
 1

Unit I

1
AUTOMATA THEORY

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Definition of an Automaton

1.3 Finite Automaton

1.4 Transition Systems

1.4.1 Properties of Transition Systems

1.5 Acceptability by Finite Automaton

1.6 Non-deterministic Finite StateMachines

1.7 DFA and NDFA equivalence

1.8 Mealy and Moore Machines

1.8.1 Converting Mealy model to Moore model

1.8.2 Converting Moore model to Mealy model

1.9 Minimizing Automata

1.10 Summary

1.0 OBJECTIVES

After going through this chapter, the learner will be able to:

• define the acceptability of strings by finite automata

• convert a Non-deterministic Finite Automata (NDFA) to Deterministic
Finite Automata (DFA)

• define Mealy and Moore machine

• find minimization of Deterministic Finite Automata (DFA)

1.1 INTRODUCTION

Automata theory is the study of abstract machines and computational
problems. It is a theory in theoretical computer science and the

mu
no
tes
.in

Theory of Computation

2

word automata originate from a Greek word that means "self-acting, self-
willed, self-moving". In this chapter, we will discuss much in detail about
what is an automaton, its types, and conversion among the types.

1.2 DEFINITION OF AN AUTOMATON

Automaton refers to a system that transforms and transmits the
information which is used for some action without any human
intervention. Some of the examples of such systems are automatic coffee
maker, automatic sentence completion, automatic ticket generation, etc. In
computer science, an “automaton” can be elaborated more accurately
using the following three components.

Fig. 1.2 Components of an Automaton

(i) Input: It indicates the value taken from the input alphabet and
applied to the automaton at the discrete instant of time. Represented as
I1, I2, …., In.

(ii) Output: It refers to the response of the automaton based on the input
taken. Represented as O1, O2, …., On.

(iii) State: At a specific instant of time, the automaton can take any state.
Represented as q1, q2, …., qn

(iv) State Relation: It refers to the next state of automaton based on the
current state and current input.

(v) Output Relation: The output is related to either state only or boththe
input and the state.

Note:

Automaton with memory: Output of automaton depends only on input

Automaton without memory: Output of automaton depends on input as
well as states

1.3 FINITE AUTOMATON

A finite automaton is represented using 5-tuple such as (Q, , , q0, F),
where,

(i) Q = finite nonempty set of states

mu
no
tes
.in

Automata Theory

3

(ii) = finite non empty set of input symbols (input alphabet)

(iii) = direct transition function (a function that maps Q× into Q which
describes the change of states)

(iv) q0= initial state

(v) F = set of final states (F ⊆ Q)

Note: A finite automaton can have more than one final state.

1.4 Transition Systems

An automaton can be represented diagrammatically througha transition
system, also called a transition graph. The symbols used to draw a
transition graph and its description is given below.

Symbol Description

Start state

Intermediate state

Final state

State Relation (label on the edge represents input)

Table 1.4 Symbols used in the transition graph

Example 1.4.Consider an finite automaton, (Q = {q0, q1, q2, q3 }, =
{0,1}, , q0, F={q3}) where its transition state table is given below,

State\Input 0 1

q0 q2 q1

q1 q3 q0

q2 q0 q3

*q3 q1 q2

Note: → near the state represents “start” state and * represents the final
state

mu
no
tes
.in

Theory of Computation

4

Solution: The automaton is represented using the transition diagram given
below,

0010 is an accepted string whereas 101 is not an accepted string. For any
string to be accepted, it should commence from the start state (vertex) and
end atthe final state (vertex).

1.4.1 Properties of Transition Systems

Property 1: The state of thesystem can be changed only by an input
symbol.

Property 2: For all strings xand input symbols b,

 (q, bx) = ((q, b), x)

 (q, xb) = ((q, x), b)

The above property states that an automaton reads thefirst symbol of a
string bx and the state after the automaton consumes a prefix of the string
xb. Consider example 1.4, where string “0010” is the acceptable string of
the automaton. Here the state reads the first symbol of string “0010” say,
“0” where the start state was q0. After which it would have reached the
next state say, q2. Thus, the prefix of q2 would be the string “0”. The same
is applicable for all the states.

1.5 ACCEPTABILITY BY FINITE AUTOMATON

A string (finite sequence of symbols) is said to be acceptable if and only if
the last state is a final state. If the final state is not reached at the end of
the string, then the string is said to be not acceptable.

Example 1.5.1. Consider an finite automaton, (Q = {q0, q1, q2, q3 }, =
{0,1}, , q0, F={q3}) where its transition state table is given below,

State\Input 0 1
q0 q2 q1

q1 q3 q0

q2 q0 q3

*q3 q1 q2

mu
no
tes
.in

Automata Theory

5

Which among the following string is/are acceptable?

(i) 101010 (ii) 11100

Solution:
The automaton is represented using the transition diagram given below,

(i) 101010

Since the final state q3 is reached at the end of the string, the string
“101010” is acceptable by the finite automaton.
Note: The ↓ indicates the current input symbol which is in the process by
the automaton.

(ii) 11100

mu
no
tes
.in

Theory of Computation

6

Since the state q1 is not a final state which was reached at the end of the
string, the string “11100” is not acceptable by the finite automaton.

1.6 NON-DETERMINISTIC FINITE STATE MACHINES

In non-deterministic finite state machines, the next state of automaton
cannot be precisely defined which means that for the same input symbol
there may exist a different next state. Consider the non-deterministic finite
state machine given below,

Fig. 1.6 Non-deterministic Finite State Machine

It can be noted that at state q0 with the input symbol “0”, the machine can
either reach state q1or q2. Similarly, at state q2 with the input symbol “1”,
the machine can either reach state q2 itself or q1. This property makes the
automaton non-deterministic.

A non-deterministic finite automaton (NDFA) is represented using 5-tuple
such as (Q, , , q0, F), where,

(i) Q = finite nonempty set of states

(ii) = finite non empty set of input symbols (input alphabet)

(iii) = direct transition function (a function that maps Q× into Q which
describes the change of states)

(iv) q0 = initial state

(v) F = set of final states (F ⊆ Q)

The only difference between a deterministic finite automaton (DFA) and a
non-deterministic finite automaton (NDFA) is that in DFA, the transition
function can contain only one state whereas in NDFA, the transition
function can contain a subset of states.

mu
no
tes
.in

Automata Theory

7

The transition state table for Figure 1.6 is given below,

State\Input 0 1

q0 {q1, q2} -

*q1 q0 q2

q2 - {q1, q2}

Note: The above transition state table for and NDFA contains a subset of
states at {q0,0} and {q2, 1}

1.7 DFA AND NDFA EQUIVALENCE

Listed below are the two properties that state the relation between DFA
and NFA.

• The performance of NDFA can be simulated by DFA by adding new
states.

• For one input symbol, NDFA can have zero, one, or more than one
move for a specific state.

Consider a non-deterministic finite automaton (NDFA) is represented
using 5-tuple such as (Q, , , q0, F) and deterministic finite automaton
(DFA) is represented using 5-tuple such as (Q’, , , q0, F’). The steps for
converting an NDFA to DFA are listed below.

Step 1: Initially let Q’ be an empty set
Step 2: Add the start vertex q0 to Q’
Step 3: For every state which is added to Q’, find the possible set of states
for each input symbol with the help of the transition state table. Two of the
following actions are to be performed.

• If the state is a new entrant, then add it to Q’

• If the state is not a new entrant, then ignore
Step 4: Repeat Step 3 until no new states are met

Step 5: All the states that contain the final state of NDFA are marked as
the final state.

Example 1.7.1 Construct a DFA from the NFA given below.

State\Input 0 1
q0 {q1, q3} {q2, q3}

q1 q1 q3

q2 q3 q2

*q3 - -

mu
no
tes
.in

Theory of Computation

8

Solution:

Step 1: Initially let Q’ be an empty set

State\Input 0 1

- - -
Step 2: Add the start vertex q0 to Q’

State\Input 0 1
q0 {q1, q3} {q2, q3}

Step 3: For every state which is added to Q’, find the possible set of states
for each input symbol with the help of the transition state table. Two of the
following actions are to be performed.

• If the state is a new entrant, then add it to Q’

• If the state is not a new entrant, then ignore

New state 1: {q1, q3}

Check both q1andq3 entries from the NDFA transition table

State\Input 0 1
q0 {q1, q3} {q2, q3}

{q1, q3} q1 q3

Step 4: Repeat Step 3 until no new states are met

New state 2: {q2, q3}

State\Input 0 1
q0 {q1, q3} {q2, q3}

{q1, q3} q1 q3

{q2, q3} q3 q2

New state 3: q1

State\Input 0 1
q0 {q1, q3} {q2, q3}

{q1, q3} q1 q3

{q2, q3} q3 q2

q1 q1 q3

mu
no
tes
.in

Automata Theory

9

New state 4: q2

State\Input 0 1
q0 {q1, q3} {q2, q3}

{q1, q3} q1 q3

{q2, q3} q3 q2

q1 q1 q3

q2 q3 q2
New state 5: q3

State\Input 0 1
q0 {q1, q3} {q2, q3}

{q1, q3} q1 q3

{q2, q3} q3 q2

q1 q1 q3

q2 q3 q2

*q3 - -

Step 5: All the states that contain the final state of NDFA are marked as
the final state.

State\Input 0 1
q0 {q1, q3} {q2, q3}

*{q1, q3} q1 q3

*{q2, q3} q3 q2

q1 q1 q3

q2 q3 q2

*q3 - -

Example 1.7.2 Construct a DFA from the NFA given below.

mu
no
tes
.in

Theory of Computation

10

Solution: The transition state table is generated as,

State\Input 0 1
q0 {q0, q1} {q0}

q1 - q2

*q2 - -

Step 1: Initially let Q’ be an empty set

State\Input 0 1

- - -

Step 2: Add the start vertex q0 to Q’

State\Input 0 1
q0 {q0, q1} {q0}

Step 3: For every state which is added to Q’, find the possible set of states
for each input symbol with the help of the transition state table. Two of the
following actions are to be performed.

• If the state is a new entrant, then add it to Q’

• If the state is not a new entrant, then ignore

New state 1: {q0, q1}

Check both q0andq1 entries from the NDFA transition table

 State\Input 0 1
q0 {q0, q1} {q0}

{q0, q1} {q0, q1} {q0, q2}

Step 4: Repeat Step 3 until no new states are met

New state 2: {q0, q2}

 State\Input 0 1
q0 {q0, q1} {q0}

{q0, q1} {q0, q1} {q0, q2}

{q0, q2} {q0, q1} {q0}

mu
no
tes
.in

Automata Theory

11

Step 5: All the states that contain the final state of NDFA are marked as
the final state.

 State\Input 0 1
q0 {q0, q1} {q0}

{q0, q1} {q0, q1} {q0, q2}

*{q0, q2} {q0, q1} {q0}

1.8 MEALY AND MOORE MACHINES

A model in which the output function depends both on present state qi and
input value xi is called a Mealy machine.

A model in which the output function depends only on present state qi and
is independent of input value xi is called a Moore machine.

Consider the example given below where the Mealy machine is
represented using the transition state table.

Present State
Next State
Input 0 Input 1
State Output State Output

q1 q4 0 q2 1
q2 q1 1 q4 0
q3 q3 1 q3 0
*q4 q2 0 q1 1

For an input string “1011”, the transition states are given by q1 ->q2 ->q1 ->
q2 -> q4. The output string is “1110”

Consider the example given below where the Moore machine is
represented using the transition state table.

Present State
Next State

Output
Input 0 Input 1

q1 q4 q2 1
q2 q1 q4 0
q3 q3 q3 0
*q4 q2 q1 1

For an input string “1011”, the transition states are given by q1 ->q2 ->q1 ->
q2 -> q4. The output string is “1010”

mu
no
tes
.in

Theory of Computation

12

1.9 MINIMIZING AUTOMATA

Suppose there is a DFA (Q, , , q0, F) which recognizes a language
LThen the minimized DFA (Q’, , , q0, F’) can be constructed for
language L as:

Step 1: We will divide Q (set of states) into two sets.

One set will contain all final states and the other set will contain non-final
states.

Step2: Initialize k = 1

Step 3: Find Qk by partitioning the different sets of Qk-1. In each set of Qk-

1, take all possible pairs of states. If two states of a set are distinguishable,
we will split the sets into different sets in Qk.

Step 4: Stop when Qk = Qk-1 (No change in the partition)

Step 5: All states of one set are merged into one. No. of states in
minimized DFA will be equal to no. of sets in Qk.

Consider the example of DFA given below:

Step1. Q0 will have two sets of states. One set will contain the final states
of DFA and another set will contain the remaining states. So,Q0 =
{{q1,q2,q4}, {q0, q3, q5}}.

Step 2. To calculate Q1, check whether sets of partition Q0 can be
partitioned or not.

i) For set { q1, q2, q4} :

Since q1 and q2 are not distinguishable and q1 and q4 are also not
distinguishable, So q2 and q4 are not distinguishable. So, { q1, q2, q4} set
will not be partitioned in Q1.

ii) For set { q0, q3, q5 } :

Since q0 and q3 are not distinguishable and q0 and q5 are distinguishable,
So q3 and q5 are not distinguishable. So, set {q0, q3, q5} will be partitioned
into {q0, q3} and {q5}.

So, Q1 = {{q1,q2,q4}, {q0, q3}, {q5}}.

mu
no
tes
.in

Automata Theory

13

iii) For set { q1, q2, q4}:
Since q1 and q2 are not distinguishable and q1 and q4 are also not
distinguishable, So q2 and q4 are not distinguishable. So, { q1, q2, q4} set
will not be partitioned in Q2

iv) For set { q0, q3 } :
q0 and q3 are not distinguishable

v) For set { q5 }: .
Since only one state ispresent in this set, it cannot be further partitioned.

So, Q2 = {{q1,q2,q4}, {q0, q3}, {q5}}.

Since Q1= Q2. So, this is the final partition.
The minimized DFA is given below,

1.10 SUMMARY

• Automata theory is the study of abstract machines and computational
problems.

• Automaton refers to a system that transforms and transmits the
information which is used for some action without any human
intervention.

• A finite automaton is represented using 5-tuple such as (Q, , , q0, F).

• An automaton can be represented diagrammatically through a
transition system, also called a transition graph.

• A string (finite sequence of symbols) is said to be acceptable if and
only if the last state is a final state.

• In non-deterministic finite state machines, the next state of automaton
cannot be precisely defined which means that for the same input
symbol there may exist a different next state.

• A model in which the output function depends both on present state qi
and input value xi is called a Mealy machine.

• A model in which the output function depends only on present state qi
and is independent of input value xi is called a Moore machine.

❖❖❖❖

mu
no
tes
.in

 14

2
FORMAL LANGUAGES

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Defining Grammar

2.3 Derivations and Languages generated by Grammar

2.3.1 Derivations generated by Grammar

2.3.2 Languages generated by Grammar

2.4 Chomsky Classification of Grammar and Languages

2.5 Languages and Their Relations

2.6 Recursive Enumerable Sets

2.7 Operations on Languages

2.8 Languages and Automata

2.9 Summary

2.0 OBJECTIVES

After going through this chapter, the learner will be able to:

 understand the concepts of grammars and formal languages
 discuss the Chomsky classification of languages
 study the relationship between the four classes of languages
 implement various operations on languages

2.1 INTRODUCTION

Linguists were trying in the early 1950s to define preciselyvalid sentences
and give structural descriptions of sentences. They wanted todefine formal
grammar (i.e. to describe the rules of grammar in a rigorousmathematical
way) to describe English. Itwas Noam Chomsky who gave a mathematical
model of grammar in 1956.Although it was not useful for describing
natural languages such as English, itturned alit to be useful for computer
languages.

mu
no
tes
.in

Formal Languages

15

2.2 DEFINING GRAMMAR

A grammar is a quadruple G = (N, Σ, P, S)

where,

1. N is a finite set of nonterminals,

2. Σ is a finite set of terminals,

3. S ∈ N is the start symbol, and

4. P is a finite subset of N × V* called the set of production rules. Here, V
= N ∪ Σ. It is convenient to write A → α, for the production rule (A, α)
∈ P.

Consider a grammar G1 − ({S, A, B}, {a, b}, S, {S → AB, A → a,
B → b})

Here,

 S, A, and B are Non-terminal symbols;

 a and b are Terminal symbols

 S is the Start symbol, S ∈ N

 Productions, P : S → AB, A → a, B → b

Let P = {S → ab, S → bb, S → aba, S → aab} with Σ = {a, b} and N =
{S}. Then G = (N, Σ, P, S) is a context-free grammar. Since the left-hand
side of each production rule is the start symbol S and their right-hand sides
are terminal strings, every derivation in G is of length one. We precisely
have the following derivation in G.

1. S ⇒ ab

2. S ⇒bb

3. S ⇒aba

4. S ⇒aab

Hence, the language generated by G, L(G) = {ab, bb, aba, aab}.

2.3 DERIVATIONS AND LANGUAGES GENERATED
BY GRAMMAR

2.3.1 Derivations generated by Grammar

Strings may be derived from other strings using the productions in
grammar. If a grammar G has a production α → β, we can say that x α
y derives x β y in G. This derivation is written as,

x α y ⇒ G x β y

mu
no
tes
.in

Theory of Computation

16

Let us consider the grammar,

G = ({S, A}, {a, b}, S, {S → aAb, aA → aaAb, A → ε })

Some of the strings that can be derived are,

S ⇒ aAb using production S → aAb

⇒aaAbb using production aA → aAb

⇒aaaAbbb using production aA → aaAb

⇒aaabbb using production A → ε

2.3.2 Languages generated by Grammar

The set of all strings that can be derived from a grammar is said to be the
language generated from that grammar. A language generated by a
grammar G is a subset formally defined by

L(G)={W|W ∈ ∑*, S ⇒G W}

If L(G1) = L(G2), the Grammar G1 is equivalent to the Grammar G2.

Suppose we have the following grammar,

G = {S, A, B} T = {a, b} P = {S → AB, A → aA|a, B → bB|b}

The language generated by this grammar L(G) = {ab, a2b, ab2,
a2b2, ………}

= {am bn | m ≥ 1 and n ≥ 1}

2.4 CHOMSKY CLASSIFICATION OF GRAMMAR AND
LANGUAGES

According to Noam Chomsky, there are four types of grammar such as,

 Type 0 (Unrestricted grammar)
 Type 1 (Context-sensitive grammar)
 Type 2 (Context-free grammar)
 Type 3 (Regular grammar)

mu
no
tes
.in

Formal Languages

17

Fig. 2.4 Types of Grammar

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must
have a single non-terminal on the left-hand side and a right-hand side
consisting of a single terminal or single terminal followed by a single non-
terminal.

The productions must be in the form X → a or X → aY

where X, Y ∈ N (Non-terminal),and a ∈ T (Terminal)

The rule S → ε is allowed if S does not appear on the right side of any
rule.

Example 2.4.1

A → ε

A → a | aB

B → b

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form A → γ

where A ∈ N (Non-terminal)

and γ ∈ (T ∪ N) * (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-
deterministic pushdown automaton.

mu
no
tes
.in

Theory of Computation

18

Example 2.4.2

S → A a

A → a

A → aA

A → abc

A → ε

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages.

