
1

Unit-1
1

INTRODUCTION TO DBMS

Unit Structure
1.0 Objectives
1.1 Introduction to DBMS
1.2 Overview of DBMS
1.3 Advantages of DBMS
1.4 Levels of abstraction
1.5 Data independence
1.6 DBMS architecture

1.0 OBJECTIVES

After going through this unit, you will able to:
 To introduce the concept of the DBMS with respect to the
relational model.

 Define database, DBMS, overview of DBMS, level of abstraction,
DBMS architecture.

 Learning Data models and its different types.
 Designing the database schema with the use of appropriate data
types for storage of data in database.

 To create, manipulate, query and back up the databases.

1.1 INTRODUCTION

A database is a collection of information that is organized so that it
can be easily accessed, managed and updated. Database systems are
designed to manage large bodies of information. Management of data
involves both defining structures for storage of information and providing
mechanisms for the manipulation of information. In addition, the database
system must ensure the safety of the information stored, despite system
crashes or attempts at unauthorized access. If data are to be shared among
several users, the system must avoid possible anomalous results. Because
information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing
data.

mu
no
tes
.in

2

DATABASE MANAGEMENT SYSTEM
A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data. This is a
collection of related data with an implicit meaning and hence is a
database.

1.2 OVERVIEW

The collection of data, usually referred to as the database, contains
information relevant to an enterprise. The primary goal of a DBMS is to
provide a way to store and retrieve database information that is both
convenient and efficient. By data, we mean known facts that can be
recorded and that have implicit meaning. For example, consider the
names, telephone numbers, and addresses of the people you know. You
may have recorded this data in an indexed address book, or you may have
stored it on a diskette, using a personal computer and software such as
DBASE IV or V, Microsoft ACCESS, or EXCEL. A datum – a unit of
data – is a symbol or a set of symbols which is used to represent
something. This relationship between symbols and what they represent is
the essence of what we mean by information. Hence, information is
interpreted data – data supplied with semantics. Knowledge refers to the
practical use of information. While information can be transported, stored
or shared without many difficulties the same cannot be said about
knowledge. Knowledge necessarily involves a personal experience.
Referring back to the scientific experiment, a third person reading the
results will have information about it, while the person who conducted the
experiment personally will have knowledge about it. The DBMS is a
general purpose software system that facilitates the process of defining
constructing and manipulating databases for various applications.

1.3 ADVANTAGES

Data Independence: Application programs should be as
independent as possible from details of data representation and storage.
The DBMS can provide an abstract view of the data to insulate application
code from such details.

Efficient Data Access: A DBMS utilizes a variety of sophisticated
techniques to store and retrieve data efficiently. This feature is especially
important if the data is stored on external storage devices.

Data Integrity and Security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints on the data. For
example, before inserting salary information for an employee, the DBMS
can check that the department budget is not exceeded. Also, the DBMS
can enforce access controls that govern what data is visible to different
classes of users.

mu
no
tes
.in

3

Concurrent Access and Crash Recovery: A database system allows
several users to access the database concurrently. Answering different
questions from different users with the same (base) data is a central aspect
of an information system. Such concurrent use of data increases the
economy of a system. An example for concurrent use is the travel database
of a bigger travel agency. The employees of different branches can access
the database concurrently and book journeys for their clients. Each travel
agent sees on his interface if there are still seats available for a specific
journey or if it is already fully booked. A DBMS also protects data from
failures such as power failures and crashes etc. by the recovery schemes
such as backup mechanisms and log files etc.

Data Administration:
When several users share the data, centralizing the administration

of data can offer significant improvements. Experienced professionals,
who understand the nature of the data being managed, and how different
groups of users use it, can be responsible for organizing the data
representation to minimize redundancy and fine-tuning the storage of the
data to make retrieval efficient.

Reduced Application Development Time:
DBMS supports many important functions that are common to

many applications accessing data stored in the DBMS. This, in
conjunction with the high-level interface to the data, facilitates quick
development of applications. Such applications are also likely to be more
robust than applications developed from scratch because many important
tasks are handled by the DBMS instead of being implemented by the
application.

1.4 TYPES OF USERS IN DBMS:

Database Administrator:
One of the main reasons for using DBMSs is to have central

control of both the data and the programs that access those data. A person
who has such central control over the system is called a database
administrator (DBA). DBA is responsible for authorizing access to the
database, coordinating and monitoring its use, and acquiring software and
hardware resources as needed.

Naive users:
Naive users are unsophisticated users who interact with the system

by invoking one of the application programs that have been written
previously. For example, a bank teller who needs to transfer $50 from
account A to account B invokes a program called transfer. This program
asks the teller for the amount of money to be transferred, the account from
which the money is to be transferred, and the account to which the money
is to be transferred.

mu
no
tes
.in

4

Application programmers:
Application programmers are computer professionals who write

application programs. Application programmers can choose from many
tools to develop user interfaces. Rapid application development (RAD)
tools are tools that enable an application programmer to construct forms
and reports without writing a program.

Sophisticated users:
Sophisticated users interact with the system without writing

programs. Instead, they form their requests in a database query language.
They submit each such query to a query processor, whose function is to
break down DML statements into instructions that the storage manager
understands. Analysts who submit queries to explore data in the database
fall in this category.

Specialized users:
Specialized users are sophisticated userswho write specialized

database applications that do not fit into the traditional data-processing
framework.

1.5 LEVELS OF ABSTRACTION IN A DBMS:

Hiding certain details of how the data are stored and maintained. A
major purpose of database system is to provide users with an “Abstract
View” of the data. In DBMS there are 3 levels of data abstraction. The
goal of the abstraction in the DBMS is to separate the users request and
the physical storage of data in the database.

Physical Level:

 The lowest Level of Abstraction describes “How” the data are
actually stored.

 The physical level describes complex low level data structures in
detail.

Logical Level:

 This level of data Abstraction describes “What” data are to be
stored in the database and what relationships exist among those
data.

 Database Administrators use the logical level of abstraction.

View Level:

 It is the highest level of data Abstracts that describes only part of
entire database.

mu
no
tes
.in

5

 Different users require different types of data elements from each
database.

 The system may provide many views for the some database.

Figure 1.1: Level of Abstraction

1.6 DATA INDEPENDENCE:

A very important advantage of using DBMS is that it offers Data
Independence. The ability to modify a scheme definition in one level
without affecting a scheme definition in a higher level is called data
independence.

There are two types:
1. Physical Data Independence
2. Logical Data Independence

Physical Data Independence:

 The ability to modify the physical schema without causing
application programs to be rewritten.

 Modifications at this level are usually to improve performance.

Logical Data Independence:

 The ability to modify the conceptual schema without causing
application programs to be rewritten

 Usually done when logical structure of database is altered

 Logical data independence is harder to achieve as the application
programs are usually heavily dependent on the logical structure of
the data.

mu
no
tes
.in

6

1.7 DBMS ARCHITECTURE

A database system is partitioned into modules that deal with each
of the responsibilities of the overall system. The functional components of
a database system can be broadly divided into the storage manager and the
query processor components.

The storage manager is important because databases typically
require a large amount of storage space. Some Big organizations Database
ranges from Giga bytes to Terabytes. So the main memory of computers
cannot store this much information, the information is stored on disks.
Data are moved between disk storage and main memory as needed. The
query processor also very important because it helps the database system
simplify and facilitate access to data. So quick processing of updates and
queries is important. It is the job of the database system to translate
updates and queries written in a nonprocedural language.

Figure 1.2: Database Architecture

mu
no
tes
.in

7

Storage Manager:
A storage manager is a program module that provides the interface

between the low-level data stored in the database and the application
programs and queries submitted to the system. The storage manager is
responsible for the interaction with the file manager. The storage manager
translates the various DML statements into low-level file-system
commands. Thus, the storage manager is responsible for storing,
retrieving, and updating data in the database.

Storage Manager Components:
Authorization and integrity manager: It tests for the satisfaction of
integrity constraints and checks the authority of users to access data.

Transaction manager which ensures that the database itself remains in a
consistent state despite system failures, and that concurrent transaction
executions proceed without conflicting.

File manager: which manages the allocation of space on disk storage and
the data structures used to representing information stored on disk.

Buffer manager:It is responsible for fetching data from disk storage into
main memory. Storage manager implements several data structures as part
of the physical system implementation. Data files are used to store the
database itself. Data dictionary is used to stores metadata about the
structure of the database, in particular the schema of the database.

Query Processor Components:
DDL interpreter:It interprets DDL statements and records the definitions
in the data dictionary.

DML compiler: It translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query
evaluation engine understands.

Query evaluation engine:It executes low-level instructions generated by
the DML compiler.

Application Architectures:
Most users of a database system today are not present at the site of

the database system, but connect to it through a network. We can therefore
differentiate between client machines, on which remote database users’
work, and server machines, on which the database system runs.

mu
no
tes
.in

8

2
DATA MODELS

Unit Structure
2.0 Introduction
2.1 Types of Data Models

2.0 INTRODUCTION

Data models define how the logical structure of a database is
modelled. Data Models are fundamental entities to introduce abstraction
in a DBMS. Data models define how data is connected to each other and
how they are processed and stored inside the system. The very first data
model could be flat data-models, where all the data used are to be kept in
the same plane. Earlier data models were not so scientific; hence they
were prone to introduce lots of duplication and update anomalies. The
following models are

2.1 TYPES OF DATA MODELS:

An Object Based Logical Model also known as conceptual
data model which provides representation according to the way many
users perceive data. Most popular conceptual data model is Entity
Relationship Model which is based on the concepts of entity, relationship
and attributes. Object based logical models provide flexible structuring
capabilities and allow data constraints to be specified explicitly.

2.1.1 Entity Relationship Model
The ER (Entity relationship) based on the collection of basic

objects, called entities and relationships among these objects. The
diagrammatic notation associated with ER model, are also known as ER
diagrams. The ER model employs three basic concepts entity sets
relationship sets and attributes. An entity is an object in the real world
that is distinguishable from all other objects. An entity set is a set of
entities of the same type that share the same properties or attributes.
Attributes are descriptive properties possessed by all members of an
entity set.

2.1.2 Object Oriented Model
The object-oriented data model is an adaptation of the object-

oriented programming language paradigm to database systems. The model
is based on the concept of encapsulating data and code that operates on
that data in an object. Entities in the sense of the ER model are

mu
no
tes
.in

9

represented as objects with attributes values represented by instance
variables within the object. The values stored in an instance variable are
itself an object. Thus, a containment relationship i.e., is-part-of
relationship is established among objects.

