
1

1
INTRODUCTION TO FREE AND OPEN-

SOURCE SOFTWARE

Unit Structure
1.0 Abstract
1.1 Introduction
1.2 Free Software
1.3 FOSS does not mean no cost
1.4 Free Software vs. Open-Source software
1.5 Public Domain Software
1.6 History of BSD
1.7 The Free Software Foundation and the GNU Project
1.8 Summary
1.9 References

1.0 ABSTRACT

Open-source software is the software in which users have the
ability to run, copy, distribute, study, change, share and improve for any
purpose. Open-source library software’s doesn’t need the initial cost of
commercial software and enables libraries to have greater control over
their working environment. Library professionals should be aware of the
advantages of open-source software with involvement of its development.
One should have basic knowledge about the selection, installation, and
maintenance. Open-source software requires a greater degree of
computing responsibility than commercial software. Library professionals
do not think seriously about the advantages of open-source software for
automation and hence are reluctant to use it. They do not have the
expertise to support open-source software.

1.1 INTRODUCTION

A software for which source code is freely available with a license
to study, change and further distributed to any other individual for any
purpose is called open-source software. Open-Source Software is
something which you can modify as per your needs, share with others
without any licensing violation burden. When we say Open Source,
source code of software is available publicly with Open-Source licenses
which allows you to edit source code and distribute it.

mu
no
tes
.in

2

The key fact that makes open-source software (OSS) different
from proprietary software is its license. As copyright material, software is
almost always licensed. The license indicates how the software may be
used. OSS is unique in that it is always released under a license that has
been certified to meet the criteria of the Open-Source Definition. In
contrast, creators of proprietary software usually do not make their source
code available to others to modify.

Open-source software is unique in that it is always released under a
license that allows users to access, modify and redistribute the source
code. Source code is a specialized language that allows software
developers to create and modify computer programs. If you do not have
legal access to the source code, then the program cannot be changed or
moved to a different kind of computer

1.2 FREE SOFTWARE

Free software means software that respects users' freedom and
community. Roughly, it means that the users have the freedom to run,
copy, distribute, study, change and improve the software. Free software
may be packaged and distributed for a free; the "free" refers to the ability
to reuse it, modified or unmodified, as part of another software package.
As part of the ability to modify, users of free software may also have
access to and study the source code. Thus, “free software” is a matter of
liberty, not price. We sometimes call it “libre software,” borrowing the
French or Spanish word for “free” as in freedom, to show we do not mean
the software is gratis.

The concept of free software is the brainchild of Richard Stallman,
head of the GNU Project in 1985. He meant Free as in freedom. Because
the word free in English means without cost the terms open source was
created. The best known example of free software is Linux, an operating
system that is proposed as an alternative to Windows or other proprietary
operating systems. Debian is an example of a distributor of a Linux
package.

Free software is easily confused with freeware, a term describing
software that can be freely downloaded and used but which may contain
restrictions for modification and reuse.

The four essential freedoms of Free Software
A program is free software if the program's users have the four

essential freedoms:

 The freedom to run the program as you wish, for any purpose.
 The freedom to study how the program works and change it so it
does your computing as you wish. Access to the source code is a
precondition for this.

 The freedom to redistribute copies so you can help others.

mu
no
tes
.in

3

 The freedom to distribute copies of your modified versions to
others. By doing this you can give the whole community a chance
to benefit from your changes. Access to the source code is a
precondition for this.

1.3 FOSS DOES NOTMEAN NO COST

A program is free software if it gives users adequately all of these
freedoms. Otherwise, it is non free. While we can distinguish various non
free distribution schemes in terms of how far they fall short of being free,
we consider them all equally unethical. In any given scenario, these
freedoms must apply to whatever code we plan to make use of, or lead
others to make use of.

Free software does not mean non-commercial. A free program
must be available for commercial use, commercial development, and
commercial distribution. Commercial development of free software is no
longer unusual; such free commercial software is very important. You
may have paid money to get copies of free software, or you may have
obtained copies at no charge. But regardless of how you got your copies,
you always have the freedom to copy and change the software, even to sell
copies.

A free program must offer the four freedoms to any user that
obtains a copy of the software, provided the user has complied thus far
with the conditions of the free license covering the software. Putting some
of the freedoms off limits to some users, or requiring that users pay, in
money or in kind, to exercise them, is tantamount to not granting the
freedoms in question, and thus renders the program non free.

Most important thing to keep in mind that Free Software is a
matter of liberty, not price. While OSS is usually free there are some
exceptions. You will usually be able to determine what these exceptions
are by considering the total cost of ownership (TCO) involved in adopting
and managing open-source software. While the software itself may be
free, make sure you consider the need for additional services or products,
as these may have costs attached (e.g., access to software updates, support
services). You also have to consider possible switching costs. These costs
would include moving data from an old system to new systems, training
costs and costs involved when switching from one platform to another one
(e.g., the costs of switching from Microsoft Windows to a Linux operating
system). If your business does not have enough information technology
expertise, you may have to outsource outside technical services to provide
open-source support or to manage its implementation and delivery.

mu
no
tes
.in

4

1.4 FREE SOFTWARE VS. OPEN-SOURCE
SOFTWARE

“Free” and “open source” are two terms commonly used interchangeably
in the software industry. Yet, for many developers, the difference between
the two is not always clear. This can lead to confusion about how to use
each source code, as well as how to make source code available for others.

Difference between Free Software and Open-Source Software:

Free Software Open-Source Software

Free software usually refers open
source under GNU GPL
license. Because the word free in
English means without cost the
terms open source was created.

Your source code is accessible to
anyone to read and modify and
redistribute depending on license
conditions. Publishing source code
online without the public being able to
modify them doesn’t make lots of
sense.

Software is an important part of
people’s lives.

Software is just software. There are
no ethics associated directly to it.

Software freedom translates to
social freedom.

Ethics are to be associated to the
people not to the software.

Freedom is a value that is more
important than any economical
advantage.

Freedom is not an absolute concept.
Freedom should be allowed, not
imposed.

Examples: The Free Software
Directory maintains a large
database of free-software
packages. Some of the best-
known examples include the
Linux kernel, the BSD and Linux
operating systems, the GNU
Compiler Collection and C
library; the MySQL relational
database; the Apache web server;
and the Send mail transport
agent.

Examples: Prime examples of open-
source products are the Apache
HTTP Server, the e-commerce
platform internet browsers Mozilla
Firefox and Chromium (the project
where the vast majority of
development of the freeware Google
Chrome is done) and the full office
suite Libre Office.

1.5 PUBLIC DOMAIN SOFTWARE

Public domain software is any software that has no legal, copyright
or editing restrictions associated with it. It is free and open-source
software that can be publicly modified, distributed, or sold without any
restrictions. SQLite, I2P and CERN are popular examples of public

mu
no
tes
.in

5

domain software. As well as Many different items can be labelled as
public domain. For instance, books, speeches, poems, artwork, songs, and
videos can all be made freely available to the public. In the computing
world, "public domain" is often used to refer to software programs that are
offered to the public without copyright restrictions.

The copyright protection an item in the public domain may have
expired, been released by the author, or never existed in the first place.
Public domain software has no ownership and is available for use,
modification and commercialization by anyone. Typically, public domain
software is intentionally or voluntarily uncopyrighted, unpatented and is
unrestricted by its developer/author. It is different from free software and
freeware that does has copyrights and patents associated with it.

Although there are no licensing requirements with public domain
software, The Unlicensed, Creative Commons License and WTFPL are
based on a similar approach.

Public domain software is similar to open source software, in
which the source code of a program is made publicly available. However,
open-source software, while freely distributed, still retains the original
developer's copyright. This means the developer can change the
redistribution policy at any time. Public domain software is also similar
to freeware, which refers to software offered at no charge. However, like
open-source software, freeware programs are still protected by copyright.
Therefore, users may not redistribute the software unless they receive
permission from the original developer.

Since there are many similarities between freeware, open source,
and public domain software, the terms are often used interchangeably.
However, there are important legal differences between the licenses, so it
is important for developers to choose the correct license when releasing
software programs. Public domain software, which offers the least legal
protection, is most often published by individuals or educational
institutions, rather than companies. When software is offered as public
domain, it is often labelled "PD" or may include a Public Domain Mark
(PDM).

1.6 HISTORY OF BSD

Berkeley Software Distribution (BSD) is a prominent version of
the Unix operating system that was developed and distributed by the
Computer Systems Research Group (CSRG) from the University of
California at Berkeley between 1977 and 1995. This operating system was
originally made for the PDP-11 and DEC VAX computers.

Historically, BSD has been considered as a branch of UNIX —
"BSD UNIX", because it shared the initial codebase and design with the
original AT&T UNIX operating system. In the 1980s, BSD was widely

mu
no
tes
.in

6

adopted by vendors of workstation-class systems in the form of
proprietary UNIX variants such as DEC ULTRIX and Sun
Microsystems Sun OS. This can be attributed to the ease with which it
could be licensed, and the familiarity it found among the founders of many
technology companies of this era.

Though these commercial BSD derivatives were largely
superseded by the UNIX System V Release 4 and OSF/1 systems in the
1990s (both of which incorporated BSD code), later BSD releases
provided a basis for several open source development projects which
continue to this day.

Today, the term of "BSD" is often non-specifically used to refer to
any of these BSD descendants, e.g. FreeBSD, Net BSD or Open BSD,
which together form a branch of the family of Unix-like operating
systems.

Arrival of Berkeley’s Unix
The year is 1974, and BSD began taking shape when Unix first

arrived at the University of California at Berkeley. Ken Thompson took a
sabbatical from Bell Labs in 1975 and came to visit his Alma Mater as a
visiting professor. During this time, he helped install Version 6 Unix and
started working on a Pascal implementation.

As students continued working on Pascal and implemented an
improved text editor called ex, other universities became interested in the
software. So, in 1977 Bill Joy, one of those students, started compiling
the first Berkeley Software Distribution, or 1BSD which was released on
March 9th of the following year with some 30 copies sent out.

Some well-known software that is still in use today had its start in
the next version, 2BSD, such as vi and csh, which saw approximately 75
copies distributed.

In 1978 a new more powerful VAX computer was installed at
Berkeley and provided a new target for BSD software. Over time large
parts of the Operating System had to be replaced, for instance the initial
Unix port to the VAX architecture did not take advantage of the VAX’s
virtual memory capabilities so much of the kernel was rewritten. The
release of 3BSD in 1979 contained this new kernel and ports of the other
BSD programs to the VAX architecture.

As BSD spread to more and more institutions, users began adding
additional functionality and programs, and sending those back to the team
at Berkeley to be included in the next release of BSD. This was the start of
the open-source movement before it had a name.

In 1989 a new release called Network Release 1 or Net/1 was made
under the BSD license. This contained work that was done on

mu
no
tes
.in

7

implementing the OSI network protocol stack and new TCP/IP
algorithms. It was motivated by the increasing cost of AT&T software
licenses and several groups had started to express interest in a separate
release of just the network code.

After Net/1 Keith Bostic proposed that more of the system be
released under the BSD license and so he led a project to reemployment
most of the standard Unix utilities without any AT&T code.

Within the next 18 months, all of the AT&T utilities had been
rewritten and only a few AT&T files remained in the kernel. In 1991
Network Release 2 or Net/2 was made available without those files,
resulting in nearly a complete operating system that was freely
distributable.

In 1992, Bill and Lynne Jolitz, both Berkeley alumni, release 386BSD
0.0, the first version of BSD for the Intel 386, a computer many had in
their homes. This was made possible by Keith Bostic and partially
influenced by Richard Stallman.

1.7 THE FREE SOFTWARE FOUNDATION AND THE
GNU PROJECT

The FSF
The FSF (Free Software Foundation) was founded in the early

eighties by Richard M. Stallman, researcher at MIT's Artificial
Intelligence laboratory. The foundation's objective is to develop
free software. That is software that you can freely copy, use, modify, and
redistribute as you wish. The only condition is that the source code of
these programs must be freely available on demand.

It is important to understand that the term Free in Free Software
Foundation does not refer to price, but to freedom. These programs can be
bought and sold, but there is always a legal way to obtain them gratis.

The GPL
The GPL (General Public License) specifies the conditions under

which all GNU software is distributed. The LGPL (Library General Public
License) was the corresponding license used for sub-program libraries
(please see Why you shouldn't use the Library GPL for your next
library for an explanation). The GNU Lesser General Public License is the
new replacement for the LGPL.

Roughly, these licenses specify that GNU software may be copied,
modified, and redistributed in any manner as long as the source code
remains freely available.

The main advantage of software distributed under these conditions
is that if you wish to improve the program, you may; and you may

mu
no
tes
.in

8

redistribute your new and improved version. Thus, everyone benefits. This
leads to programs of excellent quality, written by dozens of different
people.

The GNU Project
The FSF's GNU (GNU is not Unix) Project's objective is to

develop a complete operating system, distributed under the conditions of
the GPL. This operating system uses some UNIX concepts but is not
UNIX. Richard Stallman started this project on his own right after he
founded the FSF. The first part of the project was to program the editor
with which he could then program the rest of the software. That editor is
the now famous GNU Emacs. He then wrote a C compiler to compile his
operating system. That would be the famous GCC. Since then, many
people have joined him to write all sorts of programs. The operating
system itself, known as HURD, has recently become available.

In addition to the main GNU programs, there are GNU versions of
most of the UNIX utilities. The GNU versions are often more powerful
and reliable than their proprietary counterparts.

As interest in using Emacs was growing, other people became
involved in the GNU project, and we decided that it was time to seek
funding once again. So, in 1985 we created the Free Software
Foundation (FSF), a tax-exempt charity for free software development.
The FSF also took over the Emacs tape distribution business; later it
extended this by adding other free software (both GNU and non-GNU) to
the tape, and by selling free manuals as well.

Most of the FSF's income used to come from sales of copies of free
software and of other related services (CD-ROMs of source code, CD-
ROMs with binaries, nicely printed manuals, all with the freedom to
redistribute and modify), and Deluxe Distributions (distributions for which
we built the whole collection of software for the customer's choice of
platform). Today the FSF still sells manuals and other gear, but it gets the
bulk of its funding from members' dues. You can join the FSF at fsf.org.

Free Software Foundation employees have written and maintained
a number of GNU software packages. Two notable ones are the C library
and the shell. The GNU C library is what every program running on a
GNU/Linux system uses to communicate with Linux. It was developed by
a member of the Free Software Foundation staff, Roland McGrath. The
shell used on most GNU/Linux systems is BASH, the Bourne Again Shell
(1), which was developed by FSF employee Brian Fox.

We funded development of these programs because the GNU Project
was not just about tools or a development environment. Our goal was a
complete operating system, and these programs were needed for that goal.

mu
no
tes
.in

9

1.8 SUMMARY

In this chapter we learned, software remains free of charge, and
they make money by helping others to install, use and troubleshoot it. Free
and OSS development is emerging as an alternative approach for
developing large software systems. New types and new kinds of software
processes are emerging within FOSSD projects, as well as new
characteristics for development project success, when compared to those
found in traditional industrial software projects and those portrayed in
software engineering textbooks. As a result, FOSSD offers new types and
new kinds of processes to research, understand, improve, and practice.

1.9 REFERENCES

 https://www.howtogeek.com/129967/htg-explains-what-is-open-
source-software-and-why-you-should-care/

 https://www.synopsys.com/glossary/what-is-open-source-
software.html

 https://dwheeler.com/oss_fs_eval.html

 https://opensource.com/resources/what-open-source

 https://ifap.ru/library/book105.pdf

 Monika Sharma, learn about the social and financial impacts of Open
Source, collaborative Organization flourishing in recent years. on
February 18, 2018

 Bhattacharya, I, Sharma, K (2007). India in the knowledge economy

 https://opensource.org/history

mu
no
tes
.in

10

2
METHODOLOGIES OF FREE AND OPEN-

SOURCE SOFTWARE

Unit Structure
2.0 Open-Source History
2.1 Initiatives
2.2 Principles and methodology of the open source
2.3 Philosophy: Software Freedom
2.4 Open-Source Development Model Licenses and Patents
2.5 Important FOSS Licenses
2.6 Copyrights and Copy lefts
2.7 Patents Economics of FOSS

2.7.1 Zero Marginal Cost
2.8 Income-generation opportunities
2.9 Problems with traditional commercial software
2.10 Internationalization
2.11 Summary
2.12 References

2.0 OPEN-SOURCE HISTORY

The open-source movement is based on a radical retake on
copyright law to create high quality software whose use and development
are guaranteed to the public. In this article we trace the history of the
movement, highlighting its interaction with intellectual property law. The
movement has spawned open-source software (OSS) communities where
developers and users meet to create software that meets their needs. We
discuss the demographic profile of OSS participants, their ideology, their
motivations, and the process of OSS development. Then we examine the
impacts of OSS on society as a whole from the perspective of the
information society, discussing the effects on OSS developers, users of
OSS, and society at large, particularly in developing countries.

Free software (later renamed “open-source software”) appeared
even before people started thinking in terms of proprietary software, at a
time when software development was ruled by open-source principles. In
the 1960s and 1970s, software programming was mainly performed in
both academic and corporate laboratories by scientists and engineers who
freely gave, exchanged, and modified software. In the early 80s, as
software programming increasingly turned proprietary, Richard Stallman
founded the Free Software Foundation (FSF) to define and 4 diffuse legal

mu
no
tes
.in

11

mechanisms and conceptual principles of what he called “free software”.
By writing the GNU Manifesto (Stallman, 1985), he communicated his
ideological view of the nature of intellectual property rights as regards
software and started attracting convinced developers to join him in his
GNU Project (GNU stands for “GNU’s not UNIX”). In 1989, the FSF
released the GNU General Public License (GPL) version 1 (the updated
version 2 was released in 1991) which legalizes copyleft mechanisms and
grants end-user’s freedoms in software copies and derivative works.

Turning copyright around “Copyleft” as expressed by the GPL has
had a critical effect on shaping the very existence of open-source software
communities. Open-source software uses copyright law to preserve certain
freedoms (hence the name, “free software”) regarding the creation,
modification, and sharing of software. Specifically, all open-source
software grants users the following key rights:

1. The right to full access to the source code. When a computer
programmer sees how a piece of software actually works, as specified in
the source code, they can fully understand the inner workings and can
intelligently modify the software as they deem appropriate

2. The right for anyone to run the program for any purpose without
restriction. There are no restrictions against commercial, military, foreign,
or any other use, and discrimination against users for any reason is
expressly forbidden.

3. The right to modify the source code. This includes absorbing the
software, in whole or in part, into other pieces of software created by other
developers.

4. The right to distribute both the original software and the modified
software. A key difference between “free software” and “freeware” is that
while freeware generally permits 5 and encourages free distribution of the
software, it does not permit sale of the distributed software beyond
reasonable distribution costs; free software, in contrast, permits resale at
any price.

5. The right to know about their open-source rights: The open-source
license must be prominently displayed and distributed to users, so that
they are aware of their rights (including access to the source code).
Practically, since users are aware that they can obtain the source code for
free, the sale price of OSS tends to be zero, or quite low.