The productions must be in the form, α A β → α γ β

where A ∈ N (Non-terminal)

and α, β, γ ∈ (T ∪ N) * (Strings of terminals and non-terminals)

The strings α and β may be empty, but γ must be non-empty.

The rule S → ε is allowed if S does not appear on the right side of any
rule. The languages generated by these grammars are recognized by a
linear bounded automaton.

Example 2.4.3

AB → AbBc

A → bcA

B → b

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The
productions have no restrictions. They are any phase structure grammar
including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of α → β where α is a string of
terminals and nonterminals with at least one non-terminal and α cannot be
null. β is a string of terminals and non-terminals.

Example 2.4.4

S → ACaB

Bc → acB

CB → DB

aD → Db

mu
no
tes
.in

Formal Languages

19

2.5 LANGUAGES AND THEIR RELATIONS

Regular Languages are the most restricted types of languages and are
accepted by finite automata. Regular Expressions are used to denote
regular languages. An expression is regular if,

 ɸ is a regular expression for regular language ɸ.
 ɛ is a regular expression for regular language {ɛ}.
 If a ∈ Σ (Σ represents the input alphabet), a is regular expression with

language {a}.
 If a and b are regular expressions, a + b is also a regular expression

with language {a,b}.
 If a and b are regular expressions, ab (concatenation of a and b) is also

regular.
 If a is a regular expression, a* (0 or more times a) is also regular.

Regular Grammar: A grammar is regular if it has rules of form A -> a or
A -> aB or A -> ɛ where ɛ is a special symbol called NULL.

Regular Languages: A language is regular if it can be expressed in terms
of a regular expression.

2.6 RECURSIVE ENUMERABLE SETS

Recursive Enumerable languages or type-0 languages are generated by
type-0 grammars. A Recursive Enumerable language can be accepted or
recognized by the Turing machine which means it will enter into the final
state for the strings of language and may or may not enter into rejecting
state for the strings which are not part of the language. It means the Turing
machine can loop forever for the strings which are not a part of the
language. RE languages are also called Turing recognizable languages.

2.7 OPERATIONS ON LANGUAGES

1. Union
If L1 and If L2 are two regular languages, their union L1 ∪ L2 will also be
regular.
For example,
L1 = {an | n ≥ 0} and L2 = {bn | n ≥ 0}
L3 = L1 ∪ L2 = {an ∪ bn | n ≥ 0} is also regular.

2. Intersection
If L1 and If L2 are two regular languages, their intersection L1 ∩ L2 will
also be regular.
For example,
L1= {am bn | n ≥ 0 and m ≥ 0} and L2= {am bn ∪ bn am | n ≥ 0 and
m ≥ 0}
L3 = L1 ∩ L2 = {am bn | n ≥ 0 and m ≥ 0} is also regular.

mu
no
tes
.in

Theory of Computation

20

3. Concatenation
If L1 and If L2 are two regular languages, their concatenation L1.L2 will
also be regular.
For example,
L1 = {an | n ≥ 0} and L2 = {bn | n ≥ 0}
L3 = L1.L2 = {am . bn | m ≥ 0 and n ≥ 0} is also regular.

4. Kleene Closure
If L1 is a regular language, its Kleene closure L1* will also be regular.
For example,
L1 = (a ∪ b)
L1* = (a ∪ b)*

5. Complement
If L(G) is a regular language, its complement L’(G) will also be regular.
The complement of a language can be found by subtracting strings that are
in L(G) from all possible strings.
For example,
L(G) = {an | n > 3}
L’(G) = {an | n <= 3}

2.8 LANGUAGES AND AUTOMATA

The relationship among the languages and automata are represented
through the following figure,

Fig. 2.8 Languages and Automata

2.9 SUMMARY

 A grammar is a quadruple G = (N, Σ, P, S)

 Strings may be derived from other strings using the productions in

grammar.

 The set of all strings that can be derived from a grammar is said to be

the language generated from that grammar.

mu
no
tes
.in

Formal Languages

21

 According to Noam Chomsky, there are four types of grammar such

as Type 0 (Unrestricted grammar), Type 1 (Context-sensitive

grammar), Type 2 (Context-free grammar), and Type 3 (Regular

grammar)

 Regular Languages are the most restricted types of languages and are

accepted by finite automata.

 Regular Expressions are used to denote regular languages.

 Recursive Enumerable languages or type-0 languages are generated

by type-0 grammars.

 Union, Intersection, Concatenation, Kleene Closure, Complement are

some of the operations on languages.

mu
no
tes
.in

 22

Unit II

3
REGULAR SETS AND REGULAR

GRAMMAR

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Regular Grammar

3.3 Regular Expressions

 3.3.1 Regular Expressions Identities

 3.3.2 Regular Language Definition and Examples

3.4 Finite automata and Regular Expressions

3.5 Pumping Lemma and its Applications

3.6 Closure Properties

3.7 Regular Sets and Regular Grammar

3.8 Summary

3.9 References

3.10 Review Questions

3.0 OBJECTIVES

After the end of this unit, Students will be able to:

 To Understand Concept of Regular Grammar and Regular Expressions

 To Understand Concept of Finite automata and Regular Expressions

 To Learn what is Pumping Lemma for regular languages and its
Applications

 To Learn Closure Properties of Regular set

 To Learn about Regular Sets and Regular Grammar

mu
no
tes
.in

Regular Sets and Regular
Grammar

23

3.1 INTRODUCTION

In this chapter we are learn the concept of the Regular Expression. We
first describe regular expressions as a means of representing subsets of
strings over ∑ and prove that regular sets are exactlythose accepted by
finite automata (FA) or transition systems. We study about pumping
lemma for regularLanguages to prove that certain Languages are not
regular. Then we studyclosure properties of regular sets. At the and we
discuss the relation between regular sets and regular grammars

3.2 REGULAR GRAMMAR:

If Grammar has rules of form

S -> a or

S ->aB or

S -> ɛ

Where ɛ is a special symbol called NULL then this grammar called as
regular Grammar.

Regular Grammar having two types:

Right Regular Grammars: Right Regular Grammars:

Rules of the forms Rules of the forms

S → ε S → ε

S → a S → a

S → aP S → Pa

S, P: variables and S, P: variables and

a: terminal a: terminal

mu
no
tes
.in

Theory of Computation

24

3.3 REGULAR EXPRESSIONS

The regular expressions are useful for representing certain sets of strings
in an Algebraic fashion. Here, these describe the languages accepted by
finite state automata. We give a formal recursive definition of regular
expressions over ∑ as follows:

1. Any terminal symbol (i.e. an element of ∑), ε and Ø are regular
expressions. When we view a in ∑ as a regular expression, we denote
it by a.

2. The union of two regular expressions R, and R, written as R1 + R2,is
also a regular expression.

3. The concatenation of two regular expressions Rj and R2, written as Rj
R2, is also a regular expression.

4. The iteration (or closure) of a regular expression R written as R*, is
also a regular expression. 5. If R is a regular expression, then (R) is
also a regular expression.

5. The regular expressions over ∑are precisely those obtained
recursively by the application of the rules 1-5 once or several times.

Notes:

1. We use x for a regular expression just to distinguish it from the
symbol (or string) x.

2. The parentheses used in Rule 5 influence the order of evaluation of a
regular expression.

3. In the absence of parentheses, we have the hierarchy of operations as
follows: iteration (closure), Concatenation, and union. That is, in
evaluating a regular expression involving various operations.

3.3.1 Regular Expression Identities

Two regular expressions P and Q are equivalent, then it is written as P = Q
if P and Q represent thesame set of strings.

Following are the identities for Regular Expression:

i. Associativity and Commutativity

 1. P+Q=Q +P

2. (P + Q) + N=P+(Q+N)

3. (PQ)N = P(QN)

Here note that PM ≠ MP

ii. Distributivity

1. P(M+N)=PM+PN

2. (M + N)P = MP + NP

mu
no
tes
.in

Regular Sets and Regular
Grammar

25

iii. Identities and Anhilators

1. Ø +P=P+ Ø =P

2. εP = P ε=P

3. Ø P = P Ø = Ø

iv. Idempotent Law

1. P+P=P

v. Closure Laws

1. (P*)* =P*

2. (Ø)* = ε

3. ε * = ε

4. P+ = PP* = P*P

5. P* = P++ ε

6. P* P* = P*

7. (PQ) * P= P(QP) *

8. (P+Q) *=(P*Q*)*=(L*+M*)*

3.3.2 Regular Language Definition and Examples

Definition:“The languages that are associated with regular expressions are
called languages and are also said to be defined by finite representation.”

Examples:

Q.1 Describe the language defined by the regular expression r=ab*a

Solution:

It is the set of all strings of a's and b's that have at least two letters, that
beginand end with a's, and that have nothing but b'sinside (if anything at
all) language.

∴ the strings in the Language L are

L = {aa, aba, abba, abbba, abbbba, ….}

In above strings we can observe that there are minimum two a’s it means
that strings start and end with ‘a’and in-between any number of b’s it may
be ε

∴ It represents a Language Lcontain strings over {a, b} for regular
expression r=ab*a

Q.2 Find out Regular Language of Regular Expression

mu
no
tes
.in

Theory of Computation

26

Solution:

To find out language for Regular Expression = a + b + c + d

We can take all possible strings from the given expression

 Consider, r = a + b + c + d

Then, the strings in language are

 L = a, b, c, d

So, from above strings Regular Expression represents Language L
consisting of

Stringsover {a, b}

Q.3 Find out regular language of Regular Expression a*+ b+ + c + d

Solution:

To find out language for Regular Expression = a*+ b+ + c + d

We can take all possible strings from the given expression

 Consider, r = a* + b+ + c + d

For our understanding break the given regular expression into parts

Then, the possible strings in language are

 a* = ε , a , aa, aaa,…….

 b+ = b, bb, bbb,..

Now concatenating all strings resultant language is,

 L = ε, a, aa, aaa, aaaa ….b, bb, bbb, bbbb, c, d

So, from above strings Regular Expression represents Language L
consisting of stringsover {a,b,c,d}

Q.4 Find out regular language of Regular Expression a*b + c+ d

Solution:

To find out language for Regular Expression = a*b + c+ d

We can take all possible strings from the given expression

 Consider, r = a*b + c+ d

For our understanding break the given regular expression into parts

Then, the possible strings in language are

 a* = ε , a, aa, aaa,…..

mu
no
tes
.in

Regular Sets and Regular
Grammar

27

 a*b = b, ab, aab, aaab,……

 c+ = c, cc, ccc, cccc,………

 c+ d = cd, ccd, cccd, ccccd,……….

Now concatenating all strings resultant language is,

 L = b, ab, aab, aaab…cd, ccd, cccd…

So, from above strings Regular Expression represents Language L
consisting of

Stringsover {a,b,c,d}

Q.5 Find out Regular Expression for A language L consists of strings over
{a, b} contains at least one 'a'

Solution:

The given language consists of strings where at least one 'a' must be
present. It may have zero or more occurrences of leading a's and b's and
trailing a's and b's.

So the required regular expression for given language will be

r= (a + b) * a (a + b) *

Q.6 Find out a regular expression for a language L over ∑ *, where ∑ =
{0, 1} such thatevery string in the language begin and end with either 00
or 11.

Solution:

Here given that string must begin and end with either 00 or 11 so we will
denote regularexpression as (00+ 11). Now in between zero or more
occurrences of 0 or 1 is valid so we can denote regular expression (0 +
1)*. After concatenating this we will get regular expression which
represents given language Lr=(00 + 11) (0+1)* (00+ 11)

3.4 FINITE AUTOMATA AND REGULAR
EXPRESSIONS:

Conversion of Regular Expression to Finite automata:

Regular expression represents regular set means language accepted by
some automata; for every regular expression there exists an FA which is
equivalent to it, accepting the same languages. If there is a simple regular
expression, we can directly draw DFA or say NFA without much trouble.
But if the regular expression is complicated then it is not possible to draw
FA just by looking at it.

There are certain rules to convert regular expression to NFA with ϵ moves
which can be followed to convert given regular expression to NFA with ϵ

mu
no
tes
.in

Theory of Computation

28

moves which then can be transformed into NFA or directly DFA, by our
usual methods.

Method: 1 Basis Zero Operation:

 The expression r must be ϵ, or ‘a’. For some a in Ʃ

We can draw NFA for all these condition as shown in following diagrams.
1. r = ϵ

2. r =

3. r = a

a

Method 2: Induction (One or More Operations)

Hereare regular expressionssuch that such that there exist an NFA with ε
transition that accept Language L(r).There are three cases depending on
the forms of r.

Case1: r = a + b
 a

 ϵ ϵ

 ϵ ϵ
 b

Case: 2 r = ab
 a ϵ b

Case 3 r = a*
 ϵ

 ϵ a ϵ

q0 q0 q1

q0

q0 q0 q1

q 1

q 2 q 3

q 4

q 6 q 5

 q
0

q
1

q
2

q
3

q0 q1 q2 q3

mu
no
tes
.in

Regular Sets and Regular
Grammar

29

Examples 1

Draw FA with ϵ moves for the regular expression given as a (a+b)*.

Solution:

Using the above methods, steps for converting given regular expression to
FA
 a
 ϵ ϵ

 ϵ ϵ
 b
Step: 1

FA with ϵ moves for (a +b)
 ϵ

 a
 ϵ ϵ
 ϵ ϵ

ϵb ϵ

 ϵ

Step: 2FA with ϵ moves for (a +b)*

a
 ϵ
a ϵ ϵ ϵϵ
ϵ
ϵbϵ

 ϵ

Step: 3

Final FA with ϵ moves for a (a+b)*

∴ M= ({q0,q1,q2,q3,q4,q5,q6,q7,q8}, {a, b}, p,q0,q9)

Example: 2

 Draw FA with ϵ moves for the regular expression (a*+b*)

q 0

q 1 q 2

q 5

q 3 q 4

q 1

q 2 q 3

q 6

q 4 q 5

q7 q 0

q0 q1 q2 q3

q4

q6

q5

q8 q9

q7

mu
no
tes
.in

Theory of Computation

30

Solution:

Using the rules for converting regular expression to FA with ϵ moves we
can get FA with ϵ moves for (a*+b*) as in following figure:

 Step: 1 FA with ϵ moves for a* Step: 2FA with ϵ moves for b*

 Step: 3Final FA with ϵ moves for (a*+ b*)

∴ M= ({q0,q1,q2,q3,q4,q5,q6,q7,q8}, {a, b}, p,q0,q9)

3.5 Pumping Lemma and its Applications

Statement of Pumping Lemma:

It states that given any sufficiently long string accepted by an FSM, we
can find a substring near the beginning of the string that may be repeated
(or Pumped) as many times as we like and the resulting string will still be
accepted by the same FSM.

Proof:

Let L (M) be a regular language accepted be a given DFA, M = (Q1 Ʃ, δ,
q0, F) with some particular number of notes ‘n’

Consider an input of ‘n’ or more symbols a1, a2, a3 ... am, m>nand for i =
1,2,3,……..m

 Let δ (q0, a1, a2, ….ai,) = q1

It is not possible for each of the (n+1) states q0, q1, q2… qnto be distinct;
because there are only ‘n’ states and to recognize the string of length m ≥
n it requires at least (n+1) states if we want them to be distinct.

Thus, there exists two integers ‘j’ and ‘k’ where, 0 ≤ j < k ≤ Such that qj =
qkConsider the transition diagram for the DFA M, as given in the
following figure.

mu
no
tes
.in

Regular Sets and Regular
Grammar

31

 aj+1……….ak

 a1………..aj ak+1………..am

Figure: Pumping Lemma

Since j < k, the string “aj+1 ……ak” is of the length at least one and since k
≤ n, its length is no more than ‘n’.

i.e. 1 ≤ │ aj+1 ……ak│≤ n

It qm⊂F i.e. if qmis final state that means, “ a1, a2,…..am” is in L (M), then
“a1,a2………aj,ak+1 ak+2……am” is also in L(m); since there is a path from
q0 to qm that goes through qjbut not around the loop labeled aj+1 …..ak.

Similarly, we can go around the loop as many times as we like and the
resultant string will still be in L (m).

i.e. a1……..aj (aj+1ak)I ak+1 …….am⊂ L(M)

For any i≥0 (i.e closure – zero or more occurrences) Hence the proof.

Formal statement of pumping Lemma:

Let 'L' be a regular set. Then there is a constant 'n' such that if‘z’ is any
word in 'L' and │Z│ ≥ n, we may write z = uvw in such a waythat │uv│ ≤
n, │v │. i.e. 1 ≤ │v│≤ n and for all i ≥ 0, u vl w is in L.Proof (of the
formal statement):

Consider, z = a, a,

u = a, a2

V =aj +1……..ak

W= ak+1

Using above consideration, the previous proof can be a proof for theformal
statement.

Application of pumping Lemma:

It is a dominant tool for demonstrating certain languages non-regular.
Given a language, with the assistance of pumping lemma, we can define
whether it is a regular language or non-regular language.

qj =qk q0
qm

m

mu
no
tes
.in

Theory of Computation

32

Example: 1

Prove that, the following language is non-regular using Pumping lemma,

an bn+1│n > 0

Solution:

a) given n > 0

For n = 1, anbn+1 = a b2, length = 1 + 2 = 3

n = 2, anbn+1= a2b3, length = 2 + 3 = 5

n = 3, anbn+1= a3b4', length = 3 + 4 = 7

Now, from observation, we can find out the property of the language given
and is that it consist of strings having odd length.

b) Assume that the given language

L = (anbn+1 │n > 0) is regular.

c) Let ‘ɭ’ be the constant of pumping lemma.

d) Let z = aɭ. bɭ+l, where

Length of z = │2│ = ɭ + ɭ + 1 = 2 ɭ + 1

e) By Pumping lemma we can write ‘z’ as

z = uvw where,

1 ≤│v│ ≤ ɭ

anduv'w for i ≥ 0 is in L.

f) Let i = 2

as we know, from Pumping lemma,

i≤│ v│ ≤ ɭ

(2 ɭ +1) +1 ≤ │uv2 w│ ≤ ɭ + (2 ɭ + 1)

Because, │uvw │= 2 ɭ + 1

Therefore,

2 ɭ + 2 ≤ │uv2w│ ≤ 3 ɭ + 1

g) 2 ɭ + 2 ≤ │ u v2 w│ ≤ 3 ɭ + 1

i.e. 2 ɭ + 1 < │u v2w│ < 3 ɭ + 2

Consider, ɭ = 1

3 < │uv²w│ < 5

mu
no
tes
.in

Regular Sets and Regular
Grammar

33

i.e. length= 4 (not odd)

for, ɭ = 2

5 < 1 uv2w│ < 8

i.e. length = 6, 7 (not always odd)

Thus, the length of "uv2w" is not always add. That means "uv2w" isnot
in L.

But that is the paradox with Pumping lemma. Therefore, as per our
assumption that 'L' is regular, must be wrong,

Therefore, given language L = {anbn+ 1 │n > 0} is non-regular.