2.1.3 Physical data model
This model provides details of how data is stored on the computer

storage media and meant for software specialist. This model hides many
details of data storage on disk but can be implemented on a computer
system directly. I is used in traditional commercial DBMS and based on
the concepts of record structure with fixed format; hence it is also known
as record based data model. The use of fixed length records simply the
physical implementation of the database. The relational model is a
primary data model in commercial data processing application.

2.1.4 Relational data model
This model uses a collection of tables to represent both data and

the relationship among data. Tables are known as relations in relational
database. Each relation consists of multiple columns and each column has
unique name. This table has one column for each domain and one row for
each tuple. Each column has a unique name which is called as attribute of
the relation. The set of attributes are called as relation schema.

2.1.5 Network data model
The network model allows more general connections among the

nodes. Network model has the ability to handle many –to – much
relationship. The network data model is an abstraction of the design
concepts used in the implementation of database.

2.1.6 Hierarchical data model
Data is sorted hierarchically in a tree like structure using parent

child relationship, either in top down or bottom-up approach. This model
uses pointers to navigate between stored data using hierarchical tree.
Based on one-to-many relation.

2.1.7 Client server architecture:
The client/server architecture was developed to deal with

computing environment in which a large number of PCs, workstations, file
servers, printers, data base servers, Web servers, e-mail servers, and other
software and equipment are connected via a network. The idea is to define
specialized servers with specific functionalities. For example, it is possible
to connect a number of PCs or small workstations as clients to a file server
that maintains the files of the client machines. Another machine can be
designated as a printer server by being connected to various printers; all
print requests by the clients are forwarded to this machine. Webservers or
e-mail servers also fall into the specialized server category. The resources
provided by specialized servers can be accessed by many client machines.
The clientmachines provide the user with the appropriate interfaces to
utilize these servers, as well as with local processing power to run local

mu
no
tes
.in

10

applications. This concept can be carried over to other software packages,
with specialized programs such as a CAD(computer-aided design)
package being stored on specific server machines and being made
accessible to multiple clients. Some machines would be client sites only
(for example, diskless workstations or workstations or PCs with disks that
have only client software installed).

Figure 2.1: Client/Server architecture

mu
no
tes
.in

11

3
ENTITY RELATIONSHIP MODEL

Unit Structure
3.0 Introduction
3.1 Types of Attributes

3.0 INTRODUCTION

Entity-Relationship Model or simply ER Model is a high-level data
model diagram. In this model, we represent the real-world problem in the
pictorial form to make it easy for the stakeholders to understand. It is also
very easy for the developers to understand the system by just looking at
the ER diagram. We use the ER diagram as a visual tool to represent an
ER Model. ER diagram has the following three components:

 Entities: Entity is a real-world thing. It can be a person, place, or even
a concept. Example: Teachers, Students, Course, Building,
Department,etc are some of the entities of a School Management
System.

 Attributes: An entity contains a real-world property called attribute.
This is the characteristics of that attribute. Example: The entity teacher
has the property like teacher id, salary, age, etc.

 Relationship: Relationship tells how two attributes are
related. Example: Teacher works for a department.

 Relationship set: A relationship set is a set of relationships of the
same type. Formally it is a mathematical relation on (possibly non-
distinct) sets. If are entity sets, then a relationship set R is a subset of
Where is a relationship. For example, consider the two
entity sets customer and account.

 Key Constraints: All the values of primary key must be unique. The
value of primary key must not be null.

 Participation Constraints: We can capture participation constraints
involving one entity set in a binary relationship, but little else (without
resorting to CHECK constraints)

 Weak entities: In a relational database, a weak entity is an entity that
cannot be uniquely identified by its attributes alone; therefore, it must
use a foreign key in conjunction with its attributes to create a primary
key.

mu
no
tes
.in

12

 Aggregation: In aggregation, the relation between two entities is
treated as a single entity. In aggregation, relationship with its
corresponding entities is aggregated into a higher-level entity.

3.1 TYPES OF ATTRIBUTES:

1. Simple Attributes
Simple attributes are atomic attributes with independence meaning

which cannot be further divided. For example, employee’s phone is an
atomic attribute.

2. Composite Attributes:
Composite are made up of more than one attributes. It can divide

into smaller subparts, which represent more basic attributes with
independent meanings. They sometimes form a hierarchy. The value of a
composite attribute is the combination of the values of its components
atomics attributes. For example, the Address attribute of the EMPLOYEE
entity can be subdivided into Street_address, City, State and Zip.
Composite attributes are useful to model situations in which a user
sometimes refers to the composite attribute as a unit but at other times
refers specifically to its components.

Figure 3.1: Composite attribute

Single valued attributes
Single valued attributes consist of individual or single value for a

particular entity. For example, Employee id attributes refers to only one
employee ID. Age attribute for a person. There may be instances where an
attribute has a set of values for a specific entity. Suppose we add to the
instructor entity set.

Multivalued Attributes:
Multi valued attributes has a group of values for a specific entity.

Multi valued attributes comes with upper and lower limits the number of
values to be specified for an entity. For example, an employee may have
more than one phone number.

mu
no
tes
.in

13

Stored Attributes: Stored attributes consist of attributes that are fetched
directly from the entity. For Date_of_Birth

Derived Attributes: Data that is derived using the data stored in the
stored attributes set are known as Derived attributes. For example, Age
can be calculated using the stored date_of _birth attribute.

Entity type: an entity type defines a collection or set of entities that have
the same attributes. Each entity type in the database is described by its
name and attributes. For example, a college may want to store similar
information concerning each of the students. Students can be entity types
that share the same attributes, but each entity has its own values for each
attribute.

Entity Set: The collection of all entities of a particular entity type in the
database at any point in time is called an entity set. The entity set is
usually referred to using the same name as the entity type. For example
student refers to both a type of entity as well as the current set of all
student entities in the database.

Relationship: An association among several entities is known as
Relationship.

Figure 3.2: Relationship

Relationship set:
A relationship set is a set of relationship of the same type. It is a

mathematical relation on n>=2 entity sets. Diamonds represents the relationship
sets. If E1,E2,E3…….En are entity set then a relationship set R is a subset
of {(e1,e2….en) | e1 ∈E1, e2 ∈E2…..en∈En where (e1,e2,……en) is a
relationship.

Figure 3.3: Relationship set

Degree of relationship type
The degree of a relationship type is the number of participating

entity types. A relationship type of degree two is called binary which are
the most common one. A relationship type of degree three is called
ternary. Higher degree relationships are more complex. Relationship in

RELATIONSHIP

mu
no
tes
.in

14

databases is often binary. Some relationships that appear to be non-binary
could actually be better represented by several binary relationships.

For example, one could create a ternary relationship parent, relating a
child to his mother and father, such a relationship could also be
represented by two binary relationships, mother and father relating a child
to his mother and father separately. Using the two relationships mother
and father provides us a record of a child’s mother, even if we are not
aware of the father’s identity; a null value would be required if the ternary
relationship parent is used. Using binary relationship sets is preferable in
this case. For simplicity purpose it is always possible to replace a non-
binary (n-ary, for n>2) relationship set by a number of distinct binary
relationship sets.

Mapping Cardinality
The relationship set are of one to one, one to many, many to one or many
to many. To distinguish among these types, either a directed line () or
an undirected line ()between the relationship set and the entity set is
drawn.

 One to one:
A directed line is drawn from the relationship set advisor to both
entity sets instructor and student. This indicates that an instructor
may advise at most one student, and a student may have at most
one advisor.

 One to many:
A directed line is drawn from the relationship set advisor to the
entry set instructor and an undirected line to the entity set student.
This indicates that an instructor may advise many students, but a
student may have at most one advisor.

 Many to one:
An undirected line drawn from the relationship set advisor to the
entity set instructor and a directed line to the entity set student.
This indicates that an instructor may advise at most one student,
but a student may have many advisors.

 Many to many:
an undirected line drawn from the relationship set advisor to both
entity sets instructor and student. This indicates that an instructor
may advise many students, and a student may have many advisors.

mu
no
tes
.in

15

Figure 3.4: mapping cardinalities

One to One One to many

Many to one Many to many

Key constraint:
A Key or uniqueness constraint on the attributes of entities helps to

identify relationship uniquely, and thus distinguish relationship from each
other. No two entities are allowed to have exactly the same.

Specialization
Specialization is a process of creating sub parts of an entity type.

Generalization is a bottom-up approach, while Specialization is a top-
down approach. One higher level entity can be broken down into two
lower-level entities by specialisation. The term "specialization" refers to a
subset of an entity set that shares certain common characteristics.
Normally, the superclass is described first, followed by the subclass and
its related attributes, and finally the relationship set. For example, In an

mu
no
tes
.in

16

employee management system, EMPLOYEE entity can be specialized as
TESTER or DEVELOPER based on what role they play in the company.

Figure 3.5: Specialization

Generalization
It’s a reverse process of abstraction, where in the difference

amongst the entity sets are suppressed and they are generalized together
into a single entity type. Distinctions are made explicitly in case of
generalization with top-down approach. Commonality is defined using
generalization and expressed using containment relationship. It creates a
relationship between higher-level entities set to successive hierarch of
subclass entity set. The design process may also proceed in a bottom-up
manner, in which multiple entities sets are synthesized into a higher-level
entity set on the basis of common features. For example, Faculty and
Student entities can be generalized and create a higher-level entity Person.

mu
no
tes
.in

17

Figure 3.6: Generalization

AGGREGATION
In aggregation, the relation between two entities is treated as a

single entity. In aggregation, relationship with its corresponding entities is
aggregated into a higher-level entity. For example, Center entity offers the
Course entity act as a single entity in the relationship which is in a
relationship with another entity visitor. In the real world, if a visitor visits
a coaching center then he will never enquiry about the Course only or just
about the Center instead he will ask the enquiry about both.

Figure 3.7: Aggregation

mu
no
tes
.in

18

Summary of Notation in ER diagram

Figure3.8: summary of ER notation

Entity Vs Attributes
While identifying the attributes of an entity set, it is sometimes not

clear whether a property should be modelled as an attribute or as an entity
set (and related to the first entity set using a relationship set). For example,
consider adding address information to the Employees entity set. One
option is to use an attribute address. This option is appropriate if we need
to record only one address per employee, and it suffices to think of an

mu
no
tes
.in

19

address as a string. An alternative is to create an entity set called
Addresses and to record associations between employees and addresses
using a relationship.

