
1

Chapter 1: Collection and Generics

Module 1

1
COLLECTION AND GENERICS

Unit Structure

1.0 Objectives
1.1 Introduction to Generics
 1.1.1 Advantages of Generics
 1.1.2 Generic Classes
 1.1.3 Generic Methods
 1.1.4 Bounded Type Parameters
1.2 Wildcards
 1.2.1 Types of Wildcards
1.3 Introduction to Java Collections
 1.3.1 Java Collection Framework
 1.3.2 Java Collection Hierarchy
 1.3.3 Advantages of Collection
 1.3.4 Framework Basic and Bulk Operations on Java Collection
1.4 List
 1.4.1 Methods of List Interface
 1.4.2 How to create List - ArrayList and LinkedList
 1.4.3 Iterating through the List
1.5 Set
 1.5.1 Methods of Set Interface
 1.5.2 HashSet Class
 1.5.3 TreeSet Class
1.6 Map
 1.6.1 Methods of Map Interface
 1.6.2 HashMap Class
 1.6.2 LinkedHashMap Class
 1.6.3 TreeMap Class
1.7 Let Us Sum Up
1.8 List of References
1.9 Chapter End Exercises

mu
no
tes
.in

2

 ADVANCE JAVA

1.0 Objectives

After going through this chapter, you will be able to:

• Understand the Collections API
• Learn what is generics and how to write Generic Classes and Methods
• Perform basic operations on Collection
• Learn what are wildcard characters and types of wildcards
• Understand List, Set and Maps
1.1 Introduction to Generics

The Java Generics was added to JDK 1.5 which allowed programming
generically. It allows creating classes and methods that work in the same way on
different types of objects while providing type-safety right at the compile-time It
makes the code stable by detecting the bugs at compile time.

Before generics, we can store any type of objects in the collection, i.e., non-generic.
Now generics force the java programmer to store a specific type of objects.

1.1.1 ADVANTAGE OF GENERICS

There are mainly 3 advantages of generics. They are as follows:

1) Type-safety

 We can hold only a single type of objects in generics. It doesn’t allow to
store other objects. Without Generics, we can store any type of objects.

Example:

List list = new ArrayList();
list.add(10); //Storing an int value in list
list.add("10"); //Storing a String value in list
With Generics, it is required to specify the type of object we need to store.
List<Integer> list = new ArrayList<Integer>();
list.add(10);
list.add("10");// compile-time error

2) Type casting is not required

 There is no need to typecast the object. Before Generics, we need to type cast.

Example:

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0); //typecasting
After Generics, we don't need to typecast the object.

mu
no
tes
.in

3

Chapter 1: Collection and Generics

Example:

List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0);

3) Compile-Time Checking: Type checking is done at compile time so errors
will not occur at runtime.

Example:

List<String> list = new ArrayList<String>();
list.add("hello");
list.add(32);//Compile Time Error

1.1.2 GENERIC CLASSES

Generics is not only limited to collection. It is also possible to use Generics with
classes. A generic class declaration looks like a non-generic class declaration,
except that the class name is followed by a type parameter section.

The type parameter section of a generic class can have one or more type parameters
separated by commas. These classes are known as parameterized classes or
parameterized types because they accept one or more parameters.

Example: Program that demonstrates Generic Classes

 public class Shape<T> {
 private T t;
 public void add(T t) {
 this.t = t;
 }
 public T get() {
 return t;
 }
 public static void main(String[] args) {
 Shape<Integer> intShape = new Shape<Integer>();
 Shape<String> strShape = new Box<String>();

 intShape.add(new Integer(25));
 strShape.add(new String("Generic Classes"));
 System.out.printf("Integer Value :%d\n\n", intShape.get());
 System.out.printf("String Value :%s\n", strShape.get());
 }
}

mu
no
tes
.in

4

 ADVANCE JAVA

Output

Integer Value :25

String Value : Generic Classes

In this program, Box is coded as a Generic Class. Technically, Box is a parametric
class and T is the type parameter. T serves as a placeholder for holding any type of
Object. We can use the above class by substituting any kind of object for the
placeholder T.

1.1.3 GENERIC METHODS

A generic method declaration can have arguments of different types. Based on the
types of the arguments passed to the generic method, the compiler handles each
method call appropriately. Unlike a Generic Class, a generic method containing
different parameters affects only that method. alone. Hence, a class which is not
generic can contain generic and non-generic methods.

Rules for defining Generic Methods

• All generic method declarations have a type parameter section delimited by
angle brackets (< and >) that precedes the method's return type < T >

• Each type parameter section contains one or more type parameters
separated by commas. A type parameter is an identifier that specifies a
generic type name.

• The type parameters can be used to declare the return type and act as
placeholders for the types of the arguments passed to the generic method,
which are known as actual type arguments.

• A generic method's body is declared like that of any other method.
• Note that type parameters can represent only reference types, not primitive

types (like int, double and char).
Example 1: Program that prints the type of data passed using a single Generic
method

public class GenericMethodsEx1
{ // generic method print
public static <T> void print(T t)
{ System.out.println(t.getClass().getName());
}
 public static void main(String args[]) {
GenericMethodsEx1.print(“Hello World”);
GenericMethodsEx1.print(100);
}
}

mu
no
tes
.in

5

Chapter 1: Collection and Generics

Output;

java.lang.String

java.lang.Integer

In this program, the static method print has a return type void and it takes a single
parameter called T. T stands for parametric type which can be substituted with any
of the Java types by a client application.

Example 2: Program that prints an array of different type using a single
Generic method

public class GenericMethodEx2 {

 // generic method printArray

 public static < T > void printArray(E[] i)

 {

 // Display array elements

 for(T element : i) {

 System.out.printf("%s ", element);

 }

 System.out.println();

 }

 public static void main(String args[]) {

 // Create arrays of Integer, Double and Character

 Integer[] intArray = { 1, 2, 3, 4, 5 };

 Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };

 Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };

 System.out.println("Array integerArray contains:");

 printArray(intArray); // pass an Integer array

 System.out.println("\nArray doubleArray contains:");

 printArray(doubleArray); // pass a Double array

 System.out.println("\nArray characterArray contains:");

 printArray(charArray); // pass a Character array

 }

}

mu
no
tes
.in

6

 ADVANCE JAVA

Output

Array integerArray contains:
1 2 3 4 5
Array doubleArray contains:
1.1 2.2 3.3 4.4
Array characterArray contains:
H E L L O
In this program, the static method printArray has a return type void and it takes a
single parameter called T. T stands for parametric type which can be substituted
with any of the Java types by a client application. The main method passes arrays
with different types and the single generic method is used to print all of the array
elements.

1.1.4 BOUNDED TYPE PARAMETERS

Sometimes it is required to restrict the kinds of types that are allowed to be passed
to a type parameter. Example, a method that operates on numbers might only want
to accept instances of Number or its subclasses. In such cases, bounded type
parameters can be used.

To declare a bounded type parameter, list the type parameter's name, followed by
the extends keyword, followed by its upper bound like below:

class Example <T extends Number>

Example: Program that calculates the average of numbers either integer or
double

package p1;
public class Test<T extends Number> {
 T[] numArr;
 Test(T[] numArr) {
 this.numArr = numArr;
 }
 public double getAvg() {
 double sum = 0.0;
 for (int i = 0; i < numArr.length; i++) {
 sum += numArr[i].doubleValue();
 }
 double avg = sum / numArr.length;
 return avg;
 }
 public static void main(String[] args) {

mu
no
tes
.in

7

Chapter 1: Collection and Generics

 Integer i1[] = {12, 13, 14, 15, 16};
 Double d[] = {1.0, 2.0, 3.0, 4.0};
 Test<Integer> e1 = new Test<Integer>(i1);
 Test<Double> e2 = new Test<Double>(d);
 double ai = e1.getAvg();
 Double ad = e2.getAvg();
 System.out.println("Average of Integers = " + ai);
 System.out.println("Average of Double =" + ad);
 }

Output

Average of Integers = 14.0

Average of Double =2.5

1.2 WILDCARD CHARACTER

� The question mark (?) is known as the wildcard in generic programming . It
represents an unknown type.

� The wildcard can be used in a variety of situations such as the type of a
parameter, field, or local variable; sometimes as a return type.

� Unlike arrays, different instantiations of a generic type are not compatible
with each other, not even explicitly. This incompatibility may be softened by
the wildcard if ? is used as an actual type parameter.

1.2.1 TYPES OF WILDCARDS

There are three types of wildcards: They are:

1. UPPER BOUNDED WILDCARDS

¾ These wildcards can be used when you want to relax the restrictions on a
variable.

¾ For example, say you want to write a method that works on List < Integer >,
List<Double > and List < Number > , you can do this using an upper bounded
wildcard.

¾ To declare an upper-bounded wildcard, use the wildcard character (‘?’),
followed by the extends keyword, followed by its upper bound

Ex: public static void add(List<? extends Number> list)

mu
no
tes
.in

8

 ADVANCE JAVA

Example: Program that demonstrates Upper Bounded Wildcards

import java.util.Arrays;
import java.util.List;
class UpperBoundedWildcardDemo
{
 public static void main(String[] args)
 {
 //Upper Bounded Integer List
 List<Integer> list1= Arrays.asList(4,5,6,7);

 //printing the sum of elements in list1
 System.out.println("Total sum is:"+sum(list1));
 //Upper Bounded Double list
 List<Double> list2=Arrays.asList(4.1,5.1,6.1);

 //printing the sum of elements in list2
 System.out.print("Total sum is:"+sum(list2));
 }
 private static double sum(List<? extends Number> list)
 {
 double sum=0.0;
 for (Number i: list)
 {
 sum+=i.doubleValue();
 }
 return sum;
 }
}

Output

Total sum is:22.0

Total sum is:15.299999999999999

Here, the sum method is used to calculate the sum of both Integer list and Double
list elements as it accepts list as a parameter whse upper bound is Number.

mu
no
tes
.in

9

Chapter 1: Collection and Generics

2. LOWER BOUNDED WILDCARDS

• If we use the lower-bounded wildcards you can restrict the type of the “?” to
a particular type or a super type of it.

• It is expressed using the wildcard character (‘?’), followed by the super
keyword, followed by its lower bound: <? super A>

Syntax: Collectiontype <? super A>

Example: Program that demonstrates Lower Bounded Wildcards

import java.util.Arrays;
import java.util.List;
class LowerBoundedWildcardDemo {
 public static void main(String[] args) {
 //Lower Bounded Integer List
 List<Integer> list1 = Arrays.asList(1,2,3,4);
 //Integer list object is being passed
 print(list1);
 //Lower Bounded Number list
 List<Number> list2 = Arrays.asList(1,2,3,4);
 //Integer list object is being passed
 print(list2);
 }

 public static void print(List<? super Integer> list) {
 System.out.println(list);
 }
}

Output

[1, 2, 3, 4]

[1, 2, 3, 4]

Here, the print method is used to calculate the print both Integer list and Number
list elements as it accepts list as a parameter whse lower bound is Integer.

3. UNBOUNDED WILDCARDS

The unbounded wildcard type is specified using the wildcard character (?), for
example, List<?>. This is called a list of unknown type.

mu
no
tes
.in

10

 ADVANCE JAVA

Consider the following method, printList:
public static void printList(List<Object> list) {
 for (Object elem : list)
 System.out.println(elem + " ");
 System.out.println();
}
The goal of printList is to print a list of any type, but it fails to achieve that goal
— it prints only a list of Object instances; it cannot print List<Integer>,
List<String>, List<Double>, and so on, because they are not subtypes of
List<Object>.
 To write a generic printList method, use List<?>:

Example: Program that demonstrates UnBounded Wildcards

import java.util.Arrays;
import java.util.List;
public class UnboundedWildcardDemo {
 public static void printList(List<?> list) {
 for (Object elem : list) {
 System.out.println(elem + " ");
 }
 System.out.println();
 }
 public static void main(String args[]) {
 List<Integer> li = Arrays.asList(1, 2, 3);
 List<String> ls = Arrays.asList("one", "two", "three");
 printList(li);
 printList(ls);
 }
}

Output
1
2
3
one
two
three
Here, li and ls are Integer and String lists created from Arrays and both lists are
printed using the generic method printList.

mu
no
tes
.in

11

Chapter 1: Collection and Generics

1.3 Introduction To Java Collections

Before Collections, the standard way used for grouping data was using the array,
Vector and HashTable. But all of these have different methods and syntax for
accessing data and performing operations on it. For example, Arrays uses the
square brackets symbol [] to access individual data members whereas Vector uses
the method elementAt(). These differences led to a lot of discrepancies. Thus, the
“Collection Framework” was introduced in JDK 1.2 to bring a unified mechanism
to store and manipulate a group of objects.
1.3.1 JAVA COLLECTION FRAMEWORK
Any group of objects which are represented as a single unit is known as the
collection of the objects. In Java Collections, individual objects are called as
elements.
The “Collection Framework” holds all the collection classes and interface in it.
These classes and interfaces define all operations that you can perform uniformly
on different types of data such as searching, sorting, insertion, manipulation, and
deletion.
The Java Collection framework has
1. Interfaces and its implementations, i.e., classes
2. Algorithm
1.3.2 JAVA COLLECTION HIERARCHY
The java.util package contains all the classes and interfaces for the Collection
framework.

The Collection interface is the root of the collection hierarchy and is implemented
by all the classes in the collection framework.

mu
no
tes
.in

12

 ADVANCE JAVA

 The Collections framework has a set of core interfaces. They are:

¾ List
¾ Set
¾ Map
¾ Queue
The Collection classes implement these interfaces and provide plenty of methods
for adding, removing and manipulating data.

1.3.3 ADVANTAGES OF COLLECTION FRAMEWORK

1. Consistent API: The API has a basic set of interfaces like Collection, Set,
List, or Map, all the classes (ArrayList , LinkedList, Vector, etc) that
implement these interfaces have some common set of methods.

2. Reduces programming effort: A programmer doesn’t have to worry about
the design of the Collection but rather he can focus on its best use in his
program. Therefore, the basic concept of Object-oriented programming (i.e.)
abstraction has been successfully implemented.

3. Increases program speed and quality: Increases performance by providing
high-performance implementations of useful data structures and algorithms.

4. Clean code – These APIs have been written with all good coding practices
and documented very well. They follow a certain standard across whole Java
collection framework. It makes the programmer code look good and clean.

1.3.4 BASIC AND BULK OPERATIONS ON JAVA COLLECTION

The Collection Interface provides methods that performs basic operations on data
such as:

Methods Description
boolean add(E element)

Used to add an element in the collection

boolean remove(Object
element)

Used to delete an element from the collection

int size() Returns the total number of elements in the
collection

Iterator<E> iterator()

Returns an iterator over the elements in the
collection

boolean contains(Object
element)

Returns true if the collection contains the
specified element

boolean isEmpty()

Returns true if the collection is empty

mu
no
tes
.in

13

Chapter 1: Collection and Generics

The Collection Interface also contains methods that performs operations on entire
collections which are also called as bulk operations.

Methods Description

boolean containsAll(Collection<?> c)

Used to check if this collection
contains all the elements in the
invoked collection.

boolean addAll(Collection<? extends E>
c)

Used to insert the specified
collection elements in the invoking
collection.

boolean removeAll(Collection<?> c)

Used to delete all the elements of
the specified collection from the
invoking collection.

boolean retainAll(Collection<?> c)

Used to delete all the elements of
invoking collection except the
specified collection.

void clear() Removes all the elements from the
collection.

Iterator interface

It provides the facility of iterating the elements in a collection.

Method Description

public boolean hasNext() It returns true if the iterator has more
elements otherwise it returns false.

public Object next() It returns the element and moves the
cursor pointer to the next element.

public void remove()
It removes the last elements returned
by the iterator. It is less used.

 LIST

List in Java provides the facility to maintain the ordered collection. It contains the
index-based methods to insert, update, delete and search the elements. It can have
the duplicate elements also. We can also store the null elements in the list.

The List interface is found in the java.util package and inherits the Collection
interface. It is a factory of ListIterator interface. Through the ListIterator, we can
iterate the list in forward and backward directions.

mu
no
tes
.in

14

 ADVANCE JAVA

The List interface is declared as:

public interface List<E> extends Collection<E>

1.4.1 METHODS OF LIST INTERFACE

1.4.2 HOW TO CREATE LIST?

Since List is an interface, a concrete implementation of the interface needs to be
instantiated, in order to use it.

The implementation classes of List interface are ArrayList, LinkedList, Stack and
Vector.

� //Creating a List of type String using java.util.ArrayList
 List<String> list=new ArrayList<String>();
� //Creating a List of type String using LinkedList
 List<String> list=new LinkedList<String>();
� java.util.Vector
 List list1=new Vector();
� java.util.Stack
 List list1=new Stack();

 The ArrayList and LinkedList are widely used in Java programming.

ArrayList

ArrayList is a variable length array of object references.It can dynamically increase
or decrease in size. It can be created with an initial size. When this size is
exceeded,the collection is automatically enlarged. When objects are removed, the
array may be shrunk.

Method Description

void add(int index, E
element)

It is used to insert the specified element at the
specified position in a list.

boolean add(E e) It is used to append the specified element at the end
of a list.

void clear() It is used to remove all of the elements from this
list.

boolean equals(Object o) It is used to compare the specified object with the
elements of a list.

int hashcode() It is used to return the hash code value for a list.
boolean isEmpty() It returns true if the list is empty, otherwise false.

int lastIndexOf(Object
o)

It is used to return the index in this list of the last
occurrence of the specified element, or -1 if the list
does not contain this element.

mu
no
tes
.in

15

Chapter 1: Collection and Generics

Example: Program that demonstrates List using ArrayList class

import java.util.*;
public class ArrayListDemo {
 public static void main(String[] args) {
 // Creating a list
 List<Integer> l1= new ArrayList<Integer>();
 // Adds 1 at 0 index
 l1.add(0, 1);
 // Adds 2 at 1 index
 l1.add(1, 2);
 System.out.println(l1);
 // Creating another list
 List<Integer> l2= new ArrayList<Integer>();
 l2.add(1);
 l2.add(2);
 l2.add(3);
 // Will add list l2 from 1 index
 l1.addAll(1, l2);
 System.out.println(l1);
 // Removes element from index 1
 l1.remove(1);
 System.out.println(l1);
 // Prints element at index 3
 System.out.println(l1.get(3));
 // Replace 0th element with 5
 l1.set(0, 5);
 System.out.println(l1);
 }
}

Output:
[1, 2]
[1, 1, 2, 3, 2]
[1, 2, 3, 2]
2
[5, 2, 3, 2]

mu
no
tes
.in

16

 ADVANCE JAVA

LinkedList

LinkedList is a class which is implemented in the collection framework which
inherently implements the linked list data structure. It is a linear data structure
where the elements are not stored in contiguous locations and every element is a
separate object with a data part and address part. The elements are linked using
pointers and addresses. Each element is known as a node. Linked List permits
insertion and deletion of nodes at any point in the list in constant time, but do not
allow random access. It permits all elements including null.

Example: Program that demonstrates List using LinkedList class
import java.io.*;
import java.util.*;
class LinkedListDemo {
 public static void main(String[] args)
 {
 // Size of the LinkedList
 int n = 5;

 // Declaring the List with initial size n
 List<Integer> ll = new LinkedList<Integer>();

 // Appending the new elements
 // at the end of the list
 for (int i = 1; i <= n; i++)
 ll.add(i);

 // Printing elements
 System.out.println(ll);

 // Remove element at index 3
 ll.remove(3);

 // Displaying the list after deletion
 System.out.println(ll);

 // Printing elements one by one
 for (int i = 0; i < ll.size(); i++)
 System.out.print(ll.get(i) + " ");
 }
}

mu
no
tes
.in

17

Chapter 1: Collection and Generics

Output:
[1, 2, 3, 4, 5]
[1, 2, 3, 5]
1 2 3 5
1.4.3�ITERATING THROUGH THE LIST

There are multiple ways to iterate through the List. The most famous ways are by
using the basic for loop in combination with a get() method to get the element at a
specific index and the advanced for loop.

Example: Program that iterates through an ArrayList

 import java.util.*;
public class ArrayListIteration {
 public static void main(String args[])
 {
 List<String> al= new ArrayList<String>();

 al.add("Ann");
 al.add("Bill");
 al.add(“Cathy”);

 // Using the Get method and the for loop
 for (int i = 0; i < al.size(); i++) {
 System.out.print(al.get(i) + " ");
 }

 System.out.println();

 // Using the for each loop
 for (String str : al)
 System.out.print(str + " ");
 }
}

Output:

Ann Bill Cathy

Ann Bill Cathy

mu
no
tes
.in

18

 ADVANCE JAVA

 1.5 Set

The set extends the Collection interface is an unordered collection of objects in
which duplicate values cannot be stored. This interface is present in the java.util
package and contains the methods inherited from the Collection interface.
The most popular classes which implement the Set interface are HashSet and
TreeSet.
The List interface is declared as:
public interface Set extends Collection

1.5.1 METHODS OF SET INTERFACE

�

1.5.2 HASHSET CLASS

HashSet class which is implemented in the collection framework is an inherent
implementation of the hash table datastructure. This class does not allow storing
duplicate elements but permits NULL elements. The objects that we insert into the
hashset does not guarantee to be inserted in the same order. The objects are inserted
based on their hashcode.

Example: Program that demonstrates HashSet implementation

import java.util.*;
class HashSetDemo{
 public static void main(String[] args)
 {
 Set<String> h = new HashSet<String>();

Method Description
add(element) It is used to add a specific element to the set.

addAll(collection) It is used to append all of the elements from the
mentioned collection to the existing set

clear()
It is used to remove all the elements from the set but
not delete the set. The reference for the set still
exists.

contains(element) It is used to check whether a specific element is
present in the Set or not.

isEmpty() It is used to check whether the set is empty or not.

iterator()
It is used to return the �������� of the set. The
elements from the set are returned in a random
order.

mu
no
tes
.in

19

Chapter 1: Collection and Generics

 // Adding elements into the HashSet
 h.add("India");
 h.add("Australia");
 h.add("South Africa");

 // Adding the duplicate element
 h.add("India");

 // Displaying the HashSet
 System.out.println(h);

 // Removing items from HashSet
 h.remove("Australia");
 System.out.println("Set after removing "+ "Australia:" + h);

 // Iterating over hash set items
 System.out.println("Iterating over set:");
 Iterator<String> i = h.iterator();
 while (i.hasNext())
 System.out.println(i.next());
 }
}

Output:
[South Africa, Australia, India]
Set after removing Australia:[South Africa, India]
Iterating over set:
South Africa
India

1.5.3 TREESET CLASS

TreeSet class which is implemented in the collections framework and
implementation of the SortedSet Interface and SortedSet extends Set Interface. It
behaves like a simple set with the exception that it stores elements in a sorted
format. TreeSet uses a tree data structure for storage. Objects are stored in sorted,
ascending order.

mu
no
tes
.in

20

 ADVANCE JAVA

Example: Program that demonstrates TreeSet implementation

import java.util.*;

class TreeSetDemo {
 public static void main(String[] args)
 {
 Set<String> ts = new TreeSet<String>();

 // Adding elements into the TreeSet
 ts.add("India");
 ts.add("Australia");
 ts.add("South Africa");

 // Adding the duplicate element
 ts.add("India");

 // Displaying the TreeSet
 System.out.println(ts);

 // Removing items from TreeSet
 ts.remove("Australia");
 System.out.println("Set after removing "+ "Australia:" + ts);

 // Iterating over Tree set items
 System.out.println("Iterating over set:");
 Iterator<String> i = ts.iterator();
 while (i.hasNext())
 System.out.println(i.next());
 }
}

Output:

[Australia, India, South Africa]

Set after removing Australia:[India, South Africa]

Iterating over set:

India

South Africa

mu
no
tes
.in

21

Chapter 1: Collection and Generics

 1.6 Maps

The Map interface present in java.util package represents a mapping between a key
and a value. A map contains unique keys and each key can map to at most one
value. Some implementations allow null key and null value like the HashMap and
LinkedHashMap, but some do not like the TreeMap. The order of a map depends
on the specific implementations. For example, TreeMap and LinkedHashMap have
predictable order, while HashMap does not.

The Map interface is not a subtype of the Collection interface. Therefore, it behaves
a bit differently from the rest of the collection types.

The classes which implement the Map interface are HashMap, LinkedHashMap
and TreeMap.

1.6.1 METHODS OF MAP INTERFACE

�

1.6.2 HASHMAP

HashMap class implements the Map interface which allows us to store key and
value pair, where keys should be unique. If you try to insert the duplicate key, it
will replace the element of the corresponding key. It is easy to perform operations

Method Description

clear()�
This method is used to clear and remove all of the
elements or mappings from a specified Map
collection.

equals(Object)�

This method is used to check for equality between
two maps. It verifies whether the elements of one
map passed as a parameter is equal to the elements of
this map or not.

get(Object)�

This method is used to retrieve or fetch the value
mapped by a particular key mentioned in the
parameter. It returns NULL when the map contains
no such mapping for the key.

hashCode()� This method is used to generate a hashCode for the
given map containing key and values.

isEmpty()�
This method is used to check if a map is having any
entry for key and value pairs. If no mapping exists,
then this returns true.

clear()�
This method is used to clear and remove all of the
elements or mappings from a specified Map
collection.

mu
no
tes
.in

22

 ADVANCE JAVA

using the key index like updation, deletion, etc. HashMap class is found in the
java.util package.

HashMap in Java is like the legacy Hashtable class, but it is not synchronized. It
allows us to store the null elements as well, but there should be only one null key.
Since Java 5, it is denoted as HashMap<K,V>, where K stands for key and V for
value.

Example: Program that demonstrates HashMap implementation

import java.util.*;

public class HashMapDemo {

 public static void main(String[] args) {

 Map<String, Integer> map = new HashMap<>();

map.put("Angel", 10);

 map.put("Liza", 30);

 map.put("Steve", 20);

 for (Map.Entry<String, Integer> e : map.entrySet()) {

 System.out.println(e.getKey() + " " + e.getValue());

 }

 }

}

Output:

vaibhav 20

vishal 10

sachin 30

1.6.3 LINKEDHASHMAP

LinkedHashMap is just like HashMap with an additional feature of maintaining the
order of elements inserted into it. HashMap provided the advantage of quick
insertion, search and deletion but it never maintained the track and order of
insertion which the LinkedHashMap provides where the elements can be accessed
in their insertion order.

mu
no
tes
.in

23

Chapter 1: Collection and Generics

Example: Program that demonstrates LinkedHashMap implementation

import java.util.*;

 public class LinkedHashMapDemo {

 public static void main(String[] args)

 {

 Map<String, Integer> map= new LinkedHashMap<>();

 map.put("Angel", 10);

 map.put("Liza", 30);

 map.put("Steve", 20);

 for (Map.Entry<String, Integer> e : map.entrySet())

 System.out.println(e.getKey() + " "+ e.getValue());

 }

}

Output͗�

Angel 10

Liza 30

Steve 20

1.6.4 TREEMAP

The TreeMap in Java is used to implement Map interface and NavigableMap along
with the Abstract Class. It provides an efficient means of storing key-value pairs in
sorted order. TreeMap contains only unique elements and cannot have a null key
but can have multiple null values.

TreeMap is non synchronized and maintains ascending order.

Example: Program that demonstrates TreeMap implementation

import java.util.*;

class TreeMapDemo {

 public static void main(String args[]) {

 TreeMap<Integer, String> map = new TreeMap<Integer, String>();

mu
no
tes
.in

24

 ADVANCE JAVA

 map.put(100, "Angel");

 map.put(101, "Chris");

 map.put(103, "Bill");

 map.put(102, "Steve");

 for (Map.Entry m : map.entrySet()) {

 System.out.println(m.getKey() + " " + m.getValue());

 }

 }

}

Output͗�

100 Angel

101 Chris

102 Steve

103 Bill

1.7 Let Us Sum Up

• The “Collection Framework” holds all the collection classes and interface in
it and interfaces that define all operations that you can perform uniformly on
different types of data such as searching, sorting, insertion, manipulation, and
deletion.

• The java.util package contains all the classes and interfaces for the Collection
framework.

• Generics allows to program generically. It allows creating classes and
methods that work in the same way on different types of objects while
providing type-safety right at the compile-time.

• Generics can also be used with classes.
• A generic method declaration can have arguments of different types.
• Bounded type parameters can be used to restrict the kinds of types that are

allowed to be passed to a type parameter.
• The question mark (?)known as the wildcard represents an unknown type and

can be used in a variety of situations such as the type of a parameter, field, or
local variable. There are three types of wildcards-Upper Bounded, Lower
Bounded and UnBounded.

mu
no
tes
.in

25

Chapter 1: Collection and Generics

• List contains the index-based methods to insert, update, delete, and search
the elements. It can have duplicate elements also.

• The Set follows the unordered way and can store only unique elements.
• Map represents a mapping between a key and a value. Each key is linked to

a specific value.

