

1

1
ARTIFICIAL INTELLIGENCE

Unit Structure :
1.0 Objectives

1.1 What is AI?

1.2 Foundations of AI

 1.2.1 Acting Humanlay: The Turing Test Arrpoach

 1.2.2 Thinking Rationally: The “Laws of Thought” Approach

 1.2.3 Thinking Rationally: The “Laws of Thought” Approach

 1.2.4 Acting Rationally: The Rational Agent Approach

 1.2.5 Categorization of Intelligent Systems

 1.2.6 Components of AI

 1.2.7 Computational Intelligence (CI) Vs Artificial Intelligence (AI)

1.3 History of Artificial Intelligene

1.3.1 Applications of AI

1.3.2 Domains or sub areas of AI

1.4 State of Art of AI

1.5 Problem Solving with Artificial Intelligence

1.5.1 Problems

Summary

Questions

1.0 OBJECTIVES

After completing this chapter learner will able to:

• Understand What is Artificial Intelligence?

• Foundations of Artificial Intelligence

• Categories of Intelligent System

• Components of Artificial Intelligence.

• History of Artificial Intelligence.

• Applications of AI

• Problems of AI

mu
no
tes
.in

2

Artificial Intelligence 1.1 WHAT IS AI?

It is a branch of Computer Science that pursues creating the computers or
machines as intelligent as human beings.

It is the science and engineering of making intelligent machines, especially
intelligent computer programs.

It is related to the similar task of using computers to understand human
intelligence, but AI does not have to confine itself to methods that are
biological observable.

1.1.1 Introduction

Artificial intelligence (AI) is a relatively recent branch of science and
engineering. Soon after World War II, work began in earnest, and the term
was coined in 1956. In addition to molecular biology, AI is frequently
mentioned by scientists from other fields as the "field I'd most like to be in."

A physics student may fairly believe that all of the good ideas have already
been taken.

Galileo, Newton, and Einstein are three of the most famous scientists of all
time.

Definition: Artificial Intelligence is the study of how to make computers do
things, which, at the moment, people do better.
According to the father of Artificial Intelligence, John McCarthy, it is “The
science and
engineering of making intelligent machines, especially intelligent computer
programs”.

Artificial Intelligence is a way of making a computer, a computer-controlled
robot, or a
software thinks intelligently, in the similar manner the intelligent humans
think.

AI is accomplished by studying how human brain thinks and how humans
learn, decide, and work while trying to solve a problem, and then using the
outcomes of this study as a basis of developing intelligent software and
systems.

It has gained prominence recently due, in part, to big data, or the increase
in speed, size and variety of data businesses are now collecting. AI can
perform tasks such as identifying patterns in the data more efficiently than
humans, enabling businesses to gain more insight out of their data.
From a business perspective AI is a set of very powerful tools, and
methodologies for using those tools to solve business problems.
Intelligence

Because our intelligence is so vital to us, we call ourselves Homosapiens-
man the wise. For thousands of years, scientists have attempted to

mu
no
tes
.in

3

Artificial Intelligence comprehend how we think: how a small amount of matter can see,
comprehend, predict, and manage a world considerably larger and more
sophisticated than itself. Artificial intelligence, or Al, is a field that goes
even further.

1.2 FOUNDATIONS OF AI

Now we discuss the various disciplines that contribute ideas, viewpoints
and techniques to AI.

Philosophy provide base to AI by providing theories of relationship between
physical brain and mental mind, rules for drawing valid conclusions. It also
provides information about knowledge origins and the knowledge needs to
actions.

Mathematics gives strong base to AI to develop concrete and formal rules
for drawing valid conclusions, various methods for date computation and
techniques to deal with uncertain information.

Economics support AI to make decisions so as to maximum payoff and
make decisions under certain circumstances.

Neuroscience gives information which is related to brain processing which
helps AI to developed date processing theories.

Psychology provides strong concepts of how humans and animals act which
helps AI for developing process of thinking and actions.

Historically there are four approaches to AI have been followed, each by
different people with different methods. A rationalist approach involves a
combination of mathematics and engineering. The various group have both
disparaged and helped each other.

Intelligent Systems

In order to design intelligent systems, it is important to categorize them into
four categories (Luger and Stubberfield 1993), (Russell and Norvig, 2003)

1. Systems that think like humans

2. Systems that think rationally

3. Systems that behave like humans

4. Systems that behave rationally

 Human-Like Rationally

Think :

Cognitive Science Approach
“Machines that think like
humans”

Laws of thought Approach
“Machines that think
Rationally”

Act :

Turing Test Approach
“Machines that behave like
humans”

Rational Agent Approach
“Machines that behave
Rationally”

mu
no
tes
.in

4

Artificial Intelligence 1.2.1 Acting Humanlay: The Turing Test Arrpoach

Turing test: a method of determining intellect. Turing Test was conceived
by Alan Turing in 1950. He proposed a test based on common
characteristics that can be matched to the most intelligent entity on the
planet – humans.

Computer would need to process the following capabilities:

I) Natural language processing - In order for it to be able to
communicate effectively in English.

II) Knowledge representation to store what it knows, what it hears.

III) Automated reasoning to make use of stored information to answer
questions being asked and to draw conclusions.

IV) Machine learning to adapt to new circumstances and to detect and
make new predictions by finding patterns.

V) Turing also proposed that the interrogator and the computers engage
physically. The Turing test avoids this, but the Total Turing Assess
includes a video signal to allow the interrogator to test the subject's
perceptual abilities, as well as the ability to pass physical things
"through the hatch."

VI) To pass total Turing test in addition, computer will need following
capabilities.

VII) Computer vision to perceive objects.

VIII) Robotics to manipulate objects.

1.2.2 Thinking Rationally: The “Laws of Thought” Approach

Because we're claiming that the given software thinks like a human, we
need to understand how humans think. The theory of human minds must be
investigated in order to achieve this. There are two methods for doing so:
introspection (trying to catch our own thoughts as they pass us by) and
psychological experiments.

We can argue that some of the program's mechanisms are also operating in
human mode if computer programmers’, input, output, and timing
behaviors’ mirror similar human behaviors. Cognitive science is an
interdisciplinary study that draws together computer models from AI and
experimental approaches from psychology to try to build accurate and
testable explanations of how the human mind works.

1.2.3 Thinking Rationally: The “Laws of Thought” Approach

“Right thinking” concept was introduced by Aristotle. Patterns for argument
structures that always gives correct decisions when the premises are correct.
It is known as the laws of thought approach.

mu
no
tes
.in

5

Artificial Intelligence "The study on mental faculties through the use of computational models.
(Charmiakand McDemott, 1985)

"The study of the computations that make it possible to perceive, reason,
and act." (Winston, 1992)

Law of thought were supposed to govern the operation in the mind; their
study initiated the field called Logic which can be implemented to create
the system which is known as intelligent system.

1.2.4 Acting Rationally: The Rational Agent Approach

Something that acts is called an agent (Latin agre-to-do). Computer agents,
on the other hand, are intended to have additional characteristics that
separate them from "programmes," such as independent control, time
perception, adaptability to change, and the ability to take on new goals.
When there is uncertainty, a rational agent is required to act in such a way
that the best possible outcome is achieved. The laws of thought emphasis
on correct inference which should be incorporated in rational agent.

“Computational Intelligence is the study of the design of intelligent agents.”
By Poole et at, 1998

1.2.5 Categorization of Intelligent Systems

There are various types and forms of AI. The various categories of AI can
be based on the capacity of intelligent program or what the program is able
to do. Consideration of the above factors there are three main categories:

1) Weak AI (Artificial Narrow Intelligence)

2) Strong AI (Artificial General Intelligence)

3) Artificial Super Intelligence

1) Weak AI : Weak AI is AI that focuses on a single task. It isn't an
intellect that can be used in a variety of situations. Narrow intelligence
or weak AI refers to an intelligent agent that is designed to solve a
specific problem or perform a certain task. For example, it took years
of AI research to beat the chess grandmaster, and humans still haven't
beaten the machines at chess since then. But that's all it can do, and it
does it exceptionally well.

2) Strong AI : Strong AI, often known as general AI, refers to machine
intelligence proven in the performance of any cognitive task that a
person can execute. It is far more difficult to construct powerful AI
than it is to develop weak AI. Artificial general intelligence machines
can display human qualities such as reasoning, planning, problem
solving, grasping complicated ideas, learning from personal
experiences, and so on by using artificial general intelligence. Many
corporations and companies are working on developing general
intelligence, but they have yet to finish it.

mu
no
tes
.in

6

Artificial Intelligence 3) Artificial Super-Intelligence : AI thinker Nick Bostrom defined
“Super intelligence is an intellect that is much smarter than the best
human brains in practically every field, including scientific creativity,
general wisdom and social skills.” Super intelligence ranges from a
machine which is just a little smarter than a human to a machine that
is trillion times smarter. Artificial super intelligence is the ultimate
power of AI.

Weak AI Strong AI

It is a narrow application with a
limited scope.

It is a wider application with a more
vast scope.

This application is good at specific
tasks.

This application has an incredible
human-level intelligence.

It uses supervised and
unsupervised learning to process
data.

It uses clustering and association to
process data.

Example
Siri, Alexa

Example
Advanced Robotics

1.2.6 Components of AI
The intelligence is intangible. It is composed of −

• Reasoning

• Learning

• Problem Solving

• Perception

• Linguistic Intelligence

Let us go through all the components briefly −

• Reasoning − It is the set of processes that enables us to provide basis
for judgement, making decisions, and prediction. There are broadly
two types −

mu
no
tes
.in

7

Artificial Intelligence Inductive Reasoning Deductive Reasoning

It conducts specific observations to
makes broad general statements.

It starts with a general statement
and examines the possibilities to
reach a specific, logical
conclusion.

Even if all of the premises are true
in a statement, inductive reasoning
allows for the conclusion to be
false.

If something is true of a class of
things in general, it is also true for
all members of that class.

Example − "Nita is a teacher. Nita
is studious. Therefore, All teachers
are studious."

Example − "All women of age
above 60 years are grandmothers.
Shalini is 65 years. Therefore,
Shalini is a grandmother."

• Learning − It is the activity of gaining knowledge or skill by studying,
practising, being taught, or experiencing something. Learning
enhances the awareness of the subjects of the study.

The ability of learning is possessed by humans, some animals, and
AI-enabled systems. Learning is categorized as −

o Auditory Learning − It is learning by listening and hearing. For
example, students listening to recorded audio lectures.

o Episodic Learning − To learn by remembering sequences of
events that one has witnessed or experienced. This is linear and
orderly.

o Motor Learning − It is learning by precise movement of
muscles. For example, picking objects, Writing, etc.

o Observational Learning − To learn by watching and imitating
others. For example, child tries to learn by mimicking her
parent.

o Perceptual Learning − It is learning to recognize stimuli that one
has seen before. For example, identifying and classifying
objects and situations.

o Relational Learning − It involves learning to differentiate
among various stimuli on the basis of relational properties,
rather than absolute properties. For Example, Adding ‘little
less’ salt at the time of cooking potatoes that came up salty last
time, when cooked with adding say a tablespoon of salt.

o Spatial Learning − It is learning through visual stimuli such as
images, colors, maps, etc. For Example, A person can create
roadmap in mind before actually following the road.

mu
no
tes
.in

8

Artificial Intelligence o Stimulus-Response Learning − It is learning to perform a
particular behaviour when a certain stimulus is present. For
example, a dog raises its ear on hearing doorbell.

• Problem Solving − It is the process in which one perceives and tries
to arrive at a desired solution from a present situation by taking some
path, which is blocked by known or unknown hurdles.

 Problem solving also includes decision making, which is the process
of selecting the best suitable alternative out of multiple alternatives to
reach the desired goal are available.

• Perception − It is the process of acquiring, interpreting, selecting, and
organizing sensory information.

 Perception presumes sensing. In humans, perception is aided by
sensory organs. In the domain of AI, perception mechanism puts the
data acquired by the sensors together in a meaningful manner.

• Linguistic Intelligence − It is one’s ability to use, comprehend, speak,
and write the verbal and written language. It is important in
interpersonal communication.

1.2.7 Computational Intelligence (CI) Vs Artificial Intelligence (AI)

Computational Intelligence (CI) Artificial Intelligence (AI)

Computational Intelligence is the
study of the design of intelligent
agents.

Artificial Intelligence is the study
of making machines which can do
things which at presents human do
better.

Involvement of numbers and
computations.

Involvement of designs and
symbolic knowledge
representations.

CI constructs the system starting
from the bottom level
computations, hence follows
bottom-up approach.

AI analyses the overall structure of
an intelligent system by following
top down approach.

CI concentrates on low level
cognitive function implementation.

AI concentrates on high level
cognitive structure design.

1.3 HISTORY OF ARTIFICIAL INTELLIGENE

John McCarthy in 1955 introduced the term Artificial Intelligence.

The early work of Artificial Intelligence was done in the period 1943 to
1955. The first AI thoughts were formally put by McCulloch & Walter Pitts
in the year 1943. They introduced with the concept of AI was based on
different three theories. First theory is based on phycology i.e. Neuron
functions in the brain. Second theory is based on formal analysis of

mu
no
tes
.in

9

Artificial Intelligence propositional logic and third theory is based on Turing’s theory of
computations.

1956-61

The first year of this period gave rise to the terminology ‘Artificial
Intelligence’ proposed by McCarthy & supposed by the participants in the
conference. In the same year Samuel developed a program for chess playing
which performed better than its creator.

Around 1956-57, Chomsky’s grammar in NLP i.e. linguistic model
processing was a remarkable event. In 1958, McCarthy made a very
significant contribution, development of LISP, an AI programming
language and advice taker which combined the method of knowledge
representation and resoning. Herbert Gelerriter at IBM in 1959 designed
the first written AI program for geometry theorem proving in quick
succession of time. In 1960, Window alone & then with Hoff developed
networks called ‘Adaline’, based on the concepts of Hebbian learning. In
1956-57, logic theorist (LT), a program for automatic theorem proving was
developed.

1962-67

At the beginning of this period Frank Rosen blatt proposed the concept of
‘perception’ in the line of Window’s concept for artificial neural networks
(ANN), a biological model to incorporate computational rationality. In
1963. McCarthy developed a general purpose logical reasoning method and
it was enhanced by the Robinson’s ‘Resolution principle’ (Robinson, 1965).
The logical neural model of McCulloch and Pitts was enhanced by
Winograd & Cowan in 1963. James Slage’s program was developed for the
interpretation of calculus in 1963. In 1965, Hearsay was developed at CMU
for natural language interpretation of subset language.

1968-73

In this period, some AI program for practical use were developed. In 1967,
David Bobrow developed ‘STUDENT’ to solve algebra story problems.
The first knowledge-based expert system DENDRAL was developed by J.
Lederber, Edward Feigenbaum and Carl Djerassi in 1968, although the
work had started in 1965. The program discovered the molecular structure
of an organic compound based on the mass spectral data. Simon stated that
within 10 years a computer would be chess champion, & a significant
mathematical theorem would be proved by machine. These predictions
came true or approximately true within 40 years rather than 10.

The new back-propagation learning algorithms for multilayer networks that
were to cause an enormous resurgence in neural-net research in the late
1980’s were actually discovered first in 1969.

1974- 1980

In 1969 Minsky and Papert’s book Perceptron’s proved that perceptrons
could represent vary little. Although their result did not apply to more

mu
no
tes
.in

10

Artificial Intelligence complex, multilayer networks, research funding for neural-net research
soon dwindled to almost nothing.

In 1973 Professor S ir James Lightill mentioned the problem of
combinatorial explosion or intractability which implied that many of AI’s
most successful algorithms would grind to a halt on real world problems
and were only suitable for solving “toy” versions.

1981-1985

In this period many expert system shells, expert system tools and expert
system programs were developed. During 1984-85 the expert system shells
came into picture was EMYCIN by Buchanan, a rule-based diagnostic
consultant based on LISP, EXPERT by Weiss and KAS by DUDE are the
rule-based model for classification using FORTRAN; a semantic network-
based system using LISP, others are knowledge crafts by GILMORE using
object-oriented programming (OGP), KL-ONE by Brakeman using LISP
for automatic inheritance. The most important development was PROLOG
as AI programming language by Clockcin 1984.

1986-91

In this period significant developments occurred in ANN model in
particular, the appearance of error back propagation algorithm formulated
by Rumelhart and Hinton in parallel distributed processing. The
probabilistic reasoning method in intelligent system appeared in 1988 by
the work of Pearl. The distributed artificial intelligence concepts were
formally incorporated in the multi-agent systems. The complete agent-
based architecture was first implemented in a model SOAR, designed by
Newel, Laired and Rosenbloom. Hidden Markov Model (HMM) was also
conceptualized for speech processing and natural language processing
during this period.

1992-97

In this period full swing of rise to the agent-based technology and multi-
agent system (MAS). In 1992, Nawana brought the concept of autonomous
agent, capable of acting independently with rationality. Different kinds of
agent were defined. In 1994, Jennings Yoam introduced social and
responsible agents, Yoam Shoham in 1993, described the concept of agent-
oriented programming with different components and modalities. Belief,
desire and intention (BDI) theory was introduced by Cohen (1995) during
this period. The concept of cooperation, coordination and conflict resolution
in MAS was introduced in this period.

In the NLP, a mean X-project was developed at Zurich by Nobel laureate
Gerd Binning, who emphasized the use of word ‘knowledge’ to achieve
comprehension. Gordon made a model language for representing strategies
on standard AI planning techniques. The ABLE (Agent Building &
Learning Environment) was developed by Joe Bigns, which focused on
building hybrid intelligent agents for both reasoning and learning.

mu
no
tes
.in

11

Artificial Intelligence 1998-2003

In introduction, incorporation and integration of AI concepts, theories and
algorithms in and with web technology for information retrieval, extraction
and categorization, document summarization, machine translation (single
or multilingual) discourse analysis were performed in this period. Courteous
logic program in which users specify the scope of potential conflict by
pairwise mutual exclusion is implemented in common rules, a Java library
used for e-commerce, business and web intelligence emerged as the front of
AI. Formula Augmented Network (FAN) was developed by Morgenstern
and Singh, is a knowledge structure, which enabled efficient reasoning and
about potentially conflicting business rules.

Heuristic search methods were devised for game playing such as chess,
checkers, Rubik cube with the concept of MPC. Blue Deep was a chess-
playing computer developed by IBM on May 11, 1997. Robotics in game
playing and surgery marks the splendid achievements in AI based robotics.
The Seoul Robotic Football Game from 2001 onwards regularly updated is
a good example of the development and incorporation of AI search
methodology in game playing.

2004- Future directions and dimensions

Communications of the ACM 2003, a certain direction and dimension of AI
have been envisaged for the future. Shannon has given the frame
qualification and ramification and learning from books, i.e. reading the text
and extracting relevant information. Three-dimensional robot surrounding
in distilling from the www, a huge knowledge base, the developed of
semantic scrapes and computational engines such as human mind and brain.
Knowledge discovery and vision system for biometric and automated object
regulated in supermarkets are imported milestones. Intelligent interface
design should be intuitive for the novice, efficient perception for expert and
robust undermines which would facilitate recovery from cognitive and
manipulative mistakes. Programs that are helpful for diagnosis of errors and
suggestions for corrective actions are to be developed.

1.3.1 Applications of AI

Artificial Intelligent Systems

1. Medical : AI has applications in cardiology (CRG), neurology (MRI),
Embryology (Sonography), and difficult internal organ procedures,
among other fields.

2. Education : Training simulators can be built using artificial
intelligence techniques. Software for pre-school children are
developed to enable learning with fun games. Automated grading,
Interactive tutoring, instructional theory are the current areas of
application.

mu
no
tes
.in

12

Artificial Intelligence 3. Military : When decisions have to be made quickly taking into
account an enormous amount of information, and when lives are at
stake, artificial intelligence can provide crucial assistance.

 Training simulators can be used in military applications for the
purpose of difficult task which human can not do easily, Robots are
also used in many situations. AI plays important role in modern
military.

4. Entertainment : Playing different AI based games, where one side
human and other side the player (machine) which works on AI
technology. Many film industries use Robots to play a role for critical
situations like fire, jump etc.

5. Business and Manufacturing: Robots are well equipped with the
various task in business and manufacturing. Vehicle workshops
Robots are useful for jack purpose, car painting etc.

1.3.2 Domains or sub areas of AI

AI applications can be roughly classified based on the type of tools used for
inoculating intelligence in the system. Various sub domains and areas in
intelligent systems can be given as follows:

Expert Systems

Natural Language Processing

Neural Networks

Robotics

Fuzzy Logic

Sr.No. Research Areas Example

1 Expert Systems
Examples − Flight-tracking
systems, Clinical systems.

2 Natural Language Processing
Examples: Google Now
feature, speech recognition,
Automatic voice output.

mu
no
tes
.in

13

Artificial Intelligence Sr.No. Research Areas Example

3 Neural Networks
Examples − Pattern
recognition systems such as
face recognition, character
recognition, handwriting
recognition.

4 Robotics
Examples − Industrial robots
for moving, spraying, painting,
precision checking, drilling,
cleaning, coating, carving, etc.

5 Fuzzy Logic Systems
Examples − Consumer
electronics, automobiles, etc.

1.4 STATE OF ART OF AI

Artificial Intelligence has infiltrated every part of our daily lives.
Everywhere, from washing machines to air conditioners to smart phones.
AI is assisting us in making our lives easier. AI is also doing fantastic things
in industries. In factories, sound work is done by robots. Self-driving cars
are now a reality. Barbie, who is WiFi-enabled, uses speech recognition to
converse with and listen to children. AI is being used by businesses to
improve their products and increase sales. Machine learning has made
considerable progress in AI.

Areas in which AI is showing significant advancements as follows:

1. Deep Learning

2. Machine Learning

3. AI replacing Workers

4. Internet of Things (IoT)

5. Emotional AI

6. AI in shopping and customer service

7. Ethical AI

mu
no
tes
.in

14

Artificial Intelligence 1. Deep Learning : Deep learning has been successfully used to a variety of
text analysis and understanding challenges in recent years. Document
categorization, sentiment analysis, machine translation, and other similar
techniques are used, and the results are frequently dramatic.

Top Applications of Deep Learning Across Industries

• Self Driving Cars.

• News Aggregation and Fraud News Detection.

• Natural Language Processing.

• Virtual Assistants.

• Entertainment.

• Visual Recognition.

• Fraud Detection.

• Healthcare.

2. Machine Learning : Machine Learning is an artificial intelligence
application in which a computer/machine learns from past experiences
(input data) and predicts the future. The system's performance should be at
least human-level. The system learns from the data set provided in order to
complete task T.

Top 10 real-life examples of Machine Learning

• Image Recognition. Image recognition is one of the most common
uses of machine learning.

• Speech Recognition. Speech recognition is the translation of spoken
words into the text.

• Medical diagnosis.

• Statistical Arbitrage.

• Learning associations.

• Classification.

• Prediction.

• Extraction.

3. AI Replacing Workers : Machines are already better than humans in
physical jobs; they can move quicker, more precisely, and lift heavier loads.
There will be almost nothing these machines can't accomplished or learn to
do quickly. Once they are as sophisticated as we are.

4. Internet of Things (IoT) : AI-assisted The Internet of Things (IoT)
develops intelligent machines that mimic smart behaviour and assist in
decision-making with little or no human intervention. While IoT is
concerned with devices connecting with each other over the internet, AI is
concerned with devices learning from their data and experience.

mu
no
tes
.in

15

Artificial Intelligence 5. Emotional AI : Emotion AI, often known as affective computing, is
all about utilising artificial intelligence to identify emotions.
Machines with this level of emotional intelligence can comprehend
both cognitive and emotional channels of human communication.

6. AI in shopping and customer service : Voice detection technology
powered by AI may enable customers to converse with digital
assistants in order to get the most out of the products they purchase.
Most consumers will benefit greatly from this virtual link.

 Artificial intelligence can help retailers decrease operational costs by
automating in-store processes. It can assist customers in the store
without the use of salespeople, reduce lines with cashier-less
payments, refill stock with real-time stock monitoring, and digitise
store displays and trial rooms.

7. Ethical AI : The notion of building artificially intelligent systems
utilising norms of behaviour that ensure an automated system can
respond to situations in an ethical manner is known as Roboethics, or
robot ethics. To do so, we turn to machine ethics, which is concerned
with the process of imbuing AI robots with moral characteristics.

1.5 PROBLEM SOLVING WITH ARTIFICIAL
INTELLIGENCE

1.5.1 Problems

To identify desirable answers, problem-solving relates to artificial
intelligence techniques such as building efficient algorithms, heuristics, and
doing root cause analysis. The problem-solving agent can decide what to do
by reviewing various possible sequences of actions that lead to states of
known value and then selecting the best sequence. Search is the term for the
process of looking for such a sequence.

1.5.1.1 Classic examples of Artificial Intelligence Search Problems
1. 3*3*3 Rubik’s cube problem

2. 8/15/24 -puzzle problem

3. N-queen problem

4. Water Jug problem

1. 3*3*3 Rubik’s cube problem : A Rubik's cube is a three-
dimensional puzzle with six faces, each of which has nine stickers in
a three-dimensional (3x3) pattern. The goal of the puzzle is to solve it
such that each face has just one colour.

mu
no
tes
.in

16

Artificial Intelligence

Rubic’s cube Problem

2. 8/15/24 -Puzzle Problem : The 8 puzzle problem by the name of N
puzzle problem or sliding puzzle problem. N-puzzle that consists of
N tiles (N+1 titles with an empty tile) where N can be 8, 15, 24 and
so on. In our example N = 8. (that is square root of (8+1) = 3 rows and
3 columns).

 The 8-puzzle is a sliding puzzle that is played on a 3-by-3 grid with 8
square tiles labelled from 1 through 8, plus a blank square. The goal
is to rearrange the tiles so that they are in row-major order, using as
few moves as possible. You are permitted to slide tiles either
horizontally or vertically into the blank square.

8 – Puzzle Problem

mu
no
tes
.in

17

Artificial Intelligence 3. N – Queen Problems : In N-Queen, the queens need to be placed on
the n*n board, in such a way that no queen can dash the other queen,
in any direction i.e. horizontally, vertically as well as diagonally.

N – Queen Problem

N=8

4. Water Jug Problem : In the Artificial Intelligence water jug
problem, we are given two jugs, one of which can contain 3 gallons
of water and the other of which can store 4 gallons of water. There is
no additional measuring equipment accessible, and the jugs
themselves are not marked in any way. The agent's job is to fill the 4-
gallon jug with 2 gallons of water using only these two jugs and no
additional materials. Both of our jugs are initially empty.

SUMMARY

This chapter gives the details about Artificial Intelligence, History of
Artificial Intelligence with its applications, state of art of AI, Various
problem related to Artificial Intelligence, Applications, Domains or sub
Areas in which AI is showing significant advancements.

QUESTIONS

Q.1) What is Artificial Intelligence?

Q.2) What are the components of Artificial Intelligence?