While the preceding five rights constitute open-source software,
the FSF’s GPL, the first legal document to license open source software,
goes further. The GPL grants users and developers these rights with the
intention that developers would modify the software and share it with
others with similar liberality, and in accordance with Stallman’s personal
beliefs on the ethical rightness of sharing software, the GPL assures

mu
no
tes
.in

12

sharing by further incorporating the concept of “copyleft”. Copyleft is an
obligation that the distributor of OSS agrees to in order to receive the
privileges mentioned above:

6. The obligation to distribute derivatives under copyleft. Any software
modified under the GPL can be redistributed for sale, but it must be
licensed under a copyleft license; that is, modified derivative works must
also be made available under an open-source license. While it does not
have to be licensed under the GPL itself, the chosen distribution license
may not restrict any of the five rights listed above.

These copyleft terms are critical to the very existence of OSS
communities. When Richard Stallman posted his manifesto and invited
software developers to join him in his crusade for free software, there was
no lack of sympathetic and willing hackers who wanted a return to the
days of free sharing. However, there was a grave concern that, corporate
interests could 6 easily take these programs, add their proprietary
extensions, and withdraw the software from public access. With its
copyleft mechanism, the GPL guaranteed that any person or corporation
who wanted to benefit from the liberal efforts of computer programmers
would be legally bound to share their work in the same spirit of
camaraderie. Considering the climate in which the free software
movement was founded, it is unlikely that the movement could have
gotten off the ground without such a radical clarion call to mobilize
devoted followers in the first place.

2.1 INITIATIVES

In 1991, Linus Torvalds, a 21-year-old Finnish programmer,
started the famous Linux Project, released under the GPL, which
implements a Unix-like operating system on Intel-based microcomputers.
The project has grown rapidly to produce a powerful, fast, efficient, stable,
reliable, and scalable operating system. The number of Linux users and
developers has expanded rapidly. Not including free downloads and
installations of Linux, “25% of servers and 2.8% of desktop computers ran
paid distributions of Linux as of 2002. The Linux market is rapidly
growing and is projected to exceed $35.7 billion by 2008”. Moreover,
version 2.2.10 of the kernel lists 190 names, though the total number of
contributors was estimated at around 1,200.

A major paradigm shift occurred in 1998, when Bruce Perens and
Eric Raymond expressed their suspicion that firms may not be convinced
by GPL due to Stallman’s term, “free” software, “which might
understandably have an ominous ring to the ears of businesspeople”. The
“open source” software movement was created based on the integrating of
all the previous licensing that had been prior designed. As a result, a major
chasm appeared between Stallman’s free software view, which was more
ideological and philosophical, and Perens/Raymond’s open-source view,
whose purpose was more business-oriented.

mu
no
tes
.in

13

Several major OSS projects have marked people’s mind in such
software revolution. The Apache web-server project started in early 1995
and has become the most popular Web server software, controlling over
60 percent of the market, much more than Microsoft and Netscape both
combined. Inspired by Eric Raymond’s paper “The Cathedral and the
Bazaar”. Netscape, one of the main actors in the Internet browser industry,
decided to release its source code by creating Mozilla, its first open-source
version of its former Communicator. In November 2004, the Mozilla
Foundation announced the worldwide availability of the Mozilla Firefox
1.0 web browser.

Today, all major hardware and software vendors have at least
forayed into the open-source approach. For example, Apple Computer
surprisingly followed this model in 2000 when they released the kernel of
their Unix-based Mac OS X operating system to the open-source
community as Darwin 1.0. In 2005, IBM announced their plan to spend
$100 million over the next three years to build support for Linux into
desktop applications for its Workplace software. Meanwhile, IBM has
planned to spread Linux worldwide. In 2004, IBM concentrated on
implementing Linux in Brazil, Russia, India, and China. Since 2005, the
company has planned to increase its efforts in those countries but will also
begin extending its programs in Eastern Europe.

2.2 PRINCIPLES AND METHODOLOGY OF THE
OPEN SOURCE

 Principles of the open source
Transparency: Whether we're developing software or solving a business
problem, we all have access to the information and materials necessary for
doing our best work. And when these materials are accessible, we can
build upon each other's ideas and discoveries. We can make more
effective decisions and understand how decisions affect us.

Collaboration: When we're free to participate, we can enhance each
other's work in unanticipated ways. When we can modify what others
have shared, we unlock new possibilities. By initiating new projects
together, we can solve problems that no one can solve alone. And when
we implement open standards, we enable others to contribute in the future.

Release early and often: Rapid prototypes can lead to rapid discoveries.
An iterative approach leads to better solutions faster. When you're free to
experiment, you can look at problems in new ways and seek answers in
new places. You can learn by doing.

Inclusive meritocracy: good ideas can come from anywhere, and the best
ideas should win. Only by including diverse perspectives in our
conversations can we be certain we've identified the best ideas, and
decision-makers continually seek those perspectives. We may not operate

mu
no
tes
.in

14

by consensus, but successful work determines which projects gather
support and effort from the community.

Community: Communities form when different people unite around a
common purpose. Shared values guide decision making, and community
goals supersede individual interests and agendas.

 Methodology of the open source
Open-source software development creates many interesting legal

and business issues, but in this column, I’m going to focus on open
source’s software development methodology.

Methodologically, open source’s best-known element is its use of
extensive peer review and decentralized contributions to a code base. A
key insight is that “given enough eyeballs, all bugs are shallow.” The
methodology is driven mainly by Linus Torvalds’ example: Create a
kernel of code yourself; make it available on the Internet for review;
screen changes to the code base; and, when the code base becomes too big
for one person to manage, delegate responsibility for major components to
trusted lieutenants.

The open-source methodology hasn’t been captured definitively in
writing. The single best description is Eric Raymond’s “The Cathedral and
the Bazaar” paper, and that is sketchy at best
(http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar.html). The rest of open source’s methodology resides primarily in
the informal legend, myth, and surrounding specific projects like Linux.

 Bug Me Now or Bug Me Later
In Open Sources: Voices from the Open-Source

Revolution (O’Reilly, 1999), Paul Vixie points out that open-source
projects use extensive field testing and unmatched code-level peer review.
According to Vixie, open-source projects typically have sketchy
marketing requirements, no system-level design, little detailed design,
virtually no design documentation, and no system-level testing. The
emphasis on code-level peer review gives the typical open-source project a
leg up on the average closed-source project, which uses little or no review.
But considering how ineffective the average project is, comparing open-
source projects to the “average” closed-source project sets a pointless
standard of comparison. Leading-edge organizations use a combination of
practices that produce better quality, shorter schedules, and lower
development costs than average, and software development effectiveness
at that level makes a more useful comparison.

One of the bedrock realities of software development is that
requirements and design defects cost far more to correct at coding or
system testing time than they cost to correct upstream. The software
industry has collected reams of data on this phenomenon: generally, you
can expect to spend from 10 to 100 times as much to correct an upstream

mu
no
tes
.in

15

defect downstream as you would spend to fix the same defect upstream.
(It’s a lot easier to change a line on a design diagram than it is to change a
module interface and all the code that uses that module.) As Vixie points
out, open source’s methodology focuses on fixing all bugs at the source
code level—in other words, downstream. Error by error, without upstream
reviews, the open-source project will require more total effort to fix each
design error downstream than the closed-source project will require to fix
it upstream. This cost is not readily perceived because the downstream
effort on an open-source project is spread across dozens or hundreds of
geographically distributed people.

The implications of open source’s code-and-fix approach might be
more significant than they at first appear. By the time Linux came around,
requirements and architecture defects had already been flushed out during
the development of many previous generations of Unix. Linux should be
commended for its reuse of existing designs and code, but most open-
source projects won’t have such mature, predefined requirements and
architecture at their disposal. To those projects, not all requirements and
architecture bugs will be shallow.

Open-source advocates claim that giving users the source code
reduces the time needed for downstream defect correction—the person
who first experiences the problem can also debug it. But they have not
published any data to support their assertion that this approach reduces
overall defect correction costs. For this open-source approach to work,
large numbers of users have to be both interested in and capable of
debugging source code (operating system code, if the system in question is
Linux), and obviously doesn’t scale beyond a small cadre of highly
motivated programmers.

By largely ignoring upstream defect removal and emphasizing
downstream defect correction, open source’s methodology is a step
backwards—back to Code and Fix instead of forward to more efficient,
early defect detection and correction. This bodes poorly for open source’s
ability to scale to projects the size of Windows NT or to brand-new
technologies on which insufficient upstream work can easily sink a
project.

 Not All Eyeballs Are Shallow
Open-source advocates emphasize the value of extensive peer

review. Indeed, peer reviews have established themselves as one of the
most useful practices in software engineering. Industry-leading inspection
practices usually limit the number of reviewers to five or six, which is
sufficient to produce software with close to zero defects on closed-source
projects (Watts Humphrey,Managing the Software Process, Addison
Wesley Longman, 1989). The question for open source is, how many
reviewers is enough, and how many is too many? Open source’s typical
answer is, “Given enough eyeballs, all bugs are shallow.” The more the
merrier.

mu
no
tes
.in

16

About 1,200 programmers have contributed bug fixes and other
code to Linux. What this means in practice is that if a bug is reported in
Linux, a couple dozen programmers might begin looking for it, and many
bugs are corrected within hours. From this, open-source advocates
conclude that large numbers of reviewers lead to “efficient” development.

This answer confuses “fast” and “effective” with “efficient.” To
one of those people, the bug will turn out to be shallow. To the rest, it
won’t be shallow, but some people will spend time looking for it and
trying to fix it nonetheless. That time isn’t accounted for anywhere
because many of those programmers are donating their time, and the paid
programmers don’t track their effort in any central location. Having
several dozen people all looking for the same bug may indeed be fast and
effective, but it is not efficient. Fast is having two dozen people look for a
bug for one day for a total cost of 24 person-days. Efficient is having one
person look for a bug eight hours a week for a month for a total cost of
four person-days.

 Economic Shell Game
A key question that will determine whether open source applies to

development of more specialized applications (for example, vertical-
market applications) is, Does the open-source methodology reduce
development costs overall, or does it just push effort into dark economic
corners where it’s harder to see? Is it a better mousetrap or an economic
shell game?

Considering open source’s focus on downstream defect correction
with significantly redundant peer reviews, for now the approach looks
more like a shell game than a better mousetrap. It is appealing at first
glance because so many people contribute effort that is free or
unaccounted for. The results of this effort are much more visible than the
effort itself. But when you add up the total effort contributed—both seen
and unseen—open source’s use of labor looks awfully inefficient.

Open source is most applicable when you need to trade efficiency
for speed and efficacy. This makes it applicable to mass-distribution
products like operating systems where development cost hardly matters,
and reliability is paramount. But it also suggests that open source will be
less applicable for vertical-market applications where the reliability
requirements are lower, profit margins are slim enough that development
cost does matter, and it’s impossible to find 1,200 people to volunteer their
services in support of your application.

 One-Hit Wonder or Formidable Force?
The open-source movement has not yet put its methodology under

the open-source review process. The methodology is currently so loosely
defined that it can hardly even be called a “methodology.” At this time,
the strength of the open-source approach arises largely from its massive
code-level peer review, and little else. For open source to establish itself as

mu
no
tes
.in

17

a generalizable approach that applies to more than a handful of projects
and that rises to the level of the most effective closed-source projects, it
needs to fix four major problems:

1. Create a central clearinghouse for the open-source methodology so it
can be fully captured and evolved.

2. Kick its addiction to Code and Fix.

3. Focus on eliminating upstream defects earlier.

4. Collect and publish data to support its claims about the effectiveness
of the open-source development approach.

None of these weaknesses in open source’s current development
practices are fatal in principle, but if the methodology can’t be evolved
beyond its current kludgy practices, history will record open source’s
development approach as a one-hit wonder. If open source can focus the
considerable energy at its disposal into defining and using more efficient
development practices, it will be a formidable force indeed.

2.3 PHILOSOPHY: SOFTWARE FREEDOM

A program is free software if the program's users have the four
essential freedoms

 The freedom to run the program as you wish, for any purpose
(freedom 0).

 The freedom to study how the program works and change it so it does
your computing as you wish (freedom 1). Access to the source code is
a precondition for this.

 The freedom to redistribute copies so you can help others (freedom 2).

 The freedom to distribute copies of your modified versions to others
(freedom 3). By doing this you can give the whole community a
chance to benefit from your changes. Access to the source code is a
precondition for this.

 The freedom to run the program as you wish
The freedom to run the program means the freedom for any kind of

person or organization to use it on any kind of computer system, for any
kind of overall job and purpose, without being required to communicate
about it with the developer or any other specific entity. In this freedom, it
is the user's purpose that matters, not the developer's purpose; you as a
user are free to run the program for your purposes, and if you distribute it
to someone else, she is then free to run it for her purposes, but you are not
entitled to impose your purposes on her.

The freedom to run the program as you wish means that you are
not forbidden or stopped from making it run. This has nothing to do with
what functionality the program has, whether it is technically capable of

mu
no
tes
.in

18

functioning in any given environment, or whether it is useful for any
particular computing activity.

For example, if the code arbitrarily rejects certain meaningful
inputs—or even fails unconditionally—that may make the program less
useful, perhaps even totally useless, but it does not deny users the freedom
to run the program, so it does not conflict with freedom 0. If the program
is free, the users can overcome the loss of usefulness, because freedoms 1
and 3 permit users and communities to make and distribute modified
versions without the arbitrary nuisance code.

 The freedom to study the source code and make changes
In order for freedoms 1 and 3 (the freedom to make changes and

the freedom to publish the changed versions) to be meaningful, you need
to have access to the source code of the program. Therefore, accessibility
of source code is a necessary condition for free software. Obfuscated
“source code” is not real source code and does not count as source code.

Freedom 1 includes the freedom to use your changed version in
place of the original. If the program is delivered in a product designed to
run someone else's modified versions but refuse to run yours — a practice
known as “tivoization” or “lockdown”, or (in its practitioners' perverse
terminology) as “secure boot” — freedom 1 becomes an empty pretence
rather than a practical reality. These binaries are not free software even if
the source code they are compiled from is free.

One important way to modify a program is by merging in available
free subroutines and modules. If the program's license says that you
cannot merge in a suitably licensed existing module — for instance, if it
requires you to be the copyright holder of any code you add — then the
license is too restrictive to qualify as free.

Whether a change constitutes an improvement is a subjective
matter. If your right to modify a program is limited, in substance, to
changes that someone else considers an improvement, that program is not
free.

 The freedom to redistribute if you wish: basic requirements
Freedom to distribute (freedoms 2 and 3) means you are free to

redistribute copies, either with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere. Being free to do these
things means (among other things) that you do not have to ask or pay for
permission to do so.

You should also have the freedom to make modifications and use
them privately in your own work or play, without even mentioning that
they exist. If you do publish your changes, you should not be required to
notify anyone in particular, or in any particular way.

mu
no
tes
.in

19

Freedom 3 includes the freedom to release your modified versions
as free software. A free license may also permit other ways of releasing
them; in other words, it does not have to be a copyleft license. However, a
license that requires modified versions to be non-free does not qualify as a
free license.

The freedom to redistribute copies must include binary or
executable forms of the program, as well as source code, for both modified
and unmodified versions. (Distributing programs in runnable form is
necessary for conveniently installable free operating systems.) It is OK if
there is no way to produce a binary or executable form for a certain
program (since some languages don't support that feature), but you must
have the freedom to redistribute such forms should you find or develop a
way to make them.

2.4 OPEN-SOURCE DEVELOPMENTMODEL
LICENSES AND PATENTS

What is a Licence?
The simplest explanation is that open-source licenses are legal and

binding contracts between the author and the user of a software
component, declaring that the software can be used in commercial
applications under specified conditions. The license is what turns code
into an open-source component. Without an open-source license, the
software component is unusable by others, even if it has been publicly
posted on GitHub.

Each open-source license states what users are permitted do with
the software components, their obligations, and what they cannot do as per
the terms and conditions. This might sound pretty straight forward, but
there are over 200 open-source licenses out there so good luck keeping
them all organized. Varying in complexity and requirements, it is up to
organizations to choose which licenses are most compatible with their
policies to ensure that they remain compliant.

These licenses are intended to permit, and indeed, to encourage the
contributions of others to the project. Nonetheless, one of the first open
development projects relied, at least at the beginning, on a relatively small
number of closely-knit developers. This project was Richard Stallman’s
plan to develop a complete operating system modelled after the Unix
operating system but written entirely in free code.

The main problem in this context is that open-source licenses are
subjective. Their interpretation depends on the technical usage of the
licensed software. Therefore, it’s difficult to determine the legal risks of
using open-source software, especially for developers, who are not usually
legal experts. What developers need is a broad classification of licenses
based on the risks they pose in terms of legal compliance.

mu
no
tes
.in

20

2.5IMPORTANT FOSS LICENSES

I. GNU General Public License (GPL)

GNU General Public License is the most popular open-
source license around. Richard Stallman created the GPL to protect the
GNU software from becoming proprietary, and it is a specific
implementation of his "copyleft" concept.

GPL is a copyleft license. This means that any software that is
written based on any GPL component must be released as open source.
The result is that any software that uses any GPL open-source component
(regardless of its percentage in the entire code) is required to release its
full source code and all of the rights to modify and distribute the entire
code.

There has always been some confusion regarding what constitutes
a ‘work based on’ another work, which in turn triggers the GPL
reciprocity obligation. The FSF tried to add more clarity to GPLv3 as to
when the reciprocity obligation is triggered. The FSF even wrote a new
GPL license, the Affero license, to address a specific confusion referred to
as the “ASP loophole”.

In addition, the FSF tried to increase the compatibility of the
GPLv3 with other licenses. To combine two codes into a larger work, both
the programs must permit it. If such rights are granted by both the
programs' licenses, they are compatible. By making the GPLv3 more
compatible, the FSF expanded development options.

II. The Apache License

The Apache License is an open-source software
license released by the Apache Software Foundation (ASF). It’s a popular
and widely deployed license backed by a strong community. The Apache
License allows you to freely use, modify, and distribute any Apache
licensed product. However, while doing so, you’re required to follow the
terms of the Apache License.

The Apache Group (later named the Apache Software Foundation)
released the first version of its license in 1995, but it’s rare that you’ll
come across components that still carry this license.

In 2000, when Berkeley accepted the argument put to it by the Free
Software Foundation and retired their advertising clause from the BSD

mu
no
tes
.in

21

license and formed the modified BSD license, Apache did likewise and
created the Apache License version 1.1.

Removing the advertising clause meant that the advertising
materials of the derivative works of any Apache licensed product were no
longer required to include the Apache License attribution. It became ok to
include the attribution in the documentation alone.

In 2004, the ASF decided to depart from the BSD model a little more
radically and produced the Apache License version 2.0 by granting patents
rights and defining solid definitions of the concepts it uses to make

III. Berkeley Software Distribution (BSD)

BSD Licenses or the original BSD License and its two
variants - the Modified BSD License (3-clause), and the Simplified BSD
License/FreeBSD License (2-clause) are a family of permissive free
software licenses.

