Unit I

STORED PROCEDURE

Unit Structure
1.0 Objective
1.1. Introduction
1.2 Types of Stored Procedure
1.2.1 User Defined Procedures
1.2.2 System Stored procedure
1.2.3 Temporary Stored Procedure
1.2.4 Remote Stored Procedures
1.2.5 Extended Stored Procedure
1.3 Benefits of Stored Procedure
1.4 Creating Stored Procedures
1.4.1 Passing parameters in procedure
1.4.1.1 Procedure without parameter
1.5 Executing Stored Procedures
1.5.1 Executing the stored procedure with one parameter

1.5.2 Creating and Executing Procedure with multiple input
parameters

1.5.3 Creating a stored procedure with default parameters values
1.5.4 Creating a stored procedure with an output parameter

1.6 Altering Stored Procedures

1.7 Deleting a Stored Procedure

1.8 Viewing Stored Procedures

1.9 Summarization

1.10 References

Database Management Systems 1.0 OBJECTIVE

° After going through this chapter the students will be able to:

° Know the different type of procedure declaration in PL/SQL

° Declare a procedure with input and output parameters
° Modity the procedure and delete a procedure

° Know how to view the content in a stored procedure
1.1 INTRODUCTION

Stored Procedure :

A procedure is a subprogram, subroutine in any language which is used to
do some well defined function. It has a name, list of parameters and
statements of the particular language within that. In database terminology,
when a procedure is built to do some task on a database and stored in the
database , it is called a stored procedure. It is a pre-compiled collection of
SQL statements stored in a database server. In MySQL procedures are
stored in the MySQL database server.

SQL Server Stored Procedure }

Client

SQL Statement -

—

Data

In terms of database a stored procedure consists of a set of Structured
Query Language (SQL) statements which can be reused and shared by
many programs. They can access or modify data in a database.lt can
accept input and output parameters. We can do the database operations
like Select, Insert, Update, Delete etc in a database.

1.2 TYPES OF STORED PROCEDURES

1. User Defined Procedure
2. System Stored Procedure

3. Temporary Stored Procedure : The temporary procedures are also
user-defined procedures and are permanent procedures. They are
stored in tempdb databases. They are of two types, local and global.
Local temporary procedures starts with (#)

4. Remote Stored Procedure:
5. Extended Stored Procedure:
1.2.1 User Defined Procedure

The procedure created by the user and stored in the database is called User
Defined Procedures. It can be created in a user-defined database or System
database except the Resource database. The procedure can be developed in
either Transact-SQL or as a reference to a Microsoft. NET framework
common runtime language (CLR) method.

Transact-SQL stored procedures handle SQL statements INSERT,
UPDATE, and DELETE statements with or without parameters. The
output is the row data, as a result of a SELECT statement.

CLR stored procedures are .NET objects which run in the memory of the
database. Complex logic can be implemented using them as they use the
NET framework and using its classes. They include Functions, Triggers
etc. It allows the coding to be done in one of .NET languages like C#,
Visual Basic and F#.

1.2.2 System Stored procedure

These types of procedure are used to do administrative activities of a SQL
Server and are prefixed with sp_. Because of this it is better not to use this
prefix when naming user-defined procedures. These procedures are
physically stored in the internal Resource database. They logically appear
in the sys schema of user defined and system defined databases.

1.2.3 Temporary Stored Procedure

The temporary procedures are also user-defined procedures and are
permanent procedures. They are stored in tempdb databases. They are of
two types, local and global. Local temporary procedures starts with (#)

1.2.4 Remote Stored Procedures

These procedures are created and stored on remote servers. With the
proper permission the users can access them from various servers. The

Stored Procedure

Database Management Systems criteria is that the remote server has to be configured and proper login
mapping must be done.

1.2.5 Extended Stored Procedure

The extended procedures help in creating external routines in other
programming languages and can be loaded and run dynamically in an SQL
Server. The extended procedure starts with xp prefix in the Master
database. They are useful in building an interface to external programs.

1.3 BENEFITS OF STORED PROCEDURE

e Modular Programming: The main purpose of procedures, subroutines,
functions is to create modules and make use of them again and again
whenever needed. The aim is to reuse the code wherever needed
instead of writing them again.

e Network traffic reduced : Many individual SQL statements meant for a
specific task can be put together as a Stored procedure and can be
executed with a single statement, i.e by calling the name of the
procedure along with parameters. They are executed on the server-side
and perform a set of actions and return the results to the client-side. If
this encapsulation of procedure is not given, then every individual line
of code has to travel the network between client and server, which
greatly slows down the traffic.

e Faster execution: As the stored procedures, query plans are kept in
memory after the initial execution, when it is to be executed again, no
need for reparsing or re- optimizing on subsequent executions. This
increases the performance of the application.

e Enforced consistency: Since the users modify the data only through
stored procedures, problems occurring due to modifications are
eliminated.

e Reduced operator and programmer errors: Since on calling the
procedures, limited information is passed like name of procedures,
input parameters the likelihood of errors in SQL is greatly eliminated.

e Automated complex or sensitive transactions: The integrity on tables
can be assured if all the modifications on them are done through these
stored procedures.

e Stronger security: Multiple users and client programs can perform
operations on underlying database objects through a procedure, even if
the users and programs do not have direct permissions on those
underlying objects. The procedure controls what processes and
activities are performed and protects the underlying database objects.
This eliminates the requirement to grant permissions at the individual
object level and simplifies the security layers.

e When a procedure is accessed over the network, only the call to
execute the procedure is visible. This prevents malicious users from
accessing databases, tables etc as nothing is visible .

e Using procedure parameters helps guard against SQL injection attacks.
Since parameter input is treated as a literal value and not as executable
code, it is more difficult for an attacker to insert a command into the
Transact-SQL statement(s) inside the procedure and compromise
security.

1.4 CREATING A STORED PROCEDURE

The procedure contains a header and a body.

e Header: The header contains the name of the procedure and the
parameters or variables passed to the procedure.

e Body: The body contains a declaration section, execution section and
exception section

1.4.1 Passing parameters in procedure

When you want to create a procedure or function, you have to define
parameters .There are three ways to pass parameters in procedure:

1. IN parameters only: Using IN parameters the inputs are passed to the
procedure. By default the parameters are of IN type. Variables,
expressions can be passed as IN parameters. The value of the parameter
cannot be overwritten by the procedure or the function.

2. OUT parameters: The OUT parameter used for getting results from a
procedure. From the calling statement, these must be always a variable
to hold the value returned by the procedure. The value of the parameter
can be overwritten by the procedure or function.

3. INOUT parameters: The INOUT parameter can be used for giving
both input and getting output from procedure. The value of the
parameter can be overwritten by the procedure or function. From the
calling statement, these must be always a variable to hold the value
returned by the procedure

Note: A procedure may or may not return any value. Once created they
will be stored as database objects.

Syntax:

CREATE OR REPLACE PROCEDURE <procedure name>
(<parameter] IN/OUT <datatype>

<parameter2 IN/OUT <datatype>

)
[1S | AS]

<declaration_part>

Stored Procedure

Database Management Systems BEGIN
<execution part>
EXCEPTION
<exception handling part>
END;
Syntax explanation:

° CREATE PROCEDURE instructs the compiler to create a new
procedure. Keyword 'OR REPLACE' instructs the compiler to replace the
existing procedure (if any) with the current one.

o Procedure name should be unique.

° Keyword 'IS' will be used, when the procedure is nested into some
other blocks. If the procedure is standalone then 'AS' will be used.
Other than this coding standard, both have the same meaning.

Example :

before executing any program in PL/SQL type the following in the SQL>
prompt to see the output.

SQOL>set serveroutput on,;
The above command will enable the dbms_output.put line().
1.4.1.1 Procedure without parameter

Example : In the below example a procedure with name welcome is
created. There is no parameter passed. First the created procedure has to
be created. so open a notepad or any editor and type the following code
with extension as .sql

the name of the below program is greetings proc.sql

1 | create or replace procedure welcome

2 |as

3 | begin

4 | dbms_output.put_line('welcome to Mumbai University');

5 [dbms_output.put line('This 1is Database Management System
course');

end;

/

Code Explanation
Line 1-3: Creating Procedure ‘welcome’
Line 4-6 : Printing the information on the screen

First the above procedure has to be created. in order to do that run the
following command:

SOL> @ c:/sql_prgs/greetings _proc.sql;
output:
Procedure created.

All the sql programs are stored in the c¢:/sql_prgs folder. so when the
above program is executed and when there is no error the sql command
line will return as Procedure created.

Now the created procedure has to be called with EXEC command as
below:

output:

SQL> execute welcome();

welcome to Mumbai University

This is Database Management System course
PL/SQL procedure successfully completed.
Example

In this example, we are going to use a select statement to list a record in a
table called ‘employee csc’. So the first step is to create a table.

Table creation:

1. Create table employee csc(ename varchar2(30),street varchar2(40),
city varchar2(30), eid number(3), primary key(eid)),

The next step is to insert data into the above table :

To do that the following command can be used and run ‘n’ number of
times to add data dynamically.

SQOL> insert into employee csc values("&ename’,'&street’,'&city’, &eid);
After few insertion the table looks like this:
SQL> select * from employee csc;

ENAME STREET CITY EID

Stored Procedure

Database Management Systems anitha 1st street chennai 100

aiswarya 2nd street chennai 101

chandra 2nd street chennai 102

hema 3rdstreet chennai 103

lalitha metha street mumbai 104
raman krishnan street bangalore 105
harini kalam street andhra 106
danush ragav street bangalore 107
david kamaraj street calcutta 108
ananthi rajaji chennai 109
sundar 2nd cross st hydreabad 110
raveena 3rd cross st erode 111

12 rows selected.

The following procedure will display the employee name and employee
id of a particular employee.

1 | create or replace procedure SelectEmp

2 |as

(8]

o_ename varchar2(30);

4 | o_eid number(10);

5 | begin

6 |select ename,eid into o ename,o eid from employee csc where
eid=100;

7

) dbms_output.put line('employee name ="' ||o_ename);

9 dbms_output.put line('employee id ="' ||o_eid);
end;
/

Code Explanation

Line 1-4: Creating Procedure ‘SelectEmp’ , with the local variables.

Line 5-9 : A particular employee is queried from database and printed the
information on the screen

now creating the procedures and then executing will produce the result as
follows:

SOL> @c:/sql_prgs/SelectEmp.sql;
Procedure created.

SQL> exec SelectEmp;

employee name = anitha

employee id = 100

PL/SQL procedure successfully completed.

1.5 EXECUTING A STORED PROCEDURE

The stored procedure can be executed by using EXECUTE or EXEC
statement followed by the name of the stored procedure along with a
parameter list if any. This has been already done in the previous example

The above procedure can be executed as
SQL>execute welcome(),
SQL> exec SelectEmp;

Stored Procedure with one parameter

1 create or replace procedure SelectUser

2 | (id in number)

(O8]

is
4 | o_ename varchar2(30);

5 | o_eid number(10);

6 | begin

7 | select ename,eid into o ename,o eid from employee csc where
eid=id;

8

9 dbms_output.put line('employee name ="' ||o_ename);

10 dbms_output.put_line('employee id ="' |jo_eid);
end;
/

Stored Procedure

Database Management Systems Code Explanation

10

Line 1-5: Creating Procedure ‘Select User’ , with one input parameter and
two local variables.

Line 6-10 : A particular employee whose value is passed as input
parameter is queried from database and printed the information on the
screen

1.5.1 Executing the stored procedure with one parameter

The stored procedure can be executed by using EXECUTE or EXEC
statement followed by the name of the stored procedure along with a
parameter list if any.

The above procedure must be complied and then executed as
SQL> @c:/sql prgs/selectuser.sql;

Procedure created.

SQL> @c:/sql prgs/selectuser.sql;

Procedure created.

SQL>exec SelectUser(110),

employee name = sundar

employee id = 110

PL/SQL procedure successfully completed.

1.5.2 Creating and Executing Procedure with multiple input
parameters

Example : The following procedure is used to insert a record in the table
employee csc.

1 | create or replace procedure insertemployee

2 (iname in varchar2,istreet in varchar2 ,icity in varchar2,ieid in

number)
3
is
4
begin
5
‘ insert into employee_csc values (iname,istreet,icity,ieid);
end;
/

Code Explanation

Line 1-3: Creating Procedure ‘imsertemployee’ , with four input
parameters .

Line 4-6 : The input parameters are inserted into the table using insert
command.

compiling and executing the above procedure as follows:
SOL> @c:/sql_prgs/insertemployee.sql;

Procedure created.

SOL> exec insertemployee('radha’,'3rd street','erode’, 112);
PL/SQL procedure successfully completed.

Now whether the data has been inserted or not can be checked with select
statement as follows:

SOL> select * from employee csc;

ENAME STREET CITY EID
anitha 1st street chennai 100
aiswarya 2nd street chennai 101
chandra 2nd street chennai 102
hema 3rd street chennai 103
lalitha metha street ~ mumbai 104
raman krishnan street bangalore 105
harini kalam street andhra 106
danush ragav street bangalore 107
david kamaraj street calcutta 108
ananthi rajaji chennai 109
sundar 2nd cross st hydreabad 110
raveena 3rd cross st erode 111
radha 3rd street erode 112

Stored Procedure

11

Database Management Systems 13 rows selected.

12

Another way to execute is to call it within the PL/SQL block like below.
PL/SQL program to call procedure

Let's see the code to call the above created procedure.

1 | begin
2 | insertemployee('ramani','Ist street','bangalore’,113);
3 | dbms_output.put line('record inserted successfully');
4 | end;

/
Code Explanation

Line 1-4: PL/SQL block is created.

Line 2 : The procedure ‘insertemployee’ is called here with input
parameters for the table record

After executing the above as follows:

SOL> @c:/sql_prgs/insertemployee call.sql;

record inserted successfully

PL/SQL procedure successfully completed.

1.5.3 Creating a stored procedure with default parameters values

A stored procedure can be created with a default parameter. when the
procedure is called without parameters it will take the default value
declared in the procedure else it will take the value passed by the user at
the time of execution.

create or replace procedure SelectUser

(id in number :=105)

is

o_ename varchar2(30);

o_eid number(10);

begin

select ename,eid into o_ename,o_eid from employee csc where
eid=id;

dbms_output.put_line('employee name ="' ||o_ename);

O 00 0 &N L A W N =

dbms_output.put_line('employee id ="' |jo_eid);

[
(e

end;
/

Code Explanation

Line 1: PL/SQL block is created.

Line 2 : The procedure ‘SelectUser’ is created with an input parameter
Line 4-5: local parameters are declared

Line 6-10 : with the input parameter as the criteria the row is extracted
from table employee csc and placed in local parameter. The data in the
local parameter is displayed.

In the above procedure the default value can be given in the passing
parameter as above by the assignment statement :=

So when executing this if the parameter is not given, the procedure take
the value 105, that is the default value which we assign. If the value is
passed as parameter than it will ignore the default value and take the
passed value for further processing. Both the outputs are given as follows:

SQL> exec SelectUser();

employee name = raman

employee id = 105

PL/SQL procedure successfully completed.

SQL> exec SelectUser(107);

employee name = danush

employee id = 107

PL/SQL procedure successfully completed.

1.5.4 Creating a stored procedure with an output parameter

Example 3 Create a procedure to calculate simple interest. Principal, rate
of interest and no. of years are given as input.

Stored Procedure

13

Database Management Systems

14

1 --this program calculates simple interest
2 declare
3 n_principle number(6);
4 n_years number(4);
5 n_interest number(6,2);
6 n_ans number(8,2);
7 --procedure starts
8 procedure simpleinterest(p in number,n in number, r in
number, si out number)
9 is
10 begin
11 si:=(p*n*r)/100;
12 end;
13 --main starts
14 begin
15 n_principle:=&p;
16 n_years:=&n;
17 n_interest:=&r;
18 simpleinterest(n_principle,n_years,n _interest,n_ans);
19 dbms_output.put_line('simple interest is ' || n_ans);
20 end;
/
Code Explanation

Line 2 : anonymous PL/SQL is declared.

Line 3-6 : local variables are declared

Line 8

: a procedure to calculate simple interest is created with 3 input

parameter and one output parameter

Line 11 : the calculation of simple interest is done and is stored in output

parameter.

Line 18 : the procedure is called with parameters.

Line 19 : the value returned from the procedure is printed.

Output

SOL> @d.:/plsql/proc_exl1.sql
Enter value for p: 4000

old 15: n_principle:=&p;
new 15: n_principle:=4000;
Enter value for n: 4

old 16: n_years:=&n,

new 16: n_years:=4;

Enter value for r: 5.0

old 17: n_interest:=&r;

new 17: n_interest:=5.0;

simple interest is 800

PL/SQL procedure successfully completed.

Example
consider the following table

SQL> desc employee_csc;

Name Null? Type

ENAME VARCHARZ2(30)
STREET VARCHARZ2(40)

CITY VARCHAR2(30)

EID NOT NULL NUMBER(3)
EMAIL VARCHAR2(100)

Stored Procedure

15

Database Management Systems The following procedure will return the employee name of a particular id

16

using OUT parameter.

1 |create or replace procedure employee name detail(id in number,
e_name out varchar2)

) is
3 begin
4 select ename into e name from employee csc where eid=id,
5 end;
/
Code Explanation

Line 1 : Creation of procedure “employee name detail” with one input
and one output parameters

Line 3-5 : select statement is used to extract a record with a particular
employee id.

The procedure can be called from a PL/SQL block as follows:

1 declare
2 e name varchar2(30);
3 begin
4 employee name detail(100,e _name);
5 dbms_output.put line(e name);
6 end;
/
Code Explanation

Line 1 : Creation of PL/SQL block to call the procedure
“employee name_detail” with one input and one output parameters

Line 2 : declaration of local parameter

Line 3-6 : call the procedure “employee name detail” and the value
returned is printed.

executing the above procedure and its call from PL/SQL can be done as
follows

SOL> @ c:\sql_prgs\employee name detail.sql;
Procedure created.

SQOL> set serveroutput on,

SOL> @ c:\sql_prgs\employee name_detail call.sql;
anitha

PL/SQL procedure successfully completed.

The following procedure will return the number of records in a table

1 | create or replace procedure find rows(cnt out number)

2 | as

(8]

begin

4 | select count(*) into cnt from employee csc;

5 | end;
/
Code Explanation

Line 1 : Creation of procedure “find rows” with one output parameter.

Line 3-5 : select statement is used to extract the number of records in the
employee_csc table.

The above procedure will be called from a PL/SQL block as follows

1 | set serveroutput on

2 | declare

(8]

r_count number;

4 | begin

5 | find_rows(r_count);

6 | dbms_output.put line('number of records in table ='|[r_count);
7 | end;

/

Stored Procedure

17

Database Management Systems Code Explanation
Line 2 : declaration of PL/SQL block.
Line 3 : declaration of local parameter

Line 4-7 : calling the procedure “find rows” and the value returned is
printed.

on executing both the PL/SQL blocks
SOL> @ c:\sql _prgs\find rows.sql;
Procedure created.
SOL> @ c:\sql_prgs\find rows call.sql;
number of records in table =14
PL/SQL procedure successfully completed.
once the procedure is compiled with the following command
SOL> @ c:\sql _prgs\find rows.sql;
Procedure created.
the procedure can be called from command line as follows:
SQOL> var lcnt number;
SQL> exec find rows(:lcnt);
PL/SQL procedure successfully completed.
SQL> print lcnt;
LCNT

14

1.6 ALTERING OR MODIFYING A STORED
PROCEDURE

A stored procedure can be recompiled explicitly using ALTER
PROCEDURE statement. Due to this implicit run-time recompilation is
eliminated which in turn prevents run-time compilation errors and
performance overhead.

18

Syntax

ALTER PROCEDURE <procedure_name> COMPILE;

Note: This does not change the declaration of an existing procedure. so if
anything has to be modified inside procedure use CREATE OR
REPLACE PROCEDURE command instead of ALTER to achieve the

same function

Alter procedure SelectUser
(id in number :=105)

is

o_ename varchar2(30);
o_eid number(10);

o_city varchar2(30);

begin

select ename,city,eid into o ename,0 city,0 eid from employee csc
where eid=id;

dbms_output.put line('employee name ="' ||o_ename);
dbms_output.put line('city name ="' ||o_city);
dbms_output.put line('employee id ="' ||o_eid);

end;

/

1.7 DELETING A STORED PROCEDURE

A created procedure can be deleted by using DROP PROCEDURE or
DROP PROC statement.

Syntax for drop procedure
1. DROP PROCEDURE procedure name;

Example of drop procedure
1. DROP PROCEDURE INSERTUSER;

Stored Procedure

19

Database Management Systems 1 8 VIEWING STORED PROCEDURES

20

The source code in a stored procedures can be viewed by using the
following command:

syntax:

select text

from user_source

where name="STORED-PROC-NAME’
and type="PROCEDURE’

order by line;

note : the procedure name must be given in CAPITAL letters, because
SQL stores the procedure name in ALL capital letters.

Example

SQL> select text from user source where name='SELECTEMP' and
type="PROCEDURE' order by line;

output

TEXT

procedure SelectEmp

as

o_ename varchar2(30);

o_eid number(10),

begin

select ename,eid into o_ename,o_eid from employee csc where eid=100;
dbms_output.put_line("'employee name = "||o_ename),;

dbms_output.put line("'employee id ="||o_eid),

end;

9 rows selected.

1.9 SUMMARIZATION Stored Procedure

e A stored procedure is a PL/SQL program stored inside a database
schema.

e A procedure consists of declarative, executive and exception sections.

e A procedure can be called with its name along with a list of parameters
enclosed within parentheses.

e There are three types of parameters: IN , OUT, IN OUT where IN type
is used to pass input to the procedure, OUT type is used to return a
value from a procedure and IN OUT type is used to pass input and
return a value from a procedure.

e The formal parameters of a procedure must match the actual
parameters of a calling procedure.

1.10 REFERENCES

https://www.sqlshack.com/sql-server-stored-procedures-for-beginners/

https://www.javatpoint.com/stored-procedure-in-sqgl-server

http://www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/6-
PLSQL/storedproc.html

https://plsql-tutorial.com/plsql-passing-parameters-procedure-function.htm

Questions:

1. Write a short note on Stored Procedures.

2. Write a short note on the procedure to create a stored procedure.
3. State and explain various types of stored procedures.

4. Write a short note on passing parameters in stored procedures.

o
o
o
o

21

22

TRIGGERS AND SEQUENCES

Unit Structure
2.0 Objective
2.1 Introduction
2.2 Overview
2.3 Trigger Classification
2.4 Implementing Triggers
2.4.1 Creating a Trigger
2.4.2 Insert and update using a Trigger
2.4.3 Deleting through a Trigger
2.5 Viewing, deleting and modifying Triggers
2.6 Enforcing data integrity through Triggers
2.7 Nested triggers
2.8 Advantages of Triggers
2.9 Sequences
2.10 Creating Sequence
2.11 Referencing a Sequence
2.12 Altering a sequence
2.13 Deleting a Sequence:
2.14 Summarize

2.15 List of References

2.0 OBJECTIVE

This chapter would make the students to understand the following
concepts:

° Get to know the necessity of Triggers and Sequences
° Know to create Triggers and sequences

° Know to delete a Trigger

e Understand and to use nested Triggers
e Know to refer a sequence
° Know to alter a created sequence

° Know to delete a sequence

2.1 INTRODUCTION

Triggers

Triggers are stored programs, which are automatically executed or fired
when some event occurs. Triggers could be defined on the table, view,
schema, or database with which the event is associated.

Before we deep dive into the understanding of what triggers are and how
they play a very important role in any well-designed database application.
Let’s try to start with an example that we can relate to.

Scenario 1:

One of the core features of a social media network today is the notification
system. They help the user stay connected and get to know about any
updates that have happened in their social circle. Now, let's take two users
Ram and Raj. Ram creates a post about his vacation on the social media
network. His friend Raj is commenting on the same post. How will we
intimate Ram about this change?

We can handle it either in the application layer, which would be our server
application written in java / node.js / or any backend technology. But
handling in the application layer would add up more logic that might take
more time to execute as there would be multiple round trips between
database and server application. Or lets get into a simpler way where we
add a trigger procedure that would update Ram’s notification count which
would reference this new comment insert operation.

We will try to design this system by the end of this chapter.

2.2 OVERVIEW

Database triggers are stored procedures / programs in a RDBM system
which gets automatically executed when an event occurs. Triggers play an
integral part in a well-designed database application. Triggers can be used
to

1) Validate data changes made to a table
2) Maintain integrity by automating maintenance tasks

3) Create rules that govern administration of the database.

Triggers and Sequences

23

Database Management Systems There are five broad types of events to which trigger procedures can be
attached to:

1) Data manipulation language (DML) statements (DELETE, INSERT,
or UPDATE)

2) Data Definition Language (DDL) statements (CREATE, ALTER,
DROP)

3) Database events (SERVERERROR, LOGON, LOGOFF, STARTUP,
SHUTDOWN)

4) INSTEAD OF

5) Suspended Statements.

2.3 TRIGGER CLASSIFICATION

Triggers can be classified based on the following parameters.

® C(lassification based on the timing

o BEFORE Trigger: It fires before the specified event has occurred.
o AFTER Trigger: It fires after the specified event has occurred.

o INSTEAD OF Trigger: A special type. You will learn more in the
further topics. (only for DML)

e C(lassification based on the level

O0 STATEMENT level Trigger: It fires one time for the specified
event statement.

o ROW level Trigger: It fires for each record that got affected in the
specified event. (only for DML)

° Classification based on the Event

o DML Trigger: It fires when the DML event is specified
(INSERT/UPDATE/DELETE)

o DDL Trigger: It fires when the DDL event is specified
(CREATE/ALTER)

o DATABASE Trigger: It fires when the database event is specified
(LOGON/LOGOFF/STARTUP/SHUTDOWN)

So each trigger is the combination of above parameters.

24

2.4 IMPLEMENTING TRIGGERS

2.4.1 Creating a Trigger

Syntax of a trigger statement / procedure

1 CREATE [OR REPLACE] TRIGGERTRIGGER NAME

2 {BEFORE | AFTER}TRIGGERING EVENTONTABLE NAME
3 [FOR EACH ROW]

4 [FOLLOW | PRECEDESANOTHER TRIGGER]

)]

[ENABLE / DISABLE]
6 [WHENCONDITION]
7 DECLARE

DECLARATION STATEMENTS
BEGIN

EXECUTABLE STATEMENTS
EXCEPTION

EXCEPTION HANDLING STATEMENTS
END;

Trigger statements can be broken down into two parts, header and body.
Header part is all about telling the RDBMS on how and when to run a
trigger. Consider this as a metadata that helps the database to execute the
procedure defined in the body when necessary conditions are met.

