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1.0 OBJECTIVES 

After going through this chapter, the learner will be able to: 

• define the acceptability of strings by finite automata 

• convert a Non-deterministic Finite Automata (NDFA) to Deterministic 
Finite Automata (DFA) 

• define Mealy and Moore machine 

• find minimization of Deterministic Finite Automata (DFA) 

1.1 INTRODUCTION 

Automata theory is the study of abstract machines and computational 
problems. It is a theory in theoretical computer science and the 
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word automata originate from a Greek word that means "self-acting, self-
willed, self-moving". In this chapter, we will discuss much in detail about 
what is an automaton, its types, and conversion among the types. 

1.2 DEFINITION OF AN AUTOMATON 

Automaton refers to a system that transforms and transmits the 
information which is used for some action without any human 
intervention. Some of the examples of such systems are automatic coffee 
maker, automatic sentence completion, automatic ticket generation, etc. In 
computer science, an “automaton” can be elaborated more accurately 
using the following three components. 

 

Fig. 1.2 Components of an Automaton 

(i) Input: It indicates the value taken from the input alphabet  and 
applied to the automaton at the discrete instant of time. Represented as 
I1, I2, …., In. 

(ii) Output: It refers to the response of the automaton based on the input 
taken. Represented as O1, O2, …., On. 

(iii) State: At a specific instant of time, the automaton can take any state. 
Represented as q1, q2, …., qn 

(iv) State Relation: It refers to the next state of automaton based on the 
current state and current input. 

(v) Output Relation: The output is related to either state only or boththe 
input and the state. 

Note: 

Automaton with memory: Output of automaton depends only on input 

Automaton without memory: Output of automaton depends on input as 
well as states 

1.3 FINITE AUTOMATON 

A finite automaton is represented using 5-tuple such as (Q, , , q0, F), 
where, 

(i) Q = finite nonempty set of states 
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(ii)  = finite non empty set of input symbols (input alphabet) 

(iii)  = direct transition function (a function that maps Q× into Q which 
describes the change of states) 

(iv) q0= initial state 

(v) F = set of final states (F ⊆ Q) 

Note: A finite automaton can have more than one final state. 

1.4 Transition Systems 

An automaton can be represented diagrammatically througha transition 
system, also called a transition graph. The symbols used to draw a 
transition graph and its description is given below. 

Symbol Description 

 
Start state 

 
Intermediate state 

 
Final state 

 
State Relation (label on the edge represents input) 

Table 1.4 Symbols used in the transition graph 

Example 1.4.Consider an finite automaton, (Q = {q0, q1, q2, q3 },  = 
{0,1}, , q0, F={q3}) where its transition state table is given below, 

State\Input 0 1 

q0 q2 q1 

q1 q3 q0 

q2 q0 q3 

*q3 q1 q2 

 

Note: → near the state represents “start” state and * represents the final 
state 
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Solution: The automaton is represented using the transition diagram given 
below, 

 

0010 is an accepted string whereas 101 is not an accepted string. For any 
string to be accepted, it should commence from the start state (vertex) and 
end atthe final state (vertex). 

1.4.1 Properties of Transition Systems 

Property 1: The state of thesystem can be changed only by an input 
symbol. 

Property 2: For all strings xand input symbols b, 

  (q, bx) = ((q, b), x) 

  (q, xb) = ((q, x), b) 

The above property states that an automaton reads thefirst symbol of a 
string bx and the state after the automaton consumes a prefix of the string 
xb. Consider example 1.4, where string “0010” is the acceptable string of 
the automaton. Here the state reads the first symbol of string “0010” say, 
“0” where the start state was q0. After which it would have reached the 
next state say, q2. Thus, the prefix of q2 would be the string “0”. The same 
is applicable for all the states. 

1.5 ACCEPTABILITY BY FINITE AUTOMATON 

A string (finite sequence of symbols) is said to be acceptable if and only if 
the last state is a final state. If the final state is not reached at the end of 
the string, then the string is said to be not acceptable. 

Example 1.5.1. Consider an finite automaton, (Q = {q0, q1, q2, q3 },  = 
{0,1}, , q0, F={q3}) where its transition state table is given below, 

State\Input 0 1 
q0 q2 q1 

q1 q3 q0 

q2 q0 q3 

*q3 q1 q2 
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Which among the following string is/are acceptable? 

(i) 101010   (ii) 11100 

Solution: 
The automaton is represented using the transition diagram given below, 

 

(i) 101010 

 

Since the final state q3 is reached at the end of the string, the string 
“101010” is acceptable by the finite automaton. 
Note: The ↓ indicates the current input symbol which is in the process by 
the automaton. 

(ii) 11100 
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Since the state q1 is not a final state which was reached at the end of the 
string, the string “11100” is not acceptable by the finite automaton. 

1.6 NON-DETERMINISTIC FINITE STATE MACHINES 

In non-deterministic finite state machines, the next state of automaton 
cannot be precisely defined which means that for the same input symbol 
there may exist a different next state. Consider the non-deterministic finite 
state machine given below, 

 

Fig. 1.6 Non-deterministic Finite State Machine 

It can be noted that at state q0 with the input symbol “0”, the machine can 
either reach state q1or q2. Similarly, at state q2 with the input symbol “1”, 
the machine can either reach state q2 itself or q1. This property makes the 
automaton non-deterministic. 

A non-deterministic finite automaton (NDFA) is represented using 5-tuple 
such as (Q, , , q0, F), where, 

(i) Q = finite nonempty set of states 

(ii)  = finite non empty set of input symbols (input alphabet) 

(iii)  = direct transition function (a function that maps Q× into Q which 
describes the change of states) 

(iv) q0 = initial state 

(v) F = set of final states (F ⊆ Q) 

The only difference between a deterministic finite automaton (DFA) and a 
non-deterministic finite automaton (NDFA) is that in DFA, the transition 
function  can contain only one state whereas in NDFA, the transition 
function  can contain a subset of states. 
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The transition state table for Figure 1.6 is given below, 

State\Input 0 1 

q0 {q1, q2} - 

*q1 q0 q2 

q2 - {q1, q2} 

Note: The above transition state table for and NDFA contains a subset of 
states at {q0,0} and {q2, 1} 

1.7 DFA AND NDFA EQUIVALENCE 

Listed below are the two properties that state the relation between DFA 
and NFA. 

• The performance of NDFA can be simulated by DFA by adding new 
states. 

• For one input symbol, NDFA can have zero, one, or more than one 
move for a specific state. 

Consider a non-deterministic finite automaton (NDFA) is represented 
using 5-tuple such as (Q, , , q0, F) and deterministic finite automaton 
(DFA) is represented using 5-tuple such as (Q’, , , q0, F’). The steps for 
converting an NDFA to DFA are listed below. 

Step 1: Initially let Q’ be an empty set 
Step 2: Add the start vertex q0 to Q’ 
Step 3: For every state which is added to Q’, find the possible set of states 
for each input symbol with the help of the transition state table. Two of the 
following actions are to be performed. 

• If the state is a new entrant, then add it to Q’ 

• If the state is not a new entrant, then ignore 
Step 4: Repeat Step 3 until no new states are met 

Step 5: All the states that contain the final state of NDFA are marked as 
the final state. 

Example 1.7.1 Construct a DFA from the NFA given below. 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

q1 q1 q3 

q2 q3 q2 

*q3 - - 
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Solution: 

Step 1: Initially let Q’ be an empty set 

State\Input 0 1 

- - - 
Step 2: Add the start vertex q0 to Q’ 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

 

Step 3: For every state which is added to Q’, find the possible set of states 
for each input symbol with the help of the transition state table. Two of the 
following actions are to be performed. 

• If the state is a new entrant, then add it to Q’ 

• If the state is not a new entrant, then ignore 

New state 1: {q1, q3} 

Check both q1andq3 entries from the NDFA transition table 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

{q1, q3} q1 q3 
 

Step 4: Repeat Step 3 until no new states are met 

New state 2: {q2, q3} 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

{q1, q3} q1 q3 

{q2, q3} q3 q2 
 

New state 3: q1 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

{q1, q3} q1 q3 

{q2, q3} q3 q2 

q1 q1 q3 
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New state 4: q2 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

{q1, q3} q1 q3 

{q2, q3} q3 q2 

q1 q1 q3 

q2 q3 q2 
New state 5: q3 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

{q1, q3} q1 q3 

{q2, q3} q3 q2 

q1 q1 q3 

q2 q3 q2 

*q3 - - 
 

Step 5: All the states that contain the final state of NDFA are marked as 
the final state. 

State\Input 0 1 
q0 {q1, q3} {q2, q3} 

*{q1, q3} q1 q3 

*{q2, q3} q3 q2 

q1 q1 q3 

q2 q3 q2 

*q3 - - 
 

Example 1.7.2 Construct a DFA from the NFA given below. 
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Solution: The transition state table is generated as, 

State\Input 0 1 
q0 {q0, q1} {q0} 

q1 - q2 

*q2 - - 
 

Step 1: Initially let Q’ be an empty set 

State\Input 0 1 

- - - 
 

Step 2: Add the start vertex q0 to Q’ 

State\Input 0 1 
q0 {q0, q1} {q0} 

 

Step 3: For every state which is added to Q’, find the possible set of states 
for each input symbol with the help of the transition state table. Two of the 
following actions are to be performed. 

• If the state is a new entrant, then add it to Q’ 

• If the state is not a new entrant, then ignore 

New state 1: {q0, q1} 

Check both q0andq1 entries from the NDFA transition table 

 State\Input 0 1 
q0 {q0, q1} {q0} 

{q0, q1} {q0, q1} {q0, q2} 
 

Step 4: Repeat Step 3 until no new states are met 

New state 2: {q0, q2} 

 State\Input 0 1 
q0 {q0, q1} {q0} 

{q0, q1} {q0, q1} {q0, q2} 

{q0, q2} {q0, q1} {q0} 
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Step 5: All the states that contain the final state of NDFA are marked as 
the final state. 

 State\Input 0 1 
q0 {q0, q1} {q0} 

{q0, q1} {q0, q1} {q0, q2} 

*{q0, q2} {q0, q1} {q0} 
 

1.8 MEALY AND MOORE MACHINES 

A model in which the output function depends both on present state qi and 
input value xi is called a Mealy machine. 

A model in which the output function depends only on present state qi and 
is independent of input value xi is called a Moore machine. 

Consider the example given below where the Mealy machine is 
represented using the transition state table. 

Present State 
Next State 
Input 0 Input 1 
State Output State Output 

q1 q4 0 q2 1 
q2 q1 1 q4 0 
q3 q3 1 q3 0 
*q4 q2 0 q1 1 

 

For an input string “1011”, the transition states are given by q1 ->q2 ->q1 -> 
q2 -> q4. The output string is “1110” 

Consider the example given below where the Moore machine is 
represented using the transition state table. 

Present State 
Next State 

Output 
Input 0 Input 1 

q1 q4 q2 1 
q2 q1 q4 0 
q3 q3 q3 0 
*q4 q2 q1 1 

 

For an input string “1011”, the transition states are given by q1 ->q2 ->q1 -> 
q2 -> q4. The output string is “1010” 
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1.9 MINIMIZING AUTOMATA 

Suppose there is a DFA (Q, , , q0, F) which recognizes a language 
LThen the minimized DFA (Q’, , , q0, F’) can be constructed for 
language L as: 

Step 1: We will divide Q (set of states) into two sets.  

One set will contain all final states and the other set will contain non-final 
states. 

Step2: Initialize k = 1 

Step 3: Find Qk by partitioning the different sets of Qk-1. In each set of Qk-

1, take all possible pairs of states. If two states of a set are distinguishable, 
we will split the sets into different sets in Qk. 

Step 4: Stop when Qk = Qk-1 (No change in the partition) 

Step 5: All states of one set are merged into one. No. of states in 
minimized DFA will be equal to no. of sets in Qk.  

Consider the example of DFA given below: 

 

Step1. Q0 will have two sets of states. One set will contain the final states 
of DFA and another set will contain the remaining states. So,Q0 = 
{{q1,q2,q4}, {q0, q3, q5}}.  

Step 2. To calculate Q1, check whether sets of partition Q0 can be 
partitioned or not. 

i) For set { q1, q2, q4} :  

Since q1 and q2 are not distinguishable and q1 and q4 are also not 
distinguishable, So q2 and q4 are not distinguishable. So, { q1, q2, q4} set 
will not be partitioned in Q1.  

ii) For set { q0, q3, q5 } : 

Since q0 and q3 are not distinguishable and q0 and q5 are distinguishable, 
So q3 and q5 are not distinguishable.  So, set {q0, q3, q5} will be partitioned 
into {q0, q3} and {q5}.  

So, Q1 = {{q1,q2,q4}, {q0, q3}, {q5}}. 
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iii) For set { q1, q2, q4}:  
Since q1 and q2 are not distinguishable and q1 and q4 are also not 
distinguishable, So q2 and q4 are not distinguishable. So, { q1, q2, q4} set 
will not be partitioned in Q2 

iv) For set { q0, q3 } : 
q0 and q3 are not distinguishable 

v) For set { q5 }: . 
Since only one state ispresent in this set, it cannot be further partitioned. 

So, Q2 = {{q1,q2,q4}, {q0, q3}, {q5}}. 

Since Q1= Q2. So, this is the final partition. 
The minimized DFA is given below, 

 

1.10 SUMMARY 

• Automata theory is the study of abstract machines and computational 
problems. 

• Automaton refers to a system that transforms and transmits the 
information which is used for some action without any human 
intervention. 

• A finite automaton is represented using 5-tuple such as (Q, , , q0, F). 

• An automaton can be represented diagrammatically through a 
transition system, also called a transition graph. 

• A string (finite sequence of symbols) is said to be acceptable if and 
only if the last state is a final state. 

• In non-deterministic finite state machines, the next state of automaton 
cannot be precisely defined which means that for the same input 
symbol there may exist a different next state. 

• A model in which the output function depends both on present state qi 
and input value xi is called a Mealy machine. 

• A model in which the output function depends only on present state qi 
and is independent of input value xi is called a Moore machine. 

❖❖❖❖ 
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FORMAL LANGUAGES 

Unit Structure 

2.0 Objectives 
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2.3 Derivations and Languages generated by Grammar 

2.3.1 Derivations generated by Grammar 

2.3.2 Languages generated by Grammar 

2.4 Chomsky Classification of Grammar and Languages 

2.5 Languages and Their Relations 

2.6 Recursive Enumerable Sets 

2.7 Operations on Languages 

2.8 Languages and Automata 

2.9 Summary 

2.0 OBJECTIVES 

After going through this chapter, the learner will be able to: 

 understand the concepts of grammars and formal languages 
 discuss the Chomsky classification of languages 
 study the relationship between the four classes of languages 
 implement various operations on languages 
 

2.1 INTRODUCTION 

Linguists were trying in the early 1950s to define preciselyvalid sentences 
and give structural descriptions of sentences. They wanted todefine formal 
grammar (i.e. to describe the rules of grammar in a rigorousmathematical 
way) to describe English. Itwas Noam Chomsky who gave a mathematical 
model of grammar in 1956.Although it was not useful for describing 
natural languages such as English, itturned alit to be useful for computer 
languages. 
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2.2 DEFINING GRAMMAR 

A grammar is a quadruple G = (N, Σ, P, S)  

where, 

1. N is a finite set of nonterminals,  

2. Σ is a finite set of terminals,  

3. S ∈ N is the start symbol, and  

4. P is a finite subset of N × V* called the set of production rules. Here, V 
= N ∪ Σ. It is convenient to write A → α, for the production rule (A, α)                
∈ P. 

Consider a grammar G1 − ({S, A, B}, {a, b}, S, {S → AB, A → a,                     
B → b}) 

Here, 

 S, A, and B are Non-terminal symbols; 

 a and b are Terminal symbols 

 S is the Start symbol, S ∈ N 

 Productions, P : S → AB, A → a, B → b 

Let P = {S → ab, S → bb, S → aba, S → aab} with Σ = {a, b} and N = 
{S}. Then G = (N, Σ, P, S) is a context-free grammar. Since the left-hand 
side of each production rule is the start symbol S and their right-hand sides 
are terminal strings, every derivation in G is of length one. We precisely 
have the following derivation in G.  

1. S ⇒ ab  

2. S ⇒bb  

3. S ⇒aba  

4. S ⇒aab  

Hence, the language generated by G, L(G) = {ab, bb, aba, aab}. 

2.3 DERIVATIONS AND LANGUAGES GENERATED 
BY GRAMMAR 

2.3.1 Derivations generated by Grammar 

Strings may be derived from other strings using the productions in 
grammar. If a grammar G has a production α → β, we can say that x α 
y derives x β y in G. This derivation is written as, 

x α y ⇒ G x β y 
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Let us consider the grammar, 

G = ({S, A}, {a, b}, S, {S → aAb, aA → aaAb, A → ε }) 

Some of the strings that can be derived are, 

S  ⇒ aAb  using production S → aAb 

⇒aaAbb  using production aA → aAb 

⇒aaaAbbb  using production aA → aaAb 

⇒aaabbb  using production A → ε 

2.3.2 Languages generated by Grammar 

The set of all strings that can be derived from a grammar is said to be the 
language generated from that grammar. A language generated by a 
grammar G is a subset formally defined by 

L(G)={W|W ∈ ∑*, S ⇒G W} 

If L(G1) = L(G2), the Grammar G1 is equivalent to the Grammar G2. 

Suppose we have the following grammar, 

G = {S, A, B} T = {a, b} P = {S → AB, A → aA|a, B → bB|b} 

The language generated by this grammar L(G) = {ab, a2b, ab2,                         
a2b2, ………} 

= {am bn | m ≥ 1 and n ≥ 1} 

2.4 CHOMSKY CLASSIFICATION OF GRAMMAR AND 
LANGUAGES 

According to Noam Chomsky, there are four types of grammar such as, 

 Type 0 (Unrestricted grammar) 
 Type 1 (Context-sensitive grammar) 
 Type 2 (Context-free grammar) 
 Type 3 (Regular grammar) 
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Fig. 2.4 Types of Grammar 

Type - 3 Grammar 

Type-3 grammars generate regular languages. Type-3 grammars must 
have a single non-terminal on the left-hand side and a right-hand side 
consisting of a single terminal or single terminal followed by a single non-
terminal. 

The productions must be in the form X → a or X → aY 

where X, Y ∈ N (Non-terminal),and a ∈ T (Terminal) 

The rule S → ε is allowed if S does not appear on the right side of any 
rule. 

Example 2.4.1  

A → ε  

A → a | aB 

B → b  

Type - 2 Grammar 

Type-2 grammars generate context-free languages. 

The productions must be in the form A → γ 

where A ∈ N (Non-terminal) 

and γ ∈ (T ∪ N) * (String of terminals and non-terminals). 

These languages generated by these grammars are be recognized by a non-
deterministic pushdown automaton. 
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Example 2.4.2 

S → A a  

A → a  

A → aA 

A → abc  

A → ε 

Type - 1 Grammar 

Type-1 grammars generate context-sensitive languages.  

The productions must be in the form, α A β → α γ β 

where A ∈ N (Non-terminal) 

and α, β, γ ∈ (T ∪ N) * (Strings of terminals and non-terminals) 

The strings α and β may be empty, but γ must be non-empty. 

The rule S → ε is allowed if S does not appear on the right side of any 
rule. The languages generated by these grammars are recognized by a 
linear bounded automaton. 

Example 2.4.3 

AB → AbBc  

A → bcA  

B → b  

Type - 0 Grammar 

Type-0 grammars generate recursively enumerable languages. The 
productions have no restrictions. They are any phase structure grammar 
including all formal grammars. 

They generate the languages that are recognized by a Turing machine. 