Example: 2 Prove that L = {aibjck │k >i + j} is not regular.

Solution:

Step: 1 Assume that L is regular. Let L = T (M) for some DFA with n
States.

 Step: 2 Let w = anbnc3n in L

By pumping lemma we write w = xyz with │xy│≤ n and │y│ ≥ 0

 Now consider

 w = anbnc3n

 w = xyz

 xy = ai for some i ≤ n

Step: 3 Then xyk+1 z = an+jkbnc3n

By choosing k large enough so that n+jk>2n

 We can make n+jk+n>3n.

 So xyk+1 z L.

This is paradox to our assumption.

 ∴ L is not regular.

3.6 CLOSURE PROPERTIES

There are number of operations, when we applied to regular sets and it
give result inRegular sets. Means, number of operations on language
preserves regularsets.For example, the Union of two regular sets is also
generating regular set. Similarly,the concatenation of regular sets is also
generating regular set and the Kleeneclosure of regular set is also regular
set.

mu
no
tes
.in

Theory of Computation

34

If a class of language is closed under a specificoperation thatfact isentitled
as closure property of the class of language.

Theorems

1. The regular sets are closed under union, concatenation and
Kleene closure. If X and Y are regular sets.

 Then X U Y, (X + Y), X Y and X*are also regular

Proof:

X+Y that means the language of all words in either X orY. Regular
expressions forX and Y are r1 and r2 respectively.

Then r1 + r2 is regular expression for X U Y

r1r2 regular expressionfor XY.

r1*is regular expression for X*.

Therefore, all three types of these sets of words adefinable by regular
expressions and so are themselves regular sets.

2. Regular set is closed under complementation. If X is regular set,
then X'is also regular.

If X is a regular set and X⊆∑*and ∑* X is a regular set.

If X is a language over alphabet∑, we define its complement X' to the
language of all strings of letters for that are not words in X'

Proof:

Let X be X (M). Some of states of this FA, M are final states and some are
not.Let's reverse the states of each state, i.e., if it was a final state make it
non-final and if it was non-final, make it final.

The new Finite Automata accepts all strings that were not accepted by the
original FA(X).

∴ Machine accepts the language X'

∴ X' is a regular set.

By using Finite Automata we can proof this,

Construct DFA for a language over {a,b} that accept only the strings aba
and abb is shown below

mu
no
tes
.in

Regular Sets and Regular
Grammar

35

 We can complement each state

Here make all final states to non–final state and non–final to final states.

Above Finite Automata shows that it accept all strings other than aba and
aTherefore, we can prove that complement of regular set is also regular.

3. The regular sets are closed under intersection. If X and Y are
regular sets.

 Then X ∩ Yis also regular

Proof:

 By Using De-Morgan’s Law

X ∩ Y = (X' U Y') ' = (X'+Y')’ this can be stated by Venn diagram

(X' U Y')

mu
no
tes
.in

Theory of Computation

36

(X'+Y')’

We observed above Venn diagram the language X ∩ Y consists of all
words that are not in either X' or Y'. Since X and Y are regular, then so are
X' and Y'. Since X' and Y'are regular, so is X' + Y'. And since X' and Y' is
regular, then so is (X' + Y')’, which meansX ∩ Y, is regular.

Therefore, we can prove that intersection of regular sets is also regular.

3.7 REGULAR SETS AND REGULAR GRAMMAR

 Regular Sets

 Regular set is theset that represents the value of the Regular
Expression.

The class of Regular Set over ∑ is defined as

a) Every finite set of words over alphabet ∑ (including Ø, the empty set
or nullset) is a regular set.
b) If X and Y are regular sets over then X U Y (union) and X
Y(concatenation) are also regular sets.
c) If P is a regular set over alphabet ∑ then so its closure i.e. S is the
smallest class

In other words, the class of regular sets over alphabet ∑containing all
finite sets of words over alphabet ∑ and closed under union, concatenation
and star operation.

mu
no
tes
.in

Regular Sets and Regular
Grammar

37

Note: Any set which is predictable by an FSM is regular; and conversely,
every regular set can be predictable by some FSM. Regular set is
represented by value of regular expression.

Properties of Regular Sets

Property 1. The union of tworegular sets is regular

Proof:

Let us take two regular expression

r1 = (aa)* and r2 = a (aa)*

So X = {ε, aa, aaaa, aaaaaa…} (even length h strings including NULL)and

Y = {a, aaa,aaaaa,aaaaaaa,……….} (odd length strings excluding NULL)

X U Y ={ε, a, aa, aaa, aaaa,aaaaa,……….}

(allpossible length strings including NULL)

(X U Y) = a* (this is also regular expression itself)

∴ Union of Two sets is regular

Property 2. The Intersection of Two regular sets is regular

Proof:

Let us take two regular expression

r1 = a(a*) and r2 = (aa)*

So X = {a, aa, aaa, aaaa,aaaaa,……….}

(all possible length strings excluding NULL)

and Y = {ε, aa, aaaa, aaaaaa,…….} (even length strings including NULL)

X ∩ Y = { aa, aaaa, aaaaaa,…….} (even length strings excluding NULL)

X ∩ Y = aa(aa)* (this is also regular expression itself)

∴Intersection of Two sets is regular

Property 3. The Complement of a regular set is regular

Proof:

Let us take a regular expression

r = (aa)*

So X = {ε, aa, aaaa, aaaaaa…} (even length h strings including NULL)

Complement of X which is all strings that is not in X

mu
no
tes
.in

Theory of Computation

38

So X’= {a, aaa,aaaaa,aaaaaaa…} (odd length strings excluding NULL)

Regular Expression(X’) = a(aa)* (this is also regular expression itself)

∴Complement of a regular set is regular

Property 4. The difference of two regular sets is regular

Proof:

Let us take two regular expression

r1 = a(a*) and r2 = (aa)*

So X = {a, aa, aaa, aaaa,aaaaa,……….}

(all possible length strings excluding NULL)

and Y = {ε, aa, aaaa, aaaaaa,…….} (even length strings including NULL)

X - Y = {a, aaa,aaaaa,aaaaaaa,……….} (odd length strings excluding
NULL)

X - Y = a(aa)* (this is also regular expression itself)

∴ Difference of Two sets is regular

Property 5. The Reversal of a regular set is regular

Proof:

Let us take a regular expression

r = {01+10+11+10}

So X = {01, 10, 11, 10}

Reversal of X is XR which is all strings that is reverse of X

RR= {10+01+00+01}

So XR= {10,01,00,01} which is also regular

∴ Reversal of a regular set is regular

Property 6. The closure of a regular set is regular

Proof:

Let us take a regular expression

r = a (aa)*

So X = {a, aaa,aaaaa,aaaaaaa,……….}

(Odd length strings excluding NULL)

Closure of X is X *

mu
no
tes
.in

Regular Sets and Regular
Grammar

39

So X’= {a, aa, aaa, aaaa,aaaaa,……….}

(all possible length strings excluding NULL)

 Regular Expression(X*) = a(a)* (this is also regular expression itself)

∴Closure of a regular set is regular

Property 7. The concatenation of two regular sets is regular

Proof:

Let us take two regular expression

r1 = (0+1)*0 and r2 = 01(0+1)*

So X = {0, 00, 10,000, 1100…} (set of Strings ending with 0)

and Y = {01, 010,011,……….} (set of string start with 01)

thenXY = {001,0010,0011,0001,00010,00011,1001,} (Set of
strings containing 001 as a substring which can be represented by regular
expression (0+1)001(0+1) *)

(X U Y) = a* (this is also regular expression itself)

∴Concatenation of two sets is regular

Regular Grammar:

In this Grammar there are following restrictions on type of productions:

1) Left-hand side of each product should contain only one nonterminal
2) Right hand side can contain at the most one non-terminal
symbolwhich is allowed to appear as the right most symbol or
leftmostsymbol.

The languages generated using this grammar means regular languages are
primitive and can be generated and generated using FSM (finite state
machine). These regular languages can also be expressed by expressions
called as regular expression.

Depending on the position of a non-terminal whether it is leftmost or
rightmost, regular grammar is further classified as

1) Left-linear grammar and
2) Right-linear grammar.

1) Left-linear grammar:

We know, regular grammar can contain at the most one non-terminal on
the right-hand side of its production. If this variable looks as the leftmost
symbol on the right-hand side, the regular grammar is called as be left-
linear grammar,Following are forms of productions in left-linear grammar
are

mu
no
tes
.in

Theory of Computation

40

A → Bx, A → ε or A→x

Where, 'A' and 'B' are non-terminal and 'x' is a string of terminals.

e.g. Consider the following grammar

G = ({S, B, A), (a, b), P, S)

Where, 'P' contains following set of production rule,

S → Aa │ Bb

A→ Bb

B → Balb

Above grammar is left-linear in each production has only one nonterminal
on the right-hand side and that is the leftmost symbol on the right-hand
side.

2) Right-linear grammar:

A regular grammar contains of productions with at the most onenon-
terminal on the right-hand side and the right most symbol appears on the
right-hand side of the production then the grammar is called right-linear
grammar

Following are forms of productions in right-linear grammar are

A →x B,

 A → x or

 A → ε

Where, 'A' and 'B' are non-terminal and 'x' is a string of terminals.

E.g. consider the following grammar

G = ({S, B), (a, b, ε), P, S)

Where, 'P' contains following set of production rule,

S → aB

B → aBl ε

3.8 SUMMARY

 Regular set is the set that represents the value of the Regular
Expression.

 Regular expression represents Regularset.

 Pumping Lemma is powerful tool to prove that certain language not
regular

mu
no
tes
.in

Regular Sets and Regular
Grammar

41

 The regular sets are closed under union, concatenation and Kleene
closure.

 The regular sets are closed under complementation and also
intersection

 By using certain rules we can convert regular expression to NFA
with ϵ moves

 Regular grammar is further classified as
1) Left-linear grammar and
2) Right-linear grammar.

3.9 REFERENCES

1) Theory of Computer Science, K. L. P Mishra, Chandrasekharan,
PHI,3rdEdition

2) Introduction to Computer Theory, Daniel Cohen, Wiley,2ndEdition

3) Introductory Theory of Computer Science, E.V. Krishnamurthy,
Affiliated East-West Press.

4) Introduction to Languages and the Theory of Computation, John E
Martin, McGraw-HillEducation.

3.10 REVIEW QUESTIONS

Q1. Define following

1) Regularexpression

2) Regular set

3) Regular Grammar

Q2. Construct FA for the following regular expression

1) r = a (a+b)* abba (a+b)*b
2) r = a*b + c+ d*
3) r = a (b+c)*a

 Q3. Find out regular expression for the following

1) Find out regular (RE) of regular language such that all strings begin
& end with ‘a’ i and in between any word usingb

2) Find out RE for not having consecutive Zero

3) Find out RE for at the most 1 Pair of zero’s & one’s

mu
no
tes
.in

 42

4
CONTEXT FREE LANGUAGE

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Context-free Languages

4.3 Derivation Tree

4.4 Ambiguity of Grammar

4.5 CFG simplification

4.6 Normal Forms

 4.6.1 Chomsky Normal Form

 4.6.2 Greibach Normal Form

4.7 Pumping Lemma for CFG

4.8 Summary

4.9 References

4.10 Review Questions

4.0 OBJECTIVES:

At the end of this unit, Students will be able to:

 To Understand concept of Context-free Grammar and Context-free
Languages

 To Understand concept of Derivation, Derivation Tree and
Ambiguous Grammar

 To Learn Simplification of Grammar

 To Learn about Normal Forms

 To Learn about Pumping Lemma for CFG

mu
no
tes
.in

Context-free Languages

43

4.1 INTRODUCTION

This Chapter deals with concepts of grammar and especially about context
free Grammarand Context-free Languages.It gives details information
about Derivation, Derivation Tree and Ambiguous Grammar.The need of
Simplification of Grammar means we can remove Ambiguity of Grammar.
Also discussion about Normal Forms and Properties of CFL.The property
of CFG is that all productions are of form one Non-terminal→ finite string
or terminals and/or nonterminal. The language created by a CFG is called
a context-free language.

4.2 CONTEXT-FREE LANGUAGES

It is language generated by CFG means Context Free Grammar;

L (G) = {w/w ⊂ T* and it can be derived from start symbol‘s’}
Examples:
Q.1.the context free grammar is given as,

S → aSb │ ab

Find the CFL generated by the above grammar.

Solution:

Let us start listing or generating the strings that we can generatewith the
above CFG. Let us start with minimal length string. Let usnumber the
productions as,

 Rule (1) S → a S b

 Rule (2) S → a b

i) From production (2), we can device string "ab" in one step as,

S => ab

ii) To start with new derivation, we can have,

S => aSb , rule (1)

 => aabb , rule (2)

iii) S => aSb , rule (1)

=> aaSbb , rule (1)

=> aaabbb , rule (2)

iv) S => aSb , rule (1)

=> aaSbb , rule (1)

 => aaaSbbb , rule (1)

=> aaaabbbb , rule (2)

mu
no
tes
.in

Theory of Computation

44

Thus, the language can be listed in the form of set as,

L = {ab, aabb, aaabbb, aaaabbbb…….}

i.e. L = (an bn │n ≥ 1)

Thus, the CFG which is given to us defines the language containingstrings
of the form an bn for n ≥ 1.

Q.2. Write a grammar for generating strings over Ʃ= {a} containing
anynumber

(zero or-more) of 'a's.

Solution:

Zero number of 'a's can be generated using production

SE → ϵ (ϵ - production)

If we want one or more 'a's we can generate them with

S → a │as

Combining the two, the grammar that we get is

S → aS │ a│ ϵ

We can represent the grammar formally as

G = ({S}), {a, ϵ }, {S → As, S → ϵ}, S)

Let us try for the string "aaa"

Using leftmost derivation,

S => as , rule (1)

 => aas , rule (1)

 => aaa , rule (2)

Note:

i) As we know, the language is a regular language and we can denoteit
by regular expression; a*.
ii) Above grammar can be simplified further to,

S → as│ ϵ

This grammar and above grammar are equivalent. Let us do it againfor the
string "aaa."

S => as , rule (1)

 => aas , rule (1)

mu
no
tes
.in

Context-free Languages

45

 => aaas , rule (1)

 => aaaϵ , rule (2)

 (Because, ' ϵ ' is zero length string or empty string)

Q.3.Write a grammar for the language represented by regular expression,

(a + b)*

Solution:

The regular expression (a + b) represents regular language containingany
number of 'a's or 'b's.

The grammar is,

S → a S │bS│ ϵ

(1) (2) (4)

Let us try deriving string with 4 'a's and 1 'b'.

i.e "aaba".

S => aS , rule (1)

 => aaS , rule (1)

 => aabS , rule (2)

 => aabaS , rule (1)

 => aaba , rule (4)

Note: If we want it for language (a + b) + i.e. strings containing at leastone
occurrance of 'a' or 'b', it can be written as,

S→ aS │bs│ a │b

This grammar now cannot generate an empty string i.e the
stringcontaining zero number of 'a's and zero number of 'b's, because P
does notconsist of the production of the form, S → ϵ.

Closure Properties of CFL:

The flexibility of the rule of context – free grammars is used to establish
closure results for the set of context free languages. Operations that
preserve context free languages provide another tool for proving that
languages are context free. These operations along with pumping lemma,
can also the used to show that certain languages are not context free.

Properties:

i. CFL’S are closed under union.
ii. CFL’S are closed under concatenation.

mu
no
tes
.in

Theory of Computation

46

iii. CFL’S are closed under kleene closure and positive closure.

Formalization of the Grammar:

For building a formal model, we should consider two aspects of thegiven
grammar:

1) The generative capacity of the grammar i.e, the grammar used'
shouldgenerate all and only the sentences of the language for which it
is written

2) Grammatical constituents, like terminals and non-terminals.

A grammar that is based on the constituent structure as describedabove, is
called as constituent structure grammar or phase structuregrammar.

Formal Definition of Grammar:

A phrase structure grammar is denoted by a quadruple of the form,

G = (V, T, P, S)

Where,

V: Finite set of non-terminals (variables)

T: finite set of terminals.

S: S is a non-terminals N called as the starting symbol,corresponding to
the sentence symbol.

P: finite set of productions of the form,

α → B

Where, α, β ⊂ (V U T)* and 'α' involving at least one symbol from ‘V’i.e.
at least one non-terminal.

 Here we know,

V ∩ T = Ø = null set.

‘α' and 'β' consists of any number of terminals as well asnon-terminals and
they are usually termed as sentential forms. Chomsky had classified the
grammars in four major categories. Outof which there is one, with the
productions of the form

A → α

Where, 'A' is any non-terminal

and 'α' is any sentential formis called as Context-free grammar.

As we can observe in this typeof grammar there is a restriction that, on the
left hand side of eachproduction there should be only one Non-terminal,
e.g. The grammar thatwe have considered generating statement 'Dog runs'

mu
no
tes
.in

Context-free Languages

47

can also be consideredas an example of context free grammar, in short,
termed as CFG.

4.3 DERIVATION TREE:

Derivations:

For any string, derivable from start symbol of the grammar, usingthe
productions of the grammar, there are two different derivations
possiblenamely,

1) Leftmost derivation
2) Rightmost derivation

Example: 1

Consider the grammar given as,

G = ({S, A}, (a, b), P, S)

Where P consists of

S → a A S│a

A → S b A / S S / ba

Derive "aabbaa" using leftmost derivation and rightmost derivation.

Solution:

From the given information, 'S' is a start symbol. Let us number
theproductions as,

Rule (1) S → AS

Rule (2) S → a

Rule (4) A → SbA

Rule (4) A → SS

Rule (5) A → ba

(i) Leftmost derivation:

S => aAS by using rule (1)

 => aSAS by using rule (4)

 => aabAS by using rule (2)

 => aabbas by using rule (5)

 => aabbaa by using rule (2)

mu
no
tes
.in

Theory of Computation

48

(ii) Rightmost derivation:

S => a A S by using rule (1)

 => a A a by using rule (2)

 => a S b A a by using rule (4)

 => a S b b a a by using rule (5)

 => a a b b a a by using rule (2)

When a string is to be generated from the given production rules, then it
will be veryconvenient to shown the generation of string pictorially. This
generation (also calledderivation) when drawn graphically takes a tree
form and so it is called derivation tree oralso called parse tree. We observe
the following regarding the derivation tree.

i. The root node in the derivation tree is always labelled with the start
symbol as all strings are imitative from start symbol

ii. All the leaf nodes are labeled with some terminal symbols of the
grammar. (i.e. the elements of Ʃ). So these nodes are called terminal
nodes.

iii. All other nodes are labelled with some non-terminal symbols of the
grammar (i.e. the elements of VN). These are called non-terminal
nodes.

iv. If the string w of the language generated by the grammar has a length
n, then there are n terminal nodes, arranged from left to right.

Example 2. Consider the following Grammar

G = (S, A, B, {a, b, P, S), where

P = {S → AB

A → a

B → b

NOW Consider a string ab. The derivationof this string is as shown in
Fig.1.1. Notethat the root is considered as S, the start symbol.There are
two leaf nodes considered a and b. Theother nodes corresponds to some
non-terminalsymbols of G. Since │ab│ is 2, there are two terminal nodes
arranged from left to right.

mu
no
tes
.in

Context-free Languages

49

Figure 1.1

Derivation tree for string ab

Draw the derivation tree for a string aabbaa using following Grammar G.

