
   
1 

1 
JAVA SWING 

Unit Structure : 
1.1 Introduction 

1.2 Difference between AWT and Swing 

 1.2.1 Java Swing Examples 

1.3 Swing components 

 1.3.1 Java JButton 

 1.3.2 Java JLabel 

 1.3.3 Java JTextField 

 1.3.5 Java JPasswordField 

 1.3.6 Java JCheckBox 

 1.3.7 Java JRadioButton 

 1.3.8 Java JComboBox 

 1.3.9 Java JList 

1.4 Summary 

1.5 Questions 

1.0 INTRODUCTION  

Java Swing is a part of Java Foundation Classes (JFC) that is used to create 
window-based applications. It is built on the top of AWT (Abstract 
Windowing Toolkit) API and entirely written in java. 

Unlike AWT, Java Swing provides platform-independent and lightweight 
components. 

The javax.swing package provides classes for java swing API such as 
JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, 
JColorChooser etc. 

1.1 DIFFERENCE BETWEEN AWT AND SWING 

There are many differences between java awt and swing that are given 
below. 

No. Java AWT Java Swing 

1) AWT components are platform-
dependent. 

Java swing components 
are platform-independent. 

mu
no
tes
.in



   

 
2 

Advance Java No. Java AWT Java Swing 

2) AWT components 
are heavyweight. 

Swing components 
are lightweight. 

3) AWT doesn't support 
pluggable look and feel. 

Swing supports pluggable 
look and feel. 

4) AWT provides less 
components than Swing. 

Swing provides more powerful 
components such as tables, 
lists, scrollpanes, colorchooser, 
tabbedpane etc. 

5) AWT doesn't follows 
MVC(Model View Controller) 
where model represents data, 
view represents presentation and 
controller acts as an interface 
between model and view. 

Swing follows MVC. 

Hierarchy of Java Swing classes 

The hierarchy of java swing API is given below. 

 

 

 

mu
no
tes
.in



 

 
3 

 

Java Swing 1.2 COMMONLY USED METHODS OF COMPONENT 
CLASS 

The methods of Component class are widely used in java swing that are 
given below. 

Method Description 

public void add(Component c) add a component on another 
component. 

public void setSize(int width,int 
height) 

sets size of the component. 

public void 
setLayout(LayoutManager m) 

sets the layout manager for the 
component. 

public void setVisible(boolean b) sets the visibility of the 
component. It is by default false. 

1.2.1. Java Swing Examples 
There are two ways to create a frame: 

o By creating the object of Frame class (association) 

o By extending Frame class (inheritance) 

We can write the code of swing inside the main(), constructor or any other 
method. 

Simple Java Swing Example 

Let's see a simple swing example where we are creating one button and 
adding it on the JFrame object inside the main() method. 

File: FirstSwingExample.java 

import javax.swing.*;   
public class FirstSwingExample 
 {   
public static void main(String[] args)  
{   
JFrame f=new JFrame();//creating instance of JFrame   
            JButton b=new JButton("click");//creating instance of JButton   
b.setBounds(130,100,100, 40);//x axis, y axis, width, height   
            f.add(b);//adding button in JFrame   
            f.setSize(400,500);//400 width and 500 height   
f.setLayout(null);//using no layout managers   
f.setVisible(true);//making the frame visible   
}   
}   

mu
no
tes
.in



   

 
4 

Advance Java 

 

Example of Swing by Association inside constructor 

We can also write all the codes of creating JFrame, JButton and method call 
inside the java constructor. 

File: Simple.java 

import javax.swing.*;   

public class Simple 

 {   

JFrame f;   

Simple() 

{   

f=new JFrame();//creating instance of JFrame   

          JButton b=new JButton("click");//creating instance of JButton   

b.setBounds(130,100,100, 40);   

          f.add(b);//adding button in JFrame   

          f.setSize(400,500);//400 width and 500 height   

f.setLayout(null);//using no layout managers   

f.setVisible(true);//making the frame visible   

}   
public static void main(String[] args)  
{   
new Simple();   
}   
}   

The setBounds(int xaxis, int yaxis, int width, int height)is used in the above 
example that sets the position of the button. 

mu
no
tes
.in



 

 
5 

 

Java Swing 1.3 SWING COMPONENTS 

1.3.1. Java JButton 

The JButton class is used to create a labeled button that has platform 
independent implementation. The application result in some action when 
the button is pushed. It inherits AbstractButton class. 

JButton class declaration 

Let's see the declaration for javax.swing.JButton class. 

public class JButton extends AbstractButton implements Accessible   

Commonly used Constructors: 

Constructor Description 

JButton() It creates a button with no text and 
icon. 

JButton(String s) It creates a button with the specified 
text. 

JButton(Icon i) It creates a button with the specified 
icon object. 

 

Commonly used Methods of AbstractButton class: 

Methods Description 

void setText(String s) It is used to set specified text on button 

String getText() It is used to return the text of the 
button. 

void setEnabled(boolean b) It is used to enable or disable the 
button. 

void setIcon(Icon b) It is used to set the specified Icon on 
the button. 

Icon getIcon() It is used to get the Icon of the button. 

void setMnemonic(int a) It is used to set the mnemonic on the 
button. 

Void addActionListener 
(ActionListener a) 

It is used to add the action listener to 
this object. 

 

mu
no
tes
.in

https://www.javatpoint.com/java-actionlistener


   

 
6 

Advance Java Java JButton Example 

import javax.swing.*;     
public class ButtonExample  
{   
public static void main(String[] args) 
 {   
     JFrame f=new JFrame("Button Example");   
     JButton b=new JButton("Click Here");   
    b.setBounds(50,100,95,30);   
      f.add(b);   
      f.setSize(400,400);   
      f.setLayout(null);   
      f.setVisible(true);    
}   
}   

Output: 

 

1.3.2. Java JLabel 

The object of JLabel class is a component for placing text in a container. It 
is used to display a single line of read only text. The text can be changed by 
an application but a user cannot edit it directly. It inherits JComponent class. 

JLabel class declaration 

Let's see the declaration for javax.swing.JLabel class. 

public class JLabel extends JComponent implements SwingConstants, A
ccessible   

 

mu
no
tes
.in



 

 
7 

 

Java Swing Commonly used Constructors: 

Constructor Description 

JLabel() Creates a JLabel instance with no image 
and with an empty string for the title. 

JLabel(String s) Creates a JLabel instance with the 
specified text. 

JLabel(Icon i) Creates a JLabel instance with the 
specified image. 

JLabel(String s, Icon i, int 
horizontalAlignment) 

Creates a JLabel instance with the 
specified text, image, and horizontal 
alignment. 

Commonly used Methods: 

Methods Description 

String getText() t returns the text string that a label 
displays. 

void setText(String text) It defines the single line of text this 
component will display. 

void setHorizontalAlignment 
(int alignment) 

It sets the alignment of the label's 
contents along the X axis. 

Icon getIcon() It returns the graphic image that the label 
displays. 

int getHorizontalAlignment() It returns the alignment of the label's 
contents along the X axis. 

Java JLabel Example with ActionListener 
import javax.swing.*;   
import java.awt.*;   
import java.awt.event.*;   
public class LabelExample extends Frame implements ActionListener 
{   
        JTextField tf; JLabel l; JButton b;   
        LabelExample(){   
        tf=new JTextField();   
        tf.setBounds(50,50, 150,20);   
        l=new JLabel();   
        l.setBounds(50,100, 250,20);       
        b=new JButton("Find IP");   
        b.setBounds(50,150,95,30);   
        b.addActionListener(this);     
        add(b);add(tf);add(l);     

mu
no
tes
.in



   

 
8 

Advance Java         setSize(400,400);   
        setLayout(null);   
        setVisible(true);   
}   
    public void actionPerformed(ActionEvent e)  
{   
        try 
{   
     String host=tf.getText();   
   String ip=java.net.InetAddress.getByName(host).getHostAddress(); 
             l.setText("IP of "+host+" is: "+ip);   
         } 
     catch(Exception ex) 
{ 
System.out.println(ex); 
           }   
    }   
    public static void main(String[] args)  
 {   
        new LabelExample();   
    }  
}   

Output: 

 

1.3.3.Java JTextField 

The object of a JTextField class is a text component that allows the editing 
of a single line text. It inherits JTextComponent class. 

mu
no
tes
.in



 

 
9 

 

Java Swing JTextField class declaration 

Let's see the declaration for javax.swing.JTextField class. 

public class JTextField extends JTextComponent implements SwingCon
stants   

Commonly used Constructors: 

Constructor Description 

JTextField() Creates a new TextField 

JTextField(String text) Creates a new TextField initialized with 
the specified text. 

JTextField(String text, int 
columns) 

Creates a new TextField initialized with 
the specified text and columns. 

JTextField(int columns) Creates a new empty TextField with the 
specified number of columns. 

Commonly used Methods: 

Methods Description 

void 
addActionListener(ActionListener l) 

It is used to add the specified 
action listener to receive action 
events from this textfield. 

Action getAction() It returns the currently set 
Action for this ActionEvent 
source, or null if no Action is 
set. 

void setFont(Font f) It is used to set the current font. 

void 
removeActionListener(ActionListener 
l) 

It is used to remove the 
specified action listener so that 
it no longer receives action 
events from this textfield. 

Java JTextField Example 

import javax.swing.*;   
class TextFieldExample   
{   
public static void main(String args[])   
     {   
    JFrame f= new JFrame("TextField Example");   
       JTextField t1,t2;   
      t1=new JTextField("Welcome to Java");   
     t1.setBounds(50,100, 200,30);   
     t2=new JTextField("AWT Tutorial");   

mu
no
tes
.in



   

 
10 

Advance Java      t2.setBounds(50,150, 200,30);   
       f.add(t1); 
      f.add(t2);   
      f.setSize(400,400);   
      f.setLayout(null);   
       f.setVisible(true);   
    }   
    }   

Output: 

 

1.3.4. Java JTextArea 

The object of a JTextArea class is a multi line region that displays text. It 
allows the editing of multiple line text. It inherits JTextComponent class 

JTextArea class declaration 
Let's see the declaration for javax.swing.JTextArea class. 
public class JTextArea extends JTextComponent   

Commonly used Constructors: 

Constructor Description 

JTextArea() Creates a text area that displays no text 
initially. 

JTextArea(String s) Creates a text area that displays specified 
text initially. 

JTextArea(int row, int 
column) 

Creates a text area with the specified 
number of rows and columns that 
displays no text initially. 

JTextArea(String s, int row, 
int column) 

Creates a text area with the specified 
number of rows and columns that 
displays specified text. 

mu
no
tes
.in



 

 
11 

 

Java Swing Commonly used Methods: 

Methods Description 

void setRows(int rows) It is used to set specified number of rows. 

void setColumns(int cols) It is used to set specified number of 
columns. 

void setFont(Font f) It is used to set the specified font. 

void insert(String s, int 
position) 

It is used to insert the specified text on the 
specified position. 

void append(String s) It is used to append the given text to the 
end of the document. 

Java JTextArea Example with ActionListener 

import javax.swing.*;   
import java.awt.event.*;   
public class TextAreaExample implements ActionListener 
{   
JLabel l1,l2;   
JTextArea area;   
JButton b;   
TextAreaExample()  
{   
    JFrame f= new JFrame();   
    l1=new JLabel();   
    l1.setBounds(50,25,100,30);   
    l2=new JLabel();   
    l2.setBounds(160,25,100,30);   
    area=new JTextArea();   
    area.setBounds(20,75,250,200);   
    b=new JButton("Count Words");   
    b.setBounds(100,300,120,30);   
    b.addActionListener(this);   
    f.add(l1); 
    f.add(l2); 
    f.add(area); 
    f.add(b);   
    f.setSize(450,450);   
    f.setLayout(null);   
    f.setVisible(true);   
}   
public void actionPerformed(ActionEvent e) 
{   

mu
no
tes
.in



   

 
12 

Advance Java     String text=area.getText();   
    String words[]=text.split("\\s");   
    l1.setText("Words: "+words.length);   
    l2.setText("Characters: "+text.length());   
}   
public static void main(String[] args) 
{   
    new TextAreaExample();   
}   
}   

Output: 

 

1.3.5.Java JPasswordField 
The object of a JPasswordField class is a text component specialized for 
password entry. It allows the editing of a single line of text. It inherits 
JTextField class. 

JPasswordField class declaration 
Let's see the declaration for javax.swing.JPasswordField class. 

public class JPasswordField extends JTextField   

Commonly used Constructors: 

Constructor Description 

JPasswordField() Constructs a new JPasswordField, with a 
default document, null starting text string, and 0 
column width. 

JPasswordField(int 
columns) 

Constructs a new empty JPasswordField with 
the specified number of columns. 

mu
no
tes
.in



 

 
13 

 

Java Swing JPasswordField(String 
text) 

Constructs a new JPasswordField initialized 
with the specified text. 

JPasswordField(String 
text, int columns) 

Construct a new JPasswordField initialized with 
the specified text and columns. 

Java JPasswordField Example with ActionListener 
import javax.swing.*;     
import java.awt.event.*;   
public class PasswordFieldExample  
{   
    public static void main(String[] args)  
{     
    JFrame f=new JFrame("Password Field Example");     
     final JLabel label = new JLabel();             
     label.setBounds(20,150, 200,50);   
     final JPasswordField value = new JPasswordField();    
     value.setBounds(100,75,100,30);    
     JLabel l1=new JLabel("Username:");     
        l1.setBounds(20,20, 80,30);     
        JLabel l2=new JLabel("Password:");     
        l2.setBounds(20,75, 80,30);     
        JButton b = new JButton("Login");   
        b.setBounds(100,120, 80,30);     
        final JTextField text = new JTextField();   
        text.setBounds(100,20, 100,30);     
                f.add(value); f.add(l1); f.add(label); f.add(l2); f.add(b); f.add(text); 
                f.setSize(300,300);     
                f.setLayout(null);     
                f.setVisible(true);      
                b.addActionListener(new ActionListener() {   
                public void actionPerformed(ActionEvent e) {        
                   String data = "Username " + text.getText();   
                   data += ", Password: "    
                   + new String(value.getPassword());    
                   label.setText(data);           
                }   
             });    
}   
}   

mu
no
tes
.in



   

 
14 

Advance Java Output: 

 

1.3.6. Java JCheckBox 

The JCheckBox class is used to create a checkbox. It is used to turn an 
option on (true) or off (false). Clicking on a CheckBox changes its state 
from "on" to "off" or from "off" to "on ".It inherits JToggleButton class. 

JCheckBox class declaration 

Let's see the declaration for javax.swing.JCheckBox class. 

public class JCheckBox extends JToggleButton implements Accessible   

Commonly used Constructors: 

Constructor Description 

JJCheckBox() Creates an initially unselected check box 
button with no text, no icon. 

JChechBox(String s) Creates an initially unselected check box 
with text. 

JCheckBox(String text, 
boolean selected) 

Creates a check box with text and 
specifies whether or not it is initially 
selected. 

JCheckBox(Action a) Creates a check box where properties are 
taken from the Action supplied. 

Commonly used Methods: 

Methods Description 

AccessibleContext 
getAccessibleContext() 

It is used to get the 
AccessibleContext associated with 
this JCheckBox. 

protected String paramString() It returns a string representation of 
this JCheckBox. 

mu
no
tes
.in

https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-string


 

 
15 

 

Java Swing Java JCheckBox Example with ItemListener 
import javax.swing.*;   
import java.awt.event.*;     
public class CheckBoxExample     
{     
     CheckBoxExample(){     
        JFrame f= new JFrame("CheckBox Example");     
        final JLabel label = new JLabel();             
        label.setHorizontalAlignment(JLabel.CENTER);     
        label.setSize(400,100);     
        JCheckBox checkbox1 = new JCheckBox("C++");     
        checkbox1.setBounds(150,100, 50,50);     
        JCheckBox checkbox2 = new JCheckBox("Java");     
        checkbox2.setBounds(150,150, 50,50);     
        f.add(checkbox1); f.add(checkbox2); f.add(label);     
        checkbox1.addItemListener(new ItemListener() {     
             public void itemStateChanged(ItemEvent e) {                  
                label.setText("C++ Checkbox: "      
                + (e.getStateChange()==1?"checked":"unchecked"));     
             }     
          });     
        checkbox2.addItemListener(new ItemListener() {     
             public void itemStateChanged(ItemEvent e) {                  
                label.setText("Java Checkbox: "      
                + (e.getStateChange()==1?"checked":"unchecked"));     
             }     
          });     
        f.setSize(400,400);     
        f.setLayout(null);     
        f.setVisible(true);     
     }     
public static void main(String args[])     
{     
    new CheckBoxExample();     
}     
}     

 

 

mu
no
tes
.in



   

 
16 

Advance Java Output: 

 

1.3.7.Java JRadioButton 

The JRadioButton class is used to create a radio button. It is used to choose 
one option from multiple options. It is widely used in exam systems or quiz. 

It should be added in ButtonGroup to select one radio button only. 

JRadioButton class declaration 

Let's see the declaration for javax.swing.JRadioButton class. 

public class JRadioButton extends JToggleButton implements Accessible 

Commonly used Constructors: 

Constructor Description 

JRadioButton() Creates an unselected radio button with 
no text. 

JRadioButton(String s) Creates an unselected radio button with 
specified text. 

JRadioButton(String s, 
boolean selected) 

Creates a radio button with the specified 
text and selected status. 

Commonly used Methods: 

Methods Description 

void setText(String s) It is used to set specified text on 
button. 

String getText() It is used to return the text of the 
button. 

mu
no
tes
.in



 

 
17 

 

Java Swing Methods Description 

void setEnabled(boolean b) It is used to enable or disable the 
button. 

void setIcon(Icon b) It is used to set the specified Icon on 
the button. 

Icon getIcon() It is used to get the Icon of the 
button. 

void setMnemonic(int a) It is used to set the mnemonic on the 
button. 

void 
addActionListener(ActionListener 
a) 

It is used to add the action listener to 
this object. 

Java JRadioButton Example with ActionListener 

import javax.swing.*;     
import java.awt.event.*;     
class RadioButtonExample extends JFrame implements ActionListener 
{     
JRadioButton rb1,rb2;     
JButton b;     
RadioButtonExample(){       
rb1=new JRadioButton("Male");     
rb1.setBounds(100,50,100,30);       
rb2=new JRadioButton("Female");     
rb2.setBounds(100,100,100,30);     
ButtonGroup bg=new ButtonGroup();     
bg.add(rb1);bg.add(rb2);     
b=new JButton("click");     
b.setBounds(100,150,80,30);     
b.addActionListener(this);     
add(rb1);add(rb2);add(b);     
setSize(300,300);     
setLayout(null);     
setVisible(true);     
}     
public void actionPerformed(ActionEvent e) 
{     
if(rb1.isSelected()) 
{     
JOptionPane.showMessageDialog(this,"You are Male.");     
}     

mu
no
tes
.in



   

 
18 

Advance Java if(rb2.isSelected()) 
{     
JOptionPane.showMessageDialog(this,"You are Female.");     
}     
}     
public static void main(String args[]) 
{     
new RadioButtonExample();     
} 
}    

Output: 

 

1.3.8. Java JComboBox 

The object of Choice class is used to show popup menu of choices. Choice 
selected by user is shown on the top of a menu. It 
inherits JComponent class. 