The productions can be in the form of α → β where α is a string of 
terminals and nonterminals with at least one non-terminal and α cannot be 
null. β is a string of terminals and non-terminals. 

Example 2.4.4 

S → ACaB  

Bc → acB  

CB → DB  

aD → Db  
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2.5 LANGUAGES AND THEIR RELATIONS 

Regular Languages are the most restricted types of languages and are 
accepted by finite automata. Regular Expressions are used to denote 
regular languages. An expression is regular if, 

 ɸ is a regular expression for regular language ɸ. 
 ɛ is a regular expression for regular language {ɛ}. 
 If a ∈ Σ (Σ represents the input alphabet), a is regular expression with 

language {a}. 
 If a and b are regular expressions, a + b is also a regular expression 

with language {a,b}. 
 If a and b are regular expressions, ab (concatenation of a and b) is also 

regular. 
 If a is a regular expression, a* (0 or more times a) is also regular. 

Regular Grammar: A grammar is regular if it has rules of form A -> a or 
A -> aB or A -> ɛ where ɛ is a special symbol called NULL. 

Regular Languages: A language is regular if it can be expressed in terms 
of a regular expression. 

2.6 RECURSIVE ENUMERABLE SETS 

Recursive Enumerable languages or type-0 languages are generated by 
type-0 grammars. A Recursive Enumerable language can be accepted or 
recognized by the Turing machine which means it will enter into the final 
state for the strings of language and may or may not enter into rejecting 
state for the strings which are not part of the language. It means the Turing 
machine can loop forever for the strings which are not a part of the 
language. RE languages are also called Turing recognizable languages. 

2.7 OPERATIONS ON LANGUAGES 

1. Union  
If L1 and If L2 are two regular languages, their union L1 ∪ L2 will also be 
regular.  
For example,  
L1 = {an | n ≥ 0} and L2 = {bn | n ≥ 0} 
L3 = L1 ∪ L2 = {an ∪ bn | n ≥ 0} is also regular. 
 
2. Intersection 
If L1 and If L2 are two regular languages, their intersection L1 ∩ L2 will 
also be regular. 
For example,  
L1= {am bn | n ≥ 0 and m ≥ 0} and L2= {am bn ∪ bn am | n ≥ 0 and                  
m ≥ 0} 
L3 = L1 ∩ L2 = {am bn | n ≥ 0 and m ≥ 0} is also regular. 
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3. Concatenation 
If L1 and If L2 are two regular languages, their concatenation L1.L2 will 
also be regular.  
For example,  
L1 = {an | n ≥ 0} and L2 = {bn | n ≥ 0} 
L3 = L1.L2 = {am . bn | m ≥ 0 and n ≥ 0} is also regular. 
 
4. Kleene Closure  
If L1 is a regular language, its Kleene closure L1* will also be regular.  
For example, 
L1 = (a ∪ b) 
L1* = (a ∪ b)* 
 
5. Complement  
If L(G) is a regular language, its complement L’(G) will also be regular. 
The complement of a language can be found by subtracting strings that are 
in L(G) from all possible strings.  
For example, 
L(G) = {an | n > 3} 
L’(G) = {an | n <= 3} 

2.8 LANGUAGES AND AUTOMATA 

The relationship among the languages and automata are represented 
through the following figure, 

 

Fig. 2.8 Languages and Automata 

2.9 SUMMARY 

 A grammar is a quadruple G = (N, Σ, P, S) 

 Strings may be derived from other strings using the productions in 

grammar. 

 The set of all strings that can be derived from a grammar is said to be 

the language generated from that grammar. 
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 According to Noam Chomsky, there are four types of grammar such 

as Type 0 (Unrestricted grammar), Type 1 (Context-sensitive 

grammar), Type 2 (Context-free grammar), and Type 3 (Regular 

grammar) 

 Regular Languages are the most restricted types of languages and are 

accepted by finite automata.  

 Regular Expressions are used to denote regular languages. 

 Recursive Enumerable languages or type-0 languages are generated 

by type-0 grammars. 

 Union, Intersection, Concatenation, Kleene Closure, Complement are 

some of the operations on languages. 
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Unit II 

3 
REGULAR SETS AND REGULAR 

GRAMMAR 
 

Unit Structure 

3.0  Objectives 

3.1  Introduction 

3.2  Regular Grammar 

3.3  Regular Expressions 

  3.3.1 Regular Expressions Identities 

  3.3.2 Regular Language Definition and Examples 

3.4  Finite automata and Regular Expressions 

3.5  Pumping Lemma and its Applications 

3.6  Closure Properties 

3.7  Regular Sets and Regular Grammar 

3.8  Summary 

3.9  References 

3.10 Review Questions 

3.0 OBJECTIVES 

After the end of this unit, Students will be able to:  

 To Understand Concept of Regular Grammar and Regular Expressions 

 To Understand Concept of Finite automata and Regular Expressions 

 To Learn what is Pumping Lemma for regular languages and its 
Applications 

 To Learn Closure Properties of Regular set 

 To Learn about Regular Sets and Regular Grammar 
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3.1 INTRODUCTION 

In this chapter we are learn the concept of the Regular Expression. We 
first describe regular expressions as a means of representing subsets of 
strings over ∑ and prove that regular sets are exactlythose accepted by 
finite automata (FA) or transition systems. We study about pumping 
lemma for regularLanguages to prove that certain Languages are not 
regular. Then we studyclosure properties of regular sets. At the and we 
discuss the relation between regular sets and regular grammars 

3.2 REGULAR GRAMMAR: 

If Grammar has rules of form  

S -> a or  

S ->aB or 

S -> ɛ  

Where ɛ is a special symbol called NULL then this grammar called as 
regular Grammar. 

Regular Grammar having two types: 

 

Right Regular Grammars:                          Right Regular Grammars: 

Rules of the forms                                       Rules of the forms 

S → ε       S → ε 

S → a      S → a 

S → aP                S → Pa 

S, P: variables and    S, P: variables and 

a: terminal       a: terminal 
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3.3 REGULAR EXPRESSIONS 

The regular expressions are useful for representing certain sets of strings 
in an Algebraic fashion. Here, these describe the languages accepted by 
finite state automata. We give a formal recursive definition of regular 
expressions over ∑ as follows: 

1. Any terminal symbol (i.e. an element of ∑), ε and Ø are regular 
expressions. When we view a in ∑ as a regular expression, we denote 
it by a. 

2. The union of two regular expressions R, and R, written as R1 + R2,is 
also a regular expression. 

3. The concatenation of two regular expressions Rj and R2, written as Rj 
R2, is also a regular expression. 

4. The iteration (or closure) of a regular expression R written as R*, is 
also a regular expression. 5. If R is a regular expression, then (R) is 
also a regular expression. 

5. The regular expressions over ∑are precisely those obtained 
recursively by the application of the rules 1-5 once or several times. 

Notes: 

1. We use x for a regular expression just to distinguish it from the 
symbol (or string) x. 

2. The parentheses used in Rule 5 influence the order of evaluation of a 
regular expression. 

3. In the absence of parentheses, we have the hierarchy of operations as 
follows: iteration (closure), Concatenation, and union. That is, in 
evaluating a regular expression involving various operations.  

3.3.1 Regular Expression Identities 

Two regular expressions P and Q are equivalent, then it is written as P = Q 
if P and Q represent thesame set of strings. 

Following are the identities for Regular Expression: 

i. Associativity and Commutativity 

   1.  P+Q=Q +P 

2. (P + Q) + N=P+(Q+N) 

3. (PQ)N = P(QN) 

Here note that PM ≠ MP 

ii. Distributivity 

1. P(M+N)=PM+PN 

2. (M + N)P = MP + NP 
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iii. Identities and Anhilators 

1. Ø +P=P+ Ø =P 

2. εP = P ε=P 

3. Ø P = P Ø = Ø 

iv.  Idempotent Law 

1. P+P=P 

v. Closure Laws 

1. (P*)* =P* 

2. (Ø)* = ε 

3. ε * = ε 

4. P+ = PP* = P*P 

5. P* = P++ ε 

6. P* P*  = P* 

7. (PQ) * P= P(QP) * 

8. (P+Q) *=(P*Q*)*=(L*+M*)* 

3.3.2 Regular Language Definition and Examples 

Definition:“The languages that are associated with regular expressions are 
called languages and are also said to be defined by finite representation.” 

Examples: 

Q.1 Describe the language defined by the regular expression r=ab*a 

Solution: 

It is the set of all strings of a's and b's that have at least two letters, that 
beginand end with a's, and that have nothing but b'sinside (if anything at 
all) language. 

∴ the strings in the Language L are 

L = {aa, aba, abba, abbba, abbbba, ….} 

In above strings we can observe that there are minimum two a’s it means 
that strings start and end with ‘a’and in-between any number of b’s it may 
be ε 

∴  It represents a Language Lcontain strings over {a, b} for regular 
expression r=ab*a 

Q.2 Find out Regular Language of Regular Expression 
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Solution:  

To find out language for Regular Expression = a + b + c + d 

We can take all possible strings from the given expression 

    Consider,    r = a + b + c + d 

Then, the strings in language are 

    L =  a, b, c, d 

So, from above strings Regular Expression represents Language L 
consisting of   

Stringsover {a, b} 

Q.3 Find out regular language of Regular Expression a*+ b+ + c + d 

Solution:  

To find out language for Regular Expression = a*+ b+ + c + d 

We can take all possible strings from the given expression 

   Consider, r = a* + b+ + c + d 

For our understanding break the given regular expression into parts 

Then, the possible strings in language are  

  a* = ε , a , aa, aaa,…….  

  b+ = b, bb, bbb,.. 

Now concatenating all strings resultant language is, 

  L = ε, a, aa, aaa, aaaa ….b, bb, bbb, bbbb, c, d 

So, from above strings Regular Expression represents Language L 
consisting of stringsover {a,b,c,d}  

Q.4 Find out regular language of Regular Expression a*b + c+ d 

Solution:  

To find out language for Regular Expression = a*b + c+ d 

We can take all possible strings from the given expression 

    Consider, r = a*b + c+ d 

For our understanding break the given regular expression into parts 

Then, the possible strings in language are  

    a* = ε , a, aa, aaa,….. 
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    a*b = b, ab, aab, aaab,…… 

    c+ = c, cc, ccc, cccc,……… 

    c+ d = cd, ccd, cccd, ccccd,………. 

Now concatenating all strings resultant language is, 

    L = b, ab, aab, aaab…cd, ccd, cccd… 

So, from above strings Regular Expression represents Language L 
consisting of   

Stringsover {a,b,c,d}  

Q.5 Find out Regular Expression for A language L consists of strings over 
{a, b} contains at least one 'a' 

Solution:  

The given language consists of strings where at least one 'a' must be 
present. It may have zero or more occurrences of leading a's and b's and 
trailing a's and b's. 

So the required regular expression for given language will be 

r= (a + b) * a (a + b) * 

Q.6 Find out a regular expression for a language L over ∑ *, where ∑ = 
{0, 1} such thatevery string in the language begin and end with either 00 
or 11. 

Solution: 

Here given that string must begin and end with either 00 or 11 so we will 
denote regularexpression as (00+ 11). Now in between zero or more 
occurrences of 0 or 1 is valid so we can denote regular expression (0 + 
1)*. After concatenating this we will get regular expression which 
represents given language Lr=(00 + 11) (0+1)* (00+ 11) 

3.4 FINITE AUTOMATA AND REGULAR 
EXPRESSIONS: 

Conversion of Regular Expression to Finite automata: 

Regular expression represents regular set means language accepted by 
some automata; for every regular expression there exists an FA which is 
equivalent to it, accepting the same languages. If there is a simple regular 
expression, we can directly draw DFA or say NFA without much trouble. 
But if the regular expression is complicated then it is not possible to draw 
FA just by looking at it.  

There are certain rules to convert regular expression to NFA with ϵ moves 
which can be followed to convert given regular expression to NFA with ϵ 
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moves which then can be transformed into NFA or directly DFA, by our 
usual methods. 

Method: 1 Basis Zero Operation: 

  The expression r must be ϵ,  or ‘a’. For some a in Ʃ 

We can draw NFA for all these condition as shown in following diagrams. 
1. r = ϵ  
  
    
  
2. r =  
 
 
 
 
3. r = a 
 
a 
  
 

Method 2: Induction (One or More Operations) 

Hereare regular expressionssuch that such that there exist an NFA with ε 
transition that accept Language L(r).There are three cases depending on 
the forms of r. 

Case1: r = a + b 
      a 
 
   ϵ      ϵ 
 
 
    
   ϵ     ϵ 
     b 
 
 
Case: 2 r = ab 
    a         ϵ     b 
 
  
Case 3 r = a* 
        ϵ 

 

    ϵ  a          ϵ 

 

q0 q0 q1 

q0 

q0 q0 q1 

q 1 

q 2 q 3 

q 4 

q 6 q 5 

 q
0 

q
1 

q
2 

q
3 

q0 q1 q2 q3 

mu
no
tes
.in



 

 

Regular Sets and Regular 
Grammar 

 

29 

Examples 1 

Draw FA with ϵ moves for the regular expression given as a (a+b)*. 

Solution: 

Using the above methods, steps for converting given regular expression to 
FA  
       a   
                        ϵ                            ϵ 
 
 
 
                                     ϵ          ϵ 
       b 
Step: 1 

FA with ϵ moves for (a +b) 
          ϵ 
 
 a 
      ϵ      ϵ 
                                ϵ             ϵ 
 
 
ϵb                       ϵ 
 
  ϵ 
 

 

Step: 2FA with ϵ moves for (a +b)* 
 
a 
                                                 ϵ 
a            ϵ              ϵ ϵϵ 
ϵ 
ϵbϵ 
 
                                 ϵ 
 

Step: 3 

Final FA with ϵ moves for a (a+b)* 

∴ M= ({q0,q1,q2,q3,q4,q5,q6,q7,q8}, {a, b}, p,q0,q9) 

Example: 2 

  Draw FA with ϵ moves for the regular expression (a*+b*) 

 

q 0 

q 1 q 2 

q 5 

q 3 q 4 

q 1 

q 2 q 3 

q 6 

q 4 q 5 

q7 q 0 

q0 q1 q2 q3 

q4 

q6 

q5 

q8 q9 

q7 
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Solution: 

Using the rules for converting regular expression to FA with ϵ moves we 
can get FA with ϵ moves for (a*+b*) as in following figure:  

  Step: 1 FA with ϵ moves for a* Step: 2FA with ϵ moves for b* 

 

             Step: 3Final FA with ϵ moves for (a*+ b*) 

∴ M= ({q0,q1,q2,q3,q4,q5,q6,q7,q8}, {a, b}, p,q0,q9) 

3.5 Pumping Lemma and its Applications 

Statement of Pumping Lemma: 

It states that given any sufficiently long string accepted by an FSM, we 
can find a substring near the beginning of the string that may be repeated 
(or Pumped) as many times as we like and the resulting string will still be 
accepted by the same FSM. 

Proof: 

Let L (M) be a regular language accepted be a given DFA, M = (Q1 Ʃ, δ, 
q0, F) with some particular number of notes ‘n’ 

Consider an input of ‘n’ or more symbols a1, a2, a3 ... am, m>nand for i = 
1,2,3,……..m 

   Let δ (q0, a1, a2, ….ai,) = q1 

It is not possible for each of the (n+1) states q0, q1, q2… qnto be distinct; 
because there are only ‘n’ states and to recognize the string of length m ≥ 
n it requires at least (n+1) states if we want them to be distinct. 

Thus, there exists two integers ‘j’ and ‘k’ where, 0 ≤ j < k ≤ Such that qj = 
qkConsider the transition diagram for the DFA M, as given in the 
following figure. 
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   aj+1……….ak 

 

        a1………..aj   ak+1………..am 

 

 

Figure: Pumping Lemma 

Since j < k, the string “aj+1 ……ak” is of the length at least one and since k 
≤ n, its length is no more than ‘n’. 

i.e. 1 ≤ │ aj+1 ……ak│≤ n 

It qm⊂F i.e. if qmis final state that means, “ a1, a2,…..am” is in L (M), then 
“a1,a2………aj,ak+1 ak+2……am” is also in L(m); since there is a path from 
q0 to qm that goes through qjbut not around the loop labeled aj+1 …..ak. 

Similarly, we can go around the loop as many times as we like and the 
resultant string will still be in L (m). 

i.e. a1……..aj (aj+1ak)I ak+1 …….am⊂ L(M) 

For any i≥0 (i.e closure – zero or more occurrences) Hence the proof.  

Formal statement of pumping Lemma: 

Let 'L' be a regular set. Then there is a constant 'n' such that if‘z’ is any 
word in 'L' and │Z│ ≥ n, we may write z = uvw in such a waythat │uv│ ≤ 
n, │v │. i.e. 1 ≤ │v│≤ n and for all i ≥ 0, u  vl w is in L.Proof (of the 
formal statement): 

Consider,  z = a, a, 

u = a, a2 

V =aj +1……..ak 

W= ak+1 

Using above consideration, the previous proof can be a proof for theformal 
statement. 

Application of pumping Lemma: 

It is a dominant tool for demonstrating certain languages non-regular. 
Given a language, with the assistance of pumping lemma, we can define 
whether it is a regular language or non-regular language. 

 

qj =qk q0 
qm

m 
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Example: 1 

Prove that, the following language is non-regular using Pumping lemma, 

an  bn+1│n > 0 

Solution: 

a) given n > 0 

For  n = 1, anbn+1 = a b2, length = 1 + 2 = 3 

n = 2, anbn+1= a2b3, length = 2 + 3 = 5 

n = 3, anbn+1= a3b4', length = 3 + 4 = 7 

Now, from observation, we can find out the property of the language given 
and is that it consist of strings having odd length. 

b) Assume that the given language 

L = (anbn+1 │n > 0) is regular. 

c) Let ‘ɭ’ be the constant of pumping lemma. 

d) Let z = aɭ. bɭ+l, where 

Length of z = │2│ = ɭ + ɭ + 1 = 2 ɭ + 1 

e) By Pumping lemma we can write ‘z’ as 

z = uvw where, 

1 ≤│v│ ≤ ɭ 

anduv'w for i ≥ 0 is in L. 

f) Let i = 2 

as we know, from Pumping lemma, 

i≤│ v│ ≤ ɭ 

(2 ɭ +1) +1 ≤ │uv2 w│ ≤ ɭ + (2 ɭ + 1) 

Because, │uvw │= 2 ɭ + 1 

Therefore, 

2 ɭ + 2 ≤ │uv2w│ ≤ 3 ɭ + 1 

g) 2 ɭ + 2 ≤ │ u v2 w│ ≤ 3 ɭ + 1 

i.e. 2 ɭ + 1 < │u v2w│ < 3 ɭ + 2 

Consider, ɭ = 1 

3 < │uv²w│ < 5 
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i.e. length= 4 (not odd) 

for, ɭ = 2 

5 < 1 uv2w│ < 8 

i.e. length = 6, 7 (not always odd) 

Thus, the length of "uv2w" is not always add. That means "uv2w" isnot               
in L. 

But that is the paradox with Pumping lemma. Therefore, as per our 
assumption that 'L' is regular, must be wrong, 

Therefore, given language L = {anbn+ 1 │n > 0} is non-regular. 

Example: 2 Prove that L = {aibjck │k >i + j} is not regular. 

Solution: 

Step: 1 Assume that L is regular. Let L = T (M) for some DFA with n 
States. 

  Step: 2 Let w = anbnc3n in L 

By pumping lemma we write w = xyz with │xy│≤ n and │y│ ≥ 0 

   Now consider  

    w = anbnc3n 

    w = xyz 

    xy = ai for some i ≤ n 

Step: 3 Then xyk+1 z = an+jkbnc3n 

By choosing k large enough so that n+jk>2n 

    We can make n+jk+n>3n. 