Q.3) Explain various applications of Artificial Intelligence.

Q.4) Define Artificial Intelligence

Q.5) Discuss examples of problem solving with AI.

Q.6) Give the difference between Computational Intelligence (CI) and
Artificial Intelligence (AI).

mu
no
tes
.in

18

Artificial Intelligence TEXT BOOK

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart
Russell and Peter Norvig, Pearson Education

2. Elaine Rich, Kevin Knight, & Shivashankar B Nair, Artificial
Intelligence, McGraw Hill, 3rd ed.,2009

REFERENCES

1) Introduction to Artificial Intelligence & Expert Systems, Dan W
Patterson, PHI.,2010

2) S Kaushik, Artificial Intelligence, Cengage Learning, 1st ed.2011

3) Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)

4) Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson
Education.

mu
no
tes
.in

19

2
INTELLIGENT AGENT

Unit Structure :
2.0 Objectives :
2.1 Introduction
 2.1.1 What Is Agent?
 2.1.2 Actuators
2.2 Agent Function
2.3 Rationality
 2.3.1 Rational Agent
2.4 Intelligent Agent
 2.4.1 Structure of Intelligent Agents
2.5 Types of Agents
 2.5.1 Simple Reflex Agents
 2.5.2 Model Based Reflex Agents
 2.5.3 Goal Based Agents
 2.5.4 Utility Based Agents
 2.5.5 Learning Agents
2.6 Nature of Environments
 2.6.1 Natures of Environment

2.0 OBJECTIVES

In this chapter we are going to learn agent, intelligent agent, actuators, agent
function, what is rationality, rational agent, structure of intelligent agent,
various natures of environments, PEAS properties of agent as well as
different types of agents.

2.1 INTRODUCTION

Agent is something that perceives its environment or surroundings with the
help of sensors and act upon that environment with the help of actuators.

2.1.1 What Is Agent?

An agent is anything that can be thought of as sensing its surroundings
through sensors and acting on them through actuators.

2.1.2 Actuators

A human agent has eyes, ears, and other organs for sensors and hands, legs,
vocal tract, and so on for actuators. A robotic agent might have cameras and

mu
no
tes
.in

20

Artificial Intelligence infrared range finders for sensors and various motors for actuators. A
software agent receives keystrokes, file contents, and network packets as
sensory inputs and acts on the environment by displaying on the screen,
writing files, and sending network packets.

We use the term percept to refer to the agent's perceptual inputs at any given
instant. An agent's percept sequence is the complete history of everything
the agent has ever perceived. In general, an agent's choice of action at any
given instant can depend on the entire percept sequence observed to date,
but not on anything it hasn't perceived. By specifying the agent's choice of
action for every possible percept sequence,

Fig: Environment and Agent

Fig: Generic Robotic Agent Architecture

As sensors, the robotic agent uses cameras, infrared range finders, scanners,
and other devices, while actuators include various types of motors, screens,
printing devices, and other devices.

Fig : Sensors and Actuators in Human & Robotic Agent

Agent

Human

Human sens
organs like eyes,
ears ang others

Human Actions
organs like
hands, legs,

mouth and others

Robotic

Cameras and
Infrared range

finders for
sensors

Various motors
for actuators

mu
no
tes
.in

21

Intelligent Agent 2.2 AGENT FUNCTION

The agent function is the description of what all functionalities the agent is
supposed to do. The agent function provides mapping between percept
sequences to the desired actions.

Figure : Agent Function

An agent is anything that can perceive its environment through sensors and
acts upon that environment through effectors.

• A human agent has sensory organs such as eyes, ears, nose, tongue
and skin parallel to the sensors, and other organs such as hands, legs,
mouth, for effectors.

• A robotic agent replaces cameras and infrared range finders for the
sensors, and various motors and actuators for effectors.

Agent Terminology

• Performance Measure of Agent − It is the criteria, which determines
how successful an agent is.

• Behavior of Agent − It is the action that agent performs after any
given sequence of percepts.

• Percept − It is agent’s perceptual inputs at a given instance.

• Percept Sequence − It is the history of all that an agent has perceived
till date.

• Agent Function − It is a map from the precept sequence to an action.

mu
no
tes
.in

22

Artificial Intelligence 2.3 RATIONALITY

Rationality is nothing but status of being reasonable, sensible, and having
good sense of judgment.

Rationality is concerned with expected actions and results depending upon
what the agent has perceived. Performing actions with the aim of obtaining
useful information is an important part of rationality.

What is Ideal Rational Agent?

An ideal rational agent is the one, which is capable of doing expected
actions to maximize its performance measure, on the basis of −

• Its percept sequence

• Its built-in knowledge base

Rationality of an agent depends on the following four factors −

• The performance measures, which determine the degree of success.

• Agent’s Percept Sequence till now.

• The agent’s prior knowledge about the environment.

• The actions that the agent can carry out.

2.3.1 Rational Agent

A rational agent always performs right action, where the right action means
the action that causes the agent to be most successful in the given percept
sequence. The problem the agent solves is characterized by Performance
Measure, Environment, Actuators, and Sensors (PEAS).

Figure : Rational Agent Work

mu
no
tes
.in

23

Intelligent Agent 2.4 INTELLIGENT AGENT

An intelligent agent is anything that perceives the environment through it’s
sensors and acts upon it through it’s actuators (effectors). The actions of the
agent are always directed towards the goal.

2.4.1 Structure of Intelligent Agents

Figure : Intelligent Agent

The few types of agents are
• Human Agent : Sensors : Nose, Ears, Eyes, Tongue, Skin.
• Actuators : Hands, Legs, Mouth.
• Robotic Agent :

• Sensors : Camera, Infrared range finders.
• Actuators : Motors.
• Software agent : They have encoded bit strings as sensors and

actuators.

Agent’s structure can be viewed as −
• Agent = Architecture + Agent Program
• Architecture = the machinery that an agent executes on.
• Agent Program = an implementation of an agent function.

2.5 TYPES OF AGENTS

TYPES OF AGENTS

1. SIMPLE REFLEX AGENTS

2.MODEL-BASED RELEX AGENTS

3. GOAL BASED AGENTS

4. UTILITY BASED AGENTS

5. LEARNING AGENTS

mu
no
tes
.in

24

Artificial Intelligence 2.5.1 Simple Reflex Agents

• They choose actions only based on the current percept.

• They are rational only if a correct decision is made only on the basis
of current precept.

• Their environment is completely observable.

Condition-Action Rule − It is a rule that maps a state (condition) to an
action.

2.5.2 Model Based Reflex Agents

They use a model of the world to choose their actions. They maintain an
internal state.

Model − The knowledge about “how the things happen in the world”.

Internal State − It is a representation of unobserved aspects of current state
depending on percept history.

Updating the state requires the information about −

• How the world evolves.

• How the agent’s actions affect the world.

mu
no
tes
.in

25

Intelligent Agent 2.5.3 Goal Based Agents

They choose their actions in order to achieve goals. Goal-based approach is
more flexible than reflex agent since the knowledge supporting a decision
is explicitly modeled, thereby allowing for modifications.

Goal − It is the description of desirable situations.

2.5.4 Utility Based Agents

They choose actions based on a preference (utility) for each state. Goals are
inadequate when −

• There are conflicting goals, out of which only few can be achieved.

• Goals have some uncertainty of being achieved and you need to weigh
likelihood of success against the importance of a goal.

2.5.5 Learning Agents

We've gone over different approaches for selecting actions in agent
programmes. So far, we haven't detailed how the agent programmes are
created. Turing (1950) examines the possibility of programming his
intelligent machines by hand in his famous early article.

mu
no
tes
.in

26

Artificial Intelligence

• It calculates the amount of time this will take and concludes, "Some
more expeditious method appears desired." Building learning
machines and then teaching them is the way he advocates. This is now
the favoured strategy for developing cutting-edge AI systems in many
fields. Another advantage of learning is that, as previously said, it
allows the agent to operate in previously unknown contexts and to
grow more proficient than its starting understanding would allow. The
core concepts of learning agents are briefly introduced in this section.
Throughout the book, we discuss learning possibilities and strategies
for various types of agents. Part V delves deeper into the learning
algorithm.

• As indicated in Figure, a learning agent can be separated into four
conceptual components. The most crucial contrast is between the
learning element, which is in charge of improving, and the
performance element, which is in charge of deciding on external
activities. The performance element is what we previously thought of
as the full agent: it processes information and makes decisions. The
learning element takes the critic's comments on how the agent is
performing and decides how the performance aspect should be
tweaked in order for the agent to perform better in the future.

• The learning element's design is heavily influenced by the
performance element's design. When trying to create an agent that
learns a specific capacity, the first thing to ask is "What type of
performance factor will my agent need to do this once it has learned
how?" rather than "How am I going to get it to teamthis?" Learning
methods can be built to improve any aspect of an agent given its
design.

• The critic informs the learning aspect of the agent's performance
against a predetermined benchmark. Because the percepts do not
provide any evidence of the agent's success, the critic is required. A
chess programme, for example, might receive a percept indicating that
it has checkmated its opponent, but it would need a performance
standard to know that this is a good thing because the percept does
not state so.

mu
no
tes
.in

27

Intelligent Agent • The learning agent's final component is the problem generator. It is in
charge of recommending measures that will lead to new and
educational experiences. The idea is that, given what it knows, if the
performance factor had its way, it would continue to do the best
activities. However, if the agent is prepared to experiment a little and
take some potentially poor behaviours in the short term, it may
uncover much better long-term activities. It is the role of the problem
generator to suggest these exploratory actions. When scientists
conduct experiments, they do them in this manner. Galileo did not
consider dropping rocks from the top of a Pisa tower to be valuable in
and of itself. He wasn't attempting to breach the law.

2.6 NATURE OF ENVIRONMENTS

Some programs operate in the entirely artificial environment confined to
keyboard input, database, computer file systems and character output on a
screen.

In contrast, some software agents (software robots or softbots) exist in rich,
unlimited softbots domains. The simulator has a very detailed, complex
environment. The software agent needs to choose from a long array of
actions in real time. A softbot designed to scan the online preferences of the
customer and show interesting items to the customer works in the real as
well as an artificial environment.

The most famous artificial environment is the Turing Test environment, in
which one real and other artificial agents are tested on equal ground. This
is a very challenging environment as it is highly difficult for a software
agent to perform as well as a human.

Turing Test

The success of an intelligent behavior of a system can be measured with
Turing Test.

Two persons and a machine to be evaluated participate in the test. Out of
the two persons, one plays the role of the tester. Each of them sits in
different rooms. The tester is unaware of who is machine and who is a
human. He interrogates the questions by typing and sending them to both
intelligences, to which he receives typed responses.

This test aims at fooling the tester. If the tester fails to determine machine’s
response from the human response, then the machine is said to be
intelligent.

Properties of Environment

2.6.1 Natures of Environment

The environment has multifold properties −

• Discrete / Continuous − If there are a limited number of distinct,
clearly defined, states of the environment, the environment is discrete

mu
no
tes
.in

28

Artificial Intelligence (For example, chess); otherwise it is continuous (For example,
driving).

• Observable / Partially Observable − If it is possible to determine the
complete state of the environment at each time point from the percepts
it is observable; otherwise it is only partially observable.

• Static / Dynamic − If the environment does not change while an agent
is acting, then it is static; otherwise it is dynamic.

• Single agent / Multiple agents − The environment may contain other
agents which may be of the same or different kind as that of the agent.

• Accessible / Inaccessible − If the agent’s sensory apparatus can have
access to the complete state of the environment, then the environment
is accessible to that agent.

• Deterministic / Non-deterministic − If the next state of the
environment is completely determined by the current state and the
actions of the agent, then the environment is deterministic; otherwise
it is non-deterministic.

• Episodic / Non-episodic − In an episodic environment, each episode
consists of the agent perceiving and then acting. The quality of its
action depends just on the episode itself. Subsequent episodes do not
depend on the actions in the previous episodes. Episodic
environments are much simpler because the agent does not need to
think ahead.

2.6.2 PEAS Properties of Agent

PEAS: Performance Measure, Environment, Actuators, & Sensors.

Agent
Type

Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal,
comfortable
trip, maximize
profits

Roads, other
traffic,
pedestrians,
customers

Steering,
accelerator,
brake, signal,
horn, display

Cameras,
sonar,
speedometer,
GPS,
odometer,
accelerometer,
engine
sensors,
keyboard

Medical
diagnosis
system

Healthy
patient,
reduced costs

Patient,
hospital, staff

Display of
questions,
tests,
diagnoses,
treatments,
referrals

Keyboard
entry of
symptoms,
findings,
patient's
answers

mu
no
tes
.in

29

Intelligent Agent Agent
Type

Performance
Measure

Environment Actuators Sensors

Satellite
image
analysis
system

Correct image
categorization

Downlink
from orbiting
satellite

Display of
scene
categorization

Color pixel
arrays

Part-
picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts:
bins

Jointed arm
and hand

Camera, joint
angle sensors

Refinery
controller

Purity, yield,
safety

Refinery,
operators

Valves,
pumps,
beaters,
displays

Temperature,
pressure,
chemical
sensors

Interactive
English
tutor

Student's score
on test

Set of
students,
testing agency

Display of
exercises.
suggestions,
corrections

Keyboard
entry

Examples of agent types and their PEAS descriptions

SUMMARY

This chapter gives the details about Artificial Intelligence agent and how it
works, agent types, use of agent function, structure of intelligent agents,
nature of environments and PEAS properties, various types of agent.

QUESTIONS

Q.1) What Is Intelligent Agent?

Q.2) Define Agent

Q.3) Explain Different Types of Agents.

Q.4) Explain Peas

Q.5) Discuss Different Natures of Environments in Detail.

mu
no
tes
.in

30

Artificial Intelligence 3
PROBLEM SOLVING BY SEARCHING

Unit Structure :
3.0 Objectives:
3.1 Introduction (Problem Solving)
 3.1.1 Search
 3.1.2 Importance of Search in AI
 3.1.3 Problem Solving Agent
 3.1.3.1 Steps in Problem Solving
 3.1.3.2 Algorithm
 3.1.3.3 Solutions to The Problem Solving
3.2 Uninformed Search Strategies:
 3.2.1 Introduction (Uninformed Search)
 3.2.2 Breadth First Search (BFS)
 3.2.2.1 Concept
 3.2.2.2 Implementation
 3.2.2.3 Algorithm
 3.2.2.4 Performance Evaluation
 3.2.3 Depth First Search (DFS)
 3.2.3.1 Concept
 3.2.3.2 Implementation
 3.2.3.3 Algorithm
 3.2.3.4 Performance Evaluation
 3.2.4 Uniform cost search (UCS)
 3.2.4.1 Concept
 3.2.4.2 Implementation
 3.2.4.3 Algorithm
 3.2.4.4 Performance Evaluation
 3.2.5 Depth Limited Search (DLS)
 3.2.5.1 Concept
 3.2.5.2 Implementation
 3.2.5.3 Algorithm
 3.2.5.4 Performance Evaluation
 3.2.6 Iterative Deepening DFS (IDDFS)
 3.2.6.1 Concept

mu
no
tes
.in

31

Problem Solving by Searching 3.2.6.2 Implementation
 3.2.6.3 Algorithm
 3.2.6.4 Performance Evaluation
 3.2.7 Bidirectional Search
 3.2.7.1 Concept
 3.2.7.2 Implementation
 3.2.7.3 Algorithm
 3.2.7.4 Performance Evaluation
 3.2.7.5 Advantages of Bidirectional Search
 3.2.7.6 Disadvantages of Bidirectional Search
 3.2.8 Comparision of Searching Methods
 3.2.8.1 Unidirecional and Bidirectional Search
 3.2.8.2 Difference between BFS & DFS
 3.2.8.3 Comparison of tree search strategies basis on

performance evaluation
3.3 Informed Search Techniques
 3.3.1 Heuristic
 3.3.1.1 Introduction
 3.3.1.2 Heuristic Search
 3.3.1.3 Heuristic Search Techniques
 3.3.1.4 Characteristics of Heuristic Search
 3.3.1.5 Comparison of Blind Search and Heuristic Search
 3.3.1.6 Heuristic Function
 3.3.2 Best First Search :
 3.3.2.2 Implementation
 3.3.2.3 Algorithm
 3.3.2.4 Performance Evaluation
 3.3.3 Greedy Best First Search
 3.3.3.1 Concept
 3.3.3.2 Implementation
 3.3.3.3 Algorithm
 3.3.3.4 Performance Evaluation
 3.3.4 A* SEARCH
 3.3.4.1 Concept
 3.3.4.2 Implementation
 3.3.4.3Algorithm
 3.3.4.4 Flow chart of A* search algorithm

mu
no
tes
.in

32

Artificial Intelligence 3.3.4.5 Performance Evaluation
 3.3.5 Memory Bounded Heuristic Search
 3.3.5.1 Concept
 3.3.5.2 SMA* : Simplified Memory Bounded A*
 3.3.6 Local Search Algorithm and Optimization Problems
 3.3.6.1 Hill Climbing
 3.3.6.2 Local Beam Search

3.0 OBJECTIVES

In this chapter we are going to learn about:

 what is problem, problem solving methods, problem solving agents.
Study of Various searching techniques and types, comparison of
searching techniques, Heuristic function etc.

AI and related fields

 Logical AI : What a program knows about the world in general the
facts of the specific situation in which it must act, and its goals are all
represented by sentences of some mathematical logical language. The
program decides what to do by inferring that certain actions are
appropriate for achieving its goals.

 Search: AI programs often examine large numbers of possibilities,
e.g. moves in a chess game or inferences by a theorem proving
program. Discoveries are continually made about how to do this more
efficiently in various domains.

 Pattern Recognition : When a program makes observations of some
kind, it is often programmed to compare what it sees with a pattern.
For example, a vision program may try to match a pattern of eyes and
a nose in a scene in order to find a face. More complex patterns, e.g.
in a natural language text, in a chess position, or in the history of some
event are also studied.

 Representation : Facts about the world have to be represented in
some way. Usually, languages of mathematical logic are used.

 Inference : From some facts, others can be inferred. Mathematical
logical deduction is adequate for some purposes, but new methods of
non-monotonic inference have been added to logic since the 1970s.
The simplest kind of non-monotonic reasoning is default reasoning in
which a conclusion is to be inferred by default, but the conclusion can
be withdrawn if there is evidence to the contrary. For example, when
we hear of a bird, we man infer that it can fly, but this conclusion can
be reversed when we hear that it is a penguin. It is the possibility that
a conclusion may have to be withdrawn that constitutes the non-
monotonic character of the reasoning. Ordinary logical reasoning is

mu
no
tes
.in

33

Problem Solving by Searching monotonic in that the set of conclusions that can the drawn from a set
of premises is a monotonic increasing function of the premises.

 Common sense knowledge and reasoning : This is the area in which
AI is farthest from human-level, in spite of the fact that it has been an
active research area since the 1950s. While there has been
considerable progress, e.g. in developing systems of non-monotonic
reasoning and theories of action, yet more new ideas are needed.

 Learning from experience : Programs do that. The approaches to AI
based on connectionism and neural nets specialize in that. There is
also learning of laws expressed in logic. Programs can only learn what
facts or behaviors their formalisms can represent, and unfortunately
learning systems are almost all based on very limited abilities to
represent information.

 Planning : Planning programs start with general facts about the world
(especially facts about the effects of actions), facts about the particular
situation and a statement of a goal. From these, they generate a
strategy for achieving the goal. In the most common cases, the
strategy is just a sequence of actions.

 Epistemology : This is a study of the kinds of knowledge that are
required for solving problems in the world.

 Ontology : Ontology is the study of the kinds of things that exist. In
AI, the programs and sentences deal with various kinds of objects,
and we study what these kinds are and what their basic properties are.
Emphasis on ontology begins in the 1990s.

 Heuristics : A heuristic is a way of trying to discover something or
an idea imbedded in a program. The term is used variously in AI.
Heuristic functions are used in some approaches to search to measure
how far a node in a search tree seems to be from a goal. Heuristic
predicates that compare two nodes in a search tree to see if one is
better than the other, i.e. constitutes an advance toward the goal, may
be more useful.

 Genetic Programming : Genetic programming is a technique for
getting programs to solve a task by mating random Lisp programs and
selecting fittest in millions of generations.

3.1 INTRODUCTION (PROBLEM SOLVING)

Search and Control Strategies

Problem Solving

Problem solving is an important aspect of Artificial Intelligence. A problem
can be considered to consist of a goal and a set of actions that can be taken
to lead to the goal. At any given time, we consider the state of the search
space to represent where we have reached as a result of the actions we have
applied so far. For example, consider the problem of looking for a contact
lens on a football field. The initial state is how we start out, which is to say

mu
no
tes
.in

34

Artificial Intelligence we know that the lens is somewhere on the field, but we don’t know where.
If we use the representation where we examine the field in units of one
square foot, then our first action might be to examine the square in the top-
left corner of the field. If we do not find the lens there, we could consider
the state now to be that we have examined the top-left square and have not
found the lens. After a number of actions, the state might be that we have
examined 500 squares, and we have now just found the lens in the last
square we examined. This is a goal state because it satisfies the goal that we
had of finding a contact lens.

3.1.1 Search

Search is a method that can be used by computers to examine a problem
space like this in order to find a goal. Often, we want to find the goal as
quickly as possible or without using too many resources. A problem space
can also be considered to be a search space because in order to solve the
problem, we will search the space for a goal state. We will continue to use
the term search space to describe this concept. In this chapter, we will look
at a number of methods for examining a search space. These methods are
called search methods.

3.1.2 Importance of Search in AI

 It has already become clear that many of the tasks underlying AI can
be phrased in terms of a search for the solution to the problem at hand.

 Many goal based agents are essentially problem solving agents which
must decide what to do by searching for a sequence of actions that
lead to their solutions.

 For production systems, we have seen the need to search for a
sequence of rule applications that lead to the required fact or action.

 For neural network systems, we need to search for the set of
connection weights that will result in the required input to output
mapping.

3.1.3 Problem Solving Agent

Problem formulation is the basic step of problem solving agent where
problems defined by using five components.

3.1.3.1 Steps in Problem Solving

Problem can be defined formally using five components as follows:
1. Initial state
2. Actions
3. Successor function
4. Goal test
5. Path cost

mu
no
tes
.in

35

Problem Solving by Searching 1. Initial state : The initial state is the one in which the agent starts in.
2. Actions: It is the set of actions that can be executed or applicable in

all possible states. A description of what each action does; the formal
name for this is the transition model.

3. Successor function : It is a function that returns a state on executing
an action on the current state.

4. Goal test : It's a test to see if the present state is a goal state or not. In
some cases, a goal test can be performed simply by comparing the
current state to the declared goal state, which is known as an explicit
goal test. The implicit goal test is used when the state of a problem
cannot be described directly and must be generated by doing some
computations.

 Example: In Tic-Tac-Toe game making diagonal or vertical or
horizontal combination declares the winning state which can be
compared explicitly, but in case of chess game, the goal state cannot
be predefined but it’s a scenario called as “Checkmate” which has to
be evaluated implicitly.

5. Path cost : It is simply the cost associated with each step to be taken
to reach to the goal state. To determine the cost to reach to each state,
there is a cost function, which is chosen by the problem solving agent.

3.1.3.2 Algorithm
Procedure or method : Problem solving agent, agent may be unknown,
space, percept.

Result : An Action.

Input : P percept (Environment perception)

Static :
1) A Ab action sequence, initially with null value.

2) S State – current state.

3) G Goal – A goal initially null.

4) P Problem – A real world situation.

State – update state (State, Percept)

If (s) is empty then do

 g Formulate goal/goals

 P Formulate problem (s,g)

 S Search (p)

 G First (s)

 First(s) G

 Rest(s) S

 Return a

 Procedure

mu
no
tes
.in

36

Artificial Intelligence Which search algorithm one should use will generally depend on the
problem domain? There are four important factors to consider:

 Completeness – Is a solution guaranteed to be found if at least one
solution exists?

 Optimality – Is the solution found guaranteed to be the best (or lowest
cost) solution if there exists more than one solution?

 Time Complexity – The upper bound on the time required to find a
solution, as a function of the complexity of the problem.

 Space Complexity – The upper bound on the storage space (memory)
required at any point during the search, as a function of the complexity
of the problem

3.1.3.3 Solutions to The Problem Solving

 Problem Solution

A well -defined problem with specification of initial state, goal test,
successor function, and path coast it can be represented as a data
structure and used to implement a program which can search for a
goal test. A solution to a problem is a sequence of action chosen by
the problem solving agent that leads from the initial state to a goal
state. Solution quality is measured by the path cost function.

 Optimal Solution

 An optimal solution is the solution with least path cost among all
solutions. General sequence followed by a simple problem solving
agent is, first it formulates the problem with the goal to be achieved,
then it searches for a sequence of actions that would solve the
problem, and then executes the actions one at a time.

3.1.3.3 EXAMPLE

Examples of Problem Solving

By using Solving Problems by Searching, there are five different
components for defining a problem.

Components for defining a problem

1) Initial State

2) Actions Available

3) Transition Model

4) Path Cost

5) Goal Test

Example – 1) Romania Map Problem

Map of Romania : Romania is a country in Europe, following are the major
cities.

mu
no
tes
.in

37

Problem Solving by Searching

Description of Map Problem

1) The initial state : The initial state for our agent in this case (Romania)
might be described as In(Arad).

2) Actions : It gives the possible actions from the current state, in this
case the possible actions are (Go(Sibiu), Go(Timisoara),
Go(Zerind)}.

3) Transition Model : This is Specified by using a function
RESULT(s,a), that returns the state that results from doing action a in
state s.

 RESULT(In(Arad),Go(Zerind)) = In(Zerind).

4) Path Cost : Path cost function assigns a numeric cost to each path, In
the present case it is the distance in kilometers.

5) Goal Test : It determines whether the given state is Goal State.

Example – 2) Vacuum-Cleaner Problem

Vacuum World :

mu
no
tes
.in

38

Artificial Intelligence 1) State : The state is determined by both the agent location and the dirt
locations. There are 8 possible world states.

2) Initial state : Any state can be designated as the initial state.

3) Actions : Each state has just three actions : 1. Left 2. Right 3. Suck.

4) Transition model : Action left takes the agent to Leftmost square,
Action Right takes the agent to Rightmost square and the Suck action
cleans a dirty square and performs no action on clean square.

5) Goal test : This checks whether all the squares are clean.

6) Path cost : Each step costs 1, so the path cost is the number of steps
in the path.

Example – 3) 8 Queens Problem

1) States : Any arrangement of 0 to 8 queens on the boards is a state.

2) Initial state : Empty board i.e. No queens on the board.

3) Actions : Adding a queen to any empty square.

4) Transition model : Returns the board with a queen added to the
specified square.

5) Goal test : 8 queen are on the board, in such a way that none is in
attacking position.

