
 1

1
WEB SERVICES BASICS

Unit Structure :

1.0 Objective

1.1 Introduction

1.1.1 What are Web services?

1.1.2 Types of Web services

1.1.2.1 Simple or informational services

1.1.2.2 Complex services or business processes

1.2 Distributed computing infrastructure

1.2.1 Internet protocols

1.2.1.1 The Open Systems Interconnection reference model

1.2.1.2 The TCP/IP network protocol

1.2.2 Middleware

1.2.3 The client–server model

1.3 Overview of XML

1.3.1 XML declaration

1.3.2 URIs and XML namespaces

1.3.3 The XML Schema Definition Language

1.4 SOAP (Simple Object Access Protocol)

1.5 Building Web Services with JAX-WS

1.6 Registering and Discovering Web Services

1.7 Service-Oriented Architecture

1.8 Web Services Development Life Cycle

1.8.1 7 Steps

1.9 Developing and consuming simple Web Services across platform

1.10 Summary

1.11 Questions

1.12 References

mu
no
tes
.in

Web Services

2

1.0 OBJECTIVE

 This chapter explores web services, their principles, technologies, and
best practices.

 It covers fundamental concepts like SOAP and XML, enabling
seamless integration across platforms.

 Readers learn to design robust web services, handle authentication,
security, versioning, and optimize performance.

 Advanced topics include microservices, GraphQL, and event-driven
services.

 The book also addresses API documentation, testing, and monitoring.
Practical insights from experienced developers offer valuable
perspectives, making this book suitable for both novices and experts in
web service development.

1.1 INTRODUCTION

In the realm of web services, where the digital world converges to
exchange information and deliver seamless experiences, the art of
designing robust services emerges as a cornerstone of success. In this
pivotal chapter, we embark on a journey to master the principles and
practices that breathe life into web services, making them reliable,
scalable, and efficient.

The foundation of any web service lies in its Application Programming
Interface (API), the interface that defines the rules of engagement between
applications. As we delve into the intricacies of API design, we unravel
the secrets to crafting clear, intuitive, and consistent interfaces that
empower developers to interact with your services effortlessly.

But a great API alone is not enough to ensure a seamless user experience.
Data representation plays a crucial role in bridging the gap between
diverse systems, and we will explore the best practices of structuring data
using technologies such as JSON, XML, and others. You will gain insights
into the art of data serialization, ensuring that information flows flawlessly
across the digital divide.

As the world becomes increasingly interconnected, the importance of
security and authentication cannot be overstated. We will delve into the
methods of safeguarding your services, implementing robust
authentication mechanisms, and establishing trust between applications.
By the end of this chapter, you will be armed with the knowledge to build
secure and protected web services.

Moreover, we acknowledge that no system is without flaws, and web
services are no exception. Hence, we tackle the crucial topic of error
handling with utmost care. Understanding how to gracefully handle errors

mu
no
tes
.in

Web Services Basics

3

and communicate them effectively to clients is paramount in delivering a
user experience that instills confidence.

As your web services grow and evolve, versioning becomes an inevitable
aspect of their lifecycle. We will equip you with strategies to manage
multiple versions of your services without causing disruption or chaos.
With the wisdom imparted in this chapter, versioning will become a
seamless and organized process.

Finally, we address the performance optimization of your web services, a
critical element in ensuring smooth operation and responsiveness. By the
end of this chapter, you will have the tools and techniques to fine-tune
your services, making them agile and capable of handling an ever-
increasing load.

Are you ready to elevate your web services to new heights? Join us on this
voyage of API design, data representation, security, error handling,
versioning, and performance optimization. Armed with the knowledge
gained in this chapter, you will transform your web services into robustand
reliable engines that drive the digital landscape with confidence and
finesse.

1.1.1 What are Web services?

Web services are a set of technologies and standards used for
communication and data exchange between different software applications
and systems over the internet. They facilitate seamless integration and
interaction among diverse platforms, enabling them to work together and
share information efficiently.

At their core, web services are a way for software applications to
communicate with each other using standard protocols and data formats,
irrespective of the programming languages or operating systems they are
built upon. This interoperability and platform independence make web
services a fundamental component of modern software development and
the foundation of the interconnected digital world we experience today.

The key components that define web services include:

1. Standard Protocols: Web services utilize well-established

communication protocols like HTTP (Hypertext Transfer Protocol)
and HTTPS (HTTP Secure) for data exchange. These protocols ensure
that the communication between applications is reliable and secure.

2. XML (eXtensible Markup Language) or JSON (JavaScript Object

Notation): These are the most commonly used data formats for
structuring and representing data in web services. XML has been
traditionally popular, while JSON has gained significant traction due
to its lightweight and human-readable nature.

mu
no
tes
.in

Web Services

4

3. APIs (Application Programming Interfaces): APIs act as interfaces
that allow different software applications to interact with each other.
Web services expose APIs that define the methods, data structures, and
communication rules that applications need to follow to request or
provide services.

4. Service Description: Web services are described using standard

languages like WSDL (Web Services Description Language) or
OpenAPI, which provide machine-readable specifications of the
services offered, including their methods, input parameters, and
response formats.

1.1.2 Types of Web services

Topologically, Web services can come in two flavors, see Figure 1.1.
Informational, ortype I, Web services, which support only simple
request/response operations and alwayswait for a request; they process it
and respond. Complex, or type II Web services implement some form of
coordination between inbound and outbound operations. Each of thesetwo
models exhibits several important characteristics and is in turn subdivided
in morepecialized subcategories.

Fig 1.1 High-level view of informational and complex services

1.1.2.1 Simple or informational services

Informational or Type I web services, also known as Document-style web
services, are one of the two primary classifications of web services based
on their communication style and message format. These web services are
designed to exchange information in the form of XML documents and are
primarily associated with the Simple Object Access Protocol (SOAP)
protocol.

In Type I web services, the focus is on the structure and content of the
XML documents that are transmitted between applications. These XML
documents are often defined using Web Services Description Language

mu
no
tes
.in

Web Services Basics

5

(WSDL), a standard language used to describe the interface and
functionality of the web service.

Key characteristics of Informational or Type I web services include:

1. SOAP Protocol: Type I web services predominantly use the SOAP
protocol for communication. SOAP provides a standardized way to
structure and format messages, ensuring consistency and
interoperability across different platforms and programming
languages.

2. XML-Based Messages: The data exchanged in Type I web services is
typically represented as XML documents. XML allows for the
structured representation of data, making it suitable for complex and
diverse data types.

3. Document-Centric Approach: The primary focus of Type I web
services is on exchanging XML documents that contain data and
information. Unlike Type II web services (RPC-style web services),
which emphasize remote method calls and procedural communication,
Type I web services prioritize data exchange and document handling.

4. Platform and Language Independence: Informational web services
promote platform independence, allowing applications written in
different programming languages and running on different platforms to
communicate seamlessly.

5. WSDL Description: Type I web services often provide a WSDL
description, which acts as a contract between the service provider and
the service consumer. It defines the structure of the XML messages
and the operations that the web service supports.

6. Statelessness: Like all web services, Type I web services follow the
stateless nature of the HTTP protocol, meaning that each request from
the client to the server is treated as an independent request without any
connection or session maintenance.

Informational or Type I web services find their applications in scenarios
where the focus is on exchanging structured data and documents rather
than invoking specific remote procedures. They are commonly used in
enterprise-level applications, data exchange between different systems,
and scenarios where a formal contract between the service provider and
consumer is required.

As the world of web services continues to evolve, both Type I and Type II
(RPC-style) web services have their unique strengths and use cases,
providing developers with flexible options to choose the most suitable
communication style based on their specific requirements.

1.1.2.2 Complex services or business processes

Complex, or Type II web services, also known as RPC-style (Remote
Procedure Call) web services, are one of the two primary classifications of

mu
no
tes
.in

Web Services

6

web services based on their communication style and message format.
Unlike Type I web services (Informational), which focus on exchanging
data in the form of XML documents, Type II web services emphasize
remote method invocation and procedural communication.

In Type II web services, the primary goal is to execute specific functions
or methods on the remote server and receive the results in a structured
format. This type of web service is commonly associated with using the
SOAP (Simple Object Access Protocol) protocol for communication,
similar to Type I web services. However, instead of dealing with XML
documents, Type II web services typically use XML messages to define
the method calls and parameters.

Key characteristics of Complex or Type II web services include:

1. RPC-Style Communication: Type II web services follow a remote

procedure call (RPC) style of communication. The client application
invokes remote methods on the server-side, and the server processes
the requests and returns the results to the client.

2. SOAP Protocol: Like Type I web services, Type II web services

predominantly use the SOAP protocol for communication. This
ensures a standardized and secure way of exchanging messages
between applications.

3. XML-Based Messages: While Type II web services use XML

messages, they are more focused on specifying the remote method
calls and their parameters. The XML messages act as wrappers for
invoking methods on the server.

4. Procedural Invocation: Type II web services emphasize the

procedural aspect of remote method invocation, where the client
invokes specific functions on the server-side, and the server processes
the request accordingly.

5. Platform and Language Independence: Like all web services, Type

II web services offer platform independence, enabling applications
built on different platforms and programming languages to
communicate effectively.

6. WSDL Description: Type II web services also provide a WSDL

description that outlines the methods available for invocation, their
input parameters, and expected responses.

Complex or Type II web services are commonly used in scenarios where
applications require remote execution of specific functions or tasks. They
are well-suited for situations where a client application needs to interact
with a server-side service to perform specialized operations or access
certain functionalities.

mu
no
tes
.in

Web Services Basics

7

It's important to note that while Type I and Type II web services are two
primary classifications, the lines between them can sometimes be blurred,
and modern web service implementations often combine aspects of both
types to meet specific application requirements.

1.2 DISTRIBUTED COMPUTING INFRASTRUCTURE

A distributed system is characterized as a collection of (probably
heterogeneous)networked computers, which communicate and coordinate
their actions by passing messages. Distribution is transparent to the user so
that the system appears as a single integrated facility. This is in contrast to
a network infrastructure, where the user is aware that there are several
machines, is also aware of their location, storage replication, and load
balancing, and functionality is not transparent.

A distributed system has numerous operational components
(computational elements,such as servers and other processors, or
applications) which are distributed over variousinterconnected computer
systems. Components are autonomous as they posses full controlover their
parts at all times. In addition, there is no central control in the sense that a
single component assumes control over all the other components in a
distributed system.Distributed systems usually use some kind of client–
server organization. A computer systemthat hosts some component of a
distributed system is referred to as a host. Distributedcomponents are
typically heterogeneous in that they are written in different programming
languages and may operate under different operating systems and diverse
hardware platforms. The sharing of resources is the main motivation for
constructing distributed systems. As a consequence of component
autonomy, distributed systems execute applications concurrently.
Consequently, there are potentially as many processes in a distributed
system asthere are components. Furthermore, applications are often multi-
threaded. They may create a new thread whenever they start to perform a
service for a user or another application. In this way the application is not
blocked while it is executing a service and isavailable to respond to further
service requests.

1.2.1 Internet protocols

Certainly! In a general sense, internet protocols are a set of rules and
conventions that dictate how devices communicate and exchange data
over the Internet. They enable devices to understand and interpret each
other's messages, ensuring effective and reliable data transmission.
Internet protocols cover various aspects of online communication, such as
addressing, data formatting, error handling, and security.

Imagine the internet as a vast global network of interconnected devices
like computers, servers, smartphones, and other gadgets. These devices
need a common language to communicate and share information with each
other. Internet protocols provide that common language, ensuring that data
packets can be correctly sent, received, and interpreted across the network.

mu
no
tes
.in

Web Services

8

For instance, when you browse the web, your web browser (the client)
uses the HTTP protocol to request web pages from a web server. The
server then responds with the requested data using the same protocol. In
the background, TCP ensures that the data packets arrive in the correct
order and without errors.

Similarly, when you send an email, your email client uses SMTP to send
the email to your email server, which then uses either POP3 or IMAP to
retrieve the email on another device. DNS helps translate human-readable
domain names (like google.com) into IP addresses so that your browser
can find the correct server to load the website.

These are just a few examples of how internet protocols facilitate
communication between devices and services on the internet. They play a
fundamental role in enabling the vast array of online activities we engage
in daily, from web browsing and email to file transfers, online gaming,
video streaming, and more. Without internet protocols, the internet, as we
know it, would not function.

1.2.1.1 The Open Systems Interconnection reference model

The Open Systems Interconnection (OSI) reference model is a conceptual
framework used to understand and describe how different networking
protocols and technologies interact and work together in a networked
communication system. It was developed by the International
Organization for Standardization (ISO) in the early 1980s. The model is
not a specific implementation but rather a guideline for creating network
communication standards and products that are interoperable and
compatible.

The OSI model consists of seven layers, each representing a specific
function of network communication. These layers are stacked in a
hierarchical manner, with data passing through each layer as it moves
from the application on one device to the application on another device in
a network. Each layer performs its designated tasks and communicates
with its adjacent layers. The seven layers of the OSI model are as follows:

1. Physical Layer: The lowest layer deals with the physical medium

over which data is transmitted, such as cables, electrical signals, or
wireless transmission. It defines the physical characteristics of the
network, such as voltage levels, data rates, and connector types.

2. Data Link Layer: This layer is responsible for the reliable

transmission of data between two directly connected devices over a
specific physical link. It deals with error detection, flow control, and
addressing of devices on the local network.

3. Network Layer: The network layer is responsible for routing data

packets between different networks. It determines the optimal path for

mu
no
tes
.in

Web Services Basics

9

data to travel from the source to the destination based on network
topology and addressing.

4. Transport Layer: The transport layer ensures reliable and error-free

data delivery between two devices. It breaks data into smaller
segments, manages acknowledgment and retransmission of lost data,
and deals with flow control.

5. Session Layer: This layer establishes, maintains, and terminates

sessions (connections) between applications on different devices. It
allows synchronization and coordination between applications.

6. Presentation Layer: The presentation layer is responsible for data

translation, encryption, and compression. It ensures that data from the
application layer of one device can be understood by the application
layer of another device.

7. Application Layer: The top layer of the OSI model represents the

user interface and serves as the entry point for network applications. It
enables communication between user applications and the network.

The OSI model provides a clear division of network communication tasks
into manageable layers, making it easier for developers to design,
implement, and troubleshoot network protocols and systems. Though
modern networking technologies often do not strictly adhere to the OSI
model, it remains a valuable reference for understanding the fundamentals
of network communication and interoperability.

mu
no
tes
.in

Web Services

10

1.2.1.2 The TCP/IP network protocol

The TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of
communication protocols used for transmitting data over networks,
including the Internet. It is the foundational protocol suite for the internet
and has become the standard for network communication across the globe.

TCP/IP was developed in the 1970s by the United States Department of
Defense (DoD) to connect various computer systems and networks. Over
time, it has evolved and become the backbone of the modern internet and
intranets.

The TCP/IP protocol suite consists of several protocols, organized into
four layers, which are loosely related to the OSI model but do not exactly
match its layers. These layers are:

1. Application Layer: The top layer is responsible for providing

network services directly to applications and end-users. It includes
various protocols for different applications, such as HTTP (for web
browsing), SMTP (for email), FTP (for file transfer), and DNS (for
domain name resolution).

2. Transport Layer: This layer is responsible for end-to-end

communication between devices. It ensures that data is reliably and
accurately delivered between applications running on different
devices. The two main protocols in this layer are:

 Transmission Control Protocol (TCP): TCP is a connection-oriented

protocol that provides reliable, error-checked data transmission. It
establishes a connection before data transfer and ensures that data
packets are delivered in the correct order and without errors.

 User Datagram Protocol (UDP): UDP is a connectionless protocol
that offers faster but less reliable communication. It is often used for
time-sensitive applications where some data loss is acceptable, such as
real-time video streaming and online gaming.

mu
no
tes
.in

Web Services Basics

11

3. Internet Layer: The internet layer handles the addressing, routing,

and forwarding of data packets between different networks. It uses IP
(Internet Protocol) for this purpose. IP provides unique addresses
(IPv4 or IPv6) to identify devices on the internet, allowing data to be
routed from the source to the destination.

4. Link Layer (Network Interface Layer): The lowest layer deals with

the physical transmission of data over the local network medium. It
includes protocols specific to the type of network technology being
used, such as Ethernet, Wi-Fi, or PPP (Point-to-Point Protocol).

TCP/IP is considered an open standard because its specifications are
publicly available, allowing anyone to implement the protocols without
restrictions. This openness and its scalability have contributed to its
widespread adoption and success as the primary network protocol for the
internet. It enables seamless communication between a vast array of
devices, ranging from computers and smartphones to IoT devices and
servers, connecting the world in a global network.

1.2.2 Middleware

Middleware refers to software that acts as an intermediary or bridge
between different applications, systems, or components within a
distributed computing environment. It plays a crucial role in facilitating
communication, data exchange, and integration between various software
applications and services.

In a distributed computing environment, where applications and resources
are spread across multiple systems and locations, middleware provides a
standardized way for these components to interact with each other. It
abstracts the complexities of low-level network communication and allows
applications to communicate and share data without being concerned
about the underlying infrastructure.

Middleware offers several key functionalities, including:

1. Communication: Middleware enables communication between

different applications and systems, regardless of the underlying
hardware, operating systems, or programming languages they use. It
provides a common set of communication protocols and APIs, making
it easier for applications to exchange data and messages.

2. Integration: Middleware allows disparate systems and applications to

work together seamlessly by providing mechanisms for data
transformation, message routing, and protocol translation. It helps
achieve interoperability and smooth data flow across different
components.

mu
no
tes
.in

Web Services

12

3. Distributed Computing: Middleware is essential for managing and
coordinating distributed computing tasks. It supports features like
remote procedure calls (RPCs), message queues, and publish-subscribe
mechanisms, which enable distributed applications to collaborate and
share resources efficiently.

4. Security: Middleware often includes security features to ensure secure

communication and data exchange between applications. It may
provide encryption, authentication, and authorization mechanisms to
protect sensitive information and prevent unauthorized access.

5. Transaction Management: Middleware supports distributed

transactions, allowing multiple operations across different systems to
be grouped together as a single unit. If any part of the transaction fails,
the middleware ensures that the entire transaction is rolled back,
maintaining data consistency.

6. Scalability and Load Balancing: Middleware solutions can help

distribute workloads across multiple servers, ensuring that resources
are used efficiently and that the system can handle increased demand
without becoming overwhelmed.

Examples of middleware include:

 Message-oriented middleware (MOM): Provides messaging services

that allow applications to send and receive messages in a decoupled
manner. Examples include Apache Kafka and RabbitMQ.

 Remote Procedure Call (RPC) middleware: Enables applications to

call functions or procedures on remote systems as if they were local.
Common implementations include Java RMI and gRPC.

 Object Request Brokers (ORBs): Facilitate communication between

objects in distributed object-oriented systems. Examples include
CORBA (Common Object Request Broker Architecture).