Lets deep dive into Header statements and try to understand what it
means.

Line 1: CREATE keyword instructs DBMS to create a trigger with the
specified trigger name. The TRIGGER keyword always follows the
CREATE keyword. Sometimes we would like to update a trigger which
already exists or change its properties, then we can use the optional
keyword OR REPLACE next to CREATE.

Line 2: A trigger needs to run only on occurrence of an event, we specify
this event as triggering event. We would also need to specify on which
table this trigger has to be attached. A trigger can execute either before or
after an event. It’s important to understand the business use case to specify
the timing. For example if we want a trigger to execute before an insert
event. Then mostly we would try to do a sanity or validation of the data.
Where as notifications for example we would like to do it after an insert
operation

Triggers and Sequences

25

Database Management Systems Line 3: FOR EACH ROW, specifies if a trigger is going to be a row level

26

trigger or statement level trigger. Let’s assume we have 10 statements, but
it just affects one row of data, then this trigger executes only once based
on if a row is inserted, updated or deleted. If this statement is omitted, the
database defaults to for each statement and it will execute on a number of
statements.

Line 4: FOLLOWS / PRECEDES.

For each trigger event Insert, update or delete we can specify multiple
trigger procedures. There could be instances where we would want to
specify the order of execution. Follows / Precedes helps to specify the
order of execution of a trigger.

Line 5: ENABLE/DISABLE, this statement specifies if the created trigger
is set to enabled status on creation. If a trigger is enabled, it would start
executing from the time of creation. On disabled state an explicit enabling
is required before execution

Creating a trigger:

Before we create our trigger we might need to create two tables for this
specific example like in the diagram below.

Notifications

author
newlikes

<3

author
postbody
likes
seenlikes

There could be multiple notifications to a single post. So let’s get started
with creating the Post table.

CREATE TABLE POST (
author varchar2(255),
postbody varchar2(255),

likes number, Triggers and Sequences
seenlikes number);

Now let’s create a Notifications table. This would be the table that would
be modified with DML operation to insert a notification.

CREATE TABLE NOTIFICATIONS (
author varchar2(255),
newlikes number

)i

Now, we have our two tables. There is nothing stopping us to create a
trigger, for this scope of the book we will only concentrate on DML
instructions.

Let's create our trigger in three steps.
Step 1: Define the header.

We would want to create a trigger of name notification new likes. There
could be scenario on a shared database where the same trigger name might
exists. So, we will make sure to add OR REPLACE keywords.

CREATE OR REPLACE TRIGGER notifications new_likes
Step 2: Decide on event and when to run

Since this is a notification system it would be apt only when we execute
this after the operation to a table / post has occurred. If we operate it
earlier and then the insert operation or update operation fails, we would
have to add the extra overload of doing a rollback of this trigger. Which
could add more complications to the system. We would like to create a
notification to each row changed and not the number statements that runs.

before insert or update on POST
for each row
Step 3: Code the logic

Since this is our initial trigger, let’s try to make it really simple by printing
hello world. As we proceed, we can iterate over this.

begin
dbms_output.put_line('Hello World trigger");

end;

27

Database Management Systems 2.4.2 Insert and Update using a Trigger
Example 1:
Full source code.
CREATE OR REPLACE TRIGGER notifications new _likes
before insert or update on POST
for each row
begin
dbms_output.put line('Hello World trigger");
end;

Try inserting or updating any data in the POST table. We should see
output something like this

Dbms Output

transaction X transaction x

iHeHo World trigger

Congratulations, you have created your very first trigger.

Obviously this trigger is not going to do anything amazing. So, let’s try to
create a new trigger which will do some DML operations on another table.

Before that let’s try to view our trigger, there are two ways to see a trigger.
On command prompt we can give
SELECT * FROM USER TRIGGERS;

This should list all our triggers, something like this

=] Script Output x [Query Result X
I 4 E, E@ Q SOL | All Rows Fetched: 4 in 0.342 seconds

{ TRIGGER_NAME |/ TRIGGER_TYPE |} TRIGGERING_EVENT {} TABLE_OWNER |{; BASE_OBJECT_TYPE |{} TABLE_NAME |{} COLUMN_NAME
1 DISPLAY_SALARY CHANGES BEFORE EACH RON INSERT OR UPDATE OR DELETE ADMIN TABLE CUSTOMERS (null)
2 EMP_COMM_TRIG BEFORE EACH RON INSERT OR UPDATE ADMIN TABLE EP (null)
3 USER_DATA_CHANGE_AUDIT2 AFTER EACH RON INSERT OR UPDATE OR DELETE ADMIN TABLE USER NAMES (null)
4 NOTIFICATIONS_NEW_LIKES BEFORE EACH RON INSERT OR UPDATE ADMIN TABLE POST (null)

Another way would be to use a nice GUI like SQLDeveloper from Oracle
to list all the triggers by clicking on Triggers from the left pane.

28

=k transaction
(#-g3 Tables (Filtered)
-84 Views
- [38 Indexes
}JL?{] Procedures
b l}@ Functions
-3} operators
#- 73 Queues
[+ {7 Queues Tables
=-{_® Triggers
. @™ DISPLAY_SALARY_CHANGES
- USER_DATA_CHANGE_AUDIT2

o

Let’s get our notifications populated when an update operation occurs.
Following trigger will run when there is an update operation on Post rows.

CREATE TRIGGER notifications new_likes
after update on POST
for each row
begin
if (UPDATING and (:NEW.likes - :NEW.seenlikes > 0)) then

INSERT INTO NOTIFICATIONS values (:NEW.author, :NEW.likes
- :NEW.seenlikes);

end if;
end;

:NEW variable will have the new modified data of the table row. When we
get a new update to a row in Post. Then this trigger gets executed and only
when the row is in UPDATING state we do a logic to create a new data in
the notifications table.

Now, we will try to update a value in post.

insert into post (author, postbody, likes, seenlikes) values (‘'ram', 'sample
blog', 0, 2);

update POST set likes=10 where author = 'ram’;

Let's try to go to the notifications table and check what would be the new
likes count for author ram.

il Script Output * [Query Result *
A & @ & soL
{ AUTHOR |{} NEWLIKES |

1 ram 8

All Rows Fetched: 1 in 0.029 ¢

Triggers and Sequences

29

Database Management Systems That’s it our trigger has modified the Notifications table to get the un-read

30

likes count. Of course the notification system isn’t this simple but has
more complicated use cases. What we have tried to achieve here is an
example pathway to kickstart your imagination on possible use cases of
triggers.

Let's try to update our trigger with an advanced use case of deleting the
notification record if the user has caught up with all the notifications.

CREATE OR REPLACE TRIGGER notifications new _likes
after insert or update on POST
for each row
begin
if (UPDATING and (:NEW.likes - :NEW.seenlikes > 0)) then

INSERT INTO NOTIFICATIONS values (:NEW.author, :NEW.likes -
:NEW .seenlikes);

end if;,
if (UPDATING and (:NEW.likes - :NEW.seenlikes = 0)) then

DELETE FROM NOTIFICATIONS WHERE AUTHOR =
:NEW.author;

end if;,
end;
Example 2:

Let us consider a trigger that checks the value of salary before inserting or
updating the works csc table and ensures that salary below 20,000 is not
inserted. It acts before insertion or update. Let us consider the table
works _csc which has the following table structure and data

SQOL> desc works_csc;

Name Null? Type

EID NOT NULL NUMBER(5)
CID VARCHAR2(3)
SALARY NUMBER(9)

SQOL> select * from works _csc;

EID CID SALARY

101 c2 35000
102 c¢3 35000
103 c4 50000
104 c2 30000
105 c3 30000
106 cl 40000
108 c3 30000
109 c3 28000

8 rows selected.

create or replace trigger min_sal chk
before insert or update on works csc
for each row

when (new.salary<20000)

begin

raise_application_error(-20000, 'sal must be more than 20000");

~N N kA~ W N =

end;
/

Code Explanation:

Line 1-3 : Creation of trigger ‘min_sal chk’ which will be triggered
before insertion or updation of each row in works csc table

Line 4: the condition of when the trigger is triggered is given.

Line 5-7: This will raise error , if the salary on insertion or updation is
below 20000

Execution of triggers during insertion

Triggers and Sequences

31

Database Management Systems

32

SQOL> insert into works_csc values(112,'c1',15000),
insert into works_csc values(112,'c1’,15000)
*
ERROR at line 1:
ORA-20000: sal must be more than 20000
ORA-06512: at "SYSTEM.MIN SAL CHK", line 2
ORA-04088: error during execution of trigger 'SYSTEM.MIN SAL CHK'

Execution of triggers during updation

SOL> update works_csc set salary=15000 where eid=103;
update works _csc set salary=15000 where eid=103
*
ERROR at line 1:
ORA-20000: sal must be more than 20000
ORA-06512: at "SYSTEM.MIN SAL CHK", line 2
ORA-04088: error during execution of trigger 'SYSTEM.MIN SAL CHK'

Example 4: The following trigger executes BEFORE to convert the
empname field from lowercase to uppercase.

1 create or replace trigger emp_trig
2 before
3 insert on employee
4 for each row
5 begin
6 :new.empname:=upper(:new.empname);
7 end;
/

Code Explanation:

Line 1-4 : Creation of trigger ‘emp trig’ which will be triggered when an
insertion into table employee takes place at row level

Line 5-7: This will convert the existing employee name into uppercase
letters.

Execution of insert command :

SQOL> insert into employee values(113,'rajan’,'eldams road','chennai’);
1 row created.
The record with eid has empname entered as uppercase.
SQL> select * from employee;
EID EMPNAME STREET CITY
100 anitha 1st street calcutta
101 aiswarya 2nd street chennai
102 chandra 2nd street chennai
103 hema 3rd street chennai
104 lalitha metha street mumbai
105 raman krishnan street ~ bangalore
106 harini kalam street andhra
107 danush ragav street bangalore
108 david kamaraj street calcutta
109 ananthi rajaji street chennai
113 RAJAN eldams road chennai
112 krish 3rd street bangalore

12 rows selected.

Triggers and Sequences

33

Database Management Systems

34

Example 5: We write a trigger to fire before the insert takes place.

SQL> create table person(id int,name varchar2(30),dob date,primary
key(id));

Table created.

On execution of an insert command the trigger will be triggered:

SQOL> insert into person values(10,'anitha’,'28-sep-1996");
before insert of anitha

1 row created.

Example 6: In the following example, a database should not allow one to
modify one’s dob. In this case the following trigger helps to achieve this:

1 create or replace trigger person_update trig
2 before

3 update of dob on person

4 for each row

5 begin

6 raise_application_error(-20000,'cannot change date of birth ');

7 end;
/
Code Explanation

Line 1-4 : Creation of trigger ‘person update trig’ which will be
triggered before the update of date of birth field (dob) of a person in the
table ‘person’ at row level.

Line 5-7 : Error will be raised when the user tries to change dob of a
person in the table

When the update of the dob field takes place the above trigger is triggered.

SOL> update person set dob='3-aug-1996";
update person set dob="'3-aug-1996'
*
ERROR at line 1:
ORA-20000: cannot change date of birth
ORA-06512: at "SYSTEM.PERSON _UPDATE TRIG", line 2

ORA-04088: error during execution of trigger
'SYSTEM.PERSON_UPDATE_TRIG'

:NEW and :OLD Clause

In a row level trigger, the trigger fires for each related row. And
sometimes it is required to know the value before and after the DML
statement.

Oracle has provided two clauses in the RECORD-level trigger to hold
these values. We can use these clauses to refer to the old and new values
inside the trigger body.

° :NEW — It holds new value of the columns of the base table/view
during the trigger execution

° :OLD — It holds old value of the columns of the base table/view
during the trigger execution

These clauses should be used based on the DML event. Below table will
specify which clause is wvalid for which DML statement
(INSERT/UPDATE/DELETE).

INSERT UPDATE|DELETE
:NEW([VALID VALID |[INVALID.
:OLD |INVALID. VALID [VALID
Example 8

The price of a product changes constantly. It is important to maintain the
history of the prices of the products. Create a trigger to update the
“Product_price history” table when the price of the product is updated in
the “Product” table. Create the “Product” table and “Product price
history” table with the following fields respectively

Triggers and Sequences

35

Database Management Systems a.Product price history (product id number(5),

36

product_namevarchar2(32), supplier name varchar2(32), unit_price
number(7,2))

b. Product (product id number(5), product name varchar2(32),
supplier name varchar2(32), unit_price number(7,2))

1. Create the Price history trigger and execute it.

2. Update the price of a product. Once the update query is executed, the
trigger fires and should update the 'Product price history' table.

SQL> create table product(product id number(5),product name
varchar2(32), supplier name varchar2(32),unit_price number(7,2));

Table created.

SOL> create table product price history(product id number(S5),
product name varchar2(32),supplier name varchar2(32),unit_price
number(7,2));

Table created.

Trigger :price_history trig.sql

1 |create or replace
2 |trigger price history trig
3 [before update of unit price on product

4 for each row

5 |begin

6 insert into product price history
7 values

8

9 (:old.product _id,:old.product name,:old.supplier name,:old.unit price
);

end;

/

Code Explanation:

Line 1-4 : Creation of trigger ‘price history trig’ which will trigger
before updation on field unit price of product table takes place at ROW-
level.

Line 5-9 : Whenever there is change in the unit price of the product table
those values will be backed up in the product price history table.

SQOL> @e:/plsql/price history trig.sql

Trigger created.

The product table consists of the following values
SQOL> select * from product;

PRODUCT ID PRODUCT NAME SUPPLIER NAME

UNIT PRICE

100 files bismi 10
101 pen karthik printers 15
102 pencil nataraj 20

now when we try to update the trigger will be executed:

SOL> update product set unit price=12 where product id=100;
1 row updated.

SQOL> select * from product;

PRODUCT ID PRODUCT NAME SUPPLIER _NAME

UNIT PRICE

100 files bismi 12
101 pen karthik printers 15
102 pencil nataraj 20

in the product price history table the old value is saved by the trigger
automatically;

SOL> select * from product_price_history;

PRODUCT ID PRODUCT NAME SUPPLIER NAME
UNIT PRICE

100 files bismi 10

Triggers and Sequences

37

Database Management Systems 2.4.3 Deleting through a Trigger

38

Example 3: This example demonstrates use of triggers to keep information
on deleted records.

First create a table to hold deleted records as backup by the following
command.

SQL> create table works _bkup (eid number(3),cid varchar2(4),salary
number(7,2),deldate date),

Table created.

Now the trigger is created. Whenever a deletion takes place the deleted
record is entered into this back up table along with the time of deletion.

1 [create or replace trigger bkup rec
2 | after delete on works_csc

3 | for each row

4 | begin

5 | insert into works bkup values(:old.eid,:old.cid,:old.salary,sysdate);

6 | end;
/
Code Explanation:

Line 1-3 : Creation of trigger ‘bkup rec’ will be triggered whenever a
deletion in works _csc table takes place at ROW level

Line 4- 6: insertion into backup table ‘works bkup’ is done here.

Execution of trigger.

SOL> @e:/books/sql_prgs/works_trig2.sql;
Trigger created.

SQOL> delete from works _csc where eid=100;
1 row deleted.

SQL> select * from works _csc;

EID CID SALARY

101 ¢2 35000
102 c3 35000
103 c4 50000
104 c2 30000
105 ¢3 30000
106 cl1 40000
108 c3 30000
109 c3 28000
8 rows selected.

SQOL> select * from works _bkup,

EID CID SALARY DELDATE

100 cl 45000 16-SEP-17

Example 7: Let's take a simple example to demonstrate the trigger which
will enforce conditions while doing insertion, updation and deletion. In
this example, we are using the employee table table which has the
following data.

ID NAME AGE ADDRESS SALARY
1 Ramesh 23 Allahabad 20000
2 Suresh 22 Kanpur 22000

3 Mahesh 24 Ghaziabad 24000

4 Chandan 25 Noida 26000
5 Alex 21 Paris 28000
6 Sunita 20 Delhi 30000

Let's write a program to create a row level trigger for the employee table
table that would fire for INSERT or UPDATE or DELETE operations
performed on the employee table table. This trigger will display the salary
difference between the old values and new values:

Triggers and Sequences

39

Database Management Systems

40

1. CREATE OR REPLACE TRIGGER salary changes

2. BEFORE DELETE OR INSERT OR UPDATE ON
employee table

3. FOR EACH ROW

4. WHEN (NEW.ID > 0)

5. DECLARE

6. s_diff number;

7 BEGIN

8. s diff := :NEW.salary - :OLD.salary;

0. dbms_output.put_line('Old salary: ' || :OLD.salary);
10. dbms_output.put line('New salary: ' || :NEW .salary);

11. dbms_output.put_line('Salary difference: ' || s_diff);

12. END;
13. /
Code Explanation:

Line 1-4 : Creation of trigger ‘salary changes’ whenever there is a
change in the employee table at ROW level also ensures at line 4, that the
id must be present.

Line 6: Declaring variable.
Line 8: salary difference is calculated.
Line 9-11: Displays the old , new salary and the difference among them.

After the execution of the above code at SQL Prompt, it produces the
following result.

Trigger created.
Check the salary difference by procedure:

Use the following code to get the old salary, new salary and salary
difference after the trigger is created.

1. DECLARE
2. total rows number(2);

3. BEGIN

UPDATE employee table

SET salary = salary + 5000;

IF sql%notfound THEN

dbms_output.put line('no employee record updated');
ELSIF sql%found THEN

total rows := sql%rowcount;

A S AN o

10. dbms_output.put_line(total rows || ' employee updated ');
11. ENDIF;

12. END;

13. /

Output:

Old salary: 20000

New salary.: 25000
Salary difference: 5000
Old salary: 22000
New salary: 27000
Salary difference: 5000
Old salary: 24000
New salary.: 29000
Salary difference: 5000
Old salary: 26000
New salary: 31000
Salary difference: 5000
Old salary: 28000
New salary.: 33000
Salary difference: 5000
Old salary.: 30000
New salary: 35000
Salary difference: 5000

6 customers updated

Triggers and Sequences

41

Database Management Systems Note: As many times you executed this code, the old and new both salary
is incremented by 5000 and hence the salary difference is always 5000.

After the execution of the above code again, you will get the following
result.

Old salary: 25000

New salary.: 30000
Salary difference: 5000
Old salary: 27000

New salary: 32000
Salary difference: 5000
Old salary: 29000

New salary.: 34000
Salary difference: 5000
Old salary: 31000

New salary: 36000
Salary difference: 5000
Old salary: 33000

New salary.: 38000
Salary difference: 5000
Old salary: 35000

New salary: 40000
Salary difference: 5000
6 customers updated
Important Points
Following are two very important points that should be noted carefully.

e OLD and NEW references are used for record level triggers; these are
not available for table level triggers.

e [f you want to query the table in the same trigger, then you should use
the AFTER keyword, because triggers can query the table or change it
again only after the initial changes are applied and the table is back in
a consistent state.

2.5 VIEWING, DELETING AND MODIFYING
TRIGGERS

Viewing Triggers

To know the information about triggers the following data dictionaries can
be used.

42

e USER TRIGGERS
e ALL TRIGGERS
e DBA _TRIGGERS
SYNTAX

SELECT TRIGGER_TYPE,
TRIGGERING_EVENT,TABLE_NAME

FROM USER_TRIGGERS WHERE TRIGGER NAME='TRIGGER
NAME';

In the above syntax the name of the trigger to the right hand side of
variable TRIGGER NAME must be given in all capitals.

Example : the following command will be used to view the information
about trigger ‘min_sal chk’. Note in the command the trigger name is
given in all capitals.

SQL>select trigger type, triggering event,table name from user triggers
where trigger name='"MIN SAL CHK';

Output
TRIGGER TYPE TRIGGERING EVENT TABLE NAME

BEFORE EACH ROW INSERT OR UPDATE WORKS CSC
To view the content of trigger use the variable trigger body as follows:

SOL> select trigger body from user_triggers where
trigger name='MIN SAL CHK'

output
TRIGGER BODY

begin

raise_application_error(15000, 'salary must be more than 20000');

end;

Modifying Triggers

A trigger can not be altered by using the ALTER TRIGGER option. It is
used only to recompile, enable or disable a trigger. If it is required to
modify a trigger, use CREATE OR REPLACE TRIGGER statement. The

OR REPLACE option allows you to overwrite the existing trigger with a
new version of it.

There are two ways to prevent a trigger from running. One way is
disabling a trigger, this would not remove the trigger from the RDBMS
system but would not execute on events.

ALTER TRIGGER NOTIFICATIONS NEW_ LIKES DISABLE;

Triggers and Sequences

43

Database Management Systems Deleting a Trigger

Now, if we really don’t want a trigger even for reference in the future. We
can delete a trigger by,

DROP TRIGGER NOTIFICATIONS NEW_LIKES;

2.6 ENFORCING DATA INTEGRITY THROUGH
TRIGGERS

Update and delete trigger for parent table

Example: The following trigger ensures that when a foreign key is deleted
or updated from a child table, then its value in the parent table is made null
(referential integrity)

Before doing this let us consider the two tables employee csc and dept.
The tables structure are given below

SQL> desc employee_csc;

Name Null? Type

ENAME VARCHAR2(30)
STREET VARCHAR2(40)

CITY VARCHAR2(30)
EID NOT NULL NUMBER(3)
EMAIL VARCHAR2(100)
DEPTNO NUMBER(2)

SQOL> desc dept,

Name Null? Type
DEPTNO NOT NULL NUMBER(3)
DNAME VARCHAR2(10)

In the dept table the column deptno is the primary key which is the foreign
key in employee csc table. This is done as follows:

SQL> alter table employee csc add foreign key(deptno) references
dept(deptno),

Table altered.

So when an insertion into employee csc takes place where the deptno is
not in the dept table then it raises an error. This is because only those in
the dept table alone can be inserted in the employee csc table. In the
below example a deptno ‘5’ is inserted into employee csc where it is the
foreign key. But an error occurs that deptno is not in dept table.

SQL>insert into employee_csc values('karthik','rajaji

street','bangalore’, 114, 'karthik(@gmail.com',5),

2

insert into employee csc values('karthik','rajaji
street','bangalore’, 114, 'karthik@gmail.com',5)

*
ERROR at line 1:

ORA-02291: integrity constraint (SYSTEM.SYS C007000) violated - parent
key not

found

The above is said to be database integrity. Now we can try to force
integrity through triggers.

1 create or replace trigger dept_check

2 after delete or update of deptno on dept

3 for each row

4 begin

5 if updating and :old.deptno != :new.deptno or deleting then
6 update employee csc set employee csc.deptno=null

7 where employee csc.deptno=:old.deptno;

8 end if;

9 end;

10 |/

Triggers and Sequences

45

Database Management Systems

46

Code Explanation:

Line 1-3 : Creation of trigger ‘dept check’ that will be triggered after
deletion or updation on field deptno in the dept table at ROW level takes
place .

Line 5-9 : ensures before deletion or updation of field deptno in the dept
table the corresponding foreign key values in employee csc table is made
as NULL

SQOL> select ename,eid,deptno from employee csc;

ENAME EID DEPTNO
anitha 100 1
aiswarya 101 2
chandra 102 2
hema 103 2
lalitha 104 1
raman 105 1
harini 106 3
danush 107 3
david 108 3
ananthi 109 4
sundar 110 4
raveena 111 4
radha 112 1
ramani 113 iy

14 rows selected.

Now the trigger is executed as follows:
SOL> @ c:\sql_prgs\dept _check trigger.sql;
Trigger created.

Next to test the above trigger, we will delete a deptno from dept table as
follows:

SQL> delete dept where deptno=1;

1 row deleted.

SQL> select * from dept;
DEPTNO DNAME

2 English
3CSC
4 Physics

Now to know whether the corresponding dependent foreign key
(deptno=1) value is replaced with NULL in employee_csc, we will use the
select statement as follows.

Triggers and Sequences

SQL> select ename,eid,deptno from employee csc;
ENAME EID DEPTNO
anitha 100

aiswarya 101 2
chandra 102 2

hema 103 2

lalitha 104

raman 105

harini 106 3

danush 107 3

david 108 3

ananthi 109 4

sundar 110 4
raveena 111 4

radha 112

ramani 113

14 rows selected.

We can see that when the delete command is issued in the dept table
(primary key value) the trigger is triggered and the foreign key value in
employee csc table is replaced with NULL.

Delete cascade trigger for parent table

1 create or replace trigger dept_cascade delete
2 after delete on dept
3 for each row
4 -- Before row is deleted from dept
5 -- delete all rows from employee csc table whose deptno value is
6 same as
7 -- dept table
8 begin
9 delete from employee csc where
employee csc.deptno=:old.deptno;
end;
/

47

Database Management Systems Code Explanation:

48

Line 1-3 : Creation of trigger ‘ dept cascade delete’ which will be
triggered when a deptno is deleted in the dept table.

Line 4-6 : Whenever a deptno is deleted in the dept table the
corresponding rows having values in employee_csc table will be deleted.

Now execute the trigger as follows:
SOL> @ c:\sql_prgs\dept check triggerl.sql;
Trigger created.

Now execute the following command where a primary key value is
deleted from dept.

SQL> delete from dept where deptno=3;
1 row deleted.
SQL> select * from dept;

DEPTNO DNAME

2 English
4 Physics

Now the trigger will be triggered and now check the employee csc table
to check whether corresponding data is deleted in it (3 rows)

SQL> select ename,eid,deptno from employee csc;,

ENAME EID DEPTNO
anitha 100

aiswarya 101

chandra 102

hema 103 2

lalitha 104

raman 105

ananthi 109 4

sundar 110 4
raveena 111 4
radha 112
ramani 113

11 rows selected.

2.7 NESTED TRIGGERS

A nested trigger or recursive trigger is a trigger that gets executed because
of another trigger. For example, let’s create a trigger on the notifications
table to prevent someone from directly inserting into the table. This
ensures integrity of the data as we control the insertion only via an update
trigger.