Example – 4) Route-finding problem
It is same as Romania map problem

1) States : Each state includes a location, the current time, cost of an
action (a flight segment)

2) Initial state : This is specified by the user (the starting point)

3) Actions : Take any flight from the current location, in any seat class,
leaving after the current time.

mu
no
tes
.in

39

Problem Solving by Searching 4) Transition model : The state resulting from taking a flight will have
the flight’s destination as the current location and the destination time
as the current time.

5) Goa test : Check if the Final destination has been reached

6) Path cost : This depends on monetary cost, waiting time, flight time,
customs and immigration procedures, seat quality, time of day, type
of airplane etc.

Example – 5) The Travelling Salesperson Problem (TSP)

1) States : All the cities which are to be visited by the salesman.

2) Initial State : Any city can be the initial state.

3) Actions : The agent can visit any city which is not yet visited from the
current city.

4) Transition model : The next city becomes the current city

5) Goal test : Check if all the cities have been visited with minimum cost
& also the final state is the initial state.

6) Path cost : This depends on the actions the agent has taken throughout
the journey.

Measuring Problem Solving Performance

There are three possible outcomes for any problem.

1) We reach at failure state

2) We reach at solution state

3) Algorithm might get stuck in an infinite loop.

Problem solving performance can be evaluated with 4 various factors as
follows:

1) Completeness

2) Optimality

3) Time complexity

4) Space complexity

There are two Basic Search Strategies

Figure : Types of search strategies

mu
no
tes
.in

40

Artificial Intelligence 1) Uninformed search : It is also known as blind search. In this strategy
only the initial and goal state is given and no additional information
is available.

2) Informed Search : It is also known as Heuristic search. Some
additional information apart from the initial and the goal state is
given, through which we know which state out of the explored is more
beneficial.

3. 2 UNINFORMED SEARCH STRATEGIES

3.2.1 Introduction (Uninformed Search)

 They do not have any additional information

 Information provided in the problem definition only

 To reach at goal state using different order or length of actions.

 It does not use knowledge in the processing of search.

 It is time consuming for getting the solution.

 It is always complete.

 It is expensive

 It requires moderate time

 It is lengthy for implementation

 Examples as follows
1. Breadth First Search (BFS)

2. Depth First Search (DFS)

3. Uniform cost search (UCS)

4. Depth Limited Search (DLS)

5. Iterative deepening DFS (IDDFS)

6. Bi-directional search

Informed Search Strategies / Heuristic Function

 It contains information on goal state.

 It helps in search efficiently.

 The information is obtained by a function which will helps to estimate
how close a current state is from the goal state.

 It uses the knowledge in the processing of searching.

 It helps to find the solution quickly.

 It may be or may not be complete.

 It is inexpensive

 It requires less time

mu
no
tes
.in

41

Problem Solving by Searching It gives the direction about the solution.

 It is less lengthy to implement.

 Examples of Informed Search
1) Best First Search

2) Greedy best first Search

4) A* Search

5) Memory bounded heuristic Search

3.2.2 Breadth First Search (BFS)

Uninformed Search Strategies:

3.2.2.1 Concept

 Breadth First Search: The root node is expanded first, then all the
successors of the root node are expanded next, then their successors,
and so on.

 The shallowest unexpanded node is chosen for expansion.

3.2.2.2 Implementation

 This is achieved very simply by using a FIFO (First In First Out)
Queue for the frontier.

 The goal test is applied to each node when it is generated rather than
when it is selected for expansion.

3.2.2.3 Algorithm

1. Put the root node on a queue

2. While (queue is not empty)

 a) Remove a node from the queue

 if node is a goal node

 then return success;

 put all children of node onto the queue;

3. Return failure;

3.2.2.4 Performance Evaluation

1) Completeness : It is complete, provided the shallowest goal node is at
some finite-depth.

2) Optimality : It is optimal, as it always finds the shallowest solution.

3) Time complexity : O(bd), number of nodes in the fringe.

4) Space complexity : O(bd), total number of nodes explored.

mu
no
tes
.in

42

Artificial Intelligence Process of Breadth First Search

mu
no
tes
.in

43

Problem Solving by Searching

3.2.3 Depth First Search (DFS)

3.2.3.1 Concept

 Depth first search always expands the deepest node in the current
frontier of the search tree.

 The search proceeds immediately to the deepest level of the search
tree, where the nodes have to successors.

 As the nodes are expanded, they are dropped from the frontier, so then
the search backs up the next deepest node that still has unexplored
successors

3.2.3.2 Implementation

 Depth first search uses a LIFO (Last In First Out) queue.

 A LIFO (Last In First Out) queue means that the most recently
generated node is chosen for expansion.

 3.2.3.3 Algorithm

For Recursive implementation of DFS

DFS (c) :

Step 1. If node is a goal, return success;

Step 2. For each child c of node

 If DFS (c) is successful,

 Then return success;

Step 3. Return failure;

mu
no
tes
.in

44

Artificial Intelligence For non-recursive implementation of DFS

Step 1. Push the root node on a stack

Step 2. While (stack is not empty)

 Pop a node from the stack;

 If node is a goal node then return success;

 Push all children of node onto the stack;

Step 3. Return failure

3.2.3.4 Performance Evaluation

1) Completeness : Complete if DFS explores all the nodes hence it gives
the assurance for solution.

2) Optimality : No, as it cannot guarantee the shallowest solution.

3) Time Complexity : DFS requires moderate amount of time to generate
all the O(bm) nodes in the search tree, where m is the maximum depth
of any node; this can be much greater than the size of the state space.

4) Space Complexity : To store single path from root to the some node
to a particular level, along with unexpanded siblings, when same node
gets fully explored, its complete branch i.e, descendants will get
removed from the memory O(bm).

Process of Depth First Search

mu
no
tes
.in

45

Problem Solving by Searching

mu
no
tes
.in

46

Artificial Intelligence

mu
no
tes
.in

47

Problem Solving by Searching 3.2.4 Uniform cost search (UCS)

3.2.4.1 Concept

 Uniform cost search is a breadth-first search with the same cost for all
pathways. We can add a simple tweak to the basic implementation of
BFS to make it work in real time. As a result, an algorithm with any
path cost is optimal.

 Uniform cost search algorithm is used for visiting the weighted tree.
The main aim or goal is to fetch a goal node and find the true path,
including with its cumulative cost.

 With the help of BFS expansion of shallowest node first, but in
uniform cost search, instead of expanding the shallowest node, the
node with the lowest path cost will be expanded first.

3.2.4.2 Implementation

 Uniform cost search can be achieved by implementing the fringe as a
priority queue ordered by path cost. It is same as BFS, except for the
use of a priority queue and the additional check in case of the shortest
path to any node if found.

 Algorithm will take care of the nodes which are inserted in the fringe
for the exploration, with the help of priority queue and hash table data
structures.

 Priority Queue will useful to count the total cost from the root to the
node.

 UCS gives the minimum path cost with the maximum priority.

3.2.4.3 Algorithm

Step 1) Insert root node into the priority queue

Step 2) While the queue is not empty :

 Dequeue the maximum priority node from the queue.

 If priorities are equal then check the alphabets for smaller node

 get selected

 If the node is the goal node then print the path

 Exit

 Else

Insert all the children of the dequeued node, with their total costs as priority.

The algorithm returns the best cost path which is encountered first and will
never go for other possible paths. The solution path is optimal in terms of
cost.

mu
no
tes
.in

48

Artificial Intelligence Priority queue will count the total cost from root to the node path cost, it
will take the shorter path cost.

The nodes in the priority queue have almost the same cost at a given time
so the name given as Uniform Cost Search.

3.2.4.4 Performance Evaluation

1) Completeness : UCS gives guaranteed cost of every step exceeds
some small positive constant.

2) Optimality : It produces optimal solution as nodes are expanded in
order of their path cost.

3) Time complexity : It considers path costs than the depths; so the
complexity is not depends on b and d. Consider C* be the cost of the
optimal solution, we assume every action cost at least €. Then the
algorithm’s worst case time complexity will be O(bC*/€).

4) Space complexity : O(bC*/€) it indicates the number of node in
memory at the time of execution.

Process

3.2.5 Depth Limited Search (DLS)

3.2.5.1 Concept

 In Depth limited search, DFS is performed upto a predefined depth

 It is a special case of DFS.

 It solves infinite path problems.

3.2.5.2 Implementation

 In case of DFS in DLS we can use the same fringe implemented is
queue.

mu
no
tes
.in

49

Problem Solving by Searching Additionally the level of each node needs limited depth level l.

 DLS will terminate with two kinds of failure.

o The standard failure value indicates no solution and the cut off
value indicates no solution within the depth limit.

3.2.5.3 Algorithm

Step 1. Determine the start node and the search depth.

Step 2. Check if the current node is the goal node

 If not then do nothing

 If yes then return

Step 3. Check if the current node is within the specified search depth

 If not then do nothing

 If yes then expand the node and save all of its successors in a stack.

Call DLS function recursively for all nodes of the stack and go to step 2.

3.2.5.4 Performance Evaluation

1) Completeness : If incomplete it shallowest goal is beyond the depth
limit

2) Optimality: Non optimal, as the depth chosen can be greater than d.

3) Time complexity : It is same as DFS, O(bl), where l is the depth limit
(specified)

mu
no
tes
.in

50

Artificial Intelligence 4) Space complexity : It is same as DFS, O(bl), where l is the depth limit
(specified)

Process

3.2.6 Iterative Deepening DFS (IDDFS)

3.2.6.1 Concept

 We know two common graph traverse methods BFS and DFS, Tree
or graph with huge height and width, both BFS and DFS are not useful
because

1. DFS traverses adjacent of root then next adjacent…

2. With this problem, DFS may not find shortest path to a node.

3. While in BFS , it traverse level wise but requires high memory
or space.

4. With the help of IDDFS, to overcome DFS and BFS problems.

5. It combines depth first search space for efficiency as well as
breadth first search fast search (for nodes closer to root).

 Iterative Deepening Depth First Search (IDDFS) is an algorithm that
is an important part of an Uniformed BFS and DFS.

 Keep on incrementing the depth limit by iterating the procedure
unless we have reached to the goal node.

 Otherwise have to travel the whole tree which one is the easier.

3.2.6.2 Implementation

 In Iterative Deepening Depth First Search it works like BFS where
queue concept uses, but more iterations are required to increment the
depth limit by one in every recursive call of Depth Limit Search.

 IDDFS recursively calls DFS for different depths starting from an
initial value. In every call, DFS is restricted from going beyond given
depth. DFS as well as BFS both are implemented in IDDFS.

mu
no
tes
.in

51

Problem Solving by Searching 3.2.6.3 Algorithm

Step 1. Initial depth limit to zero.

Step 2. Repeat until the goal node is found

Step 3. Call Depth Limit Search with new depth limit.

Step 4. Increment depth limit to next level.

3.2.6.4 Performance Evaluation

1) Completeness : Iterative Deepening DFS is complete when the
branching factor b is finite.

2) Optimality : It gives an optimal solution when the path cost is a non-
decreasing function of the depth of the node.

3) Time complexity : It depends on branching factor (b) and the bottom
most level that is depth (d). It is O(bd).

4) Space complexity : It has very moderate space complex which is
O(bd).

Process

Figure: Search Process in IDDFS

mu
no
tes
.in

52

Artificial Intelligence 3.2.7 Bidirectional Search

3.2.7.1 Concept

 Bidirectional search is a graph search algorithm, it finds a shortest
path from an initial vertex to a goal vertex in a directed graph.

 Two graph traversals i.e. BFS take place at the same time and is used
to find the shortest distance between a fixed start vertex and end
vertex.

 It is a faster approach, it reduces the time required for the traversing
the graph.

 It can be used for other applications as well.

3.2.7.2 Implementation

 It runs two simultaneous searches

 One forward from the initial state and one backward from the goal,
when both forward and backward state will meet that point it will stop.

 Two simultaneous searches are performed

3.2.7.3 Algorithm

 Undirected weighted graph, with all the edge weights assign to zero

 Bidirectional search from initial state and destination at the same time

 Stop both searches when a node in the middle (node M), becomes
permanent in both directions.

 Suppose d(O,M)=X and d(D,M)=Y.

 Does the shortest path from O to D pass through M and is its cost
equal to X+Y?

If so, then explain why and prove

If not, provide a counter example

3.2.7.4 Performance Evaluation

1) Completeness : Yes, if branching factor b is finite and both directions
use breadth first search.

mu
no
tes
.in

53

Problem Solving by Searching 2) Optimality : Yes, if all costs are identical and both directions use
breadth first search.

3) Time complexity : It uses BFS in both directions i.e from initial state
and from goal state i.e. O(bd/2).

4) Space complexity : It requires at least one of the two fringes need to
keep in a memory for checking common node, so the space
complexity is O(bd/2).

3.2.7.5 Advantages of Bidirectional Search

 Efficient

 It reduces space and time as it starts from both directions.

 If b=10 and d=6 then Breadth first search will require 106 = 1,000,000
nodes

 In bidirectional search requires 2 x 103 = 2,000 nodes.

 For better performance we can combine different search strategies in
different directions.

3.2.7.6 Disadvantages of Bidirectional Search

 The search requires generating predecessors of states.

 Overhead of checking whether each node appears in the other search
is involved.

 For larger depth d, it is still impractical.

 It uses both the directions i.e. initial and goal state directions with
breadth first search algorithm with branching factor b and depth d of
the solution for the memory requirement will be bd/2 for each search.

Process

mu
no
tes
.in

54

Artificial Intelligence 3.2.8 Comparision of Searching Methods

3.2.8.1 Unidirecional and Bidirectional Search

Unidirectional Search Method Bidirectional Search Method

Unidirectional uses search tree,
start node, goal node as input for
starting search

Bidirectional have additional
information about search trees
nodes, along with the start and goal
node.

They use only information from the
problem definition.

They incorporate additional
measure of a potential of a specific
state to reach the goal.

Sometimes unidirectional search
methods use past exploration.

All these methods use a potential of
a state to reach a goal is measured
through heuristic functions.

All these techniques are based on
pattern of exploration of nodes in
the search tree.

All these techniques totally depend
on the evaluated value of each node
generated by heuristic function.

In real time problems uninformed
search techniques can be costly
with respect to time and space.

In real time problems informed
search techniques are cost effective
with respective to time and space.

Comparatively more number of
nodes will be explored in
unidirectional search.

As compared to uninformed
techniques less number of nodes
are explored.

Examples:

Breadth First Search

Depth First Search

Uniform Cost Search

Depth Limited Search

Iterative Depending Depth First
Search.

Examples:

Hill Climbing Search

Best First Search

A* Search

IDA Search

SMA* Search

3.2.8.2 Difference between BFS & DFS

KEY BFS DFS

Definition BFS is Breadth First
Search

DFS is Depth First
Search

Implementation BFS travels tree level
wise.

(Root node’s nearer
nodes will be visited first

DFS travels tree depth
wise.

(Depth-wise each node
in a particular branch are

mu
no
tes
.in

55

Problem Solving by Searching KEY BFS DFS

from the left to right
direction)

visited till the leaf node
and then continues with
searching branch by
branch from left to right
direction in a tree.

Data Structure BFS uses the data
structure queue with
FIFO (First In First Out)
list.

DFS uses the data
structure stack with
LIFO (Last In First Out)
list.

No. of step
algorithm

Single step algorithm.
Visited vertices are
removed from the queue
and then displayed at
once.

Two step algorithm.

1) Visited vertices are
pushed onto the stack.

2) After pushing all
vertices on stack if
there are no vertex
then visit one by one
vertex and popped
out.

Memory Requires more memory
as compare with DFS

Requires less memory as
compare with BFS

Source BFS is better when target
is closer to source.

DFS is better when
target is far from source.

Speed BFS is slower than DFS DFS is faster than BFS

Backtracking BFS no need of
backtracking.

DFS requires
backtracking.

Loop BFS can never get into
infinite loops.

DFS generally gets
trapped into infinite
loops, so search tree are
dense.

Optimality BFS is optimal and
complete if branching
factor is finite.

DFS is neither complete
nor optimal even in finite
branching factor.

Suitable for
decision tree

BFS considers all
neighbour nodes so it is
not suitable for decision
tree used in puzzle
games.

DFS is more suitable for
decision tree. As with
one decision, we need to
traverse further to
augment the decision. If
we reach the solution,
then we won.

mu
no
tes
.in

56

Artificial Intelligence KEY BFS DFS

Time Complexity O(V+E) where V =
Vertices and E = Edges

O(V+E) V = Vertices
and E = Edges

Applications To find shortest path
 Single source and all

pairs shortest paths
 In Spanning tree
 In Connectivity

 Useful in Cycle
detection

 In Connectivity
testing

 Finding a path
between V and W in
the graph

 Useful in finding
spanning trees and
forest.

Tree

3.2.8.3 Comparison of tree search strategies basis on performance
evaluation

The following table shows the comparison of all uninformed search
techniques with respective their performance evaluation on the basis of
completeness, optimality, time complexity, space complexity,
b : branching factor
l : depth limit
d : depth of the shallowest solution
m : maximum depth of the search tree

Parameters BFS Uniform
Cost

DFS DLS IDDFS Bidirectional

Completeness
Optimality

Yes Yes No No Yes Yes

Time
Complexity

Yes Yes No No Yes Yes

Space
Complexity

O(bd) O(b
C*/€)

O(bm) O(bl) O(bd) O(bd/2)

 O(bd) O(b
C*/€)

O(bm) O(bl) O(bd) O(bd/2)

mu
no
tes
.in

57

Problem Solving by Searching 3.3 INFORMED SEARCH TECHNIQUES

Following search includes in Informed Search Strategies
Heuristic Search

Best First Search

Greedy best first Search

A* Search

Memory bounded heuristic Search

3.3.1 Heuristic

3.3.1.1 Introduction

A heuristic is a method that improves the efficiency of the search process.
These are like tour guides. There are good to the level that they may neglect
the points in general interesting directions. They are bad to the level that
they may neglect points of interest to particular individuals. Some heuristics
help in the search process without sacrificing any claims to entirety that the
process might previously had. Others may occasionally cause an excellent
path to be overlooked. By sacrificing entirely it increases efficiency.
Heuristics may not find the best solution every time but guarantee that they
find a good solution in a reasonable time. These are particularly useful in
solving tough and complex problems, solutions of which would require
infinite time, i.e. far longer than a lifetime for the problems which are not
solved in any other way.

3.3.1.2 Heuristic Search

To find a solution in proper time rather than a complete solution in unlimited
time we use heuristics. ‘A heuristic function is a function that maps from
problem state descriptions to measures of desirability, usually represented
as numbers’. Heuristic search methods use knowledge about the problem
domain and choose promising operators first. These heuristic search
methods use heuristic functions to evaluate the next state towards the goal
state. For finding a solution, by using the heuristic technique, one should
carry out the following steps:

1. Add domain—specific information to select what is the best path to
continue searching along.

2. Define a heuristic function h(n) that estimates the ‘goodness’ of a
node n.

 Specifically, h(n) = estimated cost(or distance) of minimal cost path
from n to a goal state.

3. The term, heuristic means ‘serving to aid discovery’ and is an
estimate, based on domain specific information that is computable
from the current state description of how close we are to a goal.

mu
no
tes
.in

58

Artificial Intelligence Finding a route from one city to another city is an example of a search
problem in which different search orders and the use of heuristic knowledge
are easily understood.

1. State: The current city in which the traveller is located.

2. Operators: Roads linking the current city to other cities.

3. Cost Metric: The cost of taking a given road between cities.

4. Heuristic information: The search could be guided by the direction of
the goal city from the current city, or we could use airline distance as
an estimate of the distance to the goal.

3.3.1.3 Heuristic Search Techniques

For complex problems, the traditional algorithms, presented above, are
unable to find the solution within some practical time and space limits.
Consequently, many special techniques are developed, using heuristic
functions.

 Blind search is not always possible, because it requires too much time
or Space (memory).

Heuristics are rules of thumb; they do not guarantee a solution to a problem.

 Heuristic Search is a weak technique but can be effective if applied
correctly; it requires domain specific information.

3.3.1.4 Characteristics of Heuristic Search

 Heuristics are knowledge about domain, which help search and
reasoning in its domain.

 Heuristic search incorporates domain knowledge to improve
efficiency over blind search.

 Heuristic is a function that, when applied to a state, returns value as
estimated merit of state, with respect to goal.

 i) Heuristics might (for reasons) underestimate or overestimate
the merit of a state with respect to goal.

ii) Heuristics that underestimate are desirable and called
admissible.

 Heuristic evaluation function estimates likelihood of given state
leading to goal state.

 Heuristic search function estimates cost from current state to goal,
presuming function is efficient.

mu
no
tes
.in

59

Problem Solving by Searching 3.3.1.5 Comparison of Blind Search and Heuristic Search

Blind Search Heuristic Search

It Can only search what it
already has knowledge.

It estimates distance to goal state through
explored nodes.

Do not have knowledge
about how far a node from
goal state.

It gives the guidance for search process
toward goal.

It always prefers state (nodes) that lead
close to and not away from goal state.

Example:

Travelling salesman

A salesperson must visit a list of cities, each of which must be visited just
once. There are several routes that connect the two cities. The issue is
determining the shortest path between cities so that the salesman can visit
all of them at the same time.

If there are N cities, a solution would be to try N! different combinations to
get the shortest distance and hence the required route. This is inefficient
because there are 36,28,800 potential routes with N=10. Combinatorial
explosion is demonstrated here.

There are better ways to solve such problems, one of which is termed branch
and bound. To begin, produce all of the complete paths and calculate the
distance between the first and last complete paths. If the next path is shorter,
save it and continue in this manner, avoiding the path when its length
exceeds the saved shortest path length, however this method is preferable
to the prior method.

3.3.1.6 Heuristic Function

The heuristic function is a method of informing the search about a goal's
direction. It allows you to make an educated prediction about which of a
node's neighbours will go to a destination. A heuristic function isn't magical
in any way. It can only use information about a node that is easily
accessible.

Heuristic Evaluation Functions

mu
no
tes
.in

60

Artificial Intelligence Let us discuss 8-Puzzle Problem

 Heuristic 1 (H1) : Count the out-of-place tiles, as compared to the
goal.

 Heuristic 2 (H2): Sum the distances by which each tile is out of place.

 Heuristic 3 (H3): Multiply the number of required tile reversals by 2.

Weaknesses

 H1 doesn't account for the distance that tiles have to move to get in
place.

 H2 doesn't account for tile-reversals. It takes several moves to reverse
two adjacent tiles.

 H3 often fails to distinguish between vastly different states.

Consider the following example:

 Start Goal H1 H2 H3
 ----- ---- -- -- --

 2 8 3 1 2 3

 1 6 4 8 - 4 5 6 0

 - 7 5 7 6 5

 2 8 3 1 2 3

 1 - 4 8 - 4 3 4 0

 7 6 5 7 6 5

 2 8 3 1 2 3

 1 6 4 8 - 4 5 6 0

 7 5 - 7 6 5

mu
no
tes
.in

61

Problem Solving by Searching Analysis of the Evaluation Function

For developing a good evaluation function for the states in a search space,
we need

g(n) : how far is the state n from the start state?

h(n) : how far is state n from a goal state?

The first value, g(n), is important because you often want to find the shortest
path. This value (distance from start) can be exactly measured by
incorporating a depth count into the search algorithm.

The second value, h(n), is important for guiding the search toward the goal.
It is an estimated value based on your heuristic rules.

Evaluation function. This gives us the following evaluation function:

f(n) = g(n) + h(n)

where g(n) measures the actual length of the path from the start state to the
state n, and h(n) is a heuristic estimate of the distance from a state n to a
goal state.

Heuristic Applied to the Eight Puzzle

The following figure shows the full best-first search of the eight puzzle
graph using H1 -- that is, the value of h(n) is the number of tiles out of place.
The number at the top of each state represents the order in which it was
taken off of the open list. The levels of the graph are used to assign g(n).
For each state, its heuristic value, f(n) is shown.

mu
no
tes
.in

62

Artificial Intelligence that occurs in step 3, where E and F have the save value. State E is examined
first, which puts its children, H and I, on the open list. But since state f(F)
has a lower value than f(H) and f(I), the search is prevented from going
down to those children. In effect, the g(n)gives the state more of a breadth-
first search, keeping it from going too deeply down paths that don't get near
a goal.

 Operations on states generate children of the state currently being
evaluated.

 To prevent loops, Each new state is checked to see whether it occurred
before.

 Each state, n, is given an f value, using f(n) = g(n) + h(n), where h
guides the search toward promising states and g prevents it from going
too far on a dead end.

 States on open are sorted by their f values.

 Efficiency can be improved by efficient management of the open and
closed lists.

3.3.2 Best First Search :

3.3.2.1 Concept :

 Search will start at root node

 The node to be expanded next is selected on the basis of an evaluation
function, f(n).

 The node having lowest value for f(n) indicates that goal is nearest
from this node i.e. f(n) indicates distance from current node to goal
node.

3.3.2.2 Implementation

 Best first search uses two lists in order to record the path i.e. OPEN
list and CLOSED list for implementation.

 OPEN list stores nodes that have been generated, but have not
examined. It is organised by using the priority queue with the help of
storing the nodes in increasing order of their heuristic value, for
maximization heuristic. So that we can get the efficient selection of
the current best candidate for extension.

 CLOSED list stores nodes that have already visited. It contains all
nodes that have been evaluated and will not be looked at again.

 For new node generation, check whether, it has been generated before
that, If it is already visited then check all its recorded value and then
select the next node as a parent if this new node value is better than
previous one.

 Because of this selection it will avoid any node being evaluated twice,
and will never get stuck into an infinite loops.

mu
no
tes
.in

63

Problem Solving by Searching 3.3.2.3 Algorithm

Step 1) Two ordered list OPEN = [initial state]
 Closed = []

Step 2) If OPEN is empty then exit with failure.

Step 3) Select first node on OPEN. Remove it from OPEN and put it on
CLOSED.

 Call this node n.

Step 4) If ‘n’ is the goal node then exit.
Step 5) The solution obtained by tracing a path backward along the arc in
the tree from ‘n’ to the initial node i.e. ‘n1’
Step 6) Expand node ‘n’, it will generate successors.
Step 7) The set of successors generated be S then create arcs from ‘n’ to
each number of S.

Step 8) Reorder the list OPEN, according to the heuristic and go back to
step 2.

3.3.2.4 Performance Evaluation

1) Completeness : It is not complete, it may follow the infinite path and
never return to try other possibilities which can give solution.

2) Optimality :It is not optimal as it can initially select low value h(n)
node but it may happen that some greater value node in current fringe
can lead to better solution. Greedy strategies suffers from this,
“looking the current best they loose on future best and will give finally
the best solution.

3) Time complexity : Worst case time complexity O(bm) where ‘m’ is
the maximum depth of the search space. The complexity can be
reduced by using good heuristic function.

4) Space complexity : O(bm) where ‘m’ is the maximum depth of the
search space. The complexity can be reduced by using good heuristic
function.

Process

Figure : Best First Search

mu
no
tes
.in

64

Artificial Intelligence 3.3.3 Greedy Best First Search

3.3.3.1 Concept

 We use h(n) to rank the nodes on OPEN

 Always expand node with lowest h-value.

