
 1

1
THE JAVA LANGUAGE

Unit Structure

1.0 Objectives

1.1 Features of Java

1.2 Java programming format

1.3 Summary

1.4 Textbook

1.5 Additional References

1.6 Questions

1.0 OBJECTIVES:

The objective of this chapter is to learn the basic building blocks of java
and understand the concepts of Core Java and to cover-up with the pre-
requisites of Core java, Advanced Java, J2EE and J2ME.

Topics:

Features of Java, Java programming format, Java Tokens, Java
Statements, Java Data Types, Typecasting, Arrays

1.1 FEATURES OF JAVA

 Simple: A very simple, easy to learn and understand language for
programmers who are already familiar with OOP concepts. Java’s
programming style and structure follows the lineage of C, C++ and other
similar languages makes the use of java efficiently.

 Object-oriented: Java is object oriented. Java inherits features of
C++. OOP features of java are influenced by C++. OOP concept forms the
heart of java language that helps java program in survive the inevitable
changes accompanying software development.

 Secure, Portable and Robust: Java programs are safe and secure to
download from internet. At the core of the problem is the fact that
malicious code can cause its damage due to unauthorized access gained to
system resources. Java achieved this protection by confining a program to
the Java execution environment and not allowing it access to other parts of
the computer. The same code must work on all computers. Therefore,
some means of generating portable executable code was needed. The
multi-platform environment of the Web places extraordinary demands on
a program, because the program must execute reliably in a variety of

mu
no
tes
.in

Core JAVA

2

systems. Thus, the ability to create robust programs was given a high
priority in the design of Java. To gain reliability, Java restricts a few key
areas and forces to find your mistakes early in program development. At
the same time, Java frees a programmer from having to worry about many
of the most common causes of programming errors.

 Multithreaded: Java supports multithreaded programming, which
allows a programmer to write programs that performs multiple tasks
simultaneously. The Java run-time system comes with an elegant and
sophisticated solution for multi-process synchronization that helps to
construct smoothly running interactive systems.

 Architecture-neutral: Java was designed to support applications on
networks composed of a variety of systems with a variety of CPU and
operating system architectures. With Java, the same version of the
application runs on all platforms. The Java compiler does this by
generating bytecode instructions which have nothing to do with particular
processor architecture. Rather, they are designed to be both easy to
interpret on any machine and easily translated into native machine code on
the fly.

 Interpreted & High performance: Java enables the creation of
cross-platform programs by compiling into an intermediate representation
called Java bytecode. This code can be executed on any system that
implements the Java Virtual Machine. Most previous attempts at cross-
platform solutions have done so at the expense of performance. The Java
bytecode was carefully designed so that it would be easy to translate
directly into native machine code for very high performance by using a
just-in-time compiler. Java run-time systems that provide this feature lose
none of the benefits of the platform-independent code.

 Distributed: Java is designed for the distributed environment of the
Internet because it handles TCP/IP protocols. In fact, accessing a resource
using a URL is not much different from accessing a file. Java also
supports Remote Method Invocation (RMI). This feature enables a
program to invoke methods across a network.

 Dynamic: Java programs carry with them substantial amounts of
run-time type information that is used to verify and resolve accesses to
objects at run time. This makes it possible to dynamically link code in a
safe and expedient manner. This is crucial to the robustness of the Java
environment, in which small fragments of byte code may be dynamically
updated on a running system.

mu
no
tes
.in

The Java Language

3

1.2 JAVA PROGRAMMING FORMAT

1) Package
Section

It must be the first line of a java program or can be
omitted if the class is to be kept only in the default
package. The package statement defines a namespace
in which classes are stored, based on functionality. If
omitted, the classes are put into the default package,
which has no name.

2) Import
Section

Specifies the location to use a class or package into a
program.

3) Class /
Interface
section

A java program may contain several classes or
interfaces.

4) Class with
Main Method

Every Java stand-alone program requires the main
method as the starting point of the program. This is an
essential part of a Java program. There may be many
classes in a Java program code file, and only one class
defines the main method.

Example:
// ----- 1 Package Section -------
Package mypack;
// -------- 2 Import Section -------
import java.util.Date; // This line will import only one class from the util
package
import java.awt.*; // This line will import all classes available in awt
package
// ----------- 3 Class / Interface Section ----------
class A {
// Class Body
}
interface B {
// Interface Body
}
// ----------- 4 Main Method Section ----------
public class Test{
public static void main(String[] args){
 // body of main method
}
}

mu
no
tes
.in

Core JAVA

4

2 Java Tokens

Tokens are the basic building blocks of the java programming language
that are used in constructing expressions, statements and blocks. The
different types of tokens in java are:

1. Keywords: these words are already been defined by the language
and have a predefined meaning and use. Key words cannot be used as a
variable, method, class or interface etc.

2. Identifiers: Identifiers are used to name a variable, method, block,
class or interface etc. Java is case-sensitive. Identifier may be any
sequence of uppercase and lowercase letters, numbers, or the underscore
characters.
Rules for defining identifier:

 All variable names must begin with a letter of the alphabet. The
dollar sign and the underscore are used in special case.

 After the first initial letter, variable names may also contain letters
and the digits 0 to 9. No spaces or special characters are allowed.

 The name can be of any length.

 Uppercase characters are distinct from lowercase characters.
Variable names are case-sensitive.

mu
no
tes
.in

The Java Language

5

 Java keyword (reserved word) cannot be used for a variable name.

Examples of valid identifiers in java: num1, name, Resi_addr,
Type_of_road, Int etc.

Examples of invalid identifiers in java: 1num, full-name, Resiaddr,
Type*ofroad, int etc.

3. Literals: Literals are the value assigned to a variable;

Example: 10, “Mumbai”, 3.14, ‘Y’, ‘\n’ etc.

4. Operators: Operators are the symbols that performs operations.
Java contains different types of operators like Arithmetic Operator (+,-
,*,/,%), Logical Operator (&&, ||, ~,), Relational Operator(<, <=, >, >=,
!=, ==), Bitwise Operators (&, |, ~), Shift Operators (<<, >>, >>>) ,
Assignment Operators(=, +=, -+, *=, /=, %=), Conditional Operator (?:),
InstanceOf Operator

5. Separators: Separators are used to separate words, expressions,
sentences, blocks etc.

Symbol Name Description

 Space Used to separate tokens.

; Semicolon Used to separate the statements

() Parentheses Used to contain the lists of parameters in method definition and
invocation. Also used for defining the precedence in
expressions, containing expressions in control statements, and
surrounding cast types.

{ } Braces Used to contains the values of automatically initialized arrays.
Also used to define a block of code, for classes, methods, and
local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array
values.

, Comma Separates consecutive identifiers in a variable declarations. Also
used to chain statements together inside a for statement

. Period Used to separate packages names from subpackages and classes.
Also used to separate a variable or method from a reference
variable.

3 Java Statements

A statement specifies an action in a Java program. Statements in Java can
be broadly classified into three categories:

mu
no
tes
.in

Core JAVA

6

1. Declaration

A declaration statement is used to declare a variable, method or class.

For example: int num;

double PI = 3.14;

String name=”University of Mumbai;

int showResult(int a, int b);

2. Expression

An expression is a construct made up of variables, operators, and method
invocations, which are constructed according to the syntax of the
language, that evaluates to a single value.

Arithmetic Expression: (A + B) * C - (D % E) * (- F + G)

Logical Expression: ~(m > n && x < y) != (m <= n || x >= y)

3. Flow Control
By default, all the statements in a java program are executed in the order
they appear in the program code. However sometime a set of statements
need to be executed and a part to be skipped, also some part need to be
repeated as long as a condition is true or till some fix number of iteration.
Java programming language uses flow control statements to cause the flow
of execution to advance and branch based on changes to the state of a
program. Java’s program control statements can be put into the following
categories: Branching / selection, Looping / iteration, and jump control.
Selection statements allow your program to choose different paths of
execution based upon the outcome of an expression or the state of a
variable. Iteration statements enable program execution to repeat one or
more statements (that is, iteration statements form loops). Jump statements
allow your program to execute in a nonlinear fashion.

mu
no
tes
.in

The Java Language

7

I. Selection / Branching:
Java supports two selection statements: if and switch. These statements
allow you to control the flow of your program’s execution based upon
conditions known only during run time.

 if
The if statement is Java’s conditional branch statement. It can be used to
route program execution through two different paths.
General Syntax:
if (condition)
statement1 / { if Block };
else
statement2 / { else Block};
Here, each statement may be a single statement or a compound statement
enclosed in curly braces (that is, a block). The condition is any expression
that returns a boolean value. The else clause is optional.
Example:
class ifelsetest{
public static void main(String[] args){
int num=10;
if(num%2 == 0){
System.out.println(“Number is EVEN”);
}

 else {

 System.out.println(“Number is ODD”);

}

}
}

 The if-else-if Ladder
A common programming construct that is based upon a sequence of
nested ifs is the if-else-if ladder. General Syntax:
if(condition)
statement;
else if(condition)
statement;
else if(condition) statement;
.
.
.
.
else statement;

The if statements are executed from the top down. As soon as one of the
conditions controlling the if is true, the statement associated with that if is
executed, and the rest of the ladder is bypassed. If none of the conditions
is true, then the final else statement will be executed. The final else acts as

mu
no
tes
.in

Core JAVA

8

a default condition; that is, if all other conditional tests fail, then the last
else statement is performed. If there is no final else and all other
conditions are false, then no action will take place.

Example:

class ladderifelsetest{
public static void main(String[] args){
int num=10;
if(num> 0){
System.out.println(“Number is +VE”);
}

 else if(num<0){

 System.out.println(“Number is -VE”);

}

else {

 System.out.println(“Number is ODD”);

}

}
}

 switch

The switch statement is Java’s multiway branch statement. It provides an
easy way to dispatch execution to different parts of your code based on the
value of an expression. As such, it often provides a better alternative than
a large series of if-else-if statements.

General Syntax:

switch (expression)

{

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

.

.

mu
no
tes
.in

The Java Language

9

.

casevalueN :

//statement sequence break;

default:

// default statement sequence

}

For versions of Java prior to JDK 7, expression must be of type byte,
short, int, char, or an enumeration. JDK 7 onwards the switch expression
can also be of type String.

Example:

class switchcasetest{
public static void main(String[] args){
int num=10;
switch(num){
case 1:
System.out.println(“Monday”);

 break;

case 2:
System.out.println(“Tuesday”);

 break;

case 3:
System.out.println(“Wednesday”);

 break;

case 4:
System.out.println(“Thursday”);

 break;

case 5:
System.out.println(“Friday”);

 break;

case 6:
System.out.println(“Saturday”);

 break;

case 7:
System.out.println(“Sunday”);

 break;

mu
no
tes
.in

Core JAVA

10

default:
System.out.println(“~~~ Invalid Week day No ~~~~”);

 break;

}
}
}

II. Branching / Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements
create what we commonly call loops. As you probably know, a loop
repeatedly executes the same set of instructions until a termination
condition is met. As you will see, Java has a loop to fit any programming
need.

 while

The while loop is Java’s most fundamental loop statement. It repeats a
statement or block while its controlling expression is true.

General Syntax:

while(condition)

{

// body of loop

}

The condition in java must be strictly a Boolean expression. The body of
the loop will be executed as long as the conditional expression is true.
When condition becomes false, control passes to the next line of code
immediately following the loop. The curly braces are unnecessary if only a
single statement is being repeated.

Examples:

public class WhileDemo

{

public static void main(String args[])

{ int n = 10;

while(n > 0)

{

System.out.println("Count Doun Value" + n);

n - -;

mu
no
tes
.in

The Java Language

11

}

 }

 }

 do-while

Sometimes it is desirable to execute the body of a loop at least once, even
if the conditional expression is false to begin with. In other words, there
are times when you would like to test the termination expression at the end
of the loop rather than at the beginning. Java provides a loop that does just
that: the do-while. The do-while loop always executes its body at least
once, because its conditional expression is at the bottom of the loop.

General Syntax:

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and
then evaluates the conditional expression. If this expression is true, the
loop will repeat. Otherwise, the loop terminates. As with all of Java’s
loops, condition must be a Boolean expression.

Examples:

public class DoWhileDemo

{

public static void main(String args[])

{ int n = 10;

do{

System.out.println("Loop Executed Once even if condition is False");

n - -;

} while(n > 10) ;

 }

 }

 For

The for loop operates as follows. When the loop first starts, the
initialization portion of the loop is executed. Generally, this is an
expression that sets the value of the loop control variable, which acts as a
counter that controls the loop. It is important to understand that the

mu
no
tes
.in

Core JAVA

12

initialization expression is executed only once. Next, condition is
evaluated. This must be a Boolean expression. It usually tests the loop
control variable against a target value. If this expression is true, then the
body of the loop is executed. If it is false, the loop terminates. Next, the
iteration portion of the loop is executed. This is usually an expression that
increments or decrements the loop control variable. The loop then iterates,
first evaluating the conditional expression, then executing the body of the
loop, and then executing the iteration expression with each pass. This
process repeats until the controlling expression is false.

General Syntax:
 for(initialization; condition; increment / decrement expression)

{

// loop body

}

Examples:

public class ForDemo

{

public static void main(String args[])

{

for(int x = 1 ; x <=10 ; x++)

{

System.out.println("Loop Variable Value is : " + x);

}

 }

 }

There will be times when you will want to include more than one
statement in the initialization and iteration portions of the for loop.

Example:

public class TwoVarFor

{

public static void main(String args[]) {

int a, b ;

for(a=1, b=4; a<= b; a++, b--){

System.out.println(“value of A is : “+a+” Value of B is : “+b);

}

} }

mu
no
tes
.in

The Java Language

13

 The For-Each Loop
A for-each loop by using the keyword for-each, Java adds the for-each
capability by enhancing the for statement. The advantage of this approach
is that no new keyword is required, and no pre-existing code is broken.
The for-each style of for is also referred to as the enhanced for loop.

General Syntax

for(type itr-var : collection)

 {

// statement-block;

 }

Example:

 public class ForEachDemo {

public static void main(String args[])

 { String names[] = {“Mumbai”, “Pune”, “Nagpur”, “Aurangabad”,
“Thane”, “Nasik” };

for (String x : names)

{ System.out.println("Name of the City in Maharashtra is: " + x);
}

System.out.println("~~~~Printing on City Names Done~~~~~”; }

}

III. Jump Control Statement

Java supports three jump statements: break, continue, and return. These
statements transfer control to another part of a java program.

In Java, the break statement has three uses. First, as you have seen, it
terminates a statement sequence in a switch statement. Second, it can be
used to exit a loop. Third, it can be used as a form of goto statement in
C/C++.

Sometimes it is useful to force an early iteration of a loop. That is, you
might want to continue running the loop but stop processing the remainder
of the code in its body for this particular iteration. This is, in effect, a goto
just past the body of the loop, to the loop’s end. The continue statement
performs such an action. In while and do-while loops, a continue
statement causes control to be transferred directly to the conditional
expression that controls the loop. In a for loop, control goes first to the
iteration portion of the for statement and then to the conditional
expression. For all three loops, any intermediate code is bypassed.

The last control statement is return. The return statement is used to
explicitly return from a method. That is, it causes program control to
transfer back to the caller of the method.

mu
no
tes
.in

Core JAVA

14

4 Java Data Types

The Primitive Types: Java defines eight primitive types of data: byte,
short, int, long, char, float, double, and boolean. The primitive types are
also commonly referred to as simple types.

These can be put in four groups:

1. Integers This group includes byte, short, int, and long, which are
for whole-valued signed numbers.
Name Width Range
byte 8 1 byte –128 to 127
short 16 2 byte –32,768 to 32,767
int 32 4 byte –2,147,483,648 to 2,147,483,647
long 64 6 byte –9,223,372,036,854,775,808 to

 9,223,372,036,854,775,807

The smallest integer type is byte. Variables of type byte are especially
useful when you’re working with a stream of data from a network or file.
They are also useful when you’re working with raw binary data that may
not be directly compatible with Java’s other built-in types. The most
commonly used integer type is int. long is a signed 64-bit type and is
useful for those occasions where an inttype is not large enough to hold the
desired value.

2. Floating-point numbers This group includes float and double,
which represent numbers with fractional precision.
Name Width Approximate Range
float 32 4 byte 1.4e–045 to 3.4e+038
double 64 8 byte 4.9e–324 to 1.8e+308

The type float specifies a single-precision value that uses 32 bits of
storage. Single precision is faster on some processors and takes half as
much space as double precision, but will become imprecise when the
values are either very large or very small. Variables of type float are
useful when you need a fractional component, but don’t require a large
degree of precision. Double precision, as denoted by the double keyword,
uses 64 bits to store a value. Double precision is actually faster than single
precision on some modern processors that have been optimized for high-
speed mathematical calculations.

mu
no
tes
.in

The Java Language

15

3. Characters This group includes char, which represents symbols in
a character set, like letters and numbers. C++ char is 8 bit i.e. 256 symbols
while java char uses 16 bit i.e. 65536 symbols to represent Unicode
characters. Unicode defines a fully international character set that can
represent all of the characters found in all human languages and is a
unification of character sets, such as Latin, Greek, Arabic, Cyrillic
Hebrew, Katakana, Hangul, and many more. There is no signed char in
java. char can also be used as an integer type on which you can perform
arithmetic operations.
Example: if char ans =’A’ then ans = ans + 5 will result ‘F’.

4. Boolean This group includes boolean, which is a special type for
representing true/false values.

5 Typecasting

As a part of Java’s safety and robustness Java is a strongly typed language.
Every variable has a type, every expression has a type, all assignments,
whether explicit or via parameter passing in method calls is checked for
type compatibility and every type is strictly defined. There are no
automatic coercions or conversions of conflicting types. If the two types
are compatible and the target type is equal to or larger than the source type
JVM performs automatic type conversion. This type of conversion is also
called implicit conversion or automatic type casting or widening
conversion.

byte short int long or int float double

If the two types are incompatible and the target type is smaller than the
source type then typecasting is required conversion. This type of
conversion is also called explicit conversion or manual type casting or
narrowing conversion.

General syntax: (type_type) value|expression

Eg. int a = (int) 3.14;

Truncation will occur when a floating-point value is assigned to an integer
type, because integers do not have fractional component. For example, if
the value 3.14 is assigned to an integer, the resulting value will simply be
3; the 0.14 will have been truncated.

Java also performs type promotion while evaluating mix mode expression.
Java defines several type promotion rules that apply to expressions. They
are as follows: First, all byte, short, and char values are promoted to int,
as just described. Then, if one operand is a long, the whole expression is
promoted to long. If one operand is a float, the entire expression is
promoted to float. If any of the operands are double, the result is double.

mu
no
tes
.in

Core JAVA

16

6 Arrays

An array is a collection of similar data type, identified by a common name
and stored in consecutive memory location. Array elements can be
conveniently accessed using index number. Java arrays are reference type.
A one-dimensional array is a list of like typed variables. The general form
of a one-dimensional array declaration is

[access_specifier] type var-name[];

or [access_specifier]type[] var-name;

Here, type declares the element type (also called the base type) of the
array. The element type determines the data type of each element that
comprises the array. Thus, the element type for the array determines what
type of data the array will hold. For example, the following declares an
array named temp_janwith the type “array of int”: public float temp_jan[]

The declaration creates a reference to an array. The fact is that actual array
does not exist in memory. Memory allocation is done using “new”
operator.

temp_jan = new float[31]

This will create 31 float variable in memory and assign the base reference
to temp_jan.

Declaration and initialization of array can be combined eg. public float
temp_jan[]= new float[31];

two-dimensional array is a list of list of like typed variables or an array of
array. The general form of a one-dimensional array declaration is

[access_specifier] type var-name[][];

Eg. publicint m1[][]=new int[3][3]

This will declare a 2D array of int to hold 3 rows and 3 columns.

mu
no
tes
.in

The Java Language

17

Java allows creating a multi-dimensional array to be created by declaring
the first dimension and allocate the remaining dimension separately. This
creates a jagged array or variable size array with different rows having
different number of columns.

1.3 SUMMARY:
The chapter helps to learn the features of java language, the format of java
program, basic building blocks of java and understand the concepts of
Core Java and to cover-up with the pre-requisites of Core java, Advanced
Java, J2EE and J2ME.

1.4 TEXTBOOKS:
1) Herbert Schildt, Java The Complete Reference, Ninth Edition,

McGraw-Hill Education, 2014

1.5 ADDITIONAL REFERENCES:
1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill

Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,
Oxford Press

1.6 QUESTIONS:
1. Explain the feature of Java

2. Explain the For-Each Loop with example?

mu
no
tes
.in

 18

2
OOPS

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Class

2.3 Object

2.4 Static Keywords

2.5 Constructors

2.6 this Key Word

2.7 Inheritance

2.8 super Keyword

2.9 Polymorphism (overloading and overriding)

2.10 Abstraction

2.11 Encapsulation

2.12 Abstract Classes

2.13 Interfaces

2.14 Summary

2.15 Textbook

2.16 Additional References

2.17 Questions

2.0 OBJECTIVES

The objective of this chapter is to learn the basic concepts of Object
Oriented Programming and its implementation in java to develop the code
to cover-up with the pre-requisites of Core java, Advanced Java, J2EE and
J2ME.

Topics:

2.1 INTRODUCTION

Object oriented programming implements object oriented model in
software development.OOP is based on three principles i.e. Encapsulation,
Inheritance and polymorphism.OOP allows decomposing a large system
into small object.

mu
no
tes
.in

OOPS

19

Encapsulationis the mechanism of binding together code and the data it
manipulates, and keeps both safe from outside interference and misuse. It
is like a protective wrapper that prevents the code and data from being
arbitrarily accessed by other code defined outside the wrapper. Access to
the code and data inside the wrapper is tightly controlled through a well-
defined interface.

Inheritance is the process by which one object acquires the properties of
another object. It is a way of making new classes using existing one and
redefining them.

Polymorphism (Greek meaning “many forms”) is a feature that allows one
interface to be used for a general class of actions. More generally, the
concept of polymorphism is often expressed by the phrase “one interface,
multiple methods.” This means that it is possible to design a generic
interface to a group of related activities. This helps reduce complexity by
allowing the same interface to be used to specify a general class of action.

2.2 CLASS

A class is a blue print for creating objects. A class is a group of objects
which have common properties.A classdefines the data and code that can
be shared by a set of objects. Each object of a given class contains the
structure and behavior defined by the class, as if it were stamped out by a
mold in the shape of the class.

[access_specifier] [modifier] class <class_name>{

Fields

Methods

Constructors

Blocks

Nested class and interface

}

mu
no
tes
.in

Core JAVA

20

The data, or variables, defined within a class are called instance variables.
The code is contained within methods. The methods, constants and
variables etc. defined within a class are called members of the class.

2.3 OBJECT

An entity that has state and behavior is known as an object. An object has
three characteristics:

 State: represents the data or value of an object.