Entity vs Relationship
The nature of ER modelling can thus make it difficult to recognize

underlying entities, and we might associate attributes with relationships
rather than the appropriate entities. In general, such mistakes lead to
redundant storage of the same information and can cause many problems.

mu
no
tes
.in

20

4
RELATIONAL DATA MODEL

Unit Structure
4.0 Introduction
4.1 Relation
4.2 Attribute Types
4.3 Domain
4.4 Properties of Relations
4.5 Relational Model Notation
4.6 Characteristics of Relation

4.0 INTRODUCTION

In this chapter, we will study the concepts of relation, tuples and
attributes. We will further look at the meaning of the term integrity and the
various integrity constraints. The relational model is very simple and
elegant: a database is a collection of one or more relations, where each
relation is a table with rows and columns. This simple tabular
representation enables even novice users to understand the contents of a
database, and it permits the use of simple, high-level languages to query
the data. The major advantages of the relational model over the older data
models are its simple data representation and the ease with which even
complex queries can be expressed.

4.1 RELATION

A relation is a set of tuples. A database is a collection of relations.
A relation is a mathematical entity corresponding to a table. Each row in a
table represents a fact that corresponds to and entity or a relationship that
exists. Each row is called a tuple. Formally, the column headings of the
table are the attributes of a relation.

mu
no
tes
.in

21

Figure 4.1: Relation

4.2 ATTRIBUTE TYPES

The set of allowed values for each attribute is called the domain of
the attribute. Attribute values are (normally) required to be atomic; that is,
indivisible. The special value null is a member of every domain, indicated
that the value is “unknown”. The null value causes complications in the
definition of many operations. An attribute or a combination of attributes
that is used to identify the records uniquely is known as super key.
Candidate key is defined as minimal super key or irreducible super key;
used to identify the records uniquely. A candidate key that is used by the
database designer for unique identification of each row in a table is known
as primary key. A primary Key can consist of one or more attributes of a
table, known as composite key. The candidate key not chosen by database
designer as a primary key is known as alternate key. A foreign key is an
attribute or combination of attribute in one table that points to the primary
key of another table.

4.3 DOMAIN

A relation is subset of Cartesian product of a list of domains. A
table with n attributes must be subset of D1 * D2 * D3 * …… * Dn. A
domain can be Atomic or Non-Atomic. Atomic Domains are indivisible.
Non-Atomic Domain contains composite values.

attributes
(or columns)

tuples
(or rows)

mu
no
tes
.in

22

4.4 PROPERTIES OF RELATIONS

o Name of the relation is distinct from all other relations.
o Each relation cell contains exactly one atomic (single) value
o Each attribute contains a distinct name
o Attribute domain has no significance
o tuple has no duplicate value
o Order of tuple can have a different sequence

4.5 RELATIONAL MODEL NOTATION

Following notations used in Relational model

1. A relation schema R of degree n is denoted by R(A1,A2,…..An).

2. The uppercase letters Q, R and S denote relation names.

3. The lowercase letters q, r and s denote relation states.

4. The letters t, u and v denote tuples.

5. In general, the name of a relation schema such as EMPLOYEE also
indicates the current set of tuples in that relation- the current relation
state whereas EMPLOYEES (Eid,Ename,…) refers only to the relation
schema.

6. An attribute can be qualified with the relation name R to which it
belongs by using the dot notation R.A. For example
‘EMPLOYEE.Eid’ or ‘EMPLOYEE. Ename’. all attribute name in a
particular relation must be distinct.

4.6 CHARACTERISTICS OF RELATION

Following are some of the characteristics of relation.

1. Ordering of tuples in a relation:
a) A relation is defined as a set of tuples. Mathematically elements of a set
have no order among them hence tuples in a relation do not have any
particular order.

b) However, in a file, records are physically stored on disk or in memory,
so there always is an order among the records.

c) When we display a relation as a table the rows are displayed in a certain
order.

2. Ordering of values within a tuple and an alternative definition of a
relation:
a) according to the preceding definition of a relation, an n-tuple is an
ordered list of a n values, so the ordering of values in a tuple and hence
of attributes in a relation schema is important.

mu
no
tes
.in

23

b) however, at a more abstract level, the order of attributes and their
values is not that important as long as the correspondence between
attributes and values is maintained.

3. Values and NULLs in the tuples:
a) Each value in a tuple is an atomic value that is; it is not divisible into
components within the framework of the basic relational model. Hence
composite and multivalued attributes are not allowed.

b) This model is sometimes called the flat relational model.

c) Much of the theory behind the relational model was developed with this
assumption in mind, which is called the first normal form assumption.

d) Hence multivalued attributes must be represented by separated
relations, and composite attributes are represented only by their simple
component attributes in the basic relational model.

RELATIONAL CONSTRAINTS
The meaning of constraint is Restriction. There are generally many

restrictions or constraints on the actual values in a database state.
Constraints on databases can generally be divided into five main
categories.
1. Domain constraint
2. Tuple Uniqueness constraint
3. Key constraint
4. Entity Integrity constraint
5. Referential Integrity constraint

1. Domain Constraint
Domain constraint defines the domain or set of values for an

attribute. It specifies that the value taken by the attribute must be the
atomic value from its domain. The data type of domain includes string,
character, integer, time, date, currency, etc. The value of the attribute must
be available in the corresponding domain.

2. Tuple Uniqueness constraint
Tuple Uniqueness constraint specifies that all the tuples must be

necessarily unique in any relation.

3. Key constraint
Key constraint specifies that in any relation-All the values of

primary key must be unique. The value of primary key must not be null.

4. Entity Integrity constraint
The entity integrity constraint states that primary key value can't be

null. This is because the primary key value is used to identify individual
rows in relation and if the primary key has a null value, then we can't
identify those rows. A table can contain a null value other than the primary
key field.

mu
no
tes
.in

24

5. Referential Integrity constraint
A referential integrity constraint is specified between two tables.

In the Referential integrity constraints, if a foreign key in Table 1
refers to the Primary Key of Table 2, then every value of the Foreign Key
in Table 1 must be null or be available in Table 2.

Figure 4.2: Referential integrity

mu
no
tes
.in

25

5
ER TO TABLE

Unit Structure
5.1 Rules for converting ER to Table

5.1 RULES FOR CONVERTING ER TO TABLE

1. Convert all the entities in the diagram to tables.

2. All single valued attributes of an entity is converted to a column of the
table.

3. Key attribute in the ER diagram becomes the primary key of the table.
Declare the foreign key column, if applicable.

4. any multi valued attributes are converted into new table.

5. any composite attributes are merged into same table as different
columns. Derived attributes can be ignored.

For example:

Figure 5.1: ER diagram

mu
no
tes
.in

26

There are the following steps which need to be considered before
developing table:

Entity type becomes a table:
a) In the given ER diagram, LECTURE, STUDENT, SUBJECT and
COURSE forms individual tables.

All single-valued attribute becomes a column for the table:
a) In the STUDENT entity, STUDENT_NAME and STUDENT_ID from
the column of STUDENT table.

b) Similarly, COURSE_NAME and COURSE_ID form the column of
COURSE table and so on.

A key attribute of the entity type represented by the primary key:
a) In the given ER diagram, COURSE_ID, STUDENT_ID, SUBJECT_ID
and LECTURE_ID are the key attribute of the entity.

The multivalued attribute is represented by a separate table:
a) In the student table, a hobby is a multivalued attribute. So, it is not
possible to represent multiple values in a single column of STUDENT
table.

b) Hence we create a table STUD_HOBBY with column name
STUDENT_ID and HOBBY. Using both the column, we create a
composite key.

Composite attribute represented by components:
a) In the given ER diagram student address is a composite attribute. It
contains CITY, PIN, DOOR#, STREET and STATE. In the
STUDENT table, these attributes can merge as an individual column.

Derived attributes are not considered in the table:
a) In the STUDENT table, age is the derived attribute. It can be calculated
at any point of time by calculating the difference between current date
and Date of Birth.

mu
no
tes
.in

27

Figure 5.2: table structure of given ER diagram

mu
no
tes
.in

28

Unit II

6
SCHEMA REFINEMENT AND NORMAL

FORMS

Unit Structure
6.0 Objectives
6.1 Functional dependencies
6.2 Normalization
6.3 Types of Normal forms
6.4 Lossless join decomposition

6.0 OBJECTIVES

In this chapter, we'll look at what functional dependencies are, how
to recognise them, and how to infer functional dependencies using
inference rules. We'd dig deeper into data normalisation and the various
normal forms -1NF,2NF,3NF and BCNF. We'll look at how larger tables
can be broken down into smaller ones without losing data at the end of this
chapter.

6.1FUNCTIONALDEPENDENCIES

A functional dependency is a constraint between two sets of
attributes from the database. Suppose that our relational database schema
has n attributes A1, A2, … , An; let us think of the whole database as
being described by a single universal. relation schema R = {A1, A2, … ,
An}. We do not imply that we will actually store the database as a single
universal table; we use this concept only in developing the formal theory
of data dependencies. A functional dependency is a property of the
semantics or meaning of the attributes. The database designers will use
their understanding of the semantics of the attributes of R—that is, how
they relate to one another—to specify the functional dependencies that
should hold on all relation states (extensions) r of R. Relation extensions
r(R) that satisfy the functional dependency constraints are called legal
relation states (or legal extensions) of R.

6.2 NORMALIZATION

The normalization is a process first proposed by Codd in the year
1972. Normalization of data can be considered a process of analysing the

mu
no
tes
.in

29

given relation schemas based on their FDs and primary keys to achieve the
desirable properties of minimizing redundancy and minimizing the
insertion, deletion and update anomalies. It is a process which proceeds in
top-down fashion by evaluating each relation against the criteria for
normal forms and decomposing relations as necessary. The goal is to
generate a set of relation schemas that allows us to store information
without unnecessary redundancy. It also allows easy retrieval of
information. The approach is to design schemas that are in an appropriate
normal form. To determine whether a relation schema is in one of the
desirable normal forms, additional information about the real world is
needed to be depicted in the database. Normalisation is based on the
functional dependencies.

6.3 TYPES OF NORMAL FORMS

FIRST NORMAL FORM

In the relational model, a domain is atomic if elements of the
domain are considered to be indivisible units.

A relation schema R is in first normal form (1NF) if the domains
of all attributes of R are atomic.

It is defined to disallow multivalued attributes, composite
attributes their combinations, relations within relations or relations as
attribute values within tuples. it states that domain of an attribute must
include only atomic (simple, indivisible) values and that the value of any
attribute in a tuple must be a single value from the domain of that
attribute. the only attribute values permitted by 1NF are single atomic
values. For example, Relation EMPLOYEE is not in 1NF because of
multi-valued attribute EMP_PHONE.

The decomposition of the EMPLOYEE table into 1NF has been
shown below:

mu
no
tes
.in

30

SECOND NORMAL FORM:
A relation schema R is in 2NF, if it satisfies 1NF and if every non-

prime attribute A in R is fully functionally dependent on primary key of R.
2NF is based on the concept of full functions dependency. A functional
dependency X→Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold any more.
Let's assume, a school can store the data of teachers and the subjects they
teach. In a school, a teacher can teach more than one subject.

