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Experiment – I 

1 
IMAGE ENHANCEMENT 

Spatial Domain and Frequency Domain Techniques 

1.1.0 Objectives 

The aim of image enhancement is to improve the interpretability or 
perception of information in images for human viewers, or to provide 
better' input for other automated image processing techniques. Image 
enhancement techniques can be divided into two broad categories: 

1. Spatial domain methods, which operate directly on pixels, and 

2. Frequency domain methods, which operate on the Fourier transform of 
an image. 

1.1.1 Introduction to Image Enhancement 

● The principal objective of image enhancement is to process a given 
image so that the result is more suitable than the original image for a 
specific application.  

● It accentuates or sharpens image features such as edges, boundaries, or 
contrast to make a graphic display more helpful for display and 
analysis.  

● The enhancement doesn't increase the inherent information content of 
the data, but it increases the dynamic range of the chosen features so 
that they can be detected easily 

 

● The greatest difficulty in image enhancement is quantifying the 
criterion for enhancement and, therefore, a large number of image 
enhancement techniques are empirical and require interactive 
procedures to obtain satisfactory results. 

● Image enhancement methods can be based on either spatial or 
frequency domain techniques. 
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1.1.2 Spatial Filtering: 

The use of spatial masks for image processing is called spatial filtering. 
The masks used are called spatial filters. 

 

● The basic approach is to sum products between the mask coefficients 
and the intensities of the pixels under the mask at a specific location in 
the image. (2D convolution). 

 

where (2d+1)X(2d+1) is the mask size, w(i,j)'s are weights of the mask, 
f(x,y) is input pixel at coordinates (x,y), R(x,y) is the output value at (x,y). 

If the center of the mask is at location (x,y) in the image, the gray level of 
the pixel located at (x,y) is replaced by R, the mask is then moved to the 
next location in the image and the process is repeated. This continues until 
all pixel locations have been covered. 

1.1.2.1 Smoothing filter 

1. Smoothing filters are used for blurring and for noise reduction.  

2. Blurring is used in preprocessing steps, such as removal of small 
details from an image prior to object extraction, and bridging of small 
gaps in lines or curves.  

3. Noise reduction can be accomplished by blurring with a linear filter 
and also by nonlinear filtering. 
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a. Low pass filtering: 

● The key requirement is that all coefficients are positive.  

● Neighborhood averaging is a special case of LPF where all 
coefficients are equal.  

● It blurs edges and other sharp details in the image. 

 

b. Median filtering: 

If the objective is to achieve noise reduction instead of blurring, this 
method should be used. This method is particularly effective when the 
noise pattern consists of strong, spike-like components and the 
characteristic to be preserved is edge sharpness. It is a nonlinear operation. 
For each input pixel f(x,y), we sort the values of the pixel and its 
neighbors to determine their median and assign its value to the output 
pixel g(x,y). 

 

                               Fig.2: Median Filter 

1.1.2.2 Sharpening Filters 

To highlight fine detail in an image or to enhance detail that has been 
blurred, either in error or as a natural effect of a particular method of 
image acquisition. Uses of image sharpening vary and include applications 
ranging from electronic printing and medical imaging to industrial 
inspection and autonomous target detection in smart weapons. 
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a. Basic high pass spatial filter: 

The shape of the impulse response needed to implement a high pass spatial 
filter indicates that the filter should have positive coefficients near its 
center, and negative coefficients in the outer periphery.  

Example : filter mask of a 3x3 sharpening filter 

 

The filtering output pixels might be of a gray level exceeding [0,L-1]. 

The results of high pass filtering involve some form of scaling and/or 
clipping to make sure that the gray levels of the final results are within 
[0,L-1]. 

1.1.3 Frequency Domain Filtering 

We simply compute the Fourier transform of the image to be enhanced, 
multiply the result by a filter transfer function, and take the inverse 
transform to produce the enhanced image.  

Spatial domain: g(x,y)=f(x,y)*h(x,y) 

Frequency domain: G(w1,w2)=F(w1,w2)H(w1,w2) 

a. Low Pass filtering: 

Edges and sharp transitions in the gray levels contribute to the high 
frequency content of its Fourier transform, so a low pass filter smoothes 
an image.  

Formula of ideal LPF: 

 

 

 

b. High Pass filtering: 

A high pass filter attenuates the low frequency components without 
disturbing the high frequency information in the Fourier transform 
domain and can sharpen edges.  
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Formula of ideal HPF function: 

 

 

 

Experiment 01 
Aim :- Program for image enhancement (Smoothing & Sharpening ) 
using spatial domain filters.  

Objective :-  

The purpose of this assignment is to study image filtering in the spatial 
domain. Spatial filtering is performed by convolving the image with a 
mask or a kernel.Spatial filters include sharpening, smoothing, edge 
detection, noise removal, etc. It consists of four parts: the first one 
discusses the spatial filtering of an image using a spatial mask .3x3, 5x5, 
and then this mask is used in a blurring filter . The second part studies the 
order statistics filters, specially the median filter.  

Part I Smoothing spatial filter: The output of a smoothing spatial filter is 
simply the average of the pixels contained in the neighborhood of the filter 
mask. - These filters are sometimes called averaging filters and also low 
pass filters - Two types of masks of the spatial filter 

 

 

 

 

mu
no
tes
.in



  

 

Image Processing Lab 

6 

Steps :-  

1) Read input Image. 

2) Add noise using the “imnoise()” function.  

3) Define a (3 x 3) filter.  

4)Use convolution function conv2() for filtering  

• Order statistics filters are nonlinear spatial filters whose response is 
based on ordering (ranking) the pixels contained in an area covered by the 
filter 

 • The best known example in this category is median filter  

• Median filter - Median filters replace the value of the pixel by the 
median of the gray levels in the neighborhood of that pixel  

Part :-II Sharpening spatial filter:  

Spatial domain sharpening filters are also called as High Pass Filters 
Laplacian Filters 

Laplacian Filters 
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Gradient Filter 

 

Part III :- Study of spatial domain filters 

Study following functions and use them on various images with all 
possible parameters.  

fspecial(), imfilter() Ordfilt2() Medfilt2() Imnoise() Median()  

fspecial :- Create predefined 2-D filter 

 Syntax h = fspecial(type)  

h = fspecial(type, parameters)  

Description: 

 h = fspecial(type) create a two-dimensional filter h of the specified type. 
fspecial returns h as a correlation kernel,.  

Value  Description 

'average'  Averaging filter  

 'gaussian' Gaussian lowpass filter 

'laplacian' Approximates the two-dimensional Laplacian 
operator 

'prewitt' Prewitt horizontal edge-emphasizing filter  

‘sobel' 'Sobel horizontal edge-emphasizing filter 

‘Unsharp’ ''Unsharp contrast enhancement filter  
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Value Description 'average' Averaging filter 'gaussian' Gaussian lowpass 
filter 

 h = fspecial(type, parameters)  

accepts the filter specified by type plus additional modifying parameters 
particular to the type of filter chosen. If you omit these arguments, fspecial 
uses default values for the parameters. The following list shows the syntax 
for each filter type. Where applicable,  

h = fspecial('average', hsize)  

returns an averaging filter h of size hsize. The argument hsize can be a 
vector specifying the number of rows and columns in h, or it can be a 
scalar, in which case h is a square matrix. The default value for hsize is              
[3 3].  

h = fspecial ('gaussian', hsize, sigma) :- 

 returns a rotationally symmetric Gaussian lowpass filter of size hsize with 
standard deviation sigma (positive). hsize can be a vector specifying the 
number of rows and columns in h, or it can be a scalar, in which case h is a 
square matrix. The default value for hsize is [3 3]; the default value for 
sigma is 0.5.  

h = fspecial('laplacian', alpha) 

 returns a 3-by-3 filter approximating the shape of the two-dimensional 
Laplacian operator. The parameter alpha controls the shape of the 
Laplacian and must be in the range 0.0 to 1.0. The default value for alpha 
is 0.2. 

 h = fspecial('log', hsize, sigma)  

returns a rotationally symmetric Laplacian of Gaussian filter of size hsize 
with standard deviation sigma (positive). hsize can be a vector specifying 
the number of rows and columns in h, or it can be a scalar, in which case h 
is a square matrix. The default value for hsize is [5 5] and 0.5 for sigma. 

 h = fspecial('prewitt') 

 h = fspecial('sobel')  

Median Filter :- Median filters replace the value of the pixel by the 
median of the gray levels in the neighborhood of that pixel  

1) Open /Read an image in a matrix .  

2) Create a 3x3 matrix B called a mask.  

3) Read the first 3x3 pixel grid of the input image into B. 

4) Sort the matrix B in ascending order. 
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 5) Select the middle value and put that as the first pixel value in the 
output image matrix.  

6) Repeat the procedure for the entire input image by reading the next 3x3 
values from the input image and sort using mask B. This way Output 
image values are calculated. 

 7) Display the input image and Output Image.  

Programs for image enhancement using spatial domain filters. %This 
program is for Averaging spatial Filter  

%This program is for Averaging spatial Filter 

a=imread('D:\DIP Course Material\DIP pract\Images\rose.jpg');  

% Addition of noise to the input image 

b=imnoise(a,'salt & pepper');  

c=imnoise(a,'gaussian');  

d=imnoise(a,'speckle');  

% Defining 3x3 and 5x5 kernel  

h1=1/9*ones(3,3); h2=1/25*ones(5,5); 

% Attempt to recover the image  

b1=conv2(b,h1,'same');  

b2=conv2(b,h2,'same');  

c1=conv2(c,h1,'same');  

c2=conv2(c,h2,'same'); 

d1=conv2(d,h1,'same');  

d2=conv2(d,h2,'same'); 

a=imread('D:\DIP Course Material\DIP pract\Images\rose.jpg');  

% Addition of noise to the input image  

b=imnoise(a,'salt & pepper');  

c=imnoise(a,'gaussian');  

d=imnoise(a,'speckle');  

% Defining 3x3 and 5x5 kernel 

 h1=1/9*ones(3,3); 

 h2=1/25*ones(5,5);  
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% Attempt to recover the image  

b1=conv2(b,h1,'same'); 

b2=conv2(b,h2,'same');  

c1=conv2(c,h1,'same');  

c2=conv2(c,h2,'same');  

d1=conv2(d,h1,'same');  

d2=conv2(d,h2,'same');  

% displaying the result figure, 

subplot(2,2,1), 

imshow(a), 

title('Original Image'), 

subplot(2,2,2), 

imshow(b), 

title('Salt & Pepper noise'),  

subplot(2,2,3), 

imshow(uint8(b1)), 

title('3 x 3 Averaging filter'),  

subplot(2,2,4) 

imshow(uint8(b2)), 

title('5 x 5 Averaging filter') 

 %........................... figure, 

subplot(2,2,1), 

imshow(a), 

title('Original Image'),  

subplot(2,2,2), 

imshow(c), 

title('Gaussian noise'),  

subplot(2,2,3),imshow(uint8(c1)), 

title('3 x 3 Averaging filter'),  
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subplot(2,2,4), 

imshow(uint8(c2)), 

title('5 x 5 Averaging filter'),  

%.................. figure, 

subplot(2,2,1), 

imshow(a), 

title('Original Image'),  

subplot(2,2,2), 

imshow(d), 

title('Speckle noise'),  

subplot(2,2,3), 

imshow(uint8(d1)), 

title('3 x 3 Averaging filter'),  

subplot(2,2,4), 

imshow(uint8(d2)), 

title('5 x 5 Averaging filter'),  

%this program is for comparing averaging & median filter  

clc clear 

all close all  

a=imread('D:\DIP Course Material\DIP pract\Images\horse.jpg'); 

%Addition of salt and pepper noise b=imnoise(a,'salt & pepper',0.1);  