JComboBox class declaration 

Let's see the declaration for javax.swing.JComboBox class. 

public class JComboBox extends JComponent implements ItemSelectabl
e, ListDataListener, ActionListener, Accessible   

Commonly used Constructors: 

Constructor Description 

JComboBox() Creates a JComboBox with a default data 
model. 

JComboBox(Object[] 
items) 

Creates a JComboBox that contains the 
elements in the specified array. 

JComboBox(Vector<?> 
items) 

Creates a JComboBox that contains the 
elements in the specified Vector. 

mu
no
tes
.in

https://www.javatpoint.com/java-jmenuitem-and-jmenu
https://www.javatpoint.com/java-jcomponent
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/scala-vector


 

 
19 

 

Java Swing Commonly used Methods: 

Methods Description 

void addItem(Object anObject) It is used to add an item to the item 
list. 

void removeItem(Object 
anObject) 

It is used to delete an item to the 
item list. 

void removeAllItems() It is used to remove all the items 
from the list. 

void setEditable(boolean b) It is used to determine whether the 
JComboBox is editable. 

void 
addActionListener(ActionListener 
a) 

It is used to add the ActionListener. 

void 
addItemListener(ItemListener i) 

It is used to add the ItemListener. 

Java JComboBox Example 

import javax.swing.*;     
public class ComboBoxExample  
{     
JFrame f;     
ComboBoxExample() 
{     
    f=new JFrame("ComboBox Example");     
    String country[]={"India","Aus","U.S.A","England","Newzealand"};     
    
    JComboBox cb=new JComboBox(country);     
    cb.setBounds(50, 50,90,20);     
    f.add(cb);         
    f.setLayout(null);     
    f.setSize(400,500);     
    f.setVisible(true);          
}     
public static void main(String[] args)  
{     
    new ComboBoxExample();          
}     
}    

 

 

mu
no
tes
.in

https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-itemlistener


   

 
20 

Advance Java Output: 

 

1.3.9.Java JList 

The object of JList class represents a list of text items. The list of text items 
can be set up so that the user can choose either one item or multiple items. 
It inherits JComponent class. 

JList class declaration 

Let's see the declaration for javax.swing.JList class. 

public class JList extends JComponent implements Scrollable, Accessible 

Commonly used Constructors: 

Constructor Description 

JList() Creates a JList with an empty, read-only, 
model. 

JList(ary[] listData) Creates a JList that displays the elements in 
the specified array. 

JList(ListModel<ary> 
dataModel) 

Creates a JList that displays elements from 
the specified, non-null, model. 

Commonly used Methods: 

Methods Description 

Void 
addListSelectionListener(ListSelectionListener 
listener) 

It is used to add a 
listener to the list, to be 
notified each time a 
change to the selection 
occurs. 

mu
no
tes
.in



 

 
21 

 

Java Swing Methods Description 

int getSelectedIndex() It is used to return the 
smallest selected cell 
index. 

ListModel getModel() It is used to return the 
data model that holds a 
list of items displayed 
by the JList 
component. 

void setListData(Object[] listData) It is used to create a 
read-only ListModel 
from an array of 
objects. 

Java JList Example 
import javax.swing.*;   
public class ListExample   
{   
     ListExample(){   
        JFrame f= new JFrame();   
        DefaultListModel<String> l1 = new DefaultListModel<>();   
          l1.addElement("Item1");   
          l1.addElement("Item2");   
          l1.addElement("Item3");   
          l1.addElement("Item4");   
          JList<String> list = new JList<>(l1);   
          list.setBounds(100,100, 75,75);   
          f.add(list);   
          f.setSize(400,400);   
          f.setLayout(null);   
          f.setVisible(true);   
     }   
public static void main(String args[])   
    {   
   new ListExample();   
    } 
}   

 

 

mu
no
tes
.in



   

 
22 

Advance Java Output: 

 

1.4 SUMMARY 

In this chapter we learn about the swing to develop the graphical use 
interface and difference between AWT and Swing. Also we learn about the 
Swing component like Jtextfield, Jtextarea, Jpasswordfield ,JLabel, etc… 

1.5 QUESTIONS 

1. Write a short note on swing. 

2. What is the difference between AWT and Swing. 

3. Explain JTextarea with suitable example. 

4. Explain JRadioButton with suitable example. 
 
5.      Explain JList with suitable example. 
 
6.      Explain JPasswordField with suitable example. 
 

 

mu
no
tes
.in



   
23 

2 
JDBC 

Unit Structure : 
2.1  JDBC 
 2.1.1 Why Should We Use JDBC 
2.2  JDBC Driver 
2.3 Java Database Connectivity with Oracle 
 2.3.1 Example to Connect Java Application with Oracle database 
2.4 DriverManager class 
 2.4.1 Connection interface 
2.5 Statement interface 
 2.5.1 Example of Statement interface 
2.6 ResultSet interface 
 2.6.1 Example of Scrollable ResultSet 
2.7 PreparedStatement interface 
 2.7.1 Example of PreparedStatement interface that inserts the record 
 2.7.2 Example of PreparedStatement interface that updates the record 
 2.7.3 Example of PreparedStatement interface that deletes the record 
 2.7.4 Example of PreparedStatement interface that retrieve the 

records of a table 
 2.7.5. Example of PreparedStatement to insert records until user press  
2.8 Summary 
2.9 Questions 

2.1 JDBC 

JDBC stands for Java Database Connectivity. JDBC is a Java API to 
connect and execute the query with the database. It is a part of JavaSE (Java 
Standard Edition). JDBC API uses JDBC drivers to connect with the 
database. There are four types of JDBC drivers: 
 JDBC-ODBC Bridge Driver, 

 Native Driver, 

 Network Protocol Driver, and 

 Thin Driver 

We can use JDBC API to access tabular data stored in any relational 
database. By the help of JDBC API, we can save, update, delete and fetch 
data from the database. It is like Open Database Connectivity (ODBC) 
provided by Microsoft. 

mu
no
tes
.in



   

 
24 

Advance Java 

 

The current version of JDBC is 4.3. It is the stable release since 21st 
September, 2017. It is based on the X/Open SQL Call Level Interface. The 
java.sql package contains classes and interfaces for JDBC API. A list of 
popular interfaces of JDBC API are given below: 
 Driver interface 

 Connection interface 

 Statement interface 

 PreparedStatement interface 

 CallableStatement interface 
 ResultSet interface 

 ResultSetMetaData interface 

 DatabaseMetaData interface 

 RowSet interface 

A list of popular classes of JDBC API are given below: 
 DriverManager class 

 Blob class 

 Clob class 

 Types class 

2.1.1. Why Should We Use JDBC 

Before JDBC, ODBC API was the database API to connect and execute the 
query with the database. But, ODBC API uses ODBC driver which is 
written in C language (i.e. platform dependent and unsecured). That is why 
Java has defined its own API (JDBC API) that uses JDBC drivers (written 
in Java language). 

We can use JDBC API to handle database using Java program and can 
perform the following activities: 
1. Connect to the database 

2. Execute queries and update statements to the database 

3. Retrieve the result received from the database. 

mu
no
tes
.in



 

 
25 

 

JDBC What is API? 

API (Application programming interface) is a document that contains a 
description of all the features of a product or software. It represents classes 
and interfaces that software programs can follow to communicate with each 
other. An API can be created for applications, libraries, operating systems, 
etc.  

2.2 JDBC DRIVER 

JDBC Driver is a software component that enables java application to 
interact with the database. There are 4 types of JDBC drivers:  

1. JDBC-ODBC bridge driver 

2. Native-API driver (partially java driver) 

3. Network Protocol driver (fully java driver) 

4. Thin driver (fully java driver) 

1)  JDBC-ODBC bridge driver: The JDBC-ODBC bridge driver uses 
ODBC driver to connect to the database. The JDBC-ODBC bridge 
driver converts JDBC method calls into the ODBC function calls. 
This is now discouraged because of thin driver.  

 

Oracle does not support the JDBC-ODBC Bridge from Java 8. Oracle 
recommends that you use JDBC drivers provided by the vendor of 
your database instead of the JDBC-ODBC Bridge. 

Advantages: 
Easy to use. 

Can be easily connected to any database. 

Disadvantages: 

Performance degraded because JDBC method call is converted into 
the ODBC function calls. 

The ODBC driver needs to be installed on the client machine. 

mu
no
tes
.in



   

 
26 

Advance Java 2)  Native-API driver: The Native API driver uses the client-side 
libraries of the database. The driver converts JDBC method calls into 
native calls of the database API. It is not written entirely in java. 

 

Advantage: 

Performance upgraded than JDBC-ODBC bridge driver. 

Disadvantage: 

The Native driver needs to be installed on the each client machine. 

The Vendor client library needs to be installed on client machine. 

3)  Network Protocol driver: The Network Protocol driver uses 
middleware (application server) that converts JDBC calls directly or 
indirectly into the vendor-specific database protocol. It is fully written 
in java.  

 

Advantage: 

No client side library is required because of application server that 
can perform many tasks like auditing, load balancing, logging etc. 

mu
no
tes
.in



 

 
27 

 

JDBC Disadvantages: 

Network support is required on client machine. 

Requires database-specific coding to be done in the middle tier. 

Maintenance of Network Protocol driver becomes costly because it 
requires database-specific coding to be done in the middle tier. 

4)  Thin driver: The thin driver converts JDBC calls directly into the 
vendor-specific database protocol. That is why it is known as thin 
driver. It is fully written in Java language. 

 

Figure- Thin Driver 

Advantage:  

Better performance than all other drivers. 

No software is required at client side or server side. 

Disadvantage: 

Drivers depend on the Database. 

Java Database Connectivity with 5 Steps 

There are 5 steps to connect any java application with the database 
using JDBC. These steps are as follows:  
1. Register the Driver class 

2. Create connection 

3. Create statement 

4. Execute queries 

5. Close connection 

mu
no
tes
.in



   

 
28 

Advance Java 1)  Register the driver class: The forName() method of Class class is 
used to register the driver class. This method is used to dynamically 
load the driver class.  

Syntax of forName() method 

public static void forName(String className)throws ClassNotFound
Exception   

Example to register the OracleDriver class 

Here, Java program is loading oracle driver to esteblish database 
connection. 

Class.forName("oracle.jdbc.driver.OracleDriver");   

2)  Create the connection object: The getConnection() method of 
DriverManager class is used to establish connection with the 
database.  

Syntax of getConnection() method 

1) public static Connection getConnection(String url)throws SQLEx
ception  

2) public static Connection getConnection(String url,String name,Str
ing password)   

throws SQLException   

Example to establish connection with the Oracle database 

Connection con=DriverManager.getConnection(   

"jdbc:oracle:thin:@localhost:1521:xe","system","password");   

3)  Create the Statement object : The createStatement() method of 
Connection interface is used to create statement. The object of 
statement is responsible to execute queries with the database. 

Syntax of createStatement() method 

public Statement createStatement()throws SQLException   

Example to create the statement object 

Statement stmt=con.createStatement();   

4)  Execute the query : The executeQuery() method of Statement 
interface is used to execute queries to the database. This method 
returns the object of ResultSet that can be used to get all the records 
of a table. 

 Syntax of executeQuery() method 

 public ResultSet executeQuery(String sql)throws SQLException   

mu
no
tes
.in



 

 
29 

 

JDBC Example to execute query 
ResultSet rs=stmt.executeQuery("select * from emp");   
while(rs.next()){   
System.out.println(rs.getInt(1)+" "+rs.getString(2));   
}   

5)  Close the connection object : By closing connection object statement 
and ResultSet will be closed automatically. The close() method of 
Connection interface is used to close the connection. 

 Syntax of close() method 
 public void close()throws SQLException   
 Example to close connection 
 con.close();   

2.3 JAVA DATABASE CONNECTIVITY WITH ORACLE 

To connect java application with the oracle database, we need to follow 5 
following steps. In this example, we are using Oracle 10g as the database. 
So we need to know following information for the oracle database:  

Driver class: The driver class for the oracle database is 
oracle.jdbc.driver.OracleDriver. 

Connection URL: The connection URL for the oracle10G database is 
jdbc:oracle:thin:@localhost:1521:xe where jdbc is the API, oracle is the 
database, thin is the driver, localhost is the server name on which oracle is 
running, we may also use IP address, 1521 is the port number and XE is the 
Oracle service name. You may get all these information from the 
tnsnames.ora file.  

Username: The default username for the oracle database is system. 

Password: It is the password given by the user at the time of installing the 
oracle database. 

Create a Table 

Before establishing connection, let's first create a table in oracle database. 
Following is the SQL query to create a table.  

create table emp(id number(10),name varchar2(40),age number(3));   

2.3.1. Example to Connect Java Application with Oracle database 

In this example, we are connecting to an Oracle database and getting data 
from emp table. Here, system and oracle are the username and password 
of the Oracle database. 
import java.sql.*;   
class OracleCon{   
public static void main(String args[]){   

mu
no
tes
.in



   

 
30 

Advance Java try{   
//step1 load the driver class   
Class.forName("oracle.jdbc.driver.OracleDriver");   
   
//step2 create  the connection object   
Connection con=DriverManager.getConnection(   
"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");   
   
//step3 create the statement object   
Statement stmt=con.createStatement();   
   
//step4 execute query   
ResultSet rs=stmt.executeQuery("select * from emp");   
while(rs.next())   
System.out.println(rs.getInt(1)+"  "+rs.getString(2)+"  "+rs.getString(3));   
//step5 close the connection object   
con.close();   
} 
catch(Exception e){ System.out.println(e);}   
}   
}   

The above example will fetch all the records of emp table.  

To connect java application with the Oracle database ojdbc14.jar file is 
required to be loaded.  

Two ways to load the jar file: 

paste the ojdbc14.jar file in jre/lib/ext folder 

set classpath 

1)  paste the ojdbc14.jar file in JRE/lib/ext folder: Firstly, search the 
ojdbc14.jar file then go to JRE/lib/ext folder and paste the jar file here.  

2)  set classpath: There are two ways to set the classpath:  
 temporary 
 permanent 

How to set the temporary classpath: 

Firstly, search the ojdbc14.jar file then open command prompt and write:  
C:>set classpath=c:\folder\ojdbc14.jar;.;   

 

 

mu
no
tes
.in



 

 
31 

 

JDBC How to set the permanent classpath: 
Go to environment variable then click on new tab. In variable name write 
classpath and in variable value paste the path to ojdbc14.jar by appending 
ojdbc14.jar;.; as 
C:\oraclexe\app\oracle\product\10.2.0\server\jdbc\lib\ojdbc14.jar;.; 

2.4  DRIVERMANAGER CLASS 

The DriverManager class acts as an interface between user and drivers. It 
keeps track of the drivers that are available and handles establishing a 
connection between a database and the appropriate driver. The 
DriverManager class maintains a list of Driver classes that have registered 
themselves by calling the method DriverManager.registerDriver().  

Useful methods of DriverManager class 

Method Description 

1) public static void 
registerDriver(Driver driver): 

is used to register the given 
driver with DriverManager. 

2) public static void 
deregisterDriver(Driver driver): 

is used to deregister the given 
driver (drop the driver from the 
list) with DriverManager. 

3) public static Connection 
getConnection(String url): 

is used to establish the 
connection with the specified 
url. 

4) public static Connection 
getConnection(String url,String 
userName,String password): 

is used to establish the 
connection with the specified 
url, username and password. 

2.4.1. Connection interface 

A Connection is the session between java application and database. The 
Connection interface is a factory of Statement, PreparedStatement, and 
DatabaseMetaData i.e. object of Connection can be used to get the object of 
Statement and DatabaseMetaData. The Connection interface provide many 
methods for transaction management like commit(), rollback() etc.  

By default, connection commits the changes after executing queries. 

Commonly used methods of Connection interface: 

1)  public Statement createStatement(): creates a statement object that 
can be used to execute SQL queries. 

2) public Statement createStatement(int resultSetType,int 
resultSetConcurrency): Creates a Statement object that will 
generate ResultSet objects with the given type and concurrency. 

3)  public void setAutoCommit(boolean status): is used to set the 
commit status.By default it is true. 

mu
no
tes
.in



   

 
32 

Advance Java 4)  public void commit(): saves the changes made since the previous 
commit/rollback permanent. 

5)  public void rollback(): Drops all changes made since the previous 
commit/rollback. 

6)  public void close(): closes the connection and Releases a JDBC 
resources immediately. 

2.5  STATEMENT INTERFACE 

The Statement interface provides methods to execute queries with the 
database. The statement interface is a factory of ResultSet i.e. it provides 
factory method to get the object of ResultSet. 

Commonly used methods of Statement interface: 

The important methods of Statement interface are as follows: 

1)  public ResultSet executeQuery(String sql): is used to execute 
SELECT query. It returns the object of ResultSet. 

2)  public int executeUpdate(String sql): is used to execute specified 
query, it may be create, drop, insert, update, delete etc. 

3)  public boolean execute(String sql): is used to execute queries that 
may return multiple results. 

4)  public int[] executeBatch(): is used to execute batch of commands 

2.5.1. Example of Statement interface 

Let’s see the simple example of Statement interface to insert, update and 
delete the record. 
import java.sql.*;   
class FetchRecord{   
public static void main(String args[])throws Exception{   
Class.forName("oracle.jdbc.driver.OracleDriver");   
Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localh
ost:1521:xe","system","oracle");   
Statement stmt=con.createStatement();   
//stmt.executeUpdate("insert into emp765 values(33,'Irfan',50000)");   
//int result=stmt.executeUpdate("update emp765 set name='Vimal',salary=
10000 where id=33");   
int result=stmt.executeUpdate("delete from emp765 where id=33");   
System.out.println(result+" records affected");   
con.close();   
} 
}   

mu
no
tes
.in



 

 
33 

 

JDBC 2.6 RESULTSET INTERFACE 

The object of ResultSet maintains a cursor pointing to a row of a table. 
Initially, cursor points to before the first row. 

By default, ResultSet object can be moved forward only and it is not 
updatable.  

But we can make this object to move forward and backward direction by 
passing either TYPE_SCROLL_INSENSITIVE or 
TYPE_SCROLL_SENSITIVE in createStatment(int,int) method as well as 
we can make this object as updatable by:                                                                               

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSEN
SITIVE,   

                     ResultSet.CONCUR_UPDATABLE);   

Commonly used methods of ResultSet interface 

1) public boolean next(): is used to move the cursor to the one 
row next from the current position. 

2) public boolean previous(): is used to move the cursor to the one 
row previous from the current position. 

3) public boolean first(): is used to move the cursor to the first 
row in result set object. 