 Database Middleware: Allows applications to interact with databases

without knowing the underlying database system. Examples include
ODBC (Open Database Connectivity) and JDBC (Java Database
Connectivity).

Middleware plays a crucial role in modern distributed systems, enabling
seamless integration, improved scalability, and efficient communication
between various software components, which is especially essential in
complex and interconnected environments.

mu
no
tes
.in

Web Services Basics

13

1.2.3 The client–server model

The client-server model is a computing architecture that describes the
relationship and interaction between two types of entities: the "client" and
the "server." It is a fundamental concept in distributed computing and
networking, where multiple devices (clients) communicate with a
centralized device or service (server) to access resources, services, or data.

Here's an overview of how the client-server model works:

1. Client: The client is an end-user device or application that requests

and consumes services or resources from the server. Clients can be
desktop computers, laptops, smartphones, tablets, or any other device
capable of making requests over a network.

2. Server: The server is a powerful and centralized computing device or

software application that provides specific services, data, or resources
to clients. Servers are designed to be always available and responsive
to client requests.

3. Communication: In the client-server model, communication between

the client and the server is typically based on a request-response
paradigm. The client sends a request to the server, specifying the
service or resource it needs. The server processes the request, performs
the necessary actions, and sends a response back to the client with the
requested data or confirmation of the action taken.

4. Statelessness: In many cases, the client-server interaction is

considered "stateless." It means that each request from the client to the
server is independent and does not rely on previous requests. The
server treats each request as a separate transaction, and the client
includes all the necessary information for the server to process the
request completely.

5. Scalability: The client-server model allows for scalable systems.

Multiple clients can connect to the same server simultaneously, and
additional servers can be added to handle increased client demands.
This scalability is one of the reasons why the client-server model is
widely used in various applications and services.

mu
no
tes
.in

Web Services

14

Examples of the client-server model in practice:

 Web Browsing: When you use a web browser (client) to access a
website, the browser sends requests to the web server, which then
responds with the requested web page, images, or other resources.

 Email: When you use an email client (client) to send or receive

emails, it communicates with the email server, which stores and
manages the email messages.

 Online Gaming: In multiplayer online games, players' devices act as

clients that connect to a central game server to interact with other
players and access game data.

 File Sharing: In a file-sharing system, clients request files or data

from a file server, which grants access to the requested resources.

The client-server model simplifies the design and implementation of
distributed systems, as it provides a clear separation of concerns between
clients and servers. The server's centralized management allows for better
control, security, and efficient resource utilization, while clients can be
lightweight and focus on providing a user-friendly interface to interact
with the server's resources.

1.3 OVERVIEW OF XML

XML is an extensible markup language used for the description and
delivery ofmarked-upelectronic text over the Web. Two important
characteristics of XML distinguish it fromother markup languages: its
document type concept and its portability.An important aspect of XML is
its notion of a document type. XML documents areregarded as having
types. XML’s constituent parts and their structure formally define thetype
of a document.Another basic design feature of XML is to ensure that
documents are portable betweendifferent computing environments. All
XML documents, whatever language or writingsystem they employ, use
the same underlying character encoding scheme. This encodingis defined
by the international standard Unicode, which is a standard encoding
system thatsupports characters of diverse natural languages.

mu
no
tes
.in

Web Services Basics

15

1.3.1 XML declaration

Image courtesy Web.services...principles.and.technology.pdf

The first few characters of an XML document must make up an
XMLdeclaration.The XML processing software uses the declaration to
determine how to deal with thesubsequent XML content. A typical XML
declaration begins with a prologue that typicallycontains a declaration of
conformity to version 1.0 of the XML standard and to the UTF-8encoding
standard: <?xml version="1.0" encoding="UTF-8"?>. This is shownin
Figure

1.3.2 URIs and XML namespaces

URIs (Uniform Resource Identifiers) and XML namespaces are important
concepts in XML (eXtensible Markup Language) that help in uniquely
identifying and organizing elements and attributes within an XML
document. Let's explore them in more detail:

1. URIs (Uniform Resource Identifiers):
A URI is a string of characters used to identify a resource, either on the
internet or within an XML document. URIs provide a standardized way to
reference resources, making it possible to locate and access them. The
most common types of URIs are:

- URL (Uniform Resource Locator): A specific type of URI that provides
the address of a resource on the internet. It includes the protocol (e.g.,
"http://" or "https://") followed by the domain name or IP address and the
resource's path.

- URN (Uniform Resource Name): Another type of URI that is intended to
be globally unique and persistent even if the resource's location changes.
URNs are used to identify resources without specifying their location.

mu
no
tes
.in

Web Services

16

In XML, URIs are commonly used to identify XML namespaces, allowing
multiple vocabularies or sets of element and attribute names to coexist
within the same XML document without conflicting with each other.

2. XML namespaces:
XML namespaces are a way to avoid naming conflicts when using XML
elements and attributes. They provide a method for qualifying element and
attribute names with a unique identifier (usually a URI) to indicate which
vocabulary or schema the elements and attributes belong to.

In XML documents, namespaces are defined using the `xmlns` attribute.
This attribute is added to the root element of the XML document or any
element that needs to be associated with a specific namespace. The
`xmlns` attribute is followed by the namespace URI.

For example:

```xml 

<root xmlns="http://www.example.com/ns1"> 

<element1>Some content</element1> 

<element2>Some other content</element2> 

</root> 

``` 


In the above example, the elements `element1` and `element2` are
associated with the namespace identified by the URI
"http://www.example.com/ns1".

When using XML namespaces, you need to use the namespace prefix to
qualify the elements and attributes within the XML document. The prefix
is typically defined using another `xmlns` attribute with a unique prefix
name and the associated namespace URI.

For example:

```xml 

<root xmlns:prefix="http://www.example.com/ns1"> 

<prefix:element1>Some content</prefix:element1> 

<prefix:element2>Some other content</prefix:element2> 

</root> 

``` 


mu
no
tes
.in

Web Services Basics

17

In this case, the elements are qualified with the prefix "prefix" to indicate
they belong to the namespace identified by
"http://www.example.com/ns1".

By using XML namespaces, different XML vocabularies can be mixed
together in a single document without causing conflicts, enabling better
data organization and sharing.

1.3.3 The XML Schema Definition Language

The XML Schema Definition Language (XSD) is a powerful and widely
used language for describing the structure and constraints of XML
documents. It allows you to define the rules that XML documents must
follow, ensuring data consistency and providing a formal way to validate
XML content against those rules.

XSD provides a set of elements and attributes that allow you to specify the
structure of XML documents, including:

1. Complex Types: Defines the structure of elements that can contain

other elements or attributes. Complex types can be made up of
sequences, choices, and other complex types.

2. Simple Types: Defines the data type of elements that contain text

content. XSD supports a range of built-in simple data types such as
strings, numbers, dates, booleans, etc. It also allows you to define your
custom simple types.

3. Elements: Define the building blocks of XML documents. Elements

can be either simple elements (contain text content only) or complex
elements (can contain other elements and attributes).

4. Attributes: Define additional properties or metadata for elements.

Attributes must be declared in the context of an element or attribute
group.

5. Groups: Allow you to group related elements or attributes, making it

easier to reuse and maintain schemas.

6. Namespaces: XML namespaces can also be defined in XSD to enable
the use of qualified names for elements and attributes, as discussed in
the previous response.

7. Restrictions and Constraints: XSD supports a wide range of

constraints that can be applied to elements and attributes, such as
minimum and maximum occurrence constraints, length constraints,
regular expressions, enumerations, etc.

An XML schema file (usually with the file extension ".xsd") contains the
definitions of elements, attributes, and types, along with the rules and

mu
no
tes
.in

Web Services

18

constraints governing their usage. XML documents can then be validated
against these schema files to ensure that they conform to the defined rules.

For example, a simple XSD definition for a book element might look like
this:

```xml 

<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:element name="book"> 

<xs:complexType> 

<xs:sequence> 

<xs:element name="title" type="xs:string"/> 

<xs:element name="author" type="xs:string"/> 

<xs:element name="publication_year" type="xs:int"/> 

</xs:sequence> 

<xs:attribute name="isbn" type="xs:string"/> 

</xs:complexType> 

</xs:element> 

</xs:schema> 

``` 


With the above XSD, you can define XML documents like:
```xml 

<book isbn="123456789"> 

<title>Sample Book</title> 

<author>John Doe</author> 

<publication_year>2023</publication_year> 

</book> 

``` 


The XML document above adheres to the rules defined in the XSD
schema for the book element. If the document does not follow the rules, a
validation error will be raised.

mu
no
tes
.in

Web Services Basics

19

1.4 SOAP (SIMPLE OBJECT ACCESS PROTOCOL)

SOAP (Simple Object Access Protocol) is a messaging protocol used for
exchanging structured information in the form of XML-based messages
between web services over computer networks, typically over HTTP or
SMTP. It is a protocol that facilitates communication between different
systems and platforms, allowing them to interact with each other and
perform various operations.

Key features of SOAP include:

1. XML-Based Messages: SOAP messages are encoded in XML,

making them platform-independent and easy to parse. The XML
format ensures that the data can be understood by any system that
supports XML.

2. Standardized Messaging: SOAP provides a standardized way to

structure messages, defining rules for message headers and body
elements. This standardization enables interoperability between
different systems and programming languages.

3. Transport-Independent: SOAP messages can be sent over various

transport protocols, although HTTP is the most common choice. This
flexibility allows SOAP to work in different network environments.

5. Platform Independence: SOAP allows communication between

services written in different programming languages and running on
different platforms. As long as the systems can understand XML and
adhere to the SOAP specifications, they can communicate with each
other.

6. Header and Body: SOAP messages consist of a header and a body.

The header contains information about the message, such as
authentication details, while the body contains the actual payload
(data) of the message.

7. WS- Specifications: SOAP can be extended using a set of Web

Services specifications, collectively known as WS-* (Web Services
specifications), which define additional functionalities such as
security, reliability, and transaction support.

SOAP is commonly used in web services environments where remote
procedure calls (RPCs) and service-oriented architectures (SOA) are
prevalent. It was widely used in the early 2000s but has since faced
competition from other web service protocols like REST (Representational
State Transfer), which is more lightweight and simpler to use in many
scenarios.

mu
no
tes
.in

Web Services

20

While SOAP can be powerful and suitable for certain enterprise-level
applications, it also introduces more overhead due to its XML-based
messaging and additional complexities of WS-* specifications. Therefore,
when developing new web services, RESTful APIs (using HTTP and
JSON) have become more popular due to their simplicity, ease of use, and
efficiency.

1.5 BUILDING WEB SERVICES WITH JAX-WS

JAX-WS (Java API for XML Web Services) is a Java API that allows
developers to build and deploy web services using XML-based SOAP
messaging. It is part of the Java EE (Java Platform, Enterprise Edition)
specification and provides a standard way to create and consume web
services in Java.

Here's a step-by-step guide on building web services with JAX-WS:

1. Define the Service Endpoint Interface (SEI):
Start by defining the Service Endpoint Interface, which is a Java interface
that declares the methods that will be exposed as web service operations.
These methods will be annotated with JAX-WS annotations to specify
how they should be exposed as web service operations.

```java 

import javax.jws.WebMethod; 

import javax.jws.WebService; 

@WebService 

public interface MyWebService { 

    @WebMethod 

    String sayHello(String name); 

} 

``` 


2. Implement the Service Endpoint Interface:
Create a Java class that implements the Service Endpoint Interface. This
class will provide the actual implementation for the web service
operations.

mu
no
tes
.in

Web Services Basics

21

```java 

@WebService(endpointInterface = 
"com.example.MyWebService") 

public class MyWebServiceImpl implements 
MyWebService { 

    public String sayHello(String name) { 

        return "Hello, " + name + "!"; 

    } 

} 

``` 


3. Publish the Web Service:
To publish the web service and make it accessible over the network, you
need to create an endpoint and publish it using the JAX-WS runtime.

```java 

import javax.xml.ws.Endpoint; 

public class Main { 

    public static void main(String[] args) { 

        String url = "http://localhost:8080/myWebService"; 

Endpoint.publish(url, new MyWebServiceImpl()); 

 

System.out.println("Web service is running at: " + url); 

    } 

} 

``` 


4. Generate the WSDL:
Once the web service is published, you can generate the WSDL (Web
Services Description Language) document. The WSDL describes the web
service's interface, operations, and data types.

To generate the WSDL, you can access the WSDL file using the "?wsdl"
query parameter in the web service URL, like this:
http://localhost:8080/myWebService?wsdl

mu
no
tes
.in

Web Services

22

5. Create a Client for the Web Service:
To consume the web service, you need to create a client that interacts with
the web service's methods using SOAP messages.

Java provides the `wsimport` tool to generate the client artifacts from the
WSDL:

```sh 

wsimport -keep http://localhost:8080/myWebService?wsdl 

``` 


This will generate the necessary Java classes for the client to invoke the
web service methods.

6. Consume the Web Service:
Finally, you can create a Java client to consume the web service by using
the generated client artifacts.

```java 

import com.example.MyWebService; 

import com.example.MyWebServiceImplService; 

 

public class MyWebServiceClient { 

    public static void main(String[] args) { 

MyWebServiceImplService service = new 
MyWebServiceImplService(); 

MyWebService port = 
service.getMyWebServiceImplPort(); 

 

        String result = port.sayHello("John"); 

System.out.println(result); 

    } 

} 

``` 


That's it! You've successfully built a web service using JAX-WS and
consumed it with a Java client. JAX-WS provides a straightforward and
standardized way to develop and interact with XML-based web services in
the Java ecosystem.

mu
no
tes
.in

Web Services Basics

23

1.6 REGISTERING AND DISCOVERING WEB
SERVICES

Registering and discovering web services are important steps in building a
service-oriented architecture (SOA) and enabling service discovery, which
allows clients to find and interact with available web services
dynamically. There are various approaches and technologies to achieve
this, including:

1. UDDI (Universal Description, Discovery, and Integration):
UDDI is a registry-based approach to service discovery. It provides a
standard way for businesses to publish and discover web services. Web
service providers publish their service descriptions (WSDL) to a UDDI
registry, which acts as a central directory of available services. Clients can
query the UDDI registry to find services that match their requirements.

2. Service Registries:
Apart from UDDI, some organizations use custom service registries or
repositories to store service metadata. These registries can be implemented
using databases or other storage mechanisms. Service providers register
their services along with their service details in these repositories, and
clients can discover services by querying the registry based on various
criteria.

3. Service Discovery via Service Discovery Protocols:
Service discovery protocols like SSDP (Simple Service Discovery
Protocol) and mDNS (Multicast DNS) provide a more decentralized
approach to service discovery within a local network. These protocols
allow devices and services to announce their presence and capabilities on
the network, and clients can discover and communicate with these services
directly.

4. API Gateways and Service Meshes:
In modern microservices architectures, API gateways and service meshes
can play a role in service registration and discovery. API gateways act as
entry points for incoming client requests and can handle service discovery
and routing to different microservices. Service meshes, on the other hand,
provide a dedicated infrastructure layer for service-to-service
communication and can manage service discovery, load balancing, and
traffic routing within the microservices network.

5. DNS-Based Service Discovery:
DNS-based service discovery is another approach where services are
registered in the Domain Name System (DNS) as DNS records. Clients
can then use DNS queries to discover services by their registered names.

It's essential to choose the right service discovery approach based on the
specific needs and scale of your application. For example, in large-scale
distributed systems, a combination of DNS-based discovery and service

mu
no
tes
.in

Web Services

24

mesh might be more suitable, while in smaller environments, a centralized
UDDI or custom registry could work well.

As technology evolves, new approaches and tools for service registration
and discovery may emerge, so it's always a good idea to stay updated with
the latest trends in service-oriented architectures and microservices
ecosystems.

1.7 SERVICE-ORIENTED ARCHITECTURE

SOA is an architectural style for building software applications that use
services available in a network such as the web. It promotes loose
coupling between software components so that they can be reused.
Applications in SOA are built based on services. A service is an
implementation of a well-defined business functionality, and such services
can then be consumed by clients in different applications or business
processes.

SOA allows for the reuse of existing assets where new services can be
created from an existing IT infrastructure of systems. In other words, it
enables businesses to leverage existing investments by allowing them to
reuse existing applications, and promises interoperability between
heterogeneous applications and technologies. SOA provides a level of
flexibility that wasn't possible before in the sense that:

Services are software components with well-defined interfaces that are
implementation-independent. An important aspect of SOA is the
separation of the service interface (the what) from its implementation (the
how). Such services are consumed by clients that are not concerned with
how these services will execute their requests.

Services are self-contained (perform predetermined tasks) and loosely
coupled (for independence)

Services can be dynamically discovered Composite services can be built
from aggregates of other services SOA uses the find-bind-execute
paradigm as shown in Figure. In this paradigm, service providers register
their service in a public registry. This registry is used by consumers to find
services that match certain criteria. If the registry has such a service, it
provides the consumer with a contract and an endpoint address for that
service.

mu
no
tes
.in

Web Services Basics

25

SOA-based applications are distributed multi-tier applications that have
presentation, business logic, and persistence layers. Services are the
building blocks of SOA applications. While any functionality can be made
into a service, the challenge is to define a service interface that is at the
right level of abstraction. Services should provide coarse-grained
functionality.

1.8 WEB SERVICES DEVELOPMENT LIFE CYCLE

The software and web development life cycle adheres to a specific
standard that has to be followed to move in the right direction. There are
frameworks, methodologies, modelling tools, and languages involved.

The Web Development Life Cycle is a method that outlines the stages
involved in building websites and web applications. It provides a
structured approach, ensuring optimal results throughout the development
process.

1.8.1 7 Steps

mu
no
tes
.in

Web Services

26

The web development life cycle typically consists of several stages that
web developers follow to create, deploy, and maintain a website or web
application. While the exact number and names of the stages can vary
depending on the development process followed, the seven stages you
provided cover the major phases of web development. Let's briefly go
through each stage:

1. Gathering Relevant Information:
This stage involves understanding the project's goals, objectives, and
requirements. The development team communicates with clients or
stakeholders to gather information about the target audience, purpose of
the website, desired functionalities, and design preferences. This stage sets
the foundation for the entire development process.

2. Planning - Sitemap and Wireframe:
During this phase, the project plan is formulated, including defining the
website's structure through a sitemap. A sitemap provides an overview of
the site's pages and their hierarchical relationship. Additionally,
wireframes are created, which are basic sketches of the website's layout,
outlining the placement of elements without incorporating design details.

3. Design & Layout:
In the design stage, graphic designers and UI/UX experts work on creating
the visual elements of the website. The website's layout, color schemes,
typography, and user interface are designed to create an appealing and
user-friendly experience.

4. Content Creation:
Content creation involves producing and organizing the textual, visual,
and multimedia elements that will be part of the website. This includes
writing and gathering content such as text, images, videos, and other
media that align with the website's purpose and target audience.