 We are greedily trying to achieve a low cost solution.

3.3.3.2 Implementation

 In Greedy Best First Search method ignores the cost of getting to n,
so it can be lead astray exploring nodes that cost a lot but near or close
to the goal node.

3.3.3.3 Algorithm

Step 1) First successor of the parent is expanded. For the successor node

If the successor node’s heuristic is better than its parent, the successor is set
at the front of the queue, with the parent reinserted directly behind it, and
the loop restarts.

Else

If The successor is inserted into the queue, in a location determined by its
heuristic value.

The procedure will evaluate the remaining successors, if any of the parent.

In many cases, greedy best first search may not always produce an optimal
solution, but the solution will be locally optimal, as it will be generated in
comparatively less amount of time.

In mathematical optimization, greedy algorithm solve combinatorial
problems.

3.3.3.4 Performance Evaluation

1) Completeness : It is not complete, it may get stuck in loops, or may
be taken wrong start and quality of heuristic function.

2) Optimality : It is not optimal, as in selection of single path and never
checks for other various possibilities.

mu
no
tes
.in

65

Problem Solving by Searching 3) Time complexity : O(bm) but with good heuristic, will give dramatic
improvement.

4) Space complexity : O(bm), needed to keep all nodes in memory.

Process

3.3.4 A* SEARCH

3.3.4.1 Concept

 The A* Search method is one of the most widely used path-finding
and graph traversal techniques.

 Unlike other traversal strategies, A* Search algorithms have "brains."
What this means is that it is a sophisticated algorithm that
distinguishes itself from other algorithms. In the sections below, this
truth is clarified in great depth.

 It's also worth noting that many games and web-based maps employ
this approach to effectively locate the shortest path (approximation).

3.3.4.2 Implementation

 A * algorithm is a path-finding algorithm that looks for the shortest
path between the starting and ending states. It's utilised in a variety of
applications, including maps. The A* algorithm is used in maps to
find the shortest distance between a source (initial state) and a
destination (final state) (final state).

 At each step it picks the node according to a value-‘f’ which is a
parameter equal to the sum of two other parameters – ‘g’ and ‘h’. At
each step it picks the node/cell having the lowest ‘f’, and process that
node/cell.

 We define ‘g’ and ‘h’ as simply as possible below

 g = the movement cost to move from the starting point to a given
square on the grid, following the path generated to get there.

mu
no
tes
.in

66

Artificial Intelligence h = the estimated movement cost to move from that given square on
the grid to the final destination. This is often referred to as the
heuristic, which is nothing but a kind of smart guess. We really don’t
know the actual distance until we find the path, because all sorts of
things can be in the way (walls, water, etc.). There can be many ways
to calculate ‘h’.

3.3.4.3Algorithm

Step 1) Initialize the open list

Step 2) Initialize the closed list

Step 3) Put the starting node on the open list (you can leave its f at zero)

Step 4) While the open list is not empty

a) find the node with the least f on the open list, call it "q"

b) pop q off the open list

c) generate q's 8 successors and set their parents to q

d) for each successor

 i) if successor is the goal, stop search

 successor.g = q.g + distance between

 successor and q

 successor.h = distance from goal to

 successor (This can be done using many

 ways, we will discuss three heuristics-

 Manhattan, Diagonal and Euclidean

 Heuristics)

 successor.f = successor.g + successor.h

 ii) if a node with the same position as

 successor is in the OPEN list which has a

 lower f than successor, skip this successor

 iii) if a node with the same position as

 successor is in the CLOSED list which has

 a lower f than successor, skip this successor

 otherwise, add the node to the open list

 end (for loop)

e) push q on the closed list

 end (while loop)

mu
no
tes
.in

67

Problem Solving by Searching 3.3.4.4 Flow chart of A* search algorithm

3.3.4.5 Performance Evaluation

1) Completeness : It is complete, as it will always find solution if one
exist.

2) Optimality : Yes, it is optimal.

3) Time Complexity : O(bm) the number of nodes grows exponentially
with solution cost.

4) Space Complexity : O(bm) it keeps all nodes in memory.

Process

Search in map of Romania

 This figure represents the intial map of Romania.The values
representing in red colour are heuristic values(i.e h(n)).

 The values representing in black colour are path cost values(i.e g(n)).

 The values representing in blue colour are f(n) values i.e.

 f(n) = g(n) + h(n).

mu
no
tes
.in

68

Artificial Intelligence

After expanding Arad

 We have three nodes i.e Zerind, Sibiu and Timisoara.

 f(n) = g(n) + h(n)

 f(Sibiu)=f(n)=140+253=393(g(n)=140 and h(n)=253).

 f(Zerind)=f(n)=75+374=449(g(n)=75 and h(n)=374).

 f(Timisoara)=f(n)=118+329=447(g(n)=118 and h(n)=329).

 From these nodes we have to choose the least f(n) , so f(Sibiu) is least
among these nodes.

Figure : After expanding Arad

mu
no
tes
.in

69

Problem Solving by Searching After expanding Sibiu

 After expanding Sibiu we have four nodes i.e Arad, Oradea, Fagaras
and Rimnicu Vilcea.

 f(n) = g(n) + h(n)

 f(Arad) = f(n) = 280+366=646 g(n)=280 and h(n) =366

 f(Oradea)=f(n)=291+380=671(g(n)=291 and h(n)=380).

 f(Fagaras)=f(n)=239+176=415(g(n)=239 and h(n)=176).

 f(Rimnicu)=f(n)=220+193=413(g(n)=220 and h(n)=193).

 From these nodes we have to choose the least f(n) value, so
f(Rimnicu) is

Least among these nodes. f(Rimnicu)=413

Figure After expanding Sibiu

Figure : After expanding Rimnicu Vilcea

mu
no
tes
.in

70

Artificial Intelligence After exapanding Rimnicu

 After expanding Rimnicu node we have three nodes i.e Craiova,
Pitesti and Sibiu.

 f(n0 = g(n) + h(n)

 f(Craiova)=f(n)=366+160=526(g(n)=366 and h(n)=160).

 f(Pitesti)=f(n)=317+100=417(g(n)=317 and h(n)=100).

 f(Sibiu)=f(n)=300+253=553(g(n)=300 and h(n)=253).

 From these three nodes we have to choose the least f(n) value, so
f(Fagaras)
is least among the nodes

Figure After expanding Fagaras

After Expanding Fagaras

 After expanding Fagaras node we have two nodes i.e Sibiu and
Bucharest.

 f(n) = g(n) + h(n)

 f(Sibiu)=f(n)=338+253=591(g(n)=338 and h(n)=253).

 f(Buchrest)=f(n)=450+0=450(g(n)=450 and h(n)=0).

 From these three nodes we have to choose the least f(n) value, so
f(Fagaras) is least among the nodes.

After expanding Pitesti

 After expanding Pitesti node we have three nodes i.e Bucharest,
Craiova and Rimnicu.

mu
no
tes
.in

71

Problem Solving by Searching f(n) = g(n) + h(n)

 f(Craiova)=f(n)=455+160=615(g(n)=455 and h(n)=160).

 f(Buchrest)=f(n)=418+0=418(g(n)=418 and h(n)=0).

 f(Rimnicu)=f(n)=414+193=607(g(n)=414 and h(n)=193).

Figure After expanding Pitesti

 From these three nodes we have to choose the least f(n) value, so
f(Bucharest)
is least among the nodes

 Since Bucharest is the goal node, so h(n)=0 at Bucharest.

Figure : Shortest path from Arad to Bucharest

mu
no
tes
.in

72

Artificial Intelligence 3.3.5 Memory Bounded Heuristic Search

3.3.5.1 Concept

 To reduce memory, we are using Iterative deepening to the heuristic
search.

 There are two memory bonded algorithm :
 1) RBFS – Recursive best first search

 2) MA* - Memory bounded A* and

 SMA* - Simplified memory MA*

1) RBFS : Recursive Best First Search

o It is same as BFS for mimic the various operations.

o It replaces the f-value of each node along the path with the best
f-value of its children.

o Suffers from using very little memory.

o Even more memory were available, but Recursive Best First
Search has no way to make use of it.

3.3.5.2 SMA* : Simplified Memory Bounded A*

o Proceeds life A* expands best leaf until memory is full.

o Cannot add new node without dropping an old one.

o Always ready to drop worst node.

o Expand the leaf which is best and delete the node which are worst
leaf.

o If all have same f-value then selection of same node for expansion as
well for deletion.

o SMA* is complete if we received the final solution.

3.3.6 Local Search Algorithm and Optimization Problems

3.3.6.1 Hill Climbing

Hill Climbing is a type of heuristic search used in the field of Artificial
Intelligence to solve mathematical optimization issues.

It seeks to discover a sufficiently good solution to the problem given a broad
number of inputs and a good heuristic function. It's possible that this isn't
the best option in the world.

 According to the definition above, mathematical optimization
problems are those in which we must maximise or minimise a given
real function by selecting values from provided inputs. For example,
consider the travelling salesman dilemma, in which we must reduce
the distance travelled by salespeople.

mu
no
tes
.in

73

Problem Solving by Searching The term "heuristic search" refers to the possibility that this search
method will not identify the best answer to the problem.

 A heuristic function is a function that ranks all viable alternatives in a
search algorithm at any branching step depending on the information
provided. It aids the algorithm in selecting the optimum route from a
list of options.

Features of Hill Climbing

1) Generate a possible solutions

2) Testing of expected solution.

3) If the solution found then quit

Else go to step 1.

a) Because it incorporates feedback from the test procedure, we refer to
Hill Climbing as a version of the produce and test algorithm. The
generator then uses this information to determine the next step in the
search process.

b) Employs the Greedy approach: At any point in state space, the search
moves only in the direction that optimises the cost of function, in the
hopes of eventually discovering the best answer.

Types of Hill Climbing

Simple Hill Climbing: It checks each surrounding node individually and
chooses the first neighbouring node that minimises the current cost as the
next node.

1. Algorithm for Simple Hill climbing :

 Step 1 : Evaluate the initial state. If it is a goal state then stop and
return success. Otherwise, make initial state as current state.

 Step 2 : Loop until the solution state is found or there are no new
operators present which can be applied to current state.

a) Select a state that has not been yet applied to the current state
and apply it to produce a new state.

b) Perform these to evaluate new state

i) If the current sate is a goal state, then stop and return
success.

ii) If it is better than current state, then make it current state
and proceed further.

iii) If it is not better than the current state, then continue in
the loop until a solution found.

Step 3 : Exit.

mu
no
tes
.in

74

Artificial Intelligence 2. Steepest-Ascension Hill Climbing: It checks all nearby nodes first,
then chooses the node that is closest to the solution state as the next
node.

 Step 1 : Evaluate the initial state. If it is goal state then exit else make
the current state as initial state

 Step 2 : Repeat these steps until a solution is found or current state
does not change

i. Let ‘target’ be a state such that any successor of the current state
will be better than it;

ii. for each operator that applies to the current state

a. apply the new operator and create a new state

b. evaluate the new state

c. if this state is goal state then quit else compare with
‘target’

d. if this state is better than ‘target’, set this state as ‘target’

e. if target is better than current state set current state to
Target

Step 3 : Exit

3. Stochastic hill climbing: It does not look at all of the nearby nodes
before determining which one to choose. It just chooses an adjacent
node at random and decides whether to go to that neighbour or inspect
another based on the level of progress in that neighbour.

 State Space Diagram for Hill Climbing

A space diagram depicts the collection of states that our search
method can reach in relation to the value of our objective function (the
function which we wish to maximize).

The X-axis represents the state space, or the possible states or
configurations that our algorithm could achieve.

The values of the goal function corresponding to a specific state are
represented on the Y-axis.

The best solution will be found in the state space with the highest
value of the objective function (global maximum).

mu
no
tes
.in

75

Problem Solving by Searching

Figure : Different regions in the State Space Diagram

1. Local maximum: A state that is better than its neighbouring state, yet
there is another state that is better (global maximum). This condition
is preferable since the objective function value is higher than that of
its neighbours.

2. Global maximum: In the state space diagram, this is the best possible
state. This is because the objective function has the maximum value
in this state.

3. Plateua/flat local maximum: This is a flat region of state space with
the same value for nearby states.

4. Ridge: A ridge is a place that is higher than its neighbours but has a
slope to it. It's a unique type of local maximum.

5. Current state: The area of the state space diagram in which we are
currently situated during the search.

6. Shoulder: It is a plateau that has an uphill edge.

Problems in different regions in Hill climbing

If hill climbing hits any of the following regions, it will be unable to attain
the optimal/best state (global maximum):

1. Local maximum: All adjacent states have values that are worse than
the current state at a local maximum. Because hill climbing has a
greedy attitude, it will not deteriorate and eventually end. Even if a
superior option exists, the process will come to an end.

 Use the backtracking approach to solve the local maximum problem.
Keep track of the states you've visited. If the search hits an
unfavourable point, it can revert to the original configuration and
choose a different route.

2. Plateau: All neighbours on a plateau have the same value. As a result,
choosing the ideal direction is impossible.

mu
no
tes
.in

76

Artificial Intelligence To overcome a plateau, take a major step forward. Choose a state that
is far distant from your current location at random. It's likely that we'll
land somewhere other than a plateau.

3. Ridge: Because movement is downhill in all directions, any point on
a ridge can appear to be a summit. As a result, the algorithm comes to
a halt when it reaches this point.

To overcome Ridge: Use two or more rules before testing in this type of
obstacle. It entails travelling in multiple directions at the same time.

3.3.6.2 Local Beam Search

Introduction

A heuristic strategy is a set of criteria for assessing which of several
alternatives will be most effective in reaching a specific goal. By giving up
claims of systematic and completeness of the best, this technique improves
the efficiency of a search process.

If we utilise proper heuristics, we can hope to solve complex tasks (such as
the travelling salesman problem) in less than exponent time.

Beam Search

Beam search is a heuristic search algorithm that investigates a graph by
extending the most promising node in a small set.

Beam search is a heuristic search approach that grows the W number of
optimal nodes at each level at all times. It travels downhill exclusively from
the best W nodes at each level as it develops level by level. Beam Search
constructs its search tree using breadth-first search. Beam Search uses
breadth-first search to build its search tree. At each level of the tree, it
generates all the successors of the current level's state. However, it only
assesses a W number of states at each level. Other nodes aren't taken into
consideration.

The best nodes are chosen based on the heuristic cost associated with each
node. W stands for the width of the beam search. If B is the branching factor,
there will always be W B nodes under evaluation at every depth, but only
W will be selected. When the beam width is shortened, more states are
clipped.

When W = 1, the search is transformed into a hill-climbing search, with the
best node always chosen from the successor nodes. If the beam width is
limitless, no states are pruned, and the beam search is identified as a
breadth-first search.

The beamwidth constrains the amount of memory required to finish the
search, but at the expense of completeness and optimality (possibly that it
will not find the best solution). This threat arises from the possibility that
the desirable state has been trimmed.

mu
no
tes
.in

77

Problem Solving by Searching Example: The following is the search tree generated by this algorithm with
W = 2 and B = 3:

The black nodes are selected based on their heuristic values for further
expansion.

Algorithm :

Input: Start & Goal States.

Local Variables: OPEN, NODE, SUCCS, W_OPEN, FOUND

Output: Yes or No (yes if the search is successfully done)

Start
Take the inputs

NODE = Root_Node & Found = False

If : Node is the Goal Node,

 Then Found = True,

Else :

 Find SUCCs of NODE if any, with its estimated cost&

 store it in OPEN List

While (Found == false & not able to proceed further), do

{

 Sort OPEN List

 Select top W elements from OPEN list and put it in

 W_OPEN list and empty the OPEN list.

 for each NODE from W_OPEN list

 {

mu
no
tes
.in

78

Artificial Intelligence if NODE = Goal,

 then FOUND = true

 else

 Find SUCCs of NODE. If any with its estimated

 cost & Store it in OPEN list

 }

}

If FOUND = True,

 then return Yes

else

 return No

Stop

SUMMARY

This chapter gives the details about introduction of problem solving , search,
importance of search in AI, Problem solving agent, steps in problem
solving, solutions to the problem solving with examples, Uninformed and
Informed Search strategies, difference between different search strategies
as well as the comparison with respective to their performance evaluation.

QUESTIONS

Q1) Give the importance of Search in AI

Q2) Explain in Detail Problem Solving Agent

Q3) Differentiate Between BFS and DFS

Q4) Differentiate Between Unidirectional and Bidirectional Search

Q5) Write a Note on BFs and Uniform Cost Search

Q6) What is Heuristic Function? Explain with it’s Characteristics

mu
no
tes
.in

79

4
LEARNING FROM EXAMPLES

Unit Structure :
4.0 Objectives

4.1 Introduction

4.2 Forms of Learning

4.3 Supervised Learning

4.4 Learning Decision Trees

4.5 Evaluating and Choosing the Best Hypothesis

4.6 Regression and Classification with Linear Models

 4.6.1 Univariate linear regression

 4.6.2 Multivariate linear regression

 4.6.3 Linear classification with logistic regression

4.7 Artificial Neural Networks

4.8 Nonparametric Models

4.9 Support Vector Machines

4.10 Ensemble Learning

4.11 Practical Machine Learning

Summary
List of References
Unit End Exercises

4.0 OBJECTIVES

• To understand the concept of learning through different models

• To get familiar with networks, models and the best fit selection
criteria for the model to get high performance

4.1 INTRODUCTION

After making observations about the outside environment, an agent learns
if doing so enhances its performance on subsequent tasks. Learning can be
simple, like writing down a phone number, or it can be profound, like when
Albert Einstein deduced a new theory of the cosmos. This chapter will focus
on one type of learning issue that appears to be limited but actually has a
wide range of applications: develop a function from a set of input-output
pairs that predicts the outcome for fresh inputs.

mu
no
tes
.in

80

Artificial Intelligence We need an agent to learn, but why? Why wouldn't the designers just
programme in that enhancement from the start if the agent's design can be
improved? The main causes are three. First of all, the designers are unable
to foresee every scenario that an agent can encounter. For instance, a tunnel
robot must memorize the layout of every new maze it meets. A programme
created to forecast stock market prices for tomorrow must learn to adjust as
conditions shift from a boom to a bust. This is because, second, the creators
cannot foresee every change throughout time. Lastly, occasionally human
programmers are unable to create a solution on their own. Even the best
programmers cannot create a computer to recognise the faces of family
members, for instance, unless they use learning algorithms. Most
individuals are skilled at this task.

4.2 FORMS OF LEARNING

Any component of an agent can be improved by learning from data. The
improvements, and the techniques used to make them, depend on four major
factors:

• Which component is to be improved

• What prior knowledge the agent already has.

• What representation is used for the data and the component.

• What feedback is available to learn from

Components to be learned

The elements here can all be learned. Think of an agent who is learning how
to drive a cab, for instance. The agent may pick up a condition-action rule
for when to brake (component 1) every time the instructor yells, but they
also pick it up every time the instructor doesn't. It can become familiar with
buses by viewing numerous camera photos that are said to contain buses
(2). It can discover the impact of its actions by attempting activities and
tracking the outcomes, such as applying heavy braking on a slick surface
(3). When passengers who have gone through a lot on the trip don't tip it, it
can then learn a helpful aspect of its total utility function (4)

Representation and prior knowledge

We can use a variety of representations for agent components, such as
propositional and first-order logical sentences for an agent's logical
components, Bayesian networks for an agent's inferential components, etc.
All of these representations have been given efficient learning methods.
This chapter discusses inputs that consist of a vector of attribute values that
have been factored and outputs that can either be continuous numerical
values or discrete values.

There is an alternative perspective on the many learning modalities.
Inductive learning is the process of inferring a general function or rule from
a set of specific input-output pairings. We can also learn analytically or

mu
no
tes
.in

81

Learning from Examples deductively, which involves moving from a general rule that is understood
to a new rule that is logically implied.

Feedback to learn from

The three primary types of learning are determined by three different sorts
of feedback:

Unsupervised learning allows the agent to pick up patterns in the input
without explicit feedback. The most typical unsupervised learning job is
clustering, which involves finding groups of input samples that may be
beneficial. For instance, a cab driver may gradually come to understand the
difference between "good traffic days" and "poor traffic days" without ever
receiving labelled instances of either from an instructor.

In reinforcement learning, the agent picks up new information from a
succession of rewards or penalties. For instance, the taxi driver knows
something went wrong when there is no tip left at the end of the trip. The
two points for a win at the conclusion of a game of chess indicate to the
agent that things went well. The agent must determine which of the earlier
activities was most accountable for it before the reinforcement.

In supervised learning, the agent watches a few real-world input-output
examples and picks up a function that converts input to output. In the
aforementioned component 1, the percepts are the inputs, while the teacher's
commands to "Brake!" or "Turn left" are the outputs. In component 2,
camera photos provide the inputs, and an instructor again provides the
outputs by stating, "That's a bus." The theory of braking is a function of
states, braking actions, and stopping distance in feet in section 3. In this
instance, the agent's perceptions can be used to determine the output value
directly (post-hoc); the environment serves as the instructor.

These distinctions are not always clear in practise. We are only provided a
small number of labelled examples in semi-supervised learning, and we
must make the best use of a sizable pool of unlabeled data. The oracular
truths we search for in the labels themselves may not even be true. Consider
developing a technique to determine a person's age from a photo. By taking
photographs of people and getting their ages, you can collect some labelled
instances. Supervised learning is that. Nonetheless, several of the
individuals actually lied about their age. The errors are systematic rather
than merely random noise in the data, and finding them requires solving an
unsupervised learning problem involving photos, self-reported ages, and
true (unknown) ages. Thus, both noise and lack of labels create a continuum
between supervised and unsupervised learning

4.3 SUPERVISED LEARNING

Supervised learning is a sort of machine learning in which the output is
predicted by the machines using well-labeled training data that has been
used to train the machines. The term "labelled data" refers to input data that
has already been assigned the appropriate output.

mu
no
tes
.in

82

Artificial Intelligence In supervised learning, the training data that is given to the computers serves
as the supervisor, instructing them on how to correctly predict the output. It
employs the same idea that a pupil would learn under a teacher's guidance.

The method of supervised learning involves giving the machine learning
model the right input data as well as the output data. Finding a mapping
function to link the input variable (x) with the output variable is the goal of
a supervised learning algorithm (y).

Supervised learning has applications in the real world, including risk
assessment, image categorization, fraud detection, spam filtering, etc.

Working of Supervised Learning?

Models are trained using labelled datasets in supervised learning, where the
model learns about various types of input. Following the completion of the
training phase, the model is evaluated using test data (a subset of the training
set), and it then makes output predictions.

The example and graphic following make it simple to understand how
supervised learning operates:

Let's say we have a dataset of various forms, such as squares, rectangles,
triangles, and polygons. The model must now be trained for each shape,
which is the first stage.

• The given shape will be referred to as a Square if it has four sides and
all of those sides are equal.

• A triangle will be designated as the provided shape if it has three sides.

• The given shape will be referred to be a hexagon if it has six equal
sides.

The model's job is to recognise the shape when put to the test using the test
set after training.

The computer has already educated on many forms, so when it encounters
a new shape, it categorises it based on a number of its sides and forecasts
the result.

mu
no
tes
.in

83

Learning from Examples Procedures for Supervised Learning:

• Identify the training dataset type first.

• Obtain the training data using labels.

• Create training, test, and validation datasets from the training dataset.

• Identify the training dataset's input features, which should have
sufficient details to enable reliable output prediction.

• Choose the best method for the model, such as a decision tree or a
support vector machine.

• Apply the algorithm to the practise data. Validation sets, a subset of
training datasets, are occasionally required as control parameters.

• Use the test set to determine the model's correctness. If the model
correctly predicts the outcome, then it is accurate.

Types of Supervised learning algorithms

Supervised learning can be further divided into two types of problems:

1. Regression

Regression algorithms are used if there is a relationship between the input
variable and the output variable. It is used for the prediction of continuous
variables, such as Weather forecasting, Market Trends, etc. Below are some
popular Regression algorithms which come under supervised learning:
o Linear Regression
o Regression Trees
o Non-Linear Regression
o Bayesian Linear Regression
o Polynomial Regression

2. Classification

Classification algorithms are used when the output variable is categorical,
which means there are two classes such as Yes-No, Male-Female, True-
false, etc.
o Random Forest
o Decision Trees
o Logistic Regression
o Support vector Machines

mu
no
tes
.in

84

Artificial Intelligence Advantages

• The model can forecast the outcome based on prior experiences with
the aid of supervised learning.

• With supervised learning, we can be certain of the object classes.

• We use the supervised learning model to address a variety of real-
world issues, including spam filtering and fraud detection.

Disadvantages

• Models of supervised learning are inadequate for dealing with
difficult tasks.

• If the test data and the training dataset are not the same, supervised
learning cannot predict the right result.

• It took a long time to compute throughout training.

• In supervised learning, we require sufficient information of the object
class.

4.4 LEARNING DECISION TREES

A supervised learning method called a decision tree can be used to solve
classification and regression problems, but it is typically favored for doing
so. It is a tree-structured classifier, where internal nodes stand in for a
dataset's features, branches for the decision-making process, and each leaf
node for the classification result. The Decision Node and Leaf Node are the
two nodes of a decision tree. Whereas Leaf nodes are the results of decisions
and do not have any more branches, Decision nodes are used to create
decisions and have numerous branches. The given dataset's features are
used to execute the test or make the decisions. The given dataset's features
are used to execute the test or make the decisions. It is a graphical depiction
for obtaining all feasible answers to a choice or problem based on
predetermined conditions. It is known as a decision tree because, like a tree,
it begins with the root node and grows on subsequent branches to form a
structure resembling a tree. The CART algorithm, which stands for
Classification and Regression Tree algorithm, is used to construct a tree. A
decision tree simply asks a question, then based on the answer (Yes/No), it
further split the tree into subtrees. The decision tree's general structure is
shown in the diagram below:

mu
no
tes
.in

85

Learning from Examples

Decision Tree Terminologies:

• Root Node: Root node is from where the decision tree starts. It
represents the entire dataset, which further gets divided into two or
more homogeneous sets.

• Leaf Node: Leaf nodes are the final output node, and the tree cannot
be segregated further after getting a leaf node.

• Splitting: Splitting is the process of dividing the decision node/root
node into sub-nodes according to the given conditions.

• Branch/Sub Tree: A tree formed by splitting the tree.

• Pruning: Pruning is the process of removing the unwanted branches
from the tree.

• Parent/Child node: The root node of the tree is called the parent node,
and other nodes are called the child nodes.

Working of an algorithm:

In a decision tree, the algorithm begins at the root node and works its way
up to forecast the class of the given dataset. This algorithm follows the
branch and jumps to the following node by comparing the values of the root
attribute with those of the record (real dataset) attribute.