 Behavior: represents the behavior (functionality) of an object such as
deposit, withdraw, etc.

 Identity: An object identity is a unique ID.

An object represents a class during program execution. Thus, a class is a
template for an object, and an object is an instance of a class. Because an
object is an instance of a class, you will often see the two words object and
instance used interchangeably.

 There are five different ways to create objects in java:
Using new keyword:
Complex com = new Complex(10, 20);

1. Using Class.forName():
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

2. Using clone():
Complex com1 = com.clone();

3. Using Object Deserialization
ObjectInputStreamois =new objectInputStream(some data);

MyObject object=(MyObject) instream.readObject();

Using newIntance() method
Object obj =
DemoClass.class.getClassLoader().loadClass("DemoClass").new
Instance ();

2.4 STATIC KEYWORDS

Static is a non-access modifier in Java, it is used with variables, methods,
blocks and nested class. It is a keyword that are used for share the same
variable or method of a given class. This is used for a constant variable or
a method that is the same for every object of a class. The main method of
a class is generally labeled static. The static keyword is used in java
mainly for memory management. No object needs to be created to use
static variable or call static methods, just put the class name before the
static variable or method to use them. Static method cannot call non-static
method. The static variable allocate memory only once in class area at the
time of class loading. It is use to make our program memory efficient.

mu
no
tes
.in

OOPS

21

When a variable is declared as static, then a single copy of variable is
created and shared among all objects at class level. Static variables are,
essentially, global variables. All instances of the class share the same
static variable and can be created at class-level only.

When a method is declared with static keyword, it is known as static
method. The most common example of a static method is main() method.
Any static member can be accessed before any objects of its class are
created, and without reference to any object. Methods declared as static
can only directly call other static methods and can only directly access
static data. They cannot refer to this or super.

2.5 CONSTRUCTORS

A constructor initializes an object at the time of creation. It has the same
name as the class in which it resides. The constructor is automatically
called when the object is created, before the newoperator completes.
Constructors have no return type, not even void. This is because the
implicit return type of a class’ constructor is the class type itself. It is the
constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object
immediately.

There are three rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Default constructor: If not implemented any constructor by the
programmer in a class, Java compiler inserts a default constructor with
empty body into the code, this constructor is known as default constructor.
If user defines any parameterized constructor, then compiler will not
create default constructor and vice versa if user don’t define any
constructor, the compiler creates the default constructor by default during
compilation

Eg:

Program code

class complex{

}

 Compile time

class complex{

complex(){

 }

}

no-arg constructor: Constructor with no arguments is known as no-arg
constructor. The signature is same as default constructor; however body
can have any code unlike default constructor where the body of the
constructor is empty.

mu
no
tes
.in

Core JAVA

22

Eg: class complex{

int real, img;

public complex (){

real=0;

img=0;

}

}

Parameterized constructor: Constructor with arguments is known as no-arg
constructor. The signature is same as default constructor; however body
can have any code unlike default constructor where the body of the
constructor is empty.

class complex {

inta,b,c;

public complex (int r, inti){

real=r;

img=i;

}

}

Copy Constructor: Values from one object to another object can be
copied using constructor or by clone() method of Object class.

A copy constructor is a parameterized constructor but the parameter is the
reference of containing class.

class complex {

inta,b,c;

public complex (complex c){

real=c.real; img=c.img;

}

}

mu
no
tes
.in

OOPS

23

Difference between constructor and method in Java

Java Constructor Java Method

A constructor is used to initialize
the state of an object.

A method is used to expose the
behavior of an object.

A constructor must not have a
return type. A method must have a return type.

The constructor is invoked
implicitly. The method is invoked explicitly.

The Java compiler provides a
default constructor if you don't
have any constructor in a class.

The method is not provided by the
compiler in any case.

The constructor name must be
same as the class name.

The method name may or may not be
same as class name.

Constructor Overloading: Sometimes there is a need of initializing an
object in different ways. This can be done using constructor overloading.
E.g. A frame object can be created using default constructor or using title
of the frame. Multiple constructors can be created by changing the no. of
parameters, type of parameters, order of parameters or combination of
any.

Eg.

class Complex{

intrel, img;

doublerell, imgg

Complex(){}

Complex(int r, inti){ rel=r; img=i; }

Complex(double r, double i){rell=r; imgg=i; }

Complex (int r, double r){rel = r; imgg=i; }

Complex(double r, inti){rell=r; img=i; }

Complex(Complex c){rel=c.rel; img=c.img; }

}

mu
no
tes
.in

Core JAVA

24

2.6 THIS KEY WORD

“this” is a reference to object itself. ‘this’ keyword can be used to refer
current class instance variables, to invoke current class constructor,
to return the current class instance, as method parameter, to invoke
current class method and as an argument in the constructor call.
“this” keyword when used in a constructor can only be the first statement
in Constructor and constructor can have either this or super keyword but
not both.

class A{

int a=10;

public void show(){

double a=100.200;

System.out.println(“Value of A is : “+a);

}

}

The above program code will display “Value of A is : 100.200”, because
the preference will always go to local variable or the variable with
immediate scope.

System.out.println(“Value of A is : “+this.a);

The above statement will display “Value of A is: 10”, because the
reference “this” will point to current instance variable “a” of the class.

class A{

A(){

this(111);

System.out.println(“ Default Constructor Called …..”);

}

A(int a){

System.out.println(“ Parameterized Constructor Called”);

}

}

The call A obj = new A() will create an object of “A” using default
constructor and will also call the parameterized constructor by passing
value 111 using “this”.

mu
no
tes
.in

OOPS

25

2.7 INHERITANCE

Inheritance is an important concept of OOP. It is the mechanism in java by
which one class is allows inheriting the fields and methods of another
class. Inheritance facilitates code reusability to reuse the fields and
methods of the existing class. The class from which a new class is created
is called as a parent, base or super class and the new class is also called as
child, derived or sub class.

There are Three types of inheritance in Java using classes:

mu
no
tes
.in

Core JAVA

26

Java supports multiple inheritance using Interfaces:

Single Inheritance: In Single Inheritance one class extends another class
(one class only).

class A{ double pi=3.14;
public void add(int a , int b){
System.out.println(“Add = “+(a+b));}}
class B extends A{
int Max=100;
public void sub(int a, int b){
Syststem.out.println(“Sub = ”+(a-b));}}
If an object obj is created for class B, it will also have methods and
properties from its parent class.

Multilevel Inheritance: In Multilevel Inheritance, one class can inherit
from a derived class. Hence, the derived class becomes the base class for
the new class.

class A{ int a=10;}
class B extends A {int b=20;}
class C extends B {int c=30;}
If an object obj is created for class C, it will also have methods and
properties from A & B parent classes.

Hierarchical Inheritance: In Hierarchical Inheritance, one class is inherited
by many sub classes.
class Person { String name, gender; int age;}
class Student extends Person{ int roll; }
class Teacher extends Person{ intempid; }
class Doctor extends Person{ String specialty; }
In the above example Person class properties will be inherited in Student,
teacher and Doctor.

2.8 SUPER KEY WORD

“super” is the reference to the parent class. Super keyword can be used to
access parent class variable, method and to invoke parent class
constructor.

mu
no
tes
.in

OOPS

27

class A{

String var=”ANAAS”; }

class B extends A{

String var=”AARISH”;}

public void show(){

String var=”NASHRAH”;

System.out.println(“Variable value is :”+var):

System.out.println(“Variable value is :”+this.var):

System.out.println(“Variable value is :”+super.var):

}}

In the above example var refer to the local context, this refer to the class

variable and super will refer to super class member.

 super keyword can only be the first statement in Constructor.

 A constructor can have either this or super keyword but not both.

class A{

A(){System.out.println(“Hello at A”);}

A(String name){System.out.println(name+ “ Hello at A”);}}

class B extends B{

B(String name){System.out.println(name+ “ Hello at B”);}}

}

B obj = new B(“AnAriNash”) will create an object of B using string

argument and will create an object of class A using default (non-

parametrised) constructor.

class A{

A(){System.out.println(“Hello at A”);}

A(String name){System.out.println(name+ “ Hello at A”);}}

class B extends B{

B(String name){

super(name);

System.out.println(name+ “ Hello at B”);}}

}

The above program will invoke the parameterized constructor of class A.

mu
no
tes
.in

Core JAVA

28

2.9 POLYMORPHISM (OVERLOADING AND
OVERRIDING)

Method Overloading is a mechanism in which a class allows more than
one method with same name but with different prototype. Multiple
methods can be created by changing the no. of parameters, type of
parameters, order of parameters or combination of any. The method
binding is done by the compiler at compile time and fix the calling method
based on the actual parameter matching or by using implicit type
conversion. This is also called as static binding, early binding or compile
time polymorphism.

Class MyMath{

public void add(){System.out.println(“Addition of 10 and 20 is
“+(10+20));}

public void add (int n1, int n2){ System.out.println(n1+n2); }

public void add (double n1, double n2){ System.out.println(n1+n2); }

public void add (int n1, double n2){ System.out.println(n1+n2); }

public void add (double n1, int n2){ System.out.println(n1+n2); }

public void add (Complex n1, Complex n2){ System.out.println(n1+n2);
 }}

Method Overriding is a mechanism in which a method in a child class that
is already defined in the parent class with the same method signature —
same name, arguments, and return type. Method overriding is used to
provide the specific implementation of a method which is already
provided by its superclass. The method binding is done by the java
interpreter at run time and fix the calling method based on the latest
implementation in class hierarchy. This is also called as dynamic binding,
late binding or run time polymorphism.

class MyClass1{

public void add(int a, int b){ return a+b;}

}

class MyClass2 extends MyClass1{

@override

public void add(int a, int b){ return 5*a+50*b; }

}

@override annotation tells the compiler that the method is meant to
override a method declared in a superclass.

mu
no
tes
.in

OOPS

29

 Overloading Overriding
1 More than one method with same

name but different signature in
same scope.

More than one method with same
name and same signature in
different scope.

2 Parameters are different Parameters are same
3 Binding at compile time Binding at run time.
4 Method return type may or may

not be same
Method return type should be
same.

5 Allowed for static method Not allowed for static method
6 Cannot be prevented Can be prevented by declaring a

method as static or final.
7 Occurs in same class. Occurs in sub class.

2.10 ABSTRACTION

Abstraction is a process of hiding the implementation details and showing
only functionality to the user. Abstraction is selecting data from a larger
pool to show only the relevant details to the object. It helps to reduce
programming complexity and effort. In Java, abstraction is accomplished
using Abstract classes and interfaces. Abstraction can be achieved using
Abstract Class and Abstract Method in Java.

2.11 ENCAPSULATION

Classes and packages are both means of encapsulating and containing the
name space and scope of variables and methods. Packages act as
containers for classes and other subordinate packages. Classes act as
containers for data and code. The class is Java’s smallest unit of
abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

The three access modifiers, private, public, and protected, provide a
variety of ways to produce the many levels of access required by these
categories.

2.12 ABSTRACT CLASSES

A class which is declared “abstract” is called as an abstract class. It can
have abstract methods as well as concrete methods. A normal class cannot
have abstract methods. Abstract classes help to describe generic types of
behaviors and object-oriented programming class hierarchy. It also

mu
no
tes
.in

Core JAVA

30

describes subclasses to offer implementation details of the abstract class.
Abstract class cannot be instantiated and is only used through inheritance.
A “final” keyword cannot be used with abstract class.

Abstract Method: A method without a body is known as an Abstract
Method. It must be declared in an abstract class. The abstract method will
never be final because the abstract class must implement all the abstract
methods. Abstract methods do not have an implementation; it only has
method signature

If a class is using an abstract method they must be declared abstract. The
opposite cannot be true. This means that an abstract class does not
necessarily have an abstract method. If a regular class extends an abstract
class, then that class must implement all the abstract methods of the
abstract parent otherwise this class will also become abstract. Abstract
methods are mostly declared where two or more subclasses are also doing
the same thing in different ways through different implementations.

abstract class MyMath1{

public int add(int a, int b){return a+b;}

public abstract int sub(int a, int b);

}

class MyMath2 extends MyMath1{

@override

Public int sub(int a, int b){ return a-b;}

Public int mul(int a, int b){ return a*b;}

Public int div(int a, int b){return a/b;}

}

2.13 INTERFACES

An interface is like a class but, it has static constants and abstract methods
only. An interface in java is a blueprint of a class. The interface in Java is
a mechanism to achieve abstraction. There can be only abstract methods
in the Java interface, not method body.

An interface is declared using interface keyword. It is used to provide
total abstraction. That means all the methods in interface are declared with
empty body and are public and all fields are public, static and final by
default. A class that implement interface must implement all the methods
declared in the interface. To implement interface use implements
keyword.

Interface can extend another interface. Java allows multiple inheritance
using interface.

mu
no
tes
.in

OOPS

31

interface<interface_name> [extends [Interface_name]]{

// fields

// Methods

}

Example:

Interface MyMath{

public static final double PI=3.14;

public int add(int a, int b);

public int sub(int a, int b);

public int mul(int a, int b);

public int div(int a, int b);

}

Difference between Abstract Class and Interface

Abstract Class Interface

An abstract class can have both
abstract and non-abstract
methods.

The interface can have only
abstract methods.

It does not support multiple
inheritances. It supports multiple inheritances.

It can provide the
implementation of the interface.

It cannot provide the
implementation of the abstract
class.

An abstract class can have
protected and abstract public
methods.

An interface can have only have
public abstract methods.

An abstract class can have final,
static, or static final variable
with any access specifier.

The interface can only have a
public static final variable.

2.14 SUMMARY:

The chapter helps to learn the concept of OOPS, like Classes, Inheritance,
the keywords associated with OOP, implementation of polymorphism and
Abstraction in java.

mu
no
tes
.in

Core JAVA

32

2.15 TEXTBOOK(S):

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,
McGraw-Hill Education, 2014

2.16 ADDITIONAL REFERENCE(S):

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,
Oxford Press

2.17 QUESTIONS:

1. What is interface? Explain with example?

2. Write a short note on abstarct class?

3. Explain the difference between Overloading & Overiding.

4. Exaplain the Difference between constructor and method in Java.

mu
no
tes
.in

 33

3
STRING MANIPULATIONS AND
INTRODUCTION TO PACKAGES

Unit Structure

3.0 Objectives

3.1 String Manipulations

3.2 Packages

3.3 Summary.

3.4 Textbook

3.5 Additional Reference(s)

3.6 Questions:

3.0 OBJECTIVES:

The objective of this chapter is to learn the classes used in string
manipulation. The different methods associated with string manipulation.
String is a commonly used in many desktop and web application and has a
wide range of applications. The chapter further introduces the concept of
Package and access specifiers.

3.1.1 Topics: String, StringBuffer, String Tokenizer & packages.

3.1 STRING MANIPULATIONS:

String is a group of characters. String is defined as array of characters
without a null char to terminate the array. Any string declared represents
an object of java.lang.String class. This sting is an immutable string object
stored in memory. Each time altered version of an existing string, a new
String object is created that contains the modifications keeping the
original string unchanged. This approach is used because fixed, immutable
strings can be implemented more efficiently than changeable ones. For
those cases in which a modifiable string is desired, Java provides two
options: java.lang. String Buffer and java.lang.String Builder. Both hold
strings that can be modified after they are created.

3.1.2 String

Any string variable decalred represents and object of Java.lang.String
class. A string can be declared using a sequence of characters enclosed in
double quotes or can be initialized using different constructors of String
class.

mu
no
tes
.in

Core JAVA

34

Constructors:
String()

Create a string object without any content.

String(char chars[])

Creates an string object using array of characters.

String(char chars[], intstartIndex, intnumChars)

Creates a string object using selected range of characters from array.

String(byte chrs[])

Creates a string object using array of bytes.

String(byte chrs[], intstartIndex, intnumChars)

Creates a string object using selected range of byte from array.

String(String strObj)

Creates a string object using another string.

Methods:
String S1 = “Monu, Saru, Yes Mama, Eating Sugar, No Mama!!”

String S2=”Yellow Color Yellow Color Where are you? Here I am ..”

Modifier
and
Type

Method and Description

char
charAt(int index)
Returns the char value at the specified index.
s1.charAt(2) will return ‘n’

int

compareTo(String anotherString)
Compares two strings lexicographically.
“ABCD”.compareTo(“ABXY”) will math A, B then calculate
the difference between first unmatched character X – C ie 88-67
= 22 is the result.

int

compareToIgnoreCase(String str)
Compares two strings lexicographically, ignoring case
differences.
Same as above but comparison will ignore case differences.

String

concat(String str)
Concatenates the specified string to the end of this string.
“Abcd”.concat(“Xyz”) will result “AbcdXyz”, can also be
done using “+” operator.

static
String

copyValueOf(char[] data)
Returns a String that represents the character sequence in the
array specified.

mu
no
tes
.in

String Manipulations and
Introduction to Packages

35

static
String

copyValueOf(char[] data, int offset, int count)
Returns a String that represents the character sequence in the
array specified.

boolean

endsWith(String suffix)
Tests if this string ends with the specified suffix.
S1.endsWith(“Mama”) will return true. And
S2.endsWith(“Mama”) will return false.

boolean
equals(Object anObject)
Compares this string to the specified object.
S1.equals(“mypassword”) will return false.

boolean
equalsIgnoreCase(String anotherString)
Compares this String to another String, ignoring case
considerations.

byte[]
getBytes()
Encodes this String into a sequence of bytes using the platform's
default charset, storing the result into a new byte array.

byte[]
getBytes(String charsetName)
Encodes this String into a sequence of bytes using the named
charset, storing the result into a new byte array.

void
getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
Copies characters from this string into the destination character
array.

int

indexOf(int ch)
Returns the index within this string of the first occurrence of the
specified character.
S1.indexOf(‘M’); will return 0

int

indexOf(String str)
Returns the index within this string of the first occurrence of the
specified substring.
S1.indexOf(“Mama”); will return 15

int

indexOf(int ch, int fromIndex)
Returns the index within this string of the first occurrence of the
specified character, starting the search at the specified index.
S1.indexOf(‘M’,5); will return 15

boolean
isEmpty()
Returns true if, and only if, length() is 0.

int
lastIndexOf(int ch)
Returns the index within this string of the last occurrence of the
specified character.

mu
no
tes
.in

Core JAVA

36

S1.lastIndexOf(‘M’) will return 40

int

lastIndexOf(String str)
Returns the index within this string of the last occurrence of the
specified substring.
S1.lastIndexOf(“Mama”) will return 40

int
length()
Returns the length of this string.
S1.length(‘Mama’) will return 45

String

replace(char oldChar, char newChar)
Returns a new string resulting from replacing all occurrences of
oldChar in this string with newChar.
“a for apple”.replace(‘a’,’@’) will return @ for @pple

boolean
startsWith(String prefix)
Tests if this string starts with the specified prefix.

boolean
startsWith(String prefix, int toffset)
Tests if the substring of this string beginning at the specified
index starts with the specified prefix.

String
substring(int beginIndex)
Returns a new string that is a substring of this string.
S1.substring(25) will return “ting Sugar, No Mama!!”

String
substring(int beginIndex, int endIndex)
Returns a new string that is a substring of this string.
S1.substring(25, 33) will return “ting Sugar”

char[]
toCharArray()
Converts this string to a new character array.

String

toLowerCase()
Converts all of the characters in this String to lower case using
the rules of the default locale.
S1.to LowerCase() will return “monu, saru, yes mama, eating
sugar, no mama!!”

String

toUpperCase()
Converts all of the characters in this String to upper case using
the rules of the default locale.
S1.to UpperCase() will return “MONU, SARU, YES MAMA,
EATING SUGAR, NO MAMA!!”

String

trim()
Returns a copy of the string, with leading and trailing
whitespace omitted.
“ AnuAruNash “.trim() will return “AnuAruNash”

mu
no
tes
.in

String Manipulations and
Introduction to Packages

37

3.1.3 String Buffer

StringBuffer class represents a mutable string that is growable and
writable character sequences. StringBuffermay have characters and
substrings inserted in the middle or appended to the end. StringBuffer will
automatically grow to make room for such additions and often has more
characters preallocated than are actually needed, to allow room for growth.

Constructors

StringBuffer defines these four constructors:

StringBuffer()

Creates a StringBuffer object with empty contents and has an initial
capacity of 16 characters.

StringBuffer(intcapacity)

Creates a StringBuffer object with empty contents with specified capacity.

StringBuffer(String str)

Creates a StringBuffer object with specified contents and has an initial
capacity of 16 characters.

Modifier
and Type Method and Description

StringBuf
fer

append (StringBuffer sb)
Appends the specified StringBuffer to this sequence.

int
capacity ()
Returns the current capacity.

char
charAt(int index)
Returns the char value in this sequence at the specified index.

StringBuf
fer

delete (int start, int end)
Removes the characters in a substring of this sequence.

StringBuf
fer

delete Char At (int index)
Removes the char at the specified position in this sequence.

void
ensure Capacity (int minimumCapacity)
Ensures that the capacity is at least equal to the specified
minimum.

int
index Of (String str)
Returns the index within this string of the first occurrence of the
specified substring.

mu
no
tes
.in

Core JAVA

38

int
index Of(String str, int fromIndex)
Returns the index within this string of the first occurrence of the
specified substring, starting at the specified index.

StringBuf
fer

insert(int offset, char c)
Inserts the string representation of the char argument into this
sequence.

StringBuf
fer

insert(int offset, String str)
Inserts the string into this character sequence.

int
lastIndexOf(String str)
Returns the index within this string of the rightmost occurrence of
the specified substring.

int
lastIndex Of(String str, int fromIndex)
Returns the index within this string of the last occurrence of the
specified substring.

int
length()
Returns the length (character count).

StringBuf
fer

replace(int start, int end, String str)
Replaces the characters in a substring of this sequence with
characters in the specified String.

StringBuf
fer

reverse()
Causes this character sequence to be replaced by the reverse of the
sequence.

void
setCharAt(int index, char ch)
The character at the specified index is set to ch.

void
setLength(int newLength)
Sets the length of the character sequence.

String
substring(int start)
Returns a new String that contains a subsequence of characters
currently contained in this character sequence.

String
substring(int start, int end)
Returns a new String that contains a subsequence of characters
currently contained in this sequence.

String
toString()
Returns a string representing the data in this sequence.

void
trimToSize()
Attempts to reduce storage used for the character sequence.

mu
no
tes
.in

String Manipulations and
Introduction to Packages

39

3.1.4 String Tokenizer

The String Tokenizer class from java.util package provides the first step
in parsing process, called the lexer, lexical analyzer or scanner. Parsing is
the division of text into a set of discrete parts or tokens. String
tokenization is a process where a string is broken into several parts. Each
part is called a token. For example, if "Anu, Aru, Nash, Yes Mama" is a
string, the discrete parts—such as, "Anu,""Aru," “Nash” “Yes” and "
Mama" aretokens.