%Defining the box and median filters  

h1=1/9*ones(3,3); 

h2=1/25*ones(5,5); 

c1=conv2(b,h1,'same'); 

c2=conv2(b,h2,'same');  

c3=medfilt2(b,[3 3]);  

c4=medfilt2(b,[5 5]);  

subplot(3,2,1), 
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imshow(a), 

title('Original image')  

subplot(3,2,2), 

imshow(b), 

title('Salt & pepper noise')  

subplot(3,2,3), 

imshow(uint8(c1)), 

title('3 x 3 smoothing')  

subplot(3,2,4), 

imshow(uint8(c2)), 

title('5 x 5 smoothing')  

subplot(3,2,5), 

imshow(uint8(c3)), 

title('3x 3 Median filter') 

 subplot(3,2,6), 

imshow(uint8(c4)), 

title('5 x 5 Median filter') 

% this program is for sharpening spatial domain filter  

%Sharpening Filters  

A=ones(200,200);  

A(30:60,30:60)=0;  

A(70:150,50:170)=0  

figure(1) , 

subplot(1,2,1) 

 imshow(A)  

AM=[1 1 1;1 -8 1;1 1 1]; 

 B=conv2(A,AM);  

subplot(1,2,2), 

 imshow(B)  
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% this program is for sharpening spatial domain filter 

a=imread('D:\horse.jpg');  

%Defining the laplacian filters 

 h1=[0 -1 0;-1 4 -1;0 -1 0]  

h2=[-1 -1 -1;-1 8 -1; -1 -1 -1];  

h3=[-1 -1 -1;-1 9 -1; -1 -1 -1];  

c1=conv2(a,h1,'same');  

c2=conv2(a,h2,'same'); 

c3=conv2(a,h3,'same'); 

subplot(2,2,1),imshow(a), 

title('Original image')  

subplot(2,2,2), 

imshow(uint8(c1)), 

title('Laplacian sharpening 4 at center')  

subplot(2,2,3),imshow(uint8(c2)), 

title('Laplacian sharpening 8 at center ')  

subplot(2,2,4), 

imshow(uint8(c3)), 

title(' Laplacian sharpening 9 at center')  

%Averaging Filter 

 A=ones(200,200);  

A(30:60,30:60)=0;  

A(70:150,50:170)=0  

figure(1) 

subplot(1,2,1)  

imshow(A)  

AM=1/9.*[1 1 1;1 1 1;1 1 1]; 

B=conv2(A,AM); 

subplot(1,2,2) 

imshow(B) 
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Experiment 02 
AIM: To Implement smoothing or averaging filters in spatial domain.  

OBJECTIVE: To Implement smoothing or averaging filters in spatial 
domain.  

TOOLS REQUIRED: MATLAB 

THEORY:  

Filtering is a technique for modifying or enhancing an image. Masks or 
filters will be defined. The general process of convolution and correlation 
will be introduced via an example. Also smoothing linear filters such as 
box and weighted average filters will be introduced. In statistics and image 
processing, to smooth a data set is to create an approximating function that 
attempts to capture important patterns in the data, while leaving out noise 
or other fine-scale structures/rapid phenomena. In smoothing, the data 
points of a signal are modified so individual points (presumably because 
of noise) are reduced, and points that are lower than the adjacent points are 
increased leading to a smoother signal. Smoothing may be used in two 
important ways that can aid in data analysis by being able to extract more 
information from the data as long as the assumption of smoothing is 
reasonable by being able to provide analyses that are both flexible and 
robust. different algorithms are used in smoothing. 

% Program for implementation of smoothing or averaging filter in 
spatial domain 

 I=imread('trees.tif');  

subplot(2,2,1);  

imshow(J);  

title('original image'); 

 f=ones(3,3)/9; 

 h=imfilter(I,f,'circular');  

subplot(2,2,2); 

 imshow(h);  

title('averaged image'); 
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Result: 

 

Conclusion: Thus we have performed the smoothing or averaging filter 
operation on the Original image and we get a filtered image. 

Discrete Fourier Transform: 

The general idea is that the image (f(x,y) of size M x N) will be 
represented in the frequency domain (F(u,v)). The equation for the two-
dimensional discrete Fourier transform (DFT) is: 

 

The concept behind the Fourier transform is that any waveform can be 
constructed using a sum of sine and cosine waves of different frequencies. 
The exponential in the above formula can be expanded into sines and 
cosines with the variables u and v determining these frequencies. 

The inverse of the above discrete Fourier transform is given by the 
following equation: 

 

Thus, if we have F(u,v), we can obtain the corresponding image (f(x,y)) 
using the inverse, discrete Fourier transform. 

Things to note about the discrete Fourier transform are the following: 

● the value of the transform at the origin of the frequency domain, at 
F(0,0), is called the dc component 

○ F(0,0) is equal to MN times the average value of f(x,y) 

○ in MATLAB, F(0,0) is actually F(1,1) because array 
indices in MATLAB start at 1 rather than 0 
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● The values of the Fourier transform are complex, meaning they have 
real and imaginary parts. The imaginary parts are represented by i, 
which is defined solely by the property that its square is −1, ie: 

 

● We visually analyze a Fourier transform by computing a Fourier 
spectrum (the magnitude of F(u,v)) and display it as an image. 

1. the Fourier spectrum is symmetric about the origin 
 

● The fast Fourier transform (FFT) is a fast algorithm for computing the 
discrete Fourier transform. 

● MATLAB has three functions to compute the DFT: 

1. fft -for one dimension (useful for audio) 

2. fft2 -for two dimensions (useful for images) 

3. fftn -for n dimensions 
 

● MATLAB has three related functions that compute the inverse DFT: 

1. ifft 

2. ifft2 

3. ifftn 

How to Display a Fourier Spectrum using MATLAB? 

%Create a black 30x30 image 

f=zeros(30,30); 

%With a white rectangle in it. 

f(5:24,13:17)=1; 

imshow(f,'InitialMagnification', 'fit') 

%Calculate the DFT.  

F=fft2(f); 

%There are real and imaginary parts to F. 

%Use the abs function to compute the magnitude  

%of the combined components. 

F2=abs(F); 
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figure, imshow(F2,[], 'InitialMagnification','fit') 

%To create a finer sampling of the Fourier transform,  

%you can add zero padding to f when computing its DFT  

%Also note that we use a power of 2, 2^256  

%This is because the FFT -Fast Fourier Transform -  

%is fastest when the image size has many factors. 

F=fft2(f, 256, 256); 

F2=abs(F); 

figure, imshow(F2, []) 

%The zero-frequency coefficient is displayed in the  

%upper left hand  corner. To display it in the center, 

%you can use the function fftshift. 

F2=fftshift(F); 

F2=abs(F2);        

figure,imshow(F2,[]) 

%In Fourier transforms, high peaks are so high they  

%hide details. Reduce contrast with the log function. 

F2=log(1+F2); 

figure,imshow(F2,[]) 

To get the results shown in the last image of the table, you can also 
combine MATLAB calls as in: 

f=zeros(30,30); 

f(5:24,13:17)=1; 

F=fft2(f, 256,256); 

F2=fftshift(F);        

figure,imshow(log(1+abs(F2)),[])  

 Notice in these calls to imshow, the second argument is empty square 
brackets. This maps the minimum value in the image to black and the 
maximum value in the image to white. 
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1.1.4 References 

● Digital Image Processing, Using MATLAB, by Rafael C. Gonzalez, 
Richard E. Woods, and Steven L. Eddins 

● Image Processing Toolbox, For Use with MATLAB (MATLAB's 
documentation)--available through MATLAB's help menu or 
online at: 
http://www.mathworks.com/access/helpdesk/help/toolbox/images/ 

●  Frequency Domain Processing: www.cs.uregina.ca/Links/class-
info/425/Lab5/index.html 
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Experiment -II 

2 
DISCRETE FOURIER TRANSFORMATION 
Aim: To find DFT/FFT forward and inverse transform of image. 

Theory: 

FFT: fast Fourier transform. 

IFFT: Inverse fast Fourier transform. 

Discrete Fourier Transform (DFT)  

From the previous section, we learned how we can easily characterize a 
wave with period/frequency, amplitude, phase. But these are easy for 
simple periodic signal, such as sine or cosine waves. For complicated 
waves, it is not easy to characterize like that. For example, the following is 
a relatively more complicate waves, and it is hard to say what’s the 
frequency, amplitude of the wave, right? 

 

There are more complicated cases in real world, it would be great if we 
have a method that we can use to analyze the characteristics of the wave. 
The Fourier Transform can be used for this purpose, which it decompose 
any signal into a sum of simple sine and cosine waves that we can easily 
measure the frequency, amplitude and phase. The Fourier transform can be 
applied to continuous or discrete waves, in this chapter, we will only talk 
about the Discrete Fourier Transform (DFT). 
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Using the DFT, we can compose the above signal to a series of sinusoids 
and each of them will have a different frequency. The following 3D figure 
shows the idea behind the DFT, that the above signal is actually the results 
of the sum of 3 different sine waves. The time domain signal, which is the 
above signal we saw can be transformed into a figure in the frequency 
domain called DFT amplitude spectrum, where the signal frequencies are 
showing as vertical bars. The height of the bar after normalization is the 
amplitude of the signal in the time domain. You can see that the 3 vertical 
bars are corresponding the 3 frequencies of the sine wave, which are also 
plotted in the figure. 

 

In this section, we will learn how to use DFT to compute and plot the DFT 
amplitude spectrum. 

DFT 

The DFT can transform a sequence of evenly spaced signal to the 
information about the frequency of all the sine waves that needed to sum 
to the time domain signal. It is defined as: 

Xk=∑n=0N−1xn�e−i2πkn/N=∑n=0N−1xn[cos(2πkn/N)−i�sin(2πkn/N)]
Xk=∑n=0N ⋅−1xn e−i2πkn/N=∑n=0N−1xn[cos(2πkn/N)−i�sin(2πkn/N)] 

where 

● N = number of samples 

● n = current sample 

● k = current frequency, where k∈[0,N−1]k∈[0,N−1] 

● xnxn = the sine value at sample n 

● XkXk = The DFT which include information of both amplitude and 
phase 
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Also, the last expression in the above equation derived from the Euler’s 
formula, which links the trigonometric functions to the complex 
exponential function: ei�x=cosx+i�sinxei�x=cosx+i�sinx 

Due to the nature of the transform, X0=∑N−1n=0xnX0=∑n=0N−1xn. 
If NN is an odd number, the elements  X1,X2,...,X(N−1)/2X1, 
X2,...,X(N−1)/2 contain the positive frequency terms and the 
elements X(N+1)/2,...,XN−1X(N+1)/2,...,XN−1 contain the negative 
frequency terms, in order of decreasingly negative frequency. While 
if NN is even, the elements X1,X2,...,XN/2−1X1,X2,...,XN/2−1 contain 
the positive frequency terms, and the elements XN/2, ...,XN−1XN/2,..., 
XN−1 contain the negative frequency terms, in order of decreasingly 
negative frequency. In the case that our input signal xx is a real-valued 
sequence, the DFT output XnXn for positive frequencies is the conjugate 
of the values XnXn for negative frequencies, the spectrum will be 
symmetric. Therefore, usually we only plot the DFT corresponding to the 
positive frequencies. 

Note that the XkXk is a complex number that encodes both the amplitude 
and phase information of a complex sinusoidal component ei�2πkn/Nei� 
2πkn/ N of function xnxn. The amplitude and phase of the signal can be 
calculated as: 

amp=|Xk|N=Re(Xk)2+Im(Xk)2−−−−−−−−−−−−−−−−√Namp=|Xk|N=Re(
Xk)2+Im(Xk)2N 

phase=atan2(Im(Xk),Re(Xk))phase=atan2(Im(Xk),Re(Xk)) 

where Im(Xk)Im(Xk) and Re(Xk)Re(Xk) are the imagery and real part of 
the complex number, atan2atan2 is the two-argument form of 
the arctanarctan function. 

The amplitudes returned by DFT equal to the amplitudes of the signals fed 
into the DFT if we normalize it by the number of sample points. Note that 
doing this will divide the power between the positive and negative sides, if 
the input signal is real-valued sequence as we described above, the 
spectrum of the positive and negative frequencies will be symmetric, 
therefore, we will only look at one side of the DFT result, and instead of 
divide NN, we divide N/2N/2 to get the amplitude corresponding to the 
time domain signal. 