    So xyk+1 z  L. 

This is paradox to our assumption. 

    ∴ L is not regular. 

3.6 CLOSURE PROPERTIES 

There are number of operations, when we applied to regular sets and it 
give result inRegular sets. Means, number of operations on language 
preserves regularsets.For example, the Union of two regular sets is also 
generating regular set. Similarly,the concatenation of regular sets is also 
generating regular set and the Kleeneclosure of regular set is also regular 
set. 
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If a class of language is closed under a specificoperation thatfact isentitled 
as closure property of the class of language. 

Theorems 

1. The regular sets are closed under union, concatenation and 
Kleene closure. If X and Y are regular sets. 

 Then X U Y, (X + Y), X Y and X*are also regular 

Proof: 

X+Y that means the language of all words in either X orY. Regular 
expressions forX and Y are r1 and r2 respectively.  

Then r1 + r2 is regular expression for X U Y 

r1r2 regular expressionfor XY.  

r1*is regular expression for X*.  

Therefore, all three types of these sets of words adefinable by regular 
expressions and so are themselves regular sets. 

2. Regular set is closed under complementation. If X is regular set, 
then X'is also regular. 

If X is a regular set and X⊆∑*and ∑* X is a regular set. 

If X is a language over alphabet∑, we define its complement X' to the 
language of all strings of letters for that are not words in X' 

Proof: 

Let X be X (M). Some of states of this FA, M are final states and some are 
not.Let's reverse the states of each state, i.e., if it was a final state make it 
non-final and if it was non-final, make it final. 

The new Finite Automata accepts all strings that were not accepted by the 
original FA(X). 

∴ Machine accepts the language X' 

∴ X' is a regular set. 

By using Finite Automata we can proof this, 

Construct DFA for a language over {a,b} that accept  only the strings aba 
and abb is shown below  
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 We can complement each state 

Here make all final states to non–final state and non–final to final states. 

 

Above Finite Automata shows that it accept all strings other than aba and 
aTherefore, we can prove that complement of regular set is also regular. 

3. The regular sets are closed under intersection. If X and Y are 
regular sets. 

 Then X ∩ Yis also regular 

Proof: 

   By Using De-Morgan’s Law 

X ∩ Y = (X' U Y') ' = (X'+Y')’ this can be stated by Venn diagram 

(X' U Y') 
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(X'+Y')’ 

 

We observed above Venn diagram the language X ∩ Y consists of all 
words that are not in either X' or Y'. Since X and Y are regular, then so are 
X' and Y'. Since X' and Y'are regular, so is X' + Y'. And since X' and Y' is 
regular, then so is (X' + Y')’, which meansX ∩ Y, is regular. 

Therefore, we can prove that intersection of regular sets is also regular. 

3.7 REGULAR SETS AND REGULAR GRAMMAR 

 Regular Sets 

  Regular set is theset that represents the value of the Regular 
Expression. 

The class of Regular Set over ∑ is defined as 

a) Every finite set of words over alphabet ∑ (including Ø, the empty set 
or nullset) is a regular set. 
b) If X and Y are regular sets over then X U Y (union) and X 
Y(concatenation) are also regular sets. 
c) If P is a regular set over alphabet ∑ then so its closure i.e. S is the 
smallest class 

In other words, the class of regular sets over alphabet ∑containing all 
finite sets of words over alphabet ∑ and closed under union, concatenation 
and star operation. 

mu
no
tes
.in



 

 

Regular Sets and Regular 
Grammar 

 

37 

Note: Any set which is predictable by an FSM is regular; and conversely, 
every regular set can be predictable by some FSM. Regular set is 
represented by value of regular expression. 

Properties of Regular Sets 

Property 1.  The union of tworegular sets is regular 

Proof:  

Let us take two regular expression 

r1 = (aa)* and r2 = a (aa)* 

So X = {ε, aa, aaaa, aaaaaa…} (even length h strings including NULL)and  

Y = {a, aaa,aaaaa,aaaaaaa,……….} (odd length strings excluding NULL) 

X U Y ={ε, a, aa, aaa, aaaa,aaaaa,……….}  

(allpossible length strings including NULL) 

(X U Y) = a* (this is also regular expression itself) 

∴ Union of Two sets is regular 

Property 2.  The Intersection of Two regular sets is regular 

Proof:  

Let us take two regular expression 

r1 = a(a*) and r2 = (aa)* 

So X = {a, aa, aaa, aaaa,aaaaa,……….}  

(all possible length strings excluding NULL) 

and Y = {ε, aa, aaaa, aaaaaa,…….} (even length strings including NULL) 

X ∩ Y = { aa, aaaa, aaaaaa,…….} (even length strings excluding NULL) 

X ∩ Y = aa(aa)* (this is also regular expression itself) 

∴Intersection of Two sets is regular 

Property 3.  The Complement of a regular set is regular 

Proof:  

Let us take a regular expression 

r = (aa)*  

So X = {ε, aa, aaaa, aaaaaa…} (even length h strings including NULL) 

Complement of X which is all strings that is not in X  
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So X’= {a, aaa,aaaaa,aaaaaaa…} (odd length strings excluding NULL) 

Regular Expression(X’) = a(aa)* (this is also regular expression itself) 

∴Complement of a regular set is regular 

Property 4.  The difference of two regular sets is regular 

Proof:  

Let us take two regular expression 

r1 = a(a*) and r2 = (aa)* 

So X = {a, aa, aaa, aaaa,aaaaa,……….}  

(all possible length strings excluding NULL) 

and Y = {ε, aa, aaaa, aaaaaa,…….} (even length strings including NULL) 

X - Y = {a, aaa,aaaaa,aaaaaaa,……….} (odd length strings excluding 
NULL) 

X - Y = a(aa)* (this is also regular expression itself) 

∴ Difference of Two sets is regular 

Property 5.  The Reversal of a regular set is regular 

Proof:  

Let us take a regular expression 

r = {01+10+11+10} 

So X = {01, 10, 11, 10}  

Reversal of X is XR which is all strings that is reverse of X  

RR= {10+01+00+01} 

So  XR= {10,01,00,01} which is also regular 

∴ Reversal of a regular set is regular 

Property 6.  The closure of a regular set is regular 

Proof:  

Let us take a regular expression 

r = a (aa)*  

So X = {a, aaa,aaaaa,aaaaaaa,……….}  

(Odd length strings excluding NULL) 

Closure of X is X * 
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So X’= {a, aa, aaa, aaaa,aaaaa,……….}  

(all possible length strings excluding NULL) 

 Regular Expression(X*) = a(a)* (this is also regular expression itself) 

∴Closure of a regular set is regular 

Property 7.  The concatenation of two regular sets is regular 

Proof:  

Let us take two regular expression 

r1 = (0+1)*0 and r2 = 01(0+1)* 

So X = {0, 00, 10,000, 1100…} (set of Strings ending with 0) 

and Y = {01, 010,011,……….} (set of string start with 01) 

thenXY = {001,0010,0011,0001,00010,00011,1001, ...........} (Set of 
strings containing 001 as a substring which can be represented by regular 
expression (0+1)001(0+1) *) 

(X U Y) = a* (this is also regular expression itself) 

∴Concatenation of two sets is regular 

Regular Grammar: 

In this Grammar there are following restrictions on type of productions: 

1) Left-hand side of each product should contain only one nonterminal 
2) Right hand side can contain at the most one non-terminal 
symbolwhich is allowed to appear as the right most symbol or 
leftmostsymbol. 

The languages generated using this grammar means regular languages are 
primitive and can be generated and generated using FSM (finite state 
machine). These regular languages can also be expressed by expressions 
called as regular expression. 

Depending on the position of a non-terminal whether it is leftmost or 
rightmost, regular grammar is further classified as 

1) Left-linear grammar and 
2) Right-linear grammar. 

1) Left-linear grammar: 

We know, regular grammar can contain at the most one non-terminal on 
the right-hand side of its production. If this variable looks as the leftmost 
symbol on the right-hand side, the regular grammar is called as be left-
linear grammar,Following are forms of productions in left-linear grammar 
are 
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A → Bx, A → ε or A→x 

Where, 'A' and 'B' are non-terminal and 'x' is a string of terminals. 

e.g. Consider the following grammar 

G = ({S, B, A), (a, b), P, S) 

Where, 'P' contains following set of production rule, 

S → Aa │ Bb 

A→ Bb 

B → Balb 

Above grammar is left-linear in each production has only one nonterminal 
on the right-hand side and that is the leftmost symbol on the right-hand 
side. 

2) Right-linear grammar: 

A regular grammar contains of productions with at the most onenon-
terminal on the right-hand side and the right most symbol appears on the 
right-hand side of the production then the grammar is called right-linear 
grammar 

Following are forms of productions in right-linear grammar are 

A →x B, 

   A → x or 

   A → ε  

Where, 'A' and 'B' are non-terminal and 'x' is a string of terminals. 

E.g. consider the following grammar 

G = ({S, B), (a, b, ε), P, S) 

Where, 'P' contains following set of production rule, 

S → aB 

B → aBl ε 

3.8 SUMMARY 

 Regular set is the set that represents the value of the Regular 
Expression. 

 Regular expression represents Regularset. 

 Pumping Lemma is powerful tool to prove that certain language not 
regular  
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 The regular sets are closed under union, concatenation and Kleene 
closure. 

 The regular sets are closed under complementation and also 
intersection 

 By using certain rules we can convert regular expression to NFA 
with ϵ moves 

 Regular grammar is further classified as 
1) Left-linear grammar and 
2) Right-linear grammar. 

3.9 REFERENCES 

1) Theory of Computer Science, K. L. P Mishra, Chandrasekharan, 
PHI,3rdEdition 

2) Introduction to Computer Theory, Daniel Cohen, Wiley,2ndEdition 

3) Introductory Theory of Computer Science, E.V. Krishnamurthy, 
Affiliated East-West Press. 

4) Introduction to Languages and the Theory of Computation, John E 
Martin, McGraw-HillEducation. 

3.10 REVIEW QUESTIONS 

Q1. Define following  

1) Regularexpression 

2) Regular set  

3) Regular Grammar 

Q2. Construct FA for the following regular expression 

1) r = a (a+b)* abba (a+b)*b 
2) r = a*b + c+ d* 
3) r = a (b+c)*a 

 Q3. Find out regular expression for the following 

1) Find out regular (RE) of regular language such that all strings begin 
& end with ‘a’ i and in between any word usingb 

2) Find out RE for not having consecutive Zero 

3) Find out RE for at the most 1 Pair of zero’s & one’s 
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4 
CONTEXT FREE LANGUAGE 

Unit Structure 

4.0  Objectives 

4.1  Introduction 

4.2  Context-free Languages 

4.3 Derivation Tree 

4.4  Ambiguity of Grammar 

4.5  CFG simplification 

4.6  Normal Forms 

 4.6.1 Chomsky Normal Form 

 4.6.2 Greibach Normal Form 

4.7  Pumping Lemma for CFG 

4.8  Summary 

4.9  References 

4.10  Review Questions 

4.0  OBJECTIVES: 

At the end of this unit, Students will be able to:  

 To Understand concept of Context-free Grammar and Context-free 
Languages 

 To Understand concept of Derivation, Derivation Tree and 
Ambiguous Grammar  

 To Learn Simplification of Grammar 

 To Learn about Normal Forms 

 To Learn about Pumping Lemma for CFG 

 

 

 

 

mu
no
tes
.in



 

 

Context-free Languages 

43 

4.1 INTRODUCTION 

This Chapter deals with concepts of grammar and especially about context 
free Grammarand Context-free Languages.It gives details information 
about Derivation, Derivation Tree and Ambiguous Grammar.The need of 
Simplification of Grammar means we can remove Ambiguity of Grammar. 
Also discussion about Normal Forms and Properties of CFL.The property 
of CFG is that all productions are of form one Non-terminal→ finite string 
or terminals and/or nonterminal. The language created by a CFG is called 
a context-free language. 

4.2 CONTEXT-FREE LANGUAGES  

It is language generated by CFG means Context Free Grammar; 

L (G) = {w/w ⊂ T* and it can be derived from start symbol‘s’}   
Examples: 
Q.1.the context free grammar is given as, 

S → aSb │ ab 

Find the CFL generated by the above grammar. 

Solution: 

Let us start listing or generating the strings that we can generatewith the 
above CFG. Let us start with minimal length string. Let usnumber the 
productions as, 

                Rule (1)       S → a S b 

                 Rule (2)  S → a b 

i) From production (2), we can device string "ab" in one step as, 

S => ab 

ii) To start with new derivation, we can have, 

S =>    aSb  , rule (1) 

 =>    aabb  , rule (2) 

iii) S => aSb  , rule (1) 

=> aaSbb  , rule (1) 

=> aaabbb  , rule (2) 

iv) S => aSb  , rule (1) 

=> aaSbb  , rule (1) 

 => aaaSbbb , rule (1) 

=> aaaabbbb , rule (2) 
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Thus, the language can be listed in the form of set as, 

L = {ab, aabb, aaabbb, aaaabbbb…….} 

i.e. L = (an bn │n ≥ 1) 

Thus, the CFG which is given to us defines the language containingstrings 
of the form an bn for n ≥ 1. 

Q.2. Write a grammar for generating strings over Ʃ= {a} containing 
anynumber  

(zero or-more) of 'a's. 

Solution: 

Zero number of 'a's can be generated using production 

SE  → ϵ (ϵ - production) 

If we want one or more 'a's we can generate them with 

S → a │as 

Combining the two, the grammar that we get is 

S → aS │ a│ ϵ 

We can represent the grammar formally as 

G = ({S}), {a, ϵ }, {S → As, S → ϵ}, S) 

Let us try for the string "aaa" 

Using leftmost derivation, 

S => as , rule (1) 

  => aas , rule (1) 

  => aaa , rule (2) 

Note: 

i) As we know, the language is a regular language and we can denoteit 
by regular expression; a*. 
ii) Above grammar can be simplified further to, 

S → as│ ϵ 

This grammar and above grammar are equivalent. Let us do it againfor the 
string "aaa." 

S => as , rule (1) 

   => aas , rule (1) 
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   => aaas , rule (1) 

   => aaaϵ , rule (2) 

 (Because, ' ϵ ' is zero length string or empty string) 

Q.3.Write a grammar for the language represented by regular expression, 

(a + b)* 

Solution: 

The regular expression (a + b) represents regular language containingany 
number of 'a's or 'b's. 

The grammar is, 

S → a S │bS│ ϵ 

(1) (2)   (4) 

Let us try deriving string with 4 'a's and 1 'b'. 

i.e "aaba". 

S => aS , rule (1) 

   => aaS , rule (1) 

   => aabS , rule (2) 

   => aabaS , rule (1) 

   => aaba , rule (4) 

Note: If we want it for language (a + b) + i.e. strings containing at leastone 
occurrance of 'a' or 'b', it can be written as, 

S→ aS │bs│ a │b 

This grammar now cannot generate an empty string i.e the 
stringcontaining zero number of 'a's and zero number of 'b's, because P 
does notconsist of the production of the form, S → ϵ. 

Closure Properties of CFL: 

The flexibility of the rule of context – free grammars is used to establish 
closure results for the set of context free languages. Operations that 
preserve context free languages provide another tool for proving that 
languages are context free. These operations along with pumping lemma, 
can also the used to show that certain languages are not context free.  

Properties: 

i. CFL’S are closed under union. 
ii. CFL’S are closed under concatenation. 
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iii. CFL’S are closed under kleene closure and positive closure. 

Formalization of the Grammar: 

For building a formal model, we should consider two aspects of thegiven 
grammar: 

1) The generative capacity of the grammar i.e, the grammar used' 
shouldgenerate all and only the sentences of the language for which it 
is written 

2) Grammatical constituents, like terminals and non-terminals. 

A grammar that is based on the constituent structure as describedabove, is 
called as constituent structure grammar or phase structuregrammar. 

Formal Definition of Grammar: 

A phrase structure grammar is denoted by a quadruple of the form, 

G = (V, T, P, S) 

Where, 

V: Finite set of non-terminals (variables) 

T: finite set of terminals. 

S: S is a non-terminals N called as the starting symbol,corresponding to 
the sentence symbol. 

P: finite set of productions of the form, 

α → B 

Where, α, β ⊂ (V U T)* and 'α' involving at least one symbol from ‘V’i.e. 
at least one non-terminal.   

 Here we know, 

V ∩ T = Ø = null set. 

‘α' and 'β' consists of any number of terminals as well asnon-terminals and 
they are usually termed as sentential forms. Chomsky had classified the 
grammars in four major categories. Outof which there is one, with the 
productions of the form 

A → α 

Where, 'A' is any non-terminal 

and 'α' is any sentential formis called as Context-free grammar.  

As we can observe in this typeof grammar there is a restriction that, on the 
left hand side of eachproduction there should be only one Non-terminal, 
e.g. The grammar thatwe have considered generating statement 'Dog runs' 
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can also be consideredas an example of context free grammar, in short, 
termed as CFG. 

4.3 DERIVATION TREE: 

Derivations: 

For any string, derivable from start symbol of the grammar, usingthe 
productions of the grammar, there are two different derivations 
possiblenamely, 

1) Leftmost derivation 
2) Rightmost derivation 

Example: 1 

Consider the grammar given as, 

G = ({S, A}, (a, b), P, S) 

Where P consists of 

S → a A S│a 

A → S b A / S S / ba 

Derive "aabbaa" using leftmost derivation and rightmost derivation. 

Solution: 

From the given information, 'S' is a start symbol. Let us number 
theproductions as, 

Rule (1) S → AS 

Rule (2) S → a 

Rule (4) A → SbA 

Rule (4) A → SS 

Rule (5) A → ba 

(i) Leftmost derivation: 

S =>    aAS  by using rule (1)  

  =>     aSAS   by using rule (4) 

  =>    aabAS  by using rule (2) 

  =>    aabbas  by using rule (5) 

  =>    aabbaa   by using rule (2) 
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(ii) Rightmost derivation: 

S => a A S   by using rule (1) 

   => a A a   by using rule (2) 

   => a S b A a  by using rule (4) 

   => a S b b a a  by using rule (5) 

   => a a b b a a  by using rule (2) 

When a string is to be generated from the given production rules, then it 
will be veryconvenient to shown the generation of string pictorially. This 
generation (also calledderivation) when drawn graphically takes a tree 
form and so it is called derivation tree oralso called parse tree. We observe 
the following regarding the derivation tree. 

i. The root node in the derivation tree is always labelled with the start 
symbol as all strings are imitative from start symbol 

ii. All the leaf nodes are labeled with some terminal symbols of the 
grammar. (i.e. the elements of Ʃ). So these nodes are called terminal 
nodes. 

iii. All other nodes are labelled with some non-terminal symbols of the 
grammar (i.e. the elements of VN). These are called non-terminal 
nodes. 

iv. If the string w of the language generated by the grammar has a length 
n, then there are n terminal nodes, arranged from left to right. 

Example 2. Consider the following Grammar 

G = (S, A, B, {a, b, P, S), where 

P = {S → AB 

A → a 

B → b 

 

 

NOW Consider a string ab. The derivationof this string is as shown in 
Fig.1.1. Notethat the root is considered as S, the start symbol.There are 
two leaf nodes considered a and b. Theother nodes corresponds to some 
non-terminalsymbols of G. Since │ab│ is 2, there are two terminal nodes 
arranged from left to right. 
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Figure 1.1 

Derivation tree for string ab 

 

Draw the derivation tree for a string aabbaa using following Grammar G. 