Constructors:

StringTokenizer(String str)

Creates an object using String to be tokenized and space as delimiter
excluding space from token.

StringTokenizer(String str, String delimiters)

Creates an object using String to be tokenized and second argument as
delimiter excluding space from token.

StringTokenizer(String str, String delimiters, booleandelimAsToken)

Creates an object using String to be tokenized and second argument as
delimiter excluding space from token as specified by true/false.

String S1 = “Anu, Aru, Nash, Yes Mama, Eating Sugar, No Mama!!”

Stk = StringTokenizer(S1)

Method Description

int countTokens()

Calculates the number of times that this tokenizer'snextToken
method can be called before it generates an exception.
stk.countTokens() will return 8

boolean hasMoreElements()

 Returns the same value as the hasMoreTokens method.

boolean hasMoreTokens()

 Tests if there are more tokens available from this tokenizer's
string.

Object nextElement()

 Returns the same value as the nextToken method, except that its
declared return value is an Object rather than a String.

mu
no
tes
.in

Core JAVA

40

String nextToken()

Returns the next token from this string's tokenizer.
stk.nextToken() will return “Anu,”
stk.nextToken() will return “Aru, “

String nextToken(String delim)

Returns the next token in this string's tokenizer's string.
stk.nextToken(“u,”) will return “An”
stk.nextToken(“Mama”) will return “ Aru, Nash, Yes,”

3.2 PACKAGES:

3.2.1 Introduction to predefined packages (java.lang, java.util, java.io,
java.sql, java.swing)

java.lang: Every java program implicitly uses a package java.lang. It
contains classes and interfaces that are fundamental to all of Java
programming. It is Java’s most widely used package as it provides classes
that are fundamental to the design of the Java programming language.

Class Description

Boolean
The Boolean class wraps a value of
the primitive type boolean in an
object.

Byte The Byte class wraps a value of
primitive type byte in an object.

Character The Character class wraps a value of
the primitive type char in an object.

Class<T>
Instances of the class Class represent
classes and interfaces in a running
Java application.

ClassLoader A class loader is an object that is
responsible for loading classes.

Compiler
The Compiler class is provided to
support Java-to-native-code
compilers and related services.

Double The Double class wraps a value of the
primitive type double in an object.

Enum<E extends Enum<E>> This is the common base class of all
Java language enumeration types.

mu
no
tes
.in

String Manipulations and
Introduction to Packages

41

Float The Float class wraps a value of
primitive type float in an object.

Integer The Integer class wraps a value of the
primitive type int in an object.

Long The Long class wraps a value of the
primitive type long in an object.

Math

The class Math contains methods for
performing basic numeric operations
such as the elementary exponential,
logarithm, square root, and
trigonometric functions.

Number

The abstract class Number is the
superclass of classes BigDecimal,
BigInteger, Byte, Double, Float,
Integer, Long, and Short.

Object Class Object is the root of the class
hierarchy.

Package
Package objects contain version
information about the implementation
and specification of a Java package.

Runtime

Every Java application has a single
instance of class Runtime that allows
the application to interface with the
environment in which the application
is running.

SecurityManager
The security manager is a class that
allows applications to implement a
security policy.

Short The Short class wraps a value of
primitive type short in an object.

String The String class represents character
strings.

StringBuffer A thread-safe, mutable sequence of
characters.

StringBuilder A mutable sequence of characters.

System The System class contains several
useful class fields and methods.

Thread A thread is a thread of execution in a
program.

mu
no
tes
.in

Core JAVA

42

ThreadGroup A thread group represents a set of
threads.

ThreadLocal<T> This class provides thread-local
variables.

Throwable
The Throwable class is the superclass
of all errors and exceptions in the
Java language.

Void

The Void class is anuninstantiable
placeholder class to hold a reference
to the Class object representing the
Java keyword void.

ArithmeticException Thrown when an exceptional
arithmetic condition has occurred.

ArrayIndexOutOfBoundsException Thrown to indicate that an array has
been accessed with an illegal index.

ClassNotFoundException

Thrown when an application tries to
load in a class through its string name
using: The forName method in class
Class.

Exception

The class Exception and its
subclasses are a form of Throwable
that indicates conditions that a
reasonable application might want to
catch.

NullPointerException
Thrown when an application attempts
to use null in a case where an object
is required.

NumberFormatException

Thrown to indicate that the
application has attempted to convert a
string to one of the numeric types, but
that the string does not have the
appropriate format.

java.util

Contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalization, and miscellaneous
utility classes (a string tokenizer, a random-number generator, and a bit
array).

mu
no
tes
.in

String Manipulations and
Introduction to Packages

43

Class Description

ArrayList<E> Resizable-array implementation of the List interface.

Arrays This class contains various methods for manipulating
arrays (such as sorting and searching).

Calendar

The Calendar class is an abstract class that provides
methods for converting between a specific instant in
time and a set of calendar fields such as YEAR,
MONTH, DAY_OF_MONTH, HOUR, and so on, and
for manipulating the calendar fields, such as getting the
date of the next week.

Collections This class consists exclusively of static methods that
operate on or return collections.

Currency Represents a currency.

Date The class Date represents a specific instant in time,
with millisecond precision.

EventObject The root class from which all event state objects shall
be derived.

Formatter An interpreter for printf-style format strings.

GregorianCalend
ar

GregorianCalendar is a concrete subclass of Calendar
and provides the standard calendar system used by
most of the world.

LinkedList<E> Doubly-linked list implementation of the List and
Deque interfaces.

Locale A Locale object represents a specific geographical,
political, or cultural region.

Objects This class consists of static utility methods for
operating on objects.

Properties The Properties class represents a persistent set of
properties.

Random An instance of this class is used to generate a stream of
pseudorandom numbers.

ResourceBundle Resource bundles contain locale-specific objects.

Scanner A simple text scanner which can parse primitive types
and strings using regular expressions.

mu
no
tes
.in

Core JAVA

44

Stack<E> The Stack class represents a last-in-first-out (LIFO)
stack of objects.

StringTokenizer The string tokenizer class allows an application to
break a string into tokens.

Timer A facility for threads to schedule tasks for future
execution in a background thread.

TimeZone TimeZone represents a time zone offset, and also
figures out daylight savings.

UUID A class that represents an immutable universally unique
identifier (UUID).

Vector<E> The Vector class implements a growable array of
objects.

java.io

Provides for system input and output through data streams, serialization
and the file system.

Class Description

BufferedInputStream

A BufferedInputStream adds functionality to
another input stream-namely, the ability to buffer
the input and to support the mark and reset
methods.

BufferedOutputStream The class implements a buffered output stream.

BufferedReader
Reads text from a character-input stream,
buffering characters so as to provide for the
efficient reading of characters, arrays, and lines.

BufferedWriter

Writes text to a character-output stream,
buffering characters so as to provide for the
efficient writing of single characters, arrays, and
strings.

DataInputStream
A data input stream lets an application read
primitive Java data types from an underlying
input stream in a machine-independent way.

DataOutputStream
A data output stream lets an application write
primitive Java data types to an output stream in a
portable way.

File An abstract representation of file and directory
pathnames.

mu
no
tes
.in

String Manipulations and
Introduction to Packages

45

FileDescriptor

Instances of the file descriptor class serve as an
opaque handle to the underlying machine-
specific structure representing an open file, an
open socket, or another source or sink of bytes.

FileInputStream A FileInputStream obtains input bytes from a file
in a file system.

FileOutputStream A file output stream is an output stream for
writing data to a File or to a FileDescriptor.

FilePermission This class represents access to a file or directory.

FileReader Convenience class for reading character files.

FileWriter Convenience class for writing character files.

InputStream This abstract class is the superclass of all classes
representing an input stream of bytes.

InputStreamReader

An InputStreamReader is a bridge from byte
streams to character streams: It reads bytes and
decodes them into characters using a specified
charset.

ObjectInputStream
An ObjectInputStreamdeserializes primitive data
and objects previously written using an
ObjectOutputStream.

OutputStream This abstract class is the superclass of all classes
representing an output stream of bytes.

OutputStreamWriter

An OutputStreamWriter is a bridge from
character streams to byte streams: Characters
written to it are encoded into bytes using a
specified charset.

PrintWriter Prints formatted representations of objects to a
text-output stream.

Writer Abstract class for writing to character streams.

IOException Signals that an I/O exception of some sort has
occurred.

FileNotFoundException Signals that an attempt to open the file denoted
by a specified pathname has failed.

java.sql

Provides the API for accessing and processing data stored in a relational
database using the Java programming language.

mu
no
tes
.in

Core JAVA

46

Class Description

Driver interface Every JDBC driver must implement the Driver
interface.

DriverManager

Driver Manager is the backbone of the JDBC
architecture The DriverManager class is responsible
for loading JDBC drivers and creating Connection
objects.

Connection
interface

A connection (session) with a specific database.
SQL statements are executed and results are
returned within the context of a connection.

Statement The Statement interface executes SQL statements.

PreparedStatement
The PreparedStatement interface allows programs to
precompile SQL statements for increased
performance.

ResultSet
The ResultSet interface represents a database result
set, allowing programs to access the data in the
result set.

ResultSetMetaData

An object that can be used to get information about
the types and properties of the columns in a
ResultSet object. This interface provides meta
information about the data underlying a particular
ResultSet.

SQLException A SQLException object is thrown by any JDBC
method that encounters an error.

CallableStatement The interface used to execute SQL stored
procedures.

javax.swing

The javax.swing package provides classes for java swing API such as
JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu,
JColorChooser etc.

mu
no
tes
.in

String Manipulations and
Introduction to Packages

47

Class Description

JComponent Super class of all component classes in swing.

JFrame Creates a top class container to hold GUI components.

JApplet Create a browser based GUI application called applet.

JLabel The class is used to create a label.

JButton The JButton class is used to create a push button.

JTextField The class is used to create a text input output component

JRadioButton The class is used to create a option button component.

JList The class is used to create a list control.

3.2.2 User Defined Packages

Packages are the used to segregate classes into meaningful groups. Java
puts a class file in package at run time and locates the class from there.
Java uses file system directories to store packages. The package statement
defines a name space in which classes are stored. If you omit the package
statement, the class names are put into the default package, which has no
name.

This is the general form of the package statement:

Package pkg;

eg: package mypack;

class A{}

class B{};

The compiler will store A.class and B.class file in mypack
directory/package/namespace. Hierarchy of packages can be created using
the period “.” separator.

Eg. packagemypack.source.test;

class A{}

class B{};

The compiler will store A.class and B.class file in test sub-package of
source package and the source package is located in mypack
directory/package.

mu
no
tes
.in

Core JAVA

48

The java run time system by default uses the current working directory as
its starting point. After the current working directory the runtime system
searches the –CLASSPATH environmental variable and uses the directory
to locate class files. Then the run time system searches the –CLASSPATH
location used with javac or java command.

3.2.3 Access specifiers

Encapsulationis the mechanism of binding together code and the data it
manipulates, and keeps both safe from outside interference and misuse.
Java achieves this using class and four different access levels. Public,
private, no-specifier (default) and protected. A public Class, method and
field can be accessed from any other class in the Java program, whether
they are in the same package or in another package. Private Fields and
methods can be accessed within the same class to which they belong.
Using private specifier we can also achieve encapsulation which is used
for hiding data. Protected fields and methods can only be accessed by
subclasses in another package or any class within the package of protected
members class. Default i. e. if not declared any specifier, it will follow the
default accessibility level and can access class, method, or field which
belongs to the same package, but not from outside this package.

3.3 CHAPTER SUMMARY:

The chapter help to learn the classes used in string manipulation. The
different methods associated with string manipulation. String is a
commonly used in many desktop and web application and has a wide
range of applications. The chapter further introduced the concept of
Package and access specifiers.

3.4 TEXT BOOK(S):

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,
McGraw-Hill Education, 2014

3.5 ADDITIONAL REFERENCE(S):

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

mu
no
tes
.in

String Manipulations and
Introduction to Packages

49

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,
Oxford Press

3) Core Java – SYBSC CS – Sheth Publication – Prof. Ahtesham Shaikh,
Prof.Beena Kapadia

3) The Java Tutorials: http://docs.oracle.com/javase/tutorial/

3.6 QUESTIONS:

1) What is a string? Write a program to accept a string as a command line
argument and print its reverse.

2) What is a string? Explain, with example, the following methods of
String class:

 (i) indexOf() (ii) substring()

3) What is a package? Explain
4) List any five predefine packages in java.
5) What is the purpose of java.utilpackage. List any five classes or

interfaces.
6) What is the purpose of java.io package. List any five classes or

interfaces.
7) What is the purpose of java.sqlpackage. List any five classes or

interfaces.
8) How to define use defined package? How JVM locates user defined

packages? Explain.
9) Explain the visibility of class and there members for different access

specifier.

mu
no
tes
.in

 50

Unit II

4
EXCEPTION HANDLING

Unit Structure

4.1 Introduction

4.2 Types of errors

4.3 Exceptions

4.4 Syntax of Exception Handling Code

4.5 Multiple catch Statements

4.6 Using finally Statement

4.7 Throw and throws keyword

4.9 Using Exception for debugging

4.9 Summary

4.10 Textbook

4.11 Additional References

4.12 Questions

4.1 INTRODUCTION

Rarely does a program run successfully at its very first attempt. It is very
common to make mistakes while developing as well as typing a program.
A mistake might lead to an error causing the program to produce
unexpected results. Errors can make a program go wrong.

An error may terminate the execution of the program or may produce an
incorrect output or even may cause the system to crash. It is important to
detect and manage properly all the possible error condition in the program
so that the program will not terminate/crash during execution.

4.2 TYPES OF ERRORS

Errors may be classified into two categories:

 Compile-time errors
 Run-time errors

mu
no
tes
.in

Exception Handling

51

Compile-Time Errors

All syntax errors are detected and displayed by the Java compiler and
hence these errors are known as compile-time errors. Whenever the
compiler displays an error, it will not create the .class file. Therefore, it is
necessary that we fix all the errors before we can successfully compile and
run the program.

Program 4.1 Illustration of compile-time errors

/*This program contains an error*/

class Error1

{

 public static void main (String[] args)

 {

 System.out.println("Hello, World!")//Missing;

 }

}

The Java compiler does a nice job of telling us where the errors have
occurred in the program. For example, if we have missed the semicolon at
the end of print statement in Program 4.1, the following message will
appear on the screen.

We can now go to the appropriate line, correct an error and recompile the
program. Sometimes, a single error may be the source of multiple errors
later in the compilation. For example, use of an undeclared variable in
several places will cause a series of errors of type “undefined variable”.
In such case, we should consider the earliest errors as the major source of
problem. Once we fix an error, we should recompile the program and look
for other errors.

Most of the compile-time errors are due to typing mistakes. Typographical
errors are hard to find, and we may have to check code word by word. The
most common problems are:

 Missing semicolons
 Missing (or mismatch of) brackets in classes and methods
 Misspelling of keywords and identifiers
 Missing double quotes in strings
 Using undeclared variables
 Use of = in place of == operator and so on.

mu
no
tes
.in

Core JAVA

52

Other errors may occur because of directory paths. An error such as

javac: command not found

It means that we have not set the path correctly. We must include the
path directory where the Java executables are stored.

Run-Time Errors

Sometimes, a program may compile successfully creating.class file but it
may not run properly. Such programs may produce incorrect output due to
wrong logic or may terminate due to errors such as stack overflow. Most
common run-time errors are:

 Dividing an integer by zero
 Accessing an element that is out of the bounds of an array
 Trying to store a value into an array of an incompatible class
 Passing a parameter that is not in a valid range or value for a method
 Trying to illegally change the state of a thread
 Attempting to use a negative size for an array
 Using a null object reference as a legitimate object reference to

access a method or a variable
 Converting invalid string to a number
 And many more

When such errors are encountered, Java typically generates an error
message and aborts the program. Program 4.2 illustrates how a run-time
error causes termination of execution of the program.

Program 4.2 Illustration of run-time errors
class Error2

{

 public static void main(String[] args)

 {

 int x = 10;

 int y = 5/0;

 int z = 5/0;

 int a = x/(y-z); //Division by zero

 System.out.println("a=" +x);

 int b = x/(y+z);

 System.out.println("b=" +y);

 }

}

mu
no
tes
.in

Exception Handling

53

Program 4.2 is syntactically correct and therefore does not cause any
problem during compilation. However, during execution, it displays the
following message and stops without executing remaining statements.

When Java run-time tries to execute a division by zero, it generates an
error condition, which causes the program to stop after displaying an
appropriate message.

4.3 EXCEPTIONS

An exception is a condition caused by a run-time error in the program.
When the Java interpreter encounters an error such as dividing an integer
by zero, it creates and throws an exception object (i.e., informs us that an
error has occurred). If the exception object is not caught and handled
properly, the interpreter will display an error message as shown in the
output of Program 4.2 and will terminate the program.

If we want our program to continue with the execution of the remaining
code, then we should try to catch the exception object thrown by the error
condition and then display an appropriate message for taking corrective
actions. This task is known as exception handling.

 The purpose of exception handling is to detect and report an “exceptional
circumstance” so that appropriate action can be taken. Error handling code
performs the following tasks:

1. Find the problem (Hit the exception).
2. Inform that an error has occurred (Throw the exception)
3. Receive the error information (Catch the exception)
4. Take corrective actions (Handle the exception)

Error handling code consists of two segments, one to detect errors and to
throw exceptions and the other to catch exceptions and take appropriate
actions.

While writing programs, we must check for places in the program where
an exception could be generated. Some common exceptionsare listed in
Table 4.1

mu
no
tes
.in

Core JAVA

54

Table 4.1 Common java Exceptions

Exception Type Cause of Exception
ArithmeticException It is caused by math errors such as

division by zero
 ArrayIndexOutOfBoundsException Caused by bad array indexes

ArrayStoreException Caused when a program tries to
store the wrong type of data in an
array

FileNotFoundException Caused by an attempt to access a
nonexistent file

IOException Caused by general I/O failures, such
as inability to read from a file

NullPointerException Caused by referencing a null object

NumberFormatException Caused when a conversion between
strings and number fails

OutOfMemoryException Caused when there’s not enough
memory to allocate a new object

SecurityException Caused when an applet tries to
perform an action not allowed by
the browser’s security setting
 StackOverflowException Caused when the system runs out of
stack space
 StringIndexOutOfBoundsException Caused when a program attempts to
access a nonexistent character
position in a string.

4.4 SYNTAX OF EXCEPTION HANDLING CODE

The basic concepts of Exception handling are throwing an exception and
catching it. This is illustrated in Fig. 4.1

Fig 4.1 Exception handling mechanism

mu
no
tes
.in

Exception Handling

55

Java uses a keyword try to preface a block of code that is likely to cause
an error condition and “throw” an exception.The catch block is added
immediately after the try block. A catch block “catches” the exception
“thrown” by the try block and handles it appropriately.

…………………….

…………………….

try

{

 statement ; //generates an exception

}

catch (Exception- type e)

{

statement ; //processes the exception

}

………………………..

………………………..

The try block can have one or more statements that could generate an
exception. If any one statement generates an exception, the remaining
statements in the try block are skipped and execution jumps to the catch
block that is placed immediately next to the try block.

The catch block can have one or more statements that are necessary to
process the exception. Every try statement should be followed by at least
one catch statement; otherwise compilation error will occur.

The catch statement works like a method definition. A single parameter,
which is reference to the exception object is thrown (by the try block). If
the catch parameter matches with the type of exception object, then the
exception is caught and statements in the catch block will be executed.
Otherwise, the exception is not caught, and the default exception handler
will cause the execution to terminate.

 Program 4.3 illustrates the use of try and catch blocks to handle an
arithmetic exception. Note that program 4.3 is a modified version of
Program 4.2.

mu
no
tes
.in

Core JAVA

56

Program 4.3 Using try and catch for exception handling

class Error3

{

 public static void main(String[] args)

 {

 int x = 10;

 int y = 5;

 int z = 5;

 try

 {

 inta = x/(y-z); //Exception here

 }

 catch(ArithmeticException e)

 {

 System.out.println("Division by zero");

 }

 int b = x/(y+z);

 System.out.println("b=" +y);

 }

}

Program 4.3 displays the following output:

Note that the program did not stop when an exception is caused inside try
block. Exception is caught by catch block and it prints the error message,
and then continues the execution, as if nothing has happened. Compare
with the output of Program 4.2 which did not give the value of y.

 Program 4.4 shows another example of using exception handling
mechanism.

mu
no
tes
.in

Exception Handling

57

Program 4.4 Example of ArrayIndexOutOfBoundsException

class TryCatchExample

 {

 public static void main(String[] args)

{

 try

 {

int arr[]= {1,3,5,7};

System.out.println(arr[4]); //may throw exception

 }

catch(ArrayIndexOutOfBoundsException e) // handling an array
exception

 {

 System.out.println("Array index doesnt exist");

 }

 }

}

Output:

In this program we have array which contains 4 elements i.e arr[0], arr[1],
arr[2], arr[3]. We are printing arr[4] which doesn’t exist in the array list.
Hence ArrayIndexOutOfBoundsException is caused by try block and
caught by catch block.

4.5 MULTIPLE CATCH STATEMENTS

It is possible to have more than one catch statement in the catch block as
illustrate below:

………………….

…………………...

try
{

 statement; //generates an exception

}

mu
no
tes
.in

Core JAVA

58

catch (Exception- Type-1 e)

{

 statement; // processes exception type 1

}

catch (Exception- Type-2 e)

{

 statement; // processes exception type 2

}

catch (Exception- Type-3e)

{

 statement; // processes exception type N

}

………………………………

………………………………

When an exception in a try block is generated, the Java treats the multiple
catch statements like cases in a switch statement. The first statement
whose parameter matches with the exception object will be executed, and
the remaining statements will get skipped.

Note that Java does not require any processing of the exception at all. We
can simply have a catch statement with an empty block to avoid program
abortion.

Example:

catch (Exception e);

Here, the catch statement simply ends with a semicolon, which does
nothing. This statement will catch an exception and then ignore it.

Program 4.5 Using multiple catch blocks
class MultipleCatchBlock

{

 public static void main(String[] args)

 {

 try

 {

 int a[]=new int[5];

 System.out.println(a[10]); //doesnt exist

 }

mu
no
tes
.in

Exception Handling

59

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("ArrayIndexOutOfBounds Exception
occurs");

 }

 catch(ArithmeticException e)

 {

 System.out.println("Arithmetic Exception occurs");

 }

 catch(Exception e)

 {

 System.out.println("Parent Exception occurs");

 }

 System.out.println("rest of the code");

 }

}

Program 4.5 uses a chain of catch blocks and, when run, produces the
following output:

Note that the array element a [10] does not exist because array a is defined
to have only five elements, a[0], a[1], a[2], a[3], a[4]. Therefore, the index
10 is outside the array boundary thus causing the block

catch (ArrayIndexOutofBoundsException e)

to catch and handle the error. Remaining catch blocks are skipped.