1.8 List of References

1. Java 8 Programming, BlackBook, DreamTech Press, Edition 2015

2. Core Java 8 for Beginners, Sharanam Shah, Vaishali Shah, Third Edition,
SPD

Web References

1. https://www.geeksforgeeks.org

2. https://www.javatpoint.com

3. https://www.tutorialspoint.com

1.9 Chapter End Exercises

Q1. What are the advantages of collections over primitive datatypes?

Q2. What are generics?List down the advantages of using generics.

Q3. Explain the concept of bounded parameters.

Q4. Differentiate between List,Set and Maps.

Q5. What is a wildcard character? Explain the various types of wildcard characters.

Q6. Explain the difference between ArrayList and LinkedList.

Q7. Explain the difference between HashMap, LinkedHashMap and TreeMap with
example programs.

������

�

�

�

�

mu
no
tes
.in

26

 ADVANCE JAVA

Module 1

2
LAMBDA EXPRESSIONS

Unit Structure

2.0 Objectives
2.1 Introduction
 2.1.1 What is Lambda Expression?
2.1.2 Why to use Lambda Expression?
 2.1.3 Syntax of Lambda Expression
 2.1.4 Where can Lambda Expressions be used?
2.2 Lambda Type Inference
2.3 Lambda Parameters
2.4 Lambda Function Body
2.5 Returning a Value from a Lambda Expression
2.6 Lambdas as Objects
2.7 Lambdas in Collections
2.8 Let us Sum Up
2.9 List of References
2.10 Chapter End Exercises

2.0 Objectives

After going through this chapter, you will be able to:

• Understand what are Lambda Expressions and how to write lambda
expressions

• State the advantages of using lambda expressions
• Explain the different ways parameters can be passed in a Lambda

Expressions
• Understand target type inferencing
• Simplify programs and reduce code length using Lambda Expressions

2.1 Introduction

Lambda expressions is a new and significant feature of Java which was introduced
in Java SE 8 and became very popular as it simplifies code development. It provides
a very clear and concise way to represent single method interfaces using an
expression. It is very useful in collection library. It helps to iterate, filter and extract
data from collection. Lambda Expressions is Java’s first step towards functional

mu
no
tes
.in

27

Chapter 2: Lambda Expressions

programming. Lambda expression is treated as a function, so compiler does not
create .class file.
An interface having a single abstract method is called a Functional Interface or
Single Abstract Method Interface. Lambda expression is used to provide the
implementation of such a functional interface. In case of lambda expression, we
don't need to define the method again for providing the implementation. Here, we
just write the implementation code which saves a lot of code. Pre-Java 8, an
approach for implementing functional interfaces were anonymous inner classes.
However, syntax of anonymous inner classes may seem unclear and cumbersome
at times.
To better understand lambda expressions, let us first look into an example for
implementing functional interfaces with anonymous inner classes.
In the following program, we have an interface Square with a single abstract
method area() in it. We have a class AnonymousClassEx which implements the
method in interface Square using anonymous inner class.

Example: Program to demonstrate Functional Interface Using Anonymous
Classes
interface Square { //Functional Interface
 public void area();
}
public class AnonymousClassEx {
 public static void main(String[] args) {
 int side = 10;
 /* Without Lambda Expressions, Implementation of Square interface using
Anonymous Inner Class */
 Square s = new Square() { //Anonymous Class
 public void area()
 {
 System.out.println("Area of square = " + side * side);
 }
 };
 s.area();
 }
}

Output:

 Area of square = 100

Here you can note that we are rewriting the method declaration code public void
area() written in the interface again in the anonymous inner class. This repetitive
code can be eliminated if we use Lambda Expressions.

mu
no
tes
.in

28

 ADVANCE JAVA

 2.1.1 WHAT IS LAMBDA EXPRESSION?

A lambda expression refers to a method that has no name and no access specifier
(private, public, or protected) and no return value declaration. This type of method
is also known as ‘Anonymous methods’, ‘Closures’ or simply ‘Lambdas’. It
provides a way to represent one method interface simply by using an expression

Like anonymous class, a lambda expression can be used for performing a task
without a name.

2.1.2 WHY TO USE LAMBDA EXPRESSIONS?

1. Lambda Expressions provides the ability to pass behaviours to methods
2. It provides simplified implementation of Functional Interfaces.
3. Clear and compact syntax
4. Reduces repetitive coding
5. Faster execution time

2.1.3 SYNTAX OF LAMBDA EXPRESSION

The basic structure of a lambda expression comprises:

(Parameters-list) Ͳх�Expression body}

• Parameter list: It can be empty or non-empty as well. If non-empty, there is
no need to declare the type of the parameters. The compiler can inference the
same from the value of the parameter. Also, if there is only one parameter,
the parenthesis around the parameter list is optional.

• Arrow-token (Ͳх): It is used to link parameters-list and body of expression.

• Expression body: It contains body of lambda expression. If the body has
only one statement then curly braces are optional. You can also use a return
statement, but it should be enclosed in braces as it is not an expression.

Consider the following code snippet for understanding the concept of lambda
expression, in which a simple method is created for showing a message. Let’s first
declare a simple message as:

public void display() {

System.out.println(“Hello World”);

 }

 Now, we can convert the above method into a lambda expression by removing the
public access specifier, return type declaration, such as void, and the name of
method ‘display’.

mu
no
tes
.in

29

Chapter 2: Lambda Expressions

The lambda expression is shown as follows:

 () -> {

System.out.println(“Hello World”);

 }

Thus, we have simplified the code.

Now since we know how to write a Lambda Expression, let’s rewrite Example 2.1
using Lambda Expressions:

Example: Program to demonstrate Functional Interface Implementation Using
Lambda Expressions

interface Square { //Functional Interface
 public void area();
}

public class LambdaExpressionEx {

 public static void main(String[] args) {
 int side=10;

 //Implementation of Square Interface using Lambda Expression

 Square s= () -> {
System.out.println("Area of square= "+side*side);

 };

 s.area();
 }

 } }

Output:

Area of square = 100

Here, you can observe that we have not written the method declaration public void
area() present in the interface while implementing it in the class using lambda
expression. Thus reducing repetitive code.

2.1.4 WHERE CAN LAMBDA EXPRESSIONS BE USED?

Lambda Expressions can be written in any context that has a target datatype. The
contexts that have target type are:

mu
no
tes
.in

30

 ADVANCE JAVA

• Variable declarations, assignments and array initializers

• Return statements

• Method or constructor arguments

• Ternary Conditional Expressions (?:)

2.2 LAMBDA TYPE INFERENCE

Type Inference means that the data type of any expression (for e.g., a method return
type or parameter type) can be understood automatically by the compiler. Lambda
Expressions support Type Inference. Type inference allows us to not specify
datatypes for lambda expression parameters. Types in the parameter list can be
omitted since java already know the types of the expected parameters for the single
abstract method of functional interface.� The compiler infers the type of a
parameter by looking elsewhere for the type - in this case the method definition.

Syntax:
 (parameter_name1, parameter_name2 …) -> { method body }
Example:

interface Operation{
 int add(int a,int b);
}

public class Addition {
 public static void main(String[] args) {
 Operation ad1=(a,b)->(a+b);
 System.out.println(ad1.add(10,20));
}
}

Output:

30

Here, the compiler can infer that a and b must be int because the lambda
expression is assigned to a Operation reference variable.

2.3 LAMBDA PARAMETERS

• A lambda expression can be written with zero to any number of parameters.
• If there are no parameters to be passed, then empty parentheses can be given.
For Example:

() Ͳх { System.out.println(“Zero Parameter Lambda Expression”); }

mu
no
tes
.in

31

Chapter 2: Lambda Expressions

Example: Program demonstrating Lambda Expression with no parameter

//Functional Interface
interface MyFunctionalInterface {
 //A method with no parameter
 public void say(); }

public class ZeroParamLambda {
 public static void main(String args[]) {
 // lambda expression
 MyFunctionalInterface msg = () -> {
 System.out.println("Hello");
 };
 msg.say();
 }
 }

 Output
 Hello

• When there is a single parameter, if its type is inferred, it is not mandatory to
use parentheses.

For Example:

(str) Ͳх { System.out.println(“Single Parameter Lambda Expression” + str); }

Example: Program demonstrating Lambda Expression with Single Parameter
//Functional Interface
interface MyFunctionalInterface {
 //A method with single parameter
 public void say(String str);
}
public class SingleParamLambda {
 public static void main(String args[]) {
 // lambda expression
 MyFunctionalInterface msg = (str) -> {
 System.out.println(str);
 };
 msg.say("Hello World");
 }
}

mu
no
tes
.in

32

 ADVANCE JAVA

Output
 Hello World
• When there are multiple parameters, they are enclosed in parentheses and

separated by commas.
For Example:
(str1, str2) Ͳх{
System.out.println(“Multiple Parameter Lambda Expression ” +str1+ str2);
}
Example: Program demonstrating Lambda Expression with Multiple Parameters
//Functional Interface
interface MyFunctionalInterface {
 //A method with single parameter
 public void say(String str1, String str2);
}
public class SingleParamLambda {
 public static void main(String args[]) {
 // lambda expression
 MyFunctionalInterface msg = (str1, str2) -> {
 System.out.println(str1 +" "+ str2);
 };
 msg.say("Hello", "Java");
 }
}
 Output

 Hello Java

2.4 LAMBDA FUNCTION BODY

• The body of a lambda expression, and thus the body of the function / method
it represents, is specified to the right of the -> in the lambda declaration.

 () -> {
 System.out.println("Hello");
 };
• A lambda Expression body can have zero to any number of statements.

• Statements should be enclosed in curly braces.
• If there is only one statement, curly brace is not needed.
• When there is more than one statement in body then these must be enclosed

in curly brackets and the return type of the anonymous function is the same
as the type of the value returned within the code block or void if nothing is
returned.

mu
no
tes
.in

33

Chapter 2: Lambda Expressions

2.5 RETURNING A VALUE FROM A LAMBDA EXPRESSION

Java lambda expressions can return values , just like from a method. You just add
a return statement to the lambda function body, like this:
 (param) �! {
 System.out.println("param: " + param);
 return "return value";
 }
In case all your lambda expression is doing is to calculate a return value and
return it, you can specify the return value in a shorter way. Instead of this:
 (num1, num2) �! {return num1 > num2; }

You can write:
 (num1, num2) �! num1 > num2;

The compiler then figures out that the expression a1 > a2 is the return value of the
lambda expression .
Note: A return statement is not an expression in a lambda expression. We must
enclose statements in curly braces ({}). However, we do not have to enclose a void
method invocation in braces.
Example: Program to demonstrate returning a value from lambda expression
interface Operation{
 int add(int a,int b);
}

public class Addition {
 public static void main(String[] args) {

 // Lambda expression without return keyword.
 Operation ad1=(a,b)->(a+b);
 System.out.println(ad1.add(10,20));

 // Lambda expression with return keyword.
 Operation ad2=(int a,int b)�!{
 return (a+b);
 };
 System.out.println(ad2.add(30,40));
 }
}
Output

mu
no
tes
.in

34

 ADVANCE JAVA

30
70

2.6 LAMBDAS AS OBJECTS
A Java lambda expression is essentially an object. You can assign a lambda
expression to a variable and pass it around, like you do with any other object. Here
is an example:

public interface MyComparator {
 public boolean compare(int num1, int num2);
}

MyComparator c = (num1, num2) �! num1 > num2;
boolean result = c.compare(2, 5);
The first code block shows the interface which the lambda expression implements.
The second code block shows the definition of the lambda expression, how the
lambda expression is assigned to variable, and finally how the lambda expression
is invoked by invoking the interface method it implements.

2.6 LAMBDAS IN COLLECTIONS
Lambda Expressions can also be used with different collections such as ArrayList,
TreeSet, Treemap, etc… to sort elements in it.

Example: Program to sort numbers in an ArrayList using Lambda Expression
 import java.util.*;
public class Demo {
 public static void main(String[] args)
 {
 ArrayList<Integer> al = new ArrayList<Integer>();
 al.add(205);
 al.add(102);
 al.add(98);
 al.add(275);
 al.add(203);
 System.out.println("Elements of the ArrayList before sorting : " + al);

 // using lambda expression in place of comparator object
 Collections.sort(al, (o1, o2) -> (o1 > o2) ? -1 : (o1 < o2) ? 1 : 0);

 System.out.println("Elements of the ArrayList after sorting : " + al);
 }
}
Output:

mu
no
tes
.in

35

Chapter 2: Lambda Expressions

Elements of the ArrayList before sorting : [205, 102, 98, 275, 203]

Elements of the ArrayList after sorting : [275, 205, 203, 102, 98]

2.7 MORE EXAMPLE PROGRAMS USING LAMBDA EXPRESSIONS

1. Write a program using Lambda expression to calculate average of 3 numbers.

interface Operation {
 double average(int a, int b, int c);
}
class Calculate {
 public static void main(String args[]) {
 Operation opr = (a, b, c) -> {
 double sum = a + b + c;
 return (sum / 3);
 };
 System.out.println(opr.average(10, 20, 5));
 }
}

Output
11.666666666666666
2. Write a program to store integer values 1 to 5 in an ArrayList and print all

numbers,even numbers and odd numbers using Lambda expression.
import java.util.ArrayList;
class Test
{
 public static void main(String args[])
 {
 // Creating an ArrayList with elements 1,2,3,4,5
 ArrayList<Integer> arrL = new ArrayList<Integer>();
 arrL.add(1);
 arrL.add(2);
 arrL.add(3);
 arrL.add(4);
 arrL.add(5);

 System.out.println("Displaying all numbers");
 // Using lambda expression to print all elements
 arrL.forEach(n -> System.out.println(n));

 System.out.println("Displaying even numbers");
 // Using lambda expression to print even elements
 arrL.forEach(n -> {
 if (n%2 == 0) System.out.println(n);

mu
no
tes
.in

36

 ADVANCE JAVA

 }
);

 System.out.println("Displaying odd numbers");
 // Using lambda expression to print odd elements
 arrL.forEach(n -> {
 if (n%2 != 0) System.out.println(n);
 }
);
 }
 }

Output

Displaying all numbers�

1
2
3
4
5
Displaying even numbers
2
4
Displaying odd numbers
1
3
5
3. Write a program using Lambda Expressions to calculate the area of circle

with radius 5.
 interface Area {
 double calculate(int r);
}
class AreaofCircle {
 public static void main(String args[]) {
 Area a = (r) -> {
 double area = 3.142 * r * r;
 return (area);
 };
 System.out.println(a.calculate(5));
 }
}
Output:

Area of circle=78.55

mu
no
tes
.in

37

Chapter 2: Lambda Expressions

4. Write a program to create a Student class to store student details such as
id,name and age.Sort student names on the basis of their first names and age
using Lambda Expression.

import java.util.ArrayList;
import java.util.List;
class Student {
 String name;
 int age;
 int id;
 public String getName() {
 return name;
 }
 public int getAge() {
 return age;
 }
 public int getId() {
 return id;
 }

 Student(String n, int a, int i){
 name = n;
 age = a;
 id = i;
 }
 @Override
 public String toString() {
 return ("Student["+"Name:"+this.getName()+
 " Age: "+ this.getAge() +
 " Id: "+ this.getId()+"]");
 }
 }
 public class Test1 {
 public static void main(String[] args) {
 List<Student> studentlist = new ArrayList<Student>();
 studentlist.add(new Student("John", 22, 1001));
 studentlist.add(new Student("Steve", 19, 1003));
 studentlist.add(new Student("Kevin", 23, 1005));
 studentlist.add(new Student("Ron", 20, 1010));

mu
no
tes
.in

38

 ADVANCE JAVA

 studentlist.add(new Student("Chris", 18, 1111));

 System.out.println("Before Sorting the student data:");
 //forEach for printing the list using lambda expression
 studentlist.forEach((s)->System.out.println(s));
 System.out.println("\nAfter Sorting the student data by Age:");
 //Lambda expression for sorting student data by age and printing it
 studentlist.sort((Student s1, Student s2)->s1.getAge()-s2.getAge());
 studentlist.forEach((s)->System.out.println(s));
 System.out.println("\nAfter Sorting the student data by Name:");
 //Lambda expression for sorting the list by student name and printing it
 studentlist.sort((Student s1, Student s2)-
>s1.getName().compareTo(s2.getName()));
 studentlist.forEach((s)->System.out.println(s));

 }
 }

Output:
Before Sorting the student data:
Student[Name:John Age: 22 Id: 1001]
Student[Name:Steve Age: 19 Id: 1003]
Student[Name:Kevin Age: 23 Id: 1005]
Student[Name:Ron Age: 20 Id: 1010]
Student[Name:Chris Age: 18 Id: 1111]
After Sorting the student data by Age:
Student[Name:Chris Age: 18 Id: 1111]
Student[Name:Steve Age: 19 Id: 1003]
Student[Name:Ron Age: 20 Id: 1010]
Student[Name:John Age: 22 Id: 1001]
Student[Name:Kevin Age: 23 Id: 1005]
After Sorting the student data by Name:
Student[Name:Chris Age: 18 Id: 1111]
Student[Name:John Age: 22 Id: 1001]
Student[Name:Kevin Age: 23 Id: 1005]
Student[Name:Ron Age: 20 Id: 1010]
Student[Name:Steve Age: 19 Id: 1003]

mu
no
tes
.in

39

Chapter 2: Lambda Expressions

2.8 Let us Sum up

1. Lambda Expressions is a function which can be created without belonging to
any class.

2. It has no name and no access specifier and no return value declaration.

3. It provides a very clear and concise way to represent functional interfaces.

4. Lambda Expression supports type inference.

5. Lambda Expression Parameter list can have zero to any number of
parameters.

6. Lambda expression can be assigned to a variable and we can pass it around,
like we do with any other object.

2.9 List of References

1. Java 8 Programming, BlackBook, DreamTech Press, Edition 2015

2. Core Java 8 for Beginners, Sharanam Shah, Vaishali Shah, Third Edition,
SPD

Web References

1. http://tutorials.jenkov.com

2. https://www.geeksforgeeks.org

3. https://beginnersbook.com

2.10 Chapter End Exercises

Q1. What is Functional Interface? How do you use Lambda Expression with
Functional Interfaces?

Q2. Which one of these is a valid Lambda Expression?

 (int x, int y) �! x + y;

 OR

 (x, y) �! x + y

Q3. State the advantages of using Lambda Expressions.

Q4. Write a program using Lambda Expression to calculate the area of a triangle.

Q5. Can Lambda Expressions be passed to different target types? Justify.

������

�

mu
no
tes
.in

40

 ADVANCE JAVA

Module2

3
JSP ARCHITECTURE, JSP BUILDING BLOCKS,

SCRIPTING TAGS, IMPLICIT OBJECT
INTRODUCTION TO JSP STANDARD TAG

LIBRARY (JSTL) AND JSTL TAGS
Unit Structure
3.0 Objectives
3.1 Introduction
3.2 Problems of Servlets
 3.2.1 Static Content
 3.2.2 For each client request you have to write service()
 3.2.3 Any modification made in static content the Servlets need to be

recompiled and redeployed.
3.3 Servlet Life Cycle
 3.3. a Diagram
3.4 JSP Architecture
 3.4.a Diagram
3.5 JSP building blocks
 3.5. a Scriptlet tags
 3.5. b Declaration tags
 3.5. c Expression tags
3.6 Scripting Tags
 3.6.a Comments
 3.6.b Directives
 3.6.c Declaration
 3.6.d JSP scriptlet tags
 3.6.e Expression
3.7 Implicit Objects
 3.7.1 Out
 3.7.2 request
 3.7.3 response
 3.7.4 config
 3.7.5 application
 3.7.6 session
 3.7.7 page context
 3.7.8 page
 3.7.9 Exception
3.8 Introduction to JSP Standard Tag Library (JSTL) and JSTL Tags.
3.9 Summary
3.10 Reference for further reading

mu
no
tes
.in

41

Chapter 3: Introduction to Jsp Standard Tag Library (JSTl) And JSTL Tags

3.0 Objectives

The primary objectives of learning this course will help the students to understand
the basic concepts of Servlets, deployment of JSP, development of dynamic web
pages, uses of various implicit objects and JSTL predefined library.

3.1 Introduction

JSP (Java Server Pages) it is an extension or we can say add- on of Servlets
technology. JSP provides more functionality as compared to Servlets. It is
basically used to develop web applications. It is nothing but similar to Servlets
which works on processing the request and generating the response objects, it is
the same applies to JSP applications also. In Servlets we accept the request from
the client, we process the request and then the Servlets generate the response. The
same way we can implement the process of accepting the request and generating
the response using JSP in much more simpler way without overriding much more
methods as of Servlets. JSP comprises of HTML and JSP tags that is why it said
that JSP pages are easier to maintain than Servlets because it gives you a separate
space for designing and development of web applications.

Before starting with JSP we should have a rough idea about the Servlets and how
it works and the reason behind the use of JSP over Servlets technology. It means
that we can say how JSP overcomes the drawbacks of Servlets. Servlets are
actually the base of web applications and it has its own life cycle which gets
executed each time the request is made from the client side. Servlets are some
time also known as server-side coding that is (Business logic).

Diagram a) How Servlets works using GetRequest() method

mu
no
tes
.in

42

 ADVANCE JAVA

b) How Servlets works using PostRequest()

3.2 Problems of Servlets:

1) Static Content: - using Servlets we can generate static content, but it was
difficult to generate dynamic content using Servlets. So in such cases
designing in Servlets was a difficult task.

^ŽůƵƚŝŽŶ�ƵƐŝŶŐ�:^W͗�Ͳ�so using JSP we can create dynamic content(dynamic web
pages) without wasting much more time on writing the code using HTML tags
embedding the java code in it.

2) For each client request you have to write service() method :- In Servlets
for every new request you have to write the service() method which was
causing more processing time at the server end. In short to handle each
request in Servlets, we need to have service() for each upcoming request
from the client. So this creates a burden on the server-side to handle too
much of request and its service() method for each request.

^ŽůƵƚŝŽŶ�ƵƐŝŶŐ�:^W͗�Ͳ�So the solution for it is there should no pressure of writing
the code of service() method for each request made by the client. The request
can be processed without taking much more time for processing the request. It
means that the request should get processed directly without its service() method
using JSP.

3) Any modification made in static content the Servlets need to be
recompiled and redeployed:-So whenever we make any modification or
changes in the static content that is (html code) in the presentation logic
then the Servlets need to be recompiled and redeployed which is again time
consuming part at the server-end.

^ŽůƵƚŝŽŶ� ƵƐŝŶŐ� :^W͗� Ͳ� Using JSP any changes or modification made in the
presentation logic (front-end) that is your static content so it does not required to
change its dynamic content that is your java code. It means that the java code
needs not to be recompiled and redeployed. So this helps to lower the burden of
processing the changes made at the server-side.

Note: Before starting with JSP just go through the Servlets life cycles which
will help you further to understand JSP in an easy way.

mu
no
tes
.in

43

Chapter 3: Introduction to Jsp Standard Tag Library (JSTl) And JSTL Tags

3.3 Servlets Life Cycle:-

When we talk about the Servlets creation and its destruction there are some stages
that the Servlets undergoes during its life cycle. The various stages are:

i) Servlets class is loaded
ii) Servlets instance (object) is created
iii) inti() method is called
iv) service() method is called
v) destroy() method is called
Basically Servlets is a server-side program which is actually resides at the server-
end and whenever any request comes from the client to the server, the Servlets
gets executed to generate the appropriate response for the request.

Suppose a very first time the request comes from the client its first go to the:-

a) Web Container: - it is responsible for maintaining the Servlets life cycle
instance (object creation). So the web container is responsible for creating
the object of an Servlets as the request comes from the client, it means that
the Servlets class is loaded and the Servlets object is created (instantiated).

b) The second steps is to initializes the object of the Servlets, the Servlets will
invoking the its init() method which is responsible for the initialization of
Servlets.

c) After the init() method is called, at this stage the request came from the
client has not yet processed. To processed the request of the client, the
Servlets will call the service() method which is the most important method
of Servlets because its contains the business logic of the Servlets.

Note: In the entire life cycle of Servlets the object is created only once
and its init() method is also called once.

d) After calling the service() method it will starts processing the request of the
client and the execution of business logic of service() method gets invoked.

Note: - For every new request the service () method is called each time by
the Servlets.

e) After processing the request and the execution of service() method , the web
container will starts destroying or you can say starts releasing the
resources used by the Servlets for processing the request and invoking the
service() method.

f) The last stage is to call or invoke the destroy() method of the Servlets and
its object.

mu
no
tes
.in

44

 ADVANCE JAVA

Diagram 3.3 (a) Life Cycle of Servlets

3.4 JSP Architecture

JSP: - it is known for server-side programming that gives features like creating
dynamic web pages, platform independent method which helps in building web-
based applications. JSP have gain access to the family of Java API, including
JDBC API which allows to access enterprise databases.

 + = JSP

Before starting JSP you should know about the use of HTML tags. It is a
Hypertext Markup Language which helps the programmer to describe or you can
say design the structure of web pages. So java is embedded in html tags to create
dynamic web pages called as JSP.
JSP: - it is a technology that is supported to develop dynamic web pages using
Java code, Html tags and some scripting tags. The JSP pages follow these phases:
1) Translation of JSP page.
2) Compilation of JSP page
3) Classloading
4) Instantiation
5) Initialization
6) Request Processing(web container invokes jspService() method)
7) Destroy (web container invokes jspDestroy() method)

JAVA
kcdslkfj

 HTML

mu
no
tes
.in

45

Chapter 3: Introduction to Jsp Standard Tag Library (JSTl) And JSTL Tags

S

Step 1: With the help of JSP translator the JSP page is first translated into
Servlets.

Step 2: The JSP translator is a part of web server which handles the translation of
JSP page into Servlets.

Step 3: After that the Servlet page is compiled by the compiler and .class file is
created which is binary file.

Step 4: All processes that take place in Servlets are performed same in JSL later
that is initialization and sending response to the browser and then at the end
invoking destroy () method.

Diagram 3.4.a Life cycle of JSP Page:

3.5 JSP building blocks

There are three building blocks of JSP code:

a) Scriptlet tag

b) Expression tag

c) Declaration tag

3.5. a. Scriptlet Tag :- Java provide various scripting elements that helps the
programmer to insert java code from your JSP code into the Servlets. The
scriptlet elements have different components which help to write the code in jsp.
Scripting elements in JSP must be written within the <% %> tags. The JSP engine

Note: The life cycle methods of JSP are: jspInit(), jspService(), jspDestroy
().

mu
no
tes
.in

46

 ADVANCE JAVA

will process any code written within the pair of the <% %> tags, and any other
text within the Jsp page will be treated as a html code. In short the sciptlet tag is
used to execute the java code in JSP.

Syntax: -<% Java code %>

Example:

<html>

<body>

<% out.print(“Welcome to JSP”) %>

</body>

</html>

3.5. b. Expressions Tag: - Expressions elements are comprises of scripting
language expressions, which gets executed and converted to String by the JSP
engine and it is meant as a response that is output stream. So there is no need for
writing out.print() method.

Syntax: <%=statement %>

Example:

<html>

<body>

<%=” JSP based String” %.>

</body>

</html>

3.5. c. Declaration Tag:- It is used to define or you can say declare methods and
variables in JSP. The code written inside the jsp declaration tag is placed outside
the service() method.

Syntax: <%! Declaration %>

3.6 Scripting Tags

There are five different Scriptlet elements in JSP are:-

1) Comments
2) Directives
3) Declaration
4) JSP scriptlet Tag
5) Expressions

mu
no
tes
.in

47

Chapter 3: Introduction to Jsp Standard Tag Library (JSTl) And JSTL Tags

3.6.1 Comments

Comments are used to write some text or statements that are ignored by the JSP
compiler. It is very useful when someone wants to remember some logic or
information in future.

Syntax: <%-- A JSP COMMENT--%>

3.6.2 Directives

It is used to give some specific instructions to web container when the jsp page is
translated. It has three subcategories:

• Page:<%@ page...>

• Include:<%@ include...%>

• Taglib:<%@ taglib....%>

3.6.3 Declaration

It is used to declare methods and variables used in java code within a jsp file. In
jsp it is the rule to declare any variable before it is used.

Syntax: <%! Declaration;[declaration;]+…%>

Example: <%! int a=62; %>

3.6.4 JSP scriptlet Tag: please refer to(3.5. a) Scriptlet Tag

3.6.5 Expressions

Its contains the scripting language expressions which is gets evaluated and
converted to String by the JSP engine and it is meant to the output stream of the
response. So there is no need to write the out.print() method.

Example:

<html>

<body>

<%= “ a JSB String” %>

</body>

</html>

3.7 implicit objects

There are 9 implicit objects in JSP. These objects are created by the web
container and it is available to all the JSP pages.

mu
no
tes
.in

48

 ADVANCE JAVA

Object Type

Out Javax.servlet.jsp.JspWriter

Request Javax.servlet.http.HttpservletRequest

Response Javax.servlet.http.HttpservletResponse

Config Javax.servlet.ServletConfig

Application Javax.servlet.ServletContext

Session Javax.servlet.http.HttpSession

pageContext Javax.servlet.jsp.PageContext

Page Java.lang.Objects

Exception Java.lang.Throwable

3.7.1out:- The out implicit object is an instance of a javax.servlet.jsp.JspWriter
object. It is used to send the content in a response.