4) public boolean last(): is used to move the cursor to the last 
row in result set object. 

5) public boolean absolute(int 
row): 

is used to move the cursor to the 
specified row number in the ResultSet 
object. 

6) public boolean relative(int 
row): 

is used to move the cursor to the 
relative row number in the ResultSet 
object, it may be positive or negative. 

7) public int getInt(int 
columnIndex): 

is used to return the data of specified 
column index of the current row as int. 

8) public int getInt(String 
columnName): 

is used to return the data of specified 
column name of the current row as int. 

9) public String getString(int 
columnIndex): 

is used to return the data of specified 
column index of the current row as 
String. 

10) public String 
getString(String 
columnName): 

is used to return the data of specified 
column name of the current row as 
String. 

 

mu
no
tes
.in



   

 
34 

Advance Java 2.6.1. Example of Scrollable ResultSet 

Let’s see the simple example of ResultSet interface to retrieve the data of 
3rd row. 
import java.sql.*;   
class FetchRecord{   
public static void main(String args[])throws Exception{   
  Class.forName("oracle.jdbc.driver.OracleDriver");   
Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localh
ost:1521:xe","system","oracle");   
Statement stmt=con.createStatement(ResultSet.TYPE_SCROLL_SENSIT
IVE,ResultSet.CONCUR_UPDATABLE);   
ResultSet rs=stmt.executeQuery("select * from emp765");   
  //getting the record of 3rd row   
rs.absolute(3);   
System.out.println(rs.getString(1)+" "+rs.getString(2)+" "+rs.getString(3))
;   
  con.close();   
} 
}   

2.7 PREPAREDSTATEMENT INTERFACE 

The PreparedStatement interface is a subinterface of Statement. It is used to 
execute parameterized query.  

Let's see the example of parameterized query: 

String sql="insert into emp values(?,?,?)";   

As you can see, we are passing parameter (?) for the values. Its value will 
be set by calling the setter methods of PreparedStatement. 

Why use PreparedStatement? 

Improves performance: The performance of the application will be faster 
if you use PreparedStatement interface because query is compiled only 
once.  

How to get the instance of PreparedStatement? 

The prepareStatement() method of Connection interface is used to return 
the object of PreparedStatement. Syntax:  

public PreparedStatement prepareStatement(String query)throws SQLExc
eption{}   

 

 

mu
no
tes
.in



 

 
35 

 

JDBC Methods of PreparedStatement interface 

The important methods of PreparedStatement interface are given below: 

Method Description 

public void setInt(int 
paramIndex, int value) 

sets the integer value to the given 
parameter index. 

public void setString(int 
paramIndex, String value) 

sets the String value to the given 
parameter index. 

public void setFloat(int 
paramIndex, float value) 

sets the float value to the given 
parameter index. 

public void setDouble(int 
paramIndex, double value) 

sets the double value to the given 
parameter index. 

public int executeUpdate() executes the query. It is used for 
create, drop, insert, update, delete etc. 

public ResultSet executeQuery() executes the select query. It returns an 
instance of ResultSet. 

2.7.1  Example of PreparedStatement interface that inserts the record 
First of all create table as given below: 

create table emp(id number(10),name varchar2(50));   
Now insert records in this table by the code given below: 
import java.sql.*;   
class InsertPrepared{   
public static void main(String args[]){   
try{   
Class.forName("oracle.jdbc.driver.OracleDriver");   
   
Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localh
ost:1521:xe","system","oracle");   
   
PreparedStatement stmt=con.prepareStatement("insert into Emp values(?,?
)");   
stmt.setInt(1,101);//1 specifies the first parameter in the query   
stmt.setString(2,"Ratan");   
   
int i=stmt.executeUpdate();   
System.out.println(i+" records inserted");   
   
con.close();   
  }catch(Exception e){ System.out.println(e);}   
}   
}   

mu
no
tes
.in



   

 
36 

Advance Java 2.7.2 Example of PreparedStatement interface that updates the record 
PreparedStatement stmt=con.prepareStatement("update emp set name=? w
here id=?");   
stmt.setString(1,"Sonoo");//1 specifies the first parameter in the query i.e. 
name   
stmt.setInt(2,101);   
  int i=stmt.executeUpdate();   
System.out.println(i+" records updated"); 

2.7.3  Example of PreparedStatement interface that deletes the record 
PreparedStatement stmt=con.prepareStatement("delete from emp where id
=?");   
stmt.setInt(1,101);   
 int i=stmt.executeUpdate();   
System.out.println(i+" records deleted");   

2.7.4 Example of PreparedStatement interface that retrieve the records 
of a table 
PreparedStatement stmt=con.prepareStatement("select * from emp");   
ResultSet rs=stmt.executeQuery();   
while(rs.next()){   
System.out.println(rs.getInt(1)+" "+rs.getString(2));   
}   

2.7.5. Example of PreparedStatement to insert records until user press 
n 
import java.sql.*;   
import java.io.*;   
class RS{   
public static void main(String args[])throws Exception{   
Class.forName("oracle.jdbc.driver.OracleDriver");   
Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localh
ost:1521:xe","system","oracle");   
 PreparedStatement ps=con.prepareStatement("insert into emp130 values(
?,?,?)");   
BufferedReader br=new BufferedReader(new InputStreamReader(System.
in));   
do{   
System.out.println("enter id:");   
int id=Integer.parseInt(br.readLine());   
System.out.println("enter name:");   
String name=br.readLine();   
System.out.println("enter salary:");   
float salary=Float.parseFloat(br.readLine());   

mu
no
tes
.in



 

 
37 

 

JDBC  ps.setInt(1,id);   
ps.setString(2,name);   
ps.setFloat(3,salary);   
int i=ps.executeUpdate();   
System.out.println(i+" records affected");   
   
System.out.println("Do you want to continue: y/n");   
String s=br.readLine();   
if(s.startsWith("n")){   
break;   
}   
}while(true);   
con.close();   
} 
}  

2.8 SUMMARY 

In this chapter we learn the concept of Data Base concept in java using jdbc 
and its different types of Drivers and how to connect the database like 
oracle, SQL, etc.. with java program. Also we will discuss about the 
interfaces like statement, resultset, preparedstatement etc.. 

2.9 QUESTIONS 

1. Write a short note on JDBC. 

2. Why Should We Use JDBC. 

3. Explain Native-API driver. 

4.      Write a short note on Resultset. 
 
5.      Explain PreparedStatement in detail. 
 
6.      Explain JDBC APT components. 
 



 

mu
no
tes
.in



   

 
38 

Advance Java 3 
SERVLETS 

 
Unit Structure: 
3.0  Introduction to Java Servlets 

3.1  Web application architecture in java 
3.2  Web server and web container 

3.3  Methods of GenericServlet class 
3.4  ServletConfig 
3.5  Web Component Communication 

3.6  Introduction to JSP 

3.0 INTRODUCTION TO JAVA SERVLETS 

Today we all are aware of the need of creating dynamic web pages i.e the 
ones which have the capability to change the site contents according to the 
time or are able to generate the contents according to the request received 
by the client. If you like coding in Java, then you know that using Java there 
also exists a way to generate dynamic web pages and that way is Java 
Servlet. 

3.1 WEB APPLICATION ARCHITECTURE IN JAVA 

Web application architecture is a mechanism that gives us a clarification 
that how the connection is established between the client and the server. It 
determines how the components in an application communicate with each 
other. It doesn’t matter what’s is the size and the complexity level of the 
application is, they all follow the same principle only the details may differ. 

In technical terms, when a user makes a request on a website, various 
components of the applications, user interfaces, middleware systems, 
databases, servers, and the browser interact with each other. Web 
Application Architecture is a framework that ties up this relation together 
and maintains the interaction between these components. 

Http protocol and http method 

For HTTP/1.1, the set of common methods are defined below. This set can 
be expanded based on the requirements. The name of these methods is case 
sensitive, and they must be used in uppercase. 

i) GET : This method retrieves information from the given server using 
a given URI. GET request can retrieve the data. It can not apply other 
effects on the data. 

mu
no
tes
.in



 

 
39 

 

Servlets ii) HEAD : This method is the same as the GET method. It is used to 
transfer the status line and header section only. 

iii) POST : The POST request sends the data to the server. For example, 
file upload, customer information, etc. using the HTML forms. 

iv) PUT : The PUT method is used to replace all the current 
representations of the target resource with the uploaded content. 

v)    DELETE : The DELETE method is used to remove all the current 
representations of the target resource, which is given by URI. 

vi) CONNECT : This method establishes a tunnel to the server, which is 
identified by a given URI. 

vii) OPTIONS : This method describes the options of communication for 
the target resource. 

3.2 WEB SERVER AND WEB CONTAINER 

Web Server 

A web server can be characterized as software that receives HTTP requests, 
processes them, and sends back responses. 

A web server is a software program that, as its name implies, serves 
websites to users. It does this by responding to HTTP requests from the 
user’s computer. The response includes HTML content that is sent over the 
internet and displayed in the user’s browser. 

Examples of web servers include Apache, Nginx, Microsoft Internet 
Information Server (IIS). Web Container 

A web container, on the other hand, is an application that includes a web 
server as well as additional    components like a servlet container, Enterprise 
JavaBean (EJB) container, and so forth. 

Examples of web containers include Tomcat, Glassfish, JBoss Application 
Server, or Wildfly. 

The benefit of using a web container is that there are fewer applications to 
maintain and configure. For instance, if your application requires an EJB, 
you can use the JBoss Application Server instead of Tomcat. If you are 
using the Spring framework, you can choose between Spring Source to 
Server or JBoss Application Server to host your Spring apps. 

Servlet Interface 

Servlet interface provides common behavior to all the servlets. Servlet 
interface defines methods that all servlets must implement. 

Servlet interface needs to be implemented for creating any servlet (either 
directly or indirectly). It provides 3 life cycle methods that are used to 
initialize the servlet, to service the requests, and to destroy the servlet and 2 
non-life cycle methods. 

mu
no
tes
.in



   

 
40 

Advance Java Methods of Servlet interface 

There are 5 methods in Servlet interface. The init, service and destroy are 
the life cycle methods of servlet. These are invoked by the web container. 
 Genericservlet  
 GenericServlet class 

 GenericServlet class implements Servlet, ServletConfig and 
Serializable interfaces. It provides the implementation of all the 
methods of these interfaces except the service method. 

 GenericServlet class can handle any type of request so it is protocol- 
independent. 

You may create a generic servlet by inheriting the GenericServlet class and 
providing the implementation of the service method. 

3.3 METHODS OF GENERICSERVLET CLASS 

There are many methods in GenericServlet class. They are as follows: 

1.  Public void init(ServletConfig config) is used to initialize the servlet. 

2.  Public abstract void service(ServletRequest request, 
ServletResponse response) provides service for the incoming request. 
It is invoked at each time when user requests for a servlet. 

3.  Public void destroy() is invoked only once throughout the life cycle 
and indicates that servlet    is being destroyed. 

4.  Public ServletConfig getServletConfig() returns the 
object of ServletConfig. Public String getServletInfo() returns 
information about servlet such as writer, copyright, version etc. 

5. Public void init() it is a convenient method for
 the servlet programmers, now there is no need to call 
super.init(config) 

6. Public ServletContext getServletContext() returns the object of 
ServletContext. 

7. Public String getInitParameter(String name) returns the parameter 
value for the given parameter name. 

8. Public Enumeration getInitParameterNames() returns all the 
parameters defined in the web.xml file. 

9. Public String getServletName() returns the name of the servlet object. 

10. Public void log(String msg) writes the given message in the servlet 
log file. 

11. Public void log(String msg,Throwable t) writes the explanatory 
message in the servlet log file and a stack trace. 

mu
no
tes
.in



 

 
41 

 

Servlets HttpServlet 

Public abstract class HttpServlet extends GenericServlet. Provides an 
abstract class to be subclassed to create an HTTP servlet suitable for a Web 
site. A subclass of HttpServlet must override at least one method, usually 
one of these: doGet , if the servlet supports HTTP GET requests. doPost , 
for HTTP POST requests. 

Servlet Life Cycle  

The web container maintains the life cycle of a servlet instance. Let’s see 
the life cycle of the servlet: 

1) Servlet class is loaded : The classloader is responsible to load the 
servlet class. The servlet class is loaded when the first request for the 
servlet is received by the web container. 

2) Servlet instance is created : The web container creates the instance 
of a servlet after loading the servlet class. The servlet instance is 
created only once in the servlet life cycle. 

3) Init method is invoked : The web container calls the init method only 
once after creating the servlet instance. The init method is used to 
initialize the servlet. It is the life cycle method of the 
javax.servlet.Servlet interface. Syntax of the init method is given 
below: 

 Public void init(ServletConfig config) throws ServletException 

4) Service method is invoked  : The web container calls the service 
method each time when request for the servlet is received. If servlet 
is not initialized, it follows the first three steps as described above 
then calls the service method. If servlet is initialized, it calls the 
service method. Notice that servlet is initialized only once. The syntax 
of the service method of the Servlet interface is given below: 
Public void service(ServletRequest request, ServletResponse 
response) 

 Throws ServletException, IOException 

5) Destroy method is invoked : The web container calls the destroy 
method before removing the servlet instance from the service. It gives 
the servlet an opportunity to clean up any resource for example 
memory, thread etc. The syntax of the destroy method of the Servlet 
interface is given below: 

 Public void destroy() 

3.4 SERVLETCONFIG 

javax.servlet.ServletConfig is an interface as a part of servlet API. For every 
Servlet class in our application, the web container will create one 
ServletConfig object and the web container will pass this object as an 

mu
no
tes
.in



   

 
42 

Advance Java argument to the public void init(ServletConfig config) method of our 
Servlet class object. Some of the important points on ServletConfig are: 

ServletConfig is an object containing some initial parameters or 
configuration information created by Servlet Container and passed to the 
servlet during initialization. 

ServletConfig is for a particular servlet, which means one should store 
servlet-specific information in web.xml and retrieve them using this object. 

ServletContext 

Javax.servlet.ServletConfig is an interface as a part of servlet API. For 
every Servlet class in our application, the web container will create one 
ServletConfig object and the web container will pass this object as an 
argument to the public void init(ServletConfig config) method of our 
Servlet class object. Some of the important points on ServletConfig are: 

ServletConfig is an object containing some initial parameters or 
configuration information created by Servlet Container and passed to the 
servlet during initialization. 

ServletConfig is for a particular servlet, which means one should store 
servlet-specific information in web.xml and retrieve them using this object. 

Differentiate between ServletContext and ServletConfig. 

Sr. 
No. 

ServletConfig ServletContext 

1 ServletConfig is one per 
Servlet 

ServletContext is one per web 
application 

2 It can be used to pass the 
deployment time 

parameters to the servlet 
using during the servlet 

initialization like database 
name, file name, etc 

It can be used to access the Web 
application parameters configured 
in the deployment descriptor file 

(WEB.xml) 

3 It can be used to access the 
ServletContext object. 

It can be used for the inter 
application communication 

between servlets, JSPs and other 
components of a web application. 

4 Can access the 
initialization parameters 

for a servlet instance. 

Can be used to access the server 
information about the container and 
the version of the API it supports. 

 

 

 

mu
no
tes
.in



 

 
43 

 

Servlets  

Servlet Communication 

In general, web application deployment is not at all suggestible to provide 
the complete application logic within a single web resource, it is suggestible 
to distribute the complete application logic over multiple web resources. 

In the above context, to execute the application we must require 
communication between all the web resources, for this, we have to use 
Servlet Communication. In the web application, we are able to provide 
servlet communication in the following three ways: 

 

Browser-Servlet Communication 

In web applications, we will use a browser as a client at the client machine, 
from the browser we will send a request to a servlet available at the server, 
where the servlet will be executed and generate some response to the client 
browser. 

In the above process, we have provided communication between the client 
browser and servlet. So that sending a normal request from the client to the 
server and getting a normal response from the server to the client is an 
example of Browser-Servlet Communication. 

3.5 WEB COMPONENT COMMUNICATION 

The process of providing communication between more than one web 
component available at the server machine is called Web Component 
Communication. 

In general, web-component communication is available in between Servlet-
Servlet, Servlet-Jsp, Servlet-HTML, Jsp-Jsp, Jsp-Servlet, Jsp-HTML, and 
so on. In web applications, we are able to achieve web-component 
communication in the following 2 ways: 
i. Include Mechanism 
ii. Forward Mechanism 

 

mu
no
tes
.in



   

 
44 

Advance Java Applet Servlet Communication 

HTML exhibits high performance by taking less time to load in the browser. 
However, when we use HTML page for important user details, by default, 
all the parameters that are passed appended in the URL. This compromises 
with the security. On the other hand, applet takes more time to load but there 
is no problem with Java security. This is an advantage of this technique. 

Applet is a compiled Java class that can be sent over the network. Applets 
are an alternative to HTML form page for developing websites. HTML form 
gives good performance, takes less time to load but has poor security. 
Whereas, Applets give poor performance, take time to load but have good 
security. 

Session simply means a particular interval of time. 

Session Tracking is a way to maintain state (data) of an user. It is also known 
as session management in servlet. 

Http protocol is a stateless so we need to maintain state using session 
tracking techniques. Each time user requests to the server, server treats the 
request as the new request. So we need to maintain the state of an user to 
recognize to particular user. 

HTTP is stateless that means each request is considered as the new request. 
It is shown in the figure given below: 

 

Why use Session Tracking? 

To recognize the user, it is used to recognize the particular user. 

Your session is set to 20 minutes in web.xml. 

Session Tracking employs Four Different techniques 
A. Cookies 

B. Hidden Form Field 

C. URL Rewriting 

D. HttpSession 

mu
no
tes
.in

https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language


 

 
45 

 

Servlets A. Cookies : Cookies are little pieces of data delivered by the web server 
in the response header and kept by the browser. Each web client can 
be assigned a unique session ID by a web server. Cookies are used to 
keep the session going. Cookies can be turned off by the client. 

B. Hidden Form Field : The information is inserted into the web pages 
via the hidden form field, which is then transferred to the server. 
These fields are hidden from the user’s view. 

        Illustration: 

 < input type= 'hidden' name='session' value='12345'> 

C. URL Rewriting : With each request and return, append some more 
data via URL as request parameters. URL rewriting is a better 
technique to keep session management and browser operations in 
sync. 

D. HttpSession : A user session is represented by the HttpSession object. 
A session is established between an HTTP client and an HTTP server 
using the HttpSession interface. A user session is a collection of data 
about a user that spans many HTTP requests. 

3.6 INTRODUCTION TO JSP 

JSP (JavaServer Pages) is a technology that enables developers to create 
dynamic, data-driven web pages using Java. JSP is a server-side technology 
that generates HTML, XML, or other types of content dynamically based 
on data that is retrieved from a database or other sources. 

JSP pages are a combination of HTML or XML markup and Java code that 
is embedded in special tags. The Java code is executed on the server-side 
and generates dynamic content that is sent to the client browser as HTML 
or other types of content. 