G = (VN, Ʃ, P, S), where

VN = (S, A) Ʃ = {a, b} and

P = S → aAS

 S → a

A → SbA

 A → SS

 A → ba

Solution:As Sis the start symbol, any string generated by the grammer will
be derived from S

So we will use

 S → aAS.

Obviously we will not use S → a to start with as then we cannot create
anything other than a

Since we want to generate aabbaa. We should select a proper A-
production such that it generates a string beginning with a followed by

So we select

 A → SbA

So we get

 S→ aSbAS

S→ aabAS

S

S S

S S

mu
no
tes
.in

Theory of Computation

50

Now we want that A-production which results in a String that begins with
b followedby a. So we must choose A→ba.

So

S→ aabbas

Which then gives S→ aabbaa the required string. This is shown as below.

S→ aAS

S→ aSbAS by A → SbA

S→ aabAS by S → a

S→ aabbaS by A→ ba

S→ aabbaa by S→ a

The derivation tree is as shown Fig. 2.

 S

 a s

 A a

 S A

 a b

 b a

For the following grammar show the derivation tree for aaabbabbba.

The grammar G = (VN, E, P, S)

VN =S, A, B, Ʃ= a,b

P = S → AB│ bA

A → a │As│ bAA

B→ b │bS│ aBB

The derivation of the string is as follows

Start with S

→ aB

→ aaBB

→ aaaBBB

mu
no
tes
.in

Context-free Languages

51

→ aaabSBB

→ aaabbABB

→ aaabbaBB

→ aaabbabB

→ aaabbabbS

→ aaabbabbA

→ aaabbabbba

The derivation tree will be as shown in Fig.4.
 S

 a B

 a B

 B b S

 a B b A

 B

 b S a

 b A

 a

1. Left and Right Derivation:

Now we will discuss the two methods in which a string Can De derived
from theSymbol. These are called left derivation and right derivation.

As Seen earlier, the derivation is either one-step derivation or multi-step
derivation each step, Some non-terminal symbol on the right hand side or
a production is replacedits definition. Therefore the question is, if there are
two or more nonterminal symbols inthe RHS of a production, in what
order these nonterminal Symbols can De changed? Doesthe order matters
what a resultant string derived?Two orderings are possible. If at each step
of derivation, if the leftmost symbol of sentential form is changed by its
definition then the derivation is called leftmost derivation

If at each step of derivation, if the rightmost symbol of a sentential form is
replaced byits definition then the derivation is called rightmost derivation.

mu
no
tes
.in

Theory of Computation

52

It is Crucial however to note that the ordering used does not matter the
generatedstring. e.g. a given string can be derived using either leftmost or
rightmost derivation.Consider the string ab and the above grammar again.
The two derivations are as shownbelow.

S → A B S → AB

S → a B S → Ab

S → a D S → ab

(a) Left most (b) Rightmost

As stated above, the ordering does not disturb the generated string.
However in manyapplications, it is Convenient to use leftmost derivation.

For the grammar,

S → aB 1bA

A → a│aS│bAA

B → b│bS │aBB

Example:1Write leftmost and rightmost derivation for the string
aaabbabbba

Solution:

Leftmost derivation

S→ aB

→ aabB

→ aaaBBB

→ aaabSBB

→ aaabbABB

→ aaabbaBB

→ aaabbabB

→ aaabbabbs

→ aaabbabbbA

→ aaabbabbba

Right most derivation

a→ aB

→ aaB

mu
no
tes
.in

Context-free Languages

53

→ aaBbs

→ aaBbbA

→ aaBbba

→ aaaBBbba

→ aaaBbbba

→ adabSbbba

→ aaabbAbbba

→ aaabbabbba

For the following grammar, give the leftmost and rightmost derivation for
the string

abaabb.

G = (VN, Ʃ, P, S), where

VN =S. X = {a, b}

P = {S → X baa X

S → ax

X → X a

X → X b

Give leftmost and rightmost derivation.

Leftmost derivation is as follows.

S→ X b aa X

→ Xa baa X

→ ab aa X

→ abaa Xb

→ abaaa X bb

→ abaa bb

Rightmost derivation is as follows

S→ Xbaa X

→ Xbaa Xb

→ XbaaX bb

→ Xbaa blb

mu
no
tes
.in

Theory of Computation

54

→ Xa baa bb

→ ab aa bb

4.4 AMBIGUITY OF GRAMMAR

A CFG is called ambiguous if for at least one word in the language that it
createsthere are two probable derivations of the word that corresponds to
different syntax trees For this purpose following example can be Consider

Consider the grammar (CFG) G for the language L = {a+

G = (s, a, P, S), Where

P = S → aS │Sa │a

Now, consider a string a4 (i.e. aaa). This string can be derived in
thefollowing different ways as shown in following figure.
 S S S S

 a a a a

 S S S S

 a a a a
 S S S S

 a a a a

Fig. 4 Four different ways to generate a string aaa

So the grammar is ambiguous.

Example: 1

We will now discuss the best example of an ambiguous grammarthat rises
in the context of compiler design. Consider the followgrammar.

G = (s, +, *, d, P, S), where

P = {S→ S + S│S + S│ d

This grammar is for generating arithmetic expressions made up of
operators + and *.Undertake the terminal d stands for digit. Now consider
a string 5 + 6 * 7. We knowthatexpression of a grammar. But the string
can be derived in two differentshown in following Figure and so the
grammar is ambiguous. Therefore, the grammar is ambiguous.

mu
no
tes
.in

Context-free Languages

55

Fig. Two ways to derive a string d + d*d

4.5 CFG SIMPLIFICATION

Following are the rules for having the given context-free grammar inthe
reduced form:

1) Each variable and each terminal of CFG should appear in thederivation
of at least one word in L (G)

2) There should not be productions of the form A→ B, where 'A' and'B'
are both non-terminals.

Simplification of Grammar

Method 1. Removal of Useless Symbol:

A Symbol ‘X’ is useful if

i) Any string must be derivable from ‘X’
ii) ‘X’ must appear in the derivation of at least one string derivable

from S (Start Symbol)
 Removal of Useless Symbols:
1. A symbol ‘X’ is useful, if there exists a derivation, S => α x β => w
2. Where, 'α', 'β' are sentential forms and 'w' is any string in T*; (w⊂

T*).
3. Otherwise, if no such derivation exists, then symbol 'X' won't

appearin any of the derivations, that means, X' is a useless symbol.
 Three Aspects of Usefulness of a Non-terminalX Are as Follows:
i) Some string must be derivable from 'X'.
ii) X must appear in the derivation of at least one string derivable

from'S'

(Start symbol).

iii) It should not occur in any sentential form that contain a variablefrom
which no terminal string can be derived.

S

S + S

S S * S

d d

S

S S *

S + S

d d d

mu
no
tes
.in

Theory of Computation

56

Examples: Simplification of Grammar

i. S → AB │a S

A → a A

Simplify the given grammar by removing useless symbol

Step: 1 S → AB │a

 A → a

B is Useless

 S → a

 A → a

Step: 2 A is Useless

 S → a

ii. S → AB │ BC

A → aAa │ aAa

B → Bb │b

D → a D │d

Step 1 – C Useless

 S → AB

 A → aAa │aAb

 B → Bb │ b

 D → d D │d

Step 2 - A & d ARE Useless

A whole grammar is useless

A is useless because no sentence will be derived from D

D is useless because it is not been used in any derived process.

Method 2. Elimination of unit production

A production of the form 'A → B' where, 'A' and 'B' both arenon-
terminals, are called ds. Unit productions. All other productions(including
ϵ - productions) are Non unit productions.

mu
no
tes
.in

Context-free Languages

57

Elimination Rule:

For every pair of non-terminals 'A' and 'B',

i) If the CFG has a unit production of the form 'A → B' or,

ii) If there is a chain of unit productions leading from 'A' to 'B' such as,

A => X1 => X2 =>…..... => B

Where, all Xis (i > 0) are non- terminals, then introduce newproduction (s)
according to the rule stated as follows:

"If the non-unit productions for 'B' are,

B → α1 │ α2│...

Where, ‘α1, α2’ ... are all sentential forms (not containing only onenon-
terminal)

then, create the productions for 'A' as,

A → α1, │α2│…….

Single capital letters replaced with its production

Examples: Simplification of Grammar

1) A → B
B → a │b
 → A → B

2) S → Sool │ F
F → S ││ O │F
T → OS l │ l │ lSlO

 → S → SOOl│F

 F → SllO │OSl │ l│lSlO

3) S → A │bb → S → A │bb
A → B │b A → S │ a │ b
B → S │a s → S │a │ b │bb

A → a │b

S → SOOl │SllO │ OSl │l │lSlO

S → a │b │bb

mu
no
tes
.in

Theory of Computation

58

Method: 3 Removal of ϵ production:

Production of the form 'A → where, 'A' is any non-terminal, iscalled ϵ
production

Elimination Procedure:

The procedure for eliminationof ϵ -productions can be stated as
follows;the steps involved are,

i. Delete all ϵ-productions from the grammar.
ii. Identify nullable non-terminals.

iii. If there is a production of the form 'A → α', where 'α' is any sentential
form containing at least one nullable nonterminal, then add new
productions having right hand side formed by deleting all possible
subsets of nullable nonterminal from 'α'.

iv. If using step (i) above, we get production of the form ‘A → ϵ‘then, do
not add that to the final grammar.

Examples: Simplification of Grammar

i. S → a S a │b S b │ϵ

→ S → a S a │ b S b │ aa │ bb

ii. S → AB
A → A │BB │ Bb
B → b │ a A │ ϵ

→ S → AB │ A

 A → SA │BB │ Bb │b │ B │ S

 B → b │aA│ a

iii. S → ABA
A → aA │ ϵ
B → bB │ ϵ

 → S → ABA │AA│ BA│ AB│ B │A│ ϵ

 A → Aa │ a

 B → bB │ b

 S → ABA│ AA │BA │AB│ B │A

 A → aA│ a

 B → bB│ b

mu
no
tes
.in

Context-free Languages

59

4.6 NORMAL FORMS

Now we have to discuss the concept of normal form of a Grammar. In a
context-freegrammar, the RHS of a production can be any string of
variables (nonterminal) andterminals. When the productions in G satisfy
certain constraints, then G is said to be in a"normal form’. The two
important normal forms which we will now discuss are: Chomsky
NormalForm (CNF) and the Greibach Normal Form (GNF).

4.6.1 Chomsky Normal Form:

Definition

If a CFG has only productions of the form

Nonterminal → String of two Nonterminal

Or Nonterminal → one terminal

Then the grammar is in Chomsky Normal Form, CNF.

Note the difference between the CNF and the form of productions we
came across in the previous section. The CNF the RHS of each of the
production will either contain exactly two nonterminal or a single
terminal, while as in the previous form, the RHS of each of the production
will either contain string of nonterminal or a single terminal. Thus, CNF is
more restricted than the previous one.

Also, that any context-free language that does not contain ϵ as a word has
a CFO in CNF that generates exactly it. However, if the CFL contains ϵ,
then when we convert the CFG into CNF, the ϵ word drops out of the
language while all other words stay the same,

Example 1: Convert the following CFG into CNF.

S → aSa │bSb │a│b│aa│bb.

Solution: First we detached the terminals from the nonterminal.

S→ ASA

S → BSB

S → AA

S→ BB

S→ a

S → b

А → а

В → b

mu
no
tes
.in

Theory of Computation

60

Now all the productions except S → ASA and S → BSB are in required
form. Toconvert these productions into the required form we add
additional non-terminals, say

R1, R2………etc

So we get

S→ AR1

S→ AA

S→ BB

S → BR2

S→ a

S→ b

A → a

B→ b

R1 → SA

R2 → SB

The grammar is now in CNF.

Example: 2convert the following grammar into CNF.

S → bA │aB

A → bAA│ as│a

B→ aBB │ aS│b

Solution: In the first step we get

S → bA│XB

A → bAA│aS│a

B → aBB │aS│ b

Note that we leave alone the productions A → a and B → b as it is
because they arealready in required form.

In the next step, we just need to take care of productions.

A → YAA and B → XBB because they are not in required form.

So, A → YR1 and B → XR2

Where R1 → AA andR2 → BB

mu
no
tes
.in

Context-free Languages

61

So the grammar in CNF will be,

S → YA│XB

A → YR1│XS│a

B → XR2 │YS│b

X → a

Y → b

R1 → AA

R2 → BB

Example 3: Convert the following CFG into CNF.

S → aaaaS │ aaaa

Which generates the language a4nfor n = 1, 2, 4……

Solution: In the first step we get

S→ AAAAS

S → AAAA

A → a

Now,

S → AR1

R1 → AR2

R₂ → AR4

R4→ AS

S → AR4

R4 → AR5

R5 → AA

A → a

The grammar is now in CNF.

4.6.2 Greibach Normal Form:

We will now look at one more normal form of the grammar.

mu
no
tes
.in

Theory of Computation

62

Definition:

If each production in a CFG is of the form

A → aB, where

a is a terminal andB is a string of non-terminals (possibly empty), then the
grammar is in GreibachNormal Form (GNF).

For example, the following grammar is in GNF.

S → bA │ aB

A → bAA│aS │a

B → aBB │bS│b

All the productions start with a terminal on RHS and followed by a
string,non-terminals (sometimes ε).

Before looking at how to convert a given grammar into GNF, we have to
discuss two important auxiliary results, which are helpful for converting a
grammar to GNF.

Lemma: 1: If A → Bγ is a production, where A and B are non-terminals
and they are B- production of the form

B → β1 │ β2│……. │βs then

We can replace the production A → Bγ by

A → Bi γ │1 ≤ і ≤ S

For example, take into consideration following grammar

A → Bab

B → aA │ bB │ aa │ AB

So using Lemma. 1 in above, we get

A → aA ab │ bBab │ aaab │ A Bab

Lemma. 2: If a CFG consists of production of the form

A → Aα1│Aα2│....│ Aαr│β1│β2│.......│βs such that each of the Bi’s do
not start with A then an equivalent grammar can be formed as follows:

A → β1│B2│…...│BS

A → β1 Z│β2 Z│......│βS Z

Z → α1│α2│.......│αr

Z → α1 Z│α2 Z│…....│αr Z

For example, consider following grammar. Here

A → aBD│ b DB │c

A → AB│AD

α 1 → B , α2 = D

mu
no
tes
.in

Context-free Languages

63

β1 → a BD, β2 = bDB and β4 = C

So applying Lemma 2 we get

А → a BD│ DB│C

A→ a BDZ│ bDBZ│ cZ

Z → B│D

Z → BZ│ DZ

Lemma 2 is useful in dealing with left-recursive productions i.e. the
productions of form A → Aα.

We will make use of these lemmas to convert CFG to GNF.

Example:1Construct a grammar in GNF equivalent to the grammar S →
AA│a and

A→ SS│b.
Solution:

Observe that the CFG is in CNF. If we rename S as A1, and as A A2 (for
conversion purpose) respectively, the productions will be then

A1 → A2 A2 │α

A2 → A1 A1 │b
and

We leave A2 → b as it is in the required form.
Now consider A2 → A1 A1. To convert this we will use lemma 1 to get

A2 → A2A2A1

A2 → aA1

i.e. by replacing the first A1 on RHS of A2 → A1A1 by definition of A1.
Now the Production A2 → aA1 is in required form. But we need to use
Lemma 2 for

A2→ A2A2A1 as it is of form A → Aα.
Apply Lemma 2 to the productions of A2. A2 productions are

A2 → A2 A2 A1

A2 → aA1

A2 → b

Here, β1 = αA1, β2 = b, α = A2 A1

So we have now by adding new non-terminal.

A2 → aA1│b

A2 → aA1 Z₂│bZ2

Z2 → A₂ A1

Z2 → A2 A1Z2

mu
no
tes
.in

Theory of Computation

64

Now all A2 productions are in required form.

Now we will save to consider the A1, production,

A1 → A2A2│a

Out of these A1 → a is in required form.

So consider, A1 → A₂A₂
Applying Lemma 1, we get

A1 → aA1 A2│ bA₂│ aA1 Z2A2│ bZ2 A2

So adding to this list the A1 → a production, we have retained all A1
productions and they are

A1 → aA1 A2│bA2│ aA1 Z2, A2, │bZ2A2│ a

Now we amend Z2 productions. Applying lemma to Z2 productions we get

Z2 → aA1 A1│ bA1│aA1 Z2 A1│ bZ2 A1

Z2 → aA1 A1 Z2│bA1 Z2│aA1 Z2 A1 Z2│bA1, Z2

So the grammar in GNF will be

G’ = (A1, A2, Z2,}, {a, b}, P’, A1)

P’ =
Where

A1 → a│aA1 A2│bA2│aA1 Z2 A2│ bZ2 A2

A₂ → aA1│b│ aA1 Z2 │b Z₂
Z2 → aA1 A1│bA1│aA1 Z2A1│bZ2A1

Z2 → aA1 A1 Z2│bA1 Z2│aA1 Z2 A1 Z2│bZ2 A1 Z2

4.7 PUMPING LEMMA FOR CFG:

The pumping lemma for CFLs gives a method of generating infinite
number of stringsfrom a given sufficiently long string in a context-free
language L. It is used to prove thatcertain languages are not context-free.
The construction we make use of in provingpumping lemma yields some
decision algorithms regarding context-free languages.

The pumping lemma for regular sets states that every sufficientlylong
string in a regular set contains a short substring that can be pumped. That
is, insertingas many copies of the substring as we like, always yields a
string in the regular set.The pumping lemma for CFL's states that there are
always two short substrings closetogether that can be repeated, both the
same number of times, as often as we like. Theformal statement is as
follows:

mu
no
tes
.in

Context-free Languages

65

Lemma: 1 (The pumping lemma for context-free languages):

Let L be any context-free language. Then there is a constant n, depending
only on L,such that if Z is in L and │z│ ≥ n, then we may write z = u v w
x y such that

(i) │vx│ ≥ 1

(ii) │vwx│ ≤ n and

(ii) For all i ≥ 0, u vi w xi y is in L.

4.8 SUMMARY

 Context-free Languages

 It is language generated by CFG means Context Free Grammar;

 L(G) = {w/w ⊂ T* and it can be derived from start symbol ‘s’}

 Formal Definition of Grammar:
A phrase structure grammar is denoted by a quadruple of the form,
G = (V, T, P, S)

 Closure Properties of CFL:
i) CFL’S are closed under union.
ii) CFL’S are closed under concatenation.
iii) CFL’S are closed under kleene closure and positive closure.