5. Development:
The actual development of the website takes place in this phase. Web
developers use various programming languages, such as HTML, CSS,
JavaScript, and backend technologies, to implement the design and
functionality of the website. Databases may also be integrated during this
stage.

6. Testing, Review, and Launch:
The testing phase is crucial to ensure that the website functions as
intended and is free from errors or bugs. Quality Assurance (QA) testers
conduct thorough testing, including usability testing, performance testing,
security testing, and compatibility testing. After thorough review and any
necessary adjustments, the website is ready for launch.

7. Maintenance and Updation:
Once the website is launched, it requires ongoing maintenance and
updates. Regular monitoring and updates are performed to address any

mu
no
tes
.in

Web Services Basics

27

issues, ensure security, and keep the website up-to-date with the latest
technologies and content changes.

The web development life cycle is iterative, and feedback from users and
clients may lead to improvements or changes in the website over time.
Following a structured development process ensures a well-planned and
successful website that meets the client's requirements and delivers a
positive user experience.

1.9 DEVELOPING AND CONSUMING SIMPLE WEB

SERVICES ACROSS PLATFORM

Developing and consuming simple web services across different platforms
involves creating web services that can communicate and exchange data
seamlessly between various programming languages and platforms. This
can be achieved by following standards like SOAP (Simple Object Access
Protocol) or REST (Representational State Transfer) and ensuring the data
is encoded in a universal format like XML or JSON. Here's a high-level
guide to achieving this:

1. Choosing a Web Service Protocol:
Decide whether you want to use SOAP or REST as the protocol for your
web services. SOAP is more rigid and uses XML for data exchange, while
REST is more flexible and commonly uses JSON, though it can also use
XML.

2. Designing the Web Service:
Define the service endpoint interface (SEI) for your web service. This is a
contract that specifies the operations the service supports, along with their
input and output parameters. The SEI is typically defined using WSDL
(Web Services Description Language) for SOAP-based web services or a
simple URL for RESTful web services.

3. Implementing the Web Service:
In the server-side code, implement the SEI. For SOAP web services, use
libraries like JAX-WS (Java API for XML Web Services) for Java or
WCF (Windows Communication Foundation) for .NET. For RESTful web
services, frameworks like JAX-RS for Java or ASP.NET Web API for
.NET can be used.

4. Exposing the Web Service:
Make the web service available on a public URL or endpoint so that
clients can access it over the internet. For SOAP web services, this
typically involves deploying the service on a web server that supports
SOAP (e.g., Apache Axis for Java or IIS for .NET). For RESTful web
services, a web server with the necessary framework support will suffice.

mu
no
tes
.in

Web Services

28

5. Consuming the Web Service:
On the client-side, use the appropriate programming language and libraries
to consume the web service. Most modern programming languages have
built-in support or third-party libraries for making web service calls.

6. Generating Client Code:
In some cases, you can use tools to generate client-side code based on the
WSDL (for SOAP) or Swagger/OpenAPI specifications (for REST) of the
web service. These tools create client code to interact with the web
service, making it easier to consume the service.

7. Making Requests and Handling Responses:
Send HTTP requests to the web service endpoint using libraries like `curl`,
`HttpClient` (for Java), or `requests` (for Python). For SOAP, use the
appropriate methods from the generated client code. Handle the responses
accordingly to retrieve the data or process any errors.

8. Parsing Data:
Once the response is received from the web service, parse the data
accordingly. For JSON, use built-in or third-party libraries to deserialize
the JSON response into objects or data structures in your programming
language. For XML (in SOAP), use XML parsing libraries.

By following these steps and adhering to industry standards, you can
successfully develop and consume web services across different platforms,
allowing seamless communication and data exchange between various
systems and programming languages.

1.10 SUMMARY

 Web services are a set of technologies and standards used for

communication and data exchange between different software
applications and systems over the internet.

 A distributed system is characterized as a collection of (probably
heterogeneous)networked computers, which communicate and
coordinate their actions by passing messages.

 Internet protocols are a set of rules and conventions that dictate how
devices communicate and exchange data over the Internet.

 The Open Systems Interconnection (OSI) reference model is a
conceptual framework used to understand and describe how different
networking protocols and technologies interact and work together in a
networked communication system.

 Middleware refers to software that acts as an intermediary or bridge
between different applications, systems, or components within a
distributed computing environment.

mu
no
tes
.in

Web Services Basics

29

 The client-server model is a computing architecture that describes the
relationship and interaction between two types of entities: the "client"
and the "server."

 XML is an extensible markup language used for the description and
delivery ofmarked-upelectronic text over the Web.

 SOAP (Simple Object Access Protocol) is a messaging protocol used
for exchanging structured information in the form of XML-based
messages between web services over computer networks, typically
over HTTP or SMTP.

 JAX-WS (Java API for XML Web Services) is a Java API that allows
developers to build and deploy web services using XML-based SOAP
messaging.

 Registering and discovering web services are important steps in
building a service-oriented architecture (SOA) and enabling service
discovery, which allows clients to find and interact with available web
services dynamically.

 SOA is an architectural style for building software applications that
use services available in a network such as the web.

 The software and web development life cycle adheres to a specific
standard that has to be followed to move in the right direction.

Developing and consuming simple web services across different platforms
involves creating web services that can communicate and exchange data
seamlessly between various programming languages and platforms.

1.11 QUESTIONS

 What are Web Services?

 What are the types of web services?

 Explain Distributed computing infrastructure.

 Write a short note on Internet Protocols.

 Differentiate between The Open Systems Interconnection reference
model and Internet protocols

 What is Middleware? Explain.

 Write a short note on XML.

 Explain Web Services Development Life Cycle

 What is SOAP?

 What is Web Services Development Life Cycle?

mu
no
tes
.in

Web Services

30

1.12 REFERENCES

 https://www.signitysolutions.com/blog/web-development-life-cycle

 https://www.oracle.com/technical-resources/articles/javase/soa.html

 http://www.nortonaudio.com/Ficheiros/Web.services...principles.and.t
echnology.pdf

mu
no
tes
.in

 31

2
THE REST ARCHITECTURAL STYLE

Unit Structure :

2.0 Objectives

2.1 Introduction

2.2 Introducing HTTP

2.3 The core architectural elements of a RESTful system

2.4 Description and discovery of RESTful web services

2.5 Java tools and frameworks for building RESTful web services

2.6 JSON message format and tools and frameworks around JSON

2.7 Summary

2.8 Reference for further reading

2.9 Unit End Exercises

2.0 OBJECTIVE

● To understand the concept of REST Architectural style.

● To study the core architectural elements of the RESTful system.

● To learn the Description and discovery of RESTful web services.

● To understand the JSON message format.

2.1 INTRODUCTION

● REST stands for REpresentational State Transfer and API stands for
Application Program Interface.

● REST is a software architectural style that enables the set of rules to be
used for creating web services.

● Web services which come after the REST architectural style are called
RESTful web services.

● It permits requesting systems to access and manipulate web resources
by using a uniform and predefined set of rules.

● Interconnection in REST based systems happens through the Internet's
Hypertext Transfer Protocol (HTTP).

A Restful system consists of a:

● Client who requests for the resources.

● Server who has the resources.

mu
no
tes
.in

Web Services

32

2.2 INTRODUCING HTTP

● Hypertext Transfer Protocol (HTTP) is the base of data
communication for WWW.

● This protocol shows how messages are formatted, transmitted, and
processed through the Internet.

A. HTTP versions

● There are three versions of HTTP which have been regularly
developed over time.

● HTTP 0.9 was the first version which is documented, which was
released in the year 1991. The 0.9 version was very primitive and
supported only the GET method.

● HTTP 1.0 was released in 1996 with additional features and
corrections for the shortcomings in the prior release. HTTP 1.0
supported extra request methods such as GET, HEAD, and POST.

● The next release was HTTP/1.1 in 1999. This was the revision of
HTTP/1.0. This version is in ordinary use today.

● HTTP 2 (HTTP 2.0) is the next designed version. It is mainly focused
on how the data is wrapped and transported between the client and the
server.

B. HTTP request-response model

Example:

GET /index.html HTTP/1.1

● The general method for the request line is an HTTP command,
followed by the resource to retrieve, and the HTTP version adaptable
with the client.

● The client means it can be any type of an application that recognizes
HTTP, this example refers to a web browser as the client.

● The request and header fields must end with a carriage return character
followed by a line feed character.

● In the preceding example, the browser instructs the server to get the
index.html file through the HTTP 1.1 protocol.

● The header fields are separated by colon (:) key value pairs in the plain
text format, and terminated by a carriage return followed by a line feed
character.

● The header fields in the request line, such as the acceptable content
types, languages, and connection type, are the operating parameters for
an HTTP transaction.

● The server used this information while producing the response for the
request.

mu
no
tes
.in

The REST Architectural
Style

33

● An empty blank line is used at the end of the header which indicates
the end of the header portion in a request.

● The end part of an HTTP request is the HTTP body. Usually, the body
is kept blank unless the client has some data to submit to the server.

● In this example, the body portion is empty as this is a GET request for
retrieving a page from the server.

Uniform resource identifier

● The word uniform resource identifier (URI) is used very often. A URI
is a text that pinpoints any resource or name on the Internet.

● URI classifies as a Uniform Resource Locator (URL) if the text used
for recognizing the resource also holds the means for accessing the
resource such as HTTP or FTP.

● The following is one such example:

https://www.packet.com/application-development

● In general, all URLs are URIs. To learn more about URIs, visit

http://en.wikipedia.org/wiki/Uniform_resource_identifier.

C. HTTP request methods

● The HTTP GET request method is used for recovering a page from the
server. More request methods which are the same as GET are available
with HTTP, each accomplish specific actions on the target resource.

● The set of common methods for HTTP/1.1 is shown in the following
table:

Table 1.set of common methods for HTTP/1.1

mu
no
tes
.in

Web Services

34

D. Representation of content types using HTTP header fields

● The HTTP header parameters name-value pairs that define the
utilizing parameters of an HTTP transaction.

● The header parameter used for expressing the content types present in
the request and the response message body.

● The Content-Type header in an HTTP request or response expresses
the content type for the message body.

● The Accept header in the request informs the server the content types
that the client is looking for in the response body.

● The content types are characterized using the Internet media type. The
Internet media type (MIME type) specifies the type of data that a file
contains.

● Example: Content-Type: text/html

This header shows that the body content is expressed in the html
format. The format of the content type values is a primary type or
subtype followed by an optional semicolon (:) delimited attribute-
value pairs called as parameters. The Internet media types are mainly
classified in to the following categories on the foundation of the
primary (or initial) Content-Type header:

Text This type indicates that the content is plain text and
no special software is required to read the contents.

Multipart As the name indicates, this type consists of multiple
parts of the independent data types.

Message This type encapsulates more messages. It allows
messages to contain other messages or pointers to
other messages.

Image This type represents the image data. For instance,
Content-Type: image/png indicates that the body
content is a .png image.

Audio This type indicates the audio data.

Video This type indicates the video data.

Application This type represents the application data or binary
data.

Table 2. Content-Type header

mu
no
tes
.in

The REST Architectural
Style

35

E. HTTP status codes

● Each HTTP request, the server returns a status code specifying the
processing status of the request..

● A basic of status codes will definitely help for designing RESTful web
services:

○ 1xx Informational: This series of status codes shows informational
content. Hence the request is received and processing is proceeding.

Here are the frequently used informational status codes:

100 Continue: This code indicates that the server has received the
request header and the client can now send the
body content.

101 Switching
Protocols:

This code indicates that the server is OK for a
protocol switch request from the client.

102 Processing: This code is an informational status code used for
long running processing to prevent the client from
timing out. This tells the client to wait for the
future response, which will have the actual
response body.

○ 2xx Success: This series of status codes specify the successful processing
of requests. Some of the often used status codes in this class are as
follows:

200 OK: This code indicates that the request is successful and
the response content is returned to the client as
appropriate.

201 Created: This code indicates that the request is successful and
a new resource is created.

204
No Content:

This code indicates that the request is processed
successfully, but there's no return value for this
request. For instance, you may find such status
codes in response to the deletion of a resource.

● 3xx Redirection: This series of status codes shows that the client needs to
perform further actions to logically end the request. A oftenly used status
code in this class is as follows:

mu
no
tes
.in

Web Services

36

304
Not Modified:

This status indicates that the resource has not
been modified since it was last accessed

○ 4xx Client Error: This series of status codes represent an error in
processing the request. Some of the frequently used status codes in this
class are as follows:

400
Bad Request:

This code indicates that the server failed to
process the request because of the
malformed syntax in the request. The client
can try again after correcting the request.

401 Unauthorized: This code indicates that authentication is
required for the resource. The client can try
again with the appropriate authentication.

403 Forbidden: This code indicates that the server is
refusing to respond to the request even if the
request is valid. The reason will be listed in
the body content if the request is not a
HEAD method.

404
Not Found:

This code indicates that the requested
resource is not found at the location
specified in the request.

405
Method
Not Allowed:

This code indicates that the HTTP method
specified in the request is not allowed on the
resource identified by the URI.

408
Request Timeout:

This code indicates that the client failed to
respond within the time frame set on the
server.

409 Conflict: This code indicates that the request cannot
be completed because it conflicts with some
rules established on resources, such as
validation failure.

○ 5xx Server Error: This series of status codes shows server failures
while computing a valid request. Below is one of the frequently used
status codes in this class:

500 Internal Server
Error:

This code indicates a generic error message, and
it tells that an unexpected error occurred on the
server and the request cannot be fulfilled.

mu
no
tes
.in

The REST Architectural
Style

37

F. The evolution of RESTful web services
● A web service is one of the very well-liked methods of communication

between the client and server applications over the Internet world.

● In simple name, web services are web application components that can
be published, found, and used on the web. Consistently, a web service
has an interface explaining the web service APIs, which is called Web
Services Description Language (WSDL).

● A WSDL file can be easily handled by machines, which blows out the
merger complexities. Other systems linked with the web service by
using Simple Object Access Protocol (SOAP) messages.

● The contract for communication is operated by the WSDL exposed by
the web service. Typically, communication happens over HTTP with
XML in cooccurrence with other web-related standards.

● There are two main areas web services are used:

○ Numerous of the companies specialized in Internet-related services
and products have opened their doors to developers using publicly
available APIs. For example, companies like Google, Yahoo, Amazon,
and Facebook are using web services to offer new products that
depend on their massive hardware infrastructures. Google and Yahoo
recommended their search services; Amazon offers its on-demand
hosting storage infrastructure and Facebook offers its platform for
targeted marketing and advertising drive. With the help of web
services, these companies have opened the door for the formation of
products that did not exist some years ago.

○ Web services are being used inside the enterprises to connect
previously disjointed departments such as marketing and
manufacturing. Each department or line of business (LOB) can
uncover its business processes as a web service, which can be ingested
by the other departments. By connecting more than one department to
pass information by using web services, we begin to enter the territory
of the Service-Oriented Architecture (SOA). The SOA is essentially a
collection of services, each interacting to one another in a well-defined
manner, in order to complete relatively large and logically complete
business processes.

2.3 THE CORE ARCHITECTURAL ELEMENTS OF A
RESTFUL SYSTEM

● A constant interface is fundamental to the architecture of any RESTful
system. In plain words, this term refers to a generic interface to
manage all linkedions between a client and a server in a unified way.

● All resources (or business data) involved in the client-server
linkedions are dealt with by a fixed set of operations. The below are
core elements that form a uniform interface for a RESTful system:

○ Resources and their identifiers

○ Representations of resources

mu
no
tes
.in

Web Services

38

○ Generic linkedin semantics for the REST resources

○ Self-descriptive messages

○ Hypermedia as the engine of an application state

Resources
● A RESTful resource is whatever that is addressable over the Web.

● By addressable, resources that can be accessed and transferred
between clients and servers. Subsequently, a resource is a logical,
temporal mapping to a concept in the problem domain for which we
are implementing a solution.

Here are some examples of the REST resources:
❖ A news story
❖ The temperature in IN at 4:00 p.m. IST
❖ A tax return stored in the IRS database
❖ A list of code revision history in a repository such as SVN or CVS
❖ A student in a classroom in a school
❖ A search result for a particular item in a Web index, such as Google

URI
● A URI is a string of characters used to recognize a resource over the

Web.

● In simple words, the URI in a RESTful web service is a hyperlink to a
resource, and it is the only for clients and servers to interchange
representations.

● The client uses a URI to find the resources over the Web and then,
sends a request to the server and looks through the response.

● In a RESTful system, the URI is not meant to swap over time as it may
break the contract between a client and a server.

● More essentially, even if the fundamental infrastructure or hardware
changes (for example, swapping the database servers) for a server
hosting REST APIs, the URIs for resources are expected to remain the
same as long as the web service is up and running.

The representation of resources
● The characterization of resources is what is sent back and forth

between clients and servers in a RESTful system.

● A characterization is a temporal state of the actual data located in some
storage device at the time of a request.

● In general terms, it is a binary stream together with its metadata that
shows how the stream is to be consumed by the client.

● The metadata can also consist of extra information about the resource,
for example, validation, encryption information, or extra code to be
executed during runtime.

mu
no
tes
.in

The REST Architectural
Style

39

● All over the life of a web service, there may be a variety of clients
requesting resources.

● Different clients can consume different representations of the same
resource. Therefore, a representation can take various forms, such as
an image, a text file, an XML, or a JSON format.

● All clients will use the same URI with appropriate Accept header
values for accessing the same resource in different representations.

● For the human-generated requests with a web browser, a
representation is typically in the form of an HTML page.

● For automated requests from the other web services,clarity is not as
important and a more efficient representation, such as JSON or XML,
can be used.

Generic linkedin semantics for REST resources
● The generics of linkedin semantics and self-descriptive messages

followed for the client-server communication in a RESTful system.

● Developing RESTful web services is similar to what we have been
doing up to this point with our web applications.

● In a RESTful web service, resources are interchange between the
client and the server, which enables the business entities or data.
HTTP specifies methods or actions for the resources.

● The most frequently used HTTP methods or actions are POST, GET,
PUT, and DELETE.

● This clearly simplifies the REST API design and makes it more
readable.

● On the other hand, in traditional application development, we can have
countless actions with no naming or implementation standards.

● This may call for more development effort for both the client and the
server, and make the APIs less readable.

● In a RESTful system, It is easy to map our CRUD actions on the
resources to the relevant HTTP methods such as POST, GET, PUT,
and DELETE. This is shown in the following table:

Data action HTTP equivalent

CREATE POST or PUT

READ GET

UPDATE PUT or PATCH

DELETE DELETE

mu
no
tes
.in

Web Services

40

● There are more HTTP methods available, but they are less frequently
used in the context of RESTful implementations. Among these less
frequent methods, OPTIONS and HEAD are used more often than
others. these two method types:

○ OPTIONS: This method is used by the client to find the options or
actions related with the target resource, without causing any action on
the resource or retrieval of the resource

○ HEAD: This method can be used for recovering information about the
entity without having the entity itself in the response

● RESTful web services are networked applications that handle the state
of resources. In this context, resource controls means resource
creation, retrieval, update, and deletion.