JSP pages can be used to implement a wide range of web applications, from 
simple forms and pages to complex enterprise applications that require 
integration with databases, web services, and other technologies. 

Life cycle of JSP 

A Java Server Page life cycle is defined as the process that started with its 
creation which later translated to a servlet and afterward servlet lifecycle 
comes into play. This is how the process goes on until its destruction. 

mu
no
tes
.in



   

 
46 

Advance Java 

 

Translation of JSP page to Servlet 
Compilation of JSP page(Compilation of JSP into test.java)  
Classloading (test.java to test.class) 
Instantiation(Object of the generated Servlet is created)  
Initialization(jspInit() method is invoked by the container)  
Request processing(_jspService()is invoked by the container)  
JSP Cleanup (jspDestroy() method is invoked by the container) 

Translation of JSP page to Servlet : 
This is the first step of the JSP life cycle. This translation phase deals with 
the Syntactic correctness of JSP. Here test.jsp file is translated to test.java. 

Compilation of JSP page : 
Here the generated java servlet file (test.java) is compiled to a class file 
(test.class).  

Classloading : 
Servlet class which has been loaded from the JSP source is now loaded into 
the container. 

 Instantiation : 
Here an instance of the class is generated. The container manages one or 
more instances by providing responses to requests. 

Initialization : 
jspInit() method is called only once during the life cycle immediately after 
the generation of Servlet instance from JSP. 

Request processing : 
jspService() method is used to serve the raised requests by JSP. It takes 
request and response objects as parameters. This method cannot be 
overridden. 

mu
no
tes
.in



 

 
47 

 

Servlets JSP Cleanup : 
In order to remove the JSP from the use by the container or to destroy the 
method for servlets jspDestroy()method is used. This method is called once, 
if you need to perform any cleanup task like closing open files, releasing 
database connections jspDestroy() can be overridden. 

Jsp implicit object scope 
Implicit object request has the ‘request’ scope. ‘session’ scope means, the 
JSP object is accessible from pages that belong to the same session from 
where it was created. The JSP object that is created using the session scope 
is bound to the session object. Implicit object session has the ‘session’ 
scope. 

JSP directives 
In JSP (JavaServer Pages), directives are special instructions that provide 
information to the JSP container or web server about how to process the JSP 
file during translation and execution. Directives are not executed as part of 
the response to the client's request, but they are used to control the 
translation and execution of the JSP page. 

There are three types of JSP directives: 

Page Directive: The page directive is used to define the attributes of the 
JSP page, such as error handling, scripting language, session management, 
and buffer size. It is declared at the beginning of the JSP file using the <%@ 
%> syntax. 

Include Directive: The include directive is used to include a file in the 
current JSP page. It is declared using the <%@ include %> syntax. 

Taglib Directive:  The taglib directive is used to specify the location of 
custom tag libraries that are used in the JSP page. It is declared using the 
<%@ taglib %> syntax. 

Directives provide a powerful mechanism to control the behavior of the JSP 
container and the JSP page during translation and execution. They enable 
JSP developers to specify various settings and configurations that can affect 
the performance and behavior of the JSP application. 

JSP Scripting elements 

JSP (JavaServer Pages) scripting elements are used to include Java code in 
a JSP page. There are three types of JSP scripting elements: 

Expression: The expression element is used to include a Java expression in 
the JSP page that is evaluated at runtime and the result is included in the 
response. It is declared using the <%=%> syntax. For example: 

<p>The current time is <%= new java.util.Date() %></p> 

In this example, the expression <%= new java.util.Date() %> returns the 
current time and is included in the response. 

mu
no
tes
.in



   

 
48 

Advance Java Declaration: The declaration element is used to declare variables and 
methods that can be used in the JSP page. It is declared using the <%! %> 
syntax. For example: 

<%! int count = 0; %> 

In this example, a variable named count is declared and initialized to 0. 

Scriptlet: The scriptlet element is used to include Java code in the JSP page 
that is executed at runtime. It is declared using the <% %> syntax. For 
example: 

<% if (count > 0) { %> <p>The count is <%= count %></p> <% } %> 

In this example, the if statement is used to conditionally include a paragraph 
tag with the value of the count variable in the response. 

JSP scripting elements provide a flexible and powerful mechanism to 
include Java code in JSP pages, which enables developers to dynamically 
generate content and interact with databases and other resources. However, 
it is important to use scripting elements judiciously and maintain the 
separation of concerns between the presentation and business logic layers 
of the application. 

JSP Action Tags 

JSP (JavaServer Pages) action tags are special tags that are used to perform 
specific actions in a JSP page, such as forwarding to another resource, 
including content from another resource, setting request parameters, and 
defining custom tag libraries.  

There are several JSP action tags available, including: 

<jsp:forward>: The <jsp:forward> tag is used to forward the request from 
the current JSP page to another resource, such as another JSP page or a 
servlet. It is typically used when a request needs to be processed by multiple 
resources. 

<jsp:include>: The <jsp:include> tag is used to include content from 
another resource, such as another JSP page or a static HTML file, in the 
current JSP page. It is typically used to reuse common content across 
multiple pages. 

<jsp:param>: The <jsp:param> tag is used to set request parameters that 
are passed to the included or forwarded resource. It is typically used to pass 
data between different components of the application. 

mu
no
tes
.in



 

 
49 

 

Servlets <jsp:useBean>: The <jsp:useBean> tag is used to instantiate and initialize 
a JavaBean component that can be used in the JSP page. It is typically used 
to encapsulate complex business logic in a separate component. 

<jsp:setProperty>   and   <jsp:getProperty>:   The   <jsp:setProperty>   and 

<jsp:getProperty> tags are used to set and get properties of a JavaBean 
component that is used in the JSP page. They are typically used to access 
and modify data stored in the JavaBean. 

Custom Tag Libraries: JSP also allows you to define custom tag libraries, 
which are sets of custom tags that can be used in JSP pages. Custom tag 
libraries are typically used to encapsulate complex functionality and 
provide a higher-level abstraction for common tasks. 

JSP action tags provide a powerful mechanism for controlling the behavior 
of JSP pages and interacting with other components of the application. They 
enable developers to create reusable components, encapsulate business 
logic, and manage the flow of requests and responses between different 
resources. 

Custom Tags in JSP 

Custom tags are a powerful feature of JSP (JavaServer Pages) that enable 
developers to define their own tags that can be used in JSP pages. Custom 
tags can encapsulate complex functionality and provide a higher-level 
abstraction for common tasks, which can improve the clarity, 
maintainability, and reusability of JSP pages. 

Custom tags can be defined using the JSP Standard Tag Library (JSTL) or 
by creating a custom tag library. To create a custom tag library, you define 
a set of tag handlers that implement the behavior of the custom tags. A tag 
handler is a Java class that extends a JSP tag handler base class and 
overrides its methods to implement the behavior of the custom tag. The JSP 
container invokes the methods of the tag handler during the processing of 
the JSP page. 

There are two types of custom tags: 

Simple Custom Tags: Simple custom tags are implemented using a single 
tag handler class that implements the behavior of the custom tag. Simple 
custom tags are used to encapsulate simple functionality, such as formatting 
or validation. 

Composite Custom Tags: Composite custom tags are implemented using 
multiple tag handler classes that work together to implement the behavior 
of the custom tag. Composite custom tags are used to encapsulate complex 
functionality, such as a data grid or a chart. 

mu
no
tes
.in



   

 
50 

Advance Java To use a custom tag in a JSP page, you first declare the custom tag library 
using the <%@taglib%> directive, which specifies the URI of the custom 
tag library and an alias for the library. You can then use the custom tags in 
the JSP page using the tag name and any attributes that are defined for the 
tag. 

Custom tags provide a powerful mechanism for creating reusable 
components in JSP pages, which can improve the maintainability, 
scalability, and performance of web applications. However, it is important 
to use custom tags judiciously and maintain the separation of concerns 
between the presentation and business logic layers of the application. 

 UNIT END EXERCISES 

1. What are servlets? Explain the request/response paradigm of servlet 

2. Explain different phases of Servlet Life Cycle. 

3. Write a short note on GenericServlet Class. 

4. Differentiate between ServletConfig and ServletContext. 

5. Differentiate between JSP and Servlet 

6. Differentiate between JSP Include directives and JSP Include action. 

7. What is page directives? Explain page directives and its attributes. 



 mu
no
tes
.in



   
51 

4 
JAVA BEANS 

 
Unit Structure: 
4.1.  Objective 

4.2.  Introduction 

4.3.  JavaBeans Properties 

4.4.  Summary 

4.5.  Reference for further reading 

4.6.  Unit End Exercises 

4.1. OBJECTIVE 

● To understand the concept of java bean. 

● To understand the properties of java bean with example. 

4.2. INTRODUCTION 

Java Bean:- 

● A Java Bean is a software component that has been designed to be 
reusable in a variety of different environments. 

● There is no restriction on the capability of a Bean. It may perform a 
simple function, such as checking the spelling of a document, or a 
complex function, such as forecasting the performance of a stock 
portfolio. 

● A Bean may be visible to an end user. One example of this is a button 
on a graphical user interface. A Bean may also be invisible to a user. 
Software to decode a stream of multimedia information in real time. 

Advantages of Java Beans:- 

● Since java bean is a reusable component, it implies Java's "write-once, 
run-anywhere" paradigm. It is used in distributed environments. 

● The properties, events, and methods of a Bean that are exposed to an 
application builder tool can be controlled. 

● A Bean may be designed to operate correctly in different 
environments. 

● Auxiliary software can be provided to help a person configure a Bean. 
This software is only needed when the design-time parameters for that 

mu
no
tes
.in



   

 
52 

Advance Java component are being set. It does not need to be included in the run-
time environment. 

● The configuration settings of a Bean can be saved in persistent storage 
and restored at a later time. 

● A Bean may register to receive events from other objects and can 
generate events that are sent to other objects. 

JAR Files:- 

●  A JAR file is a Java archive file, which allows you to efficiently 
deploy a set of classes and their associated resources. 

● For example, A multimedia application may uses various sound and 
image files. A set of Beans can control how and when this information 
is presented. All of these pieces can be placed into one JAR file. 

● The elements in a JAR file are compressed, which makes 
downloading a JAR file much faster than separately downloading 
several uncompressed files. 

● Digital signatures may also be associated with the individual elements 
in a JAR file, which allows a consumer to be sure that these elements 
were produced by a specific organization. 

● To generate jar file, the syntax is:- jar options files 

Creating a JAR File 

● The following command creates a JAR file named Xyz.jar that 
contains all of the .class and .gif files in the current directory: 

  jar cf Xyz.jar *.class *.gif 

Jar Option are:- 
c:- A new archive is to be created. 

C:- Change directories during command execution. 

f:- The first element in the file list is the name of the archive that is to 
be created or accessed. 

m:-The second element in the file list is the name of the external 
manifest file. 

M:-Manifest file not created. 

t:-The archive contents should be tabulated. 

u:-Update existing JAR file. 

v:-Verbose output should be provided by the utility as it executes. 

x:-Files are to be extracted from the archive. 

0:-Do not use compression. 

mu
no
tes
.in



 

 
53 

 

Java Beans ● If a manifest file such as Yxz.mf is available, it can be used with the 
following command: 

  jar cfm Xyz.jar Yxz.mf *.class *.gif 
● The following command lists the contents of Xyz.jar: 
  jar tf Xyz.jar 
● The following command extracts the contents of Xyz.jar and places 

those files in the current directory: 
  jar xf Xyz.jar 
● The following command adds the file file1.class to Xyz.jar: 
  jar -uf Xyz.jar file1.class 
● The following command adds all files below directoryX to Xyz.jar: 
  jar -uf Xyz.jar -C directoryX * 
Manifest Files:- 
● A manifest file indicates which of the components in a JAR file are 

Java Beans. 
● An example of a manifest file is provided in the following listing. It 

defines a JAR file that contains four .gif files and one .class file. The 
last entry is a Bean. 
Name: sunw/demo/slides/slide0.gif 
Name: sunw/demo/slides/slide1.gif 
Name: sunw/demo/slides/slide2.gif 
Name: sunw/demo/slides/slide3.gif 
Name: sunw/demo/slides/Slides.class 

Java-Bean: True 
● A manifest file may reference several .class files. If a .class file is a 

Java Bean, its entry must be immediately followed by the line "Java-
Bean: True". 

Introspection:- 
●  Introspection is the process of analyzing a Bean to determine its 

capabilities. 
● It allows an application builder tool to present information about a 

component to a software designer. 
● There are two ways in which the developer of a Bean can indicate 

which of its properties, events, and methods should be exposed by an 
application builder tool. 
○ In the first method, simple naming conventions are used. These 

allow the introspection mechanisms to infer information about 
a Bean. 

○ In the second way, an additional class is provided that explicitly 
supplies this information. 

● The following sections indicate the design patterns for properties and 
events that enable the functionality of a Bean to be determined. 

 

mu
no
tes
.in



   

 
54 

Advance Java 4.3 JAVABEANS PROPERTIES 

Design Patterns for Properties:- 

● Java Bean consists of properties, methods and events, which is called 
as design patterns. 

● A property is a subset of a Bean's state. The values assigned to the 
properties determine the behavior and appearance of that component. 

● There are three types of properties: simple, Boolean, and indexed. 

1. Simple Properties 

● A simple property has a single value. 

● Design pattern for simple property is: 

  public T getN( ); 

  public void setN(T arg); 

● where N is the name of the property and T is its type. 

● A read/write property has both of these methods to access its 
values. 

● A read-only property has only a get method. A write-only 
property has only a set method. 

The following listing shows a class that has two read/write simple 
properties: 

public class Student 
{ 
          private int rollno,marks; 
          public int getRollno( ) 
          { 
                    return rollno; 
          } 
          public void setRollno(int d) 
          { 
                    rollno = d; 
           } 
          public int getMarks( ) 
          { 
                    return marks; 
          } 
          public void setMarks(int h) 
          { 
                    marks = h; 
           } 
} 

 

mu
no
tes
.in



 

 
55 

 

Java Beans 2. Boolean Properties:- 

● A Boolean property has a value of true or false. 

  Design patterns are:- 

  public boolean isN( ); 
  public boolean getN( ); 
  public void setN(boolean value); 
  Where N is the name of the property: 

● Either the first or second pattern can be used to retrieve the 
value of a Boolean property. 

The following listing shows a class that has one Boolean property: 

public class Line 
{ 
          private boolean dotted = false; 
          public boolean isDotted( ) 
          { 
                    return dotted; 
           } 
          public void setDotted(boolean dotted) 
          { 
                    this.dotted = dotted; 
          } 
} 

3. Indexed Properties:- 

● An indexed property consists of multiple values. 

● Design patterns are:- 
   public T getN(int index); 
  public void setN(int index, T value); 
  public T[ ] getN( ); 
  public void setN(T values[ ]); 

● Where N is the name of the property and T is its type. 

The following listing shows a class that has one read/write indexed 
property: 

 

 

mu
no
tes
.in



   

 
56 

Advance Java public class PieChart 
{ 
          private double data[ ]; 
          public double getData(int index) 
         { 
                    return data[index]; 
          } 
          public void setData(int index, double value) 
          { 
                    data[index] = value; 
          } 
          public double[ ] getData( ) 
         { 
                   return data; 
          } 
          public void setData(double[ ] values) 
          { 
                   data = new double[values.length]; 
                   System.arraycopy(values, 0, data, 0, values.length); 
         } 
} 

4. Design Patterns for Events:- 

● Beans use the delegation event model. 

● Beans can generate events and send them to other objects. 

● Design patterns are:- 

   public void addTListener(TListener eventListener); 

  public void addTListener(TListener eventListener) throws 
TooManyListeners; 

  public void removeTListener(TListener eventListener); 

●  Where T is the type of the event. 

● These methods are used by event listeners to register an interest 
in events of a specific type. 

● The first pattern indicates that a Bean can multicast an event to 
multiple listeners. 

● The second pattern indicates that a Bean can unicast an event to 
only one listener. 

● The third pattern is used by a listener when it no longer wishes 
to receive a specific type of event notification from a Bean. 

 

mu
no
tes
.in



 

 
57 

 

Java Beans The following listing outlines a class that notifies other objects when a 
temperature value moves outside a specific range. 

public class Thermometer 
{ 
   public void addTemperatureListener(TemperatureListener tl)                            
 { 
                     ... 
      } 
      public void removeTemperatureListener(TemperatureListener tl) 
      { 
                     ... 
      } 
} 

5.  Bound Properties:- 

● A Bean that has a bound property generates an event when the 
property is changed. 

● The event is of type PropertyChangeEvent and is sent to objects 
that previously registered an interest in receiving such 
notifications. 

● Sometimes when a Bean property changes, another object might 
need to be notified of the change, and react to the change. 
Whenever a bound property changes, notification of the change 
is sent to interested listeners. 

● The accessor methods for a bound property are defined in the 
same way as those for simple properties. However, you also 
need to provide the event listener registration methods 
forPropertyChangeListener classes and fire a 
PropertyChangeEvent event to the PropertyChangeListener 
objects by calling their propertyChange methods. 

● Class:- 

○ PropertyChangeEvent class:- The PropertyChangeEvent 
class encapsulates property change information, and is 
sent from the property change event source to each object 
in the property change listener list with the 
propertyChange method. 

● Methods:- 

○ public void 
addPropertyChangeListener(PropertyChangeListener 
listener):- 

■ Add a PropertyChangeListener to the listener list. 
The listener is registered for all properties. 

mu
no
tes
.in



   

 
58 

Advance Java ■ public void firePropertyChange(String 
propertyName, Object oldValue, Object 
newValue):- Report a bound property update to any  
registered listeners. No event is fired if old and new 
are equal and non-null. 

■ public void 
removePropertyChangeListener(PropertyChang
eListener listener):-Remove a 
PropertyChangeListener from the listener list. This 
removes a PropertyChangeListener that was 
registered for all properties. 

6. Constrained Properties:- 

● The java bean component allows for the possibility that one or 
more listener objects might not allow certain changes to the 
value of a property. This is known as Constrained properties. 

● A Bean that has a constrained property generates an event when 
an attempt is made to change its value. The event is of type 
PropertyChangeEvent. It is sent to objects that previously 
registered an interest in receiving such notifications. Those 
other objects have the ability to veto the proposed change. 

● Constrained properties are more complicated than bound 
properties because they also support property change listeners 
which happen to be vetoers. 

● The following operations in the setXXX method for the 
constrained property must be implemented in this order: 

○ Save the old value in case the change is vetoed. 

○ Notify listeners of the new proposed value, allowing them 
to veto the change. 

○ If no listener vetoes the change (no exception is thrown), 
set the property to the new value. 

● Class:- 

○ VetoableChangeSupport:-This class can be used by 
beans that support constrained properties. You can use an 
instance of this class as a member field of your bean and 
delegate various work to it. 