Example: out.println(“Hello Java”);

3.7.2 Request: - The request object is an instance of a
javax.servlet.http.HttpServletRequest object. Each time a client requests a page
the JSP engine creates a new object to represent that request. It is used to request
information such as parameters, header information, server names, cookies, and
HTTP methods.

Example: String name=request.getParameter(“rname”);

Some of the methods of request implicit objects are:

a) getAttributesNames()

b) getCookies()

c) getParameterNames()

d) getHeaderNames()

e) getSesssion

f) getSession(Boolean create)

g) getLocale()

h) getAttribute(String name)

mu
no
tes
.in

49

Chapter 3: Introduction to Jsp Standard Tag Library (JSTl) And JSTL Tags

3.7.3 Response: - The response object is an instance of a
javax.servlet.http.HttpServletResponse object. Just as the server creates the
request object, it also creates an object to represent the response to the client.

Example: response.sendRedirect(http://www.google.com);

3.7.4 Config: - In JSP, config is an implicit object of type ServletConfig. This
object can be used to get initialization parameter for a particular JSP page. The
config object is created by the web container for each jsp page.

Example: String x=config.getParamter(“rname”);

3.7.5 Application: - In JSP, application is an implicit object of type
ServletContext. The instance of ServletContext is created only once by the web
container when application or project is deployed on the server.

Example: String x=application.getInitParameter(“rname”);

3.7.6 Session: - In JSP, session is an implicit object of type HttpSession. In java
developer can use this object to set, get, and remove attribute or to get session
information.

Example: session.setAttribute(“user”, x);

3.7.7 pageContext :- In JSP, pageContext is an implicit object of type
PageContext class. The pageContext object can be used to set, get and remove
attribute from one of the following scopes:

i) Page

ii) request

iii) session

iv) application

3.7.8 Page: - This object acts as an actual reference to the instance of the page.
This object can be used to represent the entire jsp page.

Example: pageContext.removeAttribute(“attrName”, PAGE_SCOPE);

3.7.9 Exception: - In JSP, exception is an implicit object of type
java.lang.Throwable class. This object can be used to print the exception but it
should be used only in error pages.

mu
no
tes
.in

50

 ADVANCE JAVA

3.8 Introduction to JSP Standard Tag Library (JSTL) and JSTL
Tags

JSTL –it is a collection of predefined tags to simply the jsp development. To
develop any jsp application we write the code in java so for writing this java code
we need some tags such as scriptlet tags. So writing the logical code in java, this
leads the increase in the length of the code which results in more processing time.

Advantages of JSTL:

1) Fast Development: - provides many tags that simply the JSP. To write the
logical code in jsp you need to use the scriptlet tags. To avoid using this
logical code, JSTL provides some pre-defined logical tags.

2) Code Reusability: - We can use the JSTL tags on various pages.

3) No need to use scriptlet tags: - It avoids the use of scriptlet tags.

JSTL Tags: - It is a predefined library which provides custom tags.

1) Core tags: - it helps in variables support, URL management, flow control,
etc.

2) Functions tags: - it provides support for String manipulation and getting
the String length.

3) Formatting tags: - it provides support for messaging, number, date
formatting etc.

4) XML tags: - it is used for manipulating and for creating XML documents.

5) SQL tags: - it provides SQL support such as database connectivity.

3.7 Summary

This course will helps to build skills gained by the students in Java fundamentals
and advanced java programming skills.

3.8 Reference for further reading.

javadocs.in

javapoint.com

W3schools.in

3.9 Bilbliograpgy

https://www.javapoint.com

https://www.w3schools.in

mu
no
tes
.in

51

Chapter 3: Introduction to Jsp Standard Tag Library (JSTl) And JSTL Tags

MCQ FOR PRACTICE

1. Which page directive should be used in JSP to generate a PDF page?

a. contentType
b. generatePdf
c. typePDF
d. contentPDF

2. Application is instance of which class?

a. javax.servlet.Application
b. javax.servlet.HttpContext
c. javax.servlet.Context
d. javax.servlet.ServletContext

3. _jspService() method of HttpJspPage class should not be overridden.

a. True
b. False

4. Which of the following is not a directive in JSP?

a. Include
b. Page
c. Export
d. useBean

5. In JSP config instance is of which class?

a. javax.servlet.ServletContext
b. javax.servlet.ServletConfig
c. javax.servlet.Context
d. javax.servlet.Application

������

mu
no
tes
.in

52

 ADVANCE JAVA

Module2

4
INTRODUCTION TO BEAN, STANDARD

ACTIONS, SESSION TRACKING TYPES AND
METHODS. CUSTOM TAGS

Unit Structure

4.0 Objectives
4.1 Introduction
4.2 Introduction to Bean
4.3 Standard actions

4.3.1 jsp:useBean
4.3.2 jsp:include
4.3.3 jsp:setProperty
4.3.4 jsp:forward
4.3.5 jsp:plugin
4.3.6 jsp:attribute
4.3.7 jsp:body
4.3.8 jsp:text
4.3.9 jsp:param
4.3.10jsp:attribute
4.3.11 jsp:output

4.4 session tracking types and methods
4.4.1 Cookies
4.4.2 Hidden Fields
4.4.3 URL Rewriting
4.4.4 Session Object
4.5 Custom tags
4.7 Reference for further reading

4.0 Objectives

EJP stands for Enterprise Java Beans. It is a server-side component. It means that
EJB is basically used at server-side coding. So if we have client-side and server-
side, EJB is used for server-side and not for client-side.

mu
no
tes
.in

53

Chapter 4: Introduction To Bean, Standard Actions, Session Tracking Types and Methods. Custom Tags

4.1 Introduction

EJB is an essential part of a J2EE platform.J2EE application container contains
the components that can be used by client for executing business logic. These
components are called business logic and business data.EJB mainly comprises of
business logic and business data. The EJB component always lies in some
container which is called as EJB container. The EJB component is an EJB class
which is written by the developer that implement business logic.

4.2 Introduction to Beans

JavaBeans are nothing it’s a class that encapsulates many objects into a single
object that is nothing but a bean. Java beans should follow some protocol such as:

1) They are serializable

2) Have a zero- argument constructor.

3) Allows access to properties using as getter and setter methods.

Example of JavaBeans class- students.java

package mypack;

public class students implements java.io.Serializable

{

private int RollNo;

private String name;

public students(){}

public void setRollNo(int id)

{

this.RollNo=RollNo;

}

public int getId()

{

return RollNo;

}

public void setName(String name)

{

this.name=name;

mu
no
tes
.in

54

 ADVANCE JAVA

}

public String getName()

{

return name;

}

}

How to access the JavaBean class?

To access the JavaBean class, we should use getter and setter methods.

package mypack;
public class Test
{
public static void main(String args[])
{
students s=new students(); //object is created
s.setName("Rahul"); //setting value to the object
System.out.println(s.getName());
}
}

4.3 standard actions

Standard actions in JSP are used to control the behaviour of the Servlets engine.
In JSP there are 11 standard actions tag. With the help of these tags we can
dynamically insert a file, reuse the beans components, forward user etc.
Syntax: <jsp:action_name attribute=”value” />
3 jsp:useBean
4 jsp:include
5 jsp:setProperty
6 jsp:forward
7 jsp:plugin
8 jsp:attribute
9 jsp:body
10 jsp:text
11 jsp:param
12 jsp:attribute
13 jsp:output

mu
no
tes
.in

55

Chapter 4: Introduction To Bean, Standard Actions, Session Tracking Types and Methods. Custom Tags

4.3.1 jsp:useBean:- This action tag is used when we want to use beans in the
JSP page. Using this tag the beans can be easily invoked

 Syntax: <jsp:useBean id=”” class=”” />
4.3.2 jsp:include:- This tag is used to insert a jsp file into another file , same as

include directive . It is compute at the time request processing phase.
 Syntax: <jsp:include page=”page URL” flush=”true/false”>
4.3.3 jsp:setProperty:- This tag used to set the property of a bean. Before setting

this property we need define a bean.
 Syntax: <jsp:setProperty name=”” property=””>
4.3.4 jsp:getProperty:- To get the property of a bean we use this tag. It inserts

the output in a string format which is converted into string.
 Syntax: <jsp:getAttribute name=”” property=””>
4.3.5 jsp:forward:- It is basically used to forward the request to another jsp or

any static page. Here the request can be forwarded with or with no
parameters.

 Syntax: <jsp:forward page=”value”>
4.3.6 jsp:plugin:- It is used for introducing Java components into JSP which is

detects the browser and adds the <object> or <embed> JSP tags into the file
 Syntax: <jsp:plugin type=”applet/bean” code=”objectcode”

codebase=”objectcodebase”>
4.3.7 jsp:param:- It is the child object of the plugin object. It contains one or

more actions to provide additional parameters.
 Syntax: <jsp:params>
<jsp:param nname=”val” value=”val”>
</jsp:param>
4.3.8 jsp:body:- This tag is used for defining the xml dynamically that is the

elements can be generated during the request time than at the compilation
time.

 Syntax: <jsp:body></jsp:body>
4.3.9 jsp:attribute:-This tag is used for defining the xml dynamically that is the

elements can be generated during the request time than at the compilation
time.

 Syntax: <jsp:attribute></jsp:attribute>
4.3.10 jsp:text:- To template text in JSP pages this tag is used. The body of this

tag does not contains any elements .It only contains text and EL
expressions.

 Syntax: <jsp:text>template</jsp:text>
4.3.11jsp: output: - Its consists of XML template text which is placed within text

action objects.In this output is declared as XML and DOCTYPE.
 Syntax: <jsp:output doctype-root-element=”” doctype –system=””>

mu
no
tes
.in

56

 ADVANCE JAVA

4. 4 session tracking types amd methods:

There are four techniques which can be used to identify a user session.
a) Cookies
b) Hidden Fields
c) URL Rewriting
d) Session Object
4.4.1 Cookie: -
 A cookie is small information which is sent by the web server to a web

client. It is save at the client side for the given domain and path. It is
basically used to identify a client when sending a subsequent request. There
are two types of cookies:
a) Session cookies: these are temporary cookies and its get deleted as

soon as the user closes the browser and next time whenever the client
visits the same websites, server will treat the request as a new client
as cookies are already deleted.

b) Persistent Cookie: its remains on hard drive, until we delete them or
they gets expire.

4.4.2 Hidden Filed:
 Hidden field are similar to other input fields with the only difference is that

these fields are not get displayed on the page but the values of these fields
are sent to other input fields.

 For example: <input type=”hidden” name=”sessionId” value=”unique
value”/>

4.4.3 URL Rewriting:
 It is a process of appending or modifying the url structure when loading a

page. The request made by the client is always treated as new request and
the server cannot identify whether the request is new one or the previous
same client .so due to this property of HTTP protocol and web servers are
called stateless.

4.4.4 Session Object:
 It is used for session management. When a user enters a website for the first

time Httpsession is obtained via request. When session is created, server
generates aunique ID and attaches that ID with every request of that user to
server with which the server identifies the client.

How to access or get a session object: By calling getSession() method and it is
an implicit object.
a) HttpSession x=request.getSession()
b) HttpSession y=new request.getSession(Boolean)

mu
no
tes
.in

57

Chapter 4: Introduction To Bean, Standard Actions, Session Tracking Types and Methods. Custom Tags

4.5 Custom Tags:

x� Custom tags, also known as JSP tag extensions (because they extend the set
of built-in JSP tags), provide a way of encapsulating reusable functionality
on JSP pages.

x� One of the major drawbacks of scripting environments such as JSP is that
it’s easy to quickly put together an application without thinking about how
it will be maintained and grown in the future.

x� Use JavaBeans for representing and storing information and state. An
example is building JavaBeans to represent the business objects in your
application.

x� Use custom tags to represent and implement actions that occur on those
JavaBeans, as well as logic related to the presentation of information.

x� A example from JSTL is iterating over a collection of objects or conditional
logic.

x� Custom tags have access to implicit objects like request, response, session,
etc

x� JavaBeans are java classes but all java class are not java beans.

x� major one is Custom tag which can be use by the java beans to
communicate with each other.

x� JavaBeans are normal java classes and don't know anything about JSP.

x� JavaBeans are normally used to maintain the data and custom tags for
functionality or implementing logic on jsp page.

4.6 Reference for further reading.

https://docs.oracle.com/javase/7/docs/api/

4.7 Bilbliograpgy

https://www.wideskills.com/jsp/jsp-session-tracking-techniques

https://www.geeksforgeeks.org/url-rewriting-using-java-servlet/

https://www.javatpoint.com/java-bean

https://www.javatpoint.com/what-is-ejb

https://www.w3schools.in

https://www.java-samples.com/showtutorial.php?tutorialid=607

mu
no
tes
.in

58

 ADVANCE JAVA

MCQ FOR PRACTICE

1. Which page directive should be used in JSP to generate a PDF page?
a. contentType
b. generatePdf
c. typePDF
d. contentPDF

2. Application is instance of which class?
a. javax.servlet.Application
b. javax.servlet.HttpContext
c. javax.servlet.Context
d. javax.servlet.ServletContext

3. _jspService() method of HttpJspPage class should not be overridden.
a. True
b. False

4. Which of the following is not a directive in JSP?
a. Include
b. Page
c. Export
d. useBean

5. In JSP config instance is of which class?
a. javax.servlet.ServletContext
b. javax.servlet.ServletConfig
c. javax.servlet.Context
d. javax.servlet.Application

������

mu
no
tes
.in

59

Chapter 5: Introduction to Spring

Module 2

5
INTRODUCTION TO SPRING

Unit Structure

5.1 Objectives
5.2 Introduction to Spring Framework
5.3 POJO Programming Model
5.4 Lightweight Containers
 5.4.1 Spring IOC Container
 5.4.2 Configuration Metadata
 5.4.3 Configuring and Using the Container
5.5 Summary
5.6 References
5.7 Unit End Exercises

5.1 Objectives͗�

This chapter would make you understand the following concepts:

x� Spring Framework
x� POJO programming model
x� IoC container
x� How to configure metadata with container

5.2 Introduction to Spring Framework

x� Initially Java developers needed to use JavaBeans technology to create Web
applications.

x� Although JavaBeans helped in the development of user interface (UI)
components, they were not able to provide services, such as transaction
management and security, which were required for developing robust and
secure enterprise applications.

x� EJB (Enterprise Java Beans) was seen as a solution to this problem , which
extends the Java components, such as Web and Enterprise components, and
also provides services that help in enterprise application development.

x� However, developing an enterprise application with EJB was not easy, as
the developer needed to perform various tasks, such as creating Home and
Remote interfaces and implementing lifecycle methods which lead to the

mu
no
tes
.in

60

 ADVANCE JAVA

complexity of providing code, so developers started looking for an easier
way to develop such applications.

x� The Spring framework has developed as a solution to all these problems.
x� This framework uses various new techniques such as Aspect-Oriented

Programming (AOP), Plain Old Java Object (POJO), and dependency
injection (DI), to develop enterprise applications.

x� Spring is an open source lightweight framework that allows Java EE 7
developers to build simple, reliable, and scalable enterprise applications.

x� It made the development of Web applications much easier as compared to
classic Java frameworks and Application Programming Interfaces (APIs),
such as Java database connectivity(JDBC), JavaServer Pages(JSP), and
Java Servlet.

5.2.1 Spring Framework

x� Spring is the most popular application development framework for enterprise
Java. Millions of developers around the world use Spring Framework to
create high performing, easily testable, and reusable code.

x� Spring framework targets to make J2EE development easier to use and
promotes good programming practices by enabling a POJO-based
programming model.

x� Spring could potentially be a one-stop shop for all your enterprise
applications. However, Spring is modular, allowing you to pick and choose
which modules are applicable to you, without having to bring in the rest.

x� The following section provides details about all the modules available in
Spring Framework.

Fig 1 .Spring Framework

mu
no
tes
.in

61

Chapter 5: Introduction to Spring

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language
PRGXOHV�WKH�GHWDLOV�RI�ZKLFK�DUH�DV�IROORZV�í

x� The Core module provides the fundamental parts of the framework,
including the IoC and Dependency Injection features.

x� The Bean module provides BeanFactory, which is a sophisticated
implementation of the factory pattern.

x� The Context module builds on the solid base provided by the Core and Beans
modules and it is a medium to access any objects defined and configured.
The ApplicationContext interface is the focal point of the Context module.

x� The SpEL module provides a powerful expression language for querying and
manipulating an object graph at runtime.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and
Transaction modules whose GHWDLO�LV�DV�IROORZV�í

x� The JDBC module provides a JDBC-abstraction layer that removes the need
for tedious JDBC related coding.

x� The ORM module provides integration layers for popular object-relational
mapping APIs, including JPA, JDO, Hibernate, and iBatis.

x� The OXM module provides an abstraction layer that supports Object/XML
mapping implementations for JAXB, Castor, XMLBeans, JiBX and
XStream.

x� The Java Messaging Service JMS module contains features for producing
and consuming messages.

x� The Transaction module supports programmatic and declarative transaction
management for classes that implement special interfaces and for all your
POJOs.

Web

The Web layer consists of the Web, Web-MVC, Web-Socket, and Web-Portlet
modules the details of which aUH�DV�IROORZV�í

x� The Web module provides basic web-oriented integration features such as
multipart file-upload functionality and the initialization of the IoC container
using servlet listeners and a web-oriented application context.

x� The Web-MVC module contains Spring's Model-View-Controller (MVC)
implementation for web applications.

mu
no
tes
.in

62

 ADVANCE JAVA

x� The Web-Socket module provides support for WebSocket-based, two-way
communication between the client and the server in web applications.

x� The Web-Portlet module provides the MVC implementation to be used in a
portlet environment and mirrors the functionality of Web-Servlet module.

Miscellaneous

There are few other important modules like AOP, Aspects, Instrumentation, Web
and Test modules the details of which are as IROORZV�í

x� The AOP module provides an aspect-oriented programming implementation
allowing you to define method-interceptors and pointcuts to cleanly decouple
code that implements functionality that should be separated.

x� The Aspects module provides integration with AspectJ, which is again a
powerful and mature AOP framework.

x� The Instrumentation module provides class instrumentation support and
class loader implementations to be used in certain application servers.

x� The Messaging module provides support for STOMP as the WebSocket sub-
protocol to use in applications. It also supports an annotation programming
model for routing and processing STOMP messages from WebSocket clients.

x� The Test module supports the testing of Spring components with JUnit or
TestNG frameworks.

5.3 POJO Programming Model:

x� POJO in Java stands for Plain Old Java Object.

x� Generally, a POJO class contains variables and their Getters and Setters.

x� The POJO classes are similar to Beans as both are used to define the objects
to increase the readability and re-usability.

x� The only difference between them that Bean Files have some restrictions but,
the POJO files do not have any special restrictions.

x� POJO simply means a class that is not forced to implement any

interface, extend any specific class, contain any pre-described

annotation or follow any pattern due to forced restriction.

x� POJO class is used to define the object entities. For example, we can create
an Employee POJO class to define its objects.

x� Below is an example of Java POJO class:

mu
no
tes
.in

63

Chapter 5: Introduction to Spring

Employee.java:

// POJO class Exmaple
package Jtp.PojoDemo;
public class Employee
{ private String name;
private String id;
private double sal;
public String getName() {
return name; }
public void setName(String name) {
this.name = name; }
public String getId() {
return id; }
public void setId(String id) {
this.id = id; }
public double getSal() {
return sal; }
public void setSal(double sal) {
this.sal = sal; }
}

How to use POJO class in a Java Program :

To access the objects from the POJO class, follow the below steps:

9� Create a POJO class objects

9� Set the values using the set() method

9� Get the values using the get() method

For example, create a MainClass.java class file within the same package and write
the following code in it:

MainClass.java:

//Using POJO class objects in MainClass Java program

package Jtp.PojoDemo;

public class MainClass {

 public static void main(String[] args) {

 // Create an Employee class object

 Employee obj= new Employee(); //POJO class object created.

 obj.setName("Alisha"); // Setting the values using the set() method

mu
no
tes
.in

64

 ADVANCE JAVA

 obj.setId("A001");

 obj.setSal(200000);

 //Getting the values using the get() method

 System.out.println("Name: "+ obj.getName());

 System.out.println("Id: " + obj.getId());

 System.out.println("Salary: " +obj.getSal());

 }

}

Output:

Name: Alisha

Id: A001Salary: 200000.0

Properties of POJO class:
9� The POJO class must be public.

9� It must have a public default constructor.

9� It may have the arguments constructor.

9� All objects must have some public Getters and Setters to access the object
values by other Java Programs.

9� The object in the POJO Class can have any access modifies such as private,
public, protected. But, all instance variables should be private for improved
security of the project.

9� A POJO class should not extend predefined classes.

9� It should not implement prespecified interfaces.

9� It should not have any prespecified annotation.

5.4 Lightweight Containers:

5.4.1 Spring IoC Container:
x� The Spring container is the core of Spring Framework.
x� The container, use for creating the objects and configuring them.
x� Also, Spring IoC Containers use for managing the complete lifecycle from

creation to its destruction.
x� It uses Dependency Injection (DI) to manage components and these objects

are called Spring Beans.
x� The container uses configuration metadata which represent by Java code,

annotations or XML along with Java POJO classes as seen below.

mu
no
tes
.in

65

Chapter 5: Introduction to Spring

Fig. Spring IoC Container

Types of IoC Containers:

This are the two types of Spring IoC Containers.
5.4.1.1 Spring BeanFactory Container:
x� Spring BeanFactory Container is the simplest container which provides

basic support for DI.
x� It is defined by org.springframework.beans.factory.BeanFactory interface.
x� There are many implementations of BeanFactory interface that come with

Spring where XmlBeanFactory being the most commonly used class.
x� XmlBeanFactory reads configuration metadata from XML file for creating

a fully configured application.
x� The BeanFactory container prefer, where resources are limited to mobile

devices or applet-based applications.
x� You will look at a working example with Eclipse IDE with the following

steps for creating Spring application.
i. Create a project with a name SpringExample and a package

packagecom.example. These should be under src folder of the created
project.

ii. Add the needed Spring libraries using Add External JARs.
iii. Create Java classes HelloWorld and MainApp under the package

packagecom .example.
iv. Create Beans config file Beans.xml under src folder.
v. At last, create content of all Java files and Beans configuration file

and run the file as below.

mu
no
tes
.in

66

 ADVANCE JAVA

The code of HelloWorld.java is as shown.

�

The following is the code of MainApp.java.

package com.example;

public class HelloWorld {

private String message;

public void setMessage(String message){

this.message = message;

}

public void getMessage(){

System.out.println("Your Message : " + message);

}

}

package com.example;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.beans.factory.xml.XmlBeanFactory;

import org.springframework.core.io.ClassPathResource;

public class MainApp {

public static void main(String[] args) {

XmlBeanFactory factory = new XmlBeanFactory (new
ClassPathResource("Beans.xml"));

HelloWorld obj = (HelloWorld) factory.getBean("helloWorld");

obj.getMessage();

}

}�

mu
no
tes
.in

67

Chapter 5: Introduction to Spring

Please note:

x� Write a factory object where you have used APIXmlBeanFactory() to load
bean config file in CLASSPATH.

x� Use getBean() which uses bean ID to return a generic object to get the
required bean.

Following is the XML code for Beans.xml.

After you run the application you will see the following message as output.
Your Message: Hello World!

5.4.1.2 Spring ApplicationContext Container:

x� The ApplicationContext container is Spring’s advanced container.

x� It is defined by org.springframework.context.ApplicationContext interface.

x� The ApplicationContext container has all the functionalities of
BeanFactory.

x� It is generally recommended over BeanFactory.

x� The most common implementations of ApplicationContext are:
¾� FileSystemXmlApplicationContext: It is a type of container which

loads the definitions of beans from an XML file. For that, you should
be able to provide the full path of the XML bean config file to a
constructor.

<?xml version = "1.0" encoding = "UTF-8"?>

<beans xmlns = "http://www.springframework.org/schema/beans"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation = "http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id = "helloWorld" class = "com.example.HelloWorld">

<property name = "message" value = "Hello World!"/>

</bean>

</beans>

mu
no
tes
.in

68

 ADVANCE JAVA

¾� ClassPathXmlApplicationContext: This type of container loads
definitions of the beans from XML file but you don’t need to provide
the full path of the XML file. Only the CLASSPATH has to set
properly as this container will look like Bean config XML file.

¾� WebXmlApplicationContext: This type of container loads the XML
file with all bean definitions within a web application.

x� You will better understand with a working example in Eclipse IDE with the
following steps:
i. Create a project with a name SpringExample and a package

packagecom.example. These should under src folder of the created
project.

ii. Add the needed Spring libraries using Add External JARs.
iii. Create Java classes HelloWorld and MainApp under the package

packagecom .example.
iv. Create Beans config file Beans.xml under src folder.
v. At last, create content of all Java files and Beans configuration file

and run the file as below.
The code for HelloWorld.java file:

�

package com.example;

public class HelloWorld {

private String message;

public void setMessage(String message){

this.message = message;

}

public void getMessage(){

System.out.println("Your Message : " + message);

}

}

mu
no
tes
.in

69

Chapter 5: Introduction to Spring

The code for MainApp.java:

�

Please note:

x� Using framework API FileSystemXmlApplicationContext create a factory
object. This API takes care of creating and initializing all objects.

x� Use getBean() which uses bean ID to return a generic object to get the
required bean.

package com.example;

import org.springframework.context.ApplicationContext;

import
org.springframework.context.support.FileSystemXmlApplicationContext;

public class MainApp {

public static void main(String[] args) {

ApplicationContext context = new FileSystemXmlApplicationContext

("C:/Users/ADMIN/workspace/HelloSpring/src/Beans.xml");

HelloWorld obj = (HelloWorld) context.getBean("helloWorld");

obj.getMessage();

}

}

mu
no
tes
.in

70

 ADVANCE JAVA

The code for Beans.xml is as given:

�

5.4.2 Configuration Metadata:

x� The configuration metadata allows you to express the objects that compose
your application and the rich interdependencies between such objects.

x� Configuration metadata is supplied in a simple and intuitive XML format.

x� Spring configuration consists of at least one and typically more than one
object definition that the container must manage. XML- based configuration
shows these objects as <object/> elements inside a top-level <objects/>
element.

x� These object definitions correspond to the actual objects that make up your
application. Typically you define service layer objects, data access objects
(DAOs), presentation objects such as ASP.NET page instances,
infrastructure objects such as NHibernate SessionFactories, and so forth.

x� The following example shows the basic structure of XML-based
configuration metadata:

<?xml version = "1.0" encoding = "UTF-8"?>

<beans xmlns = "http://www.springframework.org/schema/beans"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation = "http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id = "helloWorld" class = "com.example.HelloWorld">

<property name = "message" value = "Hello World!"/>

</bean>

</beans>

mu
no
tes
.in

71

Chapter 5: Introduction to Spring

<objects xmlns="http://www.springframework.net">

 <object id="..." type="...">

 <!-- collaborators and configuration for this object go here -->

 </object>

 <object id="...." type="...">

 <!-- collaborators and configuration for this object go here -->

 </object>

 <!-- more object definitions go here -->

</objects>

Note : The id attribute is a string that you use to identify the individual object
definition. The type attribute defines the type of the object.

5.4.3 Configuring and Using the Container:

x� Instantiating a Spring IoC container is straightforward.

x� The location path or paths suppied to an IApplicationContext constructor
are actually resource strings that allow the container to load configuration
metadata from a variety of external resources such as the local file system,
embedded assembly resources, and so on.

Example:
IApplicationContext context = new XmlApplicationContext("services.xml",
"data-access.xml");
(Note :the service layer objects (services.xml) configuration file.the data access
objects (daos.xml) configuration file)
service.xml:
<objects xmlns="http://www.springframework.net">
<object id="PetStore" type="PetStore.Services.PetStoreService, PetStore">
 <property name="AccountDao" ref="AccountDao"/>
 <property name="ItemDao" ref="ItemDao"/>

<!-- additional collaborators and configuration for this object go here -->
 </object>
 <!-- more object definitions for services go here -->
</objects>
(Note : the service layer consists of the class PetStoreService.)

mu
no
tes
.in

72

 ADVANCE JAVA

An IApplicationContext is the interface for an advanced factory capable of
maintaining a registry of different objects and their dependencies. Using the
method GetObject(string) or the indexer [string] you can retrieve instances of your
objects.

The IApplicationContext enables you to read object definitions and access them as
follows:

// create and configure objects

IApplicationContext context = new XmlApplicationContext("services.xml",
"daos.xml");

// retrieve configured instance

PetStoreService service = (PetStoreService)
context.GetObject("PetStoreService");

// use configured instance

IList userList = service.GetUserNames();

5.5 Summary:

¾� Spring is an open source lightweight framework.
¾� Spring is the most popular application development framework for

enterprise Java.
¾� POJO in Java stands for Plain Old Java Object.