● RESTful web services are not limited to just these four basic data
manipulation ideas.

● They can even be used for executing business logic on the server, but
remember that every result must be a resource representation of the
domain at hand.

● A uniform interface leads all the aforementioned abstractions into
focus.

The HTTP GET method

● This method is used to retrieve resources. Before going into details
about the actual mechanics of the HTTP GET request, Here first we
need to find what a resource is in the context of our web service and
what type of representation we are exchanging.

● Example of a RESTful web service handling department details for an
organization. For this the JSON representation of a department shown
below:

{"departmentId":10,"departmentName":"IT","manager":"John Chen"}

● The JSON description of the list of departments looks like the
following:

[{"departmentId":10,"departmentName":"IT","manager":"John
Chen"},
{"departmentId":20,"departmentName":"Marketing","manager":"A
meyaJ"},
{"departmentId":30,"departmentName":"HR","manager":"Pat
Fay"}]

● With our representations defined, we now assume URIs of the form
http://www. packet.com/resources/departments to access a list of
departments, and http://www.packet.com/resources/departments/{name}
to access a specific department with a name (unique identifier).

mu
no
tes
.in

The REST Architectural
Style

41

The HTTP POST method

● The POST method is used to generate resources. For creating a
department, need to use the HTTP POST method. One more time, the
URI to create a new department in our example is
http://www.packet.com/resources/departments.

● The method type for the request is placed by the client. Consider that
the Sales department does not exist in our list, and we want to add it to
the list. The Sales data representation shown below:

{"departmentName":"Sales","manager":"TonyGreig"}

The HTTP PUT method

● The PUT method is used for updating resources.

● To update a resource,

○ first need its representation in the client;

○ At the client level, update the resource with the new value that we
required

○ Finally, update the resource by using a PUT request together with the
representation as its payload.

● In this example, add a manager to the Sales department that we created
in the previous example. Our primary representation of the Sales
department is as follows:

{"departmentId":40,"departmentName":"Sales","manager":"Tony
Greig" }

● Let's update the manager for the Sales department; our representation
is as follows:

{"departmentId":40,"departmentName":"Sales","manager":"Ki Gee"}

The HTTP DELETE method

● The DELETE method is used to delete or remove the resource.

● Example, delete a resource by making use of the same URI that we
used earlier. Assume that to delete the Sales department from the data
storage. We send a DELETE request to our service with the given
URI:

http://www.packet.com/resources/departments/Sales.

2.4 DESCRIPTION AND DISCOVERY OF RESTFUL
WEB SERVICES

● WSDL stands for Web Services Description Language which is used
for describing the functionality offered by a SOAP web service. For a

mu
no
tes
.in

Web Services

42

SOAP web service, this is an extensively accepted standard and is
supported by numerous enterprises today.

● In distinction, for RESTful web services, different metadata formats
are used by various enterprises.

● Below goals in common between all these metadata formats for
RESTful APIs, even through they differ in their syntax and semantics:

○ Entry points for the service

○ Resource paths for accessing each resource

○ HTTP methods enables to access these resources, such as GET, POST,
PUT, and DELETE

○ Extra parameters that need to be provided with these methods, such as
pagination parameters, while reading large collections

○ Format types used for showing the request and response body contents
like JSON, XML, and TEXT

○ Status codes and error messages returned by the APIs

○ Human readable documentation for REST APIs, which includes the
documentation of the request methods, input and output parameters,
response codes (success or error), API security, and business logic
Some of the popular metadata formats used for describing REST APIs
are Web Application Description Language (WADL), Swagger,
RESTful API Modeling Language (RAML), API Blueprint, and
WSDL 2.0.

2.5 JAVA TOOLS AND FRAMEWORKS FOR BUILDING
RESTFUL WEB SERVICES

● This is a famous Java based framework and tools for building RESTful
systems.

● The Java API for RESTful web services (JAX-RS) is the Java API for
creating RESTful web services following the REST architectural
pattern.

● JAX-RS is a part of the Java Platform Enterprise Edition (Java EE)
platform and is designed to be a standard and portable solution.

● There are numerous reference implementations available for JAX-RS
today. The most popular implementations are Jersey, Apache CXF,
RESTEasy, and Restlet.

● Except JAX-RS-based frameworks, there are some promising
nonstandard Java REST frameworks on the market. Some such
frameworks are as given below:

mu
no
tes
.in

The REST Architectural
Style

43

○ One equivalent framework is RESTX, which is an open source Java
REST framework and is primarily focused on the server-side REST
API development. This is relatively new on the market and simplifies
the REST API development.

○ Spark is the second framework that falls into this type. It is a Java web
framework with support for building REST APIs. Spark 2.0 is built
using Java 8, leveraging all the latest improvements of the Java
language.

○ Play is the third framework worth mentioning in this category. It is a
Java based web application framework with inherent support for
building RESTful web services.

2.6 JSON MESSAGE FORMAT AND TOOLS AND
FRAMEWORKS AROUND JSON

The JSON data syntax

● The JSON format is very simple by design. It is represented by the
following two data structures:

○ An unordered collection of name-value pairs (an object):

■ The attributes of an object and their values are represented in the
name-value pair format; the name and the value in a pair is separated
by a colon (:).

■ Names in an object are strings, and values may be of any of the valid
JSON data types such as number, string, Boolean, array, object, or
null.

■ Each name:value pair in a JSON object is separated by a comma (,).
The entire object is enclosed in curly braces ({ }).

■ For instance, the JSON representation of a department object is as
follows:{"departmentId":10,"departmentName":"IT", manager":"John
Chen"}

■ This example shows how you can represent various attributes of a
department, such as departmentId, departmentName, and manager, in
the JSON format.

○ An ordered collection of values (representing an array): Arrays are
enclosed in square brackets ([]), and their values are separated by a
comma (,). Each value in an array may be of a different type, including
another array or an object.

○ The following example illustrates the use of an array notation to
represent employees working in a department. You may also see an
array of locations in this example:

mu
no
tes
.in

Web Services

44

{"departmentName":"IT",

"employees":[

{"firstName":"John", "lastName":"Chen"},

{"firstName":"Ameya", "lastName":"Job"},

{"firstName":"Pat", "lastName":"Fay"}

],

"location":["New York", "New Delhi"]

}

Basic data types available with JSON

● List of the basic data types available with JSON:

○ Number: This type is used for storing a signed decimal number that
may optionally contain a fractional part. Both integer and floating
point numbers are represented by using this data type.

Example : The decimal data type for storing totalWeight:
{"totalWeight": 123.456}

○ String: This type represents a sequence of zero or more characters.
Strings are surrounded with double quotation marks and support a
backslash escaping syntax. Example of the string data type:

{"firstName": "Jobinesh"}

○ Boolean: This type represents either a true or a false value. The
Boolean type is used for representing whether a condition is true or
false, or to represent two states of a variable (true or false) in the code.

Example representing a Boolean value:

{"isValidEntry": true}

○ Array: This type represents an ordered list of zero or more values,
each of which can be of any type. In this representation, comma-
separated values are enclosed in square brackets.

Example represents an array of fruits:

{"fruits": ["apple", "banana", "orange"]}

○ Object: This type is an unordered collection of comma-separated
attribute- value pairs enclosed in curly braces. All attributes must be
strings and should be distinct from each other within that object.

mu
no
tes
.in

The REST Architectural
Style

45

Example illustrates an object representation in JSON:

{"departmentId":10, "departmentName":"IT", "manager":"John
Chen"}

○ null: This type indicates an empty value, represented by using the
word null.

Example uses null as the value for the error attribute of an object:

{"error":null}

A sample JSON file representing employee

● Here is a sample JSON document file called "emp-array.json", which
contains the JSON array of the employee objects. The content of the
file is as follows:

{"employeeId":100,"firstName":"John","lastName":"Chen",
"email":"john.chen@xxxx.com","hireDate":"2008-10-16"},
{"employeeId":101,"firstName":"Ameya","lastName":"Job",
"email":"ameya.job@xxx.com","hireDate":"2013-03-06"},
{"employeeId":102,"firstName":"Pat","lastName":"Fay",
"email":"pat.fey@xxx.com","hireDate":"2001-03-06"}]

Processing JSON data

● While using Java RESTful web service frameworks, like JAX-RS, for
building RESTful web APIs, the serialization and deserialization of the
request and response messages will be taken care of by the framework.

● However, if our requirements do not meet then the JSON structure and
tools for processing JSON will definitely help us for the framework.
The following diagram shows the role of the JSON marshaling and
unmarshalling

Figure 2. JSON marshaling and unmarshalling

mu
no
tes
.in

Web Services

46

● Two Generally adopted programming models for processing JSON are
as follows:

○ Object model: In this model, the entire JSON data is read into
memory in a tree format. This tree can be traversed, analyzed, or
modified with the suitable APIs.

○ Streaming model: The term streaming is very generic in meaning and
can be used in various aspects.

2.7 SUMMARY

1. This chapter is intended to give an overview of RESTful web services.

2. This is essential for an easy understanding of what we will learn in the
rest of the book.

3. We will examine the most popular Java tools and frameworks
available for building a RESTful web service along with numerous
real-life examples and code samples.

4. Processing models for the JSON content and some of the popular Java-
based JSON processing frameworks available today.

5. The JSON-based request and response messages are bound to the Java
model while building REST APIs.

2.8 REFERENCE FOR FURTHER READING

1. Web Services: Principles and Technology, Michael P. Papazoglou,
Pearson Education Limited, 2008

2. RESTful Java Web Services, JobineshPurushothaman, PACKT
Publishing,2nd Edition, 2015

2.9 UNIT END EXERCISES

1. Explain the HTTP request-response model? Explain the HTTP
Request methods.

2. Explain the different status code under HTTP request.

3. Explain the JSON message format and tool?

4. Write a short note on Description and discovery of RESTful web
services

mu
no
tes
.in

 47

3
THE RESTFUL WEB SERVICES

Unit Structure :

3.0 Objectives

3.1 Introduction

3.2 Build RESTful web services with JAX-RS APIs

3.3 The Description and Discovery of RESTful Web Services

3.4 Design guidelines for building RESTful web services

3.5 Secure RESTful web services

3.6 Summary

3.7 Reference for further reading

3.8 Unit End Exercises

3.0 OBJECTIVES

● To understand the building RESTful web services with JAX-RS APIs

● To study description and discovery of RESTful Web Services.

● Design guidelines for building RESTful web services.

● To understand the Secure RESTful web services

3.1 INTRODUCTION

● We will learn how to build a simple end-to-end RESTful web service
by using JAX-RS.

● Securing web services is the calculated control of resources.

● Example, Google's web service API limited the number of queries a
registered user could execute daily. Likewise, many other API vendors
restrict the access of their APIs.

● The popular solutions available today for describing, producing,
consuming, and visualizing RESTful web services.

● Here we are using API documentation solutions available in the
market.

mu
no
tes
.in

Web Services

48

3.2 BUILD RESTFUL WEB SERVICES WITH JAX-RS
APIS

● Setting up the environment

This example uses the following software and tools:

■ Java SE Development Kit 8 or newer

■ NetBeans IDE 8.0.2

■ Glassfish Server 4.1 or newer

■ Maven 3.2.3 or newer

■ Oracle Database Express Edition 11g Release 2 or newer with HR
sample database schema

■ Oracle Database JDBC Driver

● Make sure that machine has all tools ready before starting installation
with this setup. In this setup, we will build a RESTful web service by
using the JAX-RS APIs.

● Use Maven as a build tool for sample applications as it does a great job
in the dependency management department for the application and
provides a standard structure for the source code.

● NetBeans has great support for building Maven-based applications,
and this is one of the reasons for us to choose NetBeans as the IDE.

● Once the development environment is set up, we are ready to use
NetBeans IDE for application development.

Building a simple RESTful web service application using NetBeans
IDE

● To create a JAX-RS application, follow below given steps:

1. Launch NetBeans IDE.

2. In the main toolbar, navigate to File | New Project.

3. New Project dialog screen, navigate to Maven | Web Application for
building the RESTful web service. Proceed with the next screen by
clicking on the Next button.

4. In the Name and Location screen, enter Project Name, Project
Location (storing the source), Group Id, Version (Maven project), and
Package (Java source files) as follows:

Project Name: rest-topic3-service

Group Id:com.packtdata

mu
no
tes
.in

The RESTful Web

49

Package: com.packtdata.rest.ch3.service

Note to the following screenshot for the values used for this e.g:

Figure 1.RESTful web service application

■ Enter the identical values as in the preceding screenshot.

■ After setting all things, click on Next to continue to the Settings screen
in the wizard.

5. On the Settings screen, select GlassFish Server that have installed
along with NetBeans IDE as Server for running ,r JAX-RS application,
and then click on Java EE 7 Web as the Java EE version for the
application that , build.

6. The server list on this output screen may appear empty if , have not
configured any server for the IDE yet. To add a new server reference,
perform the following steps:

i. Click on the Add button. In the Add Server type wizard, select
GlassFish as the server and click on Next to continue the wizard.

ii. Setting Server Location to the folder where , installed GlassFish.
Select Local Domain and click on Next to continue the wizard.

iii. On the Domain Name screen, enter domain1 in the Domain field
(which is the default one) and localhost in the Host field. Click
on Finish to complete the server creation.

iv. Now, IDE will show the Settings screen once again where , can
choose GlassFish as the server and Java EE 7 Web as the Java
EE version.

7. You can now click on the Finish button to finish the project
configuration wizard. NetBeans now setting up a Maven-based web
project for , as shown in the following screenshot:

mu
no
tes
.in

Web Services

50

Figure 2. Maven-based web project

8. The next step is to build a simple RESTful web service
implementation by using a POJO class to get a feel of the JAX-RS
APIs. To build a POJO class, , can right-click on the project and
navigate to New | Java Class in the menu. In the New Java Class
editor, enter DepartmentService in the Class Name field and enter
com.packtdata. rest.ch3.service in the Package field. This class will
hold the service implementation for this example.

9. We will add @Path("departments") to this class so that
DepartmentService becomes a REST resource class and responds to
the REST API calls with the URI path fragment \departments. Let's
add a simple helloWorld() method to this class and add
@Path("hello") to this method. Addon the @GET annotation to
designate this method to respond to the HTTP GET methods. The
DepartmentService class now looks like the following: package
com.packtdata.rest.ch3.service;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
importjavax.ws.rs.core.MediaType;
@Path("departments")
public class DepartmentService{
@GET
@Path("hello")
@Produces(MediaType.APPLICATION_JSON)
public String helloWorld(){
return "Hello world";
}
}

mu
no
tes
.in

The RESTful Web

51

10. For configuring resources, add a REST configurations class, which
extends javax.ws.rs.core.Application. This class characterizes the
components of a JAX-RS application and supplies additional
metadata. The configuration class shown below:

package com.packtdata.rest.ch3.jaxrs.service;

import java.util.Set;

import javax.ws.rs.core.Application;

@javax.ws.rs.ApplicationPath("webresources")

public class RestAppConfig extends Application {

// Get a set of root resource and provider classes.

@Override

public Set<Class<?>>getClasses() {

Set<Class<?>> resources =

new java.util.HashSet<>();

resources.add(com.packtdata.rest.ch3.service.

DepartmentService.class);

return resources;

}

}

11. To deploy and run the RESTful web service application, , can right-
click on the rest-topic3-service project and click on Run. This is
building and deploying the application to the GlassFish server
integrated with NetBeans IDE.

12. To test the desired REST API, right-click on the appropriate HTTP
methods, as shown in the following screenshot, and select Test
Resource Uri. These measures will open up the default browser with
the response content returned by the REST call. The URI for accessing
the helloWorldRESTful web API will look like
http://localhost:8080/rest-topic3-service/
webresources/departments/hello.

mu
no
tes
.in

Web Services

52

Figure 3. Projects Explorer

3.3 THE DESCRIPTION AND DISCOVERY OF
RESTFUL WEB SERVICES

● WSDL (Web Services Description Language) is used for describing
the functionality offered by a SOAP web service. In SOAP web
service, it is a widely accepted standard and is kept by many
enterprises today.

● In contrast, for RESTful web services, different metadata formats are
used by various enterprises.

● Following objectives in common among all these metadata formats for
RESTful APIs, although they differ in their syntax and semantics:

○ Entry points for the service

○ Resource paths for accessing each resource

○ HTTP methods allowed to access these resources, such as GET,
POST, PUT, and DELETE

○ Additional parameters that need to be supplied with these methods,
such as pagination parameters, while reading large collections

○ Format types used for representing the request and response body
contents such as JSON, XML, and TEXT

○ Status codes and error messages returned by the APIs

○ Human readable documentation for REST APIs, which includes the
documentation of the request methods, input and output parameters,
response codes (success or error), API security, and business logic The
Well liked metadata formats used for describing REST APIs are Web
Application Description Language (WADL), Swagger, RESTful API
Modeling Language (RAML), API Blueprint, and WSDL 2.0.

mu
no
tes
.in

The RESTful Web

53

3.4 DESIGN GUIDELINES FOR BUILDING RESTFUL
WEB SERVICES

● REST is a style of software architecture and not a specification, for
building extensible web services. Considering RESTful web services
do not have any strict specifications for designing and building APIs,
There are many interpretations for how the RESTful web API should
work.

● Here we will learn standards, best practices, conventions, and tips and
tricks that we can apply to RESTful web service applications. The
important points are as follows:

■ Naming RESTful web resources

■ Implementing partial response

■ Paging resource collection

■ Using HATEOAS in response representation

■ Versioning RESTful web APIs

■ Caching RESTful web API results

■ Microservice architecture style for RESTful web applications

■ Open Data Protocol with RESTful web APIs

Identifying resources in a problem domain

● The basic steps that , may need to take while building a RESTful web
API for a specific problem domain are as follows:

1. Identify all possible objects in the problem domain. This can be done
by identifying all nouns in the problem domain. Examples, if building
an application to handle employees in a department, the obvious nouns
are department and employee.

2. The next step is to recognize the objects that can be manipulated using
the CRUD operations. These objects can be classified as resources.
Note that, should be careful while choosing resources. Based on the
usage pattern, , can classify resources as top-level and nested resources
(which are the children of a top-level resource). Not required to expose
all resources for use by the client; expose only those resources that are
required for implementing the business use case.

Transforming operations to HTTP methods

● After identifying all the resources, the next step is to map the
operations defined on the resources to the suitable HTTP methods.

● The most often used HTTP methods in RESTful web APIs are POST,
GET, PUT, and DELETE.

mu
no
tes
.in

Web Services

54

● There is no one-to-one mapping between the CRUD operations states
on the resources and the HTTP methods.