The BSD License lets you freely modify and distribute your
software’s code in the source or binary format as long as you retain a copy
of the copyright notice, list of conditions, and the disclaimer.
The original BSD License or the 4-clause BSD License also contains an
advertising clause and a non-endorsement clause (detailed explanation
about these clauses are offered in the following questions). The modified
BSD License or the 3-clause BSD License was formed by removing the
advertising clause from the original BSD License. Further, the FreeBSD
version or the 2-clause BSD License was formed by removing the non-
endorsement clause from the modified BSD License or the 3-clause BSD
License.

IV. Common Development and Distribution License (CDDL)

CDDL is an open source license published by Sun
Microsystems to replace the Sun Public License (SPL). The CDDL license
is considered by Sun (now Oracle) to be SPL version 2. It is inspired by
the Mozilla Public License (MPL). Sun used to release its free software /
open-source projects under its Sun Public License (SPL) before it turned
to rely upon the CDDL in 2004. CDDL is often dubbed as a cleaned-up
version of the MPL and is made to facilitate reusability.

You’re free to reproduce and distribute any original or derivative
works of any software licensed under the CDDL. However, you must not
remove or make any changes to any copyright, patent or trademark notices
contained in the software. You must also retain any notices of licensing or
any descriptive text giving attribution to any contributor or the initial
developer.

mu
no
tes
.in

22

When you distribute your software in an executable form (any
form other than source code), you are required to make the source code
available as well under the CDDL. The executable form may be released
under the CDDL or any CDDL compatible licenses.

The source code that you have to make available includes your
contributions as long as they are an addition to, deletion from or
modification of the contents of a file containing the original software – or
new files that contain parts of the original program. That means that if
your additions are made in separate and independent files that do not
contain the original code, you do not have to release it under the CDDL.
You may do that if you choose to, but you’re not obliged.

In addition, you must include a copy of the CDDL with any source
code that you distribute. For each modification that you make, you must
identify yourself as the modifier by including a notice in your modified
files.

V. Eclipse Public License (EPL)

The Eclipse Public License (EPL) is an open-source
license developed by the Eclipse Foundation. It’s derived from the
Common Public License (CPL). The Eclipse codebase now available
under the EPL was formerly licensed under the CPL.

The EPL license is a copyleft license. If you modify an EPL’ed
component and distribute it in the source code form as part of your
program, you’re required to disclose the modified code under the EPL. If
you distribute such a program in its object code form, you’re required to
state that the source code can be made available to the recipient upon
request. You’re also required to share the method for requesting the source
code.

The Eclipse Foundation makes clear that, in their opinion, ‘merely
interfacing or interoperating’ with an Eclipse plugin does not make your
code a derivative work of the plugin.

If you redistribute a program with an EPL component, you are
obligated to include the full license text and the copyrights.

The EPL protects the author from possible lawsuits or damages
caused if a company used his/her component in a commercial product. It
also offers a patent grant.

mu
no
tes
.in

23

VI. MIT License

MIT is one of the most permissive free software licenses.
Basically, you can do whatever you want with software licensed under the
MIT license - only if you add a copy of the original MIT license and
copyright notice to it. Its simplicity is the reason behind its high adoption
rate among developers.

2.6 COPYRIGHTS AND COPYLEFTS

Copyright
©

Copyright is a bundle of rights granted to a creator providing
him with exclusive rights over his original artistic and literary
creation. It is not necessary that a copyright be registered, it is
attached automatically to any original artistic work. When the idea of
a creator is converted to a material form, the same immediately gets
protected under the copyright. For a work to be copyrighted, it is
necessary that the work is original work of literature, drama, music, or
any other art having artistic value. While copyright protects the
material form of an idea it does not protect the idea in itself. It is
essential and of significant importance, that permission is sought and
the same is granted by the copyright owner before it is republished or
reproduced.

The bundle of rights granted to the copyright owner includes
the rights to reproduce, copy, publish, communicate, and translate the
copyrighted work. Such a right is a natural right granted to the owner
of the artistic work immediately on the making of the same.

Copyleft

Most of the creative works, including software programs and
codes, comes within the domain of copyright protection and therefore
can be copyrighted. However, it is to be noted that software and
programming is an area where already existing programs many-a-
times are used as a base to build new software or program. It is for
this reason; many software owners tend to grant a license to its users a
license allowing them to modify and alter their work. Such permission
and license can be referred to as Copyleft.

Copyleft can be said to be a specific kind of a license that
allows free use of copyrighted material but under certain terms and
conditions, granted by the owner of the copyright himself. For

mu
no
tes
.in

24

instance, software having a copylefted license can be modified, used,
distributed, or reproduced provided the source code kept open and
available to the public. A copylefted software must be transferred
with a similar copyleft license to all its successive users and the
license also shall mandate any modification to the software shall be
copylefted in a similar manner. In simpler words, copyleft is a license
that provides original work to a third person giving him certain rights
like that of copying and modifying and any new work carved out
based on such original work shall have a copyleft license in a similar
manner.

The main objective of a copyleft license is to provide people
with opportunities to use and modify an original work, and later grant
a similar set of rights to all other interested people. Thus, any person
who receives a copylefted work and then modifies the same, he cannot
restrict the rights to himself alone over the modified work.

The concept of copyleft came as a refreshing idea on the free
movement of workers. It broadens the area by not just restricting the
rights over the work to a single individual or a small group of people
but including all the people having an interest in the work and are
ready to comply with the conditions of the copyright license
agreement.

To conclude Copyleft is an option derived within the domain of
copyright laws itself, providing a little bit of freedom and liberty, that
allows users to modify and distribute the software and the program,
which was surely not possible with the traditionally copyrighted
programs. It would not be wrong to conclude that the concept of
copyleft will create communal ownership of several individuals within
the confines and limitations of copyright laws.

2.7 PATENTS ECONOMICS OF FOSS

Unlike the holder of an Open-Source license, the owner of a patent
has exclusive rights over the patented software. No one else can make,
use, modify, or sell patented software, and the source code is not available
to the public.

Patent rights give the holder control over who uses software and
for what purpose. Though software developers can protect their work
using both copyrights and patents, copyrights only protect the code itself.
Patents, however, protect the program's functionality.

Patents are better than copyrights for software developers because
they protect the program regardless of the code and language used. In
comparison, copyrights aren't very practical for developers. If you want
to release Open Source software while retaining some rights, a copyright
only gives you power over someone who steals your work verbatim.

mu
no
tes
.in

25

The original idea of a patent was to give the innovator who
develops the idea a monopoly of time in which she/he can benefit by
commercial exploitation of the patent, protect by legal means from other
wishing to copy the idea. But long ago, this has become buried in legal,
cultural, administrative, and practical difficulties – and this is making
waves. We have been patents being used (as with copyright) as a means
of proxy business-competition – with a recentWired article exposing the
battle lines of patent-warfare in the smart phone market as the big
player jostle for position – so Apple sues HTC (used in many Android
phones), Nokia sues Apple, Kodak sues Apple, Research in Motion
(makers of the BlackBerry) & Samsung while Palm and Apple argue over
patents:

The intention is to promote the rapid adoption and adaptation of
ideas, benefit the inventors and reward the whole process of research and
development. However, over the past two decades, changes in the way
patents are attributed and patent holders’ increasingly aggressive tactics
have created a situation that some claim is choking, rather than promoting,
innovation. What makes the problem intractable is that today it is
impossible to design a high-end tech product that does not include others’
patents.

Software patents do not appear to show a strong effect on FOSS
developer motivation in general. This is true for both camps in the
software patent debate: the presence of software patents has no positive
effects on monetary and skills-related motivation, as argued by
proponents; it also does not show negative effects on joy- and self-
expression-related motivation, as argued by opponents. In contrast and
counter-intuitively, joy-related motivation seems to be positively
influenced by the presence of software patents.

2.7.1 Zero Marginal Cost
At the core of the financial aspects of Free and Open Source is the

zero negligible expense of merchandise in an environment that is digital.
Right now, the rise of Free and Open Source speaks to an affirmation of
old-style microeconomic value hypothesis - that a marginal cost in an
ideal market approximates the minimal expense. From this point of view,
Free and Open Source can be comprehended as a pioneer in arriving at
what can be comprehended as a developmentally steady powerful Nash
balance in a genuinely free market. Marginal cost is the term utilized in
the study of financial aspects and business to allude to the increment in the
actual development cost coming about because of delivering one extra unit
of the product.

While Free and Open Source is allowed to the end client, there is
an expense related to building up the product. These expenses might be
littler than creating exclusive programming since building up the task
under Free and Open-Source permit implies that:

mu
no
tes
.in

26

Various online interfaces like Source Forge would offer web
facilitating, content store, mailing records and other basic highlights for
nothing.

The expense of promoting a Free and Open-Source venture (like
introducing it in the related gatherings) is typically lower.

Creating something under GPL may give free access to top-notch
parts (like QT) that are in any case costly to purchase or not accessible by
any stretch of the imagination.

All things considered; improvement of any product initially
requires the designer time. Without a doubt, extremely famous activities
may hope to get an excellent code commitment for nothing.

2.8 INCOME-GENERATION OPPORTUNITIES

While contributing time and exertion in creating, improving and
documenting Free and Open Source doesn't give any immediate salary, the
improvement of skill in Free and Open Source gives an expansive scope of
revenue generation opportunities - from producing in-house investment
funds from upgrades to Free and Open Source to counselling openings in
installing, preparing, customizing and the arrangement of Tech Support
for Free and Open-Source establishments. Yochai Benkler furnishes a
fantastic investigation - with IBM's strategy as a key model - of ways that
salary and riches are being created through open source and open
substance techniques.

With IT budgets increasingly strained, more and more companies
are looking to open-source software to help lower costs. And while many
people associate open source with free software, the movement provides
resellers and system integrators (SIs) with significant services revenue,
analysts say.

As the Open-Source India panel's theme, one natural aspect for
discussion involved opportunities for angel investors, business
accelerators, venture capitalists, and others to benefit financially from
funding commercial FOSS companies or investing in publicly traded
companies with a significant role in FOSS.

2.9 PROBLEMSWITH TRADITIONAL
COMMERCIAL SOFTWARE

First, it ought to be noticed that the business software industry is
one of the biggest and most significant ventures on the planet. The ascent
of the Open-Source development doesn't spell the finish of the business
software industry. Numerous individuals contend that business software
can be strengthened by the utilization of open-source strategies. Business

mu
no
tes
.in

27

software is intended to give an item worth paying to and its majority is.
Regardless of its sticker price, business software is frequently in demand.

Business products will be refreshed much of the time to mirror the
fluctuating requests of the market and client needs. These necessities can
prompt software rehearses that rework and change the product too as often
as possible or disperse beta forms as business attempts bringing about high
paces of bugs in early forms.

Some business programs are over structured and written in messy
code prompting enlarged, slow, running projects. Open Source by
differentiating is driven by the necessities of the end clients. Along these
lines, their code is regularly of a predominant bore than that of software
engineers in the business condition. There is likewise generally an
extremely broad level of input as the software engineers test their products
with a wide system of individuals.

At the point when source code is accessible, it tends to be checked
against different "secondary passages" and other security openings that
might be deliberately or accidentally left in the closed source
programming. In the past, such gaps have been found in different
exclusive items, including software, utilized by the legislature. Having
source code additionally implies that the product can be effectively ported
to run under various processors, gadget or OS.

Another issue with customary business software is its closed
nature. There is generally no or restricted opportunity to alter the
copyrighted item.

Additionally, organizations frequently power clients to follow
update ways that they may not wish to follow. Open-source Software
empowers the person to tweak the product to his end needs in all
opportunities.

Another vigorously censured part of business software is that
clients are regularly secured to an item because to continue utilizing
information documents you are frequently compelled to keep on utilizing a
similar program. If you wish to impart documents to clients that have
overhauled, you frequently need to update yourself or be discounted as
unessential. Since open-source programming permits contending projects
to share various information record types, there is no motivation to be
caught into any one program. If a more current adaptation has another
record group, at that point there regularly are converters that permit clients
of more established variants to keep up their information documents
forward-thinking.

2.10 INTERNATIONALIZATION

Internationalized software must enable easy porting to other
locales. A locale defines language and specific cultural conventions.

mu
no
tes
.in

28

In the private international law rules for transfer and license
contracts has shown that it is hardly possible to anticipate the applicable
law for Copyright Assignment CAs or Copyright License Agreement
CLAs when it comes to legal disputes. The first source of uncertainty is
the lack of internationally accepted principles of private international law.
European, US and Japanese courts apply different conflict-of-law rules for
the different legal issues raised by CAs/CLAs. A second source of
ambiguity is the lack of precise conflict rules in legislation or case law
within the analysed jurisdictions with regard to transfer or license
contracts. This makes it hard to predict which law will finally be
applicable to the legal questions at stake, even if one could anticipate
whether a European, US or Japanese court will be called to hear the case.
A third source of legal problems relates to the boundaries of party
autonomy in international copyright law. For some of the most crucial
aspects of CAs/CLAs, e.g., the question of whether copyright or” joint
authorship” in a work can be assigned, the territoriality principle precludes
any choice of law. Thus, the parties’ latitude to reduce the complexity of
their relationship by a contractual choice is restricted.

2.11 SUMMARY

In this chapter we learned that, while open-source software offers a
multitude of benefits, it introduces a whole new level of code management
that does not exist when solely using commercial software. It is critical
that an organization utilizing OSS or acquiring codebases that contain
OSS in a merger or acquisition, truly understand what is in their code so
they can effectively manage and secure it. The Synopsys solution suite
offers complete open-source coverage, so you can use OSS confidently. In
short, open source provides a way for companies to collaborate on
technology that’s mutually beneficial.

2.12 REFERENCES

 Monika Sharma, learn about the social and financial impacts of Open
Source, collaborative Organization flourishing in recent years. on
February 18, 2018

 Bhattacharya, I, Sharma, K (2007). India in the knowledge economy

 https://opensource.org/history

 https://www.howtogeek.com/129967/htg-explains-what-is-open-
source-software-and-why-you-should-care/

 https://www.synopsys.com/glossary/what-is-open-source-
software.html

 https://dwheeler.com/oss_fs_eval.html

mu
no
tes
.in

29

3
SOCIAL IMPACT

Unit Structure
3.0 Open source vs. closed source
3.1 Open-source government
3.2 Open-source ethics

3.2.1 Ethical Issue with OSS
3.3 Social and Financial impacts of open-source technology

3.3.1 Collaborative Organization flourishing in recent years
3.3.1 People starting up their own businesses

3.4 Shared software
3.5 Shared source
3.6 Open Source in Government
3.7 Summary
3.8 References

3.0 OPEN SOURCE VS. CLOSED SOURCE

Open-Source Software:
Open-source software refers to the computer software which

source is open means the general public can access and use. In short it is
referred as OSS. The source code of open-source software is public. It
uses the code freely available on the Internet. This code can be modified
by other users and organizations means that the source code is available
for anyone to look at. As the software is open to the public, the result is
that it constantly updates, improves and expands as more people can work
on its improvement. The price of open-source software is very less and
there are not so many restrictions on users based on usability and
modification of software.

Some examples of open source software are Fire fox, Open
Office, Gimp, Alfresco, Android, Zimbra, Thunderbird, My SQL,
Mailman, Moodle, TeX, Samba, Perl, PHP, KDE etc.

Closed Source Software:
Closed source software refers to the computer software which

source code is closes means public is not given access to the source code.
In short it is referred as CSS. In closed source software the source code
is protected. Only the original authors of software can access, copy, and
alter that software. In a case with closed source software, you are not
purchasing the software, but only pay to use it. The price of closed source
software is high, and users need to have valid and authenticated license
to use the software. As is issues an authenticated license so it also put a

mu
no
tes
.in

30

lot of restriction on users based on usability and modification of
software.

Some examples of closed source software are Skype, Google
earth, Java, Adobe Flash, Virtual Box, Adobe Reader, Microsoft office,
Microsoft Windows, WinRAR, mac OS, Adobe Flash Player etc.

Sr. No. Open-Source Software
(OSS) Closed Source Software (CSS)

01.

Open-source software
refers to the computer
software which source is
open means the general
public can access and use.

Closed source software refers
to the computer software
which source code is closes
means public is not given
access to the source code.

02. Open-Source Software in
short also referred as OSS.

Closed Source Software in
short also referred as CSS.

03. The source code of open-
source software is public.

In closed source software the
source code is protected.

04.

This code can be modified
by other users and
organizations means that
the source code is available
for anyone to look at.

The only individual or
organization who has created
the software can only modify
the code.

05. The price of open-source
software is very less.

The price of closed source
software is high.

06.

There are not so many
restrictions on users based
on usability and
modification of software.

There is so many restrictions
on users based on usability
and modification of software.

07. Programmers compete with
each other for recognition.

Programmers do not compete
with each other for
recognition.

08.

Programmers freely
provide improvement for
recognition if their
improvement is accepted.

Programmers are hired by the
software firm/organization to
improve the software.

09.

If the program is popular
then very large number of
programmers may work on
the project.

There is a limitation on the
number of programmers/team
who will work on the project.

10. It is purchased with its
source code.

It is not purchased with its
source code.

mu
no
tes
.in

31

11.
Open software can be
installed into any
computer.

Closed software needs have a
valid license before
installation into any computer.

12. Open-source software fails
fast and fix faster.

Closed source software has no
room for failure.

13.
In closed source software
no one is responsible for
the software.

In closed source software the
vendor is responsible if
anything happened to
software.

14.

Examples are Firefox,
OpenOffice, Gimp,
Alfresco, Android, Zimbra,
Thunderbird, MySQL,
Mailman, Moodle, TeX,
Samba, Perl, PHP, KDE
etc.

Examples are Skype, Google
earth, Java, Adobe Flash,
Virtual Box, Adobe Reader,
Microsoft office, Microsoft
Windows, WinRAR, mac OS,
Adobe Flash Player etc.

For better understanding the peculiarities of open-source software
and closed source software, we have made a comparison of five basic
aspects: pricing, security, support, source availability, and usability.

 Price Policy
Open source often referred as free of cost software. It can, however,
have costs for extras like assistance, additional services or added
functionality. Thus, you may still pay for a service with OSS.

Closed source software is usually a paid software. The costs can vary
depending on the complexity of the software. While the price can be
higher, what you get is a better product, full support, functionality and
innovation. However, most companies provide free trials to convince
the purchaser that their software is the right fit.

 Security
The question of security is very controversial as each software has two
sides of the coin. The code of open-source software can be viewed,
shared and modified by the community, which means anyone can fix,
upgrade and test the broken code. The bugs are fixed quickly, and the
code is checked thoroughly after each release. However, because of
availability, the source code is open for hackers to practice on.

On the contrary, closed source software can be fixed only by a vendor.
If something goes wrong with the software, you send a request and
wait for the answer from the support team. Solving the problem can
take much longer than compared to OSC.

mu
no
tes
.in

32

When it comes to choosing the most secure software, the answer is
that each of them has its pros and cons. Thus, it is often a challenge for
firms that work in a particular industry.