CREATE OR REPLACE TRIGGER NOTIFICATION INTEGRITY
BEFORE INSERT OR UPDATE ON NOTIFICATIONS
FOR EACH ROW
BEGIN
raise_application_error(-20000
, 'Data cannot be inserted");
END;

Now, no one can insert any data into Notifications table. Let’s try to insert
a new data in POST,

update POST set likes=20 where author = 'ram’";

Output:

v 2ual l.LII\J auv LN . UL wvmmaniv =

update POST set likes=20 where author = 'ram’

Error report -

ORA-20000: Data cannot be inserted

ORA-06512: at "ADMIN,NOTIFICATION_INTEGRITY", line 2

ORA-04088: error during execution of trigger 'ADMIN.NOTIFICATION INTEGRITY'
ORA-06512: at "ADMIN.NOTIFICATIONS NEN LIKES", line 3

; error during execution of trigger 'ADMIN.NOTIFICATIONS NEN LIKES'

So, our integrity trigger prevents any data insertion and this also shows
how triggers can be nested.

Triggers and Sequences

49

Database Management Systems 2.8 ADVANTAGES OF TRIGGERS

50

These are the following advantages of Triggers:

° Trigger generates some derived column values automatically
° Enforces referential integrity

° Event logging and storing information on table access

° Auditing

° Synchronous replication of tables

° Impose security authorizations

° Prevents invalid transactions

2.9 SEQUENCES

A sequence is an object in PL\SQL to generate unique sequences that can
be assigned to auto numbering field or primary key where a unique ID is
required.

For example, the banking sector might use this feature extensively where
they would be required to generate unique numbers based on certain
constraints for credit card or one time password (OTP).

2.10 CREATING SEQUENCE

Syntax of creating a sequence
CREATE SEQUENCE sequence name
MINVALUE value

MAXVALUE value

START WITH value

INCREMENT BY value

CACHE vale;

Let’s try to do a breakdown of above lines and try to understand what each
line is expected to do.

Line 1: Create sequence keyword defines the sequence object with given
sequence name

Line 2: MINVALUE of the sequence to generate

Line 3: MAXVALUE of the sequence. Largest maximum value would be
999999999999999999999999999

Line 4, 5: We specify a specific start value for our sequence to start. If this
is omitted, minvalue becomes the start value. We also specify how this
sequence has to be incremented.

Line 6: CACHE, is nothing but how many sequences have to be computed
and kept in cache for performance optimization. For example, OLA might
use 20000 for their OTP generator as it would improve their performance
greatly.

Let’s create an invoice sequence for a company, the specifications would
be it should be in increments of 1 and should start from 0 and can go up-to
1,00,000 invoices.

CREATE SEQUENCE invoice number
MINVALUE 1

START WITH 1

INCREMENT BY 1

CACHE 10;

2.11 REFERENCING A SEQUENCE

Now, we have created a sequence. This has to be referenced somewhere so
we can see how this works. Let’s create an invoice table for this company.

CREATE TABLE INVOICE (
INVOICENO Number,
INVOICEITEM VARCHAR2(255)

);

Our table is ready, let's try to insert some values into it by referencing the
Sequence object we just created.

INSERT INTO INVOICE VALUES (invoice number.NEXTVAL, 'MILK');
INSERT INTO INVOICE VALUES (invoice_number.NEXTVAL, 'GHEE');
Give,

SELECT * FROM INVOICE;

Output

a ,__Ef};_, EE} [3 SOL | All Rows Fetched: 2 in 0.041 seconds

{} INVOICENO |{} INVOICEITEM
1 MILK
2 GHEE

Triggers and Sequences

51

Database Management Systems 2.12 ALTERING A SEQUENCE

52

Now we don’t like to have our sequence in increments of 1, rather we
would love to have increments of 10.

ALTER SEQUENCE invoice _number
INCREMENT BY 10;

Let’s test our recent change by inserting another milk product to our
invoice item.

INSERT INTO INVOICE VALUES (invoice_number. NEXTVAL, 'CURD’);

Output

[4 ._QJ @E} @ SQL | All Rows Fetched: 3 in 0.029 secon:

{! INVOICENO |} INVOICEITEM
1 1 MILK
2 GHEE
12 CURD

2.13 DELETING A SEQUENCE

To delete a sequence, we use the following syntax
DROP SEQUENCE sequence name;

Example, if we wish to delete our invoice sequence we can give following
SQL query

DROP SEQUENCE invoice number;

2.14 SUMMARIZE

In this chapter an introduction to Triggers and how to create, delete them
are discussed.

e A trigger is a stored procedure which gets fired by default when an
incident occurs on a database.

e There are two types of triggers namely Row-level and statement-level
triggers

o Row level trigger gets triggered for a row only.

e The old and new qualifiers are used in row-level triggers which are not
compatible with statement-level triggers.

e After triggers are fired post the execution of a DML statement prior to
the commit statement.

e The concept of nested Triggers is explained.

e An introduction to Sequence and its creation, reference and altering
the created sequence and deleting a sequence are discussed with
examples.

2.15 LIST OF REFERENCES

1. Nilesh Shah,” Database systems using ORACLE- A simplified guide
to SQL and PL/SQL.

2. https://www.tutorialspoint.com/plsql/plsql_triggers.htm
3. https://www.studytonight.com/plsgl/plsql-triggers

4. https://www.softwaretestinghelp.com/triggers-in-pl-sql/
5. https://www.geeksforeeeks.org/sql-sequences/

2.16 QUESTIONS

1. Write a short note on triggers.
2. Write a short note on Trigger Classification
3. Write a short note on Implementing Triggers.

4. State and explain various aadvantages of Triggers

Triggers and Sequences

53

54

3

FILE ORGANIZATION AND INDEXING

Unit Structure
3.0 Objective
3.1 Introduction -File organization
3.2 Types of File organization
3.2.1 Sequential File Organization
3.2.2 Heap File organization
3.2.3 Hash File Organization
3.2.4 B+ Tree File Organization
3.2.5 ISAM File Organization
3.2.6 Cluster File Organization
3.3. Indexing
3.3.1 Introduction
3.3.2 Database Indexing attributes
3.3.3 Types of index files
3.3.3.1 Primary Indexing
3.3.3.2 Secondary Indexing
3.3.3.3 Cluster Indexing
3.3.3.4 Tree based indexing - B-Tree Indexing
3.4 Comparison of file organization
3.4.1 Cost of various operation of DBMS on different types of files
3.4.2 Comparison of I/O Costs
3.5 Creating, dropping and Altering indexes
3.5.1 Creating Indexes
3.5.2 Altering the Indexes
3.5.3 Removing the indexes
3.6 Summarization

3.7 References

3.0 OBJECTIVE File Organization and Indexing

At the end of this chapter the students will be able to:

e Describe how files and records can be placed on disks and the
effective way in which the records are organized in files

e Know the various commonly used file organizations used in database.
e Describe various indexes commonly used in database environments
e Understand the data structures which can support the various indexes

o To do manipulation with indexes on database

3.1 INTRODUCTION -FILE ORGANIZATION

A file is a collection of related information that can be stored in secondary
storages.

File organization is a logical relationship among the records in a particular
file. This defines how the files are mapped onto secondary storage in
terms of disk blocks.

3.2 TYPES OF FILE ORGANIZATION

Sequential File
Organization

% Heap File Organization
EE—

File organization
Hash File Organization

ISAM File Organization

B+ Tree File Organization
Cluster File Organization

3.2.1 Sequential File Organization

This is the easiest method of file organization. There are two ways to
implement sequential file organization.

° Pile File Method
° Sorted File Method
Pile File Method

In this method the records are stored in a sequence. The records are
inserted in the order of their arrival. In order to do any updation or
55

Database Management Systems deletion of a record, the whole file which is stored as a memory block has

56

to be searched. When it is found , it will be updated or deleted
accordingly.

Let us consider the following records in a file (R1,R3,R4,R7,R8) , where
R1 is the first record and R8 is the last record. Now when a new record
says R2 is to be added it will be added at the end, i.e after R8 and so on.

R1 |+ Starting of file R1 | <— ?{fmng of
R4 R4
R8 | «—— Endoffie R8 |« Endoffie
R2 | ¢
R5 New record
——

New record

Sorted File method

In this the new record is inserted at the end, and then it will be sorted
either in ascending or descending order. In case of updating a key on
which the data is sorted, first it will update the record and then again
sorted and the updated record will find its place.

R1 < _ Starting of file
R1 |+— Starting of file Eg —— Newrecord
Re i
R7 RS <«—— New record
R7
R8 <«—— Endoffile R8
—

End of file

Advantages of Sequential file organization
e File can be stored in the order it comes and then can be sorted.

e When all the records are to be processed like employee pay slip
generation, student grade printing etc, this method is apt.

Disadvantage of sequential file organization

e As the sorting takes place each time a record is inserted or updated,
most of the time is spent on this sorting operation and it needs space
for the movement of data.

e In order to search for a particular record the file pointer has to go ;. Organization and Indexing
through all the records before it reaches the particular record, which is
very time consuming.

3.2.2 Heap file organization

In this organization, the file is stored in a data block. So when a new
record comes it will be stored in any of the data blocks which has space. If
a data block is full, the new record is stored in some other block, which
need not be the next data block. It is the responsibility of software to
manage the records. Heap file organization does not support sorting,
indexing etc.

Advantages of Heap file organization
e Fetching and retrieving records is faster for small databases

e When there is a large amount of data to be stored, this method is best
as it finds wherever the memory block is free, it will occupy.

Disadvantages of Heap file organization
) Problem of unused memory block.

e This method will be a big problem when a large database is stored in
this organization. As any search starts from the beginning of the file,
it takes a lot of time for any updation, deletion etc,.

3.2.3 Hash file organization:

In a huge database structure, it is very inefficient to search all the index
values and reach the desired data. Hashing technique is used to calculate
the direct location of a data record on the disk without using index
structure.

In this technique, data is stored at the data blocks whose address is
generated by using the hashing function. The memory location where
these records are stored is known as data bucket or data blocks.

In this, a hash function can choose any of the column value to generate the
address. Most of the time, the hash function uses the primary key to
generate the address of the data block. A hash function is a simple
mathematical function to any complex mathematical function. We can
even consider the primary key itself as the address of the data block. That
means each row whose address will be the same as a primary key stored in
the data block.

57

Database Management Systems Data Buckets in Memory

— — —
Data Buckets Address Actual datain Memory
Data Records A — A —
98 | 98 | 100 John Delhi
103 X
106 . 102
104 — 103 103 John UsS
! >3 104 104 Kathrin UP
105 105 Honey China
106 106 Jackson Delhi
:
i
120

The above diagram shows data block addresses same as primary key
value. This hash function can also be a simple mathematical function like
exponential, mod, cos, sin, etc. Suppose we have a mod (5) hash function
to determine the address of the data block. In this case, it applies mod (5)
hash function on the primary keys and generates 3, 3, 1, 4 and 2
respectively, and records are stored in those data block addresses

Types of hashing

1) Static Hashing

2) Dynamic Hashing Technique
Static Hashing:

Static hashing uses a static hash function, so the resultant bucket address
will always be the same.

Example, if we generate a hash for EMP_ID = 103 using a static has
function mod (5) will always result in 3.

Data Buckets in Memory

A
Y
Data Buckets
Address Actual Data in Memory
Data Records PN
- N
98 ~ y 1 106 James Delhi
104 ~ v 2 102 Kathri Us
106 A ~ - 3 98 Alia —
| to4 104 | Jackso | China
5
6

58

Operations of Static Hashing,
° Searching a record

When we need to find a record already stored in a bucket, static hashing
really fast to retrieve it.

° Insert a record

When we want to insert a record into RDBMS, static hashing is really fast
to insert the data.

Dynamic Hashing:

e The dynamic hashing method is used to overcome the problems of
static hashing like bucket overflow.

e In this method, data buckets grow or shrink as the records increases or
decreases. This method is also known as Extendable hashing method.

e This method makes hashing dynamic, i.e., it allows insertion or
deletion without resulting in poor performance.

Search a key:

e First, calculate the hash address of the key.

e Check how many bits are used in the directory, and these bits are
called as 1.

e Take the least significant i bits of the hash address. This gives an index
of the directory.

e Now using the index, go to the directory and find bucket address
where the record might be.

Insert a key:

e Firstly, you have to follow the same procedure for retrieval, ending up
in some bucket.

e If there is still space in that bucket, then place the record in it.

e [f the bucket is full, then we will split the bucket and redistribute the
records.

Example:

Consider the following grouping of keys into buckets, depending on the
prefix of their hash address:

File Organization and Indexing

59

Database Management Systems

Key Hash address
11010
00000
11110
00000
01001
10101
10111

N OV O s (WD =

The last two bits of 2 and 4 are 00. So it will go into bucket BO. The last
two bits of 5 and 6 are 01, so it will go into bucket B1. The last two bits of
1 and 3 are 10, so it will go into bucket B2. The last two bits of 7 are 11,
so it will go into B3.

Data Buckets

Data Records

2 4 B
v 0

00 1 —1
01 1 56 B:

10 I e
> 1 3 B2

11 \\
[7 B3

Insert key 9 with hash address 10001 into the above structure:

e Since key 9 has hash address 10001, it must go into the first bucket.
But bucket B1 is full, so it will get split.

e The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are
001, so it will go into bucket B1, and the last three bits of 6 are 101, so
it will go into bucket BS5.

e Keys 2 and 4 are still in B0O. The record in BO pointed by the 000 and
100 entry because last two bits of both the entry are 00.

e Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and
110 entry because last two bits of both the entry are 10.

e Key 7 are still in B3. The record in B3 pointed by the 111 and 011
entry because last two bits of both the entry are 11.

60

Data Records Data Buckets

000 _//“; 2 4 Bo
001
] \ 5 9 Bl
010 ~
011 - . 13 B>
100
101 | y ! Bs
110 1
e 6 Bs
111)
Advantages
e In this method, the performance does not decrease as the data grows in

the system. It simply increases the size of memory to accommodate the
data.

In this method, memory is well utilized as it grows and shrinks with the
data. There will not be any unused memory lying.

This method is good for the dynamic database where data grows and
shrinks frequently.

Disadvantages:

In this method, if the data size increases then the bucket size is also
increased. These addresses of data will be maintained in the bucket
address table. This is because the data address will keep changing as
buckets grow and shrink. If there is a huge increase in data, maintaining
the bucket address table becomes tedious.

In this case, the bucket overflow situation will also occur. But it might
take little time to reach this situation than static hashing.

3.2.4 B+ File Organization

e B+ tree file organization is the advanced method of an indexed

sequential access method. It uses a tree-like structure to store records
in File.

It uses the same concept of key-index where the primary key is used to
sort the records. For each primary key, the value of the index is
generated and mapped with the record.

The B+ tree is similar to a binary search tree (BST), but it can have
more than two children. In this method, all the records are stored only

File Organization and Indexing

61

Database Management Systems

62

at the leaf node. Intermediate nodes act as a pointer to the leaf nodes.
They do not contain any records.

I 25|

<
AR

10 12 15 20 24 27 29 30

The above B+ tree shows that:

There is one root node of the tree, i.e., 25.

There is an intermediary layer with nodes. They do not store the actual
record. They have only pointers to the leaf node.

The nodes to the left of the root node contain the prior value of the
root and nodes to the right contain the next value of the root, i.e., 15

and 30 respectively.

There is only one leaf node which has only values, i.e., 10, 12, 17, 20,
24,27 and 29.

Searching for any record is easier as all the leaf nodes are balanced.

In this method, searching any record can be traversed through the
single path and accessed easily.

Advantages of B+ tree file organization

In this method, searching becomes very easy as all the records are
stored only in the leaf nodes and sorted in the sequential linked list.

Traversing through the tree structure is easier and faster.

The size of the B+ tree has no restrictions, so the number of records
can increase or decrease and the B+ tree structure can also grow or
shrink.

It is a balanced tree structure, and any insert/update/delete does not
affect the performance of the tree.

Disadvantage of B+ tree file organization File Organization and Indexing

° This method is inefficient for the static method.

3.2.5 Indexed Sequential Access Method (ISAM)

ISAM 1is an advanced sequential file organization method where the
records are stored using the primary key concept. An index is generated
for each primary key and mapped with the record. This index contains the
address of the record in the file.

R1 100 —|
R2 101
R3 102
R4 103
R5 104
R6 105

Next to the primary key R1,R2 etc is the index which is nothing but the
address where the record is stored in memory. So if a record is to be
retrieved, it will be done through its index.

Here the storage area is divided into three parts namely prime area,
overflow area and indexed area.

Prime area : In prime area the records are placed in sequential order.

Overflow area : When the prime area is full, the records will be stored
here.

Indexed area : The index of the file is stored here. Index contains track
number and highest key field value on that track.

Advantages of ISAM

e Since the search with indexing is very fast, searching a record in a
huge database is quick and easy.

e This method supports range retrieval and partial retrieval like students
with rollno starting from 45 to 60 and to fetch the students whose
name starts with ‘AN’.

Disadvantage of ISAM
° In order to store index value extra space is needed.
° New record insertion leads to reconstruction to maintain sequence.

° When a record is deleted the space used by it must be released.
Otherwise the performance of the database will be slowed down.

63

Database Management Systems 3.2.6 Cluster File Organization

64

In cluster file organization, two or more related tables are stored within a
file and so known as cluster. Using the primary key and foreign key
attributes these two or more than them are mapped together and stored
only once in the same data block. The key columns (primary and foreign
key) are stored in this joined table only once. This reduces the cost of
searching and retrieving the records from various tables as they are linked

in one cluster.

Consider the two tables employee csc and works csc where EID is the
primary key in Employee csc and it is the foreign key in works csc. Let

CID is the primary key in works_csc

Employee csc

ENAME STREET CITY EID

anitha 1st street chennai 100

aiswarya 2nd street chennai 101

chandra 2nd street chennai 102

hema 3rd street chennai 103

lalitha metha street mumbai 104

raman krishnan street bangalore 105

harini kalam street andhra 106

danush ragav street bangalore 107

david kamaraj street calcutta 108

ananthi rajaji street chennai 109
Fareian

WOI'kS_CSC & Primarv

SALARY EID CID

45000 100 cl

35000 101 ¢2

35000 102 ¢3

50000 103 c4

30000 104 c2

30000 105 ¢3

40000 106 cl

30000 108 ¢3

28000 109 ¢3

« Primary key

After a full outer join the the two tables are joined and can been seen in a

cluster file like

Cluster keyFile Organization and Indexing

EID EMPNAME STREET CITY MID MNAME EID CID
100 anitha 1st street calcutta ~ml ajith 100cl
101 aiswarya 2nd street chennai m4 janani 101 c2
102 chandra 2nd street chennai m6 jothi 102 c3
103 hema 3rd street chennai m5 krishnan 103 c4
104 lalitha metha street mumbai m3 karthik 104 c2
105 raman krishnan street bangalore m2 hari 105 ¢c3

106 harini kalam street ~ andhra
107 danush ragav street bangalore m7 dhanush 107 c4
108 david kamaraj street calcutta

109 ananthi rajaji street chennai
1172 lrrich 2rd ctrent hanaalare

Using cluster key EID the two tables are stored as once and any insertion,
deletion or updation can be done directly on these which will carry the
operation in the individual tables also.

There are two types of cluster file organization

° Indexed clusters : In this the records are grouped based on cluster
key and stored as one. In the above example employee csc and
works csc are grouped based on cluster key EID and all related
records are stored together

° Hash clusters: In this instead of cluster key, a hash key value is
generated and stored in the joined table in the memory data block
together.

Advantages of Cluster file organization

° When information from the related tables are to be extracted
frequently, this method is the best.

° When there is a 1:M mapping between the tables, this organization
works efficiently

Disadvantages of Cluster file organization

e This method is not suitable for very large database as the
performance is low

e [f the joining condition on which the tables are joined changes then
complete rework or traversing back will take place. So when there is
a change in joining condition another cluster only has to be formed.

° This method is not suitable for tables with 1:1 conditions.

65

Database Management Systems 3.3 INDEXING

66

3.3.1 Introduction

Imagine a database comprising millions of records of data, when we query
this database what do you expect to happen ? Do we think this request will
be optimal ? Will the users be happy about the response time ?

The very plain answer to this question is no. The database will start to
slow up and become more clogged due to the huge volume of data it has to
parse through to find what we need. We can solve this sluggishness
problem in multiple ways, but we will concentrate only on indexing in this
chapter.

To put it in plain words. Indexing is a technique to optimize the
performance of a database by reducing the number of disk operations
required on a given query. Indexing can be achieved by using specialized
data structures in an RDBMS system.

Indexes are in general created using one or more database columns. As an
example, we will look at the primary index which is typically a key-value
pair. Whenever we create a primary index for a table, RDBMS creates a
separate table consisting of a key which is the database column we specify
and value for this key will be the reference to the data in the table.

Does this data structure ring a bell?. Yep, this is our good old hashmap.
Any guess on what would be the read time for a hashmap (O(1)). Figure 1
shows how index exists in a database system.

Key Value

w

earch Key Data Reference

The first column is the search key, which is nothing but a candidate key or
primary key we set in a table. Usually these values could be sorted for a
faster discovery.

The second column is nothing but a data reference or reference memory
location where it points to a specific memory location in the database
table. Imagine this as a linked list node, which we can reference.
Practically we will have several complex data structures to handle row
data. Which we will try to cover later in this chapter.

3.3.2 Database Indexing attributes

Choosing an index is a careful process, there are a lot of inputs required in
selecting an optimal index column. Few of the attributes are,

1) Access Type:

Access type refers to how we are going to access our data in the table. For
example, most common ways of accessing data would be value based or
range based.

Value based data examples, would be student details, ticket information.
In all these access we would probably be looking for a cluster of relation
data relating to an individual or real world modelled entity.

Range base data examples would be Stock exchange and other financial
data.

2) Access Time:

Refers to the time required to find a particular data element or set of
elements

3) Insertion time:

Refers to time taken to the time taken to find the appropriate space to
insert the record

4) Deletion time:

Time taken to find an item and delete it. This would also include time
taken to update the index data structure.

5) Space Overhead

It refers to additional space required to maintain an index.
3.3.3 Types of index files:

There are mainly three types of indexing

) Primary Index

° Secondary Index

° Clustering Index

3.3.3.1 Primary Index

If the index is created with the Primary key of a table, then it is called
primary indexing. These keys are unique to each record. The records are
stored in sorted order of primary key and so the searching operation is
very efficient. The primary index can be classified as:

1) Dense Index

2) Sparse Index

67

File Organization and Indexing

Database Management Systems Dense Index:

68

In a dense index, a record is created for every search key valued in the
database. This helps you to search faster but needs more space to store
index records. In this Indexing, method records contain search key value
and points to the actual record on the disk.

Data
first._ namd last_ nam email phone
lvet l .cl bi
Dense Index Velve C 3::; v.e gé:i\z@cowmang b;:
LA 1 Oscar Na‘ n | o.na . n@company. '12
Camoron S?lsan TObIZS i.::bZAS@compaV\g.:.cz
Codric Kiley Hardy _hardyecompany.biz
Darell -
O Rachelle | Debra r.debroacompany.biz
avis
A Valerie | Raleigh | v.raleighacompany.biz
nn
9_ Flynn Gilbert | foilbertacompany.biz
Hamilton = -
Isabel Brenna | i.brenna@company.biz
Isabel
Kllei Darell |Winnifred|d.winnifredacompany.biz
II"OH Davis | Thornton | d.thorntonacompany.biz
Minerva Shepherd| Dylan s.dylanacompany.biz
Oscar : - - :
Minerva | Reid m.reidecompany.biz
Rachelle
Shepherd [Hamilton [Jodith | W judithecompany.biz
Sosaln Loyd Lucivs Llucivs@company.biz
Valerie Cedric Muyles c.mylesacompany.biz
Velvet > Cameron | Vance c.vancegcompany.biz

As we can see from the above image, a dense index is a strongly mapped
index. Where all records are referenced to an index or key.

Sparse Index:

Sparse index record that appears for only some values in the file. Sparse
Index helps you to resolve the issues of dense Indexing in DBMS. In this
method of indexing technique, a range of index columns stores the same
data block address, and when data needs to be retrieved, the block address
will be fetched.

However, since sparse Index stores index records for only some search-
key values. It needs less space, less maintenance overhead for insertion,
and deletions but It is slower compared to the dense Index for locating
records.

Sparse Index

first._namd

location

Cameron

\

Flynn

Loyd

Shepherd

Data

first_namdlast_ name| email phone
Cameron | Vance c.vanceecompony.biz
Cedric | Myles c.mylesecompany.biz
Darell |Winnifred|d.winnifredacompany.biz
Davis | Thornton| d.thorntonacompany.biz
Flynn Gilbert | fgilbertacompany.biz
Hamitton | Judith | hjodithacompany.biz
Isabel Brenna | i.brenna@company.biz
Kiley Hardy k.hardyacompany.biz
Loyd Locivs Llucivsecompany.biz
Minerva | Reid m.reidacompany.biz
Oscar | Nathan | o.nathanacompany.biz
Rachelle | Debra r.debra@company.biz
Shepherd | Dylan s.dylanacompany.biz
Susan | Tobias s.tobias@company.biz
\olerie | Raleigh | v.raleighacompany.biz
Velvet Clyde v.clyde@company.biz

In real-world applications, we may encounter a lot of utility to Sparse
index. If data size is too huge to process, we can use sparse indexing.

3.3.3.2 Secondary Indexing

A field which has a unique value for each record can generate a secondary
Index in DBMS, and it should be a candidate key. We also know it as a
non-clustering index.

This two-level database indexing technique is used to reduce the mapping
size of the first level. For the first level, a large range of numbers is
selected because of this; the mapping size always remains small.

“ile Organization and Indexing

69

Database Management Systems

70

Roll Pointer Roll Pointer Databock in Memory
100 100 100
200 110 b 101
300 \ 120 \ SR | ——
Primary Level Index 110
(RAM) 111
‘200 110 |- ———— -
210 \ 120
220) 121
*300 \ 200
320) 201
310 SRR |
210
Secondary Level Index 311_ = pEpEE———
(Hard Disk)
300

Example

e If you want to find the record of roll 111 in the diagram, then it will
search the highest entry which is smaller than or equal to 111 in the
first level index. It will get 100 at this level.

e Then in the second index level, again it does max (111) <= 111 and
gets 110. Now using the address 110, it goes to the data block and
starts searching each record till it gets 111.

e This is how a search is performed in this method. Inserting, updating
or deleting is also done in the same manner.

