list(Delete, State, Remainder),

 append(Add, Remainder, NewState),

 solve(NewState, Goal, [Action|Sofar], Plan).

act(move(X,Y,Z),

 [at(X,Y), at(empty,Z), is_movable(Y,Z)],

 [at(X,Y), at(empty,Z)],

 [at(X,Z), at(empty,Y)]).

/*Check is first list is a subset of the second */

is_subset([H|T], Set):-

 member(H, Set),

 is_subset(T, Set).

is_subset([], _).

/* Remove all elements of 1st list from second to create third. */

delete_list([H|T], Curstate, Newstate):-

 remove(H, Curstate, Remainder),

 delete_list(T, Remainder, Newstate).

delete_list([], Curstate, Curstate).

remove(X, [X|T], T).

mu
no
tes
.in

 13

Artificial Intelligence &
Machine Learning Lab

remove(X, [H|T], [H|R]):-

 remove(X, T, R).

write_sol([]).

write_sol([H|T]):-

 write_sol(T),

 write(H), nl.

append([H|T], L1, [H|L2]):-

 append(T, L1, L2).

append([], L, L).

member(X, [X|_]).

member(X, [_|T]):-

 member(X, T).

1.5 SUMMARY

This chapter explains how prolog is used in the logical programs.
Different applications like water jug problem, tic-tac-toe and decision
making justification problems are described.

1.6 UNIT END EXERCISES

1. Write a PROLOG program to prove a person as a human

2. Explain the object and property relations

3. Write Towers of Hanoi program to apply PROLOG concept

1.7 REFERENCES

1. Logic Programming with Prolog, Max Bramer, Springer

2. Prolog Programming for Artificial Intelligence, E. Kardelj University
. J. Stefan Institute

1.8 BIBLIOGRAPHY

1. https://www.cse.iitd.ac.in/~mcs052942/ai/print/13.txt

2. https://github.com/

mu
no
tes
.in

https://www.cse.iitd.ac.in/~mcs052942/ai/print/13.txt
https://github.com/

 14

UNIT II

2
INTRODUCTION TO PYTHON
PROGRAMMING: LEARN THE

DIFFERENT LIBRARIES
Unit Structure
2.1 NumPy
2.2 Pandas
2.3 SciPy
2.4 Matplotlib
2.5 Scikit Learn.

2.1 NUMPY

● Python library is nothing but a ready made moule.

● This library can be used whenever we want.

● If we are writing a code and if a particular requirement arises then
instead of sitting and writing the whole code we can just use the ready
made code available in the library.

● Thus by using the library our time is getting saved in a very
wonderful manner.

● We can relate the Python library with the real world book library too.
So if you imagine a book library it has a whole set of books with it.
We can choose the book according to our requirements. Similarly in
the python library we can choose a particular set of code which is
needed.

● The extension of library files are “.dll”

● Full form of dll is Dynamic Load Libraries

● So whenever we add a library in our program during the execution
phase it searches it and loads the particular module which is needed.

● Now in this module we are studying about numpy which is one of the
libraries in python.

● NumPy stands for Numerical Python.

● It is one of the most widely used libray.

mu
no
tes
.in

 15

Artificial Intelligence &
Machine Learning Lab

● As it contains the code related to numerical details it is most popular
around data science and machine learning as both these fields need a
lot of numerical logic getting applied in it.

● It is used whenever the situation in coding arises in working with an
array.

● It does have methods that is made up for algebra related logics.

● This Numpy was made in the year 2005

● Example:

 Lets try to insert array using numpy:

 import numpy as ab

 ar= ab.array(([1, 2, 3, 4, 5])

print(ar)

print(type(ar))

Output:

[1 2 3 4 5]

● In the above example in the first line we have imported the library by
typing numpy.

● We have given our library a name called as ab, so now in the program
whenever there is a requirement of numpy we just need to type ab.

● Then we created the variable called ar then we added array data inside
the same

● Then we printed it.

● So output is printing the array data that has been inserted.

The standard way to import NumPy:

import numpy as np

Create a 2-D array, set every second element in

some rows and find max per row:

x = np.arange(15, dtype=np.int64).reshape(3, 5)

x[1:, ::2] = -99

x

array([[0, 1, 2, 3, 4],

[-99, 6, -99, 8, -99],

mu
no
tes
.in

 16

Introduction To Python
Programming: Learn The

Different Libraries

[-99, 11, -99, 13, -99]])

x.max(axis=1)

array([4, 8, 13])

Generate normally distributed random numbers:

rng = np.random.default_rng()

samples = rng.normal(size=2500)

samples

Output

array([0.38054775, -0.06020411, 0.07380668, ..., 1.07546484,

 -0.20855135, 0.09773109])

2.2 PANDAS

● The main role of the pandas library is to analyze the data.

● It is open source in nature

● It is used in relational data

● On the top of Numpy library Pandas library is present.

● It is very quick in nature.

● It was made in the year 2008

● It is very efficient in datas.

● When it comes to pandas it is not necessary that the data should or
should belong to a kind of category but instead it allows many.

● By using pandas you can reshape, analyze, and change your data very
easily.

● Pandas supports two data structures:

1. Series:

 It is an array.

 It can hold any kind of data types like integer, float, character etc.

 It points to the column.

 Example1 : In the below example each column i.e name and roll no
points to series. It is written in the following manner in the code:

 ab=se.Series(df [‘Name’])

mu
no
tes
.in

 17

Artificial Intelligence &
Machine Learning Lab

 ab=se.Series(df [‘Roll no’])

Name Roll no

Madhusri 01

Srivatsan 22

Anuradha 6

Balaguru 55

 Example 2:

import pandas as ab

import numpy as sj

 # Creating empty series

ser = sj.Series()

 print(ser)

simple array

data = sj.array(['g', 'e', 'e', 'k', 's'])

ser = ab.Series(data)

print(ser)

 In the above example two libraries have been imported and are used
namely numpy and pandas.

 The library Pandas is getting represented by ab and similarly the
library numpy is getting represented by sj

 Then series are created by calling it, so an empty series is called and
initialized.

mu
no
tes
.in

 18

Introduction To Python
Programming: Learn The

Different Libraries

 Then it is printed then the array is getting added using numpy

 Then finally they are printed

 The output comes out in the below fashion.

 Output:

Series([], dtype: float64)
 0 g
 1 e
 2 e
 3 k
 4 s
 dtype: object

2. Data Frame:

 It handles 3 parts, mainly data, columns and rows.

 Example:

import pandas as pd

 # Calling DataFrame constructor

df = pd.DataFrame()

print(df)

 # list of strings

lst = ['Madhu, 'For', 'Madhusri', 'is',

 'portal', 'for', 'students’']

 # Calling DataFrame constructor on list

df = pd.DataFrame(lst)

print(df)

Output:Empty DataFrame

Columns: []

Index: []

 0

0 Madhu

1 For

2 Madhusri

3 is

mu
no
tes
.in

 19

Artificial Intelligence &
Machine Learning Lab

4 portal

5 for

6 students

import pandas as pd

df = pd.read_csv('data.csv')

print(df.to_string())

Output:

 Duration Pulse Maxpulse Calories
0 60 110 130 409.1
1 60 117 145 479.0
2 60 103 135 340.0
3 45 109 175 282.4
4 45 117 148 406.0
5 60 102 127 300.5
6 60 110 136 374.0
7 45 104 134 253.3
8 30 109 133 195.1
9 60 98 124 269.0
10 60 103 147 329.3
11 60 100 120 250.7
12 60 106 128 345.3
13 60 104 132 379.3
14 60 98 123 275.0
15 60 98 120 215.2

.

;

;

;

And so on….

2.3 SCIPY

It falls under NumPy:

● It uses scientific and mathematical logic.

● It makes the python very effective as it allows user interaction too.

● It stands for “Scientific Python”

● It is open source

● Manipulating N-dimension array is done through SciPy

mu
no
tes
.in

 20

Introduction To Python
Programming: Learn The

Different Libraries

● Some sub packages of SciPy are as follows:

● Scipy.clusetr: K mean algorithm and such similar algorithms can be
done using this library.

● Scipy.io: Inputs and outputs are handled here

import scipy

print(scipy.__version__)

Output:

0.18.1

2.4 MATPLOTLIB

● It is used to plot graphs

● John D. Hunter created this

● It is open source

● In python you need to install matplotlib pip otherwise the code will
not execute. To do this go to cmd and go the the folder where python
is located any type the following command:

Pip install matplotlib

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([0, 6])

ypoints = np.array([0, 250])

plt.plot(xpoints, ypoints)

plt.show()

mu
no
tes
.in

 21

Artificial Intelligence &
Machine Learning Lab

2.5 SCIKIT LEARN

● It is mainly used in machine learning

● It has lot of statistics related tools

● It is open source.

● By using the Scikit library the efficiency will improve tremendously
as it is quite accurate.

● It is very useful in algorithms which are very famous in machine
learning like K-mean, K-nearest, clustering etc.

● It is available to everybody so any programmer if he or she feels like
utilizing it then can use it.

● Scikit requires Numpy

● Installation of scikit is must to make the program run, this can be done
in the following manner.

pip install -U scikit-learn

● Example:

from sklearn.datasets import load_iris

iris = load_iris()

A= iris.data

y = iris.target

mu
no
tes
.in

 22

Introduction To Python
Programming: Learn The

Different Libraries

feature_names = iris.feature_names

target_names = iris.target_names

print("Feature names:", feature_names)

print("Target names:", target_names)

print("\nFirst 10 rows of A:\n", A[:10])

Output:

Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
'petal width (cm)']

Target names: ['setosa' 'versicolor' 'virginica']

First 10 rows of X:

=
[
 [5.1 3.5 1.4 0.2]
 [4.9 3. 1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5. 3.6 1.4 0.2]
 [5.4 3.9 1.7 0.4]
 [4.6 3.4 1.4 0.3]
 [5. 3.4 1.5 0.2]
 [4.4 2.9 1.4 0.2]
 [4.9 3.1 1.5 0.1]
]

● Features of Scikit learn are as follows:

● Clustering: Scikit can be applied in clustering algorithm, in clustering
the grouping is done on the basis of similarities like eg: age, color etc.

● Cross validation

● Feature selection

● Example:

importing required libraries

import pandas as pd

mu
no
tes
.in

 23

Artificial Intelligence &
Machine Learning Lab

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

read the train and test dataset

train_data = pd.read_csv('train.csv')

test_data = pd.read_csv('test.csv')

print(train_data.head())

shape of the dataset

print('\nShape of training data :',train_data.shape)

print('\nShape of testing data :',test_data.shape)

Now, we need to predict the missing target variable in the test data

target variable - Item_Outlet_Sales

seperate the independent and target variable on training data

train_x = train_data.drop(columns=['Item_Outlet_Sales'],axis=1)

train_y = train_data['Item_Outlet_Sales']

seperate the independent and target variable on training data

test_x = test_data.drop(columns=['Item_Outlet_Sales'],axis=1)

test_y = test_data['Item_Outlet_Sales']

'''

Create the object of the Linear Regression model

You can also add other parameters and test your code here

Some parameters are : fit_intercept and normalize

Documentation of sklearn Linear Regression:

https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LinearRegressio
n.html

 '''

model = LinearRegression()

fit the model with the training data

model.fit(train_x,train_y)

coefficeints of the trained model

mu
no
tes
.in

 24

Introduction To Python
Programming: Learn The

Different Libraries

print('\nCoefficient of model :', model.coef_)

intercept of the model

print('\nIntercept of model',model.intercept_)

predict the target on the test dataset

predict_train = model.predict(train_x)

print('\nItem_Outlet_Sales on training data',predict_train)

Root Mean Squared Error on training dataset

rmse_train = mean_squared_error(train_y,predict_train)**(0.5)

print('\nRMSE on train dataset : ', rmse_train)

predict the target on the testing dataset

predict_test = model.predict(test_x)

print('\nItem_Outlet_Sales on test data',predict_test)

Root Mean Squared Error on testing dataset

rmse_test = mean_squared_error(test_y,predict_test)**(0.5)

print('\nRMSE on test dataset : ', rmse_test)

Output:

Item_Weight ... Outlet_Type_Supermarket Type3

0 6.800000 ... 0

1 15.600000 ... 0

2 12.911575 ... 1

3 11.800000 ... 0

4 17.850000 ... 0

[5 rows x 36 columns]

Shape of training data : (1364, 36)

Shape of testing data : (341, 36)

mu
no
tes
.in

 25

Artificial Intelligence &
Machine Learning Lab

Coefficient of model:

 [-3.84197604e+00 9.83065945e+00 1.61711856e+01 6.09197622e+01

 -8.64161561e+01 1.23593376e+02 2.34714039e+02 -2.44597425e+02

 -2.72938329e+01 -8.09611456e+00 -3.01147840e+02 1.70727611e+02

 -5.40194744e+01 7.34248834e+01 1.70313375e+00 -5.07701615e+01

 1.63553657e+02 -5.85286125e+01 1.04913492e+02 -6.01944874e+01

 1.98948206e+02 -1.40959023e+02 1.19426257e+02 2.66382669e+01

mu
no
tes
.in

 26

UNIT III

3
SUPERVISED LEARNING

Unit Structure
3.0 Objectives
3.1 Introduction - Regression
 3.1.1 What is a Regression
3.2 Types of Regression models
 3.2.1 Linear Regression
 3.2.2 Need of a Linear regression
 3.2.3 Positive Linear Relationship
 3.2.4 Negative Linear Relationship
3.3 Cost function
 3.3.1 Gradient descent
 3.3.2 Impact of different values for learning rate
 3.3.3 Use case

3.3.4 Steps to implement linear regression model
3.4 What is logistic regression?
 3.4.1 Hypothesis
 3.4.2 A sigmoid function
3.5 Cost function
 3.5.1 Gradient Descent
3.6 Lets Sum up
3.7 Exercises
3.8 References

3.0 OBJECTIVES

This Chapter would make you understand the following concepts:
 What is a Regression?

 Types of a Regression.

 What is the mean of Linear regression and the importance of Linear
regression?

 Importance of cost function and gradient descent in a Linear
regression.

 Impact of different values for learning rate.

 What is the mean of logistic regression and the importance of Linear
regression?

mu
no
tes
.in

 27

Artificial Intelligence &
Machine Learning Lab

 Importance of cost function and gradient descent in a logistic
regression.

3.1 INTRODUCTION – REGRESSION

Regression is a supervised learning technique that supports finding the
correlation among variables.

A regression problem is when the output variable is a real or continuous
value.

3.1.1 What is a Regression:

In Regression, we plot a graph between the variables which best fit the
given data points. The machine learning model can deliver predictions
regarding the data. In naïve words, “Regression shows a line or curve
that passes through all the data points on a target-predictor graph in
such a way that the vertical distance between the data points and the
regression line is minimum.” It is used principally for prediction,
forecasting, time series modeling, and determining the causal-effect
relationship between variables.

3.2 TYPES OF REGRESSION MODELS

1. Linear Regression

2. Polynomial Regression

3. Logistics Regression

3.2.1 Linear Regression:

Linear regression is a quiet and simple statistical regression method used
for predictive analysis and shows the relationship between the continuous
variables. Linear regression shows the linear relationship between the
independent variable (X-axis) and the dependent variable (Y-axis),
consequently called linear regression. If there is a single input variable (x),
such linear regression is called simple linear regression. And if there is
more than one input variable, such linear regression is called multiple
linear regression. The linear regression model gives a sloped straight line
describing the relationship within the variables.

mu
no
tes
.in

 28

Supervised Learning

The above graph presents the linear relationship between the dependent
variable and independent variables. When the value of x (independent
variable) increases, the value of y (dependent variable) is likewise
increasing. The red line is referred to as the best fit straight line. Based on
the given data points, we try to plot a line that models the points the best.

To calculate best-fit line linear regression uses a traditional slope-
intercept form.

y= Dependent Variable.

x= Independent Variable.

a0= intercept of the line.

a1 = Linear regression coefficient.

3.2.2 Need of a Linear regression:

Linear regression estimates the relationship between a dependent variable
and an independent variable. Let’s say we want to estimate the salary of an
employee based on year of experience. You have the recent company data,
which indicates that the relationship between experience and salary. Here
year of experience is an independent variable, and the salary of an
employee is a dependent variable, as the salary of an employee is
dependent on the experience of an employee. Using this insight, we can
predict the future salary of the employee based on current & past
information.

A regression line can be a Positive Linear Relationship or a Negative
Linear Relationship.

3.2.3 Positive Linear Relationship:

If the dependent variable expands on the Y-axis and the independent
variable progress on X-axis, then such a relationship is termed a Positive
linear relationship.

mu
no
tes
.in

 29

Artificial Intelligence &
Machine Learning Lab

3.2.4 Negative Linear Relationship:

If the dependent variable decreases on the Y-axis and the independent
variable increases on the X-axis, such a relationship is called a negative
linear relationship.

The goal of the linear regression algorithm is to get the best values for a0
and a1 to find the best fit line. The best fit line should have the least error
means the error between predicted values and actual values should be
minimized.

3.3 COST FUNCTION

The cost function helps to figure out the best possible values for a0 and a1,
which provides the best fit line for the data points.

Cost function optimizes the regression coefficients or weights and
measures how a linear regression model is performing. The cost function
is used to find the accuracy of the mapping function that maps the input
variable to the output variable. This mapping function is also known
as the Hypothesis function.

In Linear Regression, Mean Squared Error (MSE) cost function is used,
which is the average of squared error that occurred between the predicted
values and actual values.

By simple linear equation y=mx+b we can calculate MSE as:

Let’s y = actual values, yi = predicted values

Using the MSE function, we will change the values of a0 and a1 such that
the MSE value settles at the minima. Model parameters xi, b (a0,a1) can be
manipulated to minimize the cost function. These parameters can be

mu
no
tes
.in

 30

Supervised Learning

determined using the gradient descent method so that the cost function
value is minimum.

3.3.1 Gradient descent:

Gradient descent is a method of updating a0 and a1 to minimize the cost
function (MSE). A regression model uses gradient descent to update the
coefficients of the line (a0, a1 => xi, b) by reducing the cost function by a
random selection of coefficient values and then iteratively update the
values to reach the minimum cost function.

Imagine a pit in the shape of U. You are standing at the topmost point in
the pit, and your objective is to reach the bottom of the pit. There is a
treasure, and you can only take a discrete number of steps to reach the
bottom. If you decide to take one footstep at a time, you would eventually
get to the bottom of the pit but, this would take a longer time. If you
choose to take longer steps each time, you may get to sooner but, there is a
chance that you could overshoot the bottom of the pit and not near the
bottom. In the gradient descent algorithm, the number of steps you take is
the learning rate, and this decides how fast the algorithm converges to the
minima.

To update a0 and a1, we take gradients from the cost function. To find
these gradients, we take partial derivatives for a0 and a1.

mu
no
tes
.in

 31

Artificial Intelligence &
Machine Learning Lab

The partial derivates are the gradients, and they are used to update the
values of a0 and a1. Alpha is the learning rate.

3.3.2 Impact of different values for learning rate:

mu
no
tes
.in

 32

Supervised Learning

The blue line represents the optimal value of the learning rate, and the cost
function value is minimized in a few iterations. The green line represents
if the learning rate is lower than the optimal value, then the number of
iterations required high to minimize the cost function. If the learning rate
selected is very high, the cost function could continue to increase with
iterations and saturate at a value higher than the minimum value, that
represented by a red and black line.

3.3.3 Use case:

In this, I will take random numbers for the dependent variable (salary) and
an independent variable (experience) and will predict the impact of a year
of experience on salary.

3.3.4 Steps to implement linear regression model:

a) Import some required libraries
import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

b) Define the dataset

x= np.array([2.4,5.0,1.5,3.8,8.7,3.6,1.2,8.1,2.5,5,1.6,1.6,2.4,3.9,5.4])

y = np.array([2.1,4.7,1.7,3.6,8.7,3.2,1.0,8.0,2.4,6,1.1,1.3,2.4,3.9,4.8])

n = np.size(x)

c) Plot the data points
plt.scatter(experience,salary, color = 'red')

plt.xlabel("Experience")

plt.ylabel("Salary")

plt.show()

mu
no
tes
.in

 33

Artificial Intelligence &
Machine Learning Lab

The main function to calculate values of coefficients:

1. Initialize the parameters.

2. Predict the value of a dependent variable by given an independent
variable.

3. Calculate the error in prediction for all data points.

4. Calculate partial derivative w.r.t a0 and a1.

5. Calculate the cost for each number and add them.

6. Update the values of a0 and a1.

Initialize the parameters:

a0 = 0 #intercept`

a1 = 0 #Slop

lr = 0.0001 #Learning rate

iterations = 1000 # Number of iterations

error = [] # Error array to calculate cost for each iterations.

for itr in range(iterations):

 error_cost = 0

 cost_a0 = 0

 cost_a1 = 0

 for i in range(len(experience)):

 y_pred = a0+a1*experience[i] # predict value for given x

 error_cost = error_cost +(salary[i]-y_pred)**2

 for j in range(len(experience)):

 partial_wrt_a0 = -2 *(salary[j] - (a0 + a1*experience[j]))
#partial derivative w.r.t a0

 partial_wrt_a1 = (-2*experience[j])*(salary[j]-(a0 +
a1*experience[j]))

 #partial derivative w.r.t a1

cost_a0 = cost_a0 + partial_wrt_a0 #calculate cost for each number
and add

mu
no
tes
.in

 34

Supervised Learning

cost_a1 = cost_a1 + partial_wrt_a1 #calculate cost for each number
and add

 a0 = a0 - lr * cost_a0 #update a0

 a1 = a1 - lr * cost_a1 #update a1

 print(itr,a0,a1) #Check iteration and updated a0 and a1

 error.append(error_cost) #Append the data in array

At approximate iteration 50- 60, we got the value of a0 and a1.

print(a0)

print(a1)

Plotting the error for each iteration:

plt.figure(figsize=(10,5))

plt.plot(np.arange(1,len(error)+1),error,color='red',linewidth = 5)

plt.title("Iteration vr error")

plt.xlabel("iterations")

plt.ylabel("Error")

mu
no
tes
.in

 35

Artificial Intelligence &
Machine Learning Lab

Predicting the values:

pred = a0+a1*experience

print(pred)

Plot the regression line:

plt.scatter(experience,salary,color = 'red')

plt.plot(experience,pred, color = 'green')

plt.xlabel("experience")

plt.ylabel("salary")

mu
no
tes
.in

 36

Supervised Learning

Analyze the performance of the model by calculating the mean
squared error.

error1 = salary - pred

se = np.sum(error1 ** 2)

mse = se/n

print("mean squared error is", mse)

Use the scikit library to confirm the above steps:

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

experience = experience.reshape(-1,1)

model = LinearRegression()

model.fit(experience,salary)

salary_pred = model.predict(experience)

Mse = mean_squared_error(salary, salary_pred)

print('slop', model.coef_)

print("Intercept", model.intercept_)

print("MSE", Mse)

mu
no
tes
.in

 37

Artificial Intelligence &
Machine Learning Lab

3.4 WHAT IS LOGISTIC REGRESSION?

Logistic regression is a supervised learning algorithm that outputs values
between zero and one.

3.4.1 Hypothesis:

The objective of a logistic regression is to learn a function that outputs the
probability that the dependent variable is one for each training sample. To
achieve that, a sigmoid / logistic function is required for the
transformation.

3.4.2 A sigmoid function:

Visually, it looks like this:

Fig. 1. Sigmoid Function

This hypothesis is typically represented by the following function:

Where,

 θ is a vector of parameters that corresponds to each independent
variable

 x is a vector of independent variables

mu
no
tes
.in

 38

Supervised Learning

3.5 COST FUNCTION

The cost function for logistic regression is derived from statistics using the
principle of maximum likelyhood estimation, which allows efficient
identification of parameters. In addition the covex property of the cost
function allow gradient descent to work eff ectively.

Where,

● i is one of the mth training samples

● hƟ(xi) is the predicted value for the training sample

● yi is the actual value for the training sample

To understand the cost function, we can look into each of the two
components in isolation:

Suppose yi=1:

if , hƟ(xi) =1 then the predicon error = 0

if , hƟ(xi) =0 then the predicon error approaches infinity

These two scenarios are represented by the blue line in Figure 2 below.

Suppose yi=0:

if , hƟ(xi) =0 then the predicon error = 0

if , hƟ(xi) =1 then the predicon error approaches infinity

These two scenarios are represented by the blue line in Figure 2 below.

 Fig. 2. Logistic Regression Cost Function

mu
no
tes
.in

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

 39

Artificial Intelligence &
Machine Learning Lab

The logistic regression cost function can be further simplified into a one
line equation:

The overall objective is to minimise the cost function by iterating through
diferent values of Ɵ.

3.5.1 Gradient Descent

The gradient descent algorithm is as follows:

repeat until convergence

Where,

● values of j = 0,1, …, n

● α is the learning rate

Note: The gradient descent algorithm is identical to linear regression’s

3.6 LETS SUM UP

 What is a Regression?

 Types of a Regression.

 What is the mean of Linear regression and the importance of Linear
regression?

 Importance of cost function and gradient descent in a Linear
regression.

 Impact of different values for learning rate.

 What is the mean of logistic regression and the importance of Linear
regression?

 Importance of cost function and gradient descent in a logistic
regression.

mu
no
tes
.in

 40

Supervised Learning

3.7 EXERCISES

 Differentiate the Linear regression and logistic regression with a real
time example.

3.8 REFERENCES

 https://www.studytonight.com/post/linear-regression-and-predicting-
values-based-on-a-training-dataset

 https://activewizards.com/blog/5-real-world-examples-of-logistic-
regression-application

 https://www.marktechpost.com/2021/11/12/logistic-regression-with-
a-real-world-example-in-python/

 https://www.statology.org/linear-regression-real-life-
examples/#:~:text=For%20example%2C%20researchers%20might%2
0administer,pressure%20as%20the%20response%20variable.

 https://www.quora.com/What-are-applications-of-linear-and-logistic-
regression

 https://www.statology.org/logistic-regression-real-life-examples/

 https://ncss-wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf

 https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-
machine-learning/

 https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-
on-linear-regression/

 http://home.iitk.ac.in/~shalab/regression/Chapter3-Regression-
MultipleLinearRegressionModel.pdf

 https://www.princeton.edu/~otorres/Regression101.pdf

 https://towardsdatascience.com/machine-learning-basics-with-the-k-
nearest-neighbors-algorithm-6a6e71d01761

 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-
machine-learning

 https://www.analyticsvidhya.com/blog/2021/04/simple-
understanding-and-implementation-of-knn-algorithm/

mu
no
tes
.in

https://www.studytonight.com/post/linear-regression-and-predicting-values-based-on-a-training-dataset
https://www.studytonight.com/post/linear-regression-and-predicting-values-based-on-a-training-dataset
https://activewizards.com/blog/5-real-world-examples-of-logistic-regression-application
https://activewizards.com/blog/5-real-world-examples-of-logistic-regression-application
https://www.marktechpost.com/2021/11/12/logistic-regression-with-a-real-world-example-in-python/
https://www.marktechpost.com/2021/11/12/logistic-regression-with-a-real-world-example-in-python/
https://www.statology.org/linear-regression-real-life-examples/#:~:text=For%20example%2C%20researchers%20might%20administer,pressure%20as%20the%20response%20variable
https://www.statology.org/linear-regression-real-life-examples/#:~:text=For%20example%2C%20researchers%20might%20administer,pressure%20as%20the%20response%20variable
https://www.statology.org/linear-regression-real-life-examples/#:~:text=For%20example%2C%20researchers%20might%20administer,pressure%20as%20the%20response%20variable
https://www.quora.com/What-are-applications-of-linear-and-logistic-regression
https://www.quora.com/What-are-applications-of-linear-and-logistic-regression
https://www.statology.org/logistic-regression-real-life-examples/
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf
https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-machine-learning/
https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-on-linear-regression/
https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-on-linear-regression/
http://home.iitk.ac.in/~shalab/regression/Chapter3-Regression-MultipleLinearRegressionModel.pdf
http://home.iitk.ac.in/~shalab/regression/Chapter3-Regression-MultipleLinearRegressionModel.pdf
https://www.princeton.edu/~otorres/Regression101.pdf

 41

4
SUPERVISED LEARNING

Unit Structure
4.0 Objectives
4.1 Advanced Optimization Algorithms

4.1.1 Multiclass Classification
4.1.2 Bias-Variance Tradeo
4.1.3 Regularization

4.2 Applications of Linear/Logistic regression.
4.2.1 Two things you can do using regression are
4.2.2Application of logistic regression

4.3 K-nearest Neighbors (KNN) Classification Model
4.4 Lets Sum up
4.5 References
4.6 Exercises

4.0 OBJECTIVES

This Chapter would make you understand the following concepts:
 Advanced Optimization Algorithms

 Applications of Linear/Logistic regression.

 KNN- classification

4.1 ADVANCED OPTIMIZATION ALGORITHMS

However, gradient descent is not the only algorithm that can minimize the
cost function. Other advanced optimization algorithms are:

● Conjugate gradient

● BFGS

● L-BFGS

While these advanced algorithms are more complex and difficult to
understand, they have the advantages of converging faster and not needing
to pick learning rate.

4.1.1 Multiclass Classification:

One-vs-rest is a method where you turn a n-class classification problem
into a nth seperate binary classification problem.

mu
no
tes
.in

 42

Supervised Learning

To deal with a multiclass problem, we then train a logistic regression
binary classifier for each class to predict the probability that y = i. The
prediction output for a given new input will be chosen based on the
classifier that has the highest probability.

where is the binary classifier

4.1.2 Bias-Variance Tradeoff :

Overfing occurs when the algorithm tries too hard to fit the training data.
This usually results in a learned hypothesis that is too complex, fails to
generalize to new examples, and a cost funcon that is very close to zero on
the training set. On the contrary, underfing occurs when the algorithm tries
too lile to fit the training data. This usually results in a learned hypothesis

that is not complex enough, and fails to generalize to new examples.

 Underfitting and Overfitting

Conceptually speaking, bias measures the difference between model
predictions and the correct values. Variance refers to the variability of a
model prediction for a given data point if you re-build the model multiple
message.

As seen in Figure 4, the optimal level of model complexity is where
prediction error on unseen data points is minimized. Below the optimal
level of model complexity, bias will increase while variance will decrease
due to a hypothesis that is too simplified. On the contrary, a very complex
model will result in a low bias and high variance situation

mu
no
tes
.in

 43

Artificial Intelligence &
Machine Learning Lab

Bias-Variance Tradeo

4.1.3 Regularization:

For a model to generalize well, regularization is usually introduced to
reduce over fitting of the training data.

This is represented by a regularization term, that is added to the cost
function that penalizes all parameters that are high in value. This leads to a
simpler hypothesis that is less prone to fitting. The new cost function then
becomes:

Where,

● i is one of the training samples

● is the predicted value for the training sample i

● yi is the actual value for the training sample i

● λ is the regularizaon parameter that controls the tradeoff between fing
the training dataset well and having the parameters θ small in values

● j is one of the parameter θ

Overall objecve remains the same:

mu
no
tes
.in

 44

Supervised Learning

Gradient descent remains the same as well:

 repeat until convergence

4.2 APPLICATIONS OF LINEAR/LOGISTIC
REGRESSION

Regression models are generally built on historical data which has some
independent variables and a dependent variable. A dependent variable is a
characteristic or quantity that you want to measure using the independent
variables.

4.2.1 Two things you can do using regression are:

1. Find the impact of the dependent variables on the response based on
the historical data.

2. Use this generalization to predict what can happen in the future using
new cases.

Linear regression is used when the response is a continuous variable (CV).
Some examples of CVs are height of a person, sales of a product, revenues
of a company etc.