 Quality of Support
Comparing open source and closed source software support, it is
obvious that CSS is predominant in this case. The costs for it include
an option to contact support and get it in one business day in most
cases. The response is well organized and documented.

For open-source software, such an option is not provided. The only
support options are forums, useful articles, and a hired expert.
However, it is not surprising that using such kind of service you will
not receive a high level of response.

 Source Code Availability
Open-source software provides an ability to change the source code
without any restrictions. Individual users can develop what they want
and get benefits from innovation developed by others within the user
community. As the source code is easily accessible, it enables the
software developers to improve the already existing programs.

Сlosed source software is more restricted than open-source software
because the source code cannot be changed or viewed. However, such
limitation is what may contribute to CSS security and reliability.

 Usability
Usability is a painful subject of open-source software. User guides are
written for developers rather than to layperson users. Also, these
manuals are failing to conform to the standards and structure.

For closed source software usability is one of the merits.
Documentation is usually well-written and contains detailed
instructions.

 Best Examples of OSS and CSS Shopping Carts
The market is full of open source and closed source shopping carts.
The basic difference lies in the price. Open-source shopping cart
systems are free, whereas for closed source programs you will have to
pay. With payment, you get customer support and confidence. Because
open-source shopping carts are free, they don’t have such an option.
However, their community on different forums is very active and
always ready to help.

The benefits of open-source solutions are primarily flexibility and
scalability. You have full control over every aspect of your site’s design,
thanks to the open-source code. When your business expands, and your
monthly sales increase, you can embrace it without being charged more
for increased sales volume.

mu
no
tes
.in

33

Closed source software is easier to work with for beginners or
those who don’t know how to code. Also, closed source websites are
easier and faster to set up out of the box.

3.1 OPEN-SOURCE GOVERNMENT

The concept of open government preaches a government which is
highly transparent and offers mechanisms for continual public scrutiny.
Open government envisions increased citizen participation and
collaboration in all government proceedings through the application of
modern and open technologies. The origin of this concept is traced back to
the Age of Enlightenment/ Reason in the 17th and 18th centuries when the
seeds of rights of free speech, expression and assembly were sown in
many western nations. In the 1950s and 60s, certain laws such as freedom
of information were passed which intended to foster transparent,
accessible and accountable government culture. These laws came to be
known as ‘sunshine’ laws.

If the future is a walk towards an open government, open-
source technologies will perhaps play the most significant role.
Applications of open-source software extend from computer hobbyists to
professional businesses, but the public sector has not always been
embracing open-source technologies. The reason is perhaps the
misconception that open-source software is time-consuming and offer
unsupported solutions. The following advantages of using open-source
software in government may allay these unfounded concerns:

I. FLEXIBILITY
Agencies can tailor open-source products, adding to or modifying

the code to fit their specific needs. These modifications can include
security patching for critical vulnerabilities measured in hours. Similar
vendor products don’t offer this flexibility.

II. MATCHES COMPETITORS
Having many sets of eyes on the code means open-source tools’

capabilities and functionality compete exceptionally well with commercial
software.

III. AFFORDABILITY
Open-source software usually is available at a much lower price

point than buying a commercial product. In all cases, it is free, and
valuable support options are available for popular packages.

IV. PROVEN TRACK RECORD
Many open-source products are proven by having accumulated

strong communities of developers over a long period of time. An example
is Linux, where a large group of people, including employees of
established companies, watch over security and can work with government
agencies to ensure the software’s safe use.

mu
no
tes
.in

34

V. HIGH QUALITY
Government can be assured of high quality — defined by good

testing and code review — if the open-source technology is supported by a
solid developer community.

VI. ACCESS TO SKILLED LABOR
Using open-source software may unlock a wider base of

prospective IT talent to government agencies. The number of Linux
specialists, for example, gives open-source users greater access to skilled
technology labour.

Transparency is considered the traditional hallmark of an open
government, meaning that the public should have access to government-
held information and be informed of government proceedings.

Agencies also can connect easily to open-source software
communities online. It will be obvious which communities are developing
robust products, because participants in the better communities will be
actively and consistently engaged. Frequency of commits, releases and
mailing list traffic are all excellent indicators of community health in the
open-source world. Also consider the size and diversity of companies that
support a product directly through financial contribution or support and
indirectly through employee involvement.

3.2 OPEN-SOURCE ETHICS

3.2.1 Ethical Issue with OSS
 Lack of Motivation

One concern with open-source software is the lack of motivation to
produce quality work. Because most of the OSS developers are not paid,
one may claim that these developers may not be motivated to produce
reliable and good quality software. The opponents of OSS claim that if the
software is not reliable then it may affect society negatively and thus not
help enhance technology as much as their "reliable" commercial
counterparts.

However, proponents of OSS disagree with this point. They argue
that having multiple sets of eyes on code, and having it open to the public
results in programmers coding better. They claim that the whole culture
surrounding OSS thrives on the developer's desire for recognition of work
from colleagues or utilitarian approach to information and learning and
thus they are at least as likely to produce quality code as their colleagues
who earn more salaries through commercialized software.

 Ownership
Assume that a group of researchers want to use the source code of

some open-source software to study metrics of coding. However, this is
not the use of the software that the developers intended. The question that
gets raised by this concept is whether or not researchers would need to ask

mu
no
tes
.in

35

the developers for permission to study the code. If they do not need the
permission, then the developers might be discontented with this use and
thus might be discouraged from creating new works and Open-Source
Software in the future. On the other hand, if they would need the
permission, then it leads to even bigger problems; because of the nature of
OSS there might be hundreds of developers who have worked on the
product. This raises the question of "how far do the researchers need to go
in order to gain permission?" Should they be required to ask every single
person who has contributed to the issue for his/her consent? Should they
only ask the initial core developer team? Where do they draw the line
between who they should be required to ask permission from and who
they do not need to? These are some of the questions that are raised with
OSS development with regards to ownership and permissions.

Furthermore, if researchers do study the code, they can then
evaluate which are the best and worst coders as it is easy to tell which
developer has contributed to which parts of the software through version
control. As the code is public information, it can be argued that publishing
this information would also be legitimate. This, however, seems to be an
intrusion of privacy. Even if coders have remained anonymous, it is still
publicly known how well or badly they code.

 Licences and Enforceability
Another issue related to OSS is whether or not obtaining and

following through with copyright, trademark and licenses associated with
the OSS product has negative affects on the software itself as well as the
society as a whole.

As is evident in the previous ethical issues, some regulations are
necessary to protect all parties in open-source software and allow it to
function with minimal disputes. However, these licences are themselves
an ethical issue in terms of their enforceability and validity. Open source,
however, is meant to be open and so it is a strange situation to have
licences in place to regulate it. So, to what extend should the OSS licenses
be treated on the level of copyright infringement and to what extend
should they be taken a little more lightly due to the nature of open-source
software that encourages social collaboration and the common good?

Open-source software is the most ethical option for two reasons:

1. The rapid rate at which general purpose computers have and will
become integrated in all aspects of our everyday life.

2. The benefit to the wider community that comes with knowledge
sharing and collaboration.

Open-source software is the most ethical option because of the
ways computers have and will become integrated in all aspects of our life.
Without access to the source code, we put our privacy, lives, and the lives
of others in danger. Moreover, our lives and quality of life also depends on

mu
no
tes
.in

36

our ability to choose what software runs and is trusted on the devices we
own.

When we expose and make free the code that runs on our
computers, we invite others to learn from our knowledge and share alike,
with the added benefit that we often get our software updates faster and
with greater regularity. Just as no one person can spot all of the bugs in a
program, no one person can create the most efficient program. Open-
source software allows us to select from a variety of diverse solutions that
ultimately improve our quality of life and provides us with the ability to
modify that software to suit our needs. In a closed source world, we
depend on the manufacturer to make all of the right decisions and to
anticipate all of the right design and security questions, which is a highly
unreasonable request.

The value of ethical OSS licenses and next steps support for so-
called ethical OSS licenses is not universal amongst the OSS community
and it not surprising that the recent release of the Hippocratic License has
engendered its fair share of bricks and bouquets. Given accusations by
Emke that the OSI has prioritized software freedom over ethical concerns,
it was predictable that the OSI would essentially assert that the
Hippocratic License is not certifiable as a legitimate OSS license
(presumably because it fails to pass two critical Open-Source Definition
requirements, namely numbers 5 (No Discrimination Against Persons or
Groups) and 6 (No Discrimination Against Fields of Endeavor). Many
ethical licenses may fail on these grounds, particularly the requirement
that an OSS license must not restrict anyone from making use of the
program in a specific field of endeavour, such as a particular business, or
from being used genetic research by way of example.

Critics have also been quick to point out the challenges of ethical
OSS licenses: enforceability, for one (at worst a license can be “revoked,”
but it may be difficult to force anyone to actually change their behaviour
or stop using the code), and practicality (who gets to decide what is an
“adversely addictive behaviour”?). At the same time, ethical OSS pundits
such as Chris Jenson have argued that the GPL was and is also rooted in a
strong ideological viewpoint (software should be free, as in speech) and
while such views are now widely accepted, “when it first appeared it was a
very new and strange idea about licensing software, and was met with a lot
of resistance.”

Moreover, many would assert (myself included) that the real value
of ethical OSS licenses is that they are inherently disruptive by bringing
attention to these ethical issues, challenging the status quo (including the
Open Source Definition), and spreading the idea (in Jenson’s words) that
software “should be used for the betterment of the world” and that “as
developers we can take responsibility for how our code is used.” It
ultimately may not matter if such licenses gain “official” certification, and
the approval of organizations such as the OSI if they otherwise have an
impact.

mu
no
tes
.in

37

Arguably the more narrowly drafted ethical OSS licenses, such as
the Anti-996 License, stand a better chance of being voluntarily adopted
(in comparison with the sprawling Just World License); and the fact that
so many code projects and companies appear to have adopted the Anti-996
License to date is impressive.

Notwithstanding its initial protests, even the OSI may eventually
be forced to reconsider and update its OSI Definition, given that the
document dates back to the 1990s (an eternity in tech years). In an age of
increased technology worker activism, where U.S. employees have
successfully pressured their employers to cease certain kinds of work for
the U.S. military (e.g., Google’s aerial drone imagery analysis), ICE and
U.S. Customs and Border Protection, it may be difficult to fully ignore the
potential impact of ethical OSS.

Only time will tell whether certain of the ethical OSS licenses will
succeed or fall into obscurity.

3.3 SOCIAL AND FINANCIAL IMPACTS OF OPEN-
SOURCE TECHNOLOGY

Today, mass collaboration is changing the essential structure of
organizations and reshaping how these companies work in our
exceptionally serious condition. The collaborative effort, energized by
open philosophies and companion generation, is constraining the
administration to reconsider their methodologies. Collaborations that have
emerged are breaking the obstructions and making open spaces where all
can develop and add to push forward the limits of their organizations just
as the limits of ventures, they work in the incomparable British economics
specialist, makes a solid contention that one reason for the structure of
vertically incorporated collaborations is the "cost of the exchange."
Perform an exchange inside your firm in particular on the off chance that
it is less expensive than performing it remotely or in the commercial
centre. The Internet blast and the advancement of open-source software
and pooled frameworks have made it feasible for online organizations to
keep these exchange costs low. Wear Tapscott, the creator of Wikinomics,
analyzes this thought: "Exchange costs despite everything exist, except
now they're regularly graver in companies than in the commercial centre."
Despite the considerable number of advantages (as far as quality, speed,
and riches) that open source and the shared method of undertaking
ventures have produced, there is still some misconception and hole in the
valuation for these huge changes. An organization despite everything
confines their appreciation of open source as free programming that sucks
up the abundance of a solid entrepreneur society. They consider liberated
to be as a risk to the venture however miss the multi-billion-dollar
biological system that it has made from which organizations everything
being equal and types are profiting.

mu
no
tes
.in

38

Collaborative Organization flourishing in recent years
The computerized upheaval, additionally called the third unrest,

has changed the whole scene of the business world. After the mechanical
transformation, no other unrest has changed the texture of the general
public as the Internet has transformed it. It has offered to ascend to
collaborations that flourish with volunteers, peer creation, and joint effort.
Wikipedia, Word Press, Red Hat, the Mozilla Foundation and a lot more
are contending today with probably the best-financed and creative
endeavours over the globe.

The parameters of this challenge are represented by cost as well as
characterized by quality too. A Wikimedia traffic investigation report in
2012 shows that Google Chrome has a bigger market than Internet
Explorer and browser Mozilla Firefox has a noteworthy piece of the pie.
In like manner, Red Hat Enterprise Linux has generally actualized in
practically all the enormous money related organizations due to the
expense as well as a result of the solidness it adds to the unpredictable
innovation frameworks in budget confined organizations.

Indeed, even a portion of the collaborations that have a background
marked by restricting and harpooning open-source advancements are
presently opening up to coordinated efforts to make win-win
circumstances. Microsoft is the greatest model. It’s entirely claimed
backup, Microsoft open advances gathering, follows a network-driven way
to deal with make inventive arrangements. One late declaration was the
dispatch of VM Depot, a community is driven inventory of open-source
virtual machine pictures for Windows Azure.

People starting up their own businesses
The Internet is perhaps the best thing that has happened to

mankind. In addition to the fact that it opens the world up to an individual
(and the other way around), it has become a core of worldwide monetary
action. An ever-increasing number of individuals today are making their
living by selling bits and bytes. The expense of beginning an online
business is very low compared with beginning a business that depends on
physical channels. This minimal effort of bootstrapping a business joined
with the imaginative idea of the Internet has urged millions to start their
endeavours. The ease of beginning an online business has become easy
financially due to the accessibility of open-source software and
foundation. The free LAMP programming stack, which establishes Linux,
Apache, My SQL, and PHP, has made it feasible for imaginative and keen
individuals with thoughts to begin organizations on the Internet that are
assuming a positive job in pushing forward mankind.

The open-source development and its procedures have contributed
altogether to the business world and made environments that have
emphatically affected all ventures and billions of individuals over the
globe. Also, this development has generally been powered by a huge
number of volunteers who add to these activities for a wide scope of
reasons, including to develop their systems, improve their resumes, refine
their abilities, and only for doing social great.

mu
no
tes
.in

39

In the expressions of Jimmy Wales, the author of Wikipedia: "We
are assembling to manufacture this asset that will be made accessible to
every one of the individuals of the world for nothing. That is an objective
that individuals can get behind".

3.4 SHARED SOFTWARE

Shared Software means all Software owned or licensed by the
Seller and the Seller Subsidiaries as of the Closing Date that is necessary
in order to conduct the Business substantially in the manner and to the
extent currently conducted or used by Seller in connection with the
Business as of the Closing Date (other than the Transferred Software),
where the functionality of such Software is material to the Business as of
the Closing Date and cannot be replaced with Software providing
comparable levels of performance and functionality at a cost of less than
$250,000

Any Party shall have the right to bring an Action for infringement,
misappropriation, or other violation with respect to the Shared
Software (“Enforcement Action”) without the consent of the other Party,
except that the Parties may cooperate, at their respective own expense, in
any Enforcement Action with respect to alleged infringement,
misappropriation, or other violation of Shared Software.

At any time upon the disclosing Party’s written request, the
receiving Party shall promptly return to the other Party, or destroy, all
Confidential Information of the disclosing Party obtained by the receiving
Party under the Agreement, and all copies and reproductions thereof,
except for Confidential Information related to or associated with
the Shared Software, including but not limited to the source code for the
Shared Software.

However, the Parties shall not file for any intellectual property
protection worldwide for any Shared Software or Software Improvements
without written permission from the other Party obtained in advance of
such filing.
Subject to the terms of this Agreement, each Party may use and
commercially exploit the Shared Software for its own benefit in any
manner without the consent of the other Party and without any obligation,
accounting, or payment of any fee to the other Party.

3.5 SHARED SOURCE

Shared source is a software licensing concept that is
more open than the proprietary approach to licensing but more restricted
than the open source model. Under a shared source program license,
authorized parties are granted full or partial access to source code.
Typically, those granted access can view source code but cannot alter it

mu
no
tes
.in

40

for any commercial purpose. Some shared source programs allow only
viewing of code; others allow non-commercial alteration and/or
redistribution. Microsoft originated the shared source approach, which has
since been adopted by other major industry players, including Hewlett-
Packard and Sun Microsystems.

The shared source model offers fewer benefits than the open-
source model. It lacks, for example, the collaborative improvement
process promoted by the open-source approach. However, even the ability
to view source code can be helpful. Shared source code can help
developers ensure compatibility with existing programs and can make it
easier to review source code for security purposes.

Critics have described shared source as a marketing ploy and
suggested that the approach could pose a threat to the purity of the open-
source model. In a paper called "Shared Source: A Dangerous Virus," the
Open-Source Initiative called Microsoft's shared source program "a trap
for the unwary" and warned that developers who'd been exposed to it
should be considered "contaminated" and not assigned to projects that
were competitive with Microsoft products.

3.6 OPEN SOURCE IN GOVERNMENT

Open source can be seen as a technical expression of democratic
government as open source is a result of public accessibility, open
exchange and collaborative participation. It thrives on transparency,
meritocracy and community development. The goal of open source and
democracy is loosely the same – ensure more control and create a better
future.

Open-source software has so many potential benefits that in many
cases, agencies should at least consider it when technology is a factor in
solving problems or expanding services. And because open-source
software is so pervasive, all major products are graded just as commercial
products are. To find open source software reviews, government agencies
can access information technology research conducted by organizations
such as Forrester and Gartner. These independent firms do deep dives to
analyze technology products, including open-source software.

Five open-source software products that can aid government:
For agencies that want to consider open-source software, five tools in

particular offer significant potential advantages to government:

1. Open Stack is a set of tools that allows users to create, automate and
manage both public and private clouds at minimal expense. This
technology, originally developed by NASA, is a good example of
government developing open-source software to meet a particular
agency need, and then putting the software back into the open-source
community so others can add to and benefit from it. With Open Stack,

mu
no
tes
.in

41

government can set up its own cloud to hold data it doesn’t want in a
public cloud.

2. Jenkins is a continuous delivery tool that builds and tests software
after every change. Once development and testing are complete,
Jenkins can deploy new code to production with the push of a button,
so there’s no down time in making the upgraded product available to
constituents.

3. Docker 1.0 was released in mid-2014, and the buzz around it has yet
to die down. This tool “containerizes” applications with everything
they need to run, allowing them to be moved around the cloud and
ensuring they will run as well in one technology environment as in
another. Like putting cargo into a container makes it easier to move
from place to place, Docker streamlines the process of moving from a
legacy server to the cloud or moving from one cloud server to another.
This reduces government costs by preventing agencies from being held
captive by an existing cloud provider’s price.

4. Spacewalk automates hardware and software inventorying, and
software installations and updates for Linux server environments. By
using Spacewalk and Linux together, an agency can maintain a low-
risk security posture by deploying monthly patches at the touch of a
button.