3.3.3.3 Cluster Indexing

e A clustered index can be defined as an ordered data file. Sometimes
the index is created on non-primary key columns which may not be
unique for each record.

e In this case, to identify the record faster, we will group two or more
columns to get the unique value and create an index out of them. This
method is called a clustering index.

e The records which have similar characteristics are grouped, and
indexes are created for these groups.

Example

suppose a company contains several employees in each department.
Suppose we use a clustering index, where all employees which belong to

thg same Dept_ID are considered within a single. cluster, apd index gy Organization and Indexing
pointers point to the cluster as a whole. Here Dept_Id is a non-unique key.

Dept_ID Pointer
1
2
3
4 —
> 1 Record
5 7
2 |
|
L> 2 Record
2
2
2 L
1]
3 3 Record
>
3
= A
]
>4 Record
- o
=)
5 X]

The previous schema is a little confusing because one disk block is shared
by records which belong to the different cluster. If we use separate disk
blocks for separate clusters, then it is called a better technique.

Dept_ID Pointer 4,—> 1 Record
1
— 1
1 |
2
L = Record
=2
3 2
2 -]
4
L> 2 Record
S
<]
[3 Record
=
3
x|
»| 4 Record
p
x|
——> [5 Record
=3
(=3
x]

3.3.3.4 Tree based indexing - B-Tree Indexing

B-Tree index is a multilevel index format technique which is a balanced
binary search tree.

71

Database Management Systems In B-Tree indexing, all leaf nodes are interlinked with a link list, which
leads to both random and sequential access. In this added advantage is it
follows binary search which makes the searching faster. Since it has two
pointers in each of its nodes, two-way search is possible. The below
picture is an example of a m-way search tree where m represents the
number of pointers in a particular node. If m=3, then each node contains 3
pointers, and each node would then contain 2 values.

100 200
/ ,

X‘ 40‘ 55 X243 x | 325

X 47 X 57

L4

150 % 175 X 392| X

X 140

NS
[a)

3.4 COMPARISON OF FILE ORGANIZATIONS

3.4.1 Cost of various operation of DBMS on different types of files

File Type Scan Equality Range Search Insert Delete
Search
Heap PD 0.5PD PD 2D Search + D
Sorted PD Dlog,(P) Dlogy(P) +| Search +| Search +
matching pages | PD PD

Clustered 1.5PD Dlogg(1.5P) | Dlogg(1.5P) +| Search +| Search+D

Tree Index matching pages | D
Unclustered | PDR +| D +| Dlogg(index 3D+ Search +
Tree Index | Read Dlogr(0.15P) | size) *+| Dlogg(inde 2D

index D*matching X size)

records

Unclustered | PDR +| 2D PD 4D Search +
Hash Index | Read 2D

index

72

Where P no. of pages in the file.

D amount of time required to read or write on a page.
R no. of records in a particular page.

Heap Files

Scan: Cost is PD since we have to retrieve each of P pages with each page
taking D time.

Equality Search: If exactly one record matches the desired equality search
then on average we must scan half of the file, assuming the record exists
in only that part of the file. Hence cost is 0.5PD.

Range Search: This entire file must be scanned for matching records. So
cost is PD.

Insert: If records are inserted at the end of page the time taken is fetching
the page and writing back the page. So the cost is 2D.

Delete: Here time taken is searching for relevant records and writing back
the page after deleting records from it. So the cost is Search + D.

Sorted Files

Scan: Cost is PD since we have to retrieve each of P pages with each page
taking D time.

Equality Search: If we assume that the equality search is specified on the
field by which the file is sorted, then we can search for the record by the
help of binary search. Hence cost is Dlog,(P).

Range Search: It is an equality search for all matching records. So the
cost is Dlogy(P) + matching pages. Insert: To insert the record while
preserving the sorted order, first we have to search for the correct position
in the file, add record and then fetch and rewrite all subsequent pages. So
the cost is Search + PD. Delete: Here we search for a record, remove the
record from the page, and rewrite the subsequent pages to fill the space
created by the record which is deleted. Hence cost is Search + PD.

Clustered Tree Index

Scan: Here the effective number of pages is 1.5 times more than pages in
heap files since page occupancy is 67%. So, Cost is 1.5PD since we have
to retrieve all the pages with each page taking D time.

Equality Search: If data records are ordered as data entries in some index,
then we do F-ary search. So cost in Dlogg(1.5P).

Range Search: It is an equality search for all matching records. So the
cost is Dlogg(1.5P) + matching pages. Insert: Here time required is for
searching the correct position for record in the page and writing back the
page. So the cost is Search + D.

File Organization and Indexing

73

Database Management Systems Delete: Similar to insert, first search for page, delete a record from it and

74

write back the page. Cost is Search + D.
Unclustered Tree Index

Scan: Here each record takes D time to read from a single page. So
reading an R record from a page takes DR time. Hence total cost for P
pages is PDR + Read index.

Equality Search: If we assume that data index size is one-tenth of data
record, then no. leaf pages are

0.15P. So cost incurred is D + Dlogg(0.15P).

Range Search: It includes equality search and matching pages. So cost is
Dlogr (index size) + D*matching records.

Insert: Time required is for searching the page, fetching it, adding records
and writing back the page. So the cost is 3D + Dlogg (index size).

Delete: First we search for the page where the record to be deleted is
located, then fetch the page, remove record and write back the page. So
the cost is Search + 2D.

Unclustered Hash Index

Scan: Here each record takes D time to read from a single page. So
reading an R record from a page takes DR time. Hence total cost for P
pages is PDR + Read index.

Equality Search: If search is on the search key of hashed file, then total
cost is of only getting the relevant page of data entry and record, so cost is
2D.

Range Search: This search can be as bad as scanning the whole file.
Hence cost incurred in this is of retrieving all the pages. So cost is PD.

Insert: Here by using the search key, we can read the relevant pages, add
a record to it and then write back the page. So the cost involved with it is
4D.

Delete: Cost involved with it is searching for the record, reading the page,
deleting the record and writing back the page. So the cost is Search + 2D.

3.4.2 Comparison of I/0 Costs

e A heap file has good storage efficiency and supports fast scanning and
insertion of records. However, it is slow for searches and deletions.

e A sorted file also offers good storage efficiency, but insertion and
deletion of records is slow. Searches are faster than in heap files.

e A clustered file offers all the advantages of a sorted file and supports
inserts and deletes efficiently. Searches are even faster than in sorted

files, although a sorted file can be faster when a large number of Organization and Indexing
records are retrieved sequentially, because of blocked /O efficiencies.

e Unclustered tree and hash indexes offer fast searches, insertion, and
deletion, but scans and range searches with many matches are slow.
Hash indexes are a little faster on equality searches, but they do not
support range searches.

3.5 CREATING, DROPPING AND MAINTAINING
INDEXES

3.5.1 Creating the index

When a new table is created with a primary key, Oracle automatically
creates a new index for the primary columns.

Other than the primary key one can create indexes based on other
columns using CREATE INDEX command.

Syntax

CREATE INDEX index name

ON table name(columnl [, column2,..])

1. The name of the index has to be specified for creation of index. The
index name must be a meaningful one. For easy identification and
remembrance it can consists of table name and column name along with
suffix I as follows:

<table name> <column_name> [

2. The name of the table name must be followed by one or more
column on which the index is to be build

Consider the table employee csc

SQOL> desc employee csc,

Name Null? Type

ENAME VARCHAR2(30)
STREET VARCHARZ2(40)
CITY VARCHAR2(30)
EID NOT NULL NUMBER(3)
EMAIL VARCHAR2(100)
DEPTNO NUMBER(2)

75

Database Management Systems

76

To view all indexes of a table, the following query can be used:

SELECT
index_name,
index_type,
visibility,
status
FROM
all indexes
WHERE
table name="TABLE NAME;

Now applying the syntax for our employee csc table

SQL> select index name,index type,visibility,status from all indexes
where table name="EMPLOYEE CSC';

output
INDEX NAME INDEX TYPE VISIBILIT STATUS
SYS C006987 NORMAL VISIBLE VALID

Creating an index on one column

Suppose, to look into table for the employees having same name,

SQOL> create index emp _ename_i on employee csc(ename);

Index created.

Now, showing the indexes will show the newly created index File Organization and Indexing

SQOL> select index name,index type,tablespace name from
user_indexes where table name="EMPLOYEE CSC';

EMP CITY 1 NORMAL SYSTEM
EMP ENAME 1 NORMAL SYSTEM
SYS C006987 NORMAL SYSTEM

3.5.2 Altering the index

After creation of indexes, the attribute of that index can be changed using
the ALTER INDEX command.

Syntax

ALTER [UNIQUE] INDEX <index name> ON <table name>
(<column(s)>);

Where UNIQUE - defines the index as a unique constraint for the table.
<index name> - name of the index table
<table name> - name of the base table on which index is created

<column(s)> - name of the columns in the table

SQOL> alter index emp _ename_i rename to emp_ename_idx2;
Index altered.
Now we can list the index files again to see the change in name

SOL> select index name,index_type,tablespace name from
user_indexes where table name="EMPLOYEE CSC';

EMP CITY 1 NORMAL SYSTEM
EMP ENAME IDX2 NORMAL SYSTEM
SYS C006987 NORMAL SYSTEM

77

Database Management Systems

78

We can disable the index using the alter index as follows

SQOL> alter index emp _ename_idx2 unusable;
Index altered.

We can see the status by using the following command

SQL> select index name,index type,status from user indexes where
table name="EMPLOYEE CSC';

EMP CITY I NORMAL VALID
EMP_ENAME_IDX2 NORMAL UNUSABLE

SYS C006987 NORMAL VALID

We can enable the index using the alter index as follows

SQOL> alter index emp ename_idx2 rebuild;

Index altered.

We can see the status change as follows:

SQL> select index name,index type,status from user indexes where

table name="EMPLOYEE CSC';

EMP CITY 1 NORMAL VALID
EMP ENAME IDX2 NORMAL VALID
SYS C006987 NORMAL VALID

3.5.3 Removing the index
The created index can be dropped using the command

Syntax

DROP INDEX <index name>

Now applying this to the created index:

SQOL> DROP INDEX EMPLOYEE CSC ENAME I;

Index dropped.

3.6 SUMMARIZATION File Organization and Indexing

e No file organization is superior to the other one. Depending upon the
situations one has to use accordingly.

e If selection queries are frequent, sorting and building indexes of the
file is important.

e Hash based indexes are good for equality search.

e Sorted files and tree-based indexes are best for range search and
equality search.

e One file can have several indexes based on different search key

e Indexes can be classified as clustered vs unclustered , primary vs
secondary and dense vs sparse.

e Careful selection of index keys is important to speed up queries.

e Heap file is efficient in terms of space occupancy and insertion, but
inefficient for search and deletion.

e Sorted files are efficient in terms of space occupancy but inefficient
for insertion and deletion.

e C(Clustered tree index has the overhead in space occupancy. But
perform well in insertion, deletion and searching.

o We can use CREATE INDEX to create indexes for columns other
than primary key.

e Using ALTER INDEX modifications can be done on created index
e Using DROP INDEX the index can be deleted.

3.7 REFERENCES

1. https://www.geeksforgeeks.org/file-organization-in-dbms-set-1/
2. https://www.javatpoint.com/dbms-file-organization

3. https://www.tutorialspoint.com/dbms/dbms_file_structure.htm
4. https://www.javatpoint.com/indexing-in-dbms

5. https://www.geeksforgeeks.org/indexing-in-databases-set-1/

6. https://www.guru99.com/indexing-in-database.html

7. https://www.tutorialspoint.com/dbms/dbms_indexing.htm

79

80

FUNDAMENTALS OF PL/SQL
Unit Structure
4.0 Objectives
4.1 Overview of PL/SQL
Features of PL/SQL
Advantages of PL/SQL
PL/SQL Block Structure
4.2 PL/SQL Identifiers
Variable Declaration in PL/SQL
Constants
Literals
4.3 PL/SQL Expressions and Comparisons
PL/SQL Operators
PL/SQL Operator Precedence
CASE Expressions
Null Values in Comparisons, Conditional Statements
4.4. PL/SQL Data Types
Number Types
Character Types
Boolean Type
Date Time Types.
LOB Types

4.0 OBJECTIVES

This chapter makes you to understand the basic concepts in PL/SQL.

It guides you to write PL/SQL block on yourself for a given problem.

4.1 OVERVIEW OF PL/SQL

The PL/SQL programming language was developed by Oracle
Corporation in the late 1980s and early 90's to enhance the capabilities of
SQL as a procedural extension language for SQL and the Oracle relational
database. This is a combination of SQL embedded with the procedural
features of programming languages.

PL/SQL is a high-performance transaction-processing language and
completely portable.

PL/SQL provides a integrated, interpreted and OS independent
programming environment.

This can also be called directly from the command-line SQL*Plus
interface.

It has an option from external programming language calls to the
database.

PL/SQL is also available in Times Ten in-memory database, IBM DB2
and so on.

Features of PL/SQL
PL/SQL is built-in with SQL.

It provides error checking facility.

It offers numerous data types.

It offers different programming structures.

It has structured programming through functions and procedures.
It has object-oriented programming.

It has the development of web applications and server pages.

Advantages of PL/SQL

SQL is the standard database language and PL/SQL is strongly integrated
with SQL and supports static SQL and dynamic SQL.

Static SQL supports DML operations and transaction control from
PL/SQL block. In Dynamic SQL, easy to embed DDL statements on
PL/SQL program blocks.

PL/SQL allows sending an entire block of statements to the database at
one time. Reduces network traffic, provides high performance on
applications.

PL/SQL gives high productivity to programmers as it can query,
transform, and update data in a database.

PL/SQL saves time on design and debugging by strong features, such as
exception handling, encapsulation, data hiding, and object-oriented data
types.

Portable Applications can be written in PL/SQL.

High security level.

Fundamentals of PL/SQL

81

Database Management Systems ~ Access to predefined SQL packages.
e Support for Object-Oriented Programming.
e Support for developing Web Applications and Server Pages.

PL/SQL Block Structure

PL/SQL programs are divided and written in logical blocks of code. The
blocks ar also have two different types.

1. Anonymous Block : A Block of code without name
2. Named Block : A Block of code has a specific name such as function
name, subprogram name like, any valid name for the block.

Each block has three sections.

S.No | Sections & Description

Declarations

This section starts with the keyword DECLARE. It is an
optional section and defines all variables, cursors, subprograms,
and other elements to be used in the program.

Executable Commands

This section is enclosed between the keywords BEGIN and
2 END. It consists of the executable statements of the program. It
should have at least one executable statement, NULL command
is used to indicate that nothing should be executed.

Exception Handling

This section starts with the keyword EXCEPTION. This
optional section contains exception(s) that handle errors in the
program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be
nested within other PL/SQL blocks using BEGIN and END.

The syntax of PL/SQL block structure DECLARE
<declarations section>

BEGIN

<executable command(s)>

EXCEPTION

<exception handling>

END;
82

Example : Fundamentals of PL/SQL
DECLARE

msg varchar2(20):= 'Hello World';
BEGIN

dbms_output.put _line (msg);
END;

The end; line signals the end of the PL/SQL block. To run the code from
the SQL command line, use / at the beginning of the first blank line after
the last line of the code.This produces the following result

Hello World
The PL/SQL Comments

Program comments are explanatory statements that can be included in the
PL/SQL code that you write and helps anyone reading its source code. All
programming languages allow some form of comments.

The PL/SQL supports single-line and multi-line comments. All characters
available inside any comment are ignored by the PL/SQL compiler.

Single-line comments ,the line start by -- (double hyphen)
Multi-line comments must enclosed by /* and */.

DECLARE
-- variable declaration
varl varchar2(20):= 'Hello World';
BEGIN
dbms_output.put_line(varl);
END;
/

When the above code is executed at the SQL prompt, it produces the
following result

Hello World

4.2 THE PL/SQL IDENTIFIERS

PL/SQL identifiers are constants, variables, exceptions, procedures,
cursors, and reserved words. This consists of a letter optionally followed
by more letters, numerals, dollar signs, underscores, and number signs.
This should not exceed 30 characters. By default, identifiers are not case-

83

Database Management Systems sensitive. The identifier can be named integer or INTEGER to represent a

84

numeric value. You cannot use a reserved keyword as an identifier.
Variable Declaration in PL/SQL

PL/SQL variables must be declared in the declaration section or in a
package as a global variable. When you declare a variable, PL/SQL
allocates memory for the variable's value and the storage location is
identified by the variable name.

The syntax for declaring a variable is

variable name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT
initial value]

Where, variable name is a valid identifier in PL/SQL
sales number(10, 2);

pi CONSTANT double precision := 3.1415;

name varchar2(25);

address varchar2(100);

When you provide a size, scale or precision limit with the data type, it is
called a constrained declaration. Constrained declarations require less
memory than unconstrained declarations.

Example:

sales number(10, 2);

name varchar2(25);

address varchar2(100);
Initializing Variables in PL/SQL
DEFAULT

PL/SQL assigns it a default value of NULL. If you want to initialize a
variable with a value other than the NULL value, you can do so during the
declaration, using either of the following —

The DEFAULT keyword

The assignment(:=)operator
Example:

counter binary integer := 0;

greetings varchar2(20) DEFAULT 'Have a Good Day";

You can also specify that a variable should not have a NULL value using g, .damentals of PL/SQL
the NOT NULL constraint. If you use the NOT NULL constraint, you
must explicitly assign an initial value for that variable.

It is a good programming practice to initialize variables properly
otherwise, sometimes programs would produce unexpected results

Constants

A constant holds a value that once declared, does not change in the
program. A constant declaration specifies its name, data type, and value,
and allocates storage for it. The declaration can also impose the NOT
NULL constraint.

Declaring a Constant

A constant is declared using the CONSTANT keyword. It requires an
initial value and does not allow that value to be changed.

Example:
PI CONSTANT NUMBER := 3.141592654;
PL/SQL Block:
DECLARE
-- constant declaration
pi constant number := 3.141592654;
-- other declarations
radius number(5,2);
dia number(5,2);
circumference number(7, 2);

area number (10, 2);

BEGIN
-- processing
radius :=9.5;

dia := radius * 2;

circumference := 2.0 * pi * radius;
area := pi * radius * radius;

-- output

dbms_output.put line('Radius: ' || radius);

85

Database Management Systems

86

dbms_output.put line('Diameter: ' || dia);
dbms_output.put line('Circumference: ' || circumference);
dbms_output.put line('Area: ' || area);

END;

/

When the above code is executed at the SQL prompt, it produces the
following result —

Radius: 9.5
Diameter: 19
Circumference: 59.69
Area: 283.53
Literals

A literal is an explicit numeric, character, string, or Boolean value not
represented by an identifier. For example, TRUE, 786, NULL, 'tutorials
point' are all literals of type Boolean, number, or string. PL/SQL, literals
are case-sensitive. PL/SQL supports the following kinds of literals

050 78 -14 0 +32767
Numeric Literals | 6.6667 0.0 -12.0 3.14159 +7800.00
6E5 1.0E-8 3.14159¢0 -1E38 -9.5¢e-3

Character Literals | 'A"'%''9"'"'z" ('

'Hello, world!'
String Literals '"Tutorials Point'
'19-NOV-12'

BOOLEAN

) TRUE, FALSE, and NULL.
Literals

DATE '1978-12-25";

Date and Time | 1y iearanNp 1012-10-29 12:01:01";

Literals

4.3 PL/SQL EXPRESSIONS AND COMPARISONS

Expressions are constructed using operands and operators. An operand
may be a variable or constant that contributes value to an expression.

Simple arithmetic expression is:

-X/2+3

Unary operators like negation operator (-) operate on one operand; binary g1 mentals of PL/SQL
operators like the division operator (/) operate on two operands.

PL/SQL OPERATORS

An operator is a symbol that tells the compiler to perform specific
mathematical or logical operation.

Types of operators
Arithmetic Operators
Relational Operators
Comparison Operators
Logical Operators
Arithmetic Operators

Following table shows all the arithmetic operators supported by PL/SQL.
Let us assume variable A holds 20 and variable B holds 15, then

Operator | Description Example

+ Adds two operands A+B =35

i iﬁstra(:ts second one from the first A-B=5

* Multiplies both operands A *B =300

/ Divides numerator by de-numerator A/B=1

s Exponentiation operator, raises one A 59 = 400

operand to the power of other

Relational Operators

Relational operators compare two expressions or values and return a
Boolean result. Following table shows all the relational operators
supported by PL/SQL. Consider the variable A has 10 and variable B has
20, then —

87

Database Management Systems

88

Operator

Description

Example

Checks if the values of two operands
are equal or not, if yes then the
condition is true.

(A =B) is not true.

Checks if the values of two operands
are equal or not, if values are not equal
then the condition is true.

(A !'=B) is true.

Checks if the value of the left operand
is greater than the value of right
operand, if yes then the condition is
true.

(A > B) is not true.

Checks if the value of the left operand
is less than the value of the right
operand, if yes then the condition is
true.

(A <B) is true.

Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition is
true.

(A >= B) is not
true.

Checks if the value of left operand is
less than or equal to the value of right
operand, if yes then condition is true.

(A <= B) is true.

Comparison Operators

Comparison operators are used for comparing one expression to another.
The result is from TRUE, FALSE or NULL.

Operator Description Example
The LIKE oper'ator COMPAIES | 1o\ AL like 'Z% i
a character, string, or CLOB T
returns true, whereas, Nuha
LIKE value to a pattern and returns Ali' Tike 'Z% A i returns
TRUE if the value matches false o e
the pattern else FALSE. '
The BETWEEN operator | If x is 10 then, x between
tests whether a value liesin a | 15 and 20 returns true, X
BETWEEN | specified range. x | between 5 and 10 returns

BETWEEN a AND b means
that x >=a & x <=b.

true, but between 11 and 20
returns false.

The IN operator tests set
membership. x IN (set)

If x = 'm' then, x in (‘a', 'b',

IN . 'c') is false but x in ('m', 'n',

means that x is equal to any |, . .

0") is true.

member of set.

The IS NULL operator

returns the BOOLEAN value

TRUE if its operand is NULL If x = 'm". then 'x is null' i
ISNULL | or FALSE if it is not NULL. | . * ~ ' Sieh X 18 BUIS

. . . false.
Comparisons involving

NULL values 1is always
NULL.

Logical Operators

Following table shows the Logical operators supported by PL/SQL. All
these operators work on Boolean operands and produce Boolean results.
Let us consider variable A has true and variable B has false.

Operator

Description

Example

and

Called the logical AND operator. If
both the operands are true then
condition is true.

A and B is false.

or

Called the logical OR Operator. If any
of the two operands is true then
condition becomes true.

A or B is true.

not

Called the logical NOT Operator.
Used to reverse the logical state of its
operand. If a condition is true then
Logical NOT operator will make this
false.

not (A and B) is
true.

PL/SQL Operator Precedence

Operator precedence determines the grouping of terms in an expression.
This affects how an expression is evaluated. Some operators have higher
precedence than others; for example, the multiplication operator has
higher precedence than the addition operator.

For example, x =7 + 5 * 2; here, x is assigned 17, not 24 because operator
* has higher precedence than +, so it first gets multiplied with 5*2 and
then adds into 7.

Fundamentals of PL/SQL

89

Database Management Systems Here, operators with the highest precedence appear at the top of the table,

920

those with the lowest appear in bottom. Higher precedence operators will
be evaluated first.

The precedence of operators : =, <, >, <=, >=, <> |= ~= /=[S NULL,
LIKE, BETWEEN, IN.

Operator Operation

*x exponentiation

+, - identity, negation

+, - multiplication, division

ol addition, ' subtraction,

concatenation

comparison

NOT logical negation

AND conjunction

OR inclusion
CASE Expressions

There are two types of expressions used in CASE statements: simple and
searched. These expressions correspond to the type of CASE statement in
which they are used.

Simple CASE expression

A simple CASE expression selects a result from one or more alternatives
and returns the result. It contains a block that stretch over several lines, it
really is an expression that forms part of a larger statement, like
assignment or a procedure call. The CASE expression uses a selector, an
expression whose value determines which alternative to return.

Searched CASE Expression

A searched CASE expression lets you test different conditions instead of
comparing a single expression with different values. This expression has
no selector. Each WHEN clause contains a search condition that yields a
BOOLEAN value, so you can test different variables or multiple
conditions in a single WHEN clause.

Null Values in Comparisons, Conditional Statements

When working with nulls, you can avoid some common mistakes by
keeping in mind the following rules:

Comparisons in null values provide always NULL only.

Using the logical operator NOT with a null provides NULL

In conditional statements, if condition is NULL, its associated sequence of
statements is not executed.

If the expression is a simple CASE statement or CASE expression is
NULL, it cannot be matched by WHEN NULL in condition. Here, need to
use the searched case syntax and test WHEN expression IS NULL.

4.4. PL/SQL DATA TYPES

The PL/SQL variables, constants and parameters must have a valid data
type, which specifies a storage format, conditions with valid range of
values.

S. No | Category & Description
Scalar

1 Single values which has no internal components, like
NUMBER, DATE or BOOLEAN.

Large Object (LOB)

2 Pointers to large objects which are stored separately from other
data items, such as text, graphic images, video clips, and sound
waveforms.