G   = (VN, Ʃ, P, S), where 

VN = (S, A) Ʃ = {a, b} and 

P   = S → aAS 

  S → a 

A → SbA  

  A → SS 

  A → ba  

Solution:As Sis the start symbol, any string generated by the grammer will 
be derived from S 

So we will use 

  S → aAS. 

Obviously we will not use S → a to start with as then we cannot create 
anything other than a 

Since we want to generate aabbaa. We should select a proper A-
production such that it generates a string beginning with a followed by 

So we select  

  A → SbA 

So we get  

  S→ aSbAS 

S→ aabAS 

S 

S S 

S S 
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Now we want that A-production which results in a String that begins with 
b followedby a. So we must choose A→ba. 

So 

S→ aabbas 

Which then gives S→ aabbaa the required string. This is shown as below. 

S→ aAS 

S→ aSbAS  by A → SbA 

S→ aabAS by S → a 

S→ aabbaS by A→ ba 

S→ aabbaa by S→ a 

The derivation tree is as shown Fig. 2. 

     S 
 
    a  s 
 
     A a 
 
    S  A 
     
    a b 
      
                b            a 
 
For the following grammar show the derivation tree for aaabbabbba. 

The grammar G = (VN, E, P, S) 

VN =S, A, B, Ʃ= a,b 

P = S → AB│ bA 

A → a │As│ bAA 

B→ b │bS│ aBB 

 

The derivation of the string is as follows 

Start with S 

→ aB 

→ aaBB 

→ aaaBBB 
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→ aaabSBB 

→ aaabbABB 

→ aaabbaBB 

→ aaabbabB 

→ aaabbabbS 

→ aaabbabbA 

→ aaabbabbba 

The derivation tree will be as shown in Fig.4. 
      S 
 
    a          B 
   
     a                   B 
 
          B        b           S 
 
       a                  B    b                   A 
 
           B 
 
      b                    S                a 
 
          b                     A 
    
 
 
                a 
 

1. Left and Right Derivation: 

Now we will discuss the two methods in which a string Can De derived 
from theSymbol. These are called left derivation and right derivation. 

As Seen earlier, the derivation is either one-step derivation or multi-step 
derivation each step, Some non-terminal symbol on the right hand side or 
a production is replacedits definition. Therefore the question is, if there are 
two or more nonterminal symbols inthe RHS of a production, in what 
order these nonterminal Symbols can De changed? Doesthe order matters 
what a resultant string derived?Two orderings are possible. If at each step 
of derivation, if the leftmost symbol of sentential form is changed by its 
definition then the derivation is called leftmost derivation 

If at each step of derivation, if the rightmost symbol of a sentential form is 
replaced byits definition then the derivation is called rightmost derivation. 
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It is Crucial however to note that the ordering used does not matter the 
generatedstring. e.g. a given string can be derived using either leftmost or 
rightmost derivation.Consider the string ab and the above grammar again. 
The two derivations are as shownbelow. 

S → A B   S →   AB 

S → a B   S →   Ab 

S → a D   S →   ab 

(a) Left most         (b) Rightmost 

As stated above, the ordering does not disturb the generated string. 
However in manyapplications, it is Convenient to use leftmost derivation. 

For the grammar, 

S → aB 1bA 

A → a│aS│bAA 

B → b│bS │aBB 

Example:1Write leftmost and rightmost derivation for the string 
aaabbabbba 

Solution:  

Leftmost derivation 

S→ aB 

→ aabB 

→ aaaBBB 

→ aaabSBB 

→ aaabbABB 

→ aaabbaBB 

→ aaabbabB 

→ aaabbabbs 

→ aaabbabbbA 

→ aaabbabbba 

Right most derivation 

a→ aB 

→ aaB 
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→ aaBbs 

→ aaBbbA 

→ aaBbba 

→ aaaBBbba 

→ aaaBbbba 

→ adabSbbba 

→ aaabbAbbba 

→ aaabbabbba 

For the following grammar, give the leftmost and rightmost derivation for 
the string 

abaabb. 

G = (VN, Ʃ, P, S), where 

VN =S. X = {a, b} 

P   = {S → X baa X 

S → ax 

X → X a 

X → X b 

Give leftmost and rightmost derivation. 

Leftmost derivation is as follows. 

S→ X b aa X 

→ Xa baa X 

→ ab aa X 

→ abaa Xb 

→ abaaa X bb 

→ abaa bb 

Rightmost derivation is as follows 

S→ Xbaa X 

→ Xbaa Xb 

→ XbaaX bb 

→ Xbaa blb 
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→ Xa baa bb 

→ ab aa bb 

4.4 AMBIGUITY OF GRAMMAR 

A CFG is called ambiguous if for at least one word in the language that it 
createsthere are two probable derivations of the word that corresponds to 
different syntax trees For this purpose following example can be Consider  

Consider the grammar (CFG) G for the language L = {a+ 

G = (s, a, P, S), Where  

P =  S → aS │Sa │a 

Now, consider a string a4 (i.e. aaa). This string can be derived in 
thefollowing different ways as shown in following figure. 
       S            S       S            S 
  

    a         a                      a    a 
 

        S            S        S            S 
  
 a                  a    a    a 
       S            S        S             S 
  
   
       a             a        a              a 
  

Fig. 4 Four different ways to generate a string aaa 

So the grammar is ambiguous. 

Example: 1 

We will now discuss the best example of an ambiguous grammarthat rises 
in the context of compiler design. Consider the followgrammar. 

G = (s, +, *, d, P, S), where 

P = {S→ S + S│S + S│ d  

This grammar is for generating arithmetic expressions made up of 
operators + and *.Undertake the terminal d stands for digit. Now consider 
a string 5 + 6 * 7. We knowthatexpression of a grammar. But the string 
can be derived in two differentshown in following Figure and so the 
grammar is ambiguous. Therefore, the grammar is ambiguous.  
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Fig. Two ways to derive a string d + d*d 

4.5 CFG SIMPLIFICATION 

Following are the rules for having the given context-free grammar inthe 
reduced form: 

1) Each variable and each terminal of CFG should appear in thederivation 
of at least one word in L (G)  

2) There should not be productions of the form A→ B, where 'A' and'B' 
are both non-terminals. 

Simplification of Grammar 

Method 1. Removal of Useless Symbol: 

A Symbol ‘X’ is useful if  

i) Any string must be derivable from ‘X’ 
ii) ‘X’ must appear in the derivation of at least one string derivable 

from S (Start Symbol) 
 Removal of Useless Symbols: 
1. A symbol ‘X’ is useful, if there exists a derivation, S => α x β => w 
2. Where, 'α', 'β' are sentential forms and 'w' is any string in T*; (w⊂ 

T*). 
3. Otherwise, if no such derivation exists, then symbol 'X' won't 

appearin any of the derivations, that means, X' is a useless symbol. 
 Three Aspects of Usefulness of a Non-terminalX Are as Follows: 
i) Some string must be derivable from 'X'. 
ii) X must appear in the derivation of at least one string derivable 

from'S'  

(Start symbol). 

iii) It should not occur in any sentential form that contain a variablefrom 
which no terminal string can be derived. 
 
 
 

S 

S + S 

S S * S 

d d 

S 

S S * 

S + S 

d d d 
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Examples: Simplification of Grammar 

i. S → AB │a        S       

A → a         A     

    

Simplify the given grammar by removing useless symbol 

Step: 1  S → AB │a  

    A → a 

B is Useless    

 S → a  

    A → a 

Step: 2  A is Useless  

   S → a 

ii. S → AB   │ BC 
 
A → aAa │ aAa 
 
B → Bb   │b 
 
D → a D │d 

Step 1 – C Useless  

 S → AB 

 A → aAa │aAb 

 B → Bb   │ b 

 D → d D │d 

Step 2 - A & d ARE Useless 

A whole grammar is useless  

A is useless because no sentence will be derived from D 

D is useless because it is not been used in any derived process. 

Method 2. Elimination of unit production 

A production of the form 'A → B' where, 'A' and 'B' both arenon-
terminals, are called ds. Unit productions. All other productions(including 
ϵ - productions) are Non unit productions. 
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Elimination Rule: 

For every pair of non-terminals 'A' and 'B', 

i)  If the CFG has a unit production of the form 'A → B' or, 

ii)  If there is a chain of unit productions leading from 'A' to 'B' such as, 

A => X1 => X2 =>…..... => B 

Where, all Xis (i > 0) are non- terminals, then introduce newproduction (s) 
according to the rule stated as follows: 

"If the non-unit productions for 'B' are, 

B → α1 │ α2│... 

Where, ‘α1, α2’ ... are all sentential forms (not containing only onenon-
terminal) 

then, create the productions for 'A' as, 

A → α1, │α2│……. 

Single capital letters replaced with its production   

Examples: Simplification of Grammar 

1) A → B 
B → a │b  
   →  A → B 
 
 
 
2) S → Sool │ F 
F → S ││ O │F 
T → OS l │ l │ lSlO 

  →  S → SOOl│F 

   F → SllO │OSl │ l│lSlO 

    

 

3) S → A │bb   →  S → A │bb 
A → B │b         A → S │ a │ b 
B → S │a          s → S │a │ b │bb 
  

 

 

A → a │b 

 

S → SOOl │SllO │ OSl │l │lSlO 

S → a │b │bb 

mu
no
tes
.in



   

 

Theory of Computation 

58 

 

Method: 3 Removal of ϵ production: 

Production of the form 'A → where, 'A' is any non-terminal, iscalled ϵ 
production  

Elimination Procedure: 

The procedure for eliminationof ϵ -productions can be stated as 
follows;the steps involved are, 

i. Delete all ϵ-productions from the grammar. 
ii. Identify nullable non-terminals. 

iii. If there is a production of the form 'A → α', where 'α' is any sentential 
form containing at least one nullable nonterminal, then add new 
productions having right hand side formed by deleting all possible 
subsets of nullable nonterminal from 'α'. 

iv. If using step (i) above, we get production of the form ‘A → ϵ‘then, do 
not add that to the final grammar. 

Examples: Simplification of Grammar 

i. S → a S a  │b S b │ϵ 

→  S → a S a │ b S b │ aa │ bb 

 

ii. S → AB 
A → A │BB │ Bb 
B → b │ a A │ ϵ 

→ S → AB │ A 

 A → SA │BB │ Bb │b │ B │ S 

 B → b │aA│ a 
 

iii. S → ABA 
A → aA │ ϵ 
B → bB │ ϵ 

 →  S → ABA │AA│ BA│ AB│ B │A│ ϵ 

  A → Aa │ a 

  B → bB │ b 

  S → ABA│ AA │BA │AB│ B │A 

  A → aA│ a 

  B → bB│ b 
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4.6 NORMAL FORMS 

Now we have to discuss the concept of normal form of a Grammar. In a 
context-freegrammar, the RHS of a production can be any string of 
variables (nonterminal) andterminals. When the productions in G satisfy 
certain constraints, then G is said to be in a"normal form’. The two 
important normal forms which we will now discuss are: Chomsky 
NormalForm (CNF) and the Greibach Normal Form (GNF). 

4.6.1 Chomsky Normal Form: 

Definition  

If a CFG has only productions of the form 

Nonterminal → String of two Nonterminal 

Or Nonterminal → one terminal 

Then the grammar is in Chomsky Normal Form, CNF. 

Note the difference between the CNF and the form of productions we 
came across in the previous section. The CNF the RHS of each of the 
production will either contain exactly two nonterminal or a single 
terminal, while as in the previous form, the RHS of each of the production 
will either contain string of nonterminal or a single terminal. Thus, CNF is 
more restricted than the previous one. 

Also, that any context-free language that does not contain ϵ as a word has 
a CFO in CNF that generates exactly it. However, if the CFL contains ϵ, 
then when we convert the CFG into CNF, the ϵ word drops out of the 
language while all other words stay the same, 

Example 1: Convert the following CFG into CNF. 

S → aSa │bSb │a│b│aa│bb. 

Solution: First we detached the terminals from the nonterminal. 

S→ ASA 

S → BSB 

S → AA 

S→ BB 

S→ a 

S → b 

А → а 

В → b 
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Now all the productions except S → ASA and S → BSB are in required 
form. Toconvert these productions into the required form we add 
additional non-terminals, say 

R1, R2………etc 

So we get 

S→ AR1 

S→ AA 

S→ BB 

S → BR2 

S→ a 

S→ b 

A → a 

B→ b 

R1 → SA 

R2 → SB 

The grammar is now in CNF. 

Example: 2convert the following grammar into CNF. 

S → bA │aB 

A → bAA│ as│a 

B→ aBB │ aS│b 

Solution: In the first step we get 

S → bA│XB 

A → bAA│aS│a 

B → aBB │aS│ b 

Note that we leave alone the productions A → a and B → b as it is 
because they arealready in required form. 

In the next step, we just need to take care of productions. 

A → YAA and B → XBB because they are not in required form. 

So, A → YR1 and B → XR2 

Where R1 → AA andR2 → BB 
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So the grammar in CNF will be, 

S → YA│XB 

A → YR1│XS│a 

B → XR2 │YS│b 

X → a 

Y → b 

R1 → AA 

R2 → BB 

Example 3: Convert the following CFG into CNF. 

S → aaaaS │ aaaa 

Which generates the language a4nfor n = 1, 2, 4…… 

Solution: In the first step we get 

S→ AAAAS 

S → AAAA 

A → a 

Now, 

S → AR1 

R1 → AR2 

R₂ → AR4 

R4→ AS 

S → AR4 

R4 → AR5 

R5 → AA 

A → a 

The grammar is now in CNF. 

4.6.2 Greibach Normal Form: 

We will now look at one more normal form of the grammar. 
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Definition: 

If each production in a CFG is of the form 

A → aB,  where 

a is a terminal andB is a string of non-terminals (possibly empty), then the 
grammar is in GreibachNormal Form (GNF). 

For example, the following grammar is in GNF. 

S → bA │ aB 

A → bAA│aS │a 

B → aBB │bS│b 

All the productions start with a terminal on RHS and followed by a 
string,non-terminals (sometimes ε).  

Before looking at how to convert a given grammar into GNF, we have to 
discuss two important auxiliary results, which are helpful for converting a 
grammar to GNF. 

Lemma: 1: If A → Bγ is a production, where A and B are non-terminals 
and they are B- production of the form 

B → β1 │ β2│……. │βs then 

We can replace the production A → Bγ by 

A → Bi γ │1 ≤ і ≤ S 

For example, take into consideration following grammar 

A → Bab 

B → aA │ bB │ aa │ AB 

So using Lemma. 1 in above, we get 

A → aA ab │ bBab │ aaab │ A Bab 

Lemma. 2: If a CFG consists of production of the form 

A → Aα1│Aα2│....│ Aαr│β1│β2│.......│βs such that each of the Bi’s do 
not start with A then an equivalent grammar can be formed as follows: 

A → β1│B2│…...│BS 

A → β1 Z│β2 Z│......│βS Z 

Z → α1│α2│.......│αr 

Z → α1 Z│α2 Z│…....│αr Z 

For example, consider following grammar. Here 

A → aBD│ b DB │c 

A → AB│AD 

α 1 → B ,  α2 = D 
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β1 → a BD,  β2 = bDB  and  β4 = C 

So applying Lemma 2 we get 

А → a BD│ DB│C 

A→ a BDZ│ bDBZ│ cZ 

Z → B│D 

Z → BZ│ DZ 

Lemma 2 is useful in dealing with left-recursive productions i.e. the 
productions of form A → Aα.  

We will make use of these lemmas to convert CFG to GNF. 

Example:1Construct a grammar in GNF equivalent to the grammar S → 
AA│a and 

A→ SS│b. 
Solution:  

Observe that the CFG is in CNF. If we rename S as A1, and as A A2 (for 
conversion purpose) respectively, the productions will be then 

A1 → A2 A2 │α 

A2 → A1 A1 │b 
and 

We leave A2 → b as it is in the required form. 
Now consider A2 → A1 A1.    To convert this we will use lemma 1 to get 

A2 → A2A2A1 

A2 → aA1 

i.e. by replacing the first A1 on RHS of A2 → A1A1 by definition of A1. 
Now the Production A2 → aA1 is in required form. But we need to use 
Lemma 2 for 

A2→ A2A2A1        as it is of form A → Aα. 
Apply Lemma 2 to the productions of A2. A2 productions are 

A2 → A2 A2 A1 

A2 → aA1 

A2 → b 

Here,      β1 = αA1,  β2 = b,   α = A2 A1 

So we have now by adding new non-terminal. 

A2 → aA1│b 

A2 → aA1 Z₂│bZ2 

Z2 → A₂ A1 

Z2 → A2 A1Z2 
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Now all A2 productions are in required form. 

Now we will save to consider the A1, production, 

A1 → A2A2│a 

Out of these A1 → a is in required form. 

So consider,  A1 → A₂A₂ 
Applying Lemma 1, we get 

A1 → aA1 A2│ bA₂│ aA1 Z2A2│ bZ2 A2 

So adding to this list the A1 → a production, we have retained all A1 
productions and they are 

A1 → aA1 A2│bA2│ aA1 Z2, A2, │bZ2A2│ a 

Now we amend Z2 productions. Applying lemma to Z2 productions we get 

Z2 → aA1 A1│ bA1│aA1 Z2 A1│ bZ2 A1 

Z2 → aA1 A1 Z2│bA1 Z2│aA1 Z2 A1 Z2│bA1, Z2 

So the grammar in GNF will be 

G’ = (A1, A2, Z2,}, {a, b}, P’, A1) 

P’ =  
Where 

A1 → a│aA1 A2│bA2│aA1 Z2 A2│ bZ2 A2 

A₂ → aA1│b│ aA1 Z2 │b Z₂ 
Z2 → aA1 A1│bA1│aA1 Z2A1│bZ2A1 

Z2 → aA1 A1 Z2│bA1 Z2│aA1 Z2 A1 Z2│bZ2 A1 Z2 

 

 

4.7 PUMPING LEMMA FOR CFG: 

The pumping lemma for CFLs gives a method of generating infinite 
number of stringsfrom a given sufficiently long string in a context-free 
language L. It is used to prove thatcertain languages are not context-free. 
The construction we make use of in provingpumping lemma yields some 
decision algorithms regarding context-free languages. 

The pumping lemma for regular sets states that every sufficientlylong 
string in a regular set contains a short substring that can be pumped. That 
is, insertingas many copies of the substring as we like, always yields a 
string in the regular set.The pumping lemma for CFL's states that there are 
always two short substrings closetogether that can be repeated, both the 
same number of times, as often as we like. Theformal statement is as 
follows: 
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Lemma: 1 (The pumping lemma for context-free languages): 

Let L be any context-free language. Then there is a constant n, depending 
only on L,such that if Z is in L and │z│ ≥ n, then we may write z = u v w 
x y such that 

(i) │vx│ ≥ 1 

(ii) │vwx│ ≤ n and 

(ii) For all i ≥ 0, u vi w xi y is in L. 

4.8 SUMMARY 

 Context-free Languages  

 It is language generated by CFG means Context Free Grammar; 

 L(G) = {w/w ⊂ T* and it can be derived from start symbol ‘s’} 

 Formal Definition of Grammar: 
A phrase structure grammar is denoted by a quadruple of the form, 
G = (V, T, P, S) 
 
 Closure Properties of CFL: 
i) CFL’S are closed under union. 
ii) CFL’S are closed under concatenation. 
iii) CFL’S are closed under kleene closure and positive closure. 
 