● Here are some ideas for finding the most suitable HTTP method for
the operations that o perform on the resources:

○ GET: this method for reading a representation of a resource from the
server. According to the HTTP specification, GET is a safe operation,
which means that it is only deliberate for retrieving data, not for
making any state changes. As this is an idempotent operation, multiple
identical GET requests will act in the same manner. A GET method
can return the 200 OK HTTP response code on the successful
retrieving of resources. If there is any error, it can return an proper
status code such as 404 NOT FOUND or 400 BAD REQUEST.

○ DELETE: this use method for deleting resources. After successful
deletion, DELETE can return the 200 OK status code. According to
the HTTP specification, DELETE is a self-duplicating operation. Note
that when call DELETE on the same resource for the second time, the
server may return the 404 NOT FOUND status code after all it was
already deleted, which is different from the response for the first
request. The change in response for the second call is perfectly valid
here. However, multiple DELETE calls on the same resource produce
the same result (state) on the server.

○ PUT: According to the HTTP specification, this method is idempotent.
When a client calls the PUT method on a resource, the resource
available at the given URL is completely replaced with the resource
representation sent by the client. When a client uses the PUT request
on a resource, it will send all the available properties of the resource to
the server.

○ POST: This method is not self repeating. This method enables users to
use the POST method to create or update resources when they do not
know all the available attributes of a resource. Example, consider a
framework where the identifier field for an entity resource is generated
at the server when the entity is persisted in the data store. The POST
method for creating such resources as the client does not have an
identifier attribute while issuing the request. Example that illustrates
this framework. In this example, the employeeID attribute is generated
on the server:

POST /hrapp/api/employees HTTP/1.1

Host: packtdata.com

{employee entity resource in JSON}

● On successful creation of a resource, it is recommended to return the
status of 201 Created and the location of the newly created resource.

● This allows the client to access the newly created resource after. The
sample response for the preceding example will look like as follows:

mu
no
tes
.in

The RESTful Web

55

201 Created

Location: /hrapp/api/employees/1001

Understanding the difference between PUT and POST

● PUT method used for creating or updating a resource when the client
has the full resource content available. In this instance, all values are
with the client, and the server does not generate a value for any of the
fields.

● POST method used for creating or updating a resource if the client has
only partial resource content at hand.

Naming RESTful web resources

● Resources are an underlying concept in a RESTful web service.

● A resource shows an entity that is approachable via the URI that
provides. The URI, which refers to a resource (called as RESTful web
API), should have a logically meaningful name.

● Having meaningful names enhance the intuitiveness of the APIs, and
therefore, their usability. Some of the broadly followed
recommendations for naming resources are shown here:

● It is suggested to use nouns to name both resources and path segments
that will appear in the resource URI. here try to avoid using verbs for
naming resources and resource path segments. Using nouns to name a
resource upgrades the readability of the corresponding RESTful web
API, particularly when planning to release the API over the Internet
for the mass public.

● Always use plural nouns to refer to a collection of resources. Make
sure that , do not mix up singular and plural nouns while forming the
REST URIs.

● For instance, to get all departments, the resource URI must look like
/departments. To read a specific department from the collection, the
URI becomes /departments/{id}. Following the convention, the URI
for reading the details of the HR department identified by id=10
should look like /departments/10.

● The following table shows how can map the HTTP methods to the
operations defined for the departments' resources:

Table 1. HTTP methods

mu
no
tes
.in

Web Services

56

● While naming resources, esteem more concrete names over generic
names.

● For instance, when reading all programmers' details of a software firm,
it is preferable to have a resource URI of the form /programmers
(which tells about the type of resource), over the much generic form
/employees.

● This improves the perceptions of the APIs by clearly communicating
the type of resources that it deals with.

● Keep the resource names that appear in the URI in the lowercase to
upgrade the readability of the resulting resource URI.

● Resource names may include hyphens; avoid using underscores and
other punctuation.

● If the entity resource is represented in the JSON format, field names
used in the resource must obey to the following guidelines:

○ Use meaningful names for the setting properties

○ Follow camel-case naming convention: the first letter of the name is in
lowercase, for example, departmentName

○ The first character must be a form of letter, an underscore (_), or a
dollar sign ($), and the subsequent characters can be letters, digits,
underscores, and/or dollar signs

○ Try to avoid using the reserved JavaScript keywords

Fine-grained and coarse-grained resource APIs

● While building a RESTful web API, try to avoid the chattiness of
APIs. On the other hand, APIs should not be overly coarse-grained as
well.

● Highly coarse-grained APIs become too complex to use because the
response representation may contain a lot of information, all of which
may not be used by a majority of ,r API clients.

● Example: the difference between fine-grained and coarse-grained
approaches for building APIs. While building a very fine-grained API
to read the employee details as follows:

○ API to read employee name: GET /employees/10/name

○ API to read employee address1: GET /employees/10/address1

○ API to read employee address2: GET /employees/10/address2

○ API to read employee e-mail: GET /employees/10/email

mu
no
tes
.in

The RESTful Web

57

Using header parameter for content negotiation

● It is recommended to have an appropriate header parameter in the
client request and in the server response to indicate how the entity
body is serialized when transmitted over a wire.

● Accept: This request header field defines a list of acceptable response
formats for the response, for example,

Accept: application/json,application/xml

The javax.ws.rs.client.WebTarget class allows , to specify the Accept
header via the request() method for a JAX-RS client application

● Content-Type: This header field defines the type of the request or
response message body content, for example, Content-Type:
text/plain; charset=UTF-8

Multilingual RESTful web API resources

● If RESTful web API needs to return the resource representations in
different languages depending upon the client locale, use the content
negotiation offering in HTTP:

● Clients can use the Accept-Language request header to specify
language preferences.

● While generating a response, the server is expected to translate the
messages into the language supported by the client. The server can use
the Content-Language entity-header field to describe the natural
language(s) of the intended audience.

Representing date and time in RESTful web resources

● ISO 8601 is the International Standard for the representation of dates
and times. It is recommended to use the ISO-8601 format for
representing the date and time in RESTful web APIs.

Example for the ISO-8601 date and time: YYYY-MM-
DDThh:mm:ss.sTZD (for example, 2015-06-16T11:20:30.45+01:00)

Implementing partial response

● Partial response refers to an optimization technique offered by the
RESTful web APIs to return only the information (fields) required by
the client. In this mechanism, the client sends the required field names
as the query parameters for an API to the server, and the server trims
down the default response content by removing the fields that are not
required by the client.

Implementing partial update

● When a client changes only one part of the resource, optimize the
entire update process by allowing the client to send only the modified

mu
no
tes
.in

Web Services

58

part to the server, thereby saving the bandwidth and server resources.
RFC 5789 proposes a solution for this use case via a new HTTP
method called PATCH.

The PATCH method has the following form:

PATCH /departments/10 HTTP/1.1[Description of changes]

3.5 SECURE RESTFUL WEB SERVICES

● Security is an important part of any enterprise application. In the era of
cloud and the Internet of Things, controlling access to the application
via the public web API is an essential requirement for any enterprise.

● The security implementation in a RESTful web service application
decides who can access the RESTful web APIs and what they can do
once they are logged in.

● The following concept use for Securing RESTful web services:

○ HTTP basic authentication

○ HTTP digest authentication

○ Securing RESTful web services with OAuth

○ Authorizing the RESTful web service accesses

○ Input validation

Securing and authenticating web services

● In the context of RESTful web services There are two forms of
security:

● firstly, securing access to web services;

● Secondly, accessing web services on behalf of our users.

● Security has two essential elements: authentication and authorization.

○ Authentication: It is the process of verifying the identity of the user
who is trying to access the application or web service. This is typically
performed by obtaining user credentials, such as username and
password, and validating them against the user details configured on
the server.

○ Authorization: This is the process of verifying what an authenticated
user is permitted to do in the application or service.

HTTP basic authentication

● Basic HTTP authentication works by sending the Base64 encoded
username and the password as a pair in the HTTP authorization

mu
no
tes
.in

The RESTful Web

59

header. The username and password must be sent for every HTTP
request made by the client.

Building JAX-RS clients with basic authentication

● A normal client-server transaction, when using HTTP basic
authentication, can take two forms. On one hand, a client makes a
request to the server without authentication credentials.

● On the other hand, a client makes a request to the server with
authentication credentials.

● When a client makes a request without authentication credentials, the
server sends a response with an HTTP error code of 401 (unauthorized
access).

● If the request is executed from a web browser, users see the ubiquitous
Authentication Required browser popup, as shown below:

Figure 5. Basic authentication

● Users can then enter a valid username and password to complete the
request. Note that the web browser keeps track of the 401 response,
and is charged with sending the proper authentication credentials back
with the original URI. This makes the transaction seamless for users.
Now, if we were using a client other than a web browser, we would
need to programmatically intercept the 401 response and then provide
valid credentials to complete the original request.

● The second scenario that comes up while using HTTP basic
authentication is when we do not wait for a server's 401 response, but
provide authentication credentials at the beginning itself.

Securing JAX-RS services with basic authentication

● The basic authentication configuration depends on the web container
being used.

● GlassFish server for every application that requires a Java web
container; therefore, this example also assumes GlassFish as the target
server for running the RESTful web APIs.

mu
no
tes
.in

Web Services

60

Configuring JAX-RS application for basic authentication

● First, secure a Java web application, deployed in a Java EE container,
via basic authentication by making appropriate security entries in the
web.xml descriptor file, and also in the container (vendor) specific
deployment descriptor file(glassfish- web.xml)

● The first step is to modify the web.xml file to be shown as follows.
Note that web.xml is found in the WEB-INF folder of , web
application; generate a new one if it is found missing:

● Summary of the core elements that , saw in the preceding web.xml
file:

○ The <security-constraint> element in web.xml is used to secure a
collection of resources by restricting access to them with the
appropriate URL mapping:

<web-resource-
collection>

The <web-resource-collection>subelement
describes the protected resources in the
application, which are identified via URL
patterns and HTTP methods.

<auth-constraint> The subelement, <auth-constraint>, defines the
user roles that are authorized to access
constrained resources.

<user-data-
constraint>

The subelement, <user-data-constraint>,
defines how data is protected in the
transmission channel. It takes the following
values: CONFIDENTIAL, INTEGRAL, or
NONE. CONFIDENTIAL and INTEGRAL are
treated in the same way by the Java EE
container, and these values imply the use of
Transport Layer security (HTTPS) to all
incoming requests matching the URL patterns
present in <web-resource-collection>.

○ The element, <login-config>, defines the login configurations used in
the application. The subelement, <realm-name>, refers to a collection
of security information that is checked for authenticating the user
when a secured page (resource) is accessed at runtime.

○ The realm name that enter should match with the security realm that ,
configured on the server. The subelement, <auth-method>, defines the
authorization method used in the application. The possible values are
as follows:

mu
no
tes
.in

The RESTful Web

61

BASIC: This is the HTTP basic authentication that we
discussed a while ago.

DIGEST: This is the same as HTTP basic authentication except
that instead of a password, the client sends a
cryptographic hash of user credentials along with the
username.

FORM: This uses an HTML form for login, having field
names that match with specific convention. For
instance, j_username and j_ password are used as
names for the username and password fields
respectively.

CLIENT-
CERT:

This uses a certificate or other custom tokens in
order to authenticate a user.

Defining groups and users in the GlassFish server

● Glass Fish allows defining users for the application using the concept
of realms.

● A security realm can be treated as a mechanism that allows us to
define users and groups.

● GlassFish offers various credential realms, including FileRealm,
JDBCRealm, JNDIRealm, LDAPRealm, and so on. In this example we
will use an existing file realm that comes with GlassFish by default.

● Steps for adding users and groups to the file realm in GlassFish:

1. Start the GlassFish server.

2. Log in as the administrator to the Admin interface.

3. Navigate to Configurations | server-config | Security | Realms | File. In
this example, we use a file to store user information. In a real life
scenario, , may use LDAP or RDBMS.

4. Click on the Manage User button at the top of the page.

5. On the File Users page, click on New and add a user and give a
password. Set the Group List value as appropriate. In web.xml, we
have configured Users as a group, so specify the same name as a value
for Group List, for this example.

6. Click on OK to save change.

HTTP digest authentication

● The HTTP digest authentication authenticates a user based on a
username and a password. However, unlike with basic authentication,

mu
no
tes
.in

Web Services

62

the password is not transmitted in clear text between the client and the
server.

● Instead, the client sends a one way cryptographic hash of the
username, password, and a few other security related fields using the
MD5 message-digest hash algorithm.

● When the server receives the request, it regenerates the hashed value
for all the fields as done by the client and compares it with the one
present in the request.

● If the hashes match, the request is treated as authenticated and valid.

Securing RESTful web services with OAuth

● OAuth is an open standard for authorization, used by many enterprises
and service providers to protect resources.

● OAuth solves a different security problem than what HTTP basic
authentication has been used for.

● OAuth protocol allows client applications to access protected
resources on behalf of the resource owner.

3.6 SUMMARY

● A number of RESTful web API metadata standards have emerged in
the recent past.

● The popular RESTful web API documentation tools, namely WADL,
RAML, and Swagger.

● To choose the right solution for organization, , should start by looking
at client applications that access the APIs and their usage pattern, and
then choose a tool that makes the API consumption easier, which may
eventually improve the adoption of APIs by the customers.

● The best practices and coding guidelines that developers will find
useful when building RESTful web service applications.

● Summarized the design guidelines, best practices, and coding tips that
developers will find useful when building RESTful web services.

● We have learned how to build scalable and well-performing RESTful
applications by using the JAX-RS and Jersey APIs.

3.7 REFERENCE FOR FURTHER READING

 Web Services: Principles and Technology, Michael P. Papazoglou,
Pearson Education Limited, 2008

 RESTful Java Web Services, JobineshPurushothaman, PACKT
Publishing,2nd Edition, 2015

mu
no
tes
.in

The RESTful Web

63

3.8 UNIT END EXERCISES

1. Explain the building of RESTful web service application using
NETBEANs IDE

2. Write a short note on WSDL

3. Explain the security of RESTful web services

4. Design guidelines for building RESTful web services

mu
no
tes
.in

 64

4
DEVELOPING SERVICE-ORIENTED

APPLICATIONS WITH WCF

Unit Structure :

4.0 Introduction

4.1 Features of WCF

4.2 WCF Integration with Other Microsoft Technologies

4.3 Special Behavioural Characteristics

4.4 Web Services Architecture

4.5 Web Service Roles

4.6 Web Service Protocol Stack

4.7 SOAP

4.8 WSDL

4.9 UDDI

4.10 Web Services – Examples:

4.11 Testing the Web Service

4.12 Windows Application-Based Web Service Consumer

4.13 Summary

4.14 Questions

4.15 Reference

4.0 INTRODUCTION

Web services are open standard (XML, SOAP, HTTP, etc.) based web
applications that interact with other web applications for the purpose of
exchanging data. Web services can convert your existing applications into
web applications.

What Is Windows Communication Foundation?

Windows Communication Foundation (WCF) is a framework for building
service-oriented applications. Using WCF, you can send data as
asynchronous messages from one service endpoint to another. A service
endpoint can be part of a continuously available service hosted by IIS, or it
can be a service hosted in an application. An endpoint can be a client of a
service that requests data from a service endpoint. The messages can be as
simple as a single character or word sent as XML, or as complex as a
stream of binary data. A few sample scenarios include:

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

65

 A secure service to process business transactions.

 A service that supplies current data to others, such as a traffic report or
other monitoring service.

 A chat service that allows two people to communicate or exchange
data in real time.

 A dashboard application that polls one or more services for data and
presents it in a logical presentation.

 Exposing a workflow implemented using Windows Workflow
Foundation as a WCF service.

4.1 FEATURES OF WCF

 Service Orientation

One consequence of using WS standards is that WCF enables you to
create service oriented applications. Service-oriented architecture (SOA) is
the reliance on Web services to send and receive data. The services have
the general advantage of being loosely-coupled instead of hard-coded
from one application to another. A loosely-coupled relationship implies
that any client created on any platform can connect to any service as long
as the essential contracts are met.

 Interoperability

WCF implements modern industry standards for Web service
interoperability.

 Multiple Message Patterns

Messages are exchanged in one of several patterns. The most common
pattern is the request/reply pattern, where one endpoint requests data from
a second endpoint. The second endpoint replies. There are other patterns
such as a one-way message in which a single endpoint sends a message
without any expectation of a reply. A more complex pattern is the duplex
exchange pattern where two endpoints establish a connection and send
data back and forth, similar to an instant messaging program.

 Service Metadata

WCF supports publishing service metadata using formats specified in
industry standards such as WSDL, XML Schema and WS-Policy. This
metadata can be used to automatically generate and configure clients for
accessing WCF services. Metadata can be published over HTTP and
HTTPS or using the Web Service Metadata Exchange standard.

 Data Contracts

Because WCF is built using the .NET Framework, it also includes code-
friendly methods of supplying the contracts you want to enforce. One of

mu
no
tes
.in

Web Services

66

the universal types of contracts is the data contract. In essence, as you
code your service using Visual C# or Visual Basic, the easiest way to
handle data is by creating classes that represent a data entity with
properties that belong to the data entity. WCF includes a comprehensive
system for working with data in this easy manner. Once you have created
the classes that represent data, your service automatically generates the
metadata that allows clients to comply with the data types you have
designed

 Security

Messages can be encrypted to protect privacy and you can require users to
authenticate themselves before being allowed to receive messages.
Security can be implemented using well-known standards such as SSL or
WS-SecureConversation.

 Multiple Transports and Encodings

Messages can be sent on any of several built-in transport protocols and
encodings. The most common protocol and encoding is to send text
encoded SOAP messages using the HyperText Transfer Protocol (HTTP)
for use on the World Wide Web. Alternatively, WCF allows you to send
messages over TCP, named pipes, or MSMQ. These messages can be
encoded as text or using an optimized binary format. Binary data can be
sent efficiently using the MTOM standard. If none of the provided
transports or encodings suit your needs you can create your own custom
transport or encoding.

 Reliable and Queued Messages

WCF supports reliable message exchange using reliable sessions
implemented over WS-Reliable Messaging and using MSMQ.

 Durable Messages

A durable message is one that is never lost due to a disruption in the
communication. The messages in a durable message pattern are always
saved to a database. If a disruption occurs, the database allows you to
resume the message exchange when the connection is restored. You can
also create a durable message using the Windows Workflow Foundation
(WF). For more information.

 Transactions

WCF also supports transactions using one of three transaction models:
WS-Atomic Transactions, the APIs in the System. Transactions name
space, and Microsoft Distributed Transaction Coordinator

 AJAX and REST Support

REST is an example of an evolving Web 2.0 technology. WCF can be
configured to process "plain" XML data that is not wrapped in a SOAP
envelope. WCF can also be extended to support specific XML formats,

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

67

such as ATOM (a popular RSS standard), and even non-XML formats,
such as JavaScript Object Notation (JSON).