5. Drupal, an open-source content management system, is used to build
websites and author content. Used by 37 percent of .gov websites,
Drupal was the CMS technology of choice for the state of Colorado,
whose proprietary tool had become inflexible and unstable after
reaching more than one hundred customers on the platform. The
legacy solution also had been purchased by a large company, and its
price was expected to increase significantly. After the state conducted
an analysis of alternatives, Drupal stood out. With more than 1 million
users worldwide, it offers ample online resources and contractors
available for support, provides a relatively simple interface, is
adequately flexible to support growth without significant investment
and reduces the required implementation time by nearly 15 times. The
effort has been wildly successful, and the state government portal has
launched three distributions of Drupal to 174 state agencies in
Colorado in the past two years.

Like any technology product, open-source software is not right for
every application in every government agency. But its capability for
transforming the delivery of digital government services means there is a
best-use place for open-source software in every government technology
portfolio.

mu
no
tes
.in

42

3.7 SUMMARY

This Chapter analyses the impact of public policies supporting
open-source software (OSS). Users can be divided between those who
know about the existence of OSS, the "informed" adopters, and the
"uninformed" ones; the presence of uniformed users yields to market
failures that justify government intervention. We study three policies: i)
mandatory adoption, when government forces public agencies, schools,
and universities to adopt OSS, ii) information campaign, when the
government informs the uninformed users about the existence and the
characteristics of OSS and, iii) subsidisation, when consumers are paid a
subsidy when adopting OSS. We show that the second policy enhances
welfare, the third is always welfare decreasing while mandatory adoption
can be either good or bad for society depending on the number of
informed and uninformed adopters. We extend the model to the presence
of network effects, and we show that strong externalities require "drastic"
policies.

3.8 REFERENCES

 Monika Sharma, learn about the social and financial impacts of Open
Source, collaborative Organization flourishing in recent years. on
February 18, 2018

 Bhattacharya, I, Sharma, K (2007). India in the knowledge economy

 Gera, S., R. Roy, and T. Songsakul (2006)

 Wheeler, David A. (May 8, 2014). "Why Open Source Software / Free
Software (OSS/FS, FLOSS, or FOSS)

 https://www.includehelp.com

 Golden, B.: Open Source Maturity Model © Navica,
http://www.navicasoft.com/ pages/osmmoverview.htm

 Method for Qualification and Selection of Open Source software
(QSOS) version 1.6 © Atos Origin (April 2006), http://qsos.org/

 https://dwheeler.com/oss_fs_eval.html

mu
no
tes
.in

43

4
CASE STUDY ON LINUX TECHNOLOGY
AND OPEN SOURCE SOFTWARES

Unit Structure
4.0 Linux and the GNU System:
4.1 Case Study on Android
4.3 Case Study on Mozilla Firefox
4.4 Case Study on Wikipedia
4.5 Case Study on Drupal
4.6 Case Study on WordPress
4.7 Case Study on GCC
4.8 Case Study on GDB
4.9 Case Study on GitHub
4.10 Case Study on Open Office
4.11 Case Study on Licensing
4.12 Case Study on mode of funding
4.13 Case Study on commercial/non-commercial use
4.14 Case Study on Open-Source Hardware
4.15 Case study on Open-Source Design
4.16 Case Study on Open-Source Teaching
4.17 Case Study on Open-source media

4.0 LINUX AND THE GNU SYSTEM:

Many computer users run a modified version of the GNU system
every day, without realizing it. Through a peculiar turn of events, the
version of GNU which is widely used today is often called “Linux”, and
many of its users are not aware that it is basically the GNU system,
developed by the GNU Project.

There really is a Linux, and these people are using it, but it is just a
part of the system they use. Linux is the kernel: the program in the system
that allocates the machine's resources to the other programs that you run.
The kernel is an essential part of an operating system, but useless by itself;
it can only function in the context of a complete operating system. Linux
is normally used in combination with the GNU operating system: the
whole system is basically GNU with Linux added, or GNU/Linux. All the
so-called “Linux” distributions are really distributions of GNU/Linux.

Many users do not understand the difference between the kernel,
which is Linux, and the whole system, which they also call “Linux”. The

mu
no
tes
.in

44

ambiguous use of the name doesn't help people understand. These users
often think that Linus Torvalds developed the whole operating system in
1991, with a bit of help.

Programmers generally know that Linux is a kernel. But since they
have generally heard the whole system called “Linux” as well, they often
envisage a history that would justify naming the whole system after the
kernel. For example, many believe that once Linus Torvalds finished
writing Linux, the kernel, its users looked around for other free software to
go with it and found that (for no particular reason) most everything
necessary to make a Unix-like system was already available.

What they found was no accident—it was the not-quite-complete
GNU system. The available free software added up to a complete system
because the GNU Project had been working since 1984 to make one. In
the GNU Manifesto we set forth the goal of developing a free Unix-like
system, called GNU. The Initial Announcement of the GNU Project also
outlines some of the original plans for the GNU system. By the time Linux
was started, GNU was almost finished.

Most free software projects have the goal of developing a
particular program for a particular job. For example, Linus Torvalds set
out to write a Unix-like kernel (Linux); Donald Knuth set out to write a
text formatter (TeX); Bob Scheifler set out to develop a window system
(the X Window System). It's natural to measure the contribution of this
kind of project by specific programs that came from the project.

If we tried to measure the GNU Project's contribution in this way,
what would we conclude? One CD-ROM vendor found that in their
“Linux distribution”, GNU software was the largest single contingent,
around 28% of the total source code, and this included some of the
essential major components without which there could be no system.
Linux itself was about 3%. (The proportions in 2008 are similar: in the
“main” repository of gNewSense, Linux is 1.5% and GNU packages are
15%.) So, if you were going to pick a name for the system based on who
wrote the programs in the system, the most appropriate single choice
would be “GNU”.

But that is not the deepest way to consider the question. The GNU
Project was not, is not, a project to develop specific software packages. It
was not a project to develop a C compiler, although we did that. It was not
a project to develop a text editor, although we developed one. The GNU
Project set out to develop a complete free Unix-like system: GNU.

Many people have made major contributions to the free software in
the system, and they all deserve credit for their software. But the reason it
is an integrated system—and not just a collection of useful programs—is
because the GNU Project set out to make it one. We made a list of the
programs needed to make a complete free system, and we systematically
found, wrote, or found people to write everything on the list. We wrote

mu
no
tes
.in

45

essential but unexciting (1) components because you can't have a system
without them. Some of our system components, the programming tools,
became popular on their own among programmers, but we wrote many
components that are not tools (2). We even developed a chess game, GNU
Chess, because a complete system needs games too.

By the early 90s we had put together the whole system aside from
the kernel. We had also started a kernel, the GNU Hurd, which runs on top
of Mach. Developing this kernel has been a lot harder than we expected;
the GNU Hurd started working reliably in 2001, but it is a long way from
being ready for people to use in general.

Fortunately, we didn't have to wait for the Hurd, because of Linux.
Once Torvalds freed Linux in 1992, it fit into the last major gap in the
GNU system. People could then combine Linux with the GNU system to
make a complete free system — a version of the GNU system which also
contained Linux. The GNU/Linux system, in other words.

Making them work well together was not a trivial job. Some GNU
components (3) needed substantial change to work with Linux. Integrating
a complete system as a distribution that would work “out of the box” was
a big job, too. It required addressing the issue of how to install and boot
the system—a problem we had not tackled, because we hadn't yet reached
that point. Thus, the people who developed the various system
distributions did a lot of essential work. But it was work that, in the nature
of things, was surely going to be done by someone.

The GNU Project supports GNU/Linux systems as well as the
GNU system. The FSF funded the rewriting of the Linux-related
extensions to the GNU C library, so that now they are well integrated, and
the newest GNU/Linux systems use the current library release with no
changes. The FSF also funded an early stage of the development of
Debian GNU/Linux.

Today there are many different variants of the GNU/Linux system
(often called “distros”). Most of them include non-free programs—their
developers follow the “open source” philosophy associated with Linux
rather than the “free software” philosophy of GNU. But there are also
completely free GNU/Linux distros. The FSF supports computer facilities
for a few of them.

Making a free GNU/Linux distribution is not just a matter of
eliminating various nonfree programs. Nowadays, the usual version of
Linux contains nonfree programs too. These programs are intended to be
loaded into I/O devices when the system starts, and they are included, as
long series of numbers, in the "source code" of Linux. Thus, maintaining
free GNU/Linux distributions now entails maintaining a free version of
Linux too.

mu
no
tes
.in

46

Whether you use GNU/Linux or not, please don't confuse the
public by using the name “Linux” ambiguously. Linux is the kernel, one
of the essential major components of the system. The system as a whole is
basically the GNU system, with Linux added. When you're talking about
this combination, please call it “GNU/Linux”.

4.1 CASE STUDY ON ANDROID

1. What is the Android operating system?
The Android OS was originally created by Android, Inc., which

was bought by Google in 2005. Google teamed up with other companies
to form the Open Handset Alliance (OHA), which has become responsible
for the continued development of the Android OS.

Android’s underlying kernel is based on Linux, but it has been
customized to suit Google’s directions. There is no support for the GNU
libraries, and it does not have a native X Windows system. Inside the
Linux kernel are found drivers for the display, camera, flash memory,
keypad, Wi-Fi and audio. The Linux kernel serves as an abstraction
between the hardware and the rest of the software on the phone. It also
takes care of core system services like security, memory management,
process management and the network stack.

The Android OS is designed for phones. Its many features include:

 Integrated browser, based on the open-sourceWeb Kit engine
 Optimized 2D and 3D graphics, multimedia, and GSM connectivity
 Bluetooth
 EDGE
 3G
 Wi-FiSQLiteCameraGPSCompassAccelerometer

Software developers who want to create applications for the
Android OS can download theAndroid Software Development Kit (SDK)
for a specific version. The SDK includes a debugger, libraries, an
emulator, some documentation, sample code and tutorials. For
fasterdevelopment, interested parties can use graphical integrated
development environments (IDEs) such as Eclipse to write applications in
Java.

Android story
 Android Inc was founded in Palo Alto, California,United States by
Andy Rubin,RichMiner,Nick Sears & Chris White -- Oct 2003

 Google acquired Android Inc -Aug2005
 The Open Handset Alliance, a consortium of several companies was
formed -5 thNov2007

 Android beta SDK released -12thNov2007

mu
no
tes
.in

47

Android Versions:
Android Version 2.x.x – Gingerbread (6th December 2010)

The Android Version Gingerbread brought a revolution into the
world of mobilecommunication. Since the release of the first Android
Version, Android had been trying to make its way to the core of the
mobility market, but their journey actually started with the release of this
Android Version

 Google added an intelligent User Interface into this particular Android
Version

 New and improved keyboard the for the ease of the uses
 Added the feature of copy/paste
 Power Efficiency for the efficient use of the mobile battery
 Social Network related features added
 NFC or Near Field Communication Support added
 Video Call Support

Besides, the above features that were added onto the Android
Version there were also the ones that were added for the ease of
developers. Basically, all the necessary things that a developer would
require for developing anything and everything related to the android
platforms were added into this Android Version.

Android Version 3.x.x – Honeycomb (22nd February 2011)

At the time of the release of this Android Version, tablets devices
were getting famous in the market, so Android rather took a risky turn
which did not go in their favour. Honeycomb was basically for the
purpose of enriching the tablet UI. The list of features added are as below

● Multi Core Support to improve processing
● Tablet Support
● 3D UI Updated

○ Customizable home screens
○ Recent applications view

● New Keyboard layout
● Media Transfer Protocol
● Google Talk video Chat
● Private Browsing for privacy improvement
● HTTP live streaming

A version update of this Android Version was released in the year
2012 that brought the feature of “Pay as you go” but since the Android
Version was not as famous as it should have been, it did not go viral.

mu
no
tes
.in

48

Android Version 4.0.x – Ice Cream Sandwich (18th October 2011)

After the not so popular Android Version, codenamed Honeycomb,
came the Ice CreamSandwich which continued with the popularity of the
Android Operating System. It came withseveral bug fixes and a large list
of features were also added into the Android OperatingSystem. The
Features are as follows:

● New Lock Screen Actions
● Improved text input and spell-checking
● Control of the Network data
● Email app support
● Wi-Fi direct
● Bluetooth health device profile
● Social Stream to keep the contacts updated
● Video Stabilization
● QVGA video resolution API access
● Calendar provider updates
● Smoother screen rotation

Android Version 4.1.x – 4.3.x – Jellybean (9th July 2012)

By the time of the release of Android Versions 4.0.x, codenamed
Ice Cream Sandwich. Android had pulled away most of the users from the
competitors and Google totally knew about what to change in their next
Android Version. This step was a crucial one because either people would
move away from Android or stick to it for as long as it exists.

● Google Now
● Voice Search
● Speed Enhancements
● Camera app improvements
● External Keyboards and Gesture mode – improving accessibility
● Lock screen widgets
● 4K resolution support
● Restricted profiles for tablets
● Dial Pad auto-complete
● Shows the percentage of download and the time remaining.

Although, the Code Name was changed from Ice Cream Sandwich
to Jelly Bean but the numeric series had been kept the same as the
previous one. And to be practical there was not much of a difference in the
feel of this version.

Android Version 4.4.x – Kitkat (31st October 2013)

This was the most controversial Android Version of all time. The
ever-awaited LG Google Nexus 5 and the Android Version, Codenamed
Kitkat, were to make their way into the spotlight together. Google had
gone way too late on their release of this version and their smartphone.

mu
no
tes
.in

49

Although, both of them were worth waiting for. The features included
with in this version of Android were as follows:

● Screen Recording
● Translucent System UI
● Better and Enhanced notification access
● Performance improvements

Although, the list of changes might seem shorter than expected but
Google actually made itlook like something huge and they did succeed in
the process. The contradictory part is alsotrue, since a lot of people choose
other devices over the Nexus because they arrived earlier and they seemed
to be a better buy.

Android Version 5.0 – Lollipop (17th October 2014)

With the release of this Android version, it seemed like Kitkat (The
previous Android Version)had not been in the market for long enough to
make its way towards the hearts of the Android users. This version came
with the Motorola Nexus 6 from the LG Nexus, which actually made it
seem like they must have made more changes and after using this Android
Version you would actually feel like that is true but that would only be
true when it comes to the UI and the keyboard features.

Although this Android Version is still in its immature stage but the
features, they have come up with till date are as follows:

● New Design – Material Design
● Speed Improvement
● Battery Efficiency

Android 6.0 – Marshmallow May 28, 2015

● Android 6.0 “Marshmallow” was unveiled under the codename
“Android M” duringGoogle I/O on May 28, 2015, for the Nexus 5 and
Nexus 6 phones, Nexus 9 tablet, and Nexus Player set-top box, under
the build number MPZ44Q.

● Requirements for the minimum amount of RAM for devices running
Android 5.1 range from 512 MB of RAM for normal-density screens,
to about 1.8 GB for high-density screens. The recommendation for
Android 4.4 is to have at least 512 MB of RAM,[213] while for “low
RAM” devices 340 MB is the required minimum amount that does not
include memory dedicated to various hardware components such as
the base band processor.

● The Android N Developer Preview is already here and this will be
followed by monthly updates until the final version. That final version
will likely come around Nexus time – late September or early October
– with Android N availability for other manufacturers and devices in
the six or so months to follow.

mu
no
tes
.in

50

Fig 1: Android Architecture with diagram.

Linux kernel
At the bottom of the layers is Linux - Linux 3.6 with

approximately 115 patches. This provides a level of abstraction between
the device hardware, and it contains all the essential hardwaredrivers like
the camera, keypad, display etc. Also, the kernel handles all the things that
Linux is really good at such as networking and a vast array of device
drivers, which take the pain out of interfacing to peripheral hardware.

Libraries
On top of Linux kernel there is a set of libraries including open-

source Web browser engineWeb Kit, well known library libc, SQLite
database which is a useful repository for storage andsharing of application
data, libraries to play and record audio and video, SSL librariesresponsible
for Internet security etc.

Android Libraries
This category encompasses those Java-based libraries that are

specific to Androiddevelopment. Examples of libraries in this category
include the application framework libraries in addition to those that
facilitate user interface building, graphics drawing and database

4.3 CASE STUDY ONMOZILLA FIREFOX

Mozilla Firefox is a Free/Libre/Open Source (FLOSS) browser
supported by the Mozilla Foundation. This browser was recently released
and has met with considerable success- it has been downloaded more than
20 million times and has already taken considerable market share from its
prime competitor- Microsoft’s Internet Explorer.

mu
no
tes
.in

51

Background:
The Mozilla project is an offshoot of the Netscape browser.

Readers are encouraged to see the timeline at
http://www.holgermetzger.de/Netscape_History.html for a detailed set of
events relating to Netscape. A longer description of the first round of the
browser wars is available in Cusmano and Yoffie (1998). In short,
Mozilla was released as an open-source version of Netscape in January
1998. Since that time, Mozilla has released many versions of its browsers.
Netscape and AOL use its browsers. Firefox is the latest version of the
Mozilla browser.

A small team of three motivated and talented individuals, Blake
Ross, AsaDotzler and Ben Goodger, developed Mozilla Firefox

Compatibility with other operating systems (Linux, Windows, and Apple)

System overview:
Mozilla and Firefox consist of about two thousand C and C++

source code files (”.c”,”. cp”and” cpp” files) and about 0.8 to 0.9 million
uncommented lines of code in each release.

Figure 5(a) counts Mozilla and Firefox releases by ULOC, while
Figure 5(b) counts NOF,the number of files. A file is considered to be
shared if and only if two versions of thefile in the sibling releases have
identical ULOC. It is shown that the overall size of Mozillaand Firefox
releases are relatively stable in terms of NOF and ULOC during the one
yearand a half period of time. However, the percentage of shared code
changes significantlyacross some of the releases.

Conditions That Facilitated the Success of Firefox:
Complacent Competition: At the time of Mozilla Firefox’ launch, the
largest competitor, Microsoft’sInternet Explorer, had become a static
product. Microsoft had made a strategic decision to link IE to its operating
system. What this meant is that newer versions of IE wouldonly be
available on newer versions of Windows. As a result, the only changes to
theproduct were related to the security vulnerabilities of the product. This
lack of product innovation left the door open for competitors such as
Mozilla Firefox. Microsoft’s decision to bundle the innovation of IE with
that of the Windows operating system may prove to have been a major
strategic error. This was especially so since the company is involved in a
major overhauling of their Windows operating system as part of the
Longhorn project.

Product Superiority: Many impartial observers agree with Blake and
have concluded that Mozilla Firefox is a superior alternative to its
competitors. Here, I will argue that Firefox offers three new ideas-
compatibility, tabbing, and better security. Readers are referred to older
document
http://web.archive.org/web/20040210101506/http://www.mozilla.org/prod
ucts/firefox/why/) authored by Ben Goodger for a longer list of features.

mu
no
tes
.in

52

Compatibility with other operating systems (Linux, Windows and
Apple): Internet Explorer is compatible only with Windows-based
operating systems (specifically Microsoft Windows® 98, Windows 2000,
or Windows XP). In contrast,Firefox is compatible with Linux, Windows,
and Apple operating systems. This widens the potential audience for the
product.