 Ambiguity of Grammar:  
A CFG is called ambiguous if for at least one word in the language that it 
createsthere are two probable derivations of the word that corresponds to 
different syntax trees 
 
 CFG simplification 
Method 1. Removal of Useless Symbol: 

Method 2. Elimination of unit production 

Method 3. Removal of ϵ production: 
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4.10 REVIEW QUESTIONS: 

1. Define following terms. 

a) Derivation Tree 

b) CFG 

2. What is Context Free Language (CFL)? 

3. Find the Context Free Language (CFL) associated with the CFG. 

S → aB | bA 

A → a | aS | bAA 

B → b | bS | aBB 

4. Construct CFG for 

L= {a m b n c m | n, m ≥ 1} 

5. Remove ambiguity from following grammars. 

a) S → aS | Sa |ϵ 

b) S → SS | AB 

A → Aa | a 

B → Bb | b 

6. Draw Derivation Tree for a substring “001100”. 
7. Construct a grammar to generate stings with no consecutive a’s but 
may or may notwith consecutive b’s. 
8. Convert following CFG to CNF 

S → aAab | Aba 

A → aS | bB 

B → ASb | a 
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5 
PUSHDOWN AUTOMATA 

Unit Structure 

5.0  Objectives 

5.1  Introduction 

5.2  Definition of PDA 

5.2.1  Elements in PDM 

5.2.2  Model of Pushdown Automaton 

5.2.3  Pictorial Representation for PDA 

5.2.4  Construction of PDA 

5.3  Acceptance by PDA 

 5.3.1  PDA acceptance by Final State 

 5.3.2  PDA acceptance by Empty Stack  

 5.4  PDA and CFG  

5.5 Summary 

5.6  References 

5.7  Review Questions 

5.0 OBJECTIVES 

In this chapter, Students will be able to:  

 To Understand Concept of PDA 

 To Understand use of PDA 

 To learn acceptance byPDA using Final State and Empty Stack 

 To know about how to construct PDA for CFG 

5.1 INTRODUCTION 

In this chapter we are learn the concept of the PDA. In case of FSM, we 
have seen that it does not have memory to remember arbitrarily long 
sequences of the input. So PDM (Pushdown Stack-Memory Machine) is 
more powerful than FSM (Finite Automata Machine) and more 
capabilities. FSM accept only the regularlanguages and PDM is consider 
as a CFL-acceptor or CFL-recognizer. While FA is a mathematical model 
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of FSM likewise PDA (Push-down Automata) is mathematical model of 
PDM. 

5.2 DEFINITION OF PDA: 

A Pushdown automaton M is a seven tuple (Q, Ʃ, Γ, δ, q0, Z0,F) 

Where, q = finite nonempty set of states 

Ʃ = an alphabet called input alphabet 

Γ = an alphabet called the stack alphabet qo in Q is the initial 

Z0 in Γ is a particular stack symbol called start stack symbol 

F ⊆ Q isa set of final states 

δ: mapping from Q x (Ʃ U {ϵ}) x Γ to finite subsets of Q x Γ*. 

5.2.1 Elements in PDM: 

A PDM is a collection of eight elements described as follows: 

1. An input alphabets. (Ʃ) 
2. An input tape (bounded on one end and unbounded or infinite in 

theother direction). Initially, input string is written on the tape with 
restof the tape blank. 

3. An alphabet of stack symbols. Γ 
4. A pushdown stacks. Initially the stack is empty and assumed to 

becontaining (blank) at the bottom to represent stack empty. 
5. Start state. 
6. Halt states: Accept and Reject. 
7. Non branching state: Push. 
8. Branching states: Read, Pop. 

PDM thus, can be visualized to have an input tape, a finite control(that we 
have seen for FSM) and a stack. Thus, we can see that, PDMonly can read 
from the tape and cannot write onto it; also the direction ofmovement of 
head is always in one direction from left to the right.Obviously, as it can 
use an external stock from which it can pop (read)and push (write) into it, 
it becomes powerful compared to FSM, but notpowerful than TM (head 
can move to left, to right and remain stationaryalso). 

5.2.2 ModelofPushdownAutomaton: 

In PDA model the read-only input tape is: 

i. Infinite in size. 

ii. Divided into equal sized blocks known as cells to store input alphabets. 

iii.  Initially filled with blank symbols (ε). 

iv.  Using read head weread one letter at a time, when tape is being process 
on machine. Read head is one directional.  
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v. Finite control will process the input symbol read and advances Read 
Head one position ahead. 

vi. The symbol is either pushed in a stack or popped out from the stack, 
when they are processing by finite control depending on the logic 

vii. While moving towards right, reading the input symbols, when we reach 
the first blank cell we stop. 

 

5.2.3 Pictorial Representation forPDA: 

PDA can be represented by some flow-chart like notations. All 
thesepictorial representations for different types of states of PDA are given 
infigure on next page.We can clearly see that, 'start should be the initial 
state for everyPDA and either 'accept or reject would be the final halt state 
dependingon the input, whether machine has accepted it or rejected it 
"Read stateis a conditional block and represented like that because 
depending on whatsymbol read, the machine could go to different states. 
Similarly, the Pop'state is also represented by conditional block. "Push' 
state is anintermediate state and a symbol has to be provided to it which 
we wantto push.  
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Start the Process  

 
Accept halt State  

 
Reject Halt State  

 

Read the input symbol from tape, 
(This is a conditional block and 
depending on the symbol read, it 
performs different operations.  

 
Push a < letter >i.e some symbol on 
to block and proceed. 

 

                                   Or  

 

Pop a symbol from the stack (It also 
conditional like read block  

Pictorial representation for PDA 

 

 

 

 

 

 

Reject 

Accept  

Start 

Read 

Push < letter > 

Push < letter > 
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Example: 1 

 Construct PDA recognizing the language accepted by the DFA given 
in following figure. 

                      b         a   
      
 

a 
  
     b 
 

    An Example DFA 

Solution:  

As we know the DFA given in above figure is the acceptor for the regular 
language represented by regular expression. 

  b * a  a* (b b* a a*) 

 We can construct the PDA equivalent to given DFA as shown in 
following figure. 
  
  
    
        b 
 
 b   
     a 
          b 
 
 
 
 
 
 
 
 
   b   a 
 
   
    PDA equivalent to FA in above figure  

We can see that ‘Read1’ state is analogous to initial state for given DFA 
and ‘Read2’ state is analogous to the final state of the given DFA. As 
‘Read2’ is analogous to the final state, if input ends in ‘Read1’ i.e. if we get 
a blank ‘b’ on top in ‘Read1’ machine will move to ‘reject’ state, else it 

- + 

Start 

Read 
1 

Read 
2 

Reject 
Accept 
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moves to ‘accept’ state as shown. Let us simulate the working of the PDA 
for the strings ‘bbaaba’ and ‘baaabab’. 

Simulation for string bbaaba. 

 

 

Thus the string ‘bbaaba’ is accepted by the designed PDA 

Simulation of string baaabab 
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Q.2    Construct PDA recognizing the language accepted by the DFA 
given in the following figure. 

 

An example DFA 

PDA can be constructed as shown in above diagram. We can see that state 
‘Read1’ of PDA is analog our to state ‘1’ at given DFA. Similarly, ‘Read2’ 
is analogous to state ‘2’ and ‘Read3’ is with state ‘3’ of the given DFA. 
Obviously ‘Read1’ and ‘Read2’ are non-final states and reading blank ‘b’ 
indicating end of input string in that state causes machine to move to the 
reject indicating the input string given is rejected by the PDA. 

 

PDA equivalent to DFA in above figure. 

Let us simulate the working of the PDA for input given as “abaab” The 
acceptance of the input can be shown in diagram: 

 

Thus designed PDA is accepting the given string 
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For construction for PDA as above accepting regular languages, it is 
observed that no stack is being used and therefore the design is not 
containing any ‘push’ or ‘pop’ states. As we have not used stack in the 
above designs for PDA’s we can say that above are the finite automata 
represented using the notations. Thus FA is nothing but a special case of 
PDA and hence we can said that it is less powerful than PDA. 

5.2.4Construction of PDA: 

From the meaning of PDA any transition function of PDA is defined as  

  (Q x (Ʃ U {ϵ}) x Γ→ Q x Γ* 

We define ‘δ’ transition function since q0 as start state. 

 Ʃ = {a, b} 

 T = {R, B} 

i. At first we are in state q0 initial stack symbol is R,i.e. 
      

       

 

Top of Stack 

 

δ (q0, Ʃ R) here Ʃ can be a, b, or  ϵ. 

Let the string is aaabbb. 
From the above conversation, we write 3 transitions for qo as start state 
and R on early stack symbol. 
 
 
 
 
 

Remain    Push/add blue plate 
In state qn    to stack/spindle 

 
 
 
 
 
 
 
 
 
 
Here B becomes new top of stack. 

. 

. 

R 

Δ (q0,a,R) → (q0 BR) mu
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i.e. 
. 
. 
   B 
   R 

 

 
 
               Top of Stack 

    
    Error state (Step v) 
    Error state (Step vi) 
 

ii. After we read 1st 'a' we don't change the state, as we have to read 
next all 'a's and add 'B' to stack. The variation between 1st ‘a’ and 
remaining all ‘a’s can be made by observing at top of stack (TOS) 

For 1st ‘a’ - TOS is R 

For residual ‘a’s - TOS is B 

 We write transition for residual a's as 

 

 

i.e. we add 1‘B’ to stack for each residual 'a'. 

iii. Now in the same state, if 'b' befalls on input tape i.e. the situation is 

δ(q0, b, B) 

Then we have to pop one 'B' plate from stack which matches the current 'b' 
with beforeadded 1 'a' i.e. (qı ,ϵ ). 

 The transition becomes 

 

 

 

 

Specifies POP the 

Symbol from stack 

Here we have to change the state because we have to make difference that 
accepting numberof ‘a’s in loop and accepting first 'b'. 

If we stay in the same state, i.e., in qo, then in qo we have the transition 

δ (qo, a, B) and (q0, b, B) 

δ (q0, b, R) 
δ (q0, ϵ, R) 

 

δ (qo, a, B)→ (q0, 
BB) 

δ (qo, b, B) → (q1,ϵ) 
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Both will transit to qo. This will lead to taking of the strings a*b*a* ….. 
Which leads toaccepting invalid strings. So we distinguish it by altering 
the state to q1. 

iv. If at go present state, and B on TOS if input string has 'e', it is error 
state.  
See step (vi) 

i.e. 

 

v. In state q1, probable i/ps are a, b, Δ and TOS is B. 
a. i.e.     (Step iv) 

 

b.   

Here we pop all 'B's for all 'b's occurring in input tape and be in self loop 
as the same actionis to be recurrent for (n-1) times so no need to change 
the state. 

c.      (Step iii) 

 

vi. After step (v) is over, we may have the condition that current state is 
q1 top of stack is R andinput symbols can be a, b, or ϵ 
a. If     (step i) 
b. If      (step ii) 

c. if     (step iv) 

 

So from (i) to (vi) we write whole PDA as 

M = ({q0, q1, q2}, (a, b}, δ, qo, {q2}) 

 

Where, δ is 

δ (q0, a, R) =(q0, BR), δ (q0, b, R)  = ERROR, 

δ (qo, ϵ, R) ERROR,   δ (qo, a, B)  =   (q0, BB), 

δ (qo, b, B) (91, E),   δ (qo, ϵ, B)  =   ERROR, 

δ (q1, a, B) ERROR,   δ (q1, b, B)   =   (q1, ϵ), 

δ (q1, ϵ, B) ERROR,  δ (q1, ϵ, R)   =  ACCEPT, 

δ (q1, b, R) ERROR,  δ (q1, a, R)   =  ERROR 

δ (q0, ϵ, B) → ERROR state 

 

δ (q1, a, B) → ERROR state 

δ (q1, b, B) → (q1, ϵ) 

δ  (q1, ϵ, B) → ERROR 
state 

δ (q1, ϵ , R) Accept 
state δ(qı, b, R) ERROR 
state δ(qı, a, R) → ERROR 
state 
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1. Construct PDA for the language 

L = {anbn│ n ≥ 0} 

Solution: 

The language set for L 

L ={ɛ, ab, aabb, aaabbb....) 

This language is same as L = {anbn │n ≥ 1} 

In example 2 except the extra string ϵ in this example. 

So the same 8 can be written as in 2 example except the transition which 
accepts 'ϵ' as a string andgoes to error state in 2 example, so in its place 
that transition, we have to write the transition as 

 

 

 PDA can be given as 

M = ({qo, q1}, {a, b, c}, δ, q0{q1}) 

Where, & is 

δ (q0, a, R)  = (q0, BR),  δ (q0, b, R) =  ERROR, 

δ (q0, ϵ , R) = Accept,   δ (q0, a, B) =  (q0, BB), 

δ (q0, b, B)  =  (qı, ϵ),   δ (q0, ϵ, B) =  ERROR, 

δ (q, a, B)   =  ERROR,  δ (q1, b, B) =  (q1, ϵ), 

δ (q1, ϵ , B) =  ERROR,  δ (q1, ϵ, R) =  ACCEPT, 

δ (q1, b, R)   =  ERROR,  δ (q1, a, R) =  ERROR 

The Languages of PDA (Construction ofPDA using empty stack and final 
statemethod). We have expected that a PDA receives its input by 
consuming it andentering an accepting state. We call this method 
"acceptance byfinal state". 

There is a second method to defining the language of a PDA, we accepted 
by PDAcall it. Language "accepted by empty stack”, i.e., the set of 
stringsthat cause the PDA to empty its stack, initial from early ID. 

These two methods are equal, in the sense that the language L has a PDA 
that receives it by finalstate if and only if L has a PDA that receives it by 
empty stack. 

However for a given PDA P, the languages that P accept by final state and 
by empty stack areusually different. 

δ (q0, ϵ, R)  → Accept state 
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5.3  ACCEPTANCE BY PDA 

PDA accepts its input by consuming it and entering an accepting state. We 
call this approach “acceptance by final state”.There is a second approach 
to defining the language of PDA, we call it. Language “accepted by empty 
stack”, i.e. the set of strings that cause the PDA to empty its stack, starting 
from initial ID. 

5.3.1  PDA acceptance by Final State: 

The way of defining a language accepted is similar to the way a finite 
automaton receives inputs. Thatis, we designate some states as final states 
and define the accepted language as the set of all inputsfor which some 
choice of moves causes the Pushdown automaton to enter a final state, 

Formal Definition: Language acceptance by Final State 

Let P = (Q, Ʃ,Γ, δ, q0, Z0, F) be a PDA then L(P), the language accepted 
by P by final state is 

{w │(q0, w, Z0)    * (q, ϵ, α)}        P 

For some state q in F and any stack string a. That is, starting in the new ID 
with w waiting on theinput, P consumes w from the input and enters an 
accepting state. The contents of the stack at thattime are irrelevant. 

Examples: 

1. Let P to accept the language Lww
R. 

The language set 

L = {00, 11, 0110, 011110, 1001, 110011, 101101,} 

The PDA is described as 

P = ({q0, q1, q2}, {0,1}, {0, 1, zo}, δ, q0, z0, {q2}). 

Where, 8 is defined as 

δ(qo, 0, Z0) → (qo, 0Z0),  δ (qo, 1, Z0)  → (q0, 1Z0), 

δ(qo, 0, 0) →  (qo,00),  δ (qo,0,1)  → (qo,01), 

δ (qo, 1, 0) →  (qo, 10), δ (qo, 1, 1)  → (q0, 11), 

δ (qo, ϵ, Z0) → (q1, Z0),  δ (qo, ϵ, 0)  → (q:,0), 

δ (qo, ϵ, 1)→ (q, 1),  δ (q0, 0, 0)  →  (q1, ϵ), 

δ (qı, 1, 1) → (q1, ϵ),   δ(q1, ϵ , Z0)  → (q2, Z0) 

and accept 

Let the string be 1111 where, w = 1,wR= 1 
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5.3.2  PDA acceptance by Empty Stack: 

 To define the language known to be the set of all inputs for which some 
order ofmoves causes the pushdown automaton to empty its stack. This 
language is referred to as thelanguage recognized by empty stack. 

Formal Definition: Language accepted by Empty Stack 

For each PDA   P = (Q, Ʃ, Γ, δ, q0, Z0, F) we also define 

N(P) = {w │ (q0, w, Z0) * (q, ϵ, ϵ)} 

for any state q. 

That is, N(P) is the set of inputs w that P can consume and at the same 
time empty its stack. 

(N in N(P) stands for “null stack" or empty stack). 

Since the set of accepting states is unconnected, we shall sometimes leave 
off the last (seventh)component from the specification of a PDA P, if all 
we care about is the language that P accepts byempty stack. Thus the P is 
written as a six tuple (Q, Ʃ, Γ, δ, q0, Z0) 

Here no constraint is placed on the uncertain state q. When acceptance is 
defined by empty stack, it isessential to require at least one transition to 
permit the acceptance of languages that do not comprisethe null string. 

Examples: 
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1. Consider the language in above example and consider the PDA in 
thatexample.This example never empties the stack. 

N(P). 

 If we modify P to accept Lwwr by empty stack as well as by final 
state. 

Instead of transition 

δ (q1, ϵ, Z0) (q2, Z0) we add 

 

 

Now P pops the last symbol off its stack as it accepts and L(P) = N(P) = 
Lwwr. 

Consider the same string 1111. 

 

The Stack is end at here. 

5.4 PDA AND CFG 

Context-free languages are languages defined by PDA's. The following 3 
classes of languages all are of same class: 

i. Context Free Languages (CFL) 
ii. The languages which are accepted in the final state by some PDA. 

δ (q1, ϵ, Z0) = (q2, ϵ) 
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iii. The languages which are accepted in empty stack by some 
PDA.

 

Figure 

Conversion of a Context FreeLanguage (in GNF) to Push down 
Automata (PDA) 

Theorem: 

 If L is a context free language, then we can construct a PDA a accepting 
L by empty stack 

i.e. L = N(A). 

We can construct A by making use of Productions in G. 

Step 1: Construction of A 

Let L = L(G), where G = (VN ,∑, P, S) is a CFG. In GNF we construct 
PDA A as  

 A = ({q), ∑, VN∪ ∑, δ, q, S, ɸ) 

where, transition functionδ is defined by the following rules: 

R1: δ(q, a, A) = {(q, α) A →aa is in P} 

R2: δ(q, a, A) = {(q, ε)} for every A → a in ∑ 

The PDA can be constructed as: 

1. The Pushdown symbols in A are variables and terminals. 
2. If the PDA reads a variable A on the top of PDS, it makes 'a' move by 

placing the RHS of any     
3. ε -Production (after erasing A). 
4. If the PDA reads a terminal a on PDS and if it matches with the 

current input symbol, then the   
5. PDA erase a. 
6. In other cases the PDA halts. 
7. If w ∈ L(G) is obtained by a left most derivation,  

            S ⇒u1 A1 α1⇒u1u2A2α2 α1⇒ . . . .  ⇒w, 
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ThenA can empty the PDS on application ofi/p string w. The first move of 
A is by a ε -move corresponding to S →u1 A1 α1. The PDA erasers S and 
stores u1 A1 α1, then using R2, the PDA erasers the symbols in ul by 
processing a prefix of w. Now the topmost symbol in PDS is A1. 

Once again by applying the ε -move corresponding to A1 → u2A2 α2, the 
PDA erases A2 and stores u2A2 α2 above α1. Proceeding in this way, 
thePDS empties the PDS by processing the entire string w. 

Example 1: 

Construct a PDA A equivalent to the following context free grammar: 

  S → OBB, B → OS | 1 | 0.  

 Test whether 0104 is in N(A). 