4.6 USING FINALLY STATEMENT

Java supports finally statement that can be used to handle an exception
that is not caught by any of the previous catch statements. finally block
can be used handle any exception generated within a try block. It can be
added immediately after the try block or after the last catch block shown
as follows:

try try
{ {
 …………… ……………
 …………… ……………
} }

mu
no
tes
.in

Core JAVA

60

finally catch(……)
{ {
 …………… ……………
 ………….. …………….
} }
 catch (……)
 {
 ……………
 …………….
 }
 .
 .
 .
 finally
 {
 ……………
 …………..
 }

When a finally block is defined, it is guaranteed to execute, regardless of
whether an exception is thrown or not. As a result, we can use it to
perform operations such as closing files and releasing system resources.

In Program 4.5, we may include the laststatements inside a finally block as
shown below:

Program 4.6 Using finally blocks

class FinallyBlock

{

 public static void main(String[] args)

{

 try

{

 int a[] = new int[5];

 System.out.println(a[10]); //doesnt exist

 }

mu
no
tes
.in

Exception Handling

61

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("ArrayIndexOutOfBounds Exception occurs");

 }

 catch(ArithmeticException e)

 {

 System.out.println("Arithmetic Exception occurs");

 }

 catch(Exception e)

 {

 System.out.println("Parent Exception occurs");

 }

 finally

 {

 System.out.println("rest of the code");

 }

 }

}

This will produce the same output.

4.7 THROWING OUR OWN EXCEPTIONS

The Java throw keyword is used to throw an exception explicitly.

We specify the exception object which is to be thrown. The Exception has
some message with it that provides the error description.We can do this by
using the keyword throw as follows:

throw newThrowable_subclass;

Examples:

throw new ArithmeticException();

throw new NumberFormatException();

mu
no
tes
.in

Core JAVA

62

In Program 4.6, we have created validate method that takes integer value
as a parameter. If the age is less than 18, we are throwing the
ArithmeticException otherwise print a message welcome to vote.

Program 4.6 Throwing our own exception

class TestThrow

{

public static void validate(int age) //validate(age=10)

 {

 if(age<18) //10<18

{

//throw Arithmetic exception if not eligible to vote

throw new ArithmeticException("not eligible for voting");

}

 else

 {

System.out.println("You are eligible for voting");

}

}

public static void main(String args[])

 {

 validate(10); //calling the function

 System.out.println("Rest of the code...");

 }

}

A run of Program 4.6 produces:

Program 4.7 Java throws keyword

import java.io.*;

class Main1

mu
no
tes
.in

Exception Handling

63

{

// declaring the type of exception

 public static void findFile() throws IOException

 {

// code that may generate IOException

 File newFile = new File("test.txt");

 FileInputStream stream = new FileInputStream(newFile);

 }

 public static void main(String[] args)

 {

 try

{

 findFile();

 }

 catch (IOException e)

{

 System.out.println(e);
 }

 } }

Output:

Program 4.8 Throwing our own exception
import java.lang.Exception;

class MyException extends Exception

{

 MyException(String message)

 {

 super(message);

 }

}

mu
no
tes
.in

Core JAVA

64

class OwnException

{

 public static void main (String args[])

 {

 int x = 5, y = 1000;

 try

 {

 float z = (float) x / (float) y;

 if(z < 0.01)

 {

 throw new MyException("Number is too small");

 }

 }

 catch(MyException e)

 {

 System.out.println("Caught my exception");

 System.out.println(e.getMessage());

 }

 finally

 {

 System.out.println("I am always here");

 }

 }

}

Output:

The object e which contains the error message “Number is too small” is
caught by the catch block which then display’s the message using the
getMessage() method.

 Note that Program 4.8 also illustrates the use of finally block. The last
line of output is produced by the finally block.

mu
no
tes
.in

Exception Handling

65

4.8 USING EXCEPTION FOR DEBUGGING

As we have seen, the exception-handling mechanism can be used to hide
errors from rest of the program. It is possible that the programmers may
misuse this technique for hiding errors rather than debugging the code.
Exception handling mechanism can be effectively used to locate the type
and place of errors. Once we identify an error, we must try to find out why
these errors occurred before we coverup them with exception handlers.

4.9 SUMMARY

A good program does not produce unexpected results. We should
incorporate features that could check for potential problem spots in
programs and guard against program failures. Exceptions in Java must be
handled carefully to avoid any program failures.

In this chapter we have discussed the following:

 What exceptions are
 try,catch and finally block
 How to catch and handle different types of exceptions.
 How to throw system exceptions

4.10 TEXTBOOK(S):

1) Herbert Schildt, Java The Complete Reference, Ninth Edition,
McGraw-Hill Education, 2014

4.11 ADDITIONAL REFERENCE(S):

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra & Saurabh
Choudhary, Oxford Press

4.12 QUESTIONS:

1) What is Exception? Explain the types of exceptions.

2) What is error? Explain the types of error.

3) How the exceptions are handled in Java?

mu
no
tes
.in

 70

5
MULTITHREADING

Unit Structure

5.1 Introduction

5.2 Creating threads

5.3 Extending the thread Class

5.4 Stopping and Blocking a thread

5.6 Life Cycle of A thread

5.6 Using thread Methods

5.7 Synchronization in Java

5.8 Summary

5.9 Textbook

5.10 Additional Reference(s)

5.11 Questions

5.1 INTRODUCTION

Those who are familiar with the modern operating systems (Windows 10)
may recognize that they can execute several programs simultaneously.
This ability is known as multitasking. In system's terminology, it is called
multithreading.

Multithreading is a conceptual programming paradigm where a program
(process) is divided into two or more subprograms (processes), which can
be implemented in parallel. This is similar to dividing one task into
subtasks and assigning them to different people for execution
independently and simultaneously. For example, one subprogram can
display an animation on the screen while another may build the next
animation to be displayed.

In most computers, there is only a single processor and therefore, in
reality, the processor does only one thing at a time. However, the
processor switches between the processes so fast that it appears to human
beings that all of them are being executed simultaneously. Java programs
that we have seen and discussed so far contain only a single sequential
flow of control. This is what happens when we execute a normal program.
The program begins, runs through a sequence of executions, and finally
ends. At any given point of time, there is only one statement under
execution.

mu
no
tes
.in

Multithreading

71

A thread is similar to a program that has a single flow of control. It has a
beginning, a body, and an end, and executes commands sequentially. All
main programs in our earlier (previous chapters) examples can be called
single-threaded programs. Every program will have at least one thread as
shown in Fig. 5.1

Fig. 5.1 Single-threaded program

 A unique property of Java is its support for multithreading. That
is, Java enables us to use multiple flows of control in developing
programs. Each flow of control may be thought of as a separate tiny
program (or module) known as a thread that runs in parallel with each
other as shown in Figure 5.2.

A program that contains multiple flows of control is known as
multithreaded program. Fig. 5.2 illustrates a Java program with four
threads, one main and two others.The main method module is main thread,
which is designed to create and start the other two threads, namely Thread
A, Thread B.

mu
no
tes
.in

Core JAVA

72

Fig. 5.2 A Multithreaded program

Once initiated by the main thread, the threads A, B run concurrently and
share the resources jointly. It is like people living in joint families and
sharing certain resources among all of them. Since threads in Java are
subprograms of a main application program and share the same memory
space, they are known as lightweight threads or lightweight processes.

It is important to remember that 'threads running in parallel' does not
really mean that they are running at the same time. Since all the threads
are running on a single processor, the flow of execution is shared between
the threads. The Java interpreter handles the switching of control between
the threads in such a way that it appears they are running concurrently.

Multithreading is a powerful programming tool that makes Java distinctly
different from its fellow programming languages. Multithreading enables
programmers to do multiple things at same time. They can divide a long
program (containing operations that are conceptually concurrent) into
threads and execute them in parallel. For example, we can send print
command into the background and continue to perform some other task in
the foreground. This approach would considerably improve the speed of
our programs.

Any application we are working on that requires two or more things to be
done at the same time is probably a best one for use of threads.

5.2 CREATING THREADS

Creating threads in Java is simple. Threads are implemented in the form of
objects that contain a method called run(). The run() method is the heart
and soul of any thread. It makes up the entire body of a thread and is the

mu
no
tes
.in

Multithreading

73

only method in which the thread's behaviour can be implemented. A
typical run() method would appear as follows:

public void run()

{

……………………..

……………………..

(statements for implementing thread)

……………………….

……………………….

}

The run() method should be invoked by an object of the concerned
thread. This can be achieved by creating the thread and initiating it with
the help of another thread method called start().

A new thread can be created in two ways.

1. By creating a thread class:
Define a class that extends Thread class and override its run() method
with the code required by the thread.

2. By converting a class to a thread:
Define a class that implements Runnable interface. The Runnable interface
has only one method, run(), that is to be defined in the method with the
code to be executed by the thread.

The approach to be used depends on class which we have created, and
what it requires. If it needs to extend another class, then we have no choice
but to implement the Runnable interface, since Java classes cannot have
two super classes.

5.3 EXTENDING THE THREAD CLASS

We can make our class runnable as a thread by extending the class
java.lang.Thread. This gives us access to all the thread methods directly.
It includes the following steps:

1. Declare the class as extending the Thread class.
2. Implement the run() method that is responsible for executing the

sequence of code that the thread will execute.
3. Create a thread object and call the start() method to initiate the thread

execution.

mu
no
tes
.in

Core JAVA

74

 Declaring the Class

The Thread class can be extended as follows:

 class TestThread extends Thread
 {

 }

Now have a new type of thread TestThread.

 Implementing the run() Method

The run() method has been inherited by the class TestThread. We must
override this method in order to implement the code to be executed by our
thread. The basic implementation of run() is as follows:

public void run()

{

……………………..

……………………. //Thread code here

………………………

………………………

}

When we start any new thread, Java calls the thread's run() method, so it
is the run () where all the action takes place.

 Starting New Thread

To create and run an instance of our thread class, we will write:

 TestThread t1 = new TestThread();

 t1.start(); // invokes run() method

The first line instantiates a new object of class TestThread. Note that this
statement just creates the object. The thread that will run this object is not
yet running. The thread is in a newborn state.

The second line calls the start () method causing the thread to move into
the runnable state. Then, the Java runtime will schedule the thread to run
by invoking its run () method. Now. the thread is in the running state.

mu
no
tes
.in

Multithreading

75

 An Example of Using the Thread Class

Program 5.1 illustrates the use of Thread class for creating and running
threads in an application. In program we have created two threads A and B
for undertaking two different tasks. The main method in the ThreadTest1
class also constitutes another thread which we may call the "main thread".

The main thread dies at the end of its main method. However, before it
dies. it creates and starts other two threads A, B.

We can start a thread as follows:

 A t1 = new A();

 t1.start();

Immediately after the thread A is started, there will be two threads running
in the program: the main thread and the thread A.

The start() method returns back to the main thread immediately after
invoking the run() method, thus the allowing the main thread to start the
thread B.

Program 5.1 Creating threads using the thread class
class A extends Thread
{

 public void run()

 {

 for (int i =1; i<=5; i++)

 {

 System.out.println("Thread A: i=" +i);

 }

System.out.println("Exit from A");

}

}

class B extends Thread

{

 public void run()

 {

 for (int j =1; j<=5; j++)

 {

 System.out.println("Thread B: j=" +j);

 }

mu
no
tes
.in

Core JAVA

76

System.out.println("Exit from B");

}

}

class Threadtest1

{

public static void main(String args[])

{

 A t1 = new A();

 B t2 = new B();

 t1.start(); //start first thread

 t2.start(); //start second thread

}

}

Output:
First run

Second run

mu
no
tes
.in

Multithreading

77

Third run

By the time the main thread has reached the end of its main method, there
are a total of three separate threads running in parallel.

We have simply initiated two new threads and started them. We did not
hold on to them further. They are running concurrently on their own. Note
that the outputs from the threads are not sequential. They do not follow
any specific order.

They are running independently of one another and each executes
whenever it has a chance. Remember, once the threads started. We cannot
decide with certainty the order in which they may execute statements.
Note a second run and third run has a different output sequence.

5.4 STOPPING AND BLOCKING A THREAD

Stopping a Thread

Whenever we want to stop a thread from running further, we may do so by
calling stop()method, like:

aThread.stop();

This statement causes the thread to move to the dead state. A thread will
also move to the dead state automatically when it reaches the end of its
method. The stop() method may be used when the premature death of a
thread is desired.

Blocking a Thread

A thread can also be suspended temporarily or blocked from entering
into the runnable and subsequently running state by using either of the
following thread methods:

sleep() / / blocked for a specified time

suspend() / / blocked until further orders

wait () / / blocked until certain condition occurs

These methods cause the thread to go into the blocked (or not-runnable)
state.

mu
no
tes
.in

Core JAVA

78

The thread will return to the runnable state when the specified time is
elapsed in the case of sleep().

The resume() method is invoked in the case of suspend(), and the notify
() method is called in the case of wait().

5.5 LIFE CYCLE OF A THREAD

During the lifetime of a thread, it can enter many states. It includes:

1. Newborn state

2. Runnable state

3. Running state

4. Blocked state

5. Dead state

 A thread is always in one of these five states. It can move from one state
to another via a variety of ways as shown in Fig. 5.3.

Fig. 5.3 State transition diagram of a thread

Newborn State

When we create a thread object, the thread is born and is said to be in
newborn state. The thread is not yet scheduled for running. At this state,
we can do only one of the following things with it:

 We can schedule it for running using start() method.

 We can kill it using stop() method.

If scheduled, it moves to the runnable state (Fig. 5.4). If we attempt to use
any other method at this stage, an exception will be thrown.

mu
no
tes
.in

Multithreading

79

Fig. 5.4 scheduling a newborn thread

Runnable State

The runnable state means that the thread is ready for execution and is
waiting for the availability of the processor, i.e the thread has joined the
queue of threads that are waiting for execution. If all threads have equal
priority, then they are given time slots for execution in first- come, first-
serve manner. The thread that relinquishes control joins the queue at the
end and again waits for its turn.

However, if we want a thread to relinquish control to another thread of
equal priority before its turn comes, we can do so by using the yield()
method. (Fig. 5.5)

Fig. 5.5 Relinquishing control using yield() method

Running State

Running means that the processor has given its time to the thread for its
execution. The thread runs until it relinquishes control on its own or it is
pre-empted by a higher priority thread.

A running thread may relinquish its control in one of the following
situations.

1) It has been suspended by using suspend() method. A suspended
thread can be revived by using the resume() method.

This approach is useful when we do not want to kill a thread but want to
suspend it for some time due to certain reason.

mu
no
tes
.in

Core JAVA

80

Fig. 5.6 Relinquishing control using suspend() method

2) It has been made to sleep. We can make a thread to sleep for a
specified time period using the method sleep (time) where time is in
milliseconds.

It means that the thread is out of the queue during this time period. As
soon as this time period is elapsed, the thread re-enters the runnable state.

Fig. 5.7 Relinquishing control using sleep() method

3) It has been told to wait until some event occurs. It is done using the
wait() method.

The thread can be scheduled to run again using the notify() method.

Fig. 5.8 Relinquishing control using wait() method

mu
no
tes
.in

Multithreading

81

Blocked State

A thread is said to be in blocked state when it is prevented from entering
the runnable state and subsequently the running state.

It happens when the thread is suspended, sleeping or waiting in order to
satisfy certain requirements.

A blocked thread is considered “not runnable” but it is not dead and
therefore fully qualified to run again.

Dead State

Every thread has a life cycle. A running thread ends its life when it
completes executing its run () method. It is a natural death.

However, we can kill it by sending the stop message to it at any state thus
causing a premature death. A thread can be killed as soon as it is born, or
while it is running, or even when it is in “not runnable” (blocked)
condition.

5.6 USING THREAD METHODS

Thread class methods can be used to control the behaviour of a thread.
We have already used the methods start() and run() in program 5.1. There
are methods that can move a thread from one state to another.

Program 5.2 illustrates the use of yield(), sleep(), and stop() methods.

Program 5.2 Use of yield(), stop(), and sleep() methods

class A extends Thread

{

 public void run()

 {

 for (int i =1; i<=5; i++)

 {

 if(i==1) yield();

 System.out.println("Thread A: i=" +i);

 }

 System.out.println("Exit from A");

 }

}

class B extends Thread

mu
no
tes
.in

Core JAVA

82

{

 public void run()

 {

 for (int k =1; k<=5; k++)

 {

 System.out.println("Thread B: k=" +k);

 if(k==1)

 try

 {

 sleep(2000);

 }

 catch(Exception e)

 {

 }

 }

 System.out.println("Exit from B");

 }

}

class ThreadMethods

{

public static void main(String args[])

{

 A t1 = new A();

 B t2 = new B();

System.out.println("Start thread A");

 t1.start();

System.out.println("Start thread B");

 t2.start();

mu
no
tes
.in

Multithreading

83

System.out.println("End of main thread");

}

}

Output:

Program 5.2 uses the yield() method in thread A at the iteration i=1.
Therefore, the thread A, although started first, has relinquished its control
to the thread B.

The thread B started sleeping after executing for loop only once.

When it woke up (after 2000 milliseconds), the other thread has already
completed its runs and therefore was running alone.

The main thread died much earlier than the other two threads.

5.7 SYNCHRONIZATION IN JAVA

So far, we have seen threads that use their own data and methods provided
inside their run()methods. What happens when they try to use data and
methods outside themselves? In such situations, they may compete for the
same resources and may lead to serious problems.

For example, one thread may try to read a record from a file while another
is still writing to the same file. Depending on the situation, we may get
strange results.

Java provides a way to overcome this problem using a technique known as
synchronization.

In case of Java, the keyword synchronized helps to solve such problems
by keeping a watch on such locations. For example, the method that will
read information from a file and the method that will update the same file
may be declared as synchronized.

mu
no
tes
.in

Core JAVA

84

Example:

synchronized void update()

{

………………….

…………………. //code here is synchronized

……………………

}

 When we declare a method synchronized, Java creates a “monitor” and
hands it over to the thread that calls the method first time. As long as the
thread is holding the monitor, no other thread can enter the synchronized
section of the code. A monitor is like a key and the thread that holds the
key can only open the lock.

It is also possible to mark a block of code as synchronized as shown
below:

synchronized (lock-object)

{

 …………………… //code here is synchronized

 ……………………

}

Whenever a thread completes its work of using synchronized method (or
block of code), it will hand over the monitor to the next thread that is
ready to use the same resource.

A deadlock situation may occur when two or more threads are waiting to
gain control of a resource. Due to some reason, the condition on which the
waiting threads rely on to gain control does not happen.

For example, assume that the thread X must access Method1 before it can
release Method2, but the thread Y cannot release Method1 until it gets
hold of Method2. Because these are mutually exclusive conditions, a
deadlock occurs. The code below illustrates this:

Thread X

synchronized method2 ()

{

 synchronized method1()

 {

 ……………………

mu
no
tes
.in

Multithreading

85

 ……………………

 }

}

Thread Y

synchronized method1 ()

{

 synchronized method2 ()

 {

 ……………………

 ……………………

 }

}

5.8 SUMMARY

A thread is a single line of execution within a program. Multiple threads
can run concurrently in any single program.

A thread is created either by sub classing the Thread class or
implementing the Runnable interface. Careful application of
multithreading will considerably improve the execution speed of Java
programs.

5.9 TEXTBOOK

Herbert Schildt, Java The Complete Reference, Ninth Edition, McGraw-
Hill Education, 2014

5.10 ADDITIONAL REFERENCE(S)

1. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2. Programming in JAVA, 2nd Ed, Sachin Malhotra & Saurabh
Choudhary, Oxford Press

5.11 QUESTIONS

1. What is thread? Explain the life cycle of thread.

2. Explain the synchronization of thread.

3. Write a java program to implement the concept of thread.

mu
no
tes
.in

 86

6
I/O STREAMS

Unit Structure

6.1 Introduction

6.2 Types of Streams

 6.2.1 Byte Stream

 6.2.2 Character Stream

6.3 Java Input Stream Class

 6.3.1 Java FileInput Stream Class

 6.3.2 Java Byte Array Input Stream Class

6.4 Java Output Stream Class

 6.4.1 Java File Output Stream Class

 6.4.2 Java Byte Array Output Stream Class

6.5 Java Reader and Writer

6.6 Summary

6.7 Textbooks

6.8 Questions

6.1 INTRODUCTION

Java I/O (Input and Output) is used to process the input and produce the
output.

Java uses the concept of a stream to make I/O operation fast. The java.io
package contains all the classes required for input and output operations.

CONCEPT OF STREAMS

A stream is a sequence of data. In Java, a stream is composed of bytes.

It's called a stream because it is like a stream of water that continues to
flow.

In Java, streams are the sequence of data that are read from the source and
written to the destination.An input stream is used to read data from the
source and, an output stream is used to write data to the destination.

mu
no
tes
.in

I/O Streams

87

Program 6.1

class HelloWorld

{

 public static void main(String[] args)

{

System.out.println("Hello, World!");

 }

}

For example, in above HelloWorld program, we have used System.out to
print a string. Here, the System.out is a type of output stream.

Similarly, there are input streams to take input.

6.2 TYPES OF STREAMS

Depending upon the data a stream holds, it can be classified into following
types:

 Byte Stream
 Character Stream

6.2.1 BYTE STREAM

Byte stream is used to read and write a single byte (8 bits) of data.

All byte stream classes are derived from base abstract classes called
InputStream and OutputStream.

mu
no
tes
.in

Core JAVA

88

6.2.2 CHARACTER STREAM

Character stream is used to read and write a single character of data.

All the character stream classes are derived from base abstract
classes Reader and Writer.

6.3 JAVA INPUTSTREAM CLASS

The InputStream class of the java.io package is an abstract superclass
that represents an input stream of bytes.

Since InputStream is an abstract class, it is not useful by itself. However,
its subclasses can be used to read data.

 SUBCLASSES OF INPUTSTREAM

In order to use the functionality of InputStream, we can use its following
subclasses.

 FileInputStream
 ByteArrayInputStream
 ObjectInputStream
 BufferedInputStream

 CREATE AN INPUTSTREAM

In order to create an InputStream, we must import the
java.io.InputStream package first.

Once we import the package, here is how we can create the input stream.

 // Creates an InputStream

 InputStream object1 = new FileInputStream();

Here, we have created an input stream using FileInputStream. It is
because InputStream is an abstract class. Hence, we cannot create an
object of InputStream.

 METHODS OF INPUTSTREAM

The InputStreamclass provides different methods that are implemented by
its subclasses.