In the given table, non-prime attribute TEACHER_AGE is
dependent on TEACHER_ID which is a proper subset of a candidate key.
That's why it violates the rule for 2NF. To convert the given table into
2NF, we decompose it into two tables:mu

no
tes
.in

31

THIRD NORMAL FORM
If a relation is in 2NF and does not have any transitive partial

dependency, it is in 3NF. The 3NF algorithm is used to decrease data
duplication. It's also used to ensure data consistency. The relation must be
in third normal form if there is no transitive dependency for non-prime
characteristics. For every non-trivial function dependency X Y, a relation
is in third normal form if it meets at least one of the following conditions.
1. X is a super key
2. Y is a prime property, which means that each of its elements is part
of a candidate key.

3.

Non-prime attributes: In the given table, all attributes except EMP_ID
are non-prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and
EMP_ZIP dependent on EMP_ID. The non-prime attributes
(EMP_STATE, EMP_CITY) transitively dependent on super
key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the
new <EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

mu
no
tes
.in

32

BCNF (BOYCE CODD NORMAL FORM)
The advanced form of 3NF is BCNF. It's more stringent than

3NF.A table is in BCNF if every functional dependency X → Y, X is the
super key of the table.The table should be in 3NF for BCNF, and LHS is
super important for every FD.Consider the following scenario: a
corporation with workers who work in multiple departments.

Candidate key: {EMP-ID, EMP-DEPT}
The table is not in BCNF because neither EMP_DEPT nor

EMP_ID alone are keys.
To convert the given table into BCNF, we decompose it into three tables:

mu
no
tes
.in

33

Candidate keys:

For the first table: EMP_ID
For the second table: EMP_DEPT
For the third table: {EMP_ID, EMP_DEPT}
Now, this is in BCNF because left side part of both the functional
dependencies is a key.

mu
no
tes
.in

34

6.4 LOSSLESS JOIN DECOMPOSITION

Normalisation leads to decomposition of relation into multiple tables
in database. The decomposition should always be lossless to avoid
problems like loss of information. Decomposition should guarantee
that the join will result in the same relation as it was decomposed. A
relational table is decomposed in multiple tables, in such a way that
the content of the original table be obtained by joining the decomposed
parts. This is called lossless-join or non-additive join decomposition.
The lossless join decomposition is defined with respect to functional
dependencies.

mu
no
tes
.in

35

7
RELATIONAL ALGEBRA

Unit structure:
7.1 Introduction
7.2 Selection
7.3 Projection
7.4 Set operations
7.5 Joins
7.6 Equi join and natural joins

7.1 INTRODUCTION

A procedural query language is relational algebra. It outlines a
step-by-step procedure for obtaining the query's result. It performs queries
with the help of operators.

Fig 2.1 : Types Of Operation In Relational Algebra

7.2 SELECTION OPERATION

The select operation finds tuples that match a predicate. It is
denoted by sigma (σ).
Notation: σ p(r)

Where:
σ is used for selection prediction
r is used for relation
p is used as a propositional logic formula which may use
connectors like: AND OR and NOT. These relational can use as
relational operators like =, ≠, ≥, <, >, ≤.

mu
no
tes
.in

36

For example find all the loan details where branch name is “Perryride”.
σ BRANCH_NAME="perryride" (LOAN)

7.3 PROJECT OPERATION:

This operation displays a list of the properties we want to present
in the final product. The remaining attributes are removed from the table.
It is denoted by∏.
Notation: ∏ A1, A2, An (r)
Where
A1, A2, A3 is used as an attribute name of relation r.
For example:
List the names and city of all customers.
∏ NAME, CITY (CUSTOMER)

7.4 SET OPERATION

Union operation:
Assume you have two tuples, R and S. All tuples that are either in R or S,
or both in R and S, are included in the union operation. It eliminates the
duplicate tuples. It is denoted by∪.

Notation: R∪ S

The following conditions must be met by a union operation:
 The attribute of the same number must be shared by R and S.
 Duplicate tuples are eliminated automatically.

Consider two relations, BORROW and DEPOSITOR.
∏ CUSTOMER_NAME (BORROW)∪∏ CUSTOMER_NAME (DEPOSITOR)

Set Operation:
Assume you have two tuples, R and S. All tuples in both R and S

are included in the set intersection operation.It is denoted by intersection
∩.
Notation: R ∩ S

For example:
Using the above DEPOSITOR table and BORROW table.
∏ CUSTOMER_NAME (BORROW) ∩∏ CUSTOMER_NAME (DE
POSITOR)

Set Difference:
Assume you have two tuples, R and S. All tuples that are in R but

not in S are included in the set intersection operation. It is denoted by
intersection minus (-).

Notation: R - S

mu
no
tes
.in

37

Example: Using the above DEPOSITOR table and BORROW table
∏ CUSTOMER_NAME (BORROW) -
∏ CUSTOMER_NAME (DEPOSITOR)

Cartesian product:
Each row in one table is combined with each row in the other table

using the Cartesian product. A cross product is another name for it. It is
denoted by X.

Notation: E X D

Rename Operation:
The output relation is renamed using the rename method. Rho (ρ)

is the symbol for it.For example, we can use the rename operator to
rename STUDENT relation to STUDENT1.

ρ(STUDENT1, STUDENT)

7.5 JOINS:

If and only if a specific join condition is satisfied, a Join action
joins related tuples from separate relations. It's indicated by⋈.

Operation: (EMPLOYEE ⋈ SALARY)

Types of Joins:
 Natural Join:

A natural join is the set of tuples of all combinations in R and S that are
equal on their common attribute names.It is denoted by ⋈.Let's use the
EMPLOYEE and SALARY tables.

∏EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

 Outer Join:
The join operation is extended by the outer join operation. It's utilised to
deal with information that's lacking.

(EMPLOYEE ⋈ FACT_WORKERS)

An outer join is of three types. Left outer join, right outer join and
full outer join.

Left outer join:
The set of tuples in R and S that are equivalent on their shared

attribute names is called the left outer join.In the left outer join, tuples in R
have no matching tuples in S. It is denoted by ⟕.Using the above
EMPLOYEE table and FACT_WORKERS table.

EMPLOYEE ⟕ FACT_WORKERS

mu
no
tes
.in

38

Right outer join:
The set of tuples in R and S that are equivalent on their shared

attribute names is called the right outer join.The set of tuples in R and S
that are equivalent on their shared attribute names is called the right outer
join.It is denoted by ⟕.Using the above EMPLOYEE table and
FACT_WORKERS Relation.

EMPLOYEE ⟕ FACT_WORKERS

Full outer join:
The full outer join is like a left or right join, except it includes all

rows from both tables.Tuples in R that have no matching tuples in S and
tuples in S that have no matching tuples in R in their common attribute
name are used in full outer join.It is denoted by ⟕.Using the above
EMPLOYEE table and FACT_WORKERS table.

EMPLOYEE ⟕ FACT_WORKERS

7.6 EQUI-JOIN:

An inner join is another name for it. It's the most prevalent type of
connection. It is based on data that has been matched according to the
equality criteria. The comparison operator is used in the equi join.

CUSTOMER ⋈ PRODUCT

mu
no
tes
.in

39

8
DDL STATEMENTS

Unit structure:
8.1 Creating Databases
8.2 Using Databases
8.3 Creating Tables with integrity constraints
8.4 Altering Tables
8.5 Renaming Tables
8.6 Dropping Tables
8.7 Backing Up and Restoring databases

8.1 CREATING DATABASES:

SQL DDL commands are used to create schemas and tables and
gives an overview of basic data types used in creating a database. SQL
uses some terms such as table, row and column which are knows as
relation, tuple and attribute respectively. The basic command is CREATE
command. It can not only create table but also schemas, domains and
views.

CREATE DATABASE Database_Name;

In this syntax, Database_Name specifies the name of the database
which we want to create in the system. Just after the 'Create Database'
keyword, we must type the database name in the query. The database we
wish to make should have a clear and distinct name that can be easily
recognised. The name of the database should be no more than 128
characters long.

CREATE TABLE command: In a database, the Construct TABLE
statement is used to create tables.If you wish to make a table, you'll need
to give it a name and specify each column's data type.

Create table "tablename"
("column1" "data type",
"column2" "data type",
"column3" "data type",
...
"columnN" "data type");
For example:
Create table Employee(
Eid varchar2(20),
Enamechar(30))

mu
no
tes
.in

40

DATATYPES:

CHAR(Size) It is used to specify a fixed length string that can
contain numbers, letters, and special characters.
Its size can be 0 to 255 characters. Default is 1.

VARCHAR(Size) It is used to specify a variable length string that
can contain numbers, letters, and special
characters. Its size can be from 0 to 65535
characters.

BINARY(Size) It is equal to CHAR() but stores binary byte
strings. Its size parameter specifies the column
length in the bytes. Default is 1.

VARBINARY(Size) It is equal to VARCHAR() but stores binary
byte strings. Its size parameter specifies the
maximum column length in bytes.

TEXT(Size) It holds a string that can contain a maximum
length of 255 characters.

TINYTEXT It holds a string with a maximum length of 255
characters.

MEDIUMTEXT It holds a string with a maximum length of
16,777,215.

LONGTEXT It holds a string with a maximum length of
4,294,967,295 characters.

ENUM(val1, val2,
val3,...)

It is used when a string object having only one
value, chosen from a list of possible values. It
contains 65535 values in an ENUM list. If you
insert a value that is not in the list, a blank value
will be inserted.

SET(
val1,val2,val3,....)

It is used to specify a string that can have 0 or
more values, chosen from a list of possible
values. You can list up to 64 values at one time
in a SET list.

BLOB(size) It is used for BLOBs (Binary Large Objects). It
can hold up to 65,535 bytes.

mu
no
tes
.in

41

8.3 CREATING TABLES WITH INTEGRITY
CONSTRAINTS:

 NOT NULL − Ensures that a column cannot have NULL value.

 DEFAULT − Provides a default value for a column when none is
specified.

 UNIQUE − Ensures that all values in a column are different.

 PRIMARY Key − Uniquely identifies each row/record in a
database table.

 FOREIGN Key − Uniquely identifies a row/record in any of the
given database table.

 CHECK − The CHECK constraint ensures that all the values in a
column satisfies certain conditions.

 INDEX − Used to create and retrieve data from the database very
quickly.

8.4 ALTERING TABLES:

ALTER TABLE command is used to add, delete or modify columns in
an existing table. You should also use the ALTER TABLE command to
add and drop various constraints on an existing table. The basic syntax of
an ALTER TABLE command to add a New Column in an existing table
is as follows.