Logistic regression is used when the response you want to predict/measure
is categorical with two or more levels. Some examples are gender of a
person, outcome of a football match, etc.

For example let’s take a scenario where you are analyzing the voting
patterns of USA to predict who will win the next election.

In such case you would use:

1. Linear Regression: if you want to predict the number of
people(continuous response) who will vote for democrats/republicans
in each county/city/state etc.,

2. Logistic Regression: if you want to predict the probability that a
certain person will vote for a democrat/republican or not.

Regressions can be used in real world applications such as:

1. Credit Scoring

2. Measuring the success rates of marketing campaigns

3. Predicting the revenues of a certain product

4. Is there going to be an earthquake on a particular day? etc.,

mu
no
tes
.in

 45

Artificial Intelligence &
Machine Learning Lab

4.2.2 Application of logistic regression

Logistic Regression Real Life Example: 1

Medical researchers want to know how exercise and weight impact the
probability of having a heart attack. To understand the relationship
between the predictor variables and the probability of having a heart
attack, researchers can perform logistic regression.

The response variable in the model will be heart attack and it has two
potential outcomes:

● A heart attack occurs.

● A heart attack does not occur.

The results of the model will tell researchers exactly how changes in
exercise and weight affect the probability that a given individual has a
heart attack. The researchers can also use the fitted logistic regression
model to predict the probability that a given individual has a heart
attacked, based on their weight and their time spent exercising.

Logistic Regression Real Life Example: 2

Researchers want to know how GPA, ACT score, and number of AP
classes taken impact the probability of getting accepted into a particular
university. To understand the relationship between the predictor variables
and the probability of getting accepted, researchers can perform logistic
regression.

The response variable in the model will be “acceptance” and it has two
potential outcomes:

● A student gets accepted.

● A student does not get accepted.

The results of the model will tell researchers exactly how changes in GPA,
ACT score, and number of AP classes taken affect the probability that a
given individual gets accepted into the university. The researchers can also
use the fitted logistic regression model to predict the probability that a
given individual gets accepted, based on their GPA, ACT score, and
number of AP classes taken.

Logistic Regression Real Life Example :3

A business wants to know whether word count and country of origin
impact the probability that an email is spam. To understand the
relationship between these two predictor variables and the probability of
an email being spam, researchers can perform logistic regression.

mu
no
tes
.in

 46

Supervised Learning

The response variable in the model will be “spam” and it has two potential
outcomes:

● The email is spam.

● The email is not spam.

The results of the model will tell the business exactly how changes in
word count and country of origin affect the probability of a given email
being spam. The business can also use the fitted logistic regression model
to predict the probability that a given email is spam, based on its word
count and country of origin.

Logistic Regression Real Life Example :4

A credit card company wants to know whether transaction amount and
credit score impact the probability of a given transaction being
fraudulent. To understand the relationship between these two predictor
variables and the probability of a transaction being fraudulent, the
company can perform logistic regression.

The response variable in the model will be “fraudulent” and it has two
potential outcomes:

● The transaction is fraudulent.

● The transaction is not fraudulent.

The results of the model will tell the company exactly how changes in
transaction amount and credit score affect the probability of a given
transaction being fraudulent. The company can also use the fitted logistic
regression model to predict the probability that a given transaction is
fraudulent, based on the transaction amount and the credit score of the
individual who made the transaction.

4.3 K-NEAREST NEIGHBORS (KNN) CLASSIFICATION
MODEL

1. Evaluation procedure 1 - Train and test on the entire dataset

1. Train the model on the entire dataset.

2. Test the model on the same dataset, and evaluate how well we did by
comparing the predicted response values with the true response
values.

In [1]:

read in the iris data

from sklearn.datasets import load_iris

iris = load_iris()

mu
no
tes
.in

 47

Artificial Intelligence &
Machine Learning Lab

create X (features) and y (response)

X = iris.data

y = iris.target

1a. Logistic regression

In [2]:

import the class

from sklearn.linear_model import LogisticRegression

instantiate the model (using the default parameters)

logreg = LogisticRegression()

fit the model with data

logreg.fit(X, y)

predict the response values for the observations in X

logreg.predict(X)

Out[2]:

array([0,

 0,

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [3]:

store the predicted response values

y_pred = logreg.predict(X)

check how many predictions were generated

len(y_pred)

Out[3]:

150

Classification accuracy:

● Proportion of correct predictions

● Common evaluation metric for classification problems

mu
no
tes
.in

 48

Supervised Learning

In [4]:

compute classification accuracy for the logistic regression model

from sklearn import metrics

print(metrics.accuracy_score(y, y_pred))

0.96

● Known as training accuracy when you train and test the model on
the same data

● 96% of our predictions are correct

1b. KNN (K=5)

In [5]:

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

y_pred = knn.predict(X)

print(metrics.accuracy_score(y, y_pred))

0.966666666667

It seems, there is a higher accuracy here but there is a big issue of testing
on your training data

1c. KNN (K=1)

In [6]:

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X, y)

y_pred = knn.predict(X)

print(metrics.accuracy_score(y, y_pred))

1.0

● KNN model:

1. Pick a value for K.

2. Search for the K observations in the training data that are "nearest" to
the measurements of the unknown iris

3. Use the most popular response value from the K nearest neighbors as
the predicted response value for the unknown iris

mu
no
tes
.in

 49

Artificial Intelligence &
Machine Learning Lab

 This would always have 100% accuracy, because we are testing on
the exact same data, it would always make correct predictions

 KNN would search for one nearest observation and find that exact
same observation

 KNN has memorized the training set

 Because we testing on the exact same data, it would always make the
same prediction

1d. Problems with training and testing on the same data:

● Goal is to estimate likely performance of a model on out-of-sample
data

● But, maximizing training accuracy rewards overly complex
models that won't necessarily generalize

● Unnecessarily complex models overfit the training data

Image Credit: Overfitting by Chabacano. Licensed under GFDL via
Wikimedia Commons.

● Green line (decision boundary): overfit

mu
no
tes
.in

http://commons.wikimedia.org/wiki/File:Overfitting.svg#/media/File:Overfitting.svg

 50

Supervised Learning

 Your accuracy would be high but may not generalize well for future
observations

 Your accuracy is high because it is perfect in classifying your training
data but not out-of-sample data

● Black line (decision boundary): just right

 Good for generalizing for future observations

● Hence we need to solve this issue using a train/test split that will be
explained below

2. Evaluation procedure 2 - Train/test split

1. Split the dataset into two pieces: a training set and a testing set.

2. Train the model on the training set.

3. Test the model on the testing set, and evaluate how well we did.

In [7]:

print the shapes of X and y

X is our features matrix with 150 x 4 dimension

print(X.shape)

y is our response vector with 150 x 1 dimension

print(y.shape)

(150, 4)

(150,)

In [8]:

STEP 1: split X and y into training and testing sets

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
random_state=4)

● test_size=0.4

 40% of observations to test set

 60% of observations to training set

● data is randomly assigned unless you use random_state
hyperparameter

 If you use random_state=4

 Your data will be split exactly the same way

mu
no
tes
.in

 51

Artificial Intelligence &
Machine Learning Lab

What did this accomplish?

● Model can be trained and tested on different data

● Response values are known for the testing set, and thus predictions
can be evaluated

● Testing accuracy is a better estimate than training accuracy of out-of-
sample performance

In [9]:

print the shapes of the new X objects

print(X_train.shape)

print(X_test.shape)

(90, 4)

(60, 4)

In [10]:

print the shapes of the new y objects

print(y_train.shape)

print(y_test.shape)

(90,)

(60,)

In [11]:

STEP 2: train the model on the training set

logreg = LogisticRegression()

logreg.fit(X_train, y_train)

mu
no
tes
.in

 52

Supervised Learning

Out[11]:

LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,

 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

 verbose=0, warm_start=False)

In [12]:

STEP 3: make predictions on the testing set

y_pred = logreg.predict(X_test)

compare actual response values (y_test) with predicted response values
(y_pred)

print(metrics.accuracy_score(y_test, y_pred))

0.95

Repeat for KNN with K=5:

In [13]:

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

print(metrics.accuracy_score(y_test, y_pred))

0.966666666667

Repeat for KNN with K=1:

In [14]:

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

print(metrics.accuracy_score(y_test, y_pred))

0.966666666667

Can we locate an even better value for K?

In [15]:

try K=1 through K=25 and record testing accuracy

mu
no
tes
.in

 53

Artificial Intelligence &
Machine Learning Lab

k_range = range(1, 26)

We can create Python dictionary using [] or dict()

scores = []

We use a loop through the range 1 to 26

We append the scores in the dictionary

for k in k_range:

 knn = KNeighborsClassifier(n_neighbors=k)

 knn.fit(X_train, y_train)

 y_pred = knn.predict(X_test)

 scores.append(metrics.accuracy_score(y_test, y_pred))

print(scores)

[0.94999999999999996, 0.94999999999999996, 0.96666666666666667,
0.96666666666666667, 0.96666666666666667, 0.98333333333333328,
0.98333333333333328, 0.98333333333333328, 0.98333333333333328,
0.98333333333333328, 0.98333333333333328, 0.98333333333333328,
0.98333333333333328, 0.98333333333333328, 0.98333333333333328,
0.98333333333333328, 0.98333333333333328, 0.96666666666666667,
0.98333333333333328, 0.96666666666666667, 0.96666666666666667,
0.96666666666666667, 0.96666666666666667, 0.94999999999999996,
0.94999999999999996]

In [16]:

import Matplotlib (scientific plotting library)

import matplotlib.pyplot as plt

allow plots to appear within the notebook

%matplotlib inline

plot the relationship between K and testing accuracy

plt.plot(x_axis, y_axis)

plt.plot(k_range, scores)

plt.xlabel('Value of K for KNN')

plt.ylabel('Testing Accuracy')

Out[16]:

<matplotlib.text.Text at 0x111d43ba8>

mu
no
tes
.in

 54

Supervised Learning

● Training accuracy rises as model complexity increases

● Testing accuracy penalizes models that are too complex or not
complex enough

● For KNN models, complexity is determined by the value of K (lower
value = more complex)

3. Making predictions on out-of-sample data:

In [17]:

instantiate the model with the best known parameters

knn = KNeighborsClassifier(n_neighbors=11)

train the model with X and y (not X_train and y_train)
knn.fit(X, y)

make a prediction for an out-of-sample observation

knn.predict([3, 5, 4, 2])

/Users/ritchieng/anaconda3/envs/py3k/lib/python3.5/site-
packages/sklearn/utils/validation.py:386: DeprecationWarning:

 Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in
0.19. Reshape your data either using X.reshape(-1, 1) if your data has a
single feature or X.reshape(1, -1) if it contains a single sample.

DeprecationWarning)

Out[17]:

array([1])

4. Downsides of train/test split:

● Provides a high-variance estimate of out-of-sample accuracy

● K-fold cross-validation overcomes this limitation

● But, train/test split is still useful because of its flexibility and speed

4.4 LETS SUM UP

 Advanced Optimization Algorithms.

 Applications of Linear/Logistic regression.

 KNN- classification.

mu
no
tes
.in

 55

Artificial Intelligence &
Machine Learning Lab 4.5 EXERCISES

 Appropriate the Linear regression and logistic regression with a real
time example.

 Take a real time example and execute about KNN- classification

4.6 REFERENCES

 https://www.quora.com/What-are-applications-of-linear-and-logistic-
regression

 https://www.statology.org/logistic-regression-real-life-examples/

 https://ncss-wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf

 https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-
machine-learning/

 https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-
on-linear-regression/

 https://towardsdatascience.com/machine-learning-basics-with-the-k-
nearest-neighbors-algorithm-6a6e71d01761

 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-
machine-learning

 https://www.analyticsvidhya.com/blog/2021/04/simple-
understanding-and-implementation-of-knn-algorithm/

mu
no
tes
.in

https://www.quora.com/What-are-applications-of-linear-and-logistic-regression
https://www.quora.com/What-are-applications-of-linear-and-logistic-regression
https://www.statology.org/logistic-regression-real-life-examples/
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Logistic_Regression.pdf
https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-machine-learning/
https://www.analyticsvidhya.com/blog/2021/06/linear-regression-in-machine-learning/
https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-on-linear-regression/
https://www.analyticsvidhya.com/blog/2022/01/an-introductory-note-on-linear-regression/

 56

UNIT IV

5
FEATURES AND EXTRACTION

Unit Structure
5.1 Dimensionality reduction
5.2 Feature selection
5.3 Normalization

5.1 DIMENSIONALITY REDUCTION

Dimensionality reduction eliminates some features of the dataset and
creates a restricted set of features that contains all of the information
needed to predict the target variables more efficiently and accurately.

Reducing the number of features normally also reduces the output
variability and complexity of the learning process. The covariance matrix
is an important step in the dimensionality reduction process. It is a critical
process to check the correlation between different features.

Correlation and its Measurement:

There is a concept of correlation in machine learning that is called
multicollinearity. Multicollinearity exists when one or more independent
variables highly correlate with each other. Multicollinearity makes
variables highly correlated to one another, which makes the variables’
coefficients highly unstable.

The coefficient is a significant part of regression, and if this is unstable,
then there will be a poor outcome of the regression result.
Multicollinearity is confirmed by using Variance Inflation Factors (VIF).
Therefore, if multicollinearity is suspected, it can be checked using the
variance inflation factor (VIF).

Rules from VIF:

● A VIF of 1 would indicate complete independence from any other
variable.

● A VIF between 5 and 10 indicates a very high level of collinearity [4].

● The closer we get to 1, the more ideal the scenario for predictive
modeling.

mu
no
tes
.in

https://online.stat.psu.edu/stat462/node/180/

 57

Artificial Intelligence &
Machine Learning Lab

● Each independent variable regresses against each independent
variable, and we calculate the VIF.

Heatmap also plays a crucial role in understanding the correlation between
variables.

The type of relationship between any two quantities varies over a period of
time.

Correlation varies from -1 to +1

To be precise,

● Values that are close to +1 indicate a positive correlation.

● Values close to -1 indicate a negative correlation.

● Values close to 0 indicate no correlation at all.

Below is the heatmap to show how we will correlate which features are
highly dependent on the target feature and consider them.

The Covariance Matrix and Heatmap:

The covariance matrix is the first step in dimensionality reduction because
it gives an idea of the number of features that strongly relate, and it is
usually the first step in dimensionality reduction because it gives an idea
of the number of strongly related features so that those features can be
discarded.

It also gives the detail of all independent features. It provides an idea of
the correlation between all the different pairs of features.

Identification of features in Iris dataset that are strongly correlated:

Import all the required packages:

import numpy as np
import pandas as pd
from sklearn import datasets
import matplotlib.pyplot as plt
Load Iris dataset:
iris = datasets.load_iris()
iris.data

mu
no
tes
.in

 58

Features And Extraction

Iris dataset.

List all features:

iris.feature_names

Features of the Iris dataset:

Create a covariance matrix:

cov_data = np.corrcoef(iris.data.T)cov_data

Covariance matrix of the Iris dataset.

Plot the covariance matrix to identify the correlation between features
using a heatmap:

img = plt.matshow(cov_data, cmap=plt.cm.rainbow)
plt.colorbar(img, ticks = [-1, 0, 1], fraction=0.045)for x in
range(cov_data.shape[0]):

mu
no
tes
.in

 59

Artificial Intelligence &
Machine Learning Lab

 for y in range(cov_data.shape[1]):
 plt.text(x, y, "%0.2f" % cov_data[x,y], size=12, color='black',
ha="center", va="center")

plt.show()

Heatmap of the correlation matrix.

A correlation from the representation of the heatmap:

● Among the first and the third features.

● Between the first and the fourth features.

● Between the third and the fourth features.

Independent features:

● The second feature is almost independent of the others.

Here the correlation matrix and its pictorial representation have given the
idea about the potential number of features reduction. Therefore, two
features can be kept, and other features can be reduced apart from those
two features.
Feature Selection:

In feature selection, usually, a subset of original features is selected.

mu
no
tes
.in

 60

Features And Extraction

Feature selection

Feature Extraction:

In feature extraction, a set of new features are found. That is found
through some mapping from the existing features. Moreover, mapping can
be either linear or non-linear.

Feature Extraction

Linear Feature Extraction:

Linear feature extraction is straightforward to compute and analytically
traceable.

mu
no
tes
.in

 61

Artificial Intelligence &
Machine Learning Lab

Widespread linear feature extraction methods:

● Principal Component Analysis (PCA): It seeks a projection that
preserves as much information as possible in the data.

● Linear Discriminant Analysis (LDA):- It seeks a projection that best
discriminates the data.

What is Principal Component Analysis?

Principal component analysis (PCA) is an unsupervised linear transformation
technique which is primarily used for feature extraction and dimensionality
reduction. It aims to find the directions of maximum variance in high-
dimensional data and projects the data onto a new subspace with equal
or fewer dimensions than the original one. In the diagram given below,
note the directions of maximum variance of data. This is represented using
PCA1 (first maximum variance) and PC2 (2nd maximum variance).

Fig 1. PCA – Directions of maximum variance

It is the direction of maximum variance of data that helps us identify an
object. For example, in a movie, it is okay to identify objects by 2-dimensions
as these dimensions represent direction of maximum variance. Take a look at
a real-world example of understanding direction of maximum variance in the
following picture representing Taj Mahal of Agra. The diagram below
represents the side view of Taj Mahal. There are multiple dimensions
consisting of information (maximum variance) which helps identify the
picture as Taj Mahal.

Fig.2 Taj Mahal Side View

mu
no
tes
.in

 62

Features And Extraction

Take a look the following picture of Taj Mahal from top view. Note that there
are only fewer dimensions in which information is varying and the variance is
also not much. Hence, it is difficult to identify from top view whether the
picture is of Taj Mahal. Thus, top view can be ignored easily.

Fig3. Taj Mahal Top View

Thus, when training a model to classify whether a given structure is of Taj
Mahal or not, one would want to ignore the dimensions / features related to
top view as they don’t provide much information (as a result of low variance).

How is PCA different than other feature selection techniques?

The way PCA is different from other feature selection techniques such as
random forest, regularization techniques, forward/backward selection
techniques etc is that it does not require class labels to be present (thus
called as unsupervised). More details along with Python code example will
be shared in future posts.

Pca Algorithm for Feature Extraction:

The following represents 6 steps of principal component analysis (PCA)
algorithm:

1. Standardize the dataset: Standardizing / normalizing the dataset is the
first step one would need to take before performing PCA. The PCA
calculates a new projection of the given data set representing one or more
features. The new axes are based on the standard deviation of the value
of these features. So, a feature / variable with a high standard deviation
will have a higher weight for the calculation of axis than a variable /
feature with a low standard deviation. If the data is normalized /
standardized, the standard deviation of all fetaures / variables get
measured on the same scale. Thus, all variables have the same weight
and PCA calculates relevant axis appropriately. Note that the data is

mu
no
tes
.in

 63

Artificial Intelligence &
Machine Learning Lab

standardized / normalized after creating training / test split. Python’s
sklearn.preprocessing StandardScaler class can be used for
standardizing the dataset.

2. Construct the covariance matrix: Once the data is standardized, the
next step is to create n X n-dimensional covariance matrix, where n is the
number of dimensions in the dataset. The covariance matrix stores the
pairwise covariances between the different features. Note that a positive
covariance between two features indicates that the features increase or
decrease together, whereas a negative covariance indicates that the
features vary in opposite directions. Python’ s Numpy cov method can
be used to create covariance matrix.

3. Perform Eigendecomposition of covariance matrix: The next step is
to decompose the covariance matrix into its eigenvectors and
eigenvalues. The eigenvectors of the covariance matrix represent the
principal components (the directions of maximum variance), whereas the
corresponding eigenvalues will define their magnitude. Numpy
linalg.eig or linalg.eigh can be used for decomposing covariance matrix
into eigenvectors and eigenvalues.

4. Selection of most important Eigenvectors/Eigenvalues: Sort the
eigenvalues by decreasing order to rank the corresponding eigenvectors.
Select k eigenvectors, which correspond to the k largest eigenvalues,

where k is the dimensionality of the new feature subspace (). One
can used the concepts of explained variables to select the k most
important eigenvectors.

5. Projection matrix creation of important eigenvectors: Construct a
projection matrix, W, from the top k eigenvectors.

6. Training / test dataset transformation: Finally, transform the d-
dimensional input training and test dataset using the projection matrix to
obtain the new k-dimensional feature subspace.

PCA Python Implementation Step-by-Step:

This section represents custom Python code for extracting the features
using PCA.

Dataset for PCA

mu
no
tes
.in

 64

Features And Extraction

Here are the steps followed for performing PCA:

● Perform one-hot encoding to transform categorical data set to numerical
data set

● Perform training / test split of the dataset

● Standardize the training and test data set

● Construct covariance matrix of the training data set

● Construct eigendecomposition of the covariance matrix

● Select the most important features using explained variance

● Construct project matrix; In the code below, the projection matrix is
created using the five eigenvectors that correspond to the top five
eigenvalues (largest), to capture about 75% of the variance in this dataset

● Transform the training data set into new feature subspace

Here is the custom python code (without using sklearn.decomposition PCA
class) to achieve the above PCA algorithm steps for feature extraction:

1 #
2 # Perform one-hot encoding
3 #
4 categorical_columns = df.columns[df.dtypes == object] # Find all

categorical columns
5
6 df = pd.get_dummies(df, columns = categorical_columns,

drop_first=True)
7 #
8 # Create training / test split
9 #
10 from sklearn.model_selection import train_test_split
11 X_train, X_test, y_train, y_test = X_train, X_test, y_train, y_test =

train_test_split(df[df.columns[df.columns != 'salary']],
12 df['salary'], test_size=0.25, random_state=1)
13 #
14 # Standardize the dataset; This is very important before you apply PCA
15 #
16 from sklearn.preprocessing import StandardScaler
17 sc = StandardScaler()
18 sc.fit(X_train)
19 X_train_std = sc.transform(X_train)
20 X_test_std = sc.transform(X_test)
21 #
22 # Import eigh method for calculating eigenvalues and eigenvectirs
23 #
24 from numpy.linalg import eigh
25 #

mu
no
tes
.in

 65

Artificial Intelligence &
Machine Learning Lab 26 # Determine covariance matrix

27 #
28 cov_matrix = np.cov(X_train_std, rowvar=False)
29 #
30 # Determine eigenvalues and eigenvectors
31 #
32 egnvalues, egnvectors = eigh(cov_matrix)
33 #
34 # Determine explained variance and select the most important

eigenvectors based on explained variance
35 #
36 total_egnvalues = sum(egnvalues)
37 var_exp = [(i/total_egnvalues) for i in sorted(egnvalues,

reverse=True)]
38 #
39 # Construct projection matrix using the five eigenvectors that

correspond to the top five eigenvalues (largest), to capture about 75%
of the variance in this dataset

40 #
41 egnpairs = [(np.abs(egnvalues[i]), egnvectors[:, i])
42 for i in range(len(egnvalues))]
43 egnpairs.sort(key=lambda k: k[0], reverse=True)
44 projectionMatrix = np.hstack((egnpairs[0][1][:, np.newaxis],
45 egnpairs[1][1][:, np.newaxis],
46 egnpairs[2][1][:, np.newaxis],
47 egnpairs[3][1][:, np.newaxis],
48 egnpairs[4][1][:, np.newaxis]))
49 #
50 # Transform the training data set
51 #
52 X_train_pca = X_train_std.dot(projectionMatrix)

Python Sklearn Example:

This section represents Python code for extracting the features
using sklearn.decomposition class PCA. Here is the screenshot of the data
used. Salary is the label. The goal is to predict the salary.

mu
no
tes
.in

 66

Features And Extraction

Here are the steps followed for performing PCA:

● Perform one-hot encoding to transform categorical data set to numerical
data set

● Perform training / test split of the dataset

● Standardize the training and test data set

● Perform PCA by fitting and transforming the training data set to the new
feature subspace and later transforming test data set.

● As a final step, the transformed dataset can be used for training/testing
the model

Here is the python code to achieve the above PCA algorithm
steps for feature extraction:

1 #
2 # Perform one-hot encoding
3 #
4 categorical_columns = df.columns[df.dtypes == object] # Find all

categorical columns
5
6 df = pd.get_dummies(df, columns = categorical_columns,

drop_first=True)
7 #
8 # Create training / test split
9 #
10 from sklearn.model_selection import train_test_split
11 X_train, X_test, y_train, y_test = X_train, X_test, y_train, y_test =

train_test_split(df[df.columns[df.columns != 'salary']],
12 df['salary'], test_size=0.25, random_state=1)
13 #
14 # Standardize the dataset; This is very important before you apply

PCA
15 #
16 from sklearn.preprocessing import StandardScaler
17 sc = StandardScaler()
18 sc.fit(X_train)
19 X_train_std = sc.transform(X_train)
20 X_test_std = sc.transform(X_test)
21 #
22 # Perform PCA
23 #
24 from sklearn.decomposition import PCA
25 pca = PCA()
26 #
27 # Determine transformed features
28 #
29 X_train_pca = pca.fit_transform(X_train_std)
30 X_test_pca = pca.transform(X_test_std)

mu
no
tes
.in

 67

Artificial Intelligence &
Machine Learning Lab 5.2 FEATURE SELECTION

Feature Selection is one of the core concepts in machine learning
which hugely impacts the performance of your model. The data
features that you use to train your machine learning models have a huge
influence on the performance you can achieve. Irrelevant or partially
relevant features can negatively impact model performance. Feature
selection and Data cleaning should be the first and most important step of
your model designing.

Feature Selection is the process where you automatically or manually
select those features which contribute most to your prediction variable or
output in which you are interested in.

Having irrelevant features in your data can decrease the accuracy of the
models and make your model learn based on irrelevant features.

How to select features and what are Benefits of performing feature
selection before modeling your data?

• Reduces Overfitting: Less redundant data means less opportunity to
make decisions based on noise.

• Improves Accuracy: Less misleading data means modeling accuracy
improves.

• Reduces Training Time: fewer data points reduce algorithm
complexity and algorithms train faster.

I want to share my personal experience with this.

I prepared a model by selecting all the features and I got an accuracy of
around 65% which is not pretty good for a predictive model and after
doing some feature selection and feature engineering without doing any
logical changes in my model code my accuracy jumped to 81% which is
quite impressive

Now you know why I say feature selection should be the first and most
important step of your model design.

Feature Selection Methods:

I will share 3 Feature selection techniques that are easy to use and also
gives good results.

1. Univariate Selection

2. Feature Importance

3. Correlation Matrix with Heatmap

mu
no
tes
.in

 68

Features And Extraction

Let’s have a look at these techniques one by one with an example

Description of variables in the above file:

battery_power: Total energy a battery can store in one time measured in
mAh

blue: Has Bluetooth or not

clock_speed: the speed at which microprocessor executes instructions

dual_sim: Has dual sim support or not

fc: Front Camera megapixels

four_g: Has 4G or not

int_memory: Internal Memory in Gigabytes

m_dep: Mobile Depth in cm

mobile_wt: Weight of mobile phone

n_cores: Number of cores of the processor

pc: Primary Camera megapixels

px_height

Pixel Resolution Height

px_width: Pixel Resolution Width

ram: Random Access Memory in MegaBytes

sc_h: Screen Height of mobile in cm

sc_w: Screen Width of mobile in cm

talk_time: The longest time that a single battery charge will last when you
are

three_g: Has 3G or not

touch_screen: Has touch screen or not

wifi: Has wifi or not

price_range: This is the target variable with a value of 0(low cost),
1(medium cost), 2(high cost) and 3(very high cost).

1. Univariate Selection:

Statistical tests can be used to select those features that have the strongest
relationship with the output variable.

mu
no
tes
.in

 69

Artificial Intelligence &
Machine Learning Lab

The scikit-learn library provides the SelectKBest class that can be used
with a suite of different statistical tests to select a specific number of
features.

The example below uses the chi-squared (chi²) statistical test for non-
negative features to select 10 of the best features from the Mobile Price
Range Prediction Dataset.

import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2data =
pd.read_csv("D://Blogs//train.csv")
X = data.iloc[:,0:20] #independent columns
y = data.iloc[:,-1] #target column i.e price range#apply SelectKBest
class to extract top 10 best features
bestfeatures = SelectKBest(score_func=chi2, k=10)
fit = bestfeatures.fit(X,y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
#concat two dataframes for better visualization
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score'] #naming the dataframe columns
print(featureScores.nlargest(10,'Score')) #print 10 best features

Top 10 Best Features using SelectKBest class

2. Feature Importance:

You can get the feature importance of each feature of your dataset by
using the feature importance property of the model.

mu
no
tes
.in

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest

 70

Features And Extraction

Feature importance gives you a score for each feature of your data, the
higher the score more important or relevant is the feature towards your
output variable.

Feature importance is an inbuilt class that comes with Tree Based
Classifiers, we will be using Extra Tree Classifier for extracting the top 10
features for the dataset.

import pandas as pd
import numpy as np
data = pd.read_csv("D://Blogs//train.csv")
X = data.iloc[:,0:20] #independent columns
y = data.iloc[:,-1] #target column i.e price range
from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model = ExtraTreesClassifier()
model.fit(X,y)
print(model.feature_importances_) #use inbuilt class feature_importances
of tree based classifiers
#plot graph of feature importances for better visualization
feat_importances = pd.Series(model.feature_importances_,
index=X.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()

top 10 most important features in data

3. Correlation Matrix with Heatmap:

Correlation states how the features are related to each other or the target
variable.

Correlation can be positive (increase in one value of feature increases the
value of the target variable) or negative (increase in one value of feature
decreases the value of the target variable)

mu
no
tes
.in

 71

Artificial Intelligence &
Machine Learning Lab

Heatmap makes it easy to identify which features are most related to the
target variable, we will plot heatmap of correlated features using the
seaborn library.

import pandas as pd
import numpy as np
import seaborn as snsdata = pd.read_csv("D://Blogs//train.csv")
X = data.iloc[:,0:20] #independent columns
y = data.iloc[:,-1] #target column i.e price range
#get correlations of each features in dataset
corrmat = data.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20,20))
#plot heat map
g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn
")

5.3 NORMALIZATION

Normalization is a technique often applied as part of data preparation for
machine learning. The goal of normalization is to change the values of
numeric columns in the dataset to use a common scale, without distorting

mu
no
tes
.in

 72

Features And Extraction

differences in the ranges of values or losing information. Normalization is
also required for some algorithms to model the data correctly.

For example, assume your input dataset contains one column with values
ranging from 0 to 1, and another column with values ranging from 10,000
to 100,000. The great difference in the scale of the numbers could cause
problems when you attempt to combine the values as features during
modelling.

Normalization avoids these problems by creating new values that maintain
the general distribution and ratios in the source data, while keeping values
within a scale applied across all numeric columns used in the model.

This component offers several options for transforming numeric data:

● You can change all values to a 0-1 scale, or transform the values by
representing them as percentile ranks rather than absolute values.

● You can apply normalization to a single column, or to multiple
columns in the same dataset.

 If you need to repeat the pipeline, or apply the same normalization
steps to other data, you can save the steps as a normalization
transform, and apply it to other datasets that have the same schema.

Normalization Techniques at a Glance:

Four common normalization techniques may be useful:

● scaling to a range

● clipping

● log scaling

● z-score

The following charts show the effect of each normalization technique on
the distribution of the raw feature (price) on the left. The charts are based
on the data set from 1985 Ward's Automotive Yearbook that is part of
the UCI Machine Learning Repository under Automobile Data Set.