 Extensibility

The WCF architecture has a number of extensibility points. If extra
capability is required, there are a number of entry points that allow you to
customize the behavior of a service.

4.2 WCF INTEGRATION WITH OTHER MICROSOFT
TECHNOLOGIES

WCF is a flexible platform. Because of this extreme flexibility, WCF is
also used in several other Microsoft products. By understanding the basics
of WCF, you have an immediate advantage if you also use any of these
products.

The first technology to pair with WCF was the Windows Workflow
Foundation (WF). Workflows simplify application development by
encapsulating steps in the workflow as "activities." In the first version of
Windows Workflow Foundation, a developer had to create a host for the
workflow. The next version of Windows Workflow Foundation was
integrated with WCF. That allowed any workflow to be easily hosted in a
WCF service. You can do this by automatically choosing the WF/WCF
project type in Visual Studio 2012 or later.

Microsoft BizTalk Server R2 also utilizes WCF as a communication
technology. BizTalk is designed to receive and transform data from one
standardized format to another. Messages must be delivered to its central
message box where the message can be transformed using either a strict
mapping or by using one of the BizTalk features such as its workflow
engine. BizTalk can now use the WCF Line of Business (LOB) adapter to
deliver messages to the message box.

The hosting features of Windows Server AppFabric application server are
specifically designed for deploying and managing applications that use
WCF for communication. The hosting features include rich tooling and
configuration options specifically designed for WCF-enabled applications.

4.3 SPECIAL BEHAVIOURAL CHARACTERISTICS

XML-Based

Web services use XML at data representation and data transportation
layers. Using XML eliminates any networking, operating system, or
platform binding. Web services based applications are highly
interoperable at their core level.

Loosely Coupled

A consumer of a web service is not tied to that web service directly. The
web service interface can change over time without compromising the

mu
no
tes
.in

Web Services

68

client's ability to interact with the service. A tightly coupled system
implies that the client and server logic are closely tied to one another,
implying that if one interface changes, the other must be updated.
Adopting a loosely coupled architecture tends to make software systems
more manageable and allows simpler integration between different
systems.

Coarse-Grained

Object-oriented technologies such as Java expose their services through
individual methods. An individual method is too fine an operation to
provide any useful capability at a corporate level. Building a Java program
from scratch requires the creation of several fine-grained methods that are
then composed into a coarse-grained service that is consumed by either a
client or another service.

Businesses and the interfaces that they expose should be coarse-grained.
Web services technology provides a natural way of defining coarse-
grained services that access the right amount of business logic.

Ability to be Synchronous or Asynchronous

Synchronicity refers to the binding of the client to the execution of the
service. In synchronous invocations, the client blocks and waits for the
service to complete its operation before continuing. Asynchronous
operations allow a client to invoke a service and then execute other
functions.

Asynchronous clients retrieve their result at a later point in time, while
synchronous clients receive their result when the service has completed.
Asynchronous capability is a key factor in enabling loosely coupled
systems.

Supports Remote Procedure Calls(RPCs)

Web services allow clients to invoke procedures, functions, and methods
on remote objects using an XML-based protocol. Remote procedures
expose input and output parameters that a web service must support.

Component development through Enterprise JavaBeans (EJBs) and .NET
Components has increasingly become a part of architectures and enterprise
deployments over the past couple of years. Both technologies are
distributed and accessible through a variety of RPC mechanisms.

A web service supports RPC by providing services of its own, equivalent
to those of a traditional component, or by translating incoming invocations
into an invocation of an EJB or a .NET component.

Supports Document Exchange

One of the key advantages of XML is its generic way of representing not
only data, but also complex documents. These documents can be as simple
as representing a current address, or they can be as complex as

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

69

representing an entire book or Request for Quotation (RFQ). Web services
support the transparent exchange of documents to facilitate business
integration.

4.4 WEB SERVICES – ARCHITECTURE

There are two ways to view the web service architecture −

 The first is to examine the individual roles of each web service actor.

 The second is to examine the emerging web service protocol stack.

WCF has a layered architecture that offers ample support for developing
various distributed applications. The architecture is explained below in
detail.

Contracts

The contracts layer is just next to the application layer and contains
information similar to that of a real-world contract that specifies the

mu
no
tes
.in

Web Services

70

operation of a service and the kind of accessible information it will make.
Contracts are basically of four types discussed below in brief −

 Service contract − This contract provides information to the client as
well as to the outer world about the offerings of the endpoint, and the
protocols to be used in the communication process.

 Data contract − The data exchanged by a service is defined by a data
contract. Both the client and the service has to be in agreement with
the data contract.

 Message contract − A data contract is controlled by a message
contract. It primarily does the customization of the type formatting of
the SOAP message parameters. Here, it should be mentioned that
WCF employs SOAP format for the purpose of communication. SOAP
stands for Simple Object Access Protocol.

 Policy and Binding − There are certain pre-conditions for
communication with a service, and such conditions are defined by
policy and binding contract. A client needs to follow this contract.

Service Runtime

The service runtime layer is just below the contracts layer. It specifies the
various service behaviors that occur during runtime. There are many types
of behaviors that can undergo configuration and come under the service
runtime.

 Throttling Behavior − Manages the number of messages processed.

 Error Behavior − Defines the result of any internal service error
occurrence.

 Metadata Behavior − Specifies the availability of metadata to the
outside world.

 Instance Behavior − Defines the number of instances that needs to be
created to make them available for the client.

 Transaction Behavior − Enables a change in transaction state in case
of any failure.

 Dispatch Behavior − Controls the way by which a message gets
processed by the infrastructure of WCF.

 Concurrency Behavior − Controls the functions that run parallel
during a client-server communication.

 Parameter Filtering − Features the process of validation of
parameters to a method before it gets invoked.

Messaging

This layer, composed of several channels, mainly deals with the message
content to be communicated between two endpoints. A set of channels

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

71

form a channel stack and the two major types of channels that comprise
the channel stack are the following ones −

 Transport Channels − These channels are present at the bottom of a
stack and are accountable for sending and receiving messages using
transport protocols like HTTP, TCP, Peer-to-Peer, Named Pipes, and
MSMQ.

 Protocol Channels − Present at the top of a stack, these channels also
known as layered channels, implement wire-level protocols by
modifying messages.

Activation and Hosting

The last layer of WCF architecture is the place where services are actually
hosted or can be executed for easy access by the client. This is done by
various mechanisms discussed below in brief.

 IIS − IIS stands for Internet Information Service. It offers a myriad of
advantages using the HTTP protocol by a service. Here, it is not
required to have the host code for activating the service code; instead,
the service code gets activated automatically.

 Windows Activation Service − This is popularly known as WAS and
comes with IIS 7.0. Both HTTP and non-HTTP based communication
is possible here by using TCP or Namedpipe protocols.

 Self-hosting − This is a mechanism by which a WCF service gets self-
hosted as a console application. This mechanism offers amazing
flexibility in terms of choosing the desired protocols and setting own
addressing scheme.

 Windows Service − Hosting a WCF service with this mechanism is
advantageous, as the services then remain activated and accessible to
the client due to no runtime activation.

4.5 WEB SERVICE ROLES

There are three major roles within the web service architecture −

Service Provider

This is the provider of the web service. The service provider implements
the service and makes it available on the Internet.

Service Requestor

This is any consumer of the web service. The requestor utilizes an existing
web service by opening a network connection and sending an XML
request.

mu
no
tes
.in

Web Services

72

Service Registry

This is a logically centralized directory of services. The registry provides a
central place where developers can publish new services or find existing
ones. It therefore serves as a centralized clearing house for companies and
their services.

4.6 WEB SERVICE PROTOCOL STACK

A second option for viewing the web service architecture is to examine the
emerging web service protocol stack. The stack is still evolving, but
currently has four main layers.

Service Transport

This layer is responsible for transporting messages between applications.
Currently, this layer includes Hyper Text Transport Protocol (HTTP),
Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and
newer protocols such as Blocks Extensible Exchange Protocol (BEEP).

XML Messaging

This layer is responsible for encoding messages in a common XML format
so that messages can be understood at either end. Currently, this layer
includes XML-RPC and SOAP.

Service Description

This layer is responsible for describing the public interface to a specific
web service. Currently, service description is handled via the Web Service
Description Language (WSDL).

Service Discovery

This layer is responsible for centralizing services into a common registry
and providing easy publish/find functionality. Currently, service discovery
is handled via Universal Description, Discovery, and Integration (UDDI).

As web services evolve, additional layers may be added and additional
technologies may be added to each layer.

Few Words about Service Transport

The bottom of the web service protocol stack is service transport. This
layer is responsible for actually transporting XML messages between two
computers.

Hyper Text Transfer Protocol (HTTP)

Currently, HTTP is the most popular option for service transport. HTTP is
simple, stable, and widely deployed. Furthermore, most firewalls allow
HTTP traffic. This allows XMLRPC or SOAP messages to masquerade as
HTTP messages. This is good if you want to integrate remote applications,

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

73

but it does raise a number of security concerns.ise a number of security
concerns.

Blocks Extensible Exchange Protocol (BEEP)

This is a promising alternative to HTTP. BEEP is a new Internet
Engineering Task Force (IETF) framework for building new protocols.
BEEP is layered directly on TCP and includes a number of built-in
features, including an initial handshake protocol, authentication, security,
and error handling. Using BEEP, one can create new protocols for a
variety of applications, including instant messaging, file transfer, content
syndication, and network management.

SOAP is not tied to any specific transport protocol. In fact, you can use
SOAP via HTTP, SMTP, or FTP. One promising idea is therefore to use
SOAP over BEEP.

Web Services Components:

Over the past few years, three primary technologies have emerged as
worldwide standards that make up the core of today's web services
technology. These technologies are discussed below.

XML-RPC

This is the simplest XML-based protocol for exchanging information
between computers.

 XML-RPC is a simple protocol that uses XML messages to perform
RPCs.

 Requests are encoded in XML and sent via HTTP POST.

 XML responses are embedded in the body of the HTTP response.

 XML-RPC is platform-independent.

 XML-RPC allows diverse applications to communicate.

 A Java client can speak XML-RPC to a Perl server.

 XML-RPC is the easiest way to get started with web services.

4.7 SOAP

SOAP is an XML-based protocol for exchanging information between
computers.

 SOAP is a communication protocol.

 SOAP is for communication between applications.

 SOAP is a format for sending messages.

mu
no
tes
.in

Web Services

74

 SOAP is designed to communicate via Internet.

 SOAP is platform independent.

 SOAP is language independent.

 SOAP is simple and extensible.

 SOAP allows you to get around firewalls.

 SOAP will be developed as a W3C standard.

4.8 WSDL

WSDL is an XML-based language for describing web services and how to
access them.

 WSDL stands for Web Services Description Language.

 WSDL was developed jointly by Microsoft and IBM.

 WSDL is an XML based protocol for information exchange in
decentralized and distributed environments.

 WSDL is the standard format for describing a web service.

 WSDL definition describes how to access a web service and what
operations it will perform.

 WSDL is a language for describing how to interface with XML-based
services.

 WSDL is an integral part of UDDI, an XML-based worldwide
business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

4.9 UDDI

UDDI is an XML-based standard for describing, publishing, and finding
web services.

 UDDI stands for Universal Description, Discovery, and Integration.

 UDDI is a specification for a distributed registry of web services.

 UDDI is platform independent, open framework.

 UDDI can communicate via SOAP, CORBA, and Java RMI Protocol.

 UDDI uses WSDL to describe interfaces to web services.

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

75

 UDDI is seen with SOAP and WSDL as one of the three foundation
standards of web services.

 UDDI is an open industry initiative enabling businesses to discover
each other and define how they interact over the Internet.

4.10 WEB SERVICES – EXAMPLES

Based on the web service architecture, we create the following two
components as a part of web services implementation −

Service Provider or Publisher

This is the provider of the web service. The service provider implements
the service and makes it available on the Internet or intranet.

We will write and publish a simple web service using .NET SDK.

Service Requestor or Consumer

This is any consumer of the web service. The requestor utilizes an existing
web service by opening a network connection and sending an XML
request.

We will also write two web service requestors: one web-based consumer
(ASP.NET application) and another Windows application-based
consumer.

Given below is our first web service example which works as a service
provider and exposes two methods (add and SayHello) as the web services
to be used by applications. This is a standard template for a web service.
.NET web services use the .asmx extension. Note that a method exposed
as a web service has the WebMethod attribute. Save this file as
FirstService.asmx in the IIS virtual directory (as explained in configuring
IIS; for example, c:\MyWebSerces).

FirstService.asmx

<%@WebService language ="C#"class="FirstService"%>

usingSystem;

usingSystem.Web.Services;

usingSystem.Xml.Serialization;

[WebService(Namespace="http://localhost/MyWebServices/")]

publicclassFirstService:WebService{

mu
no
tes
.in

Web Services

76

[WebMethod]

publicintAdd(int a,int b){

return a + b;

}

[WebMethod]

publicStringSayHello(){

return"Hello World";

}

}

To test a web service, it must be published. A web service can be
published either on an intranet or the Internet. We will publish this web
service on IIS running on a local machine. Let us start with configuring
the IIS.

 Open Start → Settings → Control Panel → Administrative tools →
Internet Services Manager.

 Expand and right-click on the default web site; select New &#rarr;
Virtual Directory. The Virtual Directory Creation Wizard opens. Click
Next.

 The "Virtual Directory Alias" screen opens. Type the virtual directory
name. For example, MyWebServices. Click Next.

 The "Web Site Content Directory" screen opens.

 Enter the directory path name for the virtual directory. For example,
c:\MyWebServices. Click Next.

 The "Access Permission" screen opens. Change the settings as per
your requirements. Let us keep the default settings for this exercise.

 Click the Next button. It completes the IIS configuration.

 Click Finish to complete the configuration.

To test whether the IIS has been configured properly, copy an HTML file
(For example, x.html) in the virtual directory (C:\MyWebServices) created
above. Now, open Internet Explorer and
type http://localhost/MyWebServices/x.html. It should open the x.html
file.

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

77

Note − If it does not work, try replacing the localhost with the IP address
of your machine. If it still does not work, check whether IIS is running;
you may need to reconfigure the IIS and the Virtual Directory.

To test this web service, copy FirstService.asmx in the IIS virtual
directory created above (C:\MyWebServices). Open the web service in
Internet Explorer (http://localhost/MyWebServices/FirstService.asmx). It
should open your web service page. The page should have links to two
methods exposed as web services by our application. Congratulations!
You have written your first web service!

4.11 TESTING THE WEB SERVICE

As we have just seen, writing web services is easy in the .NET
Framework. Writing web service consumers is also easy in the .NET
framework; however, it is a bit more involved. As said earlier, we will
write two types of service consumers, one web-based and another
Windows application-based consumer. Let us write our first web service
consumer.

Web-Based Service Consumer

Write a web-based consumer as given below. Call it WebApp.aspx. Note
that it is an ASP.NET application. Save this in the virtual directory of the
web service (c:\MyWebServices\WebApp.axpx).

This application has two text fields that are used to get numbers from the
user to be added. It has one button, Execute, that when clicked gets the
Add and SayHello web services.

WebApp.aspx

<%@PageLanguage="C#"%>

<script runat="server">

voidrunSrvice_Click(Object sender,EventArgs e){

FirstServicemySvc=newFirstService();

Label1.Text=mySvc.SayHello();

Label2.Text=mySvc.Add(Int32.Parse(txtNum1.Text),Int32.Parse(txtNum
2.Text)).ToString();

}

</script>

<html>

<head></head>

mu
no
tes
.in

Web Services

78

<body>

<form runat="server">

<p>

FirstNumber to Add:

<asp:TextBox id
="txtNum1"runat="server"Width="43px">4</asp:TextBox>

</p>

<p>

SecondNumberToAdd:

<asp:TextBox id
="txtNum2"runat="server"Width="44px">5</asp:TextBox>

</p>

<p>

<u>WebServiceResult-</u>

</p>

<p>

Hello world Service:

<asp:Label id ="Label1"runat="server"Font-
Underline="True">Label</asp:Label>

</p>

<p>

AddService:

&<asp:Label id ="Label2"runat="server"Font-
Underline="True">Label</asp:Label>

</p>

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

79

<p align ="left">

<asp:Button id ="runSrvice" onclick
="runSrvice_Click"runat="server"Text="Execute"></asp:Button>

</p>

</form>

</body>

</html>

After the consumer is created, we need to create a proxy for the web
service to be consumed. This work is done automatically by Visual Studio
.NET for us when referencing a web service that has been added. Here are
the steps to be followed −

 Create a proxy for the Web Service to be consumed. The proxy is
created using the WSDL utility supplied with the .NET SDK. This
utility extracts information from the Web Service and creates a proxy.
The proxy is valid only for a particular Web Service. If you need to
consume other Web Services, you need to create a proxy for this
service as well. Visual Studio .NET creates a proxy automatically for
you when the Web Service reference is added. Create a proxy for the
Web Service using the WSDL utility supplied with the .NET SDK. It
will create FirstSevice.cs file in the current directory. We need to
compile it to create FirstService.dll (proxy) for the Web Service.

c:> WSDL http://localhost/MyWebServices/FirstService.asmx?WSDL

c:> csc /t:libraryFirstService.cs

 Put the compiled proxy in the bin directory of the virtual directory of
the Web Service (c:\MyWebServices\bin). Internet Information
Services (IIS) looks for the proxy in this directory.

 Create the service consumer, in the same way we already did. Note
that an object of the Web Service proxy is instantiated in the
consumer. This proxy takes care of interacting with the service.

 Type the URL of the consumer in IE to test it (for example,
http://localhost/MyWebServices/WebApp.aspx).

4.12 WINDOWS APPLICATION-BASED WEB SERVICE
CONSUMER

Writing a Windows application-based web service consumer is the same
as writing any other Windows application. You only need to create the
proxy (which we have already done) and reference this proxy when
compiling the application. Following is our Windows application that uses
the web service. This application creates a web service object (of course,
proxy) and calls the SayHello, and Add methods on it.

mu
no
tes
.in

Web Services

80

WinApp.cs

usingSystem;

usingSystem.IO;

namespaceSvcConsumer{

classSvcEater{

publicstaticvoidMain(String[]args){

FirstServicemySvc=newFirstService();

Console.WriteLine("Calling Hello World Service: "+mySvc.SayHello());

Console.WriteLine("Calling Add(2, 3) Service:
"+mySvc.Add(2,3).ToString());

}

}

}

Compile it using c:\>csc /r:FirstService.dll WinApp.cs. It will create
WinApp.exe. Run it to test the application and the web service.

Now, the question arises: How can you be sure that this application is
actually calling the web service?

It is simple to test. Stop your web server so that the web service cannot be
contacted. Now, run the WinApp application. It will fire a runtime
exception. Now, start the web server again. It should work.