Composite

3 Data items that have internal components that can be accessed
individually. For example, collections and records.
Reference

4
Pointers to other data items.

Fundamentals of PL/SQL

91

Database Management Systems Numeric Types

92

Following table shows the numeric data types and their sub-types —

S. No | Data Type & Description
PLS INTEGER
1 Signed integer in range -2,147,483,648 through 2,147,483,647,
represented in 32 bits
BINARY_INTEGER
2 Signed integer in range -2,147,483,648 through 2,147,483,647,
represented in 32 bits
BINARY_FLOAT
3
Single-precision floating-point number
BINARY_DOUBLE
4
Double-precision floating-point number
NUMBER(prec, scale)
Numeric values with fixed or floating-point number with absolute
3 value in range
1E-130 to (but not including) 1.0E126. A NUMBER variable can
also represent 0
DEC(prec, scale)
6 Fixed-point type specified in ANSI with maximum precision of 38
decimal digits
DECIMAL(prec, scale)
7 Fixed-point type specified in IBM with maximum precision of 38
decimal digits
NUMERIC(pre, secale)
8
Floating type with 38 decimal digits
DOUBLE PRECISION
9 Floating-point type specified in ANSI with maximum precision of
126 binary digits (approximately 38 decimal digits)
FLOAT
10 Floating-point type specified in ANSI and IBM with maximum
precision of 126 binary digits (approximately 38 decimal digits)

11

INT

Integer type specified in ANSI with maximum precision of 38
decimal digits

12

INTEGER

Integer type specified in ANSI and IBM with maximum precision
of 38 decimal digits

13

SMALLINT

Integer type specified in ANSI and IBM with maximum precision
of 38 decimal digits

14

REAL

Floating-point type with 63 binary digits as maximum precision
(approximately 18 decimal digits)

Following is a valid declaration —

DECLARE

numl INTEGER;

num2 REAL;

num3 DOUBLE PRECISION;

BEGIN

null;

END;
/

Character Types

Following Table shows the character data types and their sub-types

S. No | Data Type & Description
CHAR

1
Fixed-length character string with maximum size of 32,767 bytes
VARCHAR2

2

Variable-length character string with maximum size of 32,767
bytes

Fundamentals of PL/SQL

93

Database Management Systems

94

RAW

3 Variable-length binary or byte string with maximum size of
32,767 bytes, not interpreted by PL/SQL
NCHAR

4 Fixed-length national character string with maximum size of
32,767 bytes
NVARCHAR2

3 Variable-length national character string with maximum size of
32,767 bytes
LONG

6 Variable-length character string with maximum size of 32,760
bytes
LONG RAW

7 Variable-length binary or byte string with maximum size of
32,760 bytes, not interpreted by PL/SQL
ROWID

8
Physical row identifier, the address of a row in an ordinary table
UROWID

9 Universal row identifier (physical, logical, or foreign row
identifier)

Boolean Types

The BOOLEAN data type stores logical values that are used in logical
operations. The logical values are the Boolean values TRUE and FALSE
and the value NULL.

However, SQL has no data type equivalent to BOOLEAN. Therefore,
Boolean values cannot be used in

SQL statements
Built-in SQL functions
functions invoked SQL statements

Date Time Types

The DATE data type is used to store fixed-length date-times, which
include the time of day in seconds. Valid dates from 1* January , 4712 BC
to 31% December , 9999 AD.

The default date format is set by the Oracle initialization parameter g, qamentals of PL/SQL
NLS DATE FORMAT.

For example, 'DD-MON-YY 'is the default one, which includes a two-
digit number for the day of the month, first three characters of the month
name, and the last two digits of the year.

Eg. 01-SEP-12.

Each DATE includes the century, year, month, day, hour, minute, and
second.

The table shows the Valid Date-Time Values and its Interval Types.

Name of the Field Date-Time Values Interval Values
YEAR -4712 to 9999 (excluding year 0) Any nonzero integer
MONTH 01 to 12 Oto 1l

01 to 31 (limited by the values of
DAY MONTH and YEAR, according to the | Any nonzero integer
rules of the calendar for the locale)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0to 59

0 to 59.9(n), where
00 to 59.9(n), where 9(n) is the | 9(n) is the precision
precision of time fractional Seconds of interval fractional
seconds

SECOND

-12 to 14 (range accommodates

TIMEZONE _HOUR daylight savings time changes) Not applicable
TIMEZONE MINUTE | 00 to 59 Not applicable
Found in the dynamic performance .
TIMEZONE REGION view VSTIMEZONE NAMES Not applicable
TIMEZONE_ABBR Found in the dynamic performance Not applicable

view VSTIMEZONE NAMES

Large Object (LOB) Data Types

Large Object (LOB) data types refer to large data items such as text,
graphic images, video clips, and sound waveforms. LOB data types allow
efficient, random, piecewise access to this data. Following are the
predefined PL/SQL LOB data types —

95

Database Management Systems

96

Data Type | Description Size

store large binary objects in | System-dependent.

BFILE operating system files outside the | Cannot exceed 4
database. gigabytes (GB).
BLOB store large binary objects in the | 8 to 128 terabytes
database. (TB)
CLOB §t0re large blocks of character data % t0 128 TB
in the database.
NCLOB store large blocks of NCHAR data % t0 128 TB
in the database.
Summary

PL/SQL Blocks contain three sections: Declaration, Execution and
Exception.

PL/SQL Expressions used to retrieve particular data for the database.

PL/SQL Operators: Arithmetic Operators, Relational Operators,
Comparison Operators, Logical Operators.

PL/SQL Data types: Numeric, Character, Boolean and Date Types.
Review Questions

Explain PL/SQL Block Structure with simple example.
Discuss briefly on Fundamentals of PL/SQL.

How you declare variables and constants in PL/SQL?
List out the PL/SQL Operators and Explain.

Give brief note on PL/SQL Datatypes.

MRS

CONTROL STRUCTURES

Unit Structure
5.0 Objectives
5.1 Conditional Control
IF-THEN-ENDIF Statement,
[F-THEN-ELSE-ENDIF Statement,
IFTHEN-ELSIF-ENDIF Statement,
CASE Statement
5.2 Iterative Control:
LOOP
WHILE-LOOP
FOR-LOOP
LOOP Control Statements
5.3 Sequential Control:
GOTO Statement

NULL Statement

5.0 OBJECTIVES

This chapter makes you to understand the concepts in PL/SQL control
structures

Helps to improve your coding with the help of decision making and
iterative statements.

5.1 CONDITIONAL CONTROL

PL/SQL has conditional or selection statements for decision-making.

IF....THEN....END IF.
IF....THEN....ELSE....END IF.
IF....THEN....ELSIF....END IF.
CASE....END CASE.

Searched CASE.

97

Database Management Systems [F....THEN....END IF

The IF..THEN...END IF statement is also known as a simple IF
statement. A simple IF statement performs action statements if the result
of the condition is TRUE. Otherwise the condition is FALSE, action
statements not performed and the program continues with the next
statement in the block.

(THEN Block) (ELSE Block)
TRUE i) FALSE

STATEMENT 1 (Booean Expession) STATEMENT 2

Syntax
IF condition(s) then
Action statements
END IF;

Above Statement show a simple IF statement with an output statement
which will be performed if the day is ‘SUNDAY’. The statement is
skipped, if the day is not ‘SUNDAY’

Example:
SQL> Declare
V_ Day Varchar2(a) := ‘& Day’;
Begin
IF(V_ DAY ="SUNDAY") then
DBMS OUTPUT PUT_ LINE(SUNDAY is A HOLIDAY!);
End if;
End;
/
Enter value for day: SUNDAY

SUNDAY IS A HOLIDAY
98

IF..THEN...ELSE...END IF

Control Structures

The IF...THEN...ELSE...END IF statement is an extension of the simple
IF statement. It provides action statements for the TRUE outcome as well
as for the FALSE outcome.

Syntax

IF condition(s) then
Action statements 1;
Else

Action statements 2;
End if;

If the condition TRUE, action statements 1 are performed. If the condition
is FALSE, action statements 2 in is ELSE part are performed. One set of
statements is skipped in any case. Figure show if the entered age is 18 or
older, age is displayed with string ADULT, otherwise, age is displayed
with string MINOR.

Example:

SQL> Set server output on

SQL> Declare

2 V_ age number(2) = ‘& Age;

3 Begin

4 IF (V_ Age >=18) Then

5 DBMS OUTPUT. PUT LINE(‘Age:’|| V_ age|[-Adult’);
6 else

7 DBMS OUTPUT. PUT LINE(‘Age: || V_age||. Minor’)
8 End if;

9 End;

10/

Enter value for age: 21

Age : 21-Adult

SQL>/

Enter value for age :12

Age :12-Minor

IF..THEN...ELSIF...END IF
929

Database Management Systems This statement is the form of another if statement where the conditions
can continue by multiple conditions in single if statement.

Syntax

IF condition(s)1 Then
Action statements 1
EISIF condition(s)2 Then

Action statements

ELSE IF condition(s) N then
Action statement N

[ELSE

Else action statements]

End if;

the word ELSIF, which does not have the last E in ELSE. ELSIF is a
single word, but END IF uses the words.

Example:
SQL> Declare
2 V_pos number (1) :=& position;
3 Begin
41F V_ Pos=1 then
5 DBMS OUTPUT.PUT_LINE (“20% increase’);
6 Elsif V_ Pos=2 then
7 DBMS OUTPUT.PUT_LINE (“15% increase’);
8 Elsif V_Pos =3 then
9 DBMS OUTPUT.PUT_LINE (‘10% increase’);
10 Elsif V_Pos=4 then
11 DBMS OUTPUT.PUT_LINE (‘%% increase’);
12 Else
13 DBMS OUTPUT.PUT_LINE (‘NO increase’);
14 End if;

100

15 End; Control Structures
16/

Enter value for position :2

15% increase

CASE

In Previous chapter, the features case and searched case comes under
expressions topic. Now we see the syntax and how to use in PL/SQL
Block.

e The CASE Statement is an alternative to the IF.. THEN...ELSIF...END
IF statement.

e This statement starts with keyword CASE and ends with the keywords
END CASE.

e The body of the statement contains WHEN clauses with values or
conditions and action statements.

e When a WHEN condition evaluates to TRUE its actions statements are
executed.

Syntax

CASE] Variable- name]

WHEN conditionl/value THEN action- statementl;
WHEN conditionl/value 2 THEN action- statement 2;
WHEN conditionl/value N THEN action- statement N;
ELSE action- statement;

END CASE

Example:

SQL> Declare /* Example of case */

2 V_num number := & Any-num;

3 V_Res number;

4 Begin

5V _Res:=Mod (V_num ,2);

6 CASE V_Res

7 When 0 then DBMS_OUTPUT.PUT_LINE (V_num||’is even’);

8 ELSE DBMS_OUTPUT.PUT LINE (V_ num|| ‘is odd’);
101

Database Management Systems 9 end case;

102

10 End;

11/

Enter value for any- num : 5
5is odd

SEARCHED CASE

A statement with a value is known as a CASE statement and a statement
with condition is known as a searched CASE statement. This statement
does not use variable- name as a selector but a CASE uses variable- name
as a selector.

Example:

SQL>

Declare

2 V_ num number :=& Any- num;

3 Begin

4 case

5 When mod (V_ num2) =0 Then

6 DBMS OUTPUT.PUT LINE (V_ num|| ‘is odd’);
7 else

8 DBMS OUTPUT.PUT_LINE (V_ num||’ is odd’);
9 End case;

10 End;

11/

Enter value for any num :5

5 is odd.

NESTED IF

The nested IF statement contains an IF statement within another IF
statement. If the condition of the outer IF statement is TRUE, then the
corresponding IF statement is performed.

Consider the following conditions.

° Male 25 or over
° Male under 25

° Female 25 or over
° Female under 25.

Example:

SQL> Declare

2 V_ Gender char :="& sex’;

3 V_age number (2) :="& Age’;

4 V_char number(3,2);

5 Begin

6 IF (V_ Gender =’19’) then /* Male*/

7 IF (V_age>=25) then

8 V_charge:=0.05;

9 Else

10 V_charge :=0.01;

11 End if;

12 Else /* Female */

13 IF (V_age>=25) then

14 V_charge :=0.06;

17 End if;

18 End if;

19 DBMS OUTPUT. PUT LINE (Gender :|| V_Gender);
20 DBMS OUTPUT.PUT LINE (‘Age:="To-char (V_age));

21 DBMS OUTPUT.PUT_LINE (‘SURCHARGE:’|| To-
char(V_charge));

22 End;

23/

Enter value for sex:F
Enter value for age :18
Gender: F

Age: 18

Surcharge: 06

Control Structures

103

Database Management Systems 5.2 ITERATIVE CONTROL

104

In general, statements are executed sequentially: The first statement in a
function is executed first, then followed by the second, next and so on.
Some situation when you need to execute a block of code several times.
For this execution programming languages provide control structures that
allow for more complicated execution paths.

A loop statement used to execute a statement or group of statements
multiple times. A loop repeats a statement or a series of statements a
specific number of times as defined by the programmer.

Types of Looping Statements

o Basic loop
o WHILE loop
J FOR loop

Each loop has their own syntax and works differently.
BASIC LOOP

A basic loop is a loop that is performed repeatedly. Once a loop is entered
all statements in the loop are executed. Once the bottom of the loop is
reached control shift back to the top of the loop. The loop will continue
infinitely is a logical error in programming. The only way to terminate a
basic loop is by adding an EXIT statement inside the loop.

Syntax

Loop

Looping statement 1;
Looping statement 2;
Looping statement N;
EXIT [When condition];
End loop;

The EXIT statement in a loop could be independent statement. We can
also add a condition with the optional WHEN clause that will end the loop
when the condition becomes true.

Example:
EXIT WHEN V_count>10;

The condition is not checked at the top of the loop, but it is checked inside
the body of loop. The loop is performed at least once, because the

condition is tested after entering the body of the loop is known as Post
test loop.

Example:

SQL>Set Serveroutput on

SQL> Declare

2 V_ count number(2);

3 V_sum number(2):=0;
4 V Avg number(3,1);
5 Begin

6 V_count:=1;

7 Loop

8 V_ sum:=V sum+ V_count

9 V _count:=V_count +1;

10 Exit when V_ count >10;

11 End loop;

12V _Avg:=V sum I(V_ count -1);

13 DBMS-OUTPUT.PUT-LINE (Average of 1 to 10 1&| To- char
(V_Avg));

14

15 End;

16 /

Average of 1 to 10 1& 5.5
SQL>

WHILE LOOP

The WHILE loop is an alternative to the basic loop. It is performed as
long as the condition is true. This terminates when the condition become
false. If the condition is false in beginning, then the loop is not performed
at all.

The WHILE loop does not need an EXIT statement to terminate.

Control Structures

105

Database Management Systems

Check
loop
Condition

——'r

Execute loop

body/sQL

Statements

Syntax
WHILE condition loop

Looping statement 1;
Looping statement 2;
Looping statement n;
End loop;
Example:
SQL> Declare
2 V_count number(2);
3 V_sum number(2):=0;
4 V_ Avg number(3,1);
5 Begin
6 V_count:=1;
7 While V_ count <= 10 Loop
8 V_sum:=V sum+ V_count
9 V _count:=V_count +1;
10 End loop;
11 V_Avg:=V sum I(V_count -1);

12 DBMS-OUTPUT.PUT _LINE (Average of 1 to 10 1&]|| To- char
(V_Avyg));

13 End;
14 /

Average of 1 to 10 1& 5.5

106

Basic loop & While Loop

Basic Loop While Loop

It is performed as long as the | It is performed as long as the
condition is false. condition is true.

It testes the condition inside the | It checks condition before entering
loop (Post-test loop). the loop (Pre-test Loop).

It is Performed at least one time. It is performed zero or more times.

It needs the EXIT statement to | no need for an Exit statement.
terminate

FOR LOOP

The For loop is the simplest loop. We do not have to initialize, test and
increment/ decrement the loop control variable separately. The counter
used here is implicitly declared as an integer and it is destroyed on the
loop’s termination. It may be used within the loop body in an assignment
statement as a target variable.

Syntax

FOR Counter W(Reservse) lower...upper loop
Looping statement 1

Looping statement 2

Looping statement N

End loop;

Counter Increment/ Decrement

The counter varies from the lower value to the upper value incrementing
by one with every loop execution. The counter starts with higher value and
decrementing by one with every loop execution. To reverse the order the
keyword Reverse is used to make higher to lower value.

SQL> Declare
2 V_ count number(2);
3 V_ sum number(2):=0;

Control Structures

107

Database Management Systems 4 V_Avg number(3,1);

108

5 Begin

6 For V_countin 1.. Loop

7 V_sum:=V_sum+V_sum;
8 End loop;

9 V_Avg:=V sum/10;

10 DBMS-OUTPUT.PUT-LINE (Average of 1 to 10 1&]|| To- char
(V_Avg));

11

12 End;

13/

Average of 1 to 10 1& 5.5

NESTED LOOP

We can use a loop within another loop. Loop can be nested to many levels,
when the inner loop ends it does it does not automatically end the outer
loop enclosing it. We can quit the outer loop by label each loop inside the
inner loop and then using the EXIT statement. The loop labels use the
same naming rules as those used for identifies.

The label is enclosed using << and >> two pairs of angel brackets.
Eg

<< outer- loop>>

Loop

EXIT WHEN condition;

<< inner- loop>>

Loop

EXIT outer- loop WHEN condition; /* exit outer-loop*/

EXIT WHEN condition /* exit inner- loop™*/

End loop outer-loop /* label optional */
Loop Control Statements
Loop control statements change execution from its normal sequence.

PL/SQL supports the following control statements.

Control Structures
S.No Control Statement & Description

EXIT statement

1 The Exit statement completes the loop and control passes to the
statement immediately after the END LOOP.
CONTINUE statement

2 Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.
GOTO statement

3

Transfers control to the labelled statement. Though it is not
advised to use the GOTO statement in your program.

5.3 SEQUENTIAL CONTROL

GOTO Statement

The GOTO statement allows you to transfer control to a labeled block or
statement.

The syntax of the GOTO statement:
GOTO label_name;

The label name is the name of a label that identifies the target statement.
In the program, you surround the label name with double enclosing angle
brackets as shown below:

<<label name>>;

When PL/SQL executes a GOTO statement, it passes control to the first
executable statement after the label.

BEGIN
GOTO second message; 1 —
<first message> 4 -
DBMS OUTPUT.PUT LINE('Hello'):;
GOTO the end; 5
<second message>; 2+«
DBMS OUTPUT.PUT LINE ('PL/SQL GOTO Demo');
GOTO first message; -
<the end> 6 +—
DBMS OUTPUT.PUT LINE('and good bye...");

END; ‘

109

Database Management Systems

110

This code will execute like

e GOTO second message statement is encountered firsr, therefore, the
control is passed to the statement after the second message label.

e GOTO first message is encountered in second, so the control is
transferred to the statement after the first message label.

e Next , GOTO the end is reached, hence the control is passed to the
statement after the the end label.

The output is:

PL/SQL GOTO Demo
Hello

and good Bye...
NULL Statement

The NULL statement is a NULL keyword followed by a semicolon (;).
The NULL statement does nothing except that it passes control to the next
statement.

The NULL statement is useful to:

o Improve code readability
o Give target for a GOTO statement
o provide placeholders for subprograms

Improving code readability

This code sends an email to employees whose job titles are
SalesRepresentative.

IF jobtitle = 'SalesRepresentative' THEN
send _email;
END IF;

If the employees job title are not SalesRepresentative then do nothing,
this logic is not explicitly mentioned in the code.

An ELSE clause that consists of a NULL statement to clearly state that no
action is needed for other employees.

IF jobtitle = 'SalesRepresentative' THEN
send_email;

ELSE
NULL;

END IF;

Give target for a GOTO statement Control Structures

When using a GOTO statement, you need to specify a label followed by at
least one executable statement.

This example has a GOTO statement to quickly move to the end of the
program if no further processing is required:

DECLARE
b_status BOOLEAN

BEGIN
IF b_status THEN

GOTO end_of program;

END IF;
-- further processing here
<<end_of program>>
NULL;

END;

Error will occur, if there is no NULL statement after the end of program
label.

Provide placeholders for subprograms

The following example creates a procedure named apprreq -
request for approval that doesn’t have the code in the body. PL/SQL
requires one executable statement in the body of the procedure to compile
successfully. we add a NULL statement to the body as a placeholder. Later
you can fill the real code.

CREATE PROCEDURE apprreq (cusmer_id NUMBER)
AS
BEGIN
NULL;
END;

Now, you have a good understanding of PL/SQL NULL statement and
how to apply it in your daily programming tasks.

111

Database Management Systems Summary

112

PL/SQL Control Structures has three type: Condition Control, Iterative
Control and Sequence Control.

In Condition Control if and case statements are used to make decisions
and perform executions.

In Iterative Control, three types loops used with different syntaxes.
In Sequence Control GOTO and NULL Statements are performed.
Review Questions

. Write in detail about Conditional Control Structures.

. Discuss the different Loop statements available in PL/SQL.

. Explain the usage of sequence control statements with simple example.

. How do you write a PL/SQL block for decision making purpose? Give
Example.

5. How you come out of infinite Loop?

BN =

Unit 2: Simple PL/SQL Programs
1. Add Two Numbers

Declare

Varl integer;

Var2 integer;

Var3 integer;

Begin

Varl:=&varl;

Var2:=&var2;
Var3:=varl+var2;
Dbms_output.put_line(var3);
end;

2. Prime Number

Declare

n number;

1 number;
flag number;

begin

1:=2;
flag:=1;
n:=&n;
foriin 2..n/2 loop
if mod(n,1)=0 then
flag:=0;
exit;
end if;,
end loop;
if flag=1 then
dbms_output.put_line('prime");

else

dbms_output.put_line('not prime');

end if;
end;

3. Factorial Number

declare

n number;

fac number:=1;

1 number;
begin

n:=&n;

foriin1..n

loop

fac:=fac*i;

end loop;

dbms_output.put_line('factorial='||fac);

end;

Control Structures

113

Database Management Systems 4, Print a Table of Number

declare

n number;

1 number;

begin

n:=&n;

foriin 1..10

loop

dbms_output.put_line(n||' x "i||' = "[[n*1);
end loop;

end;

5. Reverse of a number

declare

n number;

1 number;

rev number:=0;
r number;

begin

n:=&n;

while n>0

loop
r:=mod(n,10);
rev:=(rev*10)+r;
n:=trunc(n/10);
end loop;
dbms_output.put line('reverse is '|rev);

end;

114

6. Fibonacci Series

declare

first number:=0;
second number:=1;
third number;

n number:=&n;

1 number;

begin

dbms_output.put line('Fibonacci series is:");

dbms_output.put_line(first);
dbms_output.put_line(second);
foriin 2..n

loop

third:=first+second;
first:=second;

second:=third;
dbms_output.put_line(third);
end loop;

end;

7. Check number is odd or even

declare

n number:=&n;

begin

if mod(n,2)=0

then

dbms_output.put line('number is even');
else

dbms_output.put line('"number is odd');
end if;

end;

Control Structures

115

Database Management Systems 8.

116

Palindrome Number

declare

n number;
m number;
rev number:=0;

r number;

begin

n:=12321;

m:=n;

while n>0

loop
r:=mod(n,10);
rev:=(rev*10)+r;
n:=trunc(n/10);

end loop;

if m=rev

then
dbms_output.put_line('"number is palindrome');

else

dbms_output.put_line('number is not palindrome');

end if;,

end;

Swap Two Numbers

declare

a number;
b number;

temp number;

begin

a:=5;

b:=10;
dbms_output.put line('before swapping:');
dbms_output.put line('a="||a||' b="||b);
temp:=a;
a:=b;
b:=temp;
dbms_output.put line(‘after swapping:');
dbms_output.put line('a="||a||' b="||b);

end;

10. Greatest of three numbers

declare

a number:=10;

b number:=12;

¢ number:=5;

begin

dbms_output.put_line(‘a='[a]|' b='||b||' c='||c);
if a>b AND a>c

then

dbms_output.put line('a is greatest');
else

if b>a AND b>c

then

dbms_output.put line('b is greatest');
else

dbms_output.put _line('c is greatest');
end if;

end if;

end;

/

Control Structures

117

Database Management Systems Reference Links

1. https://www.thecrazyprogrammer.com/plsql-programs-examples
2. https://www.tutorialspoint.com/plsql/plsql_basic_syntax.htm
3. http://www.euroinformatica.ro/pl-sql-overview/

Reference Books

1. Database Systems using Oracle, Nilesh Shah, nd edition, PHI

2. Database Management Systems, Gerald V. Post, 3" edition, TMH

3. Database Management Systems, Majumdar & Bhattacharya, 2007,
TMH.

4. Fundamentals of RDBMS and Oracle 91, T. Parimalam, S.N.
Sathalakshmi, N. Moorthy,2012.

118

TRANSACTION MANAGEMENT

Unit Structure

6.1 ACID Properties

6.2 Serializability

6.3 Concurrency Control, Lock Management

6.4 Lost Update Problem

6.5 Inconsistent Read Problem

6.6 Read-Write Locks

6.7 Deadlocks Handling

6.8 Two Phase Locking protocol

Objectives:

Will be able to explain the principle of transaction management
design.

Understand transactions and their properties (ACID) & the
anomalies that occur without ACID.

UNDERSTAND the locking protocols used to ensure Isolation & the
logging techniques used to ensure Atomicity and Durability.

Understand Recovery techniques used to recover from crashes.
Explains the concurrency control and recovery algorithms.

Applies transaction processing mechanisms in relational
databases.

Transaction Management

A transaction is a set of logically related operations. For example,
you are transferring money from your bank account to your friend’s
account, the set of operations would be like this: Simple Transaction
Example

1. Read your account balance.

2. Deduct the amount from your balance.

3. Write the remaining balance to your account.

4. Read your friend’s account balance.

119

Database Management Systems 5. Add the amount to his account balance.
6. Write the new updated balance to his account.

This whole set of operations can be called a transaction. Although I
have shown you read, write and update operations in the above
example but the transaction can have operations like read, write,
insert, update, delete.

6.1 ACID PROPERTIES

A transaction is a very small unit of a program and it may contain
several lowlevel tasks. A transaction in a database system must
maintain Atomicity, Consistency, Isolation, and Durability —
commonly known as ACID properties — in order to ensure accuracy,
completeness, and data integrity.

Atomicity — This property states that a transaction must be treated
as an atomic unit, that is, either all of its operations are executed
or none. There must be no state in a database where a transaction
is left partially completed. States should be defined either before the
execution of the transaction or after the execution/abortion/failure of
the transaction.

Consistency — The database must remain in a consistent state after
any transaction. No transaction should have any adverse effect on
the data residing in the database. If the database was in a consistent
state before the execution of a transaction, it must remain consistent
after the execution of the transaction as well.

Durability — The database should be durable enough to hold all its
latest updates even if the system fails or restarts. If a transaction
updates a chunk of data in a database and commits, then the
database will hold the modified data. If a transaction commits but
the system fails before the data could be written on to the disk,
then that data will be updated once the system springs back into
action.

Isolation — In a database system where more than one transaction
are being executed simultaneously and in parallel, the property of
isolation states that all the transactions will be carried out and
executed as if it is the only transaction in the system. No
transaction will affect the existence of any other transaction.

6.2 SERIALIZABILITY

When multiple transactions are being executed by the operating
system in a multiprogramming environment, there are possibilities
that instructions of one transactions are interleaved with some other
transaction.