Figure 1. Summary of normalization techniques.

mu
no
tes
.in

https://archive.ics.uci.edu/ml/datasets/automobile

 73

Artificial Intelligence &
Machine Learning Lab

Scaling to a Range:

Recall from MLCC that scaling means converting floating-point feature
values from their natural range (for example, 100 to 900) into a standard
range—usually 0 and 1 (or sometimes -1 to +1). Use the following simple
formula to scale to a range:

\[x' = (x - x_{min}) / (x_{max} - x_{min}) \]

Scaling to a range is a good choice when both of the following conditions
are met:

● You know the approximate upper and lower bounds on your data with
few or no outliers.

● Your data is approximately uniformly distributed across that range.

A good example is age. Most age values falls between 0 and 90, and every
part of the range has a substantial number of people.

In contrast, you would not use scaling on income, because only a few
people have very high incomes. The upper bound of the linear scale for
income would be very high, and most people would be squeezed into a
small part of the scale.

Feature Clipping:

If your data set contains extreme outliers, you might try feature clipping,
which caps all feature values above (or below) a certain value to fixed
value. For example, you could clip all temperature values above 40 to be
exactly 40.

You may apply feature clipping before or after other normalizations.

Formula: Set min/max values to avoid outliers:

Figure 2. Comparing a raw distribution and its clipped version.

Another simple clipping strategy is to clip by z-score to +-Nσ (for
example, limit to +-3σ). Note that σ is the standard deviation.

mu
no
tes
.in

https://developers.google.com/machine-learning/crash-course/representation/cleaning-data
https://developers.google.com/machine-learning/glossary#scaling

 74

Features And Extraction

Log Scaling:

Log scaling computes the log of your values to compress a wide range to a
narrow range.

\[x' = log(x) \]

Log scaling is helpful when a handful of your values have many points,
while most other values have few points. This data distribution is known
as the power law distribution. Movie ratings are a good example. In the
chart below, most movies have very few ratings (the data in the tail), while
a few have lots of ratings (the data in the head). Log scaling changes the
distribution, helping to improve linear model performance.

Figure 3. Comparing a raw distribution to its log.

Z-Score:

Z-score is a variation of scaling that represents the number of standard
deviations away from the mean. You would use z-score to ensure your
feature distributions have mean = 0 and std = 1. It’s useful when there are
a few outliers, but not so extreme that you need clipping.

The formula for calculating the z-score of a point, x, is as follows:

\[x' = (x - μ) / σ \]

Note: μ is the mean and σ is the standard deviation.

mu
no
tes
.in

 75

Artificial Intelligence &
Machine Learning Lab

Figure 4. Comparing a raw distribution to its z-score distribution.

Notice that z-score squeezes raw values that have a range of ~40000 down
into a range from roughly -1 to +4.

Suppose you're not sure whether the outliers truly are extreme. In this
case, start with z-score unless you have feature values that you don't want
the model to learn; for example, the values are the result of measurement
error or a quirk.

Configure Normalize Data:

You can apply only one normalization method at a time using this
component. Therefore, the same normalization method is applied to all
columns that you select. To use different normalization methods, use a
second instance of Normalize Data.

1. Add the Normalize Data component to your pipeline. You can find
the component In Azure Machine Learning, under Data
Transformation, in the Scale and Reduce category.

2. Connect a dataset that contains at least one column of all numbers.

3. Use the Column Selector to choose the numeric columns to
normalize. If you don't choose individual columns, by
default all numeric type columns in the input are included, and the
same normalization process is applied to all selected columns.

This can lead to strange results if you include numeric columns that
shouldn't be normalized! Always check the columns carefully.

If no numeric columns are detected, check the column metadata to verify
that the data type of the column is a supported numeric type.

Tip:

To ensure that columns of a specific type are provided as input, try using
the Select Columns in Dataset component before Normalize Data.

4. Use 0 for constant columns when checked: Select this option when
any numeric column contains a single unchanging value. This ensures
that such columns are not used in normalization operations.

mu
no
tes
.in

https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/select-columns-in-dataset

 76

Features And Extraction

5. From the Transformation method dropdown list, choose a single
mathematical function to apply to all selected columns.

 Zscore: Converts all values to a z-score.

The values in the column are transformed using the following formula:

Mean and standard deviation are computed for each column separately.
Population standard deviation is used.

 MinMax: The min-max normalizer linearly rescales every feature to
the [0,1] interval.

Rescaling to the [0,1] interval is done by shifting the values of each
feature so that the minimal value is 0, and then dividing by the new
maximal value (which is the difference between the original maximal and
minimal values).

The values in the column are transformed using the following formula:

 Logistic: The values in the column are transformed using the
following formula:

 LogNormal: This option converts all values to a lognormal scale.

The values in the column are transformed using the following formula:

Here μ and σ are the parameters of the distribution, computed empirically
from the data as maximum likelihood estimates, for each column
separately.

 TanH: All values are converted to a hyperbolic tangent.

mu
no
tes
.in

 77

Artificial Intelligence &
Machine Learning Lab

The values in the column are transformed using the following formula:

6. Submit the pipeline, or double-click the Normalize Data component
and select Run Selected.

Data Normalization with Pandas:

● Pandas: Pandas is an open-source library that’s built on top of
NumPy library. it is a Python package that provides various data
structures and operations for manipulating numerical data and
statistics. It’s mainly popular for importing and analysing data
much easier. Pandas is fast and it’s high-performance &
productive for users.

● Data Normalization: Data Normalization could also be a
typical practice in machine learning which consists of
transforming numeric columns to a standard scale. In machine
learning, some feature values differ from others multiple times.
The features with higher values will dominate the learning
process.

Steps Needed:

Here, we will apply some techniques to normalize the data and
discuss these with the help of examples. For this, let’s understand the
steps needed for data normalization with Pandas.

1. Import Library (Pandas)

2. Import / Load / Create data.

3. Use the technique to normalize the data.

Examples:

Here, we create data by some random values and apply some
normalization techniques to it.

mu
no
tes
.in

 78

Features And Extraction

importing packages
import pandas as pd

create data
df = pd.DataFrame([
 [180000, 110, 18.9, 1400],
 [360000, 905, 23.4, 1800],
 [230000, 230, 14.0, 1300],
 [60000, 450, 13.5, 1500]],
 columns=['Col A', 'Col B',
 'Col C', 'Col D'])
view data
display(df)

Output:

See the plot of this dataframe:

import matplotlib.pyplot as plt

df.plot(kind = 'bar')

mu
no
tes
.in

 79

Artificial Intelligence &
Machine Learning Lab

Let’s apply normalization techniques one by one.

Using The maximum absolute scaling:

The maximum absolute scaling rescales each feature between -1 and
1 by dividing every observation by its maximum absolute value. We
can apply the maximum absolute scaling in Pandas using the .max()
and .abs() methods, as shown below:

copy the data
df_max_scaled = df.copy()

apply normalization techniques
for column in df_max_scaled.columns:
 df_max_scaled[column] = df_max_scaled[column] /
df_max_scaled[column].abs().max()

view normalized data
display(df_max_scaled)

Output:

mu
no
tes
.in

 80

Features And Extraction

See the plot of this dataframe:

import matplotlib.pyplot as plt

df_max_scaled.plot(kind = 'bar')

import matplotlib.pyplot as plt

df_max_scaled.plot(kind = 'bar')

Output:

Using The min-max feature scaling:

The min-max approach (often called normalization) rescales the
feature to a hard and fast range of [0,1] by subtracting the minimum
value of the feature then dividing by the range. We can apply the
min-max scaling in Pandas using the .min() and .max() methods.

copy the data

df_min_max_scaled = df.copy()

apply normalization techniques

for column in df_min_max_scaled.columns:

df_min_max_scaled[column] = (df_min_max_scaled[column] -
df_min_max_scaled[column].min()) /
(df_min_max_scaled[column].max() -
df_min_max_scaled[column].min())

view normalized data

print(df_min_max_scaled)

mu
no
tes
.in

 81

Artificial Intelligence &
Machine Learning Lab Output:

Let’s draw a plot with this dataframe:

import matplotlib.pyplot as plt

df_min_max_scaled.plot(kind = 'bar')

Using The z-score method:

The z-score method (often called standardization) transforms the
info into distribution with a mean of 0 and a typical deviation of 1.
Each standardized value is computed by subtracting the mean of the
corresponding feature then dividing by the quality deviation.

copy the data

df_z_scaled = df.copy()

apply normalization techniques

for column in df_z_scaled.columns:

 df_z_scaled[column] = (df_z_scaled[column] -

mu
no
tes
.in

 82

Features And Extraction

 df_z_scaled[column].mean()) /
df_z_scaled[column].std()

view normalized data

display(df_z_scaled)

Output:

Let’s draw a plot with this dataframe:

import matplotlib.pyplot as plt

df_z_scaled.plot(kind='bar')

mu
no
tes
.in

 83

6
TRANSFORMATION

Unit Structure
6.1 Introduction
6.2 Transformers
6.3 Principle Component Analysis (PCA)

6.1 INTRODUCTION

What is AI Transformation?:

AI transformation is the next step after digital transformation. After a
company adopts digital processes, the next step is to improve the
intelligence of those processes. This would increase the level of
automation as well as the effectiveness of those processes.

AI transformation touches all aspects of the modern enterprise including
both commercial and operational activities. Tech giants are integrating AI
into their processes and products. For example, Google is calling itself
an “AI-first” organization. Besides tech giants, IDC estimates that at
least 90% of new organizations will insert AI technology into their
processes and products by 2025.

What are the steps to AI transformation?:

We have listed below a set of the top 6 steps for Fortune 500 firms.
Smaller firms could skip having in-house teams and strive for less risky
and less investment heavy approaches such as relying on consultants for
targeted projects.

1. Outline your company’s AI strategy:

An AI strategy should include initiatives which will be uncovered as a
result of these exercises:

● Identify your company’s most valuable unique data sources

● Identify the most important processes which can benefit from
automation

● Identify internal resources to drive the AI transformation

● Set ambitious, time-bound business targets

mu
no
tes
.in

https://research.aimultiple.com/ai-is-already-at-the-heart-of-google/
https://www.idc.com/getdoc.jsp?containerId=prUS45613519
https://research.aimultiple.com/ai-consulting/

 84

Transformation

2. Execute pilot projects to gain momentum:

First few projects should create measurable business value while being
attainable. This is important for the transformation to gain trust across the
organization with achieved projects and it creates momentum that will
lead to AI projects with greater success.

These projects can rely on AI/ML powered tools in the marketplace or for
more custom solutions, your company can run a data science
competition and rely on the wisdom of hundreds of data scientists. These
competitions use encrypted data and provide a low cost way to find high
performing data science solutions.

Implementing process mining is one of those easy-to-achieve and
impactful projects. With a process mining tool, your business can identify
existing inefficiencies and automate or improve those processes to achieve
savings or customer experience improvement. Thus, some process mining
tools generate a digital twin of an organization (DTO) which provides an
end-to-end overview of the processes in the company and offers
simulation capabilities to compare actual and hypothetical scenarios.

Another easy-to-deploy and impactful project is automating document-
based processes. While digital transformation projects in the 2000s just
dealt with removing paper from processes, a modern AI/digital
transformation project would reduce manual labour and automate data
extraction and processing of document data.

3. Build an in-house AI transformation team:

Outsourcing the AI work eases the start of the AI transformation process
but building an in-house AI transformation team can be more
advantageous in the long run. If necessary, outsourced partners can help
train your staff for upcoming projects.

4. Provide broad AI training:

Organizations should not expect adequate knowledge about AI
technologies from their staff. In order to have a successful AI
transformation, training each employee in accordance with their role can
be beneficial to achieve objectives.

● Executives and seniors should have knowledge about what AI can do
for the enterprise, how to develop an AI strategy and make proper
resource allocation decisions.

● Leaders of AI project teams should learn how to set direction for AI
projects, allocate resources, monitor and track progress.

● AI engineers should learn how to gather data, train AI models, and
deliver specific AI projects.

mu
no
tes
.in

https://research.aimultiple.com/data-science-competition/
https://research.aimultiple.com/data-science-competition/
https://research.aimultiple.com/what-is-process-mining/
https://research.aimultiple.com/process-mining-tool/
https://research-admin.aimultiple.com/digital-twin-of-an-organization/
https://research.aimultiple.com/document-automation
https://research.aimultiple.com/document-automation
https://research.aimultiple.com/ai-consulting/

 85

Artificial Intelligence &
Machine Learning Lab

5. Develop internal and external communications:

For the road to success in AI transformation, the organization should
ensure alignment across the business by improving internal and external
communication.

6. Update the company’s AI strategy and continue with AI
transformation:

When the team gains momentum from the initial AI projects and forms a
deeper understanding of AI, the organization will have a better
understanding of improvement areas where AI can create the most value.
An updated strategy that considers the company’s track record can set a
better direction for the company.

Here are the four types of transformation in more detail:

Process Transformation:

A significant focus of corporate activity has been in business processes.
Data, analytics, APIs, machine learning and other technologies offer
corporations valuable new ways to reinvent processes throughout the
corporation—with the goal of lowering costs, reducing cycle times, or
increasing quality. We see process transformation on the shop floor where
companies like Airbus have engaged heads-up display glasses to improve
the quality of human inspection of airplanes. We also see process
transformations in customer experience, where companies like Domino's
Pizza have completely re-imagined the food ordering process; Dominos’
AnyWare lets customers order from any device. This innovation increased
customer convenience so much that it helped push the company to
overtake Pizza Hut in sales. And we see companies implementing
technologies like robotic process automation to streamline back office
processes like accounting and legal, for example. Process transformation
can create significant value and adopting technology in these areas is fast
becoming table-stakes. Because these transformations tend to be focused
efforts around specific areas of the business, they are often successfully
led by a CIO or CDO.

Business Model Transformation:

Some companies are pursuing digital technologies to transform traditional
business models. Whereas process transformation focuses on finite areas
of the business, business model transformations are aimed at the
fundamental building blocks of how value is delivered in the industry.
Examples of this kind of innovation are well-known, from Netflix'
reinvention of video distribution, to Apple's reinvention of music delivery
(I-Tunes), to Uber's reinvention of the taxi industry. But this kind of
transformation is occurring elsewhere. Insurance companies like Allstate
and Metromile are using data and analytics to un-bundle insurance
contracts and charge customers by-the-mile—a wholesale change to the
auto insurance business model. And, though not yet a reality, there are

mu
no
tes
.in

 86

Transformation

numerous efforts underway to transform the business of mining to a
wholly robotic exercise, where no humans travel below the surface.

The complex and strategic nature of these opportunities require
involvement and leadership by Strategy and/or Business Units and they
are often launched as separate initiatives while continuing to operate the
traditional business. By changing the fundamental building blocks of
value, corporations that achieve business model transformation open
significant new opportunities for growth. More companies should pursue
this path.

Domain Transformation:

An area where we see surprisingly little focus—but enormous
opportunity—is the area of domain transformation. New technologies are
redefining products and services, blurring industry boundaries and
creating entirely new sets of non-traditional competitors. What many
executives don’t appreciate is the very real opportunity for these new
technologies to unlock wholly new businesses for their companies beyond
currently served markets. And often, it is this type of transformation is that
offers the greatest opportunities to create new value.

A clear example how domain transformation works may be the online
retailer, Amazon. Amazon expanded into a new market domain with the
launch of Amazon Web Services (AWS), now the largest cloud
computing/infrastructure service, in a domain formerly owned by the IT
giants like Microsoft and IBM. What made Amazon’s entry into this
domain possible was a combination of the strong digital capabilities it had
built in storage, computing databases to support its core retail business
coupled with an installed base of thousands of relationships with young,
growing companies that increasingly needed computing services to
grow. AWS is not a mere adjacency or business extension for Amazon,
but a wholly different business in a fundamentally different market space.
The AWS business now represents nearly 60% % of Amazon’s annual
profit.

It may be tempting for Executives of non-tech businesses to view the
experience of Amazon or other digitally-native companies (such as Apple
or Google that have also expanded into new domains) as special; their
ability to acquire and leverage technology may be greater than other
companies. But in today’s digital world, technology gaps are no longer a
barrier. Any company can access and acquire the new technologies needed
to unlock new growth—and do so cheaply and efficiently. The building
block technologies that are unlocking new business domains (artificial
intelligence, machine learning, internet of things (IOT), augmented reality,
etc.) can be sourced today not only from the traditional IT supply-base like
Microsoft or IBM but also from a growing startup ecosystem, where we
see the greatest innovation taking place. Corporations that know how to
reach and leverage this innovation efficiently, particularly from new
sources, are reaping the benefits of new growth.

mu
no
tes
.in

 87

Artificial Intelligence &
Machine Learning Lab

We see (and have helped) numerous industrial companies that have
undergone domain transformations. ThyssenKrupp, a diversified industrial
engineering company, broadened its offerings to introduce a lucrative new
digital business alongside its traditional business. The company leveraged
a strong industrial market position and Internet of Things (IOT)
capabilities to help clients manage the maintenance of elevators with asset
health and predictive maintenance offerings—creating a significant new
source of revenue beyond the core. In another example, a major equipment
manufacturer is moving beyond its core machine offerings to introduce a
digital platform of solutions for its client sites: job-site activity
coordination, remote equipment tracking, situational awareness, and
supply chain optimization. The company is moving to become no longer
merely a heavy equipment provider, but also a digital solutions company.

The lesson is to recognize the new domain opportunities afforded by new
technologies and understand they can be captured—even by traditional
incumbents. Because these opportunities involve re-defining business
boundaries, pursuing these opportunities often involves Strategy and the
CEO.

Cultural/Organizational Transformation:

Full, long-term digital transformation requires redefining organizational
mindsets, processes, and talent & capabilities for the digital world. Best-
in-class corporations recognize digital requires agile workflows, a bias
toward testing and learning, decentralized decision-making, and a greater
reliance on business ecosystems. And they take active steps to bring
change to their organizations. Experian, the consumer credit agency and
one of the most successful digital transformations, changed its
organization by embedding agile development and collaboration into its
workflows and by driving a fundamental shift in employee focus from
equipment to data, company-wide. Similarly, Pitney Bowes, the 100-year
old postage equipment company, made the successful transition to become
a “technology company” by promoting a “culture of innovation,”
according to its head of innovation, and by shifting company values to
focus on customer-centricity.

But neither of these companies focused initially on organization and
culture--being digital isn’t the same as creating value from digital. Instead,
these companies pulled innovation skills, digital mindsets and agility into
the corporation on the back of concrete initiatives to drive
growth. Experian recognized the importance of beginning with a
lighthouse digital project to create internal APIs. It forced teams to adopt
digital workflow practices but in doing so demonstrated the power of
digital to change old organizational norms. Similarly, Pitney Bowes CEO
Mark Lautenbach began its transformation with a primary focus on
customer-facing offerings, developing new commerce cloud to allow
customers to better manage and pay for shipments. “As you’re thinking
about transforming a company… try to realize those cores, those gems that
you have that you can pivot off of to create that next chapter,” he told
Fortune. Progress on business initiatives dragged organizational change

mu
no
tes
.in

 88

Transformation

like agile development and innovation along. Cultural/organizational
change is a long-term requirement of success, but best in class companies
regard the building of these capabilities as a product of, rather than a
prerequisite for, business transformation initiatives.

As technology change increases, industries will continue to be forced to
change. Corporations that regard and pursue digital transformation in a
multi-dimensional way will find greater success than those that don’t.

6.2 TRANSFORMERS

Transformers can be understood in terms of their three components:

1. An Encoder that encodes an input sequence into state representation
vectors.

2. An Attention mechanism that enables our Transformer model to focus
on the right aspects of the sequential input stream. This is used
repeatedly within both the encoder and the decoder to help them
contextualize the input data.

3. A Decoder that decodes the state representation vector to generate the
target output sequence.

mu
no
tes
.in

 89

Artificial Intelligence &
Machine Learning Lab

Understanding the Training Data:

Sample data Point: “write a function that adds two numbers”:

Python Code:

def add_two_numbers (num1 ,num2):
 sum = num1 + num2
 return sum

Tokenizing the Data:

Our Input(SRC) and Output(TRG) sequence exist in the form of single
strings that need to be further tokenized in order to be sent into the
transformer model.

To tokenize the Input sequence we make use of spacy.

Input = data.Field(tokenize = 'spacy',

 init_token='<sos>',

 eos_token='<eos>',

 lower=True)

To tokenize our Output sequence we make use of our custom tokenizer
built upon Python’s source code tokenizer. Python’s tokenizer returns
several attributes for each token. We only extract the token type and the
corresponding string attribute in form of a tuple(i.e., (token_type_int,
token_string)) as the final token.

Tokenized Input:

SRC = [' ', 'write', 'a', 'python', 'function', 'to', 'add', 'two', 'user', 'provided',

 'numbers', 'and', 'return', 'the', 'sum']

Tokenized Output:

TRG = [(57, 'utf-8'), (1, 'def'), (1, 'add_two_numbers'), (53, '('), (1, 'num1'),

(53, ','), (1, 'num2'), (53, ')'), (53, ':'), (4, '\n'), (5, ' '), (1, 'sum'), (53, '='),

(1, 'num1'), (53, '+'), (1, 'num2'), (4, '\n'), (1, 'return'), (1, 'sum'), (4, ''), (6,
''), (0, '')]

Data Augmentations:

While tokenizing the python code, we mask the names of certain variables
randomly(with ‘var_1, ‘var_2’ etc) to ensure that the model that we train
does not merely fixate on the way the variables are named and actually
tries to understand the inherent logic and syntax of the python code.

mu
no
tes
.in

 90

Transformation

For example, consider the following program.

def add_two_numbers (num1 ,num2):

 sum = num1 + num2

 return sum

We can replace some of the above variables to create new data points. The
following are valid augmentations.

1.

def add_two_numbers (var_1 ,num2):
 sum = var_1 + num2
 return sum

2.

def add_two_numbers (num1 ,var_1):
 sum = num1 + var_1
 return sum

3.

def add_two_numbers (var_1 ,var_2):
 sum = var_1 + var_2
 return sum

In the above example, we have therefore expanded a single data point into
3 more data points using our random variable replacement technique.

We implement our augmentations at the time of generating our tokens.

While randomly picking variables to mask we avoid keyword
literals(keyword.kwlist), control structures(as can be seen in
below skip_list), and object properties. We add all such literals that need
to be skipped into the skip_list.

We now apply our augmentations and tokenization using
Pytorch’s torchtext.data.Field.

Output = data.Field(tokenize = augment_tokenize_python_code,
 init_token='<sos>',
 eos_token='<eos>',
 lower=False)

Our tokenized Output after applying tokenization:

TRG = [(57, 'utf-8'), (1, 'def'), (1, 'add_two_numbers'), (53, '('), (1, 'num1'),
(53, ','), (1, 'var_1'), (53, ')'), (53, ':'), (4, '\n'), (5, ' '), (1, 'sum'), (53, '='),

mu
no
tes
.in

https://torchtext.readthedocs.io/en/latest/data.html#torchtext.data.Field

 91

Artificial Intelligence &
Machine Learning Lab

(1, 'num1'), (53, '+'), (1, 'var_1'), (4, '\n'), (1, 'return'), (1, 'sum'), (4, ''), (6,
''), (0, '')]

Feeding Data:

To feed data into our model we first create batches. The tokenized
predictions are then untokenized via the untokenize function of Python’s
source code tokenizer.

Loss Function:

We have used augmentations in our dataset to mask variable literals. This
means that our model can predict a variety of values for a particular
variable and all of them are correct as long as the predictions are

mu
no
tes
.in

https://docs.python.org/3/library/tokenize.html#tokenize.untokenize

 92

Transformation

consistent through the code. This would mean that our training labels are
not very certain and hence it would make more sense to treat them to be
correct with probability 1- smooth_eps and incorrect otherwise. This is
what label smoothening does. By adding label smoothening to Cross-
Entropy we ensure that the model does not become too confident in
predicting some of our variables that can be replaced via augmentations.

Now with all our components set we can train our model using
backpropagation. We split our dataset into training and validation data.
Our model is trained until our validation loss does not improve any
further.

It is important to note that label smoothening leads to much higher loss
values as compared to models that do not make use of label smoothening.
But this is as expected as we do not intend to be certain with our label
predictions. This is particularly the case with variables as there can be
multiple correct options as long as the predictions are consistent through
the target code sequence.

Sample Results:

Input: “program to sort a list of dictionaries by key”
Output:

var_1 ={'Nikhil':{'roll':24 ,'marks':17 },
'Akshat':{'roll':54 ,'marks':12 },
'Akash':{'roll':15 },'marks':15 }}
sort_key ='marks'
res ='marks'
res =var_2 (test_dict .items (),key =lambda x :x [1][sort_key])
print ("The sorted dictionary by marks is : "+str (res))

Input: “function to sum odd elements of list”

Output:

def sum_odd_elements (l :list):
 return sum ([i for i in l if i %2 = =1])

Input: “program to reverse a string”

mu
no
tes
.in

https://arxiv.org/abs/1906.02629
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

 93

Artificial Intelligence &
Machine Learning Lab

Output:

var_1 = 'Today is bad day'
var_1 [::-1]

6.3 PRINCIPLE COMPONENTS ANALYSIS (PCA):

Principal Component Analysis is an unsupervised learning algorithm that
is used for the dimensionality reduction in machine learning. It is a
statistical process that converts the observations of correlated features into
a set of linearly uncorrelated features with the help of orthogonal
transformation. These new transformed features are called the Principal
Components. It is one of the popular tools that is used for exploratory
data analysis and predictive modelling. It is a technique to draw strong
patterns from the given dataset by reducing the variances.

PCA generally tries to find the lower-dimensional surface to project the
high-dimensional data.

PCA works by considering the variance of each attribute because the high
attribute shows the good split between the classes, and hence it reduces the
dimensionality. Some real-world applications of PCA are image
processing, movie recommendation system, optimizing the power
allocation in various communication channels. It is a feature extraction
technique, so it contains the important variables and drops the least
important variable.

The PCA algorithm is based on some mathematical concepts such as:

 Variance and Covariance

 Eigenvalues and Eigen factors

Some common terms used in PCA algorithm:

 Dimensionality: It is the number of features or variables present in
the given dataset. More easily, it is the number of columns present in
the dataset.

 Correlation: It signifies that how strongly two variables are related to
each other. Such as if one changes, the other variable also gets
changed. The correlation value ranges from -1 to +1. Here, -1 occurs
if variables are inversely proportional to each other, and +1 indicates
that variables are directly proportional to each other.

 Orthogonal: It defines that variables are not correlated to each other,
and hence the correlation between the pair of variables is zero.

 Eigenvectors: If there is a square matrix M, and a non-zero vector v
is given. Then v will be eigenvector if Av is the scalar multiple of v.

 Covariance Matrix: A matrix containing the covariance between the
pair of variables is called the Covariance Matrix.

mu
no
tes
.in

https://www.javatpoint.com/machine-learning

 94

Transformation

Principal Components in PCA:

As described above, the transformed new features or the output of PCA
are the Principal Components. The number of these PCs are either equal to
or less than the original features present in the dataset. Some properties of
these principal components are given below:

 The principal component must be the linear combination of the
original features.

 These components are orthogonal, i.e., the correlation between a pair
of variables is zero.

 The importance of each component decreases when going to 1 to n, it
means the 1 PC has the most importance, and n PC will have the least
importance.

Steps for PCA Algorithm:

1. Getting the dataset: Firstly, we need to take the input dataset and
divide it into two subparts X and Y, where X is the training set, and Y
is the validation set.

2. Representing data into a structure: Now we will represent our
dataset into a structure. Such as we will represent the two-dimensional
matrix of independent variable X. Here each row corresponds to the
data items, and the column corresponds to the Features. The number
of columns is the dimensions of the dataset.

3. Standardizing the data: In this step, we will standardize our dataset.
Such as in a particular column, the features with high variance are
more important compared to the features with lower variance.
If the importance of features is independent of the variance of the
feature, then we will divide each data item in a column with the
standard deviation of the column. Here we will name the matrix as Z.

4. Calculating the Covariance of Z: To calculate the covariance of Z,
we will take the matrix Z, and will transpose it. After transpose, we
will multiply it by Z. The output matrix will be the Covariance matrix
of Z.

5. Calculating the Eigen Values and Eigen Vectors: Now we need to
calculate the eigenvalues and eigenvectors for the resultant covariance
matrix Z. Eigenvectors or the covariance matrix are the directions of
the axes with high information. And the coefficients of these
eigenvectors are defined as the eigenvalues.

6. Sorting the Eigen Vectors: In this step, we will take all the
eigenvalues and will sort them in decreasing order, which means from
largest to smallest. And simultaneously sort the eigenvectors
accordingly in matrix P of eigenvalues. The resultant matrix will be
named as P*.

mu
no
tes
.in

 95

Artificial Intelligence &
Machine Learning Lab

7. Calculating the new features Or Principal Components: Here we
will calculate the new features. To do this, we will multiply the P*
matrix to the Z. In the resultant matrix Z*, each observation is the
linear combination of original features. Each column of the Z* matrix
is independent of each other.

8. Remove less or unimportant features from the new dataset: The
new feature set has occurred, so we will decide here what to keep and
what to remove. It means, we will only keep the relevant or important
features in the new dataset, and unimportant features will be removed
out.

Applications of Principal Component Analysis:

 PCA is mainly used as the dimensionality reduction technique in
various AI applications such as computer vision, image
compression, etc.

 It can also be used for finding hidden patterns if data has high
dimensions. Some fields where PCA is used are Finance, data mining,
Psychology, etc.

We can use principal component analysis (PCA) for the following
purposes:

● To reduce the number of dimensions in the dataset.

● To find patterns in the high-dimensional dataset

● To visualize the data of high dimensionality

● To ignore noise

● To improve classification

● To gets a compact description

● To captures as much of the original variance in the data as possible

In summary, we can define principal component analysis (PCA) as the
transformation of any high number of variables into a smaller number of
uncorrelated variables called principal components (PCs), developed to
capture as much of the data’s variance as possible.

PCA was invented in 1901 by Karl Pearson and Harold Hotelling as an
analog of the Principal axis theorem [1] [2] [3].

Mathematically the main objective of PCA is to:

● Find an orthonormal basis for the data.

● Sort dimensions in the order of importance.

● Discard the low significance dimensions.

mu
no
tes
.in

https://zenodo.org/record/1430636#.X6HvO4hKguU
https://pdfs.semanticscholar.org/e0be/f0bd8e07de281230ae5df28daabb4047e8f0.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.325.1383&rep=rep1&type=pdf

 96

Transformation

● Focus on uncorrelated and Gaussian components.

Steps involved in PCA:

● Standardize the PCA.

● Calculate the covariance matrix.

● Find the eigenvalues and eigenvectors for the covariance matrix.

● Plot the vectors on the scaled data.

Example of a problem where PCA is required:

There are 100 students in a class with m different features like grade, age,
height, weight, hair color, and others.

Most of the features may not be relevant that describe the student.
Therefore, it is vital to find the critical features that characterize a student.

Some analysis based on the observation of different features of a student:

● Every student has a vector of data that defines him the length of m.
e.g. (height, weight, hair_color, grade,….) or (181, 68, black, 99, ….).

● Each column is one student vector. So, n = 100.

● It creates an m*n matrix.

● Each student lies in an m-dimensional vector space.

Features to Ignore:

● Collinear features or linearly dependent features. e.g., leg size and
height.

● Noisy features that are constant. e.g., the thickness of hair

● Constant features. e.g., Number of teeth.

Features to Keep:

● Non-collinear features or low covariance.

● Features that change a lot, high variance. e.g., grade.

Math Behind PCA:

It is essential to understand the mathematics involved before kickstarting
PCA. Eigenvalues and eigenvector play important roles in PCA.