ALTER TABLE table_name ADD column_namedatatype;
The basic syntax of an ALTER TABLE command to DROP

COLUMN in an existing table is as follows.

ALTER TABLE table_name DROP COLUMN column_name;

DROP TABLE statement is used to remove a table definition and all the
data, indexes, triggers, constraints and permission specifications for that
table.

The basic syntax of this DROP TABLE statement is as follows −

DROP TABLE table_name;

8.5 RENAME OPERATION:

ALTER TABLE table_name RENAME TO new_table_name;

mu
no
tes
.in

42

8.6 BACKING UP AND RESTORING DATA:
Reasons of Failure in a Database

There can be multiple reasons of failure in a database because of
which a database backup and recovery plan is required. Some of these
reasons are:

 User Error - Normally, user error is the biggest reason of data
destruction or corruption in a database. To rectify the error, the
database needs to be restored to the point in time before the error
occurred.

 Hardware Failure - This can also lead to loss of data in a database.
The database is stored on multiple hard drives across various locations.
These hard drives may sometimes malfunction leading to database
corruption. So, it is important to periodically change them.

 Catastrophic Event - A catastrophic event can be a natural calamity
like a flood or earthquake or deliberate sabotage such as hacking of the
database. Either way, the database data may be corrupted, and backup
may be required.

Methods of Backup
The different methods of backup in a database are:

 Full Backup - This method takes a lot of time as the full copy of the
database is made including the data and the transaction records.

 Transaction Log - Only the transaction logs are saved as the backup
in this method. To keep the backup file as small as possible, the
previous transaction log details are deleted once a new backup record
is made.

 Differential Backup - This is similar to full back up in that it stores
both the data and the transaction records. However only that
information is saved in the backup that has changed since the last full
backup. Because of this, differential backup leads to smaller files.

Database Recovery
There are two methods that are primarily used for database

recovery. These are:
 Log based recovery - In log-based recovery, logs of all database
transactions are stored in a secure area so that in case of a system
failure, the database can recover the data. All log information, such
as the time of the transaction, its data etc. should be stored before
the transaction is executed.

 Shadow paging - In shadow paging, after the transaction is
completed, its data is automatically stored for safekeeping. So, if
the system crashes in the middle of a transaction, changes made by
it will not be reflected in the database.

mu
no
tes
.in

43

9
DML STATEMENTS

Unit Structure
9.1 DML Commands
9.2 Conditional select
9.3 In clause (Set membership Test)
9.4 Between clause (Range Test)
9.5 Order By clause
9.6 Group By
9.7Aggregate functions

9.1 DML COMMANDS

DML commands are used to modify the database. It is responsible
for all form of changes in the database.The command of DML is not auto-
committed that means it can't permanently save all the changes in the
database. They can be rollback.

Here are some commands that come under DML:
o INSERT
o UPDATE
o DELETE

INSERT: The INSERT statement is a SQL query. It is used to insert data
into the row of a table.

Syntax:
INSERT INTO TABLE_NAME
(col1, col2, col3,.... col N)
VALUES (value1, value2, value3, valueN);

For example:
INSERT INTO javatpoint (Author, Subject) VALUES ("Sonoo", "DBMS");

UPDATE: This command is used to update or modify the value of a
column in the table.

Syntax:
UPDATE table_name SET [column_name1= value1,...column_na
meN = valueN] [WHERE CONDITION]

mu
no
tes
.in

44

For example:
UPDATE students
SET User_Name = 'Sonoo'
WHERE Student_Id = '3'

DELETE: It is used to remove one or more row from a table.

Syntax:
DELETE FROM table_name [WHERE condition];

For example:
DELETE FROM javatpoint
WHERE Author="Sonoo";

9.2 CONDITIONAL SELECT

SELECT statement is used to fetch the data from a database table which
returns this data in the form of a result table. These result tables are called
result-sets.

The basic syntax of the SELECT statement is as follows −

SELECT column1, column2, columnN FROM table_name;
Here, column1, column2... are the fields of a table whose values

you want to fetch. If you want to fetch all the fields available in the field,
then you can use the following syntax.

SELECT * FROM table_name;
For example:
Select * from employee;

WHERE clause is used to specify a condition while fetching the data
from a single table or by joining with multiple tables. If the given
condition is satisfied, then only it returns a specific value from the table.
You should use the WHERE clause to filter the records and fetching only
the necessary records. The WHERE clause is not only used in the
SELECT statement, but it is also used in the UPDATE, DELETE
statement, etc.

The basic syntax of the SELECT statement with the WHERE clause is
as shown below.
SELECT column1, column2, columnN

FROM table_name

WHERE [condition]

You can specify a condition using the comparison or logical operators like
>, <, =, LIKE, NOT, etc.

mu
no
tes
.in

45

The following code is an example which would fetch the ID, Name and
Salary fields from the CUSTOMERS table, where the salary is greater
than 2000 −

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY >2000;

This would produce the following result −

| ID | NAME | SALARY |

| 4 | Chaitali| 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

9.3 IN OPERATOR (SET MEMBERSHIP TEST):

The IN conditional operator actually performs a set membership
test. To put it another way, it's used to see if a value (expressed before the
keyword IN) is "in" the list of values provided after the keyword IN. For
example

SELECT employeeid, lastname, salary

FROM employee_info

WHERE lastname IN ('Hernandez', 'Jones', 'Roberts', 'Ruiz');

This statement will select the employeeid, lastname, salary from
the employee_info table where the lastname is equal to either: Hernandez,
Jones, Roberts, or Ruiz. It will return the rows if it is ANY of these values.

9.4 BETWEEN (RANGE TEST):

The BETWEEN conditional operator is used to test to see whether
or not a value (stated before the keyword BETWEEN) is "between" the
two values stated after the keyword BETWEEN.For example:

SELECT employeeid, age, lastname, salary

FROM employee_info

WHERE age BETWEEN 30 AND 40;

This statement will select the employeeid, age, lastname, and
salary from the employee_info table where the age is between 30 and 40
(including 30 and 40).

mu
no
tes
.in

46

9.5 ORDER BY clause:

ORDER BY clause is used to sort the data in ascending or
descending order, based on one or more columns. Some databases sort the
query results in an ascending order by default.

The basic syntax of the ORDER BY clause is as follows −
SELECT column-list

FROM table_name

[WHERE condition]

[ORDER BY column1, column2, ..columnN] [ASC | DESC];

In the ORDER BY clause, you can utilise more than one column. Make
sure that whichever column you're using to sort is included in the column-
list. For example:

SQL> SELECT * FROM CUSTOMERS

ORDER BY NAME, SALARY;

9.6 GROUP BY operator:

GROUP BY clause is used in collaboration with the SELECT
statement to arrange identical data into groups. This GROUP BY clause
follows the WHERE clause in a SELECT statement and precedes the
ORDER BY clause.

The basic syntax of a GROUP BY clause is shown in the following
code block. The GROUP BY clause must follow the conditions in the
WHERE clause and must precede the ORDER BY clause if one is used.

SELECT column1, column2

FROM table_name

WHERE [conditions]

GROUP BY column1, column2

ORDER BY column1, column2

Consider the CUSTOMERS table is having the following records −
ID	NAME	AGE	ADDRESS	SALARY
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00

mu
no
tes
.in

47

If you want to know the total amount of the salary on each
customer, then the GROUP BY query would be as follows.

SQL>SELECT NAME, SUM(SALARY) FROM CUSTOMERS
GROUP BY NAME;

This would produce the following result −
NAME	SUM(SALARY)
Chaitali	6500.00
Hardik	8500.00
kaushik	2000.00
Khilan	1500.00
Komal	4500.00
Muffy	10000.00
Ramesh	2000.00

9.7 AGGREGATE FUNCTION:

Aggregation function is used to perform the calculations on
multiple rows of a single column of a table. It returns a single value.It is
also used to summarize the data. There are five aggregate functions which
are follows:
1) COUNT
2) MAX
3) MIN
4) AVG
5) SUM

1. COUNT FUNCTION
COUNT function is used to Count the number of rows in a database
table. It can work on both numeric and non-numeric data
types.COUNT function uses the COUNT(*) that returns the count of
all the rows in a specified table. COUNT(*) considers duplicate and
Null.

Syntax: COUNT(*) or COUNT([ALL|DISTINCT] expression)

2. SUM Function
Sum function is used to calculate the sum of all selected columns. It
works on numeric fields only.

Syntax: SUM() or SUM([ALL|DISTINCT] expression)

Example: SUM()

SELECT SUM(COST) FROM PRODUCT_MAST;

mu
no
tes
.in

48

3. AVG function
The AVG function is used to calculate the average value of the numeric
type. AVG function returns the average of all non-Null values.

Syntax: AVG() or AVG([ALL|DISTINCT] expression)

Example:

SELECT AVG(COST)

FROM PRODUCT_MAST;

4. MAX Function
MAX function is used to find the maximum value of a certain
column. This function determines the largest value of all selected
values of a column. Syntax:
MAX() or MAX([ALL|DISTINCT] expression)

Example:
1. SELECT MAX(RATE)
2. FROM PRODUCT_MAST;

5. MIN Function
MIN function is used to find the minimum value of a certain column. This
function determines the smallest value of all selected values of a column.
SyntaxMIN() or MIN([ALL|DISTINCT] expression)
Example:
SELECT MIN(RATE)
FROM PRODUCT_MAST;

mu
no
tes
.in

49

Unit - III

10
FUNCTINS, JOIN, SUBQUERIES, VIEWS,

DATA PROTECTION
AND DCL STATEMENTS

Unit Structure
10.0 Objectives
10.1 Introduction
10.2 Functions

10.2.1 String Functions
10.2.2 Math Functions
10.2.3 Date Functions

10.3 Join
10.3.1 Equi joins
10.3.2 Non-Equi joins

10.4 Subqueries
10.4.1 Nested subqueries, subqueries with IN
10.4.2 subqueries with ALL
10.4.3 subqueries with ANY
10.4.4 correlated subqueries
10.4.5 subqueries withEXISTS
10.4.6 subqueries restrictions

10.5 Database Protection
10.5.1 Security Issues
10.5.2 Threats to Databases
10.5.3 Security Mechanisms
10.5.4 Role of DBA

10.6 Views
10.6.1 Create Views
10.6.2 DropViews
10.6.3 Update Views

10.7 DCL Statements
10.7.1 Privileges introduction
10.7.2 Granting/revoking privileges,
10.7.3 Viewing privileges,

10.8 List of References

mu
no
tes
.in

50

10.9 Bibliography
10.10 Unit End Exercises

10.0 OBJECTIVES: -

After going through this unit, you will be able to:
 Learn functions in SQL, like math string and date
 state the DCL statements in SQL
 describe the basic concepts in views, subqueries, join and system
privilege

 illustrate the role of a DBA

10.1 INTRODUCTION: -

A Subquery or Inner query or a Nested query is a query within another
SQL query and embedded within the WHERE clause. A subquery is used
to return data that will be used in the main query as a condition to further
restrict the data to be retrieved.