120

Schedule — A chronological execution sequence of a transaction is
called a schedule. A schedule can have many transactions in it, each
comprising of a number of instructions/tasks.

Serial Schedule — It is a schedule in which transactions are aligned
in such a way that one transaction is executed first. When the first
transaction completes its cycle, then the next transaction is executed.
Transactions are ordered one after the other. This type of schedule
is called a serial schedule, as transactions are executed in a serial
manner.

In a multi-transaction environment, serial schedules are considered as
a benchmark. The execution sequence of an instruction in a
transaction cannot be changed, but two transactions can have their
instructions executed in a random fashion. This execution does no
harm if two transactions are mutually independent and working on
different segments of data; but in case these two transactions are
working on the same data, then the results may vary. This ever-
varying result may bring the database to an inconsistent state.

To resolve this problem, we allow parallel execution of a transaction
schedule, if its transactions are either serializable or have some
equivalence relation among them.

Distributed Two-phase Commit

Distributed two-phase commit reduces the vulnerability of one-phase
commit protocols. The steps performed in the two phases are as
follows —

Phase 1: Prepare Phase

After each slave has locally completed its transaction, it sends a
“DONE” message to the controlling site. When the controlling site
has received “DONE” message from all slaves, it sends a “Prepare”
message to the slaves.

The slaves vote on whether they still want to commit or not. If a
slave wants to commit, it sends a “Ready” message.

A slave that does not want to commit sends a “Not Ready”
message. This may happen when the slave has conflicting concurrent
transactions or there is a timeout.

Phase 2: Commit/Abort Phase

After the controlling site has received “Ready” message from all the
slaves

The controlling site sends a “Global Commit” message to the slaves.

The slaves apply the transaction and send a “Commit ACK”
message to the controlling site.

Transaction Management

121

Database Management Systems When the controlling site receives “Commit ACK” message from all

122

the slaves, it considers the transaction as committed.

After the controlling site has received the first “Not Ready” message
from any slave.

The controlling site sends a “Global Abort” message to the slaves.

The slaves abort the transaction and send a “Abort ACK” message
to the controlling site.

When the controlling site receives “Abort ACK” message from all
the slaves, it considers the transaction as aborted.

6.3 CONCURRENCY CONTROL LOCK
MANAGEMENT

Concurrency Control in Database Management System is a procedure
of managing simultaneous operations without conflicting with each
other. It ensures that Database transactions are performed
concurrently and accurately to produce correct results without
violating data integrity of the respective Database.

Concurrent access is quite easy if all users are just reading data.
There is no way they can interfere with one another. Though for
any practical Database, it would have a mix of READ and WRITE
operations and hence the concurrency is a challenge.

DBMS Concurrency Control is used to address such conflicts, which
mostly occur with a multi-user system. Therefore, Concurrency
Control is the most important element for proper functioning of a
Database Management System where two or more database
transactions are executed simultaneously, which require access to the
same data.

Potential problems of Concurrency

Here, are some issues which you will likely to face while using the
DBMS Concurrency Control method:

Lost Updates occur when multiple transactions select the same row
and update the row based on the value selected

Uncommitted dependency issues occur when the second transaction
selects a row which is updated by another transaction (dirty read)

Non-Repeatable Read occurs when a second transaction is trying to
access the same row several times and reads different data each
time.

Incorrect Summary issue occurs when one transaction takes summary
over the value of all the instances of a repeated data-item, and

second transaction update few instances of that specific data-item. In
that situation, the resulting summary does not reflect a correct result.

Reasons for using Concurrency control method is DBMS:

To apply Isolation through mutual exclusion between conflicting
transactions.

To resolve read-write and write-write conflict issues.

To preserve database consistency through constantly preserving
execution obstructions.

The system needs to control the interaction among the concurrent
transactions. This control is achieved using concurrent-control
schemes.

Concurrency control helps to ensure serializability.
Example

Assume that two people who go to electronic kiosks at the same
time to buy a movie ticket for the same movie and the same show
time.

However, there is only one seat left in for the movie show in that
particular theatre. Without concurrency control in DBMS, it is
possible that both moviegoers will end up purchasing a ticket.
However, concurrency control method does not allow this to happen.
Both moviegoers can still access information written in the movie
seating database. But concurrency control only provides a ticket to
the buyer who has completed the transaction process first.

Concurrency Control Protocols

Different concurrency control protocols offer different benefits
between the amount of concurrency they allow and the amount of
overhead that they impose. Following are the Concurrency Control
techniques in DBMS:

1. Lock-Based Protocols

2. Two Phase Locking Protocol
3. Timestamp-Based Protocols
4. Validation-Based Protocols
Lock-based Protocols

Lock Based Protocols in DBMS is a mechanism in which a
transaction cannot Read or Write the data until it acquires an
appropriate lock. Lock based protocols help to eliminate the
concurrency problem in DBMS for simultaneous transactions by
locking or isolating a particular transaction to a single user.

Transaction Management

123

Database Management Systems A lock is a data variable which is associated with a data item. This

124

lock signifies that operations that can be performed on the data
item. Locks in DBMS help synchronize access to the database items
by concurrent transactions.

All lock requests are made to the concurrency-control manager.
Transactions proceed only once the lock request is granted.

Binary Locks: A Binary lock on a data item can either locked or
unlocked states.

Shared/exclusive: This type of locking mechanism separates the
locks in DBMS based on their uses. If a lock is acquired on a data
item to perform a write operation, it is called an exclusive lock.

Shared Lock (S):

A shared lock is also called a Read-only lock. With the shared
lock, the data item can be shared between transactions. This is
because you will never have permission to update data on the data
item.

For example, consider a case where two transactions are reading
the account balance of a person. The database will let them read by
placing a shared lock. However, if another transaction wants to
update that account’s balance, shared lock prevent it until the
reading process is over.

Exclusive Lock (X):

With the Exclusive Lock, a data item can be read as well as
written. This is exclusive and can’t be held concurrently on the
same data item. X-lock is requested wusing lock-x instruction.
Transactions may unlock the data item after finishing the ‘write’
operation.

For example, when a transaction needs to wupdate the account
balance of a person. You can allows this transaction by placing X
lock on it. Therefore, when the second transaction wants to read or
write, exclusive lock prevent this operation.

Simplistic Lock Protocol

This type of lock-based protocols allows transactions to obtain a
lock on every object before beginning operation. Transactions may
unlock the data item after finishing the ‘write’ operation.

Pre-claiming Locking

Pre-claiming lock protocol helps to evaluate operations and create a
list of required data items which are needed to initiate an execution
process. In the situation when all locks are granted, the transaction
executes. After that, all locks release when all of its operations are
oVer.

Starvation Transaction Management

Starvation is the situation when a transaction needs to wait for an
indefinite period to acquire a lock.

Following are the reasons for Starvation:
1. When waiting scheme for locked items is not properly managed
2. In the case of resource leak

3. The same transaction is selected as a victim repeatedly

Two Phase Locking Protocol

Two Phase Locking Protocol also known as 2PL protocol is a
method of concurrency control in DBMS that ensures serializability
by applying a lock to the transaction data which blocks other
transactions to access the same data simultaneously. Two Phase
Locking protocol helps to eliminate the concurrency problem in
DBMS.

This locking protocol divides the execution phase of a transaction
into three different parts.

In the first phase, when the transaction begins to execute, it requires
permission for the locks it needs.

The second part is where the transaction obtains all the locks. When
a transaction releases its first lock, the third phase starts.

In this third phase, the transaction cannot demand any new locks.
Instead, it only releases the acquired locks.

The Two-Phase Locking protocol allows each transaction to make a
lock or unlock request in two steps:

Growing Phase: In this phase transaction may obtain locks but may
not release any locks.

Shrinking Phase: In this phase, a transaction may release locks but
not obtain any new lock

It is true that the 2PL protocol offers serializability. However, it
does not ensure that deadlocks do not happen.

In the above-given diagram, you can see that local and global
deadlock detectors are searching for deadlocks and solve them with
resuming transactions to their initial states.

Strict Two-Phase Locking Method

Strict-Two phase locking system is almost similar to 2PL. The only
difference is that Strict-2PL never releases a lock after using it. It

125

Database Management Systems holds all the locks until the commit point and releases all the locks

126

at one go when the process is over.
Centralized 2PL

In Centralized 2 PL, a single site is responsible for lock
management process. It has only one lock manager for the entire
DBMS.

Primary copy 2PL

Primary copy 2PL mechanism, many lock managers are distributed
to different sites. After that, a particular lock manager is responsible
for managing the lock for a set of data items. When the primary
copy has been updated, the change is propagated to the slaves.

Distributed 2PL

In this kind of two-phase locking mechanism, Lock managers are
distributed to all sites. They are responsible for managing locks for
data at that site. If no data is replicated, it is equivalent to primary
copy 2PL. Communication costs of Distributed 2PL are quite higher
than primary copy 2PL

Timestamp-based Protocols

Timestamp based Protocol in DBMS is an algorithm which uses the
System Time or Logical Counter as a timestamp to serialize the
execution of concurrent transactions. The Timestamp-based protocol
ensures that every conflicting read and write operations are executed
in a timestamp order.

The older transaction is always given priority in this method. It uses
system time to determine the time stamp of the transaction. This is
the most commonly used concurrency protocol.

Lock-based protocols help you to manage the order between the
conflicting transactions when they will execute. Timestamp-based
protocols manage conflicts as soon as an operation is created.

Example:

Suppose there are there transactions T1, T2, and T3.
T1 has entered the system at time 0010

T2 has entered the system at 0020

T3 has entered the system at 0030

Priority will be given to transaction T1, then transaction T2 and
lastly Transaction T3.

Advantages:
Schedules are serializable just like 2PL protocols

No waiting for the transaction, which eliminates the possibility of
deadlocks!

Disadvantages:

Starvation is possible if the same transaction is restarted and
continually aborted

Validation Based Protocol

Validation based Protocol in DBMS also known as Optimistic
Concurrency Control Technique is a method to avoid concurrency in
transactions. In this protocol, the local copies of the transaction data
are updated rather than the data itself, which results in less
interference while execution of the transaction.

The Validation based Protocol is performed in the following three
phases:

1. Read Phase

2. Validation Phase
3. Write Phase
Read Phase

In the Read Phase, the data values from the database can be read
by a transaction but the write operation or updates are only applied
to the local data copies, not the actual database.

Validation Phase

In Validation Phase, the data is checked to ensure that there is no
violation of serializability while applying the transaction updates to
the database.

Write Phase

In the Write Phase, the updates are applied to the database if the
validation is successful, else; the updates are not applied, and the
transaction is rolled back.

Characteristics of Good Concurrency Protocol

An ideal concurrency control DBMS mechanism has the following
objectives:

Must be resilient to site and communication failures.

Transaction Management

127

Database Management Systems [t allows the parallel execution of transactions to achieve maximum

128

concurrency.

Its storage mechanisms and computational methods should be modest
to minimize overhead.

It must enforce some constraints on the structure of atomic actions
of transactions.

6.4 LOST UPDATE PROBLEM

The lost update problem occurs when two concurrent transactions, T1 and
T2, are updating the same data element and one of the updates is lost.

The lost update problem occurs when 2 concurrent transactions try
to read and update the same data. Let’s understand this with the
help of an example.

Suppose we have a table named “Product” that stores id, name, and
ItemsinStock for a product. It is used as part of an online system
that displays the number of items in stock for a particular product
and so needs to be updated each time a sale of that product is
made.

The table looks like this:

1d Name ItemsinStock

1 Laptops 12

Now consider a scenario where a user arrives and initiates the
process of buying a laptop. This will initiate a transaction. Let’s call
this transaction, transaction 1.

At the same time another user logs into the system and initiates a
transaction, let’s call this transaction 2. Take a look at the following
figure.

Transation 1 Transation 2

fRead Items in Stock

(Read Items in Stock
Available : 12

\.

Available : 12
\.

Sell 3 Items j

Update Items in
Stock: 9

[Sell 2 Items j
Update Items in
Stock: 10 @

Transaction 1 reads the items in stock for laptops which is 12. A
little later transaction 2 reads the value for ItemsinStock for laptops
which will still be 12 at this point of time. Transaction 2 then sells
three laptops, shortly before transaction 1 sells 2 items.

Transaction 2 will then complete its execution first and update
ItemsinStock to 9 since it sold three of the 12 laptops. Transaction
1 commits itself. Since transaction 1 sold two items, it updates
ItemsinStock to 10.

This is incorrect, the correct figure is 12-3-2 = 7
Working Example of Lost Update Problem

Let’s us take a look at the lost update problem in action in SQL
Server. As always, first, we will create a table and add some
dummy data into it.

As always, be sure that you are properly backed up before playing
with new code. If you’re not sure, see this article on SQL Server
backup.

Execute the following script on your database server.

CREATE DATABASE pos;

Transaction Management

129

Database Management Systems USE pos;

CREATE TABLE products

(Id INT PRIMARY KEY,
Name VARCHAR(50) NOT NULL,
ItemsinStock INT NOT NULL)

INSERT into products

VALUES

(1, 'Laptop', 12),

(2, 'Iphon', 15),

(3, 'Tablets', 10)

Now, open two SQL server management studio instances side by
side. We will run one transaction in each of these instances.

4 SOLQueryl.sql- MANI-PQ\SQLE... CQuick Launch (Ctrl-Q) Pod = =l 5 2 50LQueryl.sgl - MANI-PC...| Quick Launch (Ctrl+Q) Pl =i B x
File Edit View Query Project Debug Tools Window Help File Edit View Query Project Debug Tools Window Help
i0-0 |8 -u-2 WM BNy BRSRAR | XTA |2 OB a2 | By BRE RO X T

“F | pos ~/| b Execute Debug Vv &3 B|&z “F | master ~| b Execute Debug

SQLQuery1.sql - M..mani-PC\mani (52))* + X SQLQuery1.sql - M..mani-PCimani (55)) # X

SIUSE pos;

saipadoly
EEDIELIIRN ¢ - o -

SELECT FROM products

sas0jdx3 PafGO
1z101dxg Palqo

100% ~

EH Resuts i Messages
ltemsinStock

" Iphon
Tablets 10

100% ~
@ MANI-PC\SQLEXPRESS (10.0 SP1) | mani-PC\mani (52) | pos ' 00:00:00 | 3 rows INI-PC\SQLEXPRESS (10.0 SP1) | mani-PC\mani (55) master 00:00:00 0 rows

Add the following script to the first instance of SSMS.
USE pos;
-- Transaction 1
BEGIN TRAN
DECLARE @ItemsInStock INT
SELECT @ItemsInStock = ItemsInStock
FROM products WHERE Id = 1
130

WaitFor Delay '00:00:12 Transaction Management
SET @ItemsInStock = @ItemsInStock - 2

UPDATE products SET ItemsinStock = @ItemsInStock

WHERE Id =1

Print @ItemsInStock

Commit Transaction

This is the script for transaction 1. Here we begin the transaction
and declare an integer type variable “@ItemsInStock”. The value of
this variable is set to the value of the ItemsinStock column for the
record with Id 1 from the products table. Then a delay of 12
seconds is added so that transaction 2 can complete its execution
before transaction 1. After the delay, the value of @ItemsInStock
variable is decremented by 2 signifying the sale of 2 products.

Finally, the value for ItemsinStock column for the record with Id 1
is updated with the value of @ItemsInStock variable. We then print
the value of @ItemsInStock variable on the screen and commit the
transaction.

In the second instance of SSMS, we add the script for transaction 2
which is as follows:

USE pos;
-- Transaction 2

BEGIN TRAN

DECLARE @ItemsInStock INT
SELECT @ItemsInStock = ItemsInStock
FROM products WHERE Id = 1

WaitFor Delay '00:00:3'

SET @ItemsInStock = @ItemsInStock - 3
UPDATE products SET ItemsinStock = @ItemsInStock
WHERE Id =1

Print @ItemsInStock

Commit Transaction

The script for transaction 2 1is similar to transaction 1. However,
here in transaction 2, the delay is only for three seconds and the
decrement in the value for @ItemsInStock variable is three, as it is
a sale of three items.

131

Database Management Systems Now, run transaction 1 and then transaction 2. You will see

132

transaction 2 completing its execution first. And the value printed
for @ItemsInStock variable will be 9. After some time transaction 1
will also complete its execution and the value printed for its

@]ltemsInStock variable will be 10.

4 SQLQueryl.sql- MANI-PC\... Quick Launch (Ctrl+Q) Pl = O x

File Edit View Query Project Debug Tools Window Help
0-0|1- - MW BNewuey B R RR| X T
“F | pos ~ | b Execute Debug A = =

“

SQLQueryl.sql - M...mani-PC\mani (53))* + X

=IUSE pos;

sapadoiq [}

-- Transaction 1

saso0jdx3 Pafgo

BEGIN TRAN
DECLARE @ItemsInStock INT

—ISELECT @ItemsInStock = ItemsInStock
FROM products WHERE Id = 1

WaitFor Delay '©0:00:12'

B2 SQlQueryl.sql - MANI-PC...| Quick Launch (Ctrl+Q) Iy = o o
File Edit View Query Project Debug Tools Window Help

©-9 |- -2 BNwtuey BRI RD| ¥ P2
i ¥ M| lpos ~| P Execute Debug v >
B8 50LQuery1.5ql - M..mani-PCimani (55))* & X 3
2 SIUSE pos; H
g 3
5 -- Transaction 2
]

BEGIN TRAN
DECLARE @ItemsInStock INT

=ISELECT @ItemsInStock = ItemsInStock
FROM products WHERE Id = 1

WaitFor Delay '©0:00:3'

SET @ItemsInStock = @ItemsInStock - 2 SET @ItemsInStock = @ItemsInStock - 3

=IUPDATE products SET ItemsinStock = @ItemsInStock ~IUPDATE products SET ItemsinStock = @ItemsInStock
WHERE Id = 1 WHERE Id = 1

Print @ItemsInStock| Print @ItemsInStock
Commit Transaction Commit Transaction
00% ~ 4 00% ~ 4
B Messages

B Messages

(1 row(s) affected)
3

(1 row(s) affected)
10

100% ~ 100% ~
JANI-PC\SQLEXPRESS (10.0 SP1) = mani-PC\mani (53) ' pos ' 00:00:10 ' 0 rows VIANI-PC\SQLEXPRESS (10.0 SP1) | mani-PC\mani (55) ' pos | 00:00:01 ' 0 rows

Both of these values are wrong, the actual value for ItemsInStock
column for the product with Id 1 should be 7.

It is important to note here that the lost update problem only occurs
with read committed and read uncommitted transaction isolation
levels. With all the other transaction isolation levels, this problem
does not occur.

Read Repeatable Transaction Isolation Level

Let’s update the isolation level for both the transactions to read
repeatable and see if the lost update problem occurs. But before
that, execute the following statement to update the value for
ItemsInStock back to 12.

Update products SET ItemsinStock = 12

Script For Transaction 1

USE pos;

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
-- Transaction 1

BEGIN TRAN

DECLARE @ItemsInStock INT

SELECT @ItemsInStock = ItemsInStock

FROM products WHERE Id = 1

WaitFor Delay '00:00:12

SET @ItemsInStock = @ItemsInStock - 2

UPDATE products SET ItemsinStock = @ItemsInStock
WHERE Id =1

Print @ItemsInStock

Commit Transaction

Script For Transaction 2

USE pos;

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
-- Transaction 2

BEGIN TRAN

DECLARE @ItemsInStock INT

SELECT @ItemsInStock = ItemsInStock

FROM products WHERE Id = 1

WaitFor Delay '00:00:3'

SET @ItemsInStock = @ItemsInStock - 3

UPDATE products SET ItemsinStock = @ItemsInStock
WHERE Id =1

Print @ItemsInStock

Commit Transaction

Here in both the transactions, we have set the isolation level to

repeatable read.

Now run transaction 1 and then immediately run transaction 2.
Unlike the previous case, transaction 2 will have to wait for
transaction 1 to commit itself. After that the following error occurs

for transaction 2:

Msg 1205, Level 13, State 51, Line 15

Transaction (Process ID 55) was deadlocked on lock resources with
another process and has been chosen as the deadlock victim. Rerun

the transaction.

Transaction Management

133

Database Management Systems This error occurs because repeatable read locks the resource which

134

is being read or updated by transaction 1 and it creates a deadlock
on the other transaction that tries to access the same resource.

The error says that transaction 2 has a deadlock on a resource with
another process and that this transaction has been blocked by the
deadlock. This means that the other transaction was given access to
the resource while this transaction was blocked and not given access
to the resource.

It also says to rerun the transaction as the resource is free now.
Now, if you run transaction 2 again, you will see the correct value
of items in stock i.e. 7. This is because transaction 1 had already
decremented the IteminStock value by 2, transaction 2 further
decrements this by 3, therefore 12 — (2+3) = 7.

4% SQLQueryl.sql - MANI-PCASQLEXPRE... CQuick Launch (Ctrl+C)

File Edit View Query Project Debug Tools Window Help
@0 | B -2 EWW BNewQuey BRE R X TO|D -
B ‘y‘ pos - | P Execute Debug v ES \ o - 1|

SQLQueryl.sql - M...mani-PC\mani (55))* & X
-1USE pos;

SET TRANSACTION ISCLATION LEVEL REPEATABLE READ
-- Transaction 2

1210/dx3 300

BEGIN TRAN
DECLARE @ItemsInStock INT

—]SELECT @ItemsInStock = ItemsInStock
| FROM products WHERE Id = 1

WaitFor Delay '99:00:3'
SET @ItemsInStock = @ItemsInStock - 3

—-JUPDATE products SET ItemsinStock = @ItemsInStock

| WHERE Id = 1

Print @ItemsInStock
Commit Transaction

100% ~ 4
@i Messages
{1 row{s) affected)

7

100% ~
@ Q.. MANI-PC\SQLEXPRESS (10.0 SP1) ' mani-PC\mani (55) pos 00:00:03 Orows

LPlo B X

"

41

4

saipadolg

6.5 INCONSISTENT READ PROBLEM

The problem is that the transaction might read some data before
they are changed and other data after they are changed, this cause
Inconsistent Retrievals

Unrepeatable read (or inconsistent retrievals) occurs when a
transaction calculates some summary (aggregate) function over a set
of data while other transactions are updating the data.

The problem is that the transaction might read some data before
they are changed and other data after they are changed, thereby
yielding inconsistent results.

In an unrepeatable read, the transaction T1 reads a record and then
does some other processing during which the transaction T2 updates
the record. Now, if T1 rereads the record, the new value will be
inconsistent with the previous value.

Example:

Consider the situation given in figure that shows two transactions
operating on three accounts :

Transaction Management

Account-1 Account-2 Account-3
Balance = 200 Balance = 250 Balance = 150
Transaction- A Time Transaction- B
_____ t0 —

Read Balance of Acc-1|tl _—
sum <-- 200
Read Balance of Acc-2

Sum <-- Sum + 250 =450 t2 o

—- t3 Read Balance of Acc-3

— t4 Update Balance of Acc-3
150 --> 150 - 50 --=> 100

— t5 Read Balance of Acc-1

— t6 Update Balance of Acc-1
200 --> 200 + 50 --> 250

— t7 COMMIT

Read Balance of Acc-3

Sum <-- Sum + 250 =450 t8 -—-

135

Database Management Systems Transaction-A is summing all balances;while, Transaction-B is

136

transferring an amount 50 from Account-3 to Account-1.

Here,the result produced by Transaction-A is 550,which is incorrect.
if this result is written in database, database will be in inconsistent
state, as actual sum is 600.

Here,Transaction-A has seen an inconsistent state of database, and
has performed inconsistent analysis.

6.6 READ-WRITE LOCKS

Read Locks:

1. Multiple read locks can be acquired by multiple threads at the
same time.

2. When a thread has a read lock on a row/table, no thread can
update/insert/delete data from that table. (Even if the thread
trying to write data doesn't require a write lock.)

3. A row/table cannot have a read and a write lock at the same
time.

Write Locks:

I. When a row/table has a write lock, it cannot be read by
another thread if they have a read lock implemented in them but
can be read by other threads if no read lock is implemented (i.e
simple Select query).

6.7 DEADLOCKS HANDLING

Deadlock refers to a specific situation where two or more processes
are waiting for each other to release a resource or more than two
processes are waiting for the resource in a circular chain.

Deadlock is a state of a database system having two or more
transactions, when each transaction is waiting for a data item that is
being locked by some other transaction. A deadlock can be
indicated by a cycle in the wait-for-graph. This is a directed graph
in which the vertices denote transactions and the edges denote waits
for data items.

For example, in the following wait-for-graph, transaction T1 is
waiting for data item X which is locked by T3. T3 is waiting for
Y which is locked by T2 and T2 is waiting for Z which is locked
by TI1. Hence, a waiting cycle is formed, and none of the
transactions can proceed executing.

Deadlock Handling in Centralized Systems

There are three classical approaches for deadlock handling, namely —
o Deadlock prevention.

o Deadlock avoidance.

o Deadlock detection and removal.

All of the three approaches can be incorporated in both a
centralized and a distributed database system.

Deadlock Prevention

The deadlock prevention approach does not allow any transaction to
acquire locks that will lead to deadlocks. The convention is that
when more than one transactions request for locking the same data
item, only one of them is granted the lock.

One of the most popular deadlock prevention methods is pre-
acquisition of all the locks. In this method, a transaction acquires all
the locks before starting to execute and retains the locks for the
entire duration of transaction. If another transaction needs any of the
already acquired locks, it has to wait until all the locks it needs are
available. Using this approach, the system is prevented from being
deadlocked since none of the waiting transactions are holding any
lock.

Deadlock Avoidance

The deadlock avoidance approach handles deadlocks before they
occur. It analyzes the transactions and the locks to determine
whether or not waiting leads to a deadlock.

The method can be briefly stated as follows. Transactions start
executing and request data items that they need to lock. The lock
manager checks whether the lock is available. If it is available, the
lock manager allocates the data item and the transaction acquires the
lock. However, if the item is locked by some other transaction in
incompatible mode, the lock manager runs an algorithm to test
whether keeping the transaction in waiting state will cause a
deadlock or not. Accordingly, the algorithm decides whether the
transaction can wait or one of the transactions should be aborted.