Eigenvectors and eigenvalues:

The eigenvectors and eigenvalues of a covariance matrix (or correlation)
describe the source of the PCA. Eigenvectors (main components)

mu
no
tes
.in

 97

Artificial Intelligence &
Machine Learning Lab

determine the direction of the new attribute space, and eigenvalues
determine its magnitude.

The PCA’s main objective is to reduce the data’s dimensionality by
projecting it into a smaller subspace, where the eigenvectors form the
axes. However, the eigenvectors define only the new axes’ directions
because they all have a size of 1. Consequently, to decide which
eigenvector(s), we can discard without losing much information in the
subspace construction and checking the corresponding eigenvalues. The
eigenvectors with the highest values are the ones that include more
information about the distribution of our data.

Covariance Matrix:

The classic PCA approach calculates the covariance matrix, where each
element represents the covariance between two attributes. The covariance
between two attributes is calculated as shown below:

Figure 10: The equation to calculate the covariance between two
attributes.

Create a matrix:

import pandas as pd
import numpy as npmatrix = np.array([[0, 3, 4], [1, 2, 4], [3, 4, 5]])
matrix

Figure 11: Matrix.

Convert matrix to covariance matrix:

np.cov(matrix)

Figure 12: Covariance matrix.

An exciting feature of the covariance matrix is that the sum of the matrix’s
main diagonal is equal to the eigenvalues’ sum.

Correlation Matrix:

Another way to calculate eigenvalues and eigenvectors is by using the
correlation matrix. Although the matrices are different, they will result in
the same eigenvalues and eigenvectors (shown later) since the covariance
matrix's normalization gives the correlation matrix.

mu
no
tes
.in

 98

Transformation

Figure 13: Equation of the correlation matrix.

Create a matrix:

matrix_a = np.array([[0.1, .32, .2, 0.4, 0.8],
 [.23, .18, .56, .61, .12],
 [.9, .3, .6, .5, .3],
 [.34, .75, .91, .19, .21]])

Convert to correlation matrix:

np.corrcoef(matrix_a.T)

Figure 14: Correlation matrix:

How does PCA work?:

Figure 15: Working with PCA [5].

The orthogonal projection of data from high dimensions to lower
dimensions such that (from figure 15):

● Maximizes the variance of the projected line (purple)

● Minimizes the MSE between the data points and projections (blue)

Applications of PCA:

These are the typical applications of PCA:

● Data Visualization.

● Data Compression.

mu
no
tes
.in

https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/tutorial7.pdf

 99

Artificial Intelligence &
Machine Learning Lab

● Noise Reduction.

● Data Classification.

● Image Compression.

● Face Recognition.

Implementation of PCA With Python:

Implementation of principal component analysis (PCA) on the Iris dataset
with Python:

Load Iris dataset:

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaleriris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)df['class']
= iris.target
df

Figure 16: Iris dataset.

Get the value of x and y:

x = df.drop(labels='class', axis=1).values
y = df['class'].values

Implementation of PCA with a covariance Matrix:

class convers_pca():
 def __init__(self, no_of_components):
 self.no_of_components = no_of_components
 self.eigen_values = None
 self.eigen_vectors = None

 def transform(self, x):

mu
no
tes
.in

 100

Transformation

 return np.dot(x - self.mean, self.projection_matrix.T)

 def inverse_transform(self, x):
 return np.dot(x, self.projection_matrix) + self.mean

 def fit(self, x):
 self.no_of_components = x.shape[1] if self.no_of_components is
None else self.no_of_components

 self.mean = np.mean(x, axis=0)

 cov_matrix = np.cov(x - self.mean, rowvar=False)

 self.eigen_values, self.eigen_vectors = np.linalg.eig(cov_matrix)
 self.eigen_vectors = self.eigen_vectors.T

 self.sorted_components = np.argsort(self.eigen_values)[::-1]

 self.projection_matrix =
self.eigen_vectors[self.sorted_components[:self.no_of_components]]self.e
xplained_variance = self.eigen_values[self.sorted_components]

 self.explained_variance_ratio = self.explained_variance /
self.eigen_values.sum()

Standardization of x:

std = StandardScaler()
transformed = StandardScaler().fit_transform(x)

PCA with two components:

pca = convers_pca(no_of_components=2)
pca.fit(transformed)

Check eigenvectors:

cov_pca.eigen_vectors

Check eigenvalues:

cov_pca.eigen_values

Check sorted component:

cov_pca.sorted_components

Plot PCA with several components = 2:

x_std = pca.transform(transformed)plt.figure()
plt.scatter(x_std[:, 0], x_std[:, 1], c=y)

mu
no
tes
.in

 101

Artificial Intelligence &
Machine Learning Lab

 Figure 17: PCA visualization.

mu
no
tes
.in

 102

UNIT V

7
UNSUPERVISED LEARNING

K-MEANS CLUSTERING ALGORITHM
Unit Structure
7.0 Objectives
7.1 Introduction
7.2 Definition
7.3 Basic Algorithms
 7.3.1 K-Means clustering

7.3.2 Practical advantages
7.4 Stages
7.5 Pseudo-code
7.6 The K-Means Algorithm Fits within the Framework of Cover’s

Theorem
7.7 Partitioning Clustering Approach
7.8 The K-means algorithm: a heuristic method

7.8.1 How K-means partitions?
7.8.2 K-means Demo
7.8.3 Application

 7.8.4 Relevant issues of K-Means algorithm
7.9 Lets Sum up
7.10 Unit End Exercises
7.11 References

7.0 OBJECTIVES

This Chapter would make you understand the following concepts:

 What is K-Means clustering algorithm

 Definition of K-Means clustering algorithm

 Basics of K-Means clustering

 Practical advantages of K-Means clustering algorithm

 Stages of K-Means clustering algorithm

 Pseudo code of K-Means clustering algorithm

 The K-Means Algorithm Fits within the Framework of Cover’s
Theorem

mu
no
tes
.in

 103

Artificial Intelligence &
Machine Learning Lab Partitioning Clustering Approach

 The K-means algorithm: a heuristic method

 How K-means partitions?

 K-means Demo

 Application of K-Means algorithm

 Relevant issues of K-Means algorithm

7.1 INTRODUCTION – K-MEANS CLUSTERING
ALGORITHM

K-Means Clustering is an unsupervised learning algorithm that is used to
solve the clustering problems in machine learning or data science.

7.2 DEFINITION: K-MEANS CLUSTERING
ALGORITHM

A prototypical unsupervised learning algorithm is K-means, which is
clustering algorithm. Given X = {x1,...,xm} the goal of K-means is to
partition it into k clusters such that each point in a cluster is similar to
points from its own cluster than with points from some other cluster

7.3 BASIC ALGORITHMS

Towards this end, define prototype vectors µ1,...,µk and an indicator vector
rij which is 1 if, and only if, xi is assigned to cluster j. To cluster our
dataset we will minimize the following distortion measure, which
minimizes the distance of each point from the prototype vector:

 where r = { }, µ = {µj}, and denotes the usual Euclidean
square norm.

7.3.1 K-Means clustering:

The computation is to be performed in an unsupervised manner. In this
section, we describe a solution to this problem that is rooted in clustering,
by which we mean the following:

Clustering is a form of unsupervised learning whereby a set of
observations (i.e., data points) is partitioned into natural groupings or
clusters of patterns in such a way that the measure of similarity between
any pair of observations assigned to each cluster minimizes a specified
cost function.

mu
no
tes
.in

 104

Unsupervised Learning
K-Means Clustering

Algorithm

We have chosen to focus on the so-called K-means algorithm, because it is
simple to implement, yet effective in performance, two features that have
made it highly popular.

Let {Xi }N
i=1 denote a set of multidimensional observations that is to be

partitioned into a proposed set of K clusters, where K is smaller than the
number of observations, N. Let the relationship.

j = C(i), i = 1, 2, ..., N

denote a many-to-one mapper, called the encoder, which assigns the ith
observation xi to the jth cluster according to a rule yet to be defined. To do
this encoding, we need a measure of similarity between every pair of
vectors xi and xi’ which is denoted by d(xi, xi’).When the measure d(xi,
xi’) is small enough, both xi and xi’ are assigned to the same cluster;
otherwise, they are assigned to different clusters.

To optimize the clustering process, we introduce the following cost
function (Hastie et al.,2001):

For a prescribed K, the requirement is to find the encoder C(i)=jfor which
the cost function J(C) is minimized. At this point in the discussion, we
note that the encoder C is unknown—hence the functional dependence of
the cost function J on C.

In K-means clustering, the squared Euclidean norm is used to define the
measure of similarity between the observations xi and xi’ as shown by

 Hence,

We now make two points:

1. The squared Euclidean distance between the observations xi and xi’ is
symmetric; that is,

=

2. The inner summation reads as follows: For a given , the encoder C
assigns to cluster j all the observations that are closest to xi. Except
for a scaling factor, the sum of the observations so assigned is an
estimate of the mean vector pertaining to cluster j; the scaling factor
in question is 1/Nj, where Nj is the number of data points within

mu
no
tes
.in

 105

Artificial Intelligence &
Machine Learning Lab

cluster j. On account of these two points, we may therefore reduce to
the simplified form

where denotes the “estimated” mean vector associated with cluster j4 .In
effect, the mean may be viewed as the center of cluster j. In light of we
may now restate the clustering problem as follows:

Given a set of N observations, find the encoder C that assigns these
observations to the K clusters in such a way that, within each cluster, the
average measure of dissimilarity of the assigned observations from the
cluster mean is minimized.

Indeed, it is because of the essence of this statement that the clustering
technique described herein is commonly known as the K-means algorithm.

For an interpretation of the cost function J(C) we may say that, except for
a scaling factor 1/Nj, the inner summation in this equation is an estimate
of the variance of the observations associated with cluster j for a given
encoder C, as shown by

Accordingly, we may view the cost function J(C) as a measure of the total
cluster variance resulting from the assignments of all the N observations to
the K clusters that are made by encoder C.

With encoder C being unknown, how do we minimize the cost function
J(C) To address this key question, we use an iterative descent algorithm,
each iteration of which involves a two-step optimization. The first step
uses the nearest neighbor rule to minimize the cost function J(C) of with
respect to the mean vector for a given encoder C. The second step
minimizes the inner summation with respect to the encoder C for a given
mean vector .This two-step iterative procedure is continued until
convergence is attained.

Thus, in mathematical terms, the K-means algorithm proceeds in two
steps:

Step 1: For a given encoder C, the total cluster variance is minimized with
respect to the assigned set of cluster means ; that is, we perform, the
following minimization:

 for a given C

Step 2: Having computed the optimized cluster means in step 1,we next
optimize the encoder as follows

mu
no
tes
.in

 106

Unsupervised Learning
K-Means Clustering

Algorithm

Starting from some initial choice of the encoder C, the algorithm goes
back and forth between these two steps until there is no further change in
the cluster assignments.

Each of these two steps is designed to reduce the cost function J(C) in its
own way; hence, convergence of the algorithm is assured. However,
because the algorithm lacks a global optimality criterion, the result may
converge to a local minimum, resulting in a suboptimal solution to the
clustering assignment.

7.3.2 Practical advantages:

Nevertheless, the algorithm has |Practical advantages:

1. The K-means algorithm is computationally efficient, in that its
complexity is linear in the number of clusters.

2. When the clusters are compactly distributed in data space, they are
faithfully recovered by the algorithm.

One last comment is in order: To initialize the K-means algorithm, the
recommended procedure is to start the algorithm with many different
random choices for the means for the proposed size K and then choose the
particular set for which the double summation in assumes the smallest
value

7.4 STAGES OF K-MEANS CLUSTERING ALGORITHM

Our goal is to find r and µ, but since it is not easy to jointly minimize J
with respect to both r and µ, we will adapt a two stage strategy:

Stage 1:

 Keep the µ fixed and determine r.

In this case, it is easy to see that the minimization decomposes into m
independent problems. The solution for the i-th data point xi can be found
by setting:

,

and 0 otherwise.

Stage 2:

Keep the r fixed and determine µ. Since the r’s are fixed, J is an quadratic
function of µ. It can be minimized by setting the derivative with respect to
µj to be 0.

mu
no
tes
.in

 107

Artificial Intelligence &
Machine Learning Lab

Rearranging obtains

Since counts the number of points assigned to cluster j, we are
essentially setting µj to be the sample mean of the points assigned to
cluster j.

7.5 PSEUDO-CODE

Detailed pseudo-code can be found in K-Means Algorithms:

Cluster(X) {Cluster dataset X}

 Initialize cluster centers µj for j = 1,...,k randomly

Repeat

for i = 1 to m do

Compute j’ = arg minj=1,...,k d(xi,µj)

Set rij’ = 1 and rij = 0 for all j’= j

end for

 for j = 1 to k do

Compute µj =

end for

until Cluster assignments rij are unchanged

return {µ1,...,µk} and rij

The algorithm stops when the cluster assignments do not change
significantly.

7.6 THE K-MEANS ALGORITHM FITS WITHIN THE
FRAMEWORK OF COVER’S THEOREM

The K-means algorithm applies a nonlinear transformation to the input
signal x. We say so because the measure of dissimilarity—namely, the
squared Euclidean distance ,on which it is based—is a nonlinear function
of the input signal x for a given cluster center xj. Furthermore, with each
cluster discovered by the K-means algorithm defining a particular
computational unit in the hidden layer, it follows that if the number of

mu
no
tes
.in

 108

Unsupervised Learning
K-Means Clustering

Algorithm

k

clusters, K, is large enough, the K-means algorithm will satisfy the other
requirement of Cover’s theorem—that is, that the dimensionality of the
hidden layer is high enough. We therefore conclude that the K-means
algorithm is indeed computationally powerful enough to transform a set of
nonlinearly separable patterns into separable ones in accordance with this
theorem. Now that this objective has been satisfied, we are ready to
consider designing the linear output layer of the RBF network.

7.7 PARTITIONING CLUSTERING APPROACH

 a typical clustering analysis approach via iteratively partitioning
training data set to learn a partition of the given data space

 learning a partition on a data set to produce several non-empty
clusters (usually, the number of clusters given in advance)

 in principle, optimal partition achieved via ptimizeg the sum of

squared distance to its “representative object” in each cluster

e.g., Euclidean distance d 2 (x,m)= ∑

Ν(xn−mkn)2

 n=1

● Given a K, find a partition of K clusters to ptimize the chosen
partitioning criterion (cost function)

● global optimum: exhaustively search all partitions

7.8 THE K-MEANS ALGORITHM: A HEURISTIC
METHOD

● K-means algorithm (MacQueen’67): each cluster is represented by the
centre of the cluster and the algorithm converges to stable centriods of
clusters.

● K-means algorithm is the simplest partitioning method for clustering
analysis and widely used in data mining applications.

Given the cluster number K, the K-means algorithm is carried out in three
steps after initialisation:

Initialisation: set seed points (randomly)

1. Assign each object to the cluster of the nearest seed point measured
with a specific distance metric

2

 E K

k
1

x C

k

d 2 (x,m) k

mu
no
tes
.in

 109

Artificial Intelligence &
Machine Learning Lab

2. Compute new seed points as the centroids of the clusters of the
current partition (the centroid is the centre, i.e., mean point, of the
cluster)

3. Go back to Step 1), stop when no more new assignment (i.e.,
membership in each cluster no longer changes)

7.8.1 How K-means partitions?:

When K centroids are set/fixed, they partition the whole data space into K
mutually exclusive subspaces to form a partition.

A partition amounts to a Voronoi Diagram -Changing positions of
centroids leads to a new partitioning.

7.8.2 K-means Demo:

K-means
Demo

mu
no
tes
.in

http://en.wikipedia.org/wiki/Voronoi_diagram

 110

Unsupervised Learning
K-Means Clustering

Algorithm

7.8.3 Application:

Colour-Based Image Segmentation Using K-means

Step 1: Loading a colour image of tissue stained with hemotoxylin and
eosin (H&E)

Colour-Based Image Segmentation Using K-means

Step 2: Convert the image from RGB colour space to L*a*b* colour space

● Unlike the RGB colour model, L*a*b* colour is designed to
approximate human vision.

● There is a complicated transformation between RGB and L*a*b*.

(L*, a*, b*) = T(R, G, B).

(R, G, B) = T’(L*, a*, b*).

Colour-Based Image Segmentation Using K-means:

Step 3: Undertake clustering analysis in the (a*, b*) colour space with the
K-means algorithm

● In the L*a*b* colour space, each pixel has a properties or feature
vector:(L*, a*, b*).

● Like feature selection, L* feature is discarded. As a result, each pixel
has a feature vector (a*, b*).

● Applying the K-means algorithm to the image in the a*b* feature space
where K = 3 by applying the domain knowledge.

Colour-Based Image Segmentation Using K-means:

Step 4: Label every pixel in the image using the results from

K-means clustering (indicated by three different grey levels)

mu
no
tes
.in

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Lab_color_space
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html

 111

Artificial Intelligence &
Machine Learning Lab

Colour-Based Image Segmentation Using K-means:

Step 5: Create Images that Segment the H&E Image by Colour

• Apply the label and the colour information of each pixel to achieve
separate colour images corresponding to three clusters.

“blue” pixels “white” pixels

“pink” pixels

Colour-Based Image Segmentation Using K-means:

Step 6: Segment the nuclei into a separate image with the L* feature

• In cluster 1, there are dark and light blue objects (pixels). The dark blue
objects (pixels) correspond to nuclei (with the domain knowledge).

mu
no
tes
.in

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html

 112

Unsupervised Learning
K-Means Clustering

Algorithm

• L* feature specifies the brightness values of each colour.

• With a threshold for L*, we achieve an image containing the nuclei
only.

7.8.4 Relevant issues of K-Means algorithm

Computational complexity

● O(tKn), where n is number of objects, Kis number of clusters, and tis
number of iterations. Normally, K, t << n.

Local optimum

● sensitive to initial seed points

● converge to a local optimum: maybe an unwanted solution

Other problems

● Need to specify K, the number of clusters, in advance

● Unable to handle noisy data and outliers (K-Medoids algorithm)

● Not suitable for discovering clusters with non-convex shapes

 the K-mean performance?

Two issues with K-Means are worth noting.

First, it is sensitive to the choice of the initial cluster centers µ. A number
of practical heuristics have been developed. For instance, one could
randomly choose k points from the given dataset as cluster centers. Other
methods try to pick k points from X which are farthest away from each
other.

Second, it makes a hard assignment of every point to a cluster center.
Variants which we will encounter later in the book will relax this. Instead

mu
no
tes
.in

 113

Artificial Intelligence &
Machine Learning Lab

of letting rij ∈ {0,1} these soft variants will replace it with the probability
that a given xi belongs to cluster j.

The K-Means algorithm concludes our discussion of a set of basic
machine learning methods for classification and regression. They provide
a useful starting point for an aspiring machine learning researcher.

7.9 LET’S SUM UP

We will have a clear idea about Definition , Basic Algorithms, Stages and
Pseudo code of K-Means clustering algorithm.

7.10 UNIT END EXERCISES

 Take a Data set available and execute on different inputs of K-Means
clustering algorithm.

7.11 REFERENCES

 https://www.javatpoint.com/k-means-clustering-algorithm-in-
machine-learning

 https://towardsdatascience.com/k-means-clustering-algorithm-
applications-evaluation-methods-and-drawbacks-aa03e644b48a

 https://www.analyticsvidhya.com/blog/2021/11/understanding-k-
means-clustering-in-machine-learningwith-examples/

 https://www.geeksforgeeks.org/k-means-clustering-introduction/

 https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-
means-clustering-algorithm

mu
no
tes
.in

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://www.analyticsvidhya.com/blog/2021/11/understanding-k-means-clustering-in-machine-learningwith-examples/
https://www.analyticsvidhya.com/blog/2021/11/understanding-k-means-clustering-in-machine-learningwith-examples/
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm

 114

8
UNSUPERVISED LEARNING

K- MEDOID CLUSTERING ALGORITHM
Unit Structure
8.0 Objectives
8.1 Definition – K-Medoid clustering algorithm
8.2 Introduction - K-Medoid clustering algorithm
8.3 K-Means & K-Medoids Clustering- Outliers Comparison

8.4 K-Medoids - Basic Algorithm
8.5 K-Medoids - Pam Algorithm

8.5.1 Typical Pam Example.8.6 Advantages And Disadvantages Of
Pam

8.7 CLARA – Clustering Large Applications
8.7.1 CLARA Algorithm

8.8 Comparison CLARA Vs PAM
8.9 Applications
8.10 General Applications of Clustering
8.11 Working of the K-Medoids approach

8.11.1 Complexity of K-Medoids algorithm
8.11.2 Advantages of the technique

8.12 Practical Implementation
8.13 Lets Sum up
8.14 Unit End Exercises
8.15 References

8.0 OBJECTIVES

This Chapter would make you understand the following concepts:

 What is K-Medoid clustering algorithm

 Definition of K-Medoid clustering algorithm

 Comparison of K-Medoid clustering algorithm

 K-Medoid Basic algorithm

 K-Medoid PAM algorithm

 Clara – Clustering Large Applications

 Working and Practical Implementation

mu
no
tes
.in

 115

Artificial Intelligence &
Machine Learning Lab 8.1 DEFINITION – K-MEDOID CLUSTERING

ALGORITHM

K-Medoids is a clustering algorithm resembling the K-Means clustering
technique. It falls under the category of unsupervised machine learning.

8.2 INTRODUCTION - K-MEDOID CLUSTERING
ALGORITHM

 It majorly differs from the K-Means algorithm in terms of the way it
selects the clusters’ centres. The former selects the average of a cluster’s
points as its centre (which may or may not be one of the data points) while
the latter always picks the actual data points from the clusters as their
centres (also known as ‘exemplars’ or ‘medoids’). K-Medoids also
differs in this respect from the K-Medians algorithm which is the same as
K-means, except that it chooses the medians (instead of means) of the
clusters as centres.

The mean in k-means clustering is sensitive to outliers. Since an object
with an extremely high value may substantially distort the distribution of
data. Hence we move to k-medoids. Instead of taking mean of cluster we
take the most centrally located point in cluster as it’s center. These are
called medoids.

8.3 K-MEANS & K-MEDOIDS CLUSTERING-
OUTLIERS COMPARISON

8.4 K-MEDOIDS - BASIC ALGORITHM

Input: Number of K (the clusters to form)

mu
no
tes
.in

 116

Unsupervised Learning
K- Medoid Clustering

Algorithm

Initialize: Select K points as the initial representative objects i.e initial K-
medoids of our K clusters.

Repeat: Assign each point to the cluster with the closest medoid m.

Randomly select a non-representative object oi

Compute the total cost of swapping S, the medoid m with oi

If S < 0:

Swap m with oi to form new set of medoids.

Stop when convergence criteria is meet.

8.5 K-MEDOIDS - PAM ALGORITHM

PAM stands for Partitioning Around Medoids.

GOAL: To find Clusters that have minimum average dissimilarity
between objects that belong to same cluster.

Algorithm:

1. Start with initial set of medoids.

2. Iteratively replace one of the medoids with a non-medoid if it reduces
total sum of SSE of resulting cluster.

SSE is calculated as below:

mu
no
tes
.in

 117

Artificial Intelligence &
Machine Learning Lab Where k is number of clusters and x is a data point in cluster Ci and Mi is

medo id of Ci

8.5.1 Typical Pam Example:

K-Medoids (Pam) Example:

For K = 2

Randomly Select m1 = (3,4) and m2 =(7,4)

Using Manhattan as similarity metric we get,

C1 = (o1, o2, o3, o4)

mu
no
tes
.in

 118

Unsupervised Learning
K- Medoid Clustering

Algorithm

C2 = (o5, o6, o7, o8, o9, o10)

Compute absolute error as follows:

E = (o1-o2) + (o3-o2) + (o4-o2) + (o5-o8) +(o6-o8)+(o7-o8) +(o9-o8) +
(o10-o8)

 E = (3+4+4) + (3+1+1+2+2)

 Therefore, E = 20

Swapping o8 with o7

Compute absolute error as follows:

E = (o1-o2) + (o3-o2) + (o4-o2) + (o5-o7) +(o6-o7)+(o8-o7) +(o9-o7) +
(o10-o7)

E = (3+4+4) + (2+2+1+3+3)

Therefore, E = 22

Let’s now calculate cost function S for this swap, S = E for (o2,07) - E for
(o2, o8)

S = 22- 20

Therefore S > 0,

This swap is undesirable

8.6 ADVANTAGES and DISADVANTAGES of PAM:

Advantages:

● PAM is more flexible as it can use any similarity measure.

● PAM is more robust than k-means as it handles noise better.

Disadvantages:

PAM algorithm for K-medoid clustering works well for dataset but cannot
scale well for large data set due to high computational overhead.

Pam Complexity : O(k(n-k)
2

) this is because we compute distance of n-k
points with each k point, to decide in which cluster it will fall and after
this we try to replace each of the medoid with a non medoid and find it’s
distance with n-k points.

To overcome this we make use of CLARA

mu
no
tes
.in

 119

Artificial Intelligence &
Machine Learning Lab 8.7 CLARA – CLUSTERING LARGE APPLICATIONS

● Improvement over PAM

● Finds medoids in a sample from the dataset

● [Idea]: If the samples are sufficiently random, the medoids of the
sample approximate the medoids of the dataset

● [Heuristics]: 5 samples of size 40+2k gives satisfactory results

● Works well for large datasets (n=1000, k=10)

8.7.1 Clara Algorithm:

1. Split randomly the data sets in multiple subsets with fixed size
(sampsize)

2. Compute PAM algorithm on each subset and choose the corresponding
k representative objects (medoids). Assign each observation of the
entire data set to the closest medoid.

3. Calculate the mean (or the sum) of the dissimilarities of the
observations to their closest medoid. This is used as a measure of the
goodness of the clustering.

4. Retain the sub-dataset for which the mean (or sum) is minimal. A
further analysis is carried out on the final partition.

8.8 COMPARISON CLARA vs PAM

Strength:
 deals with larger data sets than PAM

 CLARA Outperforms PAM in terms of running time and
quality of clustering

Weakness:

 Efficiency depends on the sample size

 A good clustering based on samples will not necessarily
represent a good clustering of the whole

mu
no
tes
.in

 120

Unsupervised Learning
K- Medoid Clustering

Algorithm

8.9 APPLICATIONS

Social Network:

 Document Clustering

mu
no
tes
.in

 121

Artificial Intelligence &
Machine Learning Lab 8.10 GENERAL APPLICATIONS OF CLUSTERING

1. Recognition

2. Spatial Data Analysis

a. create thematic maps in GIS by clustering feature spaces

b. detect spatial clusters and explain them in spatial data mining

1. Image Processing

2. Economic Science (especially market research)

3. WWW

a. Document classification

b. Cluster Weblog data to discover groups of similar access patterns

8.11 WORKING OF THE K-MEDOIDS APPROACH

The steps followed by the K-Medoids algorithm for clustering are as
follows:

1. Randomly choose ‘k’ points from the input data (‘k’ is the number of
clusters to be formed). The correctness of the choice of k’s value can be
assessed using methods such as silhouette method.

2. Each data point gets assigned to the cluster to which its nearest medoid
belongs.

3. For each data point of cluster i, its distance from all other data points is
computed and added. The point of ith cluster for which the computed
sum of distances from other points is minimal is assigned as the medoid
for that cluster.

4. Steps (2) and (3) are repeated until convergence is reached i.e. the
medoids stop moving.

8.11.1 Complexity of K-Medoids algorithm:

The complexity of the K-Medoids algorithm comes to O(N2CT) where N,
C and T denote the number of data points, number of clusters and number
of iterations respectively. With similar notations, the complexity K-Means
algorithm can be given as O(NCT).

8.11.2 Advantages of the technique:

Mean of the data points is a measure that gets highly affected by the
extreme points. So in K-Means algorithm, the centroid may get shifted to a
wrong position and hence result in incorrect clustering if the data has
outliers because then other points will move away from. On the contrary, a
medoid in the K-Medoids algorithm is the most central element of the

mu
no
tes
.in

https://en.wikipedia.org/wiki/Silhouette_(clustering)

 122

Unsupervised Learning
K- Medoid Clustering

Algorithm

cluster, such that its distance from other points is minimum. Since
medoids do not get influenced by extremities, the K-Medoids algorithm is
more robust to outliers and noise than K-Means algorithm.

The following figure explains how mean’s and medoid’s positions can
vary in the presence of an outlier.

Besides, K-Medoids algorithm can be used with arbitrarily chosen
dissimilarity measure (e.g. cosine similarity) or any distance metric, unlike
K-Means which usually needs Euclidean distance metric to arrive at
efficient solutions.

K-Medoids algorithm is found useful for practical applications such as
face recognition. The medoid can correspond to the typical photo of the
individual whose face is to be recognized. But if K-Means algorithm is
used instead, some blurred image may get assigned as the centroid, which
has mixed features from several photos of the individual and hence makes
the face recognition task difficult.

8.12 PRACTICAL IMPLEMENTATION

Here’s a demonstration of implementing K-Medoids algorithm on a
dataset containing 8*8 dimensional images of handwritten digits. The task
is to divide the data points into 10 clusters (for classes 0-9) using K-
Medoids. The dataset used is a copy of the test set of the original
dataset available on UCI ML Repository. The code here has been
implemented in Google colab using Python 3.7.10 and scikit-learn-extra
0.1.0b2 versions.

Step-Wise Explanation of The Code Is As Follows:

1. Install:

scikit-learn-extra Python module, an extension of scikit-learn designed for
implementing more advanced algorithms that cannot be used by mere
inclusion of scikit-learn in the code.

!pip install scikit-learn-extra

mu
no
tes
.in

https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Euclidean_distance
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/
https://scikit-learn-extra.readthedocs.io/en/latest/index.html#:~:text=scikit%2Dlearn%2Dextra%20is%20a,novelty%20or%20lower%20citation%20number.
https://scikit-learn.org/stable/

 123

Artificial Intelligence &
Machine Learning Lab

2. Import required libraries and modules:

 import numpy as np

 import matplotlib.pyplot as plt

 from sklearn_extra.cluster import KMedoids

 #Import the digits’ dataset available in sklearn.datasets package

 from sklearn.datasets import load_digits

 “””

 Instead of using all 64 attributes of the dataset, we use Principal
Component Analysis (PCA) to reduce the dimensions of features set such
that most of the useful information is covered.

 “””

 from sklearn.decomposition import PCA

 “””

 Import module for standardizing the dataset i.e. rescaling the data such
that its has mean of 0 and standard deviation of 1

 “””

 from sklearn.preprocessing import scale

3. Prepare the input data:

 #Load the digits dataset

 dataset = load_digits()

 #Standardize the data

 digit_data = scale(dataset.data)

 “””

Compute number of output classes i.e. number of digits for which we have
the data (here 10 (0-9))

 “””

 num_digits = len(np.unique(dataset.target))

4. Reduce the dimensions of the data using PCA:

 red_data = PCA(n_components=2).fit_transform(digit_data)

 “””

 PCA constructs new components by linear combinations of original
features. ‘n_components’ parameter denotes the number of newly formed

mu
no
tes
.in

https://scikit-learn-extra.readthedocs.io/en/latest/generated/sklearn_extra.cluster.KMedoids.html#sklearn_extra.cluster.KMedoids
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://en.wikipedia.org/wiki/Principal_component_analysis#:~:text=Principal%20component%20analysis%20(PCA)%20is,components%20and%20ignoring%20the%20rest.
https://en.wikipedia.org/wiki/Principal_component_analysis#:~:text=Principal%20component%20analysis%20(PCA)%20is,components%20and%20ignoring%20the%20rest.
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

 124

Unsupervised Learning
K- Medoid Clustering

Algorithm

components to be considered. fit_transform() method fits the PCA
models and performs dimensionality reduction on digit_data.