Views can join and simplify multiple tables into a single virtual table.
Views can act as aggregated tables, where the database engine aggregates
data (sum, average, etc.) and presents the calculated results as part of the
data. Views can hide the complexity of data.

SQL functions are sub-programs, which are commonly used and re-used
throughout SQL database applications for processing or manipulating
data. All SQL database systems have DDL (data definition language) and
DML (data manipulation language) tools to support the creation and
maintenance of databases.

A JOIN clause is used to combine rows from two or more tables, based on
a related column between them.

A privilege is a right to execute a particular type of SQL statement or to
access another user's object. Some examples of privileges include the right
to: Connect to the database (create a session) Create a table.

10.2 FUNCTIONS: -

10.2.1 String Functions:

CONCAT:
It merges two or more strings or a string and a data value together
Example:
SELECT CONCAT('summer ','18') FROM DUAL;

mu
no
tes
.in

51

INSTR:
The INSTR() function returns the position of the first occurrence of a
string in another string.
Example:
SELECT INSTR("RamSham.com", "3") AS MatchPosition;

LEFT:
This function returns the leftmost n characters from the string str. If the
string is empty, it returns NULL.
Example:
SELECT LEFT('RamSham', 4);

RIGHT:
This function returns the rightmost n characters from the string str. If the
string is empty, it returns NULL.
Example:
SELECT RIGHT('RamSham', 5);

MID:
The MID() function extracts a substring from a string (starting at any
position).
Example:
SELECT MID("SQL Tutorial", 5, 3) AS ExtractString;

LENGTH:
Find outs the length of given string.
Example:
SELECT LENGTH (‘abcd’) FROM DUAL

LOWER:
Converts a string to all lowercase characters.
Example:
SELECT LOWER (‘ABCD’) FROM DUAL

UPPER:
Converts a string to all uppercase characters.
Example:
SELECT UPPER (‘abcd’) FROM DUAL

REPLACE:
It returns character string with each occurrence of search string replaced
with [repstring]
Example:
SELECT REPLACE (‘Tick and Tock’, ‘T’,’C’) FROM DUAL

STRCMP:
This function compares both the strings str1 and str2. It returns 0 if both
strings are equal, 1 if str1 is greater than str2 and -1 if if str2 is greater than
str1.

mu
no
tes
.in

52

Example:
SELECT STRCMP('HARRY', 'HARRY');

TRIM:
The TRIM() function removes the space character OR other specified
characters from the start or end of a string.
Example:
SELECT TRIM('#! ' FROM ' #SQL Tutorial! ') AS TrimmedString;

LTRIM:
Removesleading spaces from a string
Example:
SELECT LTRIM (‘abcd) FROM DUAL;

RTRIM:
Removes trailing spaces from a string
Example:
SELECT RTRIM (‘abcd’) FROM DUAL;

10.2.2 Math Functions

ABS:
This function returns the absolute value of X.
Example:
Select abs(-6);

CEIL:
This returns the smallest integer value that is either more than X or equal
to it.
Example:
SELECT CEIL(5.7);

FLOOR:
This returns the largest integer value that is either less than X or equal to
it.
Example:
SELECT FLOOR(5.7);

MOD:
The variable X is divided by Y and their remainder is returned.
Example:
SELECT MOD(9,5);

POW:
This function returns the value of x raised to the power of Y
Example:
SELECT POWER(2,5);

mu
no
tes
.in

53

SQRT:
This function returns the square root of X.
Example:
SELECT SQRT(9);

ROUND:
This function returns the value of X rounded off to the whole integer that
is nearest to it.
Example:
SELECT ROUND(5.7);

10.2.3 Date Functions :-

ADDDATE:
ADDDATE() is a synonym for DATE_ADD().
Example:
SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);

DATEDIFF:
DATEDIFF() returns expr1 . expr2 expressed as a value in days from one
date to the other. Both expr1 and expr2 are date or date-and-time
expressions. Only the date parts of the values are used in the calculation.
Example :-
SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30');

DAY:
The DAY() is a synonym for the DAYOFMONTH() function. Returns the
day of the month for date, in the range 0 to 31.
Example:
SELECT DAYOFMONTH('1998-02-03');

MONTH:
Returns the month for date, in the range 0 to 12.
Example:
SELECT MONTH('1998-02-03')

YEAR:
Returns the year for date, in the range 1000 to 9999, or 0 for the .zero.
date.
Example:
SELECT YEAR('98-02-03');

HOUR:
Returns the hour for time. The range of the return value is 0 to 23 for time-
of-day values. However, the range of TIME values actually is much larger,
so HOUR can return values greater than 23.
Example:
SELECT HOUR('10:05:03');

mu
no
tes
.in

54

MIN:
Returns the minute for time, in the range 0 to 59.
Example:
SELECT MINUTE('98-02-03 10:05:03');

SEC:
Returns the second for time, in the range 0 to 59.
Example:
SELECT SECOND('10:05:03');

NOW:
Returns the current date and time as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether
the function is used in a string or numeric context. This value is expressed
in the current time zone.
Example:
SELECT NOW();

REVERSE:
The REVERSE() function reverses a string and returns the result.
Example:
SELECT REVERSE('SQL Tutorial');

10.3 JOINS

 Joins are used to relate information in different tables.
 A Join condition is a part of the sql query that retrieves rows from
two or more tables.

 A SQL Join condition is used in the SQL WHERE Clause of
select, update, delete statements.

Syntax for joining two tables is:
SELECT col1, col2, col3...
FROM table_name1, table_name2
WHERE table_name1.col2 = table_name2.col1;

If a sql join condition is omitted or if it is invalid the join operation will
result in a Cartesian product. The Cartesian product returns a number of
rows equal to the product of all rows in all the tables being joined.

Example:
If the first table has 20 rows and the second table has 10 rows, the result
will be 20 * 10, or 200 rows.
This query takes a long time to execute.

Let us use the below two tables to explain the sql join conditions.

mu
no
tes
.in

55

Database table "product";

Product_id Product_name Supplier_name Unit_price

100 Camera Nikon 300

101 Television LG 100

102 Refrigerator Videocon 150

103 IPod Apple 75

104 Mobile Nokia 50

Database table "order_items";

order_id product_id total_units customer
5100 104 30 Infosys
5101 102 5 Satyam
5102 103 25 Wipro
5103 101 10 TCS

Joins can be classified into Equi join and Non Equi join.
1. SQL Equi joins
2. SQL Non equi joins

10.3.1 SQLEqui joins
It is a simple sql join condition which uses the equal sign as the
comparison operator. Two types of Equijoins are SQL Outer join and SQL
Inner join.

Example:
We can get Information about a customer who purchased a product and
the quantity of product.

An Equi-join is classified into two categories:
a) SQL Inner Join
b) SQL Outer Join

a) SQL Inner Join:
All the rows returned by the sql query satisfy the sql join condition
specified.

Example:
To display the product information for each order the query will be as
given below.

Since retrieving the data from two tables, you need to identify the
common column between these two tables, which is the product_id.

mu
no
tes
.in

56

QUERY:
SELECT order_id, product_name, unit_price, supplier_name,
total_units
FROM product, order_items
WHERE order_items.product_id = product.product_id;

The columns must be referenced by the table name in the join condition,
because product_id is a column in both the tables and needs a way to be
identified.

b) SQL Outer Join:
 Outer join condition returns all rows from both tables which satisfy
the join condition along with rows which do not satisfy the join
condition from one of the tables.

 The syntax differs for different RDBMS implementation.
 Few of them represent the join conditions as” LEFT OUTER
JOIN" and "RIGHT OUTER JOIN".

Example
Display all the product data along with order items data, with null values
displayed for order items if a product has no order item.

QUERY
SELECT p.product_id, p.product_name, o.order_id, o.total_units
FROM order_items o, product p
WHERE o.product_id (+) = p.product_id;

Output:
Product_id product_name order_id total_units
100 Camera
101 Television 5103 10
102 Refrigerator 5101 5
103 IPod 5102 25

SQL Self Join:
A Self Join is a type of sql join which is used to join a table to it,
particularly when the table has a FOREIGN KEY that references its own
PRIMARY KEY.

It is necessary to ensure that the join statement defines an alias for both
copies of the table to avoid column ambiguity.

Example
SELECT a.sales_person_id, a.name, a.manager_id, b.sales_person_id,
b.name
FROM sales_person a, sales_person b
WHERE a.manager_id = b.sales_person_id;

mu
no
tes
.in

57

10.3.2 SQL NON-EQUI JOIN:

A Non Equi Join is a SQL Join whose condition is established using all
comparison operators except the equal (=) operator.
Like >=, <=, <, >

Example:
Find the names of students who are not studying either Economics, the sql
query would be like, (let’s use Employee table defined earlier.)

QUERY:
SELECT first_name, last_name, subject FROM Employee
WHERE subject != 'Economics'

Output:
first_name last_name subject
Anajali Bhagwat Maths
Shekar Gowda Maths
Rahul Sharma Science
Stephen Fleming Science

10.4 SUBQUERIES

A subquery is a SELECT statement with another SQL statement, like in
the example below.

SELECT *
FROM product
WHERE id IN (SELECT product_idFROM provider_offer WHERE
provider_id = 156);

Subqueries are further classified as either a correlated subquery or a nested
subquery. They are usually constructed in such a way to return:

a table

SELECT MAX(average.average_price)
FROM (SELECTproduct_category,
AVG(price) AS average_price FROM product GROUP BY
product_category) average;

or a value

SELECT id
FROM purchase
WHERE value >(SELECT AVG(value) FROM purchasec);

mu
no
tes
.in

58

10.4.1 NestedSubqueries: -
Nested subqueries are subqueries that don’t rely on an outer query. In
other words, both queries in a nested subquery may be run as separate
queries.

This type of subquery could be used almost everywhere, but it usually
takes one of these formats:

SELECT
FROM
WHERE [NOT] IN (subquery)
SELECT *FROM clientWHERE city IN (SELECT city FROM
provider);

The example subquery returns all clients that are FROM the same city as
the product providers.

The IN operator checks if the value is within the table and retrieves the
matching rows.

SELECTFROMWHERE expression comparison_operator [ANY|
ALL] (subquery)

10.4.2Subquery With ALL Operator:
The ALL operator compares a value to every value FROM the result table.

For example, the following query returns all of the models and producers
of bikes that have a price greater than the most expensive headphones.