Solution: 

A is defined as: 

({q}, {0, 1}, {S, B, 0, 1}, δ, q, S, ɸ) 

The transition functionδ is  

R1: δ(q, 0, S) = (q, BB) 

  R2: δ(q, 0, B) = {(q, 0S), (q, ε)} and δ(q, 1, B) → (q, S)  

  R3: δ (q, 0, B) = {(q, ε)} 

(q0, 0104, S)  ├   (q, 0104, BB)        by Rule R1 

                     ├   (q, 104, BB)   by Rule R3 

                     ├   (q, 104, SB)  by Rule R2 since 

   (q, 1S)  ∈δ (q, ε, B) 

                     ├   (q, 04, SB)   by Rule R4 

                     ├   (q, 04, BBB)   by Rule R1 

                     ├   (q, 03, BBB)   by Rule R3 

                     ├* (q, 03, 000)   by Rule R3 as (q, 0) ∈δ (q, ε, B) 

                     ├* (q, ε, ε) 

Example 2: 

Convert the following CFG to a PDA  

S → aAA 

 A → aS|bS|a 
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Solution:  

The PDA P = (Q, Σ, Γ, δ, q0, Z0, F) is defined as  

Q = {q}  

Σ = {a, b} 

 Γ = {a, b, S, A}  

q0 = q  

Z0 = S  

F = {}  

And the transition function is defined as:  

δ(q, ∈, S) = {(q, aAA)}  

δ(q, ∈, I) = {(q, aS),(q, bS),(q, a)}  

δ(q, a, a) = {(q, ∈)}  

δ(q, b, b) = {(q, ∈)} 

5.5 SUMMARY: 

 PDA is mathematical model of PDM (Pushdown Memory - Stack 
Machine). 

 The PDA is accepter for context free languages.  

 PDA have 7 tuple - (Q, Ʃ, Γ, δ, q0, Z0, {F}) where, δ: Q x (Ʃ U({ϵ} x 
Γ→ Q x Γ*) 

 Languages accepted by PDA 

a) PDA accepting Final State 

b) PDA accepting empty stack (final state is) 

 Changing CFG (in GNF) to PDA. Simplified steps are  

If  S           aSB/aB then the conversion is given as 

 

 

 

 

δ (q0, a , S)        {(q0, SB),   (q0 ,B)} 
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If S              a ϵ   then the conversion is given as   

 

 

 

δ (q0, a , S)         (q0, ϵ) 

 

5.6 REFERENCES: 

1. Theory of Computer Science, K. L. P Mishra, Chandrasekharan, 
PHI,3rd Edition 

2. Introduction to Computer Theory, Daniel Cohen, Wiley,2nd Edition 

3. Introductory Theory of Computer Science, E.V. Krishnamurthy, 
Affiliated East-West Press. 

4. Introduction to Languages and the Theory of Computation, John E 
Martin, McGraw-Hill Education. 

5.7 REVIEW QUESTIONS: 

1. Define PDA. 

2. Differentiate between FA and PDA. 

3. Construct a PDA for language L = {0n 1m 2m | n, m ≥ 1}. 

4. Construct a PDA for L ={an b2ncn | n ≥ 1}. 
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Unit III 

6 
LINEAR BOUND AUTOMATA 

Unit Structure 

6.0 Objectives 

6.1 Introduction 

6.2 Linear Bound Automata 

6.3 The Linear Bound Automata Model 

6.4 Linear Bound Automata and Languages 

6.5 Review Questions 

6.6 Summary 

6.7 References 

6.0 OBJECTIVES 
 

This chapter would make you to understand the following concepts: 

 To study the concept of Linear Bound Automata. 

 To learn Linear Bound Automata Model. 

 To Study Linear Bound Automata and Languages. 

6.1 INTRODUCTION 
 

An Automata is an abstract computing device or machine, help to check 
weather a string is belonging to the language or not. Theory of 
computation contains Finite Automata (FA), Push Down Automata 
(PDA), Linear Bound Automata and(LBA) and Turing Machine(TM). 

Finite Automata use to recognize regular language. It is mathematical 
model with discrete inputs, outputs, states and set of transition functions 
from one state to another state over a input symbols from alphabet ∑. Push 
DownAutomata work like Finite Automata with additional stack. It is 
powerful than FA. PDA is used to implement Context Free Grammar. It 
has more memory than FA. Linear Bound Automata (LBA) accepts 
‘Context Sensitive Grammar (CSG)’ known as ‘Type-1’ Grammar. LBA 
is a Turing Machine with limited size tape. Is powerful than PDA but less 
powerful as compare to Turing Machine. 
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6.2 LINEAR BOUND AUTOMATA 
 

Linear bounded automata (LBA) are accepts context-sensitive languages. 
In LBA computation is restricted to the constant bounded area. It has 
limited size input output tape.  This tape is limiting based on input size we 
are bounding the tape using two end markers i.e. left end marker ML and  
right end markerMR 

which assure the transitions neither move to the left of the left end marker 
nor to the right of the right end marker of the tape. It is a restricted form of 
TM in which input tape is finite. In terms of computational capability FA 
< PDA < LBA < TM. There are two types in each of FA, PDA and TM 
which deterministic and non-deterministic. But in LBA there is no such 
classification. 

Halting Problem 

The halting problem is solvable for linear bounded automata.  

Halt (LBA)  = {< M,w > |M is an LBA and M halts on w} is decidable. 

 An LBA that stops on input w must stop in at most α(|w|) steps. 

Membership problem  

The membership problem is solvable for linear bounded automata.  

A(LBA) = {< M, w > |M is an LBA and M accepts w} is decidable. 

Emptiness Problem 

The emptiness problem is unsolvable for linear bounded automata. For 
every Turing machine there is a linear bounded automaton which accepts 
the set of strings which are valid halting computations for the Turing 
machine. 

Definition: A Non-deterministic Turing Machine with a finite length tape 
space fill by the input is called Linear Bound Automata(LBA). 

LBA is defined as : 

  M=(Q,∑, Г,δ,q0,ML,MR,,F)  

 Where, 

  Q is a nonempty finite set of states 

  ∑⊆ Г is a finite set of input alphabets 

Г is the finite set of input tape alphabets 

δ is  transition function 

q0∈ Q is initial state 
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MLis left end marker 

MR is right end marker 

,F∈ Q is finite set of final states 

 

Figure 6.1 

ML and MR are boundaries for a tape. ML is entered in leftmost end of the 
input tape and avoids the Read/Write head from getting off the left end of 
the tape. MR is entered in rightmost end of the input tape and avoids the 
Read/Write head from getting off the right end of the tape. Both end 
markers should be at their respective ends, and Read/Write head should 
not write any other symbol over both end-markers.  

Examples:  

1) {an bncn/ n ≥ 1} 

2) {ww / w ∈ {a, b}+} 

LBAs and CSLs  

The development stages of LBA: 

Myhillin 1960 considered deterministic LBAs. 

In Landweber 1963 showed that they produce only context-sensitive 
languages.  

And Kuroda in 1964 generalized to nondeterministic LBAs and showed 
that this produces precisely the context-sensitive languages. 

Theorem 1 (Landweber-Kuroda)  

‘A language is accepted by an LBA iff it is context sensitive. 
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Proof : 

 If L is a CSL, then L is accepted by some LBA. 

 Let G = (N, Σ, S, P) be the given grammar such that L(G) = L.  

Construct LBA M with tape alphabet Σ × {N ∪ Σ}(2- track machine)  

First track holds input string w. 

 Second track holds a sentential form α of G, initialized to S 

 If w = , M halts without accepting.  

Repeat : 

  Non-deterministically select a position i in α.  

  Non-deterministically select a production β → γ of G.  

  If β appears beginning in position i of α, replace β by γ there. If the 
sentential form is longer than w, LBA halts without accepting.  

  Compare the resulting sentential form with w on track 1. If they 
match, accept. If not go to step 1.  

Theorem 2 

If there is a linear bounded automaton M accepting the language L, then 
there is a context sensitive grammar generating L − {ε}. 

Proof : 

Derivation imitate moves of LBA 

Three types of productions 

  Productions that can generate two copies of a string in Σ∗ , along with 
some symbols that work as  markers to keep the two copies separate.  

  Productions that can replicate a sequence of moves of M. During this 
portion of a derivation, one of the two copies of the original string is 
left unchanged; the other, representing the input tape to M, is modified 
accordingly. 

  Productions that can erase everything but the unmodified copy of the 
string, provided that the simulated moves of M applied to the other 
copy cause M to accept. 

Linearly bounded memory machine: 

The linearly bounded memory machine is similar to a Turing machine, 
except that it has, instead of a potentially infinite tape forcomputation, 
only the portion of the tape containing the input string plus two squares on 
the tape to hold the end markers. Such a restriction reduces the machine's 
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power to recognize certain types of strings. It has been shown that even 
when the length of the tape is increased as a linear function of the length 
of the input string, the computational ability of the machine remains the 
same. Hence, such a machine is called a linearly bounded memory 
machine. It recognizes a class of languages known as context-sensitive 
languages. 

6.3 THE LINEAR BOUND AUTOMATA MODEL 
 

This model is important because (a) the set of context-sensitive languages 
is accepted by the model and (b) the infinite storage is restricted in size but 
not in accessibility to the storage in comparison with the Turing machine 
model. It is called the linear bounded automaton (LBA) because a linear 
function is used to restrict (to bound) the length of the tape. 

In this section we define the model of linear bounded automaton and 
develop the relation between the linear bounded automata and context-
sensitive languages. It should be noted that the study of context-sensitive 
languages is important from practical point of view because many 
compiler languages lie between context-sensitive and context-free 
languages. 

A linear bounded automaton is a non-deterministic Turing machine which 
has a single tape whose length is not infinite but bounded by a linear 
function of the length of the input string. 

Originally Linear Bound Automata were developed as models for actual 
computers not as computational process models. They are very important 
in computation theory. LBA is a multitrack non-deterministic Turing 
Machine with only one tape and having the length same as input string. 

Example:  

a. Consider a input string w, where |w| = n-1. 

b. If the input string w is recognized by an LBA if it is also be recognized by 
a Turing machine using no more than kn cells of input tape, where k is a 
constant specified in the description of LBA. 

c. ‘k’ is a property of the machine; value of k does not depend on the input 
string.  

d. For processing a string in LBA, the string must be enclosed in ML and MR. 
e. The model of LBA contains two tapes: 

i) Input tape: On input tape the head never prints and it just move only 
in right direction, never moves left. 

ii) Working tape: On working tape head modify the contents of working 
tape, without any restriction. 

 

 

ID of LBA 

mu
no
tes
.in



   

 

Theory of Computation 

90 

In LBA, the ID is denoted by (q, w, k) where q ∈ Q, w ∈ Г and k is some 
integer between 1 and n.The transition of the IDs is similar except that if k 
changes to (k – 1), then Read/Write head moves to the left and if move to 
(k + 1) then head moves to the right. 

Languages accepted by LBA is:  

The language accepted by LBA is defined as the set : 

{w∈{∑ - {ML, MR} )* | (q0, ML, w,MR, 1) * ├ (q, α, i) for some q ∈ F and 
for some integer i between 1 and n. 

6.4 LINEAR BOUND AUTOMATA AND LANGUAGES 
 

A string ‘w’ is accepted bylinear bounded automaton M if, 

 First it start at initial state with Read/Write head reading the left end 
marker (ML), M halt over the right-end marker (MR) in final state, 
otherwise w is rejected. 

 The production rules for the generative grammar are constructed as in the 
case of TM. The following additional productions are needed in the case 
of LBA: 

aiqf MR → qfMR,    for all ai∈ Г 

ML  qf MR → MLqR  ,     ML  qf → qf 

The class of recursive languages does not show up explicitly in below 
Table, because there is no known way to characterize these languages 
using grammars. 

Relation between LBA and Context-SensitiveLanguages 

The set of strings accepted byLBA(non-deterministic TM) is the set of 
strings generatedby the context-sensitive grammars, excluding the null 
strings, Now we can conclude: 

‘If L is a context-sensitive language, then L is accepted by a linear 
bounded automaton. The converse is also true.’ 

The construction and the proof are similar to those for Turing machines 
with some modifications. 

The Chomsky Hierarchy 

Languages Form of Productions                             Accepting 

Type (Grammars) in Grammar Device 

3 Regular  A → aB, A → ᴧ   Finite 

(A,B∈V , a ∈∑) automaton 
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2  Context-free   A→ α    
 Pushdown 

(A ∈V ,α ∈(V ∪ ∑)*)   automaton 

 

1  Context-sensitive  α →β   Linear-bounded 

(α, β ∈(V ∪ ∑)*, |β| ≥ |α|,  automaton 

αcontains a variable) 

 

0  Recursively     α →β Turing machine 

          enumerable(α, β ∈(V ∪ ∑) 

 (unrestricted)   α contains a variable) 

 

Example 

 

Example 1: Construct an LBA for {anbncn  | n ≥ 1}  

Solution: 

The tape alphabet for an LBA,is finite, but it may be considerably bigger 
than the input alphabet. So we can store more information on a tape than 
just an input string or related sentential form.  

Consider following, 

let, Γ = {a, b, c, a, b, c}, and Σ = {a, b, c}. Occurrences of bold letters can 
serve as markers for positions of interest.  

To test whether an input string has the form anbncn 

 1)  Scan string to ensure it has form akbmcnfor k, m, n ≥ 1.  

Along the way, mark leftmost a, b, c.likeaaabbbccc.  

2)  Scan string again to see if it’s the rightmost a, b, c that are marked.  

If yes for all three, ACCEPT.  

If yes for some but not all of a, b, c, REJECT. 

 3)  Scan string again moving the ’markers’ one position to the right. 

Like aaabbbccc becomes aaabbbccc. Then Go to 2. All this can be done 
by a  
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LBA. 

Example 2. Give an LBA that accepts the language {aibici∣i ∈ℕ}. 

Solution: 

Logic: 

 The automaton rewrites the first a to A, and changes its state, looks for 
the first b. 

 The automaton rewrites the first b to B, and changes its state, looks for 
the first c. 

 The automaton rewrites the first c to C, and changes its state, looks 
(backward) for the first a. 

 The capital letters A,B,C are read without changing them. 

 The above movements are repeated. 

 If finally only capital letters remain between the border ♯ signs, then 
the automaton accepts (the input). 

Formally, letM=(Q,∑, Г,δ,q0,ML,MR,,F)  

LBA = ({q0, q1, q2, q3, q4, qf}, {a,b,c}, {a,b,c,A,B,C},δ, q0, ML, ,MR, {qf}) 

be a deterministic LBA, where δ consists of the next transitions: 

1. δ (q0, MR) = (qf, MR, Halt) – the empty word is accepted by LBA. 

2. δ (q0, a) = (q1, A, Right) – the first (leftmost) a is rewritten to A and 
LBA changes its state. 

3. δ (q0, B) = (q0, B, Left) – the capital letters B and C are skipped in 
state q0, 

4. δ (q0, C) = (q0, C, Left) – by moving the head to the left. 

5. δ (q1, a) = (q1, a, Right) – letter a is skipped in state q1 to the right. 

6. δ (q1, B) = (q1, B, Right) – capital B is also skipped. 

7. δ (q1, b) = (q2, B, Right) – the leftmost b is rewritten by B and the 
state becomes q2. 

8. δ (q2, b) = (q2, b, Right) – letter b is skipped in state q2 to the right. 

9. δ (q2, C) = (q2, C, Right) – capital C is also skipped in this state. 

10. δ (q2, c) = (q3, C, Left) – the leftmost c is rewritten by C and LBA 
changes its state to q3. 

11. δ (q3, a) = (q3, a, Left) – letters a,b are skipped in state q3 
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12. δ (q3, b) = (q3, b, Left) – by moving the head of the automaton to 
the left. 

13. δ (q3, C) = (q3, C, Left) – capital letters C,B are skipped in state q3 

14. δ (q3, B) = (q3, B, Left) – by moving the head of the automaton to 
the left. 

15. δ (q0, A) = (q3, A, Right) – the head is positioned after the last A 
and the state is changed to q0. 

16. δ (q4, B) = (q3, B, Right) – if there is a B after the last A the state is 
changed to q4. 

17. δ (q4, B) = (q4, B, Right) – in state q4 capital letters B and C are 
skipped 

18. δ (q4, C) = (q4, C, Right) – by moving the head to the right. 

19. δ (qf, MR) = (qf, MR, Accept) – if in q4 there were only capital 
letters on the tape, LBA accepts. 

6.5 REVIEW QUESTIONS 
 

1. Define Linear Bound Automata. 

2.  Write note on ID of LBA. 

3.  Which type of language is accepted by Linear Bound Automata? 

4. Justify. Is the language accepted by LBA is accept by  Turing Machine. 

6.6 SUMMARY 
 

1. Linear Bound Automata design to accept context-sensitive languages. 

2. End markers (ML and MR) is the safety feature of LBA. 

6.7 REFERENCES 
 

1) John Martin,” Introduction to Languages and the Theory of 
Computation”, Tata McGraw-Hill, Third Edition. 

2) Introduction to Languages and The Theory of Computation, Fourth 
Edition by John C. Martin 

3) Theory of computer science Automata, languages and computation, 
Third edition by K.L.P. Mishra and N. Chandrasekaran 



mu
no
tes
.in



  94 

7 
TURING MACHINES 

Unit Structure 

7.0 Objectives 

7.1 Introduction 

7.2 Turing Machine Definition 

7.3 Representations 

7.4 Acceptabilityby Turing Machines 

7.5 Designing and Description of Turing Machines 

7.6 TuringMachine Construction 

7.7 Variants of Turing Machine 

7.8 Review Questions 

7.9 Summary 

7.10 References 

7.0 OBJECTIVES 
 

This chapter would make you to understand the following concepts: 

 To study Turing Machines. 

 Learn to design Turing Machine and it’s representation. 

 Turing Machine construction. 

7.1 INTRODUCTION 
 

Turing machine (TM) was invented by Alan Turing in Turing 1936, which 
is big achievement in the field of finite-state computing machines. Initially 
was specially design for the computing of real numbers.TM is very 
powerful than Linear Bound Automata. Today this machine use as a 
foundational model for computability in theoretical computer science.TM 
can effectively represent its configuration using a simple notation like as 
ID's of PDA.TM has a infinite size tape, use to accept Recursive 
Enumerable Languagegenerated by Type-0 Grammar. The machine can 
read/ write and also move in both (left and write) directions. The machine 
producesdesired output based on its input. 
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Why Turing Machines? 

 It isRobust model in the computation world. 

 Equivalence with other such models of computation, with 
reasonableassumptions (e.g., only finite amount of work is possible in 
1 step). 

 Thus, though there are several computational models, the class of 
algorithms. 

 They can do everything a computer can do and vice versa. But takes a 
lot more time. Is not practical and indeed its not what is implemented 
in today’s computer. 

 So then again, It is the top-most and powerful computational Model. 

7.2 TURING MACHINE DEFINITION 
 

A Turing Machine (TM) is a mathematical model which consists of an 
infinite length tape and tape is divided into cells on which input is given. It 
has a head which reads the input tape. A state register stores the state of 
the Turing machine. After reading an input symbol, it is replaced with 
another symbol, its internal state is changed, and it moves from one cell to 
the right or left. If the TM reaches the final state, the input string is 
accepted, otherwise rejected. 

A Turing Machine can be formally described by 7-tuple (Q, ∑, Г, δ, q0, B, 
F) where − 

 Q is a finite set of states 

 ∑ is the finite set of input alphabets, ∑⊆Г and B ∉ ∑ 

 Г is tape input symbol 

 q0 is the initial state 

 B is the blank symbol 

 F is the set of final states 

δ is a transition function; δ : Q × Г → Q × Г× {Left, Right}. 

i.e.value of δ(q1 x); if defined, is a  triple(P,Y,D) where 

i) P is the next state in Q. 

ii) Y∈ Г, scanned and written in the cell, replacing whatever symbol is 
there 

iii) D- direction; Left or Right, tell the moving direction for head.0 
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7.3 REPRESENTATIONS 
 

Turing Machine can be presented using: 

i) Instantaneous descriptions using move relations. 

ii) Transition table. 

iii) Transition diagram or transition graph. 

i) Instantaneous descriptions using move relations: An ID of a TM is 
defined over entire input string and current state. 