¾� POJO simply means a class that is not forced to implement any interface,
extend any specific class.

¾� Spring container is the core of Spring Framework.
¾� Spring IoC Containers use for managing the complete lifecycle from

creation to its destruction.

¾� The configuration metadata allows you to express the objects from your
application in XML format.

5.6 References :

Reference Books:
¾� Java 6 Programming Black Book, Wiley–Dreamtech ISBN 10:

817722736X ISBN 13: 9788177227369

¾� Spring in Action, Craig Walls, 3rd Edition,Manning, ISBN 9781935182351

¾� Professional Java Development with the Spring Framework by Rod
Johnsonet al.John Wiley & Sons 2005 (672 pages) ISBN:0764574833

mu
no
tes
.in

73

Chapter 5: Introduction to Spring

¾� BeginninJ�6SULQJ���0HUW�&DOÕV�NDQ�DQG�.HQDQ6HYLQGLN�3XEOLVKHG�E\�-RKQ�
Wiley & Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256

Web References:

¾� https://www.springframework.net/

¾� https://www.javadevjournal.com/

¾� https://www.tutorialspoint.com/

¾� https://www.geeksforgeeks.org/

5.7 Unit End Exercises :

1. Explain the Spring framework with neat labelled diagram.

2. What do you mean by POJO programming model? Give suitable example.

3. List the properties of POJO class.

4. Explain the concept of IoC container.

5. Explain different types of IoC container.

6. Explain the process of configuration of metadata with container.

������

mu
no
tes
.in

74

 ADVANCE JAVA

Module 2

6
SPRING FRAMEWORKS

Unit Structure

6.1 Objectives
6.2 Dependency Injection
 6.2.1 Setter Injection
 6.2.2 Constructor Injection
6.3 Circular Dependency
6.4 Overriding Bean
6.5 Auto Wiring
6.6 Bean Looksup
6.7 Spring manages Beans
6.8 Summary
6.9 References
6.10 Unit End Exercises

6.1 Objectives

This chapter would make you understand the following concepts:
• Dependency Injection
• Circular Dependency
• Overriding Bean
• Auto Wiring
• Bean Looksup
• Spring manages Beans

6.2 Dependency injection:

• ����������� ���������� ȋ��Ȍ� ��� �� �������� �������� �������� ������� ������
������������ǡ� ����� ��ǡ� ������������������ ��������������ǡ� ����� ��������
���
�����������������������Ǥ�

• ���Ǥ�

• ����������� ���������� ������� ��� ���������� ��������ǡ� �����������Ǧ������
�������������������������������Ǧ��������������������������Ǥ�

mu
no
tes
.in

75

Chapter 6: Spring Frameworks

6.2.1 Constructor-based dependency injection:

Constructor-based DI is accomplished by the container invoking a constructor
with a number of arguments, each representing a dependency.
The following example shows a class that can only be dependency-injected with
constructor injection.
public class SimpleMovieLister
{
 // the SimpleMovieLister has a dependency on a MovieFinder
 private IMovieFinder movieFinder;
 // a constructor so that the Spring container can 'inject' a MovieFinder
 public MovieLister(IMovieFinder movieFinder)
 {
 this.movieFinder = movieFinder;
 }
 // business logic that actually 'uses' the injected IMovieFinder is omitted...
�

6.2.2 Setter-based dependency injection :

Setter-based DI is accomplished by the container invoking setter properties on your
objects after invoking a no-argument constructor or no-argument static factory
method to instantiate your object.
The following eample shows a class that can only be dependency injected using
pure setter injection.
public class MovieLister
{
 private IMovieFinder movieFinder;
 public IMovieFinder MovieFinder
 {
 set
 {
 movieFinder = value;
 }
 }
 // business logic that actually 'uses' the injected IMovieFinder is omitted...
}

mu
no
tes
.in

76

 ADVANCE JAVA

6.3 Circular dependencies��

There are the issue caused during dependency injection when spring-context tries
to load objects and one bean depends on another bean. Suppose when Object A &
B depends on each other.
i.e. A depends on B and vice-versa.
Spring throws UnsatisfiedDependencyException while creating objects of A and B
because A object cannot be created until unless B is created and visa-versa.

Fig. Circular dependencies

Let’s understand it using the real code example.

Create two services ServiceA and ServiceB and try to
inject ServiceA into ServiceB and visa-versa as shown in the above picture.

ServiceA.java
import org.springframework.stereotype.Service;

@Service
public class ServiceA {
 private ServiceB serviceB;
 public ServiceA(ServiceB serviceB) {
 System.out.println("Calling Service A");
 this.serviceB = serviceB;
 }
}

ServiceB.java
import org.springframework.stereotype.Service;

@Service
public class ServiceB {
 private ServiceA serviceA;
 public ServiceB(ServiceA serviceA) {
 System.out.println("Calling Service B");
 this.serviceA = serviceA;
 }
}

mu
no
tes
.in

77

Chapter 6: Spring Frameworks

To simulate the circular dependency issue, run the below class, and see the
console log.

CircularDependenciesTestApp.java
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class CircularDependenciesTestApp {
 public static void main(String[] args) {
 SpringApplication.run(CircularDependenciesTestApp.class, args);
 }
}
When we execute CircularDependenciesTestApp class it won’t be able to inject
the dependencies due to circular dependencies on each other and will throw a
checked exception as shown below:

console log
Error starting ApplicationContext. To display the conditions report re-run your
application with 'debug' enabled.

2020-05-27 21:22:46.368 ERROR 4480 --- [main]
o.s.b.d.LoggingFailureAnalysisReporter :

APPLICATION FAILED TO START

Description:
The dependencies of some of the beans in the application context form a cycle:

ňņņņņņŉ

| serviceA defined in file [F:\sts4-workspace\circular-dependencies-
spring\target\classes\org\websparrow\service\ServiceA.class]

Ĺ�����Ļ

| serviceB defined in file [F:\sts4-workspace\circular-dependencies-
spring\target\classes\org\websparrow\service\ServiceB.class]

Ŋņņņņņŋ

6.3.1 How to resolve this issue?

To solve the circular dependency issue, you have two options: Using @Lazy with
constructor injection and Using @Autowired along with @Lazy annotation.

mu
no
tes
.in

78

 ADVANCE JAVA

6.3.1.1 Using @Lazy with constructor injection

We can lazily initialize ServiceB bean during constructor injection in order to
delay constructing ServiceB bean. Here are the code changes in ServiceA for
more clarity:

ServiceA.java
import org.springframework.context.annotation.Lazy;

import org.springframework.stereotype.Service;
@Service
public class ServiceA {
 private ServiceB serviceB;
 public ServiceA(@Lazy ServiceB serviceB) {
� � System.out.println("Calling Service A");
 this.serviceB = serviceB;
 }
}
If you run the CircularDependenciesTestApp class again, you’ll find the circular
dependency issue is solved.

console log:

. ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v2.3.0.RELEASE)

2020-05-27 21:33:22.637 INFO 7156 --- [main]
o.w.CircularDependenciesTestApp : Starting CircularDependenciesTestApp on
Atul-PC with PID 7156 (F:\sts4-workspace\circular-dependencies-
spring\target\classes started by user1 in F:\sts4-workspace\circular-dependencies-
spring)
2020-05-27 21:33:22.640 INFO 7156 --- [main]
o.w.CircularDependenciesTestApp : No active profile set, falling back to default
profiles: default
Calling Service A
Calling Service B

mu
no
tes
.in

79

Chapter 6: Spring Frameworks

2020-05-27 21:33:23.251 INFO 7156 --- [main]
o.w.CircularDependenciesTestApp : Started CircularDependenciesTestApp
in 0.98 seconds (JVM running for 1.667)

6.3.1.2 Using @Autowired along with @Lazy annotation
Using @Autowired along with @Lazy annotation for injecting ServiceB in
ServiceA.
Let’s use these annotations to inject beans and test our application whether it
resolves the issue:
ServiceA.java
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Lazy;
import org.springframework.stereotype.Service;
@Service
public class ServiceA {
 @Autowired
 @Lazy
 private ServiceB serviceB;
 /*
 public ServiceA(ServiceB serviceB) {
 System.out.println("Calling Service A");
 this.serviceB = serviceB;
 }
 */
}
Here is the output on the console log when you run
CircularDependenciesTestApp class again:

console log:

. ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v2.3.0.RELEASE)

mu
no
tes
.in

80

 ADVANCE JAVA

2020-05-27 21:45:07.583 INFO 4036 --- [main]
o.w.CircularDependenciesTestApp : Starting CircularDependenciesTestApp
on Atul-PC with PID 4036 (F:\sts4-workspace\circular-dependencies-
spring\target\classes started by user1 in F:\sts4-workspace\circular-dependencies-
spring)

2020-05-27 21:45:07.586 INFO 4036 --- [main]
o.w.CircularDependenciesTestApp : No active profile set, falling back to
default profiles: default

Calling Service B

2020-05-27 21:45:08.141 INFO 4036 --- [main]
o.w.CircularDependenciesTestApp

6.4 Overriding Bean:

A bean definition can contain a lot of configuration information, including
constructor arguments, property values, and container-specific information such as
initialization method, static factory method name, and so on.

A child bean definition inherits configuration data from a parent definition. The
child definition can override some values, or add others, as needed.

Spring Bean definition inheritance has nothing to do with Java class inheritance but
the inheritance concept is same. You can define a parent bean definition as a
template and other child beans can inherit the required configuration from the
parent bean.

When you use XML-based configuration metadata, you indicate a child bean
definition by using the parent attribute, specifying the parent bean as the value of
this attribute.

Example

Let us have a working Eclipse IDE in place and take the following steps to create
D�6SULQJ�DSSOLFDWLRQ�í

Steps Description:

1. Create a project with a name SpringExample and create a package
com.tutorialspoint under the src folder in the created project.

2. Add required Spring libraries using Add External JARs option as explained
in the Spring Hello World Example chapter.

mu
no
tes
.in

81

Chapter 6: Spring Frameworks

3. Create Java classes HelloWorld, HelloIndia and MainApp under the
com.tutorialspoint package.

4. Create Beans configuration file Beans.xml under the src folder.

5. The final step is to create the content of all the Java files and Bean
Configuration file and run the application as explained below.

Following is the configuration file Beans.xml where we defined "helloWorld"
bean which has two properties message1 and message2. Next "helloIndia" bean
has been defined as a child of "helloWorld" bean by using parent attribute. The
child bean inherits message2 property as is, and overrides message1 property and
introduces one more property message3.

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
 <bean id = "helloWorld" class = "com.tutorialspoint.HelloWorld">
 <property name = "message1" value = "Hello World!"/>
 <property name = "message2" value = "Hello Second World!"/>
</bean>
<bean id ="helloIndia" class = "com.tutorialspoint.HelloIndia" parent =
"helloWorld">
 <property name = "message1" value = "Hello India!"/>
 <property name = "message3" value = "Namaste India!"/>
 </bean> </beans>
Here is the content of HelloWorld.java ILOH�í
public class HelloWorld
{
 private String message1;
 private String message2;
 public void setMessage1(String message){
 this.message1 = message;
 }
 public void setMessage2(String message){
 this.message2 = message;
 }
 public void getMessage1(){
 System.out.println("World Message1 : " + message1);
 }
 public void getMessage2(){
 System.out.println("World Message2 : " + message2);

mu
no
tes
.in

82

 ADVANCE JAVA

 }
}
Here is the content of HelloIndia.java ILOH�í
public class HelloIndia
{
 private String message1;
 private String message2;
 private String message3;
 public void setMessage1(String message){
 this.message1 = message;
 }
 public void setMessage2(String message){
 this.message2 = message;
 }
 public void setMessage3(String message){
 this.message3 = message;
 }
 public void getMessage1(){
 System.out.println("India Message1 : " + message1);
 }
 public void getMessage2(){
 System.out.println("India Message2 : " + message2);
 }
 public void getMessage3(){
 System.out.println("India Message3 : " + message3);
 }
}
Following is the content of the MainApp.java ILOH�í
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class MainApp
{
 public static void main(String[] args)
{
 ApplicationContext context = new
ClassPathXmlApplicationContext("Beans.xml");

 HelloWorld objA = (HelloWorld) context.getBean("helloWorld");
 objA.getMessage1();
 objA.getMessage2();
 HelloIndia objB = (HelloIndia) context.getBean("helloIndia");
 objB.getMessage1();

mu
no
tes
.in

83

Chapter 6: Spring Frameworks

 objB.getMessage2();
 objB.getMessage3();
 }
}
Once you are done creating the source and bean configuration files, let us run the
application. If everything is fine with your application, it will print the following
PHVVDJH�í
World Message1 : Hello World!
World Message2 : Hello Second World!
India Message1 : Hello India!
India Message2 : Hello Second World!
India Message3 : Namaste India!
(Note:If you observed here, we did not pass message2 while creating "helloIndia"
bean, but it got passed because of Bean Definition Inheritance.)

6.5 Auto Wiring:

The Spring container can autowire relationships between collaborating beans
without using <constructor-arg> and <property> elements, which helps cut down
on the amount of XML configuration you write for a big Spring-based
application.

Autowiring Modes
Following are the autowiring modes, which can be used to instruct the Spring
container to use autowiring for dependency injection. You use the autowire
attribute of the <bean/> element to specify autowire mode for a bean definition.

Sr.No Mode Description
1 no This is default setting which means no

autowiring and you should use explicit bean
reference for wiring. You have nothing to do
special for this wiring. This is what you already
have seen in Dependency Injection chapter.

2 byName Autowiring by property name. Spring container
looks at the properties of the beans on which
autowire attribute is set to byName in the XML
configuration file. It then tries to match and
wire its properties with the beans defined by the
same names in the configuration file.

mu
no
tes
.in

84

 ADVANCE JAVA

3 byType Autowiring by property datatype. Spring
container looks at the properties of the beans on
which autowire attribute is set to byType in the
XML configuration file. It then tries to match
and wire a property if its type matches with
exactly one of the beans name in configuration
file. If more than one such beans exists, a fatal
exception is thrown.

4 constructor Similar to byType, but type applies to
constructor arguments. If there is not exactly
one bean of the constructor argument type in the
container, a fatal error is raised.

5 autodetect Spring first tries to wire using autowire by
constructor, if it does not work, Spring tries to
autowire by byType.

Note : You can use byType or constructor autowiring mode to wire arrays and
other typed-collections.

Limitations with autowiring:
Autowiring works best when it is used consistently across a project. If autowiring
is not used in general, it might be confusing for developers to use it to wire only
one or two bean definitions. Though, autowiring can significantly reduce the need
to specify properties or constructor arguments but you should consider the
limitations and disadvantages of autowiring before using them.

Sr.No. Limitations Description

1 Overriding possibility

You can still specify dependencies using
<constructor-arg> and <property>
settings which will always override
autowiring.

2 Primitive data types

You cannot autowire so-called simple
properties such as primitives, Strings,
and Classes.

mu
no
tes
.in

85

Chapter 6: Spring Frameworks

3 Confusing nature

Autowiring is less exact than explicit
wiring, so if possible prefer using explict
wiring.

6.6 Bean Looksup:

A method annotated with @Lookup tells Spring to return an instance of the
method's return type when we invoke it.
Essentially, Spring will override our annotated method and use our method's
return type and parameters as arguments to BeanFactory#getBean.
@Lookup is useful for:

• Injecting a prototype-scoped bean into a singleton bean (similar to Provider)
• Injecting dependencies procedurally

ǤǤͳ��������������������Ǧ���������������������������������ǣ�

Step 1: let's create a prototype bean that we will later inject into a singleton
bean

@Component
@Scope("prototype")
public class SchoolNotification {
 // ... prototype-scoped state
}

Step 2: create a singleton bean that uses @Lookup

@Component

public class StudentServices {

 // ... member variables, etc.

 @Lookup

 public SchoolNotification getNotification() {

 return null;

 }

 // ... getters and setters

}

Using @Lookup, we can get an instance of SchoolNotification through our
singleton bean:

mu
no
tes
.in

86

 ADVANCE JAVA

Step 3:

@Test
public void whenLookupMethodCalled_thenNewInstanceReturned() {
 // ... initialize context
 StudentServices first = this.context.getBean(StudentServices.class);
 StudentServices second = this.context.getBean(StudentServices.class);

 assertEquals(first, second);
 assertNotEquals(first.getNotification(), second.getNotification());
}
(Note that in StudentServices, we left the getNotification method as a stub)

ǤǤʹ�������������������������������������

Let's enhance StudentNotification with some state:

Step 1:

@Component

@Scope("prototype")

public class SchoolNotification {

 @Autowired Grader grader;

 private String name;

 private Collection<Integer> marks;

 public SchoolNotification(String name) {

 // ... set fields

 }

 // ... getters and setters

 public String addMark(Integer mark) {

 this.marks.add(mark);

 return this.grader.grade(this.marks);

 }

}

Now, it is dependent on some Spring context and also additional context that we
will provide procedurally.

mu
no
tes
.in

87

Chapter 6: Spring Frameworks

Step 2:We can then add a method to StudentServices that takes student data
and persists it.

public abstract class StudentServices {
 private Map<String, SchoolNotification> notes = new HashMap<>();
 @Lookup
 protected abstract SchoolNotification getNotification(String name);
 public String appendMark(String name, Integer mark) {
 SchoolNotification notification
 = notes.computeIfAbsent(name, exists -> getNotification(name)));
 return notification.addMark(mark);
 }
}
At runtime, Spring will implement the method in the same way, with a couple of
additional tricks.

Please note:

9 It can call a complex constructor as well as inject other Spring beans,
allowing us to treat SchoolNotification a bit more like a Spring-aware
method.It does this by implementing getSchoolNotification with a call to
beanFactory.getBean(SchoolNotification.class, name).

9 Second, we can sometimes make the @Lookup-annotated method abstract,
like the above example.

@Test

public void whenAbstractGetterMethodInjects_thenNewInstanceReturned() {
 // ... initialize context
 StudentServices services = context.getBean(StudentServices.class);
 assertEquals("PASS", services.appendMark("Alex", 89));
 assertEquals("FAIL", services.appendMark("Bethany", 78));
 assertEquals("PASS", services.appendMark("Claire", 96));
}
With this setup, we can add Spring dependencies as well as method dependencies
to SchoolNotification.

6.7 Spring manages Beans:

A bean is the foundation of a Spring-managed application; all beans reside
withing the IOC container, which is responsible for managing their life cycle.

We can get a list of all beans within this container in two ways:

mu
no
tes
.in

88

 ADVANCE JAVA

1. Using a ListableBeanFactory interface
2. Using a Spring Boot Actuator

6.7.1 Using a ListableBeanFactory interface
The ListableBeanFactory interface
provides getBeanDefinitionNames() method which returns the names of all the
beans defined in this factory. This interface is implemented by all the bean
factories that pre-loads their bean definitions to enumerate all their bean
instances.

You can find the list of all known subinterfaces and its implementing classes
in the official documentation.

For this example, we'll be using a Spring Boot Application.

First, we'll create some Spring beans. Let's create a simple Spring Controller
FooController:

@Controller
public class FooController {
@Autowired
 private FooService fooService;
@RequestMapping(value="/displayallbeans")
public String getHeaderAndBody(Map model){
model.put("header", fooService.getHeader());
model.put("message", fooService.getBody());
return "displayallbeans";
} }
This Controller is dependent on another Spring bean FooService:

@Service
public class FooService
{ public String getHeader()
{ return "Display All Beans";
 }
 public String getBody()
{ return "This is a sample application that displays all beans " + "in
Spring IoC container using ListableBeanFactory interface " + "and Spring
Boot Actuators.";
 }
}
Note that we've created two different beans here:fooController and
fooService

mu
no
tes
.in

89

Chapter 6: Spring Frameworks

While executing this application, we'll use applicationContext object and call
its getBeanDefinitionNames() method, which will return all the beans in our
applicationContext container:
@SpringBootApplication
public class Application
{ private static ApplicationContext applicationContext;
public static void main(String[] args) {
 applicationContext = SpringApplication.run(Application.class, args);
 displayAllBeans();
 }
 public static void displayAllBeans() {
 String[] allBeanNames = applicationContext.getBeanDefinitionNames();
 for(String beanName : allBeanNames) {
 System.out.println(beanName);
 }
 }
}
This will print all the beans from applicationContext container:
fooController
fooService
//other beans

6.7.2 Using Spring Boot Actuator

The Spring Boot Actuator functionality provides endpoints which are used for
monitoring our application's statistics.

It includes many built-in endpoints, including /beans. This displays a complete list
of all the Spring managed beans in our application. You can find the full list of
existing endpoints over on the official docs.

Now, we'll just hit the URL http://<address>:<management-port>/beans. We
can use our default server port if we haven't specified any separate
management port. This will return a JSON response displaying all the beans
within the Spring IoC Container:

You will get output like this:

[{ "context": "application:8080", "parent": null, "beans": [{ "bean":
"fooController", "aliases": [], "scope": "singleton", "type":
"com.baeldung.displayallbeans.controller.FooController", "resource": "file
[E:/Workspace/tutorials-master/spring-boot/target
/classes/com/baeldung/displayallbeans/controller/FooController.class]",

mu
no
tes
.in

90

 ADVANCE JAVA

"dependencies": ["fooService"] }, { "bean": "fooService", "aliases": [], "scope":
"singleton", "type": "com.baeldung.displayallbeans.service.FooService",
"resource": "file [E:/Workspace/tutorials-master/spring-boot/target/
classes/com/baeldung/displayallbeans/service/FooService.class]",
"dependencies": [] }, // ...other beans] }]

6.8 Summary:

¾ Dependency injection (DI) is a process whereby objects define their
dependencies, that is, the other objects they work with.

¾ Constructor-based DI is accomplished by the container invoking a
constructor.

¾ Setter-based DI is accomplished by the container invoking setter properties
on your objects.

¾ During dependency injection when spring-context tries to load objects and
one bean depends on another bean called as circular dependency.

¾ A child bean definition inherits configuration data from a parent definition.
The child definition can override some values, or add others, as needed.

¾ Spring container can autowire relationships between collaborating beans
without using <constructor-arg> and <property> elements.

¾ A method annotated with @Lookup tells Spring to return an instance of the
method's return type when we invoke it.

6.9 References :

Reference Books:

¾ Java 6 Programming Black Book, Wiley–Dreamtech ISBN 10:
817722736X ISBN 13: 9788177227369

¾ Spring in Action, Craig Walls, 3rd Edition,Manning, ISBN 9781935182351
¾ Professional Java Development with the Spring Framework by Rod

Johnsonet al.John Wiley & Sons 2005 (672 pages) ISBN:0764574833
¾ %HJLQQLQJ�6SULQJ���0HUW�&DOÕV�NDQ�DQG�.HQDQ6HYLQGLN�3XEOLVKHG�E\�-RKQ�

Wiley & Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256
Web References:
¾ https://www.springframework.net/
¾ https://www.javadevjournal.com/
¾ https://www.tutorialspoint.com/
¾ https://www.geeksforgeeks.org/

mu
no
tes
.in

91

Chapter 6: Spring Frameworks

6.10 Unit End Exercises :

1. Explain the concept of Dependency injection (DI).

2. Explain the different types of Dependency injection (DI).

3. What do you mean by circular dependency? Also give solution to issue
raised in this.

4. How to implement overriding concepts in spring bean? Explain in detail with
suitable example.

5. Write a note on Autowiring.

6. Explain the concept of @Lookup with example.

7. Explain how spring manages a bean in detail.

������

�

mu
no
tes
.in

92

 ADVANCE JAVA

Module 2

7
SPRING AND AOP

Unit Structure

7.0 Objectives
7.1 Introduction
7.2 An Overview
 7.2.1 What is spring AOP and about AspectJ?
 7.2.2 Concept and Terminology used in AOP with examples
7.2.3 Advantages and disadvantages of spring AOP
 7.2.4 Types of advices
 7.2.5 Definition of Point Cut, Designator, Annotations
7.3 Summary
7.4 Exercise
7.5 List of References

7.0 Objectives

 After going through this unit, you will be able to:
 • what is spring AOP?
 • how AOP different from OOPS
 • terminology and concepts of AOP with example and advantages and

disadvantages of spring AOP, types of advices.
• Introduction of AspectJ, spring boot AOP

7.1 Introduction

Aspect Oriented Programming (AOP) complements Object-Oriented Programming
(OOP) by providing another way of thinking about program structure. The key unit
of modularity in OOPis the class, whereas in AOP the unit of modularity is the
aspect. Aspect Oriented Pro-gramming AspectJ integrated with Spring AOP
provides very powerful mechanisms for stronger enforcement of security.Aspect-
oriented programming (AOP) allows weaving a security aspect into an application
providing additional security functionality or introducing completely new security
mechanisms.Implementation of security with AOP is a flexible method to develop
sepa-rated, extensible and reusable pieces of code called aspects.In this
comparative study paper, we argue that Spring AOP pro-vides stronger
enforcement of security than AspectJ

mu
no
tes
.in

93

Chapter 7: Spring and Aop

7.2 An Overview

7.2. 1. What is Spring AOP (Aspect Oriented Programming) and about AspectJ?
Aspect-oriented programming (AOP) is one of the major components of the Spring
Framework. The Spring AOP helps in breaking down the logic of the program into
several distinct parts called as concerns. Cross-cutting concerns is the functions
which span multiple points of an application.

The cross-cutting concerns help in increasing the modularity and separate it from
the business logic of an application. Also, a cross-cutting is a concern that affects
the whole application and it should be centralized in one location in code as
possible such as authentication, transaction management, logging etc.

Below diagram shows how the concerns like logging, security, and transaction
management are cutting across different layer here:

�

Examples of cross-cutting concerns
AOP is a complement of OOP (Object Oriented Programming) and they can be
used together to write powerful applications because both provide different ways
of structuring your code. OOP is focused on making everything an object, while
AOP introduces the aspect, which is a special type of object that injects and wraps
its behavior to complement the behavior of other objects.

Examples of cross-cutting concerns:
• Logging
• Security
• Transaction management
• Auditing,

mu
no
tes
.in

94

 ADVANCE JAVA

• Caching
• Internationalization
• Error detection and correction
• Memory management
• Performance monitoring
• Synchronization

We can implement Spring Framework AOP in pure Java, it doesn’t require to the
special compilation process. It is the best choice for use in a J2EE web container
or application server because it doesn’t require to control the class loader hierarchy.

I. Need for Spring AOP
The Spring AOP provides the pluggable way of dynamically adding the additional
concern before, after or around the actual logic.

Consider there are 10 methods in the class as defined below:

class A{
public void m1(){...}
public void m2(){...}
public void m3(){...}
public void m4(){...}
public void m5(){...}
public void n1(){...}
public void n2(){...}
public void p1(){...}
public void p2(){...}
public void p3(){...}
}

These are the 5 methods that start from m while 2 methods start from n and 3
methods starting from p.

• The Scenario: You have to maintain the log and send the notification after
calling methods starting from m.

• A problem without using the AOP: You can call methods which maintain
logs and sends the notification from the methods starting with m. For that,
you need to write code for all the 5 methods.

• The solution with Aspect Oriented Programming: You don’t have to call
methods from the method. You can define additional concerns like
maintaining a log, sending notification etc. as a method of a class.

mu
no
tes
.in

95

Chapter 7: Spring and Aop

II. Where to use Spring Aspect Oriented Programming

Some of the cases where AOP is frequently used: To provide declarative enterprise
services. For example, as declarative transaction management. It allows users for
implementing custom aspects

* About AspectJ
The important aspect of Spring is the Aspect-Oriented Programming
(AOP) framework. As we all know, the key unit of modularity in OOP(Object
Oriented Programming) is the class, similarly, in AOP the unit of modularity is the
aspect. Aspects enable the modularization of concerns such as transaction
management that cut across multiple types and objects. To implement these
concerns, AspectJ comes into the picture. AspectJ, a compatible extension to the
Java programming language, is one implementation of AOP. It has grown into a
complete and popular AOP framework. Since AspectJ annotations are supported
by more and more AOP frameworks, AspectJ-style aspects are more likely to be
reused in other AOP frameworks that support AspectJ.

AspectJ is an original library that provided components for creating aspects is
named AspectJ. It was developed by the Xerox PARC company and released in
1995. It defined a standard for AOP because of its simplicity and usability. The
language syntax used to define aspects was similar to Java and allowed developers
to define special constructs called aspects. The aspects developed in AspectJ are
processed at compile time, so they directly affect the generated bytecode. Read
more about AspectJ at https://eclipse.org/aspectj/

7.2.2 Concept and Terminology used in AOP

mu
no
tes
.in

96

 ADVANCE JAVA

• Aspect: A modularization of a concern that cuts across multiple objects.

 • Join point: A point during the execution of a proͲ gram, such as the execution
of a method or the handling of an exception. In Spring AOP, a join point
always represents a method execution. Join point information is available in
advice bodies by declaring org.aspectj.lang.JoinPoint parameter type

 • Advice: Action taken by an aspect at a particular join point. Different types
RI� DGYLFH� LQFOXGH� advice. Many AOP ފDIWHUފ and ފEHIRUHފ ފ�DURXQGފ
frameworks, including Spring, model an advice as an interceptor,
PDLQWDLQLQJ�D�FKDLQ�RI�LQWHUFHSWRUV�³DURXQGފ the join point.