SELECT producer, model
FROM product
WHERE product_category = 'bike'
AND price >ALL(SELECT price FROM product WHERE
product_category = 'headphones');

Similar subquery but with ANY operator:

10.4.3 Subquery With ANY Operator:
The ANY operator compares a value to each value in a table and evaluates
whether or not the result of an inner query contains at least one row.

The following query returns all of the models and producers of bikes that
have a price greater than at least one of the headphones.

SELECT producer, model
FROM product
WHERE product_category = 'bike'

mu
no
tes
.in

59

AND price >ANY(SELECT price FROM product WHERE
product_category = 'headphones');

You can also nest a subquery in another subquery. For example:

Subquery Nested in Another Subquery Using IN Operator:
This query returns producers and models of bikes that exist in provider’s
offers FROM the USA.

SELECT producer, model
FROM product
WHERE product_category = 'bike'
AND id IN (SELECT distinct product_idFROMprovider_offer
WHERE provider_id IN (SELECT id FROM provider WHERE
country = 'USA'));

The same could be done using joins.

SELECT product.producer, product.model
FROM product, provider_offer, provider
WHERE provider_offer.product_id = product.id
AND provider_offer.provider_id = provider.id
AND product_category = 'bike'
AND provider.country = 'USA';

10.4.4 CorrelatedSubqueries:-
Subqueries are correlated when the inner and outer queries are
interdependent, that is, when the outer query is a query that contains a
subquery and the subquery itself is an inner query. Users that know
programming concepts may compare it to a nested loop structure.

Let’s start with a simple example.

The inner query calculates the average value and returns it. In the outer
query’s WHERE clause, we filter only those purchases which have a value
greater than the inner query’s returned value.

Subquery Correlated inWHERE Clause

SELECT id
FROM purchase p1
WHERE date > '2013-07-15'
AND value >(SELECT AVG(value) FROM purchase p2 WHERE
p1.date = p2.date);

The query returns purchases after 15/07/2014 with a total price greater
than the average value FROM the same day.

The equivalent example, but with joining tables.

mu
no
tes
.in

60

SELECT p1.id
FROM purchase p1, purchase p2
WHERE p1.date = p2.date
AND p1.date> '2013-07-15'
GROUP BY p1.idHAVING p1.value > AVG(p2.value);

This example can also be written as a SELECT statement with a subquery
correlated in a FROM clause.

The subquery returns the table that contains the average value for each
purchase for each day. We join this result with the Purchase table on
column ‘date’ to check the condition date > ’15/07/2014'.

SELECT id
FROM
purchase,
(
SELECT date, AVG(value) AS average_value
FROM purchase
WHERE date > '2013-07-15'
GROUP BY date
) average
WHERE purchase.date = average.date
AND purchase.date> '2013-07-15'
AND purchase.value>average.average_value;

Usually, this kind of subquery should be avoided because indexes can’t be
used on a temporary table in memory.

10.4.5 Subquery With EXISTS:-
The EXISTS operator checks if the row FROM the subquery matches any
row in the outer query. If there’s no data matched, the EXISTS operator
returns FALSE.

Syntax
SELECTFROMWHERE [NOT] EXISTS (subquery)

Example:
This Query returns all clients that ordered after 10/07/2013.

SELECT id, company_name
FROM client
WHERE EXISTS(
SELECT *
FROM purchase
WHERE client.id = purchase.client_id
WHERE date > '2013-07-10'
);
When a subquery is used, the query optimizer performs additional steps

mu
no
tes
.in

61

before the results FROM the subquery are used. If a query that contains a
subquery can be written using a join, it should be done this way. Joins
usually allow the query optimizer to retrieve the data in a more efficient
way.

10.4.6 Subquery Restrictions:-
A subquery is subject to these restrictions:

 The subquery_select_list can consist of only one column name,
except in the exists subquery, where an (*) is usually used in place
of the single column name. You can use an asterisk (*) in a nested
select statement that is not an exists subquery.

 Do not specify more than one column name. Qualify column
names with table or view names if there is ambiguity about the
table or view to which they belong.

 Subqueries can be nested inside the WHERE or HAVING clause
of an outer select, insert, update, or delete statement, inside another
subquery, or in a select list. Alternatively, you can write many
statements that contain subqueries as joins; Adaptive Server
processes such statements as joins.

 In Transact-SQL, a subquery can appear almost anywhere an
expression can be used, if it returns a single value. SQL derived
tables can be used in the from clause of a subquery wherever the
subquery is used.

 You cannot use subqueries in an order by, group by, or compute by
list.

 You cannot include a for browse clause in a subquery.

 You cannot include a union clause in a subquery unless it is part of
a derived table expression within the subquery.

 The select list of an inner subquery introduced with a comparison
operator can include only one expression or column name, and the
subquery must return a single value. The column you name in the
where clause of the outer statement must be join-compatible with
the column you name in the subquery select list.

 You cannot include text, unitext, or image datatypes in subqueries.

 Subqueries cannot manipulate their results internally, that is, a
subquery cannot include the order by clause, the compute clause,
or the into keyword.

 Correlated (repeating) subqueries are not allowed in the select
clause of an updatable cursor defined by declare cursor.

 There is a limit of 50 nesting levels.

 The maximum number of subqueries on each side of a union is 50.

mu
no
tes
.in

62

 The where clause of a subquery can contain an aggregate function
only if the subquery is in a having clause of an outer query and the
aggregate value is a column from a table in the from clause of the
outer query.

 The result expression from a subquery is subject to the same limits
as for any expression. The maximum length of an expression is
16K.

10.5 DATABASE PROTECTION:

Database security is the protection of the database against intentional and
unintentional threats that may be computer-based or non-computer-based.
Database security is the business of the entire organization as all people
use the data held in the organization's database and any loss or corruption
to data would affect the day-to-day operation of the organization and the
performance of the people. Therefore, database security encompasses
hardware, software, infrastructure, people and data of the organization.

Now there is greater emphasis on database security than in the past as the
amount of data stored in corporate database is increasing and people are
depending more on the corporate data for decision-making, customer
service management, supply chain management and so on. Any loss or
unavailability to the corporate data will cripple today's organization and
will seriously affect its performance. Now the unavailability of the
database for even a few minutes could result in serious losses to the
organization.

10.5.1 Security Issues

Database security is a broad area that addresses many issues, including the
following:

 Various legal and ethical issues regarding the right to access
certain information.
for example, some information may be deemed to be private and
can-not be accessed legally by unauthorized organizations or
persons. In the United States, there are numerous laws governing
privacy of information.

 Policy issues at the governmental, institutional, or corporate
level as to what kinds of information should not be made
publicly available.
for example, credit ratings and personal medical records.

 System-related issues such as the system levels at which
various security functions should be enforced.
for example, whether a security function should be handled at the

mu
no
tes
.in

63

physical hardware level, the operating system level, or the DBMS
level.

 The need in some organizations to identify multiple security
levels and to categorize the data and users based on these
classifications.
for example, top secret, secret, confidential, and unclassified. The
security policy of the organization with respect to permitting
access to various classifications of data must be enforced.

10.5.2 Threats to Databases.
Threats to databases can result in the loss or degradation of some or all of
the following commonly accepted security goals: integrity, avail-ability,
and confidentiality.

 Loss of integrity. Database integrity refers to the requirement that
information be protected from improper modification.
Modification of data includes creation, insertion, updating,
changing the status of data, and deletion. Integrity is lost if
unauthorized changes are made to the data by either intentional or
accidental acts. If the loss of system or data integrity is not
corrected, continued use of the contaminated system or corrupted
data could result in inaccuracy, fraud, or erroneous decisions.

 Loss of availability. Database availability refers to making objects
available to a human user or a program to which they have a
legitimate right.

 Loss of confidentiality. Database confidentiality refers to the
protection of data from unauthorized disclosure. The impact of
unauthorized disclosure of confidential information can range from
violation of the Data Privacy Act to the jeopardization of national
security. Unauthorized, unanticipated, or unintentional disclosure
could result in loss of public confidence, embarrassment, or legal
action against the organization.

To protect databases against these types of threats, it is common to
implement four kinds of control measures: access control, inference
control, flow control, and encryption.

10.5.3 Security Mechanisms
To protect the database, we must take security measures at several levels:

 Physical: The sites containing the computer systems must be
secured against armed or surreptitious entry by intruders.

 Human: Users must be authorized carefully to reduce the chance
of any such user giving access to an intruder in exchange for a
bribe or other favours.

 Operating System: No matter how secure the database system is,

mu
no
tes
.in

64

weakness in operating system security may serve as a means of
unauthorized access to the database.

 Network: Since almost all database systems allow remote access
through terminals or networks, software-level security within the
network software is as important as physical security, both on the
Internet and in networks private to an enterprise.

 Database System: Some database-system users may be authorized
to access only a limited portion of the database. Other users may
be allowed to issue queries, but may be forbidden to modify the
data. It is responsibility of the database system to ensure that these
authorization restrictions are not violated.

10.5.4 Discretionary security mechanisms.
These are used to grant privileges to users, including the capability to
access specific data files, records, or fields in a specified mode (such as
read, insert, delete, or update).

Discretionary Access Control Based on Granting and Revoking
Privileges
The typical method of enforcing discretionary access control in a database
system is based on the granting and revoking of privileges. Let us consider
privileges in the context of a relational DBMS. In particular, we will
discuss a system of privileges somewhat similar to the one originally
developed for the SQL language (see Chapters 4 and 5). Many current
relational DBMSs use some variation of this tech-nique. The main idea is
to include statements in the query language that allow the DBA and
selected users to grant and revoke privileges.

1. Types of Discretionary Privileges
In SQL2 and later versions, the concept of an authorization identifier is
used to refer, roughly speaking, to a user account (or group of user
accounts). For simplicity, we will use the words user or account
interchangeably in place of authorization identifier. The DBMS must
provide selective access to each relation in the database based on specific
accounts. Operations may also be controlled; thus, having an account does
not necessarily entitle the account holder to all the functionality provided
by the DBMS. Informally, there are two levels for assigning privileges to
use the database system:

 The account level. At this level, the DBA specifies the particular
privileges that each account holds independently of the relations in
the database.

 The relation (or table) level. At this level, the DBA can control
the privilege to access each individual relation or view in the
database.

 References privilege on R. This gives the account the capability
to reference (or refer to) a relation R when specifying integrity

mu
no
tes
.in

65

constraints. This privilege can also be restricted to specific
attributes of R.

Notice that to create a view, the account must have the SELECT privilege
on all relations involved in the view definition in order to specify the
query that corresponds to the view.