Some of the commonly used methods are:

 read()-
It reads one byte of data from the input stream.
 read(byte[] array) –
It reads bytes from the stream and stores in the specified array.
 available() –
It returns the number of bytes available in the input stream.
 mark() –

mu
no
tes
.in

I/O Streams

89

It marks the position in the input stream up to which data has been read.
 reset() –
It returns the control to the point in the stream where the mark was set.
 markSupported() –
It checks if the mark() and reset() method is supported in the stream.
 skips() –
It skips and discards the specified number of bytes from the input stream.
 close() –
It closes the input stream.

6.3.1 JAVA FileInputStream CLASS

The FileInputStream class of the java.io package can be used to read
data (in bytes) from files. It extends the InputStream abstract class.

 CREATE A FileInputStream

In order to create a FileInputStream, we must import
the java.io.FileInputStream package first. Once we import the package,
here is how we can create a file input stream in Java.

 Using the path to file

FileInputStream input = new FileInputStream(stringPath);

Here, we have created an input stream that will be linked to the file
specified by the path.

 Using an object of the file

FileInputStream input = new FileInputStream(File fileObject);

Here, we have created an input stream that will be linked to the file
specified by fileObject.

 METHODS OF FileInputStream

The FileInputStream class provides implementations for different
methods present in the InputStream class.

read() Method

 read() - It reads a single byte from the file.
 read(byte[] array) –It reads the bytes from the file and stores in the
specified array.
 read(byte[] array, int start, int length) –It reads the number of
bytes equal to length from the file and stores in the specified array starting
from the position start.

EXAMPLE: INPUTSTREAM USING FileInputStream

Here is how we can implement Input Stream using the File Input
Stream class.

mu
no
tes
.in

Core JAVA

90

Suppose we have a file named test.txt with the following content.

Let's try to read this file using FileInputStream (a subclass
of InputStream).

Program 6.2

import java.io.FileInputStream;

import java.io.InputStream;

class Program

{

 public static void main(String args[])

 {

byte[] array = new byte[100];

 try

 {

InputStream input = new FileInputStream("test.txt");

System.out.println("Available bytes in the file: " + input.available());

 // Read byte from the input stream

input.read(array);

System.out.println("Data read from the file: ");

 // Convert byte array into string

 String data = new String(array);

System.out.println(data);

 // Close the input stream

input.close();

 }

catch (Exception e)

mu
no
tes
.in

I/O Streams

91

 {

e.getStackTrace();

 }

 }

}

Output:

In the above example, we have created an input stream using
the FileInputStream class.

The input stream is linked with the file test.txt.

 InputStream input = new FileInputStream("test.txt");

To read data from the test.txt file, we have implemented these two
methods.

 input.read(array); // to read data from the input stream

 input.close(); // to close the input stream

We have used the available() method to check the number of available
bytes in the file input stream.

6.3.2 JAVA ByteArrayInputStream CLASS

The ByteArrayInputStream class of the java.io package can be used to
read an array of input data (in bytes). It extends the InputStream abstract
class.

 CREATE A BYTEARRAYINPUTSTREAM

In order to create a byte array input stream, we must import the
 java.io.ByteArrayInputStream package first.

Once we import the package, we can create an input stream as follows:

 // Creates a ByteArrayInputStream that reads entire array

ByteArrayInputStream input = new ByteArrayInputStream(byte[]
arr);

Here, we have created an input stream that reads entire data from
the arr array.

mu
no
tes
.in

Core JAVA

92

However, we can also create the input stream that reads only some data
from the array.

// creates a ByteArrayInputStream that reads a portion of array

ByteArrayInputStream input = new ByteArrayInputStream(byte[]
arr, int start, int length);

Here the input stream reads the number of bytes equal to length from the
array starting from the start position.

 METHODS OF BYTEARRAYINPUTSTREAM

The ByteArrayInputStream class provides implementations for different
methods present in the InputStream class.

read() Method

 read() –
It reads the single byte from the array present in the input stream.

 read(byte[] array) –
It reads bytes from the input stream and stores in the specified array.

 read(byte[] array, int start, int length) –
It reads the number of bytes equal to length from the stream and stores in
the specified array starting from the position start.

EXAMPLE: BYTEARRAYINPUTSTREAM TO READ DATA

 Program 6.3

import java.io.ByteArrayInputStream;

class Program3
{
 public static void main(String[] args)
 {

 // Creates an array of byte
byte[] array = {1, 2, 3, 4};

 try
 {
ByteArrayInputStream input = new ByteArrayInputStream(array);

System.out.print("The bytes read from the input stream: ");

for(int i= 0; i<array.length; i++)
 {

 // Reads the bytes

mu
no
tes
.in

I/O Streams

93

 int data = input.read();
System.out.print(data + ", ");
 }
input.close();
 }

catch(Exception e)
 {
e.getStackTrace();
 }
 }
}

Output:

In the above example, we have created a byte array input stream
named input.

ByteArrayInputStream input = new ByteArrayInputStream(array);

Here, the input stream includes all the data from the specified array.

To read data from the input stream, we have used the read() method.

6.4 JAVA OUTPUTSTREAM CLASS

The OutputStream class of the java.io package is an abstract superclass
that represents an output stream of bytes.

Since OutputStream is an abstract class, it is not useful by itself.
However, its subclasses can be used to write data.

 SUBCLASSES OF OUTPUTSTREAM

In order to use the functionality of OutputStream, we can use its
subclasses. Some of them are:

 FileOutputStream
 ByteArrayOutputStream
 ObjectOutputStream
 BufferedOutputStream

 CREATE AN OUTPUTSTREAM

In order to create an OutputStream, we must import the
java.io.OutputStream package first. Once we import the package, here is
how we can create the output stream.

mu
no
tes
.in

Core JAVA

94

 // Creates an OutputStream

 OutputStream object = new FileOutputStream();

Here, we have created an object of output stream using File Output
Stream. It is because OutputStream is an abstract class, so we cannot
create an object of OutputStream.

 METHODS OF OUTPUTSTREAM

The OutputStream class provides different methods that are implemented
by its subclasses. Some of the methods are as follows:

 write() -
It writes the specified byte to the output stream.

 write(byte[] array) –
It writes the bytes from the specified array to the output stream.

 flush() –
It forces to write all data present in output stream to the destination.

 close() –
It closes the output stream.

6.4.1 JAVA FileOutputStream CLASS

The FileOutputStream class of the java.io package can be used to write
data (in bytes) to the files. It extends the OutputStream abstract class.

 CREATE A FILEOUTPUTSTREAM

In order to create a file output stream, we must import
the java.io.FileOutputStream package first.

Once we import the package, we can create a file output stream in Java as
follows.

1. Using the path to file

 // Including the boolean parameter

FileOutputStream output = new FileOutputStream(String path,
boolean value);

 // Not including the boolean parameter

FileOutputStream output = new FileOutputStream(String path);

Here, we have created an output stream that will be linked to the file
specified by the path.

mu
no
tes
.in

I/O Streams

95

Also, value is an optional boolean parameter. If it is set to true, the new
data will be appended to the end of the existing data in the file. Otherwise,
the new data overwrites the existing data in the file.

2. Using an object of the file

FileOutputStream output = new FileOutputStream(File fileObject);

Here, we have created an output stream that will be linked to the file
specified by fileObject.

EXAMPLE: OUTPUTSTREAM USING FILEOUTPUTSTREAM

Program6.4

import java.io.FileOutputStream;

import java.io.OutputStream;

class Program1

{

public static void main(String args[])

 {

 String data = "This is a line of text inside the file.";

 try

 {

OutputStream out = new FileOutputStream("output.txt");

 // Converts the string into bytes

byte[] dataBytes = data.getBytes();

 // Writes data to the output stream

out.write(dataBytes);

System.out.println("Data is written to the file successfully.");

 // Closes the output stream

out.close();

 }

catch (Exception e)

{

 e.getStackTrace();

mu
no
tes
.in

Core JAVA

96

 }

 }

}

When we run the program, the output.txt file is filled with the following
content.

Output.txt file filled with content

In the above example, we have created an output stream using
the FileOutputStream class. The output stream is now linked with the
file output.txt.

OutputStream out = new FileOutputStream("output.txt");

To write data to the output.txt file, we have implemented following
methods.

 out.write(); // To write data to the file

 out.close(); // To close the output stream

6.4.2 Java ByteArrayOutputStream CLASS

The ByteArrayOutputStream class of the java.io package can be used to
write an array of output data (in bytes).It extends the Output
Stream abstract class.

 CREATE a ByteArrayOutputStream

In order to create a byte array output stream, we must import
the java.io.ByteArrayOutputStream package first.

Once we import the package, here is how we can create an output stream.

 // Creates a ByteArrayOutputStream with default size

 ByteArrayOutputStream out = new ByteArrayOutputStream();

Here, we have created an output stream that will write data to an array of
bytes with default size 32 bytes. However, we can change the default size
of the array.

mu
no
tes
.in

I/O Streams

97

// Creating a ByteArrayOutputStream with specified size

ByteArrayOutputStream out = new ByteArrayOutputStream(int
size);

Here, the size specifies the length of the array.

 METHODS OF ByteArrayOutputStream

The ByteArrayOutputStream class provides the implementation of the
different methods present in the OutputStream class.

write() Method

 write(int byte) –
It writes the specified byte to the output stream.
 write(byte[] array) –
It writes the bytes from the specified array to the output stream.
 write(byte[] arr, int start, int length) –
It writes the number of bytes equal to length to the output stream from an
array starting from the position start.
 writeTo(ByteArrayOutputStream out1) –
It writes the entire data of the current output stream to the specified output
stream.

EXAMPLE: ByteArrayOutputStreamTO WRITE DATA

Program 6.5

import java.io.ByteArrayOutputStream;

class Program4

{

 public static void main(String[] args)

 {

String data = "Hello all";

try

 {

 // Creates an output stream

 ByteArrayOutputStream out = new ByteArrayOutputStream();

byte[] array = data.getBytes();

// Writes data to the output stream

out.write(array);

mu
no
tes
.in

Core JAVA

98

 // Retrieves data from the output stream in string format

 String streamData = out.toString();

System.out.println("Output stream: " + streamData);

out.close();

 }

catch(Exception e)

 {

e.getStackTrace();

 }

 }

}

Output:

In the above example, we have created a byte array output stream
named output.

ByteArrayOutputStream output = new ByteArrayOutputStream();

To write the data to the output stream, we have used the write() method.

To close the output stream, we can use the close() method.

6.5 JAVA READER

Java Reader is an abstract class for reading character streams. The only
methods that a subclass must implement are read(char[], int, int) and
close().

Some of the
implementation class are BufferedReader, CharArrayReader, FilterReader,
 InputStreamReader,

PipedReader, StringReader

Program 6.6

import java.io.*;

mu
no
tes
.in

I/O Streams

99

class ReaderExample

{

 public static void main(String[] args)

 {

 try

 {

 Reader reader = new FileReader("file.txt");

 int data = reader.read();

 while (data != -1)

 {

System.out.print((char) data);

 data = reader.read();

 }

reader.close();

 } catch (Exception ex)

 {

System.out.println(ex.getMessage());

 }

 }

}

It is file.txthaving content “I love my India.”

Output:

mu
no
tes
.in

Core JAVA

100

Java Writer
It is an abstract class for writing to character streams. The methods that a
subclass must implement are write(char[], int, int), flush(), and close().

Program 6.7
import java.io.*;

public class WriterExample

{

 public static void main(String[] args)

 {

 try

 {

 Writer w = new FileWriter("output1.txt");

 String content = "I love my country";

w.write(content);

w.close();

System.out.println("Success");

 }
 catch (IOException e)

 {

e.printStackTrace();

 }

 }

}

Output:

Content is written to file output1.txt

output1.txt:

mu
no
tes
.in

I/O Streams

101

6.6 SUMMARY

An I/O Stream represents an input source or an output destination. A
stream can represent many different kinds of sources and destinations,
including disk files, devices, other programs, and memory arrays.

Streams support many different kinds of data, including simple bytes,
primitive data types, localized characters, and objects. Some streams
simply pass on data; others manipulate and transform the data in useful
ways.

6.7 TEXTBOOKS

Herbert Schildt, Java The Complete Reference, Ninth Edition, McGraw-
Hill Education, 2014

6.8 QUESTIONS

1) What is stream? Explain the types of stream.

2) Explain the difference between input & output stream class?

mu
no
tes
.in

 102

7
NETWORKING

Unit Structure

7.1 Introduction

7.2 Java networking terminology

7.3 Java networking classes

7.4 Java networking interfaces

7.5 Java socket programming

 7.5.1 Socket class

 7.5.2 ServerSocket class

7.6 Summary

7.7 Reference

7.8 Questions

7.1 INTRODUCTION

Networking is a concept of connecting two or more computing devices
together so that we can share resources. Java socket programming
provides facility to share data between different computing devices.

The java.net package supports two protocols:

1. TCP:

TCP stands for Transmission Control Protocol. It provides reliable
communication between the sender and receiver.

It is used along with the Internet Protocol referred as TCP/IP. TCP is a
connection-oriented protocol which means that once a connection is
established, data can be transmitted in two directions. This protocol is
typically used over the Internet Protocol. Therefore, TCP is also referred
to as TCP/IP.

TCP has built-in methods to examine for errors and ensure the delivery
of data in the order it was sent, making it a complete protocol for
transporting information like still images, data files, and web pages.

2. UDP:

UDP stands for User Datagram Protocol. It provides a connection-less
protocol service by allowing packet of data to be transferred along two or

mu
no
tes
.in

Networking

103

more nodes. It allows data packets to be transmitted between different
applications.

UDP is a simple Internet protocol in which error-checking and recovery
services are not required. In UDP, there is no overhead for opening a
connection, maintaining a connection, or terminating a connection. In
UDP, the data is continuously sent to the recipient, whether they receive
it or not.

7.2 JAVA NETWORKING TERMINOLOGY

Java Networking Terminologies are given as follows:

1. IP Address

An IP address is a unique address assigned to a device that distinguishes
a device on the internet or a local network.

IP stands for “Internet Protocol.” It comprises a set of rules governing
the format of data sent via the internet or local network. It is composed
of octets. The range of each octet varies from 0 to 255.

 Range of the IP Address – 0.0.0.0 to 255.255.255.255

 IP address Example – 192.168.0.1

2. Protocol

A network protocol is an organized set of commands that define how
data is transmitted between different devices in the same network.
Network protocols are the reason through which a user can easily
communicate with people all over the world and thus play a critical role
in modern digital communications.

For Example – Transmission control protocol(TCP), File Transfer
Protocol (FTP), Post Office Protocol(POP), etc.

3. MAC Address

MAC address stands for Media Access Control address. It is a
identifier that is allocated to a NIC (Network Interface Controller/ Card).
It contains a 48 bit or 64-bit address, which is combined with the
network adapter. MAC address can be in hexadecimal composition. In
simple words, a MAC address is a unique number that is used to track a
device in a network.

4. Socket

A socket is an endpoint of a two-way communication connection
between the two applications running on the network. The socket
mechanism presents a method of inter-process communication (IPC) by
setting named contact points between which the communication occurs.
A socket is bound to a specific port number so that the TCP layer can
identify the application to which the data is intended to be sent to.

mu
no
tes
.in

Core JAVA

104

5. Connection-oriented and Connection-less protocol

In a connection-oriented service, the user must establish a connection
before starting the communication. When the connection is established,
the user can send the message or the information, and after this, they can
release the connection.

In connectionless protocol, the data is transported in one route from
source to destination without verifying that the destination is still there
or not or if it is ready to receive the message. Authentication is not
needed in the connectionless protocol.

 Example of Connection-oriented Protocol

Transmission Control Protocol (TCP)

 Example of Connectionless Protocol

User Datagram Protocol (UDP)

6. Port Number

A port number is a way to recognize a process connecting internet or
other network information when it reaches a server. The port number is
used to identify different applications uniquely and behaves as a
communication endpoint among applications. The port number is
associated with an IP addressfor transmission and communication among
two applications. There are 65,535 port numbers, but not all are used
every day.

7.3 JAVA NETWORKING CLASSES

The java.net package of the Java programming language includes
various classes that provide an easy-to-use means to access network
resources. The classes covered in the java.net package are given as
follows –

1. CacheRequest

This class is used in java whenever there is a need to store resources in
ResponseCache. The objects of this class provide an edge for the
OutputStream object to store resource data into the cache.

2. CookieHandler

This class is used in Java to implement a callback mechanism to hook up
an HTTP state management policy implementation inside the HTTP
protocol handler. The HTTP state management mechanism specifies the
mechanism of how to make HTTP requests and responses.

3. CookieManager

This class is used to provide a precise implementation of CookieHandler.
This class separates the storage of cookies from the policy surrounding

mu
no
tes
.in

Networking

105

accepting and rejecting cookies. A CookieManager comprises a
CookieStore and a CookiePolicy.

4. DatagramPacket

This class is used for the connectionless transfer of messages from one
system to another. This class provides tools to produce datagram packets
for connectionless transmission by applying the datagram socket class.

5. InetAddress

This class is used to provide methods to get the IP address of any
hostname. An IP address is represented by a 32-bit or 128-bit unsigned
number. InetAddress can handle both IPv4 and IPv6 addresses.

6. ServerSocket

This class is used for implementing system-independent implementation
of the server-side of a client/server Socket Connection. The constructor
for ServerSocket class throws an exception if it can’t listen on the
specified port.

For example –

It will throw an exception if the port is already in use.

7. Socket

This class is used to create socket objects that help users in
implementing all fundamental socket operations. The users can
implement various networking actions such as sending, reading data, and
closing connections.

Each Socket object is built using java.net.Socket class that has been
connected exactly with 1 remote host; for connecting to another host, a
user must create a new socket object.

8. DatagramSocket

This class is a network socket that provides a connection-less point for
sending and receiving packets. Datagram Sockets is Java’s mechanism
for providing network communication via UDP instead of TCP. Every
packet sent from a datagram socket is individually routed and delivered.
It can further be practiced for transmitting and accepting broadcast
information.

9. Proxy

A proxy is a kind of tool or program or system, which serves to preserve
the data of its users and computers. It behaves like a wall between
computers and internet users. A Proxy Object represents the Proxy
settings to be applied with a connection.

mu
no
tes
.in

Core JAVA

106

10. URL

The URL class in Java is the entry point to any available sources on the
internet. A Class URL describes a Uniform Resource Locator, which is
a signal to a “resource” on the World Wide Web.

A source can be a simple file or directory, or it can indicate a more
difficult object, such as a query to a database or a search engine.

7.4 JAVA NETWORKING INTERFACES

The java.net package of the Java programming language includes
various interfaces that provide an easy-to-use means to access network
resources. The interfaces included in the java.net package are as
follows:

1. CookiePolicy

The CookiePolicy interface in the java.net package provides the classes
for implementing various networking applications. It decides which
cookies should be accepted and which should be rejected.

In CookiePolicy, there are three pre-defined policy implementations,
namely ACCEPT_ALL, ACCEPT_NONE, and
ACCEPT_ORIGINAL_SERVER.

2. CookieStore

A CookieStore is an interface that describes a storage space for cookies.
CookieManager combines the cookies to the CookieStore for each HTTP
response and recovers cookies from the CookieStore for each HTTP
request.

3. FileNameMap

The FileNameMap interface is an uncomplicated interface that
implements a tool to outline a file name and a MIME type string.
FileNameMap charges a filename map (known as a mimetable) from a
data file.

4. SocketOption

The SocketOption interface helps the users to control the behavior of
sockets. Often, it is essential to develop necessary features in Sockets.
SocketOptions allows the user to set various standard options.

5. SocketImplFactory

The SocketImplFactory interface defines a factory for SocketImpl
instances. It is used by the socket class to create socket implementations
that implement various policies.

mu
no
tes
.in

Networking

107

6. ProtocolFamily

This interface represents a family of communication protocols.

The ProtocolFamily interface contains a method known as name(), which
returns the name of the protocol family.

7.5 JAVA SOCKET PROGRAMMING

Socket programming is a way of connecting two nodes on a network to
communicate with each other. One socket (node) listens on a specific port
at an IP, while other socket reaches out to the other in order to form a
connection.

Fig. 7.1Client- Server communication

The server forms the listener socket while the client reaches out to the
server.

Now let’s understand the core concept of Socket Programming i.e. a
socket.

 SOCKET

A socket in Java is one endpoint of a two-way communication link
between two programs running on the network. A socket is bound to a
port number so that the TCP layer can identify the application that data is
destined to be sent to.

Fig. 7.2 Socket

mu
no
tes
.in

Core JAVA

108

An endpoint is a combination of an IP address and a port number. The
package in the Java platform provides a class, Socket which implements
one side of a two-way connection between your Java program and another
program on the network.

The class sits on top of a platform-dependent implementation, hiding the
details of any system from your Java program. By using the class instead
of relying on native code, your Java programs can communicate over the
network in a platform-independent fashion.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are for connection-oriented socket
programming and DatagramSocket and DatagramPacket classes are
used for connection-less socket programming.

The client in socket programming must know these two things:

1. IP Address of Server, and

2. Port number

A client application generates a socket on its end of the communication
and strives to combine this socket with a server. When the connection is
established, the server generates an object of socket class on its
communication end. The client and the server can now communicate by
writing to and reading from the socket.

The java.net.Socket class describes a socket, and the java.net.Server
Socket class implements a tool for the server program to host clients and
build connections with them.

7.5.1 SOCKET CLASS

The Socket class is used to create socket objects that help the users in
implementing all basic socket operations. The users can implement
various networking actions such as sending data, reading data, and
closing connections.

Each Socket object created using java.net.Socket class has been
associated specifically with 1 remote host. If a user wants to connect to
another host, then he must create a new socket object.

Methods of Socket Class

In Socket programming, both the client and the server have a Socket
object, so all the methods under the Socket class can be invoked by both
the client and the server. There are many methods in the Socket class.

mu
no
tes
.in

Networking

109

Sr
No. Method Description

1

public void connect
(Socket Address host, int
timeout)

It is used to connect the socket to the specified
host. This method is required only when the user
instantiates the Socket applying the no-argument
constructor.

2 public int get Port()
It is used to return the port to which the socket is
pinned on the remote machine.

3
public Inet Address get
Inet Address()

It is used to return the location of the other
computer to which the socket is connected.

4 public int getLocalPort()
It is used to return the port to which the socket is
joined on the local machine.

5
public Socket Addressget
Remote Socket Address() It returns the location of the remote socket.

6
public Input Streamget
Input Stream()

 It is used to return the input stream of the socket.
This input stream is combined with the output
stream of the remote socket.

7
public Output Streamget
Output Stream()

It is used to return the output stream of the socket.
The output stream is combined with the input
stream of the remote socket.

8 public void close()

It is used to close the socket, which causes the
object of the Socket class to no longer be able to
connect again to any server.

7.5.2 SERVERSOCKET CLASS
The ServerSocket class is used for providing system-independent
implementation of the server-side of a client/server Socket Connection.