Now that we have the basic knowledge of DFT, let’s see how we can use 
it. 

TRY IT! Generate 3 sine waves with frequencies 1 Hz, 4 Hz, and 7 Hz, 
amplitudes 3, 1 and 0.5, and phase all zeros. Add this 3 sine waves 
together with a sampling rate 100 Hz, you will see that it is the same 
signal we just shown at the beginning of the section. 
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import matplotlib.pyplot as plt 

import numpy as np 

plt.style.use('seaborn-poster') 

%matplotlib inline 

# sampling rate 

sr = 100 

# sampling interval 

ts = 1.0/sr 

t = np.arange(0,1,ts) 

freq = 1. 

x = 3*np.sin(2*np.pi*freq*t) 

freq = 4 

x += np.sin(2*np.pi*freq*t) 

freq = 7    

x += 0.5* np.sin(2*np.pi*freq*t) 

plt.figure(figsize = (8, 6)) 

plt.plot(t, x, 'r') 

plt.ylabel('Amplitude') 

plt.show() 

Output: 
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TRY IT! Write a function DFT(x) which takes in one argument, x - input 
1 dimensional real-valued signal. The function will calculate the DFT of 
the signal and return the DFT values. Apply this function to the signal we 
generated above and plot the result. 

def DFT(x): 

    """ 

    Function to calculate the  
    discrete Fourier Transform  
    of a 1D real-valued signal x 

    """ 

    N = len(x) 

    n = np.arange(N) 

    k = n.reshape((N, 1)) 

    e = np.exp(-2j * np.pi * k * n / N) 

        X = np.dot(e, x) 

        return X 

X = DFT(x) 

# calculate the frequency 

N = len(X) 

n = np.arange(N) 

T = N/sr 

freq = n/T  

plt.figure(figsize = (8, 6)) 

plt.stem(freq, abs(X), 'b', \ 

         markerfmt=" ", basefmt="-b") 

plt.xlabel('Freq (Hz)') 

plt.ylabel('DFT Amplitude |X(freq)|') 

plt.show() 
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Output: 

 

We can see from here that the output of the DFT is symmetric at half of 
the sampling rate (you can try different sampling rate to test). This half of 
the sampling rate is called Nyquist frequency or the folding frequency, it 
is named after the electronic engineer Harry Nyquist. He and Claude 
Shannon have the Nyquist-Shannon sampling theorem, which states that a 
signal sampled at a rate can be fully reconstructed if it contains only 
frequency components below half that sampling frequency, thus the 
highest frequency output from the DFT is half the sampling rate. 

n_oneside = N//2 

# get the one side frequency 

f_oneside = freq[:n_oneside] 

# normalize the amplitude 

X_oneside =X[:n_oneside]/n_oneside 

plt.figure(figsize = (12, 6)) 

plt.subplot(121) 

plt.stem(f_oneside, abs(X_oneside), 'b', \ 

         markerfmt=" ", basefmt="-b") 

plt.xlabel('Freq (Hz)') 

plt.ylabel('DFT Amplitude |X(freq)|') 

plt.subplot(122) 
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plt.stem(f_oneside, abs(X_oneside), 'b', \ 

         markerfmt=" ", basefmt="-b") 

plt.xlabel('Freq (Hz)') 

plt.xlim(0, 10) 

plt.tight_layout() 

plt.show() 

Output: 

 

We can see by plotting the first half of the DFT results, we can see 3 clear 
peaks at frequency 1 Hz, 4 Hz, and 7 Hz, with amplitude 3, 1, 0.5 as 
expected. This is how we can use the DFT to analyze an arbitrary signal 
by decomposing it to simple sine waves. 

The inverse DFT 

Of course, we can do the inverse transform of the DFT easily. 

xn=1N∑k=0N−1Xk�ei�2πkn/Nxn=1N∑k=0N ⋅ ⋅−1Xk ei 2πkn/N 

We will leave this as an exercise for you to write a function. 

The limit of DFT 

The main issue with the above DFT implementation is that it is not 
efficient if we have a signal with many data points. It may take a long time 
to compute the DFT if the signal is large. 

TRY IT Write a function to generate a simple signal with different 
sampling rate, and see the difference of computing time by varying the 
sampling rate. 

def gen_sig(sr): 

    ''' 
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    function to generate 

    a simple 1D signal with 

    different sampling rate 

    ''' 

    ts = 1.0/sr 

    t = np.arange(0,1,ts) 

    freq = 1. 

    x = 3*np.sin(2*np.pi*freq*t) 

    return x 

# sampling rate =2000 

sr = 2000 

%timeit DFT(gen_sig(sr)) 

Output: 

120 ms ± 8.27 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 

# sampling rate 20000 

sr = 20000 

%timeit DFT(gen_sig(sr)) 

Output: 

15.9 s ± 1.51 s per loop (mean ± std. dev. of 7 runs, 1 loop each) 

Example 1 : 

# import sympy 

from sympy import fft 

# sequence 

seq = [15, 21, 13, 44] 

# fft 

transform = fft(seq) 

print (transform) 

Output : 

FFT : [93, 2 - 23*I, -37, 2 + 23*I] 
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Example 2 : 
# import sympy 
from sympy import fft 
# sequence 
seq = [15, 21, 13, 44] 
decimal_point = 4 
# fft 
transform = fft(seq, decimal_point ) 

print ("FFT : ", transform) 

Output : 

FFT :  [93, 2.0 - 23.0*I, -37, 2.0 + 23.0*I] 

Fast Fourier Transform (FFT)  

The Fast Fourier Transform (FFT) is an efficient algorithm to calculate 
the DFT of a sequence. It is described first in Cooley and Tukey’s classic 
paper in 1965, but the idea actually can be traced back to Gauss’s 
unpublished work in 1805. It is a divide and conquer algorithm that 
recursively breaks the DFT into smaller DFTs to bring down the 
computation. As a result, it successfully reduces the complexity of the 
DFT from O(n2)O(n2) to O(nlogn)O(nlogn), where nn is the size of the 
data. This reduction in computation time is significant especially for data 
with large NN, therefore, making FFT widely used in engineering, science 
and mathematics. The FFT algorithm is the Top 10 algorithm of 20th 
century by the journal Computing in Science & Engineering. 

In this section, we will introduce you how does the FFT reduces the 
computation time. The content of this section is heavily based on this great 
tutorial put together by Jake VanderPlas. 

Symmetries in the DFT 

The answer to how FFT speedup the computing of DFT lies in the 
exploitation of the symmetries in the DFT. Let’s take a look of the 
symmetries in the DFT. From the definition of the DFT equation 

Xk=∑n=0N−1xne−i2πkn/NXk=∑n=0N−1xne−i2πkn/N 

we can calculate the 

Xk+N=∑n=0N−1xne−i2π(k+N)n/N=∑n=0N−1xne−i2πne−i2πkn/NXk+N
=∑n=0N−1xne−i2π(k+N)n/N=∑n=0N−1xne−i2πne−i2πkn/N 

Note that, e−i2πn=1e−i2πn=1, therefore, we have 
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Xk+N=∑n=0N−1xn�e−i2πkn/N=XkXk+N=∑n=0N−1xne−i2πkn/N=Xk 

with a little extension, we can have 

Xk+iN=Xk, for any integer iXk+iN=Xk, for any integer i 

This means that within the DFT, we clearly have some symmetries that we 
can use to reduce the computation. 

Tricks in FFT 

Since we know there are symmetries in the DFT, we can consider to use it 
reduce the computation, because if we need to calculate both XkXk  
and Xk+NXk+N, we only need to do this once. This is exactly the idea 
behind the FFT. Cooley and Tukey showed that we can calculate DFT 
more efficiently if we continue to divide the problem into smaller ones. 
Let’s first divide the whole series into two parts, i.e. the even number part 
and the odd number part: 

Xk===∑n=0N−1xn�e−i2πkn/N∑m=0N/2−1x2m�e−i2πk(2m)/N+∑m=0
N/2−1x2m+1�e−i2πk(2m+1)/N∑m=0N/2−1x2m�e−i2πkm/(N/2)+e−i2π
k/N∑m=0N/2−1x2m+1�e−i2πkm/(N/2)Xk=∑n=0N−1xn�e−i2πkn/N=∑
m=0N/2−1x2m�e−i2πk(2m)/N+∑m=0N/2−1x2m+1�e−i2πk(2m+1)/N=
∑m=0N/2−1x2m�e−i2πkm/(N/2)+e−i2πk/N∑m=0N/2−1x2m+1�e−i2πk
m/(N/2) 

We can see that, the two smaller terms which only have half of the size 
(N2N2) in the above equation are two smaller DFTs. For each term, 
the 0≤m≤N20≤m≤N2, but 0≤k≤N0≤k≤N, therefore, we can see that half of 
the values will be the same due to the symmetry properties we described 
above. Thus, we only need to calculate half of the fields in each term. Of 
course, we don’t need to stop here, we can continue to divide each term 
into half with the even and odd values until it reaches the last two 
numbers, then calculation will be really simple. 

This is how FFT works using this recursive approach. Let’s see a quick 
and dirty implementation of the FFT. Note that, the input signal to FFT 
should have a length of power of 2. If the length is not, usually we need to 
fill up zeros to the next power of 2 size. 

import matplotlib.pyplot as plt 

import numpy as np 

plt.style.use('seaborn-poster') 

%matplotlib inline 

def FFT(x): 

    """ 
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    A recursive implementation of  

    the 1D Cooley-Tukey FFT, the  

    input should have a length of  

    power of 2.  

    """ 

    N = len(x) 

        if N == 1: 

        return x 

    else: 

        X_even = FFT(x[::2]) 

        X_odd = FFT(x[1::2]) 

        factor = \ 

          np.exp(-2j*np.pi*np.arange(N)/ N) 

                X = np.concatenate(\ 

            [X_even+factor[:int(N/2)]*X_odd, 

             X_even+factor[int(N/2):]*X_odd]) 

        return X 

# sampling rate 

sr = 128 

# sampling interval 
ts = 1.0/sr 

t = np.arange(0,1,ts) 

freq = 1. 

x = 3*np.sin(2*np.pi*freq*t) 

freq = 4 

x += np.sin(2*np.pi*freq*t) 

freq = 7    

x += 0.5* np.sin(2*np.pi*freq*t) 

plt.figure(figsize = (8, 6)) 

plt.plot(t, x, 'r') 

plt.ylabel('Amplitude') 

plt.show() 
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TRY IT! Use the FFT function to calculate the Fourier transform of the 
above signal. Plot the amplitude spectrum for both the two-sided and one-
side frequencies. 

X=FFT(x) 

# calculate the frequency 

N = len(X) 

n = np.arange(N) 

T = N/sr 

freq = n/T  

plt.figure(figsize = (12, 6)) 

plt.subplot(121) 

plt.stem(freq, abs(X), 'b', \ 

         markerfmt=" ", basefmt="-b") 

plt.xlabel('Freq (Hz)') 

plt.ylabel('FFT Amplitude |X(freq)|') 

# Get the one-sided specturm 

n_oneside = N//2 

# get the one side frequency 

f_oneside = freq[:n_oneside] 

# normalize the amplitude 

X_oneside =X[:n_oneside]/n_oneside 

plt.subplot(122) 

plt.stem(f_oneside, abs(X_oneside), 'b', \ 

         markerfmt=" ", basefmt="-b") 

plt.xlabel('Freq (Hz)') 

plt.ylabel('Normalized FFT Amplitude |X(freq)|') 

plt.tight_layout() 

plt.show() 
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TRY IT! Generate a simple signal for length 2048, and time how long it 
will run the FFT and compare the speed with the DFT. 

def gen_sig(sr): 

    ''' 

    function to generate 

    a simple 1D signal with 

    different sampling rate 

    ''' 

    ts = 1.0/sr 

    t = np.arange(0,1,ts) 

    freq = 1. 

    x = 3*np.sin(2*np.pi*freq*t) 

    return x 

# sampling rate =2048 

sr = 2048 

%timeit FFT(gen_sig(sr)) 

16.9 ms ± 1.3 ms per loop (mean ± std. dev. of 7 runs, 100 loops each) 

We can see that, for a signal with length 2048 (about 2000), this 
implementation of F 

Example 1: 

# import sympy 

from sympy import ifft 

# sequence 

seq = [15, 21, 13, 44] 

# fft 

transform = ifft(seq) 

print ("Inverse FFT : ", transform) 

Output: 

Inverse FFT :  [93/4, 1/2 + 23*I/4, -37/4, 1/2 - 23*I/4] 
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Example 2: 

# import sympy 

from sympy import ifft 

# sequence 

seq = [15, 21, 13, 44] 

decimal_point = 4 

# fft 

transform = ifft(seq, decimal_point ) 

print ("Inverse FFT : ", transform) 

Output: 

Inverse FFT :  [23.25, 0.5 + 5.75*I, -9.250, 0.5 - 5.75*I] 
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Experiment III 

3 
DISCRETE COSINE TRANSFORM 

Aim: To find DCT forward and inverse transform of image. 