 Ambiguity of Grammar:
A CFG is called ambiguous if for at least one word in the language that it
createsthere are two probable derivations of the word that corresponds to
different syntax trees

 CFG simplification
Method 1. Removal of Useless Symbol:

Method 2. Elimination of unit production

Method 3. Removal of ϵ production:

4.9 REFERENCES

1. Theory of Computer Science, K. L. P Mishra, Chandrasekharan,
PHI,4rd Edition

2. Introduction to Computer Theory, Daniel Cohen, Wiley,2ndEdition

3. Introductory Theory of Computer Science, E.V. Krishnamurthy,
Affiliated East-West Press.

4. Introduction to Languages and the Theory of Computation, John E
Martin, McGraw-Hill Education

mu
no
tes
.in

Theory of Computation

66

4.10 REVIEW QUESTIONS:

1. Define following terms.

a) Derivation Tree

b) CFG

2. What is Context Free Language (CFL)?

3. Find the Context Free Language (CFL) associated with the CFG.

S → aB | bA

A → a | aS | bAA

B → b | bS | aBB

4. Construct CFG for

L= {a m b n c m | n, m ≥ 1}

5. Remove ambiguity from following grammars.

a) S → aS | Sa |ϵ

b) S → SS | AB

A → Aa | a

B → Bb | b

6. Draw Derivation Tree for a substring “001100”.
7. Construct a grammar to generate stings with no consecutive a’s but
may or may notwith consecutive b’s.
8. Convert following CFG to CNF

S → aAab | Aba

A → aS | bB

B → ASb | a

mu
no
tes
.in

 67

5
PUSHDOWN AUTOMATA

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Definition of PDA

5.2.1 Elements in PDM

5.2.2 Model of Pushdown Automaton

5.2.3 Pictorial Representation for PDA

5.2.4 Construction of PDA

5.3 Acceptance by PDA

 5.3.1 PDA acceptance by Final State

 5.3.2 PDA acceptance by Empty Stack

 5.4 PDA and CFG

5.5 Summary

5.6 References

5.7 Review Questions

5.0 OBJECTIVES

In this chapter, Students will be able to:

 To Understand Concept of PDA

 To Understand use of PDA

 To learn acceptance byPDA using Final State and Empty Stack

 To know about how to construct PDA for CFG

5.1 INTRODUCTION

In this chapter we are learn the concept of the PDA. In case of FSM, we
have seen that it does not have memory to remember arbitrarily long
sequences of the input. So PDM (Pushdown Stack-Memory Machine) is
more powerful than FSM (Finite Automata Machine) and more
capabilities. FSM accept only the regularlanguages and PDM is consider
as a CFL-acceptor or CFL-recognizer. While FA is a mathematical model

mu
no
tes
.in

Theory of Computation

68

of FSM likewise PDA (Push-down Automata) is mathematical model of
PDM.

5.2 DEFINITION OF PDA:

A Pushdown automaton M is a seven tuple (Q, Ʃ, Γ, δ, q0, Z0,F)

Where, q = finite nonempty set of states

Ʃ = an alphabet called input alphabet

Γ = an alphabet called the stack alphabet qo in Q is the initial

Z0 in Γ is a particular stack symbol called start stack symbol

F ⊆ Q isa set of final states

δ: mapping from Q x (Ʃ U {ϵ}) x Γ to finite subsets of Q x Γ*.

5.2.1 Elements in PDM:

A PDM is a collection of eight elements described as follows:

1. An input alphabets. (Ʃ)
2. An input tape (bounded on one end and unbounded or infinite in

theother direction). Initially, input string is written on the tape with
restof the tape blank.

3. An alphabet of stack symbols. Γ
4. A pushdown stacks. Initially the stack is empty and assumed to

becontaining (blank) at the bottom to represent stack empty.
5. Start state.
6. Halt states: Accept and Reject.
7. Non branching state: Push.
8. Branching states: Read, Pop.

PDM thus, can be visualized to have an input tape, a finite control(that we
have seen for FSM) and a stack. Thus, we can see that, PDMonly can read
from the tape and cannot write onto it; also the direction ofmovement of
head is always in one direction from left to the right.Obviously, as it can
use an external stock from which it can pop (read)and push (write) into it,
it becomes powerful compared to FSM, but notpowerful than TM (head
can move to left, to right and remain stationaryalso).

5.2.2 ModelofPushdownAutomaton:

In PDA model the read-only input tape is:

i. Infinite in size.

ii. Divided into equal sized blocks known as cells to store input alphabets.

iii. Initially filled with blank symbols (ε).

iv. Using read head weread one letter at a time, when tape is being process
on machine. Read head is one directional.

mu
no
tes
.in

Pushdown Automata

69

v. Finite control will process the input symbol read and advances Read
Head one position ahead.

vi. The symbol is either pushed in a stack or popped out from the stack,
when they are processing by finite control depending on the logic

vii. While moving towards right, reading the input symbols, when we reach
the first blank cell we stop.

5.2.3 Pictorial Representation forPDA:

PDA can be represented by some flow-chart like notations. All
thesepictorial representations for different types of states of PDA are given
infigure on next page.We can clearly see that, 'start should be the initial
state for everyPDA and either 'accept or reject would be the final halt state
dependingon the input, whether machine has accepted it or rejected it
"Read stateis a conditional block and represented like that because
depending on whatsymbol read, the machine could go to different states.
Similarly, the Pop'state is also represented by conditional block. "Push'
state is anintermediate state and a symbol has to be provided to it which
we wantto push.

mu
no
tes
.in

Theory of Computation

70

Start the Process

Accept halt State

Reject Halt State

Read the input symbol from tape,
(This is a conditional block and
depending on the symbol read, it
performs different operations.

Push a < letter >i.e some symbol on
to block and proceed.

 Or

Pop a symbol from the stack (It also
conditional like read block

Pictorial representation for PDA

Reject

Accept

Start

Read

Push < letter >

Push < letter >

Pop mu
no
tes
.in

Pushdown Automata

71

Example: 1

 Construct PDA recognizing the language accepted by the DFA given
in following figure.

 b a

a

 b

 An Example DFA

Solution:

As we know the DFA given in above figure is the acceptor for the regular
language represented by regular expression.

 b * a a* (b b* a a*)

 We can construct the PDA equivalent to given DFA as shown in
following figure.

 b

 b
 a
 b

 b a

 PDA equivalent to FA in above figure

We can see that ‘Read1’ state is analogous to initial state for given DFA
and ‘Read2’ state is analogous to the final state of the given DFA. As
‘Read2’ is analogous to the final state, if input ends in ‘Read1’ i.e. if we get
a blank ‘b’ on top in ‘Read1’ machine will move to ‘reject’ state, else it

- +

Start

Read
1

Read
2

Reject
Accept

mu
no
tes
.in

Theory of Computation

72

moves to ‘accept’ state as shown. Let us simulate the working of the PDA
for the strings ‘bbaaba’ and ‘baaabab’.

Simulation for string bbaaba.

Thus the string ‘bbaaba’ is accepted by the designed PDA

Simulation of string baaabab

mu
no
tes
.in

Pushdown Automata

73

Q.2 Construct PDA recognizing the language accepted by the DFA
given in the following figure.

An example DFA

PDA can be constructed as shown in above diagram. We can see that state
‘Read1’ of PDA is analog our to state ‘1’ at given DFA. Similarly, ‘Read2’
is analogous to state ‘2’ and ‘Read3’ is with state ‘3’ of the given DFA.
Obviously ‘Read1’ and ‘Read2’ are non-final states and reading blank ‘b’
indicating end of input string in that state causes machine to move to the
reject indicating the input string given is rejected by the PDA.

PDA equivalent to DFA in above figure.

Let us simulate the working of the PDA for input given as “abaab” The
acceptance of the input can be shown in diagram:

Thus designed PDA is accepting the given string

mu
no
tes
.in

Theory of Computation

74

For construction for PDA as above accepting regular languages, it is
observed that no stack is being used and therefore the design is not
containing any ‘push’ or ‘pop’ states. As we have not used stack in the
above designs for PDA’s we can say that above are the finite automata
represented using the notations. Thus FA is nothing but a special case of
PDA and hence we can said that it is less powerful than PDA.

5.2.4Construction of PDA:

From the meaning of PDA any transition function of PDA is defined as

 (Q x (Ʃ U {ϵ}) x Γ→ Q x Γ*

We define ‘δ’ transition function since q0 as start state.

 Ʃ = {a, b}

 T = {R, B}

i. At first we are in state q0 initial stack symbol is R,i.e.

Top of Stack

δ (q0, Ʃ R) here Ʃ can be a, b, or ϵ.

Let the string is aaabbb.
From the above conversation, we write 3 transitions for qo as start state
and R on early stack symbol.

Remain Push/add blue plate
In state qn to stack/spindle

Here B becomes new top of stack.

.

.

R

Δ (q0,a,R) → (q0 BR) mu
no
tes
.in

Pushdown Automata

75

i.e.
.
.
 B
 R

 Top of Stack

 Error state (Step v)
 Error state (Step vi)

ii. After we read 1st 'a' we don't change the state, as we have to read
next all 'a's and add 'B' to stack. The variation between 1st ‘a’ and
remaining all ‘a’s can be made by observing at top of stack (TOS)

For 1st ‘a’ - TOS is R

For residual ‘a’s - TOS is B

 We write transition for residual a's as

i.e. we add 1‘B’ to stack for each residual 'a'.

iii. Now in the same state, if 'b' befalls on input tape i.e. the situation is

δ(q0, b, B)

Then we have to pop one 'B' plate from stack which matches the current 'b'
with beforeadded 1 'a' i.e. (qı ,ϵ).

 The transition becomes

Specifies POP the

Symbol from stack

Here we have to change the state because we have to make difference that
accepting numberof ‘a’s in loop and accepting first 'b'.

If we stay in the same state, i.e., in qo, then in qo we have the transition

δ (qo, a, B) and (q0, b, B)

δ (q0, b, R)
δ (q0, ϵ, R)

δ (qo, a, B)→ (q0,
BB)

δ (qo, b, B) → (q1,ϵ)

mu
no
tes
.in

Theory of Computation

76

Both will transit to qo. This will lead to taking of the strings a*b*a* …..
Which leads toaccepting invalid strings. So we distinguish it by altering
the state to q1.

iv. If at go present state, and B on TOS if input string has 'e', it is error
state.
See step (vi)

i.e.

v. In state q1, probable i/ps are a, b, Δ and TOS is B.
a. i.e. (Step iv)

b.

Here we pop all 'B's for all 'b's occurring in input tape and be in self loop
as the same actionis to be recurrent for (n-1) times so no need to change
the state.

c. (Step iii)

vi. After step (v) is over, we may have the condition that current state is
q1 top of stack is R andinput symbols can be a, b, or ϵ
a. If (step i)
b. If (step ii)

c. if (step iv)

So from (i) to (vi) we write whole PDA as

M = ({q0, q1, q2}, (a, b}, δ, qo, {q2})

Where, δ is

δ (q0, a, R) =(q0, BR), δ (q0, b, R) = ERROR,

δ (qo, ϵ, R) ERROR, δ (qo, a, B) = (q0, BB),

δ (qo, b, B) (91, E), δ (qo, ϵ, B) = ERROR,

δ (q1, a, B) ERROR, δ (q1, b, B) = (q1, ϵ),

δ (q1, ϵ, B) ERROR, δ (q1, ϵ, R) = ACCEPT,

δ (q1, b, R) ERROR, δ (q1, a, R) = ERROR

δ (q0, ϵ, B) → ERROR state

δ (q1, a, B) → ERROR state

δ (q1, b, B) → (q1, ϵ)

δ (q1, ϵ, B) → ERROR
state

δ (q1, ϵ , R) Accept
state δ(qı, b, R) ERROR
state δ(qı, a, R) → ERROR
state

mu
no
tes
.in

Pushdown Automata

77

1. Construct PDA for the language

L = {anbn│ n ≥ 0}

Solution:

The language set for L

L ={ɛ, ab, aabb, aaabbb....)

This language is same as L = {anbn │n ≥ 1}

In example 2 except the extra string ϵ in this example.

So the same 8 can be written as in 2 example except the transition which
accepts 'ϵ' as a string andgoes to error state in 2 example, so in its place
that transition, we have to write the transition as

 PDA can be given as

M = ({qo, q1}, {a, b, c}, δ, q0{q1})

Where, & is

δ (q0, a, R) = (q0, BR), δ (q0, b, R) = ERROR,

δ (q0, ϵ , R) = Accept, δ (q0, a, B) = (q0, BB),

δ (q0, b, B) = (qı, ϵ), δ (q0, ϵ, B) = ERROR,

δ (q, a, B) = ERROR, δ (q1, b, B) = (q1, ϵ),

δ (q1, ϵ , B) = ERROR, δ (q1, ϵ, R) = ACCEPT,

δ (q1, b, R) = ERROR, δ (q1, a, R) = ERROR

The Languages of PDA (Construction ofPDA using empty stack and final
statemethod). We have expected that a PDA receives its input by
consuming it andentering an accepting state. We call this method
"acceptance byfinal state".

There is a second method to defining the language of a PDA, we accepted
by PDAcall it. Language "accepted by empty stack”, i.e., the set of
stringsthat cause the PDA to empty its stack, initial from early ID.

These two methods are equal, in the sense that the language L has a PDA
that receives it by finalstate if and only if L has a PDA that receives it by
empty stack.

However for a given PDA P, the languages that P accept by final state and
by empty stack areusually different.

δ (q0, ϵ, R) → Accept state

mu
no
tes
.in

Theory of Computation

78

5.3 ACCEPTANCE BY PDA

PDA accepts its input by consuming it and entering an accepting state. We
call this approach “acceptance by final state”.There is a second approach
to defining the language of PDA, we call it. Language “accepted by empty
stack”, i.e. the set of strings that cause the PDA to empty its stack, starting
from initial ID.

5.3.1 PDA acceptance by Final State:

The way of defining a language accepted is similar to the way a finite
automaton receives inputs. Thatis, we designate some states as final states
and define the accepted language as the set of all inputsfor which some
choice of moves causes the Pushdown automaton to enter a final state,

Formal Definition: Language acceptance by Final State

Let P = (Q, Ʃ,Γ, δ, q0, Z0, F) be a PDA then L(P), the language accepted
by P by final state is

{w │(q0, w, Z0) * (q, ϵ, α)} P

For some state q in F and any stack string a. That is, starting in the new ID
with w waiting on theinput, P consumes w from the input and enters an
accepting state. The contents of the stack at thattime are irrelevant.

Examples:

1. Let P to accept the language Lww
R.

The language set

L = {00, 11, 0110, 011110, 1001, 110011, 101101,}

The PDA is described as

P = ({q0, q1, q2}, {0,1}, {0, 1, zo}, δ, q0, z0, {q2}).

Where, 8 is defined as

δ(qo, 0, Z0) → (qo, 0Z0), δ (qo, 1, Z0) → (q0, 1Z0),

δ(qo, 0, 0) → (qo,00), δ (qo,0,1) → (qo,01),

δ (qo, 1, 0) → (qo, 10), δ (qo, 1, 1) → (q0, 11),

δ (qo, ϵ, Z0) → (q1, Z0), δ (qo, ϵ, 0) → (q:,0),

δ (qo, ϵ, 1)→ (q, 1), δ (q0, 0, 0) → (q1, ϵ),

δ (qı, 1, 1) → (q1, ϵ), δ(q1, ϵ , Z0) → (q2, Z0)

and accept

Let the string be 1111 where, w = 1,wR= 1

mu
no
tes
.in

Pushdown Automata

79

5.3.2 PDA acceptance by Empty Stack:

 To define the language known to be the set of all inputs for which some
order ofmoves causes the pushdown automaton to empty its stack. This
language is referred to as thelanguage recognized by empty stack.

Formal Definition: Language accepted by Empty Stack

For each PDA P = (Q, Ʃ, Γ, δ, q0, Z0, F) we also define

N(P) = {w │ (q0, w, Z0) * (q, ϵ, ϵ)}

for any state q.

That is, N(P) is the set of inputs w that P can consume and at the same
time empty its stack.

(N in N(P) stands for “null stack" or empty stack).

Since the set of accepting states is unconnected, we shall sometimes leave
off the last (seventh)component from the specification of a PDA P, if all
we care about is the language that P accepts byempty stack. Thus the P is
written as a six tuple (Q, Ʃ, Γ, δ, q0, Z0)

Here no constraint is placed on the uncertain state q. When acceptance is
defined by empty stack, it isessential to require at least one transition to
permit the acceptance of languages that do not comprisethe null string.

Examples:

mu
no
tes
.in

Theory of Computation

80

1. Consider the language in above example and consider the PDA in
thatexample.This example never empties the stack.

N(P).

 If we modify P to accept Lwwr by empty stack as well as by final
state.

Instead of transition

δ (q1, ϵ, Z0) (q2, Z0) we add

Now P pops the last symbol off its stack as it accepts and L(P) = N(P) =
Lwwr.

Consider the same string 1111.

The Stack is end at here.

5.4 PDA AND CFG

Context-free languages are languages defined by PDA's. The following 3
classes of languages all are of same class:

i. Context Free Languages (CFL)
ii. The languages which are accepted in the final state by some PDA.

δ (q1, ϵ, Z0) = (q2, ϵ)

mu
no
tes
.in

Pushdown Automata

81

iii. The languages which are accepted in empty stack by some
PDA.

Figure

Conversion of a Context FreeLanguage (in GNF) to Push down
Automata (PDA)

Theorem:

 If L is a context free language, then we can construct a PDA a accepting
L by empty stack

i.e. L = N(A).

We can construct A by making use of Productions in G.

Step 1: Construction of A

Let L = L(G), where G = (VN ,∑, P, S) is a CFG. In GNF we construct
PDA A as

 A = ({q), ∑, VN∪ ∑, δ, q, S, ɸ)

where, transition functionδ is defined by the following rules:

R1: δ(q, a, A) = {(q, α) A →aa is in P}

R2: δ(q, a, A) = {(q, ε)} for every A → a in ∑

The PDA can be constructed as:

1. The Pushdown symbols in A are variables and terminals.
2. If the PDA reads a variable A on the top of PDS, it makes 'a' move by

placing the RHS of any
3. ε -Production (after erasing A).
4. If the PDA reads a terminal a on PDS and if it matches with the

current input symbol, then the
5. PDA erase a.
6. In other cases the PDA halts.
7. If w ∈ L(G) is obtained by a left most derivation,

 S ⇒u1 A1 α1⇒u1u2A2α2 α1⇒ ⇒w,

mu
no
tes
.in

Theory of Computation

82

ThenA can empty the PDS on application ofi/p string w. The first move of
A is by a ε -move corresponding to S →u1 A1 α1. The PDA erasers S and
stores u1 A1 α1, then using R2, the PDA erasers the symbols in ul by
processing a prefix of w. Now the topmost symbol in PDS is A1.

Once again by applying the ε -move corresponding to A1 → u2A2 α2, the
PDA erases A2 and stores u2A2 α2 above α1. Proceeding in this way,
thePDS empties the PDS by processing the entire string w.

Example 1:

Construct a PDA A equivalent to the following context free grammar:

 S → OBB, B → OS | 1 | 0.

 Test whether 0104 is in N(A).