2. Specifying Privileges through the Use of Views
The mechanism of views is an important discretionary authorization
mechanism in its own right. For example, if the owner A of a relation R
wants another account B to be able to retrieve only some fields of R, then
A can create a view V of R that includes only those attributes and then
grant SELECT on V to B. The same applies to limiting B to retrieving
only certain tuples of R; a view V can be created by defining the view by
means of a query that selects only those tuples from R that A wants to
allow B to access.

3. Revoking of Privileges
In some cases it is desirable to grant a privilege to a user temporarily. For
example, the owner of a relation may want to grant the SELECT privilege
to a user for a specific task and then revoke that privilege once the task is
completed. Hence, a mechanism for revoking privileges is needed. In SQL
a REVOKE command is included for the purpose of cancelling privileges.

4. Propagation of Privileges Using the GRANT OPTION
Whenever the owner A of a relation R grants a privilege on R to another
account B, the privilege can be given to B with or without the GRANT
OPTION. If the GRANT OPTION is given, this means that B can also
grant that privilege on R to other accounts. Suppose that B is given the
GRANT OPTION by A and that B then grants the privilege on R to a third
account C, also with the GRANT OPTION. In this way, privileges on R
can propagate to other accounts without the knowledge of the owner of R.
If the owner account A now revokes the privilege granted to B, all the
privileges that B propagated based on that privilege should automatically
be revoked by the system.

It is possible for a user to receive a certain privilege from two or more
sources. For example, A4 may receive a certain UPDATE R privilege
from both A2 and A3. In such a case, if A2 revokes this privilege from
A4, A4 will still continue to have the privilege by virtue of having been
granted it from A3. If A3 later revokes the privilege from A4, A4 totally
loses the privilege. Hence, a DBMS that allows propagation of privi-leges
must keep track of how all the privileges were granted so that revoking of
priv-ileges can be done correctly and completely.

Role of DBA
A person having who has central control over data and programs that
access the data is called DBA. Following are the functions of the DBA.

mu
no
tes
.in

66

 Schema definition: DBA creates database schema by executing
Data Definition Language (DDL) statements.

 Storage structure and access method definition

 Schema and physical organization modification: If any changes
are to be made in the original schema, to fit the need of your
organization, then these changes are carried out by the DBA.

 Granting of authorization for data access: DBA can decide
which parts of data can be accessed by which users. Before any
user access the data, DBMS checks which rights are granted to the
user by the DBA.

 Routine maintenance: DBA has to take periodic backups of the
database, ensure that enough disk space is available to store new
data, ensure that performance of DBMS ix not degraded by any
operation carried out by the users.

 Performance monitoring: Here DBMS should respond to
changes in requirements, i.e.,changing details of storage and access
thereby organising the system so as to get the performance that is `
best for the enterprise'.

10.6 VIEWS: -
Definition:

 A view is a virtual table that consists of columns from one or more
tables.

 A virtual table is like a table containing fields but it does not
contain any data. In run time it contains the data and after that it
gets free.

 But table stores the data in database occupy some space.

 Just like table, view contains Rows and Columns which is fully
virtual based table.

 Base Table -The table on which view is defined is called as Base
table.

10.6.1 Creating a VIEW
This statement is used to create a view.

Syntax:

CREATE VIEW view_name

 The CREATE statement assigns a name to the view and also gives
the query which defines the view.

 To create the view, one should must have privileges to access all of
the base tables on which view is defined.

mu
no
tes
.in

67

 The create view can change name of column in view as per
requirements.

Horizontal View
A Horizontal view will restrict the user’s access to only a few rows of the
table.

Example:

Define a view for Sue (employee number 1004) containing only orders
placed by customers assigned to her.

CREATE VIEW SUEORDERS AS SELECT *
FROM ORDERSWHERE CUST IN

(SELECT CUST_NUM FROM CUSTOMERS WHERE
CUST_REP=1004)

Vertical View
A vertical view restricts a user’s access to only certain columns of a table.

Ex:

CREATE VIEW EMP_ADDRESS AS

SELECT EMPNO, NAME, ADDR1, ADDR2, CITY FROM
EMPLOYEE
ROW/COLUMN SUBSET VIEW.

 Views can be used to restrict a user to access only selected set of rows
and columns of a table in a database.

 This view generally helps us to visualize how view can represent the
base table.

 This type of view is combination of both horizontal and vertical views.
Ex:

CREATE VIEW STUDENTS_PASSED AS SELECT ROLLNO,
NAME, PERCENTAGE
FROM STUDENTS

WHERE RESULT =’PASS’
Grouped View

 A grouped view is one in which query includes GROUPBY
CLAUSE.

 It is used to group related rows of data and produce only one result
row for each group.

Ex:

Find summary information of Employee Salaries in sales Department.

CREATE VIEW Summary_Empl_Sal (

mu
no
tes
.in

68

Total_Employees, Minimum_salary, Maximum_Salary,
Average_salary, Total_salary)

AS
SELECT COUNT(EmpID),

Min(Salary), Max(Salary), Avg(Salary), SUM(Salary), FROM
Employee
GROUP BY Department HAVING Department=’Sales’;
View Call

SELELCT *FROM Summary_Empl_Sal
The above Query will give,

Total No. Of Employees in sales Department, Minimum Salary in sales
Department.

Maximum Salary in sales Department. Average Salary in sales
Department.

Total Salary of Employees in sales Department.

Joined Views

 A Query based on more than one base table is called as Joined
View.

 It is also called as Complex View

 This gives a way to simplify multi table queries by joining two or
more table query in the view definition that draws its data from
multiple tables and presents the query results as a single view.

 The view once it is ready we can retrieve data from multiple tables
without joining any table simply by accessing a view created.

Ex:

Company database find out all EMPLOYEES for respective
DEPARTMENTS.

CREATE VIEW Emp_Details As
Select Employee,EmpID, Department, DeptID, Department,
DeptName From

Where Employee.DeptID=Department.DeptID;
View Call

SELECT * FROMEmp_Details

10.6.2 DROPPING VIEW
When a view is no longer needed, it can be removed by using DROP
VIEW statement.

mu
no
tes
.in

69

Syntax:

DROP VIEW <VIEW NAME> [CASCADE/RESTRICT]
CASCADE: It deletes the view with all dependent view on original view.

RESTRICT: It deletes the view only if they’re in no other view depends
on this view.

Example:

Consider that we have view VABC and VPQR. ViewVPQR depends on
VABC.

Query:

DROP view VABC
If we drop VABC, then cascading affect takes place and view VPQR is
also dropped.

Thus, default option for dropping a view is CASCADE. The CASCADE
option tells DBMS to delete not only the named view, but also query
views that depend on its definition. But,

QUERY:

DROP view VABC RESTRICT
Here, the query will fail because of RESTRICT option tells DBMS to
remove the view only if no other views depend on it. Since VPQR
depends on VABC, will cause an error.

10.6.3 UPDATING VIEWS

 Records can be updated, inserted, and deleted though views.

 UPDATAEBLE VIEWS are those in which views are used against
INSERT, DELETE and UPDATE statements.

The following conditions must be fulfilled for view updates:

 DISTINCT must not be specified; that is, duplicate rows must not
be eliminated from the query results.

 The FROM clause must specify only one updateable table; that is,
the view must have a Single source table for which the user has the
required privileges. If the source table is itself a view, then that
view must meet these criteria.

 Each select item must be a simple column reference; the select list
cannot contain expressions, calculated columns, or column
functions.

 The WHERE clause must not include a subquery; only simple row-
by-row search conditions may appear.

 The query must not include a GROUP BY or a HAVING clause.

mu
no
tes
.in

70

The following code block has an example to update the age of Ramesh.

UPDATE CUSTOMERS_VIEW
SET AGE = 35

WHERE name = 'Ramesh';
This would ultimately update the base table CUSTOMERS and the same
would reflect in the view itself.

10.7 DCLSTATEMENTS: -

10.7.1 Introduction to Database privileges:
When multiple users can access database objects, authorization can be
controlled to these objects with privileges. Every object has an owner.
Privileges control if a user can modify an object owned by another user.
Privileges are granted or revoked either by the instance administrator, a
user with the ADMIN privilege or, for privileges to a certain object, by the
owner of the object.

1) System Privileges:
System privileges are privileges given to users to allow them to perform
certain functions that deal with managing the database and the server
e.g Create user, Create table, Drop table etc.

2) Object Privileges:
Object privileges are privileges given to users as rights and
restrictions to change contents of database object – where database
objects are things like tables, stored procedures, indexes, etc.
Ex. Select,insert,delete,update,execute,references etc

Data Control Language(DCL) is used to control privilege in Database. To
perform any operation in the database, such as for creating tables,
sequences or views we need privileges.

10.7.2 DCL defines two commands: -
 Grant: Gives user access privileges to database.
 Revoke: Take back permissions from user.

Procedure for granting privileges:
Grant:This command is used to give permission to user to dooperations
on the other user’s object.
Syntax:
Grant<object privileges>on<objectname>to<username>[with grant
option] ;
Example:
GRANTSELECT, UPDATE ON student FROM BCA, MCA;

Procedure for revoking privileges:
Revoke: This command is used to withdraw the privileges that has been

mu
no
tes
.in

71

granted to a user.

Syntax:
Revoke<object privileges>on<object name>from<username> ;

Example:
REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

10.7.3 Viewing Privileges:

 To Allow a User to create Session
grant create session to username;

 To Allow a User to create Table
grant create table to username;

 To provide User with some Space on Tablespace to store Table
alter user username quota unlimited on system;

 To Grant all privilege to a User
Grantsysdba to username

 To Grant permission to Create any Table
grant create any table to username

 To Grant permission to Drop any Table
grant drop any table to username

 To take back Permissions
revoke create table from username

10.8 LIST OF REFERENCES

www.w3school.com
www.tutorialspoint.com
wielyIndia.com or DreamtechPress.com
www.williamstannings.com

10.9 BIBLIOGRAPHY
Database System Concepts(4th Edition) by Korth, Tata McGraw Hill

Introduction to Database Management Systems by ISRD Group, Tata
McGraw Hill

SQL ,PL/SQL the Programming language of Oracle by Ivan
Bayross(4th edition), BPB.

Advanced Database Management System by Dasgupta Chakrabarti,
Dreamtech

mu
no
tes
.in

72

10.10 EXERCISES

1) Describe concept of subqueries with example.
2) Describe system and object privileges and also describe use of Grant
and Revoke commands with suitable example.

3) What are the main tasks performed by DBA?
4) Explain Role and Responsibilities of DBA?
5) What is OUTER JOIN? Explain in detail.
6) With the help of example, explain DROP VIEW command.
7) What are the views? Give syntax and example of creating view.
8) Explain string, data and math functions of SQL.

mu
no
tes
.in