Definition: An ID of TM is a string α β γ, where β- current state of TM. 

The αγ is a input string partition as: 

α is substring of input string formed by the symbols available to the left of 
‘a’, where ‘a’ is current symbol. 

γ is the first symbol in the current symbol ‘a’ pointing by Read/Write head 
and γ has all the remaining symbols of input string.   

Example: Consider following TM. Obtain its ID. 

 

Figure 7.1 

Current symbol under Read/Write head is a7. 

Suppose, current state: q2 

By definition of ID - α β γ,    where β is state = q2 

∴a7is written to the right of q2 and  

Symbol a1 to a6 to the left of q4 

∴ The ID is  

 

Figure 7.2 
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Moves in Turing machine 

The δ(q, xi) changes  the ID of  TM. This change is called move. 

If δ(q, xi) = (P, y, L) 

Take input string x1, x2, ….Xn. 

Currentsymbol under Read/Write head- xi 

ID before processing symbol xi 

 x1x2…….xi-1 q  xi+1…..Xn 

ID after processing symbol xi 

 x1x2……. xi-2 P xi-1 y  xi+1…..Xn 

∴It is represented as 

 x1x2…….xi-1 q  xi…..Xn├  x1… xi-2 P xi-1  y  xi+1…..Xn. 

If δ(q, xi) = (P, y, R)  

Then the ID become: 

x1x2…….xi-1q  xi…..Xn├  x1x2… xi-1 y P xi+1 …..Xn. 

Thus Ii ├ Ikdefine the relationship between IDs. 

├* denotes reflexive-transitive clousure of relation ├. 

∴  If I1  ├* In then we split it as: 

If I1 ├ I2 ├ ….. ├ In for some IDs I2, … In-1 

 

ii)Transition table:  

a) The transition function δ  

  Q x Ґ → Q x Ґ x {L,R} 

States Q stored in table rows and table column shows each of the tape 
symbols Ґ. 

b) Each pair (Q , Ґ ) is represented by a triple (Q, Ґ, {L,R}) as: 

If δ (qi, a) = (α, β, γ) then we write (α, β, γ) under qi
th row and ath column. 

In transition table we get entry as: 

State qi on input symbol 'a' goes to or changes to state ' γ ', by replacing the 
input symbol 'a' by ' α' and moves the tape head one cell in direction of ' β'. 
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iii)Representation by Transition Diagram 

a) Every state implies to one vertex.  

b) Transition of states represented by directed edges. 

c) Each label of the edge is in the form (α, β, γ)  whereα, β ∈ Г,  γ ∈ 
{L, R}. 
 

Here, the directed edge from state qi to qj with label (α, β, γ) it indicates transition  

δ(qi,, α) = (qi, β, γ) 

The symbol α will replaced with β  and tape head moves to L , or R direction 
according to the value ofγ. 

Every Edge in the transition diagram is represented by 5-tuple (qi, α, β, γ, qj). 

7.4 ACCEPTABILITY BY TURING MACHINES 
 

A language isaccept by Turing Machines if it enters into a final state for 
any input string w. If input not present in the language TM enters it into a 
rejecting state.  A recursively enumerable language is which isgenerated 
by Type-0 grammar is accepted by a Turing machine. The set of languages 
accepted using a turing machine is often called Recursively Enumerable 
languages or RE languages. Recursive means for any number of times 
repeating the same set of rules and enumerable means a list of elements. 

Formal Definition ofTuring Machines, 

 M = (Q, ∑, Г, δ, q0, B, F)  

L(M) is the set of strings w ∈ ∑*,  such that q0w ├  α p β for some state p 
in F and any tape strings α and β. The TM ‘M’ does not accept w if the 
machine M either halts in a non-accepting state.  

Example :Design a TM to recognize all strings consisting of an odd 
number of α’s. 

Solution: 

The Turing machine M can be constructed by the following moves − 

 Let q0 be the initial state. 

 If M is in q1; on scanning α, it enters the state q2 and writes B (blank). 

 If M is in q2; on scanning α, it enters the state q1 and writes B (blank). 

 From the above moves, we can see that M enters the state q1 if it scans 
an even number of α’s, and it enters the state q2 if it scans an odd 
number of α’s. Hence q2 is the only accepting state. 
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Hence, 

M = {{q1, q2}, {1}, {1, B}, δ, q0, B, {q2}} 

where δ is given by − 

 

7.5 DESIGNING AND DESCRIPTION OF TURING 
MACHINES 

 

7.5.1 Turing Machine designing guidelines are: 

i) Scan the symbol by Read / Write head to take the moving action( to 
move in Left/Right direction). The machine must remember the past 
scanned symbols. It can be remembering this by going to the next unique 
state.  

ii) By changing the state if there is a change in the written symbol or when 
there is a change in the movement of Read/Write head we can minimize 
the number of states. 

7.5.2 Description of Turing Machines: 

i)  At the beginning of the alphabet lower case lettersshows input symbols. 

ii) Near the end of alphabet as....X, Y, Z, Capital letters  are used for tape 
symbols that mayor may not be input symbols.  

iii) B is generally represents Blank symbol.  

iv) At the end of alphabet lower case letters are strings of input symbols. 

v) Greek letters are  used for strings of tape symbols. 

vi) Letterslike q, p and nearby letters are states of machine. 

7.6 TURING MACHINE CONSTRUCTION 
 

Example 1: Construct a Turing Machine for language L = {anbncn | n≥1},  

where Language = {abc, aabbcc, Aaabbbccc, ………} 

Solution: The language L = {anbncn | n≥1} represents a language in which 
we use only 3 character, i.e., a, b and c. At the beginning, language has 
some number of a’s followed by equal number of b’s and then followed by 
equal number of c’s. Any such string which falls in this category will be 
accepted by this language.  

Tape alphabet symbol Present State ‘q1’ Present State ‘q2’ 

Α BRq2 BRq1 
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i) We use 2 tape symbols X and Y for a and b respectively. 

ii) We replace a by X. Move right replace first b found by Y. move right find last 
c replace it Blank ̀B'. 

iii) Repeat step 2 until all a's, b's and c's. If no more a's, b's and c's are 
present – Accept otherwise Reject the string. 

Replacement Logic: 

 Mark 'a' then move right. 

 Mark 'b' then move right 

 Mark 'c' then move left 

 Come to far left till we get 'X' 

 Repeat above steps till all 'a', 'b' and 'c' are marked 

 At last if everything is marked that means string is accepted. 

Let’s consider the string, 
Direction  aabbccB (String) 

          →              XaYbccB 

         ←          XaYbcBB 

→  XYYcB 

         ←          XYYBB 

      →                 XYYBA          accept 

Representation by Transition table method 

 A B c X Y Z 

q0 (q1, X, 
R) 

ERROR ERROR  (q5, Y, 
R) 

 

q1 (q1, a, 
R) 

(q2, Y, R)   (q2, Y, 
R) 

 

q2  (q2, b R) (q2, c, R)   (q3, B, 
L) 

q3   (q4, B, L)    

q4 (q4, a, 
L) 

(q4, b, L) (q4, c, L) (q0, X, 
R) 

(q4, Y, 
L) 

 

q5   ERROR  (q5, Y, 
R) 

(q6, B, -
) 

q6 Accept state 
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7.7 VARIANTS OF TURING MACHINE 
 

We have discussed about Turing Machines.Now let’s see it’s variants 
(types ). 

1) Multitrack Turing Machine:  

Multitrack Turing Machine is a specific type of Multi-tape TM with only 
one unified tape head. It is equivalent to the standard Turing Machine and 
therefore accepts precisely the recursively enumerable languages. 
Standard Turing machines have k-tape, k heads move independently along 
k tracks. In ak-track Turing Machine, one head reads and writes on all 
tracks simultaneously one by one. A tape position in ak-track Turing 
Machine contains k symbols from the tape alphabet.  

 

Figure 7.3 

2) Two-way Turing Machine:  

A two-way Turing Machine is an infinite tape with its input tape infinite in 
both directions, other components (Tuple) are same as that of the basic 
model. 

Figure 7.4 (6.3) 

Here the input string is a1, a2,a3, ... an. Whenthe input string placed on tape, 
it is loaded with all blank symbols (B) to the left of a1 and to the right of 
an. So if q0 is the initial state of the TM, ID corresponding to the initial 
state will be q0, a1, a2, s….. an,B. 

3) MultitapeTuringMachine(MTT):  

For every Multitape  Turing Machine there is an equivalent single tape 
Turing Machine. In MTT number of tapes and read/write heads increased. 
All the indivisual tape will have there own respective tape heads. For this 
assumption is that all the tapes are two way infinite. It contains finite 
control with k number of heads. 
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Figure 7.4 

Depending upon the state of finite control, in single move the symbols 
scanned by each of the tape heads, the machine can 

a) Change the state. 

b) Print a new symbol on each of the cells scanned by its tape head. 

c) Then independently  move each tape head, one cell to the left or 
right or keep it stable. 

4) Single tapeTuring Machine: 

A Turing Machine consists of only one tape with infinite length on which 
read and write head can be performedoperation. The tape consists of 
infinite cells on which each cell either contains input symbol or a special 
symbol called blank (B). 

 

Figure 7.5 

5) Non-deterministic Turing Machine(NTM): 

Non-deterministic TM plays an important role in FAs and PDAs. It is 
convenient but not essential in caseofFA. 

Deterministic Turing machines have enough computing power that 
nondeterministic fails to add any more. Non-deterministic TM differs from 
deterministic TM, we have seen earlier, in the function δ, such that for 
each state q and tape symbol X, δ (q, x) is a set of triples like, 
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((q1, Y1, D1), (q2, Y2, D2) ..... (qk,Yk,DK)} 

here, k is finite integer. 

At each step, aNTM chooses any of the triples to be the next move,but it 
cannot pick a state from one triple, a tape symbol from another and the 
direction from yet another triple. It take triples from entire triple group 
like (q1, Y1, D1) at a time. 

From this we can say that transitions in NTM are defined by a function 
from 

δ: Q × Г→  subsets of Q x Г x {L, R}. 

String Acceptability by NTM  

If there is any sequence of choices of move that leads from the initial ID 
with w as input to an ID with an accepting state then NTM, M accepts an 
input w. 

The existence of other computations that halt in non-accepting states or 
fail to halt altogether is irrelevant. 

Language Acceptedby NTM 

The language accepted by a machine is the set of strings accepted by the 
M as mention in above point . 

 The acceptance in NTM can be defined by final state or by halting state 
alone. A NTM accepts a string u by halting if there is at least one 
computation that halts normally when run with u.  

Thecomputational capability of TM does not increase by non-
determinism: The languages accepted by NTM are those accepted by 
deterministic TMs. To accomplish the transformation of a NTM to an 
equivalent deterministic machine, we show that the multiple computations 
for a single input string can be sequentially generated and examined. 

Examples 

Example 1:Construct a TM machine for checking the palindrome of the 
string of even length. 

Solution: 

Firstly we read the first symbol from the left and then we compare it with 
the first symbol from right to check whether it is the same. 

Again we compare the second symbol from left with the second symbol 
from right. We repeat this process for all the symbols. If we found any 
symbol not matching, we cannot lead the machine to HALT state. 
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Suppose the string is ababbabaΔ. The simulation for ababbabaΔ can be 
shown as follows: 

Now, we will see how this Turing machine will work for ababbabaΔ. 
Initially, state is q0 and head points to a as: 

 

We will mark it by * and move to right end in search of a as: 

 

We will move right up to Δ as: 

 

We will move left and check if it is a: 

 

It is 'a' so replace it by Δ and move left as: 

 

Now move to left up to * as: 

 

Move right and read it 

 

Now convert b by * and move right as: 
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Move right up to Δ in search of b as: 

 

Move left, if the symbol is b then convert it into Δ as: 

 

Now move left until * as: 

 

Replace a by * and move right up to Δ as: 

 

We will move left and check if it is a, then replace it by Δ as: 

 

It is 'a' so replace it by Δ as: 

 

Now move left until * 

 

Now move right as: 
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Replace b by * and move right up to Δ as: 

 

Move left, if the left symbol is b, replace it by Δ as: 

 

Move left till * 

 

Move right and check whether it is Δ 

 

Go to HALT state 

 

The same TM can be represented by Transition Diagram: 

 

 

Example 2:Design a Turing  Machine to implement 1's complement .  
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Solution: 
Logic for 1's complement 

1. Scan input string from left to right 

2. Convert '1' into '0' 

3. Convert '0' into '1' 

4. When BLANK is reached move towards left(i.e.start of input 
string). 

Consider, TAPE movement for string "1010111" 

Sequential explanation of TAPE movement 

1. Input is given as "1010111" (scan string from left to right) 

2. Convert '1' into '0' and move one step right 

3. Convert '0' into '1' and move one step right 

4. Convert '1' into '0' and move one step right 

5. Convert '0' into '1' and move one step right 

6. Convert '1' into '0' and move one step right 

7. Convert '1' into '0' and move one step right 

8. Convert '1' into '0' and move one step right 
When BLANK (in right) is reached,  string is finished. So move to start of 
string (optional). 

Tape movements are shown below. 
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Let, 

1's complement is written into the TAPE in place of input string. 
Input String : 1010111 
Output String : 0101000 

State Transition Diagram 

We have designed state transition diagram for 1's complement as follows: 
1. Replace '1' with '0' and vice versa. 
2. When BLANK is reached move towards left 
3. Using state 'q2' we reach start of the string. 
4. When we reach to BLANK in left we move one step right to point start 
of string. 
5. qf is final state 
 

 

Example 3: 

Construct a Turing Machine for language L = {ww | w ∈ {0,1}} 

Solution: 

The w is a string. If w = 10110, so the Turing machine will accept the 
string 

 z = 1011010110. 

Logic: 

we will convert a 0 to x and 1 to y. After continuously doing it a point is 
reached when all 0’s and 1’s has been converted into x and x respectively. 
Now, we are on the midpoint of the string. 

Now, convert all x's and y's on the left of the midpoint into 0's and 1's. 
Now the first half the string is in the form of 0 and 1. The second half of 
the string is in the form of x and y. 

Now, again start from the beginning of the string. If you have a 0 then 
convert it into x and move right till reaching the second half, here if we 
find x then convert it into a blank(B). Then traverse back till find an x or a 
x. We convert the 0 or 1 at the right of it into x or y respectively and 
correspondingly, convert its x or y in the second half of string into a 
blank(B). 
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Continue this till converted all symbols on the left part of the string into x 
and y and all symbols on the right of string into blanks. When one part is 
completely converted but still some symbols in the other half are left 
unchanged then the string will not be accepted. If we did not find an x or y 
in the second half for a corresponding 0 or 1 respectively in the first half. 
Then also string will not be accepted. 

State Transition Diagram 

 

 

Example 4: 

Construct a Turing Machine for language L = {02n1n | n>=0} 

Solution: 

Stepwise Working : 

 Step-1: 
Given language contains twice number of 0’s as compare with 1’s. So, 
we will first make the first two zeros Blank and go from state Q0 to Q1 
and from state Q1 to Q2. 

 Step-2: 
After making them Blank we will traverse to the end of the string till we 
get the rightmost 1 in state Q3 and make it Blank reaching state Q4. 

 Step-3: 
Now we will traverse back till we get the left most zero in the string and 
return to the state Q0 from Q4. 
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 Step-4: 
We are just reducing the string by making left most two zeros Blank and 
rightmost 1 Blank and if the string belongs to the language then it will be 
left empty and hence get accepted at state Q5 which is Final state. If the 
string is empty it will also get accepted at Q5. 

State Transition Diagram 

 

 

7.8 REVIEW QUESTIONS 
 

1) Define Turing Machine. 

2) Describe Turing Machine representation. 

3) What type of language or grammar is accepted by Turing machine? 

4) Design (construct) a TM for language L={anb2n | n ≥ 1} 

5) Construct a TM for language L = {0n 1n  2n | n ≥ 1} 

6) Write note on variants of TM. 

7) Construct TM to accept the language 0* 1* 

7.9 SUMMARY 
 

1) Tuples of Turing Machine are:M = (Q, ∑, Г, δ, q0, B, F)                                 
δ :  Q x Г  x {L, R} 

2) Language accepted by Turing Machines, M = (Q, ∑, Г, δ, q0, B, F), 
L(M) is the set of strings w ∈ ∑*,  such that q0w ├  α p β for some 
state p in F and any tape strings α and β. 
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3)  Variants of TM: 

 i) Multitrack TM 

 ii) Two-way TM 

            iii) Multiple tape TM 

iv) Single tape TM 

v) Non-deterministic TM 

7.10  REFERENCES 
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8 
UNDECIDABILITY 

Unit Structure 

8.0 Objectives 

8.1 Introduction 

8.2 The Church-Turing thesis 

8.3 Universal Turing Machine 

8.4 Halting Problem 

8.5 Introduction to Unsolvable Problems 

8.8Review Questions 

8.9 Summary 

8.10 References 

8.0 OBJECTIVES 
 
This chapter would make you to understand the following concepts: 

 To study The Church-Turing thesis. 

 Understand the Universal Turing Machine. 

 What is Halting Problem? 

 Introduction to Unsolvable Problems. 

8.1 INTRODUCTION 
 
In computing and mathematics there are many problems that are 
unsolvable. The deterministic Turing Machine has capability to compute 
whatever computational work is performed by the computer. Both are 
equally powerful for computation, and any of their variations do not 
exceeds the computational power of deterministic TM. 
 
There are some problems which cannot be solved by TM and therefore by 
computer also, such a problem is consider asundecidable problem. 

8.2 THE CHURCH-TURING THESIS 
 
Alonzo Church wasAmerican mathematician and logician who made 
major contributions to mathematical logic and the foundations of 
theoretical computer science. His most renowned accomplishments were 
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Church's theorem, the Church-Turing thesis, and the creation of λ-
calculus, or the Church λ operator. 

There are various equivalent formulations of the Church-Turing thesis. 

Formulation of the Church-Turing thesis is: “ Anything that can be 
computed on any computational device can also be computed on a Turing 
machine”. 

or 

“a problem can be solved by an algorithm iff it can be solved by a Turing 
Machine” 

or 

“A common one is that every effective computation can be carried out by 
a Turing machine. “ 

In the 1930s, two researchers– Alan Turing from England and Alonzo 
Church from theUS – started analyzing the question of what can be 
computed. They used two different approaches to answer this question:  

• Alan Turing, with hiscomputational analysis of Turing machines,  what 
we would now consider computer engineering and computer 
architecture; 

 • On the other hand, Church focused on what can be described – i.e., on 
what we would now consider programming languages. 

Initially, they came up with two different answers to this question: 

 • Turing states that a function is computable if and only if it can be 
computed on a Turing machine, while 

 • Church statesthat a function is computable if and only it be described by 
a program in his programming language (which is similar to LISP and 
Scheme). 

These, two statements areshows different answers – until Church proved 
that these definitions are actually equivalent:  

• if a function can be computed on a Turing machine, then it can also be 
described by a program in Church’s programming language, and  

• if a function can be described by a program in Church’s programming 
language, then it can also be computed on a Turing machine. 

Later on, their two statements were merged into one statement, which we 
now call Church-Turing thesis. 