● Methods:- 

○ public void 
addVetoableChangeListener(VetoableChangeListener 
listener):-Add a VetoableListener to the listener list. The 
listener is registered for all properties. 

mu
no
tes
.in



 

 
59 

 

Java Beans ○ public void fireVetoableChange(String propertyName, 
Object oldValue, Object newValue) throws 
PropertyVetoException:- Report a vetoable property 
update to any registered listeners. If anyone vetos the 
change, then fire a new event reverting everyone to the 
old value and then rethrow the PropertyVetoException. 
No event is fired if old and new are equal and non-null. 

○ public void 
removeVetoableChangeListener(VetoableChangeListe
ner listener):-Remove a VetoableChangeListener from 
the listener list. This removes a VetoableChangeListener 
that was registered for all properties. 

7.  BeanInfo Interface:- 

● A bean implementor who wishes to provide explicit information 
about their bean may provide a BeanInfo class that implements 
this BeanInfo interface and provides explicit information about 
the methods, properties, events, etc, of their bean. 

● This interface is used to determine design patterns. 

● This interface defines several methods, including these: 

○ PropertyDescriptor[ ] getPropertyDescriptors( ):- 
returns an array of PropertyDescriptors describing the 
editable properties supported by this bean. 

○ EventSetDescriptor[ ] getEventSetDescriptors( ):- 
returns  an array of EventSetDescriptors describing the 
kinds of events fired by this bean. 

○ MethodDescriptor[ ] getMethodDescriptors( ):- 
returns an array of MethodDescriptors describing the 
externally visible methods supported by this bean. 

● By implementing these methods, a developer can designate 
exactly what is presented to a user. 

● SimpleBeanInfo is a class that provides default 
implementations of the BeanInfo interface, including the three 
methods just shown. 

○ You may extend this class and 

○ override one or more of them. 

● Example:-The following example shows how this is done for 
the Colors 

● Bean. This bean displays a colored ellipse which changes its 
color randomly and shape to rectangle. ColorsBeanInfo is a 
subclass of SimpleBeanInfo. 

mu
no
tes
.in



   

 
60 

Advance Java ● It overrides getPropertyDescriptors( ) in order to designate 
which properties are presented to a Bean user. This method 
creates a PropertyDescriptor object for the rectangular 
property. The PropertyDescriptor constructor that is used is 
shown here: 

● PropertyDescriptor(String property, Class beanCls) throws  
IntrospectionException. 

● Here, the first argument is the name of the property, and the 
second argument is the class of the Bean. 

// A Bean information class. 
  
package sunw.demo.colors; 
import java.beans.*; 
   
public class ColorsBeanInfo extends SimpleBeanInfo 
{ 
          public PropertyDescriptor[] getPropertyDescriptors( ) 
          { 
                    try 
                    { 
                     PropertyDescriptor rectangular = new 
                     PropertyDescriptor("rectangular", 
Colors.class); 
                     PropertyDescriptor pd[] = {rectangular}; 
                     return pd; 
                    } 
                    catch(Exception e) 
                     { 
                     } 
                    return null; 
           } 
} 

● You must compile this file from the BDK\\demo directory or 
set CLASSPATH so that it includes c:\\bdk\\demo. If you don't, 
the compiler won't find the Colors.class file properly. 

● After this file is successfully compiled, the colors.mft file can 
be updated, as shown here: 

   Name: sunw/demo/colors/ColorsBeanInfo.class 

  Name: sunw/demo/colors/Colors.class 

  Java-Bean: True 

8.  Persistence:- 

● Persistence is the ability to save a Bean to nonvolatile storage 
and retrieve it at a later time. 

mu
no
tes
.in



 

 
61 

 

Java Beans ● In the first case, we can manually save the bean by selecting 
File/Save menu from the menu bar of the bean box. This allows 
you to specify the name of a file to which the beans and their 
configuration parameters should be saved. To restore, go to the 
menu bar and select File/Load. 

● Example:- 

○ Let us first see how the BDK allows you to save a set of 
Beans that have been configured and connected together 
to form an application.Suppose we have two beans colors 
and TickTock. The rectangular property of the Colors 
Bean was changed to true, and the interval property of the 
TickTock Bean was changed to one second. 

○ To save the application, go to the menu bar of the 
BeanBox and select File  Save. A dialog box should 
appear, allowing you to specify the name of a file to which 
the Beans and their configuration parameters should be 
saved. Supply a filename and click the OK button on that 
dialog box. Exit from the BDK. 

○ Start the BDK again. To restore the application, go to the 
menu bar of the BeanBox and select File | Load. A dialog 
box should appear, allowing you to specify the name of 
the file from which an application should be restored. 
Supply the name of the file in which the application was 
saved, and click the OK button. 

○ Your application should now be functioning. 

● In the second case, object serialization is used. To do this, the 
bean class must implement a java.io.serializable interface. 

● The object serialization capabilities provided by the Java class 
libraries are used to provide persistence for Beans. 

● If a Bean inherits directly or indirectly from 
java.awt.Component, it is automatically serializable, because 
that class implements the java.io.Serializable interface. If a 
Bean does not inherit an implementation of the Serializable 
interface, you must provide this yourself. Otherwise, containers 
cannot save the configuration of your component. 

● The transient keyword can be used to designate data members 
of a Bean that should not be serialized. 

 9.  The Java Beans API:- 

● The Java Beans functionality is provided by a set of classes and 
interfaces in the java.beans package. 

 

mu
no
tes
.in



   

 
62 

Advance Java The Interfaces Defined in java.beans: 

● AppletInitializer:- Methods in this interface are used to 
initialize Beans that are also applets. 

● BeanInfo:- This interface allows a designer to specify 
information about the properties, events, and methods of a 
Bean. 

● Customizer:-This interface allows a designer to provide a 
graphical user interface through which a Bean may be 
configured. 

● DesignMode:- Methods in this interface determine if a Bean is 
executing in design mode. 

● PropertyChangeListener:-A method in this interface is 
invoked when a bound property is changed. 

● PropertyEditor:- Objects that implement this interface allow 
designers to change and display property values. 

● VetoableChangeListener:-A method in this interface is 
invoked when a constrained property is changed. 

● Visibility:-Methods in this interface allow a Bean to execute in 
environments where a graphical user interface is not available. 

10.  The Classes Defined in java.beans:- 

● BeanDescriptor:-This class provides information about a 
Bean. It also allows you to associate a customizer with a Bean. 

● Beans:-This class is used to obtain information about a Bean. 

● EventSetDescriptor:-Instances of this class describe an event 
that can be generated by a Bean. 

● IndexedPropertyDescriptor:- Instances of this class describe 
an indexed property of a Bean. 

● FeatureDescriptor:-This is the superclass of the 
PropertyDescriptor,EventSetDescriptor, and MethodDescriptor 
classes. 

● IntrospectionException:-An exception of this type is 
generated if a problem occurs when analyzing a Bean. 

● Introspector:- This class analyzes a Bean and constructs a 
BeanInfo object that describes the component. 

● MethodDescriptor:-Instances of this class describe a method 
of a Bean. 

mu
no
tes
.in



 

 
63 

 

Java Beans ● ParameterDescriptor:-Instances of this class describe a 
method parameter. 

● PropertyChangeEvent:-This event is generated when bound 
or constrained properties are changed. It is sent to objects that 
registered an interest in these events and implement either the 
PropertyChangeListener or VetoableChangeListener interfaces. 

● Example:- The following program illustrates the Introspector, 
BeanDescriptor, 

○ PropertyDescriptor, and EventSetDescriptor classes 
and the BeanInfo interface. It Lists the properties and 
events of the Colors Bean. 

//Show properties and events. 

package sunw.demo.colors; 

import java.awt.*; 

import java.beans.*; 

  

  public class IntrospectorDemo 

           { 

           public static void main(String args[ ]) 

                     { 

                     try { 

Class c = Class.forName("sunw.demo.colors.Colors"); 

BeanInfo beanInfo = Introspector.getBeanInfo(c); 

BeanDescriptor beanDescriptor =beanInfo.getBeanDescriptor( ); 

System.out.println("Bean name = " +beanDescriptor.getName( )); 

System.out.println("Properties:"); 

PropertyDescriptor propertyDescriptor[ ]=                                                   
   beanInfo.getPropertyDescriptors(); 

  

  for(int i = 0; i < propertyDescriptor.length; i++) 

           { 

           System.out.println("\\t" +propertyDescriptor[i].getName( )); 

           } 

mu
no
tes
.in



   

 
64 

Advance Java            System.out.println("Events:"); 

           EventSetDescriptor eventSetDescriptor[] = 

                     beanInfo.getEventSetDescriptors(); 

  

  for(int i = 0; i < eventSetDescriptor.length; i++) 

           { 

           System.out.println("\\t" +eventSetDescriptor[i].getName()); 

           } 

                               } 

                     catch(Exception e) { 

                     System.out.println("Exception caught. " + e); 

                     } 

           }                          

  } 

The output from this program is the following: 

Bean name = Colors 

Properties: 

rectangular 

Events: 

propertyChange 

mouseMotion 

focus , mouse, inputMethod, key, component. 

4.4. SUMMARY 

● JavaBeans is a portable, platform-independent model written in Java 
Programming Language. Its components are referred to as beans.  

● A JavaBean property can be accessed by the user of the object. 

● JavaBeans components are built purely in Java, hence are fully 
portable to any platform 

● JavaBeans is pretty compatible, there isn’t any new complicated 
mechanism for registering components with the run-time system. 

mu
no
tes
.in



 

 
65 

 

Java Beans 4.5. REFERENCE FOR FURTHER READING 

1. Herbert Schildt, Java2: The Complete Reference, Tata McGraw-
Hill,5th Edition 

2. Joe Wigglesworth and Paula McMillan, Java Programming: 
Advanced Topics, Thomson Course Technology (SPD) ,3rd Edition 

4.6. UNIT END EXERCISES 

1. What are Java Beans? What are the advantages of using Java Beans? 

2. What are JAR files? What are the options available with the JAR 
files? List any five options. 

3. What is meant by the Design Pattern of the Beans? What are the 
property types that support design patterns? 

4. Explain Beanlnfo Interface briefly. And what are the different 
Descriptors that contain in Beanlnfo classes 

5. Define manifest file of Beans & explain the concept of Introspection 
of the Bean. 

 

 

 

 

mu
no
tes
.in



   

 
66 

Advance Java 5 
STRUTS 2 PART-I 

Unit Structure: 
5.1  Objective 
5.2  Introduction 
5.3 Basic MVC Architecture,  
5.4 Struts 2 framework features,  
5.5 Struts 2 MVC pattern,  
5.6 Request life cycle, Examples,  
5.7 Configuration Files 
5.8 Actions 
5.9 Summary 
5.10 Reference for further reading 
5.11 Unit End Exercises 

5.1 OBJECTIVE 

1. Building applications on the web using struts 2. 
2. Using web frameworks.  
3. To understand and explore The Struts 2 framework. 

5.2 INTRODUCTION 

● Struts is an application development framework that is designed for 
and used with the popular J2EE platform.  

● It cuts time out of the development process and makes developers 
more productive by providing them a series of tools and components 
to build applications with.  

● Struts falls under the Jakarta subproject of the Apache Software 
Foundation and comes with an Open Source license. 

● The struts framework is an open source framework for creating well-
structured web based applications.  

● The struts framework is based on the Model View Controller (MVC) 
paradigm which distinctly separates all the three layers - Model (state 
of the application), View (presentation) and Controller (controlling 
the application flow).  

● This makes struts different from conventional JSP applications where 
sometimes logic, flow and UI are mingled in a Java Server Page. 

mu
no
tes
.in



 

 
67 

 

Struts 2 Part-I ● The struts framework is a complete web framework as it provides 
complete web form components, validators, error handling, 
internationalization, tiles and more. Struts framework provides its 
own Controller component.  

● Struts can integrate well with Java Server Pages (JSP), Java Server 
Faces (JSF), JSTL, Velocity templates and many other presentation 
technologies for View.  

● For Model, Struts works great with data access technologies like 
JDBC, Hibernate, EJB. 

● Struts: a collection of Java code designed to help you build solid 
applications while saving time. It provides the basic skeleton and 
plumbing;  

● Second, the benefit of using a framework is that it allows your code 
to be highly platform independent. For example, the same Struts code 
should work under Tomcat on an old Windows machine as runs using 
Weblogic on Linux or Solaris in production. 

5.3 BASIC MVC ARCHITECTURE,  
● Struts is based on the time-proven Model-View-Controller (MVC) 

design pattern.  

● The MVC pattern is widely recognized as being among the most well-
developed and mature design patterns in use.  

● By using the MVC design pattern, processing is broken into three 
distinct sections aptly named the Model, the View, and the Controller.  

These are described in the following subsections: 

A) Model Components 

● Model components provide a "model" of the business logic or data 
behind a Struts program. For example, in a Struts application that 
manages customer information, it may be appropriate to have a 
"Customer" Model component that provides program access to 
information about customers. 

● It's very common for Model components to provide interfaces to 
databases or back-end systems. For example, if a Struts application 
needs to access employee information that is kept in an enterprise HR 
information system, it might be appropriate to design an "Employee" 
Model component that acts as an interface between the Struts 
application and the HR information system. 

● Model components are generally standard Java classes. There is no 
specifically required format for a Model component, so it may be 
possible to reuse Java code written for other projects. 

B) View Components 

● View components are those pieces of an application that present 
information to users and accept input. In Struts applications, these 
correspond to Web pages. 

mu
no
tes
.in



   

 
68 

Advance Java ● View components are used to display the information provided by 
Model components. For example, the "Customer" Model component 
needs a View component to display its information. Usually, there 
will be one or more View components for each Web page in a Struts 
application. 

● View components are generally built using JavaServer Page files. 
Struts provides a large number of "JSP Custom Tags" which extend 
the normal capabilities of JSP and simplify the development of View 
components. 

C) Controller Components 

● Controller components coordinate activities in the application.  

● This may mean taking data from the user and updating a database 
through a Model component, or it may mean detecting an error 
condition with a back-end system and directing the user through 
special error processing.  

● Controller components accept data from the users, decide which 
Model components need to be updated, and then decide which View 
component needs to be called to display the results. 

● One of the major contributions of Controller components is that they 
allow the developer to remove much of the error handling logic from 
the JSP pages in their application.  

● This can significantly simplify the logic in the pages and make them 
easier to develop and maintain. 

● Controller components in Struts are Java classes and must be built 
using specific rules. They are usually referred to as "Action classes." 

Architecture Overview 

● All incoming requests are intercepted by the Struts servlet controller.  

● The Struts Configuration file struts-config.xml is used by the 
controller to determine the routing of the flow.  

● This flows consists of an alternation between two transitions: 

From View to 
Action 

A user clicks on a link or submits a form on an 
HTML or JSP page. The controller receives the 
request, looks up the mapping for this request, 
and forwards it to an action. The action in turn 
calls a Model layer (Business layer) service or 
function. 

From Action to 
View 

After the call to an underlying function or service 
returns to the action class, the action forwards to 
a resource in the View layer and a page is 
displayed in a web browser. 

 

mu
no
tes
.in



 

 
69 

 

Struts 2 Part-I 5.4 STRUTS 2 FRAMEWORK FEATURES 

1. Simple and Easy 

2. Simplified Design 

3. Tag support 

4. Easy to modify tags 

5. Easy Plugins 

6. Stateful Checkboxes 

7. Configurable MVC components 

8. POJO based actions 

9. AJAX support 

10. Integration support 

11. Various Result Types 

12. Various Tag support 

13. Theme and Template support 

Simplified Design 

● Programming abstract classes instead of interfaces is one of the design 
problems of struts1 framework that has been resolved in the struts 2 
framework.  

● Most of the Struts 2 classes are based on interfaces and most of its 
core interfaces are HTTP independent.  

● Struts 2 Action classes are framework independent and are simplified 
to look as simple POJOs.  

● Framework components are tried to keep loosely coupled. 

Tag support 

● Struts2 has improved the form tags and the new tags allow the 
developers to write less code. 

Easy to modify tags 

● Tag markups in Struts2 can be tweaked using Freemarker templates. 
This does not require JSP or java knowledge. Basic HTML, XML and 
CSS knowledge is enough to modify the tags. 

Easy Plugins 

● Struts 2 extensions can be added by dropping in a JAR. No manual 
configuration is required 

 

mu
no
tes
.in



   

 
70 

Advance Java AJAX Support 

● The AJAX theme gives interactive applications a significant boost. 
The framework provides a set of tags to help you ajaxify your 
applications, even on Dojo. 

Stateful Checkboxes 

● Struts 2 checkboxes do not require special handling for false values. 

QuickStart 

● Many changes can be made on the fly without restarting a web 
container. 

Customizing Controller 

● Struts 1 lets you customize the request processor per module, Struts 2 
lets you customize the request handling per action, if desired. 

Easy Spring Integration 

● Struts 2 Actions are Spring-aware. Just need to add Spring beans. 

5.5 STRUTS 2 MVC PATTERN 

● Struts2 is a pull-MVC framework.  

● The Model-View-Controller pattern in Struts2 is implemented with 
the following five core components 

○ Actions 

○ Interceptors 

○ Value Stack / OGNL 

○ Results / Result types 

○ View technologies 

● Struts 2 is slightly different from a traditional MVC framework, 
where the action takes the role of the model rather than the controller, 
although there is some overlap. 

● Struts 2 follows the Model-View-Controller (MVC) design patterns. 
The figure shown below shows how Struts 2 framework implements 
MVC components. 

○ Action - model 

○ Result - view 

○ FilterDispatcher - controller 

● The role each module plays Controller's job is to map incoming HTTP 
requests to actions. Those mapping are defined by using XML-based 
configuration(struts.xml) or Java annotations. 

mu
no
tes
.in



 

 
71 

 

Struts 2 Part-I ● The Model in Struts 2 is actions. So each action is defined and 
implemented by following the framework defined contract, an 
example consisting of an execute() method.  

● Model components consist of the data storage and business logic. 
Each action is an encapsulation of requests and is placed in 
ValueStack. 

● View is the presentation component of MVC pattern. 

5.6 REQUEST LIFE CYCLE 

● In accordance with Fig. 1, We need to understand the workflow by 
way of user's request life cycle in Struts 2 as shown below: 

1. User sends a request to the server requesting for some resources 
/pages. 

2. The Filter Dispatcher looks at the request and then regulates the 
appropriate Action. 

3. Configured interceptor functionalities apply such as validation, 
file upload etc. 

4. Selected action is performed based on the requested operation. 

5. Once more, configured interceptors are applied to do any post 
processing if required. 

6. Lastly, the result is composed by the view and returns the result 
to the user. 

 
Fig. 1 Interactions among each MVC module 

 

mu
no
tes
.in



   

 
72 

Advance Java Example: 

Creating a Dynamic Web Project 

Start your Eclipse and then go with File > New > Dynamic Web Project and 
enter project name as HelloWorldStruts2 and set rest of the options as given 
in the following screen  

 

Select all the default options in the next screens and finally check Generate 
Web.xml deployment descriptor option. This will create a dynamic web 
project for you in Eclipse. Now go with Windows > Show View > Project 
Explorer, and you will see your project window something as below: 

 

mu
no
tes
.in



 

 
73 

 

Struts 2 Part-I Now copy the following files from struts 2 lib folder C:\struts-2.2.3\lib to 
our project's WEB-INF\lib folder. To do this, you can simply drag and drop 
all the following files into the WEB-INF\lib folder. 