Transaction Management

137

Database Management Systems There are two algorithms for this purpose, namely wait-die and

138

wound-wait. Let us assume that there are two transactions, T1 and
T2, where T1 tries to lock a data item which is already locked by
T2. The algorithms are as follows —

Wait-Die — If T1 is older than T2, T1 is allowed to wait.
Otherwise, if T1 is younger than T2, T1 1is aborted and Ilater
restarted.

Wound-Wait — If T1 is older than T2, T2 is aborted and later
restarted. Otherwise, if T1 is younger than T2, TI1 is allowed to
wait.

Deadlock Detection and Removal

The deadlock detection and removal approach runs a deadlock
detection algorithm periodically and removes deadlock in case there
is one. It does not check for deadlock when a transaction places a
request for a lock. When a transaction requests a lock, the lock
manager checks whether it is available. If it is available, the
transaction is allowed to lock the data item; otherwise the
transaction is allowed to wait.

Since there are no precautions while granting lock requests, some of
the transactions may be deadlocked. To detect deadlocks, the lock
manager periodically checks it the wait-forgraph has cycles. If the
system is deadlocked, the lock manager chooses a victim transaction
from each cycle. The victim is aborted and rolled back; and then
restarted later. Some of the methods used for victim selection are —

Choose the youngest transaction.

Choose the transaction with fewest data items.

Choose the transaction that has performed least number of updates.
Choose the transaction having least restart overhead.

Choose the transaction which is common to two or more cycles.

This approach is primarily suited for systems having transactions
low and where fast response to lock requests is needed.

Deadlock Handling in Distributed Systems

Transaction processing in a distributed database system 1is also
distributed, i.e. the same transaction may be processing at more than
one site. The two main deadlock handling concerns in a distributed
database system that are not present in a centralized system are
transaction location and transaction control. Once these concerns are
addressed, deadlocks are handled through any of deadlock
prevention, deadlock avoidance or deadlock detection and removal.

Transaction Location

Transactions in a distributed database system are processed in
multiple sites and use data items in multiple sites. The amount of
data processing is not uniformly distributed among these sites. The
time period of processing also varies. Thus the same transaction
may be active at some sites and inactive at others. When two
conflicting transactions are located in a site, it may happen that one
of them is in inactive state. This condition does not arise in a
centralized system. This concern is called transaction location issue.

This concern may be addressed by Daisy Chain model. In this
model, a transaction carries certain details when it moves from one
site to another. Some of the details are the list of tables required,
the list of sites required, the list of visited tables and sites, the list
of tables and sites that are yet to be visited and the list of acquired
locks with types. After a transaction terminates by either commit or
abort, the information should be sent to all the concerned sites.

Transaction Control

Transaction control is concerned with designating and controlling the
sites required for processing a transaction in a distributed database
system. There are many options regarding the choice of where to
process the transaction and how to designate the center of control,
like —

One server may be selected as the center of control.
The center of control may travel from one server to another.

The responsibility of controlling may be shared by a number of
Servers.

Distributed Deadlock Prevention

Just like in centralized deadlock prevention, in distributed deadlock
prevention approach, a transaction should acquire all the locks
before starting to execute. This prevents deadlocks.

The site where the transaction enters is designated as the controlling
site. The controlling site sends messages to the sites where the data
items are located to lock the items. Then it waits for confirmation.
When all the sites have confirmed that they have locked the data
items, transaction starts. If any site or communication link fails, the
transaction has to wait until they have been repaired.

Though the implementation is simple, this approach has some
drawbacks —

Pre-acquisition of locks requires a long time for communication
delays. This increases the time required for transaction.

Transaction Management

139

Database Management Systems In case of site or link failure, a transaction has to wait for a long

140

time so that the sites recover. Meanwhile, in the running sites, the
items are locked. This may prevent other transactions from
executing.

If the controlling site fails, it cannot communicate with the other
sites. These sites continue to keep the locked data items in their
locked state, thus resulting in blocking.

Distributed Deadlock Avoidance

As in centralized system, distributed deadlock avoidance handles
deadlock prior to occurrence. Additionally, in distributed systems,
transaction location and transaction control issues needs to be
addressed. Due to the distributed nature of the transaction, the
following conflicts may occur —

Conflict between two transactions in the same site.
Conflict between two transactions in different sites.

In case of conflict, one of the transactions may be aborted or
allowed to wait as per distributed wait-die or distributed wound-wait
algorithms.

Let us assume that there are two transactions, T1 and T2. Tl
arrives at Site P and tries to lock a data item which is already
locked by T2 at that site. Hence, there is a conflict at Site P. The
algorithms are as follows —

.Distributed Wound-Die

» If T1 is older than T2, T1 is allowed to wait. T1 can resume
execution after Site P receives a message that T2 has either
committed or aborted successfully at all sites.

» If Tl is younger than T2, T1 is aborted. The concurrency
control at Site P sends a message to all sites where T1 has visited
to abort T1. The controlling site notifies the user when T1 has been
successfully aborted in all the sites.

Distributed Wait-Wait

» If T1 is older than T2, T2 needs to be aborted. If T2 is
active at Site P, Site P aborts and rolls back T2 and then
broadcasts this message to other relevant sites. If T2 has left Site P
but is active at Site Q, Site P broadcasts that T2 has been aborted;
Site L then aborts and rolls back T2 and sends this message to all
sites.

» If T1 is younger than TI1, Tl is allowed to wait. T1 can
resume execution after Site P receives a message that T2 has
completed processing.

Distributed Deadlock Detection

Just like centralized deadlock detection approach, deadlocks are
allowed to occur and are removed if detected. The system does not
perform any checks when a transaction places a lock request. For
implementation, global wait-for-graphs are created. Existence of a
cycle in the global wait-for-graph indicates deadlocks. However, it is
difficult to spot deadlocks since transaction waits for resources
across the network.

Alternatively, deadlock detection algorithms can use timers. Each
transaction is associated with a timer which is set to a time period
in which a transaction is expected to finish. If a transaction does
not finish within this time period, the timer goes off, indicating a
possible deadlock.

Another tool used for deadlock handling is a deadlock detector. In a
centralized system, there is one deadlock detector. In a distributed
system, there can be more than one deadlock detectors. A deadlock
detector can find deadlocks for the sites under its control. There are
three alternatives for deadlock detection in a distributed system,
namely.

Centralized Deadlock Detector — One site is designated as the
central deadlock detector.

Hierarchical Deadlock Detector — A number of deadlock detectors
are arranged in hierarchy.

Distributed Deadlock Detector — All the sites participate in
detecting deadlocks and removing them.

6.8 TWO-PHASE LOCKING (2PL)

The two-phase locking protocol divides the execution phase of the
transaction into three parts. In the first part, when the execution of
the transaction starts, it seeks permission for the lock it requires. In
the second part, the transaction acquires all the locks. The third
phase is started as soon as the transaction releases its first lock. In
the third phase, the transaction cannot demand any new locks. It
only releases the acquired locks.

There are two phases of 2PL:

Growing phase: In the growing phase, a new lock on the data item
may be acquired by the transaction, but none can be released.

Shrinking phase: In the shrinking phase, existing lock held by the
transaction may be released, but no new locks can be acquired.

Transaction Management

141

Database Management Systems In the below example, if lock conversion is allowed then the
following phase can happen:

Upgrading of lock (from S(a) to X (a)) is allowed in growing

phase.
Downgrading of lock (from X(a) to S(a)) must be done in shrinking
phase.
Example:

T1 T2
0 LOCK - S(A)
1 LOCK — S(A)
2 LOCK — X(B)
3 - -
4 UNLOCK(A)
5 LOCK -X(C)
6 UNLOCK(B)
7 UNLOCK(A)
8 UNLOCK(C)
9 - -4

The following way shows how unlocking and locking work with 2-
PL.

Transaction T1:
Growing phase: from step 1-3
Shrinking phase: from step 5-7
Lock point: at 3
Transaction T2:
Growing phase: from step 2-6
Shrinking phase: from step 8-9
Lock point: at 6

Two-Phase Locking (2PL) is a concurrency control method which
divides the execution phase of a transaction into three parts. It
ensures conflict serializable schedules. If read and write operations
introduce the first unlock operation in the transaction, then it is said
to be Two-Phase Locking Protocol.

This protocol can be divided into two phases,

I. In Growing Phase, a transaction obtains locks, but may not
release any lock.

142

2. In Shrinking Phase, a transaction may release locks, but may not
obtain any lock.

Two-Phase Locking does not ensure freedom from deadlocks.

Types of Two — Phase Locking Protocol

Following are the types of two — phase locking protocol:

1. Strict Two — Phase Locking Protocol

2. Rigorous Two — Phase Locking Protocol

3. Conservative Two — Phase Locking Protocol

1. Strict Two-Phase Locking Protocol

>
>

Strict Two-Phase Locking Protocol avoids cascaded rollbacks.

This protocol not only requires two-phase locking but also all
exclusive-locks should be held until the transaction commits or
aborts.

It is not deadlock free.

It ensures that if data is being modified by one transaction,
then other transaction cannot read it until first transaction
commits.

Most of the database systems implement rigorous two — phase
locking protocol.

Rigorous Two-Phase Locking

Rigorous Two — Phase Locking Protocol avoids cascading
rollbacks.

This protocol requires that all the share and exclusive locks to
be held until the transaction commits.

. Conservative Two-Phase Locking Protocol

Conservative Two — Phase Locking Protocol is also called as
Static Two — Phase Locking Protocol.

This protocol is almost free from deadlocks as all required
items are listed in advanced.

It requires locking of all data items to access before the
transaction starts.

Transaction Management

143

144

DCL STATEMENTS

Unit Structure

7.1 Defining a transaction

7.2 Making Changes Permanent with COMMIT
7.3 Undoing Changes with ROLLBACK

7.4 Undoing Partial Changes with SAVEPOINT
7.5 Undoing Partial Changes with ROLLBACK

1 INTRODUCTION TO DCL
SQL Commands

SQL orders are directions. It is utilized to speak with the data set.
It is additionally used to perform explicit assignments, capacities,
and questions of information.

SQL can perform different undertakings like make a table, add
information to tables, drop the table, change the table, set
authorization for clients.

Types of SQL Commands

There are five types of SQL commands: DDL, DML, DCL, TCL,
and DQL.

SOL Command

DDL DML DCL TCL DQL
— Create — Insert — Grant — Commit — Select
— Drop — Update — Revoke — Rollback
— Alter — Delete — Save
point
— Truncate

data control language (DCL) is utilized to get to the put away
information. It is chiefly utilized for repudiate and to allow the
client the necessary admittance to an information base. In the data
set, this language doesn't have the element of rollback.

e It is a part of the structured query language (SQL).

e It helps in controlling access to information stored in a database.
It complements the data manipulation language (DML) and the
data definition language (DDL).

e It is the simplest among three commands.

e It provides the administrators, to remove and set database
permissions to desired users as needed.

e These commands are employed to grant, remove and deny
permissions to users for retrieving and manipulating a database.

e QGrant
 Revoke

A data control language (DCL) 1is a syntax similar to a
computer programming language wused to control access to
data stored in a database (Authorization). In particular, it
is a component of Structured Query Language (SQL). Data
Control Language is one of the logical group in SQL
Commands. SQL is the standard language for relational
database management systems. SQL statements are wused to
perform tasks such as insert data to a database, delete or
update data in a database, or retrieve data from a
database.

Though database systems wuse SQL, they also have their
own additional proprietary extensions that are usually only
used on their system. For Example Microsoft SQL server
uses Transact-SQL (T-SQL) which is an extension of SQL.
Similarly Oracle wuses PL-SQL which is their proprietary
extension for them only. However, the standard SQL
commands such as "Select", '"Insert", "Update", "Delete",
"Create", and "Drop" <can be wused to accomplish almost
everything that one needs to do with a database.

Examples of DCL commands include:
GRANT to allow specified wusers to perform specified tasks.

REVOKE to remove the wuser accessibility to database
object.

DCL Statements

145

Database Management Systems The operations for which privileges may be granted to or revoked from

146

a user or role apply to both the Data definition language
(DDL) and the Data manipulation language (DML), and may
include CONNECT, SELECT, INSERT, UPDATE, DELETE,
EXECUTE, and USAGE.

Data control language (DCL) 1is wused to access the stored
data. It is mainly used for revoke and to grant the wuser
the required access to a database. In the database, this
language does not have the feature of rollback.

e It isa part of the structured query language (SQL).

e It helps in controlling access to information stored in
a database.

e It complements the data manipulation language (DML) and the
data definition language (DDL).

e It is the simplest among three commands.

e It provides the administrators, to remove and set
database permissions to desired wusers as needed.

These commands are employed to grant, remove and deny permissions
to users for retrieving and manipulating a database.

DCL stands for Data Control Language. DCL is used to control user
access in a database. This command is related to the security issues.

Using DCL command, it allows or restricts the user from accessing data
in database schema.

DCL commands are as follows,
1. GRANT
2. REVOKE

It is used to grant or revoke access permissions from
any database user.

2. GRANT COMMAND

SQL Grant command is specifically used to provide privileges to
database objects for a user. This command also allows users to
grant permissions to other users too.

Syntax:
grant privilege name on object name

to {user name | public | role name}

Here privilege name 1is which permission has to be granted,
object name is the name of the database object, user name is the
user to which access should be provided, the public is used to
permit access to all the users.

3 REVOKE :

Revoke command withdraw user privileges on database objects if

any granted. It does operations opposite to the Grant command.
When a privilege is revoked from a particular user U, then the
privileges granted to all other users by user U will be revoked.

Syntax:
revoke privilege name on object name
from {user name | public | role name}
Example:
grant insert,

select on accounts to Ram

By the above command user ram has granted permissions on
accounts database object like he can query or insert into accounts.

revoke insert,
select on accounts from Ram

By the above command user ram’s permissions like query or insert
on accounts database object has been removed.

Privilege

Object

Revokes Privilege | Database
REVOKE |< Object

Grant and Revoke Command

DCL Statements

147

Database Management Systems Difference between GRANT and REVOKE command.

148

GRANT

REVOKE

GRANT command allows a
user to perform certain
activities on the database.

REVOKE command disallows a
user to perform certain activities.

It grants access privileges for
database objects to other
users.

It revokes access privileges for
database objects previously granted
to other users.

Example:

GRANT privilege name
ON object name

Example:

REVOKE privilege name
ON object name

TO
FROM
{ {
user_name|PUBLIC|role user name|/PUBLIC|role_name
name }
}
[WITH GRANT OPTIONT;

7.1 DEFINING A TRANSACTION

A transaction, in the context of a database, is a logical unit that is
independently executed for data retrieval or updates. Experts talk
about a database transaction as a “unit of work” that is achieved
within a database design environment.

In relational databases, database transactions must be atomic,
consistent, isolated and durable summarized as the ACID acronym.
Engineers have to look at the build and use of a database system to
figure out whether it supports the ACID model or not. Then, as
newer kinds of database systems have emerged, the question of how
to handle transactions becomes more complex.

In traditional relational database design, transactions are completed
by COMMIT or ROLLBACK SQL statements, which indicate a
transaction’s beginning or end. The ACID acronym defines the
properties of a database transaction, as follows:

Atomicity: A transaction must be fully complete, saved (committed)
or completely undone (rolled back). A sale in a retail store database
illustrates a scenario which explains atomicity, e.g., the sale consists
of an inventory reduction and a record of incoming cash. Both
either happen together or do not happen—it's all or nothing.

Consistency: The transaction must be fully compliant with the state
of the database as it was prior to the transaction. In other words,
the transaction cannot break the database’s constraints. For example,
if a database table’s Phone Number column can only contain
numerals, then consistency dictates that any transaction attempting to
enter an alphabetical letter may not commit.

Isolation: Transaction data must not be available to other
transactions until the original transaction is committed or rolled
back.

Durability: Transaction data changes must be available, even in the
event of database failure.

For reference, one of the easiest ways to describe a database
transaction is that it is any change in a database, any “transaction”
between the database components and the data fields that they
contain.

However, the terminology becomes confusing, because in enterprise
as a whole, people are so used to referring to financial transactions
as simply “transactions.” That sets up a central conflict in tech-
speak versus the terminology of the average person.

A database “transaction” is any change that happens. To talk about
handling financial transactions in database environments, the word
“financial” should be used explicitly. Otherwise, confusion can easily
crop up. Database systems will need specific features, such as PCI
compliance features, in order to handle financial transactions
specifically.

As databases have evolved, transaction handling systems have also
evolved. A new kind of database called NoSQL is one that does
not depend on the traditional relational database data relationships to
operate.

While many NoSQL systems offer ACID compliance, others utilize
processes like snapshot isolation or may sacrifice some consistency
for other goals. Experts sometimes talk about a trade-off between
consistency and availability, or similar scenarios where consistently
may be treated differently by modern database environments. This
type of question is changing how stakeholders look at database
systems, beyond the traditional relational database paradigms.

Oracle PL/SQL transaction oriented language. Oracle transactions
provide a data integrity. PL/SQL transaction is a series of SQL data
manipulation statements that are work logical unit. Transaction is an
atomic unit all changes either committed or rollback.

At the end of the transaction that makes database changes, Oracle
makes all the changes permanent save or may be undone. If your

DCL Statements

149

Database Management Systems program fails in the middle of a transaction, Oracle detect the error

150

and rollback the transaction and restoring the database.

You can use the COMMIT, ROLLBACK, SAVEPOINT, and SET
TRANSACTION command to control the transaction.

COMMIT: COMMIT command to make changes permanent save to
a database during the current transaction.

ROLLBACK: ROLLBACK command execute at the end of current
transaction and undo/undone any changes made since the begin
transaction.

SAVEPOINT: SAVEPOINT command save the current point with
the unique name in the processing of a transaction.

AUTOCOMMIT: Set AUTOCOMMIT ON to execute COMMIT
Statement automatically.

SET TRANSACTION: PL/SQL SET TRANSACTION command set
the transaction properties such as read-write/read only access.

7.2 MAKING CHANGES PERMANENT WITH COMMIT

Committing a transaction means making permanent the changes
performed by the SQL statements within the transaction.

Before a transaction that modifies data is committed, the following
has occurred:

Oracle has generated undo information. The wundo information
contains the old data values changed by the SQL statements of the
transaction.

Oracle has generated redo log entries in the redo log buffer of the
SGA. The redo log record contains the change to the data block
and the change to the rollback block. These changes may go to
disk before a transaction is committed.

The changes have been made to the database buffers of the SGA.
These changes may go to disk before a transaction is committed.

When a transaction is committed, the following occurs:

The internal transaction table for the associated undo tablespace
records that the transaction has committed, and the corresponding
unique system change number (SCN) of the transaction is assigned
and recorded in the table.

The log writer process (LGWR) writes redo log entries in the
SGA's redo log buffers to the redo log file. It also writes the
transaction's SCN to the redo log file. This atomic event constitutes
the commit of the transaction.

Oracle releases locks held on rows and tables. DCL Statements
Oracle marks the transaction complete.

The COMMIT statement to make changes permanent save to a
database during the current transaction and visible to other users,

Commit Syntax
SQL>COMMIT [COMMENT "comment text"];

Commit comments are only supported for backward compatibility. In
a future release commit comment will come to a deprecated.

Commit Example
SQL>BEGIN
UPDATE emp_information SET emp dept="Web Developer'
WHERE emp name='Saulin';
COMMIT;
END;

7.3 UNDOING CHANGES WITH ROLLBACK

Rolling back means undoing any changes to data that have been
performed by SQL statements within an uncommitted transaction.
Oracle uses undo tablespaces (or rollback segments) to store old
values. The redo log contains a record of changes.

Oracle lets you roll back an entire uncommitted transaction.
Alternatively, you can roll back the trailing portion of an
uncommitted transaction to a marker called a savepoint.

All types of rollbacks use the same procedures:

Statement-level rollback (due to statement or deadlock execution
error)

Rollback to a savepoint
Rollback of a transaction due to user request
Rollback of a transaction due to abnormal process termination

Rollback of all outstanding transactions when an instance terminates
abnormally

Rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any
savepoints, the following occurs:

151

Database Management Systems QOracle undoes all changes made by all the SQL statements in the

152

transaction by using the corresponding undo tablespace.

Oracle releases all the transaction's locks of data. The transaction
ends.

The ROLLBACK statement ends the current transaction and undoes
any changes made during that transaction. If you make a mistake,
such as deleting the wrong row from a table, a rollback restores the
original data. If you cannot finish a transaction because an exception
is raised or a SQL statement fails, a rollback lets you take
corrective action and perhaps start over.

ROLLBACK Syntax
SQL>ROLLBACK [To SAVEPOINT NAME];
ROLLBACK Example
SQL>DECLARE

emp _id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_ found;

UPDATE emp SET eno=I

WHERE empname = 'Forbs ross'

EXCEPTION

WHEN DUP VAL ON INDEX THEN

ROLLBACK TO dup_ found,

END;
/

Above example statement is exception raised because eno = 1 is
already so DUP _ON _INDEX exception rise and rollback to the
dup_found savepoint named.

7.4 UNDOING PARTIAL CHANGESWITH SAVEPOINT

You can declare intermediate markers called savepoints within the
context of a transaction. Savepoints divide a long transaction into
smaller parts.

Using savepoints, you can arbitrarily mark your work at any point
within a long transaction. You then have the option later of rolling
back work performed before the current point in the transaction but
after a declared savepoint within the transaction. For example, you

can use savepoints throughout a long complex series of updates, so
if you make an error, you do not need to resubmit every statement.

Savepoints are similarly useful in application programs. If a
procedure contains several functions, then you can create a savepoint
before each function begins. Then, if a function fails, it is easy to
return the data to its state before the function began and re-run the
function with revised parameters or perform a recovery action.

After a rollback to a savepoint, Oracle releases the data locks
obtained by rolled back statements. Other transactions that were
waiting for the previously locked resources can proceed. Other
transactions that want to update previously locked rows can do so.

When a transaction is rolled back to a savepoint, the following
occurs:

e Oracle rolls back only the statements run after the savepoint.

e Oracle preserves the specified savepoint, but all savepoints that
were established after the specified one are lost.

e Oracle releases all table and row locks acquired since that
savepoint but retains all data locks acquired previous to the
savepoint.

e The transaction remains active and can be continued.

Whenever a session is waiting on a transaction, a rollback to
savepoint does not free row locks. To make sure a transaction does
not hang if it cannot obtain a lock, use FOR UPDATE ... NOWAIT
before issuing UPDATE or DELETE statements. (This refers to
locks obtained before the savepoint to which has been rolled back.
Row locks obtained after this savepoint are released, as the
statements executed after the savepoint have been rolled back
completely.)

Transaction Naming

You can name a transaction, using a simple and memorable text
string. This name is a reminder of what the transaction is about.
Transaction names replace commit comments for distributed
transactions, with the following advantages:

It is easier to monitor long-running transactions and to resolve in-
doubt distributed transactions.

You can view transaction names along with transaction IDs in
applications. For example, a database administrator can view
transaction names in Enterprise Manager when monitoring system
activity.

DCL Statements

153

Database Management Systems Transaction names are written to the transaction auditing redo

154

record, if compatibility is set to Oracle9i or higher.

LogMiner can use transaction names to search for a specific
transaction from transaction auditing records in the redo log.

You can use transaction names to find a specific transaction in data
dictionary views, such as VETRANSACTION.

How Transactions Are Named

Name a transaction using the SET TRANSACTION .. NAME
statement before you start the transaction.

When you name a transaction, you associate the transaction's name
with its ID. Transaction names do not have to be unique; different
transactions can have the same transaction name at the same time
by the same owner. You can use any name that enables you to
distinguish the transaction.

Commit Comment

In previous releases, you could associate a comment with a
transaction by using a commit comment. However, a comment can
be associated with a transaction only when a transaction is being
committed.

Commit comments are still supported for backward compatibility.
However, Oracle strongly recommends that you wuse transaction
names. Commit comments are ignored in named transactions.

SAVEPOINT savepoint names marks the current point in the
processing of a transaction. Savepoints let you rollback part of a
transaction instead of the whole transaction.

SAVEPOINT Syntax
SQL>SAVEPOINT SAVEPOINT NAME;
SAVEPOINT Example
SQL>DECLARE

emp _id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_ found;

UPDATE emp SET eno=1

WHERE empname = 'Forbs ross'

EXCEPTION

WHEN DUP VAL ON INDEX THEN

ROLLBACK TO dup_found; DCL Statements
END;
/Autocommit

No need to execute COMMIT statement every time. You just set
AUTOCOMMIT ON to execute COMMIT Statement automatically.
It's automatic execute for each DML statement. set auto commit on
using following statement,

AUTOCOMMIT Example
SQL>SET AUTOCOMMIT ON;
You can also set auto commit off,
SQL>SET AUTOCOMMIT OFF;
Set Transaction

SET TRANSACTION statement is use to set transaction are read-
only or both read write. you can also assign transaction name.

SET TRANSACTION Syntax
SQL>SET TRANSACTION [READ ONLY | READ WRITE]
[NAME 'transaction name'];

Set transaction name using the SET TRANSACTION [...] NAME
statement before you start the transaction.

SET TRANSACTION Example
SQL>SET TRANSACTION READ WRITE NAME 'tran_exp';

SAVEPOINT For Reverting Partial Changes

SAVEPOINT gives name and identification to the present transaction
processing point. It is generally associated with a ROLLBACK
statement. It enables us to revert some sections of a transaction by
not touching the entire transaction.

As we apply ROLLBACK to a SAVEPOINT, all the SAVEPOINTS
included following that particular SAVEPOINT gets removed [that is
if we have marked three SAVEPOINTS and applied a ROLLBACK
on the second SAVEPOINT, automatically the third SAVEPOINT
will be deleted.]

A COMMIT or a ROLLBACK statement deletes all SAVEPOINTS.
The names given to SAVEPOINT are undeclared identifiers and can
be reapplied several times inside a transaction. There is a movement
of SAVEPOINT from the old to the present position inside the
transaction.

155

Database Management Systems A ROLLBACK applied to a SAVEPOINT affects only the ongoing

156

part of the transaction. Thus a SAVEPOINT helps to split a lengthy
transaction into small sections by positioning validation points.

Syntax for transaction SAVEPOINT:

SAVEPOINT < save n>;

Here, save n is the name of the SAVEPOINT.