Theory: 

DCT: Discrete cosine transform. 

IDCT: Inverse discrete cosine transform. 

The DCT (Discrete Cosine Transform) 

An explanation and illustration of the math behind the Discrete Cosine 
Transform and the concepts used in lossy JPEG image compression - low 
pass filtering. 

In [23]: 

# imports  

import numpy as np 

from numpy import * 

import matplotlib.pyplot as plt 

from matplotlib.pyplot import * 

import matplotlib.image as mpimg 

%matplotlib inline 

# software versions:  

# python 3.6, numpy 1.15, matplotlib 3.0.2, Pillow 5.4.1 (python imaging 
library) 

The basic linear algebra with N = 2 

You can think of a vector - a list of numbers - as coefficients times basis 
vectors. 

f0[10]+f1[01]f0[10]+f1[01] 

Using a different basis, different coefficients can describe the same vector. 

G012–√[11]+G112–√[1−1]G012[11]+G112[1−1] 

(The sqrt(2)'s give the basis vectors length 1, i.e. "normalizes" them.) 
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This transormation f to G is a DCT (Discrete Cosine Transform). For a 
vector with 2 components, this perhaps isn't all that exciting, but does still 
transform the original (f0,f1)(f0,f1) into low and high frequency 
components (G0,G1)(G0,G1). 

the matrix math 

This transform can be written as a matrix multiplication. 

f0[10]+f1[01]=[f0f1]=G012–√[11]+G112–√[1−1]=12–
√[111−1][G0G1]f0[10]+f1[01]=[f0f1]=G012[11]+G112[1−1]=12[111−1][
G0G1] 

Moreover, this orthnormal matrix has the interesting and useful property 
that its transpose is its inverse. That makes the equation easy to invert. 

two dimensions 

The same idea can be applied to 2D images rather than 1D vectors, by 
applying the 1D transform to each row and column of the image. 

The 2D basis images for N=2 are then the outer products of the 1D basis 
vectors. From lowest (0,0) to highest (1,1) spatial frequency these basis 
images are : 

In [2]: 

basis = (1/sqrt(2) * array([1, 1]), 1/sqrt(2) * array([1, -1])) 

for i in [0,1]: 

    for j in [0,1]: 

        print("{}, {} :".format(i,j)) 

        print(outer(basis[i], basis[j])) 

        print() 

0, 0 : 

[[0.5 0.5] 

 [0.5 0.5]] 

0, 1 : 

[[ 0.5 -0.5] 

 [ 0.5 -0.5]] 

1, 0 : 

[[ 0.5  0.5] 
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 [-0.5 -0.5]] 

1, 1 : 

[[ 0.5 -0.5] 

 [-0.5  0.5]] 

In [3]: 

# The 8 x 8 DCT matrix thus looks like this. 

N = 8 

dct = np.zeros((N, N)) 

for x in range(N): 

    dct[0,x] = sqrt(2.0/N) / sqrt(2.0) 

for u in range(1,N): 

    for x in range(N): 

        dct[u,x] = sqrt(2.0/N) * cos((pi/N) * u * (x + 0.5) ) 

        np.set_printoptions(precision=3) 

dct 

Out[3]: 

array([[ 0.354,  0.354,  0.354,  0.354,  0.354,  0.354,  0.354,  0.354], 

       [ 0.49 ,  0.416,  0.278,  0.098, -0.098, -0.278, -0.416, -0.49 ], 

       [ 0.462,  0.191, -0.191, -0.462, -0.462, -0.191,  0.191,  0.462], 

       [ 0.416, -0.098, -0.49 , -0.278,  0.278,  0.49 ,  0.098, -0.416], 

       [ 0.354, -0.354, -0.354,  0.354,  0.354, -0.354, -0.354,  0.354], 

       [ 0.278, -0.49 ,  0.098,  0.416, -0.416, -0.098,  0.49 , -0.278], 

       [ 0.191, -0.462,  0.462, -0.191, -0.191,  0.462, -0.462,  0.191], 

       [ 0.098, -0.278,  0.416, -0.49 ,  0.49 , -0.416,  0.278, -0.098]]) 

The corresponding eight 1D basis vectors (the matrix rows) oscillate with 
successively higher spatial frequencies. 

In [4]: 

# Here's what they look like. 

figure(figsize=(9,12)) 

for u in range(N): 
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    subplot(4, 2, u+1) 

    ylim((-1, 1)) 

    title(str(u)) 

    plot(dct[u, :]) 

    plot(dct[u, :],'ro') 

Lik
e the N=2 case, the vectors are orthnormal. In other words, their dot 
products are 0, and each has length 1. Here are a few illustrative products. 
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In [5]: 

def rowdot(i,j): 

    return dot(dct[i, :], dct[j, :]) 

rowdot(0,0), rowdot(3,3), rowdot(0,3), rowdot(1, 7), rowdot(1,5) 

Out[5]: 

(0.9999999999999998, 

 0.9999999999999998, 

 6.938893903907228e-17, 

 1.942890293094024e-16, 

 -2.498001805406602e-16) 

This also implies the inverse of this matrix is just its transpose. 

In [6]: 

dct_transpose = dct.transpose() 

dct_transpose 

Out[6]: 

array([[ 0.354,  0.49 ,  0.462,  0.416,  0.354,  0.278,  0.191,  0.098], 

       [ 0.354,  0.416,  0.191, -0.098, -0.354, -0.49 , -0.462, -0.278], 

       [ 0.354,  0.278, -0.191, -0.49 , -0.354,  0.098,  0.462,  0.416], 

       [ 0.354,  0.098, -0.462, -0.278,  0.354,  0.416, -0.191, -0.49 ], 

       [ 0.354, -0.098, -0.462,  0.278,  0.354, -0.416, -0.191,  0.49 ], 

       [ 0.354, -0.278, -0.191,  0.49 , -0.354, -0.098,  0.462, -0.416], 

       [ 0.354, -0.416,  0.191,  0.098, -0.354,  0.49 , -0.462,  0.278], 

       [ 0.354, -0.49 ,  0.462, -0.416,  0.354, -0.278,  0.191, -0.098]]) 

In [7]: 

# Is the dot product of dct and its transpose the identity? 

maybe_identity = dot(dct, dct_transpose) 

# Since there are many nearly zero like 3.2334e-17 in this numerical 
result, 

# the output will look much nicer if we round them all of to (say) 6 places. 

roundoff = vectorize(lambda m: round(m, 6)) 
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roundoff(maybe_identity) 

Out[7]: 

array([[ 1.,  0., -0.,  0.,  0.,  0., -0., -0.], 

       [ 0.,  1.,  0., -0.,  0., -0.,  0.,  0.], 

       [-0.,  0.,  1.,  0., -0.,  0.,  0.,  0.], 

       [ 0., -0.,  0.,  1.,  0.,  0., -0.,  0.], 

       [ 0.,  0., -0.,  0.,  1.,  0., -0., -0.], 

       [ 0., -0.,  0.,  0.,  0.,  1.,  0., -0.], 

       [-0.,  0.,  0., -0., -0.,  0.,  1.,  0.], 

       [-0.,  0.,  0.,  0., -0., -0.,  0.,  1.]]) 

playing with a real image 

To make all this more concrete, let's apply the 2D DCT transform to part 
of a real image. 

Here's one, takenly randomly from the web. 

In [10]: 

# See http://matplotlib.org/users/image_tutorial.html for the image 
manipulation syntax. 

# The image itself is a small piece from http://www.cordwainer-
smith.com/virgil_finlay.htm. 

img = mpimg.imread('stormplanet112.jpg') 

plt.imshow(img) 

Out[10]: 

<matplotlib.image.AxesImage at 0x7f9b20830da0> 
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In [11]: 

# The image itself contains 3 dimensions: rows, columns, and colors 

img.shape 

Out[11]: 

(112, 112, 3) 

All three of the R,G,B color values in the greyscale image are the same for 
each pixel. 

Let's just look at values from one tiny 8 x 8 block (which is what's used 
JPEG compression) near his nose. 

(The next images use a false color spectrum to display pixel intensity.) 

In [12]: 

tiny = img[40:48, 40:48, 0]    # a tiny 8 x 8 block, in the color=0 (Red) 
channel 

def show_image(img): 

    plt.imshow(img) 

    plt.colorbar() 

show_image(tiny) 

 

In [13]: 

# And here are the numbers. 
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tiny 

Out[13]: 

array([[179, 140, 138, 101, 110, 135, 143, 144], 

       [ 76,  64,  91, 110, 113, 109, 104, 118], 

       [ 78,  68,  40,  34,  33,  66,  90, 105], 

       [209, 204, 168, 163, 132, 100,  73,  57], 

       [219, 231, 221, 227, 226, 205, 172, 130], 

       [215, 213, 217, 223, 232, 224, 217, 203], 

       [181, 202, 233, 214, 207, 226, 235, 235], 

       [ 69,  44,  62,  66,  83, 129, 153, 182]], dtype=uint8) 

Now we define the 2D version of the N=8 DCT described above. 

The trick is to apply the 1D DCT to every column, and then also apply it 
to every row, i.e. 

G=DCT⋅f⋅DCTTG=DCT⋅f⋅DCTT 

In [14]: 

def doDCT(grid): 

    return dot(dot(dct, grid), dct_transpose) 

def undoDCT(grid): 

    return dot(dot(dct_transpose, grid), dct) 

# test : do DCT, then undo DCT; should get back the same image. 

tiny_do_undo = undoDCT(doDCT(tiny)) 

show_image(tiny_do_undo) # Yup, looks the same. 
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In [15]: 

# And the numbers are the same. 

tiny_do_undo 

Out[15]: 

array([[179., 140., 138., 101., 110., 135., 143., 144.], 

       [ 76.,  64.,  91., 110., 113., 109., 104., 118.], 

       [ 78.,  68.,  40.,  34.,  33.,  66.,  90., 105.], 

       [209., 204., 168., 163., 132., 100.,  73.,  57.], 

       [219., 231., 221., 227., 226., 205., 172., 130.], 

       [215., 213., 217., 223., 232., 224., 217., 203.], 

       [181., 202., 233., 214., 207., 226., 235., 235.], 

       [ 69.,  44.,  62.,  66.,  83., 129., 153., 182.]]) 

The DCT transform looks like this. Note that most of the intensity is at the 
top left, in the lowest frequencies. 