The algorithm verifies the attribute value with the other sub-nodes once
again for the following node before continuing. It keeps doing this until it
reaches the tree's leaf node. The following algorithm can help you
comprehend the entire procedure:

o Step-1: Begin the tree with the root node, says S, which contains the
complete dataset.

o Step-2: Find the best attribute in the dataset using Attribute Selection
Measure (ASM).

mu
no
tes
.in

86

Artificial Intelligence o Step-3: Divide the S into subsets that contains possible values for the
best attributes.

o Step-4: Generate the decision tree node, which contains the best
attribute.

o Step-5: Recursively make new decision trees using the subsets of the
dataset created in step -3. Continue this process until a stage is reached
where you cannot further classify the nodes and called the final node
as a leaf node.

4.5 EVALUATING AND CHOOSING THE BEST
HYPOTHESIS

We want to select the learning algorithm that best fits the common dataset
when we train a model because there are many learning algorithms that may
be employed to do so (training and testing dataset).

We contrast various learning algorithms in an effort to identify the optimal
one. We'll look at various factors that we must consider while comparing
learning algorithms.

Why use statistical techniques to assess learning algorithms?

K-fold cross-validation is a popular method for calculating the mean
performance of machine learning models.

The algorithm that performs the best on average ought to outperform those
that perform the worst. But what if a statistical anomaly caused the
difference in average performance?

A statistical hypothesis test is used to examine whether the difference in
mean performance between any two algorithms is real or not.

Learning algorithms comparison:

We are interested in finding out which learning algorithm, on average, is
the most effective at teaching a given target function f. Across all the
training sets of size n that were chosen from the instance distribution D,
average the performance of these two techniques.

We use this formula to estimate the expected value of the difference
in the errors.

 (1)

Where L(S) signifies the hypothesis generated by learning technique
L given a sample of training data of size S.

When comparing learning algorithms, we only have a small sample
Do of data to work with.

mu
no
tes
.in

87

Learning from Examples Do can be divided into two sets: a training set So and a disjoint
test set To. The test data can be used to assess the accuracy of the
two hypotheses, while the training data can be used to train both LA
and LB (the learning algorithms).

 (2)

There are two major distinctions between this estimator and the
quantity in Equation (1):

• To begin, we’ll use error(h) to approximate error D(h).

• Second, rather than considering the anticipated value of this
difference overall samples S chosen from the distribution D, we just
measure the difference in errors for one training set S0.

To make the estimator in Equation better (2)

• split the data on a regular basis and take the mean of the test set errors
for these individual studies and divide them into disjoint training and
test sets.

The δ quantity returned by the procedure of Table can be taken as
an estimate of the desired quantity from Equation 1. More
appropriately, we can view δ as an estimate of the quantity.

 (3)

Where S represents a random sample of size ((k-1)/k)*|D0| drawn
uniformly from D0.

mu
no
tes
.in

88

Artificial Intelligence The approximate N% confidence interval for estimating the quantity
in Equation 3 using δ is given by

 (4)

Where tN, k-1 is a constant that plays a role analogous to that of Zn in

our earlier confidence interval expressions, and where is an
estimate of the standard deviation of the distribution governing δ. In

particular, is defined as

 (5)

Notice the constant tN,k-1 in equation (4) has two subscripts. The first
one specifies the desired confidence level, as it did for our earlier
constant zN.

The second parameter called the number of degrees of freedom and
usually denoted by v, is related to the number of independent random

events that go into producing the value for the random variable .

4.6 REGRESSION AND CLASSIFICATION WITH
LINEAR MODELS

4.6.1 Univariate linear regression

Univariate (or single-variable) linear regression refers to a linear regression
model where we use only one independent variable x to learn
a linear function that maps x to our dependent variable y:

In the preceding equation, we have the following:

• yi represents the dependent variable for the ith observation

• xi represents the single independent variable for the ith observation

• εi represents the error term for the ith observation

• β0 is the intercept coefficient

• β1 is the regression coefficient for the single independent variable

4.6.2 Multivariate linear regression

This is quite similar to the simple linear regression model we have discussed
previously, but with multiple independent variables contributing to the
dependent variable and hence multiple coefficients to determine and

mu
no
tes
.in

89

Learning from Examples complex computation due to the added variables. Jumping straight into the
equation of multivariate linear regression,

where we have m data points in training data and y is the observed data of
dependent variable. As per the formulation of the equation or the cost
function, it is pretty straight forward generalization of simple linear
regression. But computing the parameters is the matter of interest here.

4.6.3 Linear classification with logistic regression

Logistic regression is a supervised learning classification algorithm used to
predict the probability of a target variable. The nature of target or dependent
variable is dichotomous, which means there would be only two possible
classes.

In simple words, the dependent variable is binary in nature having data
coded as either 1 (stands for success/yes) or 0 (stands for failure/no).

Mathematically, a logistic regression model predicts P(Y=1) as a function
of X. It is one of the simplest ML algorithms that can be used for various
classification problems such as spam detection, Diabetes prediction, cancer
detection etc.

Binary Logistic Regression model

The simplest form of logistic regression is binary or binomial logistic
regression in which the target or dependent variable can have only 2
possible types either 1 or 0. It allows us to model a relationship between
multiple predictor variables and a binary/binomial target variable. In case
of logistic regression, the linear function is basically used as an input to
another function such as 𝑔 in the following relation −

Here, 𝑔 is the logistic or sigmoid function which can be given as follows –

To sigmoid curve can be represented with the help of following graph. We
can see the values of y-axis lie between 0 and 1 and crosses the axis at 0.5.

mu
no
tes
.in

90

Artificial Intelligence

The classes can be divided into positive or negative. The output comes
under the probability of positive class if it lies between 0 and 1. For our
implementation, we are interpreting the output of hypothesis function as
positive if it is ≥0.5, otherwise negative.

We also need to define a loss function to measure how well the algorithm
performs using the weights on functions, represented by theta as follows −

ℎ=𝑔(𝑋𝜃)

Now, after defining the loss function our prime goal is to minimize the loss
function. It can be done with the help of fitting the weights which means by
increasing or decreasing the weights. With the help of derivatives of the loss
function w.r.t each weight, we would be able to know what parameters
should have high weight and what should have smaller weight.

The following gradient descent equation tells us how loss would change if
we modified the parameters

Multinomial Logistic Regression Model

Another useful form of logistic regression is multinomial logistic regression
in which the target or dependent variable can have 3 or more possible
unordered types i.e. the types having no quantitative significance.

4.7 ARTIFICIAL NEURAL NETWORKS

The biological neural networks that shape the structure of the human brain
are where the phrase "artificial neural network" originates. Artificial neural
networks also feature neurons that are interconnected to one another in
different levels of the networks, much like the human brain, which has
neurons that are interconnected to one another. Nodes are the name for these
neurons.

mu
no
tes
.in

91

Learning from Examples

The given figure illustrates the typical diagram of Biological Neural
Network.

The typical Artificial Neural Network looks something like the given figure.

Dendrites from Biological Neural Network represent inputs in Artificial
Neural Networks, cell nucleus represents Nodes, synapse represents
Weights, and Axon represents Output.

Relationship between Biological neural network and artificial neural
network:

Biological Neural Network Artificial Neural Network

Dendrites Inputs

Cell nucleus Nodes

Synapse Weights

Axon Output

An Artificial Neural Network (ANN) in the field of Artificial
intelligence where it attempts to mimic the network of neurons makes up a
human brain so that computers will have an option to understand things and
make decisions in a human-like manner. The artificial neural network is

mu
no
tes
.in

92

Artificial Intelligence designed by programming computers to behave simply like interconnected
brain cells.

There are around 1000 billion neurons in the human brain. Each neuron has
an association point somewhere in the range of 1,000 and 100,000. In the
human brain, data is stored in such a manner as to be distributed, and we
can extract more than one piece of this data, when necessary, from our
memory parallelly. We can say that the human brain is made up of
incredibly amazing parallel processors.

We can understand the artificial neural network with an example, consider
an example of a digital logic gate that takes an input and gives an output.
"OR" gate, which takes two inputs. If one or both the inputs are "On," then
we get "On" in output. If both the inputs are "Off," then we get "Off" in
output. Here the output depends upon input. Our brain does not perform the
same task. The outputs to inputs relationship keep changing because of the
neurons in our brain, which are "learning."

Architecture of ANN

Understanding the components of a neural network is necessary to
comprehend the idea of the architecture of an artificial neural network. A
vast number of artificial neurons, also known as units, are placed in a
hierarchy of layers to form what is known as a neural network. Let's
examine the many layers that can be found in an artificial neural network.

Artificial Neural Network primarily consists of three layers:

Input Layer:

As the name suggests, it accepts inputs in several different formats provided
by the programmer.

Hidden Layer:

The hidden layer presents in-between input and output layers. It performs
all the calculations to find hidden features and patterns.

mu
no
tes
.in

93

Learning from Examples Output Layer:

The input goes through a series of transformations using the hidden layer,
which finally results in output that is conveyed using this layer.

The artificial neural network takes input and computes the weighted sum of
the inputs and includes a bias. This computation is represented in the form
of a transfer function.

It determines weighted total is passed as an input to an activation function
to produce the output. Activation functions choose whether a node should
fire or not. Only those who are fired make it to the output layer. There are
distinctive activation functions available that can be applied upon the sort
of task we are performing.

Advantages

1] Processing in parallel capability: Artificial neural networks have a
numerical value that allows them to carry out multiple tasks at once.

2] Archiving data over the network: Traditional programming does not
employ a database; instead, it stores data on the entire network. The
network continues to function even if some data disappears from one
location temporarily.

3] Ability to work with limited information: After ANN training, the
data may still produce output even with insufficient data. The
relevance of the missing data in this situation is what causes the
performance loss.

4] Having a spread of memories: Determining the instances and
motivating the network in accordance with the intended output by
showing it these examples is crucial for ANN to be able to adapt. The
network's output can be false if the event can't be represented by the
network in all of its characteristics because the network's succession
is directly proportional to the selected occurrences.

5] Fault-tolerant attitude: The network is fault-tolerant since
expropriation of one or more ANN cells does not prevent the network
from producing output.

Disadvantages

1] Guarantee of appropriate network architecture: The construction of
artificial neural networks is not determined by any specific rules. With
experience, trial, and error, the right network structure is achieved.

mu
no
tes
.in

94

Artificial Intelligence 2] Unrecognized network behavior: That is the most important ANN
issue. When an ANN generates a testing solution, it doesn't explain
why or how. It erodes network confidence.

3] Hardware reliance: According to their structure, artificial neural
networks require processors with parallel processing power. As a
result, the equipment's realization is dependent.

4] Have trouble getting the network to see the problem: ANNs can
process data that is numerical. Before using ANN, problems must be
transformed into numerical values. The network's performance will
be directly impacted by the presentation mechanism that must be
decided here. It is dependent on the user's skills.

5] Unknown is the network's lifespan: The network is reduced to a
particular error value, and this error value does not produce the best
outcomes for us.

4.8 NONPARAMETRIC MODELS

The underlying premise of non-parametric models is that the data
distribution cannot be described in terms of such a small number of
parameters. However, by assuming an endless dimensional space θ, they are
frequently defined. Typically, we consider θ to be a function.

Nonparametric machine learning algorithms are those that do not make any
firm assumptions about the shape of the mapping function. They are
allowed to learn any functional form from the training data because they are
not making any assumptions.

Although keeping some ability to generalize to untried data, nonparametric
approaches aim to develop the mapping function that best fits the training
data. They can therefore fit a variety of practical forms.

The k-nearest neighbours approach, which generates predictions based on
the k most comparable training patterns for a new data instance, is a simple
nonparametric model. The method does not assume anything about the form
of the mapping function other than patterns that are close are likely to have
a similar output variable.

Some more examples of popular nonparametric machine learning
algorithms are:

• k-Nearest Neighbors

• Decision Trees like CART and C4.5

• Support Vector Machines

Advantages

• Flexibility: Able to accommodate a wide range of useful shapes.

mu
no
tes
.in

95

Learning from Examples • Power: The underlying function is not assumed (or is assumed only
loosely).

• Performance: May lead to prediction models with higher
performance.

Limitations

• Increased data: The mapping function estimation process calls for a
large amount more training data.

• Slower: Training takes a lot longer because there are frequently more
parameters to train.

• Overfitting: There is a greater chance of overfitting the training set,
and it is more difficult to justify why certain predictions are made.

4.9 SUPPORT VECTOR MACHINES

One of the most well-liked supervised learning algorithms, Support Vector
Machine, or SVM, is used to solve Classification and Regression problems.
However, it is largely employed in Machine Learning Classification issues.

The SVM algorithm's objective is to establish the best line or decision
boundary that can divide n-dimensional space into classes, allowing us to
quickly classify fresh data points in the future. A hyperplane is the name
given to this optimal decision boundary.

SVM selects the extreme vectors and points that aid in the creation of the
hyperplane. Support vectors, which are used to represent these extreme
instances, form the basis for the SVM method. Consider the below diagram
in which there are two different categories that are classified using a
decision boundary or hyperplane:

Example: The example we used for the KNN classifier can be utilized to
understand SVM. If we want a model that can correctly distinguish between
a cat and a dog, let's say we observe an unusual cat that also resembles a

mu
no
tes
.in

96

Artificial Intelligence dog. We can build such a model by utilizing the SVM algorithm. Prior to
testing it with this weird animal, we will first train our model with several
photographs of cats and dogs so that it can become familiar with the various
attributes of cats and dogs. As a result, the extreme cases of cats and dogs
will be seen by the support vector when it draws a judgement border
between these two sets of data (cat and dog). On the basis of the support
vectors, it will classify it as a cat. Consider the below diagram:

SVM algorithm can be used for Face detection, image classification, text
categorization, etc.

Types of SVM: SVM are categorized into following two types-

• Linear SVM: Linear SVM is used for data that can be divided into
two classes using a single straight line. This type of data is called
linearly separable data, and the classifier employed is known as a
Linear SVM classifier.

• Non-linear SVM: Non-Linear SVM is used for non-linearly separated
data. If a dataset cannot be classified using a straight line, it is
considered non-linear data, and the classifier employed is referred to
as a Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

Hyperplane:

In n-dimensional space, there may be several lines or decision boundaries
used to divide classes; however, the optimal decision boundary for
classifying the data points must be identified. The hyperplane of SVM is a
name for this optimal boundary.

The dataset's features determine the hyperplane's dimensions, therefore if
there are just two features (as in the example image), the hyperplane will be
a straight line. Moreover, if there are three features, the hyperplane will only
have two dimensions.

We always build a hyperplane with a maximum margin, or the greatest
possible separation between the data points.

mu
no
tes
.in

97

Learning from Examples Support Vectors:

Support vectors are the data points or vectors that are closest to the
hyperplane and have the greatest influence on where the hyperplane is
located. These vectors are called support vectors because they support the
hyperplane.

Working of SVM:

1] Linear SVM

By presenting an example, the SVM algorithm's operation can be better
understood. Consider a dataset with two tags (green and blue), two features
(x1 and x2), and two tags. We need a classifier that can identify whether the
pair of coordinates (x1, x2) is blue or green. Consider the image below:

So, as it is 2-d space so by just using a straight line, we can easily separate
these two classes. But there can be multiple lines that can separate these
classes. Consider the below image:

Hence, the SVM algorithm helps to find the best line or decision boundary;
this best boundary or region is called as a hyperplane. SVM algorithm finds
the closest point of the lines from both the classes. These points are called
support vectors. The distance between the vectors and the hyperplane is
called as margin. And the goal of SVM is to maximize this margin.
The hyperplane with maximum margin is called the optimal hyperplane.

mu
no
tes
.in

98

Artificial Intelligence

2] Non-Linear SVM

If data is linearly arranged, then we can separate it by using a straight line,
but for non-linear data, we annot draw a single straight line. Consider the
below image:

So to separate these data points, we need to add one more dimension. For
linear data, we have used two dimensions x and y, so for non-linear data,
we will add a third dimension z. It can be calculated as:

z=x2 +y2

By adding the third dimension, the sample space will become as below
image:

mu
no
tes
.in

99

Learning from Examples So now, SVM will divide the datasets into classes in the following way.
Consider the below image:

Since we are in 3-d Space, hence it is looking like a plane parallel to the x-
axis. If we convert it in 2d space with z=1, then it will become as:

Hence, we get a circumference of radius 1 in case of non-linear data.

4.10 ENSEMBLE LEARNING

A machine learning technique called ensemble techniques combines
multiple base models to create a single, ideal predictive model. By mixing
numerous models rather than relying just on one, ensemble approaches seek
to increase the accuracy of findings in models. The integrated models
considerably improve the results' accuracy. Due of this, ensemble
approaches in machine learning have gained prominence.

mu
no
tes
.in

100

Artificial Intelligence Categories of ensemble methods

Sequential ensemble techniques and parallel ensemble techniques are the
two main categories into which ensemble methods belong. Base learners are
produced via sequential ensemble approaches, such as adaptive boosting
(AdaBoost). The dependency between the base learners is encouraged by
their consecutive generation. The model's performance is then enhanced by
giving previously misrepresented learners more weight.

Base learners are created in a parallel fashion, such as random forest, in
parallel ensemble approaches. To promote independence among the basis
learners, parallel techniques make use of parallel generations of base
learners. The mistake resulting from the use of averages is greatly decreased
by the independence of base learners.

The majority of ensemble techniques only use one algorithm for base
learning, which makes all base learners homogeneous. Base learners who
have comparable traits and are of the same type are referred to as
homogenous base learners. Some approaches create heterogeneous
ensembles by using heterogeneous base learners. Many sorts of learners
make up heterogeneous base learners.

Main types of ensemble methods

1] Bagging : Bootstrap aggregating is commonly used in classification
and regression, and also known as bagging. Using decision trees, it
improves the models' accuracy, greatly reducing variation. Many
prediction models struggle with overfitting, which is eliminated by
reducing variation and improving accuracy.

 Bootstrapping and aggregation are the two categories under which
bagging is categorized. Bootstrapping is a sampling strategy where
samples are taken utilizing the replacement procedure from the entire
population (set). The sampling with replacement method aids in the
randomization of the selection process. The process is finished by
applying the base learning algorithm to the samples.

 In bagging, aggregation is used to include all potential outcomes of
the prediction and randomize the result. Predictions made without
aggregation won't be accurate because all possible outcomes won't be
taken into account. As a result, the aggregate is based either on all of
the results from the predictive models or on the probability
bootstrapping techniques.

 Bagging is useful because it creates a single strong learner that is more
stable than individual weak base learners. Moreover, it gets rid of any
variance, which lessens overfitting in models. The computational cost
of bagging is one of its drawbacks. Hence, ignoring the correct
bagging technique can result in higher bias in models.

2] Boosting: Boosting is an ensemble strategy that improves future
predictions by learning from previous predictor errors. The method

mu
no
tes
.in

101

Learning from Examples greatly increases model predictability by combining numerous weak
base learners into one strong learner. Boosting works by placing weak
learners in a sequential order so that they can learn from the
subsequent learner to improve their predictive models.

 There are many different types of boosting, such as gradient boosting,
Adaptive Boosting (AdaBoost), and XGBoost (Extreme Gradient
Boosting). AdaBoost employs weak learners in the form of decision
trees, the majority of which include a single split known as a decision
stump. The primary decision stump in AdaBoost consists of
observations with equal weights.

 Gradient boosting increases the ensemble's predictors in a progressive
manner, allowing earlier forecasters to correct later ones, improving
the model's accuracy. To offset the consequences of errors in the
earlier models, new predictors are fitted. The gradient booster can
identify and address issues with learners' predictions thanks to the
gradient of descent.

 Decision trees with boosted gradients are used in XGBoost, which
offers faster performance. It largely depends on the goal model's
efficiency and effectiveness in terms of computing. Gradient boosted
machines must be implemented slowly since model training must
proceed sequentially.

3] Stacking: Another ensemble method called stacking is sometimes
known as layered generalization. This method works by allowing a
training algorithm to combine the predictions of numerous different
learning algorithms that are similar. Regression, density estimations,
distance learning, and classifications have all effectively used
stacking. It can also be used to gauge the amount of inaccuracy that
occurs when bagging.

4.11 PRACTICAL MACHINE LEARNING

We look at two features of real-world machine learning in this section.
Finding algorithms that can recognize handwritten digits and extracting
every last bit of predicted performance from them constitutes the first step.
The second includes anything but, namely highlighting that data collection,
cleansing, and representation might be at least as crucial as algorithm design

1] Case study: Handwritten digit recognition

With numerous applications, such as automatic mail sorting by postal code,
automated reading of cheques and tax returns, and data entry for handheld
computers, reading handwritten digits poses a significant challenge. The
field has advanced quickly, in part because to improved learning algorithms
and in part due to the accessibility of richer training sets. The National
Institute of Science and Technology (NIST) of the United States has
preserved a database of 60,000 labelled numbers, each measuring 20 by 20
pixels (or 400 pixels) and having 8-bit grayscale values. It is now considered

mu
no
tes
.in

102

Artificial Intelligence to be one of the common benchmark issues for contrasting new learning
algorithms. Following figure displays a few sample digits.

There have been many different learning strategies tested. The 3-nearest-
neighbor classifier is one of the first and most likely the simplest. It also has
the benefit of requiring no training time. Nevertheless, because it is a
memory-based technique, it has a poor run-time performance and must keep
all 60,000 photos. A test error rate of 2.4% was attained.

For this issue, a single-hidden-layer neural network with 400 input units
(one per pixel) and 10 output units was created (one per class). It was
discovered through cross-validation that about 300 concealed units
performed the best. There were 123,300 weights in total with full linkages
between levels. A 1.6% error rate was attained by this network.

A series of specialized neural networks called LeNet were devised to take
advantage of the structure of the problem—that the input consists of pixels
in a two–dimensional array, and that small changes in the position or slant
of an image are unimportant. Each network had an input layer of 32 × 32
units, onto which the 20 × 20 pixels were centered so that each input unit is
presented with a local neighborhood of pixels. This was followed by three
layers of hidden units. Each layer consisted of several planes of n × n arrays,
where n is smaller than the previous layer so that the network is down-
sampling the input, and where the weights of every unit in a plane are
constrained to be identical, so that the plane is acting as a feature detector:
it can pick out a feature such as a long vertical line or a short semi-circular
arc. The output layer had 10 units. Many versions of this architecture were
tried; a representative one had hidden layers with 768, 192, and 30 units,
respectively. The training set was augmented by applying affine
transformations to the actual inputs: shifting, slightly rotating, and scaling
the images. (Of course, the transformations have to be small, or else a 6 will
be transformed into a 9!) The best error rate achieved by LeNet was 0.9%.

A boosted neural network comprised three copies of the LeNet architecture,
the third of which was trained on patterns for which the first two disagreed
and the second of which was trained on a mixture of patterns that the first
one got 50% wrong. The three nets followed the majority decision while
testing. The rate of test mistake was 0.7%.

1.1% error rate was attained using a support vector machine with 25,000
support vectors. It is notable that despite requiring essentially no thought or
iterated experimentation on the side of the developer, the SVM strategy,
like the straightforward nearest neighbour approach, was nevertheless able
to match the performance of LeNet, which had undergone years of research.

mu
no
tes
.in

103

Learning from Examples A virtual support vector machine starts with a regular SVM and then
improves it with a technique that is designed to take advantage of the
structure of the problem. Instead of allowing products of all pixel pairs, this
approach concentrates on kernels formed from pairs of nearby pixels. It also
augments the training set with transformations of the examples, just as
LeNet did. A virtual SVM achieved the best error rate recorded to date,
0.56%. Shape matching is a technique from computer vision used to align
corresponding parts of two different images of objects (Belongie et al.,
2002). The idea is to pick out a set of points in each of the two images, and
then compute, for each point in the first image, which point in the second
image it corresponds to. From this alignment, we then compute a
transformation between the images. The transformation gives us a measure
of the distance between the images. This distance measure is better
motivated than just counting the number of differing pixels, and it turns out
that a 3–nearest neighbor algorithm using this distance measure performs
very well. Training on only 20,000 of the 60,000 digits, and using 100
sample points per image extracted from a Canny edge detector, a shape
matching classifier achieved 0.63% test error.

On this issue, it is predicted that human error rates will be around 0.2%.
Because humans have not been subjected to as many tests as machine
learning algorithms, this statistic is somewhat shaky. Human errors
accounted for 2.5% of a similar data set of numbers from the USPS.

The error rates, run-time efficiency, memory needs, and training time for
the seven algorithms we've covered are all summarized in the following
graph. It also introduces a new metric, the proportion of rejected digits
needed to achieve a 0.5% error rate. For example, if the SVM is allowed to
reject 1.8% of the inputs that is, pass them on for someone else to make the
final judgment then its error rate on the remaining 98.2% of the inputs is
reduced from 1.1% to 0.5%. The following table summarizes the error rate
and some of the other characteristics of the techniques we have discussed

2] Case study: Word senses and house prices

To convey our concepts in a book, we must work with basic, toy data a
small data set, typically in two dimensions. Yet, the data set is typically big,
complex, and chaotic in machine learning applications that are used in the
real world. The analyst must go out and gather the proper data; it is not
provided to him or her as a readymade set of (x, y) values. There is a task
that needs to be completed, and the majority of the technical challenge is
determining which data are required to complete the goal; a minor portion
is selecting and putting into practice the best machine learning technique to

mu
no
tes
.in

104

Artificial Intelligence process the data. Following figure shows a typical real-world example,
comparing five learning algorithms on the task of word-sense classification
(given a sentence such as “The bank folded,” classify the word “bank” as
“money-bank” or “river-bank”).

It's important to note that machine learning researchers have primarily
concentrated on the vertical direction: Is it possible to create a new learning
algorithm that outperforms previously published algorithms on a typical
training set of 1 million words? The graph, however, demonstrates that there
is greater space for advancement in the horizontal direction: rather than
creating a new algorithm, all I need to do is collect 10 million training
words; even the worst algorithm at 10 million words performs better than
the best algorithm at 1 million. The curves continue to grow as we collect
more data, dwarfing the variations in techniques.

SUMMARY

The focus of this chapter has been on learning functions inductively from
examples. These were the main ideas:

• Depending on the agent's nature, the component that needs to be
improved, and the feedback that is provided, learning can take many
different forms.

• If the feedback at hand offers the right response for hypothetical
inputs, then the learning issue is referred to as supervised learning.
The assignment is to learn the y = h (x). Learning a continuous
function is known as regression, while learning a discrete-valued
function is known as classification.

• Any Boolean functions can be represented using decision trees. The
information-gain heuristic offers a quick way to locate a
straightforward, reliable decision tree.

• The learning curve, which displays the prediction accuracy on the test
set as a function of the training-set size, is used to evaluate the
performance of a learning algorithm.

mu
no
tes
.in

105

Learning from Examples • One often used model is linear regression. A gradient descent search
can be used to find the ideal linear regression model parameters, or
they can be calculated precisely.

• The hard threshold of the perceptron is replaced by a soft threshold
determined by a logistic function in logistic regression. Even with
noisy data that are not linearly separable, gradient descent performs
well.