Security: The use of open source as the development methodology is a
sound way to enhance the security of the product. Open source 18products
allow anybody to inspect the code base, thus enhancing the chances that
vulnerabilities and bugs would be detected. There are some indications
that MozillaFirefox may have its own security flaws, however.

Tabbing: Most browsers open a new link in a new window. Mozilla
Firefox introduced a new feature called tabbing. This allows the user to
open multiple pages in one window.

Presence of Marketing Leader: The marketing leader behind Firefox’
campaign is Rob Davis, a marketing professional with experience in
political campaigns (see his web site
http://www.playpolitics.org). Rob contacted the SpreadFirefox team after
his computerhad been infected by a virus and volunteered his time to run
the campaign. His mainfocus was on the New York Times advertising
campaign.

Volunteer Support: The credit for the success of Firefox must mostly be
given to the volunteers for all their hard work. Since Firefox had released
a preview version before its official release, it was able to ascertain the
level of interest in the community. This gave the team considerable
confidence when soliciting funds for the New York Times ad. Volunteers
participated in many activities on the site.

4.4 CASE STUDY ONWIKIPEDIAmu
no
tes
.in

53

Wikipedia has more than thirteen million articles in several
different languages.

System Specifications:

 Bandwidth (Why Low?): Wikipedia’s processes are extremely
simple and basic. While receiving an enormous amount of constant
traffic, Wikipedia only has to send a fixed page of text and the
occasional image.

 CPU (Why Low?): The encyclopaedia pages of Wikipedia are very
easy to power and don’t require too many resources. The processing
power used most likely powers the indexing, links, and search
databases.

 Disk (Why High?): With the millions of articles available to the
public in dozens of languages, Wikipedia has to have a large amount
of disk space in order to store them all.

 RAM (Why Low?): The individual encyclopaedia pages are not
heavy on content and do not require a large amount of RAM to be
displayed.

 Scalability (Why High?): With a constant flow of traffic and having
become a service in which people rely on, Wikipedia has developed a
very scalable and efficient server solution in order to meet the
demands of its website.

Overview:
Wikipedia, one of the first online encyclopaedias, has come a long

way since its beginnings in 2001. Now, just after its ten-year anniversary,
Wikipedia has more than thirteen million articles and over one hundred
and sixty different language editions and is currently ranked number 8 on
alexa.com with more than 10% of the world’s Internet users visiting the
site.

History:
In January 2001, Wikipedia went live. Originally, Wikipedia was

only formed as a Wiki to help in the Nupedia project. Larry Sanger,
Wikipedia’s chief instigator, said it originally was an “idea to add a little
feature to Nupedia.” In only two months, Wikipedia had more than a
thousand articles, and by October 2001, that number rose to thirteen
thousand.

In December of 2002, Wikipedia’s sister project, Wiktionary, was
launched. By January 2003, Wikimedia’s article count exceeded 100,000
articles. In June of the same year, Jimmy Wales, another founder of
Wikipedia, formed Wikimedia, which now manages Wikipedia and
several other sister projects.

In the following January, Wikipedia was shut down for a week
after a significant computer crash. This prompted Wales to start a

mu
no
tes
.in

54

fundraiser to buy more computers. The nine computers he bought were
then relocated to Florida. By April of that year, Wikipedia had a quarter of
a million articles.

In 2004 and 2005, Wikipedia won many awards and received a
significant amount of recognition. In 2005, it became a top 100 website
according to Alexa.com. Wikipedia’s one millionth article was published
in March of 2006 and in just three years that number would grow to a total
of thirteen million articles available in a diverse range of languages.

Features:
Wikipedia is a free, non-profit online encyclopaedia that has

surpassed more than 3.5 million articles in English alone and is one of the
most highly trafficked sites on the web. The articles on Wikipedia are
written and edited by thousands of volunteer contributors as it is funded
solely by donations. Wikipedia founders vowed never to have
advertisements on its site, which is a promise they have diligently kept.

Wikipedia features a simple search engine and a consistent format.

System:
Wikipedia uses MediaWiki software to run its website. Its main

U.S. data center, consisting of about 300 servers, is located in Tampa,
Florida. Wikipedia also has a European data centre in Amsterdam,
EvoSwitch, where they have approximately 50 servers. There are also
tentative plans to secure another data centre in Virginia. Wikipedia
currently uses Ubuntu Linux 2.6 as their operating system with a standard
LAMP package.

Summary:
Wikipedia, a non-profit online encyclopaedia, has grown from just

over a thousand articles at its beginnings in 2001 to over thirteen million
articles in several different languages today. Wikipedia has an Ubuntu
Linux 2.6 operating system and has one U.S. data centre in Florida and
one international centre in Amsterdam. It was originally formed as a new
feature for Nupedia, but now has several sister projects, such as
Wiktionary, under the head organization, Wikimedia.

4.5 CASE STUDY ON DRUPAL

How Drupal saved its users millions of hours thanks to CKEditor
Everyone knows Drupal. It’s the leading CMS made by one of the

largest open-source communities. It’s designed to build outstanding digital
experiences that reach your audience across multiple channels. CKEditor
empowers content creators on hundreds of thousands of Drupal 8 sites.
That translates to millions of users per day typing text, linking content,
uploading images and organizing the world's information.

mu
no
tes
.in

55

Challenge: move Drupal to the next level
Drupal has been around since 2001. And yet even Drupal 7,

shipped in 2011, did not include a rich text editor. It was one of Drupal’s
top pain points. In surveys, it came up time and time again that a built-in
rich text editor was crucial for Drupal's future. Drupal needed a well-
integrated editor that supports per-site custom needs. But the process of
choosing one involved a lot of work from the community. First, they
needed to build a consensus on which editor to choose. And then they had
to do all the integration work in Drupal core.

To make this happen, Drupal’s founder started the Spark initiative,
whose goal was to bring the authoring experience of Drupal 8 to the next
level. It included integrating a rich text editor capable of working on the
front-end, for so called in-place editing. Another crucial feature to have
was excellent image upload support with alignment and captioning.

Solution: mature editor with in-place editing support
At the time, very few rich text editors were capable of in-place

editing. The Drupal community initially ended up selecting a rich text
editor that was not very mature but had one feature — "Aloha Blocks" —
which could play an important role in the Drupal ecosystem. Over time, it
became clear that that rich text editor’s lack of maturity and poor
accessibility was going to be a huge stumbling block.

“And that's when we found out that CKEditor 4 had been in
development and was also going to have support for in-place editing!”,
recalls Wim Leers, one of a few dozen Drupal core maintainers and
responsible for CKEditor integration. “It had far superior maturity and
accessibility, as well as a much bigger development team behind it. We
got strong guarantees for clean HTML, including Advanced Content
Filter. And CKEditor Widgets could easily replace Aloha Blocks. So, we
made the difficult decision to switch to CKEditor.”

Leers stresses the maturity and stability of the editor. “The number
of times CKEditor broke something in the past five years can probably be
counted on two hands. Which is very impressive, considering how many
different ways it's used on hundreds of thousands of Drupal 8 sites out
there!”

Result: countless hours of development saved
Before the integration just about every Drupal-based project had to

go through a painful process of evaluating the different available rich text
editors. Then after making a selection, they had to figure out how to get it
integrated. “Almost every project building a Drupal site was spending at
least a few and often dozens of hours on this”, says Leers. “Multiplied by
more than a million Drupal sites out there, it adds up to millions of hours!”

This is no longer the case thanks to CKEditor being enabled out-of-the-
box in Drupal 8 core and its deep integration. Countless hours of
development time and frustration are saved, not to mention the reduction

mu
no
tes
.in

56

in risk. Rich text editing is simply a solved problem since Drupal 8. Both
developers and users can focus on what really matters to them: creating
amazing content and building ambitious digital experiences.

4.6 CASE STUDY ONWORD PRESS

The Project — Neighbourhood Event
The LoLa Art Crawl is an annual neighbourhood art event with

over 100 artists, dozens of business sponsors, and excellent print
graphics—but they had only a small placeholder WordPress site with a
few static pages and PDF files of their printed materials for download. The
group wanted a better website presence, artists wanted more recognition,
andsponsors wanted more exposure; but as a minimally funded volunteer
group, they didn’t know what to do. Word &Image volunteered to provide
pro bono development services as a donation to the local community.

The Challenge — Lack of Capability
Rather than push downloadable print content to the web, we

advised the group to create an online experience that would:
● List each artist with a profile page of text and art
● Spotlight sponsors with promotional profiles and featured placements
●Work on mobile devices during the event in the field
● Provide geo mapping to sites on smart phones.
● Provide news updates and social media integration

The artists group had stable funding with a non-profit fiscal agent
and local business sponsors along with enough volunteers to manage the
event, but they did not have any capabilities to contribute to a web
development project. Without a dedicated organizational staff and budget,
how could they add a complex website to accommodate the growing needs
of artists, sponsors, and art patrons?

Why WordPress — Open Source to the Rescue
The graphic designer for the print materials considered using a

low-cost commercial web vendor but couldn’t find a satisfactory off-the-
shelf solution. We knew that WordPress could do much more for them
than other solutions if we were able to locate a theme and plugins that
provided the needed functionality with minimal custom development.
Even ifa premium theme was chosen, the low cost would provide technical
support, and the open-source licensing would allow the group to continue
using the solution without ongoing payments. With its ease of use and fast
learning curve,WordPress would allow volunteers to help maintain content
without mastering professional skills.

The Obstacle — Bias for Print Media
The group was not savvy with digital web processes, and they just

proceeded as if it were another print project. Their registration form
allowed artists to pick multiple categories in an unstructured way that was

mu
no
tes
.in

57

confusing, and in the printed directory artists were organized by arbitrary
site numbers, so categories were just part of the descriptions. When we
determined that each artist should be placed in a primary category to allow
for filtering by category for the sake of the user interface, there were
arguments about that. Eventually, the group agreed that categories could
be used to organize the artists online, as long as site numbers were also
included. Another problem was getting art image submissions from all the
artists for their profile. The graphic designer only used a smallnumber of
artworks for the limited space on the printed materials, and submission of
art images was not included in the registration process. We needed to add
a follow-up process to the registration system to request that artists
provide an image, and we had to optimize an image for every artist, rather
than pick a small number of the best submissions to work with.

The Solution — A Robust Plugin/Theme Stack
We surveyed the field of WordPress plugins and themes to find a

solution for a robust directory system with a variety of listing types with
geo mapping automation for site addresses. We found free plugins that
could be combined to provide custom post types with geo mapping, but
even with developer documentation, they required a lot of development to
create a complete system.We found an excellent premium theme, Listable
by PixelGrade based upon the popular WP Job Manager stack
ofWordPress plugins. WP Job Manager is a free job listing plugin by
Automatic for basic job-board functionality that is complemented by an
array of free and premium addons that allow it to be extended in many
ways. The Listable theme combines a slick UX with customizable listings
and geo mapping. It was easily affordable, and best of all, the developers
atPixelGrade provide excellent documentation and support. WP Job
Manager and related plugins were used to automate the loading of listings
by using spreadsheets of artist registrations and sponsor information to
import listings in batches. Rather than spend time cutting and pasting and
retyping all the directory content, a volunteer content manager focused
their time on minimal updates and mostly adding value with news posts
and social media work.

The Result — LolaArtCrawl.com
While the solution needed some customization for the particular

needs of this project, the comprehensive theme/plugin stack provided
about 90% of what was needed, including responsive mobile views and
interactive mapping for all the artist sites and business sponsors. We met
the goals for the project to improve the web outreach with new features
that enhanced the event:

 Every artist had a profile with description and an image of their
artwork

 Every business sponsor had a profile that rotated through the artist
listings for promotion

 Art crawl attendees were able to find and navigate to sites on smart
phones

mu
no
tes
.in

58

 A volunteer content manager posted news updates on the website with
minimal training

 News updates were optimized for social media sharing

 Social media tweets were automatically embedded into the website

 The website can be reused next year by uploading new graphics and
listings into the theme

4.7 CASE STUDY ON GCC

Programming Languages Supported by GCC:
GCC stands for “GNU Compiler Collection”. GCC is an integrated

distribution of compilers for several major programming languages. These
languages currently include C, C++,Objective-C, Objective-C++, Fortran,
Ada, D, Go, and BRIG (HSAIL). The abbreviation GCC has multiple
meanings in common use. The current official meaning is “GNU Compiler
Collection”, which refers generically to the complete suite of tools.The
name historically stood for “GNU C Compiler”, and this usage is still
common when the emphasis is on compiling C programs. Finally, the
name is also used when speakingof the language-independent component
of GCC: code shared among the compilers for allsupported languages.The
language-independent component of GCC includes the majority of the
optimizers,as well as the “back ends” that generate machine code for
various processors.

The part of a compiler that is specific to a particular language is
called the “front end”.

In addition to the front ends that are integrated components of
GCC, there are severalother front ends that are maintained separately.
These support languages such as Mercury,and COBOL. To use these, they
must be built together with GCC proper.Most of the compilers for
languages other than C have their own names. The C++ compilers G++,
the Ada compiler is GNAT, and so on. When we talk about compiling one
of those languages, we might refer to that compiler by its own name, or as
GCC. Either is correct. Historically, compilers for many languages,
including C++ and Fortran, have been implemented as “pre-processors”
which emit another high-level language such as C. None of the compilers
included in GCC are implemented this way; they all generate machine
code directly. This sort of pre-processor should not be confused with the C
pre-processor, which is an integral feature of the C, C++, Objective-C and
Objective-C++ languages.

C Language:
The original ANSI C standard (X3.159-1989) was ratified in 1989

and published in 1990.

This standard was ratified as an ISO standard (ISO/IEC
9899:1990) later in 1990. Therewere no technical differences between

mu
no
tes
.in

59

these publications, although the sections of the ANSIstandard were
renumbered and became clauses in the ISO standard. The ANSI
standard,but not the ISO standard, also came with a Rationale document.
This standard, in both its forms, is commonly known as C89, or
occasionally as C90, from the dates of ratification. To select this standard
in GCC, use one of the options ‘-ANSI’, ‘-std=c90’ or ‘-
std=iso9899:1990’; to obtain all the diagnostics required by the standard,
you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them
to be errors rather than warnings). Errors in the 1990 ISO C standard were
corrected in two Technical Corrigenda published in 1994 and 1996. GCC
does not support the uncorrected version. An amendment to the 1990
standard was published in 1995. This amendment added digraphs and
__STDC_VERSION__ to the language, but otherwise concerned the
library. This amendment is commonly known as AMD1; the amended
standard is sometimes known as C94 or C95. To select this standard in
GCC, use the option ‘-std=iso9899:199409’ (with, as for other standard
versions, ‘-pedantic’ to receive all required diagnostics). A new edition of
the ISO C standard was published in 1999 as ISO/IEC 9899:1999 and is
commonly known as C99. (While in development, drafts of this standard
version were referred to as C9X.) GCC has substantially complete support
for this standard version; see http://gcc.gnu.org/c99status.html for details.
To select this standard, use ‘-std=c99’ or ‘-std=iso9899:1999’. Errors in
the 1999 ISO C standard were corrected in three Technical Corrigenda
published in 2001, 2004 and 2007. GCC does not support the uncorrected
version. A fourth version of the C standard, known as C11, was published
in 2011 as ISO/IEC 9899:2011. (While in development, drafts of this
standard version were referred to as C1X.) GCC has substantially
complete support for this standard, enabled with ‘-std=c11’ or ‘-
std=iso9899:2011’. A version with corrections integrated was prepared in
2017 and published in 2018 as ISO/IEC 9899:2018; it is known as C17
and is supported with ‘-std=c17’ or ‘-std=iso9899:2017’; the corrections
are also applied with ‘-std=c11’, and the onlydifference between the
options is the value of __STDC_VERSION__. A further version of the C
standard, known as C2X, is under development; experimental and
incomplete support for this is enabled with ‘-std=c2x’. By default, GCC
provides some extensions to the C language that, on rare occasions
conflict with the C standard. See Chapter 6 [Extensions to the C Language
Family], page 503. Some features that are part of the C99 standard are
accepted as extensions in C90 mode, and some features that are part of the
C11 standard are accepted as extensions in C90 and C99 modes. Use of
the ‘-std’ options listed above disables these extensions where they
conflict with the C standard version selected. You may also select an
extended version of the C language explicitly with ‘-std=gnu90’ (for C90
with GNU extensions), ‘-std=gnu99’ (for C99 with GNU extensions) or ‘-
std=gnu11’ (for C11 with GNU extensions). The default, if no C language
dialect options are given, is ‘-std=gnu17’.

The ISO C standard defines (in clause 4) two classes of
conforming implementation. Aconforming hosted implementation
supports the whole standard including all the libraryfacilities; a

mu
no
tes
.in

60

conforming freestanding implementation is only required to provide
certainlibrary facilities: those in <float.h>, <limits.h>, <stdarg.h>, and
<stddef.h>; since AMD1, also those in <iso646.h>; since C99, also those
in <stdbool.h> and <stdint.h>; and since C11, also those in <stdalign.h>
and <stdnoreturn.h>. In addition, complex types, added in C99, are not
required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all
implementations and which may not have library facilities beyond those
required of freestanding implementations, where the handling of program
startup and termination are implementation-defined; and a hosted
environment, which is not required, in which all the library facilities are
provided and startup is through a function int main (void) or int main (int,
char *[]). An OS kernel is an example of a program running in a
freestanding environment; a program using the facilities of an operating
system is an example of a program running in a hosted environment.

GCC aims towards being usable as a conforming freestanding
implementation, or as thecompiler for a conforming hosted
implementation. By default, it acts as the compiler for ahosted
implementation, defining __STDC_HOSTED__ as 1 and presuming that
when the names of ISO C functions are used, they have the semantics
defined in the standard. To make it act as a conforming freestanding
implementation for a freestanding environment, use the option ‘-
freestanding’; it then defines __STDC_HOSTED__ to 0 and does not
make assumptions about the meanings of function names from the
standard library, with exceptions noted below. To build an OS kernel, you
may well still need to make your own arrangements for linking and
startup. GCC does not provide the library facilities required only of hosted
implementations, not yet all the facilities required by C99 of freestanding
implementations on all platforms. Touse the facilities of a hosted
environment, you need to find them elsewhere (for example, inthe GNU C
library). Most of the compiler support routines used by GCC are present in
‘libgcc’, but there are a few exceptions. GCC requires the freestanding
environment provide memcpy, memmove, memset and memcmp. Finally,
if __builtin_trap is used, and the target does not implement the trap
pattern, then GCC emits a call to abort. For references to Technical
Corrigenda, Rationale documents and information concerning the history
of C that is available online, see http://gcc.gnu.org/readings.html

C++ Language:
GCC supports the original ISO C++ standard published in 1998,

and the 2011, 2014, 2017and mostly 2020 revisions. The original ISO
C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC
14882:2003). These standards are referred to as C++98 and C++03,
respectively. GCC implements the majority of C++98 (export is a notable
exception) and most of the changes in C++03. To select this standard in
GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to
obtain all the diagnostics required by the standard, you should also specify
‘-pedantic’ (or‘-pedantic-errors’ if you want them to be errors rather than

mu
no
tes
.in

61

warnings).A revised ISO C++ standard was published in 2011 as ISO/IEC
14882:2011, and is referred to as C++11; before its publication it was
commonly referred to as C++0x. C++11 contains several changes to the
C++ language, all of which have been implemented in GCC. For details
see https://gcc.gnu.org/projects/cxx-status.html#cxx11. To select this
standard in GCC, use the option ‘-std=c++11’. Another revised ISO C++
standard was published in 2014 as ISO/IEC 14882:2014, and is referred to
as C++14; before its publication it was sometimes referred to as C++1y.
C++14contains several further changes to the C++ language, all of which
have been implemented in GCC. For details see https://gcc.gnu.org/
projects/cxx-status.html#cxx14. Toselect this standard in GCC, use the
option ‘-std=c++14’.