The constructor for ServerSocket class throws an exception if it can’t
listen on the specified port. For example –

It will throw an exception if the port is already in use.

mu
no
tes
.in

Core JAVA

110

Methods of Server Socket Class:
Methods of the Server Socket class are as follows:

Sr
No. Method Description

1
public int get Local
Port()

This method of Server Socket class is
used to give the port number of the
server on which this socket is listening.
If the socket was bound before being
closed, then this method will continue to
return the port number after the socket is
closed.

2
public void set So
Timeout (int timeout)

It is used to set the time-out value for
the time in which the server socket
pauses for a client during the accept ()
method. The timeout value should be
greater than 0 otherwise, it will throw an
error.

3 Public Socket accept ()

This method waits for an incoming
client. This method is blocked till either
a client combines to the server on the
specified port or the socket times out,
considering that the time-out value has
been set using the setSoTimeout()
method. Otherwise, this method will be
blocked indefinitely.

4

public void bind
(Socket Address host,
int backlog)

This method is used to bind the socket
to the specified server and port in the
object of Socket Address. The user
should use this method if he has
instantiated the Server Socket using the
no-argument constructor.

Program 7.1 Example of Java Socket Programming
Creating Server:
To create the server application, we need to create the instance of Server
Socket class.

Here, we are using 6666 port number for the communication between the
client and server. You can also choose any other port number.

mu
no
tes
.in

Networking

111

The accept() method waits for the client. If clients connect with the given
port number, it returns an instance of Socket.

ServerSocket ss=new ServerSocket(6666);

Socket s= ss.accept();//establishes connection and waits for the client

Creating Client:

To create the client application, we need to create the instance of Socket
class.

Here, we need to pass the IP address or hostname of the Server and a port
number. Here, we are using "localhost" because our server is running on
same system.

Socket s=new Socket("localhost",6666);

Let's see a simple example of Java socket programming where client sends
a text message, server receivesand prints it.

Filename: MyServer.java

import java.io.*;

import java.net.*;

public class MyServer

{

public static void main(String[] args)

{

try

{

ServerSocket ss=new ServerSocket(6666);

Socket s=ss.accept(); //establishes connection

DataInputStream dis=new DataInputStream(s.getInputStream());

String str=(String)dis.readUTF();

System.out.println("message= "+str);

ss.close();

}

catch(Exception e)

{

System.out.println(e);

mu
no
tes
.in

Core JAVA

112

}

}

}

File: MyClient.java
import java.io.*;

import java.net.*;

public class MyClient

{

public static void main(String[] args)

{

try

{

Socket s= new Socket("localhost",6666);

DataOutputStreamdout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Hello Server");

dout.flush();

dout.close();

s.close();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

To run on Terminal or Command Prompt

Open two windows one for Server and another for Client.

mu
no
tes
.in

Networking

113

1. First run the Server application (MyServer.java). It will show:

2. Then run the Client application (MyClient.java) on another terminal. It
will show:

and the server accepts the client and a message will be displayed on the
server console.

Program 7.2 Example of Java Socket Programming (Read-Write both
side)

In this example, client will write first to the server then server will receive
and print the text.

Then server will write to the client, client will receive and print the text.

The step goes on.

File: MyServer1.java

import java.net.*;

mu
no
tes
.in

Core JAVA

114

import java.io.*;

class MyServer1

{

public static void main(String args[]) throws Exception

{

ServerSocket ss=new ServerSocket(3333);

Socket s=ss.accept();

DataInputStream din=new DataInputStream(s.getInputStream());

DataOutputStreamdout=new DataOutputStream(s.getOutputStream());

BufferedReaderbr=new BufferedReader(new
InputStreamReader(System.in));

String str="",str2="";

while(!str.equals("stop"))

{

str=din.readUTF();

System.out.println("client says: "+str);

str2=br.readLine();

dout.writeUTF(str2);

dout.flush();

}

din.close();

s.close();

ss.close();

}

}

File: MyClient1.java

import java.net.*;

import java.io.*;

class MyClient1

{

mu
no
tes
.in

Networking

115

public static void main(String args[])throws Exception

{

Socket s=new Socket("localhost",3333);

DataInputStream din=new DataInputStream(s.getInputStream());

DataOutputStreamdout=new DataOutputStream(s.getOutputStream());

BufferedReaderbr=new BufferedReader(new
InputStreamReader(System.in));

String str="",str2="";

while(!str.equals("stop"))

{

str=br.readLine();

dout.writeUTF(str);

dout.flush();

str2=din.readUTF();

System.out.println("Server says: "+str2);

}

dout.close();

s.close();

}

}

First run the Server application. It will show:

mu
no
tes
.in

Core JAVA

116

Then run the Client application on another terminal. It will show:

and the server accepts the client

Then you can start typing messages in the Server and Client window.

7.6 SUMMARY

Networking is a concept of connecting two or more computing devices
together so that we can share resources. Java socket programming
provides facility to share data between different computing devices.

7.7 REFERENCE

1) E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

2) Programming in JAVA, 2nd Ed, Sachin Malhotra &SaurabhChoudhary,
Oxford Press

7.8 QUESTIONS

1) Write a short note on java.net package.

2) What is socket? Explain the Socket Class with example.

mu
no
tes
.in

 117

Unit III

8
WRAPPER CLASSES

Unit Structure

8.0 Objective

8.1 Introduction

8.2 Types of Wrapper classes

8.3 Summary

8.4 Exercise

8.5 Reference

8.0 OBJECTIVE

Objective of this chapter is to learn

1. Need of objects and primitive data types
2. How to convert primitive data types to objects and vies-a-versa
3. Autoboxing and unboxing feature of Java5

8.1 INTRODUCTION:

As you know Java supports primitive data types and non-primitive data
types. In programming, many cases, there is need of object representation.
In such standard representation primitive data types are not suitable. For
example,

1. Data structures implemented by java uses collection of objects.

2. To maintain the state of the data while sending it to remote machine,

java objects are serialized. Serialization is the process of converting an
object type to byte stream so that data can transfer over the network.
Similarly at receiver side once data is received, those byte stream data
need to convert into an object. This process is called Deserialization.

A wrapper class provides the mechanism of converting primitive data type
to an objects and object into primitive data types. Table 9.1 shows the
primitive data types and their respective wrapper class

mu
no
tes
.in

Core JAVA

118

Table 8.1 Primitive types and their Wrappers

Primitive types Wrapper classes

boolean Boolean

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

In Next session lets discuss in detail about each class.

8.2 WRAPPER CLASSES

Boolean

Methods Description

Boolean(boolean b) Creates the Boolean object which holds the
same Boolean value as that of b

Ex: boolean b=True;

Boolean b1= Boolean(b)

Boolean(String b) Creates the Boolean object which holds the
same Boolean value as that of String variable b
ex: String b=”True”;

Boolean b1= Boolean(b)

booleanbooleanValue() Returns primitive boolean equivalent value of
Boolean object

boolean b=b1.booleanValue();

mu
no
tes
.in

Wrapper Classes

119

Following program 8.1, demonstrate the use of boolean wrapper class

Program 8.1: Use of Boolean wrapper class

public class booeandemo{
 public static void main(String []args)
 {
boolean b=true;
 Boolean b1=new Boolean(b);
System.out.println("Boolean object --> "+b1);
 String s="False";
 b1=new Boolean(s);
System.out.println("Boolean object --> "+b1);
System.out.println("Boolean object to primitive value -->
"+b1.booleanValue());
 }
}

Output:
Boolean object --> true

Boolean object --> false

Boolean object to primitive value --> false

Table 8.2 shows the listing of other wrapper classes and their methods

Table 8.2: Wrapper classes and their methods

Wrapper
class

Method Description

Integer Integer(int intval)

Integer(String intval)
throws
NumberFormatException

Creates an Integer objects from
int value

Creates an Integer objects from
String coded int value.

Ex: String intval=”10”;

If intval is not in above form
then it throws the
NumberFormatException

Refer program 8.2

int intValue() Return the int value present in
Integer Object.

mu
no
tes
.in

Core JAVA

120

Byte Byte(byte b)

Byte(String b) throws
NumberFormatException

Creates Byte objects from byte
value

Creates Byte objects from String
coded byte value.

Byte byteValue() Return the byte value present in
Byte Object.

Short Short(short sh)

Short(String sh) throws
NumberFormatException

Creates Short objects from short
value

Creates Short objects from
String coded short value.

Short shortValue() Return the short value present in
Short Object.

Long Long(long l)

Long(String l) throws
NumberFormatException

Creates Long objects from long
value

Creates Long objects from
String coded long value.

long longValue() Return the long value present in
Long Object.

Float Float(float f)

Float(String f) throws
NumberFormatException

Creates Float objects from float
value

Creates Float objects from
String coded float value.

Float floatValue() Return the float value present in
Float Object.

Double Double(double d)

Double(String d) throws
NumberFormatException

Creates Double objects from
double value

Creates Double objects from
String coded double value.

Double doubleValue() Return the double value present
in Double Object.

Character Character(char ch)

Creates Character objects from
char value

 Character charValue() Return the char value present in
Character Object.

 Use of wrapper classes in java program will be similar as demonstrated in
program 8.1.

mu
no
tes
.in

Wrapper Classes

121

Program 8.2: Demonstrate use of Integer Wrapper class and
NumberFormatException

public class wrapperdemo

{
 public static void main(String []args)
 {
 String s="10";
 Integer n1=new Integer(s);
System.out.println("Integer object --> "+n1);
 String s1="Ten";
 Integer n2=new Integer(s1);
System.out.println("Integer value --> "+n2);
 }
}

Integer object --> 10
Exception in thread "main" java.lang.NumberFormatException: For input
string: "Ten"
 At
java.lang.NumberFormatException.forInputString(NumberFormatExceptio
n.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.<init>(Integer.java:867)
 at booeandemo.main(booeandemo.java:8)

8.3 AUTOBOXING AND UNBOXING

Java 5 supports automatic conversion of primitive data type into its
corresponding wrapper class. It is known as autoboxing. The reverse of it
is called as unboxing. Program 8.3 shows the autoboxing and unboxing.

Program 8.3: Demo of AutoBoxing and Unboxing

import java.util.*;
public class wrapperdemo{
 public static void main(String []args)
 {
 int s=12;
 Integer n1=s; //autoboxing
 Integer [] n2={20,30}; //autoboxing

mu
no
tes
.in

Core JAVA

122

ArrayList<Integer> a1 = new ArrayList<Integer>();
 a1.add(n1);
 a1.add(n2[0]);
 a1.add(n2[1]);
System.out.println("Elements in arraylist are--> "+a1);
 if(n1<10) //unboxing
System.out.println(n1+" is smaller than 10 ");
 else
System.out.println(n1+" is larger than 10");
 }
}

Output:
Elements in arraylist are--> [12, 20, 30]

12 is larger than 10

8.4 SUMMARY:

1. For handling the collection of objects required primitive data in
object form

2. Wrapper classes wrapped the primitive data and present them in
object form

3. There are Long, Short, Byte, Integer, Float, Double, Character,
Boolean wrapper classes in java

4. xxxValue() method used to convert xxx type object into primitive
data form.

8.5 EXERCISE:

1. What is wrapper class?
2. Create a list of integer values 10,20,30,40,50.
3. What is autoboxing and unboxing?

8.6 REFERENCES:

1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

3. Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

4. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

mu
no
tes
.in

 123

9
COLLECTION FRAMEWORK

Unit Structure

9.0 Objective

9.1 Introduction to Collections Framework

9.2 Util package

9.3 List

9.4 Set

9.5 Map

9.6 List interface & its classes

9.6.1 ArrayList

9.6.2 LinkedList

9.7 Set interface & its classes

9.7.1 HashSet

9.7.2 TreeSet

9.8 Map interface & its classes

9.8.1 HashMap

9.8.2 TreeMap

9.8.3 Iterator

9.9 Summary

9.10 Exercise

9.11 Reference & Bibliography

9.0 OBJECTIVE

Objective of this Chapter is to provide
 Detail insight of Collection Framework
 Use of various framework classes such as List, Set, Map in Java

language
 Understanding of use of collection classes in various application

9.1 INTRODUCTION TO COLLECTIONS
FRAMEWORK:

Collection means group of things. For example, collection of coins called
a bunch, collection of tickets. Similarly,in computing collection of data in
a one unit which helps to store, manipulate the data easily.

mu
no
tes
.in

Core JAVA

124

Collection framework is a framework which is use to represent the data
and helps in manipulating the data in easy way. Each collection
framework provides the methods to represent the data (Interface),
manipulate the data (Implementations) and algorithms to search, sort the
data efficiently.

Collection framework provides high performance by allowing the
programmer to implement the defined data structures and algorithms. Low
level complexities for defining the data structure and the algorithms are
eliminated. Instead, use of appropriate Collection framework for defining
and manipulating the group of data is required.

9.2 UTIL PACKAGE

Utility classes such as Collection framework, event, date and time,
internationalization, currency, StringTokenizer are present in the java.util
package. Lets see Collection framework in detail.

Collection framework provides different Interfaces for representing the
data. Figure 9.1 shows the collection framework hierarchy.

Figure 9.1: Collection Interfaces

Collection Interface: It is a super interface and provides the basic methods
such as addition of element in collection, removal of element, etc. Table
9.1 shows the basic methods supported by Collection interface.

Table 9.1- Methods of Collection Interface

Method Description

Boolean add (Object
element)

Add single element into collection

Boolean remove (Object
element)

Remove single element from the collection

int size() Return the size of collection

boolean isEmpty() Returns true if collection is empty otherwise
false

boolean contains (Object
element)

Returns if element is present in the collection
otherwise false

mu
no
tes
.in

Collection Framework

125

Boolean contains All
(Collection collection)

Returns true if collection is a subset of
current collection otherwise false

boolean add All
(Collection collection)

Returns true if all elements of collection are
added to current collection

void remove All
(Collection collection)

Returns true if all elements of collection are
removed from current collection

void retain All (Collection
collection)

It retains all the elements of current
collectionwhich are present in the collection
and removes the elements that are not in
collection (similar to intersection)

void clear() Removes all elements from the collection
Iterator iterator() start to finish traversal in collection is

possible using Iterator interface object. This
method gives reference to the Iterator
Interface hence its methods can be used.

9.3 LIST INTERFACE:

List is the interface derived from Collection interface. List allows the
duplicates and stores the elements in order. List maintains the position-
oriented collection of objects. Table 9.2 shows the methods of list
interface.

Table 9.2- Methods of List Interface

Method Description
void add(int index, Object
element)

Insert an elements at specific index
location

boolean addAll(int index,
Collection collection)

Insert all elements of collection at
specific index location.

Object get(int index) Returns the element present at
specified index position

int indexOf(Object element) Returns an index value of specified
element

int lastIndexOf(Object element) Returns the last index of elements
specified. If the element is not present
in the list then it returns -1

Object remove(int index) Returns an element which is present at
specified index position.

Object set(int index, Object
element)

It replaces the element present at the
specified index position with new
element.

List subList(int fromIndex, int
toIndex)

Returns the sub-list from- to index
position

mu
no
tes
.in

Core JAVA

126

9.4 THE SET INTERFACE:

Set is the derived from Collection interface and does not allow the
duplication of elements.If we try to add duplicate element using add
method, it returns false. Set does not have any additional method. All
methods are inherited from Collection interface (please refer Table 9.1).

9.5 MAP INTERFACE:

Map is not inherited from Collection interface. Map interface allows the
collection of elements in the form of key-value pair. With the help of the
key, value can be searched. Keys duplication is not allowed but value may
be duplicated. Table 9.3 listed the methods of Map interface.

Table 9.3 shows the methods of Map interface.

Method Description

Object put (Object key, Object
value)

Insert an object in a MAp

Object remove (Object key) Removes an object having specified
key from Map

void putAll(Map mapping) Put all the elements specified in the
Map.

void clear () All map entries are cleared

Object get(Object key) Returns an element whose key is
mention

boolean containsKey(Object key) Returns true if key is in Map
otherwise false

boolean containsValue(Object
value)

Returns true if the value is present in
map otherwise false

boolean isEmpty() Returns true if Map is empty
otherwise false

int size() Returns the size or number of
elements present in the map

public Set keyset () Returns Set of keys present in map

public Collection values() Returns all values in Collection form

public Set entrySet() Returns Set of all elements in key and
value pair form

mu
no
tes
.in

Collection Framework

127

9.6 LIST INTERFACE & ITS CLASSES:

Table 9.4 shows the interfaces and their implementation classes.
Interfaces and the classes which implement them.

Interface name Classes

List ArrayList

 LinkedList

Set HashSet

 TreeSet

Map HashMap

 TreeMap

9.6.1 ArrayList class
ArrayList class extends AbstractList class and implements List interface.
ArrayList is a resizable. Arrays in java are fixed in size but arrayList
allows you to create a collection of object which can be accessible like
array and can grow or shrink during execution. Table 9.5 shows the
constructor and methods of ArrayList class

Table 10.5 Methods of ArrayList class

Methods Description

ArrayList() Creates an empty ArrayList object

ArrayList(Collection c) Creates an ArrayList object using existing collection

ArrayList(int capacity) Creates an ArrayList object with some initial capacity

object[] toArray() Converts ArrayList object to an array of object.

The code below demonstrates the use of ArrayList class.

Program 9.1: ArrayList class.

import java.util.*;
public class ArrayListDemo {
 public static void main(String args[])
{
 // Create an array list.
 ArrayList<Integer> al = new ArrayList<Integer>();
 // Add elements to the array list.

mu
no
tes
.in

Core JAVA

128

 al.add(1);
 al.add(2);
 al.add(3);
 al.add(4);
 System.out.println("Contents of ArrayList : " + al);
 // Get the array.
 Integer ia[] = new Integer[al.size()];
 ia = al.toArray(ia);
 int sum = 0;
 // Sum the array.
 for(int i=0;i<ia.length;i++)
 sum += ia[i];
 System.out.println ("Sum of elements of an Array is: " + sum);
}
}

Output:
Contents of ArrayList : [1, 2, 3, 4]
Sum of elements of an Array is: 10

9.6.2 LinkedList class
The LinkedList class extends AbstractSequentialList class and implements
the List, Deque, and Queue interfaces. Table 9.6 shows the constructors
and the methods of LinkedList class.

Table 9.6: Methods of LinkedList class

Methods Description

LinkedList() Creates an empty Linkedlist object.

LinkedList
(Collection c)

Creates Linked list object using existing
collection elements.

void addFirst() Add the elements in the beginning of the list

void addLast() Add the elements at the end of the list

E peekFirst() To obtain the first element of the list, where E
is a type parameter

E peekLast() To obtain/retrieve the last element of the list

mu
no
tes
.in

Collection Framework

129

Program to demonstrate use of LinkedList class

Program 9.2: LinkedList class

import java.util.*;

public class LinkedListDemo {

 public static void main(String args[]) {

 // Create a linked list.

 LinkedList<String> ll = new LinkedList<String>();

 // Add elements to the linked list.

 ll.add("Seeta");

 ll.add("Babita");

 ll.add("Deepak");

 ll.add("Keshav");

 ll.addLast("Zareena");

 ll.addFirst("Amita");

 ll.add(1, "Aarti");

 System.out.println("Original elements of list: " + ll);

 // Remove elements from the linked list.

 ll.remove("Deepak");

 ll.remove(1);

 System.out.println("list elements after deletion: " + ll);

 // Remove first and last elements.

 ll.removeFirst();

 ll.removeLast();

 System.out.println("List elements after deleting first and last: " + ll);

 // Get and set a value.

String val = ll.get(1);

 ll.set(1, val + "_FY");

mu
no
tes
.in

Core JAVA

130

 System.out.println("List after modification: " + ll);

 }

}

Output:

Original elements of list: [Amita, Aarti, Seeta, Babita, Deepak, Keshav,
Zareena]

list elements after deletion: [Amita, Seeta, Babita, Keshav, Zareena]

List elements after deleting first and last: [Seeta, Babita, Keshav]

List after modification: [Seeta, Babita_FY, Keshav]

9.7 SET INTERFACE & ITS CLASSES

9.7.1 HashSet class

HashSet extends AbstractSet and implements Set interface. HashSet uses
the concept of hashing to store the elements. Key is automatically
converted to hash code automatically. We could not able to access the
hash code. Here HashSet does not have its own methods. They are
inherited from the super class and interface it implements. HashSet does
not guarantee the arrangement of the elements in sorted order. Table 9.7
lists constructors of HashSet class.

Table 9.7: Constructors of HashSet class

Methods Description

HashSet() HashSet is used to create a HashSet
which has default initial capacity of
16 elements and fil-ration of 0.75

HashSet(Collection c) Create a HashSet with existing
Collection object.

HashSet(int capacity) Creates a HashSet object with initial
capacity

HashSet(int capacity, float
fillRatio)

Capacity is the numeric value which
tells how many elements in hashSet
Fillratio is the number that tells at
what size, the capacity of HashSet
should be increase automatically.

mu
no
tes
.in

Collection Framework

131

9.7.2 TreeSet class
Objects in TreeSet are stored in ascending order. Object retrieval time is
fast. Figure 9.2 shows the class hierarchy and Table 9.8 shows the
constructors of TreeSet class.

Figure 9.2: TreeSet class hierarchy

Table 9.8 Constructors of TreeSet class

Constructors Description

TreeSet() Creates an empty TreeSet object

TreeSet(Collection c) Create TreeSet object from existing
collection object

TreeSet(Comparator
comp)

Create TreeSet object in order define by the
comparator object.

TreeSet(SortedSet ss) Create TreeSet object from existing
SortedSet object

Program 9.3 demonstrates how to create an object an object and use the
methods of TreeSet class and HashSet class.

Program 9.3 : Demo of TreeSet class and HashSet class

import java.util.*;
public class SetClassDemo {
 public static void main(String args[]) {
 // Create a hash set.
 HashSet<String> hs = new HashSet<String>();
 // Add elements to the hash set.
 hs.add("1");
 hs.add("21");
 hs.add("31");

mu
no
tes
.in

Core JAVA

132

 hs.add("3");
 hs.add("Epsilon");
 hs.add("Omega");
 System.out.println("HashSet-->--> Storing is as per the hash-code
generated automatically "+hs);
 TreeSet<String> ts = new TreeSet<String>();
 ts.add("Beta");
 ts.add("Alpha");
 ts.add("12");
 ts.add("zerba");
 ts.add("Eta");
 ts.add("56");
 System.out.println(" TreeSet-->Elements are in sorted Order "+ts);
 }
}
Output:
HashSet--> Storing is as per the hash-code generated automatically[1, 3,
Epsilon, Omega, 31, 21]
TreeSet-->Elements are in sorted Order [12, 56, Alpha, Beta, Eta, zerba]

9.8 MAP INTERFACE & ITS CLASSES

Figure 9.3 shows the hierarchy of the classes implementing Map interface.
Lets see in detail the implementation and use of these classes.