In [16]: 

tinyDCT = doDCT(tiny) 

show_image(tinyDCT) 
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In [17]: 

set_printoptions(linewidth=100) # output line width (default is 75) 

round6 = vectorize(lambda m: '{:6.1f}'.format(m)) 

round6(tinyDCT) 

Out[17]: 

array([['1173.9', '   3.6', '  19.8', '  12.3', '  -5.4', '   8.2', '  10.3', '  -0.0'], 

       ['-225.9', '  64.1', '  24.2', '  12.2', '   9.9', '  -0.2', '   0.0', '   0.1'], 

       ['-122.7', '-161.8', '  63.2', ' -15.0', '   0.3', '  11.1', '  28.5', '  10.7'], 

       [' 341.9', '  50.8', ' -48.4', '  12.0', ' -10.2', '  -0.4', '   0.1', '  12.1'], 

       [' -20.1', '  80.2', '   6.9', '  22.1', '   0.1', '  -0.1', '  -0.0', '  -0.3'], 

       ['  74.4', '  69.9', '  32.9', ' -13.0', ' -16.3', '  -0.4', '  -0.2', '  -0.0'], 

       ['-100.6', ' -38.9', '  64.3', '  17.2', '  -0.3', '   0.5', '  -0.2', '  -0.1'], 

       ['  13.8', ' -36.5', '  18.5', '  -0.4', ' -21.6', '   0.1', '   0.3', '   0.2']], 

      dtype='<U6') 
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The grid positions in that last image correspond to spatial frequencies, 
with the lowest DC component at the top left, and the highest vertical and 
horizontal frequency at the bottom right. 

These 2D basis functions can be visualized with the image shown which is 
from wikimedia commons. 

The details of what I'm doing here don't really match the JPEG 
transformations: I haven't done the color space transforms, and I haven't 
handled the DC offsets as the JPEG spec does (which centers the values 
around 0 explicitly.) 

But the concept is visible in the last two pictures: after the DCT, most of 
the power is in fewer pixels, which are typically near the top left DC part 
of the grid. 

So here's a simple lossy "low pass filter" of the data : let's chop some of 
the high frequency numbers. One (somewhat arbitrary) choice to to set the 
frequencies higher than the (1,7) to (7,1) line, to zero. 

This is a lossy transormation since we're throwing away information - it 
can't be undone. But since there are fewer numbers, it's a form of 
compression. 
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In [19]: 

# First make a copy to work on. 

tinyDCT_chopped = tinyDCT.copy() 

# Then zero the pieces below the x + y = 8 line. 

for x in range(N): 

    for u in range(N): 

        if x + u > 8: 

            tinyDCT_chopped[x,u] = 0.0 

show_image(tinyDCT_chopped) 

 

In [20]: 

round6(tinyDCT_chopped) 

# Notice all the zeros at the bottom right - those are the chopped high 
frequences. 

# We've essentially done a "low pass filter" on the spacial frequencies. 

Out[20]: 

array([['1173.9', '   3.6', '  19.8', '  12.3', '  -5.4', '   8.2', '  10.3', '  -0.0'], 

       ['-225.9', '  64.1', '  24.2', '  12.2', '   9.9', '  -0.2', '   0.0', '   0.1'], 

       ['-122.7', '-161.8', '  63.2', ' -15.0', '   0.3', '  11.1', '  28.5', '   0.0'], 

       [' 341.9', '  50.8', ' -48.4', '  12.0', ' -10.2', '  -0.4', '   0.0', '   0.0'], 
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       [' -20.1', '  80.2', '   6.9', '  22.1', '   0.1', '   0.0', '   0.0', '   0.0'], 

       ['  74.4', '  69.9', '  32.9', ' -13.0', '   0.0', '   0.0', '   0.0', '   0.0'], 

       ['-100.6', ' -38.9', '  64.3', '   0.0', '   0.0', '   0.0', '   0.0', '   0.0'], 

       ['  13.8', ' -36.5', '   0.0', '   0.0', '   0.0', '   0.0', '   0.0', '   0.0']], 

      dtype='<U6') 

To see what this did to the original, we just transform it back. 

In [21]: 

tiny_chopped_float = undoDCT(tinyDCT_chopped) 

# Also convert the floats back to uint8, which was the original format 

tiny_chopped = vectorize(lambda x: uint8(x))(tiny_chopped_float)  

show_image(tiny_chopped) 

 

In [22]: 

tiny_chopped 

Out[22]: 

array([[178, 140, 133, 109, 107, 135, 137, 147], 

       [ 76,  69,  90, 100, 107, 117, 110, 112], 

       [ 75,  61,  44,  39,  42,  56,  86, 107], 

       [214, 204, 169, 152, 131,  97,  78,  57], 
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       [217, 227, 220, 230, 233, 206, 169, 125], 

       [211, 220, 221, 219, 220, 223, 220, 206], 

       [186, 196, 223, 220, 214, 227, 229, 234], 

       [ 66,  46,  65,  63,  79, 129, 155, 181]], dtype=uint8) 

And we have something close to the original back again - even though 
close to half of the transformed image was set to zero. 

conclusions 

The procedue here isn't what happens in JPEG compression, but does 
illustrate one of the central concepts - throwing away some of higher 
spatial frequency information after a DCT transform. 

In the real JPEG lossy compression algorithm, the steps are 

● the color space is transformed from R,G,B to Y,Cb,Cr to take 
advantage of human visual prejudices 

● the values are shifted so that they center around zero 

● the values after the DCT are "quantized" (i.e. rounded off) by different 
amounts at different spots in the grid. (This* is the lossy step, and how 
lossy depends on the JPEG quality.) 

● a zigzag (keeping similar frequencies together) pattern turns this to a 
1D stream of 64 values 

● which are then huffman encoded by, typically by a pre-chosen code 
(part of the JPEG standard 
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Experiment IV 

4 
IMAGE SEGMENTATION AND IMAGE 

RESTORATION 
Aim: The detection of discontinuities – Point, Line and Edge detections, 
Hough transform, Thresholding, Region based segmentation chain codes. 

Theory: 

• This is usually accomplished by applying a suitable mask to the image. 

 

 

• The mask output or response at each pixel is computed by centering 
centering the mask on the pixel location.  

• When the mask is centered at a point on the image boundary, the 
mask response or output is computed using suitable boundary 
condition. Usually, the mask is truncated. 

Point Detection 

This is used to detect isolated spots in an image.  

• The graylevel of an isolated point will be very different from its 
neighbors.  

• It can be accomplished using the following 3×3 mask: 
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The output of the mask operation is usually thresholded.  

• We say that an isolated point has been detected if 

 

for some pre-specified non-negative threshold T. 

 

Detection of lines  

• This is used to detect lines in an image.  

• It can be done using the following four masks: 

 

• Let  0 R , 45 R , 90 R , and 135 R , respectively be the response to 
masks 0 D , 45 D ,  90 D , and 135 D , respectively. At a given pixel 
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(m,n), if 135 R is the maximum among { 0 R ,  45 R ,  90 R , 135 R }, 
we say that a 135 line is most likely passing through that pixel 

 

Edge Detection  

• Isolated points and thin lines do not occur frequently in most practical 
applications.  

• For image segmentation, we are mostly interested in detecting the 
boundary between two regions with relatively distinct gray-level 
properties.  

• We assume that the regions in question are sufficiently homogeneous so 
that the transition between two regions can be determined on the basis of 
gray-level discontinuities alone.  

• An edge in an image may be defined as a discontinuity or abrupt change 
in gray level. 
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• These are ideal situations that do not frequently occur in practice. 
Also, in two dimensions edges may occur at any orientation.  

• Edges may not be represented by perfect discontinuities. Therefore, 
the task of edge detection is much more difficult than what it looks 
like.  

• A useful mathematical tool for developing edge detectors is the first 
and second derivative operators. 
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• From the example above, it is clear that the magnitude of the first 
derivative can be used to detect the presence of an edge in an image.  

• The sign of the second derivative can be used to determine whether 
an edge pixel lies on the dark or light side of an edge.  

• The zero crossings of the second derivative provide a powerful way 
of locating edges in an image. 

• We would like to have small-sized masks in order to detect fine 
variation in graylevel distribution (i.e., micro-edges). • 
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• On the other hand, we would like to employ large-sized masks in 
order to detect coarse variation in graylevel distribution (i.e., macro-
edges) and filter-out noise and other irregularities.  

• We therefore need to find a mask size, which is a compromise 
between these two opposing requirements, or determine edge content 
by using different mask sizes 

• Most common differentiation operator is the gradient. 

 

 • The magnitude of the gradient is: 

 

• The direction of the gradient is given by: 

 

• In practice, we use discrete approximations of the partial derivatives  
∂f/∂x  and ∂f /∂y , which are implemented using the masks: 

 

• The gradient can then be computed as follows: 
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• Other discrete approximations to the gradient (more precisely, the 
appropriate partial derivatives) have been proposed (Roberts, 
Prewitt).  

• Because derivatives enhance noise, the previous operators may not 
give good results if the input image is very noisy.  

• One way to combat the effect of noise is by applying a smoothing 
mask. The Sobel edge detector combines this smoothing operation 
along with the derivative operation give the following masks:  

Since the gradient edge detection methodology depends only on the 
relative magnitudes within an image, scalar multiplication by  factors such 
as 1/2 or 1/8 play no essential role. The same is true for the signs of the 
mask entries. Therefore, masks like correspond to the same detector, 
namely the Sobel edge detector.  

 

• However, when the exact magnitude is important, the proper scalar 
multiplication factor should be used.  

• All masks considered so far have entries that add up to zero. This is 
typical of any derivative mask. 

Example: 
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The code will only compile in linux environment. Make sure that openCV 
is installed in your system before you run the program. 

 
Steps to download the requirements below:   

● Run the following command on your terminal to install it from the 
Ubuntu or Debian repository.   

● sudo apt-get install libopencv-dev python-opencv 

● OR In order to download OpenCV from the official site run the 
following command:  

● bash install-opencv.sh 

● on your terminal. 

● Type your sudo password and you will have installed OpenCV. 

 Principle behind Edge Detection  

Edge detection involves mathematical methods to find points in an image 
where the brightness of pixel intensities changes distinctly.  

● The first thing we are going to do is find the gradient of the grayscale 
image, allowing us to find edge-like regions in the x and y direction. 
The gradient is a multi-variable generalization of the derivative. While 
a derivative can be defined on functions of a single variable, for 
functions of several variables, the gradient takes its place. 

● The gradient is a vector-valued function, as opposed to a derivative, 
which is scalar-valued. Like the derivative, the gradient represents 
the slope of the tangent of the graph of the function. More 
precisely, the gradient points in the direction of the greatest rate of 
increase of the function, and its magnitude is the slope of the graph in 
that direction. 

Note: In computer vision, transitioning from black-to-white is considered 
a positive slope, whereas a transition from white-to-black is a negative 
slope. 
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# Python program to  Edge detection 
# using OpenCV in Python 
# using Sobel edge detection 
# and laplacian method 
import cv2 
import numpy as np 
  
#Capture livestream video content from camera 0 
cap = cv2.VideoCapture(0) 
  
while(1): 
  
    # Take each frame 
    _, frame = cap.read() 
      
    # Convert to HSV for simpler calculations 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
      
    # Calculation of Sobelx 
    sobelx = cv2.Sobel(frame,cv2.CV_64F,1,0,ksize=5) 
      
    # Calculation of Sobely 
    sobely = cv2.Sobel(frame,cv2.CV_64F,0,1,ksize=5) 
      
    # Calculation of Laplacian 
    laplacian = cv2.Laplacian(frame,cv2.CV_64F) 
      
    cv2.imshow('sobelx',sobelx) 
    cv2.imshow('sobely',sobely) 
    cv2.imshow('laplacian',laplacian) 
    k = cv2.waitKey(5) & 0xFF 
    if k == 27: 
        break 
  
cv2.destroyAllWindows() 
  
#release the frame 
cap.release() 
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Calculation of the derivative of an image 

A digital image is represented by a matrix that stores the 
RGB/BGR/HSV(whichever color space the image belongs to) value of 
each pixel in rows and columns.  

 
The derivative of a matrix is calculated by an operator called 
the Laplacian. In order to calculate a Laplacian, you will need to calculate 
first two derivatives, called derivatives of Sobel, each of which takes into 
account the gradient variations in a certain direction: one horizontal, the 
other vertical.  

● Horizontal Sobel derivative (Sobel x): It is obtained through the 
convolution of the image with a matrix called kernel which has always 
odd size. The kernel with size 3 is the simplest case. 

● Vertical Sobel derivative (Sobel y): It is obtained through the 
convolution of the image with a matrix called kernel which has always 
odd size. The kernel with size 3 is the simplest case. 