 “””

5. Plot the decision boundaries for each cluster. Assign a different
color to each for differentiation:

 h = 0.02 #step size of the mesh

 #Minimum and maximum x-coordinates

 xmin, xmax = red_data[:, 0].min() - 1, red_data[:, 0].max() + 1

 #Minimum and maximum y-coordinates

 ymin, ymax = red_data[:, 1].min() - 1, red_data[:, 1].max() + 1

 xx, yy = np.meshgrid(np.arange(xmin, xmax, h), np.arange(ymin, ymax,
h))

6. Define an array of K-Medoids variants to be used:

We have used three different distance metrics (Manhattan distance,
Euclidean distance and Cosine dissimilarity/distance) for computing
the distance of each data point from every other data point while selecting
the medoid.

Visit this page to know about the distance metrics used in detail.

The parameters we have specified in the KMedoids() method have the
following significance:

● metric – distance metric to be used (default: ‘euclidean’)

● n_clusters – number of clusters to be formed and hence the number of
medoids (one per cluster) (default value: 8)

● init – ‘heuristic’ method used for medoid initialization

 For each data point, itd distance from all other points is computed and
the distances are summed up. N_clusters number of points for which such
a sum of distances are minimum, are chosen as medoids.

● max_iter – maximum number of the algorithm’s iterations to be
performed when fitting the data

The KMedoids() method of scikit-learn-extra by default used
the PAM (Partition Around Medoids) algorithm for finding the
medoids.

 models = [

 (

 KMedoids(metric="manhattan", n_clusters=num_digits,

mu
no
tes
.in

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit_transform
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy-meshgrid
https://medium.com/@kunal_gohrani/different-types-of-distance-metrics-used-in-machine-learning-e9928c5e26c7#:~:text=Manhattan%20distance%20is%20usually%20preferred,similarity%20between%20two%20data%20points.
https://scikit-learn-extra.readthedocs.io/en/latest/generated/sklearn_extra.cluster.KMedoids.html
https://www.cs.umb.edu/cs738/pam1.pdf

 125

Artificial Intelligence &
Machine Learning Lab

 init="heuristic", max_iter=2),"Manhattan metric",

),

 (

 KMedoids(metric="euclidean", n_clusters=num_digits,

 init="heuristic", max_iter=2),"Euclidean metric",

),

 (KMedoids(metric="cosine", n_clusters=num_digits, init="heuristic",

 max_iter=2), "Cosine metric",),

]

7. Initialize the number of rows and columns of the plot for plotting
subplots of each of the three metrics’ results:

 #number of rows = integer(ceiling(number of model variants/2))

 num_rows = int(np.ceil(len(models) / 2.0))

 #number of columns

 num_cols = 2

8. Fit each of the model variants to the data and plot the resultant
clustering:

 #Clear the current figure first (if any)

 plt.clf()

 #Initialize dimensions of the plot

 plt.figure(figsize=(15,10))

 “””

The ‘models’ array defined in step (6) contains three tuples, each having a
model variant’s parameters and its descriptive text. We iterate through
each of the tuples, fit the data to the model and plot the results.

 “””

 for i, (model, description) in enumerate(models):

 # Fit each point in the mesh to the model

 model.fit(red_data)

 #Predict the labels for points in the mesh

 Z = model.predict(np.c_[xx.ravel(), yy.ravel()])

 # Put the result into a color plot

 Z = Z.reshape(xx.shape)

mu
no
tes
.in

https://numpy.org/doc/stable/reference/generated/numpy.c_.html

 126

Unsupervised Learning
K- Medoid Clustering

Algorithm

 #Subplot for the ith model variant

 plt.subplot(num_cols, num_rows, i + 1)

 #Display the subplot

 plt.imshow(

 Z, #data to be plotted

 interpolation="nearest",

 #bounding box coordinates (left,right,bottom,top)

 extent=(xx.min(), xx.max(), yy.min(), yy.max()),

 cmap=plt.cm.Paired, #colormap

 aspect="auto", #aspect ratio of the axes

 origin="lower", #set origin as lower left corner of the axes

)

 plt.plot(

 red_data[:, 0], red_data[:, 1], "k.", markersize=2, alpha=0.3

)

 # Plot the centroids as white cross marks

 centroids = model.cluster_centers_

 plt.scatter(

 centroids[:, 0],

 centroids[:, 1],

 marker="x",

 s=169, #marker’s size (points^2)

 linewidths=3, #width of boundary lines

 color="w", #white color for centroids markings

 zorder=10, #drawing order of axes)

 #describing text of the tuple will be title of the subplot

 plt.title(description)

 plt.xlim(xmin, xmax) #limits of x-coordinates

 plt.ylim(ymin, ymax) #limits of y-coordinates

mu
no
tes
.in

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
https://matplotlib.org/stable/gallery/images_contours_and_fields/interpolation_methods.html
https://matplotlib.org/3.1.1/gallery/misc/zorder_demo.html

 127

Artificial Intelligence &
Machine Learning Lab

 plt.xticks(())

 plt.yticks(())

 #Upper title of the whole plot

 plt.suptitle(

 #Text to be displayed

 "K-Medoids algorithm implemented with different metrics\n\n",

 fontsize=20, #size of the fonts

)

 plt.show()

8.13 LET’S SUM UP

We will have a clear idea about:

 What is K-Medoid clustering algorithm

 Definition of K-Medoid clustering algorithm

 Comparison of K-Medoid clustering algorithm

 K-Medoid Basic algorithm

 K-Medoid PAM algorithm

 Clara – Clustering Large Applications

 Working and Practical Implementation

8.14 UNIT END EXERCISES

 Take a Data set available and execute on different inputs of K-Medoid
clustering algorithm.

8.15 REFERENCES

● http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedo
ids/Kmeans_Kmedoids.html

● https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-
and-practical-examples/

● https://towardsdatascience.com/understanding-k-means-k-means-
and-k-medoids-clustering-algorithms-ad9c9fbf47ca

● https://iq.opengenus.org/k-medoids-clustering/

● https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-
and-practical-examples/

mu
no
tes
.in

http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedoids/Kmeans_Kmedoids.html
http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedoids/Kmeans_Kmedoids.html
https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-and-practical-examples/
https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-and-practical-examples/
https://towardsdatascience.com/understanding-k-means-k-means-and-k-medoids-clustering-algorithms-ad9c9fbf47ca
https://towardsdatascience.com/understanding-k-means-k-means-and-k-medoids-clustering-algorithms-ad9c9fbf47ca
https://iq.opengenus.org/k-medoids-clustering/

 128

UNIT VI

9
CLASSIFYING DATA USING SUPPORT

VECTOR MACHINES (SVMS): SVM-RBF
KERNELS

Unit Structure
9.0 Introduction to SVMS
9.1 What Is A Support Vector Machine, And How Does It Work?
9.2 What Is The Purpose of SVM?
9.3 Importing Datasets
9.4 The Establishment of A Support Vector Machine
9.5 A Simple Description of The SVM Classification Algorithm
9.6 What Is The Best Way To Transform This Problem Into A Linear

One?
9.7 Kernel For The Radial Basis Function (RBF) And Python Examples
9.8 Build A Model With Default Values For C And Gamma
9.9 Radial Basis Function (RBF) Kernel: The Go-To Kernel
9.10 Conclusion
9.11 References

9.0 INTRODUCTION TO SVMS

Support vector machines (SVMs, also known as support vector networks)
are supervised learning models with related learning algorithms for
classification and regression analysis in machine learning. A Support
Vector Machine (SVM) is a discriminative classifier with a separating
hyperplane as its formal definition. In other words, the algorithm produces
an ideal hyperplane that categorizes fresh samples given labeled training
data (supervised learning).

9.1 WHAT IS A SUPPORT VECTOR MACHINE, AND
HOW DOES IT WORK?

An SVM model is a representation of the examples as points in space,
mapped so that the examples of the different categories are separated by as
wide a gap as possible. SVMs may do non-linear classification, implicitly
translating their inputs into high-dimensional feature spaces, in addition to
linear classification.

mu
no
tes
.in

 129

Artificial Intelligence &
Machine Learning Lab 9.2 WHAT IS THE PURPOSE OF SVM?

An SVM training algorithm creates a model that assigns new examples to
one of two categories, making it a non-probabilistic binary linear
classifier, given a series of training examples that are individually
designated as belonging to one of two categories.

Before you go any further, make sure you have a basic knowledge of this
topic. In this article, I'll show you how to use machine learning techniques
like scikit-learn to classify cancer UCI datasets using SVM.

Numpy, Pandas, matplot-lib, and scikit-learn are required.

Let's look at a simple support vector categorization example. To begin, we
must first generate a dataset:

Implemention in python
importing scikit learn with make_blobs

from sklearn.datasets.samples_generator import make_blobs

creating datasets X containing n_samples

Y containing two classes

X, Y = make_blobs(n_samples=500, centers=2,

 random_state=0, cluster_std=0.40)

import matplotlib.pyplot as plt

plotting scatters

plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring');

plt.show()

Output:

mu
no
tes
.in

 130

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

Support vector machines consider a region around the line of a particular
width in addition to drawing a line between two classes. Here's an
example of how it may appear:

creating line space between -1 to 3.5

xfit = np.linspace(-1, 3.5)

plotting scatter

plt.scatter(X[:, 0], X[:, 1], c=Y, s=50, cmap='spring')

plot a line between the different sets of data

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:

 yfit = m * xfit + b

 plt.plot(xfit, yfit, '-k')

 plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',

 color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);

plt.show()

9.3 IMPORTING DATASETS

Support vector machines, which optimize a linear discriminant model
reflecting the perpendicular distance between datasets, have this
understanding. Let's now use our training data to train the classifier. We
must first import cancer datasets as a CSV file, from which we will train
two features out of all the features.

importing required libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

mu
no
tes
.in

 131

Artificial Intelligence &
Machine Learning Lab

 # reading csv file and extracting class column to y.

x = pd.read_csv("C:\...\cancer.csv")

a = np.array(x)

y = a[:,30] # classes having 0 and 1

 # extracting two features

x = np.column_stack((x.malignant,x.benign))

 # 569 samples and 2 features

x.shape

print (x),(y)

[[122.8 1001.]

 [132.9 1326.]

 [130. 1203.]

 ...,

 [108.3 858.1]

 [140.1 1265.]

 [47.92 181.]]

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,

 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 1., 1.,

 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 1.,,

 1.])

9.4 THE ESTABLISHMENT OF A SUPPORT VECTOR
MACHINE

These locations will now be fitted with a Support Vector Machine
Classifier. While the mathematical specifics of the likelihood model are
fascinating, we'll save those for another time. Instead, we'll approach the
scikit-learn algorithm as a black box that performs the aforementioned
work.

import support vector classifier

"Support Vector Classifier"

from sklearn.svm import SVC

clf = SVC(kernel='linear')

mu
no
tes
.in

 132

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

fitting x samples and y classes

clf.fit(x, y)

The model can then be used to forecast new values after it has been fitted:

clf.predict([[120, 990]])

clf.predict([[85, 550]])

array([0.])

array([1.])

Let's have a look at the graph to see what this means.

9.5 A SIMPLE DESCRIPTION OF THE SVM
CLASSIFICATION ALGORITHM

Assume we have a set of points that are divided into two classes. We want
to split those two classes so that we can accurately assign any new points
to one or the other in the future.

The SVM algorithm seeks out a hyperplane that separates these two
classes by the greatest margin possible. A hard margin can be utilized if
classes are entirely linearly separable. Otherwise, a soft margin is
required.

Note that support vectors are the points that end up on the margins.

mu
no
tes
.in

 133

Artificial Intelligence &
Machine Learning Lab

Hard-margin:

The SVM method is used to separate the two classes of points. Scenario
with a tight margin.

● The "H1" hyperplane is incapable of accurately separating the two
classes; hence it is not a suitable solution to our problem.

● The "H2" hyperplane accurately splits classes. The distance between
the hyperplane and the nearest blue and green points, on the other
hand, is extremely small. As a result, there's a good risk that any
future new points may be classified erroneously. The algorithm, for
example, would allocate the new grey point (x1=3, x2=3.6) to the
green class when it is evident that it should belong to the blue class
instead.

● Finally, the "H3" hyperplane appropriately and with the greatest
possible margin divides the two classes (yellow shaded area). A
solution has been discovered!

It's worth noting that determining the maximum feasible margin allows for
a more accurate classification of additional data, resulting in a far more
robust model. When utilizing the "H3" hyperplane, you can see that the
new grey point is correctly allocated to the blue class.

Soft-Margin:

It may not always be possible to completely separate the two classes. In
such cases, a soft-margin is employed, with some points permitted to be
misclassified or to fall within the margin (yellow shaded area). This is
where the "slack" value, represented by ξ (xi).

mu
no
tes
.in

 134

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

The SVM method is used to separate the two classes of points. Scenario
with a soft margin.

The green point inside the margin is treated as an outlier by the "H4"
hyperplane in this case. As a result, the support vectors are the two green
spots closest to the main group. This increases the model's resilience by
allowing for a bigger margin.

Note that you may tweak the hyperparameter C to decide how much you
care about misclassifications (and points inside the margin) in the
algorithm. C is essentially a weight that has been assigned to. A low C
wants to categorize all training instances correctly, producing a closer
match to the training data but making it less robust, whereas a high C
strives to classify all training examples correctly, producing a closer fit to
the training data but making it less robust.

While a high C value will likely result in higher model performance on the
training data, there is a substantial risk of over fitting the model, which
will result in poor test data outcomes.

Kernel Trick:

SVM was previously explained in the context of linearly separable blue
and green classes. What if we wanted to use SVMs to solve non-linear
problems? How would we go about doing that? The kernel technique
comes into play at this point. A kernel is a function that takes a nonlinear
problem and converts it to a linear problem in a higher-dimensional space.
Let's look at an example to demonstrate this method.

mu
no
tes
.in

 135

Artificial Intelligence &
Machine Learning Lab

Assume you have two classes, red and black, as indicated in the
diagram below:

Data in its original two-dimensional form.

As you can see, red and black points are not linearly separable because
there is no way to construct a line that separates these two classes. We can,
however, distinguish them by drawing a circle with all of the red dots
inside and the black points outside.

9.6 WHAT IS THE BEST WAY TO TRANSFORM THIS
PROBLEM INTO A LINEAR ONE?

Make a third dimension out of the sum of squared x and y values:

z = x² + y²

We can now design a hyperplane (flat 2D surface) to separate red and
black points using this three-dimensional space with x, y, and z values. As
a result, the SVM classification algorithm is now available.

9.7 KERNEL FOR THE RADIAL BASIS FUNCTION
(RBF) AND PYTHON EXAMPLES

The default kernel in sklearn's SVM classification algorithm is RBF,
which can be defined using the formula:

Where gamma can be adjusted manually and must be greater than zero. In
sklearn's SVM classification method, the default value for gamma is:

mu
no
tes
.in

 136

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

Briefly:

||x - x'||² Between two feature vectors, 2 is the squared Euclidean distance
(2 points). Gamma is a scalar that expresses how powerful a single
training sample (point) can be.

As a result of the above design, we can control the influence of specific
points on the overall algorithm. The bigger the gamma, the closer the other
points must be to have an impact on the model. In the Python examples
below, we'll see how adjusting gamma affects the results.

Setup:

The following data and libraries will be used:

● Kaggle chess games data

● Scikit-learn library for separating the data into train-test samples,
creating SVM classification models, and model evaluation

● Data manipulation with Pandas and Numpy

Let’s import all the libraries:

make optimal hyperplanes using matplotlib function.

import pandas as pd # for data manipulation

import numpy as np # for data manipulation

from sklearn.model_selection import train_test_split # for splitting the
data into train and test samples

from sklearn.metrics import classification_report # for model evaluation
metrics

from sklearn.svm import SVC # for Support Vector Classification model

import plotly.express as px # for data visualization

import plotly.graph_objects as go # for data visualization

After you've saved the data to your machine, use the code below to ingest
it. We also get a few new variables that we can use in the modeling.

Read in the csv

df=pd.read_csv('games.csv', encoding='utf-8')

Difference between white rating and black rating - independent variable

df['rating_difference']=df['white_rating']-df['black_rating']

White wins flag (1=win vs. 0=not-win) - dependent (target) variable

df['white_win']=df['winner'].apply(lambda x: 1 if x=='white' else 0)

mu
no
tes
.in

 137

Artificial Intelligence &
Machine Learning Lab

Print a snapshot of a few columns

df.iloc[:,[0,1,5,6,8,9,10,11,13,16,17]]

Let's now write a few functions that we may use to generate different
models and plot the results.

This function divides the data into train and test samples, fits the model,
predicts the outcome on a test set, and calculates model performance
metrics.

def fitting(X, y, C, gamma):

 # Create training and testing samples

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)

 # Fit the model

 # Note, available kernels: {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’,
‘precomputed’}, default=’rbf’

 model = SVC(kernel='rbf', probability=True, C=C, gamma=gamma)

 clf = model.fit(X_train, y_train)

 # Predict class labels on training data

 pred_labels_tr = model.predict(X_train)

 # Predict class labels on a test data
 pred_labels_te = model.predict(X_test)

 # Use score method to get accuracy of the model

 print('----- Evaluation on Test Data -----')

 score_te = model.score(X_test, y_test)

mu
no
tes
.in

 138

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

 print('Accuracy Score: ', score_te)

 # Look at classification report to evaluate the model

 print(classification_report(y_test, pred_labels_te))

 print('--')

 print('----- Evaluation on Training Data -----')

 score_tr = model.score(X_train, y_train)

 print('Accuracy Score: ', score_tr)

 # Look at classification report to evaluate the model

 print(classification_report(y_train, pred_labels_tr))

 print('--')

 # Return relevant data for chart plotting

 return X_train, X_test, y_train, y_test, clf

With the test data and model prediction surface, the following function
will create a Plotly 3D scatter graph.

def Plot_3D(X, X_test, y_test, clf):

 # Specify a size of the mesh to be used

 mesh_size = 5

 margin = 1

 # Create a mesh grid on which we will run our model

 x_min, x_max = X.iloc[:, 0].fillna(X.mean()).min() - margin, X.iloc[:,
0].fillna(X.mean()).max() + margin

 y_min, y_max = X.iloc[:, 1].fillna(X.mean()).min() - margin, X.iloc[:,
1].fillna(X.mean()).max() + margin

 xrange = np.arange(x_min, x_max, mesh_size)

 yrange = np.arange(y_min, y_max, mesh_size)

 xx, yy = np.meshgrid(xrange, yrange)

 # Calculate predictions on grid

 Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

 Z = Z.reshape(xx.shape)

mu
no
tes
.in

 139

Artificial Intelligence &
Machine Learning Lab

 # Create a 3D scatter plot with predictions

 fig = px.scatter_3d(x=X_test['rating_difference'], y=X_test['turns'],
z=y_test,

 opacity=0.8, color_discrete_sequence=['black'])

 # Set figure title and colors

 fig.update_layout(#title_text="Scatter 3D Plot with SVM Prediction
Surface",

 paper_bgcolor = 'white',

 scene = dict(xaxis=dict(backgroundcolor='white',

 color='black',

 gridcolor='#f0f0f0'),

 yaxis=dict(backgroundcolor='white',

 color='black',

 gridcolor='#f0f0f0'

),

 zaxis=dict(backgroundcolor='lightgrey',
 color='black',

 gridcolor='#f0f0f0',

)))

 # Update marker size

 fig.update_traces(marker=dict(size=1))

 # Add prediction plane

 fig.add_traces(go.Surface(x=xrange, y=yrange, z=Z, name='SVM
Prediction',

 colorscale='RdBu', showscale=False,

 contours = {"z": {"show": True, "start": 0.2, "end": 0.8,
"size": 0.05}}))

fig.show()

9.8 BUILD A MODEL WITH DEFAULT VALUES FOR C
AND GAMMA

Let's create our first SVM model with the 'rating difference' and 'turns'
fields as independent variables (attributes/predictors) and the 'white win'
flag as the target.

mu
no
tes
.in

 140

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

Note that we're cheating a little because the final number of moves won't
be known until after the match. As a result, if we were to make model
predictions before the match, we wouldn't be able to use 'turns.' However,
this is merely for demonstration purposes, therefore we'll use it in the
examples below.

The code is brief because we're using our previously defined 'fitting'
function.

Select data for modeling

X=df[['rating_difference', 'turns']]

y=df['white_win'].values

Fit the model and display results

X_train, X_test, y_train, y_test, clf = fitting(X, y, 1, 'scale')

The function prints the following model evaluation metrics:

SVM model performance metrics.

We can see that the model's performance on test data is similar to that on
training data, indicating that the default hyperparameters allow the model
to generalize well.

Now we'll use the Plot 3D function to see the prediction:

Plot_3D(X, X_test, y_test, clf)

mu
no
tes
.in

 141

Artificial Intelligence &
Machine Learning Lab

SVM classification model prediction plane using default hyperparameters.

Note that the top black spots are actual class=1 (white won), whereas the
bottom black points are actual class=0 (white did not win). Meanwhile, the
surface represents the model's chance of white wine.

While the probability varies locally, the decision boundary is about x=0
(i.e., rating difference=0) because this is where the probability crosses the
p=0.5 line.

SVM MODEL 2 — GAMMA = 0.1

Let's examine what happens if we set gamma to a relatively high value.

SVM model performance metrics with Gamma=0.1.

mu
no
tes
.in

 142

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

As can be shown, raising gamma improves model performance on training
data but degrades model performance on test data. The graph below
explains why this is the case.

Prediction plane for a gamma=0.1 SVM classification model. Colorscale='Aggrnyl'

was used in the featured image.

Rather than a smooth prediction surface, we now have one that is highly
"spiky." We need to look into the kernel function a little more to see why
this happens.

When we use a high gamma value, we are telling the function that the
close points are significantly more crucial for the prediction than the far
points. As a result, we see these "spikes" since the prediction is based on
individual points in the training instances rather than the environment.

Reducing gamma, on the other hand, tells the function that when
generating a forecast, it's not only the specific point that matters, but also
the points around it. Let's look at another case with a low gamma value to
see if this is correct.

SVM MODEL 3— GAMMA = 0.000001

Let’s rerun the functions:

mu
no
tes
.in

 143

Artificial Intelligence &
Machine Learning Lab

SVM model performance metrics with Gamma=0.000001.

Reducing gamma improved the model's robustness, as expected, with an
increase in model performance on the test data (accuracy = 0.66). The
graph below shows how much smoother the prediction surface has gotten
after giving the spots further away more influence.

Prediction plane for SVM classification model with gamma=0.000001..

mu
no
tes
.in

 144

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

C. Hyperparameter Adjustment:

I chose not to add examples in this tale using various C values because it
impacts the smoothness of the prediction plane similarly to gamma, but for
different reasons. You may observe for yourself by using the "fitting"
function with a value of C=100. some points permitted to be misclassified
or to fall within the margin (yellow shaded area) this increases the model's
resilience by allowing for a bigger margin.

9.9 RADIAL BASIS FUNCTION (RBF) KERNEL: THE
GO-TO KERNEL

We're working on a non-linear dataset with a Machine Learning technique
like Support Vector Machines, but you can't seem to figure out the correct
feature transform or kernel to employ. Fear not, because the Radial Basis
Function (RBF) Kernel is here to save the day.

Due to its resemblance to the Gaussian distribution, RBF kernels are the
most generic form of kernelization and one of the most extensively used
kernels. For two points X1 and X2, the RBF kernel function computes
their similarity, or how near they are to one other. This kernel can be
expressed mathematically as follows:

Where,

1. ‘σ’ is the variance and our hyper parameter

2. ||X₁ - X₂|| is the Euclidean (L₂-norm) Distance between two points X₁
and X₂

Let d₁₂ be the distance between the two points X₁ and X₂, we can now
represent d₁₂ as follows:

Fig 2: In space, the distance between two points is called the distance between two

points in space.

mu
no
tes
.in

 145

Artificial Intelligence &
Machine Learning Lab

The following is a rewrite of the kernel equation:

The RBF kernel can have a maximum value of 1 when d12 is 0, which
means that the points are equal, i.e. X1 = X2.

1. There is no distance between the points when they are the same,
therefore they are incredibly comparable.

2. The kernel value is less than 1 and close to 0 when the points are
separated by a wide distance, indicating that the points are dissimilar.

Because we can see that as the distance between the point’s increases, they
become less similar, distance can be regarded of as an analogue to
dissimilarity.

Fig 3: As distance grows, similarity reduces.

Finding the proper value of “to determine which points should be regarded
comparable is critical, and this can be proved on a case-by-case basis..

a] σ = 1

When σ = 1, σ² = 1 and the RBF kernel’s mathematical equation will be as
follows:

The curve for this equation is shown below, and we can see that the RBF
Kernel reduces exponentially as the distance rises, and is 0 for distances
larger than 4.

Fig 4: RBF Kernel for σ = 1 [Image by Author]

mu
no
tes
.in

 146

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

1. We can see that when d₁₂ = 0, the similarity is 1, and when
d₁₂ exceeds 4 units, the similarity is 0.

2. We can see from the graph that if the distance between the points is
less than 4, the points are similar, and if the distance is larger than 4,
the points are dissimilar.

b] σ = 0.1

When σ = 0.1, σ² = 0.01 and the RBF kernel’s mathematical equation will
be as follows:

For σ = 0.1, the width of the Region of Similarity is the smallest, therefore
only extremely close points are considered comparable.

Fig 4a: RBF Kernel for σ = 0.1

1. The curve is severely peaked, with a value of 0 for distances larger
than 0.2.

2. Only if the distance between the points is less than or equal to 0.2 is
the pair considered comparable.

b] σ = 10

When σ = 10, σ² = 100 and the RBF kernel’s mathematical equation will
be as follows:

For σ = 100, the width of the Region of Similarity is enormous, allowing
for the comparison of points that are far apart.

mu
no
tes
.in

 147

Artificial Intelligence &
Machine Learning Lab

Fig 5: RBF Kernel for σ = 10

1. The curve has a great width.

2. For distances up to 10 units, the points are deemed comparable; but,
for distances greater than 10 units, they are considered distinct.

The width of the Region of Similarity changes as changes, as shown in the
examples above.

Using hyperparameter tuning approaches such as Grid Search Cross-
Validation and Random Search Cross-Validation, you may find the
appropriate for a particular dataset.

The RBF Kernel is well-known due to its resemblance to the K-Nearest
Neighbor Algorithm. Because RBF Kernel Support Vector Machines only
need to store the support vectors during training and not the complete
dataset, it has the advantages of K-NN and avoids the space complexity
problem.

The RBF Kernel Support Vector Machines are included in the scikit-learn
toolkit and have two hyperparameters: 'C' for SVM and "for the RBF
Kernel. In this case, is inversely proportional to.

mu
no
tes
.in

 148

Classifying Data Using Support
Vector Machines (SVMS): SVM-

RBF Kernels

Fig 6: RBF Kernel SVM for Iris Dataset

The RBF Kernel Support Vector Machines are included in the scikit-learn
toolkit and have two hyper parameters: 'C' for SVM and " for the RBF
Kernel. In this case, is inversely proportional to.

9.10 CONCLUSION

A Support Vector Machine (SVM) is a discriminative classifier with a
separating hyperplane as its formal definition. An SVM training algorithm
creates a model that assigns new examples to one of two categories,
making it a non-probabilistic binary linear classifier. To train the
classifier, we must first import the cancer datasets as a CSV file. We then
extract two features out of all the samples and train them on top of each
other. The SVM algorithm seeks out a hyperplane that separates these two
classes by the greatest margin possible.

A hard margin can be utilized if classes are entirely linearly separable.
Otherwise, a soft margin is required. Let's have a look at the graph to see
what this means. The SVM method is used to separate the two classes of
points. In such cases, a soft margin is employed, with some points
permitted to be misclassified or to fall within the margin (yellow shaded
area) This increases the model's resilience by allowing for a bigger
margin.

9.11 REFERENCES

● https://www.geeksforgeeks.org/classifying-data-using-support-vector-
machinessvms-in-python/

● https://towardsdatascience.com/svm-classifier-and-rbf-kernel-how-to-
make-better-models-in-python-73bb4914af5b

● https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-
go-to-kernel-acf0d22c798a

mu
no
tes
.in

https://www.geeksforgeeks.org/classifying-data-using-support-vector-machinessvms-in-python/
https://www.geeksforgeeks.org/classifying-data-using-support-vector-machinessvms-in-python/
https://towardsdatascience.com/svm-classifier-and-rbf-kernel-how-to-make-better-models-in-python-73bb4914af5b
https://towardsdatascience.com/svm-classifier-and-rbf-kernel-how-to-make-better-models-in-python-73bb4914af5b
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a

 149

UNIT VII

10
DECISION TREE

Unit structure
10.0 Objectives
10.1 Decision Tree
10.2 Ensemble Techniques – Bagging
10.3 Ensemble Techniques – Boosting
10.4 Ensemble Techniques – Stacking
10.5 Ensemble Techniques – Voting
10.6 Random Forest- Bagging Attribute Bagging And Voting For Class

Selection
10.7 Summary
10.8 References

10.0 OBJECTIVES

This chapter will enable students to:

● Make use of Data sets in implementing the machine learning
algorithms

● Implement the machine learning concepts and algorithms in any
suitable language of choice.

Data sets can be taken from standard repositories or constructed by the
students.

10.1 DECISION TREE

Objectives: This chapter will enable students to:

● Make use of Data sets in implementing the machine learning
algorithms

● Implement the machine learning concepts and algorithms in any
suitable language of choice.

Data sets can be taken from standard repositories or constructed by the
students.

Introduction:

Decision-tree algorithm falls under the category of supervised learning
algorithms. It works for both continuous as well as categorical output
variables. Makes use of the Tree representation. Can be used for

mu
no
tes
.in

 150

Decision Tree classification. Given a decision tree, how do we predict an outcome for a
class label? We start from the root of the tree. CART stands for
Classification and Regression Trees.

For example, consider a dataset of cats and dogs, with their features. The
label here is accordingly "cat", or "dog", and the goal is to identify the
animal based on its features, using a decision tree. Say, if at a particular
node in the tree, the input to a node contains only a single type of label,
say cats, we can infer that it is perfectly grouped, or "unmixed". On the
other hand, if the input contains a mix of cats and dogs, we would have to
ask another question about the features in the dataset that can help us
narrow down, and divide the mix further to try and "unmix" them
completely.