Figure 9.3: Map Interfaces and classes

9.8.1 HashMap class:

Hashmap class extends AbstractMap and implements Map interface.
Table 9.9 shows constructors of HashMap class.

mu
no
tes
.in

Collection Framework

133

Table 9.9 Constructors of HashMap class

Methods Description

HashMap() Create empty HashMap

HashMap(Map m) Create HashMap with existing
Map elements.

HashMap(int capacity) Create a HashMap with initial
capacity.

HashMap(int capacity, float
fillRatio)

Create a HashMap with initial
capacity and the fill ratio which is
in between 0.0 to 1.0

 Following code demonstrate the use of HashMap

Program 9.4: Demonstrate the use of HashMap

import java.util.*;
public class Student {
 public static void main(String args[]) {
 // Create a hash map.
 HashMap<String, Integer> hm = new HashMap<String, Integer>(2);
 // Put elements to the map
 hm.put("Akash", new Integer(34));
hm.put("Mahesh", new Integer(123));
 hm.put("Prakash", new Integer(137));
System.out.println(hm.get("Akash"));
 // Deposit 1000 into John Doe's account.
 Integer oldmark = hm.get("Akash");
 hm.put("Akash", oldmark + 10);
 System.out.println("Akash new marks : " + hm.get("Akash"));
 }
}

Output:
34
Akash new marks : 44

mu
no
tes
.in

Core JAVA

134

9.8.2 TreeMap class

The TreeMap class is used to implement Map interface. The class is
defined by extending AbstractMap and implementing the NavigableMap
interface. The Objects are stored in a tree structure. In TreeMap key/value
pairs are stored in sorted order and it allows fast retrieval of elements.
Table 9.10 shows the constructors and methods of TreeMap class.

Table 9.10 Constructors of TreeMap class

Methods Description

TreeMap() Constructor used to create an empty
tree map and keys will be sorted in
natural order

TreeMap(Comparator
comp)

Constructor creates an empty tree-
based map and keys will be sorted
using the Comparator object.

TreeMap(Map m) constructor creates a tree map using
existing map elements and keys will
be sorted in natural order.

TreeMap(SortedMap sm) Constructor creates a tree map using
existing SortedMap, and keys will be
sorted in the same order as in
SortedMap sm.

Program shows the demonstration of how to use TreeMap.

Program 9.5: Demonstration of TreeMap

import java.util.TreeMap;

public class TreeMapClass {

public static void main(String[] args) {

// TODO code application logic here

TreeMap tm=new TreeMap();

//adding Elements in TreeMap

tm.put("BSCIT", new Integer(120));

tm.put("MSCIT", new Integer(40));

tm.put("BSCCS", new Integer(40));

System.out.println("TreeMAp Elements");

mu
no
tes
.in

Collection Framework

135

System.out.println(tm);

//remove element from TreeMap

tm.remove("BSCIT");

System.out.println("After Removing TreeMAp Element");

System.out.println(tm);

}

}

Output

TreeMAp Elements

{BSCCS=40, BSCIT=120, MSCIT=40}

After Removing TreeMAp Element

{BSCCS=40, MSCIT=40}

9.8.3 Iterator:
This Iterator Interface is used for any collection to traverse through
collection. It is a cursor which is iterated through the collection to access
or to remove the element from the collection. Table 9.11 shoes the
methods of Iterator Interface.

Table 9.11: Methods of Iterator

Methods Description

boolean
hasNext()

Returns true if collection has more elements in
iteration

Object next(). Returns the next elements in the iteration process
of collection.

void remove() Removes the element from collection the last
elements accessed by iterator .

mu
no
tes
.in

Core JAVA

136

Following code demonstrate the use of Iterator class.

Program 9.6: Demonstration of Iterator Class

import java.io.*;

import java.util.*;

public class IteratorExample {

 public static void main(String[] args)

 {

 ArrayList<String> names = new ArrayList<String>();

 names.add("Akash");

 names.add("Sunil");

 names.add("Anil");

 names.add("Sania");

 names.add("Nirmala");

 // Iterator to iterate the cityNames

 Iterator iterator = names.iterator();

 System.out.println("Names elements : ");

 while (iterator.hasNext())

 System.out.print(iterator.next() + " ");

 }

}

Output:

Names elements:

Akash Sunil Anil Sania Nirmala

9.9 SUMMARY

 Collection interfaces are foundation interfaces for managing the

group of objects.
 Java collection framework supports the List, Set, Map.
 List elements are accessed with index.
 ArrayList, are the classes of List interface.

mu
no
tes
.in

Collection Framework

137

 Set collects unique elements. Treeset uses the concept of tree to store
the data elements whereas Hashset uses hashing techniques.

 HashSet stores the elements in hashTable.
 Map interface allows the mapping between key and value. Map is

implemented using HashMap and TreeMap classes.
 HashMap allows storing null elements but the keys for those

elements must be different.

9.10 EXERCISE

1. What is collection in java? How to define collection of objects?

2. Write a java code to define the list of 10 students’ information.

3. Write the java code to sort the above students’ collection on basis of

their first name.

4. How to convert ArrayList elements to Array?

5. What is the difference between HashSet and ArrayList?

6. What is a difference between ArrayList and LinedList?

7. How to access the elements from HashMap? Write the java code for

the same.

9.11 REFERENCES

1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

3. Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

4. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

mu
no
tes
.in

 138

10
INNER CLASSES

Unit Structure
10.0 Objective

10.1 Introduction

10.2 Inner class/nested class

10.3 Method Local inner class

10.4 Static inner class

10.5 Anonymous inner class

10.6 Summary

10.7 Exercise

10.8 References

10.0 OBJECTIVE:

Objective of this chapter is

 Learn the use of inner classes
 Learn the different type of inner classes
 Learn implementation of classes with the help of anonymous class.

10.1 INTRODUCTION

Inner class is the class which is a member of other class. Inner Class could
not be accessed from outside world. They are accessible to only class
inclosing it. When the developer does not want the outside world to access
some classes then the concept of inner class is useful.

There are four types of inner classes as shown in the table 10.1.

Table 10.1: Types of Inner classes

Sr
No

Type of inner
classes

Description

1 Nested inner class Class created inside the outer class
2 Method Local inner

class
Class created inside the method of outer
class

3 Static inner class Static class inside the outer class
4 Anonymous inner

class
Class created for implementing an interface
or extending the class but it has no name. it
is decided by the compiler

 Let’s see in details the types of inner classes

mu
no
tes
.in

Inner Classes

139

10.2 NESTED INNER CLASS

Class defined inside the other class is called nested class.
For example

Here Inner class can access the methods and data members of outer class
but not a vise a versa. Following code demonstrate the same.

Program 10.1:

public class Outer

{

 int a=10;

 class Inner

 {

 int p=20;

 void show(String a1)

 {

System.out.println(a);

 }

 }

 public void disp()

 {

System.out.println("in disp "+new Inner().p);

 }

 public static void main(String ar[])

class Outer
{
 class Inner
 {
 }
} Outer class scope

Inner class

mu
no
tes
.in

Core JAVA

140

 {

 Outer o1=new Outer();

 o1.disp();

 }

}

Output:

in disp 20

10.3 METHOD LOCAL INNER CLASSES

This type of the class is written inside the method of outer class. The
inner class can access the methods and data members defined in outer
class but class’s own member functions and data is not accessible
outside. The program 10.2 demonstrates the method local inner class.

Program 10.2: Demonstration of method local inner class

public class Outer

{

 int outp=7;

 void outerClassMethod()

 {

System.out.println("inside outerMethod");

 int p=9;

 // Inner class is local to outerMethod()

class Inner

 {

 int inp=10;

 void innerClassMethod()

 {

mu
no
tes
.in

Inner Classes

141

System.out.println("inside innerMethod-->"+p);

System.out.println("inside innerMethod-->"+outp);

 }

 }

 Inner y = new Inner();

y.innerClassMethod();

System.out.println("outside class-->"+y.inp);

 }

 public static void main(String[] args)

 {

 Outer x = new Outer();

x.outerClassMethod();

 }

}

Output:

inside outerMethod

inside innerMethod-->9

inside innerMethod-->7

outside class-->10

Here in this program class Inner is defined inside the method of
outerClassmethod. Scope of the class is limited to the method. Inner
class have an access to the method and data members of outer class but
its own method and data members can not be accessible to outside
method without the object of class.
10.4 ANONYMOUS INNER CLASSES

Anonymous inner class means no name is assigned to the class.
Compiler at the runtime assigns the name to the anonymous class.
Purpose of the anonymous class is to extend the abstract class or
implements an interface without defining the child class explicitly.
Following code demonstrate how to define anonymous class.

mu
no
tes
.in

Core JAVA

142

Program 10.3: Demonstration of anonymous class.

//abstract class defination

abstract class Greet {

 abstract void greetSomeone();

}

//extending abstract class to define its method

class Hello extends Greet {

 void greetSomeone() {

System.out.println("DO greetings --from extended class ");

 }

}

public class HelloTest {

 void anonymousMethod()

 {

 //here use the anonymous class to define the abstract method.

Greet g1= new Greet(){ void greetSomeone(){
System.out.println("Anonymous greeting --from anonymous class");}};

//invoke the abstract method

g1.greetSomeone();

 System.out.println("Anonymous class name "+g1);

 }

 public static void main(String []ar) {

HelloTest h1 =new HelloTest();

System.out.println("Demo class name "+h1);

 Hello h=new Hello();

System.out.println("Extended class name "+h);

h.greetSomeone();

 h1.anonymousMethod();

 }

}

mu
no
tes
.in

Inner Classes

143

Output:
Demo class name HelloTest@6d06d69c
Extended class name Hello@7852e922
DO greeting --from extended class
Anonymous greeting --from anonymous class
Anonymous class name HelloTest$1@4e25154f

Output shows that compiler had created the anonymous class with name
HelloTest$1

10.5 STATIC NESTED CLASS

A static class inside the other (non-static) class is called nested static class.
It is known that static members are directly accessible with the class name
and non-static members are not directly accessible inside the static
method/class scope. Program 10.1 demonstrates the accession of the static
variables.

Program 10.1: Example for accessing the static variable

public class staticdemo {
 static int sp=12;
 int nsp=24;
 public static void main(String ar[])
 {
System.out.println("Static variable --> "+sp);
System.out.println("Non-Static variable --> "+new staticdemo().nsp);
 }
}
Output:
Static variable --> 12
Non-Static variable --> 24

Here static variable is directly accessible in the static main method but not
the same case for the non-static variable. It requires the object reference.

Following program 10.2, demonstrate the use of static nested class.

Program 10.2: Demo of static nested class

public class Outer

{

 static int data=30;

mu
no
tes
.in

Core JAVA

144

 int p=10;

 static class Inner

 {

 int stat_p=20;

 void show()

 {

System.out.println("accessing static data in static class "+ data);

System.out.println("accessing non-static data in static class "+ new
Outer().p);

 }

 }

 void disp()

 {

System.out.println("--accessing static class data in non-static class method
--> "+ new Inner().stat_p);

 }

 public static void main(String args[])

 {

Outer.Innerobj=new Outer.Inner();

obj.show();

 new Outer().disp();

 }

}

Output:
accessing static data in static class 30
accessing non-static data in static class 10
--accessing static class data in non-static class method --> 20

10.6 SUMMARY

The chapter gives the brief introduction about the inner class. Inner classes
restrict the use of data members and member function to the outside
world. Anonymous classes ease the job of implementing the interface and

mu
no
tes
.in

Inner Classes

145

extending abstract class. One can use abstract class or interface without
defining their implementation classes with the help of anonymous class.

10.7 EXERCISE:

1. What is nested class? Why there is a need of nested class?
2. What are the types of nested class?
3. What is the outcome of following program?
public class Excercise1

{

 String s;

 static class Inner

 {

 void innerMethod()

 {

 s = "First problem";

 }

 }

}

4. What is a use ofanonymous inner classes in java?

10.8 REFERENCES:

1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

3. Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

4. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

mu
no
tes
.in

 146

11
AWT

Unit Structure

11.0 Objective

11.1 Introduction,

11.2 Components,

11.3 Containers

11.4 Event-Delegation-Model and Listeners,

11.5 Button

11.6 Label

11.7 CheckBox, and CheckboxGroup

11.8 TextComponents: Text Field and Text Area

11.9 List

11.10 Choice

11.11 Menu

11.12 Layout Managers

11.12.1 FlowLayout

11.12.2 BorderLayout

11.12.3 CardLayout

11.12.4 GridLayout

11.12.5 GridBagLayout

11.12 Summary

11.14 Exercise

11.15 References

11.0 OBJECTIVE

Objective of this chapter is

 To learn how to do GUI programming in Java.

 To understand the components and containers in Java.

 To understand the event Delegation Model in Java Programming

 To understand what is Layout and how to use various layouts in java.

mu
no
tes
.in

AWT

147

11.1 INTRODUCTION

AWT is java’s first User Interface.
AWT are called heavy weight components as they usethe resources of
underline operating system. AWT components will have different look
and fill for the different platforms like windows, Linux, MAC OS etc.
The hierarchy of AWT classes is shown in figure 11.1.

Figure 11.1.: Hierarchy of AWT

11.2 COMPONENTS

Component is anabstract superclass for all visual components in AWT (as
shown in figure 11.1). Component is responsible for the remembering the
background, foreground colour and the font. Table 11.1 shows some of the
methods of Component class
Table 11.1 Methods of Component class

Methods Description

public void setSize(int
width,int height)

Set the size of the component with
specific width and height

public void
setLayout(LayoutManagerm)

Set the layout manager for the component.

public void
setVisible(boolean status)

Set the visibility of control. If status is
true. Control is visible otherwise not.

Public Graphics
getGraphics()

Graphics context is obtained by calling
getGraphics() method.

Void setBackground(Color
c1)

Set the background color of the
component

mu
no
tes
.in

Core JAVA

148

11.3 CONTAINER

Container is where components are added. To nest the component there is
a requirement of container. To place the components at specific location,
to group some components together, containers are used. As shown in
figure 11.1, there are four components in AWT, window, frame, panel,
dialog, and applet. Table 11.2 shows some common methods of Container
class

Table 11.2: Methods of Container class

Methods Description

Componentadd(Component
comp)

Add the component c

void remove(Component c) Removes the component c from
container

Insets getInsets() Insets is the amount of space leave
in between the container and the
window which contains the
container

LayoutManager getLayout()

Get the layout manager of this
container

void removeAll()

Removes all components from
invoking container

Now let’s see the types of the container.

11.3.1 Window:

Window is a top-level container which provides the display surface. It is
not contained within any object. It has no border, title bar, menu bar. We
can’t create window’s object directly. Instead, we use its subclasses Frame
or Dialog.

11.3.2 Frame:

Frame is a subclass of a window and has border, menu bar, and title bar.
Table 11.3 shows the methods and the constructors of Frame class.
Table 11.3 Methods of Frame class

mu
no
tes
.in

AWT

149

Methods Description

Frame() Creates empty frame

Frame(String title) Create a frame with title

Void setTitle(String title)) Sets the title for a frame window

Void setSize(int w, int h) Set the width and height for a frame
window

Void setVisible(boolean v) Set the visibility for frame window. If v
is true frame is visible otherwise not.

Program 11.1 is for frame window using association (creating object of
frame class).

Program 11.1: Frame using Association

import java.awt.*;

public class framedemo{

 framedemo() {

 Frame f=new Frame("Frame window Demo");

 f.setSize(600,500);

 f.setVisible(true);

 }

 public static void main(String args[]){

 framedemo f=new framedemo(); }

}

Output:

Program 11.2 shows how to use Frame class using inheritance.

mu
no
tes
.in

Core JAVA

150

Program 11.2. Frame using Inheritance

import java.awt.*;

public class framedemo extends Frame{

 framedemo() {

 setTitle("Frame using inheritance ");

 setSize(600,200);

 setVisible(true);

 }

 public static void main(String args[]) throws Exception

 { framedemo f=new framedemo(); }

}

Output:

11.3.3 Dialog:
Dialog is a container which required a parent container. This is used for
accepting inputs from user or to display the information to user. It will get
close if parent window will close. Program 11.3 is the demonstration of
how to use Dialog class.

Program 11.3: Dialog class Demo

import java.awt.*;
public class DialogDemo extends Frame {
 public DialogDemo() {
 setTitle("Frame Window");
 setSize(400,600);
 Dialog d = new Dialog(this, false);
 d.setLocation(100, 100);
 d.setTitle("Dialog Window");
 d.setSize(200, 200);

mu
no
tes
.in

AWT

151

 d.setVisible(true);
 setVisible(true);
 }
 public static void main(String args[]) throws Exception

 { DialogDemo f=new DialogDemo(); }
}

Output:

11.3.4 Panel:
Panel does not have borders. It is a simple container use for grouping the
controls. Table 11.4. shows the constructors of Panel class.
Table 11.4: Constructors of Panel class

Methods Description

Panel() Creates the panel object with default
layout manager

Panel(LayoutManager lm) Creates a panel with specific layout
manager

Example:
Panel p=new Panel();
p.add(new Button());
the above code creates the Panel as a window and contains component
Button. Panel is not a main container. Now let’s see how events are
designed in AWT.

11.4 EVENT DELEGATION MODEL AND LISTENERS
IN JAVA:

In GUI based programming, user communicates with the program by
performing certain actions such as button click, key typing, closing and
opening of window etc. This action causes the state change. Here we
define the event as change in state of an object.

For example, we click on submit button present on the form. The form is
submitted means the data gets saved on server and we received page or
message saying your form is submitted successfully.

mu
no
tes
.in

Core JAVA

152

Here the source of the action is Button and its state change means button
gets presses. This change in state causes some activity happen like form
get submitted etc. This whole mechanism is called as Event Handling.

Java uses the event delegation model as shown in figure 11.2.

Figure 11.2: Event delegation model in java

Key components of event delegation model are shown in figure 11.2 with
numbers.

1. Event Source: it is source which generates the events. Components
such as Button, Frame, Textbox etc. are event sources.

2. Events: It is a change in state accurse in object

3. Listeners: They listen for the event which occurs. They get the
notification of the event for which they are registered.

EventObject is the supper class for all the events defines in AWT. Table
11.5 shows the methods of EventObject class

Table 11.5: Methods of EventObject class

Method Description

EventObject(Object source) Constructs the Event object for the
source object

Object getSource() Returns the source object which
regenerates the event

String toString() Returns the string representation of the
event

mu
no
tes
.in

AWT

153

How to write the code for event handling?

Step1: Import java.awt.event.*

Step2: Implement an appropriate listener for the event

Implements the Listener for the event

Ex: public class abc extends Frame implements ActionListener {

Step3: Register the source for the event listener

this.addActionListener(this)

Step4: Implement the even handlers

public void actionPerformed(ActionEvent ae)

{

}

Table 11.6 shows the list event and respective event listeners for the
various components.

Table 11.6: List of controls, Listeners and respective event class

Controls Listeners Event
Handlers

Event Class Trigger time

Button, List,
MenuItem,
TextField

Action
Listener

Public void
action
Performed
(Action
Event ae)

ActionEvent Button Pressed
List Item double
clicked
Menu Item
selected

Checkbox,
Choice, List

ItemListener void item State
Changed (Item
Event ie)

ItemEvent Checkbox item
or List item is
clicked

Canvas,
Dialog,
Frame,
Panel,
Window

Mouse
Listener

void mouse
Pressed (Mouse
Event me)
void mouse
Released
(Mouse Event
me)
void mouse
Entered (Mouse
Event me)
void
mouseExited(M
ouseEvent me)

MouseEvent mouse is
moved, mouse
button is
pressed or
released, etc.

mu
no
tes
.in

Core JAVA

154

Dialog,
Frame

Window-
Listener

void
windowClosing
(Window Event
we)
void window
Opened
(Window Event
we)
void window
Deiconified
(Window Event
we)
void window
Closed
(Window Event
we)
void window
Activated
(Window Event
we)
void window
Deactivated
(Window Event
we)

Window
Event

window is
activated,
deactivated,
window is
closed or
closing

Canvas,
Dialog,
Frame,
Panel,
Window

Mouse
Motion-
Listener

void mouse
Dragged
(Mouse Event
me)
void mouse
Moved (Mouse
Event me)

Mouse Event mouse is
dragged or
moved

Component Key Listener void key
Pressed (Key
Event ke)
void key
Released (Key
Event ke)
void key Typed
(Key Event ke)

Key Event key is pressed,
released and
typed

Text-
Component

TextListener void text
Changed (Text
Event te)

TextEvent Text is
typed/entered in
the textbox

Now let’s see the various controls in AWT with the event they support.

mu
no
tes
.in

AWT

155

11.5 BUTTON:

This is push button when pressed action is triggered. Used for creating
navigational buttons, for submitting the form. Constructors and methods
are shown in table 11.7

Table 11.7: Methods of Button class

Methods Description

Button() Creates the button object with no
label on it

Button(String lbl) Creates the button object with given
label on it

void setLabel(String str) Set the new label for the button

String getLabel() Returns the label of the button on
which this method is called

Void
addActionListener(ActionEvent ae)

Register the button object for
ActionListener

Void
removeActionListener(ActionEvent
ae)

Remove the ActionListener for the
button object.

11.6 LABEL:

It’s a simple component used to display a string. Constructors and
methods are shown in table 11.8. Static fields defined in label class are

1. static int LEFT: the label is placed to left

2. static int RIGHT: the label is placed to right.

3. static int CENTER: the label is placed to centre.

Table 11.8: Methods of Label class

Methods Description

Label() Constructs the label with no caption

Label(String text) Constructs the label with caption

Label(String text, int
alignement)

Constructs the label with caption and
aligned it to the left, right or centre as
specified

Ex: Label(“Name”,Label.CENTER)

mu
no
tes
.in

Core JAVA

156

void setText(String text) Sets the caption/label to the label

String getText() Returns the caption/label of the label

int getAlignment() Returns the alignment value of the label

void setAlignment(int
alignment)

Set the specified alignment value to the
label

Program 11.4 demonstrates the use of Button and Label class

11.7 CHECKBOX AND CHECK BOX GROUP

Checkbox:

It is used to select the option as ‘on’ or ‘off’. When we select or deselect
the checkbox, their states get changed and ItemEvent is fire. Table 11.9
shows the methods of Checkbox class.

Table 11.9: Methods of Checkbox class

Check box Group

It is used to group the checkbox together. Once the group is created, only
one checkbox among the given is selected (like radio button).Table 11.10
shows the methods of Check box Group class

Methods Description

Checkbox() Constructs the checkbox with no
label/string

Checkbox(String label) Constructs the checkbox with
label/string

Checkbox(String label, Boolean
state)

Constructs the checkbox with
label/string and given state

Checkbox(String label, boolean
state, CheckboxGroup chk)

Constructs the checkbox with
label/string, its initial state and its
specified checkbox group

Void addItemListener
(IntemListener al)

It registers the checkbox for item
listener.