● commons-fileupload-x.y.z.jar 

● commons-io-x.y.z.jar 

● commons-lang-x.y.jar 

● commons-logging-x.y.z.jar 

● commons-logging-api-x.y.jar 

● freemarker-x.y.z.jar 

● javassist-.xy.z.GA 

● ognl-x.y.z.jar 

● struts2-core-x.y.z.jar 

● xwork-core.x.y.z.jar 

Create Action Class 

Create a java file HelloWAction.java under Java Resources > src with a 
package name com.idoluniversity.struts2 with the contents given below. 

The Action class responds to a user action when the user clicks a URL. One 
or more of the Action class's methods are executed and a String result is 
returned. Based on the value of the result, a specific JSP page is rendered. 

Example: 

package com.idoluniversity.struts2; 
public class HelloWAction { 
   private String name; 
   public String execute() throws Exception { 
      return "success"; 
   } 
    
   public String getName() { 
      return name; 
   } 
   public void setName(String name) { 
      this.name = name; 
   } 
} 

 

 

 

mu
no
tes
.in



   

 
74 

Advance Java Create a View 

● Create the below jsp file HelloWorld.jsp in the WebContent folder in 
your eclipse project. To do this, right click on the WebContent folder 
in the project explorer and select New >JSP File. 

<%@ page contentType = "text/html; charset = UTF-8" %> 
<%@ taglib prefix = "s" uri = "/struts-tags" %> 
<html> 
   <head> 
      <title>Hello World</title> 
   </head> 
    
   <body> 
      Hello World, <s:property value = "name"/> 
   </body> 
</html> 

● The taglib directive tells the Servlet container that this page will be 
using the Struts 2 tags and that these tags will be preceded by s. 

● The s:property tag displays the value of action class property "name> 
which is returned by the method getName() of the HelloWAction 
class. 

Create Main Page 

● Create index.jsp in the WebContent folder. This file will serve as the 
initial action URL where a user can click to tell the Struts 2 framework 
to call a defined method of the HelloWAction class and render the 
HelloWorld.jsp view. 

<%@ page language = "java" contentType = "text/html; charset = 
ISO-8859-1" 
   pageEncoding = "ISO-8859-1"%> 
<%@ taglib prefix = "s" uri = "/struts-tags"%> 
   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 
Transitional//EN"  
"http://www.w3.org/TR/html4/loose.dtd"> 
<html> 
   <head> 
      <title>Hello World</title> 
   </head> 
      <body> 
      <h1>Hello World From Struts2</h1> 

mu
no
tes
.in



 

 
75 

 

Struts 2 Part-I       <form action = "hello"> 
         <label for = "name">Please enter your name</label><br/> 
         <input type = "text" name = "name"/> 
         <input type = "submit" value = "Say Hello"/> 
      </form> 
   </body> 
</html> 

● Create a file called struts.xml. Since Struts 2 requires struts.xml to be 
present in the classes folder. Hence, create struts.xml file under the 
WebContent/WEB-INF/classes folder. Eclipse does not create the 
"classes" folder by default. Right click on the WEB-INF folder in the 
project explorer and select New > Folder. Your struts.xml should look 
like. 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 
2.0//EN" 
   "http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
    
   <package name = "helloworld" extends = "struts-default"> 
     <action name = "hello"  
         class = "com.idoluniversity.struts2.HelloWAction"  
         method = "execute"> 
         <result name = "success">/HelloWorld.jsp</result> 
      </action> 
   </package> 
</struts> 

● Creating a package is useful when you want to group your actions 
together. In our example, we named our action as "hello" which is 
corresponding to the URL /hello.action and is backed up by 
theHelloWAction.class. The execute method of HelloWAction.class 
is the method that is run when the URL /hello.action is invoked. If the 
outcome of the execute method returns "success", then we take the 
user to HelloWorld.jsp. 

● Then create a web.xml file which is an entry point for any request to 
Struts 2. The entry point of Struts2 application will be a filter defined 
in deployment descriptor (web.xml).  

mu
no
tes
.in



   

 
76 

Advance Java ● Hence, we will define an entry of 
org.apache.struts2.dispatcher.FilterDispatcher class in web.xml. The 
web.xml file needs to be created under the WEB-INF folder under 
WebContent. Eclipse had already created a skeleton web.xml file for 
you when you created the project. So, let’s just modify it as follows − 

Example: 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<web-app xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
   xmlns = "http://java.sun.com/xml/ns/javaee"  
   xmlns:web = "http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 
   xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee  
   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 
   id = "WebApp_ID" version = "3.0"> 
    
   <display-name>Struts 2</display-name> 
    
   <welcome-file-list> 
      <welcome-file>index.jsp</welcome-file> 
   </welcome-file-list> 
    
   <filter> 
      <filter-name>struts2</filter-name> 
      <filter-class> 
         org.apache.struts2.dispatcher.FilterDispatcher 
      </filter-class> 
   </filter> 
   <filter-mapping> 
      <filter-name>struts2</filter-name> 
      <url-pattern>/*</url-pattern> 
   </filter-mapping> 
</web-app> 

To Enable Detailed Log 

● Creating logging.properties file under WEB-INF/classes folder. Keep 
the following two lines in your property file 
org.apache.catalina.core.ContainerBase.[Catalina].level = INFO 
org.apache.catalina.core.ContainerBase.[Catalina].handlers = \ 
 java.util.logging.ConsoleHandler 

mu
no
tes
.in



 

 
77 

 

Struts 2 Part-I ● The default logging.properties specifies a ConsoleHandler for routing 
logging to stdout and also a FileHandler. A handler's log level 
threshold can be set using SEVERE, WARNING, INFO, CONFIG, 
FINE, FINER, FINEST or ALL. 

Procedure for Executing the Application 

● Right click on the project name and click Export > WAR File to create 
a War file. 

● Then deploy this WAR in the Tomcat's webapps directory. 

● Finally, start the Tomcat server and try to access the URL 
http://localhost:8080/HelloWorldStruts2/index.jsp.  

● This will give you following screen 

 

Enter the value "Struts2" and submit the page. 

 

5.7 CONFIGURATION FILES 

● Configuration files like web.xml, struts.xml, strutsconfig.xml and 
struts.properties 

mu
no
tes
.in



   

 
78 

Advance Java The web.xml File 

● The web.xml configuration file is a J2EE configuration file that 
determines how elements of the HTTP request are processed by the 
servlet container. It is not strictly a Struts2 configuration file, but it is 
a file that needs to be configured for Struts2 to work. 

● The web.xml file needs to be created under the folder 
WebContent/WEB-INF. 

● This is the first configuration file you will need to configure if you are 
starting without the aid of a template or tool that generates it. 

Following is the content of the web.xml file which we used in our previous 
example. 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<web-app xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" 
   xmlns = "http://java.sun.com/xml/ns/javaee"  
   xmlns:web = "http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 
   xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee  
   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 
   id = "WebApp_ID" version = "3.0"> 
    <display-name>Struts 2</display-name> 
   <welcome-file-list> 
      <welcome-file>index.jsp</welcome-file> 
   </welcome-file-list> 
    <filter> 
      <filter-name>struts2</filter-name> 
      <filter-class> 
         org.apache.struts2.dispatcher.FilterDispatcher 
      </filter-class> 
   </filter> 
   <filter-mapping> 
      <filter-name>struts2</filter-name> 
      <url-pattern>/*</url-pattern> 
   </filter-mapping> 
</web-app> 

The Struts.xml File 

● The struts.xml file contains the configuration information that you 
will be modifying as actions are developed. This file can be used to 
override default settings for an application, for example 
struts.devMode = false and other settings which are defined in the 
property file. This file can be created under the folder WEB-
INF/classes. 

mu
no
tes
.in



 

 
79 

 

Struts 2 Part-I  

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 
   "http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
   <package name = "helloworld" extends = "struts-default">      
      <action name = "hello"  
         class = "com.idoluniversity.struts2.HelloWAction"  
         method = "execute"> 
         <result name = "success">/HelloWorld.jsp</result> 
      </action>      
      <-- more actions can be listed here --> 
   </package> 
   <-- more packages can be listed here --> 
</struts> 

The Struts-config.xml File 

● The struts-config.xml configuration file is a link between the View 
and Model components in the Web Client but you would not have to 
touch these settings for 99.99% of your projects. 

The configuration file basically contains following main elements − 

Sr.No Interceptor & Description 

1 struts-config 
This is the root node of the configuration file. 

2 form-beans 
This is where you map your ActionForm subclass to a name. 
You use this name as an alias for your ActionForm throughout 
the rest of the strutsconfig.xml file, and even on your JSP pages. 

3 global forwards 
This section maps a page on your webapp to a name. You can 
use this name to refer to the actual page. This avoids hardcoding 
URLs on your web pages. 

4 action-mappings 
This is where you declare form handlers and they are also known 
as action mappings. 

5 controller 
This section configures Struts internals and rarely used in 
practical situations. 

6 plug-in 
This section tells Struts where to find your properties files, 
which contain prompts and error messages 

mu
no
tes
.in



   

 
80 

Advance Java Following is the sample struts-config.xml file 

<?xml version = "1.0" Encoding = "ISO-8859-1" ?> 
<!DOCTYPE struts-config PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN" 
   "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd"> 
<struts-config> 
   <!-- ========== Form Bean Definitions ============ --> 
   <form-beans> 
      <form-bean name = "login" type = "test.struts.LoginForm" /> 
   </form-beans> 
   <!-- ========== Global Forward Definitions ========= --> 
   <global-forwards> 
   </global-forwards> 
   <!-- ========== Action Mapping Definitions ======== --> 
   <action-mappings> 
      <action 
         path = "/login" 
         type = "test.struts.LoginAction" > 
         <forward name = "valid" path = "/jsp/MainMenu.jsp" /> 
         <forward name = "invalid" path = "/jsp/LoginView.jsp" /> 
      </action> 
   </action-mappings> 
   <!-- ========== Controller Definitions ======== --> 
   <controller contentType = "text/html;charset = UTF-8" 
      debug = "3" maxFileSize = "1.618M" locale = "true" nocache = 
"true"/> 
</struts-config> 

The Struts.properties File 

● This configuration file provides a mechanism to change the default 
behavior of the framework.  

● The values configured in this file will override the default values 
configured in default.properties which is contained in the struts2-
core-x.y.z.jar distribution.  

There are a couple of properties that you might consider changing using the 
struts.properties file  

### When set to true, Struts will act much more friendly for developers 
struts.devMode = true 
### Enables reloading of internationalization files 

mu
no
tes
.in



 

 
81 

 

Struts 2 Part-I struts.i18n.reload = true 
### Enables reloading of XML configuration files 
struts.configuration.xml.reload = true 
### Sets the port that the server is run on 
struts.url.http.port = 8080 

5.8 ACTIONS 

● Actions are the core of the Struts2 framework, as they are for any 
MVC (Model View Controller) framework. Each URL is mapped to 
a specific action, which provides the processing logic which is 
necessary to service the request from the user. 

● Action also serves in two other important capacities.  

○ Firstly, the action plays an important role in the transfer of data 
from the request through to the view, whether it's a JSP or other 
type of result.  

○ Secondly, the action must assist the framework in determining 
which result should render the view that will be returned in the 
response to the request. 

Create Action 

● The only requirement for actions in Struts2 is that there must be one 
no argument method that returns either a String or Result object and 
must be a POJO. If the no-argument method is not specified, the 
default behavior is to use the execute() method. 

● ActionSupport class which implements six interfaces including 
Action interface. The Action interface is as follows 

public interface Action { 
   public static final String SUCCESS = "success"; 
   public static final String NONE = "none"; 
   public static final String ERROR = "error"; 
   public static final String INPUT = "input"; 
   public static final String LOGIN = "login"; 
   public String execute() throws Exception; 
} 

● Action method in the Hello World example 

package com.idoluniversity.struts2; 
public class HelloWAction { 
   private String name; 

mu
no
tes
.in



   

 
82 

Advance Java    public String execute() throws Exception { 
      return "success"; 
   } 
   public String getName() { 
      return name; 
   } 
   public void setName(String name) { 
      this.name = name; 
   } 
} 

● Following change to the execute method and extend the class 
ActionSupport as follows 

package com.idoluniversity.struts2; 
import com.opensymphony.xwork2.ActionSupport; 
public class HelloWAction extends ActionSupport { 
   private String name; 
   public String execute() throws Exception { 
      if ("SECRET".equals(name)) { 
         return SUCCESS; 
      } else { 
         return ERROR;   
      } 
   } 
      public String getName() { 
      return name; 
   } 
   public void setName(String name) { 
      this.name = name; 
   } 
} 

● Then modify our struts.xml file as follows 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 
2.0//EN" 
   "http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
   <package name = "helloworld" extends = "struts-default"> 
      <action name = "hello"  

mu
no
tes
.in



 

 
83 

 

Struts 2 Part-I          class = "com.idoluniversity.struts2.HelloWAction" 
         method = "execute"> 
         <result name = "success">/HelloWorld.jsp</result> 
         <result name = "error">/AccessDenied.jsp</result> 
      </action> 
   </package> 
</struts> 

Create a View 

● Create the below jsp file HelloWorld.jsp in the WebContent folder in 
your eclipse project. To do this, right click on the WebContent folder 
in the project explorer and select New >JSP File.  

Then defined in Action interface 

<%@ page contentType = "text/html; charset = UTF-8" %> 
<%@ taglib prefix = "s" uri = "/struts-tags" %> 
<html> 
   <head> 
      <title>Hello World</title> 
   </head> 
  <body> 
      Hello World, <s:property value = "name"/> 
   </body> 
</html> 

● Following is the code which will be invoked by the framework in case 
the action result is ERROR which is equal to String constant "error". 
Following is the content of AccessDenied.jsp 

<%@ page contentType = "text/html; charset = UTF-8" %> 
<%@ taglib prefix = "s" uri = "/struts-tags" %> 
<html>   
   <head> 
      <title>Access Denied</title> 
   </head> 
    
   <body> 
      You are not authorized to view this page. 
   </body> 
</html> 

 

mu
no
tes
.in



   

 
84 

Advance Java ● We also need to create index.jsp in the WebContent folder. This file 
will serve as the initial action URL where the user can click to tell the 
Struts 2 framework to call the executemethod of the HelloWAction 
class and render the HelloWorld.jsp view. 

<%@ page language = "java" contentType = "text/html; charset = 
ISO-8859-1" 
   pageEncoding = "ISO-8859-1"%> 
<%@ taglib prefix = "s" uri = "/struts-tags"%> 
   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 
Transitional//EN"  
   "http://www.w3.org/TR/html4/loose.dtd"> 
<html>   
   <head> 
      <title>Hello World</title> 
   </head> 
    
   <body> 
      <h1>Hello World From Struts2</h1> 
      <form action = "hello"> 
         <label for = "name">Please enter your name</label><br/> 
         <input type = "text" name = "name"/> 
         <input type = "submit" value = "Say Hello"/> 
      </form> 
   </body> 
</html> 

Execute the Application 

● Right click on the project name and click Export > WAR File to create 
a War file. Then deploy this WAR in the Tomcat's webapps directory. 
Finally, start the Tomcat server and try to access the URL 
http://localhost:8080/HelloWorldStruts2/index.jsp.  

 

mu
no
tes
.in



 

 
85 

 

Struts 2 Part-I ● Let us enter a word as "SECRET" and you should see the following 
page 

 

5.9 SUMMARY 

● Apache Struts 2 is an open-source web application framework for 
developing Java EE web applications.  

● It uses and extends the Java Servlet API to encourage developers to 
adopt a model view controller (MVC) architecture.  

5.10.  REFERENCE FOR FURTHER READING 

1. Herbert Schildt, Java2: The Complete Reference, Tata McGraw-
Hill,5th Edition 

2. Joe Wigglesworth and Paula McMillan, Java Programming: 
Advanced Topics, Thomson Course Technology (SPD) ,3rd Edition 

5.11 UNIT END EXERCISES 

1. Explain the Struts 2 Basic MVC Architecture?  

2. What are the Struts 2 framework features?  

3. Explain the Request life cycle with the help of an example? 

4. Write a short note on: 

a. Configuration Files 

b. Actions 

5.       Differentiate between struts.xml and web.xml 

 

mu
no
tes
.in



   

 
86 

Advance Java 6 
STRUTS 2 PART-II 

Unit Structure: 
6.1  Objective 

6.2  Introduction 

6.3  Interceptors,  

6.4  Results & Result Types 

6.5  Value Stack/OGNL 
6.6  Summary 

6.7  Reference for further reading 

6.8  Unit End Exercises 

6.1 OBJECTIVE 

1. Introducing interceptors and the ValueStack. 

2. Bundling actions into packages & Implementing actions. 

3. To understand the role of a view in the Struts2 MVC framework. 

4. To learn Object-Graph Navigation Language. 

6.2 INTRODUCTION 

● The tasks that are done by the Struts 2 framework before and after an 
Action is executed are done by Struts 2 interceptors. Interceptors are 
standard Java classes included in the Struts 2 core jar which are 
executed in a specific order. 

● In our example application there is a package node in struts.xml. The 
package node has an attribute of extends with a value of “struts-
default.”  

● The value “struts-default” identifies to the framework the specific 
stack of interceptors that will be executed before and after the Actions 
in that package. 

6.3 INTERCEPTORS 

● Struts 2 framework provides a list of out-of-the-box interceptors that 
come pre-configured and ready to use. Few of the important 
interceptors are listed below. 

mu
no
tes
.in



 

 
87 

 

Struts 2 Part-I Interceptor  Description 

alias Allows parameters to have different name aliases 
across requests. 

checkbox Assists in managing checkboxes by adding a 
parameter value of false for check boxes that are not 
checked. 

conversionError 
 

Places error information from converting strings to 
parameter types into the action's field errors. 

createSession Automatically creates an HTTP session if one does 
not already exist. 

debugging Provides several different debugging screens to the 
developer. 

execAndWait Sends the user to an intermediary waiting page while 
the action executes in the background. 

exception Maps exceptions that are thrown from an action to a 
result, allowing automatic exception handling via 
redirection. 

fileUpload Facilitates easy file uploading. 

logger Provides simple logging by outputting the name of the 
action being executed. 

params  
Sets the request parameters on the action. 

prepare This is typically used to do pre-processing work, such 
as setup database connections. 

profile Allows simple profiling information to be logged for 
actions. 

scope Stores and retrieves the action's state in the session or 
application scope. 