• Pointcut: A predicate that matches join points. Advice is associated with a
pointcut expression and runs at any join point matched by the pointͲ cut (for
example, the execution of a method with a certain name).The concept of join
points as matched by pointcut expressions is central to AOP.Spring uses the
AspectJ pointcut language by default.

 • Introduction: Also known as an interͲtype declaration.Declaring additional
methods or fields on behalf of a type. Spring AOP allows introducing new
interfaces and a corresponding implementa tion to any proxied object.

 • Target object: Object being advised by one or more aspects. Also referred
to as the advised obͲ ject. Since Spring AOP is implemented using runͲ time
proxies, this object will always be a proxied object.

 • Weaving: Linking aspects with other application types or objects to create
an advised object. This can be done at compile time (using the AspectJ
compiler, for example), load time, or at runtime. Spring AOP, like other pure
Java AOP frameͲ works, performs weaving at runtime.

• Proxy: It is used to implement aspect contracts, created by AOP framework.
It will be a JDK dynamic proxy or CGLIB proxy in spring framework.

 Above AOP terminology is not very inherent so I will explain with creating an
example application(Spring AOP + Aspectj) and then relate the terminology with
usage in the example.

Create a spring boot application with spring AOP.

Note : “Spring Boot is a project that is built on the top of the Spring
Framework. It provides an easier and faster way to set up, configure, and run
both simple and web-based applications”.

There are many ways to create a Spring Boot application. These are following:

>> Create Spring Boot Project With Spring Initializer

>> Create Spring Boot Project in Spring Tool Suite [STS]

mu
no
tes
.in

97

Chapter 7: Spring and Aop

� first, we need Maven Dependencies. In actual, you need to create a maven
project and add all the dependencies. If you wish to learn how to configure
Spring Framework you can refer to this Spring Framework Tutorial

� To create a Maven Project, install Eclipse for JEE developers and follow
these steps.

� Click on File -> New -> Other-> Maven Project -> Next-> Choose maven-
archetype-quickstart-> Specify GroupID -> Artifact ID -> Package name
and then click on finish.

� Once you create a Maven Project, next thing that you have to do is to add
maven dependencies in the pom.xml file.

� Your pom.xml file should consist of the below-mentioned dependencies for
Aspect Oriented Programming.

Add Spring AOP starter to maven project pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>springboot2</groupId>
 <artifactId>springboot2-springaop-example</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>springboot2-springaop-example</name>
 <description>Demo project for Spring Boot</description>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.1.4.RELEASE</version>
 <relativePath />
 <!-- lookup parent from repository -->
 </parent>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-
8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 </properties>

mu
no
tes
.in

98

 ADVANCE JAVA

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-aop</artifactId>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

Employee.java

Create a simple Employee POJO class (You can use it as JPA entity for database
operations):

public class Employee {
 private long id;
 private String firstName;
 private String lastName;
 private String emailId;
 public Employee() {
 }
 public Employee(long id, String firstName, String lastName, String emailId) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.emailId = emailId;
 }
 public long getId() {
 return id;

mu
no
tes
.in

99

Chapter 7: Spring and Aop

 }
 public void setId(long id) {
 this.id = id;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getEmailId() {
 return emailId;
 }
 public void setEmailId(String emailId) {
 this.emailId = emailId;
 }
 @Override
 public String toString() {
 return "Employee [id=" + id + ", firstName=" + firstName + ", lastName=" +
lastName + ", emailId=" + emailId +
 "]";
 }
}

EmployeeService.java

To keep it simple, I will create an EmployeeService and manage in-memory
objects:

mu
no
tes
.in

100

 ADVANCE JAVA

import java.util.ArrayList;
import java.util.List;
import org.springframework.stereotype.Service;
/**
 * Employee Service
 *
 *
 */
@Service
public class EmployeeService {
 private List < Employee > employees = new ArrayList < > ();
 public List < Employee > getAllEmployees() {
 System.out.println("Method getAllEmployees() called");
 return employees;
 }
 public Employee getEmployeeById(Long employeeId) {
 System.out.println("Method getEmployeeById() called");
 for (Employee employee: employees) {
 if (employee.getId() == Long.valueOf(employeeId)) {
 return employee;
 }
 }
 return null;
 }
 public void addEmployee(Employee employee) {
 System.out.println("Method addEmployee() called");
 employees.add(employee);
 }
 public void updateEmployee(Employee employeeDetails) {
 System.out.println("Method updateEmployee() called");
 for (Employee employee: employees) {
 if (employee.getId() == Long.valueOf(employeeDetails.getId())) {
 employees.remove(employee);
 employees.add(employeeDetails);
 }

mu
no
tes
.in

101

Chapter 7: Spring and Aop

 }
 }
 public void deleteEmployee(Long employeeId) {
 System.out.println("Method deleteEmployee() called");
 for (Employee employee: employees) {
 if (employee.getId() == Long.valueOf(employeeId)) {
 employees.remove(employee);
 }
 }
 }
}

LoggingAspect.java

Now, let's create a LogginAspect class:

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;
/**
 * Aspect for logging execution.
 *
 *
 */
@Aspect
@Component
public class LoggingAspect {
 private final Logger LOGGER = LoggerFactory.getLogger(this.getClass());
 @Before("execution(*springboot2.springaop.service.EmployeeService.*(..))")
 public void logBeforeAllMethods(JoinPoint joinPoint) {
 LOGGER.debug("****LoggingAspect.logBeforeAllMethods() : " +
joinPoint.getSignature().getName());
 }

mu
no
tes
.in

102

 ADVANCE JAVA

@Before("execution(*springboot2.springaop.service.EmployeeService.getEmplo
yeeById(..))")
 public void logBeforeGetEmployee(JoinPoint joinPoint) {
 LOGGER.debug("****LoggingAspect.logBeforeGetEmployee() : " +
joinPoint.getSignature().getName());
 }

@Before("execution(*springboot2.springaop.service.EmployeeService.createEm
ployee(..))")
 public void logBeforeAddEmployee(JoinPoint joinPoint) {
 LOGGER.debug("****LoggingAspect.logBeforeCreateEmployee() : " +
joinPoint.getSignature().getName());
 }

 @After("execution(* springboot2.springaop.service.EmployeeService.*(..))")
 public void logAfterAllMethods(JoinPoint joinPoint)
 {
 LOGGER.debug("****LoggingAspect.logAfterAllMethods() : " +
joinPoint.getSignature().getName());
 }

 @After("execution(*
springboot2.springaop.service.EmployeeService.getEmployeeById(..))")
 public void logAfterGetEmployee(JoinPoint joinPoint)
 {
 LOGGER.debug("****LoggingAspect.logAfterGetEmployee() : " +
joinPoint.getSignature().getName());
 }

@After("execution(*springboot2.springaop.service.EmployeeService.addEmploy
ee(..))")
 public void logAfterAddEmployee(JoinPoint joinPoint)
 {
 LOGGER.debug("****LoggingAspect.logAfterCreateEmployee() : " +
joinPoint.getSignature().getName());
 }
}

mu
no
tes
.in

103

Chapter 7: Spring and Aop

Application.java

Now test the AOP configuration and other stuff with main() method:

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ApplicationContext;
import springboot2.springaop.model.Employee;
import springboot2.springaop.service.EmployeeService;
@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 ApplicationContext applicationContext =
SpringApplication.run(Application.class, args);
 EmployeeService employeeService =
applicationContext.getBean(EmployeeService.class);
 employeeService.addEmployee(new Employee(100L, "ramesh", "fadatare",
"ramesh@gmail.com"));
 employeeService.getEmployeeById(100L);
 employeeService.getAllEmployees();
 }
}

Output

�

mu
no
tes
.in

104

 ADVANCE JAVA

Let us understand AOP Concepts and Terminology with Above Example

Aspect
Aspect is modularization of a concern that cuts across multiple classes. Transaction
management is a good example of a crosscutting concern in enterprise Java
applications. In Spring AOP, aspects are implemented by using regular classes (the
schema-based approach) or regular classes annotated with the @Aspect annotation
(the @AspectJ style).
In our example, we have created a LoggingAspect using Java-based configuration.
To create an aspect, you need to apply @Aspect annotation on Spring component:

@Aspect
@Component
public class LoggingAspect {
 ...
}

Join point
Join point is a point during the execution of a program, such as the execution of a
method or the handling of an exception. In Spring AOP, a join point always
represents a method execution.

In our example, all the methods defined inside EmployeeService are joint points.

Advice

Advice is an action taken by an aspect at a particular join point.

In our
example, logBeforeAllMethods(), logBeforeGetEmployee(), logBeforeAddEmploy
ee(), logAfterAllMethods(), logAfterGetEmployee(),
and logAfterAddEmployee() methods are advices.

Pointcut

A Pointcut is a predicate that helps match an Advice to be applied by an Aspect at
a particular JoinPoint. The Advice is often associated with a Pointcut expression
and runs at any Joinpoint matched by the Pointcut.

In our example, the expressions passed in @Before and @After annotations are
pointcuts. For example:

@Before("execution(*springboot2.springaop.service.EmployeeService.*(..))")

@After("execution(* springboot2.springaop.service.EmployeeService.*(..))")

mu
no
tes
.in

105

Chapter 7: Spring and Aop

Target object
An object being advised by one or more aspects. Also referred to as the “advised
object”. Since Spring AOP is implemented by using runtime proxies, this object
is always a proxied object.

In our example, EmployeeService is advised object hence it is the target object.

AOP proxy

An object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy is
a JDK dynamic proxy or a CGLIB proxy.

In our example, a proxy object is created when we ask the bean reference
for EmployeeService class.

7.2.3 Advantages and disadvantages of spring AOP

Advantages of Spring AOP
1. AOP is non-invasive:

• Service or Domain classes get advice by the aspects (cross-cutting
concerns) without adding Spring AOP related classes or interfaces into
the service or domain classes.

• Allows the developers to concentrate on the business logic, instead of
the cross-cutting concerns.

2. AOP is implemented in pure Java:

• There is no need for a special compilation unit or special class loader

3. It uses Spring’s IOC container for dependency injection:

• Aspects can be configured as normal spring beans.

4. Like any other AOP framework, it weaves cross-cutting concerns into the
classes, without making a call to the cross-cutting concerns from those
classes.

5. Centralizes or modularizes the cross-cutting concerns:

• Easy to maintain and make changes to the aspects.

• Changes only need to be made in one place.

6. Provision to create aspects using schema-based (XML configuration) or
@AspectJ annotation based style.

7. Easy to configure.

mu
no
tes
.in

106

 ADVANCE JAVA

Disadvantages of Spring AOP

1. A small difficulty is debugging the AOP framework-based application code.

• Since the business classes are advised after the scene with aspects.

2. Since it uses proxy-based AOP, only method-level advising is supported; it
does not support field-level interception

• So join-points can be at method level not at field level in a class.

3. Only methods with public visibility will be advised:

• Methods with private, protected, or default visibility will not be
advised.

4. There's small runtime overhead, but its negotiable:

• The overhead is in nano-seconds.

5. Aspects cannot advise other Aspects - it's not possible to have aspects
as targets of advice from other aspects.

• Because once you mark one class as an aspect (either use XML or
annotation), Spring excludes it from being auto-proxied.

6. Local or internal method calls within an advised class don’t get intercepted
by proxy, so the advice method of the aspect does not get fired or invoked.

7. It is not for advising fine-grained objects (or domain objects)—it is best
suitable for coarse-grained objects due to performance.

7.2.4 Types of advices�
There are different types of advices:

• Before advice: Advice that executes before a join point, but which does not
have the ability to prevent execution flow proceeding to the join point (unless
it throws an exception).

Before advice is declared in an aspect using the @Before annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
@Aspect
public class BeforeExample {
 @Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
 public void doAccessCheck() {
 // ...
 }
}

mu
no
tes
.in

107

Chapter 7: Spring and Aop

• After returning advice: Advice to be executed after a join point completes
normally: for example, if a method returns without throwing an exception.

It is declared using the @AfterReturning annotation:

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.AfterReturning;

@Aspect

public class AfterReturningExample {

@AfterReturning("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")

 public void doAccessCheck() {

 // ...

 }
}

• After throwing advice: Advice to be executed if a method exits by throwing
an exception.

It is declared using the @AfterThrowing annotation:

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.AfterThrowing;

@Aspect

public class AfterThrowingExample {

@AfterThrowing("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")

 public void doRecoveryActions() {

 // ...

 }

}

mu
no
tes
.in

108

 ADVANCE JAVA

• After (finally) advice: Advice to be executed regardless of the means by
which a join point exits (normal or exceptional return).

It is declared using the @After annotation. After advice must be prepared to handle
both normal and exception return conditions. It is typically used for releasing
resources, etc.

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.After;

@Aspect

public class AfterFinallyExample {

 @After("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")

 public void doReleaseLock() {

 // ...

 }

}

• Around advice: Advice that surrounds a join point such as a method
invocation. This is the most powerful kind of advice. Around advice can
perform custom behavior before and after the method invocation. It is also
responsible for choosing whether to proceed to the join point or to shortcut
the advised method execution by returning its own return value or throwing
an exception.

Example:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.ProceedingJoinPoint;
@Aspect
public class AroundExample {
 @Around("com.xyz.myapp.SystemArchitecture.businessService()")
 public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
 // start stopwatch
 Object retVal = pjp.proceed();
 // stop stopwatch
 return retVal;
 }
}

mu
no
tes
.in

109

Chapter 7: Spring and Aop

 7.2.5 Definition of Pointcut Designator, Pointcut Annotations

• Pointcut Designator: A pointcut expression starts with a pointcut
designator (PCD), which is a keyword telling Spring AOP what to match.
There are several pointcut designators, such as the execution of a method, a
type, method arguments, or annotations.

 execution: This is used to match method execution (join-points). This is a
primary designator, and is used most of the time while working with Spring
AOP.

 within: This designator has the limitation of matching of join-points within
certain types only. It's not as flexible as execution. For example, it's not
allowed to specify return types or method parameter mapping. If the patterns
with within are up to the Java package, it matches all methods of all classes
within that package. If the pattern is pointing to a specific class, then this
designator will cover all.

• Pointcut Annotations: Using annotations is more convenient than using
patterns. While patterns might be anything between a big cannon and a
scalpel the annotations are definitely a scalpel, by only getting the pointcut
that the developer has manually specified.

 @Aspect í�0DUN�D�FODVV�DV�D�FODVV�FRQWDLQing advice methods.

 @PointCut í�0DUN�D�IXQFWLRQ�DV�D�3RLQW&XW�

7.3 Summary

 In this Spring AOP chapter, you learned about the Aspect-oriented programming
in Spring Framework. You also saw the need for using Spring AOP, where to use
it. Along with that, you saw its terminologies ,advantages and disadvantages of
spring AOP the types of advice with help of examples, introduction of AspectJ,
spring boot . Still, you had a doubt go through references and bibliography

7.4 Exercise :-

Q 1. What is Spring AOP? What is its use
Q 2. What are the different implementations of Spring AOP ?
Q 3. Explain different AOP terminologies with the help of example?
Q 4. What are the different types of Spring Advice ?
Q 5. What are the Spring AOP advantages and disadvantages?
Q 6. When to use Spring AOP?

mu
no
tes
.in

110

 ADVANCE JAVA

Q 7. What is Aspect in Spring AOP?
Q 8. How to declare a Spring AOP Aspect?
Q 9. What is Advice in Spring AOP?
Q 10. What are different Spring AOP Advice types?
Q 11. How to declare an Advice in Spring AOP?
Q 12. What is “execute” in Pointcut expression?
Q 13. What are other PointCut Designators?
Q 14. Define Pointcut designator and annotations with types

7.5 References:-

1. Kotrappa Sirbi, Prakash Jayanth Kulkarni Stronger Enforcement
of Security Using AOP & Spring AOP

2. Ravi Kumar, Dalip and Munishwar Rai A Comparative Study of
AOP Approaches:AspectJ, Spring AOP, JBoss AOP

3. https://www.javaguides.net/2019/05/understanding-spring-aop-concepts-and-
terminology-with-example.html

4. Spring https://docs.spring.io/spring-
framework/docs/2.5.x/reference/aop.html

5. journaldev https://www.journaldev.com/2583/spring-aop-example-tutorial-
aspect-advice- pointcut-joinpoint-annotations

6. Edureka https://www.edureka.co/blog/spring-aop-tutorial/

7. Dzone https://dzone.com/

8. Data flair traning https://data-flair.training/blogs/spring-aop-tutorial/

9. Javatpoint https://www.javatpoint.com/spring-boot-aop

10. How to do java https://howtodoinjava.com/spring-aop-tutorial/

11. Tutorialspoint
https://www.tutorialspoint.com/springaop/springaop_implementations.htm

12.�� Mkyong�https://mkyong.com/spring/spring-aop-examples-advice/

13. Baeldung https://www.baeldung.com/spring-aop

14. Javaguides� https://www.javaguides.net/2019/04/create-spring-boot-project-
with-spring-initializer.html

������

mu
no
tes
.in

111

Chapter 8: JDBC Data Access with Spring

Module 2

8
JDBC DATA ACCESS WITH SPRING

Unit Structure

8.0 Objectives
8.1 Introduction
 8.1.1 Type 1 driver- JDBC-ODBC Bridge
 8.1.2 Type 2 driver – Native-API driver
 8.1.3 Type 3 driver – Network-Protocol driver (middleware driver)
 8.1.4 Type 4 driver – Database-Protocol driver/Thin Driver
 (Pure Java driver)
 8.1.5 Type 5: highly-functional drivers with superior performance
8.2 Managing JDBC Connection
8.3 Configuring Data Source to obtain JDBC Connection
8.4 Data Access operations with JDBC Template and Spring
8.5 RDBMS Operation classes
8.6 Modeling JDBC operations as Java objects
 8.6.1 Java Database Connectivity with MySQL
8.7 Conclusion
8.8 List of references

8.0 OBJECTIVES

JDBC stands for Java Database Connectivity. Driver play role like to move an
object from one place to another. Vehicle drivers are playing role to move vehicle
as well objects whose included inside the vehicles from one place to another. JDBC
APIs are used to access virtually any kind of data source from anywhere. JDBC is
one type of API which connect and execute the query with the database. JDBC is
part of JAVA SE (Java Standard Edition). JDBC API uses JDBC drivers to connect
with different types of databases.

mu
no
tes
.in

112

 ADVANCE JAVA

8.1 INTRODUCTION

JDBC Drivers are used to manipulate data from database with the help of java
platform. JDBC perform all types of SQL operations with java. JDBC have its five
different types of drivers as follows:

a. JDBC-ODBC Bridge
b. Native Driver
c. Network Protocol Driver
d. Thin Driver
e. Highly-Functional Driver

10.1.1 Type 1 driver- JDBC-ODBC Bridge:

• The JDBC type 1 driver, also known as the JDBC-ODBC bridge, is a
database driver implementation that employs the ODBC driver to connect to
the database. The driver converts JDBC method calls into ODBC function
calls.

• The driver is platform-dependent as it makes use of ODBC which in turn
depends on native libraries of the underlying operating system the JVM is
running upon. Also, use of this driver leads to other installation dependencies;
for example, ODBC must be installed on the computer having the driver and
the database must support an ODBC driver. The use of this driver is
discouraged if the alternative of a pure-Java driver is available. The other
implication is that any application using a type 1 driver is non-portable given
the binding between the driver and platform. This technology isn’t suitable
for a high-transaction environment. Type 1 drivers also don’t support the
complete Java command set and are limited by the functionality of the ODBC
driver.

• Sun(now Oracle) provided a JDBC-ODBC Bridge
driver: sun.jdbc.odbc.JdbcOdbcDriver . This driver is native code and not
Java, and is closed source. Sun’s/Oracle’s JDBC-ODBC Bridge was removed
in Java 8 (other vendors’ are available).

• If a driver has been written so that loading it causes an instance to be created
and also calls DriverManager.registerDriver with that instance as the
parameter, then it is in the DriverManager’s list of drivers and available for
creating a connection.

mu
no
tes
.in

113

Chapter 8: JDBC Data Access with Spring

Figure 8.1 shows architecture of Type 1 Driver (JDBC-ODBC Bridge)

Advantages

• Almost any database for which an ODBC driver is installed can be
accessed, and data can be retrieved.

Disadvantages

Performance overhead since the calls have to go through the JDBC(java database
connectivity) bridge to the ODBC(open database connectivity) driver, then to the
native database connectivity interface (thus may be slower than other types of
drivers).

• The ODBC driver needs to be installed on the client machine.

• Not suitable for applets, because the ODBC driver needs to be installed on
the client.

• Specific ODBC drivers are not always available on all platforms; hence,
portability of this driver is limited.

• No support from JDK 1.8 (Java 8).

mu
no
tes
.in

114

 ADVANCE JAVA

10.1.2 Type 2 driver – Native-API driver:

• The JDBC type 2 driver, also known as the Native-API driver, is a database
driver implementation that uses the client-side libraries of the database. The
driver converts JDBC method calls into native calls of the database API. For
example: Oracle OCI driver is a type 2 driver.

Figure 8.2 shows architecture of Type 2 Driver (Native API Driver)

Advantages

• As there is no implementation of JDBC-ODBC bridge, it may be
considerably faster than a Type 1 driver.

Disadvantages

• The vendor client library needs to be installed on the client machine.

• Not all databases have a client-side library.

• This driver is platform dependent.

• This driver supports all Java applications except applets.

10.1.3 Type 3 driver – Network-Protocol driver (middleware driver):

• The JDBC type 3 driver, also known as the Pure Java driver for database
middleware, is a database driver implementation which makes use of
a middle tier between the calling program and the database. The middle-tier

mu
no
tes
.in

115

Chapter 8: JDBC Data Access with Spring

(application server) converts JDBC calls directly or indirectly into a vendor-
specific database protocol.

• This differs from the type 4 driver in that the protocol conversion logic
resides not at the client, but in the middle-tier. Like type 4 drivers, the type 3
driver is written entirely in Java.

• The same client-side JDBC driver may be used for multiple databases. It
depends on the number of databases the middleware has been configured to
support. The type 3 driver is platform-independent as the platform-related
differences are taken care of by the middleware. Also, making use of the
middleware provides additional advantages of security and firewall access.

Figure 8.3 shows architecture of Type 3 Driver (Network-Protocol Driver)

Functions:

• Sends JDBC API calls to a middle-tier net server that translates the calls into
the DBMS-specific network protocol. The translated calls are then sent to a
particular DBMS.

• Follows a three-tier communication approach.

mu
no
tes
.in

116

 ADVANCE JAVA

• Can interface to multiple databases – Not vendor specific.

• The JDBC Client driver written in java, communicates with a middleware-
net-server using a database independent protocol, and then this net server
translates this request into database commands for that database.

• Thus, the client driver to middleware communication is database
independent.

Advantages:

• Since the communication between client and the middleware server is
database independent, there is no need for the database vendor library on the
client. The client need not be changed for a new database.

• The middleware server (which can be a full-fledged J2EE Application server)
can provide typical middleware services like caching (of connections, query
results, etc.), load balancing, logging, and auditing.

• A single driver can handle any database, provided the middleware supports
it.

• E.g.: IDA Server

Disadvantages:

• Requires database-specific coding to be done in the middle tier.

• The middle ware layer added may result in additional latency, but is typically
overcome by using better middle ware services.

8.1.4 Type 4 driver – Database-Protocol driver/Thin Driver (Pure Java
driver):

• The JDBC type 4 driver, also known as the Direct to Database Pure Java
Driver, is a database driver implementation that converts JDBC calls directly
into a vendor-specific database protocol.

• Written completely in Java, type 4 drivers are thus platform independent.
They install inside the Java Virtual Machine of the client. This provides
better performance than the type 1 and type 2 drivers as it does not have the
overhead of conversion of calls into ODBC or database API calls. Unlike the
type 3 drivers, it does not need associated software to work.

• As the database protocol is vendor specific, the JDBC client requires separate
drivers, usually vendor supplied, to connect to different types of databases.

mu
no
tes
.in

117

Chapter 8: JDBC Data Access with Spring

Figure 8.1.4 shows architecture of Type 4 Driver (Pure Java Driver)

Advantages:

• Completely implemented in Java to achieve platform independence.

• These drivers don’t translate the requests into an intermediary format (such
as ODBC).

• The client application connects directly to the database server. No translation
or middleware layers are used, improving performance.

• The JVM can manage all aspects of the application-to-database connection;
this can facilitate debugging.

Disadvantages:

• Drivers are database specific, as different database vendors use widely
different (and usually proprietary) network protocols.

8.1.5 Type 5: highly-functional drivers with superior performance:

• Type 5 JDBC drivers (such as DataDirect JDBC drivers) offer advanced
functionality and superior performance over other driver types.

• Any JDBC drivers that are fundamentally based on the Type 4 architecture
yet are designed to address all or most of these limitations represent a drastic
departure from the norm. In fact, such drivers could be classified as an

mu
no
tes
.in

118

 ADVANCE JAVA

entirely new type. Call them what you will, but for the purposes of this
discussion, they are “Type 5.”

• Not all developers truly understand the role JDBC middleware plays in
application-to-data operations, beyond simply enabling connectivity. In fact,
with the increased abstraction of object modeling and higher-level
applications, many a developer views JDBC drivers as vital but “dumb” pipes
rather than critical cogs that not only drive the success of an application stack
but also enhance it.

• For this reason, some in the developer community may take a “so-what?”
attitude toward the notion of a JDBC Type 5 driver. They may even reject the
whole notion of a data connectivity driver as a component where innovations
such as application failover for high availability ought to take place. Such
innovations, they could reason, are more appropriately handled at the higher
application level. This reasoning, however, is very debatable.

¾ The Limits of previous driver (Type 4):

Among developers who are knowledgeable about the behind-the-scenes workings
of middleware data connectivity using JDBC drivers, the limitations of a Type 4
driver are generally undisputable. These include:

• The need to write and maintain code specific to each supported data source.
Even with modern framework-based object-relational mapping (ORM)
models, JDBC Type 4 drivers typically require the use of proprietary code to
support variant database features such as BLOBs and CLOBs, high
availability, and XA.

• Poor and/or inconsistent driver response times or data throughput
performance when the driver is deployed in certain runtime environments
(such as different JVMs) or with ORMs and application servers.

• The inability to tune or optimize critical applications, or the ability to do so
only with considerable application downtime.

• Poor virtual machine (VM) consolidation ratios due to inefficient runtime
CPU usage and high memory footprints.

• Deployment headaches such as having to deploy multiple JARs to support
different JVMs or database versions, or DLLs to support certain driver or
database functionality.

These limitations point to the following key trends and advances in the modern
Java environment as the sources of today’s Type 4 driver challenges:

mu
no
tes
.in

119

Chapter 8: JDBC Data Access with Spring

• Application support of multiple databases.

• Increased server virtualization and data center consolidation.

• Rapid adoption of ORM models such as Hibernate or app servers such as
Jboss that sit on top of JDBC drivers and permit no access to JDBC code.

¾ The Advantages of Type 5:

So, how would a Type 5 driver address all these limitations? Apart from the
superior client-side, single-tier, 100% Java architecture of Type 4 drivers, what
other characteristics would a Type 5 driver have?

• Unrestricted performance — The driver should be capable of delivering
maximized and consistent data throughput regardless of the runtime
environment or data-access model.

• Codeless enhancement — The driver should offer the ability to add,
configure, or tune features and functionality for any application without
requiring any changes to application code, regardless of environment or data-
access model. While this is, of course, pursuant to unrestricted performance,
it is also important for ensuring that new database or driver functionality is
available across all supported JVMs or hardware and can be accessed despite
the use of ORM or app server models that prevent access to the JDBC code,
which is required to enable such features and functionality. Comprehensive
driver-connection options are a way in which this could be accomplished.

• Resource efficiency — The use of application runtime CPU and memory
should be minimized, and should be tunable in the driver to fit specific
runtime environment parameters or limits. The consumption of such
resources by middleware data-access operations is often overlooked until it
adversely impacts server consolidation goals in virtualization initiatives.

• All-in-one deployment — A JDBC Type 5 driver should require a single
JAR file, regardless of Java environment or application requirements. It
should require no client libraries or external DLLs, regardless of the
deployment environment or features used by the application — including
bulk data loading, security, high availability, and XA features.

• Streamlined standard — A JDBC Type 5 driver ought to require no
proprietary extensions to the JDBC specification for any supported data
source. This would address the requirement, typical of most Type 4 drivers,
for proprietary code to support features such as BLOBs and CLOBs, high
availability, and XA.

mu
no
tes
.in

120

 ADVANCE JAVA

¾ While a formal committee approval of a new JDBC standard would be
preferable in the long run, the current limitations of Type 4 drivers frankly
have become too glaring and counterproductive to wait for that drawn-out
process. Organizations that rely on modern data-driven Java applications
need to be able to implement JDBC Type 5 drivers now.