● Convolution is calculated by the following method: Image represents 
the original image matrix and filter is the kernel matrix. 

 

● Factor = 11 – 2- 2- 2- 2- 2 = 3  
Offset = 0 
Weighted Sum = 124*0 + 19*(-2) + 110*(-2) + 53*11 + 44*(-2) + 
19*0 + 60*(-2) + 100*0 = 117  
O[4,2] = (117/3) + 0 = 39 

 
So in the end to get the Laplacian (approximation) we will need to 
combine the two previous results (Sobelx and Sobely) and store it in 
laplacian. 
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Parameters:  
  

● cv2.Sobel(): The function cv2.Sobel(frame,cv2.CV_64F,1,0,ksize=5) 
can be written as cv2.Sobel (original_image, ddepth, xorder, yorder, 
kernelsize) 

● where the first parameter is the original image, the second parameter is 
the depth of the destination image. When ddepth=-1/CV_64F, the 
destination image will have the same depth as the source. The third 
parameter is the order of the derivative x. The fourth parameter is the 
order of the derivative y. While calculating Sobelx we will set xorder 
as 1 and yorder as 0 whereas while calculating Sobely, the case will be 
reversed. The last parameter is the size of the extended Sobel kernel; it 
must be 1, 3, 5, or 7. 

● cv2.Laplacian: In the function 

      cv2.Laplacian(frame,cv2.CV_64F) 

● the first parameter is the original image and the second parameter is 
the depth of the destination image.When depth=-1/CV_64F, the 
destination image will have the same depth as the source. 

 Edge Detection Applications 

 Reduce unnecessary information in an image while preserving the 
structure of image. 

● Extract important features of image like curves, corners and lines. 

● Recognizes objects, boundaries and segmentation. 

● Plays a major role in computer vision and recognition 

Line detection in python with OpenCV | Houghline method 

The Hough Transform is a method that is used in image processing to 
detect any shape, if that shape can be represented in mathematical form. It 
can detect the shape even if it is broken or distorted a little bit.  
We will see how Hough transform works for line detection using the 
HoughLine transform method. To apply the Houghline method, first an 
edge detection of the specific image is desirable. For the edge detection 
technique go through the article Edge detection  

Basics of Houghline Method 

A line can be represented as y = mx + c or in parametric form, as r = xcosθ 
+ ysinθ where r is the perpendicular distance from origin to the line, and θ 
is the angle formed by this perpendicular line and horizontal axis 
measured in counter-clockwise ( That direction varies on how you 
represent the coordinate system. This representation is used in OpenCV).  
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So Any line can be represented in these two terms, (r, θ). 

Working of Houghline method:  

● First it creates a 2D array or accumulator (to hold values of two 
parameters) and it is set to zero initially. 

● Let rows denote the r and columns denote the (θ)theta. 

● Size of array depends on the accuracy you need. Suppose you want the 
accuracy of angles to be 1 degree, you need 180 columns(Maximum 
degree for a straight line is 180). 

● For r, the maximum distance possible is the diagonal length of the 
image. So taking one pixel accuracy, number of rows can be diagonal 
length of the image. 

Example:  
Consider a 100×100 image with a horizontal line at the middle. Take the 
first point of the line. You know its (x,y) values. Now in the line equation, 
put the values θ(theta) = 0,1,2,….,180 and check the r you get. For every 
(r, 0) pair, you increment value by one in the accumulator in its 
corresponding (r,0) cells. So now in accumulator, the cell (50,90) = 1 
along with some other cells. 

  
Now take the second point on the line. Do the same as above. Increment 
the values in the cells corresponding to (r,0) you got. This time, the cell 
(50,90) = 2. We are actually voting the (r,0) values. You continue this 
process for every point on the line. At each point, the cell (50,90) will be 
incremented or voted up, while other cells may or may not be voted up. 
This way, at the end, the cell (50,90) will have maximum votes. So if you 
search the accumulator for maximum votes, you get the value (50,90) 
which says, there is a line in this image at distance 50 from origin and at 
angle 90 degrees.  
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Everything explained above is encapsulated in the OpenCV function, 
cv2.HoughLines(). It simply returns an array of (r, 0) values. r is measured 
in pixels and 0 is measured in radians.  

# Python program to illustrate HoughLine 

# method for line detection 

import cv2 

import numpy as np  

# Reading the required image in 

# which operations are to be done. 

# Make sure that the image is in the same 

# directory in which this python program is 

img = cv2.imread('image.jpg') 

  

# Convert the img to grayscale 

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

  

# Apply edge detection method on the image 

edges = cv2.Canny(gray,50,150,apertureSize = 3) 

  

# This returns an array of r and theta values 

lines = cv2.HoughLines(edges,1,np.pi/180, 200) 
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 # The below for loop runs till r and theta values 

# are in the range of the 2d array 

for r_theta in lines[0]: 

    r,theta = r_theta[0] 

    # Stores the value of cos(theta) in a 

    a = np.cos(theta) 

     # Stores the value of sin(theta) in b 

    b = np.sin(theta) 

         # x0 stores the value rcos(theta) 

    x0 = a*r 

         # y0 stores the value rsin(theta) 

    y0 = b*r 

         # x1 stores the rounded off value of (rcos(theta)-1000sin(theta)) 

    x1 = int(x0 + 1000*(-b)) 
         # y1 stores the rounded off value of (rsin(theta)+1000cos(theta)) 

    y1 = int(y0 + 1000*(a)) 

     # x2 stores the rounded off value of (rcos(theta)+1000sin(theta)) 

    x2 = int(x0 - 1000*(-b)) 

         # y2 stores the rounded off value of (rsin(theta)-1000cos(theta)) 

    y2 = int(y0 - 1000*(a)) 

         # cv2.line draws a line in img from the point(x1,y1) to (x2,y2). 

    # (0,0,255) denotes the colour of the line to be 

    #drawn. In this case, it is red. 

    cv2.line(img,(x1,y1), (x2,y2), (0,0,255),2) 

     # All the changes made in the input image are finally 

# written on a new image houghlines.jpg 

cv2.imwrite('linesDetected.jpg', img) 
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Elaboration of function(cv2.HoughLines (edges,1,np.pi/180, 200)):  
  

1. First parameter, Input image should be a binary image, so apply 
threshold edge detection before finding applying hough transform. 

2. Second and third parameters are r and θ(theta) accuracies respectively. 

3. Fourth argument is the threshold, which means minimum vote it 
should get for it to be considered as a line. 

4. Remember, number of votes depend upon number of points on the 
line. So it represents the minimum length of line that should be 
detected.  
  

 

 

 

 

  

mu
no
tes
.in



  

 

Image Processing Lab 

62 

Alternate simpler method for directly extracting points: 
Python3import cv2 

import numpy as np 

 # Read image 

image = cv2.imread('path/to/image.png') 

 # Convert image to grayscale 

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

 # Use canny edge detection 

edges = cv2.Canny(gray,50,150,apertureSize=3) 

 # Apply HoughLinesP method to 

# to directly obtain line end points 

lines = cv2.HoughLinesP( 

            edges, # Input edge image 

            1, # Distance resolution in pixels 

            np.pi/180, # Angle resolution in radians 

            threshold=100, # Min number of votes for valid line 

            minLineLength=5, # Min allowed length of line 

            maxLineGap=10 # Max allowed gap between line for joining them 

            ) 

 # Iterate over points 

for points in lines: 

      # Extracted points nested in the list 

    x1,y1,x2,y2=points[0] 

    # Draw the lines joing the points 

    # On the original image 

    cv2.line(image,(x1,y1),(x2,y2),(0,255,0),2) 

    # Maintain a simples lookup list for points 

    lines_list.append([(x1,y1),(x2,y2)]) 

      

# Save the result image 

cv2.imwrite('detectedLines.png',image) 

  

 

 

mu
no
tes
.in



 

 

Image segmentation and Image 
Restoration 

 

63 

Summarizing the process 

 In an image analysis context, the coordinates of the point(s) of edge 
segments (i.e. X,Y ) in the image are known and therefore serve as 
constants in the parametric line equation, while R(rho) and Theta(θ) are 
the unknown variables we seek. 

● If we plot the possible (r) values defined by each (theta), points in 
cartesian image space map to curves (i.e. sinusoids) in the polar Hough 
parameter space. This point-to-curve transformation is the Hough 
transformation for straight lines. 

● The transform is implemented by quantizing the Hough parameter 
space into finite intervals or accumulator cells. As the algorithm runs, 
each (X,Y) is transformed into a discretized (r,0) curve and the 
accumulator(2D array) cells which lie along this curve are 
incremented. 

● Resulting peaks in the accumulator array represent strong evidence 
that a corresponding straight line exists in the image. 

Applications of Hough transform:  

1. It is used to isolate features of a particular shape within an image. 

2. Tolerant of gaps in feature boundary descriptions and is relatively 
unaffected by image noise. 

3. Used extensively in barcode scanning, verification and recognition 

Thresholding techniques using OpenCV  

Thresholding is a technique in OpenCV, which is the assignment of pixel 
values in relation to the threshold value provided. In thresholding, each 
pixel value is compared with the threshold value. If the pixel value is 
smaller than the threshold, it is set to 0, otherwise, it is set to a maximum 
value (generally 255). Thresholding is a very popular segmentation 
technique, used for separating an object considered as a foreground from 
its background. A threshold is a value which has two regions on its either 
side i.e. below the threshold or above the threshold.  

In Computer Vision, this technique of thresholding is done on grayscale 
images. So initially, the image has to be converted in grayscale color 
space.  
  

If f (x, y) < T  

   then f (x, y) = 0  

else  

   f (x, y) = 255 
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where  

f (x, y) = Coordinate Pixel Value 

T = Threshold Value. 

In Open CV with Python, the function cv2.threshold is used for 
thresholding.  
  

Syntax: cv2.threshold(source, threshold Value, max Val, thresholding 
Technique)  

Parameters:  
-> source: Input Image array (must be in Grayscale).  
-> thresholdValue: Value of Threshold below and above which pixel 
values will change accordingly.  

 
-> maxVal: Maximum value that can be assigned to a pixel.  
-> thresholdingTechnique: The type of thresholding to be applied.  
   

Simple Thresholding 

The basic Thresholding technique is Binary Thresholding. For every pixel, 
the same threshold value is applied. If the pixel value is smaller than the 
threshold, it is set to 0, otherwise, it is set to a maximum value. 
The different Simple Thresholding Techniques are:  
  

● cv2.THRESH_BINARY: If pixel intensity is greater than the set 
threshold, value set to 255, else set to 0 (black). 

● cv2.THRESH_BINARY_INV: Inverted or Opposite case of 
cv2.THRESH_BINARY. 

● cv.THRESH_TRUNC: If pixel intensity value is greater than 
threshold, it is truncated to the threshold. The pixel values are set to be 
the same as the threshold. All other values remain the same. 

● cv.THRESH_TOZERO: Pixel intensity is set to 0, for all the pixels 
intensity, less than the threshold value. 

● cv.THRESH_TOZERO_INV: Inverted or Opposite case of 
cv2.THRESH_TOZERO. 