ServletConfig Provides the action with access to various servlet-
based information. 

timer Provides simple profiling information in the form of 
how long the action takes to execute. 

token Checks the action for a valid token to prevent 
duplicate form submission. 

validation Provides validation support for actions 
 

Use of  Interceptors 

● Let us consider the existing interceptor to our "Hello World" program.  

mu
no
tes
.in



   

 
88 

Advance Java ● Let's use the timer interceptor whose purpose is to measure how long 
it took to execute an action method.  

● Then use a params interceptor whose purpose is to send the request 
parameters to the action.  

● Then we find that the name property is not being set because the 
parameter is not able to reach the action. 

● Let us modify the struts.xml file to add an interceptor as follows 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 
2.0//EN" 
   "http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
    
   <package name = "helloworld" extends = "struts-default"> 
      <action name = "hello"  
         class = "com.idoluniversity.struts2.HelloWorldAction" 
         method = "execute"> 
         <interceptor-ref name = "params"/> 
         <interceptor-ref name = "timer" /> 
         <result name = "success">/HelloWorld.jsp</result> 
      </action> 
   </package> 
</struts> 

● Right click on the project name and click Export > WAR File to create 
a War file. Then deploy this WAR in the Tomcat's webapps directory. 
Finally, start the Tomcat server and try to access the URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will produce 
the following screen − 

 

mu
no
tes
.in



 

 
89 

 

Struts 2 Part-I ● Now enter any word in the given text box and click the Say Hello 
button to execute the defined action. Now if you will check the log 
generated. 

INFO: Server startup in 3539 ms 

27/08/2022 8:40:53 PM  

com.opensymphony.xwork2.util.logging.commons.CommonsLog
ger info 

INFO: Executed action [//hello!execute] took 109 ms. 

Create Custom Interceptors 

● Using custom interceptors the application is an elegant way to provide 
crosscutting application features. Creating a custom interceptor is 
easy, the interface that needs to be extended is the following 
Interceptor interface 

public interface Interceptor extends Serializable { 

   void destroy(); 

   void init(); 

   String intercept(ActionInvocation invocation) 

   throws Exception; 

} 

● As the names suggest, the init() method provides a way to initialize 
the interceptor, and the destroy() method provides a facility for 
interceptor cleanup.  

● Unlike actions, interceptors are reused across requests and need to be 
thread safe, especially the intercept() method. 

Create Interceptor Class 

● Let us create the following MyInterceptor.java in Java Resources > 
src folder 

package com.idoluniversity.struts2; 
import java.util.*; 
import com.opensymphony.xwork2.ActionInvocation; 
import 
com.opensymphony.xwork2.interceptor.AbstractInterceptor; 
public class MyInterceptor extends AbstractInterceptor { 
   public String intercept(ActionInvocation invocation)throws 
Exception { 

mu
no
tes
.in



   

 
90 

Advance Java       /* let us do some pre-processing */ 
      String output = "Pre-Processing";  
      System.out.println(output); 
      /* let us call action or next interceptor */ 
      String result = invocation.invoke(); 
      /* let us do some post-processing */ 
      output = "Post-Processing";  
      System.out.println(output); 
      return result; 
   } 
} 

● The framework itself starts the process by making the first call to the 
ActionInvocation object's invoke(). Each time invoke() is called, 
ActionInvocation consults its state and executes whichever 
interceptor comes next.  

● When all of the configured interceptors have been invoked, the 
invoke() method will cause the action itself to be executed. 

The following figure shows the same concept through a request flow 

 

Fig.1. Request Flow 

Create Action Class 

● Create a java file HelloWorldAction.java under Java Resources > src 
with a package name com.idoluniversity.struts2 with the contents 
given below. 

package com.idoluniversity.struts2; 
import com.opensymphony.xwork2.ActionSupport; 
public class HelloWorldAction extends ActionSupport { 
   private String name; 

mu
no
tes
.in



 

 
91 

 

Struts 2 Part-I    public String execute() throws Exception { 
      System.out.println("Inside action...."); 
      return "success"; 
   }   
   public String getName() { 
      return name; 
   } 
   public void setName(String name) { 
      this.name = name; 
   } 
} 

Create a View 

● Create the below jsp file HelloWorld.jsp in the WebContent folder in 
your eclipse project. 

<%@ page contentType = "text/html; charset = UTF-8" %> 
<%@ taglib prefix = "s" uri = "/struts-tags" %> 
<html> 
   <head> 
      <title>Hello World</title> 
   </head> 
     <body> 
      Hello World, <s:property value = "name"/> 
   </body> 
</html> 

Create Main Page 

● Also create index.jsp in the WebContent folder. This file will serve as 
the initial action URL where a user can click to tell the Struts 2 
framework to call the a defined method of the HelloWorldAction 
class and render the HelloWorld.jsp view. 

<%@ page language = "java" contentType = "text/html; charset = 
ISO-8859-1" 
   pageEncoding = "ISO-8859-1"%> 
<%@ taglib prefix = "s" uri = "/struts-tags"%> 
   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 
Transitional//EN"  
   "http://www.w3.org/TR/html4/loose.dtd"> 
<html> 
   <head> 

mu
no
tes
.in



   

 
92 

Advance Java       <title>Hello World</title> 
   </head> 
   <body> 
      <h1>Hello World From Struts2</h1> 
      <form action = "hello"> 
         <label for = "name">Please enter your name</label><br/> 
         <input type = "text" name = "name"/> 
         <input type = "submit" value = "Say Hello"/> 
      </form> 
   </body> 
</html> 

Configuration Files 

● Register an interceptor and then call it as we had called the default 
interceptor in the previous program. To register a newly defined 
interceptor, the <interceptors>...</interceptors> tags are placed 
directly under the <package> tag insstruts.xml file.  

● We can skip this step for a default interceptors as we did in our 
previous example. But here let us register and use it as follows  

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 
2.0//EN" 
   "http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
   <package name = "helloworld" extends = "struts-default"> 
      <interceptors> 
         <interceptor name = "myinterceptorone" 
            class = "com.idoluniversity.struts2.MyInterceptor" /> 
      </interceptors> 
      <action name = "hello"  
         class = "com.idoluniversity.struts2.HelloWorldAction"  
         method = "execute"> 
         <interceptor-ref name = "params"/> 
         <interceptor-ref name = "myinterceptorone" /> 
         <result name = "success">/HelloWorld.jsp</result> 
      </action> 
   </package> 
</struts> 

mu
no
tes
.in



 

 
93 

 

Struts 2 Part-I ● The web.xml file needs to be created under the WEB-INF folder under 
WebContent as follows 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<web-app xmlns:xsi = "http://www.w3.org/2022/XMLSchema-
instance" 
   xmlns = "http://java.sun.com/xml/ns/javaee"  
   xmlns:web = "http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd" 
   xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee  
   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 
   id = "WebApp_ID" version = "3.0"> 
   <display-name>Struts 2</display-name> 
   <welcome-file-list> 
      <welcome-file>index.jsp</welcome-file> 
   </welcome-file-list> 
   <filter> 
      <filter-name>struts2</filter-name> 
      <filter-class> 
         org.apache.struts2.dispatcher.FilterDispatcher 
      </filter-class> 
   </filter> 
   <filter-mapping> 
      <filter-name>struts2</filter-name> 
      <url-pattern>/*</url-pattern> 
   </filter-mapping> 
</web-app> 

● Right click on the project name and click Export > WAR File to create 
a War file. Then deploy this WAR in the Tomcat's webapps directory. 
Finally, start the Tomcat server and try to access the URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will produce 
the following screen 

 

mu
no
tes
.in



   

 
94 

Advance Java ● Now enter any word in the given text box and click the Say Hello 
button to execute the defined action. Now if you will check the log 
generated, you will find the following text at the bottom 

Pre-Processing 

Inside action.... 

Post-Processing 

6.4 RESULTS & RESULT TYPES 

● The <results> tag plays the role of a view in the Struts2 MVC 
framework. The action is responsible for executing the business logic. 
The next step after executing the business logic is to display the view 
using the <results> tag. 

● There are some navigation rules attached with the results.  

● For example, if the action method is to authenticate a user, there are 
three possible outcomes. 

● Successful Login 

● Unsuccessful Login - Incorrect username or password 

● Account Locked 

The Dispatcher Result Type 

● The dispatcher result type is the default type, and is used if no other 
result type is specified. It's used to forward to a servlet, JSP, HTML 
page, and so on, on the server. It uses the 
RequestDispatcher.forward() method. 

● Provided a JSP path as the body of the result tag. 

<result name = "success"> 

   /HelloWorld.jsp 

</result> 

● Specify the JSP file using a <param name = "location"> tag within the 
<result...> element as follows 

<result name = "success" type = "dispatcher"> 
   <param name = "location"> 
      /HelloWorld.jsp 
   </param > 
</result> 

 

mu
no
tes
.in



 

 
95 

 

Struts 2 Part-I The FreeMaker Result Type 

● Freemaker is a popular templating engine that is used to generate 
output using predefined templates.  

● Let us now create a Freemaker template file called hello.fm with the 
following contents  

Hello World ${name} 

● The above file is a template where name is a parameter which will be 
passed from outside using the defined action. keep this file in 
CLASSPATH. 

● Next, let us modify the struts.xml to specify the result as follows  

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
"-//Apache Software Foundation//DTD Struts Configuration 
2.0//EN" 
"http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
   <package name = "helloworld" extends = "struts-default"> 
      <action name = "hello"  
         class = "com.idoluniversity.struts2.HelloWorldAction" 
         method = "execute"> 
         <result name = "success" type = "freemarker"> 
            <param name = "location">/hello.fm</param> 
         </result> 
      </action> 
   </package> 
</struts> 

● Let us keep HelloWorldAction.java, HelloWorldAction.jsp and 
index.jsp files 

● Now Right click on the project name and click Export > WAR File to 
create a War file. 

● Then deploy this WAR in the Tomcat's webapps directory. Finally, 
start the Tomcat server and try to access the URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will produce 
the following screen . 

mu
no
tes
.in



   

 
96 

Advance Java 

 

Enter the value "Struts2" and submit the page. You should see the next page. 

 

The Redirect Result Type 

● The redirect result type calls the standard response.sendRedirect() 
method, causing the browser to create a new request to the given 
location. 

● Provide the location either in the body of the <result...> element or as 
a <param name = "location"> element. Redirect also supports the 
parse parameter. Here's an example configured using XML 

<action name = "hello"  
   class = "com.idoluniversity.struts2.HelloWorldAction" 
   method = "execute"> 
   <result name = "success" type = "redirect"> 
      <param name = "location"> 
         /NewWorld.jsp 
      </param > 
   </result> 
</action> 

 

mu
no
tes
.in



 

 
97 

 

Struts 2 Part-I 6.5 VALUE STACK/OGNL 

The Value Stack 

● The value stack is a set of several objects which keeps the following 
objects in the provided order 

Sr.No Objects & Description 

1 Temporary Objects 
There are various temporary objects which are created 
during execution of a page. For example the current 
iteration value for a collection being looped over in a JSP 
tag. 

2 The Model Object 
If you are using model objects in your struts application, 
the current model object is placed before the action on the 
value stack. 

3 The Action Object 
This will be the current action object which is being 
executed. 

4 Named Objects 
These objects include #application, #session, #request, 
#attr and #parameters and refer to the corresponding 
servlet scopes. 

● The value stack can be accessed via the tags provided for JSP, 
Velocity or Freemarker. 

● get valueStack object inside your action as follows  

 ActionContext.getContext().getValueStack() 

● Once you have a ValueStack object, you can use the following 
methods to manipulate that object 

Sr.No ValueStack Methods & Description 

1 Object findValue(String expr) 
Find a value by evaluating the given expression against 
the stack in the default search order. 

2 CompoundRoot getRoot() 
Get the CompoundRoot which holds the objects pushed 
onto the stack. 

3 Object peek() 
Get the object on the top of the stack without changing the 
stack. 

mu
no
tes
.in



   

 
98 

Advance Java 4 Object pop() 
Get the object on the top of the stack and remove it from 
the stack. 

5 void push(Object o) 
Put this object onto the top of the stack. 

6 void set(String key, Object o) 
Sets an object on the stack with the given key so it is 
retrievable by findValue(key,...) 

7 void setDefaultType(Class defaultType) 
Sets the default type to convert to if no type is provided 
when getting a value. 

8 void setValue(String expr, Object value) 
Attempts to set a property on a bean in the stack with the 
given expression using the default search order. 

9 int size() 
Get the number of objects in the stack. 

The OGNL 

● The Object-Graph Navigation Language (OGNL) is a powerful 
expression language that is used to reference and manipulate data on 
the ValueStack.  

● OGNL also helps in data transfer and type conversion. 

● The OGNL is very similar to the JSP Expression Language.  

● OGNL is based on the idea of having a root or default object within 
the context.  

● The properties of the default or root object can be referenced using 
the markup notation, which is the pound symbol. 

● OGNL is based on a context and Struts builds an ActionContext map 
for use with OGNL. The ActionContext map consists of the following 

Application − Application scoped variables 

Session − Session scoped variables 

Root / value stack − All your action variables are stored here 

Request − Request scoped variables 

Parameters − Request parameters 

Attributes − The attributes stored in page, request, session and 
application scope 

mu
no
tes
.in



 

 
99 

 

Struts 2 Part-I ● It is important to understand that the Action object is always available 
in the value stack. So, therefore if an Action object has properties “x” 
and “y” they are readily available to use. 

● Objects in the ActionContext are referred to using the pound symbol, 
however, the objects in the value stack can be directly referenced. 

● For example, if employee is a property of an action class, then it can 
be referenced as follows 

<s:property value = "name"/> 

instead of 

<s:property value = "#name"/> 

● If you have an attribute in session called "login" you can retrieve it as 
follows 

 <s:property value = "#session.login"/> 

● OGNL also supports dealing with collections - namely Map, List and 
Set. For example to display a dropdown list of colors, you could do 

 <s:select name = "color" list = "{'red','yellow','green'}" /> 

● The OGNL expression is clever to interpret the 
"red","yellow","green" as colors and build a list based on that. 

ValueStack/OGNL Example 

Create Action 

● Let us consider the following action class where we are accessing 
valueStack and then setting a few keys which we will access using 
OGNL in our view, i.e., JSP page. 

package com.idoluniversity.struts2; 
import java.util.*;  
import com.opensymphony.xwork2.util.ValueStack; 
import com.opensymphony.xwork2.ActionContext; 
import com.opensymphony.xwork2.ActionSupport; 
public class HelloWorldAction extends ActionSupport { 
   private String name; 
   public String execute() throws Exception { 
      ValueStack stack = 
ActionContext.getContext().getValueStack(); 
      Map<String, Object> context = new HashMap<String, 
Object>(); 
      context.put("key1", new String("This is key1"));  
      context.put("key2", new String("This is key2")); 

mu
no
tes
.in



   

 
100 

Advance Java       stack.push(context); 
      System.out.println("Size of the valueStack: " + stack.size()); 
      return "success"; 
   }   
   public String getName() { 
      return name; 
   } 
   public void setName(String name) { 
      this.name = name; 
   } 
} 

Create Views 

● Let us create the below jsp file HelloWorld.jsp in the WebContent 
folder in your eclipse project. This view will be displayed in case 
action returns success 

<%@ page contentType = "text/html; charset = UTF-8" %> 
<%@ taglib prefix = "s" uri = "/struts-tags" %> 
<html> 
   <head> 
      <title>Hello World</title> 
   </head> 
    
   <body> 
      Entered value : <s:property value = "name"/><br/> 
      Value of key 1 : <s:property value = "key1" /><br/> 
      Value of key 2 : <s:property value = "key2" /> <br/> 
   </body> 
</html> 

● Also create index.jsp in the WebContent folder whose content is as 
follows  

<%@ page language = "java" contentType = "text/html; charset = 
ISO-8859-1" 
   pageEncoding = "ISO-8859-1"%> 
<%@ taglib prefix = "s" uri = "/struts-tags"%> 
   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 
Transitional//EN"  
   "http://www.w3.org/TR/html4/loose.dtd"> 

mu
no
tes
.in



 

 
101 

 

Struts 2 Part-I <html> 
   <head> 
      <title>Hello World</title> 
   </head> 
   <body> 
      <h1>Hello World From Struts2</h1> 
      <form action = "hello"> 
         <label for = "name">Please enter your name</label><br/> 
         <input type = "text" name = "name"/> 
         <input type = "submit" value = "Say Hello"/> 
      </form> 
   </body> 
</html> 

Configuration Files 

Following is the content of struts.xml file  

<?xml version = "1.0" Encoding = "UTF-8"?> 
<!DOCTYPE struts PUBLIC 
   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 
   "http://struts.apache.org/dtds/struts-2.0.dtd"> 
<struts> 
   <constant name = "struts.devMode" value = "true" /> 
   <package name = "helloworld" extends = "struts-default"> 
      <action name = "hello"  
         class = "com.idoluniversity.struts2.HelloWorldAction"  
         method = "execute"> 
         <result name = "success">/HelloWorld.jsp</result> 
      </action> 
   </package> 
</struts> 
 

● Following is the content of web.xml file 

<?xml version = "1.0" Encoding = "UTF-8"?> 
<web-app xmlns:xsi = "http://www.w3.org/2022/XMLSchema-
instance" 
   xmlns = "http://java.sun.com/xml/ns/javaee"  

mu
no
tes
.in



   

 
102 

Advance Java    xmlns:web = "http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd" 
   xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee  
   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 
   id = "WebApp_ID" version = "3.0"> 
   <display-name>Struts 2</display-name> 
   <welcome-file-list> 
      <welcome-file>index.jsp</welcome-file> 
   </welcome-file-list> 
   <filter> 
      <filter-name>struts2</filter-name> 
      <filter-class> 
         org.apache.struts2.dispatcher.FilterDispatcher 
      </filter-class> 
   </filter> 
   <filter-mapping> 
      <filter-name>struts2</filter-name> 
      <url-pattern>/*</url-pattern> 
   </filter-mapping> 
</web-app> 

● Right click on the project name and click Export > WAR File to create 
a War file. Then deploy this WAR in the Tomcat's webapps directory. 
Finally, start the Tomcat server and try to access the URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will produce 
the following screen 

 

● Now enter any word in the given text box and click the "Say Hello" 
button to execute the defined action. Now, if you will check the log 
generated, you will find the following text at the bottom  

 Size of the valueStack: 3 

 

mu
no
tes
.in



 

 
103 

 

Struts 2 Part-I 6.6 SUMMARY 

● Struts 2 framework provides a list of out-of-the-box interceptors that 
come pre-configured and ready to use. 

● The <results> tag plays the role of a view in the Struts2 MVC 
framework. The action is responsible for executing the business logic. 

● The value stack is a set of several objects. 

● The Object-Graph Navigation Language (OGNL) is a powerful 
expression language that is used to reference and manipulate data on 
the ValueStack.  