¾ Suppose you could run eight VMs on a server instead of four by merely
tweaking some configuration settings in a JDBC driver. This is an entirely
plausible scenario where a Type 5 driver can enhance the overall usefulness
of the application stack and overall IT environment much more easily than
by any other available solution. Think of the application stack as a lever and
the enhancements as a fulcrum. The further back on the lever the fulcrum is
placed, the greater the leverage. This analogy applies to JDBC drivers at the
data-connectivity level — provided they are built to deliver the enhancements
discussed here, very simple and nonintrusive changes can have dramatic
impact on how the entire application stack performs.

10.2 MANAGING JDBC CONNECTION

Java Database Connectivity (JDBC) connections allow the Gateway to query
external databases and then use the query results during policy consumption.

¾ Java Database Connectivity with 5 Steps:

• Register the Driver class
• Create connection
• Create statement
• Execute queries
• Close connection

1) Register the driver class:

 The forName() method of Class class is used to register the driver class.
This method is used to dynamically load the driver class.

 Syntax of forName() method
 public static void forName(String className)throws

ClassNotFoundException
 Example to register the OracleDriver class
 Here, Java program is loading oracle driver to esteblish database

connection.
 Class.forName("oracle.jdbc.driver.OracleDriver");
2) Create the connection object:
 The getConnection() method of DriverManager class is used to establish

connection with the database.
 Syntax of getConnection() method

mu
no
tes
.in

121

Chapter 8: JDBC Data Access with Spring

1) public static Connection getConnection(String url)throws
SQLException

2) public static Connection getConnection(String url,String name,String
password)

 throws SQLException
 Example to establish connection with the Oracle database
 Connection con=DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1234:vs","system","password");
3) Create the Statement object:
 The createStatement() method of Connection interface is used to create

statement. The object of statement is responsible to execute queries with the
database.

 Syntax of createStatement() method
 public Statement createStatement()throws SQLException
 Example to create the statement object
 Statement stmt=con.createStatement();
4) Execute the query:
 The executeQuery() method of Statement interface is used to execute

queries to the database. This method returns the object of ResultSet that can
be used to get all the records of a table.

 Syntax of executeQuery() method
 public ResultSet executeQuery(String sql)throws SQLException
 Example to execute query
 ResultSet rs=stmt.executeQuery("select * from student");
 while(rs.next()){
 System.out.println(rs.getInt(1)+" "+rs.getString(2));
 }
5) Close the connection object:
 By closing connection object statement and ResultSet will be closed

automatically. The close() method of Connection interface is used to close
the connection.

 Syntax of close() method
 public void close()throws SQLException
 Example to close connection
 con.close();

mu
no
tes
.in

122

 ADVANCE JAVA

10.3 CONFIGURING DATA SOURCE TO OBTAIN JDBC
CONNECTION

To set up JDBC connectivity, you configure connection pools, Data Source objects
(always recommended, but optional in some cases), and MultiPools (optional) by
defining attributes in the Administration Console or, for dynamic connection pools,
in application code or at the command line.

¾ There are three types of transaction scenarios:

� Local transactions—non-distributed transactions

� Distributed transactions using an XA Driver—distributed transactions
with multiple participants that use two-phase commit

� Distributed transactions using a non-XA Driver—transactions with a
single resource manager and single database instance that emulate two-
phase commit

¾ You configure Data Source objects (DataSources and TxDataSources),
connection pools, and MultiPools according to the way transactions are
handled in your system. The following table summarizes how to configure
these objects for use in the three transaction scenarios:

Table Summary of JDBC Configuration Guidelines

Description/Object Local
Transactions

Distributed
Transactions

XA Driver

Distributed
Transactions

Non-XA Driver

JDBC driver � WebLogic
jDriver for Oracle
and Microsoft
SQL Server.

� Compliant
third-party
drivers.

� WebLogic
jDriver for
Oracle/XA.

� Compliant
third-party
drivers.

� WebLogic
jDriver for Oracle
and Microsoft SQL
Server

� Compliant
third-party drivers.

Data Source Data Source
object
recommended. (If
there is no Data

Requires Tx
Data Source.

Requires Tx Data
Source.

Select Emulate Two-
Phase Commit for
non-XA Driver

mu
no
tes
.in

123

Chapter 8: JDBC Data Access with Spring

Source, use the
JDBC API.)

(set enable two-phase
commit=true) if more
than one resource is
involved.
See Configuring
Non-XA JDBC
Drivers for
Distributed
Transactions.

Connection Pool Requires Data
Source object
when configuring
in the
Administration
Console.

Requires Tx
Data Source.

Requires Tx Data
Source.

MultiPool Connection Pool
and Data Source
required.

Not supported in
distributed
transactions.

Not supported in
distributed
transactions.

8.3.1 Following steps are representing Java Database Connectivity with
MySQL:

¾ To connect Java application with the MySQL database, we need to follow 5
following steps.

• In this example we are using MySql as the database. So we need to know
following informations for the mysql database:

• Driver class: The driver class for the mysql database is
com.mysql.jdbc.Driver.

• Connection URL: The connection URL for the mysql database is
jdbc:mysql://localhost:3306/idol where jdbc is the API, mysql is the
database, localhost is the server name on which mysql is running, we may
also use IP address, 3306 is the port number and idol is the database name.
We may use any database, in such case, we need to replace the idol with our
database name.

9 Username: The default username for the mysql database is root.

mu
no
tes
.in

124

 ADVANCE JAVA

9 Password: It is the password given by the user at the time of installing the
mysql database. In this example, we are going to use root as the password.

¾ Let's first create a table in the mysql database, but before creating table, we
need to create database first.

 create database idol;

 use idol;

 create table student(id int(10),name varchar(40),age int(3));

Code:
import java.sql.*;
class MysqlCon{
public static void main(String args[]){
try{
Class.forName("com.mysql.jdbc.Driver");
Connection con=DriverManager.getConnection(
"jdbc:mysql://localhost:3306/ idol ","root","root");
//here sonoo is database name, root is username and password
Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery("select * from student ");
while(rs.next())
System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));
con.close();
}catch(Exception e){ System.out.println(e);}
}
}
¾ To connect java application with the mysql database, mysqlconnector.jar

file is required to be loaded.

• download the jar file mysql-connector.jar

¾ Two ways to load the jar file:

• Paste the mysqlconnector.jar file in jre/lib/ext folder

¾ Set classpath

1) Paste the mysqlconnector.jar file in JRE/lib/ext folder:

 Download the mysqlconnector.jar file. Go to jre/lib/ext folder and
paste the jar file here.

2) Set classpath:

mu
no
tes
.in

125

Chapter 8: JDBC Data Access with Spring

¾ There are two ways to set the classpath:
• temporary
• permanent

¾ How to set the temporary classpath
• open command prompt and write:
 C:>set classpath=c:\folder\mysql-connector-java-5.0.8-bin.jar;.;

¾ How to set the permanent classpath
• Go to environment variable then click on new tab. In variable name write

classpath and in variable value paste the path to the mysqlconnector.jar file
by appending mysqlconnector.jar;.; as C:\folder\mysql-connector-java-
5.0.8-bin.jar;.;

10.4 DATA ACCESS OPERATIONS WITH JDBC TEMPLATE AND
SPRING

¾ To understand the concepts related to Spring JDBC framework with
JdbcTemplate class, let us write a simple example, which will implement all
the CRUD operations on the following Student table.

 CREATE TABLE Student(

 ID INT NOT NULL AUTO_INCREMENT,

 NAME VARCHAR(20) NOT NULL,

 AGE INT NOT NULL,

 PRIMARY KEY (ID));

Before proceeding, let us have a working Eclipse IDE in place and take the
following steps to create a Spring application –

Steps with Description:

1) Create a project with a name SpringExample and create a package
com.tutorialspoint under the src folder in the created project.

2) Add required Spring libraries using Add External JARs option as explained
in the Spring Hello World Example chapter.

3) Add Spring JDBC specific latest libraries mysql-connector-java.jar,
org.springframework.jdbc.jar and org.springframework.transaction.jar in
the project. You can download required libraries if you do not have them
already.

mu
no
tes
.in

126

 ADVANCE JAVA

4) Create DAO interface StudentDAO and list down all the required methods.
Though it is not required and you can directly write StudentJDBCTemplate
class, but as a good practice, let’s do it.

5) Create other required Java classes Student, StudentMapper,
StudentJDBCTemplate and MainApp under the com.tutorialspoint package.

6) Make sure you already created Student table in TEST database. Also make
sure your MySQL server is working fine and you have read/write access on
the database using the give username and password.

7) Create Beans configuration file Beans.xml under the src folder.

8) The final step is to create the content of all the Java files and Bean
Configuration file and run the application as explained below.

Following is the content of the Data Access Object interface file
StudentDAO.java

package com.tutorialspoint;
import java.util.List;
import javax.sql.DataSource;
public interface StudentDAO {
 /**
 * This is the method to be used to initialize
 * database resources ie. Connection.
 */
 public void setDataSource(DataSource ds);
 /**
 * This is the method to be used to create
 * a record in the Student table.
 */
 public void create(String name, Integer age);
 /**
 * This is the method to be used to list down
 * a record from the Student table corresponding
 * to a passed student id.
 */
 public Student getStudent(Integer id);
 /**
 * This is the method to be used to list down

mu
no
tes
.in

127

Chapter 8: JDBC Data Access with Spring

 * all the records from the Student table.
 */
 public List<Student> listStudents();
 /**
 * This is the method to be used to delete
 * a record from the Student table corresponding
 * to a passed student id.
 */
 public void delete(Integer id);
 /**
 * This is the method to be used to update
 * a record into the Student table.
 */
 public void update(Integer id, Integer age);
}
Following is the content of the Student.java file
package com.tutorialspoint;
public class Student {
 private Integer age;
 private String name;
 private Integer id;
 public void setAge(Integer age) {
 this.age = age;
 }
 public Integer getAge() {
 return age;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public Integer getId() {

mu
no
tes
.in

128

 ADVANCE JAVA

 return id;
 }
}
Following is the content of the StudentMapper.java file
package com.tutorialspoint;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;
public class StudentMapper implements RowMapper<Student> {
public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setId(rs.getInt(“id”));
 student.setName(rs.getString(“name”));
 student.setAge(rs.getInt(“age”));
 return student;
 }
}
Following is the implementation class file StudentJDBCTemplate.java for the
defined StufentDAO
interface StudentDAO.
Package com.tutorialspoint;
import java.util.List;
import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;
public class StudentJDBCTemplate implements StudentDAO {
private DataSource dataSource;
 private JdbcTemplate jdbcTemplateObject;
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.jdbcTemplateObject = new JdbcTemplate(dataSource);
 }
 public void create(String name, Integer age) {
 String SQL = “insert into Student (name, age) values (?, ?)”;
 jdbcTemplateObject.update(SQL, name, age);
 System.out.println(“Created Record Name = “ + name + “ Age = “ + age);
 return;
 }

mu
no
tes
.in

129

Chapter 8: JDBC Data Access with Spring

 public Student getStudent(Integer id) {
 String SQL = “select * from Student where id = ?”;
 Student student = jdbcTemplateObject.queryForObject(SQL,
 new Object[]{id}, new StudentMapper());
 return student;
 }
 public List<Student> listStudents() {
 String SQL = “select * from Student”;
 List <Student> students = jdbcTemplateObject.query(SQL, new
StudentMapper());
 return students;
 }
 public void delete(Integer id) {
 String SQL = “delete from Student where id = ?”;
 jdbcTemplateObject.update(SQL, id);
 System.out.println(“Deleted Record with ID = “ + id);
 return;
 }
 public void update(Integer id, Integer age){
 String SQL = “update Student set age = ? where id = ?”;
 jdbcTemplateObject.update(SQL, age, id);
 System.out.println(“Updated Record with ID = “ + id);
 return;
 }
}
Following is the content of the MainApp.java file
package com.tutorialspoint;
import java.util.List;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.tutorialspoint.StudentJDBCTemplate;
public class MainApp {
public static void main(String[] args) {
 ApplicationContext context = new
ClassPathXmlApplicationContext(“Beans.xml”);
 StudentJDBCTemplate studentJDBCTemplate =
(StudentJDBCTemplate)context.getBean(“studentJDBCTemplate”);

mu
no
tes
.in

130

 ADVANCE JAVA

 System.out.println(“------Records Creation--------");
 studentJDBCTemplate.create(“Virat”, 33);
 studentJDBCTemplate.create(“Rohit”, 34);
 studentJDBCTemplate.create(“Hardik”, 29);
 System.out.println(“------Listing Multiple Records--------");
 List<Student> students = studentJDBCTemplate.listStudents();
 for (Student record : students) {
 System.out.print(“ID : “ + record.getId());
 System.out.print(“, Name : “ + record.getName());
 System.out.println(“, Age : “ + record.getAge());
 }
 System.out.println(“----Updating Record with ID = 2 -----");
 studentJDBCTemplate.update(2, 20);
 System.out.println(“----Listing Record with ID = 2 -----");
 Student student = studentJDBCTemplate.getStudent(2);
 System.out.print(“ID : “ + student.getId());
 System.out.print(“, Name : “ + student.getName());
 System.out.println(“, Age : “ + student.getAge());
 }
}
Following is the configuration file Beans.xml
<?xml version = “1.0” encoding = “UTF-8”?>
<beans xmlns = “http://www.springframework.org/schema/beans”
 xmlns:xsi = “http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation = “http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd “>
 <!–Initialization for data source Æ
 <bean id=”dataSource”
 class = “org.springframework.jdbc.datasource.DriverManagerDataSource”>
 <property name = “driverClassName” value = “com.mysql.jdbc.Driver”/>
 <property name = “url” value = “jdbc:mysql://localhost:3306/TEST”/>
 <property name = “username” value = “root”/>
 <property name = “password” value = “password”/>
 </bean>
 <!–Definition for studentJDBCTemplate bean Æ
 <bean id = “studentJDBCTemplate”
 class = “com.tutorialspoint.StudentJDBCTemplate”>

mu
no
tes
.in

131

Chapter 8: JDBC Data Access with Spring

 <property name = “dataSource” ref = “dataSource” />
 </bean>
</beans>
Once you are done creating the source and bean configuration files, let us run the
application. If everything is fine with your application, it will print the following
message –
------Records Creation--------
Created Record Name = Virat Age = 33
Created Record Name = Rohit Age = 34
Created Record Name = Hardik Age = 29
------Listing Multiple Records--------
ID : 1, Name : Virat, Age : 33
ID : 2, Name : Rohit, Age : 34
ID : 3, Name : Hardik, Age : 29
----Updating Record with ID = 2 -----
Updated Record with ID = 1
----Listing Record with ID = 1 -----
ID : 1, Name : Virat, Age : 34
You can try and delete the operation yourself, which we have not used in the
example, but now you have one working application based on Spring JDBC
framework, which you can extend to add sophisticated functionality based on
your project requirements. There are other approaches to access the database
where you will use NamedParameterJdbcTemplate and SimpleJdbcTemplate
classes, so if you are interested in learning these classes then kindly check the
reference manual for Spring Framework.

8.5 RDBMS OPERATION CLASSES

¾ RDBMS stands for relational database management system.

¾ JdbcTemplate is ideal for simple queries and updates, and when you need to
build SQL strings dynamically, but sometimes you might want a higher level
of abstraction, and a more object-oriented approach to database access. This
is provided by the org.springframework.jdbc.object package. It contains
the SqlQuery, SqlMappingQuery, SqlUpdate, and StoredProcedure classes
that are intended to be the central classes used by most Spring JDBC
applications. These classes are used together with a DataSource and
the SqlParameter class. Each of the RDBMS Operation classes is based on
the RDBMSOperation class and they all use a JdbcTemplate internally for
database access. As a user of these classes you will have to provide either an

mu
no
tes
.in

132

 ADVANCE JAVA

existing JdbcTemplate or you can provide a DataSource and the framework
code will create a JdbcTemplate when it needs one.

¾ Spring’s RDBMS Operation classes are parameterized operations that are
threadsafe once they are prepared and compiled. You can safely create a
single instance for each operation that you define. The preparation consists
of providing a datasource and defining all the parameters that are needed for
the operation. We just mentioned that they are threadsafe once they are
compiled. This means that we have to be a little bit careful when we create
these operations. The recommended method is to define the parameters and
compile them in the constructor. That way there will not be any risk for thread
conflicts.

8.6 MODELLING JDBC OPERATIONS AS JAVA OBJECT

The org.springframework.jdbc.object package contains classes that allow one to
access the database in a more object-oriented manner. By way of an example, one
can execute queries and get the results back as a list containing business objects
with the relational column data mapped to the properties of the business object.
One can also execute stored procedures and run update, delete and insert
statements.

8.6.1 SqlQuery:

• SqlQuery is a reusable, threadsafe class that encapsulates an SQL query.
Subclasses must implement the newRowMapper(..) method to provide a
RowMapper instance that can create one object per row obtained from
iterating over the ResultSet that is created during the execution of the query.
The SqlQuery class is rarely used directly since the MappingSqlQuery
subclass provides a much more convenient implementation for mapping rows
to Java classes. Other implementations that extend SqlQuery are
MappingSqlQueryWithParameters and UpdatableSqlQuery.

8.6.2 MappingSqlQuery:

• MappingSqlQuery is a reusable query in which concrete subclasses must
implement the abstract mapRow(..) method to convert each row of the
supplied ResultSet into an object of the type specified. Below is a brief
example of a custom query that maps the data from the t_actor relation to an
instance of the Actor class.

 Public class ActorMappingQuery extends MappingSqlQuery<Actor> {
 public ActorMappingQuery(DataSource ds) {
 super(ds, “select id, first_name, last_name from t_actor where id = ?”);

mu
no
tes
.in

133

Chapter 8: JDBC Data Access with Spring

 super.declareParameter(new SqlParameter(“id”, Types.INTEGER));
 compile();
 }
 @Override
 protected Actor mapRow(ResultSet rs, int rowNumber) throws
SQLException {
 Actor actor = new Actor();
 actor.setId(rs.getLong(“id”));
 actor.setFirstName(rs.getString(“first_name”));
 actor.setLastName(rs.getString(“last_name”));
 return actor;
 }
}
The class extends MappingSqlQuery parameterized with the Actor type. We
provide a constructor for this customer query that takes the DataSource as the
only parameter. In this constructor we call the constructor on the superclass
with the DataSource and the SQL that should be executed to retrieve the rows
for this query. This SQL will be used to create a PreparedStatement so it may
contain place holders for any parameters to be passed in during execution.
Each parameter must be declared using the declareParameter method passing
in an SqlParameter. The SqlParameter takes a name and the JDBC type as
defined in java.sql.Types. After all parameters have been defined we call the
compile() method so the statement can be prepared and later be executed.
This class is thread safe once it has been compiled, so as long as these classes
are created when the DAO is initialized they can be kept as instance variable
and be reused.

Private ActorMappingQuery actorMappingQuery;

@Autowired
public void setDataSource(DataSource dataSource) {
 this.actorMappingQuery = new ActorMappingQuery(dataSource);
}
public Customer getCustomer(Long id) {
return actorMappingQuery.findObject(id);
}
The method in this example retrieves the customer with the id that is passed
in as the only parameter. Since we only want one object returned we simply
call the convenience method findObject with the id as parameter. If we
instead had a query the returned a list of objects and took additional

mu
no
tes
.in

134

 ADVANCE JAVA

parameters then we would use one of the execute methods that takes an array
of parameter values passed in as varargs.

Public List<Actor> searchForActors(int age, String namePattern) {
 List<Actor> actors = actorSearchMappingQuery.execute(age,
namePattern);
 return actors;
}

8.6.3 SqlUpdate:

• The SqlUpdate class encapsulates an SQL update. Like a query, an update
object is reusable, and like all RdbmsOperation classes, an update can have
parameters and is defined in SQL. This class provides a number of update(..)
methods analogous to the execute(..) methods of query objects. This class is
concrete. Although it can be subclassed (for example to add a custom update
method – like in this example where we call it execute) it can easily be
parameterized by setting SQL and declaring parameters.

Import java.sql.Types;
import javax.sql.DataSource;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlUpdate;
public class UpdateCreditRating extends SqlUpdate {
public UpdateCreditRating(DataSource ds) {
 setDataSource(ds);
 setSql(“update customer set credit_rating = ? where id = ?”);
 declareParameter(new SqlParameter(“creditRating”,
Types.NUMERIC));
 declareParameter(new SqlParameter(“id”, Types.NUMERIC));
 compile();
 }
 /**
 * @param id for the Customer to be updated
 * @param rating the new value for credit rating
 * @return number of rows updated
 */
 public int execute(int id, int rating) {
 return update(rating, id);
 }
}

8.6.4 StoredProcedure:

mu
no
tes
.in

135

Chapter 8: JDBC Data Access with Spring

• The StoredProcedure class is a superclass for object abstractions of RDBMS
stored procedures. This class is abstract, and its various execute(..) methods
have protected access, preventing use other than through a subclass that
offers tighter typing.

• The inherited sql property will be the name of the stored procedure in the
RDBMS.

• To define a parameter to be used for the StoredProcedure class, you use an
SqlParameter or one of its subclasses. You must specify the parameter name
and SQL type in the constructor. The SQL type is specified using the
java.sql.Types constants. We have already seen declarations like:

 new SqlParameter(“in_id”, Types.NUMERIC),

 new SqlOutParameter(“out_first_name”, Types.VARCHAR),

• The first line with the SqlParameter declares an in parameter. In parameters
can be used for both stored procedure calls and for queries using the SqlQuery
and its subclasses covered in the following section.

• The second line with the SqlOutParameter declares an out parameter to be
used in the stored procedure call. There is also an SqlInOutParameter for
inout parameters, parameters that provide an in value to the procedure and
that also return a value

• In addition to the name and the SQL type you can specify additional options.
For in parameters you can specify a scale for numeric data or a type name for
custom database types. For out parameters you can provide a RowMapper to
handle mapping of rows returned from a REF cursor. Another option is to
specify an SqlReturnType that provides and opportunity to define customized
handling of the return values.

• Here is an example of a simple DAO that uses a StoredProcedure to call a
function, sysdate(), that comes with any Oracle database. To use the stored
procedure functionality you have to create a class that extends
StoredProcedure. In this example the StoredProcedure class is an inner class,
but if you need to reuse the StoredProcedure you would declare it as a top-
level class. There are no input parameters in this example, but there is an
output parameter that is declared as a date type using the class
SqlOutParameter. The execute() method executes the procedure and extracts
the returned date from the results Map. The results Map has an entry for each
declared output parameter, in this case only one, using the parameter name
as the key.

mu
no
tes
.in

136

 ADVANCE JAVA

Import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.sql.DataSource;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;
public class StoredProcedureDao {
 private GetSysdateProcedure getSysdate;
 @Autowired
 public void init(DataSource dataSource) {
 this.getSysdate = new GetSysdateProcedure(dataSource);
 }
 public Date getSysdate() {
 return getSysdate.execute();
 }
 private class GetSysdateProcedure extends StoredProcedure {
 private static final String SQL = “sysdate”;
 public GetSysdateProcedure(DataSource dataSource) {
 setDataSource(dataSource);
 setFunction(true);
 setSql(SQL);
 declareParameter(new SqlOutParameter(“date”, Types.DATE));
 compile();
 }
 public Date execute() {
 // the ‘sysdate’ sproc has no input parameters, so an empty Map is
supplied…
 Map<String, Object> results = execute(new HashMap<String,
Object>());
 Date sysdate = (Date) results.get(“date”);
 return sysdate;
 }
 }

mu
no
tes
.in

137

Chapter 8: JDBC Data Access with Spring

}
Below is an example of a StoredProcedure that has two output parameters
(in this case Oracle REF cursors).

Import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;
import javax.sql.DataSource;
import java.util.HashMap;
import java.util.Map;
public class TitlesAndGenresStoredProcedure extends StoredProcedure {
private static final String SPROC_NAME = “AllTitlesAndGenres”;
public TitlesAndGenresStoredProcedure(DataSource dataSource) {
 super(dataSource, SPROC_NAME);
 declareParameter(new SqlOutParameter(“titles”,
OracleTypes.CURSOR, new TitleMapper()));
 declareParameter(new SqlOutParameter(“genres”,
OracleTypes.CURSOR, new GenreMapper()));
 compile();
 }
 public Map<String, Object> execute() {
 // again, this sproc has no input parameters, so an empty Map is
supplied
 return super.execute(new HashMap<String, Object>());
 }
}

• Notice how the overloaded variants of the declareParameter(..) method that
have been used in the TitlesAndGenresStoredProcedure constructor are
passed RowMapper implementation instances; this is a very convenient and
powerful way to reuse existing functionality. (The code for the two
RowMapper implementations is provided below in the interest of
completeness.)

• First the TitleMapper class, which simply maps a ResultSet to a Title
domain object for each row in the supplied ResultSet.

Import org.springframework.jdbc.core.RowMapper;

import java.sql.ResultSet;

mu
no
tes
.in

138

 ADVANCE JAVA

import java.sql.SQLException;
import com.foo.domain.Title;
public final class TitleMapper implements RowMapper<Title> {
public Title mapRow(ResultSet rs, int rowNum) throws SQLException {
 Title title = new Title();
 title.setId(rs.getLong(“id”));
 title.setName(rs.getString(“name”));
 return title;
 }
}
Second, the GenreMapper class, which again simply maps a ResultSet to a
Genre domain object for each row in the supplied ResultSet.
Import org.springframework.jdbc.core.RowMapper;
import java.sql.ResultSet;
import java.sql.SQLException;
import com.foo.domain.Genre;
public final class GenreMapper implements RowMapper<Genre> {
public Genre mapRow(ResultSet rs, int rowNum) throws SQLException {
return new Genre(rs.getString(“name”));
 }
}

• If you need to pass parameters to a stored procedure (that is the stored
procedure has been declared as having one or more input parameters in its
definition in the RDBMS), you should code a strongly typed execute(..)
method which would delegate to the superclass’ (untyped) execute(Map
parameters) (which has protected access); for example:

import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.StoredProcedure;
import javax.sql.DataSource;
import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
public class TitlesAfterDateStoredProcedure extends StoredProcedure {
private static final String SPROC_NAME = “TitlesAfterDate”;
private static final String CUTOFF_DATE_PARAM = “cutoffDate”;

mu
no
tes
.in

139

Chapter 8: JDBC Data Access with Spring

public TitlesAfterDateStoredProcedure(DataSource dataSource) {
 super(dataSource, SPROC_NAME);
 declareParameter(new SqlParameter(CUTOFF_DATE_PARAM,
Types.DATE);
 declareParameter(new SqlOutParameter(“titles”,
OracleTypes.CURSOR, new TitleMapper()));
 compile();
 }
 public Map<String, Object> execute(Date cutoffDate) {
 Map<String, Object> inputs = new HashMap<String, Object>();
 inputs.put(CUTOFF_DATE_PARAM, cutoffDate);
 return super.execute(inputs);
 } }

8.5 Conclusion

This module explored the role of JDBC in providing solution developers with
enterprise-wide database connectivity capabilities and the JDBC architecture.
You studied the relationship between JDBC and Java. You learned about various
database systems and how JDBC was designed to work with relational DBMSs
and the relational command language, SQL. You learned about two and n-tier
application models. Finally, you learned about how JBDC was designed to
leverage the power of Java.
Specifically, you learned to:

1. Distinguish the role and place of JDBC among the Java technologies
2. Differentiate between DBMS types
3. Explain the relational model
4. Describe design considerations for JDBC and ODBC in a solution
5. Explain what SQL is and its role in database processing
6. Explain JDBC as it functions in two and n-tier system designs
7. Describe the capabilities of Java and a DBMS used with JDBC

8.6 List Of References

https://www.javatpoint.com/steps-to-connect-to-the-database-in-java

https://en.wikipedia.org/wiki/Java_Database_Connectivity

�

������

mu
no
tes
.in

140

 ADVANCE JAVA

Module 2

9
JDBC ARCHITECTURE

Unit Structure

9.0 Objectives

9.1 Introduction

9.2 JDBC Architecture

9.2.1 Two-tier Architecture

9.2.2 Three-tier Architecture

9.3 Basic JDBC Program using DML operation

9.4 conclusion

9.5 List of references

9.0 Objectives

The Java Database Connectivity is a standard Java API specifying interfaces for
connectivity between the Java applications and a wide range of databases. The
JDBC contains methods to connect to a database server, send queries to create a
table, update, delete, insert records in a database, retrieve and process the results
obtained from a database. Nowadays, there are a lot of frameworks that are built
for easier work with databases. But they contain the JDBC under the hood.

9.1 Introduction

JDBC or Java Database Connectivity is a specification from Sun microsystems
that provides a standard abstraction(that is API or Protocol) for java applications
to communicate with various databases. It provides the language with java
database connectivity standard. It is used to write programs required to access
databases. JDBC along with the database driver is capable of accessing databases
and spreadsheets. The enterprise data stored in a relational database(RDB) can be
accessed with the help of JDBC APIs.