4.13 SUMMARY

Web services are open standard (XML, SOAP, HTTP, etc.) based web
applications that interact with other web applications for the purpose of
exchanging data. Web services can convert your existing applications into
web applications.

4.14 QUESTIONS

1. Explain WCF.

2. List out Features of WCF.

3. Explain Web services Architecture

4. Explain web service Roles.

mu
no
tes
.in

Developing Service-
Oriented Applications

with WCF

81

5. Give short notes on:

a) SOAP

b) WSDL

c) UDDI

4.15 REFERENCE

 https://learn.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf

 https://www.tutorialspoint.com/mfc/mfc_windows_fundamentals.htm

 https://www.tutorialspoint.com/wcf/wcf_architecture.htm

mu
no
tes
.in

 82

5
BASIC WCF PROGRAMMING

Unit Structure :

5.0 Introduction

5.1 WCF features supported by the .NET Framework Client Profile

5.2 Basic WCF programming

5.3 Designing and Implementing Services

5.4 Service Contracts

5.5 Messages Up Front and Center

5.6 Designing Service Contracts

5.7 Classes or Interfaces

5.8 Parameters and Return Values

5.9 Specify Message Protection Level on the Contract

5.10 Configuring WCF services

5.11 Summary

5.12 Questions

5.13 Reference

5.0 INTRODUCTION

NET Framework Client Profile is a lightweight version of the full .NET
Framework designed for clients that don’t need the entire framework. Not
all of Windows Communication Foundation is supported by the client
framework.

5.1 WCF FEATURES SUPPORTED BY THE .NET
FRAMEWORK CLIENT PROFILE

The following Windows Communication Foundation features are
supported by .NET Framework Client Profile:

 All of WCF is supported except for Cardspace and web hosting.

 Remoting TCP/IP channels are supported.

 Asmx (Web Services) are not supported.

mu
no
tes
.in

Basic WCF
Programming

83

5.2 BASIC WCF PROGRAMMING

Windows Communication Foundation (WCF) enables applications to
communicate whether they are on the same computer, across the Internet,
or on different application platforms.

The Basic Tasks

The basic tasks to perform are, in order:

1. Define the service contract. A service contract specifies the signature
of a service, the data it exchanges, and other contractually required
data. For more information..

2. Implement the contract. To implement a service contract, create a class
that implements the contract and specify custom behaviors that the
runtime should have. For more information.

3. Configure the service by specifying endpoints and other behavior
information. For more information.

4. Host the service.

5. Build a client application. For more information.

5.3 DESIGNING AND IMPLEMENTING SERVICES

This section shows you how to define and implement WCF contracts. A
service contract specifies what an endpoint communicates to the outside
world. At a more concrete level, it is a statement about a set of specific
messages organized into basic message exchange patterns (MEPs), such as
request/reply, one-way, and duplex. If a service contract is a logically
related set of message exchanges, a service operation is a single message
exchange. For example, a Hello operation must obviously accept one
message (so the caller can announce the greeting) and may or may not
return a message (depending upon the courtesy of the operation).

Overview

This topic provides a high level conceptual orientation to designing and
implementing WCF services. Subtopics provide more detailed information
about the specifics of design and implementation. Before designing and
implementing your WCF application, it is recommended that you:

 Understand what a service contract is, how it works, and how to create
one.

 Understand that contracts state minimum requirements that runtime
configuration or the hosting environment may not support.

mu
no
tes
.in

Web Services

84

5.4 SERVICE CONTRACTS

A service contract specifies the following:

 The operations a contract exposes.

 The signature of the operations in terms of messages exchanged.

 The data types of these messages.

 The location of the operations.

 The specific protocols and serialization formats that are used to
support successful communication with the service.

For example, a purchase order contract might have a Create
Order operation that accepts an input of order information types and
returns success or failure information, including an order identifier. It
might also have a GetOrderStatus operation that accepts an order identifier
and returns order status information. A service contract of this sort would
specify:

1. That the purchase order contract consisted of Create Order and Get
Order Status operations.

2. That the operations have specified input messages and output
messages.

3. The data that these messages can carry.

4. Categorical statements about the communication infrastructure
necessary to successfully process the messages. For example, these
details include whether and what forms of security are required to
establish successful communication.

To convey this kind of information to other applications on many
platforms (including non-Microsoft platforms), XML service contracts are
publicly expressed in standard XML formats, such as Web Services
Description Language (WSDL) and XML Schema (XSD), among others.
Developers for many platforms can use this public contract information to
create applications that can communicate with the service, both because
they understand the language of the specification and because those
languages are designed to enable interoperation by describing the public
forms, formats, and protocols that the service supports.

Contracts can be expressed many ways, and while WSDL and XSD are
excellent languages to describe services in an accessible way, they are
difficult languages to use directly and are merely descriptions of a service,
not service contract implementations. Therefore, WCF applications use
managed attributes, interfaces, and classes both to define the structure of a
service and to implement it.

mu
no
tes
.in

Basic WCF
Programming

85

The resulting contract defined in managed types can be exported as
metadata—WSDL and XSD—when needed by clients or other service
implementers. The result is a straightforward programming model that can
be described (using public metadata) to any client application. The details
of the underlying SOAP messages, the transportation and security-related
information, and so on, can be left to WCF, which performs the necessary
conversions to and from the service contract type system to the XML type
system automatically.

5.5 MESSAGES UP FRONT AND CENTER

Using managed interfaces, classes, and methods to model service
operations is straightforward when you are used to remote procedure call
(RPC)-style method signatures, in which passing parameters into a method
and receiving return values is the normal form of requesting functionality
from an object or other type of code. For example, programmers using
managed languages such as Visual Basic and C++ COM can apply their
knowledge of the RPC-style approach (whether using objects or
interfaces) to the creation of WCF service contracts without experiencing
the problems inherent in RPC-style distributed object systems. Service
orientation provides the benefits of loosely coupled, message-oriented
programming while retaining the ease and familiarity of the RPC
programming experience.

Many programmers are more comfortable with message-oriented
application programming interfaces, such as message queues like
Microsoft MSMQ, the System.Messaging namespaces in the .NET
Framework, or sending unstructured XML in HTTP requests, to name a
few.

Understanding the Hierarchy of Requirements

A service contract groups the operations; specifies the message exchange
pattern, message types, and data types those messages carry; and indicates
categories of run-time behavior an implementation must have to support
the contract (for example, it may require that messages be encrypted and
signed). The service contract itself does not specify precisely how these
requirements are met, only that they must be. The type of encryption or
the manner in which a message is signed is up to the implementation and
configuration of a compliant service.

Notice the way that the contract requires certain things of the service
contract implementation and the run-time configuration to add behavior.
The set of requirements that must be met to expose a service for use builds
on the preceding set of requirements. If a contract makes requirements of
the implementation, an implementation can require yet more of the
configuration and bindings that enable the service to run. Finally, the host
application must also support any requirements that the service
configuration and bindings add.

mu
no
tes
.in

Web Services

86

This additive requirement process is important to keep in mind while
designing, implementing, configuring, and hosting a Windows
Communication Foundation (WCF) service application. For example, the
contract can specify that it needs to support a session. If so, then you must
configure the binding to support that contractual requirement, or the
service implementation will not work. Or if your service requires
Windows Integrated Authentication and is hosted in Internet Information
Services (IIS), the Web application in which the service resides must have
Windows Integrated Authentication turned on and anonymous support
turned off.

5.6 DESIGNING SERVICE CONTRACTS

This topic describes what service contracts are, how they are defined, what
operations are available (and the implications for the underlying message
exchanges), what data types are used, and other issues that help you design
operations that satisfy the requirements of your scenario.

Creating a Service Contract

Services expose a number of operations. In Windows Communication
Foundation (WCF) applications, define the operations by creating a
method and marking it with the OperationContractAttribute attribute.
Then, to create a service contract, group together your operations, either
by declaring them within an interface marked with the Service Contract
Attribute attribute, or by defining them in a class marked with the same
attribute.

Any methods that do not have a OperationContractAttribute attribute are
not service operations and are not exposed by WCF services.

5.7 CLASSES OR INTERFACES

Both classes and interfaces represent a grouping of functionality and,
therefore, both can be used to define a WCF service contract. However, it
is recommended that you use interfaces because they directly model
service contracts. Without an implementation, interfaces do no more than
define a grouping of methods with certain signatures. Implement a service
contract interface and you have implemented a WCF service.

All the benefits of managed interfaces apply to service contract interfaces:

 Service contract interfaces can extend any number of other service
contract interfaces.

 A single class can implement any number of service contracts by
implementing those service contract interfaces.

 You can modify the implementation of a service contract by changing
the interface implementation, while the service contract remains the
same.

mu
no
tes
.in

Basic WCF
Programming

87

 You can version your service by implementing the old interface and
the new one. Old clients connect to the original version, while newer
clients can connect to the newer version.

5.8 PARAMETERS AND RETURN VALUES

Each operation has a return value and a parameter, even if these are void.
However, unlike a local method, in which you can pass references to
objects from one object to another, service operations do not pass
references to objects. Instead, they pass copies of the objects.

This is significant because each type used in a parameter or return value
must be serializable; that is, it must be possible to convert an object of that
type into a stream of bytes and from a stream of bytes into an object.

Primitive types are serializable by default, as are many types in the .NET
Framework.

Data Contracts

Service-oriented applications like Windows Communication Foundation
(WCF) applications are designed to interoperate with the widest possible
number of client applications on both Microsoft and non-Microsoft
platforms. For the widest possible interoperability, it is recommended that
you mark your types with the Data Contract Attribute and Data Member
Attribute attributes to create a data contract, which is the portion of the
service contract that describes the data that your service operations
exchange.

Data contracts are opt-in style contracts: No type or data member is
serialized unless you explicitly apply the data contract attribute. Data
contracts are unrelated to the access scope of the managed code: Private
data members can be serialized and sent elsewhere to be accessed
publicly. (For a basic example of a data contract, WCF handles the
definition of the underlying SOAP messages that enable the operation's
functionality as well as the serialization of your data types into and out of
the body of the messages. As long as your data types are serializable, you
do not need to think about the underlying message exchange infrastructure
when designing your operations.

Although the typical WCF application uses the Data Contract
Attribute and Data Member Attribute attributes to create data contracts for
operations, you can use other serialization mechanisms. The standard I
Serializable, Serializable Attribute, and IX ml Serializable mechanisms all
work to handle the serialization of your data types into the underlying
SOAP messages that carry them from one application to another. You can
employ more serialization strategies if your data types require special
support.

mu
no
tes
.in

Web Services

88

Mapping Parameters and Return Values to Message Exchanges

Service operations are supported by an underlying exchange of SOAP
messages that transfer application data back and forth, in addition to the
data required by the application to support certain standard security,
transaction, and session-related features. Because this is the case, the
signature of a service operation dictates a certain underlying message
exchange pattern (MEP) that can support the data transfer and the features
an operation requires.

Request/ Reply

A request/reply pattern is one in which a request sender (a client
application) receives a reply with which the request is correlated. This is
the default MEP because it supports an operation in which one or more
parameters are passed to the operation and a return value is passed back to
the caller. For example, the following C# code example shows a basic
service operation that takes one string and returns a string.

C#Copy

[OperationContractAttribute]

stringHello(string greeting);

The following is the equivalent Visual Basic code.

VBCopy

<OperationContractAttribute()>

Function Hello (ByVal greeting AsString) AsString

This operation signature dictates the form of underlying message
exchange. If no correlation existed, WCF cannot determine for which
operation the return value is intended.

Note that unless you specify a different underlying message pattern, even
service operations that return void (Nothing in Visual Basic) are
request/reply message exchanges. The result for your operation is that
unless a client invokes the operation asynchronously, the client stops
processing until the return message is received, even though that message
is empty in the normal case. The following C# code example shows an
operation that does not return until the client has received an empty
message in response.

C#Copy

[OperationContractAttribute]

voidHello(string greeting);

The following is the equivalent Visual Basic code.

VBCopy

mu
no
tes
.in

Basic WCF
Programming

89

<OperationContractAttribute()>

Sub Hello (ByVal greeting AsString)

The preceding example can slow client performance and responsiveness if
the operation takes a long time to perform, but there are advantages to
request/reply operations even when they return void. The most obvious
one is that SOAP faults can be returned in the response message, which
indicates that some service-related error condition has occurred, whether
in communication or processing. SOAP faults that are specified in a
service contract are passed to the client application as a Fault
Exception<TDetail> object, where the type parameter is the type specified
in the service contract. This makes notifying clients about error conditions
in WCF services easy.

One-way

If the client of a WCF service application should not wait for the operation
to complete and does not process SOAP faults, the operation can specify a
one-way message pattern. A one-way operation is one in which a client
invokes an operation and continues processing after WCF writes the
message to the network. Typically this means that unless the data being
sent in the outbound message is extremely large the client continues
running almost immediately (unless there is an error sending the data).
This type of message exchange pattern supports event-like behavior from
a client to a service application.

A message exchange in which one message is sent and none are received
cannot support a service operation that specifies a return value other
than void; in this case an InvalidOperationException exception is thrown.

No return message also means that there can be no SOAP fault returned to
indicate any errors in processing or communication. (Communicating
error information when operations are one-way operations requires a
duplex message exchange pattern.)

To specify a one-way message exchange for an operation that returns void,
set the IsOneWay property to true, as in the following C# code example.

C#Copy

[OperationContractAttribute(IsOneWay=true)]

voidHello(string greeting);

The following is the equivalent Visual Basic code.

VBCopy

<OperationContractAttribute(IsOneWay := True)>

Sub Hello (ByVal greeting AsString)

mu
no
tes
.in

Web Services

90

This method is identical to the preceding request/reply example, but
setting the IsOneWay property to true means that although the method is
identical, the service operation does not send a return message and clients
return immediately once the outbound message has been handed to the
channel layer.

Duplex

A duplex pattern is characterized by the ability of both the service and the
client to send messages to each other independently whether using one-
way or request/reply messaging. This form of two-way communication is
useful for services that must communicate directly to the client or for
providing an asynchronous experience to either side of a message
exchange, including event-like behavior.

The duplex pattern is slightly more complex than the request/reply or one-
way patterns because of the additional mechanism for communicating
with the client.

To design a duplex contract, you must also design a callback contract and
assign the type of that callback contract to the CallbackContract property
of the ServiceContractAttribute attribute that marks your service contract.

To implement a duplex pattern, you must create a second interface that
contains the method declarations that are called on the client.

 Caution

When a service receives a duplex message, it looks at
the ReplyTo element in that incoming message to determine where to send
the reply. If the channel that is used to receive the message is not secured,
then an untrusted client could send a malicious message with a target
machine's ReplyTo, leading to a denial of service (DOS) of that target
machine.

Out and Ref Parameters

In most cases, you can use in parameters (ByVal in Visual Basic)
and out and ref parameters (ByRef in Visual Basic). Because
both out and ref parameters indicate that data is returned from an
operation, an operation signature such as the following specifies that a
request/ reply operation is required even though the operation signature
returns void.

C#Copy

[ServiceContractAttribute]

publicinterfaceIMyContract

{

 [OperationContractAttribute]

mu
no
tes
.in

Basic WCF
Programming

91

publicvoidPopulateData(refCustomDataType data);

}

The following is the equivalent Visual Basic code.

VBCopy

<ServiceContractAttribute()> _

PublicInterfaceIMyContract

<OperationContractAttribute()> _

PublicSubPopulateData(ByRef data AsCustomDataType)

EndInterface

The only exceptions are those cases in which your signature has a
particular structure. For example, you can use the Net Msmq
Binding binding to communicate with clients only if the method used to
declare an operation returns void; there can be no output value, whether it
is a return value, ref, or out parameter.

In addition, using out or ref parameters requires that the operation have an
underlying response message to carry back the modified object. If your
operation is a one-way operation, an InvalidOperationException exception
is thrown at run time.

5.9 SPECIFY MESSAGE PROTECTION LEVEL ON
THE CONTRACT

When designing your contract, you must also decide the message
protection level of services that implement your contract. This is necessary
only if message security is applied to the binding in the contract's
endpoint. If the binding has security turned off (that is, if the system-
provided binding sets the System.ServiceModel.SecurityMode to the
value SecurityMode.None) then you do not have to decide on the message
protection level for the contract. In most cases, system-provided bindings
with message-level security applied provide a sufficient protection level
and you do not have to consider the protection level for each operation or
for each message.

The protection level is a value that specifies whether the messages (or
message parts) that support a service are signed, signed and encrypted, or
sent without signatures or encryption. The protection level can be set at
various scopes: At the service level, for a particular operation, for a
message within that operation, or a message part. Values set at one scope
become the default value for smaller scopes unless explicitly overridden.
If a binding configuration cannot provide the required minimum
protection level for the contract, an exception is thrown. And when no
protection level values are explicitly set on the contract, the binding

mu
no
tes
.in

Web Services

92

configuration controls the protection level for all messages if the binding
has message security. This is the default behavior.

Important

Deciding whether to explicitly set various scopes of a contract to less than
the full protection level of ProtectionLevel.EncryptAndSign is generally
a decision that trades some degree of security for increased performance.
In these cases, your decisions must revolve around your operations and the
value of the data they exchange.

C#Copy

[ServiceContract]

publicinterfaceISampleService

{

 [OperationContractAttribute]

publicstringGetString();

 [OperationContractAttribute]

publicintGetInt();

}

The following is the equivalent Visual Basic code.

VBCopy

<ServiceContractAttribute()> _

PublicInterfaceISampleService

<OperationContractAttribute()> _

PublicFunctionGetString()AsString

<OperationContractAttribute()> _

PublicFunctionGetData() AsInteger

EndInterface

When interacting with an ISampleService implementation in an endpoint
with a default WSHttp Binding (the default System. Service Model.
Security Mode, which is Message), all messages are encrypted and signed
because this is the default protection level. However, when an I Sample
Service service is used with a default Basic Http Binding (the

mu
no
tes
.in

Basic WCF
Programming

93

default Security Mode, which is None), all messages are sent as text
because there is no security for this binding and so the protection level is
ignored (that is, the messages are neither encrypted nor signed). If
the SecurityMode was changed to Message, then these messages would be
encrypted and signed (because that would now be the binding's default
protection level).

If you want to explicitly specify or adjust the protection requirements for
your contract, set the Protection Level property (or any of
the ProtectionLevel properties at a smaller scope) to the level your service
contract requires. In this case, using an explicit setting requires the binding
to support that setting at a minimum for the scope used. For example, the
following code example specifies one Protection Level value explicitly,
for the Get Guid operation.

C#Copy

[ServiceContract]

publicinterfaceIExplicitProtectionLevelSampleService

{

 [OperationContractAttribute]

publicstringGetString();

 [OperationContractAttribute(ProtectionLevel=ProtectionLevel.None)]

publicintGetInt();

[OperationContractAttribute(ProtectionLevel=ProtectionLevel.EncryptAn
dSign)]

publicintGetGuid();

}

The following is the equivalent Visual Basic code.