  

mu
no
tes
.in



 

 

Image segmentation and Image 
Restoration 

 

65 

 

Below is the Python code explaining different Simple Thresholding 
Techniques –  
  

● Python3 

● # Python program to illustrate 

● # simple thresholding type on an image 

●       

● # organizing imports 
● import cv2 

● import numpy as np 

●   

● # path to input image is specified and  

● # image is loaded with imread command 

● image1 = cv2.imread('input1.jpg') 

●   

● # cv2.cvtColor is applied over the 

● # image input with applied parameters 

● # to convert the image in grayscale 

● img = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) 
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# applying different thresholding 

# techniques on the input image 

# all pixels value above 120 will 

# be set to 255 

ret, thresh1 = cv2.threshold(img, 120, 255, cv2.THRESH_BINARY) 

ret, thresh2 = cv2.threshold(img, 120, 255, cv2.THRESH_BINARY_INV) 

ret, thresh3 = cv2.threshold(img, 120, 255, cv2.THRESH_TRUNC) 

ret, thresh4 = cv2.threshold(img, 120, 255, cv2.THRESH_TOZERO) 

ret, thresh5 = cv2.threshold(img, 120, 255, cv2.THRESH_TOZERO_INV) 

  

# the window showing output images 

# with the corresponding thresholding 

# techniques applied to the input images 

cv2.imshow('Binary Threshold', thresh1) 

cv2.imshow('Binary Threshold Inverted', thresh2) 

cv2.imshow('Truncated Threshold', thresh3) 

cv2.imshow('Set to 0', thresh4) 

cv2.imshow('Set to 0 Inverted', thresh5) 

    

# De-allocate any associated memory usage  

if cv2.waitKey(0) & 0xff == 27: 

    cv2.destroyAllWindows() 

Region and Edge Based Segmentation 

Segmentation 

Segmentation is the separation of one or more regions or objects in an 
image based on a discontinuity or a similarity criterion. A region in an 
image can be defined by its border (edge) or its interior, and the two 
representations are equal. There are prominently three methods of 
performing segmentation: 

● Pixel Based Segmentation 

● Region-Based Segmentation 

● Edges based segmentation 
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Edges based segmentation 

Edge-based segmentation contains 2 steps: 

● Edge Detection: In edge detection, we need to find the pixels that are 
edge pixels of an object. There are many object detection methods 
such as Sobel operator, Laplace operator, Canny, etc. 

1 0 -1 

2 0 -2 

1 0 -1 

Sobel vertical 
Operator 

+1 2 1 

0 0 0 

-1 -2 -1 

Sobel Horizontal 
Operator 

0 -1 0 

-1 4 -1 

0 -1 0 

Negative Laplace 
Operator 

● Edge Linking: In this step, we try to refine the edge detection by 
linking the adjacent edges and combine to form the whole object. The 
edge linking can be performed using any of the two methods below: 

● Local Processing: In this method, we used gradient and direction 
to link the neighborhood edges. If two edges have a similar 
direction vector then they can be linked. 

● Global processing: This method can be done using HOG 
transformation 
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● Pros : 

● This approach is similar to how the humans brain approaches the 
segmentation task. 

● Works well in images with good contrast between object and 
background. 

● Limitations: 

● Does not work well on images with smooth transitions and low 
contrast. 

● Sensitive to noise. 

● Robust edge linking is not trivial and easy to perform. 

Region-Based Segmentation 

In this segmentation, we grow regions by recursively including the 
neighboring pixels that are similar and connected to the seed pixel. We use 
similarity measures such as differences in gray levels for regions with 
homogeneous gray levels. We use connectivity to prevent connecting 
different parts of the image.  

There are two variants of region-based segmentation: 

● Top-down approach 

● First, we need to define the predefined seed pixel. Either we can 
define all pixels as seed pixels or randomly chosen pixels. Grow 
regions until all pixels in the image belongs to the region. 

● Bottom-Up approach 

● Select seed only from objects of interest. Grow regions only if the 
similarity criterion is fulfilled. 

● Similarity Measures: 

● Similarity measures can be of different types: For the grayscale 
image the similarity measure can be the different textures and 
other spatial properties, intensity difference within a region or the 
distance b/w mean value of the region. 

● Region merging techniques: 

● In the region merging technique, we try to combine the regions 
that contain the single object and separate it from the 
background.. There are many regions merging techniques such as 
Watershed algorithm, Split and merge algorithm, etc. 
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● Pros: 

● Since it performs simple threshold calculation, it is faster to 
perform. 

● Region-based segmentation works better when the object and 
background have high contrast. 

● Limitations: 

● It did not produce many accurate segmentation results when there 
are no significant differences b/w pixel values of the object and 
the background. 

Implementation: 

● In this implementation, we will be performing edge and region-based 
segmentation. We will be using scikit image module for that and an 
image from its dataset provided. 

● # code 
● import numpy as np 

● import matplotlib.pyplot as plt 

● from skimage.feature import canny 

● from skimage import data,morphology 

● from skimage.color import rgb2gray 

● import scipy.ndimage as nd 

● plt.rcParams["figure.figsize"] = (12,8) 

● %matplotlib inline 

● # load images and convert grayscale 

● rocket = data.rocket() 

● rocket_wh = rgb2gray(rocket) 

● # apply edge segmentation 

● # plot canny edge detection 

● edges = canny(rocket_wh) 

● plt.imshow(edges, interpolation='gaussian') 

● plt.title('Canny detector') 

● # fill regions to perform edge segmentation 

● fill_im = nd.binary_fill_holes(edges) 

● plt.imshow(fill_im) 

● plt.title('Region Filling')  
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● # Region Segmentation 

● # First we print the elevation map 

● elevation_map = sobel(rocket_wh) 

● plt.imshow(elevation_map) 

# Since, the contrast difference is not much. Anyways we will perform it 

markers = np.zeros_like(rocket_wh) 

markers[rocket_wh < 0.1171875] = 1 # 30/255 

markers[rocket_wh > 0.5859375] = 2 # 150/255 

  

plt.imshow(markers) 

plt.title('markers') 

# Perform watershed region segmentation 

segmentation = morphology.watershed(elevation_map, markers) 

plt.imshow(segmentation) 

plt.title('Watershed segmentation') 

  

# plot overlays and contour 

segmentation = nd.binary_fill_holes(segmentation - 1) 

label_rock, _ = nd.label(segmentation) 

# overlay image with different labels 

image_label_overlay = label2rgb(label_rock, image=rocket_wh) 

  

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 16), sharey=True) 

ax1.imshow(rocket_wh) 

ax1.contour(segmentation, [0.8], linewidths=1.8, colors='w') 

ax2.imshow(image_label_overlay) 

  

fig.subplots_adjust(**margins) 
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Output:  
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Elevation 
maps
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Experiment V 

5 
IMAGE DATA COMPRESSION 

Aim: Fundamentals of compression, Basic compression methods. 

Theory: 

In the field of Image processing, the compression of images is an 
important step before we start the processing of larger images or videos. 
The compression of images is carried out by an encoder and output a 
compressed form of an image. In the processes of compression, the 
mathematical transforms play a vital role. A flow chart of the process of 
the compression of the image can be represented as:  

 

The general representation of the image in a computer is like a vector of 
pixels. Each pixel is represented by a fixed number of bits. These bits 
determine the intensity of the color (on grayscale if a black and white 
image and has three channels of RGB if colored images.)   

Why Do We Need Image Compression? 

Consider a black and white image that has a resolution of 1000*1000 and 
each pixel uses 8 bits to represent the intensity. So the total no of bits req= 
1000*1000*8 = 80,00,000 bits per image. And consider if it is a video 
with 30 frames per second of the above-mentioned type images then 
the total bits for a video of 3 secs is: 3*(30*(8, 000, 000))=720, 000, 000 
bits  

As we see just to store a 3-sec video we need so many bits which is very 
huge. So, we need a way to have proper representation as well to store the 
information about the image in a minimum no of bits without losing the 
character of the image. Thus, image compression plays an important role.  

Basic steps in image compression:  

● Applying the image transform 

● Quantization of the levels 

● Encoding the sequences.  

● Transforming The Image 
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What is a transformation(Mathematically)?  

It a function that maps from one domain(vector space) to another 
domain(other vector space). Assume, T is a transform, f(t):X->X’ is a 
function then, T(f(t)) is called the transform of the function.   

We generally carry out the transformation of the function from one vector 
space to the other because when we do that in the newly projected vector 
space we infer more information about the function.  

A real life example of a transform:  

 

Here we can say that the prism is a transformation function in which it 
splits the white light (f(t)) into its components i.e the representation of the 
white light.  

And we observe that we can infer more information about the light in its 
component representation than the white light one. This is how transforms 
help in understanding the functions in an efficient manner.   

Transforms in Image Processing 

The image is also a function of the location of the pixels. i.e I(x, y) where 
(x, y) are the coordinates of the pixel in the image. So, we generally 
transform an image from the spatial domain to the frequency domain.  

Why Transformation of the Image is Important?  

It becomes easy to know what all the principal components that make up 
the image and help in the compressed representation. 

It makes the computations easy.  
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Example: finding convolution in the time domain before the 
transformation:  

 

Finding convolution in the frequency domain after the transformation:  

 

So we can see that the computation cost has reduced as we switched to the 
frequency domain. We can also see that in the time domain the 
convolution was equivalent to an integration operator but in the frequency 
domain, it becomes equal to the simple product of terms. So, this way the 
cost of computation reduces. 

So this way when we transform the image from domain to the other 
carrying out the spatial filtering operations becomes easier.  

Quantization 

The process quantization is a vital step in which the various levels of 
intensity are grouped into a particular level based on the mathematical 
function defined on the pixels. Generally, the newer level is determined by 
taking a fixed filter size of “m” and dividing each of the “m” terms of the 
filter and rounding it its closest integer and again multiplying with “m”.  
 Basic quantization Function: [pixelvalue/m] * m 

So, the closest of the pixel values approximate to a single level hence as 
the no of distinct levels involved in the image becomes less. Hence we 
reduce the redundancy in the level of the intensity. So thus quantization 
helps in reducing the distinct levels.  

Eg: (m=9)  

 

Thus, we see in the above example both the intensity values round up to 
18 thus we reduce the number of distinct levels(characters involved) in the 
image specification.  
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Symbol Encoding 

The symbol stage involves where the distinct characters involved in the 
image are encoded in a way that the no. of bits required to represent a 
character is optimal based on the frequency of the character’s occurrence. 
In simple terms, In this stage codewords are generated for the different 
characters present. By doing so we aim to reduce the no. of bits required to 
represent the intensity levels and represent them in an optimum number of 
bits.  

There are many encoding algorithms. Some of the popular ones are:   

Huffman variable-length encoding. 

Run-length encoding. 

In the Huffman coding scheme, we try to find the codes in such a way that 
none of the codes are the prefixes to the other. And based on the 
probability of the occurrence of the character the length of the code is 
determined. In order to have an optimum solution the most probable 
character has the smallest length code.  

Example:  

 

We see the actual 8-bit representation as well as the new smaller length 
codes. The mechanism of generation of codes is:  

mu
no
tes
.in



 

 

Image Data Compression 

 

79 

 

So we see how the storage requirement for the no of bits is decreased as:  

Initial representation–average code length: 8 bits per intensity level.  

After encoding–average code length:  

(0.6*1)+(0.3*2)+(0.06*3)+(0.02*4)+(0.01*5)+(0.01*5)=1.56 bits per 
intensity level  

Thus the no of bits required to represent the pixel intensity is drastically 
reduced.   

Thus in this way, the mechanism of quantization helps in compression. 
When the images are once compressed its easy for them to be stored on a 
device or to transfer them. And based on the type of transforms used, type 
of quantization, and the encoding scheme the decoders are designed based 
on the reversed logic of the compression so that the original image can be 
re-built based on the data obtained out of the compressed images. 

There are organizations who receive data form lakhs or more persons, 
which is mostly in form of text, with a few images. Most of you know that 
the text part is stored in databases in the form of tables, but what about the 
images? The images are small compared to the textual data but constitute a 
much higher space in terms of storage. Hence, to save on the part of space 
and keep running the processes smoothly, they ask the users to submit the 
compressed images. As most of the readers have a bit of CS 
background(either in school or college), they understand that using online 
free tools to compress images is not a good practice for them. 

Till Windows 7, Microsoft used to give MS Office Picture Manager which 
could be used to compress images till an extent, but it also had some 
limitations. 
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Those who know a bit of python can install python and use pip 
install pillow in command prompt(terminal for Linux users) to install 
pillow fork. 

You’ll get a screen like this  

 

Assemble all the files in a folder and keep the file Compress.py in the 
same folder. 

Run the python file with python. 