• Neural networks use a network of linear-threshold units to express
complex nonlinear functions.

• Instead, then attempting to initially summarize the data with a few
parameters, nonparametric models use all the data to make each
prediction.

• machines that support vectors locate linear separators with the highest
margin to enhance the classifier's generalization performance.

• Ensemble techniques, like boosting, frequently outperform
standalone techniques.

LIST OF REFERENCES

1. Artificial Intelligence: A Modern Approach, Stuart Russell and Peter
Norvig,3rd Edition, Pearson, 2010

2. Artificial Intelligence: Foundations of Computational Agents, David
L Poole, Alan K. Mackworth, 2nd Edition, Cambridge University
Press ,2017

3. Artificial Intelligence, Kevin Knight and Elaine Rich, 3rd Edition,
2017

4. The Elements of Statistical Learning, Trevor Hastie, Robert
Tibshirani and Jerome Friedman, Springer, 2013

UNIT END EXERCISES

1] Explain the forms of Learning.

2] What is Supervised Learning?

3] Describe the concept of Learning Decision Trees.

4] How will you evaluate and choose the best hypothesis.

5] Explain Regression and Classification with Linear Models.

6] Describe Artificial Neural Networks.

7] Write a note on Nonparametric Models.

8] Explain Support Vector Machines.

9] Describe Ensemble Learning.

10] Illustrate the case studies of practical Machine Learning.

mu
no
tes
.in

106

Artificial Intelligence 5
LEARNING PROBABILISTIC MODELS

Unit Structure :
5.0 Objectives:

5.1 Introduction

5.2 Learning with Complete Data

 5.2.1. Maximum-likelihood parameter learning: Discrete models

 5.2.3. Naive Bayes models

 5.2.4. Maximum-likelihood parameter learning: Continuous models

 5.2.5. Bayesian parameter learning

 5.2.6. Learning Bayes net structures

 5.2.7. Density estimation with nonparametric models

5.3 Learning with Hidden Variables: The EM Algorithm.

 5.3.1. Unsupervised clustering: Learning mixtures of Gaussians

 5.3.2. Learning Bayesian networks with hidden variables

 5.3.3. Learning hidden Markov models

5.4 The general form of the EM algorithm

5.0 OBJECTIVES

A learner will about:

• the probability theory used for handling uncertainties

• the concepts like bayes theorem and other probability methods

• supervised and unsupervised learning

• some advanced algorithms like EM with Bayesian approach

5.1 INTRODUCTION

Agents can handle uncertainty by using the methods of probability and
decision theory, but first they must learn their probabilistic theories of the
world from experience. This chapter explains how they can do that, by
formulating the learning task itself as a process of probabilistic inference.
We will see that a Bayesian view of learning is extremely powerful,
providing general solutions to the problems of noise, overfitting, and
optimal prediction. It also takes into account the fact that a less-than-
omniscient agent can never be certain about which theory of the world is
correct, yet must still make decisions by using some theory of the world.

mu
no
tes
.in

107

Learning probabilistic models Here, the data are evidence—that is, instantiations of some or all of the
random variables describing the domain. The hypotheses in this chapter are
probabilistic theories of how the domain works, including logical theories
as a special case. Consider a simple example. Our favorite Surprise candy
comes in two flavors: cherry (yum) and lime (ugh). The manufacturer has a
peculiar sense of humor and wraps each piece of candy in the same opaque
wrapper, regardless of flavor. The candy is sold in very large bags, of which
there are known to be five kinds—again, indistinguishable from the outside:

h1: 100% cherry,

h2: 75% cherry + 25% lime,

h3: 50% cherry + 50% lime,

h4: 25% cherry + 75% lime,

h5: 100% lime .

Given a new bag of candy, the random variable H (for hypothesis) denotes
the type of the bag, with possible values h1 through h5. H is not directly
observable, of course. As the pieces of candy are opened and inspected, data
are revealed—D1, D2, ..., DN , where each Di is a random variable with
possible values cherry and lime. The basic task faced by the agent is to
predict the flavor of the next piece of candy.1 Despite its apparent triviality,
this scenario serves to introduce many of the major issues. The agent really
does need to infer a theory of its world, albeit a very simple one.

Bayesian learning simply calculates the probability of each hypothesis,
given the data, and makes predictions on that basis. That is, the predictions
are made by using all the hypotheses, weighted by their probabilities, rather
than by using just a single “best” hypothesis. In this way, learning is reduced
to probabilistic inference. Let D represent all the data, with observed value
d; then the probability of each hypothesis is obtained by Bayes’ rule:

P(hi | d) = αP(d | hi)P(hi) . (5.1)

Now, suppose we want to make a prediction about an unknown quantity
X. Then we have

 (5.2)

where we have assumed that each hypothesis determines a probability
distribution over X.

This equation shows that predictions are weighted averages over the
predictions of the individual hypotheses. The hypotheses themselves are
essentially “intermediaries” between the raw data and the predictions. The
key quantities in the Bayesian approach are the hypothesis prior, P(hi), and
the likelihood of the data under each hypothesis, P(d | hi). For our candy
example, we will assume for the time being that the prior distribution over
h1,...,h5 is given by 0.1, 0.2, 0.4, 0.2, 0.1, as advertised by the anufacturer.
The likelihood of the data is calculated under the assumption that the
observations are i.i.d.

mu
no
tes
.in

108

Artificial Intelligence

 (5.3)

For example, suppose the bag is really an all-lime bag (h5) and the first 10
candies are all lime; then P(d | h3) is 0.510, because half the candies in an
h3 bag are lime.2 Figure 5.1(a) shows how the posterior probabilities of the
five hypotheses change as the sequence of 10lime candies is observed.
Notice that the probabilities start out at their prior values, so h3 is initially
the most likely choice and remains so after 1 lime candy is unwrapped. After
2 lime candies are unwrapped, h4 is most likely; after 3 or more, h5 (the
dreaded all-lime bag) is the most likely. After 10 in a row, we are fairly
certain of our fate. Figure 5.1(b) shows the predicted probability that the
next candy is lime, based on Equation (5.2). As we would expect, it
increases monotonically toward 1.

Figure 5.1. (a) Posterior probabilities P(hi | d1,...,dN) from Equation
(20.1). The number of observations N ranges from 1 to 10, and each
observation is of a lime candy.

(b) Bayesian prediction P(dN+1 = lime | d1,...,dN)

The example shows that the Bayesian prediction eventually agrees with the
true hypothesis. This is characteristic of Bayesian learning. For any fixed
prior that does not rule out the true hypothesis, the posterior probability of
any false hypothesis will, under certain technical conditions, eventually
vanish. This happens simply because the probability of generating
“uncharacteristic” data indefinitely is vanishingly small. More important,
the Bayesian prediction is optimal, whether the data set be small or large.
Given the hypothesis prior, any other prediction is expected to be correct
less often.

A very common approximation—one that is usually adopted in science—is
to make predictions based on a single most probable hypothesis—that is, an
hi that maximizes P(hi | d). This is often called a maximum a posteriori or
MAP (pronounced “em-ay-pee”) hypothesis. Predictions made according to
an MAP hypothesis hMAP are approximately Bayesian to the extent that P(X
| d) ≈ P(X | hMAP). In our candy example, hMAP = h5 after three lime candies
in a row, so the MAP learner then predicts that the fourth candy is lime with
probability 1.0—a much more dangerous prediction than the Bayesian

mu
no
tes
.in

109

Learning probabilistic models prediction of 0.8 shown in Figure 5.1(b). As more data arrive, the MAP and
Bayesian predictions become closer, because the competitors to the MAP
hypothesis become less and less probable.

Although our example doesn’t show it, finding MAP hypotheses is often
much easier than Bayesian learning, because it requires solving an
optimization problem instead of a large summation (or integration)
problem. We will see examples of this later in the chapter.

In both Bayesian learning and MAP learning, the hypothesis prior P(hi)
plays an important role. We saw in pervious chapter that overfitting can
occur when the hypothesis space is too expressive, so that it contains many
hypotheses that fit the data set well. Rather than placing an arbitrary limit
on the hypotheses to be considered, Bayesian and MAP learning methods
use the prior to penalize complexity. Typically, more complex hypotheses
have a lower prior probability—in part because there are usually many more
complex hypotheses than simple hypotheses. On the other hand, more
complex hypotheses have a greater capacity to fit the data. (In the extreme
case, a lookup table can reproduce the data exactly with probability 1.)
Hence, the hypothesis prior embodies a tradeoff between the complexity of
a hypothesis and its degree of fit to the data.

We can see the effect of this tradeoff most clearly in the logical case, where
H contains only deterministic hypotheses. In that case, P(d | hi) is 1 if hi is
consistent and 0 otherwise. Looking at Equation , we see that hMAP will then
be the simplest logical theory that is consistent with the data. Therefore,
maximum a posteriori learning provides a natural embodiment of Ockham’s
razor. Another insight into the tradeoff between complexity and degree of
fit is obtained by taking the logarithm of Equation(5.1). Choosing hMAP to
maximize P(d | hi)P(hi) is equivalent to minimizing

− log2 P(d | hi) − log2 P(hi) .

Using the connection between information encoding and probability that we
introduced in Chapter, we see that the − log2 P(hi) term equals the number
of bits required to specify the hypothesis hi. Furthermore, − log2 P(d | hi) is
the additional number of bits required to specify the data, given the
hypothesis. (To see this, consider that no bits are required if the hypothesis
predicts the data exactly—as with h5 and the string of lime candies—and
log2 1=0.) Hence, MAP learning is choosing the hypothesis that provides
maximum compression of the data. The same task is addressed more
directly by the minimum description length, or MDL, learning method.
Whereas MAP learning expresses simplicity by assigning higher
probabilities to simpler hypotheses, MDL expresses it directly by counting
the bits in a binary encoding of the hypotheses and data.

A final simplification is provided by assuming a uniform prior over the
space of hypotheses. In that case, MAP learning reduces to choosing an hi
that maximizes P(d | hi).This is called a maximum-likelihood (ML)
hypothesis, hML. Maximum-likelihood learning is very common in
statistics, a discipline in which many researchers distrust the subjective
nature of hypothesis priors. It is a reasonable approach when there is no

mu
no
tes
.in

110

Artificial Intelligence reason to prefer one hypothesis over another a priori—for example, when
all hypotheses are equally complex. It provides a good approximation to
Bayesian and MAP learning when the data set is large, because the data
swamps the prior distribution over hypotheses, but it has problems (as we
shall see) with small data sets.

5.2 LEARNING WITH COMPLETE DATA

The general task of learning a probability model, given data that are
assumed to be generated from that model, is called density estimation. (The
term applied originally to probability density functions for continuous
variables, but is used now for discrete distributions too.) This section
covers the simplest case, where we have complete data. Data are complete
when each data point contains values for every variable in the probability
model being learned. We focus on parameter learning—finding the
numerical parameters for a probability model whose structure is fixed. For
example, we might be interested in learning the conditional probabilities in
a Bayesian network with a given structure. We will also look briefly at the
problem of learning structure and at nonparametric density estimation.

5.2.1. Maximum-likelihood parameter learning: Discrete models

Suppose we buy a bag of lime and cherry candy from a new manufacturer
whose lime–cherry proportions are completely unknown; the fraction could
be anywhere between 0 and 1. In that case, we have a continuum of
hypotheses. The parameter in this case, which we call θ, is the proportion
of cherry candies, and the hypothesis is hθ. (The proportion of limes is just
1 − θ.) If we assume that all proportions are equally likely a priori, then a
maximum likelihood approach is reasonable. If we model the situation with
a Bayesian network, we need just one random variable, Flavor (the flavor
of a randomly chosen candy from the bag). It has values cherry and lime,
where the probability of cherry is θ. Now suppose we unwrap N candies, of
which c are cherries and l = N − c are limes. According to Equation , the
likelihood of this particular data set is

The maximum-likelihood hypothesis is given by the value of θ that
maximizes this expression. The same value is obtained by maximizing the
log likelihood,

(By taking logarithms, we reduce the product to a sum over the data, which
is usually easier to maximize.) To find the maximum-likelihood value of θ,
we differentiate L with respect to θ and set the resulting expression to zero:

mu
no
tes
.in

111

Learning probabilistic models In English, then, the maximum-likelihood hypothesis hML asserts that the
actual proportion of cherries in the bag is equal to the observed proportion
in the candies unwrapped so far! It appears that we have done a lot of work
to discover the obvious. In fact, though, we have laid out one standard
method for maximum-likelihood parameter learning, a method with broad
applicability:

Figure 5.2. Bayesian network model for the case of candies with an
unknown proportion of cherries and limes. (b) Model for the case where the
wrapper color depends (probabilistically) on the candy flavor.

1. Write down an expression for the likelihood of the data as a function
of the parameter(s).

2. Write down the derivative of the log likelihood with respect to each
parameter.

3. Find the parameter values such that the derivatives are zero.

The trickiest step is usually the last. In our example, it was trivial, but we
will see that in many cases we need to resort to iterative solution algorithms
or other numerical optimization techniques, as described in Chapter. The
example also illustrates a significant problem with maximum-likelihood
learning in general: when the data set is small enough that some events have
not yet been observed—for instance, no cherry candies—the maximum-
likelihood hypothesis assigns zero probability to those events. Various
tricks are used to avoid this problem, such as initializing the counts for each
event to 1 instead of 0.

Let us look at another example. Suppose this new candy manufacturer wants
to give a little hint to the consumer and uses candy wrappers colored red
and green. The Wrapper for each candy is selected probabilistically,
according to some unknown conditional distribution, depending on the
flavor. The corresponding probability model is shown in Figure. Notice that
it has three parameters: θ, θ1, and θ2. With these parameters, the likelihood
of seeing, say, a cherry candy in a green wrapper can be obtained from the
standard semantics for Bayesian networks.

mu
no
tes
.in

112

Artificial Intelligence

Now we unwrap N candies, of which c are cherries and are limes. The
wrapper counts are as follows: rc of the cherries have red wrappers and gc
have green, while rl of the limes have red and gl have green. The likelihood
of the data is given by

This looks pretty horrible, but taking logarithms helps:

The benefit of taking logs is clear: the log likelihood is the sum of three
terms, each of which contains a single parameter. When we take derivatives
with respect to each parameter and set them to zero, we get three
independent equations, each containing just one parameter:

The solution for θ is the same as before. The solution for θ1, the probability
that a cherry candy has a red wrapper, is the observed fraction of cherry
candies with red wrappers, and similarly for θ2.

These results are very comforting, and it is easy to see that they can be
extended to any Bayesian network whose conditional probabilities are
represented as tables. The most important point is that, with complete data,
the maximum-likelihood parameter learning problem for a Bayesian
network decomposes into separate learning problems, one for each
parameter.

The second point is that the parameter values for a variable, given its
parents, are just the observed frequencies of the variable values for each
setting of the parent values. As before, we must be careful to avoid zeroes
when the data set is small.

5.2.3. Naive Bayes models

Probably the most common Bayesian network model used in machine
learning is the naive Bayes model first introduced on. In this model, the
“class” variable C (which is to be predicted) is the root and the “attribute”
variables Xi are the leaves. The model is “naive” because it assumes that
the attributes are conditionally independent of each other, given the class.
(The model in Figure is a naive Bayes model with class Flavor and just one
attribute, Wrapper.) Assuming Boolean variables, the parameters are

mu
no
tes
.in

113

Learning probabilistic models

The maximum-likelihood parameter values are found in exactly the same
way as for Figure. Once the model has been trained in this way, it can be
used to classify new examples for which the class variable C is unobserved.
With observed attribute values x1,...,xn, the probability of each class is given
by

A deterministic prediction can be obtained by choosing the most likely
class. Figure 5.3 shows the learning curve for this method when it is applied
to the restaurant problem. The method learns fairly well but not as well as
decision-tree learning; this is presumably because the true hypothesis—
which is a decision tree—is not representable exactly using a naive Bayes
model. Naive Bayes learning turns out to do surprisingly well in a wide
range of applications; the boosted version is one of the most effective

Figure 5.3: The learning curve for naive Bayes learning applied to the
restaurant problem; the learning curve for decision-tree learning is shown
for comparison. general-purpose learning algorithms. Naive Bayes learning
scales well to very large problems: with n Boolean attributes, there are just
2n + 1 parameters, and no search is required to find hML, the maximum-
likelihood naive Bayes hypothesis. Finally, naive Bayes learning systems
have no difficulty with noisy or missing data and can give probabilistic
predictions when appropriate.

5.2.4. Maximum-likelihood parameter learning: Continuous models

Continuous probability models such as the linear Gaussian model were
introduced in previous Section Because continuous variables are ubiquitous
in real-world applications, it is important to know how to learn the
parameters of continuous models from data. The principles for maximum-
likelihood learning are identical in the continuous and discrete cases. Let us
begin with a very simple case: learning the parameters of a Gaussian density
function on a single variable. That is, the data are generated as follows:

mu
no
tes
.in

114

Artificial Intelligence The parameters of this model are the mean μ and the standard deviation σ.
(Notice that the normalizing “constant” depends on σ, so we cannot ignore
it.) Let the observed values be x1,...,xN . Then the log likelihood is

Setting the derivatives to zero as usual, we obtain

 (5.4)

That is, the maximum-likelihood value of the mean is the sample average
and the maximum likelihood value of the standard deviation is the square
root of the sample variance. Again, these are comforting results that confirm
“commonsense” practice.

Figure 5.4.: (a) A linear Gaussian model described as y = θ1x + θ2 plus
Gaussian noise with fixed variance. (b)A set of 50 data points generated
from this model.

Now consider a linear Gaussian model with one continuous parent X and a
continuous child Y ., Y has a Gaussian distribution whose mean depends
linearly on the value of X and whose standard deviation is fixed. To learn
the conditional distribution P(Y | X), we can maximize the conditional
likelihood

 (5.5)

Here, the parameters are θ1, θ2, and σ. The data are a collection of (xj , yj)
pairs, as illustrated in Figure 5.4 Using the usual methods ,we can find the
maximum-likelihood values of the parameters. The point here is different.
If we consider just the parameters θ1 and θ2 that define the linear
relationship between x and y, it becomes clear that maximizing the log
likelihood with respect to these parameters is the same as minimizing the
numerator (y − (θ1x + θ2))2 in the exponent of Equation. This is the L2 loss,
the squared error between the actual value y and the prediction θ1x + θ2.

mu
no
tes
.in

115

Learning probabilistic models This is the quantity minimized by the standard linear regression procedure
described. Now we can understand why: minimizing the sum of squared
errors gives the maximum-likelihood straight-line model, provided that the
data are generated with Gaussian noise of fixed variance.

5.2.5. Bayesian parameter learning

Maximum-likelihood learning gives rise to some very simple procedures,
but it has some serious deficiencies with small data sets. For example, after
seeing one cherry candy, the maximum-likelihood hypothesis is that the bag
is 100% cherry (i.e., θ = 1.0). Unless one’s hypothesis prior is that bags
must be either all cherry or all lime, this is not a reasonable conclusion. It is
more likely that the bag is a mixture of lime and cherry. The Bayesian
approach to parameter learning starts by defining a prior probability
distribution over the possible hypotheses. We call this the hypothesis prior.
Then, as data arrives, the posterior probability distribution is updated.

Figure 5.5: Examples of the beta[a, b] distribution for different values of
[a, b]

The candy example in Figure (a) has one parameter, θ: the probability that
a randomly selected piece of candy is cherry-flavored. In the Bayesian view,
θ is the (unknown) value of a random variable Θ that defines the hypothesis
space; the hypothesis prior is just the prior distribution P(Θ). Thus, P(Θ =
θ) is the prior probability that the bag has a fraction θ of cherry candies. If
the parameter θ can be any value between 0 and 1, then P(Θ) must be a
continuous distribution that is nonzero only between 0 and 1 and that
integrates to 1. The uniform density P(θ) = Uniform[0, 1](θ) is one
candidate. It turns out that the uniform density is a member of the family of
beta distributions. Each beta distribution is defined by two
hyperparameters3 a and b such that

 (5.6)

for θ in the range [0, 1]. The normalization constant α, which makes the
distribution integrate to 1, depends on a and b. Figure shows what the
distribution looks like for various values of a and b. The mean value of the

mu
no
tes
.in

116

Artificial Intelligence distribution is a/(a + b), so larger values of a suggest a belief that Θ is closer
to 1 than to 0. Larger values of a + b make the distribution more peaked,
suggesting greater certainty about the value of Θ. Thus, the beta family
provides a useful range of possibilities for the hypothesis prior.

Besides its flexibility, the beta family has another wonderful property: if Θ
has a prior beta[a, b], then, after a data point is observed, the posterior
distribution for Θ is also a beta distribution. In other words, beta is closed
under update. The beta family is called the conjugate prior for the family of
distributions for a Boolean variable.4 Let’s see how this works. Suppose we
observe a cherry candy; then we have

Figure 5.6: A Bayesian network that corresponds to a Bayesian learning
process. Posterior distributions for the parameter variables Θ, Θ1, and Θ2
can be inferred from their prior distributions and the evidence in the Flavor
i and Wrapper i variables.

Thus, after seeing a cherry candy, we simply increment the a parameter to
get the posterior; similarly, after seeing a lime candy, we increment the b
parameter. Thus, we can view the a and b hyper parameters as virtual
counts, in the sense that a prior beta[a, b] behaves exactly as if we had
started out with a uniform prior beta[1, 1] and seen a − 1 actual cherry
candies and b − 1 actual lime candies.

By examining a sequence of beta distributions for increasing values of a and
b, keeping the proportions fixed, we can see vividly how the posterior
distribution over the parameter Θ changes as data arrive. For example,
suppose the actual bag of candy is 75% cherry. Figure 5.5(b) shows the
sequence beta[3, 1], beta[6, 2], beta[30, 10]. Clearly, the distribution is
converging to a narrow peak around the true value of Θ. For large data sets,

mu
no
tes
.in

117

Learning probabilistic models then, Bayesian learning (at least in this case) converges to the same answer
as maximum-likelihood learning.

Now let us consider a more complicated case. The network in Figure 5.2(b)
has three parameters, θ, θ1, and θ2, where θ1 is the probability of a red
wrapper on a cherry candy and θ2 is the probability of a red wrapper on a
lime candy. The Bayesian hypothesis prior must cover all three
parameters—that is, we need to specify P(Θ, Θ1, Θ2). Usually, we assume
parameter independence:

P(Θ, Θ1, Θ2) = P(Θ)P(Θ1)P(Θ2) .

With this assumption, each parameter can have its own beta distribution that
is updated separately as data arrive. Figure 5.6 shows how we can
incorporate the hypothesis prior and any data into one Bayesian network.
The nodes Θ, Θ1, Θ2 have no parents. But each time we make an observation
of a wrapper and corresponding flavor of a piece of candy, we add a node
Flavor i, which is dependent on the flavor parameter Θ:

P(Flavor i = cherry | Θ = θ) = θ .

We also add a node Wrapper i, which is dependent on Θ1 and Θ2:

P(Wrapper i = red |Flavor i = cherry, Θ1 = θ1) = θ1

P(Wrapper i = red |Flavor i = lime, Θ2 = θ2) = θ2 .

Now, the entire Bayesian learning process can be formulated as an inference
problem. We add new evidence nodes, then query the unknown nodes (in
this case, Θ, Θ1, Θ2). This formulation of learning and prediction makes it
clear that Bayesian learning requires no extra “principles of learning.”
Furthermore, there is, in essence, just one learning algorithm —the
inference algorithm for Bayesian networks. Of course, the nature of these
networks is somewhat different from those of Chapter because of the
potentially huge number of evidence variables representing the training set
and the prevalence of continuous-valued parameter variables.

5.2.6. Learning Bayes net structures

So far, we have assumed that the structure of the Bayes net is given and we
are just trying to learn the parameters. The structure of the network
represents basic causal knowledge about the domain that is often easy for
an expert, or even a naive user, to supply. In some cases, however, the causal
model may be unavailable or subject to dispute—for example, certain
corporations have long claimed that smoking does not cause cancer—so it
is important to understand how the structure of a Bayes net can be learned
from data. This section gives a brief sketch of the main ideas.

The most obvious approach is to search for a good model. We can start with
a model containing no links and begin adding parents for each node, fitting
the parameters with the methods we have just covered and measuring the
accuracy of the resulting model. Alternatively, we can start with an initial
guess at the structure and use hill-climbing or simulated annealing search to

mu
no
tes
.in

118

Artificial Intelligence make modifications, retuning the parameters after each change in the
structure. Modifications can include reversing, adding, or deleting links. We
must not introduce cycles in the process, so many algorithms assume that
an ordering is given for the variables, and that a node can have parents only
among those nodes that come earlier in the ordering. For full generality, we
also need to search over possible orderings.

There are two alternative methods for deciding when a good structure has
been found. The first is to test whether the conditional independence
assertions implicit in the structure are actually satisfied in the data. For
example, the use of a naive Bayes model for the restaurant problem assumes
that

P(Fri/Sat, Bar |WillWait) = P(Fri/Sat | WillWait)P(Bar |WillWait)

and we can check in the data that the same equation holds between the
corresponding conditional frequencies. But even if the structure describes
the true causal nature of the domain, statistical fluctuations in the data set
mean that the equation will never be satisfied exactly, so we need to perform
a suitable statistical test to see if there is sufficient evidence that the
independence hypothesis is violated. The complexity of the resulting
network will depend on the threshold used for this test—the stricter the
independence test, the more links will be added and the greater the danger
of overfitting.

An approach more consistent with the ideas in this chapter is to assess the
degree to which the proposed model explains the data (in a probabilistic
sense). We must be careful how we measure this, however. If we just try to
find the maximum-likelihood hypothesis, we will end up with a fully
connected network, because adding more parents to a node cannot decrease
the likelihood We are forced to penalize model complexity in some way.
The MAP (or MDL) approach simply subtracts a penalty from the
likelihood of each structure (after parameter tuning) before comparing
different structures. The Bayesian approach places a joint prior over
structures and parameters. There are usually far too many structures to sum
over (super exponential in the number of variables), so most practitioners
use MCMC to sample over structures. Penalizing complexity (whether by
MAP or Bayesian methods) introduces an important connection between
the optimal structure and the nature of the representation for the conditional
distributions in the network. With tabular distributions, the complexity
penalty for a node’s distribution grows exponentially with the number of
parents, but with, say, noisy-OR distributions, it grows only linearly. This
means that learning with noisy-OR (or other compactly parameterized)
models tends to produce learned structures with more parents than does
learning with tabular distributions.

5.2.7. Density estimation with nonparametric models

It is possible to learn a probability model without making any assumptions
about its structure and parameterization by adopting the nonparametric
methods of previous Section. The task of nonparametric density estimation
is typically done in continuous domains, such as that shown in Figure 5.7(a).

mu
no
tes
.in

119

Learning probabilistic models The figure shows a probability density function on a space defined by two
continuous variables. In Figure 5.7(b) we see a sample of data points from
this density function. The question is, can we recover the model from the
samples?