Solution:

A is defined as:

({q}, {0, 1}, {S, B, 0, 1}, δ, q, S, ɸ)

The transition functionδ is

R1: δ(q, 0, S) = (q, BB)

 R2: δ(q, 0, B) = {(q, 0S), (q, ε)} and δ(q, 1, B) → (q, S)

 R3: δ (q, 0, B) = {(q, ε)}

(q0, 0104, S) ├ (q, 0104, BB) by Rule R1

 ├ (q, 104, BB) by Rule R3

 ├ (q, 104, SB) by Rule R2 since

 (q, 1S) ∈δ (q, ε, B)

 ├ (q, 04, SB) by Rule R4

 ├ (q, 04, BBB) by Rule R1

 ├ (q, 03, BBB) by Rule R3

 ├* (q, 03, 000) by Rule R3 as (q, 0) ∈δ (q, ε, B)

 ├* (q, ε, ε)

Example 2:

Convert the following CFG to a PDA

S → aAA

 A → aS|bS|a

mu
no
tes
.in

Pushdown Automata

83

Solution:

The PDA P = (Q, Σ, Γ, δ, q0, Z0, F) is defined as

Q = {q}

Σ = {a, b}

 Γ = {a, b, S, A}

q0 = q

Z0 = S

F = {}

And the transition function is defined as:

δ(q, ∈, S) = {(q, aAA)}

δ(q, ∈, I) = {(q, aS),(q, bS),(q, a)}

δ(q, a, a) = {(q, ∈)}

δ(q, b, b) = {(q, ∈)}

5.5 SUMMARY:

 PDA is mathematical model of PDM (Pushdown Memory - Stack
Machine).

 The PDA is accepter for context free languages.

 PDA have 7 tuple - (Q, Ʃ, Γ, δ, q0, Z0, {F}) where, δ: Q x (Ʃ U({ϵ} x
Γ→ Q x Γ*)

 Languages accepted by PDA

a) PDA accepting Final State

b) PDA accepting empty stack (final state is)

 Changing CFG (in GNF) to PDA. Simplified steps are

If S aSB/aB then the conversion is given as

δ (q0, a , S) {(q0, SB), (q0 ,B)}

mu
no
tes
.in

Theory of Computation

84

If S a ϵ then the conversion is given as

δ (q0, a , S) (q0, ϵ)

5.6 REFERENCES:

1. Theory of Computer Science, K. L. P Mishra, Chandrasekharan,
PHI,3rd Edition

2. Introduction to Computer Theory, Daniel Cohen, Wiley,2nd Edition

3. Introductory Theory of Computer Science, E.V. Krishnamurthy,
Affiliated East-West Press.

4. Introduction to Languages and the Theory of Computation, John E
Martin, McGraw-Hill Education.

5.7 REVIEW QUESTIONS:

1. Define PDA.

2. Differentiate between FA and PDA.

3. Construct a PDA for language L = {0n 1m 2m | n, m ≥ 1}.

4. Construct a PDA for L ={an b2ncn | n ≥ 1}.

mu
no
tes
.in

 85

Unit III

6
LINEAR BOUND AUTOMATA

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 Linear Bound Automata

6.3 The Linear Bound Automata Model

6.4 Linear Bound Automata and Languages

6.5 Review Questions

6.6 Summary

6.7 References

6.0 OBJECTIVES

This chapter would make you to understand the following concepts:

 To study the concept of Linear Bound Automata.

 To learn Linear Bound Automata Model.

 To Study Linear Bound Automata and Languages.

6.1 INTRODUCTION

An Automata is an abstract computing device or machine, help to check
weather a string is belonging to the language or not. Theory of
computation contains Finite Automata (FA), Push Down Automata
(PDA), Linear Bound Automata and(LBA) and Turing Machine(TM).

Finite Automata use to recognize regular language. It is mathematical
model with discrete inputs, outputs, states and set of transition functions
from one state to another state over a input symbols from alphabet ∑. Push
DownAutomata work like Finite Automata with additional stack. It is
powerful than FA. PDA is used to implement Context Free Grammar. It
has more memory than FA. Linear Bound Automata (LBA) accepts
‘Context Sensitive Grammar (CSG)’ known as ‘Type-1’ Grammar. LBA
is a Turing Machine with limited size tape. Is powerful than PDA but less
powerful as compare to Turing Machine.

mu
no
tes
.in

Theory of Computation

86

6.2 LINEAR BOUND AUTOMATA

Linear bounded automata (LBA) are accepts context-sensitive languages.
In LBA computation is restricted to the constant bounded area. It has
limited size input output tape. This tape is limiting based on input size we
are bounding the tape using two end markers i.e. left end marker ML and
right end markerMR

which assure the transitions neither move to the left of the left end marker
nor to the right of the right end marker of the tape. It is a restricted form of
TM in which input tape is finite. In terms of computational capability FA
< PDA < LBA < TM. There are two types in each of FA, PDA and TM
which deterministic and non-deterministic. But in LBA there is no such
classification.

Halting Problem

The halting problem is solvable for linear bounded automata.

Halt (LBA) = {< M,w > |M is an LBA and M halts on w} is decidable.

 An LBA that stops on input w must stop in at most α(|w|) steps.

Membership problem

The membership problem is solvable for linear bounded automata.

A(LBA) = {< M, w > |M is an LBA and M accepts w} is decidable.

Emptiness Problem

The emptiness problem is unsolvable for linear bounded automata. For
every Turing machine there is a linear bounded automaton which accepts
the set of strings which are valid halting computations for the Turing
machine.

Definition: A Non-deterministic Turing Machine with a finite length tape
space fill by the input is called Linear Bound Automata(LBA).

LBA is defined as :

 M=(Q,∑, Г,δ,q0,ML,MR,,F)

 Where,

 Q is a nonempty finite set of states

 ∑⊆ Г is a finite set of input alphabets

Г is the finite set of input tape alphabets

δ is transition function

q0∈ Q is initial state

mu
no
tes
.in

Linear Bound Automata

87

MLis left end marker

MR is right end marker

,F∈ Q is finite set of final states

Figure 6.1

ML and MR are boundaries for a tape. ML is entered in leftmost end of the
input tape and avoids the Read/Write head from getting off the left end of
the tape. MR is entered in rightmost end of the input tape and avoids the
Read/Write head from getting off the right end of the tape. Both end
markers should be at their respective ends, and Read/Write head should
not write any other symbol over both end-markers.

Examples:

1) {an bncn/ n ≥ 1}

2) {ww / w ∈ {a, b}+}

LBAs and CSLs

The development stages of LBA:

Myhillin 1960 considered deterministic LBAs.

In Landweber 1963 showed that they produce only context-sensitive
languages.

And Kuroda in 1964 generalized to nondeterministic LBAs and showed
that this produces precisely the context-sensitive languages.

Theorem 1 (Landweber-Kuroda)

‘A language is accepted by an LBA iff it is context sensitive.

mu
no
tes
.in

Theory of Computation

88

Proof :

 If L is a CSL, then L is accepted by some LBA.

 Let G = (N, Σ, S, P) be the given grammar such that L(G) = L.

Construct LBA M with tape alphabet Σ × {N ∪ Σ}(2- track machine)

First track holds input string w.

 Second track holds a sentential form α of G, initialized to S

 If w = , M halts without accepting.

Repeat :

 Non-deterministically select a position i in α.

 Non-deterministically select a production β → γ of G.

 If β appears beginning in position i of α, replace β by γ there. If the
sentential form is longer than w, LBA halts without accepting.

 Compare the resulting sentential form with w on track 1. If they
match, accept. If not go to step 1.

Theorem 2

If there is a linear bounded automaton M accepting the language L, then
there is a context sensitive grammar generating L − {ε}.

Proof :

Derivation imitate moves of LBA

Three types of productions

 Productions that can generate two copies of a string in Σ∗ , along with
some symbols that work as markers to keep the two copies separate.

 Productions that can replicate a sequence of moves of M. During this
portion of a derivation, one of the two copies of the original string is
left unchanged; the other, representing the input tape to M, is modified
accordingly.

 Productions that can erase everything but the unmodified copy of the
string, provided that the simulated moves of M applied to the other
copy cause M to accept.

Linearly bounded memory machine:

The linearly bounded memory machine is similar to a Turing machine,
except that it has, instead of a potentially infinite tape forcomputation,
only the portion of the tape containing the input string plus two squares on
the tape to hold the end markers. Such a restriction reduces the machine's

mu
no
tes
.in

Linear Bound Automata

89

power to recognize certain types of strings. It has been shown that even
when the length of the tape is increased as a linear function of the length
of the input string, the computational ability of the machine remains the
same. Hence, such a machine is called a linearly bounded memory
machine. It recognizes a class of languages known as context-sensitive
languages.

6.3 THE LINEAR BOUND AUTOMATA MODEL

This model is important because (a) the set of context-sensitive languages
is accepted by the model and (b) the infinite storage is restricted in size but
not in accessibility to the storage in comparison with the Turing machine
model. It is called the linear bounded automaton (LBA) because a linear
function is used to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and
develop the relation between the linear bounded automata and context-
sensitive languages. It should be noted that the study of context-sensitive
languages is important from practical point of view because many
compiler languages lie between context-sensitive and context-free
languages.

A linear bounded automaton is a non-deterministic Turing machine which
has a single tape whose length is not infinite but bounded by a linear
function of the length of the input string.

Originally Linear Bound Automata were developed as models for actual
computers not as computational process models. They are very important
in computation theory. LBA is a multitrack non-deterministic Turing
Machine with only one tape and having the length same as input string.

Example:

a. Consider a input string w, where |w| = n-1.

b. If the input string w is recognized by an LBA if it is also be recognized by
a Turing machine using no more than kn cells of input tape, where k is a
constant specified in the description of LBA.

c. ‘k’ is a property of the machine; value of k does not depend on the input
string.

d. For processing a string in LBA, the string must be enclosed in ML and MR.
e. The model of LBA contains two tapes:

i) Input tape: On input tape the head never prints and it just move only
in right direction, never moves left.

ii) Working tape: On working tape head modify the contents of working
tape, without any restriction.

ID of LBA

mu
no
tes
.in

Theory of Computation

90

In LBA, the ID is denoted by (q, w, k) where q ∈ Q, w ∈ Г and k is some
integer between 1 and n.The transition of the IDs is similar except that if k
changes to (k – 1), then Read/Write head moves to the left and if move to
(k + 1) then head moves to the right.

Languages accepted by LBA is:

The language accepted by LBA is defined as the set :

{w∈{∑ - {ML, MR})* | (q0, ML, w,MR, 1) * ├ (q, α, i) for some q ∈ F and
for some integer i between 1 and n.

6.4 LINEAR BOUND AUTOMATA AND LANGUAGES

A string ‘w’ is accepted bylinear bounded automaton M if,

 First it start at initial state with Read/Write head reading the left end
marker (ML), M halt over the right-end marker (MR) in final state,
otherwise w is rejected.

 The production rules for the generative grammar are constructed as in the
case of TM. The following additional productions are needed in the case
of LBA:

aiqf MR → qfMR, for all ai∈ Г

ML qf MR → MLqR , ML qf → qf

The class of recursive languages does not show up explicitly in below
Table, because there is no known way to characterize these languages
using grammars.

Relation between LBA and Context-SensitiveLanguages

The set of strings accepted byLBA(non-deterministic TM) is the set of
strings generatedby the context-sensitive grammars, excluding the null
strings, Now we can conclude:

‘If L is a context-sensitive language, then L is accepted by a linear
bounded automaton. The converse is also true.’

The construction and the proof are similar to those for Turing machines
with some modifications.

The Chomsky Hierarchy

Languages Form of Productions Accepting

Type (Grammars) in Grammar Device

3 Regular A → aB, A → ᴧ Finite

(A,B∈V , a ∈∑) automaton

mu
no
tes
.in

Linear Bound Automata

91

2 Context-free A→ α
 Pushdown

(A ∈V ,α ∈(V ∪ ∑)*) automaton

1 Context-sensitive α →β Linear-bounded

(α, β ∈(V ∪ ∑)*, |β| ≥ |α|, automaton

αcontains a variable)

0 Recursively α →β Turing machine

 enumerable(α, β ∈(V ∪ ∑)

 (unrestricted) α contains a variable)

Example

Example 1: Construct an LBA for {anbncn | n ≥ 1}

Solution:

The tape alphabet for an LBA,is finite, but it may be considerably bigger
than the input alphabet. So we can store more information on a tape than
just an input string or related sentential form.

Consider following,

let, Γ = {a, b, c, a, b, c}, and Σ = {a, b, c}. Occurrences of bold letters can
serve as markers for positions of interest.

To test whether an input string has the form anbncn

 1) Scan string to ensure it has form akbmcnfor k, m, n ≥ 1.

Along the way, mark leftmost a, b, c.likeaaabbbccc.

2) Scan string again to see if it’s the rightmost a, b, c that are marked.

If yes for all three, ACCEPT.

If yes for some but not all of a, b, c, REJECT.

 3) Scan string again moving the ’markers’ one position to the right.

Like aaabbbccc becomes aaabbbccc. Then Go to 2. All this can be done
by a

mu
no
tes
.in

Theory of Computation

92

LBA.

Example 2. Give an LBA that accepts the language {aibici∣i ∈ℕ}.

Solution:

Logic:

 The automaton rewrites the first a to A, and changes its state, looks for
the first b.

 The automaton rewrites the first b to B, and changes its state, looks for
the first c.

 The automaton rewrites the first c to C, and changes its state, looks
(backward) for the first a.

 The capital letters A,B,C are read without changing them.

 The above movements are repeated.

 If finally only capital letters remain between the border ♯ signs, then
the automaton accepts (the input).

Formally, letM=(Q,∑, Г,δ,q0,ML,MR,,F)

LBA = ({q0, q1, q2, q3, q4, qf}, {a,b,c}, {a,b,c,A,B,C},δ, q0, ML, ,MR, {qf})

be a deterministic LBA, where δ consists of the next transitions:

1. δ (q0, MR) = (qf, MR, Halt) – the empty word is accepted by LBA.

2. δ (q0, a) = (q1, A, Right) – the first (leftmost) a is rewritten to A and
LBA changes its state.

3. δ (q0, B) = (q0, B, Left) – the capital letters B and C are skipped in
state q0,

4. δ (q0, C) = (q0, C, Left) – by moving the head to the left.

5. δ (q1, a) = (q1, a, Right) – letter a is skipped in state q1 to the right.

6. δ (q1, B) = (q1, B, Right) – capital B is also skipped.

7. δ (q1, b) = (q2, B, Right) – the leftmost b is rewritten by B and the
state becomes q2.

8. δ (q2, b) = (q2, b, Right) – letter b is skipped in state q2 to the right.

9. δ (q2, C) = (q2, C, Right) – capital C is also skipped in this state.

10. δ (q2, c) = (q3, C, Left) – the leftmost c is rewritten by C and LBA
changes its state to q3.

11. δ (q3, a) = (q3, a, Left) – letters a,b are skipped in state q3

mu
no
tes
.in

Linear Bound Automata

93

12. δ (q3, b) = (q3, b, Left) – by moving the head of the automaton to
the left.

13. δ (q3, C) = (q3, C, Left) – capital letters C,B are skipped in state q3

14. δ (q3, B) = (q3, B, Left) – by moving the head of the automaton to
the left.

15. δ (q0, A) = (q3, A, Right) – the head is positioned after the last A
and the state is changed to q0.

16. δ (q4, B) = (q3, B, Right) – if there is a B after the last A the state is
changed to q4.

17. δ (q4, B) = (q4, B, Right) – in state q4 capital letters B and C are
skipped

18. δ (q4, C) = (q4, C, Right) – by moving the head to the right.

19. δ (qf, MR) = (qf, MR, Accept) – if in q4 there were only capital
letters on the tape, LBA accepts.

6.5 REVIEW QUESTIONS

1. Define Linear Bound Automata.

2. Write note on ID of LBA.

3. Which type of language is accepted by Linear Bound Automata?

4. Justify. Is the language accepted by LBA is accept by Turing Machine.

6.6 SUMMARY

1. Linear Bound Automata design to accept context-sensitive languages.

2. End markers (ML and MR) is the safety feature of LBA.

6.7 REFERENCES

1) John Martin,” Introduction to Languages and the Theory of
Computation”, Tata McGraw-Hill, Third Edition.

2) Introduction to Languages and The Theory of Computation, Fourth
Edition by John C. Martin

3) Theory of computer science Automata, languages and computation,
Third edition by K.L.P. Mishra and N. Chandrasekaran

mu
no
tes
.in

 94

7
TURING MACHINES

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Turing Machine Definition

7.3 Representations

7.4 Acceptabilityby Turing Machines

7.5 Designing and Description of Turing Machines

7.6 TuringMachine Construction

7.7 Variants of Turing Machine

7.8 Review Questions

7.9 Summary

7.10 References

7.0 OBJECTIVES

This chapter would make you to understand the following concepts:

 To study Turing Machines.

 Learn to design Turing Machine and it’s representation.

 Turing Machine construction.

7.1 INTRODUCTION

Turing machine (TM) was invented by Alan Turing in Turing 1936, which
is big achievement in the field of finite-state computing machines. Initially
was specially design for the computing of real numbers.TM is very
powerful than Linear Bound Automata. Today this machine use as a
foundational model for computability in theoretical computer science.TM
can effectively represent its configuration using a simple notation like as
ID's of PDA.TM has a infinite size tape, use to accept Recursive
Enumerable Languagegenerated by Type-0 Grammar. The machine can
read/ write and also move in both (left and write) directions. The machine
producesdesired output based on its input.

mu
no
tes
.in

Turing Machines

95

Why Turing Machines?

 It isRobust model in the computation world.

 Equivalence with other such models of computation, with
reasonableassumptions (e.g., only finite amount of work is possible in
1 step).

 Thus, though there are several computational models, the class of
algorithms.

 They can do everything a computer can do and vice versa. But takes a
lot more time. Is not practical and indeed its not what is implemented
in today’s computer.

 So then again, It is the top-most and powerful computational Model.

7.2 TURING MACHINE DEFINITION

A Turing Machine (TM) is a mathematical model which consists of an
infinite length tape and tape is divided into cells on which input is given. It
has a head which reads the input tape. A state register stores the state of
the Turing machine. After reading an input symbol, it is replaced with
another symbol, its internal state is changed, and it moves from one cell to
the right or left. If the TM reaches the final state, the input string is
accepted, otherwise rejected.

A Turing Machine can be formally described by 7-tuple (Q, ∑, Г, δ, q0, B,
F) where −

 Q is a finite set of states

 ∑ is the finite set of input alphabets, ∑⊆Г and B ∉ ∑

 Г is tape input symbol

 q0 is the initial state

 B is the blank symbol

 F is the set of final states

δ is a transition function; δ : Q × Г → Q × Г× {Left, Right}.

i.e.value of δ(q1 x); if defined, is a triple(P,Y,D) where

i) P is the next state in Q.

ii) Y∈ Г, scanned and written in the cell, replacing whatever symbol is
there

iii) D- direction; Left or Right, tell the moving direction for head.0

mu
no
tes
.in

Theory of Computation

96

7.3 REPRESENTATIONS

Turing Machine can be presented using:

i) Instantaneous descriptions using move relations.

ii) Transition table.

iii) Transition diagram or transition graph.

i) Instantaneous descriptions using move relations: An ID of a TM is
defined over entire input string and current state.