Program to implement decision tree in Python

Importing the required packages

import numpy as np

import pandas as pd

from sklearn.metrics import confusion_matrix

from sklearn.cross_validation import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

Function importing Dataset

def importdata():

balance_data = pd.read_csv('decisiontree.data, sep= ',', header = None)

 # Printing the dataswet shape

 print ("Dataset Length: ", len(balance_data))

 print ("Dataset Shape: ", balance_data.shape)

 # Printing the dataset obseravtions

 print ("Dataset: ",balance_data.head())

 return balance_data

Function to split the dataset

def splitdataset(balance_data):

 # Separating the target variable

mu
no
tes
.in

 151

Artificial Intelligence &
Machine Learning Lab

 X = balance_data.values[:, 1:5]

 Y = balance_data.values[:, 0]

 # Splitting the dataset into train and test

 X_train, X_test, y_train, y_test = train_test_split

(X, Y, test_size = 0.3, random_state = 100)

 return X, Y, X_train, X_test, y_train, y_test

 # Function to perform training with giniIndex.

def train_using_gini(X_train, X_test, y_train):

 # Creating the classifier object

 clf_gini = DecisionTreeClassifier(criterion = "gini",

 random_state = 100,max_depth=3, min_samples_leaf=5)

 # Performing training

 clf_gini.fit(X_train, y_train)

 return clf_gini

 # Function to perform training with entropy.

def tarin_using_entropy(X_train, X_test, y_train):

 # Decision tree with entropy

 clf_entropy = DecisionTreeClassifier(

 criterion = "entropy", random_state = 100,

 max_depth = 3, min_samples_leaf = 5)

 # Performing training

 clf_entropy.fit(X_train, y_train)

 return clf_entropy

Function to make predictions

def prediction(X_test, clf_object):

 # Predicton on test with giniIndex

 y_pred = clf_object.predict(X_test)

 print("Predicted values:")

 print(y_pred)

mu
no
tes
.in

 152

Decision Tree return y_pred

 # Function to calculate accuracy

def cal_accuracy(y_test, y_pred):

 print("Confusion Matrix: ",

 confusion_matrix(y_test, y_pred))

 print ("Accuracy : ",

 accuracy_score(y_test,y_pred)*100)

 print("Report : ",

 classification_report(y_test, y_pred))

Driver code

def main():

 # Building Phase

 data = importdata()

 X, Y, X_train, X_test, y_train, y_test = splitdataset(data)

 clf_gini = train_using_gini(X_train, X_test, y_train)

 clf_entropy = tarin_using_entropy(X_train, X_test, y_train)

 # Operational Phase

 print("Results Using Gini Index:")

 # Prediction using gini

 y_pred_gini = prediction(X_test, clf_gini)

 cal_accuracy(y_test, y_pred_gini)

 print("Results Using Entropy:")

 # Prediction using entropy

 y_pred_entropy = prediction(X_test, clf_entropy)

 cal_accuracy(y_test, y_pred_entropy)

 # Calling main function

if __name__=="__main__":

 main()

mu
no
tes
.in

 153

Artificial Intelligence &
Machine Learning Lab

A supervised learning algorithm. Makes use of the Tree representation.
Can be used for classification.

10.2 ENSEMBLE TECHNIQUES – BAGGING

importing utility modules

download the train data set from
“https://www.kaggle.com/hesh97/titanicdataset-traincsv”

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

importing machine learning models for prediction

import xgboost as xgb

importing bagging module

from sklearn.ensemble import BaggingRegressor

loading train data set in dataframe from train_data.csv file

df = pd.read_csv("train_data.csv")

getting target data from the dataframe

target = df["target"]

getting train data from the dataframe

train = df.drop("target")

Splitting between train data into training and validation dataset

X_train, X_test, y_train, y_test = train_test_split

(train, target, test_size=0.20)

initializing the bagging model using XGboost as base model with default
parameters

model = BaggingRegressor(base_estimator=xgb.XGBRegressor())

training model

model.fit(X_train, y_train)

predicting the output on the test dataset

pred = model.predict(X_test)

mu
no
tes
.in

https://www.kaggle.com/hesh97/titanicdataset-traincsv

 154

Decision Tree # printing the root mean squared error between real value and predicted
value

print(mean_squared_error(y_test, pred_final))

10.3 ENSEMBLE TECHNIQUES – BOOSTING

importing utility modules

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

importing machine learning models for prediction

from sklearn.ensemble import GradientBoostingRegressor

loading train data set in dataframe from train_data.csv file

df = pd.read_csv("train_data.csv")

getting target data from the dataframe

target = df["target"]

getting train data from the dataframe

train = df.drop("target")

Splitting between train data into training and validation dataset

X_train, X_test, y_train, y_test = train_test_split

(train, target, test_size=0.20)

initializing the boosting module with default parameters

model = GradientBoostingRegressor()

training the model on the train dataset

model.fit(X_train, y_train)

predicting the output on the test dataset

pred_final = model.predict(X_test)

printing the root mean squared error between real value and predicted
value

print(mean_squared_error(y_test, pred_final))

mu
no
tes
.in

 155

Artificial Intelligence &
Machine Learning Lab 10.4 ENSEMBLE TECHNIQUES – STACKING

importing utility modules

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

importing machine learning models for prediction

from sklearn.ensemble import RandomForestRegressor

import xgboost as xgb

from sklearn.linear_model import LinearRegression

importing stacking lib

from vecstack import stacking

loading train data set in dataframe from train_data.csv file

df = pd.read_csv("train_data.csv")

getting target data from the dataframe

target = df["target"]

getting train data from the dataframe

train = df.drop("target")

Splitting between train data into training and validation dataset

X_train, X_test, y_train, y_test = train_test_split

(train, target, test_size=0.20)

initializing all the base model objects with default parameters

model_1 = LinearRegression()

model_2 = xgb.XGBRegressor()

model_3 = RandomForestRegressor()

putting all base model objects in one list

all_models = [model_1, model_2, model_3]

computing the stack features

s_train, s_test = stacking(all_models, X_train, X_test, y_train,
regression=True, n_folds=4)

mu
no
tes
.in

 156

Decision Tree # initializing the second-level model

final_model = model_1

fitting the second level model with stack features

final_model = final_model.fit(s_train, y_train)

predicting the final output using stacking

pred_final = final_model.predict(X_test)

printing the root mean squared error between real value and predicted
value

print(mean_squared_error(y_test, pred_final))

10.5 ENSEMBLE TECHNIQUES – VOTING

importing utility modules

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import log_loss

importing machine learning models for prediction

from xgboost import XGBClassifier

from sklearn.linear_model import LogisticRegression

importing voting classifier

from sklearn.ensemble import VotingClassifier

loading train data set in dataframe from train_data.csv file

df = pd.read_csv("train_data.csv")

getting target data from the dataframe

target = df["Weekday"]

getting train data from the dataframe

train = df.drop("Weekday")

Splitting between train data into training and validation dataset

X_train, X_test, y_train, y_test = train_test_split(train, target,
test_size=0.20)

initializing all the model objects with default parameters

model_1 = LogisticRegression()

mu
no
tes
.in

 157

Artificial Intelligence &
Machine Learning Lab

model_2 = XGBClassifier()

Making the final model using voting classifier

final_model = VotingClassifier(

 estimators=[('lr', model_1), ('xgb', model_2), ('rf', model_3)],
voting='hard')

training all the model on the train dataset

final_model.fit(X_train, y_train)

predicting the output on the test dataset

pred_final = final_model.predict(X_test)

printing log loss between actual and predicted value

print(log_loss(y_test, pred_final))

10.6 RANDOM FOREST- BAGGING ATTRIBUTE
BAGGING AND VOTING FOR CLASS SELECTION

Random forest is like bootstrapping algorithm with Decision tree (CART)
model. Suppose we have 1000 observations in the complete population
with 10 variables. Random forest will try to build multiple CART along
with different samples and different initial variables. It will take a random
sample of 100 observations and then chose 5 initial variables randomly to
build a CART model. It will go on repeating the process say about 10
times and then make a final prediction on each of the observations. Final
prediction is a function of each prediction. This final prediction can simply
be the mean of each prediction.

Random Forest- bagging Attribute bagging and voting for class selection

importing utility modules

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import log_loss

importing machine learning models for prediction

from sklearn.ensemble import RandomForestClassifier

loading train data set in dataframe from train_data.csv file

df = pd.read_csv("train_data.csv")

getting target data from the dataframe

target = df["Weekday"]

mu
no
tes
.in

 158

Decision Tree # getting train data from the dataframe

train = df.drop("Weekday")

Splitting between train data into training and validation dataset

X_train, X_test, y_train, y_test = train_test_split(train, target,
test_size=0.20)

initializing all the model objects with default parameters

model_3 = RandomForestClassifier()

training all the model on the train dataset

final_model.fit(X_train, y_train)

predicting the output on the test dataset

pred_final = final_model.predict(X_test)

printing log loss between actual and predicted value

print(log_loss(y_test, pred_final))

example 2:

import pandas as pd

import numpy as np

dataset = pd.read_csv('/content/petrol_consumption.csv')

dataset.head()

X = dataset.iloc[:, 0:4].values

y = dataset.iloc[:, 4].values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

from sklearn.ensemble import Random Forest Regressor

regressor = Random Forest Regressor(n_estimators=20,random_state=0)

mu
no
tes
.in

 159

Artificial Intelligence &
Machine Learning Lab

regressor.fit(X_train, y_train)

y_pred = regressor.predict(X_test)

from sklearn import metrics

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test,
y_pred))

print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))

print('Root Mean Squared Error:',

np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

Using Random Forest for Classification:

import pandas as pd

import numpy as np

dataset = pd.read_csv('/content/bill_authentication.csv')

dataset.head()

X = dataset.iloc[:, 0:4].values

y = dataset.iloc[:, 4].values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

from sklearn.ensemble import Random Forest Classifier

classifier = RandomForestClassifier(n_estimators=20, random_state=0)

classifier.fit(X_train, y_train)

y_pred = classifier.predict(X_test)

from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score

print(confusion_matrix(y_test,y_pred))

print(classification_report(y_test,y_pred))

mu
no
tes
.in

 160

Decision Tree print(accuracy_score(y_test, y_pred))

from sklearn.ensemble import Random Forest Classifier

classifier = Random Forest Classifier(n_estimators=200, random_state=0)

classifier.fit(X_train, y_train)

y_pred = classifier.predict(X_test)

10.7 SUMMARY

Ensemble means a group of elements viewed as a whole rather than
individually. An Ensemble method creates multiple models and combines
them to solve it. Ensemble methods help to improve the
robustness/generalizability of the model. In this chapter, we had discussed
some methods with their implementation in Python.

10.8 REFERENCES

1 Aurelian Géron, Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow, 2nd Edition.

2 Paul J. Deitel, Python Fundamentals.

3 Stuart Russell, Peter Norvig ,Artificial Intelligence – A Modern
Approach, , Pearson Education / Prentice Hall of India, 3rd Edition,
2009.

4 EthemAlpaydın, Introduction to Machine Learning, PHI, Third
Edition, ISBN No. 978-81-203- 5078-6.

5 Peter Harrington, Machine Learning in Action. Manning Publications,
April 2012ISBN 9781617290183.

6 Introduction to Computer Programming using Python, John V Guttag

7 Core Python Programming, R. Nageswara Rao

8 https://talentsprint.com/pages/artificial-intelligence-machine-learning-iiit-
hprogram/program-details.pdf

9 https://learning.oreilly.com/library/view/learning-robotics
using/9781783287536/cover.html

10 http://www.qboticslabs.com

11 https://subscription.packtpub.com/book/big_data_and_business_intelligence

12 https://scikit-learn.org/0.16/modules/generated/sklearn.lda.LDA.html

13 https://machinelearningmastery.com/ensemble-machine-learning-
algorithmspython-scikit-learn/

14 https://www.coursera.org/learn/machine-learning#syllabus

15 https://data-flair.training/blogs/python-ml-data-preprocessing/

mu
no
tes
.in

https://talentsprint.com/pages/artificial-intelligence-machine-learning-iiit-hprogram/program-details.pdf
https://talentsprint.com/pages/artificial-intelligence-machine-learning-iiit-hprogram/program-details.pdf
https://learning.oreilly.com/library/view/learning-robotics%20using/9781783287536/cover.html
https://learning.oreilly.com/library/view/learning-robotics%20using/9781783287536/cover.html
http://www.qboticslabs.com/
https://subscription.packtpub.com/book/big_data_and_business_intelligence
https://scikit-learn.org/0.16/modules/generated/sklearn.lda.LDA.html
https://machinelearningmastery.com/ensemble-machine-learning-algorithmspython-scikit-learn/
https://machinelearningmastery.com/ensemble-machine-learning-algorithmspython-scikit-learn/
https://www.coursera.org/learn/machine-learning#syllabus
https://data-flair.training/blogs/python-ml-data-preprocessing/

 161

UNIT VIII

11
BOOSTING ALGORITHMS

Unit Structure
11.0 Boosting Algorithms
11.1 How it works
11.2 Types of boosting Algorithms
11.3 Introduction to AdaBoost Algorithm
 11.3.1 What is AdaBoost Algorithm
 11.3.2 How it works
 11.3.3 What is AdaBoost algorithm used for
 11.3.4 Pros and Cons
 11.3.5 Pseudocode of AdaBoost
11.4 Gradient Boosting Machines Algorithm
 11.4.1 Implementation
 11.4.2 Implementation using Scikit learn
 11.4.3 Stochastic Gradient Boosting
 11.4.4 Shrinkage
 11.4.5 Regularization
 11.4.6 Tree constraints

11.0 BOOSTING ALGORITHM

Boosting algorithms are the exceptional algorithms that are utilized to
enhance the existing result of the data model and assist to fix the errors.
[1,4,7] They utilize the concept of the weak learner and strong learner
discussion through the weighted average values and higher votes values
for prediction. They use decision stamp, margin maximizing classification
for processing purpose. Machine learning algorithms like AdaBoost or
Adaptive boosting Algorithm, Gradient, XG Boosting algorithm and
Voting Ensemble are used to follow the process of training for predicting
and fine-tuning of the result. [1,4,7]

Example:

Let’s understand this with an example of the email, which recognize
whether the email, is a spam or not? It can be recognized it by the
following conditions:

Spam:

 If an email contains lots of source like that means it is spam.

mu
no
tes
.in

 162

Boosting Algorithms

 If an email contains only one file image, then it is spam.

 If an email contains the message of “You Own a lottery of $xxxxx”,
that means it is spam.

Not Spam:

 If an email contains some known source, then it is not spam.

 If it contains the official domain like educba.com, etc., that means it is
not spam.

The above-mentioned rules are not that powerful to recognize the spam or
not; hence these rules are called as weak learners.

To convert weak learner to strong learner, combine the prediction of the
weak learner using the following methods.

 Using weighted average.

 Consider prediction has a higher vote.

Consider the above 5 rules; there are 3 votes for spam and 2 votes for not
spam. As there is high vote for spam, we consider it as spam.

11.1 HOW IT WORKS?

To choose the right distributions follow the steps as specified:

Step 1: The base Learning algorithm combines each distribution and
applies equal weight to each distribution.

Step 2: If any prediction occurs during the first base learning algorithm,
then we pay high attention to that prediction error.

Step 3: Repeat step 2 until the limit of the Base Learning algorithm has
been reached or high accuracy.

Step 4: Combines the entire weak learner to create one strong prediction
rule.

11.2 TYPES OF BOOSTING ALGORITHM

1. AdaBoost (Adaptive Boosting) algorithm

2. Gradient Boosting algorithm

3. XG Boost algorithm

4. Voting Ensemble

mu
no
tes
.in

 163

Artificial Intelligence &
Machine Learning Lab 11.3 INTRODUCTION TO ADABOOST ALGORITHM

An adaBoost calculation can be utilized to boost the execution of any
machine learning calculation. Machine Learning has gotten to be a capable
tool which can make predictions based on a huge sum of data. It has ended
up so well known in later times that the application of machine learning
can be found in our day-to-day exercises [1,4,7]. A common illustration
of it is getting proposals for items whereas shopping online based on the
past things bought by the client. Machine Learning, frequently alluded to
as predictive analysis, can be characterized as the capability of computers
to memorize without being programmed unequivocally. As a substitute, it
utilizes the algorithms to analyze input data to foresee output inside an
specified range [1,4,7].

11.3.1 What is AdaBoost Algorithm?:

Boosting originated from the question of whether a set of weak classifiers
could be converted to a strong classifier or not? A weak learner is a learner
who is better than random guessing. AdaBoost transforms weak learners
or predictors to strong predictors in order to solve problems of
classification [1,4,7].

For classification, the final equation can be put as below:

Here fm designates the mth weak classifier, and Ѳm represents its
corresponding weight.

11.3.2 How it works?:

AdaBoost can be used to improve the performance of machine learning
algorithms. It is used best with weak learners, to achieve high accuracy
[1,4,7]. Consider a data set containing n number of points:

-1 represents negative class, and 1 indicate positive. It is initialized as
below, the weight for each data point as:

If we consider iteration from 1 to M for m, we will get the below
expression:

First, we have to select the weak classifier with the lowest weighted
classification error by fitting the weak classifiers to the data set.

mu
no
tes
.in

 164

Boosting Algorithms

Then calculating the weight for the mth weak classifier as below:

The weight is positive for any classifier with an accuracy > 50%, becomes
larger if the classifier is more accurate, and negative if the classifier has an
accuracy < 50%. The prediction can be combined by inverting the sign. By
inverting the sign of the prediction, a classifier with a 40% accuracy can
be converted into a 60% accuracy [1,4,7].

Updating the weight for each data point as below:

Zm is here the normalization factor. It makes sure that the sum total of all
instance weights becomes equal to 1.

11.3.3 What is AdaBoost Algorithm Used for?:

AdaBoost can be used for face detection as it appears to be the standard
algorithm for face detection in images. It employs a rejection cascade
comprising of numerous layers of classifiers. As the detection window is
not recognized at any layer as a face, it gets rejected. The first classifier in
the window discards the negative window keeping the computational cost
to the least. Even if AdaBoost combines the weak classifiers, the
principles of AdaBoost are utilized to find the best features to utilize in
each layer of the cascade [1,4,7].

11.3.4 Pros and Cons:

Pros:

AdaBoost Algorithm is it is fast, simple and easy to program. It has the
flexibility to be combined with any machine learning algorithm, and
doesn’t need to tune the parameters except for T. It has been extended to
learning problems beyond binary classification, and it is versatile as it can
be used with text or numeric data [1,4,7].

Cons:

Weak classifiers being too weak can lead to low margins and overfitting
[1,4,7].

11.3.5 Pseudocode of AdaBoost [2,3,6]:

1. Initially set uniform example weights.

mu
no
tes
.in

 165

Artificial Intelligence &
Machine Learning Lab

2. for Each base learner do:

 Train base learner with a weighted sample.

 Test base learner on all data.

 Set learner weight with a weighted error.

 Set example weights based on ensemble predictions.

3. end for

Implementation of AdaBoost Using Python:

Step 1: Importing the Modules:

Import the required packages and modules.

In Python we have the AdaBoostClassifier and AdaBoostRegressor classes
from the scikit-learn library. As we deal we would import
AdaBoostClassifier. The train_test_split method is used to split our dataset
into training and test sets. We also import datasets, from which we will
use the the Iris Dataset [2,3,6].

from sklearn.ensemble import AdaBoostClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn import metrics

Step 2: Exploring the data:

This dataset contains four features about different types of Iris flowers
(sepal length, sepal width, petal length, petal width). The target is to
predict the type of flower from three possibilities: Setosa, Versicolour, and
Virginica. The dataset is available in the scikit-learn library, or you can
also download it from the UCI Machine Learning Library [2,3,6].

Next, we make our data ready by loading it from the datasets package
using the load_iris() method. We assign the data to the iris variable [2,3,6].

Further, we split our dataset into input variable X, which contains the
features sepal length, sepal width, petal length, and petal width.

Y is our target variable, or the class that we have to predict: either Iris
Setosa, Iris Versicolour, or Iris Virginica. Below is an example of what
our data looks like.

mu
no
tes
.in

 166

Boosting Algorithms

Step 3: Splitting the data:

Splitting the dataset into training and testing datasets is a good idea to see
if our model is classifying the data points correctly on unseen data [2,3,6].

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Split the dataset into 70% training and 30% test.

Step 4: Fitting the Model:

Building the AdaBoost Model. AdaBoost takes Decision Tree as its
learner model by default. We make an AdaBoostClassifier object and
name it abc [2,3,6]. Few important parameters of AdaBoost are :

 base_estimator: It is a weak learner used to train the model.

 n_estimators: Number of weak learners to train in each iteration.

 learning_rate: It contributes to the weights of weak learners. It uses 1
as a default value.

abc = AdaBoostClassifier(n_estimators=50,

 learning_rate=1)

We then go ahead and fit our object abc to our training dataset. We call it
a model.

model = abc.fit(X_train, y_train)

mu
no
tes
.in

 167

Artificial Intelligence &
Machine Learning Lab

Step 5: Making the Predictions:

Our next step would be to see how good or bad our model is to predict our
target values.

y_pred = model.predict(X_test)

Step 6: Evaluating the model:

The Model accuracy will tell us how many times our model predicts the
correct classes.

print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

Output:

Accuracy:0.8666666666666667

An accuracy of 86.66% is achieved.

11.4 GRADIENT BOOSTING ALGORITHM

Gradient boosting algorithm is a machine learning technique used to
define loss function and reduce it [4,7,8]. It is also used to solve problems
of classification using various prediction models involving the following
steps:

1. Loss Function:

The use of the loss function depends on the type of problem. The
advantage of gradient boosting is that there is no need for a new boosting
algorithm for each loss function [4,7,8].

2. Weak Learner:

In gradient boosting, decision trees are used as a weak learner. A
regression tree is used to give true values, which can be combined together
to create correct predictions. Like in the AdaBoost algorithm, small trees
with a single split are used, i.e. decision stump. Larger trees are used for
large levels I,e 4-8 levels [4,7,8].

3. Additive Model:

In this model, trees are added one at a time. existing trees remains the
same. During the addition of trees, gradient descent is used to minimize
the loss function.

The Gradient Boosting Machine is a powerful ensemble machine learning
algorithm that uses decision trees.

Gradient boosting is a generalization of AdaBoosting, improving the
performance of the approach and introducing ideas from bootstrap
aggregation to further improve the models, such as randomly sampling the
samples and features when fitting ensemble members.

mu
no
tes
.in

 168

Boosting Algorithms

Gradient boosting performs well, if not the best, on a wide range of tabular
datasets, and versions of the algorithm like XGBoost and LightBoost often
play an important role in winning machine learning competitions [4,7,8].

Gradient Boosting ensemble is an ensemble created from decision trees
added sequentially to the model.

11.4 GRADIENT BOOSTING MACHINES ALGORITHM

Gradient boosting refers to a class of ensemble machine learning
algorithms that can be used for classification or regression predictive
modeling problems.

Gradient boosting is also known as gradient tree boosting, stochastic
gradient boosting, and gradient boosting machines. Models are fit using
any arbitrary differentiable loss function and gradient descent optimization
algorithm. This gives the technique its name, “gradient boosting,” as the
loss gradient is minimized as the model is fit, much like a neural network
[4,7,8].

Gradient boosting works by building weak prediction models sequentially
where each model tries to predict the error left over by the previous model.
Because of this, the algorithm tends to over-fit rather quick.

Implementations of the algorithm:

1. Gradient Boosting from scratch

2. Using the scikit-learn in-built function.

In gradient boosting decision trees, we combine many weak learners to
come up with one strong learner. The weak learners here are the individual
decision trees. All the trees are connected in series and each tree tries to
minimise the error of the previous tree. Sequential boosting algorithms are
slow to learn, but highly accurate [1,4,7].

Image('residual.png')

The weak learners are fit in such a way that each new learner fits into the
residuals of the previous step so as the model improves. The final model
aggregates the result of each step and thus a strong learner is achieved. A
loss function is used to detect the residuals. Mean squared error (MSE) is

mu
no
tes
.in

 169

Artificial Intelligence &
Machine Learning Lab

used for a regression task and logarithmic loss (log loss) is used for
classification tasks [1,4,7].

Learning rate and n_estimators (Hyperparameters):

Hyperparemetes are key parts of learning algorithms which influence the
performance and accuracy of a model. Learning rate and n_estimators are
two basic hyperparameters for gradient boosting decision trees. Learning
rate, signified as α, basically implies how quick the show learns. Each tree
added modifies the overall model. The size of the modification is
controlled by learning rate. Learning rate is proportional to model learns.
The advantage of slower learning rate is that the model becomes more
robust and efficient [1,4,7].

Note:

Problem in gradient boosting decision trees is overfitting due to addition
of too many trees whereas in random forests, addition of too many tress
won’t cause overfitting.

Algorithm:

Let’s say the output model y when fit to only 1 decision tree, is given by
$$A_1 + B_1x +e_1

where $e1$ is there sidual from this decision tree. In gradient boosting, we
fit the consecutive decision trees on there sidual from the last one [1,4,7].
So when gradient boosting is applied to this model, the consecutive
decision trees will be mathematically represented as:

e_1 = A_2 + B_2x + e_2

e_2 = A_3 + B_3x + e_3

Note that here we stop at 3 decision trees, but in an actual gradient
boosting model, the number of learners or decision trees is much more
[1,4,7]. The final model of the decision tree will be given by:

y = A_1 + A_2 + A_3 + B_1x + B_2x + B_3x + e_3 $$

11.4.1 Implementation:

Implementation from Scratch

Consider simulated data as shown in scatter plot below with 1 input (x)
and 1 output (y) variables.

mu
no
tes
.in

 170

Boosting Algorithms

Calculate error residuals. Actual target value, minus predicted target value
[e1= y – y_predicted1]

Fit a new model on error residuals as target variable with same input
variables [call it e1_predicted]

Add the predicted residuals to the previous predictions [y_predicted2 =
y_predicted1 + e1_predicted]

Fit another model on residuals that is still left. i.e. [e2 = y – y_predicted2]
and repeat steps 2 to 5 until it starts overfitting or the sum of residuals
become constant. Overfitting can be controlled by consistently checking
accuracy on validation data.

mu
no
tes
.in

 171

Artificial Intelligence &
Machine Learning Lab

The code above is a very basic implementation of gradient boosting trees.
The actual libraries have a lot of hyperparameters that can be tuned for
better results. This can be better understood by using the gradient boosting
algorithm on a real dataset.

11.4.2 Implementation using Scikit-learn:

Using the PIMA Indians Diabetes dataset, which has information about a
an individual’s health parameters and an output of 0 or 1, depending on
whether or not he has diabates. The task here is classify a individual as
diabetic, when given the required inputs about his health.

mu
no
tes
.in

 172

Boosting Algorithms

The accuracy is 73%, which is average. This can be improved by tuning
the hyperparameters or processing the data to remove outliers.

mu
no
tes
.in

 173

Artificial Intelligence &
Machine Learning Lab

Improving perfomance of gradient boosted decision trees [1,4,7]:

Gradient boosting algorithms are prone to overfitting and consequently
poor perfomance on test dataset. There are some pointers you can keep in
mind to improve the perfomance of gradient boosting algorithm.

11.4.3 Stochastic Gradient Boosting:

Stochastic gradient boosting involves sub sampling the training dataset
and training individual learners on random samples created by this sub
sampling. This reduces the correlation between results from individual
learners and combining results with low correlation provides us with a
better overall result.

11.4.4 Shrinkage:

The predictions of each tree are added together sequentially. Instead, the
contribution of each tree to this sum can be weighted to slow down the
learning by the algorithm. This weighting is called a shrinkage or a
learning rate. Using a low learning rate can dramatically improve the
perfomance of your gradient boosting model. Usually a learning rate in the
range of 0.1 to 0.3 gives the best results [1,4,7].

11.4.5 Regularization:

L1 and L2 regularization penalties can be implemented on leaf weight
values to slow down learning and prevent over-fitting. Gradient tree
boosting implementations often also use regularization by limiting the
minimum number of observations in trees’ terminal nodes.

11.4.6 Tree Constraints:

There are a number of ways in which a tree can be constrained to improve
performance.

 Number of trees

 Tree depth

 Minimum improvement in loss

 Number of observations per split

mu
no
tes
.in

 174

12
EXAMPLES

Unit Structure
12.0 Examples
12.1 Example 1
12.2 Example 2
12.3 Gradient Boosting for classification
12.4 Gradient Boosting for regression
12.5 Gradient Boosting hyperparameters
12.6 Explore number of Samples
12.7 Explore Number of features
12.8 Explore learning rate
12.9 Explore Tree depth
12.10 Grid search hyperparameters

 12.1 EXAMPLE 1

Gradient Boosting is a popular boosting algorithm. In gradient boosting,
each predictor corrects its predecessor’s error. There is a technique called
the Gradient Boosted Trees whose base learner is CART (Classification
and Regression Trees) [5].

The below diagram explains how gradient boosted trees are trained for
regression problems.

Gradient Boosted Trees for Regression:

The ensemble consists of N trees. Tree1 is trained using the feature matrix
X and the labels y. The predictions labelled y1(hat) are used to determine
the training set residual errors r1. Tree2 is then trained using the feature
matrix X and the residual errors r1 of Tree1 as labels. The predicted

mu
no
tes
.in

 175

Artificial Intelligence &
Machine Learning Lab

results r1(hat) are then used to determine the residual r2. The process is
repeated until all the N trees forming the ensemble are trained [5].

There is an important parameter used in this technique known as
Shrinkage.

Shrinkage refers to the fact that the prediction of each tree in the
ensemble is shrunk after it is multiplied by the learning rate (eta) which
ranges between 0 to 1. There is a trade-off between eta and number of
estimators, decreasing learning rate needs to be compensated with
increasing estimators in order to reach certain model performance. Since
all trees are trained now, predictions can be made [5].

Each tree predicts a label and final prediction is given by the formula,

y(pred) = y1 + (eta * r1) + (eta * r2) + + (eta * rN)

The class of the gradient boosting regression in scikit-learn is
GradientBoostingRegressor. A similar algorithm is used for
classification known as GradientBoostingClassifier.

12.2 EXAMPLE 2

Gradient Boosting Scikit-Learn API:

Using a modern version of the library by running the following script:

mu
no
tes
.in

 176

Examples

Running the script will print your version of scikit-learn.

Gradient boosting is provided via the Gradient Boosting Regressor and
Gradient Boosting Classifier classes.

Both models operate the same way and take the same arguments that
influence how the decision trees are created and added to the ensemble.

Randomness is used in the construction of the model. This means that
each time the algorithm is run on the same data, it will produce a slightly
different model.

When using machine learning algorithms that have a stochastic learning
algorithm, it is good practice to evaluate them by averaging their
performance across multiple runs or repeats of cross-validation. When
fitting a final model, it may be desirable to either increase the number of
trees until the variance of the model is reduced across repeated
evaluations, or to fit multiple final models and average their predictions
[3,9].

Let’s take a look at how to develop a Gradient Boosting ensemble for both
classification and regression.

12.3 GRADIENT BOOSTING FOR CLASSIFICATION [1,
4, 7]

In this section, we will look at using Gradient Boosting for a classification
problem.

First, we can use the make_classification() function to create a synthetic
binary classification problem with 1,000 examples and 20 input features.

The complete example is listed below.

Running the example creates the dataset and summarizes the shape of the
input and output components.

1. (1000, 20) (1000,)

mu
no
tes
.in

 177

Artificial Intelligence &
Machine Learning Lab

Next, we can evaluate a Gradient Boosting algorithm on this dataset [3,9]..

We will evaluate the model using repeated stratified k-fold cross-
validation, with three repeats and 10 folds. We will report the mean and
standard deviation of the accuracy of the model across all repeats and
folds [1].

Running the example reports the mean and standard deviation accuracy of
the model.

Gradient Boosting ensemble with default hyperparameters achieves a
classification accuracy of about 89.9 percent on this test dataset.

Mean Accuracy: 0.899 (0.030)

First, the Gradient Boosting ensemble is fit on all available data, then the
predict() function can be called to make predictions on new data.

The example below demonstrates this on our binary classification dataset.

Running the example fits the Gradient Boosting ensemble model on the
entire dataset and is then used to make a prediction on a new row of data,
as we might when using the model in an application.

mu
no
tes
.in

 178

Examples

Predicted Class: 1

Now that we are familiar with using Gradient Boosting for classification,
let’s look at the API for regression.

12.4 GRADIENT BOOSTING FOR REGRESSION

Using make_regression() function to create a synthetic regression problem
with 1,000 examples and 20 input features.

The complete example is listed below.

Running the example creates the dataset and summarizes the shape of the
input and output components.

1. (1000, 20) (1000,)

Next, we can evaluate a Gradient Boosting algorithm on this dataset.

As we did with the last section, we will evaluate the model using repeated
k-fold cross-validation, with three repeats and 10 folds. We will report the
mean absolute error (MAE) of the model across all repeats and folds. The
scikit-learn library makes the MAE negative so that it is maximized
instead of minimized. This means that larger negative MAE are better and
a perfect model has a MAE of 0.