The C++ language was further revised in 2017 and ISO/IEC
14882:2017 was published.

This is referred to as C++17, and before publication was often
referred to as C++1z. GCCsupports all the changes in that specification.
For further details see https://gcc.gnu.org/projects/cxx-status.html#cxx17.
Use the option ‘-std=c++17’ to select this variant of C++.

Another revised ISO C++ standard was published in 2020 as
ISO/IEC 14882:2020 andis referred to as C++20; before its publication it
was sometimes referred to as C++2a. GCCsupports most of the changes in
the new specification. For further details see https://gcc.gnu.org/
projects/cxx-status.html#cxx20. To select this standard in GCC, usethe
option ‘-std=c++20’.More information about the C++ standards is
available on the ISO C++ committee’s website at http://www.open-
std.org/jtc1/sc22/wg21/.To obtain all the diagnostics required by any of
the standard versions described above you should specify ‘-pedantic’ or ‘-
pedantic-errors’, otherwise GCC will allow somenon-ISO C++ features as
extensions. By default, GCC also provides some additional extensions to
the C++ language thaton rare occasions conflict with the C++ standard.
See Section 3.5 [C++ Dialect Options],page 50. Use of the ‘-std’ options
listed above disables these extensions where they theyconflict with the
C++ standard version selected. You may also select an extended versionof
the C++ language explicitly with ‘-std=gnu++98’ (for C++98 with GNU
extensions), or‘-std=gnu++11’ (for C++11 with GNU extensions), or ‘-
std=gnu++14’ (for C++14 with GNU extensions), or ‘-std=gnu++17’ (for
C++17 with GNU extensions), or ‘-std=gnu++20’ (forC++20 with GNU
extensions).

The default, if no C++ language dialect options are given, is ‘-
std=gnu++17’

mu
no
tes
.in

62

4.8 CASE STUDY ON GDB

What is gdb?
It is a “GNU Debugger”. A debugger for several languages,

including C and C++. It allows you to inspect what the program is doing at
a certain point during execution. Errors like segmentation faults may be
easier to find with the help of gdb. Most computer systems have one or
more debugging tools available. These can save you a tremendous amount
of time and frustration in the debugging process. The tool available on
almost all Unix systems is gdb.

How to Use gdb:

Easy to Learn: In my own debugging, I tend to use just a few gdb
commands, only four or five in all. So, you can learn gdb quite quickly.
Later, if you wish, you can learn some advanced commands.

The Basic Strategy: A typical usage of gdb runs as follows: After starting
up gdb, we set breakpoints, which are places in the code where we wish
execution to pause. Each time gdb encounters a breakpoint, it suspends
execution of the program at that point, giving us a chance to check the
values of various variables.

In some cases, when we reach a breakpoint, we will single step for
a while from that point onward, which means that gdb will pause after
every line of source code. This may be important, either to further pinpoint
the location at which a certain variable changes value, or in some cases to
observe the flow of execution, seeing for example which parts of if-then-
else constructs are executed.

As mentioned earlier, another component of the overall strategy
concerns segmentation faults. If we receive a ``seg fault'' error message
when we exeucte our program (running by itself, not under gdb), we can
then run the program under gdb (probably not setting any breakpoints at
all). When the seg fault occurs, gdb will tell us exactly where it happened,
again pinpointing the location of the error. (In some cases, the seg fault
itself will occur within a system call, rather than in a function we wrote, in
which case gdb'sbt command can be used to determine where in our code
we made the system call.) At that point you should check the values of all
array indices and pointers which are referenced in the line at which the
error occurred. Typically, you will find that either you have an array index
with a value far out of range, or a pointer which is 0 (and thus
unrefenceable). Another common error is forgetting an ampersand in a
function call, say scanf(). Still another one is that you have made a system
call which failed, but you did not check its return value for an error code.

Invoking/Quitting gdb
Before you start, make sure that when you compiled the program

you are debugging, you used the -g option, i.e.
cc -g sourcefile.c

mu
no
tes
.in

63

Without the -g option, gdb would essentially be useless, since it
will have no information on variable and function names, line numbers,
and so on.

Then to start gdb type
gdb filename

where `filename' is the executable file, e.g.a.out for your program.
To quit gdb, type `q'.

The r (Run) Command
This begins execution of your program. Be sure to include any

command-line arguments,e.g., if in an ordinary (i.e., nondebugging) run of
your program you would type
a.out< z
then within gdb you would type
r < z

If you apply r more than once in the same debugging session, you
do not have to type the command-line arguments after the first time; the
old ones will be repeated by default.

The b (Breakpoint) and c (Continue) Commands
This says that you wish execution of the program to pause at the

specified line.
For example,
b 30
means that you wish to stop every time the program gets to Line 30.

Again, if you have more than one source file, precede the line
number by the file name and a colon as shown above.

Once you have paused at the indicated line and wish to continue
executing the program, you can type c (for the continue command).

You can also use a function name to specify a breakpoint, meaning
the first executable line in the function.

For example,

b mainsays to stop at the first line of the main program, which is often
useful as the first step in debugging.

You can cancel a breakpoint by using the disable command.

You can also make a breakpoint conditional. E.g.

b 3 Z > 92
would tell gdb to stop at breakpoint 3 (which was set previously) only
when Z exceeds 92.

mu
no
tes
.in

64

4.9 CASE STUDY ON GITHUB

GitHub, the easiest way for developers to write software together,
has scaled into a collaboration of 5.8 million developers across more than
12 million repositories worldwide. GitHub worked with Fastly to
customize their CDN set up, ensuring rapid and efficient delivery of their
content. Fastly serves all static assets and sits in front of GitHub.com,
Pages (their website hosting service), and raw.github.com.

Open-Source Software (OSS) has been adopted not only for the
personal purpose software products but also for core systems of companies
and public institutions. It becomes indispensable for our society. In order
to evolve and grow OSSs, it is important to acquire not only stakeholders
but also contributors widely from outside. Especially, in the case of large
OSS, a large number of contributors are needed. Therefore, it is extremely
important to explore the acquisition mechanism of contributors.

In this research, we try to elucidate the mechanism by analysing
the OSS projects on GitHub. Although GitHub is an Internet hosting
service aimed at supporting software collaborative development, there are
many other uses that actually do not require contributors, such as free file
storage or learning of version control system. To analyse collaborative
software development projects, it is necessary to exclude projects other
than the purpose.

To exclude unrelated use projects, we pay attention on so called
contribution file. GitHub has a common file called contribution file
(contributing.md/contributing.txt [1]) to describe the necessary
contribution for the project. The file describes the contribution method
that the project expects so that the applicant can judge whether the
applicant participates by seeing the contents. By extracting the project
including this file, we are able to analyse the projects which intend
collaborative software development. In this research, 459 projects
including contribution file were extracted from a GitHub archive. By
analysing these projects, we try to clarify whether contributors actually
decide to participate by checking the file contents. Also, we try to analyse
what kind of description is important to acquire contributors.

Data Preparation
In this research, we use data of BOA [5] provided by Iowa State

University which is a GitHub archive (September 2015 Full) to efficiently
discover projects that contain contribution files. The proportion of projects
that contain contribution files is extremely low, and if we search directly
from the web, it takes a lot of time. BOA is a huge archive of GitHub
Project which adopted Hadoop's technology, and it can acquire the target
Project and its attributes in a very short time. We searched 7,830,023
projects and found that as of September 2015 only 639 Projects contain
contribution file. Since there is no contribution file on the BOA, we
obtained them by using the acquired URL, but as of April 2017 there were

mu
no
tes
.in

65

only 459 files. After all, in 7,830,023 projects, we were able to get only
459 contribution file. (0.006%)

Project attributes are obtained from projects where contribution file
exist by using GitHub API. Attributes acquired are mainly items that can
be checked on the GitHub web screen such as Stargazer number
(Bookmark), Subscriber number and so on. In order to track changes over
time, we plan to continue to acquire attributes every month.

4.10 CASE STUDY ON OPEN OFFICE

Introduction:
OpenOffice.org is an open-source multi-platform office suite

software. It is built in some software, such as word processing,
spreadsheets, presentation tools and graphics software, etc. And it uses
C++ as a procedural framework, provides international support and
documentation of authorized applications Program interface, has simple,
practical, economic, and cross-platform features.

In the promotion of Uighur Linux operating system platform in
Xinjiang region, it needs the Uighur editing and typesetting supporting
software because the editorial direction of Uighur is from right to left, but
Chinese and English editor direction is in the opposite, and meantime it is
a complex text with the complex characteristics such as character
deformation and even pens. Handling and compatible with Uighur in
Chinese and English systems need to address Localization technical
issues. Therefore, we have carried out the research and development work
based on the OpenOffice.org office suite software.

Software Requirements
Modern Uighur letters is formed on the basis of Arabic alphabets,

there are 32 [1]. Uighur is a handwritten text, in needs for joint document
when writing, letters is in the different location (in the prefix, middle, end
of the words), there will be in different writing forms. In the Unicode
encoding standard, 32 separate letters are called Character name, and their
code bits are assigned in U+0600−U+06FF area. The letters in the prefix,
middle, and the end of locations are called appearing form. Their code bits
are assigned in U+FE70-U+ FEFF Arabic extended character region.

There are some biggest difficulties in dealing with Uighur. For
example, its opposite editorial direction is different from Chinese and
English. And It is difficult in cursor control. Another problem is that the
Uighur are deformation text. Its adjacent letters are likely to be deformed
when insert or delete a letter. Therefore, it is more difficult when handling.

Uighur version of Open Office is the lightweight office software,
mainly used for typesetting mixed-edit about Uighur, Chinese and
English. It should include all the standard features of Office, such as word
processing, slide presentations, spreadsheets, web editing and conversion,

mu
no
tes
.in

66

multimedia browser and picture viewer, etc. All interfaces should support
for right to left editing, and their display styles, interface texts, and help
information should be in Uighur. It should be able to fully support the
Uighur typesetting rules, including right-aligned, right to left writing rules,
letter-shaped auto-selection rules, the rules fit the word deformation show.
And support process and display complex document when Integrating
Chinese, English and other multilingual word, and when the two styles are
mixed up, each text can be edited in their own customary rules. It can offer
a variety of standard Uighur OpenType fonts which support the zoom
control of Uighur. Realizes the layout, edit control model of Office suite
embedded in a web browser, support for multi-lingual e-government and
B/S application development. Provide an easy using, graphical system
installation and management tools for minority users. Support platform
installation in the domestic multi-language Linux system, Chinese Linux
system, and other windows series system. Compatible with office suite
software, and you can open, edit, and save Microsoft Word, Excel,
PowerPoint documents.

Uighur localization achievement:
Uighur localization work starts from the source code and make the

software support Uighur from the ground core of the code, including
support from the Uighur code, make Uyghur language production
libraries, creating local language-specific resources and information,
preparation of Uighur input method, Uighur localization about Interface,
editing and typesetting software for Uighur adapter and so on. Mainly by
the following steps: (1) add Uighur language to the resource system, (2)
add Uighur code to the build environment, (3) add to the localization tools
about Uighur; (4) to extract the string from the source file, them into
Uighur language and merge the translated string into the source file; (5)
add Uighur into the installation module; (6) Add Uighur identity to
Localedata.cxx; (7) add the text box option of Uighur localization
environment to the the OpenOffice.org Option dialog.

4.11 CASE STUDY ON LICENSING

An Open-Source-Software-based License:
The amount of open-source-software (OSS) used in the global

software engineering community is already enormous and still growing.
This includes both the products we develop and the development tools we
use to create them. It is meanwhile rare to find examples of products that
do not contain open-source components. Although, using open-source
components in products does have many advantages, it is very important
that one also manages the use of the open-source components in a license-
compliant way. A set of companies and other organizations who either
offer or use OSS-based license compliance tools have recently formed the
“Open-Source Tooling Group”. This international group works on
establishing an ecosystem of OSS-based tools for license compliance that
fit together well and can offer an ecosystem of tools for organizations to
help fulfil their license compliance obligations. This talk provides the

mu
no
tes
.in

67

motivation and overview of this topic describing the relevance to software
engineering practitioners. It will close by highlighting some of the
research areas where further improvements could be done in this fast-
growing field.

GNU GPL
The positive aspects of GNU GPL license are

 Maintenance of GPL for derivative software thus guaranteeing free
access and distribution.

 Most commonly used free software licensing method.
 The integrator can view and use the source code for his
development activities.

 The integrator can modify the source code for his products.
 The integrator can provide his software under his own name.
 The integrator will have a good community support.
 Competitors cannot use the software to create closed-source
derived products.

As negative aspects it was mentioned

 SDs has to make their modifications available for all who use their
products.

 Libraries wanting to use the SD's product must also be under the
GPL, thus possibly limiting acceptance.

Generally, we can say, that commercial companies may not want
to further develop software under GPL because they cannot later change
the licensing type and that the integration into closed source or even open-
source environments with other licenses can be hard and particularly not
be done.

GNU LGPL license
The positive aspects of GNU LGPL license are:

 The integrator can use the software for his products without
limitations.

 The integrator can modify the source code for his products without
limitations.

 The integrator SD can provide his software under his own name.
 The integrator will have a good community support for the library.
 The integrator can use the product licensed under the LGPL even
in proprietary systems.

 The library itself will be updated by the community since changes
have to be contributed back.

mu
no
tes
.in

68

As negative aspects it was mentioned
 Permits use of the library in proprietary programs thus enabling the
possibility to not access all software that uses the library.

 Competitors might use the software and create concurrence
commercial products Generally integrators prefer LGLP license
against GPL.

4.12 CASE STUDY ONMODE OF FUNDING

A look at various funding models for open-source projects. Most
of the major open-source projects require a fair amount of development
and maintenance and have many full-time people working on them.

People volunteer their time, most of the members of the numerous
open-source software foundations are unpaid and dedicate their own time
and energy. Many of these volunteers work for companies who understand
the importance of open source and give them the time.

Here’s a look at how open-source projects, which by nature do not
charge for their software, generate money to fund their projects.

Donations:
Wikipedia is the best example of the donation model. Annually it

turns to its users directly asking for donations, using banner ads and on-
site promotions. The Wikimedia Foundation also receives funding from
benefactors and grants. Wikimedia follows a very similar model as public
radio in the U.S.

Bitcoin Foundation is funded by a membership model which you
can join for a donation or if you wish you can donate without membership.
Membership is another very common model for offline non-profit
organizations, for example the ACLU. The benefits of a membership
model allow for recurring revenue and a mailing list you can reach out to
to solicit future donations.

Software foundationsuch as the Free Software Foundation,
Software for the Public Interest, Software Freedom Conservancy and
Apache Foundation operate under a similar sponsorship model, with the
majority of donations coming from large corporate sponsors.

Corporate Sponsor or Patronage:
Companies benefit greatly from open-source software and will hire

and employ people just to work on them. Google employed creator of
Python, Guido van Rossum for 7-years. Yahoo employed creator of PHP,
RasmusLerdorf for many years to further PHP development. Two
examples which key people are able to dedicate their time.

Linux has long been funded and advanced by corporate
contributors. You can see the amount of time given to open source by the

mu
no
tes
.in

69

Linux contributors list. A majority of these contributions are for drivers to
make the company’s hardware work with Linux. The companies are
motivated to get involved but the time and code contributed is still open
source.

Android was created by Google and released as open source to
generate a platform audience, receive contributions and feedback and
encourage adoption. Also, as open-source third-party manufacturers are
more willing to adopt a platform since it is open. Google still maintains
primarily control and employs the majority of developers.

Ruby on Rails is another example with 37 Signals releasing the
software to both give back to the community, but also with larger
adoption, they benefit through feature development and bug fixes. Also, as
a company an increase in both community goodwill and experienced
engineers; making it easier to hire. You can see the core team of Rails has
since expanded beyond 37 Signals.

Other examples of companies developing then releasing software
as open source include, Java by Sun Microsystems, Cassandra by
Facebook, Hadoop by Yahoo, Bootstrap by Twitter, V8 and Go
programming language by Google. Plus countless libraries released by all
sizes of companies.

Commercial Enterprise Support
RedHat was one of the first companies who attempted to build a

for-profit business off open source. The RedHat business model is to
develop an enterprise version of the Linux platform and offer long-term
stability and enterprise support contracts. RedHat had some bumps along
the way but has worked out a pretty good model, now working well with
the community and is a profitable company with a \$10b valuation
#Ubuntu follows a similar model as RedHat but started with more a focus
on the consumer market. Canonical, the company behind Ubuntu, was
jump started by its founder Mark Shuttleworth who self-funded it.
Canonical offers support and services to enterprises and governments.
However, it continues to struggle between profitability and ambitious
projects, such as its recent failures with the Ubuntu Edge device and
Ubuntu One file services.

MySQL started and continues to be a dual-licensed product,
originally run by a Swedish-company MySQL AB, but now run by Oracle.
The two versions of MySQL are an open-source community version
licensed under the GPL and a commercial enterprise server which includes
support and advanced features not available in the community edition, for
example backup, monitoring and high-availability services. Sun
Microsystems acquired MySQL for \$1b in 2008.

VirtualBox is an open-source virtualization tool which Oracle
releases the basic app free for all. They also offer advanced features and
extensions which are free for personal use but requires a commercial

mu
no
tes
.in

70

license for business use. This model appears to work well to encourage
adoption, for example the Vagrant project uses VirtualBox as its primary
engine.

Zend Framework is a PHP Framework used to develop web
applications. The primary framework is open sourced, and Zend
Technologies gives away to encourage adoption. They sell their Zend
Server product which adds additional features for packaging, deployment,
and support.

4.13 CASE STUDY ON COMMERCIAL/NON-
COMMERCIAL USE

Non-Commercial use means open-source software use.

Open-source Software:Open-source software is the computer software
developed either by an individual, group or an organization to meet certain
requirements and it is available for any modifications based on its
developing body’s interest. Open-source software is published openly for
general public and here the source code is open for all. For open-source
software the users do not need to spend any cost. It is available under free
licensing. It depends on donations and support as its main source of find.

Some examples of open-source software are Firefox, OpenOffice, Zimbra,
VCL media player, Thunderbird.
 Open-source software is the computer software developed either by
an individual, group or an organization to meet certain requirements
and it is available openly for general public for any modifications
based on its developing body’s interest.