Definition: An ID of TM is a string α β γ, where β- current state of TM.

The αγ is a input string partition as:

α is substring of input string formed by the symbols available to the left of
‘a’, where ‘a’ is current symbol.

γ is the first symbol in the current symbol ‘a’ pointing by Read/Write head
and γ has all the remaining symbols of input string.

Example: Consider following TM. Obtain its ID.

Figure 7.1

Current symbol under Read/Write head is a7.

Suppose, current state: q2

By definition of ID - α β γ, where β is state = q2

∴a7is written to the right of q2 and

Symbol a1 to a6 to the left of q4

∴ The ID is

Figure 7.2

mu
no
tes
.in

Turing Machines

97

Moves in Turing machine

The δ(q, xi) changes the ID of TM. This change is called move.

If δ(q, xi) = (P, y, L)

Take input string x1, x2, ….Xn.

Currentsymbol under Read/Write head- xi

ID before processing symbol xi

 x1x2…….xi-1 q xi+1…..Xn

ID after processing symbol xi

 x1x2……. xi-2 P xi-1 y xi+1…..Xn

∴It is represented as

 x1x2…….xi-1 q xi…..Xn├ x1… xi-2 P xi-1 y xi+1…..Xn.

If δ(q, xi) = (P, y, R)

Then the ID become:

x1x2…….xi-1q xi…..Xn├ x1x2… xi-1 y P xi+1 …..Xn.

Thus Ii ├ Ikdefine the relationship between IDs.

├* denotes reflexive-transitive clousure of relation ├.

∴ If I1 ├* In then we split it as:

If I1 ├ I2 ├ ….. ├ In for some IDs I2, … In-1

ii)Transition table:

a) The transition function δ

 Q x Ґ → Q x Ґ x {L,R}

States Q stored in table rows and table column shows each of the tape
symbols Ґ.

b) Each pair (Q , Ґ) is represented by a triple (Q, Ґ, {L,R}) as:

If δ (qi, a) = (α, β, γ) then we write (α, β, γ) under qi
th row and ath column.

In transition table we get entry as:

State qi on input symbol 'a' goes to or changes to state ' γ ', by replacing the
input symbol 'a' by ' α' and moves the tape head one cell in direction of ' β'.

mu
no
tes
.in

Theory of Computation

98

iii)Representation by Transition Diagram

a) Every state implies to one vertex.

b) Transition of states represented by directed edges.

c) Each label of the edge is in the form (α, β, γ) whereα, β ∈ Г, γ ∈
{L, R}.

Here, the directed edge from state qi to qj with label (α, β, γ) it indicates transition

δ(qi,, α) = (qi, β, γ)

The symbol α will replaced with β and tape head moves to L , or R direction
according to the value ofγ.

Every Edge in the transition diagram is represented by 5-tuple (qi, α, β, γ, qj).

7.4 ACCEPTABILITY BY TURING MACHINES

A language isaccept by Turing Machines if it enters into a final state for
any input string w. If input not present in the language TM enters it into a
rejecting state. A recursively enumerable language is which isgenerated
by Type-0 grammar is accepted by a Turing machine. The set of languages
accepted using a turing machine is often called Recursively Enumerable
languages or RE languages. Recursive means for any number of times
repeating the same set of rules and enumerable means a list of elements.

Formal Definition ofTuring Machines,

 M = (Q, ∑, Г, δ, q0, B, F)

L(M) is the set of strings w ∈ ∑*, such that q0w ├ α p β for some state p
in F and any tape strings α and β. The TM ‘M’ does not accept w if the
machine M either halts in a non-accepting state.

Example :Design a TM to recognize all strings consisting of an odd
number of α’s.

Solution:

The Turing machine M can be constructed by the following moves −

 Let q0 be the initial state.

 If M is in q1; on scanning α, it enters the state q2 and writes B (blank).

 If M is in q2; on scanning α, it enters the state q1 and writes B (blank).

 From the above moves, we can see that M enters the state q1 if it scans
an even number of α’s, and it enters the state q2 if it scans an odd
number of α’s. Hence q2 is the only accepting state.

mu
no
tes
.in

Turing Machines

99

Hence,

M = {{q1, q2}, {1}, {1, B}, δ, q0, B, {q2}}

where δ is given by −

7.5 DESIGNING AND DESCRIPTION OF TURING
MACHINES

7.5.1 Turing Machine designing guidelines are:

i) Scan the symbol by Read / Write head to take the moving action(to
move in Left/Right direction). The machine must remember the past
scanned symbols. It can be remembering this by going to the next unique
state.

ii) By changing the state if there is a change in the written symbol or when
there is a change in the movement of Read/Write head we can minimize
the number of states.

7.5.2 Description of Turing Machines:

i) At the beginning of the alphabet lower case lettersshows input symbols.

ii) Near the end of alphabet as....X, Y, Z, Capital letters are used for tape
symbols that mayor may not be input symbols.

iii) B is generally represents Blank symbol.

iv) At the end of alphabet lower case letters are strings of input symbols.

v) Greek letters are used for strings of tape symbols.

vi) Letterslike q, p and nearby letters are states of machine.

7.6 TURING MACHINE CONSTRUCTION

Example 1: Construct a Turing Machine for language L = {anbncn | n≥1},

where Language = {abc, aabbcc, Aaabbbccc, ………}

Solution: The language L = {anbncn | n≥1} represents a language in which
we use only 3 character, i.e., a, b and c. At the beginning, language has
some number of a’s followed by equal number of b’s and then followed by
equal number of c’s. Any such string which falls in this category will be
accepted by this language.

Tape alphabet symbol Present State ‘q1’ Present State ‘q2’

Α BRq2 BRq1

mu
no
tes
.in

Theory of Computation

100

i) We use 2 tape symbols X and Y for a and b respectively.

ii) We replace a by X. Move right replace first b found by Y. move right find last
c replace it Blank ̀B'.

iii) Repeat step 2 until all a's, b's and c's. If no more a's, b's and c's are
present – Accept otherwise Reject the string.

Replacement Logic:

 Mark 'a' then move right.

 Mark 'b' then move right

 Mark 'c' then move left

 Come to far left till we get 'X'

 Repeat above steps till all 'a', 'b' and 'c' are marked

 At last if everything is marked that means string is accepted.

Let’s consider the string,
Direction aabbccB (String)

 → XaYbccB

 ← XaYbcBB

→ XYYcB

 ← XYYBB

 → XYYBA accept

Representation by Transition table method

 A B c X Y Z

q0 (q1, X,
R)

ERROR ERROR (q5, Y,
R)

q1 (q1, a,
R)

(q2, Y, R) (q2, Y,
R)

q2 (q2, b R) (q2, c, R) (q3, B,
L)

q3 (q4, B, L)

q4 (q4, a,
L)

(q4, b, L) (q4, c, L) (q0, X,
R)

(q4, Y,
L)

q5 ERROR (q5, Y,
R)

(q6, B, -
)

q6 Accept state

mu
no
tes
.in

Turing Machines

101

7.7 VARIANTS OF TURING MACHINE

We have discussed about Turing Machines.Now let’s see it’s variants
(types).

1) Multitrack Turing Machine:

Multitrack Turing Machine is a specific type of Multi-tape TM with only
one unified tape head. It is equivalent to the standard Turing Machine and
therefore accepts precisely the recursively enumerable languages.
Standard Turing machines have k-tape, k heads move independently along
k tracks. In ak-track Turing Machine, one head reads and writes on all
tracks simultaneously one by one. A tape position in ak-track Turing
Machine contains k symbols from the tape alphabet.

Figure 7.3

2) Two-way Turing Machine:

A two-way Turing Machine is an infinite tape with its input tape infinite in
both directions, other components (Tuple) are same as that of the basic
model.

Figure 7.4 (6.3)

Here the input string is a1, a2,a3, ... an. Whenthe input string placed on tape,
it is loaded with all blank symbols (B) to the left of a1 and to the right of
an. So if q0 is the initial state of the TM, ID corresponding to the initial
state will be q0, a1, a2, s….. an,B.

3) MultitapeTuringMachine(MTT):

For every Multitape Turing Machine there is an equivalent single tape
Turing Machine. In MTT number of tapes and read/write heads increased.
All the indivisual tape will have there own respective tape heads. For this
assumption is that all the tapes are two way infinite. It contains finite
control with k number of heads.

mu
no
tes
.in

Theory of Computation

102

Figure 7.4

Depending upon the state of finite control, in single move the symbols
scanned by each of the tape heads, the machine can

a) Change the state.

b) Print a new symbol on each of the cells scanned by its tape head.

c) Then independently move each tape head, one cell to the left or
right or keep it stable.

4) Single tapeTuring Machine:

A Turing Machine consists of only one tape with infinite length on which
read and write head can be performedoperation. The tape consists of
infinite cells on which each cell either contains input symbol or a special
symbol called blank (B).

Figure 7.5

5) Non-deterministic Turing Machine(NTM):

Non-deterministic TM plays an important role in FAs and PDAs. It is
convenient but not essential in caseofFA.

Deterministic Turing machines have enough computing power that
nondeterministic fails to add any more. Non-deterministic TM differs from
deterministic TM, we have seen earlier, in the function δ, such that for
each state q and tape symbol X, δ (q, x) is a set of triples like,

mu
no
tes
.in

Turing Machines

103

((q1, Y1, D1), (q2, Y2, D2) (qk,Yk,DK)}

here, k is finite integer.

At each step, aNTM chooses any of the triples to be the next move,but it
cannot pick a state from one triple, a tape symbol from another and the
direction from yet another triple. It take triples from entire triple group
like (q1, Y1, D1) at a time.

From this we can say that transitions in NTM are defined by a function
from

δ: Q × Г→ subsets of Q x Г x {L, R}.

String Acceptability by NTM

If there is any sequence of choices of move that leads from the initial ID
with w as input to an ID with an accepting state then NTM, M accepts an
input w.

The existence of other computations that halt in non-accepting states or
fail to halt altogether is irrelevant.

Language Acceptedby NTM

The language accepted by a machine is the set of strings accepted by the
M as mention in above point .

 The acceptance in NTM can be defined by final state or by halting state
alone. A NTM accepts a string u by halting if there is at least one
computation that halts normally when run with u.

Thecomputational capability of TM does not increase by non-
determinism: The languages accepted by NTM are those accepted by
deterministic TMs. To accomplish the transformation of a NTM to an
equivalent deterministic machine, we show that the multiple computations
for a single input string can be sequentially generated and examined.

Examples

Example 1:Construct a TM machine for checking the palindrome of the
string of even length.

Solution:

Firstly we read the first symbol from the left and then we compare it with
the first symbol from right to check whether it is the same.

Again we compare the second symbol from left with the second symbol
from right. We repeat this process for all the symbols. If we found any
symbol not matching, we cannot lead the machine to HALT state.

mu
no
tes
.in

Theory of Computation

104

Suppose the string is ababbabaΔ. The simulation for ababbabaΔ can be
shown as follows:

Now, we will see how this Turing machine will work for ababbabaΔ.
Initially, state is q0 and head points to a as:

We will mark it by * and move to right end in search of a as:

We will move right up to Δ as:

We will move left and check if it is a:

It is 'a' so replace it by Δ and move left as:

Now move to left up to * as:

Move right and read it

Now convert b by * and move right as:

mu
no
tes
.in

Turing Machines

105

Move right up to Δ in search of b as:

Move left, if the symbol is b then convert it into Δ as:

Now move left until * as:

Replace a by * and move right up to Δ as:

We will move left and check if it is a, then replace it by Δ as:

It is 'a' so replace it by Δ as:

Now move left until *

Now move right as:

mu
no
tes
.in

Theory of Computation

106

Replace b by * and move right up to Δ as:

Move left, if the left symbol is b, replace it by Δ as:

Move left till *

Move right and check whether it is Δ

Go to HALT state

The same TM can be represented by Transition Diagram:

Example 2:Design a Turing Machine to implement 1's complement .

mu
no
tes
.in

Turing Machines

107

Solution:
Logic for 1's complement

1. Scan input string from left to right

2. Convert '1' into '0'

3. Convert '0' into '1'

4. When BLANK is reached move towards left(i.e.start of input
string).

Consider, TAPE movement for string "1010111"

Sequential explanation of TAPE movement

1. Input is given as "1010111" (scan string from left to right)

2. Convert '1' into '0' and move one step right

3. Convert '0' into '1' and move one step right

4. Convert '1' into '0' and move one step right

5. Convert '0' into '1' and move one step right

6. Convert '1' into '0' and move one step right

7. Convert '1' into '0' and move one step right

8. Convert '1' into '0' and move one step right
When BLANK (in right) is reached, string is finished. So move to start of
string (optional).

Tape movements are shown below.

mu
no
tes
.in

Theory of Computation

108

Let,

1's complement is written into the TAPE in place of input string.
Input String : 1010111
Output String : 0101000

State Transition Diagram

We have designed state transition diagram for 1's complement as follows:
1. Replace '1' with '0' and vice versa.
2. When BLANK is reached move towards left
3. Using state 'q2' we reach start of the string.
4. When we reach to BLANK in left we move one step right to point start
of string.
5. qf is final state

Example 3:

Construct a Turing Machine for language L = {ww | w ∈ {0,1}}

Solution:

The w is a string. If w = 10110, so the Turing machine will accept the
string

 z = 1011010110.

Logic:

we will convert a 0 to x and 1 to y. After continuously doing it a point is
reached when all 0’s and 1’s has been converted into x and x respectively.
Now, we are on the midpoint of the string.

Now, convert all x's and y's on the left of the midpoint into 0's and 1's.
Now the first half the string is in the form of 0 and 1. The second half of
the string is in the form of x and y.

Now, again start from the beginning of the string. If you have a 0 then
convert it into x and move right till reaching the second half, here if we
find x then convert it into a blank(B). Then traverse back till find an x or a
x. We convert the 0 or 1 at the right of it into x or y respectively and
correspondingly, convert its x or y in the second half of string into a
blank(B).

mu
no
tes
.in

Turing Machines

109

Continue this till converted all symbols on the left part of the string into x
and y and all symbols on the right of string into blanks. When one part is
completely converted but still some symbols in the other half are left
unchanged then the string will not be accepted. If we did not find an x or y
in the second half for a corresponding 0 or 1 respectively in the first half.
Then also string will not be accepted.

State Transition Diagram

Example 4:

Construct a Turing Machine for language L = {02n1n | n>=0}

Solution:

Stepwise Working :

 Step-1:
Given language contains twice number of 0’s as compare with 1’s. So,
we will first make the first two zeros Blank and go from state Q0 to Q1
and from state Q1 to Q2.

 Step-2:
After making them Blank we will traverse to the end of the string till we
get the rightmost 1 in state Q3 and make it Blank reaching state Q4.

 Step-3:
Now we will traverse back till we get the left most zero in the string and
return to the state Q0 from Q4.

mu
no
tes
.in

Theory of Computation

110

 Step-4:
We are just reducing the string by making left most two zeros Blank and
rightmost 1 Blank and if the string belongs to the language then it will be
left empty and hence get accepted at state Q5 which is Final state. If the
string is empty it will also get accepted at Q5.

State Transition Diagram

7.8 REVIEW QUESTIONS

1) Define Turing Machine.

2) Describe Turing Machine representation.

3) What type of language or grammar is accepted by Turing machine?

4) Design (construct) a TM for language L={anb2n | n ≥ 1}

5) Construct a TM for language L = {0n 1n 2n | n ≥ 1}

6) Write note on variants of TM.

7) Construct TM to accept the language 0* 1*

7.9 SUMMARY

1) Tuples of Turing Machine are:M = (Q, ∑, Г, δ, q0, B, F)
δ : Q x Г x {L, R}

2) Language accepted by Turing Machines, M = (Q, ∑, Г, δ, q0, B, F),
L(M) is the set of strings w ∈ ∑*, such that q0w ├ α p β for some
state p in F and any tape strings α and β.

mu
no
tes
.in

Turing Machines

111

3) Variants of TM:

 i) Multitrack TM

 ii) Two-way TM

 iii) Multiple tape TM

iv) Single tape TM

v) Non-deterministic TM

7.10 REFERENCES

1) Introduction to Computer Theory, Daniel Cohen, Wiley,2nd Edition

2) Introduction to Theory of Computation, Michel Sipser, Thomson.

mu
no
tes
.in

 112

8
UNDECIDABILITY

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 The Church-Turing thesis

8.3 Universal Turing Machine

8.4 Halting Problem

8.5 Introduction to Unsolvable Problems

8.8Review Questions

8.9 Summary

8.10 References

8.0 OBJECTIVES

This chapter would make you to understand the following concepts:

 To study The Church-Turing thesis.

 Understand the Universal Turing Machine.

 What is Halting Problem?

 Introduction to Unsolvable Problems.

8.1 INTRODUCTION

In computing and mathematics there are many problems that are
unsolvable. The deterministic Turing Machine has capability to compute
whatever computational work is performed by the computer. Both are
equally powerful for computation, and any of their variations do not
exceeds the computational power of deterministic TM.

There are some problems which cannot be solved by TM and therefore by
computer also, such a problem is consider asundecidable problem.

8.2 THE CHURCH-TURING THESIS

Alonzo Church wasAmerican mathematician and logician who made
major contributions to mathematical logic and the foundations of
theoretical computer science. His most renowned accomplishments were

mu
no
tes
.in

Undecidability

113

Church's theorem, the Church-Turing thesis, and the creation of λ-
calculus, or the Church λ operator.

There are various equivalent formulations of the Church-Turing thesis.

Formulation of the Church-Turing thesis is: “ Anything that can be
computed on any computational device can also be computed on a Turing
machine”.

or

“a problem can be solved by an algorithm iff it can be solved by a Turing
Machine”

or

“A common one is that every effective computation can be carried out by
a Turing machine. “

In the 1930s, two researchers– Alan Turing from England and Alonzo
Church from theUS – started analyzing the question of what can be
computed. They used two different approaches to answer this question:

• Alan Turing, with hiscomputational analysis of Turing machines, what
we would now consider computer engineering and computer
architecture;

 • On the other hand, Church focused on what can be described – i.e., on
what we would now consider programming languages.

Initially, they came up with two different answers to this question:

 • Turing states that a function is computable if and only if it can be
computed on a Turing machine, while

 • Church statesthat a function is computable if and only it be described by
a program in his programming language (which is similar to LISP and
Scheme).

These, two statements areshows different answers – until Church proved
that these definitions are actually equivalent:

• if a function can be computed on a Turing machine, then it can also be
described by a program in Church’s programming language, and

• if a function can be described by a program in Church’s programming
language, then it can also be computed on a Turing machine.

Later on, their two statements were merged into one statement, which we
now call Church-Turing thesis.