First we will consider k-nearest-neighbors models Given a sample of data
points, to estimate the unknown probability density at a query point x we
can simply measure the density of the data points in the neighborhood of x.
Figure 5.7(b) shows two query points (small squares). For each query point
we have drawn the smallest circle that encloses 10 neighbors—the 10-
nearest-neighborhood. We can see that the central circle is large, meaning
there is a low density there, and the circle on the right is small, meaning
there is a high density there. In Figure 5.8 we show three plots of density
estimation using k-nearest-neighbors, for different values of k. It seems
clear that (b) is about right, while (a) is too spiky (k is too small) and (c) is
too smooth (k is too big).

Figure 5.7.: (a) A 3D plot of the mixture of Gaussians from Figure
20.11(a). (b) A 128- point sample of points from the mixture, together with
two query points (small squares) and their 10-nearest-neighborhoods
(medium and large circles).

Figure 5.8.: Density estimation using k-nearest-neighbors, applied to the
data in Figure 20.7(b), for k = 3, 10, and 40 respectively. k = 3 is too spiky,
40 is too smooth, and 10 is just about right. The best value for k can be
chosen by cross-validation.

mu
no
tes
.in

120

Artificial Intelligence

Figure 5.9.: Kernel density estimation for the data in Figure 20.7(b), using
Gaussian kernels with w = 0.02, 0.07, and 0.20 respectively. w = 0.07 is
about right.

Another possibility is to use kernel functions, as we did for locally weighted
regression. To apply a kernel model to density estimation, assume that each
data point generates its own little density function, using a Gaussian kernel.
The estimated density at a query point x is then the average density as given
by each kernel function:

We will assume spherical Gaussians with standard deviation w along each
axis:

where d is the number of dimensions in x and D is the Euclidean distance
function. We still have the problem of choosing a suitable value for kernel
width w; Figure 5.9 shows values that are too small, just right, and too large.
A good value of w can be chosen by using cross-validation.

5.3 LEARNING WITH HIDDEN VARIABLES: THE EM
ALGORITHM.

The preceding section dealt with the fully observable case. Many real-world
problems have hidden variables (sometimes called latent variables), which
are not observable in the data that are available for learning. For example,
medical records often include the observed symptoms, the physician’s
diagnosis, the treatment applied, and perhaps the outcome of the treatment,
but they seldom contain a direct observation of the disease itself! (Note that
the diagnosis is not the disease; it is a causal consequence of the observed
symptoms, which are in turn caused by the disease.) One might ask, “If the
disease is not observed, why not construct a model without it?” The answer
appears in Figure 5.10, which shows a small, fictitious diagnostic model for
heart disease. There are three observable predisposing factors and three
observable symptoms (which are too depressing to name). Assume that each
variable has three possible values (e.g., none, moderate, and severe).

mu
no
tes
.in

121

Learning probabilistic models Removing the hidden variable from the network in (a) yields the network in
(b); the total number of parameters increases from 78 to 708. Thus, latent
variables can dramatically reduce the number of parameters required to
specify a Bayesian network. This, in turn, can dramatically reduce the
amount of data needed to learn the parameters.

Hidden variables are important, but they do complicate the learning
problem. In Figure 5.10(a), for example, it is not obvious how to learn the
conditional distribution for HeartDisease, given its parents, because we do
not know the value of HeartDisease in each case; the same problem arises
in learning the distributions for the symptoms. This section describes an
algorithm called expectation–maximization, or EM, that solves this problem
in a very general way. We will show three examples and then provide a
general description. The algorithm seems like magic at first, but once the
intuition has been developed, one can find applications for EM in a huge
range of learning problems.

Figure 5.10.: (a) A simple diagnostic network for heart disease, which is
assumed to be a hidden variable. Each variable has three possible values
and is labeled with the number of independent parameters in its conditional
distribution; the total number is 78. (b) The equivalent network with
HeartDisease removed. Note that the symptom variables are no longer
conditionally independent given their parents. This network requires 708
parameters.

5.3.1. Unsupervised clustering: Learning mixtures of Gaussians

Unsupervised clustering is the problem of discerning multiple categories in
a collection of objects. The problem is unsupervised because the category
labels are not given. For example, suppose we record the spectra of a
hundred thousand stars; are there different types of stars revealed by the
spectra, and, if so, how many types and what are their characteristics? We
are all familiar with terms such as “red giant” and “white dwarf,” but the
stars do not carry these labels on their hats—astronomers had to perform
unsupervised clustering to identify these categories. Other examples include
the identification of species, genera, orders, and so on in the Linnæan
taxonomy and the creation of natural kinds for ordinary objects.

Unsupervised clustering begins with data. Figure 5.11(b) shows 500 data
points, each of which specifies the values of two continuous attributes. The

mu
no
tes
.in

122

Artificial Intelligence data points might correspond to stars, and the attributes might correspond
to spectral intensities at two particular frequencies. Next, we need to
understand what kind of probability distribution might have generated the
data. Clustering presumes that the data are generated from a mixture
distribution, P. Such a distribution has k components, each of which is a
distribution in its own right. A data point is generated by first choosing a
component and then generating a sample from that component. Let the
random variable C denote the component, with values 1,...,k; then the
mixture distribution is given by

where x refers to the values of the attributes for a data point. For continuous
data, a natural choice for the component distributions is the multivariate
Gaussian, which gives the so-called mixture of Gaussians family of
distributions. The parameters of a mixture of Gaussians are

Figure 5.11 (a) A Gaussian mixture model with three components; the
weights (left-toright) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from
the model in (a). (c) The model reconstructed by EM from the data in (b).

wi = P(C = i) (the weight of each component), μi (the mean of each
component), and Σi (the covariance of each component). Figure 5.11(a)
shows a mixture of three Gaussians; this mixture is in fact the source of the
data in (b) as well as being the model shown in Figure 5.7(a)

The unsupervised clustering problem, then, is to recover a mixture model
like the one in Figure5.11(a) from raw data like that in Figure 5.11(b).
Clearly, if we knew which component generated each data point, then it
would be easy to recover the component Gaussians: we could just select all
the data points from a given component and then apply (a multivariate
version of) Equation (5.4) for fitting the parameters of a Gaussian to a set
of data. On the other hand, if we knew the parameters of each component,
then we could, at least in a probabilistic sense, assign each data point to a
component. The problem is that we know neither the assignments nor the
parameters.

mu
no
tes
.in

123

Learning probabilistic models The basic idea of EM in this context is to pretend that we know the
parameters of the model and then to infer the probability that each data point
belongs to each component. After that, we refit the components to the data,
where each component is fitted to the entire data set with each point
weighted by the probability that it belongs to that component. The process
iterates until convergence. Essentially, we are “completing” the data by
inferring probability distributions over the hidden variables—which
component each data point belongs to—based on the current model. For the
mixture of Gaussians, we initialize the mixture-model parameters arbitrarily
and then iterate the following two steps:

1. E-step: Compute the probabilities pij = P(C = i| xj), the probability
that datum xj was generated by component i. By Bayes’ rule, we have
pij = αP(xj | C = i)P(C = i). The term P(xj | C = i) is just the probability
at xj of the ith Gaussian, and the term P(C = i) is just the weight
parameter for the ith Gaussian. Define ni =Σj pij , the effective number
of data points currently assigned to component i.

2. M-step: Compute the new mean, covariance, and component weights
using the following steps in sequence:

where N is the total number of data points. The E-step, or expectation step,
can be viewed as computing the expected values pij of the hidden indicator
variables Zij , where Zij is 1 if datum xj was generated by the ith component
and 0 otherwise. The M-step, or maximization step, finds the new values of
the parameters that maximize the log likelihood of the data, given the
expected values of the hidden indicator variables.

The final model that EM learns when it is applied to the data in Figure
5.11(a) is shown in Figure 2511(c); it is virtually indistinguishable from the
original model from which the data were generated. Figure 5.12(a) plots the
log likelihood of the data according to the current model as EM progresses.
here are two points to notice. First, the log likelihood for the final learned
model slightly exceeds that of the original model, from which the data were
generated. This might seem surprising, but it simply reflects the fact that the
data were generated randomly and might not provide an exact reflection of
the underlying model. The second point is that EM increases the log
likelihood of the data at every iteration. This fact can be proved in general.

Furthermore, under certain conditions (that hold in ost cases), EM can be
proven to reach a local maximum in likelihood. (In rare cases, it could reach
a saddle point or even a local minimum.) In this sense, EM resembles a
gradient-based hill-climbing algorithm, but notice that it has no “step size”
parameter.

mu
no
tes
.in

124

Artificial Intelligence

Figure 5.12: Graphs showing the log likelihood of the data, L, as a function
of the EM

iteration. The horizontal line shows the log likelihood according to the true
model. (a) Graph for the Gaussian mixture model in Figure 5.11. (b) Graph
for the Bayesian network in Figure 5.13(a).

Figure 5.13: (a) A mixture model for candy. The proportions of different
flavors, wrappers, presence of holes depend on the bag, which is not
observed. (b) Bayesian network for a Gaussian mixture. The mean and
covariance of the observable variables X depend on the component C.

Things do not always go as well as Figure 5.12(a) might suggest. It can
happen, for example, that one Gaussian component shrinks so that it covers
just a single data point. Then its variance will go to zero and its likelihood
will go to infinity! Another problem is that two components can “merge,”
acquiring identical means and variances and sharing their data points. These
kinds of degenerate local maxima are serious problems, especially in high
dimensions. One solution is to place priors on the model parameters and to
apply the MAP version of EM. Another is to restart a component with new
random parameters if it gets too small or too close to another component.
Sensible initialization also helps.

mu
no
tes
.in

125

Learning probabilistic models 5.3.2. Learning Bayesian networks with hidden variables

To learn a Bayesian network with hidden variables, we apply the same
insights that worked for mixtures of Gaussians. Figure 5.13 represents a
situation in which there are two bags of candies that have been mixed
together. Candies are described by three features: in addition to the Flavor
and the Wrapper , some candies have a Hole in the middle and some do not.
The distribution of candies in each bag is described by a naive Bayes model:
the features are independent, given the bag, but the conditional probability
distribution for each feature depends on the bag. The parameters are as
follows: θ is the prior probability that a candy comes from Bag 1; θF1 and
θF2 are the probabilities that the flavor is cherry, given that the candy comes
from Bag 1 or Bag 2 respectively; θW1 and θW2 give the probabilities that
the wrapper is red; and θH1 and θH2 give the probabilities that the candy has
a hole. Notice that the overall model is a mixture model. (In fact, we can
also model the mixture of Gaussians as a Bayesian network, as shown in
Figure 5.13(b).) In the figure, the bag is a hidden variable because, once the
candies have been mixed together, we no longer know which bag each
candy came from. In such a case, can we recover the descriptions of the two
bags by observing candies from the mixture? Let us work through an
iteration of EM for this problem. First, let’s look at the data. We generated
1000 samples from a model whose true parameters are as follows:

θ = 0.5, θF1 = θW1 = θH1 = 0.8, θF2 = θW2 = θH2 = 0.3 . (5.7)

That is, the candies are equally likely to come from either bag; the first is
mostly cherries with red wrappers and holes; the second is mostly limes
with green wrappers and no holes. The counts for the eight possible kinds
of candy are as follows:

We start by initializing the parameters. For numerical simplicity, we
arbitrarily choose5

First, let us work on the θ parameter. In the fully observable case, we would
estimate this directly from the observed counts of candies from bags 1 and
2. Because the bag is a hidden variable, we calculate the expected counts
instead. The expected count Nˆ (Bag = 1) is the sum, over all candies, of the
probability that the candy came from bag 1:

 (5.8)

mu
no
tes
.in

126

Artificial Intelligence These probabilities can be computed by any inference algorithm for
Bayesian networks. For a naive Bayes model such as the one in our
example, we can do the inference “by hand,” using Bayes’ rule and applying
conditional independence:

Applying this formula to, say, the 273 red-wrapped cherry candies with
holes, we get a contribution of

Continuing with the other seven kinds of candy in the table of counts, we
obtain θ(1) = 0.6124.

Now let us consider the other parameters, such as θF1. In the fully observable
case, we would estimate this directly from the observed counts of cherry
and lime candies from bag 1.

The expected count of cherry candies from bag 1 is given by

Again, these probabilities can be calculated by any Bayes net algorithm.
Completing this

process, we obtain the new values of all the parameters:

 (5.9)

The log likelihood of the data increases from about −2044 initially to about
−2021 after the first iteration, as shown in Figure 5.12(b). That is, the update
improves the likelihood itself by a factor of about e23 ≈ 1010. By the tenth
iteration, the learned model is a better fit than the original model (L = −
1982.214). Thereafter, progress becomes very slow. This is not uncommon
with EM, and many practical systems combine EM with a gradient-based
algorithm such as Newton–Raphson for the last phase of learning.

The general lesson from this example is that the parameter updates for
Bayesian network learning with hidden variables are directly available from
the results of inference on each example. Moreover, only local posterior
probabilities are needed for each parameter. Here, “local” means that the
CPT for each variable Xi can be learned from posterior probabilities
involving just Xi and its parents Ui. Defining θijk to be the CPT parameter
P(Xi = xij | Ui = uik), the update is given by the normalized expected counts
as follows:

mu
no
tes
.in

127

Learning probabilistic models

The expected counts are obtained by summing over the examples,
computing the probabilities

P(Xi = xij , Ui = uik) for each by using any Bayes net inference algorithm.
For the exact algorithms—including variable elimination—all these
probabilities are obtainable directly as a by-product of standard inference,
with no need for extra computations specific to learning. Moreover, the
information needed for learning is available locally for each parameter.

5.3.3. Learning hidden Markov models

Our final application of EM involves learning the transition probabilities in
hidden Markov models (HMMs). Recall from previous Section that a
hidden Markov model can be represented by a dynamic Bayes net with a
single discrete state variable, as illustrated in Figure 5.14. Each data point
consists of an observation sequence of finite length, so the problem is to
learn the transition probabilities from a set of observation sequences (or
from just one long sequence).

We have already worked out how to learn Bayes nets, but there is one
complication: in Bayes nets, each parameter is distinct; in a hidden Markov
model, on the other hand, the individual transition probabilities from state i
to state j at time t, θijt = P(Xt+1 = j | Xt = i), are repeated across time—that
is, θijt = θij for all t. To estimate the transition probability from state i to state
j, we simply calculate the expected proportion of times that the system
undergoes a transition to state j when in state i:

The expected counts are computed by an HMM inference algorithm. The
forward–backward

algorithm shown in Figure 15.4 can be modified very easily to compute
the necessary probabilities. One important point is that the probabilities
required are obtained by smoothing

Figure 5.14.: An unrolled dynamic Bayesian network that represents a
hidden Markov model (repeat of Figure 5.16). rather than filtering; that is,
we need to pay attention to subsequent evidence in estimating the
probability that a particular transition occurred. The evidence in a murder

mu
no
tes
.in

128

Artificial Intelligence case is usually obtained after the crime (i.e., the transition from state i to
state j) has taken place.

5.4 THE GENERAL FORM OF THE EM ALGORITHM

We have seen several instances of the EM algorithm. Each involves
computing expected values of hidden variables for each example and then
recomputing the parameters, using the expected values as if they were
observed values. Let x be all the observed values in all the examples, let Z
denote all the hidden variables for all the examples, and let θ be all the
parameters for the probability model. Then the EM algorithm is

This equation is the EM algorithm in a nutshell. The E-step is the
computation of the summation, which is the expectation of the log
likelihood of the “completed” data with respect to the distribution P(Z = z |
x, θ(i)), which is the posterior over the hidden variables, given the data. The
M-step is the maximization of this expected log likelihood with respect to
the parameters. For mixtures of Gaussians, the hidden variables are the Zij
s, where Zij is 1 if example j was generated by component i. For Bayes nets,
Zij is the value of unobserved variable Xi in example j. For HMMs, Zjt is the
state of the sequence in example j at time t. Starting from the general form,
it is possible to derive an EM algorithm for a specific application once the
appropriate hidden variables have been identified.

As soon as we understand the general idea of EM, it becomes easy to derive
all sorts of variants and improvements. For example, in many cases the E-
step—the computation of posteriors over the hidden variables—is
intractable, as in large Bayes nets. It turns out that one can use an
approximate E-step and still obtain an effective learning algorithm. With a
sampling algorithm such as MCMC, the learning process is very intuitive:
each state (configuration of hidden and observed variables) visited by
MCMC is treated exactly as if it were a complete observation. Thus, the
parameters can be updated directly after each MCMC transition. Other
forms of approximate inference, such as variational and loopy methods,
have also proved effective for learning very large networks.

SUMMARY

Statistical learning methods range from simple calculation of averages to
the construction of complex models such as Bayesian networks. They have
applications throughout computer science, engineering, computational
biology, neuroscience, psychology, and physics. This chapter has presented
some of the basic ideas and given a flavor of the mathematical
underpinnings. The main points are as follows: Bayesian learning,
Maximum a posteriori, Maximum-likelihood, Bayesian networks, model
selection.

mu
no
tes
.in

129

Learning probabilistic models Statistical learning continues to be a very active area of research. Enormous
strides have been made in both theory and practice, to the point where it is
possible to learn almost any model for which exact or approximate inference
is feasible.

EXERCISE

1. What is probability? How it is derived.

2. Explain bayes theorem with suitable illustration.

3. Give the outline of Bayesian classification.

4. Explain supervised and unsupervised algorithm.

5. Write a note on Naïve Bayes Model.

6. Give the outline of EM algorithm.

REFERENCE

• Artificial Intelligence: A Modern Approach Third Edition

• Artificial Intelligence: Foundations of Computational Agents, David
L Poole,Alan K. Mackworth, 2nd Edition, Cambridge University
Press ,2017.

• Artificial Intelligence, Kevin Knight and Elaine Rich, 3rd Edition,
2017

• The Elements of Statistical Learning, Trevor Hastie, Robert
Tibshirani and Jerome Friedman, Springer, 2013

 mu
no
tes
.in

130

Artificial Intelligence 6
REINFORCEMENT LEARNING

Unit Structure :
6.0 Objectives:

6.1 Introduction

6.2 Passive Reinforcement Learning

 6.2.1 Direct utility estimation

 6.2.2 Adaptive dynamic programming

 6.2.3 Temporal-difference learning

6.3 Active Reinforcement Learning

6.4 Generalization in Reinforcement Learning

6.5 Policy Search

6.6 Applications of Reinforcement Learning

 6.6.1 Application to robot control

Summary

Exercise

Reference

6.0 OBJECTIVES

A learner will learn about:

• Concepts of reinforcement learning

• Adaptive dynamic programming

• Implementation of reinforcement learning concepts

• Applications of reinforcement learning

6.1 INTRODUCTION

Consider, for example, the problem of learning to play chess. A supervised
learning agent needs to be told the correct move for each position it
encounters, but such feedback is seldom available. In the absence of
feedback from a teacher, an agent can learn a transition model for its own
moves and can perhaps learn to predict the opponent’s moves, but without
some feedback about what is good and what is bad, the agent will have no
grounds for deciding which move to make. The agent needs to know that
something good has happened when it (accidentally) checkmates the
opponent, and that something bad has happened when it is checkmated—or
vice versa, if the game is suicide chess. This kind of feedback is called a

mu
no
tes
.in

131

Reinforcement learning reward, or reinforcement. In games like chess, the reinforcement is received
only at the end of the game. In other environments, the rewards come more
frequently. In ping-pong, each point scored can be considered a reward;
when learning to crawl, any forward motion is an achievement. Our
framework for agents regards the reward as part of the input percept, but the
agent must be “hardwired” to recognize that part as a reward rather than as
just another sensory input. Thus, animals seem to be hardwired to recognize
pain and hunger as negative rewards and pleasure and food intake as
positive rewards. Reinforcement has been carefully studied by animal
psychologists for over 60 years.

Rewards were introduced where they served to define optimal policies in
Markov decision processes (MDPs). An optimal policy is a policy that
maximizes the expected total reward. The task of reinforcement learning is
to use observed rewards to learn an optimal (or nearly optimal) policy for
the environment. the agent has a complete model of the environment and
knows the reward function, here we assume no prior knowledge of either.
Imagine playing a new game whose rules you don’t know; after a hundred
or so moves, your opponent announces, “You lose.” This is reinforcement
learning in a nutshell.

In many complex domains, reinforcement learning is the only feasible way
to train a program to perform at high levels. For example, in game playing,
it is very hard for a human to provide accurate and consistent evaluations of
large numbers of positions, which would be needed to train an evaluation
function directly from examples. Instead, the program can be told when it
has won or lost, and it can use this information to learn an evaluation
function that gives reasonably accurate estimates of the probability of
winning from any given position. Similarly, it is extremely difficult to
program an agent to fly a helicopter; yet given appropriate negative rewards
for crashing, wobbling, or deviating from a set course, an agent can learn to
fly by itself.

Reinforcement learning might be considered to encompass all of AI: an
agent is placed in an environment and must learn to behave successfully
therein. To keep the chapter manageable, we will concentrate on simple
environments and simple agent designs. For the most part, we will assume
a fully observable environment, so that the current state is supplied by each
percept. On the other hand, we will assume that the agent does not know
how the environment works or what its actions do, and we will allow for
probabilistic action outcomes. Thus, the agent faces an unknown Markov
decision process. We will consider three of the agent designs.

 A utility-based agent learns a utility function on states and uses it to
select actions that maximize the expected outcome utility.

 A Q-learning agent learns an action-utility function, or Q-function,
giving the expected utility of taking a given action in a given state.

 A reflex agent learns a policy that maps directly from states to actions.

mu
no
tes
.in

132

Artificial Intelligence A utility-based agent must also have a model of the environment in order to
make decisions, because it must know the states to which its actions will
lead. For example, in order to make use of a backgammon evaluation
function, a backgammon program must know what its legal moves are and
how they affect the board position. Only in this way can it apply the utility
function to the outcome states. A Q-learning agent, on the other hand, can
compare the expected utilities for its available choices without needing to
know their outcomes, so it does not need a model of the environment. On
the other hand, because they do not know where their actions lead, Q-
learning agents cannot look ahead; this can seriously restrict their ability to
learn, as we shall see.

We begin in Section with passive learning, where the agent’s policy is fixed
and the task is to learn the utilities of states (or state–action pairs); this could
also involve learning a model of the environment. The principal issue is
exploration: an agent must experience as much as possible of its
environment in order to learn how to behave in it. discusses how an agent
can use inductive learning to learn much faster from its experiences. covers
methods for learning direct policy representations in reflex agents. An
understanding of Markov decision processes is essential for this chapter.

6.2. PASSIVE REINFORCEMENT LEARNING

To keep things simple, we start with the case of a passive learning agent
using a state-based representation in a fully observable environment. In
passive learning, the agent’s policy π is fixed: in state s, it always executes
the action π(s). Its goal is simply to learn how good the policy is—that is,
to learn the utility function Uπ(s). a policy for that world and the
corresponding utilities. Clearly, the passive learning task is similar to the
policy evaluation task, part of the policy iteration algorithm described in
previous Section. The main difference is that the passive learning agent does
not know the transition model P(s | s, a), which specifies the probability of
reaching state s from state s after doing action a; nor does it know the reward
function R(s), which specifies the reward for each state.

Figure 6.1 (a) A policy π for the 4 × 3 world; this policy happens to be
optimal with rewards of R(s) = − 0.04 in the nonterminal states and no
discounting. (b) The utilities of the states in the 4 ×3 world, given policy π.

mu
no
tes
.in

133

Reinforcement learning The agent executes a set of trials in the environment using its policy π. In
each trial, the agent starts in state (1,1) and experiences a sequence of state
transitions until it reaches one of the terminal states, (4,2) or (4,3). Its
percepts supply both the current state and the reward received in that state.
Typical trials might look like this:

Note that each state percept is subscripted with the reward received. The
object is to use the information about rewards to learn the expected utility
Uπ(s) associated with each nonterminal states. The utility is defined to be
the expected sum of (discounted) rewards obtained if policy π is followed.

 (6.1)

where R(s) is the reward for a state, St (a random variable) is the state
reached at time t when executing policy π, and S0 = s. We will include a
discount factor γ in all of our equations, but for the 4 × 3 world we will set
γ = 1.

6.2.1 Direct utility estimation

A simple method for direct utility estimation was invented in the late 1950s
in the area of adaptive control theory by Widrow and Hoff (1960). The idea
is that the utility of a state is the expected total reward from that state onward
(called the expected reward-to-go), and each trial provides a sample of this
quantity for each state visited. For example, the first trial in the set of three
given earlier provides a sample total reward of 0.72 for state (1,1), two
samples of 0.76 and 0.84 for (1,2), two samples of 0.80 and 0.88 for (1,3),
and so on. Thus, at the end of each sequence, the algorithm calculates the
observed reward-to-go for each state and updates the estimated utility for
that state accordingly, just by keeping a running average for each state in a
table. In the limit of infinitely many trials, the sample average will converge
to the true expectation in Equation.

It is clear that direct utility estimation is just an instance of supervised
learning where each example has the state as input and the observed reward-
to-go as output. This means that we have reduced reinforcement learning to
a standard inductive learning problem, as discussed in previous Chapter. in
previous Section discusses the use of more powerful kinds of
representations for the utility function. Learning techniques for those
representations can be applied directly to the observed data.

Direct utility estimation succeeds in reducing the reinforcement learning
problem to an inductive learning problem, about which much is known.
Unfortunately, it misses a very important source of information, namely, the
fact that the utilities of states are not independent! The utility of each state

mu
no
tes
.in

134

Artificial Intelligence equals its own reward plus the expected utility of its successor states. That
is, the utility values obey the Bellman equations for a fixed policy.

 (6.2)

By ignoring the connections between states, direct utility estimation misses
opportunities for learning. For example, the second of the three trials given
earlier reaches the state (3,2), which has not previously been visited. The
next transition reaches (3,3), which is known from the first trial to have a
high utility. The Bellman equation suggests immediately that (3,2) is also
likely to have a high utility, because it leads to (3,3), but direct utility
estimation learns nothing until the end of the trial. More broadly, we can
view direct utility estimation as searching for U in a hypothesis space that
is much larger than it needs to be, in that it includes many functions that
violate the Bellman equations. For this reason, the algorithm often
converges very slowly.

Figure 6.2 A passive reinforcement learning agent based on adaptive
dynamic programming. The POLICY-EVALUATION function solves the
fixed-policy Bellman equations.

6.2.2 Adaptive dynamic programming

An adaptive dynamic programming (or ADP) agent takes advantage of the
constraints among the utilities of states by learning the transition model that
connects them and solving the corresponding Markov decision process
using a dynamic programming method. For a passive learning agent, this
means plugging the learned transition model P(s | s, π(s)) and the observed
rewards R(s) into the Bellman equations (6.2) to calculate the utilities of the
states. As we remarked in our discussion of policy iteration in previous
Chapter, these equations are linear (no maximization involved) so they can
be solved using any linear algebra package. Alternatively, we can adopt the
approach of modified policy iteration using a simplified value iteration
process to update the utility estimates after each change to the learned

mu
no
tes
.in

135

Reinforcement learning model. Because the model usually changes only slightly with each
observation, the value iteration process can use the previous utility
estimates as initial values and should converge quite quickly.