The complete example is listed below [1].

Running the example reports the mean and standard deviation accuracy of
the model.

mu
no
tes
.in

 179

Artificial Intelligence &
Machine Learning Lab

In this case, we can see the Gradient Boosting ensemble with default
hyperparameters achieves a MAE of about 62.

1. MAE: -62.475 (3.254)

We can also use the Gradient Boosting model as a final model and make
predictions for regression.

First, the Gradient Boosting ensemble is fit on all available data, then the
predict() function can be called to make predictions on new data.

The example below demonstrates this on our regression dataset [1].

Running the example fits the Gradient Boosting ensemble model on the
entire dataset and is then used to make a prediction on a new row of data,
as we might when using the model in an application.

Prediction: 37

Now that we are familiar with using the scikit-learn API to evaluate and
use Gradient Boosting ensembles, let’s look at configuring the model [1].

12.5 GRADIENT BOOSTING HYPERPARAMETERS

The number of trees can be set via the “n_estimators” argument and
defaults to 100.

The example below explores the effect of the number of trees with values
between 10 to 5,000.

mu
no
tes
.in

 180

Examples

Running the example first reports the mean accuracy for each configured
number of decision trees.

In this case, we can see that that performance improves on this dataset
until about 500 trees, after which performance appears to level off. Unlike
AdaBoost, Gradient Boosting appears to not overfit as the number of trees
is increased in this case [1].

mu
no
tes
.in

 181

Artificial Intelligence &
Machine Learning Lab

A box and whisker plot is created for the distribution of accuracy scores
for each configured number of trees.

We can see the general trend of increasing model performance and
ensemble size.

Box Plot of Gradient Boosting Ensemble Size vs. Classification Accuracy

12.6 EXPLORE NUMBER OF SAMPLES

The number of samples used to fit each tree can be varied. This means that
each tree is fit on a randomly selected subset of the training dataset [1, 4,
7].

Using fewer samples introduces more variance for each tree, although it
can improve the overall performance of the model.

The number of samples used to fit each tree is specified by the
“subsample” argument and can be set to a fraction of the training dataset
size. By default, it is set to 1.0 to use the entire training dataset.

The example below demonstrates the effect of the sample size on model
performance [1, 4, 7].

mu
no
tes
.in

 182

Examples

In this case, we can see that mean performance is probably best for a
sample size that is about half the size of the training dataset, such as 0.4 or
higher [1, 4, 7].

mu
no
tes
.in

 183

Artificial Intelligence &
Machine Learning Lab

Box Plot of Gradient Boosting Ensemble Sample Size vs. Classification
Accuracy

12.7 EXPLORE NUMBER OF FEATURES [1, 4, 7]

The number of features used to fit each decision tree can be varied.

Like changing the number of samples, changing the number of features
introduces additional variance into the model, which may improve
performance, although it might require an increase in the number of trees.

The number of features used by each tree is taken as a random sample and
is specified by the “max_features” argument and defaults to all features in
the training dataset.

The example below explores the effect of the number of features on model
performance for the test dataset between 1 and 20.

mu
no
tes
.in

 184

Examples

A box and whisker plot is created for the distribution of accuracy scores
for each configured number of trees [1, 4, 7].

We can see the general trend of increasing model performance perhaps
peaking around eight or nine features and staying somewhat level.

mu
no
tes
.in

 185

Artificial Intelligence &
Machine Learning Lab

Box Plot of Gradient Boosting Ensemble Number of Features vs.
Classification Accuracy

12.8 EXPLORE LEARNING RATE [1, 4, 7]

Learning rate controls the amount of contribution that each model has on
the ensemble prediction. Smaller rates may require more decision trees in
the ensemble, whereas larger rates may require an ensemble with fewer
trees. It is common to explore learning rate values on a log scale, such as
between a very small value like 0.0001 and 1.0. The learning rate can be
controlled via the “learning_rate” argument and defaults to 0.1.

The example below explores the learning rate and compares the effect of
values between 0.0001 and 1.0.

mu
no
tes
.in

 186

Examples

This highlights the trade-off between the number of trees (speed of
training) and learning rate, e.g. we can fit a model faster by using fewer
trees and a larger learning rate.

A box and whisker plot is created for the distribution of accuracy scores
for each configured number of trees.

Box Plot of Gradient Boosting Ensemble Learning Rate vs. Classification
Accuracy

12.9 EXPLORE TREE DEPTH [1, 4, 7]

Like varying the number of samples and features used to fit each decision
tree, varying the depth of each tree is another important hyperparameter
for gradient boosting.

The tree depth controls how specialized each tree is to the training dataset:
how general or overfit it might be. Trees are preferred that are not too
shallow and general and not too deep and specialized.

Gradient boosting performs well with trees that have a modest depth
finding a balance between skill and generality [1, 4, 7].

Tree depth is controlled via the “max_depth” argument and defaults to 3.

The example below explores tree depths between 1 and 10 and the effect
on model performance.

mu
no
tes
.in

 187

Artificial Intelligence &
Machine Learning Lab

Running the example first reports the mean accuracy for each configured
tree depth.

Performance improves with tree depth, perhaps peaking around a depth of
3 to 6, after which the deeper, more specialized trees result in worse
performance.

mu
no
tes
.in

 188

Examples

A box and whisker plot is created for the distribution of accuracy scores
for each configured tree depth.

We can see the general trend of increasing model performance with the
tree depth to a point, after which performance begins to degrade rapidly
with the over-specialized trees.

Box Plot of Gradient Boosting Ensemble Tree Depth vs. Classification
Accuracy

mu
no
tes
.in

 189

Artificial Intelligence &
Machine Learning Lab 12.10 GRID SEARCH HYPERPARAMETERS [1,4,7]

Gradient boosting can be challenging to configure as the algorithm as
many key hyperparameters that influence the behavior of the model on
training data and the hyperparameters interact with each other.

As such, it is a good practice to use a search process to discover a
configuration of the model hyperparameters that works well or best for a
given predictive modeling problem. Popular search processes include a
random search and a grid search.

In this section we will look at grid searching common ranges for the key
hyperparameters for the gradient boosting algorithm that you can use as
starting point for your own projects. This can be achieving using the
GridSearchCV class and specifying a dictionary that maps model
hyperparameter names to the values to search.

In this case, we will grid search four key hyperparameters for gradient
boosting: the number of trees used in the ensemble, the learning rate,
subsample size used to train each tree, and the maximum depth of each
tree. We will use a range of popular well performing values for each
hyperparameter.

Each configuration combination will be evaluated using repeated k-fold
cross-validation and configurations will be compared using the mean
score, in this case, classification accuracy.

The complete example of grid searching the key hyperparameters of the
gradient boosting algorithm on our synthetic classification dataset is listed
below.

mu
no
tes
.in

 190

Examples

Running the example many take a while depending on your hardware. At
the end of the run, the configuration that achieved the best score is
reported first, followed by the scores for all other configurations that were
considered.

A configuration with a learning rate of 0.1, max depth of 7 levels, 500
trees and a subsample of 70% performed the best with a classification
accuracy of about 94.6 percent.

The model may perform even better with more trees such as 1,000 or
5,000 although these configurations were not tested in this case to ensure
that the grid search completed in a reasonable time.

mu
no
tes
.in

 191

UNIT IX

13
XG BOOST

Unit Structure
13.1 XG Boost
 13.1.0 Boosting
 13.1.1 Using XGBoost in Python
 13.1.2 k- fold cross validation using XGBoost
 13.1.3 XGBoost Installation Guide
13.2 Voting Ensembles
 13.2.1 Voting ensemble for classification
 13.2.2 Hard voting ensemble for classification

13.1 XG BOOST

Extreme Gradient Boosting (XG Boost) is an upgraded implementation of
the Gradient Boosting Algorithm, which is developed for high
computational speed, scalability, and better performance [1-4,7].

XG Boost has various features, which are as follows:

1. Parallel Processing

2. Cross-Validation

3. Cache Optimization

4. Distributed Computing

XGBoost is becoming popular:

 Speed and performance

 Core algorithm is parallelizable

 Consistently outperforms other algorithm methods

 Wide variety of tuning parameters

XGBoost (Extreme Gradient Boosting) belongs to a family of boosting
algorithms and uses the gradient boosting (GBM) framework at its core. It
is an optimized distributed gradient boosting library. But wait, what is
boosting? Well, keep on reading.

mu
no
tes
.in

 192

XG Boost

13.1.0 Boosting [1-4,7]:

Boosting is a sequential technique which works on the principle of an
ensemble. It combines a set of weak learners and delivers improved
prediction accuracy. At any instant t, the model outcomes are weighed
based on the outcomes of previous instant t-1. The outcomes predicted
correctly are given a lower weight and the ones miss-classified are
weighted higher. Let's understand boosting in general with a simple
illustration.

Four classifiers (in 4 boxes), shown above, are trying to classify + and -
classes as homogeneously as possible.

1. Box 1: The first classifier (usually a decision stump) creates a vertical
line (split) at D1. It says anything to the left of D1 is + and anything to the
right of D1 is -. However, this classifier misclassifies three + points.

Note: a Decision Stump is a Decision Tree model that only splits off at
one level, therefore the final prediction is based on only one feature.

2. Box 2: The second classifier gives more weight to the three +
misclassified points (see the bigger size of +) and creates a vertical line at
D2. Again it says, anything to the right of D2 is - and left is +. Still, it
makes mistakes by incorrectly classifying three - points.

3. Box 3: Again, the third classifier gives more weight to the three -
misclassified points and creates a horizontal line at D3. Still, this classifier
fails to classify the points (in the circles) correctly.

mu
no
tes
.in

 193

Artificial Intelligence &
Machine Learning Lab

4. Box 4: This is a weighted combination of the weak classifiers (Box 1,2
and 3). As you can see, it does a good job at classifying all the points
correctly.

That's the basic idea behind boosting algorithms is building a weak model,
making conclusions about the various feature importance and parameters,
and then using those conclusions to build a new, stronger model and
capitalize on the misclassification error of the previous model and try to
reduce it. Now, let's come to XGBoost. To begin with, you should know
about the default base learners of XGBoost: tree ensembles. The tree
ensemble model is a set of classification and regression trees (CART).
Trees are grown one after another ,and attempts to reduce the
misclassification rate are made in subsequent iterations. Here’s a simple
example of a CART that classifies whether someone will like computer
games straight from the XGBoost's documentation.

If you check the image in Tree Ensemble section, you will notice each tree
gives a different prediction score depending on the data it sees and the
scores of each individual tree are summed up to get the final score.

13.1.1 Using XGBoost in Python [1-4,7]:

import the Boston Housing dataset and store it in a variable called boston.

from sklearn.datasets import load_boston

boston = load_boston()

The boston variable itself is a dictionary, so you can check for its keys
using the .keys() method.

print(boston.keys())

dict_keys(['data', 'target', 'feature_names', 'DESCR'])

You can easily check for its shape by using the boston.data.shape attribute,
which will return the size of the dataset.

print(boston.data.shape)

(506, 13)

As you can see it returned (506, 13), that means there are 506 rows of data
with 13 columns. Now, if you want to know what the 13 columns are, you
can simply use the .feature_names attribute and it will return the feature
names.

print(boston.feature_names)

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX'
'PTRATIO'

 'B' 'LSTAT']

mu
no
tes
.in

 194

XG Boost

The description of the dataset is available in the dataset itself. You can
take a look at it using .DESCR.

print(boston.DESCR)

Boston House Prices dataset

===========================

Notes:

Data Set Characteristics:

: Number of Instances: 506

: Number of Attributes: 13 numeric/categorical predictive

: Median Value (attribute 14) is usually the target

: Attribute Information (in order):

 - CRIM per capita crime rate by town

- ZN proportion of residential land zoned for lots over 25,000 sq.ft.

- INDUS proportion of non-retail business acres per town

- CHAS Charles River dummy variable (= 1 if tract bounds river; 0
otherwise)

- NOX nitric oxides concentration (parts per 10 million)

- RM average number of rooms per dwelling

- AGE proportion of owner-occupied units built prior to 1940

- DIS weighted distances to five Boston employment centres

- RAD index of accessibility to radial highways

- TAX full-value property-tax rate per $10,000

- PTRATIO pupil-teacher ratio by town

- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by
town

- LSTAT % lower status of the population

- MEDV Median value of owner-occupied homes in $1000's

: Missing Attribute Values: None

Now let’s convert it into a pandas DataFrame! For that you need to import
the pandas library and call the DataFrame() function passing the argument

mu
no
tes
.in

 195

Artificial Intelligence &
Machine Learning Lab

boston.data. To label the names of the columns, use the .columnns
attribute of the pandas DataFrame and assign it to boston.feature_names.

import pandas as pd

data = pd.DataFrame(boston.data)

data.columns = boston.feature_names

Explore the top 5 rows of the dataset by using head() method on your
pandas DataFrame.

data.head()

You'll notice that there is no column called PRICE in the DataFrame. This
is because the target column is available in another attribute called
boston.target. Append boston.target to your pandas DataFrame.

data['PRICE'] = boston.target

Run the .info() method on your DataFrame to get useful information about
the data.

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505

Data columns (total 14 columns):

CRIM 506 non-null float64

ZN 506 non-null float64

INDUS 506 non-null float64

CHAS 506 non-null float64

NOX 506 non-null float64

RM 506 non-null float64

AGE 506 non-null float64

DIS 506 non-null float64

RAD 506 non-null float64

mu
no
tes
.in

 196

XG Boost

TAX 506 non-null float64

PTRATIO 506 non-null float64

B 506 non-null float64

LSTAT 506 non-null float64

PRICE 506 non-null float64

dtypes: float64(14)

memory usage: 55.4 KB

Turns out that this dataset has 14 columns (including the target variable
PRICE) and 506 rows. Notice that the columns are of float data-type
indicating the presence of only continuous features with no missing values
in any of the columns. To get more summary statistics of the different
features in the dataset you will use the describe() method on your
DataFrame.

Note that describe() only gives summary statistics of columns which are
continuous in nature and not categorical.

data.describe()

If you plan to use XGBoost on a dataset which has categorical features
you may want to consider applying some encoding (like one-hot encoding)
to such features before training the model.

Without delving into more exploratory analysis and feature engineering,
you will now focus on applying the algorithm to train the model on this
data.

Install python libraries like xgboost on your system using pip install
xgboost on cmd.

mu
no
tes
.in

 197

Artificial Intelligence &
Machine Learning Lab

XGBoost's hyperparameters:

At this point, before building the model, you should be aware of the tuning
parameters that XGBoost provides. Well, there are a plethora of tuning
parameters for tree-based learners in XGBoost and you can read all about
them here. But the most common ones that you should know are:

learning_rate: step size shrinkage used to prevent overfitting. Range is
[0,1]

max_depth: determines how deeply each tree is allowed to grow during
any boosting round.

subsample: percentage of samples used per tree. Low value can lead to
underfitting.

colsample_bytree: percentage of features used per tree. High value can
lead to overfitting.

n_estimators: number of trees you want to build.

objective: determines the loss function to be used like reg:linear for
regression problems, reg:logistic for classification problems with only
decision, binary:logistic for classification problems with probability.

XGBoost also supports regularization parameters to penalize models as
they become more complex and reduce them to simple (parsimonious)
models [1-4,7].

gamma: controls whether a given node will split based on the expected
reduction in loss after the split. A higher value leads to fewer splits.
Supported only for tree-based learners.

alpha: L1 regularization on leaf weights. A large value leads to more
regularization.

lambda: L2 regularization on leaf weights and is smoother than L1
regularization.

It's also worth mentioning that though you are using trees as your base
learners, you can also use XGBoost's relatively less popular linear base
learners and one other tree learner known as dart. All you have to do is set
the booster parameter to either gbtree (default),gblinear or dart.

Now, you will create the train and test set for cross-validation of the
results using the train_test_split function from sklearn's model_selection
module with test_size size equal to 20% of the data. Also, to maintain
reproducibility of the results, a random_state is also assigned.

mu
no
tes
.in

 198

XG Boost

Well, you can see that your RMSE for the price prediction came out to be
around 10.8 per 1000$.

13.1.2 k-fold Cross Validation using XGBoost [1-4,7]:

In order to build more robust models, it is common to do a k-fold cross
validation where all the entries in the original training dataset are used for
both training as well as validation. Also, each entry is used for validation
just once. XGBoost supports k-fold cross validation via the cv() method.
All you have to do is specify the nfolds parameter, which is the number of
cross validation sets you want to build. Also, it supports many other
parameters (check out this link) like:

num_boost_round: denotes the number of trees you build (analogous to
n_estimators)

metrics: tells the evaluation metrics to be watched during CV

as_pandas: to return the results in a pandas DataFrame.

early_stopping_rounds: finishes training of the model early if the hold-
out metric ("rmse" in our case) does not improve for a given number of
rounds.

seed: for reproducibility of results.

This time you will create a hyper-parameter dictionary params which
holds all the hyper-parameters and their values as key-value pairs but will

mu
no
tes
.in

 199

Artificial Intelligence &
Machine Learning Lab

exclude the n_estimators from the hyper-parameter dictionary because you
will use num_boost_rounds instead.

You will use these parameters to build a 3-fold cross validation model by
invoking XGBoost's cv() method and store the results in a cv_results
DataFrame. Note that here you are using the Dmatrix object you created
before.

params = {"objective":"reg:linear",'colsample_bytree': 0.3,'learning_rate':
0.1,

 'max_depth': 5, 'alpha': 10}

cv_results = xgb.cv(dtrain=data_dmatrix, params=params, nfold=3,

num_boost_round=50,early_stopping_rounds=10,metrics="rmse",
as_pandas=True, seed=123)

cv_results contains train and test RMSE metrics for each boosting round.

cv_results.head()

Extract and print the final boosting round metric.

print((cv_results["test-rmse-mean"]).tail(1))

49 4.031162

Name: test-rmse-mean, dtype: float64

You can see that your RMSE for the price prediction has reduced as
compared to last time and came out to be around 4.03 per 1000$. You can
reach an even lower RMSE for a different set of hyper-parameters. You
may consider applying techniques like Grid Search, Random Search and
Bayesian Optimization to reach the optimal set of hyper-parameters.

Visualize Boosting Trees and Feature Importance [1-4,7]:

You can also visualize individual trees from the fully boosted model that
XGBoost creates using the entire housing dataset. XGBoost has a
plot_tree() function that makes this type of visualization easy. Once you
train a model using the XGBoost learning API, you can pass it to the

mu
no
tes
.in

 200

XG Boost

plot_tree() function along with the number of trees you want to plot using
the num_trees argument.

xg_reg = xgb.train(params=params, dtrain=data_dmatrix,
num_boost_round=10)

Plotting the first tree with the matplotlib library:

These plots provide insight into how the model arrived at its final
decisions and what splits it made to arrive at those decisions.

Another way to visualize your XGBoost models is to examine the
importance of each feature column in the original dataset within the
model.

One simple way of doing this involves counting the number of times each
feature is split on across all boosting rounds (trees) in the model, and then
visualizing the result as a bar graph, with the features ordered according to
how many times they appear. XGBoost has a plot_importance() function
that allows you to do exactly this.

mu
no
tes
.in

 201

Artificial Intelligence &
Machine Learning Lab

As you can see the feature RM has been given the highest importance
score among all the features.

Example 2:

XGBoost Regression API [1-4,7]

XGBoost can be installed as a standalone library and an XGBoost model
can be developed using the scikit-learn API.

Install the XGBoost library.

sudo pip install xgboost

You can then confirm that the XGBoost library was installed correctly and
can be used by running the following script.

check xgboost version

import xgboost

print(xgboost.__version__)

Running the script will print your version of the XGBoost library you have
installed.

Your version should be the same or higher. If not, you must upgrade your
version of the XGBoost library.

If you do have errors when trying to run the above script, I recommend
downgrading to version 1.0.1 (or lower). This can be achieved by
specifying the version to install to the pip command, as follows:

sudo pip install xgboost==1.0.1

mu
no
tes
.in

 202

XG Boost

If you require specific instructions for your development environment, see
the tutorial:

13.1.3 XGBoost Installation Guide [1-4,7]:

The XGBoost library has its own custom API, although we will use the
method via the scikit-learn wrapper classes: XGBRegressor and
XGBClassifier. This will allow us to use the full suite of tools from the
scikit-learn machine learning library to prepare data and evaluate models.

An XGBoost regression model can be defined by creating an instance of
the XGBRegressor class; for example:

...

create an xgboost regression model

model = XGBRegressor()

You can specify hyperparameter values to the class constructor to
configure the model.

Perhaps the most commonly configured hyperparameters are the
following:

n_estimators: The number of trees in the ensemble, often increased until
no further improvements are seen.

max_depth: The maximum depth of each tree, often values are between 1
and 10.

eta: The learning rate used to weight each model, often set to small values
such as 0.3, 0.1, 0.01, or smaller.

subsample: The number of samples (rows) used in each tree, set to a
value between 0 and 1, often 1.0 to use all samples.

colsample_bytree: Number of features (columns) used in each tree, set to
a value between 0 and 1, often 1.0 to use all features.

For example:

...

create an xgboost regression model

model = XGBRegressor(n_estimators=1000, max_depth=7, eta=0.1,
subsample=0.7, colsample_bytree=0.8)

Good hyperparameter values can be found by trial and error for a given
dataset, or systematic experimentation such as using a grid search across a
range of values.

mu
no
tes
.in

 203

Artificial Intelligence &
Machine Learning Lab

Randomness is used in the construction of the model. This means that
each time the algorithm is run on the same data, it may produce a slightly
different model.

When using machine learning algorithms that have a stochastic learning
algorithm, it is good practice to evaluate them by averaging their
performance across multiple runs or repeats of cross-validation. When
fitting a final model, it may be desirable to either increase the number of
trees until the variance of the model is reduced across repeated
evaluations, or to fit multiple final models and average their predictions.

Let’s take a look at how to develop an XGBoost ensemble for regression.

XGBoost Regression Example [1-4,7]:

In this section, we will look at how we might develop an XGBoost model
for a standard regression predictive modeling dataset.

First, let’s introduce a standard regression dataset.

We will use the housing dataset.

The housing dataset is a standard machine learning dataset comprising 506
rows of data with 13 numerical input variables and a numerical target
variable.

Using a test harness of repeated stratified 10-fold cross-validation with
three repeats, a naive model can achieve a mean absolute error (MAE) of
about 6.6. A top-performing model can achieve a MAE on this same test
harness of about 1.9. This provides the bounds of expected performance
on this dataset.

The dataset involves predicting the house price given details of the
house’s suburb in the American city of Boston.

Housing Dataset (housing.csv) [1-4,7]:

Housing Description (housing.names)

No need to download the dataset; we will download it automatically as
part of our worked examples.

The example below downloads and loads the dataset as a Pandas
DataFrame and summarizes the shape of the dataset and the first five rows
of data.

load and summarize the housing dataset

from pandas import read_csv

from matplotlib import pyplot

load dataset

mu
no
tes
.in

 204

XG Boost

url =
'https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.csv'

dataframe = read_csv(url, header=None)

summarize shape

print(dataframe.shape)

summarize first few lines

print(dataframe.head())

Running the example confirms the 506 rows of data and 13 input variables
and a single numeric target variable (14 in total). We can also see that all
input variables are numeric.

(506, 14)

 0 1 2 3 4 5 ... 8 9 10 11 12 13
0 0.00632 18.0 2.31 0 0.538 6.575 ... 1 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0 0.469 6.421 ... 2 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0 0.469 7.185 ... 2 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0 0.458 6.998 ... 3 222.0 18.7 394.63 2.94 33.4

4 0.06905 0.0 2.18 0 0.458 7.147 ... 3 222.0 18.7 396.90 5.33 36.2

[5 rows x 14 columns]

Next, let’s evaluate a regression XGBoost model with default
hyperparameters on the problem.

First, we can split the loaded dataset into input and output columns for
training and evaluating a predictive model.

...

split data into input and output columns

X, y = data[:, :-1], data[:, -1]

Next, we can create an instance of the model with a default configuration.

...

define model

model = XGBRegressor()

We will evaluate the model using the best practice of repeated k-fold
cross-validation with 3 repeats and 10 folds.

This can be achieved by using the RepeatedKFold class to configure the
evaluation procedure and calling the cross_val_score() to evaluate the
model using the procedure and collect the scores.

Model performance will be evaluated using mean squared error (MAE).
Note, MAE is made negative in the scikit-learn library so that it can be

mu
no
tes
.in

 205

Artificial Intelligence &
Machine Learning Lab

maximized. As such, we can ignore the sign and assume all errors are
positive.

...

define model evaluation method

cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1)

evaluate model

scores = cross_val_score(model, X, y,
scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1)

Once evaluated, we can report the estimated performance of the model
when used to make predictions on new data for this problem.

In this case, because the scores were made negative, we can use the
absolute() NumPy function to make the scores positive.

We then report a statistical summary of the performance using the mean
and standard deviation of the distribution of scores, another good practice.

...

force scores to be positive

scores = absolute(scores)

print('Mean MAE: %.3f (%.3f)' % (scores.mean(), scores.std()))

Tying this together, the complete example of evaluating an XGBoost
model on the housing regression predictive modeling problem is listed
below.

mu
no
tes
.in

 206

XG Boost

scores = cross_val_score(model, X, y,
scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1)

force scores to be positive

scores = absolute(scores)

print('Mean MAE: %.3f (%.3f)' % (scores.mean(), scores.std()))

Running the example evaluates the XGBoost Regression algorithm on the
housing dataset and reports the average MAE across the three repeats of
10-fold cross-validation.

In this case, we can see that the model achieved a MAE of about 2.1.

This is a good score, better than the baseline, meaning the model has skill
and close to the best score of 1.9.

Mean MAE: 2.109 (0.320)

We may decide to use the XGBoost Regression model as our final model
and make predictions on new data.

This can be achieved by fitting the model on all available data and calling
the predict() function, passing in a new row of data.

mu
no
tes
.in

 207

Artificial Intelligence &
Machine Learning Lab

13.2 VOTING ENSEMBLES [1-4,7]

A voting ensemble (or a “majority voting ensemble“) is an ensemble
machine learning model that combines the predictions from multiple other
models.

It is a technique that may be used to improve model performance, ideally
achieving better performance than any single model used in the ensemble.

A voting ensemble works by combining the predictions from multiple
models. It can be used for classification or regression. In the case of
regression, this involves calculating the average of the predictions from
the models. In the case of classification, the predictions for each label are
summed and the label with the majority vote is predicted.

Regression Voting Ensemble: Predictions are the average of contributing
models.

Classification Voting Ensemble: Predictions are the majority vote of
contributing models.

There are two approaches to the majority vote prediction for classification;
they are hard voting and soft voting.

Hard voting involves summing the predictions for each class label and
predicting the class label with the most votes. Soft voting involves
summing the predicted probabilities (or probability-like scores) for each
class label and predicting the class label with the largest probability.

Hard Voting: Predict the class with the largest sum of votes from models

mu
no
tes
.in

 208

XG Boost

Soft Voting: Predict the class with the largest summed probability from
models.

A voting ensemble may be considered a meta-model, a model of models.

As a meta-model, it could be used with any collection of existing trained
machine learning models and the existing models do not need to be aware
that they are being used in the ensemble. This means you could explore
using a voting ensemble on any set or subset of fit models for your
predictive modeling task.

A voting ensemble is appropriate when you have two or more models that
perform well on a predictive modeling task. The models used in the
ensemble must mostly agree with their predictions.

Use voting ensembles when:

 All models in the ensemble have generally the same good
performance.

 All models in the ensemble mostly already agree.

Hard voting is appropriate when the models used in the voting ensemble
predict crisp class labels. Soft voting is appropriate when the models used
in the voting ensemble predict the probability of class membership. Soft
voting can be used for models that do not natively predict a class
membership probability, although may require calibration of their
probability-like scores prior to being used in the ensemble (e.g. support
vector machine, k-nearest neighbors, and decision trees).

Hard voting is for models that predict class labels.

Soft voting is for models that predict class membership probabilities.

The voting ensemble is not guaranteed to provide better performance than
any single model used in the ensemble. If any given model used in the
ensemble performs better than the voting ensemble, that model should
probably be used instead of the voting ensemble.

This is not always the case. A voting ensemble can offer lower variance in
the predictions made over individual models. This can be seen in a lower
variance in prediction error for regression tasks. This can also be seen in a
lower variance in accuracy for classification tasks. This lower variance
may result in a lower mean performance of the ensemble, which might be
desirable given the higher stability or confidence of the model.

Use a voting ensemble if:

 It results in better performance than any model used in the ensemble.

 It results in a lower variance than any model used in the ensemble.

A voting ensemble is particularly useful for machine learning models that
use a stochastic learning algorithm and result in a different final model

mu
no
tes
.in

 209

Artificial Intelligence &
Machine Learning Lab

each time it is trained on the same dataset. One example is neural
networks that are fit using stochastic gradient descent.

Another particularly useful case for voting ensembles is when combining
multiple fits of the same machine learning algorithm with slightly different
hyperparameters.

Voting ensembles are most effective when:

 Combining multiple fits of a model trained using stochastic learning
algorithms.

 Combining multiple fits of a model with different hyperparameters.

A limitation of the voting ensemble is that it treats all models the same,
meaning all models contribute equally to the prediction. This is a problem
if some models are good in some situations and poor in others.

An extension to the voting ensemble to address this problem is to use a
weighted average or weighted voting of the contributing models. This is
sometimes called blending. A further extension is to use a machine
learning model to learn when and how much to trust each model when
making predictions. This is referred to as stacked generalization, or
stacking for short.

Extensions to voting ensembles:

 Weighted Average Ensemble (blending).

 Stacked Generalization (stacking).

Voting Ensemble Scikit-Learn API [1-4,7]:

Voting ensembles can be implemented from scratch, although it can be
challenging for beginners.

The scikit-learn Python machine learning library provides an
implementation of voting for machine learning.

It is available in version 0.22 of the library and higher.

First, confirm that you are using a modern version of the library by
running the following script:

check scikit-learn version

import sklearn

print(sklearn.__version__)

Running the script will print your version of scikit-learn.

Your version should be the same or higher. If not, you must upgrade your
version of the scikit-learn library.

mu
no
tes
.in

 210

XG Boost

Voting is provided via the VotingRegressor and VotingClassifier classes.

Both models operate the same way and take the same arguments. Using
the model requires that you specify a list of estimators that make
predictions and are combined in the voting ensemble.

A list of base models is provided via the “estimators” argument. This is a
Python list where each element in the list is a tuple with the name of the
model and the configured model instance. Each model in the list must
have a unique name.

Now that we are familiar with the voting ensemble API in scikit-learn,
let’s look at some worked examples.

13.2.1 Voting Ensemble for Classification [1-4,7]:

First, we can use the make_classification() function to create a synthetic
binary classification problem with 1,000 examples and 20 input features.

The complete example is listed below.

test classification dataset

from sklearn.datasets import make_classification

define dataset

mu
no
tes
.in

 211

Artificial Intelligence &
Machine Learning Lab

X, y = make_classification(n_samples=1000, n_features=20,
n_informative=15, n_redundant=5, random_state=2)

summarize the dataset

print(X.shape, y.shape)

Running the example creates the dataset and summarizes the shape of the
input and output components.

(1000, 20) (1000,)

Next, we will demonstrate hard voting and soft voting for this dataset.

13.2.2 Hard Voting Ensemble for Classification [1-4,7]:

We can demonstrate hard voting with a k-nearest neighbor algorithm.