Turing gave a very convincing argument that a human computer
(performing symbolic manipulations with pen and paper) can be simulated
by an appropriate Turing machine. Clearly, every Turing machine can be
simulated by a human (who will just follow the program of the Turing

mu
no
tes
.in

Theory of Computation

114

machine). Thus, we have an equivalence between the intuitive notion of an
algorithm (of the symbolic-manipulation kind, as discussed above) and the
formal notion of a Turing machine. This equivalence is usually called the
“Church-Turing thesis”

8.3 UNIVERSAL TURING MACHINE

The Church-Turing thesis tells us that Turing machine is more powerful
thanall effective models of computation.TM is create to execute specific
algorithm.For every new computation the different Turing Machines are
constructed for every input output relation. So this need is solved by
introducing Universal Turing machine in which input on the tape takes the
description of a machine M. It means if we have TM for computing one
calculation, then computing a different calculation or another task we
requires a different machine. Electronic computers have same limitations
and if we determine to change the performance of machine ones need to
rewrite the machine.

So we can design a Turing machine which gives us all computing
capabilities like any other TM can do, this machine is called Universal
Turing Machine(UTM). It can simulate the behaviour of any TM, which
capable of running any algorithm.

This machine should have the capability of imitating any TM T, given the
following information in its tape:

1. The description of T in terms of its program area or operation of the
tape.

2. The Starting state or initial configuration of T and the symbol scanned
(state area of the tape).

3. The data to be given to T (data area of the tape).

The Universal Turing Machine

● Theorem1: There is a Turing machine UTM called the universal Turing
machine that, when run on ⟨M, w⟩, where M is a Turing machine and w is
a string, simulates M running on w.

● Conceptually:

 UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:

Set up the initial configuration of M running on w.

while (true) {

 If M accepted w, then UTM accepts ⟨M, w⟩.

 If M rejected w, then UTM rejects ⟨M, w⟩.
 Otherwise, simulate one more step of M on w.

 }”

mu
no
tes
.in

Undecidability

115

● Theorem2: There is a Turing machine UTM called the universal Turing
machine that, when run on ⟨M, w⟩, where M is a Turing machine and w is
a string, simulates M running on w.

 ● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

 ● If M rejects w, then UTM rejects ⟨M, w⟩.

 ● If M loops on w, then UTM loops on ⟨M, w⟩.

Design of UTM

The UTM should have the capability to correctly interprets the rules of
operations of T using algorithm.

A UTM is designed to simulate the computations of an arbitrary turing
machine M. For this computation the input of the universal machine must
contain a representation of the machine M and the string w to be processed
by M.

To achieve this we assume that M is a standard TM which accepts by
halting. The action of UTM, U is represented by:

 Let R(M) be the representation of machine M with string w.

Figure 8.1

The output labeled 'loop' shows that the computation of U does not
terminate. If M halts and accepts input w, U does the same.

If M does not halt with w, neither does U. The machine U is called
universal since the computationof any TM M can be simulated by U.

In universal machineconstruction is for to design the string representation
of a turing machine. Because of the ability to encode arbitrary symbols as
strings over {0, 1}, we consider truing machines with input alphabet {0,
1} and tape alphabet {0, 1, B}. The states of turing machine are assumed
to be named {qo, q1 qn} whereqo as start state.

mu
no
tes
.in

Theory of Computation

116

Formal Definition

Turing machine M is defined by its transition function(δ). A transition of a
standard turing machine is given as:

δ (qi, x) = [qj) y, d]

Where qi, qj∈ Q, x, y ∈Г and d ∈ {L, R)

We encode the elements of M using strings of 1's:

Symbol Encoding
0 1
1 11
B 111
q0 1
q1 11

qn n+1
L 1
R 11

Consider the following TM:

M = ({q1, q2, q3}, {0, 1}, {0, 1, B), δ, q1, B, {q2})

The moves are δ (q1, 1) = (q3, 0, R)

 δ (q3, 0) = (q1, 1,R)

 δ (q3, 1) = (q2, 0, R)

 δ (q3, B)= (q3, 1, L)

 Then the machines M can be coded as:

111010010001010011000101010010011

00010010010100110001000100010010111

The code begins and ends with 111. The bold portion represents one move
of TM.

UTM Simulation of T

UTM can simulate T, one step at a time. Steps are as follows:

Step 1: Scan the square (cell) on the state area of the tape and read the
symbol that T reads and initial state of T.

Step 2: Move the tape over program area containing the description of T
find out the row pointed by the symbol, read in step 1.

mu
no
tes
.in

Undecidability

117

Step 3: Find the column pointed by the statesymbol in which T resides
and then read the triple (new state ,symbol to be replace and direction of
the tape movement) in the intersection of this column with the row found
in step 2.

Step 4: Move the tape to the appropriate cell in the data area, replace the
symbol, move the head in required direction, read next symbol and
finally read the state area, replace the state and scanned symbol. And go to
step 1.

Let end(z) denote the encoding of a symbol z. A transition δ (qi, x) = [qj,
y, d] isencodedbythestring end(qi) 0end(x) 0end(qj) 0end(y) 0end(d)

The components of transitions are separated by 0's. Two of consecutive
0’s are used to show separate transition. The beginning and ending of the
representation are designed by 3 0's.

Example: Let M = (Q, {0, 1}, {0, 1, B), δ, q1,B, {q2}) be a TM.

Assume Q = {q1, q2,qn}

Let's consider 0, 1, and B as X1, X2, and x3 respectively.

 D1 and D2are head movements for directions L and R respectively.

Consider the following move:

δ (qi, Xj) = (qk, Xl, Dm)

The move can be encoded by the binary string:

0i 1 0j 1 0k 1 0l 1 0m

A turing machine M with binary code is

111 code1 11 code2 11 11 coden111, …..Form(1)

Where each codei is of each above form, this code is beginning and ending
with 111. Each move of M is encoded by one of the codei. Each codeiis
separated by two consecutive 11’s. Thus the encoding will be unique.

Above imitation algorithm have problem. since here we have only one-
dimensional linear tape on the UTM, we require two-dimensional
description of T unless we use some coding to convert the two-
dimensional information into one-dimensional.

:. So we can design a UTM in following way.

mu
no
tes
.in

Theory of Computation

118

The Turing machine is described as a multitape. TM as shown:

Figure 8.2

Operation of UTM is as follows:

i) Examine the input to make sure that the code for M is valid code for
some TM. If not U halts without accepting. For invalid codes are assumed
to represent the TM with no moves, and such a TM accepts no inputs, this
action is correct.

ii) Initialize the second tape to contain the input w, in its encoded form.
i.e. for each 0 of w, place 10 on the second tape, and for each 1 of w, place
100 there.

(Blanks on the simulated tape of M, which are represented by 1000, will
not actually appear on that tape, all cells beyond those used for w will hold
the blank of U.

However, U knows that, should it look for a simulated symbol of M and
find its blank, it must replace that blank by the sequence 1000 to simulate
the blank of M)

iii) Place simulated 0,at thestart state of M, on the third tape and move the
head of U's second tape to the first simulated cell.

iv) For simulate the move of M, U search it on its first tape for the
transition of 0i 1 0j 1 0k 1 0l 1 0m where 0i is state on third tape, and 0j is
tape symbol of M which begins at the position on tape 2 scanned by U.
This is the transition of one M which create next one. U should:

mu
no
tes
.in

Undecidability

119

a) Change the contents of third tape to 0k. Means it should able simulate
the state change of M, for that change , U first changes all the 0’s on
tape 3 to blanks and then copies 0k from tape 1 to tape 3.

b) Replace 0j on the tape 2 by 0l means make change in tape symbol of
M. If more or less space is needed (i.e. I ≠ 1), then use the scratch tape
and using shifting over technique manage the space.

c) Now, move the head on tape2 to the position of the next 1 to the left or

right respectively, depending on weather m = 1 (move left) or m = 2
(move right) . Therefore U makes move of M to the left or to the right.

v) If there is no match in M for transition that matches the simulated state
and tape symbol, then in (iv), no transition will be found. Thus M halts
in the simulated

Configurationand U must do likewise.

vi) If M enters into its accepting state, then U accept.

8.4 HALTING PROBLEM

Before start to study Halting Problem, let’s learn some concepts:

 Computability theory –It is the branch of theory of computation
which studies the problems of computationally solvable using
different model. In computer science, the computational complexity,
or complexity of an algorithm is the amount of resources required for
running it.

 Decision problems –A decision problem has only two possible
outputs (i.e. yes or no) on any given input. In terms of computability
theory and computational complexity theory, a decision problem is a
problem that can be posed as a yes-no question for the input values.
Like is there any solution to a particular problem? The answer would
be either yes or no. Simply a decision problem is any arbitrary yes/no
question on an infinite set of inputs.

 Turing machine –Now we know very well that, a Turing machine is
a mathematical model of computation. A Turing machine is a general
example of a CPU which controls all data manipulation work,
performed by a computer. Turing machine can be of halting as well as
non halting type and it depends on algorithm and input associated
with the algorithm.

 Decidable language –
A decision problem P is said to be decidable (i.e., have an algorithm)
if the language L of all yes instances to P is decidable.
Example-

mu
no
tes
.in

Theory of Computation

120

 (I) (Acceptance problem for DFA) Given a DFA does it accept a
given word?

(II) (Emptiness problem for DFA) Given a DFA does it accept any
word?

(III) (Equivalence problem for DFA) Given two DFAs, do they accept
the same language?

If answer to above examples is yes then language generated by above is
decidable.

 Undecidable language –
A decision problem P is said to be undecidable if the language L of
all yes instances to P is not decidable or a language is undecidable if
it is not decidable. An undecidable language maybe a partially
decidable language or something else but not decidable. If a language
is not even partially decidable , then there exists no Turing machine
for such language.

Halting is a situation in the program that tells us on certain input will
accept it and halt or reject it and halt and it would never go into an
infinite loop. Basically halt shows terminating the current program or
algorithm execution on particular input condition.

So can we have an algorithm which will tell us that is given program will
halt or not. In terms of Turing machine, will it terminate when run on
some machine with some particular given input string.

The answer is no we cannot design a generalized algorithm which can
appropriately say that given a program will ever halt or not?The only
way is to run the program and check whether it halts or not.We can solve
the halting problem question in such a way also: Given a program
written in some programming language(c/c++/java) will it ever get into
an infinite loop(loop never stops) or will it always terminate(halt)?

It is an undecidable problem because we cannot have an algorithm which
will tell us whether a given program will halt or not in a generalized way
at certain point in executioni.e by having specific program/algorithm.In
general we can’t always know that’s we can’t have a general algorithm.
The best possible way is to run the program and see whether it halts or
not.In this way for many programs we can see that it will sometimes loop
and always halt.
The halting problem is a decision problem about properties of computer
program on a Turing Machine computation model. The problem is to
determine, for a given program and an input to a program, whether the
program will halt when run with that input.

In this abstract environment, there is no resource limitations of memory or
time on the program’s execution, before halting it can take arbitrary long
storage space. The question is that whether the given program will ever
halt on a particular input.

mu
no
tes
.in

Undecidability

121

 Example

i. The following program having segment:
while (1) {continue; }
does not halt. It goes in infinite loop.

ii. The following program
printf (" Hello") ;
halts very soon:

The halting problem is undecidable: This means that there is no algorithm
which can be applied to any arbitrary program and input to determine
whether the program stops when run with that input.

Definition of Halting Problem

The halting problem for Turing machines is defined as follows:

Given a TM M = (Q, ∑, Г, δ, qo, B, F) and an input string x∈Г*, will M
eventually halt?

Halting Problem representing as a Set

The conventional representation of decision problems is the set of objects
processing or satisfying the property in question:

The halting set:K = {(i, x) program i will eventually halt if run with input
x} represents the halting problem.

This set is recursively enumerable i.e. there is a computable function that
lists all of the pairs (i, x) it contains. However, the complement of this set
is not recursively enumerable.

The halting problem would be solvable of a TM H which behaves like
shown below can be constructed:

Figure 8.3

mu
no
tes
.in

Theory of Computation

122

where,

e(M): Encoding of M

i.e. e(M) is for example a set of 5-tuples (q, X1, p, r, R) that describe the
TM.

Then the halting problem is:

In this section we introduce the reduction technique. This technique is
used to prove the undecidability of halting problem of Turing machine.

We say that problem A is reducible to problem B if a solution to problemB
can be used to solve problem A.

For example, ifA is the problem of finding some root of x4- 3x2+ 2 = 0

and Bis the problem of finding some root of x2- 2 = 0, then A is reducible

toB. As x2- 2 is a factor of x4-+ - 3x2+ 2, a root of x2- 2 = 0 is also a root

of x4-+ - 3x2+ 2.

Note:IfA is reducible to B and Bis decidable then A is decidable. If Ais
reducible to B and A is undecidable, then B is undecidable.

Theorem

HALTTM={(M, w) | The Turing machine M halts on input w} is
undecidable.

Proof :

We assume that HALTTMis decidable, and get a contradiction. Let M1

be the TM such that T(M1) = HALTTM and let M1halt eventually on all

(M, w).We construct a TM M2 as follows:

1. For M2, (M, w) is an input.

2. The TM M1 acts on (M, w).

3. If M1 rejects (M, w) then M2rejects (M, ,w).

4. If M1 accepts (M, w),simulate the TM M on the input string w until M
halts.

5. If M has accepted w, M2 accepts (M, w); otherwise M2rejects (M, w).

Thus there exist an effective procedure (i.e.) an computable function for
deciding, for every pair (e(M), x); does M halt for x?

mu
no
tes
.in

Undecidability

123

When M1 accepts (M, w) (in step 4), the Turing machine M halts on w.

In this case either an accepting state q or a state q' such that δ(q', a) is
undefined till some symbol a in w is reached. In the first case (the first
alternative of step 5) M2accepts (M. w). In the second case (the second
alternative of step 5) M2 rejects (M, w).

It follows from the definition of M2that M2halts eventually.

Also,T(M2) = {(M, w) | The Turing machine accepts w} = ATM

This is a contradiction since ATM isundecidable.

8.5 INTRODUCTION TO UNSOLVABLE PROBLEMS

The deterministic Turing machines are capable of doing any computation
that computers cando,i.e computationally they are equally powerful and
any of their variations do not exceed the computational power of
deterministic TM.

There are problems that cannot be solved by TMs and hence by computers
so the concept of Unsolvability comes in front.

Solving a problem can be viewed as recognizing a language. The
unsolvability can be seen in terms of language recognition.

Suppose that a language is acceptable but not decidable. Then given a
string a TM that accept the language starts the computation. At any point
of time if TM is running, there is no way of telling whether it is in an
infinite loop or along the way to a solution and it needs more time.

This if a language is not decidable, the question of whether or not a string
is in the language may not be answered in any finite amount of time. Since
we cannot wait forever for an answer, the question is unanswerable i.e. the
problem is unsolvable or undecidable.

Examples Unsolvable Problems (UndecidableProblems)

a) Unsolvable Problems about Turing Machines:

 Using the reduction technique, thefollowing problems can be shown
unsolvable:

1. If M is a TM, and x is a string of input symbols to M, does M halt on x?

2. If M is a TM that computes a function f with no arguments, does M halt
on a blank tape?

3 .Given a TM M, halt for any string of input symbols?

4. If M is a TM, is the set of input strings on which M does halt regular? Is
it context free? Is it X input?

mu
no
tes
.in

Theory of Computation

124

5. Given two TMs, M1 and M2, over the same alphabet, do M1 and M2 halt
on the same set of input strings?

b) Unsolvable Problems about (General) Grammars:

Unsolvability results can also be shown about grammars, using
reductions.These

problems are unsolvable.

 1. Given a grammar G and a string w, is w ∈L(G)?

 2. Given a grammar G, is ∈∈L(G)?

 3. Given grammars G1 and G2, is L(G1) = L(G2)?

 4. Given a grammar G, is L(G) = φ?

 5. There is a fixed grammar G such that it is undecidable given w whether
w ∈L(G)

c) Unsolvable Problems about Context-Free Grammars(CFG)

 The following are undecidable:

 1. Given a context-free grammar G, is L(G) = Σ∗ ?

 2. Given two CFG G1 and G2, is L(G1) = L(G2)?

 3. Given two push-down automata M1 and M2, is L(M1) = L(M2)?

 4. Given a push-down automaton M, find an equivalent push-down
automaton with as few states as possible.

 Here are some more unsolvable problems about context-free grammars:

 Given a context-free grammar G, is G ambiguous?

 Given context-free grammars G1 and G2, is L(G1) ∩ L(G2) = φ?

 Some of the preceding problems are ones that we would very much like to
be able to solve. Some problems are in areas not related to grammars or
Turing machines at all. For example, Hilbert’s Tenth problem has to do
with Diophantine equations, and was shown to be unsolvable in the 1970’s
by a very complicated series of reductions. Hilbert’s tenth problem is to
give a computing algorithm which will tell of a given polynomial
Diophantine equation with integer coefficients whether or not it has a
solution in integers. Matiyasevic proved that there is no such algorithm.

Decidable problems related regular languages

Let, begin with certain computational problems concerning finite
automata. We give algorithms for testing whether a finite automaton
accepts a string, whether the language of a finite automaton is empty, and
whether two finite automata are equivalent.

mu
no
tes
.in

Undecidability

125

For convenience we use languages to represent various computational
problems because we have already set up terminology for dealing with
languages. For example, the acceptance problem for DFAs of testing
whether a particular finite automaton accepts a given string can be
expressed as a language, A(DFA). This language contains the encodings
of all DFAs together with strings that the DFAs accept. Let

A(DFA) = { (B, w) B is a DFA that accepts input string w}.

The problem of testing whether a DFA B accepts an input w is the same as
the problem of testing whether (B, w) is a member of the language
A(DFA). Similarly, we can formulate other computational problems in
terms of testing membership in a language. Showing that the language is
decidable is the same as showing that the computational problem is
decidable.

In the following theorem we show that A(DFA) is decidable. Hence this
theorem shows that the problem of testing whether a given finite
automaton accepts a given string is decidable.

Theorem

A(REX) is a decidable language.

Proof:

The following TM P decides AREX.

P = "On input (R, w) where R is a regular expression and w is a string:

a) Convert regular expressionR to an equivalent DFA.
b) Run TM M on input (A, w).
c) If M accepts, accept; if M rejects, reject."

8.8 REVIEW QUESTIONS

1) Define the Church-Turing thesis.

2) Define Universal Turing Machine.

3) Write note on HaltingProblem.

4) What is Unsolvable Problems? Give examples.

8.9 SUMMARY

 The Church-Turing thesis.

“ Anything that can be computed on any computational device can
also be computed on a Turing machine”.

mu
no
tes
.in

Theory of Computation

126

 A transition of a standard turing machine is given as:
δ (qi, x) = [qj) y, d]
Where qi, qj∈ Q, x, y ∈ Г and d ∈ {L, R)

 The halting problem for Turing machines: Given a TM
 M = (Q, ∑, Г, δ, qo, B, F) and an input string x∈ Г *, will M
ventually halt?

 There are problems that cannot be solved by TMs and hence by
computers so they termed as Unsolvable Problems.

8.10 REFERENCES

1) Theory Of Computer ScienceAutomata, Languages and Computation
Third Edition by K.l.P. Mishra and N. Chandrasekaran.

 2) Introduction to Theory of Computation, Michel Sipser, Thomson.

mu
no
tes
.in

	Page 1