VBCopy

<ServiceContract()> _

PublicInterfaceIExplicitProtectionLevelSampleService

<OperationContract()> _

PublicFunctionGetString() AsString

EndFunction

mu
no
tes
.in

Web Services

94

<OperationContract(ProtectionLevel := ProtectionLevel.None)> _

PublicFunctionGetInt() AsInteger

EndFunction

<OperationContractAttribute(ProtectionLevel :=
ProtectionLevel.EncryptAndSign)> _

PublicFunctionGetGuid() AsInteger

EndFunction

EndInterface

A service that implements this I Explicit Protection Level Sample
Service contract and has an endpoint that uses the default WS Http
Binding (the default System. Service Model. Security Mode, which
is Message) has the following behavior:

 The GetString operation messages are encrypted and signed.

 The GetInt operation messages are sent as unencrypted and unsigned
(that is, plain) text.

 The GetGuid operation System.Guid is returned in a message that is
encrypted and signed.

Other Operation Signature Requirements

Some application features require a particular kind of operation signature.
For example, the NetMsmqBinding binding supports durable services and
clients, in which an application can restart in the middle of communication
and pick up where it left off without missing any messages.

Another example is the use of Stream types in operations. Because
the Stream parameter includes the entire message body, if an input or an
output (that is, ref parameter, out parameter, or return value) is of
type Stream, then it must be the only input or output specified in your
operation. In addition, the parameter or return type must be
either Stream, System.ServiceModel.Channels.Message,
or System.Xml.Serialization.IXmlSerializable.

Names, Namespaces, and Obfuscation

The names and namespaces of the .NET types in the definition of
contracts and operations are significant when contracts are converted into
WSDL and when contract messages are created and sent. Therefore, it is
strongly recommended that service contract names and namespaces are
explicitly set using the Name and Namespace properties of all supporting
contract attributes such as the Service Contract Attribute, Operation
Contract Attribute, Data Contract Attribute, Data Member Attribute, and
other contract attributes.

mu
no
tes
.in

Basic WCF
Programming

95

One result of this is that if the names and namespaces are not explicitly
set, the use of IL obfuscation on the assembly alters the contract type
names and namespaces and results in modified WSDL and wire exchanges
that typically fail. If you do not set the contract names and namespaces
explicitly but do intend to use obfuscation, use the Obfuscation
Attribute and Obfuscate Assembly Attribute attributes to prevent the
modification of the contract type names and name spaces.

5.10 CONFIGURING WCF SERVICES

Once you have designed and implemented your service contract, you are
ready to configure your service. This is where you define and customize
how your service is exposed to clients, including specifying the address
where it can be found, the transport and message encoding it uses to send
and receive messages, and the type of security it requires.

Configuration as used here includes all the ways, imperatively in code or
by using a configuration file, in which you can define and customize the
various aspects of a service, such as specifying its endpoint addresses, the
transports used, and its security schemes. In practice, writing configuration
is a major part of programming WCF applications.

Simplified Configuration Starting with. NET Framework 4, WCF comes
with a new default configuration model that simplifies WCF configuration
requirements. If you do not provide any WCF configuration for a
particular service, the runtime automatically configures your service with
default endpoints, bindings, and behaviors.

Configuring Services Using Configuration Files A Windows
Communication Foundation (WCF) service is configurable using the .NET
Framework configuration technology. Most commonly, XML elements
are added to the Web.config file for an Internet Information Services (IIS)
site that hosts a WCF service. The elements allow you to change details,
such as the endpoint addresses (the actual addresses used to communicate
with the service) on a machine-by-machine basis.

Bindings In addition, WCF includes several system-provided common
configurations in the form of bindings that allow you to quickly select the
most basic features for how a client and service communicate, such as the
transports, security, and message encodings used.

Endpoints All communication with a WCF service occurs through
the endpoints of the service. Endpoints contain the contract, the
configuration information that is specified in the bindings, and the
addresses that indicate where to find the service or where to obtain
information about the service.

Securing Services Using WCF and existing security mechanisms, you can
implement confidentiality, integrity, authentication, and authorization into
any service. You can also audit for security successes and failures.

mu
no
tes
.in

Web Services

96

5.11 SUMMARY

To understand the concept of WAS hosting, we need to comprehend how
a system is configured and how a service contract is created, enabling
different binding to the hosted service.

A WCF service boasts of a robust security system with two security modes
or levels so that only an intended client can access the services. The
security threats that are common in a distributed transaction are moderated
to a large extent by WCF.

WCF has a layered architecture that offers ample support for developing
various distributed applications.

5.12 QUESTIONS

1. Explain WCF features supported by the .NET Framework Client
Profile

2. Explain basics of WCF programming

3. Explain service contracts

4. Explain Parameters and return values

5. How to configure WCF services.

5.13 REFERENCE

 https://learn.microsoft.com/en-us/dotnet/framework/wcf/wcf-and-net-
framework-client-profile

 https://www.tutorialspoint.com/wcf/wcf_creating_service.htm

 https://www.tutorialspoint.com/wcf/wcf_versus_web_service.htm

mu
no
tes
.in

 97

6
WEB SERVICE QOS

Unit Structure :

6.0 Introduction

6.1 Web Services Performance

6.2 Proactive Web Service QoS

6.3 Caching Web Services

6.4 Service Quality Requirements

6.5 Why Is QoS Important for Web Services?

6.6 Web Services Performance-Demystifying

6.7 Web Services Performance-Limitations

6.8 Web Services Performance-Best Practices and Solutions

6.9 Performance Monitoring

6.10 Summary

6.11 Questions

6.12 Reference

6.0 INTRODUCTION

With the proliferation of Web services as a business solution to enterprise
application integration, the quality of service (QoS) offered by Web
services is becoming the utmost priority for service provider and their
partners. Due to the dynamic and unpredictable nature of the Web,
providing the acceptable QoS is really a challenging task. In addition to
this, the different applications that are collaborating for Web service
interaction with different requirements will compete for network
resources. The preceding factors will force service providers to understand
and achieve Web services QoS. Also, a better QoS for a Web service will
bring a competitive advantage over others by being a unique selling point
for a service provider.

The Web services QoS requirement mainly refers to the quality, both
functional as well as non-functional, aspect of a Web service. This
includes performance, reliability, integrity, accessibility, availability,
interoperability, and security. In the first part of this article, we covered
each of the above QoS aspects from a broad perspective. Now, in each
coming article we will look into each of the QoS in detail and will try to
come up with solutions and explore best practices to be followed. In this

mu
no
tes
.in

Web Services

98

article, we are trying to demystify the “performance” aspect of Web
Services.

6.1 WEB SERVICES PERFORMANCE

The Web services-QoS stack we proposed is shown in the following fig

6.2 PROACTIVE WEB SERVICE QOS

Service providers can proactively provide high QoS to the service
requestors by using Caching Load balancing both approaches can be
done in web server level and web application level

6.3 CACHING WEB SERVICES

mu
no
tes
.in

Web Service QoS

99

Caching refers to storing the server response in the client itself A client
not make a server request for the same resource again and again.
Because a server response should have information about how caching is
to be done So that a client caches the response for a time-period or never
caches the server response If the data of web services does not change
frequently, properly caching could boost the performance

Load Balancing

Prioritize various types of traffic and ensure that each request is treated
appropriately to the business value A Web service provider can perform
capacity modeling to create a top-down model of requesttraffic, current
capacity utilization, and the resulting QoS Also categorize Web service
traffic by the volume of traffic, traffic for different application service
categories, and traffic from different sources.

Load Balancing Help in understanding the capacity that will be required
to provide good QoS for a volume of service demand and for future
planning E.g. capacity type of load balancing web application servers/Web
servers the number of servers required for setting up a clustered server
farm

Service providers can provide differentiated servicing by using the
capacity model to….. determine the capacity needed for different
customers and service types ensure appropriate QoS levels for different
applications and customers For example; A multimedia Web Service
might require good throughput, BUT a banking Web Service might
require security and transactional QoS.

6.4 SERVICE QUALITY REQUIREMENTS

The major requirements for supporting QoS in Web services are as
follows: Performance Availability Accessibility Integrity
Reliability Interoperability Security 20 The other web service QoS
characteristics Execution Time Cost/Price Transaction (ACID)
Reputation Etc

QoS: Performance

Demystifying

Performance is measured by throughput and latency. Performance can also
be determined by response time to guarantee maximum time required to
complete a service request

Limitations

The overall performance of WS depends on application logic, network,
and underlying messaging and transport protocols, such as SOAP and
HTTP. The SOAP protocol uses a multi-step process to complete a
communication cycle. This whole process is a timeconsuming one, which

mu
no
tes
.in

Web Services

100

requires various levels of XML parsing and XML validation and hence
hits the performance of the Web Service. B

Best Practices

optimize the XML processing s

steps 1. use of efficient and lightweight parsers.

2. Efficient use of XML validation in production mode.

3. Use of compressed XML for sending the messages over network.

4. Web Service Caching 5. Use of simple data types in SOAP messages as
far as possible.

QoS: Availability

Demystifying

Availability defines whether the Web Service is ready for immediate
consumption. Associated with availability is Time-toRepair (TTR). TTR
represents the time it takes to repair the Web Service.

Limitations

Building fault-tolerant systems for highly available Web Services is
expensive. As companies roll out Web Services, the ability to manage this
diverse, dynamic, distributed environment will become critical. Questions
such as the following arise: Has one of my key servers become
unavailable? Is a system being overly burdened? Why are requests taking
so long?

Best Practices

Web Service Management Web Service Clustering

QoS: Accessiblity

Demystifying

Accessibility defines whether the Web Service is capable of serving the
client's request. High accessibility of Web Services can be achieved by
building highly scalable systems

Limitations

Building scalable systems are expensive, and this may cause smaller
companies to defer this requirement. Also, this becomes an infrastructure
issue for companies that deploy Web Services within their enterprise.

Best Practices S

service pooling

Load balancing (Scalability)

mu
no
tes
.in

Web Service QoS

101

QoS: Integrity

Demystifying

Integrity is the degree to which a system or component prevents
unauthorized access to, or modification of, computer programs or data.

Limitations

Data Integrity is important for any object's proper functioning and must be
assured or it could corrupt a larger program and generate a very difficult to
trace error. Web Services transactions tend to be asynchronous and long
running in nature. Transaction integrity is just one of several QoS
elements, including security and process orchestration, which are missing
from the first incarnations of Web Services standards of SOAP, UDDI,
and WSDL.

Best Practices

1. Emerging standards in the business process management and
transactions will help to achieve the desired QoS.

2. Adopting standards such as BPEL4WS, WS-Coordination,
WSTransaction, and BTP would benefit service providers.

QoS: Reliability

Demystifying

Reliability is the overall measure of a Web Service to maintain its service
quality. The number of failures per day, week, month, or year represents
an overall measure of reliability for a Web Service. Reliability also refers
to the assured and ordered delivery for messages being sent and received
by service requestors and service providers.

Limitations

The Web Services currently rely on transport protocols such as HTTP,
which are inherently stateless and follow a best-effort delivery
mechanism. It does not guarantee whether the message will be delivered to
the destination.

Best Practices

The above problem rising due to the use of unreliable protocols can be
solved using the following techniques:

1. Use of asynchronous message queues.

2. Adoption of new reliable transport protocols (such as HTTPR, REST,
and BEEP).

mu
no
tes
.in

Web Services

102

QoS: Interoperability

Demystifying

The fundamental goal of interoperability in Web Services is to cross the
lines between the development environments used to implement services
so that developers using those services don't have to think about which
programming language or operating system the services are hosted on.

Limitations

Most of the Web Services specifications are defined under standards
bodies. As these activities are under way, there seems to be a delay in the
implementations. Vendors partly implement the specification in their
products due to the competitive nature of this market. This results in poor
interoperability.

Best Practices

1. Key to enabling seamless Web Services interoperability is the ability
of one Web Services framework to consume the WSDL documents
generated by other frameworks.

2. Web Services-Interoperability (WS-I) Profiles. The Basic Profile
defines how a selected set of specified Web Services technologies,
such as messaging and discovery, should be used together in an
interoperable manner

QoS: Security

Demystifying

Security for Web Services refers to authentication mechanisms, messages
encryption and access control, confidentiality, nonrepudiation and
resilience to denial-of-service attacks.

Limitations

SOAP is a de-facto messaging standard for Web Services; inherently, it
does not support many security features. Some of the Web Services-
enabled applications also require role-based security features, which
expose different functionalities, depending on user credentials.

Best Practices .

The following measures can be used while architecting the secure Web
Services:

1. Use of XML Encryption.

2. Use of XML Key Management Specification. 3. Use of Private
WANs, Web Service Network, and VPNs.

3. Use of Private WANs, Web Service Network, and VPNs.

mu
no
tes
.in

Web Service QoS

103

4. P3P (Platform for Privacy Preferences) is an emerging standard for
specifying privacy preferences for a user while using Web Services.

5. Use of security assertions.

6.5 WHY IS QOS IMPORTANT FOR WEB SERVICES?

Web services allow individual components of business logic to be
published as building blocks to larger applications and services. Since
each Web service is only a small segment of a larger application and not
an entire large, monolithic application, there will be a significant number
of competitive implementations for each Web service. Quality of service
will be one of the most important differentiators between all of these
competitive solutions.

Quality of quality of serviceservice encapsulates not only implementation
details that affect metrics such as performance, but also deployment
issues. For example, an application that is deployed on an application
server can automatically scale and create additional ...

As you can see, the performance block (highlighted in purple) in the figure
spans across almost all of the Web service layers on the left. It requires
tuning at all layers to get a desired level of performance from Web service.
Let us first briefly analyze this quality aspect, for demystifying and to see
its limitations, and then work in depth on some of the optimal solutions.

6.6 WEB SERVICES PERFORMANCE-DEMYSTIFYING

The performance of a Web Service is measured in terms of throughput,
latency, execution time, and transaction time. Throughput represents the
number of Web service requests served at a given time period. Latency is
the round-trip time between sending a request and receiving the
response. Execution time is the time taken by a Web Service to process its
sequence of activities. Transaction time represents the period of time that
passes while the Web Service is completing one complete transaction.
Higher throughput, lower latency, lower execution and transaction times
represent good performing Web Services.

6.7 WEB SERVICES PERFORMANCE-LIMITATIONS

The overall performance of a Web service depends on application logic,
network, and most importantly on underlying messaging and transport
protocols such as the SOAP and HTTP it uses. The SOAP protocol is still
maturing and harbors a lot of performance and scalability problems. The
SOAP protocol uses a multi-step process to complete a communication
cycle.

The SOAP request begins with the business logic of your application
learning the method and parameter to call from a Web Services
Description Language (WSDL) document. This whole process is time

mu
no
tes
.in

Web Services

104

consuming; it requires various levels of XML parsing and XML validation
and hence hits the performance of the Web service.

Apart from these factors, the performance of a Web service becomes
crucial if it uses the synchronous one where a consuming application is
blocked for the time it gets a response from the Web service.

6.8 WEB SERVICES PERFORMANCE-BEST
PRACTICES AND SOLUTIONS

Analyzing the above situations, following are some of the useful practices
and solutions which we should have in mind while developing and
exposing it to outside world. I am dealing with them layer by layer of the
Web service stack.

a. At the Data Layer: At data layer of a Web service stack, the Web
service is only sending/receiving XML messages through the network.
Some of the best practices to be followed to achieve the same are listed
below:

1. Use of compressed XML for sending the messages over network:
SOAP/XML messages are generally bigger in size than normal
GET/POST calls, so we should try to compress the message if the
network latency is bigger than CPU overhead for compression. Lots of
XML compression tools are available from different vendors such as
Oracle XDK and there are many open source tools also there to fit the
budget.

2. Use of simple data types in SOAP messages as far as possible reduces
complexity to great extent. This reduces the processing time and
increases maintainability; enhancements are easy to do.

b. At the Logical Layer: At the logical layer, Web service mainly deals
in processing SOAP/XML messages. Being XML intensive at this layer,
we should try to optimize XML processing steps. Some of the best
practices to be followed to achieve the same are listed below:

1. Use of efficient & lightweight parsers: There are many parsers
available on the market, each vying for its performance. But, to get
performance we should first analyze our application and its
requirement. If the application requires big XML files to be
exchanged, a SAX parser would be the best over a DOM parser. A
DOM parser actually loads the whole document in memory and thus
utilizes a considerable amount of the memory and processor. Instead, a
SAX parser is event based, is faster, and does not consume much
memory.

 Even better, if we know about XML messages that are coming (which
is generally the case) from a client/application, we should try to use
pull parsers instead of push ones. Using a pull parser will load only
that part of XML, which is required by the application that time.

mu
no
tes
.in

Web Service QoS

105

2. Efficient use of XML validation in production mode.
XML validation should be kept to minimum during the production
mode because it generally slows down the parser. XML validation can
be turned OFF for trusted parties after authorization has been done.
And, instead of performing XML validation at the parser level, some
critical validations, depending on application requirements, can be
done at the application level.

3. Web Service Caching: One must cache request results wherever
possible in their Web service. Even the WSDL can be cached at the
client side to minimize the multiple requests.

b. At the Presentation Layer: At the presentation layer, a Web service
deals mainly with how to present the responses in an effective manner.
Depending on the client, one can apply the following strategies:

1. Repeated SOAP-client calls to access server state can choke a network
and degrade the server performance. Cache data on the client
whenever possible to avoid requests to the server.

2. Ensure the client data remains up to date by using a call to a service,
which blocks until data is changed.

6.9 PERFORMANCE MONITORING

Tracing the performance of a Web service in real time gives lot of hints.
We can actually identify the bottlenecks in the execution of a Web service.
Once we know the problems, we can actually find solutions to it by
applying best practices as mentioned above or by using better hardware.
There are lot of tools and methodologies available for monitoring the
performance.

6.10 SUMMARY

 QoS is an important requirement of business-to-business transactions
necessary element in Web services.

 The various QoS properties need to be addressed in the
implementation of Web service applications.

 The properties become even more complex when you add the need for
transactional features to Web services.

 Some of the limitations of protocols such as HTTP and SOAP may
hinder QoS implementation, but there are a number of ways to provide
proactive QoS in Web services.

mu
no
tes
.in

Web Services

106

6.11 QUESTIONS

1. Explain Qos ?

2. Why is Qos important for web services ?

3. Explain web service performance and best practices ?

4. Explain Caching Web Services ?

6.12 REFERENCE

 https://www.oreilly.com/library/view/developing-enterprise-
web/0131401602/0131401602_ch09lev1sec2.html

 https://www.developer.com/web-services/quality-of-service-for-web-
services-demystification-limitations-and-best-practices-for-
performance/

 https://myweb.cmu.ac.th/choosak_s/954376/Chapter%205/Lecture5-
QoS%20for%20Web%20Service.pdf

mu
no
tes
.in