9.2 Jdbc Architecture

Java Database Connectivity supports two-tier and three-tier architectures to access
a database. They are also called as processing models for database access. Let’s
look closer at them.

mu
no
tes
.in

141

Chapter 9: JDBC Architecture

It contains two types of architecture.
a) Two-Tier Architecture
b) Three-Tier Architecture

9.2.1 Two-tier Architecture:

• In this kind of architecture, a java application is directly communicating with
a database. It requires one of the specific Java Database Connectivity drivers
to connect to a specific database. All queries and requests are sending by the
user to the database and results are receiving back by the user. The database
can be running on the same machine. Also, it can be on a remote machine
and to be connected via a network. This approach is called a client-server
architecture.

Ö Diagram represent two-tier architecture of JDBC.

• In the two-tier model, a Java applet or application talks directly to the data
source. This requires a JDBC driver that can communicate with the particular
data source being accessed. A user's commands are delivered to the database
or other data source, and the results of those statements are sent back to the
user. The data source may be located on another machine to which the user
is connected via a network. This is referred to as a client/server configuration,
with the user's machine as the client, and the machine housing the data source
as the server. The network can be an intranet, which, for example, connects
employees within a corporation, or it can be the Internet.

• In the three-tier model, commands are sent to a "middle tier" of services,
which then sends the commands to the data source. The data source processes
the commands and sends the results back to the middle tier, which then sends

mu
no
tes
.in

142

 ADVANCE JAVA

them to the user. MIS directors find the three-tier model very attractive
because the middle tier makes it possible to maintain control over access and
the kinds of updates that can be made to corporate data. Another advantage
is that it simplifies the deployment of applications. Finally, in many cases,
the three-tier architecture can provide performance advantages.

9.2.2 Three-tier Architecture:

• In the three-tier model, there is no direct communication. First of all, all
requests and queries are sent to the middle tier. A middle tier can be a browser
with a web page or desktop application, that sends a request to the java
application. After that request is sent to the database. The database processes
the request and sends the result back to the middle tier. And the middle tier
then communicates with the user. This model has better performance and
simplifies application deployment.

• All of these different executables are able to access a database with the use
of a JDBC driver as a middle tier: Java Desktop Applications, Java Applets,
Java Servlets, Java Server Pages (JSPs), Enterprise JavaBeans (EJBs).

Ö Diagram represent three-tier architecture of JDBC.

For the two-tier model and the three-tier model, JDBC has two main layers:

• JDBC API (an application-to-JDBC Manager connection), JDBC Driver API
(this supports the JDBC Manager-to-Driver Connection).

mu
no
tes
.in

143

Chapter 9: JDBC Architecture

• The JDBC driver manager and database-specific drivers provide the
possibility to connect to heterogeneous databases. The function of the JDBC
driver manager is to ensure that the correct driver is used to access each
database. The driver manager is capable to support more than one driver. And
the drivers can be concurrently connected to multiple different data sources.

• Until recently, the middle tier has often been written in languages such as C
or C++, which offer fast performance. However, with the introduction of
optimizing compilers that translate Java bytecode into efficient machine-
specific code and technologies such as Enterprise JavaBeans™, the Java
platform is fast becoming the standard platform for middle-tier development.
This is a big plus, making it possible to take advantage of Java's robustness,
multithreading, and security features.

• With enterprises increasingly using the Java programming language for
writing server code, the JDBC API is being used more and more in the middle
tier of a three-tier architecture. Some of the features that make JDBC a server
technology are its support for connection pooling, distributed transactions,
and disconnected rowsets. The JDBC API is also what allows access to a data
source from a Java middle tier.

Ö Diagram represent architecture of JDBC.

For example, your application can connect to the Oracle database and MySQL
database at the same time. The connections will be created by the use of different
drivers. You can read data from the Oracle database and insert it into MySQL and
vise versa.

mu
no
tes
.in

144

 ADVANCE JAVA

JDBC Architecture in Java:

In order to understand the JDBC Architecture, please have a look at the following
image.

Ö Diagram represent architecture of JDBC.

Components of JDBC Driver:

JDBC architecture is a client-server architecture. JDBC architecture has 5 elements.

1. JDBC client: Here JDBC Client is nothing but a java application which
wants to communicate with the database.,

2. JDBC API: To write a java program which communicates with any database
without changing the code Sun Microsystem has released JDBC API. By
JDBC API implementation we can call JDBC Driver.

3. JDBC Driver: It is a java application that acts as an interface between java
application and database. It understands the given java calls and converts into
database calls and vice-versa.

4. JDBC Driver Manager: It acts as a data structure that collects a group of
JDBC Drivers and allows the programmer to select the driver dynamically
for the database connection.

mu
no
tes
.in

145

Chapter 9: JDBC Architecture

5. Database Server: It is nothing but the Database server like Oracle, MySQL,
SQL Server, etc. with which the JDBC client wants to communicate.

9.3 JDBC Program using DML Operation:

DML: DML stands Data Manipulation Language; its directly affected on data.

Ö Data manipulation language (DML) provides statements like selecting,
inserting, deleting and updating data in a database. Component of DML
includes performing read-only queries of data. SQL is also known as DML
or data manipulation language as it is used retrieve and manipulate data in a
relational database.

Ö executeupdate() is used to perform as Data manipulation language, it is used
to modify stored data but not the schema or database objects. Manipulation
takes place in form of persistent database objects, e.g., tables or stored
procedures, via the SQL schema statements,rather than the data stored
within them.

¾ Insert:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
/** Copyright (c), AnkitMittal JavaMadeSoEasy.com */
public class StatementInsertExample {
 public static void main(String... arg) {
 Connection con = null;
 Statement stmt = null;
 try {
 // registering Oracle driver class
 Class.forName("oracle.jdbc.driver.OracleDriver");

 // getting connection
 con = DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1521:orcl",
 "vaibhav", "Oracle123");
 System.out.println("Connection established successfully!");
 stmt = con.createStatement();
 //execute insert query

mu
no
tes
.in

146

 ADVANCE JAVA

 int numberOfRowsInserted=stmt.executeUpdate("INSERT into
EMPLOYEE(ID,NAME)" + "values (1, 'Nikita') ");
 System.out.println("numberOfRowsInserted=" +
numberOfRowsInserted);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 finally{
 try {
 if(stmt!=null) stmt.close(); //close Statement
 if(con!=null) con.close(); // close connection
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }
}
 /*OUTPUT
 Connection established successfully!
numberOfRowsInserted=1
 */
Similarly, we can use remaining DML operations in JDBC program with java.

 9.4 Conclusion

JDBC play role like a driver to move an object from one place to another by using
java platform. This chapter explained the knowledge about JDBC architecture and
some database programs.

 9.5 List Of References

https://dotnettutorials.net/lesson/jdbc-architecture/

�����

mu
no
tes
.in

147

Chapter 10: Spring - Getting Started with Spring Boot

Module 2

10
SPRING

GETTING STARTED WITH SPRING BOOT
Unit Structure
10.0 Objectives
10.1 Introduction
10.2 An Overview
 10.2.1 Spring Boot Benefits
 10.2.2 What’s the difference between Spring Boot and Spring MVC
 10.2.3 Spring Boot Staters
 10.2.4 Advantages
 10.2.5 Disadvantages
10.3 Spring Boot and Database
 10.3.1 JDBC connection pooling
 10.3.2 Why do we need connection pooling
10.4 Spring Boot Web Application Development
 10.4.1 Ease of Dependency Management
 10.4.2 Automatic Configuration
 10.4.3 Native Support for Application Server Servlet container
10.5 Spring Boot RESTful Web Services
 10.5.1 Why REST is popular
 10.5.2 Spring Boot REST example
10.6 conclusion
10.7 List of references

10.0 Objectives

The primary goals of Spring Boot are:

• To provide a radically faster and widely accessible ‘getting started’
experience for all Spring development.

• To be opinionated out of the box, but get out of the way quickly as
requirements start to diverge from the defaults.

mu
no
tes
.in

148

 ADVANCE JAVA

• To provide a range of non-functional features that are common to large
classes of projects (e.g. embedded servers, security, metrics, health checks,
externalized configuration).

• Spring Boot does not generate code and there is absolutely no requirement
for XML configuration.

10.1 Introduction

• Spring Boot makes it easy to create stand-alone, production-grade Spring
based Applications that you can "just run".

• We take an opinionated view of the Spring platform and third-party
libraries so you can get started with minimum fuss. Most Spring Boot
applications need minimal Spring configuration.

• Spring Boot is an open source, microservice-based Java web framework.
The Spring Boot framework creates a fully production-ready environment
that is completely configurable using its prebuilt code within its codebase.
The microservice architecture provides developers with a fully enclosed
application, including embedded application servers.

10.2 Spring Boot Overview

Spring Boot is just extension of the already existing and expansive Spring
frameworks, but it has some specific features that make the application easier for
working within the developer ecosystem.

That extension includes pre-configurable web starter kits that help facilitate the
responsibilities of an application server that are required for other Spring projects.

10.2.1 Spring Boot Benefits

Spring Boot has a number of features that make it a great fit for quickly
developing Java applications, including auto-configuration, health checks, and
opinionated dependencies.

Benefits of Spring Boot

Feature Benefit

Standalone
Application

Can simply build the application jar and run the application
with no need to customize the deployment.

Embedded
Servers

Comes with prebuilt Tomcat, Jetty and Undertow application
servers that do not require further installation to use. This also
provides faster more efficient deployments resulting to
shorting restart times.

mu
no
tes
.in

149

Chapter 10: Spring - Getting Started with Spring Boot

Auto-
Configurable

Spring and other 3rd party frameworks will be configured
automatically.

Production-
Like Features

Health checks, metrics and externalized configurations.

Starter
Dependencies

This will provide opinionated dependencies designed to
simplify the build configuration. This also provides complete
build tool flexibility (Maven and Gradle).

10.2.2 What's the Difference Between Spring Boot and Spring MVC?

• The major differences between Spring Boot and Spring MVC come down to
differences between context and overall scale.

• Spring MVC is a specific Spring-based web framework in a traditional sense.
That means it requires manual build configurations, specifying dependencies
separately, and the use an application server.

• Spring Boot, on the other hand, is more like a module of Spring designed to
package Spring applications or frameworks with automation and defaults.

• So in theory one could have a Spring MVC project packaged as a Spring Boot
application. Both can be classified as Spring frameworks however the scale
of Spring Boot encompasses many types of Spring frameworks. While,
Spring MVC on the other hand specifies the design of the framework.

10.2.3 Spring Boot Staters

• Spring Boot starters were built to address exactly this problem. Starter POMs
are a set of convenient dependency descriptors that you can include in your
application. You get a one-stop-shop for all the Spring and related technology
that you need, without having to hunt through sample code and copy-paste
loads of dependency descriptors.

¾ The Web Starter

• First, let's look at developing the REST service; we can use libraries
like Spring MVC, Tomcat and Jackson – a lot of dependencies for a
single application.

• Spring Boot starters can help to reduce the number of manually adde d
dependencies just by adding one dependency.

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

 </dependency>

mu
no
tes
.in

150

 ADVANCE JAVA

¾ The Test Starter

• For testing we usually use the following set of libraries: Spring Test,
JUnit, Hamcrest, and Mockito. We can include all of these libraries
manually, but Spring Boot starter can be used to automatically include
these libraries in the following way:

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

• Notice that you don't need to specify the version number of an artifact.
Spring Boot will figure out what version to use – all you need to specify
is the version of spring-boot-starter-parent artifact. If later on you need
to upgrade the Boot library and dependencies, just upgrade the Boot
version in one place and it will take care of the rest.

¾ There are two ways to test the controller:

• Using the mock environment

• Using the embedded Servlet container (like Tomcat or Jetty)

¾ The Data JPA Starter

• Most web applications have some sort of persistence – and that's quite
often JPA.

Instead of defining all of the associated dependencies manually – let's go with
the starter instead:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

mu
no
tes
.in

151

Chapter 10: Spring - Getting Started with Spring Boot

Notice that out of the box we have automatic support for at least the following
databases: H2, Derby and Hsqldb.

¾ The Mail Starter

• A very common task in enterprise development is sending email, and
dealing directly with Java Mail API usually can be difficult.

• Spring Boot starter hides this complexity – mail dependencies can be
specified in the following way:

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-mail</artifactId>

 </dependency>

10.2.4 Advantages of Spring Boot

• Spring Framework can be employed on all architectural layers used in the
development of web applications.

• Uses the very lightweight POJO model when writing classes.

• Allows you to freely link modules and easily test them.

• Supports declarative programming.

• Eliminates the need to independently create factory and singleton classes.

• Supports various configuration methods;

• Provides middleware-level service.

10.2.5 Disadvantages of Spring Boot

• Spring boot may include dependencies that are not used thereby causing
huge deployment file size.

• Turning legacy spring applications into Spring boot requires a lot of effort
and a time-consuming process.

• Limited control of your application.

10.3 Spring Boot And Database

Spring Boot JDBC provides starter and libraries for connecting an application
with JDBC.

10.3.1 JDBC Connection Pooling

Connection pooling is a mechanism to create and maintain a collection of JDBC
connection objects. The primary objective of maintaining the pool of connection

mu
no
tes
.in

152

 ADVANCE JAVA

object is to leverage re-usability. A new connection object is created only when
there are no connection objects available to reuse. This technique can improve
overall performance of the application. This article will try to show how this
pooling mechanism can be applied to a Java application.

Ö Diagram represents the structure of JDBC Connection Pooling.

It increases the speed of data access and reduces the number of database
connections for an application. It also improves the performance of an
application. Connection pool performs the following tasks:

• Manage available connection

• Allocate new connection

• Close connection
10.3.2 Why Do We Need Connection Pooling?

• Establishing a database connection is a very resource-intensive process and
involves a lot of overhead. Moreover, in a multi-threaded environment,
opening and closing a connection can worsen the situation greatly. To get a
glimpse of what actually may happen with each request for creating new
database connection, consider the following points. Database connections are
established using either DriverManager of DataSource objects.

R An application invokes the getConnection() method.

R The JDBC driver requests a JVM socket.

R JVM has to ensure that the call does not violate security aspects (as the
case may be with applets).

mu
no
tes
.in

153

Chapter 10: Spring - Getting Started with Spring Boot

R The invocation may have to percolate through a firewall before getting
into the network cloud.

R On reaching the host, the server processes the connection request.

• The database server initializes the connection object and returns back to the
JDBC client (again, going through the same process).

• And, finally, we get a connection object.

• This is just an overview of what actually goes on behind the scenes. Rest
assured, the actual process is more complicated and elaborate than this. In a
single-threaded controlled environment, database transactions are mostly
linear, like opening a connection, doing database transaction, and closing the
connection when done. Real-life applications are more complex; the
mechanism of connection pooling can add to the performance although there
are many other properties that are critical to overall performance of the
application.

• The complexity of the concept of connection pooling gets nastier as we dive
deep into it. But, thanks go to the people who work to produce libraries
specifically for the cause of connection pooling. These libraries adhere to the
norms of JDBC and provide simpler APIs to actually implement them in a
Java application.

10.4 Spring Boot Web Application Developement

¾ Despite the advantages of Spring Framework, authors decided to provide
developers with some utilities that automate the configuration procedure and
speed up the process of creating and deploying Spring applications. These
utilities were combined under the general name of Spring Boot.

¾ While the Spring Framework focuses on providing flexibility, Spring Boot
seeks to reduce code length and simplify web application development. By
leveraging annotation and boilerplate configuration, Spring Boot reduces the
time it takes to develop applications. This capability helps you create
standalone applications with less or almost no configuration overhead.

¾ how to configure a Spring Boot application to connect to MySQL database
server, in these two common scenarios:

• A Spring Boot console application with Spring JDBC and
JdbcTemplate

• A Spring Boot web application with Spring Data JPA and Hibernate
framework

mu
no
tes
.in

154

 ADVANCE JAVA

• Basically, in order to make a connection to a MySQL server, you
need to do the following steps:

• Declare a dependency for MySQL JDBC driver, which enables Java
application to communicate with MySQL server.

• Declare a dependency for Spring JDBC or Spring Data JPA

• Specify data source properties for the database connection
information

• In case of Spring JDBC, use JdbcTemplate APIs for executing SQL
statements against the database

• In case of Spring Data JPA, you need to create an entity class, a
repository interface and then use the Spring Data JPA API.

Below are the details for connecting to MySQL server in a Spring Boot
application.

1. Declare dependency for MySQL JDBC Driver

 To use MySQL JDBC driver, declare the following dependency in the
Maven pom.xml file of your Spring Boot project:

<dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <scope>runtime</scope>

</dependency>

 You don’t need to specify the version as Spring Boot uses the default version
specified in the parent POM.

2. Specify Data Source Properties
 Next, you need to specify the following properties in the Spring Boot

application configuration file (application.properties):

spring.datasource.url=jdbc:mysql://localhost:3306/bookshop

spring.datasource.username=root

spring.datasource.password=password

 Update the data source URL, username and password according to your
MySQL configuration. If you connect to a remote MySQL server, you need
to replace localhost by IP address or hostname of the remote host.

mu
no
tes
.in

155

Chapter 10: Spring - Getting Started with Spring Boot

3. Connect to MySQL with Spring JDBC

 Spring JDBC provides a simple API on top of JDBC (JdbcTemplate), which
you can use in simple cases, e.g. executing plain SQL statements. You need
to declare the following dependency:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-jdbc</artifactId>

</dependency>

4. Connect to MySQL with Spring Data JPA

 Spring Data JPA provides more advanced API that greatly simplifies
database programming based on Java Persistence API (JPA) specification
with Hibernate as the implementation framework.

 You need to declare dependency for Spring Data JPA as follows:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

For data source properties, before the URL, username and password you can also
specify these additional properties:

spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL57InnoDBDi
alect
And then, you need to code an entity class that maps to a table in the database, for
example:

import javax.persistence.*;
@Entity
@Table(name = "users")
public class User {
 @Id

mu
no
tes
.in

156

 ADVANCE JAVA

 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Integer id;
 private String email;
 private String password;
 // getters and setters...
}

And declare a corresponding repository interface:

import org.springframework.data.jpa.repository.JpaRepository;
public interface UserRepository extends JpaRepository<User, Integer> {
 }

And then you can use the repository in a Spring MVC controller or business class
like this:

@Controller
public class UserController {
 @Autowired
 private UserRepository repo;
 @GetMapping("/users")
 public String listAll(Model model) {
 List<User> listUsers = repo.findAll();
 model.addAttribute("listUsers", listUsers);
 return "users";
 }
}

10.4.1 Ease of Dependency Management

• To speed up the dependency management process, Spring Boot implicitly
packages the required third-party dependencies for each type of Spring-based
application and provides them through so-called starter packages (spring-
boot-starter-web, spring-boot-starter-data-jpa, etc.).

• Starter packages are collections of handy dependency descriptors that you
can include in your application. They allow you to get a universal solution
for all Spring-related technologies, removing the necessity to search for code
examples and load the required dependency descriptors from them.

• For instance, if you want to start using Spring Data JPA to access your
database, just include the spring-boot-starter-data-jpa dependency in your

mu
no
tes
.in

157

Chapter 10: Spring - Getting Started with Spring Boot

project and you’ll be done (no need to look for compatible Hibernate database
drivers and libraries).

• If you want to create a Spring web application, just add the spring-boot-
starter-web dependency, which will pull all the libraries you need to develop
Spring MVC applications into your project, such as spring-webmvc, jackson-
json, validation-api, and Tomcat.

• To say in a few words what is Spring Boot used for, it collects all common
dependencies and defines them in one place, which allows developers to get
to work right away instead of reinventing the wheel every time they create a
new application.

• Therefore, the pom.xml file contains much fewer lines when used in Spring
Boot than in regular Spring.

10.4.2 Automatic Configuration

• One of the advantages of Spring Boot, that is worth mentioning is automatic
configuration of the application.

• After choosing a suitable starter package, Spring Boot will try to
automatically configure your Spring application based on
the jar dependencies you added. For example, if you add Spring-boot-starter-
web, Spring Boot will automatically configure registered beans such
as DispatcherServlet, ResourceHandlers, and MessageSource.

• If you are using spring-boot-starter-jdbc, Spring Boot automatically registers
the DataSource, EntityManagerFactory, and TransactionManager beans and
reads the database connection information from
the application.properties file.

• If you are not going to use a database and do not provide any details about
connecting manually, Spring Boot will automatically configure the database
in the memory without any additional configuration on your part (if you have
H2 or HSQL libraries). Automatic configuration can be completely
overridden at any time by using user preferences.

10.4.3 Native Support for Application Server – Servlet Container

• Every Spring Boot application includes an embedded web server. Developers
no longer have to worry about setting up a servlet container and deploying an
application to it. The application can now run itself as an executable jar file
using the built-in server. If you need to use a separate HTTP server, simply
exclude the default dependencies. Spring Boot provides separate starter
packages for different HTTP servers.

mu
no
tes
.in

158

 ADVANCE JAVA

• Building stand-alone web applications with embedded servers is not only
convenient for development but also a valid solution for enterprise-grade
applications; what’s more, it’s becoming increasingly useful in the world of
microservices. The ability to quickly package an entire service (such as user
authentication) into a standalone and fully deployable artefact that also
provides an API makes installing and deploying an application much easier.

• Spring Boot is part of the next generation of tools that simplify the
configuration process for Spring applications. It is not a tool for automatic
code generation, but a plugin for project build automation systems
(supporting Maven and Gradle).

• The plugin provides capabilities for testing and deploying Spring
applications. The mvn spring-boot:run command runs your application on
port 8080. In addition, Spring Boot allows you to package your application
into a separate jar file with a full Tomcat container embedded. This approach
was borrowed from the Play framework’s application deployment model
(however, Spring Boot can also create traditional war files).

• One of the key advantages of Spring Boot is the configuration of resources
based on the content of the classpath. Spring Boot is pretty intuitive when it
comes to the default configuration. You may not always agree with its choice
of settings, but at least it will provide you with a working module. This is a
very useful approach, especially for novice developers who can start with the
default settings and make changes to them as they explore the alternatives
later down the line. This is much better than answering a bunch of difficult
questions every time you begin a new project.

• In addition, there are a number of full-fledged tutorials on Spring Boot’s
official webpage. These will help you quickly understand and practically
implement all the main types of projects at the initial level.

• Spring Boot is still in its infancy, and it will naturally have to go through
many metamorphoses before becoming fully stable. It may be too early to
use it for building serious systems, but it is quite suitable for performing all
sorts of personal, training, and test projects, in case you want to eliminate
large amounts of unproductive, routine work that is in no way related to the
creation of useful functionality.

• As far as Spring Boot’s potential for growing into a serious development tool
is concerned, the presence of acceptable technical documentation looks very
encouraging.

mu
no
tes
.in

159

Chapter 10: Spring - Getting Started with Spring Boot

10.5 Spring Boot Restful Webservices

• REST stands for REpresentational State Transfer. It is developed by Roy
Thomas Fielding, who also developed HTTP. The main goal of RESTful web
services is to make web services more effective. RESTful web services try to
define services using the different concepts that are already present in HTTP.
REST is an architectural approach, not a protocol.

• It does not define the standard message exchange format. We can build
REST services with both XML and JSON. JSON is more popular format
with REST. The key abstraction is a resource in REST. A resource can be
anything. It can be accessed through a Uniform Resource Identifier (URI).

10.5.1 Why REST is popular:

1. It allows the separation between the client and the server.

2. It doesn’t rely on a single technology or programming language.

3. You can build the scalable application or even integrate two different
applications using REST APIs

4. REST is stateless and uses basic HTTP methods like GET, PUT, POST, and
DELETE, etc. for communication between client and server.

¾ The resource has representations like XML, HTML, and JSON. The current
state capture by representational resource. When we request a resource, we
provide the representation of the resource. The important methods of HTTP
are:

GET: It reads a resource.
PUT: It updates an existing resource.
POST: It creates a new resource.
DELETE: It deletes the resource.
For example, if we want to perform the following actions in the social media
application, we get the corresponding results.
POST /users: It creates a user.
GET /users/{id}: It retrieves the detail of a user.
GET /users: It retrieves the detail of all users.
DELETE /users: It deletes all users.
DELETE /users/{id}: It deletes a user.
GET /users/{id}/posts/post_id: It retrieve the detail of a specific post.
POST / users/{id}/ posts: It creates a post of the user.

mu
no
tes
.in

160

 ADVANCE JAVA

Rest Controller
The @RestController annotation is used to define the RESTful web services. It
serves JSON, XML and custom responsH��,WV�V\QWD[�LV�VKRZQ�EHORZ�í
@RestController
public class ProductServiceController {
}
Request Mapping

The @RequestMapping annotation is used to define the Request URI to access
the REST Endpoints. We can define Request method to consume and produce
object. The default request method is GET.
@RequestMapping(value = "/products")
public ResponseEntity<Object> getProducts() { }
Request Body
The @RequestBody annotation is used to define the request body content type.
public ResponseEntity<Object> createProduct(@RequestBody Product product)
{
}
Path Variable
The @PathVariable annotation is used to define the custom or dynamic request
URI. The Path variable in request URI is defined as curly braces {} as shown below
í
public ResponseEntity<Object> updateProduct(@PathVariable("id") String id) {
}
Request Parameter
The @RequestParam annotation is used to read the request parameters from the
Request URL. By default, it is a required parameter. We can also set default value
IRU�UHTXHVW�SDUDPHWHUV�DV�VKRZQ�KHUH�í
public ResponseEntity<Object> getProduct(
 @RequestParam(value = "name", required = false, defaultValue = "honey")
String name) {
}
GET API
The default HTTP request method is GET. This method does not require any
Request Body. You can send request parameters and path variables to define the
custom or dynamic URL.

mu
no
tes
.in

161

Chapter 10: Spring - Getting Started with Spring Boot

POST API
The HTTP POST request is used to create a resource. This method contains the
Request Body. We can send request parameters and path variables to define the
custom or dynamic URL.
PUT API
The HTTP PUT request is used to update the existing resource. This method
contains a Request Body. We can send request parameters and path variables to
define the custom or dynamic URL.
6.5.2 Spring Boot REST Example
To create the Spring Boot REST program, you have to follow below four steps:
1. Create a new project using the Spring Tool Suite or Spring Initializr Project.
2. Add dependencies in the Maven POM file.
3. Add a controller and expose REST APIs.
4. Add a service layer to communicate with Spring Data JPA’s CrudRepository
interface.
Create a new Spring Boot Project

mu
no
tes
.in

162

 ADVANCE JAVA

Spring boot rest example dependencies:

As you could see in the above example, I have created a new project spring-boot-
rest-example and added dependencies for Spring Data JPA, H2 Database, and
Spring Web Starter.
You can verify those dependencies in pom.xml.
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.1.6.RELEASE</version>
 <relativePath /> <! – lookup parent from repository – >
 </parent>
 <groupId>com.codedelay.rest</groupId>
 <artifactId>spring-boot-rest-example</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>spring-boot-rest-example</name>

mu
no
tes
.in

163

Chapter 10: Spring - Getting Started with Spring Boot

 <description>Hello world example project for Spring Boot REST APIs
</description>
 <properties>
 <java.version>1.8</java.version>
 <maven-jar-plugin.version>3.1.1</maven-jar-plugin.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 <optional>true</optional>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

mu
no
tes
.in

164

 ADVANCE JAVA

Maven Dependency Tree

[INFO] com.codedelay.rest:spring-boot-rest-example:jar:0.0.1-SNAPSHOT
[INFO] +- org.springframework.boot:spring-boot-starter-data-
jpa:jar:2.1.6.RELEASE:compile
[INFO] | +- org.springframework.boot:spring-boot-starter-
aop:jar:2.1.6.RELEASE:compile
[INFO] | | +- org.springframework:spring-aop:jar:5.1.8.RELEASE:compile
[INFO] | | \- org.aspectj:aspectjweaver:jar:1.9.4:compile
[INFO] | +- org.springframework.boot:spring-boot-starter-
jdbc:jar:2.1.6.RELEASE:compile
[INFO] | | +- com.zaxxer:HikariCP:jar:3.2.0:compile
[INFO] | | \- org.springframework:spring-jdbc:jar:5.1.8.RELEASE:compile
[INFO] | +- javax.transaction:javax.transaction-api:jar:1.3:compile
[INFO] | +- javax.xml.bind:jaxb-api:jar:2.3.1:compile
[INFO] | | \- javax.activation:javax.activation-api:jar:1.2.0:compile
[INFO] | +- org.hibernate:hibernate-core:jar:5.3.10.Final:compile
[INFO] | | +- org.jboss.logging:jboss-logging:jar:3.3.2.Final:compile
[INFO] | | +- javax.persistence:javax.persistence-api:jar:2.2:compile
[INFO] | | +- org.javassist:javassist:jar:3.23.2-GA:compile
[INFO] | | +- net.bytebuddy:byte-buddy:jar:1.9.13:compile
[INFO] | | +- antlr:antlr:jar:2.7.7:compile
[INFO] | | +- org.jboss:jandex:jar:2.0.5.Final:compile
[INFO] | | +- com.fasterxml:classmate:jar:1.4.0:compile
[INFO] | | +- org.dom4j:dom4j:jar:2.1.1:compile
[INFO] | | \- org.hibernate.common:hibernate-commons-
annotations:jar:5.0.4.Final:compile
[INFO] | +- org.springframework.data:spring-data-
jpa:jar:2.1.9.RELEASE:compile
[INFO] | | +- org.springframework.data:spring-data-
commons:jar:2.1.9.RELEASE:compile
[INFO] | | +- org.springframework:spring-orm:jar:5.1.8.RELEASE:compile
[INFO] | | +- org.springframework:spring-context:jar:5.1.8.RELEASE:compile
[INFO] | | +- org.springframework:spring-tx:jar:5.1.8.RELEASE:compile
[INFO] | | +- org.springframework:spring-beans:jar:5.1.8.RELEASE:compile
[INFO] | | \- org.slf4j:slf4j-api:jar:1.7.26:compile

mu
no
tes
.in

165

Chapter 10: Spring - Getting Started with Spring Boot

[INFO] | \- org.springframework:spring-aspects:jar:5.1.8.RELEASE:compile
[INFO] +- org.springframework.boot:spring-boot-starter-
web:jar:2.1.6.RELEASE:compile
[INFO] | +- org.springframework.boot:spring-boot-
starter:jar:2.1.6.RELEASE:compile
[INFO] | | +- org.springframework.boot:spring-boot-starter-
logging:jar:2.1.6.RELEASE:compile
[INFO] | | | +- ch.qos.logback:logback-classic:jar:1.2.3:compile
[INFO] | | | | \- ch.qos.logback:logback-core:jar:1.2.3:compile
[INFO] | | | +- org.apache.logging.log4j:log4j-to-slf4j:jar:2.11.2:compile
[INFO] | | | | \- org.apache.logging.log4j:log4j-api:jar:2.11.2:compile
[INFO] | | | \- org.slf4j:jul-to-slf4j:jar:1.7.26:compile
[INFO] | | +- javax.annotation:javax.annotation-api:jar:1.3.2:compile
[INFO] | | \- org.yaml:snakeyaml:jar:1.23:runtime
[INFO] | +- org.springframework.boot:spring-boot-starter-
json:jar:2.1.6.RELEASE:compile
[INFO] | | +- com.fasterxml.jackson.core:jackson-databind:jar:2.9.9:compile
[INFO] | | | +- com.fasterxml.jackson.core:jackson-annotations:jar:2.9.0:compile
[INFO] | | | \- com.fasterxml.jackson.core:jackson-core:jar:2.9.9:compile
[INFO] | | +- com.fasterxml.jackson.datatype:jackson-datatype-
jdk8:jar:2.9.9:compile
[INFO] | | +- com.fasterxml.jackson.datatype:jackson-datatype-
jsr310:jar:2.9.9:compile
[INFO] | | \- com.fasterxml.jackson.module:jackson-module-parameter-
names:jar:2.9.9:compile
[INFO] | +- org.springframework.boot:spring-boot-starter-
tomcat:jar:2.1.6.RELEASE:compile
[INFO] | | +- org.apache.tomcat.embed:tomcat-embed-core:jar:9.0.21:compile
[INFO] | | +- org.apache.tomcat.embed:tomcat-embed-el:jar:9.0.21:compile
[INFO] | | \- org.apache.tomcat.embed:tomcat-embed-
websocket:jar:9.0.21:compile
[INFO] | +- org.hibernate.validator:hibernate-validator:jar:6.0.17.Final:compile
[INFO] | | \- javax.validation:validation-api:jar:2.0.1.Final:compile
[INFO] | +- org.springframework:spring-web:jar:5.1.8.RELEASE:compile
[INFO] | \- org.springframework:spring-webmvc:jar:5.1.8.RELEASE:compile

mu
no
tes
.in

166

 ADVANCE JAVA

[INFO] | \- org.springframework:spring-
expression:jar:5.1.8.RELEASE:compile
[INFO] +- com.h2database:h2:jar:1.4.199:runtime
[INFO] +- org.springframework.boot:spring-boot-starter-
test:jar:2.1.6.RELEASE:test
[INFO] | +- org.springframework.boot:spring-boot-test:jar:2.1.6.RELEASE:test
[INFO] | +- org.springframework.boot:spring-boot-test-
autoconfigure:jar:2.1.6.RELEASE:test
[INFO] | +- com.jayway.jsonpath:json-path:jar:2.4.0:test
[INFO] | | \- net.minidev:json-smart:jar:2.3:test
[INFO] | | \- net.minidev:accessors-smart:jar:1.2:test
[INFO] | | \- org.ow2.asm:asm:jar:5.0.4:test
[INFO] | +- junit:junit:jar:4.12:test
[INFO] | +- org.assertj:assertj-core:jar:3.11.1:test
[INFO] | +- org.mockito:mockito-core:jar:2.23.4:test
[INFO] | | +- net.bytebuddy:byte-buddy-agent:jar:1.9.13:test
[INFO] | | \- org.objenesis:objenesis:jar:2.6:test
[INFO] | +- org.hamcrest:hamcrest-core:jar:1.3:test
[INFO] | +- org.hamcrest:hamcrest-library:jar:1.3:test
[INFO] | +- org.skyscreamer:jsonassert:jar:1.5.0:test
[INFO] | | \- com.vaadin.external.google:android-
json:jar:0.0.20131108.vaadin1:test
[INFO] | +- org.springframework:spring-core:jar:5.1.8.RELEASE:compile
[INFO] | | \- org.springframework:spring-jcl:jar:5.1.8.RELEASE:compile
[INFO] | +- org.springframework:spring-test:jar:5.1.8.RELEASE:test
[INFO] | \- org.xmlunit:xmlunit-core:jar:2.6.2:test
[INFO] \- org.springframework.boot:spring-boot-
devtools:jar:2.1.6.RELEASE:runtime (optional)
[INFO] +- org.springframework.boot:spring-boot:jar:2.1.6.RELEASE:compile
[INFO] \- org.springframework.boot:spring-boot-
autoconfigure:jar:2.1.6.RELEASE:compile
Controller to expose REST APIs

For this tutorial, we will CRUD APIs for User Management System.

By using these APIs we can add, retrieve, update, or delete the user details from
the database.

mu
no
tes
.in

167

Chapter 10: Spring - Getting Started with Spring Boot

To create a User Management System, let’s focus on writing 5 basic APIs

HTTP GET /getAll will return a list of all user details.
HTTP GET /find/{id} will return a user’s detail by an id.
HTTP POST /add is to add a user into the database.
HTTP PUT /update/{id} can be used to update a user based on an id.
HTTP DELETE /delete/{id} can be used to delete a user from the database.
Let’s create a controller (UserController) to expose REST endpoints.
package com.codedelay.rest.controller;
import javax.validation.Valid;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import com.codedelay.rest.entity.User;
import com.codedelay.rest.service.UserManageService;
@RestController
@RequestMapping("/api/user")
public class UserController {
 @Autowired
 private UserManageService mService;
 @GetMapping("/getAll")
 public Iterable<User> getAllUsers() {
 return mService.getAllUsers();
 }
 @PostMapping("/add")
 @ResponseStatus(HttpStatus.CREATED)
 public User addUser(@Valid @RequestBody User user) {
 return mService.addUser(user);
 }
 @GetMapping("/find/{id}")

mu
no
tes
.in

168

 ADVANCE JAVA

 public User findUserById(@PathVariable("id") int id) {
 return mService.findUserById(id);
 }

 @PutMapping("/update/{id}")
 public User addOrUpdateUserById(@RequestBody User user,
@PathVariable("id") int id) {
 return mService.addOrUpdateUserById(user, id);
 }
 @DeleteMapping("/delete/{id}")
 public void deleteUser(@PathVariable("id") int id) {
 mService.deleteUser(id);
 }
}
Service layer:

The service layer acts as an intermediate layer between a controller and a
repository class.

package com.codedelay.rest.service;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import com.codedelay.rest.dao.UserRepository;
import com.codedelay.rest.entity.User;
import com.codedelay.rest.exception.UserNotFoundException;
@Service
public class UserManageService {
 @Autowired
 private UserRepository mRepository;
 public Iterable<User> getAllUsers() {
 return mRepository.findAll();
 }
 public User addUser(User user) {
 return mRepository.save(user);
 }
 public User findUserById(int id) {
 return mRepository.findById(id).get();
 }

mu
no
tes
.in

169

Chapter 10: Spring - Getting Started with Spring Boot

 public User addOrUpdateUserById(User user, int id) {
 return mRepository.findById(id).map(x -> {
 x.setUser_name(user.getUser_name());
 x.setPassword(user.getPassword());
 return mRepository.save(x);
 }).orElseGet(() -> {
 user.setUser_id(id);
 return mRepository.save(user);
 });
 }
 public void deleteUser(int id) {
 mRepository.deleteById(id);
 }
}
Entity class:
Now, let’s create an entity class which is a simple POJO class annotated with JPA
annotations.
Entity class also represents a table in the database.
In our case, we will create a User class inside com.codedelay.rest.entity package.
package com.codedelay.rest.entity;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity
@Table(name = "user_details")
public class User {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int user_id;
 @Column(unique = true, nullable = false, length = 10)
 private String user_name;
 @Column(nullable = false, length = 12, updatable = true)
 private String password;
 public int getUser_id() {

mu
no
tes
.in

170

 ADVANCE JAVA

 return user_id;
 }
 public void setUser_id(int user_id) {
 this.user_id = user_id;
 }
 public String getUser_name() {
 return user_name;
 }
 public void setUser_name(String user_name) {
 this.user_name = user_name;
 }
 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password = password;
 }
}
Write the Repository Interface.

package com.codedelay.rest.dao;
import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;
import com.codedelay.rest.entity.User;
public interface UserRepository extends CrudRepository<User, Integer> {
}
UserRepository interface extends CrudRepository.
CrudRepository is a magical interface from Spring Data JPA.
It allows writing simple CRUD functions without writing a single line of code.
Exception handling in Spring Boot REST

A good REST API also covers exception scenarios.
Let discuss one simple scenario.
What will happen if HTTP GET /find/{id} doesn’t find a particular user in the
database?
It should throw an exception. Isn’t it?
Let’s add one more class UserNotFoundException class in
com.codedelay.rest.exception package.

mu
no
tes
.in

171

Chapter 10: Spring - Getting Started with Spring Boot

package com.codedelay.rest.exception;
public class UserNotFoundException extends RuntimeException {
 public UserNotFoundException(int id) {
 super("User id not found : " + id);
 }
}
Now add the Service class to throw the UserNotFoundException exception if
there are no user details available in the database for that particular user id.
public User findUserById(int id) {
 return mRepository.findById(id).orElseThrow(() -> new
UserNotFoundException(id));
 }
It is not sufficient to throw java exception.
We have to return some HTTP error when UserNotFoundException occurs.
For this, let’s create a class GlobalExceptionHandler which will return
HttpStatus.NOT_FOUND error when UserNotFoundException occurs.
package com.codedelay.rest.exception;
import java.io.IOException;
import javax.servlet.http.HttpServletResponse;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
@ControllerAdvice
public class GlobalExceptionHandler {
 @ExceptionHandler(UserNotFoundException.class)
 public void handleUserNotFoundError(HttpServletResponse response) throws
IOException {
 response.sendError(HttpStatus.NOT_FOUND.value());
 }
}

10.6 Conclusion

Spring Boot has become an integral part of the Java ecosystem, offering an
efficient and scalable toolbox for building Spring applications with a
microservices architecture. It speeds up the development and deployment

mu
no
tes
.in

172

 ADVANCE JAVA

processes by using intuitive default settings for unit and integration tests. What’s
more, Spring Boot helps developers build robust applications with clear and
secure configurations without spending a lot of time and effort on figuring out the
intricacies of Spring. If you’re not sure about whether or not you should use this
solution for your Java project, carefully review the pros and cons of using Spring
Boot, its core features, and see how they align with your business goals.
Alternatively, you can entrust a reliable software vendor with the development
process.

10.7 List Of References

https://docs.spring.io/spring-boot/docs/current/reference/html/using.html

https://bambooagile.eu/insights/pros-and-cons-of-using-spring-boot/

������

mu
no
tes
.in

173

Chapter 11: Understanding Transaction Management in Spring

Module 2

11
UNDERSTANDING TRANSACTION

MANAGEMENT IN SPRING
Unit Structure
11.0 Objectives
11.1 Introduction
11.2 An Overview
 11.2.1 Transaction Propagation (Required)
 11.2.2 Transaction Propagation (Supports)
 11.2.3 Transaction Propagation (Not_Supported)
 11.2.4 Transaction Propagation (Requires_New)
 11.2.5 Transaction Propagation (Never)

11.2.6 Transaction Propagation (Mandatory)
11.3 Conclusion
11.4 List of References

11.0 Objectives

Any application involves a number of services or components making a call to other
services or components. Transaction propagation indicates if any component or
service will or will not participate in a transaction and how will it behave if the
calling component/service already has or does not have a transaction created
already.

One of the most compelling reasons to use the Spring Framework is the
comprehensive transaction support. The Spring Framework provides a consistent
abstraction for transaction management that delivers the following benefits:

• Provides a consistent programming model across different transaction APIs
such as JTA, JDBC, Hibernate, JPA, and JDO.

• Supports declarative transaction management.

• Provides a simpler API for programmatic transaction management than a
number of complex transaction APIs such as JTA.

• Integrates very well with Spring's various data access abstractions.

This chapter is divided up into a number of sections, each detailing one of the value-
adds or technologies of the Spring Framework's transaction support. The chapter
closes up with some discussion of best practices surrounding transaction

mu
no
tes
.in

174

 ADVANCE JAVA

management (for example, choosing between declarative and programmatic
transaction management).

• The first section, entitled Motivations, describes why one would want to use
the Spring Framework's transaction abstraction as opposed to EJB CMT or
driving transactions via a proprietary API such as Hibernate.

• The second section, entitled Key abstractions outlines the core classes in the
Spring Framework's transaction support, as well as how to configure and
obtain DataSource instances from a variety of sources.

• The third section, entitled Declarative transaction management, covers the
Spring Framework's support for declarative transaction management.

• The fourth section, entitled Programmatic transaction management, covers
the Spring Framework's support for programmatic (that is, explicitly coded)
transaction management.

11.1 Introduction

A transaction is an action or series of actions that are being performed by a single
user or application program, which reads or updates the contents of the database.

A transaction can be defined as a logical unit of work on the database. This may be
an entire program, a piece of a program, or a single command (like the SQL
commands such as INSERT or UPDATE), and it may engage in any number of
operations on the database. In the database context, the execution of an application
program can be thought of as one or more transactions with non-database
processing taking place in between.

In traditional relational database design, transactions are completed by COMMIT
or ROLLBACK SQL statements, which indicate a transaction’s beginning or end.
The ACID acronym defines the

properties of a database transaction, as follows:

• Atomicity: A transaction must be fully complete, saved (committed) or
completely undone (rolled back). A sale in a retail store database illustrates a
scenario which explains atomicity, e.g., the sale consists of an inventory
reduction and a record of incoming cash. Both either happen together or do
not happen—it's all or nothing.

• Consistency: The transaction must be fully compliant with the state of the
database as it was prior to the transaction. In other words, the transaction
cannot break the database’s constraints. For example, if a database table’s
Phone Number column can only contain numerals, then consistency dictates
that any transaction attempting to enter an alphabetical letter may not
commit.

mu
no
tes
.in

175

Chapter 11: Understanding Transaction Management in Spring

• Isolation: Transaction data must not be available to other transactions until
the original transaction is committed or rolled back.

• Durability: Transaction data changes must be available, even in the event of
database failure.

11.2 An Overview

Transaction represents the series of different actions.

Below diagram represents the propagation of Transaction.

Ö We will discuss the Client-side example to represent the propagation of
transaction in Spring as follows:

• Call using Organization service

• Call the the Employee Service directly.

mu
no
tes
.in

176

 ADVANCE JAVA

¾ As the Employee Service may also be called directly we will need to use
Transaction annotation with Employee Service also. So both the services —
Organization Service and the Employee Service will be using Transaction
annotation.

¾ We will be looking at the various propagation scenarios by observing the
behaviour of the Organization and Employee service.There are six types of
Transaction Propagations-

1) REQUIRED

2) SUPPORTS

3) NOT_SUPPORTED

4) REQUIRES_NEW

5) NEVER

6) MANDATORY

13.2.1 Transaction Propagation (Required):

mu
no
tes
.in

177

Chapter 11: Understanding Transaction Management in Spring

Here both the Organization Service and the Employee Service have the transaction
propagation defined as Required. This is the default Transaction Propagation.

Code-
The Organization Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.model.Employee;
import com.javainuse.model.EmployeeHealthInsurance;
import com.javainuse.service.EmployeeService;
import com.javainuse.service.HealthInsuranceService;
import com.javainuse.service.OrganizationService;
@Service
@Transactional
public class OrganzationServiceImpl implements OrganizationService {
 @Autowired
 EmployeeService employeeService;
 @Autowired
 HealthInsuranceService healthInsuranceService;
 @Override
 public void joinOrganization(Employee employee,
EmployeeHealthInsurance employeeHealthInsurance) {
 employeeService.insertEmployee(employee);
 if (employee.getEmpId().equals("emp1")) {
 throw new RuntimeException("thowing exception to test
transaction rollback");
 }
 healthInsuranceService.registerEmployeeHealthInsurance(employeeHealthI
nsurance);
 }
 @Override
 public void leaveOrganization(Employee employee,
EmployeeHealthInsurance employeeHealthInsurance) {
 employeeService.deleteEmployeeById(employee.getEmpId());
 healthInsuranceService.deleteEmployeeHealthInsuranceById(employeeHea
lthInsurance.getEmpId());

mu
no
tes
.in

178

 ADVANCE JAVA

 }
}
The Employee Service will be as follows-
package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.dao.EmployeeDao;
import com.javainuse.model.Employee;
import com.javainuse.service.EmployeeService;
@Service
@Transactional
public class EmployeeServiceImpl implements EmployeeService {
 @Autowired
 EmployeeDao employeeDao;
 @Override
 public void insertEmployee(Employee employee) {
 employeeDao.insertEmployee(employee);
 }
 @Override
 public void deleteEmployeeById(String empid) {
 employeeDao.deleteEmployeeById(empid);
 }
}
Output:

EmployeeService called using OrganizationService -

mu
no
tes
.in

179

Chapter 11: Understanding Transaction Management in Spring

EmployeeService called directly -

11.2.2 Transaction Propagation (Supports):

Here both the Organization Service has the transaction propagation defined
as Required while Employee Service the transaction propagation is defined
as Supports.

Code-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.model.Employee;
import com.javainuse.model.EmployeeHealthInsurance;
import com.javainuse.service.EmployeeService;
import com.javainuse.service.HealthInsuranceService;
import com.javainuse.service.OrganizationService;

mu
no
tes
.in

180

 ADVANCE JAVA

@Service
@Transactional
public class OrganzationServiceImpl implements OrganizationService {
@Autowired
EmployeeService employeeService;
@Autowired
HealthInsuranceService healthInsuranceService;
@Override
public void joinOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.insertEmployee(employee);
if (employee.getEmpId().equals("emp1")) {
throw new RuntimeException("thowing exception to test transaction rollback");
}
healthInsuranceService.registerEmployeeHealthInsurance(employeeHealthInsura
nce);
}
@Override
public void leaveOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.deleteEmployeeById(employee.getEmpId());
healthInsuranceService.deleteEmployeeHealthInsuranceById(employeeHealthIns
urance.getEmpId());
}
}
The Employee Service will be as follows-
package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.dao.EmployeeDao;
import com.javainuse.model.Employee;
import com.javainuse.service.EmployeeService;
@Service
@Transactional(propagation=Propagation.SUPPORTS)
public class EmployeeServiceImpl implements EmployeeService {
@Autowired
EmployeeDao employeeDao;
@Override
public void insertEmployee(Employee employee) {
employeeDao.insertEmployee(employee);
}

mu
no
tes
.in

181

Chapter 11: Understanding Transaction Management in Spring

@Override
public void deleteEmployeeById(String empid) {
employeeDao.deleteEmployeeById(empid);
}
}
Output:

EmployeeService called using OrganizationService -

EmployeeService called directly -

11.2.3 Transaction Propagation (Not_Supports):

mu
no
tes
.in

182

 ADVANCE JAVA

Here for the Organization Service we have defined the transaction propagation
as REQUIRED and the Employee Service have the transaction propagation defined
as NOT_SUPPORTED

Code-

The Organization Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.model.Employee;
import com.javainuse.model.EmployeeHealthInsurance;
import com.javainuse.service.EmployeeService;
import com.javainuse.service.HealthInsuranceService;
import com.javainuse.service.OrganizationService;
@Service
@Transactional
public class OrganzationServiceImpl implements OrganizationService {
@Autowired
EmployeeService employeeService;
@Autowired
HealthInsuranceService healthInsuranceService;
@Override
public void joinOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.insertEmployee(employee);
if (employee.getEmpId().equals("emp1")) {
throw new RuntimeException("thowing exception to test transaction rollback");
}
healthInsuranceService.registerEmployeeHealthInsurance(employeeHealthInsura
nce);
}
@Override
public void leaveOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.deleteEmployeeById(employee.getEmpId());
healthInsuranceService.deleteEmployeeHealthInsuranceById(employeeHealthIns
urance.getEmpId());
}
}

mu
no
tes
.in

183

Chapter 11: Understanding Transaction Management in Spring

The Employee Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.dao.EmployeeDao;
import com.javainuse.model.Employee;
import com.javainuse.service.EmployeeService;
@Service
@Transactional(propagation=Propagation.NOT_SUPPORTED)
public class EmployeeServiceImpl implements EmployeeService {
@Autowired
EmployeeDao employeeDao;
@Override
public void insertEmployee(Employee employee) {
employeeDao.insertEmployee(employee);
}
@Override
public void deleteEmployeeById(String empid) {
employeeDao.deleteEmployeeById(empid);
}
}

Output

EmployeeService called using OrganizationService -

mu
no
tes
.in

184

 ADVANCE JAVA

EmployeeService called directly -

11.2.4 Transaction Propagation (Requires_New):

Here for the Organization Service we have defined the transaction propagation
as REQUIRED and the Employee Service have the transaction propagation defined
as REQUIRES_NEW

Code-

The Organization Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.model.Employee;
import com.javainuse.model.EmployeeHealthInsurance;
import com.javainuse.service.EmployeeService;
import com.javainuse.service.HealthInsuranceService;
import com.javainuse.service.OrganizationService;
@Service

mu
no
tes
.in

185

Chapter 11: Understanding Transaction Management in Spring

@Transactional
public class OrganzationServiceImpl implements OrganizationService {
@Autowired
EmployeeService employeeService;
@Autowired
HealthInsuranceService healthInsuranceService;
@Override
public void joinOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.insertEmployee(employee);
if (employee.getEmpId().equals("emp1")) {
throw new RuntimeException("thowing exception to test transaction rollback");
}
healthInsuranceService.registerEmployeeHealthInsurance(employeeHealthInsuran
ce);
}
@Override
public void leaveOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.deleteEmployeeById(employee.getEmpId());
healthInsuranceService.deleteEmployeeHealthInsuranceById(employeeHealthInsu
rance.getEmpId());
}
}

The Employee Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.dao.EmployeeDao;
import com.javainuse.model.Employee;
import com.javainuse.service.EmployeeService;
@Service
@Transactional(propagation=Propagation.REQUIRES_NEW)
public class EmployeeServiceImpl implements EmployeeService {
@Autowired
EmployeeDao employeeDao;

mu
no
tes
.in

186

 ADVANCE JAVA

@Override
public void insertEmployee(Employee employee) {
employeeDao.insertEmployee(employee);
}
@Override
public void deleteEmployeeById(String empid) {
employeeDao.deleteEmployeeById(empid);
}
}

Output:

EmployeeService called using OrganizationService -

EmployeeService called directly -

mu
no
tes
.in

187

Chapter 11: Understanding Transaction Management in Spring

11.2.5 Transaction Propagation (Never):

Here for the Organization Service we have defined the transaction propagation
as REQUIRED and the Employee Service have the transaction propagation defined
as NEVERs

Code-

The Organization Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.model.Employee;
import com.javainuse.model.EmployeeHealthInsurance;
import com.javainuse.service.EmployeeService;
import com.javainuse.service.HealthInsuranceService;
import com.javainuse.service.OrganizationService;
@Service
@Transactional
public class OrganzationServiceImpl implements OrganizationService {
@Autowired
EmployeeService employeeService;
@Autowired
HealthInsuranceService healthInsuranceService;
@Override
public void joinOrganization(Employee employee, EmployeeHealthInsurance

mu
no
tes
.in

188

 ADVANCE JAVA

employeeHealthInsurance) {
employeeService.insertEmployee(employee);
if (employee.getEmpId().equals("emp1")) {
throw new RuntimeException("thowing exception to test transaction rollback");
}
healthInsuranceService.registerEmployeeHealthInsurance(employeeHealthInsuran
ce);
}
@Override
public void leaveOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.deleteEmployeeById(employee.getEmpId());
healthInsuranceService.deleteEmployeeHealthInsuranceById(employeeHealthInsu
rance.getEmpId());
}
}

The Employee Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.dao.EmployeeDao;
import com.javainuse.model.Employee;
import com.javainuse.service.EmployeeService;
@Service
@Transactional(propagation=Propagation.NEVER)
public class EmployeeServiceImpl implements EmployeeService {

@Autowired
EmployeeDao employeeDao;
@Override
public void insertEmployee(Employee employee) {
employeeDao.insertEmployee(employee);
}
@Override
public void deleteEmployeeById(String empid) {
employeeDao.deleteEmployeeById(empid);
}
}

mu
no
tes
.in

189

Chapter 11: Understanding Transaction Management in Spring

Output:

EmployeeService called using OrganizationService -

EmployeeService called directly -

11.2.6 Transaction Propagation (Mandatory):

Here for the Organization Service we have defined the transaction propagation
as REQUIRED and the Employee Service have the transaction propagation defined
as MANDATORY

mu
no
tes
.in

190

 ADVANCE JAVA

Code-

The Organization Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.model.Employee;
import com.javainuse.model.EmployeeHealthInsurance;
import com.javainuse.service.EmployeeService;
import com.javainuse.service.HealthInsuranceService;
import com.javainuse.service.OrganizationService;
@Service
@Transactional
public class OrganzationServiceImpl implements OrganizationService {
@Autowired
EmployeeService employeeService;
@Autowired
HealthInsuranceService healthInsuranceService;
@Override
public void joinOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.insertEmployee(employee);
if (employee.getEmpId().equals("emp1")) {
throw new RuntimeException("thowing exception to test transaction rollback");
}
healthInsuranceService.registerEmployeeHealthInsurance(employeeHealthInsuran
ce);
}
@Override
public void leaveOrganization(Employee employee, EmployeeHealthInsurance
employeeHealthInsurance) {
employeeService.deleteEmployeeById(employee.getEmpId());
healthInsuranceService.deleteEmployeeHealthInsuranceById(employeeHealthInsu
rance.getEmpId());
}
}

The Employee Service will be as follows-

package com.javainuse.service.impl;
import org.springframework.beans.factory.annotation.Autowired;

mu
no
tes
.in

191

Chapter 11: Understanding Transaction Management in Spring

import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.javainuse.dao.EmployeeDao;
import com.javainuse.model.Employee;
import com.javainuse.service.EmployeeService;
@Service
@Transactional(propagation=Propagation.MANDATORY)
public class EmployeeServiceImpl implements EmployeeService {
@Autowired
EmployeeDao employeeDao;
@Override
public void insertEmployee(Employee employee) {
employeeDao.insertEmployee(employee);
}
@Override
public void deleteEmployeeById(String empid) {
employeeDao.deleteEmployeeById(empid);
}
}

Output:

EmployeeService called using OrganizationService -

EmployeeService called directly -

mu
no
tes
.in

192

 ADVANCE JAVA

 11.3 Conclusion

In this chapter we looked at how to manage transactions in Spring stored
programs, allowing us to group together related database changes, applying them
all or aborting them all as a single logical unit. Implementing transactions using
stored programs is a fairly natural choice, since a stored program can encapsulate
complex transaction logic into a single database call, providing good separation
between database and application logic.

11.4 List of References

https://docs.spring.io/spring-framework/docs/2.5.x/reference/transaction.htmls

https://medium.com/@rameez.s.shaikh/spring-boot-transaction-tutorial-
understanding-transaction-propagation-ad553f5d85d4

������

mu
no
tes
.in

	AJ chapter 0
	AJ Chapter 1
	AJ chapter 2
	AJ chapter 3
	AJ chapter 4
	AJ chapter 5
	AJ chapter 6
	AJ chapter 7
	AJ chapter 8
	AJ chapter 9
	AJ chapter 10
	AJ chapter 11