We can fit five different versions of the KNN algorithm, each with a
different number of neighbors used when making predictions. We will use
1, 3, 5, 7, and 9 neighbors (odd numbers in an attempt to avoid ties).

Our expectation is that by combining the predicted class labels predicted
by each different KNN model that the hard voting ensemble will achieve a
better predictive performance than any standalone model used in the
ensemble, on average.

First, we can create a function named get_voting() that creates each KNN
model and combines the models into a hard voting ensemble.

mu
no
tes
.in

 212

XG Boost

We can then create a list of models to evaluate, including each standalone
version of the KNN model configurations and the hard voting ensemble.

This will help us directly compare each standalone configuration of the
KNN model with the ensemble in terms of the distribution of classification
accuracy scores. The get_models() function below creates the list of
models for us to evaluate.

Each model will be evaluated using repeated k-fold cross-validation.

The evaluate_model() function below takes a model instance and returns
as a list of scores from three repeats of stratified 10-fold cross-validation.

evaluate a give model using cross-validation

def evaluate_model(model, X, y):

mu
no
tes
.in

 213

Artificial Intelligence &
Machine Learning Lab

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3,
random_state=1)

scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv,
n_jobs=-1, error_score='raise')

 return scores

We can then report the mean performance of each algorithm, and also
create a box and whisker plot to compare the distribution of accuracy
scores for each algorithm.

compare hard voting to standalone classifiers

mu
no
tes
.in

 214

XG Boost

Running the example first reports the mean and standard deviation
accuracy for each model.

Note: Your results may vary given the stochastic nature of the algorithm
or evaluation procedure, or differences in numerical precision. Consider
running the example a few times and compare the average outcome.

We can see the hard voting ensemble achieves a better classification
accuracy of about 90.2% compared to all standalone versions of the
model.

A box-and-whisker plot is then created comparing the distribution
accuracy scores for each model, allowing us to clearly see that hard voting
ensemble performing better than all standalone models on average.

mu
no
tes
.in

 215

Artificial Intelligence &
Machine Learning Lab

First, the hard voting ensemble is fit on all available data, then the
predict() function can be called to make predictions on new data.

Running the example fits the hard voting ensemble model on the entire
dataset and is then used to make a prediction on a new row of data, as we
might when using the model in an application.

Predicted Class: 1

Soft Voting Ensemble for Classification

We can demonstrate soft voting with the support vector machine (SVM)
algorithm.

The SVM algorithm does not natively predict probabilities, although it can
be configured to predict probability-like scores by setting the “probability”
argument to “True” in the SVC class.

We can fit five different versions of the SVM algorithm with a polynomial
kernel, each with a different polynomial degree, set via the “degree”
argument. We will use degrees 1-5.

Our expectation is that by combining the predicted class membership
probability scores predicted by each different SVM model that the soft
voting ensemble will achieve a better predictive performance than any
standalone model used in the ensemble, on average.

First, we can create a function named get_voting() that creates the SVM
models and combines them into a soft voting ensemble.

mu
no
tes
.in

 216

XG Boost

We can then create a list of models to evaluate, including each standalone
version of the SVM model configurations and the soft voting ensemble.

This will help us directly compare each standalone configuration of the
SVM model with the ensemble in terms of the distribution of classification
accuracy scores. The get_models() function below creates the list of
models for us to evaluate.

 return models

We can evaluate and report model performance using repeated k-fold
cross-validation as we did in the previous section.

Tying this together, the complete example is listed below.

mu
no
tes
.in

 217

Artificial Intelligence &
Machine Learning Lab

Running the example first reports the mean and standard deviation
accuracy for each model.

mu
no
tes
.in

 218

XG Boost

Note: Your results may vary given the stochastic nature of the algorithm
or evaluation procedure, or differences in numerical precision. Consider
running the example a few times and compare the average outcome.

We can see the soft voting ensemble achieves a better classification
accuracy of about 92.4% compared to all standalone versions of the
model.

A box-and-whisker plot is then created comparing the distribution
accuracy scores for each model, allowing us to clearly see that soft voting
ensemble performing better than all standalone models on average.

If we choose a soft voting ensemble as our final model, we can fit and use
it to make predictions on new data just like any other model.

First, the soft voting ensemble is fit on all available data, then the predict()
function can be called to make predictions on new data.

mu
no
tes
.in

 219

Artificial Intelligence &
Machine Learning Lab

Running the example fits the soft voting ensemble model on the entire
dataset and is then used to make a prediction on a new row of data, as we
might when using the model in an application.

Predicted Class: 1

Voting Ensemble for Regression

We will look at using voting for a regression problem.

First, we can use the make_regression() function to create a synthetic
regression problem with 1,000 examples and 20 input features.

The complete example is listed below.

test regression dataset

from sklearn.datasets import make_regression

define dataset

X, y = make_regression(n_samples=1000, n_features=20,
n_informative=15, noise=0.1, random_state=1)

summarize the dataset

print(X.shape, y.shape)

Running the example creates the dataset and summarizes the shape of the
input and output components.

(1000, 20) (1000,)

mu
no
tes
.in

 220

XG Boost

We can demonstrate ensemble voting for regression with a decision tree
algorithm, sometimes referred to as a classification and regression tree
(CART) algorithm.

We can fit five different versions of the CART algorithm, each with a
different maximum depth of the decision tree, set via the “max_depth”
argument. We will use depths of 1-5.

Our expectation is that by combining the values predicted by each
different CART model that the voting ensemble will achieve a better
predictive performance than any standalone model used in the ensemble,
on average.

First, we can create a function named get_voting() that creates each CART
model and combines the models into a voting ensemble.

We can then create a list of models to evaluate, including each standalone
version of the CART model configurations and the soft voting ensemble.

This will help us directly compare each standalone configuration of the
CART model with the ensemble in terms of the distribution of error
scores. The get_models() function below creates the list of models for us
to evaluate.

mu
no
tes
.in

 221

Artificial Intelligence &
Machine Learning Lab

We can evaluate and report model performance using repeated k-fold
cross-validation as we did in the previous section.

Models are evaluated using mean absolute error (MAE). The scikit-learn
makes the score negative so that it can be maximized. This means that the
reported MAE scores are negative, larger values are better, and 0
represents no error.

Tying this together, the complete example is listed below.

mu
no
tes
.in

 222

XG Boost

Running the example first reports the mean and standard deviation
accuracy for each model.

Note: Your results may vary given the stochastic nature of the algorithm
or evaluation procedure, or differences in numerical precision. Consider
running the example a few times and compare the average outcome.

We can see the voting ensemble achieves a better mean squared error of
about -136.338, which is larger (better) compared to all standalone
versions of the model.

A box-and-whisker plot is then created comparing the distribution
negative MAE scores for each model, allowing us to clearly see that
voting ensemble performing better than all standalone models on average.

mu
no
tes
.in

 223

Artificial Intelligence &
Machine Learning Lab

If we choose a voting ensemble as our final model, we can fit and use it to
make predictions on new data just like any other model.

First, the voting ensemble is fit on all available data, then the predict()
function can be called to make predictions on new data.

The example below demonstrates this on our binary classification dataset.

Running the example fits the voting ensemble model on the entire dataset
and is then used to make a prediction on a new row of data, as we might
when using the model in an application.

Predicted Value: 141.319

mu
no
tes
.in

 224

14
DEPLOYMENT OF MACHINE LEARNING

ALGORITHMS
Unit Structure
14.1 Deploy your Machine Learning Models
 14.1.0 How to deploy machine learning models
 14.1.1 Test and clean code ready for deployment
 14.1.2 Prepare the model for container deployment
 14.1.3 Beyond machine learning deployment
 14.1.4 Challenges for machine learning deployment
14.2 Ways to Deploy Machine Learning Models in Production
 14.2.1 To create a machine learning web service, you need at least

three steps
 14.2.2 Deploying machine learning models for batch prediction
 14.2.3 Deploying machine learning models on edge devices as

embedded models
References
MOOCs
API

 Video Lectures
Quiz

14.1 DEPLOY YOUR MACHINE LEARNING MODELS
[12]

Machine learning deployment is the process of deploying a machine
learning model in a live environment. The model can be deployed across a
range of different environments and will often be integrated with apps
through an API. Deployment is a key step in an organisation gaining
operational value from machine learning.

Machine learning models will usually be developed in an offline or local
environment, so will need to be deployed to be used with live data. A data
scientist may create many different models, some of which never make it
to the deployment stage. Developing these models can be very resource
intensive. Deployment is the final step for an organisation to start
generating a return on investment for the organisation.

However, deployment from a local environment to a real-world
application can be complex. Models may need specific infrastructure and
will need to be closely monitored to ensure ongoing effectiveness. For this
reason, machine learning deployment must be properly managed so it’s
efficient and streamlined.

mu
no
tes
.in

 225

Artificial Intelligence &
Machine Learning Lab

This guide explores the basic steps required for machine learning
deployment in a containerised environment, the challenges organisations
may face, and the tools available to streamline the process.

14.1.0 How to deploy machine learning models [12]:

Machine learning deployment can be a complex task and will differ
depending on the system environment and type of machine learning
model. Each organisation will likely have existing DevOps processes that
may need to be adapted for machine learning deployment. However, the
general deployment process for machine learning models deployed to a
containerised environment will consist of four broad steps.

 The four steps to machine learning deployment include:

 Develop and create a model in a training environment.

 Test and clean the code ready for deployment.

 Prepare for container deployment.

 Plan for continuous monitoring and maintenance after machine
learning deployment.

Create the machine learning model in a training environment

Data scientists will often create and develop many different machine
learning models, of which only a few will make it into the deployment
phase. Models will usually be built in a local or offline environment, fed
by training data. There are different types of machine learning processes
for developing different models. These will differ depending on the task
the algorithm is being trained to complete. Examples include supervised
machine learning in which a model is trained on labelled datasets or
unsupervised machine learning where the algorithm identifies patterns and
trends in data.

Organisations may use machine learning models for a range of reasons.
Examples include streamlining monotonous administrative tasks, fine-
tuning marketing campaigns, driving system efficiency, or completing the
initial stages of research and development. A popular use is the
categorisation and segmentation of raw data into defined groups. Once the
model is trained and performing to a given accuracy on training data, it is
ready to be prepared for deployment.

14.1.1 Test and clean code ready for deployment [12]:

The next step is to check if the code is of sufficient quality to be deployed.
This is to ensure the model functions in a new live environment, but also
so other members of the organisation can understand the model’s creation
process. The model is likely to have been developed in an offline
environment by a data scientist. So, for deployment in a live setting the
code will need to be scrutinised and streamline where possible.

mu
no
tes
.in

 226

Deployment Of Machine
Learning Algorithms

Accurately explaining the results of a model is a key part of the machine
learning oversight process. Clarity around development is needed for the
results and predictions to be accepted in a business setting. For this
reason, a clear explanatory document or ‘read me’ file should be
produced.

There are three simple steps to prepare for deployment at this stage:

 Create a ‘read me’ file to explain the model in detail ready for
deployment by the development team.

 Clean and scrutinise the code and functions and ensure clear naming
conventions using a style guide.

 Test the code to check if the model functions as expected.

14.1.2 Prepare the model for container deployment [12]:

Containerisation is a powerful tool in machine learning deployment.
Containers are the perfect environment for machine learning deployment
and can be described as a kind of operating system visualisation. It’s a
popular environment for machine learning deployment and development
because containers make scaling easy. Containerised code also makes
updating or deploying distinct areas of the model straightforward. This
lowers the risk of downtime for the whole model and makes maintenance
more efficient.

The containers contain all elements needed for the machine learning code
to function, ensuring a consistent environment. Numerous containers will
often make up machine learning model architecture. Yet, as each container
is deployed in isolation from the wider operating system and
infrastructure, it can draw resources from a range of settings including
local and cloud systems. Container orchestration platforms like
Kubernetes help with the automation of container management such as
monitoring, scheduling, and scaling.

14.1.3 Beyond machine learning deployment [12]:

Successful machine learning deployment is more than just ensuring the
model is initially functioning in a live setting. Ongoing governance is
needed to ensure the model is on track and working effectively and
efficiently. Beyond the development of machine learning models,
establishing the processes to monitor and deploy the model can be a
challenge. However, it’s a vital part of the ongoing success of machine
learning deployment, and models can be kept optimised to avoid data drift
or outliers.

Once the processes are planned and in place to monitor the machine
learning model, data drift and emerging inefficiencies can be detected and
resolved. Some models can also be regularly retrained with new data to
avoid the model drifting too far from the live data. Considering the model

mu
no
tes
.in

 227

Artificial Intelligence &
Machine Learning Lab

after deployment means machine learning will be effective in an
organisation for the long term.

14.1.4 Challenges for machine learning deployment [12]:

The training and development of machine learning models is usually
resource-intensive and will often be the focus of an organisation. The
process of machine learning deployment is also a complex task and
requires a high degree of planning to be effective. Taking a model
developed in an offline environment and deploying it in a live
environment will always bring unique risks and challenges. A major
challenge is bridging the gap between data scientists who developed the
model and the developers that will deploy the model. Skillsets and
expertise may not overlap in these distinct areas, so efficient workflow
management is vital.

Machine learning deployment can be a challenge for many organisations,
especially if infrastructure must be built for deployment. Considerations
around scaling the model to meet capacity add another layer of
complexity. The effectiveness of the model itself is also a key challenge.
Ensuring results are accurate with no bias can be difficult. After machine
learning deployment, the model should be continuously tested and
monitored to drive improvements and continuous optimisation.

The main challenges for machine learning deployment include [12]:

 A lack of communication between the development team and data
scientists causing inefficiencies in the deployment process.

 Ensuring the right infrastructure and environment is in place for
machine learning deployment.

 The ongoing monitoring of model accuracy and efficiency in a real-
world setting can be difficult but is vital to achieving optimisation.

 Scaling machine learning models from training environment to real-
world data, especially when capacity needs to be elastic.

 Explaining predictions and results from a model so that the algorithm
is trusted within the organisation.

 Products for streamlining machine learning deployment

Planning and executing machine learning deployment can often be a
complex task. Models need to be managed and monitored to ensure
ongoing functionality, and initial deployment must be expertly planned for
peak efficiency. Products like Seldon Deploy provide all the elements for
a successful machine learning deployment, as well as the insight tools
needed for ongoing maintenance.

The platform is language-agnostic, so it is prepared for any model
developed by a development team. It can easily integrate deployed
machine learning models with other apps through API connections. It’s a

mu
no
tes
.in

 228

Deployment Of Machine
Learning Algorithms

platform for collaboration between data scientists and the development
team, helping to simplify the deployment process.

Seldon Deploy features for machine learning deployment include [12]:

 Workflow management tools to test and deploy models and make
planning more straightforward.

 Integration with Seldon Core, a platform for containerised machine
learning deployment using Kubernetes. It converts machine learning
models in a range of languages ready for containerised deployment.

 Accessible analytics dashboards to monitor and visualise the ongoing
health of the model including monitoring data drift and detecting
anomalies

 Innate scalability to help organisations expand to meet varying levels
of capacity, avoiding the risk of downtime.

 The ability to be installed across different local or cloud systems to fit
the organisation’s current system architecture.

14.2 WAYS TO DEPLOY MACHINE LEARNING
MODELS IN PRODUCTION

Deploy ML models and make them available to users or other
components of your project[12]

Deploying machine learning models as web services [12]:

The simplest way to deploy a machine learning model is to create a web
service for prediction. In this example, we use the Flask web framework to
wrap a simple random forest classifier built with scikit-learn.

14.2.1 To create a machine learning web service, you need at least
three steps [12]:

The first step is to create a machine learning model, train it and validate its
performance. The following script will train a random forest classifier.

mu
no
tes
.in

 229

Artificial Intelligence &
Machine Learning Lab

Model testing and validation are not included here to keep it simple. But
do remember those are an integral part of any machine learning project.

In the next step, we need to persist the model. The environment where we
deploy the application is often different from where we train them.
Training usually requires a different set of resources. Thus this separation
helps organizations optimize their budget and efforts.

Scikit-learn offers python specific serialization that makes model
persistence and restoration effortless. The following is an example of how
we can store the trained model in a pickle file.

from sklearn.externals import joblib

joblib.dump(classifier, 'classifier.pkl')

Finally, we can serve the persisted model using a web framework. The
following code creates a REST API using Flask. This file is hosted in a
different environment, often in a cloud server.

The above code takes input in a POST request through
https://localhost:8080/predict and returns the prediction in a JSON
response.

mu
no
tes
.in

 230

Deployment Of Machine
Learning Algorithms

14.2.2 Deploying machine learning models for batch prediction [12]:

While online models can serve prediction, on-demand batch predictions
are sometimes preferable.

Offline models can be optimized to handle a high volume of job instances
and run more complex models. In batch production mode, you don't need
to worry about scaling or managing servers either.

Batch prediction can be as simple as calling the predict function with a
data set of input variables. The following command does it.

prediction = classifier.predict(UNSEEN_DATASET)

Sometimes you will have to schedule the training or prediction in the
batch processing method. There are several ways to do this. My favorite is
to use either Airflow or Prefect to automate the task.

import requests

from datetime import timedelta, datetime

import pandas as pd

from prefect import task, Flow

from prefect.schedules import IntervalSchedule

@task(max_retries=3, retry_delay=timedelta(5))

def predict(input_data_path:str):

 """

 This task load the saved model, input data and returns prediction.

 If failed this task will retry 3 times at 5 min interval and fail
permenantly.

 """

mu
no
tes
.in

 231

Artificial Intelligence &
Machine Learning Lab

The above script schedules prediction on a weekly basis starting from 5
seconds after the script execution. Prefect will retry the tasks 3 times if
they fail.

However, building the model may require multiple stages in the batch
processing framework. You need to decide what features are required and
how you should construct the model for each stage.

Train the model on a high-performance computing system with an
appropriate batch-processing framework.

Usually, you partition the training data into segments that are processed
sequentially, one after the other. You can do this by splitting the dataset
using a sampling scheme (e.g., balanced sampling, stratified sampling) or
via some online algorithm (e.g., map-reduce).

The partitions can be distributed to multiple machines, but they must all
load the same set of features. Feature scaling is recommended. If you used
unsupervised pre-training (e.g., autoencoders) for transfer learning, you
must undo each partition.

After all the stages have been executed, you can predict unseen data with
the resulting model by iterating sequentially over the partitions.

14.2.3 Deploying machine learning models on edge devices as
embedded models [12]:

Computing on edge devices such as mobile and IoT has become very
popular in recent years. The benefits of deploying a machine learning
model on edge devices include, but are not limited to:

mu
no
tes
.in

 232

Deployment Of Machine
Learning Algorithms

Reduced latency as the device is likely to be close to the user than a server
far away.

Reduce data bandwidth consumption as we ship processed results back to
the cloud instead of raw data that requires big size and eventually more
bandwidth.

Edge devices such as mobile and IoT devices have limited computation
power and storage capacity due to the nature of their hardware. We cannot
simply deploy machine learning models to these devices directly,
especially if our model is big or requires extensive computation to run
inference on them.

Instead, we should simplify the model using techniques such as
quantization and aggregation while maintaining accuracy. These
simplified models can be deployed efficiently on edge devices with
limited computation, memory, and storage.

We can use the TensorFlow Lite library on Android to simplify our
TensorFlow model. TensorFlow Lite is an open-source software library
for mobile and embedded devices that tries to do what the name says: run
TensorFlow models in Mobile and Embedded platforms.

The following example converts a Keras TensorFlow model.

mu
no
tes
.in

 233

Artificial Intelligence &
Machine Learning Lab REFERENCES

1. Quick Introduction to Boosting Algorithms in Machine Learning.
https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-
boosting-algorithms-machine-learning/. [Last Accessed on
10.03.2022]

2. Boosting Algorithms Explained.
https://towardsdatascience.com/boosting-algorithms-explained-
d38f56ef3f30[Last Accessed on 10.03.2022]

3. A Comprehensive Guide To Boosting Machine Learning Algorithms.
https://www.edureka.co/blog/boosting-machine-learning/[Last
Accessed on 10.03.2022]

4. Essence of Boosting Ensembles for Machine Learning.
https://machinelearningmastery.com/essence-of-boosting-ensembles-
for-machine-learning/[Last Accessed on 10.03.2022]

5. Boosting in Machine Learning | Boosting and AdaBoost.
https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-
learning/[Last Accessed on 10.03.2022]

6. https://www.datacamp.com/. [Last Accessed on 10.03.2022]

7. Machine Learning Plus Platform .
https://www.machinelearningplus.com/. [Last Accessed on
10.03.2022]

8. Weights & Biases with Gradient. https://blog.paperspace.com/. [Last
Accessed on 10.03.2022]

9. Build a machine Learning Web App in 5 Minutes.
https://www.aiproblog.com/. [Last Accessed on 10.03.2022]

10. AdaBoost Algorithm. https://www.educba.com/adaboost-algorithm/.
[Last Accessed on 10.03.2022]

11. Implementing the AdaBoost Algorithm From Scratch.
https://www.geeksforgeeks.org/implementing-the-adaboost-
algorithm-from-scratch/?ref=gcse. [Last Accessed on 10.03.2022]

12. Optimisation algorithms for differentiable functions.
https://www.seldon.io/algorithm-optimisation-for-machine-learning.
[Last Accessed on 10.03.2022]

13. Quiz – Machine Learning. https://mcqmate.com/. [Last Accessed on
10.03.2022]

mu
no
tes
.in

 234

Deployment Of Machine
Learning Algorithms

TUTORIALS

1. How to Develop a Weighted Average Ensemble for Deep Learning
Neural Networks : https://machinelearningmastery.com/weighted-
average-ensemble-for-deep-learning-neural-networks/ [Last Accessed
on 10.03.2022]

2. How to Develop a Stacking Ensemble for Deep Learning Neural
Networks in Python With Keras :
https://machinelearningmastery.com/stacking-ensemble-for-deep-
learning-neural-networks/ [Last Accessed on 10.03.2022]

mu
no
tes
.in

 235

Artificial Intelligence &
Machine Learning Lab BOOKS

1. Schapire RE, Freund Y. Boosting: Foundations and algorithms.
Kybernetes. 2013 Jan 4.

2. Zhou ZH. Ensemble methods: foundations and algorithms. CRC
press; 2012 Jun 6.

3. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine
learning. MIT press; 2018 Dec 25.

4. Zhou ZH. Ensemble methods: foundations and algorithms. CRC
press; 2012 Jun 6.

5. Data Mining: Practical Machine Learning Tools and Techniques,
2016.

mu
no
tes
.in

 236

Deployment Of Machine
Learning Algorithms

MOOCS

Machine Learning: Classification. https://www.coursera.org/lecture/ml-
classification/boosting-rV0iX

Advanced Machine Learning and Signal Processing.
https://www.coursera.org/lecture/advanced-machine-learning-signal-
processing/boosting-and-gradient-boosted-trees-
8MEjw?redirectTo=%2Flearn%2Fadvanced-machine-learning-signal-
processing%3Faction%3Denroll

Boosting Machine Learning Models in Python.
https://www.udemy.com/course/boosting-machine-learning-models-in-
python/

Boosting Algorithm in Python. https://python-course.eu/machine-
learning/boosting-algorithm-in-python.php

Gradient Boosting Algorithm. https://www.educba.com/gradient-boosting-
algorithm/.

Learning: Boosting. https://ocw.mit.edu/courses/electrical-engineering-
and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-
videos/lecture-17-learning-boosting/.

Bagging and Boosting. https://www.mygreatlearning.com/academy/learn-
for-free/courses/bagging-and-boosting.

mu
no
tes
.in

 237

Artificial Intelligence &
Machine Learning Lab APIS

1. Ensemble methods scikit-learn API.

2. sklearn.ensemble.VotingClassifier API.

3. sklearn.ensemble.VotingRegressor API.

mu
no
tes
.in

 238

Deployment Of Machine
Learning Algorithms

VIDEO LECTURES

1. Boosting Machine Learning Tutorial | Adaptive Boosting, Gradient
Boosting, XGBoost | Edureka.
https://www.youtube.com/watch?v=kho6oANGu_A [Last Accessed
on 10.03.2022]

2. A Quick Guide to Boosting in Machine Learning.
https://www.youtube.com/watch?v=sfVms30Ulxw

3. Introduction To Gradient Boosting algorithm (simplistic n graphical) -
Machine Learning.
https://www.youtube.com/watch?v=ErDgauqnTHk

4. Gradient Boosting In Depth Intuition- Part 1 Machine Learning.
https://www.youtube.com/watch?v=Nol1hVtLOSg

5. Gradient Boosting - Math Clearly Explained Step By Step | Machine
Learning Step By Step. https://www.youtube.com/watch?v=sANhnV-
2Mo8

6. Visual Guide to Gradient Boosted Trees (xgboost).
https://www.youtube.com/watch?v=TyvYZ26alZs

7. Xgboost Classification Indepth Maths Intuition- Machine Learning
Algorithms. https://www.youtube.com/watch?v=gPciUPwWJQQ

8. Trevor Hastie - Gradient Boosting Machine Learning.
https://www.youtube.com/watch?v=wPqtzj5VZus

9. Machine Learning Lecture 32 "Boosting" -Cornell CS4780 SP17.
https://www.youtube.com/watch?v=dosOtgSdbnY

mu
no
tes
.in

 239

Artificial Intelligence &
Machine Learning Lab QUIZ

1. Ensemble learning can only be applied to supervised learning
methods.

A. True

B. False

2. Ensembles will yield bad results when there is significant diversity
among the models.

Note: All individual models have meaningful and good predictions.

A. true

B. false

3. Which of the following is / are true about weak learners used in
ensemble model?

1. They have low variance and they don’t usually overfit

2. They have high bias, so they can not solve hard learning problems

3. They have high variance and they don’t usually overfit

A. 1 and 2

B. 1 and 3

C. 2 and 3

D. none of these

4. Ensemble of classifiers may or may not be more accurate than any of
its individual model.

A. true

B. false

5. If you use an ensemble of different base models, is it necessary to
tune the hyper parameters of all base models to improve the ensemble
performance?

A. yes

B. no

C. can’t say

6. Generally, an ensemble method works better, if the individual base
models have ____________?

mu
no
tes
.in

 240

Deployment Of Machine
Learning Algorithms

Note: Suppose each individual base models have accuracy greater
than 50%.

A. less correlation among predictions

B. high correlation among predictions

C. correlation does not have any impact on ensemble output

D. none of the above

7. In an election, N candidates are competing against each other and
people are voting for either of the candidates. Voters don’t
communicate with each other while casting their votes. Which of the
following ensemble method works similar to above-discussed election
procedure?

Hint: Persons are like base models of ensemble method.

A. bagging

B. boosting

C. a or b

D. none of these

8. Suppose there are 25 base classifiers. Each classifier has error rates of
e = 0.35.

Suppose you are using averaging as ensemble technique. What will be
the probabilities that ensemble of above 25 classifiers will make a
wrong prediction?

Note: All classifiers are independent of each other

A. 0.05

B. 0.06

C. 0.07

D. 0.09

9. In machine learning, an algorithm (or learning algorithm) is said to be
unstable if a small change in training data cause the large change in
the learned classifiers.True or False: Bagging of unstable classifiers is
a good idea

A. true

B. false

10. Which of the following parameters can be tuned for finding good
ensemble model in bagging based algorithms?

mu
no
tes
.in

 241

Artificial Intelligence &
Machine Learning Lab

1. Max number of samples

2. Max features

3. Bootstrapping of samples

4. Bootstrapping of features

A. 1 and 3

B. 2 and 3

C. 1 and 2

D. all of above

11. How is the model capacity affected with dropout rate (where model
capacity means the ability of a neural network to approximate
complex functions)?

A. model capacity increases in increase in dropout rate

B. model capacity decreases in increase in dropout rate

C. model capacity is not affected on increase in dropout rate

D. none of these

12. Dropout is computationally expensive technique w.r.t. bagging

A. true

B. false

13. Suppose, you want to apply a stepwise forward selection method for
choosing the best models for an ensemble model. Which of the
following is the correct order of the steps?

Note: You have more than 1000 models predictions

1. Add the models predictions (or in another term take the average)
one by one in the ensemble which improves the metrics in the
validation set.

2. Start with empty ensemble

3. Return the ensemble from the nested set of ensembles that has
maximum performance on the validation set

A. 1-2-3

B. 1-3-4

C. 2-1-3

D. none of above

mu
no
tes
.in

 242

Deployment Of Machine
Learning Algorithms

14. Suppose, you have 2000 different models with their predictions and
want to ensemble predictions of best x models. Now, which of the
following can be a possible method to select the best x models for an
ensemble?

A. step wise forward selection

B. step wise backward elimination

C. both

D. none of above

15. Below are the two ensemble models:

1. E1(M1, M2, M3) and

2. E2(M4, M5, M6)

Above, Mx is the individual base models.

Which of the following are more likely to choose if following
conditions for E1 and E2 are given?

E1: Individual Models accuracies are high but models are of the same type
or in another term less diverse

E2: Individual Models accuracies are high but they are of different types
in another term high diverse in nature

A. e1

B. e2

C. any of e1 and e2

D. none of these

16. In boosting, individual base learners can be parallel.

A. true

B. false

17. Which of the following is true about bagging?

1. Bagging can be parallel

2. The aim of bagging is to reduce bias not variance

3. Bagging helps in reducing overfitting

A. 1 and 2

B. 2 and 3

C. 1 and 3

mu
no
tes
.in

 243

Artificial Intelligence &
Machine Learning Lab

D. all of these

18. Suppose you are using stacking with n different machine learning
algorithms with k folds on data.

Which of the following is true about one level (m base models + 1
stacker) stacking?

Note: Here, we are working on binary classification problem

All base models are trained on all features

You are using k folds for base models

A. you will have only k features after the first stage

B. you will have only m features after the first stage

C. you will have k+m features after the first stage

D. you will have k*n features after the first stage

19. Which of the following is the difference between stacking and
blending?

A. stacking has less stable cv compared to blending

B. in blending, you create out of fold prediction

C. stacking is simpler than blending

D. none of these

20. Which of the following can be one of the steps in stacking?

1. Divide the training data into k folds

2. Train k models on each k-1 folds and get the out of fold predictions
for remaining one fold

3. Divide the test data set in “k” folds and get individual fold
predictions by different algorithms

A. 1 and 2

B. 2 and 3

C. 1 and 3

D. all of above

21. Which of the following are advantages of stacking?

1) More robust model

2) better prediction

mu
no
tes
.in

 244

Deployment Of Machine
Learning Algorithms

3) Lower time of execution

A. 1 and 2

B. 2 and 3

C. 1 and 3

D. all of the above

22. Which of the following are correct statement(s) about stacking?

A machine learning model is trained on predictions of multiple machine
learning models

A Logistic regression will definitely work better in the second stage as
compared to other classification methods

First stage models are trained on full / partial feature space of training data

A. 1 and 2

B. 2 and 3

C. 1 and 3

D. all of above

23. Which of the following is true about weighted majority votes?

1. We want to give higher weights to better performing models

2. Inferior models can overrule the best model if collective weighted
votes for inferior models is higher than best model

3. Voting is special case of weighted voting

A. 1 and 3

B. 2 and 3

C. 1 and 2

D. 1, 2 and 3

24. Which of the following is true about averaging ensemble?

A. it can only be used in classification problem

B. it can only be used in regression problem

C. it can be used in both classification as well as regression

D. none of these

25. How can we assign the weights to output of different models in an
ensemble?

mu
no
tes
.in

 245

Artificial Intelligence &
Machine Learning Lab

1. Use an algorithm to return the optimal weights

2. Choose the weights using cross validation

3. Give high weights to more accurate models

A. 1 and 2

B. 1 and 3

C. 2 and 3

D. all of above

mu
no
tes
.in