6.7 REFERENCE FOR FURTHER READING 

1. Herbert Schildt, Java2: The Complete Reference, Tata McGraw-
Hill,5th Edition 

2. Joe Wigglesworth and Paula McMillan, Java Programming: 
Advanced Topics, Thomson Course Technology (SPD) ,3rd Edition 

6.8 UNIT END EXERCISES 

1. What are interceptors?  

2. Explain the Results & Result Types? 

3. Write a short note on Value Stack & OGNL. 

4.      What is value stack in struts? State and explain the execution flow of 
value stack. 

5.     What is OGNL? What does it consist of? How its contents can be 
accessed? 

 mu
no
tes
.in



   

 
104 

Advance Java 7 
JSON 

Unit Structure: 
7.1 Objective 

7.2 Introduction 

7.3 Overview,  

7.4 Syntax,  

7.5 DataTypes,  

7.6 Objects,  

7.7 Schema,  

7.8 Comparison with XML,  

7.9 JSON with Java 

7.10 Summary 

7.11 Reference for further reading 

7.12 Unit End Exercises 

7.1 OBJECTIVE 

● To study the overview of JSON. 

● To understand the JSON syntax, DataTypes & Objects. 

● To learn the use of annotating and validating JSON documents. 

● To understand the difference between JSON & XML and JSON with 
Java. 

7.2 INTRODUCTION 

● JSON is an acronym for JavaScript Object Notation, is an open 
standard format, which is lightweight and text-based, designed 
explicitly for human-readable data interchange.  

● It is a language-independent data format.  

● It supports almost every kind of language, framework, and library. 

● JSON is an open standard for exchanging data on the web. It supports 
data structures like objects and arrays. So, it is easy to write and read 
data from JSON. 

● In JSON, data is represented in key-value pairs and curly braces hold 
objects, where a colon is followed after each name. The comma is 
used to separate key-value pairs. Square brackets are used to hold 
arrays, where each value is comma separated. 

mu
no
tes
.in



 

 
105 

 

JSON 7.3 OVERVIEW 

● JSON stands for JavaScript Object Notation. 

● JSON is an open standard data-interchange format. 

● JSON is lightweight and self-describing. 

● JSON originated from JavaScript. 

● JSON is easy to read and write. 

● JSON is language independent. 

● JSON supports data structures such as arrays and objects. 

Features of JSON 

● Simplicity 

● Openness 

● Self-Describing 

● Internationalization 

● Extensibility 

● Interoperability 

Advantages of JSON: 

● Less Verbose: In contrast to XML, JSON follows a compact style to 
improve its users' readability. While working with a complex system, 
JSON tends to make substantial enhancements. 

● Faster: The JSON parsing process is faster than that of the XML 
because the DOM manipulation library in XML requires extra 
memory for handling large XML files. However, JSON requires less 
data that ultimately results in reducing the cost and increasing the 
parsing speed. 

● Readable: The JSON structure is easily readable and straightforward. 
Regardless of the programming language that you are using, you can 
easily map the domain objects. 

● Structured Data: In JSON, a map data structure is used, whereas 
XML follows a tree structure. The key-value pairs limit the task but 
facilitate the predictive and easily understandable model. 

7.4 SYNTAX 

● JSON structure is based on the JavaScript object literal syntax; they 
share a number of similarities. 

mu
no
tes
.in



   

 
106 

Advance Java ● The core elements of JSON syntax: 

○ Data is presented in key/value pairs. 

○ Data elements are separated by commas. 

○ Curly brackets {} determine objects. 

○ Square brackets [] designate arrays. 

● As a result, JSON object literal syntax looks like this: 

 {“key”:“value”,“key”:“value”,“key”:“value”.} 

Example: 

{ 
   "book": [ 
      { 
         "id": "01", 
         "language": "Java", 
         "edition": "third", 
         "author": "Herbert Schildt" 
      }, 
      { 
         "id": "07", 
         "language": "C++", 
         "edition": "second", 
         "author": "E.Balagurusamy" 
      } 
   ] 
} 

7.5 DATATYPES 

JSON supports the following data types 

Sr.No. Type & Description 

1 Number 
double- precision floating-point format in JavaScript 

2 String 
double-quoted Unicode with backslash escaping 

3 Boolean 
true or false 

4 Array 
an ordered sequence of values 

mu
no
tes
.in



 

 
107 

 

JSON Sr.No. Type & Description 

5 Value 
it can be a string, a number, true or false, null etc 

6 Object 
an unordered collection of key:value pairs 

7 Whitespace 
can be used between any pair of tokens 

8 null 
empty 

1. Number 

● It is a double precision floating-point format in JavaScript and 
it depends on implementation. 

● Octal and hexadecimal formats are not used. 

● No NaN or Infinity is used in Number. 

The following table shows the number types − 

Sr.No. Type & Description 

1 Integer 
Digits 1-9, 0 and positive or negative 

2 Fraction 
Fractions like .3, .9 

3 Exponent 
Exponent like e, e+, e-, E, E+, E- 

Syntax & Example: 

var json-object-name = { string : number_value, .......} 

var obj = {marks: 97} 

2. String 

● It is a sequence of zero or more double quoted Unicode 
characters with backslash escaping. 

●  Character is a single character string i.e. a string with length 1. 

Sr.No. Type & Description 

1 " double quotation 

2 \ backslash 

3 / forward slash 

mu
no
tes
.in



   

 
108 

Advance Java Sr.No. Type & Description 

4 b backspace 

5 f form feed 

6 n new line 

7 r carriage return 

8 t horizontal tab 

9 u four hexadecimal digits 

Syntax & Example 
var json-object-name = { string : "string value", .......} 

var obj = {name: 'Amit'} 

3. Boolean 

● It includes true or false values. 

Syntax & Example 
var json-object-name = { string : true/false, .......} 

var obj = {name: 'Amit', marks: 97, distinction: true} 

4. Array 

● It is an ordered collection of values. 

● These are enclosed in square brackets which means that array 
begins with .[. and ends with .].. 

● The values are separated by , (comma). 

● Array indexing can be started at 0 or 1. 

● Arrays should be used when the key names are sequential 
integers. 

Syntax & Example 

[ value, .......] 

{ 
   "books": [ 
   { "language":"Java" , "edition":"second" }, 
   { "language":"C++" , "lastName":"fifth" }, 
   { "language":"C" , "lastName":"third" } 
   ] 
} 

 

mu
no
tes
.in



 

 
109 

 

JSON 5. Object 

● It is an unordered set of name/value pairs. 

● Objects are enclosed in curly braces, that is, it starts with '{' and 
ends with '}'. 

● Each name is followed by ':'(colon) and the key/value pairs are 
separated by , (comma). 

● The keys must be strings and should be different from each 
other. 

● Objects should be used when the key names are arbitrary 
strings. 

Syntax  & Example: 
{ string : value, ...... 

{ 
   "id": "011A", 
   "language": "JAVA", 
   "price": 500, 
} 

6. Whitespace 

● It can be inserted between any pair of tokens. It can be added to 
make a code more readable. Example shows declaration with 
and without whitespace − 

Syntax & Example: 

{string:" ",....} 

var obj1 = {"name": "Sachin Tendulkar"} 
var obj2 = {"name": "SauravGanguly"} 

7. Null 

● It means empty type. 

Syntax & Example: 

Null 

var i = null 
if(i == 1) { 
   document.write("<h1>value is 1</h1>"); 
}  
else  
{ 
 document.write("<h1>value is null</h1>"); 
} 

mu
no
tes
.in



   

 
110 

Advance Java 8. Value 
● It includes 

○ number (integer or floating point) 

○ String 

○ Boolean 

○ Array 

○ Object 

○ Null 

Syntax & Example 

String | Number | Object | Array | TRUE | FALSE | NULL 

var i = 1; 

var j = "sachin"; 

var k = null; 

  

7.6 OBJECTS 

● JSON objects can be created with JavaScript. Let us see the various 
ways of creating JSON objects using JavaScript. 

● Creation of an empty Object 

 var JSONObj = {}; 

● Creation of a new Object 

 var JSONObj = new Object(); 

● Creation of an object with attribute bookname with value in string, 
attribute price with numeric value. Attributes are accessed by using '.' 
Operator − 

 var JSONObj = { "bookname ":"VB BLACK BOOK", "price":500 }; 

Example that shows creation of an object in javascript using JSON, save the 
below code as json_object.htm 

<html> 
   <head> 
   <title>Creating Object JSON with JavaScript</title> 
   <script language = "javascript" > 
      var JSONObj = { "name" : "mumbaiuniversity.com", "year"  : 
2005 };           

mu
no
tes
.in



 

 
111 

 

JSON       document.write("<h1>JSON with JavaScript example</h1>"); 
      document.write("<br>"); 
      document.write("<h3>Website Name = 
"+JSONObj.name+"</h3>");  
      document.write("<h3>Year = "+JSONObj.year+"</h3>");  
   </script> 
   </head> 
 <body> 
   </body>            
</html> 

7.7 SCHEMA 

● JSON Schema is a specification for JSON based format for defining 
the structure of JSON data. 

● Describe your existing data format. 

○ Clear, human- and machine-readable documentation. 

○ Complete structural validation, useful for automated testing. 

○ Complete structural validation, validating client-submitted data. 

● JSON Schema Validation Libraries 

There are several validators currently available for different 
programming languages. Currently the most complete and compliant 
JSON Schema validator available is JSV. 

Languages Libraries 

C WJElement (LGPLv3) 

Java json-schema-validator (LGPLv3) 

.NET Json.NET (MIT) 

ActionScript 
3 

Frigga (MIT) 

Haskell aeson-schema (MIT) 

Python Jsonschema 

Ruby autoparse (ASL 2.0); ruby-jsonschema (MIT) 

PHP php-json-schema (MIT). json-schema (Berkeley) 

JavaScript Orderly (BSD); JSV; json-schema; Matic (MIT); Dojo; 
Persevere (modified BSD or AFL 2.0); schema.js. 

Example 

mu
no
tes
.in



   

 
112 

Advance Java Given below is a basic JSON schema, which covers a classical 
product catalog description − 

{ 
   "$schema": "http://json-schema.org/draft-04/schema#", 
   "title": "Product", 
   "description": "A product from Acme's catalog", 
   "type": "object",     
   "properties": { 
             
   "id": { 
      "description": "The unique identifier for a product", 
      "type": "integer" 
   }, 
                             
   "name": { 
      "description": "Name of the product", 
      "type": "string" 
   }, 
                             
   "price": { 
      "type": "number", 
      "minimum": 0, 
      "exclusiveMinimum": true 
   } 
   }, 
             
   "required": ["id", "name", "price"] 
} 

● Various important keywords that can be used in this schema − 

Sr.No. Keyword & Description 

1 $schema 
The $schema keyword states that this schema is written 
according to the draft v4 specification. 

2 title 
You will use this to give a title to your schema. 

3 description 
A little description of the schema. 

4 type 
The type keyword defines the first constraint on our JSON 
data: it has to be a JSON Object. 

5 properties 
Defines various keys and their value types, minimum and 
maximum values to be used in JSON file. 

6 required 

mu
no
tes
.in



 

 
113 

 

JSON Sr.No. Keyword & Description 

This keeps a list of required properties. 

7 minimum 
This is the constraint to be put on the value and represents 
minimum acceptable value. 

8 exclusiveMinimum 
If "exclusiveMinimum" is present and has boolean value true, 
the instance is valid if it is strictly greater than the value of 
"minimum". 

9 maximum 
This is the constraint to be put on the value and represents 
maximum acceptable value. 

10 exclusiveMaximum 
If "exclusiveMaximum" is present and has boolean value true, 
the instance is valid if it is strictly lower than the value of 
"maximum". 

11 multipleOf 
A numeric instance is valid against "multipleOf" if the result 
of the division of the instance by this keyword's value is an 
integer. 

12 maxLength 
The length of a string instance is defined as the maximum 
number of its characters. 

13 minLength 
The length of a string instance is defined as the minimum 
number of its characters. 

14 pattern 
A string instance is considered valid if the regular expression 
matches the instance successfully. 

  

7.8 COMPARISON WITH XML 

Similarities between the JSON and XML. 
● Self-describing: Both json and xml are self-describing as both xml 

data and json data are human-readable text. 

● Hierarchical: Both json and xml support hierarchical structure. Here 
hierarchical means that the values within values. 

● Data interchange format: JSON and XML can be used as data 
interchange formats by many different programming languages. 

● Parse: Both the formats can be easily parsed. 

● Retrieve: Both formats can be retrieved by using HTTP requests. The 
methods used for retrieving the data are GET, PUT, POST. 

mu
no
tes
.in



   

 
114 

Advance Java Differences between the JSON and XML 

JSON XML 

JSON stands for javascript 
object notation. 

XML stands for an extensible markup 
language. 

The extension of json file is 
.json. 

The extension of xml file is .xml. 

The internet media type is 
application/json. 

The internet media type is 
application/xml or text/xml. 

The type of format in JSON 
is data interchange. 

The type of format in XML is a markup 
language. 

It is extended from 
javascript. 

It is extended from SGML. 

It is open source means that 
we do not have to pay 
anything to use JSON. 

It is also open source. 

The object created in JSON 
has some type. 

XML data does not have any type. 

The data types supported by 
JSON are strings, numbers, 
Booleans, null, array. 

XML data is in a string format. 

It does not have any capacity 
to display the data. 

XML is a markup language, so it has the 
capacity to display the content. 

JSON has no tags. XML data is represented in tags, i.e., start 
tag and end tag. 

 XML file is larger. If we want to represent 
the data in XML then it would create a 
larger file as compared to JSON. 

JSON is quicker to read and 
write. 

XML file takes time to read and write 
because the learning curve is higher. 

JSON can use arrays to 
represent the data. 

XML does not contain the concept of 
arrays. 

It can be parsed by a 
standard javascript function. 
It has to be parsed before 
use. 

XML data which is used to interchange 
the data, must be parsed with respective 
to their programming language to use 
that. 

It can be easily parsed and 
little bit code is required to 
parse the data. 

It is difficult to parse. 

File size is smaller as 
compared to XML. 

File size is larger. 

mu
no
tes
.in



 

 
115 

 

JSON JSON XML 

JSON is data-oriented. XML is document-oriented. 

It is less secure than XML. It is more secure than JSON. 

7.9 JSON WITH JAVA 

● Encode and decode JSON objects using Java programming language.  

Environment 

● Install any of the JSON modules available.  

● For this download and installed JSON.simple and have added the 
location of json-simple-1.1.1.jar file to the environment variable 
CLASSPATH. 

Mapping between JSON and Java entities 

● JSON.simple maps entities from the left side to the right side while 
decoding or parsing, and maps entities from the right to the left while 
encoding. 

JSON Java 

string java.lang.String 

number java.lang.Number 

true|false java.lang.Boolean 

null null 

array java.util.List 

object java.util.Map 

Encoding JSON in Java 

● To encode a JSON object using Java JSONObject which is a subclass 
of java.util.HashMap. No ordering is provided. If you need the strict 
ordering of elements, use JSONValue.toJSONString ( map ) method 
with ordered map implementation such as java.util.LinkedHashMap. 

import org.json.simple.JSONObject; 
 class JsonEncodeDemo { 
    public static void main(String[] args) { 
   JSONObject obj = new JSONObject(); 
  
   obj.put("name", "foo"); 
   obj.put("num", new Integer(100)); 
   obj.put("balance", new Double(1000.21)); 

mu
no
tes
.in



   

 
116 

Advance Java    obj.put("is_vip", new Boolean(true)); 
  
   System.out.print(obj); 
   } 
} 
Output: 
{"balance": 1000.21, "num":100, "is_vip":true, "name":"foo"} 

 

Decoding JSON in Java 

● The following example makes use of JSONObject and JSONArray 
where JSONObject is a java.util.Map and JSONArray is a 
java.util.List, so you can access them with standard operations of Map 
or List. 

import org.json.simple.JSONObject; 
import org.json.simple.JSONArray; 
import org.json.simple.parser.ParseException; 
import org.json.simple.parser.JSONParser; 
  
class JsonDecodeDemo { 
  
   public static void main(String[] args) { 
             
   JSONParser parser = new JSONParser(); 
   String s = 
"[0,{\"1\":{\"2\":{\"3\":{\"4\":[5,{\"6\":7}]}}}}]"; 
                             
   try{ 
      Object obj = parser.parse(s); 
      JSONArray array = (JSONArray)obj;                                  
  
      System.out.println("The 2nd element of array"); 
      System.out.println(array.get(1)); 
      System.out.println(); 
       JSONObject obj2 = (JSONObject)array.get(1); 
      System.out.println("Field \"1\""); 
      System.out.println(obj2.get("1")); 
      s = "{}"; 
      obj = parser.parse(s); 
      System.out.println(obj); 
      s = "[5,]"; 

mu
no
tes
.in



 

 
117 

 

JSON       obj = parser.parse(s); 
      System.out.println(obj); 
      s = "[5,,2]"; 
      obj = parser.parse(s); 
      System.out.println(obj); 
   }catch(ParseException pe) {                 
      System.out.println("position: " + pe.getPosition()); 
      System.out.println(pe); 
   } 
   } 
} 
Output: 
The 2nd element of array 
{"1":{"2":{"3":{"4":[5,{"6":7}]}}}} 
Field "1" 
{"2":{"3":{"4":[5,{"6":7}]}}} 
{} 
[5] 
[5,2] 

7.10 SUMMARY 

1. JSON is an acronym for JavaScript Object Notation, is an open 
standard format, which is lightweight and text-based, designed 
explicitly for human-readable data interchange 

2. JSON stands for JavaScript Object Notation. 

3. JSON is language independent. 

4. JSON structure is based on the JavaScript object literal syntax, they 
share a number of similarities. 

5. JSON objects can be created with JavaScript 

6. JSON Schema is a specification for JSON based format for defining 
the structure of JSON data. 

7.11 REFERENCE FOR FURTHER READING 

1. Herbert Schildt, Java2: The Complete Reference, Tata McGraw-
Hill,5th Edition 

2. Joe Wigglesworth and Paula McMillan, Java Programming: 
Advanced Topics, Thomson Course Technology (SPD) , 3rd Edition 

 

mu
no
tes
.in



   

 
118 

Advance Java  

7.12 UNIT END EXERCISES 

1. Mention what is the rule for JSON syntax rules? Give an example of 
JSON object? 

2. Explain the difference between JSON & XML. 

3. Explain the difference between JSON & Java. 

4. What are the data types supported by JSON? 

5. What are the advantages of JSON? 

6.       Explain the role of JSON object in detail. 

7.       Explain what do you mean by JSON Schema? Explain it with 
suitable example? 

8.       Explain the steps involved in executing JSON with java. 

 

mu
no
tes
.in


	192-2 TY BSC CS SEM V ADVANCE JAVA Starting pages
	1 Chapter 1 -Java Swing_7skills
	2 Chapter 2-JDBC_7skills
	3 Chapter 3- Servlets- 7skills
	4 Java Beans - 7skills
	5 Struts 2 - 7skills
	6 Struts 2 - 7skills
	7 JSON - 7skills