Turing gave a very convincing argument that a human computer 
(performing symbolic manipulations with pen and paper) can be simulated 
by an appropriate Turing machine. Clearly, every Turing machine can be 
simulated by a human (who will just follow the program of the Turing 
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machine). Thus, we have an equivalence between the intuitive notion of an 
algorithm (of the symbolic-manipulation kind, as discussed above) and the 
formal notion of a Turing machine. This equivalence is usually called the 
“Church-Turing thesis” 

8.3 UNIVERSAL TURING MACHINE 
 

The Church-Turing thesis tells us that Turing machine is more powerful 
thanall effective models of computation.TM is create to execute specific 
algorithm.For every new computation the different Turing Machines are 
constructed for every input output relation. So this need is solved by 
introducing Universal Turing machine in which input on the tape takes the 
description of a machine M. It means if we have TM for computing one 
calculation, then computing a different calculation or another task we 
requires a different machine. Electronic computers have same limitations 
and if we determine to change the performance of machine ones need to 
rewrite the machine. 

So we can design a Turing machine which gives us all computing 
capabilities like any other TM can do, this machine is called Universal 
Turing Machine(UTM). It can simulate the behaviour of any TM, which 
capable of running any algorithm. 

This machine should have the capability of imitating any TM T, given the 
following information in its tape: 

1. The description of T in terms of its program area or operation of the 
tape. 

2. The Starting state or initial configuration of T and the symbol scanned 
(state area of the tape). 

3. The data to be given to T (data area of the tape). 

The Universal Turing Machine  

● Theorem1: There is a Turing machine UTM called the universal Turing 
machine that, when run on ⟨M, w⟩, where M is a Turing machine and w is 
a string, simulates M running on w.  

● Conceptually: 

 UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*: 

Set up the initial configuration of M running on w. 

while (true) { 

 If M accepted w, then UTM accepts ⟨M, w⟩. 

 If M rejected w, then UTM rejects ⟨M, w⟩. 
 Otherwise, simulate one more step of M on w. 

 }” 

mu
no
tes
.in



 

 

Undecidability 

 

115 

● Theorem2: There is a Turing machine UTM called the universal Turing 
machine that, when run on ⟨M, w⟩, where M is a Turing machine and w is 
a string, simulates M running on w. 

 ● The observable behavior of UTM is the following: 

● If M accepts w, then UTM accepts ⟨M, w⟩. 

 ● If M rejects w, then UTM rejects ⟨M, w⟩. 

 ● If M loops on w, then UTM loops on ⟨M, w⟩. 

Design of UTM 

The UTM should have the capability to correctly interprets the rules of 
operations of T using algorithm. 

A UTM is designed to simulate the computations of an arbitrary turing 
machine M. For this computation the input of the universal machine must 
contain a representation of the machine M and the string w to be processed 
by M. 

To achieve this we assume that M is a standard TM which accepts by 
halting. The action of UTM, U is represented by: 

 Let R(M) be the representation of machine M with string w. 

 

Figure 8.1 

The output labeled 'loop' shows that the computation of U does not 
terminate. If M halts and accepts input w, U does the same. 

If M does not halt with w, neither does U. The machine U is called 
universal since the computationof any TM M can be simulated by U. 

In universal machineconstruction is for to design the string representation 
of a turing machine. Because of the ability to encode arbitrary symbols as 
strings over {0, 1}, we consider truing machines with input alphabet {0, 
1} and tape alphabet {0, 1, B}. The states of turing machine are assumed 
to be named {qo, q1 ...... qn} whereqo as start state.  
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Formal Definition 

Turing machine M is defined by its transition function(δ). A transition of a 
standard turing machine is given as: 

δ (qi, x) = [qj) y, d] 

Where qi, qj∈ Q, x, y ∈Г and d ∈ {L, R) 

We encode the elements of M using strings of 1's:  

Symbol Encoding 
0 1 
1 11 
B 111 
q0 1 
q1 11 
 

qn n+1 
L 1 
R 11 

 

Consider the following TM: 

M = ( {q1, q2, q3}, {0, 1}, {0, 1, B), δ, q1, B, {q2}) 

The moves are     δ (q1, 1) = (q3, 0, R) 

  δ (q3, 0) = (q1, 1,R) 

  δ (q3, 1) = (q2, 0, R) 

  δ (q3, B)= (q3, 1, L) 

 Then the machines M can be coded as: 

111010010001010011000101010010011 

00010010010100110001000100010010111 

The code begins and ends with 111. The bold portion represents one move 
of TM. 

UTM Simulation of T 

UTM can simulate T, one step at a time. Steps are  as follows: 

Step 1: Scan the square (cell) on the state area of the tape and read the 
symbol that T reads and initial state of T. 

Step 2: Move the tape over program area containing the description of T 
find out the row pointed by the symbol, read in step 1. 
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Step 3: Find the column pointed by the statesymbol in which T resides 
and then read the triple (new state ,symbol to be replace and direction of 
the tape  movement) in the intersection of this column with the row found 
in step 2. 

Step 4: Move the tape to the appropriate cell in the data area, replace the 
symbol, move  the head in required direction, read next symbol and 
finally read the state area, replace the state and scanned symbol. And go to 
step 1. 

Let end(z) denote the encoding of a symbol z. A transition δ (qi, x) = [qj, 
y, d] isencodedbythestring end(qi) 0end(x) 0end(qj) 0end(y) 0end(d) 

The components of transitions are separated by 0's. Two of consecutive 
0’s are used to show separate transition. The beginning and ending of the 
representation are designed by 3 0's. 

Example: Let M = (Q, {0, 1}, {0, 1, B), δ, q1,B, {q2}) be a TM.  

Assume Q = {q1, q2, .....qn}  

Let's consider 0, 1, and B as X1, X2, and x3 respectively. 

 D1 and D2are head movements for directions L and R respectively. 

Consider the following move: 

δ (qi, Xj) = (qk, Xl, Dm)  

The move can be encoded by the binary string: 

0i 1 0j 1 0k 1 0l 1 0m 

A turing machine M with binary code is 

111 code1 11 code2 11 ...... 11 coden111,               …..Form(1) 

Where each codei is of each above form, this code is beginning and ending 
with 111. Each move of M is encoded by one of the codei. Each codeiis 
separated by two consecutive 11’s. Thus the encoding will be unique. 

Above imitation algorithm have problem. since here we have only one-
dimensional linear tape  on the UTM, we require two-dimensional 
description of  T unless we use some coding to convert the two-
dimensional information into one-dimensional. 

:. So we can design a UTM in following way. 
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The Turing machine is described as a multitape. TM as shown: 

 
Figure 8.2 

Operation of UTM is as follows: 

i)  Examine the input to make sure that the code for M is valid code for 
some TM. If not U halts without accepting. For invalid codes are assumed 
to represent the TM with no moves, and such a TM accepts no inputs, this 
action is correct.  

ii) Initialize the second tape to contain the input w, in its encoded form. 
i.e. for each 0 of w, place 10 on the second tape, and for each 1 of w, place 
100 there. 

(Blanks on the simulated tape of M, which are represented by 1000, will 
not actually appear on that tape, all cells beyond those used for w will hold 
the blank of U.  

However, U knows that, should it look for a simulated symbol of M and 
find its blank, it must replace that blank by the sequence 1000 to simulate 
the blank of M) 

iii) Place simulated 0,at  thestart state of M, on the third tape and move the 
head of U's second tape to the first simulated cell. 

iv) For simulate  the move of M,  U search it on its first tape for the 
transition of  0i 1 0j 1 0k 1 0l 1 0m where 0i is state on third tape, and 0j is 
tape symbol of M which begins at the position on tape 2 scanned by U. 
This is the transition of one M which create next one. U should:  
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a) Change the contents of third tape to 0k. Means it should able simulate 
the state change of M, for that change , U first changes all the 0’s on 
tape 3 to blanks and then copies 0k from tape 1 to tape 3. 
 

b) Replace 0j on the tape 2 by 0l means make change in tape symbol of 
M. If more or less space is needed (i.e. I ≠ 1), then use the scratch tape 
and using shifting over technique manage the space. 

 
c) Now, move the head on tape2 to the position of the next 1 to the left or 

right respectively, depending on weather m = 1 (move left) or m = 2 
(move right) . Therefore U makes move of M to the left or to the right. 

v) If there is no match in M for transition that matches the simulated state 
and tape  symbol, then in (iv), no transition will be found. Thus M halts 
in the simulated  

Configurationand  U must do likewise. 

vi) If M enters into its accepting state, then U accept. 

8.4 HALTING PROBLEM 
 

Before start to study Halting Problem, let’s learn some concepts: 

 Computability theory –It is the branch of theory of computation 
which studies the problems of computationally solvable using 
different model. In computer science, the computational complexity, 
or complexity of an algorithm is the amount of resources required for 
running it. 

 Decision problems –A decision problem has only two possible 
outputs (i.e. yes or no) on any given input. In terms of computability 
theory and computational complexity theory, a decision problem is a 
problem that can be posed as a yes-no question for the input values. 
Like is there any solution to a particular problem? The answer would 
be either yes or no. Simply a decision problem is any arbitrary yes/no 
question on an infinite set of inputs. 

 Turing machine –Now we know very well that, a Turing machine is 
a mathematical model of computation. A Turing machine is a general 
example of a CPU which controls all data manipulation work, 
performed by a computer. Turing machine can be of halting as well as 
non halting type and it depends on algorithm and input associated 
with the algorithm. 

 Decidable language – 
A decision problem P is said to be decidable (i.e., have an algorithm) 
if the language L of all yes instances to P is decidable. 
Example- 
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     (I) (Acceptance problem for DFA) Given a DFA does it accept a 
given word? 

(II) (Emptiness problem for DFA) Given a DFA does it accept any 
word? 

(III) (Equivalence problem for DFA) Given two DFAs, do they accept 
the same language? 

If answer to above examples is yes then language generated by above is 
decidable. 

 Undecidable language –  
A decision problem P is said to be undecidable if the language L of 
all yes instances to P is not decidable or a language is undecidable if 
it is not decidable. An undecidable language maybe a partially 
decidable language or something else but not decidable. If a language 
is not even partially decidable , then there exists no Turing machine 
for such language. 

Halting is a situation in the program that tells us on certain input will 
accept it and halt or reject it and halt and it would never go into an 
infinite loop. Basically halt shows terminating the current program or 
algorithm execution on particular input condition. 

So can we have an algorithm which will tell us that is given program will 
halt or not. In terms of Turing machine, will it terminate when run on 
some machine with some particular given input string. 

The answer is no we cannot design a generalized algorithm which can 
appropriately say that given a program will ever halt or not?The only 
way is to run the program and check whether it halts or not.We can solve 
the halting problem question in such a way also: Given a program 
written in some programming language(c/c++/java) will it ever get into 
an infinite loop(loop never stops) or will it always terminate(halt)? 

It is an undecidable problem because we cannot have an algorithm which 
will tell us whether a given program will halt or not in a generalized way 
at certain point in executioni.e by having specific program/algorithm.In 
general we can’t always know that’s we can’t have a general algorithm. 
The best possible way is to run the program and see whether it halts or 
not.In this way for many programs we can see that it will sometimes loop 
and always halt. 
The halting problem is a decision problem about properties of  computer 
program on  a Turing Machine computation model. The problem is to 
determine, for a given program and an input to a program, whether the 
program will halt when run with that input. 

In this abstract environment, there is no resource limitations of memory or 
time on the program’s execution, before halting it can take arbitrary long 
storage space. The question is that whether the given program will ever 
halt on a particular input. 
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 Example  

i. The following program having segment: 
while (1) {continue; } 
does not halt. It goes in infinite loop. 
 

ii. The following program  
printf ( " Hello" ) ;  
halts very soon: 

The halting problem is undecidable: This means that there is no algorithm 
which can be applied to any arbitrary program and input to determine 
whether the program stops when run with that input. 

Definition of Halting Problem 

The halting problem for Turing machines is defined as follows: 

Given a TM M = (Q, ∑, Г, δ, qo, B, F) and an input string x∈Г*, will M 
eventually halt? 

Halting Problem representing as a Set 

The conventional representation of decision problems is the set of objects 
processing or satisfying the property in question: 

The halting set:K = {(i, x) program i will eventually halt if run with input 
x} represents the halting problem. 

This set is recursively enumerable i.e. there is a computable function that 
lists all of the pairs (i, x) it contains. However, the complement of this set 
is not recursively enumerable. 

The halting problem would be solvable of a TM H which behaves like 
shown below can be constructed: 

 
Figure 8.3 
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where,  

e(M): Encoding of M 

i.e. e(M) is for example a set of 5-tuples (q, X1, p, r, R) that describe the 
TM. 
 

Then the halting problem is:  

 

 

In this section we introduce the reduction technique. This technique is 
used to prove the undecidability of halting problem of Turing machine. 

We say that problem A is reducible to problem B if a solution to problemB 
can be used to solve problem A. 

For example,  ifA is the problem of finding some root of  x4- 3x2+ 2 = 0 

and  Bis the problem of finding some root of  x2- 2 = 0, then A is reducible 

toB. As x2- 2 is a factor of  x4-+ - 3x2+ 2, a root of  x2- 2 = 0 is also a root 

of  x4-+ - 3x2+ 2. 

Note:IfA is reducible to B and  Bis decidable then  A  is decidable. If  Ais 
reducible to B and A is undecidable, then B is undecidable. 

Theorem 

HALTTM={(M, w) | The Turing machine M halts on input w} is 
undecidable. 

Proof : 

We assume that HALTTMis decidable, and get a contradiction. Let M1 

be the TM such that T(M1 ) = HALTTM and let M1halt eventually on all 

(M, w).We construct a TM M2 as follows: 

1. For M2, (M, w) is an input. 

2. The TM M1 acts on (M, w). 

3. If M1 rejects (M, w) then M2rejects (M, ,w). 

4. If M1 accepts (M, w),simulate the TM M on the input string w until M 
halts. 

5. If M has accepted w, M2 accepts (M, w); otherwise M2rejects (M, w). 

 

Thus there exist an effective procedure (i.e.) an computable function for 
deciding, for every pair (e(M), x); does M halt for x? 
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When M1 accepts (M, w) (in step 4), the Turing machine M halts on w. 

In this case either an accepting state q or a state q' such that δ(q', a) is 
undefined till some symbol a in w is reached. In the first case (the first 
alternative of step 5) M2accepts (M. w). In the second case (the second 
alternative of step 5) M2 rejects (M, w). 

It follows from the definition of M2that M2halts eventually. 

Also,T(M2) = {(M, w) | The Turing machine accepts w} = ATM 

This is a contradiction since ATM isundecidable. 

8.5 INTRODUCTION TO UNSOLVABLE PROBLEMS 
 

The deterministic Turing machines are capable of doing any computation 
that computers cando,i.e computationally they are equally powerful and 
any of their variations do not exceed the computational power of 
deterministic TM. 

There are problems that cannot be solved by TMs and hence by computers 
so the concept of Unsolvability comes in front. 

Solving a problem can be viewed as recognizing a language. The 
unsolvability can be seen in terms of language recognition. 

Suppose that a language is acceptable but not decidable. Then given a 
string a TM that accept the language starts the computation. At any point 
of time if TM is running, there is no way of telling whether it is in an 
infinite loop or along the way to a solution and it needs more time. 

This if a language is not decidable, the question of whether or not a string 
is in the language may not be answered in any finite amount of time. Since 
we cannot wait forever for an answer, the question is unanswerable i.e. the 
problem is unsolvable or undecidable. 

Examples Unsolvable Problems (UndecidableProblems) 

a) Unsolvable Problems about Turing Machines: 

 Using the reduction technique, thefollowing problems can be shown 
unsolvable: 

1. If M is a TM, and x is a string of input symbols to M, does M halt on x? 

2. If M is a TM that computes a function f with no arguments, does M halt 
on a blank  tape? 

3 .Given a TM M, halt for any string of input symbols? 

4. If M is a TM, is the set of input strings on which M does halt regular? Is 
it context free? Is it X input? 
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5. Given two TMs, M1 and M2, over the same alphabet, do M1 and M2 halt 
on the same set of input strings? 

b) Unsolvable Problems about (General) Grammars: 

Unsolvability results can also be shown about grammars, using 
reductions.These  

problems are unsolvable. 

 1. Given a grammar G and a string w, is w ∈L(G)? 

 2. Given a grammar G, is ∈∈L(G)? 

 3. Given grammars G1 and G2, is L(G1) = L(G2)? 

 4. Given a grammar G, is L(G) = φ? 

 5. There is a fixed grammar G such that it is undecidable given w whether 
w ∈L(G) 

c) Unsolvable Problems about Context-Free Grammars(CFG) 

 The following are undecidable: 

 1. Given a context-free grammar G, is L(G) = Σ∗ ? 

 2. Given two CFG G1 and G2, is L(G1) = L(G2)? 

 3. Given two push-down automata M1 and M2, is L(M1) = L(M2)? 

 4. Given a push-down automaton M, find an equivalent push-down 
automaton with as few states as possible. 

 Here are some more unsolvable problems about context-free grammars: 

 Given a context-free grammar G, is G ambiguous? 

 Given context-free grammars G1 and G2, is L(G1) ∩ L(G2) = φ? 

 Some of the preceding problems are ones that we would very much like to 
be able to solve. Some problems are in areas not related to grammars or 
Turing machines at all. For example, Hilbert’s Tenth problem has to do 
with Diophantine equations, and was shown to be unsolvable in the 1970’s 
by a very complicated series of reductions. Hilbert’s tenth problem is to 
give a computing algorithm which will tell of a given polynomial 
Diophantine equation with integer coefficients whether or not it has a 
solution in integers. Matiyasevic proved that there is no such algorithm. 

Decidable problems related regular languages 

Let, begin with certain computational problems concerning finite 
automata. We give algorithms for testing whether a finite automaton 
accepts a string, whether the language of a finite automaton is empty, and 
whether two finite automata are equivalent. 
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For convenience we use languages to represent various computational 
problems because we have already set up terminology for dealing with 
languages. For example, the acceptance problem for DFAs of testing 
whether a particular finite automaton accepts a given string can be 
expressed as a language, A(DFA). This language contains the encodings 
of all DFAs together with strings that the DFAs accept. Let 

A(DFA) = { (B, w) B is a DFA that accepts input string w}. 

The problem of testing whether a DFA B accepts an input w is the same as 
the problem of testing whether (B, w) is a member of the language 
A(DFA). Similarly, we can formulate other computational problems in 
terms of testing membership in a language. Showing that the language is 
decidable is the same as showing that the computational problem is 
decidable. 

In the following theorem we show that A(DFA) is decidable. Hence this 
theorem shows that the problem of testing whether a given finite 
automaton accepts a given string is decidable. 

Theorem  

A(REX) is a decidable language. 

Proof: 

The following TM P decides AREX. 

P = "On input (R, w) where R is a regular expression and w is a string: 

a) Convert regular expressionR  to an equivalent DFA.  
b) Run TM M on input (A, w). 
c) If M accepts, accept; if M rejects, reject." 

8.8 REVIEW QUESTIONS 
 

1) Define the Church-Turing thesis. 

2) Define Universal Turing Machine. 

3) Write note on HaltingProblem. 

4) What is Unsolvable Problems? Give examples. 

8.9 SUMMARY 
 

 The Church-Turing thesis. 

“ Anything that can be computed on any computational device can 
also be computed on a Turing machine”. 
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 A transition of a standard turing machine is given as: 
δ (qi, x) = [qj) y, d] 
Where qi, qj∈ Q, x, y ∈ Г and d ∈ {L, R) 
 

 The halting problem for Turing machines: Given a TM 
 M = (Q, ∑, Г, δ, qo, B, F) and an input string  x∈ Г *, will M 
ventually halt? 
 

 There are problems that cannot be solved by TMs and hence by 
computers so they termed as Unsolvable Problems. 
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