Below is the Source Code of the file: 

# run this in any directory  

# add -v for verbose  

# get Pillow (fork of PIL) from 

# pip before running --> 

# pip install Pillow 

   

# import required libraries 

import os 

import sys 

from PIL import Image 

   

# define a function for 

# compressing an image 

def compressMe(file, verbose = False): 

# Get the path of the file 

    filepath = os.path.join (os.getcwd(), file) 

 

                # open the image 

    picture = Image.open(filepath) 
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          # Save the picture with desired quality 

    # To change the quality of image, 

    # set the quality variable at 

    # your desired level, The more  

    # the value of quality variable  

    # and lesser the compression 

    picture.save("Compressed_"+file,  

                 "JPEG",  

                 optimize = True,  

                 quality = 10) 

    return 

  # Define a main function 

def main(): 

        verbose = False 

          # checks for verbose flag 

    if (len(sys.argv)>1): 

                if (sys.argv[1].lower()=="-v"): 
            verbose = True                    

    # finds current working dir 

    cwd = os.getcwd() 

      formats = ('.jpg', '.jpeg') 

          # looping through all the files 

    # in a current directory 

    for file in os.listdir(cwd): 

                # If the file format is JPG or JPEG 

        if os.path.splitext(file)[1].lower() in formats: 

            print('compressing', file) 

            compressMe(file, verbose) 

print("Done") 

  # Driver code 

if __name__ == "__main__": 

    main() 

mu
no
tes
.in



  

 

Image Processing Lab 

82 

Folder Before Compression: 

 

Folder before running file 

Command Line for executing Code: 

PS: Please run code after getting into the directory. 

 

Command Line for executing Code 

Folder after execution of Code: 

 

Folder after running code 

You can clearly see the compressed file. 
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Experiment VI 

6 
MORPHOLOGICAL OPERATION 

Aim: Morphological operational: Dilation, Erosion, Opening, Closing. 

Theory: 

EROSION AND DILATION IN MORPHOLOGICAL 
PROCESSING.  

These operations are fundamental to morphological processing.  

Erosion:  

With A and B as sets in Z2 , the erosion of A by B, denoted A � B, is 
defined as  

 

In words, this equation indicates that the erosion of A by B is the set of all 
points z such that B, translated by z, is contained in A. In the following 
discussion, set B is assumed to be a structuring element. The statement 
that B has to be contained in A is equivalent to B not sharing any common 
elements with the background; we can express erosion in the following 
equivalent form: 

  

where, A c is the complement of A and Ø is the empty set. 

 

a) Set (b) Square structuring element, (c) Erosion of by shown shaded. (d) 
Elongated structuring element. (e) Erosion of by using this element. The 
dotted border in (c) and (e) is the boundary of set A, shown only for 
reference. 
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The elements of A and B are shown shaded and the background is white. 
The solid boundary in Fig. (c) is the limit beyond which further 
displacements of the origin of B would cause the structuring element to 
cease being completely contained in A. Thus, the locus of points 
(locations of the origin of B) within (and including) this boundary, 
constitutes the erosion of A by B. We show the erosion shaded in Fig. 
(c).The boundary of set A is shown dashed in Figs. (c) and (e) only as a 
reference; it is not part of the erosion operation. Figure (d) shows an 
elongated structuring element, and Fig. (e) shows the erosion of A by this 
element. Note that the original set was eroded to a line. However, these 
equations have the distinct advantage over other formulations in that they 
are more intuitive when the structuring element B is viewed as a spatial 
mask. 

Thus, erosion shrinks or thins objects in a binary image. In fact, we can 
view erosion as a morphological filtering operation in which image details 
smaller than the structuring element are filtered (re-moved) from the 
image 

(i) Dilation  

However, the preceding definitions have a distinct advantage over other 
formulations in that they are more intuitive when the structuring element 
B is viewed as a convolution mask. The basic process of flipping 
(rotating) B about its origin and then successively displacing it so that it 
slides over set (image) A is analogous to spatial convolution. Keep in 
mind, however, that dilation is based on set operations and therefore is a 
nonlinear operation, whereas convolution is a linear operation. Unlike 
erosion, which is a shrinking or thinning operation, dilation "grows" or 
"thickens" objects in a binary image. The specific manner and extent of 
this thickening is controlled by the shape of the structuring element used. 
In the following Figure (b) shows a structuring element (in this case B = B 
because the SE is symmetric about its origin). The dashed line in Fig. (c) 
shows the original set for reference, and the solid line shows the limit 
beyond which any further displacements of the origin of B by z would 
cause the intersection of B and A to be empty. Therefore, all points on and 
inside this boundary constitute the dilation of A by B. Figure (d) shows a 
structuring element designed to achieve more dilation vertically than 
horizontally, and Fig. (e) shows the dilation achieved with this element 

mu
no
tes
.in



 

 

Morphological Operation 

 

85 

 

FIG:4.1.5 (a) Set (b) Square structuring element (the dot denotes the 
origin). (c) Dilation of by shown shaded. (d) Elongated structuring 
element. (e) Dilation of using this element. The dotted border in (c) and 
(e) is the boundary of set shown only for reference. 

Opening and Closing  

Opening generally smoothes the contour object, breaks narrow isthmuses, 
and eliminates thin protrusions. Closing also tends to smooth sections of 
contours but, ass opposed to opening, it generally fuses narrow breaks and 
long thin gulfs, eliminates small holes, and fills gaps in the contour  
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Morphological Operations in Image Processing (Opening)  

Morphological operations are used to extract image components that are 
useful in the representation and description of region shape. 
Morphological operations are some basic tasks dependent on the picture 
shape. It is typically performed on binary images. It needs two data 
sources, one is the input image, the second one is called structuring 
component. Morphological operators take an input image and a 
structuring component as input and these elements are then combines 
using the set operators. The objects in the input image are processed 
depending on attributes of the shape of the image, which are encoded in 
the structuring component.  

 
Opening is similar to erosion as it tends to remove the bright foreground 
pixels from the edges of regions of foreground pixels. The impact of the 
operator is to safeguard foreground region that has similarity with the 
structuring component, or that can totally contain the structuring 
component while taking out every single other area of foreground pixels. 
Opening operation is used for removing internal noise in an image. 
Opening is erosion operation followed by dilation operation.  
  

 Syntax: cv2.morphology Ex(image, cv2.MORPH_OPEN, kernel) 
Parameters:  
-> image: Input Image array.  
-> cv2.MORPH_OPEN: Applying the Morphological Opening 
operation.  
-> kernel: Structuring element.  
 Below is the Python code explaining Opening Morphological Operation –
  
# Python program to illustrate 

# Opening morphological operation 

# on an image 

# organizing imports  

import cv2  

import numpy as np  

# return video from the first webcam on your computer.  

screenRead = cv2.VideoCapture(0) 

  

# loop runs if capturing has been initialized. 

while(1): 

    # reads frames from a camera 
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    _, image = screenRead.read() 

    # Converts to HSV color space, OCV reads colors as BGR 

    # frame is converted to hsv 

    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 

         # defining the range of masking 

    blue1 = np.array([110, 50, 50]) 

    blue2 = np.array([130, 255, 255]) 

         # initializing the mask to be 

    # convoluted over input image 

    mask = cv2.inRange(hsv, blue1, blue2) 

     # passing the bitwise_and over 

    # each pixel convoluted 

    res = cv2.bitwise_and(image, image, mask = mask) 

         # defining the kernel i.e. Structuring element 

    kernel = np.ones((5, 5), np.uint8) 

         # defining the opening function 

    # over the image and structuring element 
    opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) 

        # The mask and opening operation 

    # is shown in the window 

    cv2.imshow('Mask', mask) 

    cv2.imshow('Opening', opening) 

         # Wait for 'a' key to stop the program 

    if cv2.waitKey(1) & 0xFF == ord('a'): 

        break 

# De-allocate any associated memory usage  

cv2.destroyAllWindows() 

 # Close the window / Release webcam 

screenRead.release() 
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Input Frame:  

 

Mask:  
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Output Frame:  

  

The system recognizes the defined blue book as the input as removes and 
simplifies the internal noise in the region of interest with the help of the 
Opening function. 

Morphological Operations in Image Processing (Closing) 

Closing is similar to the opening operation. In closing operation, the basic 
premise is that the closing is opening performed in reverse. It is defined 
simply as a dilation followed by an erosion using the same structuring 
element used in the opening operation. 

 

Syntax: cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel) 

Parameters: 
-> image: Input Image array. 
-> cv2.MORPH_CLOSE: Applying the Morphological Closing operation. 
-> kernel: Structuring element. 

Below is the Python code explaining Closing Morphological Operation – 

# Python program to illustrate 

# Closing morphological operation 

# on an image 

  # organizing imports   

import cv2   
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import numpy as np   

  # return video from the first webcam on your computer.   

screenRead = cv2.VideoCapture(0) 

  # loop runs if capturing has been initialized. 

while(1): 

    # reads frames from a camera 

    _, image = screenRead.read() 

          # Converts to HSV color space, OCV reads colors as BGR  

    # frame is converted to hsv 

    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 

          # defining the range of masking 

    blue1 = np.array([110, 50, 50]) 

    blue2 = np.array([130, 255, 255]) 

          # initializing the mask to be 

    # convoluted over input image 

    mask = cv2.inRange(hsv, blue1, blue2) 

      # passing the bitwise_and over 
    # each pixel convoluted 

    res = cv2.bitwise_and(image, image, mask = mask) 

          # defining the kernel i.e. Structuring element 

    kernel = np.ones((5, 5), np.uint8) 

          # defining the closing function  

    # over the image and structuring element 

    closing = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) 

         # The mask and closing operation 

    # is shown in the window  

    cv2.imshow('Mask', mask) 

    cv2.imshow('Closing', closing) 

# Wait for 'a' key to stop the program  

    if cv2.waitKey(1) & 0xFF == ord('a'): 

        break 

  # De-allocate any associated memory usage   

cv2.destroyAllWindows() 

  # Close the window / Release webcam  

screenRead.release() 
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Input Frame: 

 

 

Mask: 
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Output: 

 

Erosion and Dilation of images using OpenCV in python 
Morphological operations are a set of operations that process images 
based on shapes. They apply a structuring element to an input image and 
generate an output image 

. The most basic morphological operations are two: Erosion and Dilation  
Basics of Erosion: 
● Erodes away the boundaries of the foreground object 

● Used to diminish the features of an image. 

Working of erosion:  
1. A kernel(a matrix of odd size(3,5,7) is convolved with the image. 

2. A pixel in the original image (either 1 or 0) will be considered 1 only 
if all the pixels under the kernel are 1, otherwise, it is eroded (made to 
zero). 

3. Thus all the pixels near the boundary will be discarded depending 
upon the size of the kernel. 

4. So the thickness or size of the foreground object decreases or simply 
the white region decreases in the image. 

Basics of dilation:   
● Increases the object area 
● Used to accentuate features 

Working of dilation: 
  

1. A kernel(a matrix of odd size(3,5,7) is convolved with the image 

2. A pixel element in the original image is ‘1’ if at least one pixel under 
the kernel is ‘1’. 
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3. It increases the white region in the image or the size of the foreground 
object increases  

# Python program to demonstrate erosion and 

# dilation of images. 

import cv2 

import numpy as np 

 # Reading the input image 

img = cv2.imread('input.png', 0) 

 # Taking a matrix of size 5 as the kernel 

kernel = np.ones((5,5), np.uint8) 

 # The first parameter is the original image, 

# kernel is the matrix with which image is 

# convolved and third parameter is the number 

# of iterations, which will determine how much 

# you want to erode/dilate a given image. 

img_erosion = cv2.erode(img, kernel, iterations=1) 

img_dilation = cv2.dilate(img, kernel, iterations=1) 
 cv2.imshow('Input', img) 

cv2.imshow('Erosion', img_erosion) 

cv2.imshow('Dilation', img_dilation) 

 cv2.waitKey(0) 

Uses of Erosion and Dilation:  

1. Erosion:  
● It is useful for removing small white noises. 

● Used to detach two connected objects etc. 

2. Dilation: 
● In cases like noise removal, erosion is followed by dilation. Because, 

erosion removes white noises, but it also shrinks our object. So we 
dilate it. Since noise is gone, they won’t come back, but our object 
area increases. 

● It is also useful in joining broken parts of an object. 
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