Let us again consider the TEACHERS table we have created earlier.
Code implementation of ROLLBACK WITH SAVEPOINT:

INSERT INTO TEACHERS VALUES (4, 'CYPRESS', 'MICHEAL);
SAVEPOINT s;

INSERT INTO TEACHERS VALUES (5, 'PYTHON!', 'STEVE');
INSERT INTO TEACHERS VALUES (6, 'PYTEST', 'ARNOLD";
ROLLBACK TO s;

INSERT INTO TEACHERS VALUES (7, 'PROTRACTOR/,
'FANNY");

COMMIT;

Next, the below query is executed:
SELECT * FROM TEACHERS;
Output of the above code should be:

CODE SUBJECT NAME
2 UFT SAM
1 SELENIUM TOP
3 JMETERE TONK
4 CYPRESS MICHEAL
7 PROTRACTOR FANNY

In the above code, after ROLLBACK with SAVEPOINT s is
applied, only two more rows got inserted, i.e. teachers with CODE
4 and 7, respectively. Please note teachers with code 1, 2, and 3
have been added during the table creation.

7.5 ROLLBACK TO UNDO CHANGES

If a present transaction is ended with a ROLLBACK statement, then
it will undo all the modifications that are supposed to take place in
the transaction.

A ROLLBACK statement has the following features as listed below:

The database is restored with its original state with a ROLLBACK
statement in case we have mistakenly deleted an important row from
the table.

In the event of an exception which has led to the execution failure DCL Statements
of a SQL statement, a ROLLBACK statement enables us to jump to

the starting point of the program from where we can take remedial

measures.

The updates made to the database without a COMMIT statement
can be revoked with a ROLLBACK statement.

Syntax for transaction ROLLBACK:

ROLLBACK;

Syntax for transaction ROLLBACK with SAVEPOINT:
ROLLBACK [TO SAVEPOINT < save n>];

Here, the save n is the name of the SAVEPOINT.
Let us consider the TEACHERS table we have created earlier.
Code implementation with ROLLBACK:

DELETE FROM TEACHERS WHERE CODE= 3;
ROLLBACK;

Next, the below query is executed:

SELECT * FROM TEACHERS;

Output of the above code should be:

CODE SUBJECT NAME
2 UFT SAM
1 SELENIUM TOP
3 JMETERE TONK

In the above code, we have executed a DELETE statement which is
supposed to delete the record of the teacher with CODE equal to 3.
However, because of the ROLLBACK statement, there is no impact
on the database, and deletion is not done.

O 0 O, O
OF 00 00 00

157

158

CRASH RECOVERY

Unit Structure

8.1 ARIES algorithm

8.2 The log based recovery

8.3 Recovery related structures like transaction
8.4 Dirty page table

8.5 Write-ahead log protocol

8.6 Check points

8.7 Recovery from a system crash

8.8 Redo and Undo phases.

DBMS is a highly complex system with hundreds of transactions
being executed every second. The durability and robustness of a
DBMS depends on its complex architecture and its underlying
hardware and system software. If it fails or crashes amid
transactions, it is expected that the system would follow some sort
of algorithm or techniques to recover lost data.

Failure Classification

To see where the problem has occurred, we generalize a failure into
various categories, as follows —

Transaction failure

A transaction has to abort when it fails to execute or when it
reaches a point from where it can’t go any further. This is called
transaction failure where only a few transactions or processes are
hurt.

Reasons for a transaction failure could be —

1. Logical errors — Where a transaction cannot complete because it
has some code error or any internal error condition.

2. System errors — Where the database system itself terminates an
active transaction because the DBMS is not able to execute it,
or it has to stop because of some system condition. For
example, in case of deadlock or resource unavailability, the
system aborts an active transaction.

System Crash

There are problems — external to the system — that may cause the
system to stop abruptly and cause the system to crash. For example,
interruptions in power supply may cause the failure of underlying
hardware or software failure.

Examples may include operating system errors.
Disk Failure

In early days of technology evolution, it was a common problem
where hard-disk drives or storage drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the
disk, disk head crash or any other failure, which destroys all or a
part of disk storage.

Storage Structure

We have already described the storage system. In brief, the storage
structure can be divided into two categories —

1. Volatile storage — As the name suggests, a volatile storage
cannot survive system crashes. Volatile storage devices are placed
very close to the CPU; normally they are embedded onto the
chipset itself. For example, main memory and cache memory are
examples of volatile storage. They are fast but can store only a
small amount of information.

2. Non-volatile storage — These memories are made to survive
system crashes. They are huge in data storage capacity, but slower
in accessibility. Examples may include hard-disks, magnetic tapes,
flash memory, and non-volatile (battery backed up) RAM.

Recovery and Atomicity

When a system crashes, it may have several transactions being
executed and various files opened for them to modify the data
items. Transactions are made of various operations, which are atomic
in nature. But according to ACID properties of DBMS, atomicity of
transactions as a whole must be maintained, that is, either all the
operations are executed or none.

When a DBMS recovers from a crash, it should maintain the
following —

1. It should check the states of all the transactions, which were
being executed.

2. A transaction may be in the middle of some operation; the
DBMS must ensure the atomicity of the transaction in this case.

3. It should check whether the transaction can be completed now or
it needs to be rolled back.

Crash Recovery

159

Database Management Systems 4, No transactions would be allowed to leave the DBMS in an

160

inconsistent state.

There are two types of techniques, which can help a DBMS in
recovering as well as maintaining the atomicity of a transaction —

1. Maintaining the logs of each transaction, and writing them onto
some stable storage before actually modifying the database.

2. Maintaining shadow paging, where the changes are done on a
volatile memory, and later, the actual database is updated.

8.1 ARIES ALGORITHM

(Algorithm for Recovery and Isolation Exploiting Semantics
(ARIES))

Algorithm for Recovery and Isolation Exploiting Semantics (ARIES)
is based on the Write Ahead Log (WAL) protocol. Every update
operation writes a log record which is one of the following :

1. Undo-only log record:

Only the before image is logged. Thus, an undo operation can be
done to retrieve the old data.

2. Redo-only log record:

Only the after image is logged. Thus, a redo operation can be
attempted.

3. Undo-redo log record:
Both before images and after images are logged.

In it, every log record is assigned a unique and monotonically
increasing log sequence number (LSN). Every data page has a page
LSN field that is set to the LSN of the log record corresponding to
the last update on the page. WAL requires that the log record
corresponding to an update make it to stable storage before the data
page corresponding to that wupdate is written to disk. For
performance reasons, each log write is not immediately forced to
disk. A log tail is maintained in main memory to buffer log writes.
The log tail is flushed to disk when it gets full. A transaction
cannot be declared committed until the commit log record makes it
to disk.

Once in a while the recovery subsystem writes a checkpoint record
to the log. The checkpoint record contains the transaction table and
the dirty page table. A master log record is maintained separately,
in stable storage, to store the LSN of the latest checkpoint record
that made it to disk. On restart, the recovery subsystem reads the
master log record to find the checkpoint’s LSN, reads the
checkpoint record, and starts recovery from there on.

The recovery process actually consists of 3 phases:
Analysis:

The recovery subsystem determines the earliest log record from
which the next pass must start. It also scans the log forward from
the checkpoint record to construct a snapshot of what the system
looked like at the instant of the crash.

Redo:

Starting at the earliest LSN, the log is read forward and each
update redone.

Undo:

The log is scanned backward and updates corresponding to loser
transactions are undone.

Attention reader! Don’t stop learning now. Get hold of all the
important CS Theory concepts for SDE interviews with the CS
Theory Course at a student-friendly price and become industry
ready.

8.2 LOG BASED RECOVERY

Log is nothing but a file which contains a sequence of records,
each log record refers to a write operation. All the log records are
recorded step by step in the log file. We can say, log files store
the history of all updates activities.

Log contains start of transaction, transaction number, record number,
old value, new value, end of transaction etc. For example, mini
statements in bank ATMs.

If within an ongoing transaction, the system crashes, then by using
log files, we can return back to the previous state as if nothing has
happened to the database.

The log is kept on disk so that it is not affected by failures except
disk and failures.

Example :
Different types of log records are as follows —

<Ti, Xi, V1, V2> — update log record, where Ti=transaction,
Xi=data, V1=old

data, V2=new value.
<Ti, start> — Transaction Ti starts execution.

<Ti, commit> — Transaction Ti is committed.

Crash Recovery

161

Database Management Systems <T1i, abort> — Transaction Ti is aborted

162

The log records can be written as follows —

Create a log for the given transaction T1 and T2.

T1 T2 Log

Read A Read A <T1, start>

A=A-2000 A=A+5000 <T1,A,5000, 3000>
Write A Write A <T1, B, 8000, 10000>
Read B Read B <T1, commit>
B=B+2000 B= B+7000 <T2, start>

Write B Write B <T2, A, 3000, 8000>

<T2, B, 10000, 17000>

<T2, commit>

Log Based Recovery

Log-based recovery provides the facility to maintain or recover data
if any failure may occur in the system. Log means sequence of
records or data, each transaction DBMS creates a log in some stable
storage device so that we easily recover data if any failure may
occur. When we perform any operation on the database at that time
it will be recorded into a log file. Processing of the log file should
be done before the original transaction is applied to the database.
Why we use log-based recovery the main reason is that the
Atomicity property of transaction states that we can either execute
the whole transaction or nothing else, modification of the aborted
transaction 1s not visible to the database, and modification of the
transaction 1is visible so that reason we use log-based recovery
system.

Syntax:
<TRX, Start>

Explanation: In the above syntax, we use TRX and start in which
TRX means transaction and when a transaction in the initial state
that means we write start a log.

<TRX, Name, 'First Name', 'Last Name' >

Explanation:In this syntax where TRX means transaction and name
is used to First Name and Last Name. When we modify the name
First Name to the Last Name then it writes a separate log file for
that.

<TRX, Commits>

Explanation:In the above syntax, we use two-variable transactions as
TRX and commits, when transaction execution is finished then it is
written into another log file that means the end of the transaction
we called commits.

Log-Based Recovery in DBMS

Log-based recovery uses the following term for execution as
follows.

Transaction Identifier: It used to uniquely identify the transaction.

Data item Identifier: It is used to uniquely identify the used data
in the database.

Old Value: It is the value of data before the write operation of a
transaction.

New Value: It is the value of data after the write operation of a
transaction.

Let’s see the transaction with various log types.

First, we start the transaction by using <TRX, Start> this syntax
after that we perform the write operation of the transaction that
means we update the database. After the write operation, we check
whether the transaction is committed or aborted.

For recovery purposes, we use the following two operations as
follows.

Undo (TRX): This command is used to restore all records updated
by transactions to the old value.

Redo (TRX): This command is used to set the value of all records
updated by a transaction to the new value.

Transaction Modification Techniques

There are two different types we use in database medication and
that are helpful in the recovery system as follows. Transaction
Modification Techniques as follows:

1. Immediate Database Modification

In this type, we can modify the database while the transaction is an
inactive state. Data modification done by an active transaction is
called an uncommitted transaction. When a transaction is failed or
we can say that a system crash at that time, the transaction uses
the old transaction to bring the database into a consistent state. This
execution can be completed by using the undo operation.

Crash Recovery

163

Database Management Systems Example:

164

<TRXI1 start>

<TRX1 X, 2000, 1000>
<TRX1 Y, 3000, 1050>
<TRX1 commit>
<TRX2 start>

<TRX2 Z, 800, 500>
<TRX2 commit>

Explanation: In the above example we consider the banking system,
the transaction TRX1 is followed by TRX2. If a system crash or a
transaction fails in this situation means during recovery we do redo
transaction TRX1 and undo the transaction TRX2 because we have
both TRX start and commit state in the log records. But we don’t
have a start and commit state for transaction TRX2 in log records.
So undo transaction TRX2 done first the redo transaction TRXI
should be done.

2. Deferred Modification Technique

In this technique, it records all database operations of transactions
into the log file. In this technique, we can apply all write
operations of transactions on the database if the transaction is
partially committed. When a transaction is partially committed at
that time information in the log file is used to execute deferred
writes. If the transaction fails to execute or the system crashes or
the transaction ignores information from the log file. In this
situation, the database uses log information to execute the
transaction. After failure, the recovery system determines which
transaction needs to be redone.

Example

X) (Y)

<TRXI1 start> <TRXI start>
<TRX1 X, 850><TRX1 X , 850>
<TRX1 Y, 105><TRX1 Y, 1050>
<TRX1 commit>

<TRX2 start>

<TRX 2 Z, 500>

Explanation: If the system fails after write Y of transaction TRXI
then there is no need to redo operation because we have only
<TRXI1 start> in log record but don’t have <TRX1 commit>. In the
second transaction Y, we can do the redo operation because we
have <TRX1 start> and <TRXI1 commit> in log disk but at the
same time, we have <TRX2 start> but don’t have <TRX2 commit>
as shown in the above transaction.

2)

<TRXI start>
<TRX1 X , 850>
<TRX1 Y, 1050>
<TRX1 commit>
<TRX2 start>
<TRX2 Z, 500>
<TRX2 commit>

Explanation: In the above transaction, we have <TRX start> and
<TRX commit> in log disk so we can redo operation during the
recovery system.

Suppose we need to restore records from binary logs and by
default, server creates binary logs. At that time you must know the
name and current location of the binary log file, so by using the
following statement we can see the file name and location as
follows.

show binary logs;

Explanation: In the above statement, we use the show command to
see binary logs. Illustrate the final result of the above statement by
using the following snapshot.

Example show master status;

Explanation: Suppose we need to determine the current binary log
file at that time we can use the above statement.

8.3 RECOVERY RELATED STRUCTURES

Structures Used for Database Recovery: Several structures of an
Oracle database safeguard data against possible failures. The
following sections briefly introduce each of these structures and its
role in database recovery.

Crash Recovery

165

Database Management Systems Database Backups

166

A database backup consists of operating system backups of the
physical files that constitute an Oracle database. To begin database
recovery from a media failure, Oracle uses file backups to restore
damaged datafiles or control files.

Oracle offers several options in performing database backups;
"Database Backup", for more information.

The Redo Log

The redo log, present for every Oracle database, records all changes
made in an Oracle database. The redo log of a database consists of
at least two redo log files that are separate from the datafiles
(which actually store a database's data). As part of database
recovery from an instance or media failure, Oracle applies the
appropriate changes in the database's redo log to the datafiles, which
updates database data to the instant that the failure occurred.

A database's redo log can be comprised of two parts: the online
redo log and the archived redo log, discussed in the following
sections.

The Online Redo

Log Every Oracle database has an associated online redo log. The
online redo log works with the Oracle background process LGWR
to immediately record all changes made through the associated
instance. The online redo log consists of two or more preallocated
files that are reused in a circular fashion to record ongoing database
changes;

The Archived (Offline) Redo Log

Optionally, you can configure an Oracle database to archive files of
the online redo log once they fill. The online redo log files that are
archived are uniquely identified and make up the archived redo log.
By archiving filled online redo log files, older redo log information
is preserved for more extensive database recovery operations, while
the pre-allocated online redo log files continue to be reused to store
the most current database changes;

Rollback Segments

Rollback segments are used for a number of functions in the
operation of an Oracle database. In general, the rollback segments of
a database store the old values of data changed by ongoing
transactions (that is, uncommitted transactions). Among other things,
the information in a rollback segment is used during database
recovery to "undo" any "uncommitted" changes applied from the
redo log to the datafiles. Therefore, if database recovery is
necessary, the data is in a consistent state after the rollback

segments are used to remove all uncommitted data from the
datafiles; see "Rollback Segments".

Control Files

In general, the control file(s) of a database store the status of the
physical structure of the database. Certain status information in the
control file (for example, the current online redo log file, the names
of the datafiles, and so on) guides Oracle during instance or media
recovery

8.4 DIRTY PAGES TABLE

This table is used to represent information about dirty buffer pages
during normal processing. It is also used during restart recovery.lt is
implemented using hashing or via the deferred- writes queue
mechanism. Each entry in the table consists of 2 fields :

1. PagelD and
2. RecLSN

During normal processing , when a non-dirty page is being fixed in
the buffers with the intention to modify , the buffer manager
records in the buffer pool (BP) dirty-pages table , as RecLSN , the
current end-of-log LSN , which will be the LSN of the next log
record to be written. The value of RecLSN indicates from what
point in the log there may be updates. Whenever pages are written
back to nonvolatile storage , the corresponding entries in the BP
dirty-page table are removed. The contents of this table are included
in the checkpoint record that is written during normal processing.
The restart dirty-pages table is initialized from the latest checkpoint's
record and is modified during the analysis of the other records
during the analysis pass. The minimum RecLSN value in the table
gives the starting point for the redo pass during restart recovery.

ARIES maintains two data structures and adds one more field to log
record:

1. Transaction table: It contains all the transactions that are active
at any point of time (i.e. are started but not committed/aborted).
The table also stores the LSN of last log record written by the
transaction in “lastLSN” field.

2. Dirty page table: Contains an entry for each page that has
been modified but not written to disk. The table also stores the
LSN of the first log record that made the associated page dirty
in a field called “recoveryLSN” (also called “firstLSN). This is
the log record from which REDO need to restart for this page.

3. In addition log records are also updated to contain a field
called “prevLSN” which points to previous log record for the
same transaction. This creates a linked list of all log records

Crash Recovery

167

Database Management Systems

168

for a transaction. When a new log record is created, “lastLSN”
from transaction table is filled into its “prevLSN” field. And
the LSN of current log record becomes the “lastLSN” in
transaction table. Here is updated log record table with prevLSN
filled in:

LSN Prev LSN Transaction 1D Type Page ID

1 NIL T1 UPDATE P3
2 NIL T2 UPDATE P2
3 1 Tl COMMIT

4 CHECKPOINT

5 NIL T3 UPDATE Pl
6 2 T2 UPDATE P3
7 6 T2 COMMIT

During checkpointing, a checkpoint log record is created. This log record
contains the content of both “Transaction table” and “Dirty page table”.
“Analysis” phase starts by reading last checkpoint log record to get the
information about active transactions and dirty pages. Here is content of
“Transaction table” and “Dirty page table” at the checkpoint stage in
above table at LSN 4:

Transaction Table

Transaction ID Last LSN Status
Tl 3 Commit
T2 2 In Progress

Dirty Page Table

Page ID Recovery LSN
P3 1
P2 2

This whole setup can be visualized in following picture, pay
attention to LSN for P2 in the “pages” list and in dirty table (dirty
page table has the first LSN, whereas the P2 page has the last
LSN):

Log Records :

Log Records Pages
e i P2 P3 P4
LSN Txn ID Page ID Prev LSN |,
1 T P31 NI {
2 ™) Nil 3 4 |
3 T P2 TR —
3 T P3 P A S

Transaction Table

Txn ID Last LSN
T1 3

T2 4

Dirty Page Table

Page ID LSN

P1 2

P2 4

P3 1

ARIES Data Structures

8.5 WRITE-AHEAD LOG IN DBMS

We have learnt that logs have to kept in the memory, so that when
there is any failure, DB can be recovered using the log files.
Whenever we are executing a transaction, there are two tasks — one
to perform the transaction and update DB, another one is to update
the log files. But when these log files are created — Before
executing the transaction, or during the transaction or after the
transaction? Which will be helpful during the crash ?

» 2 Execute transaction Ty2 Add to log file?
I I N

_7 =7 \
Crash Crash Crash
! I
\ /
N \ -
- S o /7
v 3 '

v
- Add to log file 2 Execute transaction T =2

Crash Recovery

169

Database Management Systems When a log is created after executing a transaction, there will not

170

be any log information about the data before to the transaction. In
addition, if a transaction fails, then there is no question of creating
the log itself. Suppose there is a media failure, then how a log file
can be created? We will lose all the data if we create a log file
after the transaction. Hence it is of no use while recovering the
data.

Suppose we created a log file first with before value of the data.
Then if the system crashes while executing the transaction, then we
know what its previous state / value was and we can easily revert
the changes. Hence it is always a better idea to log the details into
log file before the transaction is executed. In addition, it should be
forced to update the log files first and then have to write the data
into DB. i.e.; in ATM withdrawal, each stages of transactions should
be logged into log files, and stored somewhere in the memory.
Then the actual balance has to be updated in DB. This will
guarantee the atomicity of the transaction even if the system fails.
This is known as Write-Ahead Logging Protocol.

But in this protocol, we have I/O access twice — one for writing
the log and another for writing the actual data. This is reduced by
keeping the log buffer in the main memory — log files are kept in
the main memory for certain pre-defined time period and then
flushed into the disk. The log files are appended with data for
certain period, once the buffer is full or it reaches the time limit,
then it is written into the disk. This reduces the /O time for
writing the log files into the disk.

Similarly retrieving the data from the disk is also needs I/O. This
can also be reduced by maintaining the data in the page cache of
the main memory. That is whenever a data has to be retrieved; it
will be retrieved from the disk for the first time. Then it will be
kept in the page cache for the future reference. If the same data is
requested again, then it will be retrieved from this page cache rather
than retrieving from the disk. This reduces the time for retrieval of
data. When the usage / access to this data reduce to some
threshold, then it will be removed from page cache and space is
made available for other data.

8.6 CHECKPOINT

1. The checkpoint is a type of mechanism where all the previous
logs are removed from the system and permanently stored in
the storage disk.

2. The checkpoint is like a bookmark. While the execution of the
transaction, such checkpoints are marked, and the transaction is
executed then using the steps of the transaction, the log files
will be created.

3. When it reaches to the checkpoint, then the transaction will be
updated into the database, and till that point, the entire log file
will be removed from the file. Then the log file is updated
with the new step of transaction till next checkpoint and so on.

Crash Recovery

4. The checkpoint is used to declare a point before which the
DBMS was in the consistent state, and all transactions were
committed.

Recovery using Checkpoint

In the following manner, a recovery system recovers the database
from this failure:

Checkpoin Failure

T1 | %
T2 | |

A\ 4

Time

e The recovery system reads log files from the end to start. It
reads log files from T4 to TI.

e Recovery system maintains two lists, a redo-list, and an undo-
list.

e The transaction is put into redo state if the recovery system sees
a log with <Tn, Start> and <Tn, Commit> or just <Tn,
Commit>. In the redo-list and their previous list, all the
transactions are removed and then redone before saving their
logs.

e For example: In the log file, transaction T2 and T3 will have
<Tn, Start> and <Tn, Commit>. The T1 transaction will have
only <Tn, commit> in the log file. That's why the transaction is
committed after the checkpoint is crossed. Hence it puts T1, T2
and T3 transaction into redo list.

e The transaction is put into undo state if the recovery system
sees a log with <Tn, Start> but no commit or abort log found.
In the undo-list, all the transactions are undone, and their logs
are removed.

171

Database Management Systems For example: Transaction T4 will have <Tn, Start>. So T4 will be

172

put into undo list since this transaction is not yet complete and
failed amid.

8.7 RECOVERY FROM SYSTEM CRASH

There are problems — external to the system — that may cause the
system to stop abruptly and cause the system to crash. For example,
interruptions in power supply may cause the failure of underlying
hardware or software failure.

Examples may include operating system errors.

Computers crash for a variety of reasons. Random computer crashes
are both frustrating and difficult for an average user to diagnose,
but underneath the surface of a computer crash are five likely
culprits examined below.

1: Corrupted System Registry Files

Every Windows-based PC has something called a Windows registry.
The registry contains several files that are integral to the
performance and operation of your computer. Over time, some of
those files can become corrupted, be misplaced or get lost
altogether. When that happens, the system registry becomes
compromised — and frequent crashes are all-too-common symptoms.
The best way to rule this possibility in or out is by running a
Windows registry cleaning program. Such programs scan your
Windows registry for problems then automatically make repairs. If
you run a registry cleaner and the crashes persist, they are probably
being caused by a different issue.

2: Disorganized Files

Windows operating systems handle file organization in a way that
isn’t very intuitive. Basically, they break files up and fit them into
gaps in the computer’s memory. As time goes by, these
disorganized files can prompt frequent crashes. Luckily, a great
optimization solution is built right into Windows-based PCs: the disk
defragmentation utility. Although its location on a computer varies,
you can generally locate it within the System and Security section
inside the Control Panel. By running a defrag once every few
months, you may be able to keep those pesky computer crashes at
bay.

3: Malicious Software

Malicious software can take many different forms. Sometimes, it’s a
virus that is accidentally unleashed after opening a strange email;
other times, its adware that tags along with other information that is
automatically downloaded from a website. Whatever type it is,
there’s no question that malicious software can wreak havoc on a

computer’s performance. Happily, there are many topnotch programs
out there that regularly scan your computer for the presence of such
problems — and that help guard against them, too. Buy one, install
it and use it regularly; your crash issues may come to an end.

4: Too Little Available Memory

When you buy a new computer, it feels like there’s no end to the
amount of memory that it has. Of course, this isn’t true at all. As
never-ending as the available memory on your PC may initially
seem, the fact is that it can be depleted with incredible speed. You
can find out for sure by checking the information within “My
Computer.” If it appears that your available memory is low, you
can use a PC cleanup program to remove unnecessary files; such
programs remove things like temporary Internet files and other file
debris that can suck away much-needed memory.

5: Overheating

If you’ve run through all of the preceding possibilities and continue
experiencing frequent crashes, a hardware issue could be to blame.
An easy one to rule out is overheating. A computer’s CPU, or
central processing unit, includes a fan that is designed to keep it
running cool. Sometimes, the fan wears down and doesn’t work as
efficiently; other times, it’s just not able to handle the work that
your computer has to do. In either case, buying a bigger, better fan
isn’t very expensive. If it puts an end to your PC crashing problem,
it will have been more than worth it.

8.8 REDO PHASE UNDO PHASE

REDO PHASE:-

1. Redo phase is the second phase where all the transactions that
are needed to be executed again take place.

2. It executes those operations whose results are not reflected in the
disk.

3. It can be done by finding the smallest LSN of all the dirty page
in dirty page table that defines the log positions, & the Redo
operation will start from this position

4. This position indicates that either the changes that are made
earlier are I the main memory or they have already been
flaunted to the disk.

5. Thus, for each change recorded in the log, the Redo phase
determines whether or not the operations have been re-executed.

Crash Recovery

173

Database Management Systems UNDQ PHASE:-

174

1.

In the Undo phase, all the transaction, that is listed in the active
transaction set here to be undone.

Thus the log should be scanned background from the end & the
recovery manages should Undo the necessary operations.

Each time an operations is undone, a compensation log recorded
has been written to the log.

This process continues until there is no transaction left in the
active transaction set.

After the successful competition of this phase, database can
resume its normal operations.

o
X
o
X