The process of learning the model itself is easy, because the environment is
fully observable. This means that we have a supervised learning task where
the input is a state–action pair and the output is the resulting state. In the
simplest case, we can represent the transition model as a table of
probabilities. We keep track of how often each action outcome occurs and
estimate the transition probability P(s | s, a) from the frequency with which
s is reached when executing a in s. For example, in the three trials given,
Right is executed three times in (1,3) and two out of three times the resulting
state is (2,3), so P((2, 3)| (1, 3), Right) is estimated to be 2/3.

Figure 6.3 The passive ADP learning curves for the 4×3 world, given the
optimal policy shown in Figure 6.1. (a) The utility estimates for a selected
subset of states, as a function of the number of trials. Notice the large
changes occurring around the 78th trial—this is the first time that the agent
falls into the −1 terminal state at (4,2). (b) The root-mean-square error (see
Appendix A) in the estimate for U(1, 1), averaged over 20 runs of 100 trials
each.

The full agent program for a passive ADP agent is shown in Figure 6.2. Its
performance on the 4 × 3 world is shown in Figure 6.3. In terms of how
quickly its value estimates improve, the ADP agent is limited only by its
ability to learn the transition model. In this sense, it provides a standard
against which to measure other reinforcement learning algorithms. It is,
however, intractable for large state spaces. In backgammon, for example, it
would involve solving roughly 1050 equations in 1050 unknowns.

A reader familiar with the Bayesian learning ideas of previous Chapter will
have noticed that the algorithm in Figure 6.2 is using maximum-likelihood
estimation to learn the transition model; moreover, by choosing a policy
based solely on the estimated model it is acting as if the model were correct.
This is not necessarily a good idea! For example, a taxi agent that didn’t
know about how traffic lights might ignore a red light once or twice without
no ill effects and then formulate a policy to ignore red lights from then on.
Instead, it might be a good idea to choose a policy that, while not optimal
for the model estimated by maximum likelihood, works reasonably well for

mu
no
tes
.in

136

Artificial Intelligence the whole range of models that have a reasonable chance of being the true
model. There are two mathematical approaches that have this flavor.

P(h) for each hypothesis h about what the true model is; the posterior
probability P(h | e) is

obtained in the usual way by Bayes’ rule given the observations to date.
Then, if the agent has

decided to stop learning, the optimal policy is the one that gives the highest
expected utility.

Let uπh be the expected utility, averaged over all possible start states,
obtained by executing

policy π in model h. Then we have

In some special cases, this policy can even be computed! If the agent will
continue learning in the future, however, then finding an optimal policy
becomes considerably more difficult, because the agent must consider the
effects of future observations on its beliefs about the transition model. The
problem becomes a POMDP whose belief states are distributions over
models. This concept provides an analytical foundation for understanding
the exploration problem described in previous Section

The second approach, derived from robust control theory, allows for a set
of possible models H and defines an optimal robust policy as one that gives
the best outcome in the worst case over H:

Often, the set H will be the set of models that exceed some likelihood
threshold on P(h | e), so the robust and Bayesian approaches are related.
Sometimes, the robust solution can be computed efficiently. There are,
moreover, reinforcement learning algorithms that tend to produce robust
solutions, although we do not cover them here.

6.2.3 Temporal-difference learning

Solving the underlying MDP as in the preceding section is not the only way
to bring the Bellman equations to bear on the learning problem. Another
way is to use the observed transitions to adjust the utilities of the observed
states so that they agree with the constraint equations. Consider, for
example, the transition from (1,3) to (2,3) in the second. Suppose that, as a
result of the first trial, the utility estimates are Uπ(1, 3) = 0.84 and Uπ(2, 3)
= 0.92. Now, if this transition occurred all the time, we would expect the
utilities to obey the equation

Uπ(1, 3) = −0.04 + Uπ(2, 3) ,

mu
no
tes
.in

137

Reinforcement learning so Uπ(1, 3) would be 0.88. Thus, its current estimate of 0.84 might be a little
low and should be increased. More generally, when a transition occurs from
state’s to state’s, we apply the following update to Uπ(s):

 (6.3)

Here, α is the learning rate parameter. Because this update rule uses the
difference in utilities

between successive states, it is often called the temporal-difference, or TD,
equation.

All temporal-difference methods work by adjusting the utility estimates
towards the ideal equilibrium that holds locally when the utility estimates
are correct. In the case of passive learning, the equilibrium is given by
Equation (6.2). Now Equation (6.3) does in fact cause the agent to reach the
equilibrium given by Equation (6.2), but there is some subtlety involved.
First, notice that the update involves only the observed successor s , whereas
the actual equilibrium conditions involve all possible next states. One might
think that this causes an improperly large change in Uπ(s) when a very rare
transition occurs; but, in fact, because rare transitions occur only rarely, the
average value of Uπ(s) will converge to the correct value. Furthermore, if
we change α from a fixed parameter to a function that decreases as the
number of times a state has been visited increases, then Uπ(s) itself will
converge to the correct value.1 This gives us the agent program shown in
Figure 6.4. Figure 6.5 illustrates the performance of the passive TD agent
on the 4 × 3 world. It does not learn quite as fast as the ADP agent and
shows much higher variability, but it is much simpler and requires much
less computation per observation. Notice that TD does not need a transition
model to perform its updates. The environment supplies the connection
between neighboring states in the form of observed transitions.

Figure 6.4 A passive reinforcement learning agent that learns utility
estimates using temporal differences. The step-size function α(n) is chosen
to ensure convergence, as described in the text.

The ADP approach and the TD approach are actually closely related. Both
try to make local adjustments to the utility estimates in order to make each
state “agree” with its successors. One difference is that TD adjusts a state
to agree with its observed successor (Equation (6.3)), whereas ADP adjusts

mu
no
tes
.in

138

Artificial Intelligence the state to agree with all of the successors that might occur, weighted by
their probabilities (Equation (6.2)). This difference disappears when the
effects of TD adjustments are averaged over a large number of transitions,
because the frequency of each successor in the set of transitions is
approximately proportional to its probability. A more important difference
is that whereas TD makes a single adjustment per observed transition, ADP
makes as many as it needs to restore consistency between the utility
estimates U and the environment model P. Although the observed transition
makes only a local change in P, its effects might need to be propagated
throughout U. Thus, TD can be viewed as a crude but efficient first
approximation to ADP.

Each adjustment made by ADP could be seen, from the TD point of view,
as a result of a “pseudoexperience” generated by simulating the current
environment model. It is possible to extend the TD approach to use an
environment model to generate several pseudoexperiences—transitions that
the TD agent can imagine might happen, given its current model. For each
observed transition, the TD agent can generate a large number of imaginary
transitions. In this way, the resulting utility estimates will approximate more
and more closely those of ADP—of course, at the expense of increased
computation time.

Figure 6.5 The TD learning curves for the 4 × 3 world. (a) The utility
estimates for a selected subset of states, as a function of the number of trials.
(b) The root-mean-square error in the estimate for U(1, 1), averaged over
20 runs of 500 trials each. Only the first 100 trials are shown to enable
comparison with Figure 6.3.

In a similar vein, we can generate more efficient versions of ADP by
directly approximating the algorithms for value iteration or policy iteration.
Even though the value iteration algorithm is efficient, it is intractable if we
have, say, 10100 states. However, many of the necessary adjustments to the
state values on each iteration will be extremely tiny. One possible approach
to generating reasonably good answers quickly is to bound the number of
adjustments made after each observed transition. One can also use a
heuristic to rank the possible adjustments so as to carry out only the most
significant ones. The prioritized sweeping heuristic prefers to make
adjustments to states whose likely successors have just undergone a large
adjustment in their own utility estimates. Using heuristics like this,

mu
no
tes
.in

139

Reinforcement learning approximate ADP algorithms usually can learn roughly as fast as full ADP,
in terms of the number of training sequences, but can be several orders of
magnitude more efficient in terms of computation. This enables them to
handle state spaces that are far too large for full ADP. Approximate ADP
algorithms have an additional advantage: in the early stages of learning a
new environment, the environment model P often will be far from correct,
so there is little point in calculating an exact utility function to match it. An
approximation algorithm can use a minimum adjustment size that decreases
as the environment model becomes more accurate. This eliminates the very
long value iterations that can occur early in learning due to large changes in
the model.

6.3 ACTIVE REINFORCEMENT LEARNING

A passive learning agent has a fixed policy that determines its behavior. An
active agent must decide what actions to take. Let us begin with the adaptive
dynamic programming agent and consider how it must be modified to
handle this new freedom.

First, the agent will need to learn a complete model with outcome
probabilities for all actions, rather than just the model for the fixed policy.
The simple learning mechanism used by PASSIVE-ADP-AGENT will do
just fine for this. Next, we need to take into account the fact that the agent
has a choice of actions. The utilities it needs to learn are those defined by
the optimal policy; they obey the Bellman equations given, which we repeat
here for convenience:

(6.4)

These equations can be solved to obtain the utility function U using the
value iteration or policy iteration algorithms. The final issue is what to do
at each step. Having obtained a utility function U that is optimal for the
learned model, the agent can extract an optimal action by one-step look-
ahead to maximize the expected utility; alternatively, if it uses policy
iteration, the optimal policy is already available, so it should simply execute
the action the optimal policy recommends. Or should it?

6.4 GENERALIZATION IN REINFORCEMENT LEARNING

So far, we have assumed that the utility functions and Q-functions learned
by the agents are represented in tabular form with one output value for each
input tuple. Such an approach works reasonably well for small state spaces,
but the time to convergence and (for ADP) the time per iteration increase
rapidly as the space gets larger. With carefully controlled, approximate
ADP methods, it might be possible to handle 10,000 states or more. This
suffices for two-dimensional maze-like environments, but more realistic
worlds are out of the question. Backgammon and chess are tiny subsets of
the real world, yet their state spaces contain on the order of 1020 and 1040
states, respectively. It would be absurd to suppose that one must visit all
these states many times in order to learn how to play the game!

mu
no
tes
.in

140

Artificial Intelligence One way to handle such problems is to use function approximation, which
simply means using any sort of representation for the Q-function other than
a lookup table. The representation is viewed as approximate because it
might not be the case that the true utility function or Q-function can be
represented in the chosen form. For example, in previous Chapter we
described an evaluation function for chess that is represented as a weighted
linear function of a set of features (or basis functions) f1,...,fn:

A reinforcement learning algorithm can learn values for the parameters θ =
θ1,...,θn such

that the evaluation function Uˆθ approximates the true utility function.
Instead of, say, 1040

values in a table, this function approximator is characterized by, say, n = 20
parameters an enormous compression. Although no one knows the true
utility function for chess, no one believes that it can be represented exactly
in 20 numbers. If the approximation is good enough, however, the agent
might still play excellent chess.3 Function approximation makes it practical
to represent utility functions for very large state spaces, but that is not its
principal benefit. The compression achieved by a function approximator
allows the learning agent to generalize from states it has visited to states it
has not visited. That is, the most important aspect of function approximation
is not that it requires less space, but that it allows for inductive
generalization over input states. To give you some idea of the power of this
effect: by examining only one in every 1012 of the possible backgammon
states, it is possible to learn a utility function that allows a program to play
as well as any human (Tesauro, 1992).

On the flip side, of course, there is the problem that there could fail to be
any function in the chosen hypothesis space that approximates the true
utility function sufficiently well. As in all inductive learning, there is a
tradeoff between the size of the hypothesis space and the time it takes to
learn the function. A larger hypothesis space increases the likelihood that a
good approximation can be found, but also means that convergence is likely
to be delayed. Let us begin with the simplest case, which is direct utility
estimation. (See Section 21.2.) With function approximation, this is an
instance of supervised learning. For example, suppose we represent the
utilities for the 4 × 3 world using a simple linear function. The features of
the squares are just their x and y coordinates, so we have

Uˆθ(x, y) = θ0 + θ1x + θ2y . (6.5)

Thus, if (θ0, θ1, θ2) = (0.5, 0.2, 0.1), then Uˆθ(1, 1) = 0.8. Given a collection
of trials, we obtain a set of sample values of Uˆθ(x, y), and we can find the
best fit, in the sense of minimizing the squared error, using standard linear
regression.

For reinforcement learning, it makes more sense to use an online learning
algorithm that updates the parameters after each trial. Suppose we run a trial
and the total reward obtained starting at (1,1) is 0.4. This suggests that

mu
no
tes
.in

141

Reinforcement learning Uˆθ(1, 1), currently 0.8, is too large and must be reduced. How should the
parameters be adjusted to achieve this? As with neuralnetwork learning, we
write an error function and compute its gradient with respect to the
parameters. If uj (s) is the observed total reward from state s onward in the
jth trial, then the error is defined as (half) the squared difference of the
predicted total and the actual total: Ej (s)=(Uˆθ(s) − uj (s))2/2. The rate of
change of the error with respect to each parameter θi is ∂Ej/∂θi, so to move
the parameter in the direction of decreasing the error, we want

 (6.6)

This is called the Widrow–Hoff rule, or the delta rule, for online least-
squares. For the linear function approximator Uˆθ(s) in Equation ,we get
three simple update rules:

We can apply these rules to the example where Uˆθ(1, 1) is 0.8 and uj (1, 1)
is 0.4. θ0, θ1, and θ2 are all decreased by 0.4α, which reduces the error for
(1,1). Notice that changing the parameters θ in response to an observed
transition between two states also changes the values of Uˆθ for every other
state! This is what we mean by saying that function approximation allows a
reinforcement learner to generalize from its experiences.

We expect that the agent will learn faster if it uses a function approximator,
provided that the hypothesis space is not too large, but includes some
functions that are a reasonably good fit to the true utility function. asks you
to evaluate the performance of direct utility estimation, both with and
without function approximation. The improvement in the 4 × 3 world is
noticeable but not dramatic, because this is a very small state space to begin
with. The improvement is much greater in a 10 × 10 world with a +1 reward
at (10,10). This world is well suited for a linear utility function because the
true utility function is smooth and nearly linear. If we put the +1 reward at
(5,5), the true utility is more like a pyramid and the function approximator
in Equation (21.10) will fail miserably. All is not lost, however! Remember
that what matters for linear function approximation is that the function be
linear in the parameters—the features themselves can be arbitrary nonlinear
functions of the state variables. Hence, we can include a term such as
θ3f3(x, y) = that measures the distance to the goal. We
can apply these ideas equally well to temporal-difference learners. All we
need do is adjust the parameters to try to reduce the temporal difference
between successive states. The new versions of the TD and Q-learning
equations are given by

(6.7 &6.8)

mu
no
tes
.in

142

Artificial Intelligence for Q-values. For passive TD learning, the update rule can be shown to
converge to the closest

possible4 approximation to the true function when the function
approximator is linear in the

parameters. With active learning and nonlinear functions such as neural
networks, all bets are off: There are some very simple cases in which the
parameters can go off to infinity even though there are good solutions in the
hypothesis space. There are more sophisticated algorithms that can avoid
these problems, but at present reinforcement learning with general function
approximators remains a delicate art.

Function approximation can also be very helpful for learning a model of the
environment. Remember that learning a model for an observable
environment is a supervised learning problem, because the next percept
gives the outcome state. Any of the supervised learning methods in Chapter
18 can be used, with suitable adjustments for the fact that we need to predict
a complete state description rather than just a Boolean classification or a
single real value. For a partially observable environment, the learning
problem is much more difficult. If we know what the hidden variables are
and how they are causally related to each other and to the observable
variables, then we can fix the structure of a dynamic Bayesian network and
use the EM algorithm to learn the parameters, as was described in previous
Chapter. Inventing the hidden variables and learning the model structure are
still open problems.

6.5 POLICY SEARCH

The final approach we will consider for reinforcement learning problems is
called policy search. In some ways, policy search is the simplest of all the
methods in this chapter: the idea is to keep twiddling the policy as long as
its performance improves, then stop.

Let us begin with the policies themselves. Remember that a policy π is a
function that maps states to actions. We are interested primarily in
parameterized representations of π that have far fewer parameters than there
are states in the state space (just as in the preceding section). For example,
we could represent π by a collection of parameterized Q-functions, one for
each action, and take the action with the highest predicted value:

 (6.9)

Each Q-function could be a linear function of the parameters θ, as in
Equation or it could be a nonlinear function such as a neural network. Policy
search will then adjust the parameters θ to improve the policy. Notice that
if the policy is represented by Q functions, then policy search results in a
process that learns Q-functions. This process is not the same as Q-learning!
In Q-learning with function approximation, the algorithm finds a value of θ
such that Qˆθ is “close” to Q∗, the optimal Q-function. Policy search, on the
other hand, finds a value of θ that results in good performance; the values

mu
no
tes
.in

143

Reinforcement learning found by the two methods may differ very substantially. (For example, the
approximate Q-function defined by Qˆθ(s, a) = Q∗(s, a)/10 gives optimal
performance, even though it is not at all close to Q∗.) Another clear instance
of the difference is the case where π(s) is calculated using, say, depth-10
look-ahead search with an approximate utility function Uˆθ. A value of θ
that gives good results may be a long way from making Uˆθ resemble the
true utility function.

One problem with policy representations of the kind given in Equation is
that the policy is a discontinuous function of the parameters when the
actions are discrete. (For a continuous action space, the policy can be a
smooth function of the parameters.) That is, there will be values of θ such
that an infinitesimal change in θ causes the policy to switch from one action
to another. This means that the value of the policy may also change
discontinuously, which makes gradient-based search difficult. For this
reason, policy search methods often use a stochastic policy representation
πθ(s, a), which specifies the probability of selecting action a in state s. One
popular representation is the softmax function

Softmax becomes nearly deterministic if one action is much better than the
others, but it always gives a differentiable function of θ; hence, the value of
the policy (which depends in a continuous fashion on the action selection
probabilities) is a differentiable function of θ. Softmax is a generalization
of the logistic function to multiple variables.

Now let us look at methods for improving the policy. We start with the
simplest case: a deterministic policy and a deterministic environment. Let
ρ(θ) be the policy value, i.e., the expected reward-to-go when πθ is
executed. If we can derive an expression for ρ(θ) in closed form, then we
have a standard optimization problem. We can follow the policy gradient
vector ∇θρ(θ) provided ρ(θ) is differentiable. Alternatively, if ρ(θ) is not
available in closed form, we can evaluate πθ simply by executing it and
observing the accumulated reward. We can follow the empirical gradient by
hill climbing—i.e., evaluating the change in policy value for small
increments in each parameter. With the usual caveats, this process will
converge to a local optimum in policy space.

When the environment (or the policy) is stochastic, things get more difficult.
Suppose we are trying to do hill climbing, which requires comparing ρ(θ)
and ρ(θ + Δθ) for some small Δθ. The problem is that the total reward on
each trial may vary widely, so estimates of the policy value from a small
number of trials will be quite unreliable; trying to compare two such
estimates will be even more unreliable. One solution is simply to run lots of
trials, measuring the sample variance and using it to determine that enough
trials have been run to get a reliable indication of the direction of
improvement for ρ(θ). Unfortunately, this is impractical for many real
problems where each trial may be expensive, time-consuming, and perhaps
even dangerous.

mu
no
tes
.in

144

Artificial Intelligence For the case of a stochastic policy πθ(s, a), it is possible to obtain an unbiased
estimate of the gradient at θ, ∇θρ(θ), directly from the results of trials
executed at θ. For simplicity, we will derive this estimate for the simple case
of a nonsequential environment in which the reward R(a) is obtained
immediately after doing action a in the start state s0. In this case, the policy
value is just the expected value of the reward, and we have

Now we perform a simple trick so that this summation can be approximated
by samples

generated from the probability distribution defined by πθ(s0, a). Suppose that
we have N

trials in all and the action taken on the jth trial is aj . Then

Thus, the true gradient of the policy value is approximated by a sum of terms
involving the gradient of the action-selection probability in each trial. For
the sequential case, this generalizes to

for each state s visited, where aj is executed in s on the jth trial and Rj (s) is
the total reward received from state s onwards in the jth trial. The resulting
algorithm is called REINFORCE (Williams, 1992); it is usually much more
effective than hill climbing using lots of trials at each value of θ. It is still
much slower than necessary, however.

Consider the following task: given two blackjack5 programs, determine
which is best. One way to do this is to have each play against a standard
“dealer” for a certain number of hands and then to measure their respective
winnings. The problem with this, as we have seen, is that the winnings of
each program fluctuate widely depending on whether it receives good or
bad cards. An obvious solution is to generate a certain number of hands in
advance and have each program play the same set of hands. In this way, we
eliminate the measurement error due to differences in the cards received.
This idea, called correlated sampling, un-derlies a policy-search algorithm
called PEGASUS (Ng and Jordan, 2000). The algorithm is applicable to
domains for which a simulator is available so that the “random” outcomes
of actions can be repeated. The algorithm works by generating in advance
N sequences of random numbers, each of which can be used to run a trial
of any policy. Policy search is carried out by evaluating each candidate
policy using the same set of random sequences to determine the action
outcomes. It can be shown that the number of random sequences required

mu
no
tes
.in

145

Reinforcement learning to ensure that the value of every policy is well estimated depends only on
the complexity of the policy space, and not at all on the complexity of the
underlying domain.

6.6 APPLICATIONS OF REINFORCEMENT LEARNING

The first significant application of reinforcement learning was also the first
significant learning program of any kind—the checkers program written by
Arthur Samuel (1959, 1967).Samuel first used a weighted linear function
for the evaluation of positions, using up to 16 terms at any one time. He
applied a version of Equation (21.12) to update the weights. There were
some significant differences, however, between his program and current
methods. First, he updated the weights using the difference between the
current state and the backed-up value generated by full look-ahead in the
search tree. This works fine, because it amounts to viewing the state space
at a different granularity. A second difference was that the program did not
use any observed rewards! That is, the values of terminal states reached in
self-play were ignored. This means that it is theoretically possible for
Samuel’s program not to converge, or to converge on a strategy designed to
lose rather than to win. He managed to avoid this fate by insisting that the
weight for material advantage should always be positive. Remarkably, this
was sufficient to direct the program into areas of weight space
corresponding to good checkers play.

Figure 6.9 Setup for the problem of balancing a long pole on top of a
moving cart. The cart can be jerked left or right by a controller that observes
x, θ, x˙, and ˙θ.

Gerry Tesauro’s backgammon program TD-GAMMON (1992) forcefully
illustrates the potential of reinforcement learning techniques. In earlier work
(Tesauro and Sejnowski, 1989), Tesauro tried learning a neural network
representation of Q(s, a) directly from ex amples of moves labeled with
relative values by a human expert. This approach proved extremely tedious
for the expert. It resulted in a program, called NEUROGAMMON, that was
strong by computer standards, but not competitive with human experts. The
TD-GAMMON project was an attempt to learn from self-play alone. The
only reward signal was given at the end of each game. The evaluation
function was represented by a fully connected neural network with a single
hidden layer containing 40 nodes. Simply by repeated application of
Equation, TD-GAMMON learned to play considerably better than
NEUROGAMMON, even though the input representation contained just

mu
no
tes
.in

146

Artificial Intelligence the raw board position with no computed features. This took about 200,000
training games and two weeks of computer time. Although that may seem
like a lot of games, it is only a vanishingly small fraction of the state space.
When precomputed features were added to the input representation, a
network with 80 hidden nodes was able, after 300,000 training games, to
reach a standard of play comparable to that of the top three human players
worldwide. Kit Woolsey, a top player and analyst, said that “There is no
question in my mind that its positional judgment is far better than mine.”

6.6.1 Application to robot control

The setup for the famous cart–pole balancing problem, also known as the
inverted pendulum, is shown in Figure 21.9. The problem is to control the
position x of the cart so that the pole stays roughly upright (θ ≈ π/2), while
staying within the limits of the cart track as shown. Several thousand papers
in reinforcement learning and control theory have been published on this
seemingly simple problem. The cart–pole problem differs from the
problems described earlier in that the state variables x, θ, x˙, and ˙ θ are
continuous. The actions are usually discrete: jerk left or jerk right, the so-
called bang-bang control regime.

The earliest work on learning for this problem was carried out by Michie
and Chambers (1968). Their BOXES algorithm was able to balance the pole
for over an hour after only about 30 trials. Moreover, unlike many
subsequent systems, BOXES was implemented with a real cart and pole,
not a simulation. The algorithm first discretized the four-dimensional state
space into boxes—hence the name. It then ran trials until the pole fell over
or the cart hit the end of the track. Negative reinforcement was associated
with the final action in the final box and then propagated back through the
sequence. It was found that the discretization caused some problems when
the apparatus was initialized in a position different from those used in
training, suggesting that generalization was not perfect. Improved
generalization and faster learning can be obtained using an algorithm that
adaptively partitions the state space according to the observed variation in
the reward, or by using a continuous-state, nonlinear function approximator
such as a neural network. Nowadays, balancing a triple inverted pendulum
is a common exercise—a feat far beyond the capabilities of most humans

Figure 6.10 Superimposed time-lapse images of an autonomous helicopter
performing a very difficult “nose-in circle” maneuver. The helicopter is

mu
no
tes
.in

147

Reinforcement learning under the control of a policy developed by the PEGASUS policy-search
algorithm. A simulator model was developed by observing the effects of
various control manipulations on the real helicopter; then the algorithm was
run on the simulator model overnight. A variety of controllers were
developed for different maneuvers. In all cases, performance far exceeded
that of an expert human pilot using remote control. (Image courtesy of
Andrew Ng.)

SUMMARY

This chapter has examined the reinforcement learning problem: how an
agent can become proficient in an unknown environment, given only its
percepts and occasional rewards. Reinforcement learning can be viewed as
a microcosm for the entire AI problem, but it is studied in a number of
simplified settings to facilitate progress.

EXERCISE

1. What is reinforcement learning? State its applications

2. Give illustration of adaptive reinforcement learning.

3. Write a note on Adaptive dynamic programming.

4. Give the illustration of passive reinforcement learning.

5. Write a note on policy search.

REFERENCE

• Artificial Intelligence: A Modern Approach Third Edition

• Artificial Intelligence: Foundations of Computational Agents, David
L Poole,Alan K. Mackworth, 2nd Edition, Cambridge University
Press ,2017.

• Artificial Intelligence, Kevin Knight and Elaine Rich, 3rd Edition,
2017

• The Elements of Statistical Learning, Trevor Hastie, Robert
Tibshirani and Jerome Friedman, Springer, 2013

mu
no
tes
.in

	SY BSC CS SEM V Artificial Intelligence Starting pages
	01-CHAPTER 1 ARTIFICIAL INTELLIGENCE
	02-CHAPTER 2 INTELLIGENT AGENT
	03-CHAPTER 3 PROBLEM SOLVING BY SEARCHING
	04-UNIT 2 Module 4
	Chapter 5 Learning probabilistic models
	Chapter 6 Learning probabilistic models