Boolean getState() Returns the state of the checkbox.
True if it is selected otherwise false.

mu
no
tes
.in

AWT

157

Table 11.10: Methods of Check box Group class

Methods Description

CheckboxGroup() Create the instance of checkbox group

Checkbox
getSelectedCheckbox()

Returns the selected checkbox from
the group

Program 11.4 demonstrate the use of Checkbox components

11.8 TEXT COMPONENT:

It is a superclass for a TextField and TextArea Class that allows the user to
enter the text.

Text Field and Text Area:

TextField creates a single line where as TextArea for multiline text. Table
11.11 and table 11.12 shows some of the methods of TextField and
TextArea class

Table 11.11: Methods of Textfield class

Methods Description

TextField() Creates TextField component with no text

TextField(String text) Creates TextField component with initial
text

TextField(int n) Creates TextField component with n number
of columns

TextField(String text,int n) Creates TextField component with initial
text and with n columns.

void setText(String t) Set the text t for the textfield

Table 11.12: Methods of TextArea class

Methods Description

TextArea() Creates TextArea component with no text

TextArea (String text) Creates TextArea component with initial
text

TextArea (int row, int
column)

Creates TextArea component with rows and
columns

TextArea (String text, int
row, int column)

Creates TextArea component with initial
text and with rows and columns.

TextArea (String text, int
row, int column, int
scrollbars)

Creates TextArea component with initial
text and with rows and columns with
visibility

void setText(String t) Set the text t for the TextArea

mu
no
tes
.in

Core JAVA

158

Program 11.4 demonstrates the use of TextField class.

Program 11.4: Program demonstrate the use of Button, Label,
Checkbox, TextField

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

public class chkdemo implements ItemListener,ActionListener

{

 Label lbl1,lbl2,lbl3;

 Checkbox checkbox1,checkbox2,r1,r2,r3;

 TextField txtname,t2;

 Button submit;

 CheckboxGroup cbg;

 chkdemo()

 {

 Frame f = new Frame("Checkbox Example");

 f.setLayout(new GridLayout(5,2));

 checkbox1 = new Checkbox("C++");

 lbl1=new Label("Enter your Name");

 lbl2=new Label();

 lbl3=new Label();

 txtname=new TextField();

 submit=new Button("save");

 checkbox2 = new Checkbox("Java", true);

 cbg=new CheckboxGroup();

 r1=new Checkbox("8th",false, cbg);

 r2=new Checkbox("9th",false, cbg);

mu
no
tes
.in

AWT

159

 r3=new Checkbox("10th",false, cbg);

 f.add(lbl1);

 f.add(txtname);

 f.add(checkbox1);

 checkbox1.addItemListener(this);

 checkbox2.addItemListener(this);

 submit.addActionListener(this);

 f.add(checkbox2);

 f.add(r1);f.add(r2);f.add(r3);

 f.add(lbl2);

 f.add(submit);

 f.add(lbl3);

 f.setSize(400,400);

 f.setVisible(true);

 }

 public void itemStateChanged(ItemEvent e)

 {

 if(e.getSource()==checkbox1)

 lbl2.setText("C++: " +
(e.getStateChange()==1?"checked":"unchecked"));

 if(e.getSource()==checkbox2)

 lbl2.setText("Java : " +
(e.getStateChange()==1?"checked":"unchecked"));

 }

 public void actionPerformed(ActionEvent ae)

 {

 if(ae.getSource()==submit)

 {

 lbl3.setText("Dear "+txtname.getText()+ " Your data is saved ");

 }

mu
no
tes
.in

Core JAVA

160

 }

public static void main (String args[])

{

 new chkdemo();

}

}

Output:

11.9 LIST:

This component displays the list of text items. Here user can select one or
multiple items from the list. Table 11.13 lists the methods of the List class.

Table 11.13: Methods of List class

Methods Description

List() Constructs the empty list

List(int num) Constructs the list with number of
lines specified visible.

List(int num, Boolean mode) Constructs the list with number of
lines visible and mode of selection. If
true then list is with multiselects
option otherwise false for single item
select.

void add(String item) Add the given item in the list

mu
no
tes
.in

AWT

161

void add(String item, int index) Add the given item at the given
position in the list

void deselect(int index) Deselects the given item in the list

String getItem(int index) Returns the item present at specified
index position

int getItemCount() Returns the total item present in the
list

String[] getItems() Returns the names of the items
present in the list

int getRows() Returns the count of visible lines in
the list

int getSelectedIndex() Returns the index value of the
selected item in the list

VoidsetMultipleMode(boolean
mode)

Set the multiple selection mode for
the list if value is true otherwise set
single selects

void remove(String item) Removes the specified item from the
list

void select(int index) Selects the item in the given index
position

Following program 11.5, shows the demonstration of List class

Program 11.5: List Demo

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ListDemo implements ActionListener{

 Label lbl;

 Button btnadd;

 List l1,l2;

 ListDemo() {

 Frame f = new Frame();

 l1 = new List(5);

 l2 = new List(5);

 btnadd=new Button("Add");

mu
no
tes
.in

Core JAVA

162

 l1.add("Java Programming");

 l1.add("C Programming");

 l1.add("Python Programming");

 l1.add("C++ Programming");

 l1.add("C#");

 btnadd.addActionListener(this);

 f.add(l1);

 f.add(l2);

 f.add(btnadd);

 f.setSize(400, 400);

 f.setLayout(new FlowLayout());

 f.setVisible(true);

 }

 public void actionPerformed(ActionEvent ae) {

 if(ae.getSource()==btnadd)

 l2.add(l1.getSelectedItem());

 }

public static void main(String args[]) {

 new ListDemo();

}

}

Output:

mu
no
tes
.in

AWT

163

11.10 CHOICE:

Choice is a drop-down list component. User can select any one item from
the list. Every item in the choice has index value. Table 11.14 shows the
methods of Choice class.

Table 11.14: Methods of Choice class

Methods Description

Choice() Constructs the empty choice list

void add(String item) Adds the specified item in the
choice

String getItem(int index) Returns the string/item present in
the given index position

int getItemCount() Returns the number of items in
the choice.

String getSelectedItem() Returns the selected string/item.

int getSelectedIndex() Returns the index value of the
selected string/item.

void insert(String item, int index) Insert the specific item at the
specific given index position.

void remove(int position) Removes the item from the given
index position

void remove(String item) Removes the specified item from
the choice

void removeAll() Remove all items from the
choice.

void addItemListener(ItemListener l) Register the choice component
for the ItemListener

void
removeItemListener(ItemListener l)

Remove the registration of choice
component for the ItemListener

void select(int pos) Selects the item present at
specified index position

void select(String str) Selects the specified item name

mu
no
tes
.in

Core JAVA

164

 Program 11.6 demonstrates the use of Choice component.

Program 11.6: Choice class demo

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ChoiceDemo extends Frame implements ActionListener {

Choice c;

Button b1;

Label lbl;

 ChoiceDemo() {

 // creating a choice component

 c = new Choice();

 b1=new Button("Show");

 lbl=new Label();

 setLayout(new GridLayout(2,2));

 c.add("Mumbai");

 c.add("Delhi");

 c.add("Chennai");

 c.add("Jaipur");

 c.add("Banglore");

 b1.addActionListener(this);

 add(c);

 add(b1);

 add(lbl);

 setSize(200, 200);

 setVisible(true);

 }

 public void actionPerformed(ActionEvent ae)

 {

 if(ae.getSource()==b1)

 lbl.setText(c.getSelectedItem());

 }

public static void main(String args[])

{

mu
no
tes
.in

AWT

165

 new ChoiceDemo();

}

}

Output:

11.11 MENU:

Menu is the list of pop up items associated with top level windows. AWT
provides three classes MenuBar, Menu, and MenuItem. MenuBar has
multiple Menus and each menu can have sub-menus in drop-down list
form. Here MenuItem is the superclass of Menu. CheckboxMenuItem will
create the checkable menu item. Table 11.15 shows the methods of Menu
class.

Table 11.15: Methods of Menu class

Methods Description

Menu() Construct a new menu with no label

Menu(String label) Construct a new menu with label

MenuItem add(MenuItem mi) Add the menu item to the menu

void add(String label) Add the item with given label

void addSeparator() Add separator between menu

int countItems() Returns the items in the menu

void insert(MenuItem menuitem,
int index)

Insert the menu item at specific
given index position

void remove(int index) Removes the item present at given
index position

mu
no
tes
.in

Core JAVA

166

Following program 11.7, demonstrate the use of MenuBar, MenuItem and
Menu class

Program 11.7: Demonstrate the MenuBar, MenuItem, Menu class

import java.awt.*;

public class MenuDemo extends Frame

{

 MenuDemo(){

 setTitle("Menu and MenuItem Example");

 MenuBar mb=new MenuBar();

 Menu menu=new Menu("Menu");

 Menu submenu=new Menu("Close");

 MenuItem i1=new MenuItem("New");

 MenuItem i2=new MenuItem("Open");

 MenuItem i3=new MenuItem("Save");

 MenuItem i4=new MenuItem("Save As");

 MenuItem i5=new MenuItem("Exit");

 menu.add(i1);

 menu.add(i2);

 menu.add(i3);

 menu.add(i4);

 submenu.add(i5);

 menu.add(submenu);

 mb.add(menu);

 setMenuBar(mb);

 setSize(400,400);

 setLayout(null);

 setVisible(true);

}

public static void main(String args[])

mu
no
tes
.in

AWT

167

{

new MenuDemo();

}

}

Output:

11.12. LAYOUT MANAGER:

When the GUI is designed, the components are placed at some defined
location using setBounds(int x, int y, int w, int h)or by using setSize(int w,
int h) and setLocation(int x, int y) method. If numbers of components are
more, it becomes difficult to define the position and size of each
component. AWT supports predefined layout manager classes which helps
to place the components on the define container. AWT supports following
Layout Managers namely:
 FlowLayout
 BorderLayout
 CardLayout
 GridLayout
 GridBagLayout

setLayout(LayoutManager obj) method is used to set a layout to a
container. Let’s see one by one these layout managers.

11.12.1 FlowLayout:

FlowLayout places the components in flow manner i.e. one after another
in a line starting from left to right and top to bottom. Table 11.16 shows
the constructors and methods of FlowLayout. Program 11.8 shows how to
use of FlowLayout.

mu
no
tes
.in

Core JAVA

168

Table 11.16: Methods of FlowLayout class

Constructors/Methods Description

FlowLayout() Creates a default FlowLayout which place
the components starting from centre of first
line. By default, the space between two
components is 5 pixel.

FlowLayout(int alignment) Creates a FlowLayout with 5 pixel space
between each components and places the
component as per the alignment specified

FlowLayout.LEFT

FlowLayout.RIGHT

FlowLayout.CENTER

FlowLayout.LEADING

FlowLayout.TRAILING

FlowLayout(int alignment,
int hgap, int vgap)

Creates FlowLayout with given alignment
and the spacing mentioned

Program 11.8: FlowLayout Demo

import java.awt.*;

public class FlowLayoutDemo {

 Frame f;

FlowLayoutDemo()

{

 f = new Frame();

 Button b1 = new Button("1");

 Button b2 = new Button("2");

 Button b3 = new Button("3");

 Button b4 = new Button("4");

 Button b5 = new Button("5");

 Button b6 = new Button("6");

 f.add(b1);

f.add(b2);

mu
no
tes
.in

AWT

169

 f.add(b3);

 f.add(b4);

 f.add(b5);

 f.add(b6);

 f.setLayout(new FlowLayout(FlowLayout.RIGHT));

 f.setSize(300, 300);

 f.setVisible(true);

}

public static void main(String argvs[])

{

 new FlowLayoutDemo();

}

}

Output:

11.12.2 BorderLayout:

BorderLayout arrange the components in five different regions, namely
centre, east, west, north, and south. Each region holds only one
component.
Following constants represents the region,
 BorderLayout.NORTH

 BorderLayout.SOUTH

 BorderLayout.EAST

 BorderLayout.WEST

 BorderLayout.CENTRE

mu
no
tes
.in

Core JAVA

170

A component is explicitly added to the one of the above said region using
method,
Add(Component c, Object region)
Ex: to add a button in south region use
add (new Button(b1), BorderLayout.SOUTH)
Table 11.17 shows the constructors and methods of BorderLayout and
program 11.9 shows how to use borderLayout.
Table 11.17: Methods of BorderLayout class

Constructors/Methods Description

BorderLayout() Creates a default BorderLayout which
place the components at centre.

BorderLayout (int hgap, int
vgap)

Creates a BorderLayout with specific
space/gaps between components.

Program 11.9 BorderLayout Demo

import java.awt.BorderLayout;

import java.awt.Button;

import java.awt.FlowLayout;

import java.awt.Frame;

public class BorderLayoutDemo extends Frame

{

 BorderLayoutDemo()

 {

 setLayout(new BorderLayout(10,10));

 setSize(500, 500);

 setTitle("BorderLayout Demo");

 Button b1 = new Button("1");

 Button b2 = new Button("2");

 Button b3 = new Button("3");

 Button b4 = new Button("4");

 Button b5 = new Button("5");

mu
no
tes
.in

AWT

171

 add(b1,BorderLayout.EAST);

 add(b2,BorderLayout.NORTH);

 add(b3,BorderLayout.WEST);

 add(b4,BorderLayout.SOUTH);

 add(b5,BorderLayout.CENTER);

 setVisible(true);

 }

 public static void main(String argvs[])

 {

 new BorderLayoutDemo();

 }

}

Output:

11.12.3 CardLayout:
CardLayout keeps the components like the cards i. e. components are
stack and only one component is visible at a time. Table 11.18 shows the
constructors and methods of CardLayout.

mu
no
tes
.in

Core JAVA

172

Table 11.18: Methods of CardLayout class

Constructors/Methods Description

CardLayout() Creates a default CardLayout

CardLayout (int hgap, int
vgap)

Creates a CardLayout with specific
space/gaps between components.

void first(Container deck) Here deck is the parent container which
holds the cards.

First card in the deck is return

void last(Container deck) Shows the last card on the container

void next(Container deck) Shows the next card (in sequence) on the
container

void previous(Container deck) Shows the previous card (in sequence)
on the container

void show(Container deck,
String cardName)

Shows the specific given card on the
container

Program 11.10 demonstrates the use of Card Layout.

Program 11.10 CardLayout Demo

import java.awt.BorderLayout;

Import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class CardLayoutDemo extends Frame implements ActionListener{

 CardLayout crd;

 Panel cardp,nevigate;

 Button b1,b2,b3,b4,b5,first, last, next,previous,show;

 CardLayoutDemo() {

 //Set Layout for Main frame

 setLayout(new BorderLayout());

 setSize(500, 500);

 setTitle("CardLayout Demo");

mu
no
tes
.in

AWT

173

//add two panel on main frame

 // set the cardlayout for first panel

 cardp=new Panel();

 crd=new CardLayout();

 cardp.setLayout(crd);

 b1 = new Button("1");

 b2 = new Button("2");

 b3 = new Button("3");

 b4 = new Button("4");

 b5 = new Button("5");

 cardp.add("Button1",b1);

 cardp.add("Button2",b2);

 cardp.add("Button3", b3);

 cardp.add("Button4",b4);

 cardp.add("Button5",b5);

 add(cardp,BorderLayout.CENTER);

// create a second panel; add navigation button ; set the flowlayout

 Panel nevigate=new Panel();

 nevigate.setLayout(new FlowLayout());

 first = new Button("first");

 last = new Button("last");

 next = new Button("next");

 previous = new Button("previous");

 show = new Button("show");

//register the navigation buttons for ActionListener

 first.addActionListener(this);

 last.addActionListener(this);

 next.addActionListener(this);

 previous.addActionListener(this);

mu
no
tes
.in

Core JAVA

174

 show.addActionListener(this);

 nevigate.add(first);

 nevigate.add(next);

 nevigate.add(last);

 nevigate.add(previous);

 nevigate.add(show);

 add(nevigate,BorderLayout.SOUTH);

 setVisible(true);

 }

 public void actionPerformed(ActionEvent ae)

 {

 // on click of respective navigation button, card is displayed

 if(ae.getSource()==last)

 crd.last(cardp);

 if(ae.getSource()==first)

 crd.first(cardp);

 if(ae.getSource()==next)

 crd.next(cardp);

 if(ae.getSource()==previous)

 crd.previous(cardp);

 if(ae.getSource()==show)

 crd.show(cardp,"Button3");

 }

 public static void main(String argvs[])

 {

 new CardLayoutDemo();

 }

}

mu
no
tes
.in

AWT

175

Output:

11.12.4 GridLayout:

This layout arranges the components in grid format i. e. in 2 X 2 matrixes.
Table 11.x shows the constructors of GridLayout class. Table 11.19 shows
the constructors and methods of GridLayout.

Table 11.19 Constructors of Grid Layout

Constructor Description

GridLayout() Creates the grid layout of single column

GridLayout(int r, int c) Creates the grid layout of given rows and
columns

GridLayoutIint r,int c,int
h_gap, int v_gap)

Creates the grid layout of given rows and
columns and with specified gaps.

The program 11.11 demonstrate the use of GridLayout class

Program 11.11: Demonstration of GridLayout class

import java.awt.BorderLayout;

import java.awt.*;

public class GridLayoutDemo extends Frame {

 Button b1,b2,b3,b4,b5,b6;

 GridLayoutDemo()

 {

 setLayout(new GridLayout(3,2));

 setSize(500, 500);

mu
no
tes
.in

Core JAVA

176

 setTitle("GridLayout Demo");

 b1 = new Button("1");

 b2 = new Button("2");

 b3 = new Button("3");

 b4 = new Button("4");

 b5 = new Button("5");

 b6 = new Button("6");

 add(b1);

 add(b2);

 add(b3);

 add(b4);

 add(b5);

 add(b6);

 setVisible(true);

 }

 public static void main(String argvs[])

 {

 new GridLayoutDemo();

 }

}

Output:

mu
no
tes
.in

AWT

177

11.12.5 Grid Bag Layout:

Grid Layout places the components in a grid in a sequence of adding those
on window. All those components have same/equal fixed dimensions.
Components’ size can not be resized.

Gridbag Layout allows placing the components in a grid at any specified
row and column with different (more than one cell) width and height i.e.
component may have width of more than one column span and height of
more than one row span. Table 11.20 shows the constructors and methods
of Grid Bag Layout.

Table 11.20 Methods of GridBagLayout class
Methods Description

GridBagLayout() Creates a default GridBagLayout c

void setConstraints(Component
comp, GridBagConstraints cons

This method sets the constraint on the
components which is to be placed on
container.

Here GridBagConstraints is a helper
class which is used to set the
constraints for components.

Table 11.21 describes the grid Bag Constraints’ field and their purpose

Table 11.21 : Fields of Grid Bag Constraints
Methods Description

int anchor Specifies the location of a component
within a cell. The default is

Following Program 11.12 demonstrate the use of GridBagLayout class.

Program 11.12: Demo of GridBagLayout class

import java.awt.*;

import java.awt.Button;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

public class GridBagLayoutDemo extends Frame

{

mu
no
tes
.in

Core JAVA

178

 public GridBagLayoutDemo()

 {

 GridBagLayout gb = new GridBagLayout();

 GridBagConstraints gbc = new GridBagConstraints();

 setLayout(gb);

 setTitle("GridBag Layout Example");

 //GridBagLayout layout = new GridBagLayout();

 //this.setLayout(layout);

 //contraints for textfield

 gbc.fill = GridBagConstraints.BOTH;

 gbc.gridx = 0;

 gbc.gridy = 0;

 gbc.gridheight=1;

 gbc.gridwidth=3;

 this.add(new TextField("Enter Number"), gbc);

 //contraints for button 1

 gbc.fill = GridBagConstraints.BOTH;

 gbc.gridx = 0;

 gbc.gridy = 1;

 gbc.gridheight=1;

 gbc.gridwidth=1;

 this.add(new Button("1"), gbc);

 //contraints for button 2

 gbc.gridx = 1;

 gbc.gridy = 1;

 gbc.gridheight=1;

 gbc.gridwidth=1;

 this.add(new Button("2"), gbc);

 //contraints for button 3

mu
no
tes
.in

AWT

179

 gbc.fill = GridBagConstraints.BOTH;

 //gbc.ipady = 20;

 gbc.gridx = 0;

 gbc.gridy = 2;

 gbc.gridheight=1;

 gbc.gridwidth=1;

 this.add(new Button("3"), gbc);

 //contraints for button 4

 gbc.gridx = 1;

 gbc.gridy = 2;

gbc.gridheight=1;

 gbc.gridwidth=1;

 this.add(new Button("4"), gbc);

 //contraints for button 2

 gbc.gridx = 2;

 gbc.gridy = 1;

 gbc.fill = GridBagConstraints.BOTH;

gbc.gridwidth = 1;

 gbc.gridheight=2;

 this.add(new Button("+"), gbc);

 gbc.gridx = 0;

 gbc.gridy = 3;

 gbc.fill = GridBagConstraints.BOTH;

 gbc.gridwidth = 1;

 gbc.gridheight=1;

 this.add(new Button("="), gbc);

 gbc.gridx = 1;

 gbc.gridy = 3;

 gbc.fill = GridBagConstraints.BOTH;

mu
no
tes
.in

Core JAVA

180

 gbc.gridwidth = 2;

 gbc.gridheight=1;

 this.add(new Button("-"), gbc);

 setSize(600, 600);

 setPreferredSize(getSize());

 setVisible(true);

 }

 public static void main(String[] args)

 {

 GridBagLayoutDemo a = new GridBagLayoutDemo();

 }

}

11.13 SUMMARY

 AWT package provides the different API for designing a user

interface.
 Java supports the different kind of windows using Window, Frame,

Dialog, Panel etc.
 Events are handling using different interfaces.
 Event handling is done by registering the event first, then

implementing the event handler for the event.
 Java also defines the different layout managers for arranging the

components on window.
 FlowLayout is default layout for panel and applet, BorderLayout is

default layout for Frame.

mu
no
tes
.in

AWT

181

11.14 EXERCISE:

1. Why AWT components are called as light weight components?
2. What is a difference between container and components?
3. How event delegationmodel in java?
4. What is Listener? How do any components respond to event?
5. What is the difference between TextArea and TextField?
6. What is the difference between Choice and List?
7. What is the difference between the Frame and Panel?
8. What is the use of Layout managers? Explain the difference between

GridLayout and GridBagLayout manager class.

11.15 REFERENCES

1. H. Schildt, Java Complete Reference, vol. 1, no. 1. 2014.

2. E. Balagurusamy, Programming with Java, Tata McGraw-Hill
Education India, 2014

3. Sachin Malhotra & Saurabh Choudhary, Programming in JAVA, 2nd
Ed, Oxford Press

4. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

mu
no
tes
.in