 The cost of open-source software is free.
 Open source provides limited technical support.
 Open-source software is available under free licensing.
 In open-source software users need to rely on community support.
 In open-source software installation and updates are administered by
the user.

 Limited hands on training and online resources are available for
open-source software application training.

 Here in open-source software users can customize.
 In this rapid community response helps in fixing the bugs and
malfunctions.

 In open-source software the source code is public.
 The source of funds of open-source software mainly depends on
donations and support.

mu
no
tes
.in

71

Commercial Software:Commercial software is the computer software
where only the person, team, or organization that created it can modify
also they have exclusive right over the software. Anyone needs to use it
has to pay for it valid and authorized license. Here the source code is
protected. For commercial software the users need to spend moderate to
expensive cost. It is available under high licensing cost. It depends on its
software sale / product licensing as its main source of fund.

Some examples of commercial software are Windows Operating
System, MS Office, SAP, Oracle, Adobe Photoshop.

 Commercial software is the computer software where only the
person, team, or organization that created it can modify also they
have exclusive right over the software. Anyone needs to use it has
to pay for it valid and authorized license.

 The cost of commercial software varies from moderate to
expensive.

 Commercial software provides guaranteed technical support.
 Commercial software is available under high licensing cost.
 In commercial software users get dedicated support from the
vendor.

 In commercial software installation and updates are administered
by the software vendor.

 On site and Online trainings are available from the commercial
software vendor side for software application training.

 But in commercial software mainly vendor offers customization.
 In this mainly the vendor is responsible for fixing the
malfunctions.

 In commercial software the source code is protected.
 The source of fond of commercial software depends on its software
sale / product licensing.

4.14 CASE STUDY ON OPEN-SOURCE HARDWARE

Defining Open-Source Hardware:
Simply put, open-source hardware is a term that refers to any type

of device whose hardware specifications are fully documented or
otherwise available.

That's important for several reasons. First, it maximizes the ability
of third-party programmers and partners to work with a given device. In
most cases hardware manufacturers provide only a basic level of
programmability by releasing software development kits (SDKs) or
limited documentation about hardware specifications. Sometimes
additional hardware information is available through partner programs.
But with open-source hardware, all information is freely available to the
public.

mu
no
tes
.in

72

Another reason why hardware openness matters is that it lets users
know exactly what their hardware does. If you've ever read stories about
webcams spying on users or microphones listening in without their
permission, you appreciate the value of being able to know everything
your hardware is capable of doing (and how it can be activated), as
opposed to knowing only what the company you buy it from reveals.

Open hardware has the benefit of being more extensible, too. For
most people this matters with hardware even less than it does with
software. But for the hardcore geeks out there who want to be able to
customize to infinity, documentation about how hardware works is crucial.
It makes it much easier to tweak a device by cutting wires, plugging in
additional components and so on.

Open-Source Hardware Origins
If the benefits of open hardware sound a lot like the ones you get

from open-source software, it's because they are. And the relationship
between open hardware and open-source software is not incidental.

As a conscious movement, open hardware dates to the late 1990s,
when Bruce Perens announced an open hardware certification program
that had the backing of a number of industry partners (most of them were
companies that sold Linux hardware, software, or support services). Less
than a year later, Perens was also one of the figures who helped launch the
open-source software movement properly defined.

Yet in practice, open hardware goes back much further. Like open-
source code, open hardware specifications were the default during the first
decades of computing. At that time, when many programs were written in
assembly code and software was much less portable than it is today,
intricate knowledge of hardware was essential for writing software. That
meant that companies that manufactured hardware were much more
forthcoming than they generally are today with hardware documentation.

The shift toward closed-source software starting in the early 1980s,
combined with the standardization of basic hardware platforms like the
IBM PC and the adoption of cross-platform programming languages such
as C, made hardware specifications less important. For the most part,
programmers no longer needed to know lots of details about hardware
specifications in order to write code for a particular platform. As long as
you wrote for the PC, your code would run on most computers. And when
hardware-specific software was required, companies could release it in
closed-source form, which did not require them to give away details about
the hardware.

Why Open Hardware Matters Today
Closed hardware remained the norm as the PC age gave way to the

era of mobile devices and the cloud. For the most part, only tinkerers and
DIYers had reason to wish hardware were more open. For ordinary users,
open hardware has not traditionally offered many advantages.

mu
no
tes
.in

73

But open hardware is poised to assume more importance going
forward. This is due in part to the influence of open-source software,
which has now become predominant. As organizations come to expect all
software source code to be open in order to maximize interoperability, it's
only natural for them to think the same way about hardware.

Open hardware will also matter on the IoT, for two main reasons.
The first involves security and privacy. While worries about snooping
webcams on PCs may be overblown, demands for privacy assurances will
reach new magnitudes when IoT devices surround consumers and collect
all sorts of personal information. Companies that build IoT solutions based
on open hardware will be able to make privacy promises that others can't.

Open hardware will also help to drive IoT adoption by creating a
foundation for building low-cost, portable IoT solutions. In other words,
open hardware platforms, like Arduino, will do for IoT what open-source
software platforms, like Linux and Apache, did for the Web by providing
a convenient, accessible, cost-efficient basis on which to deploy products
in a new ecosystem.

Last but not least, the software-defined revolution is likely to
increase demand for open-source hardware. That's because software-
defined solutions abstract functions like networking and storage
infrastructure from the underlying devices, making hardware itself less
valuable. Organizations will have no need for expensive, proprietary
network switches or storage arrays when such hardware cannot do
anything that can't be done in software alone.

Against this backdrop, open hardware solutions will become more
valuable not only because they are likely to be inexpensive, but also
because open specifications maximize the ability of programmers to take
advantage of hardware features when optimizing software-defined
solutions.

4.15 CASE STUDY ON OPEN-SOURCE DESIGN

What is an open-source design?
Open-Source Design is the development of technology and ideas

without retention of intellectual property. The goal of the movement is to
allow for the continued development and full customization of products.
Typically, this is done for software; however, it is increasingly being done
for hardware. Notable examples include the Tesla car and Arduino.
Some advantages of Open Source are its low cost and customization;
furthermore, open-source platforms tend to expand markets. The major
drawback of this is that it is not fully unified. Programs may be
incomplete, resulting in bugs, and hardware may not be well documented.
This is being remedied through the internet as communities specific to a
project are filling in the blanks.

mu
no
tes
.in

74

How it works
As a designer and an advocate for open source, I decided to submit

a proposal for one of the gratis projects, to design an AntennaPod 2 logo
and icon. The project was posted on May 26, 2020, with a submission
deadline of June 27, 2020. AntennaPod is an open-source Android podcast
manager, and the project is looking for a logo that doesn't look similar to
the many other podcast logos (e.g., radiating antennas, microphones, sine
waves, and such). The organizers provide a very detailed design brief that
clearly states their requirements. Even though the project is unpaid, they
quickly received replies from several designers.

After the submission deadline, AntennaPod will select three
designs and then put them up for a vote by the community.

Design opportunities in open-source communities
For designers looking to share their talents and skills with the

open-source community, Open-Source Design is a good place to find
opportunities. The same is true for developers and organizations looking
for talent to create or improve their projects' design, branding, and user
interface.

Designers have many other opportunities to get involved in open
source. For example, several months ago, The Document Foundation was
looking for logo submissions for its 20th anniversary. This was also a
gratis project that I submitted an idea for.

These types of opportunities abound, so keep scouring open-source
communities for ways you can contribute. You might not get rich, but you
may get the glory, and that makes it all worth it!

4.16 CASE STUDY ON OPEN-SOURCE TEACHING

What is Open-Source Learning?
Open-Source Learning is an emerging philosophy of education for

the Digital Age. In their day, educational theories such as Waldorf,
Montessori, and Reggio Emilia met the evolving needs of learners.
Today’s challenges and opportunities demand more.

Open-Source Learning empowers students to work in partnership
with teachers to develop their own learning experiences and
interdisciplinary paths of inquiry. Open-Source Learning enables students
to amplify and accelerate their learning by participating in virtual
networks and online communities. Students can apprentice with expert
mentors and collaborate with partners around the world. They can also
create their own knowledge capital as they learn. Open-Source Learning
empowers us to produce value, interdependence, and hope in real time.

Why Open-Source Learning?
In spite of all the attention and money devoted to improving our

education system, today’s learners remain poorly understood and badly

mu
no
tes
.in

75

underserved. Students, parents, and teachers are suffering. And there is no
“one size fits all” solution.

The good news is that we have the answer. Rather than advocating
a specific system or required set of techniques, tools, and ideas, Open-
Source Learning embraces the idea that everyone learns different things in
different ways, and it values diverse approaches to reaching those goals.
We can now connect beyond the classroom with the ideas, resources, and
people that can help students on their learning journeys.

Open-Source Learning: methods and tools
In Open-Source Learning, each student works with the guidance of

a teacher-mentor to develop an interdisciplinary learning journey around a
big idea or question.

Students design their experience by working with a variety of tools
– especially resources in the digital realm, such as credible internet
content, online organizing tools (calendar, project management, and
collaboration), 3-D printing, and mobile devices.

As their projects develop, students deepen their experience through
information-sharing that establishes themselves and empowers others.

Results
The result of Open-Source Learning is that, in the process of

mastering concepts and skills, we develop our mental, physical, civic,
spiritual, and technical fitness, and we learn new ways to think. For
example:

 Open-Source Learning allows students to create and manage
interactive learning material that becomes available online to
everyone, generating and sharing value that extends beyond the
traditional K-16 curriculum.

 Deeper and more engaged involvement results in significant
improvement in academic achievement.

 Open-Source Learning also creates opportunities for traditional
performance evaluation of objective production, including formative
and summative tests; and alternative assessment of portfolios, which
can include a variety of artifacts, including trans media presentation of
content, and the student’s choices related to platforms, media, and
design.

 Participants – students and teachers alike — emerge with
progressively masterful records of assessment and authentic work
portfolios that tell a far more compelling story than diplomas or
résumés.

mu
no
tes
.in

76

4.17 CASE STUDY ON OPEN-SOURCE MEDIA

Open-source technology is a means of developing computer
software through a more collaborative approach than most traditional
software. When software is considered "open source," all or part of its
source code is made available to the public or purchasers of the software.
This allows programmers to modify or augment the software for their
needs or the needs of others.

However, "open source" is a term with varying degrees of
"openness." At its most basic, it implies that modifications can be made.
Going a step further, it can also mean that users are kept up to date by the
creators on the development of the software and can influence the choices
made. It also depends on the terms of the licensing agreement as to
whether or not modified versions of the software can be sold
commercially.

Developing open-source software boasts a number of advantages
for developers and customers. Since the source code is available for all to
see, this allows both developers and users to search for bugs. This
potentially allows for a more stable, well-tested product. Open source
allows for more ideas to be pooled together, making for quicker
refinement and innovation. It also helps develop brand loyalty, as users
have a hand in the product development and become invested in its
success. Most importantly, open-source software is frequently far less
expensive to develop and purchase.

The downsides of open-source software are few but notable. If a
company is especially concerned with how the modification of its software
may affect its image should avoid open source. Allowing everyone to see
source code means that competitors will see the source code. While this
makes for good competition, it can also make for copycats developing
inferior products aping the original. As far as users are concerned, caution
should be exercised when utilizing some open-source software, as there
may be few resources for technical support when a problem arises.

For smartphones and tablets, the most notable example of open-
source technology is Google's Android OS. The open-source nature of the
OS has allowed wireless service carriers and retailers to customize the
models they sell. The Google Play Store is especially notable for its wide
variety of user-generated applications, which are largely made possible by
the OS's open-source flexibility.

For PC users, the Linux operating system has been a long-standing
example of open-source software. Originally released in 1991, it has
always been a favourite of the technologically inclined for its malleability
and potential for deep, specialized customization. Modified versions of
Linux can even be distributed commercially. The previously mentioned

mu
no
tes
.in

77

Android OS is actually based off of the Linux framework, which makes
open-source nature very fitting.

Summary
In this chapter we learn about Open-source Operating system,

various types of open-source software, Open-source concepts like
Licensing and funding for open-source software and open-source physical
components.

Reference:
https://www.linux.org/
https://www.android.com/
https://github.com/

mu
no
tes
.in

78

5
UNDERSTANDING OPEN-SOURCE

ECOSYSTEM

Unit Structure
5.0 Free BSD
5.1 Open Solaris
5.2 Virtualization Technologies
5.3 Containerization Technologies
5.4 Development tools
5.5 IDEs
5.6 LAMP
5.7 Open-Source database technologies

5.0 FREE BSD

What is FreeBSD?
FreeBSD is an operating system for a variety of platforms which

focuses on features, speed, and stability. It is derived from BSD, the
version of UNIX® developed at the University of California, Berkeley. It
is developed and maintained by a large community.

Cutting edge features
FreeBSD offers advanced networking, performance, security and

compatibility features today which are still missing in other operating
systems, even some of the best commercial ones.

Powerful Internet solutions
FreeBSD makes an ideal Internet or Intranet server. It provides

robust network services under the heaviest loads and uses memory
efficiently to maintain good response times for thousands of simultaneous
user processes.

Advanced Embedded Platform
FreeBSD brings advanced network operating system features to

appliance and embedded platforms, from higher-end Intel-based
appliances to ARM, PowerPC, and MIPS hardware platforms. From mail
and web appliances to routers, time servers, and wireless access points,
vendors around the world rely on FreeBSD’s integrated build and cross-
build environments and advanced features as the foundation for their
embedded products. And the Berkeley open-source license lets them
decide how many of their local changes they want to contribute back.

mu
no
tes
.in

79

Run a huge number of applications
With over 33,000 ported libraries and applications, FreeBSD

supports applications for desktop, server, appliance, and embedded
environments.

Easy to install
FreeBSD can be installed from a variety of media including CD-

ROM, DVD, or directly over the network using FTP or NFS.

FreeBSD is free
While you might expect an operating system with these features to

sell for a high price, FreeBSD is available free of charge and comes with
the source code.

Contributing to FreeBSD
It is easy to contribute to FreeBSD. All you need to do is find a

part of FreeBSD which you think could be improved and make those
changes (carefully and cleanly) and submit that back to the Project by
means of a bug report or a committer, if you know one. This could be
anything from documentation to artwork to source code.

2.1 OPEN SOLARIS

Introduction
OpenSolaris is an open-source operating system, similar in scope

to GNU/Linux and BSD, but descended from the proprietary Solaris
operating system from Sun Microsystems. The authors of this book find it
helpful to think of OpenSolaris as divided into three distinct but related
aspects: the code, the distributions, and the community.

Features of Solaris
Security: Solaris includes some of the world's most advanced security
features, such as Process and User Rights

Management: Trusted Extensions for Mandatory Access Control, the
Cryptographic Framework and Secure by Default Networking that allow
you to safely deliver new Solutions consolidate with security and protect
mission-critical data

Performance: Solaris delivers indisputable performance advantages for
database, Web, and Java technology-based services, as well as massive
scalability, shattering world records by delivering unbeatable
price/performanceadvantages.

Networking: With its optimized network stack and support for today’s
advanced network computing protocols, Solaris delivers high-performance
networking to most applications without modification.

mu
no
tes
.in

80

Data Management: Solaris offers dramatic advances in file system and
volume management by delivering virtually unlimited capacity and near-
zero administration

Interoperability: Understanding that businesses today rely on a mix of
technologies from a variety of vendors, Solaris provides tools to enable
seamless interoperability with hundreds of heterogeneous hardware and
software platforms

Observability: The Solaris release gives you Observability into your
system with tools such as Solaris Dynamic Tracing (DTrace), which
enables real-time application debugging and optimization

Platform Choice: Solaris is fully supported on more than 900 SPARC-
based and x64/x86-based systems from top manufacturers, including
systems from Sun, Dell, HP, and IBM

Virtualization: The Solaris OS includes industry-first virtualization
features such as Solaris Containers, which let you consolidate, isolate, and
protect thousands of applications on a single server

Availability: Solaris features, such as Predictive Self-Healing, support
automatic diagnosis and recovery from hardware and application faults,
maximizing system uptime.

Support & Services: Offering a broad portfolio of world-class services,
Sun can help you extract maximum value from the Solaris Operating
System.

5.2 VIRTUALIZATION TECHNOLOGIES

Virtualization is technology that lets you create useful IT services
using resources that are traditionally bound to hardware. It allows you to
use a physical machine’s full capacity by distributing its capabilities
among many users or environments.

In more practical terms, imagine you have 3 physical servers with
individual dedicated purposes. One is a mail server, another is a web
server, and the last one runs internal legacy applications. Each server is
being used at about 30% capacity—just a fraction of their running
potential. But since the legacy apps remain important to your internal
operations, you have to keep them and the third server that hosts them,
right?

mu
no
tes
.in

81

Traditionally, yes. It was often easier and more reliable to run
individual tasks on individual servers: 1 server, 1 operating system, 1 task.
It wasn’t easy to give 1 server multiple brains. But with virtualization, you
can split the mail server into 2 unique ones that can handle independent
tasks so the legacy apps can be migrated. It’s the same hardware, you’re
just using more of it more efficiently.

Keeping security in mind, you could split the first server again so it
could handle another task—increasing its use from 30%, to 60%, to 90%.
Once you do that, the now empty servers could be reused for other tasks or
retired altogether to reduce cooling and maintenance costs.

Below are some examples of open-source Virtualization Technologies

KVM
Short for Kernel-based Virtual Machine, KVM is not as widely deployed
as other open-source hypervisors, but its stature is growing rapidly.

KVM is a full virtualization hypervisor and can run both Windows and
Linux guests.

With the kernel component of KVM included in Linux since kernel 2.6.20,
KVM can claim a good level of integration with the rest of the operating
system.

KVM received its biggest validation in late 2008 when Linux vendor Red
Hat acquired KVM developer, Qumranet. Red Hat now bases its enterprise
virtualization server on the KVM hypervisor.

URL: http://www.linux-kvm.org

License: GPL

Xen
Xen began life as a Microsoft-funded startup at the University of

Cambridge and has risen to become the "de facto standard" in Linux
hypervisors.

mu
no
tes
.in

82

Xen supports paravirtualization and "hardware assisted"
virtualization for modified and un-modified guests, respectively.
Guests can be Linux or Windows, but the overwhelming majority of
guests are Linux variants, particularly in the hosting space.

A few years ago quite a few commercial software vendors, including
Novell and Oracle, adopted Xen and then -- seemingly out of nowhere --
the commercial startup behind Xen, XenSource, was acquired by Citrix.
Citrix has been Xen-happy ever since.

Recently, CIO reported on the private cloud development at the
ACMA in Canberra, which is based on Citrix's Xen hypervisor.
URL: http://www.xen.org
License: GPL

OpenVZ
OpenVZ is container-based virtualization for Linux, which has become
quite popular among the mass-market Linux hosting providers as an
inexpensive way to provide virtual private servers.

The OpenVZ containers provides the same services as a separate host and
claims to provide near native performance.

OpenVZ is the core within Parallels Virtuozzo Containers, a commercial
virtualization solution offered by Swiss company Parallels. Commercial
support is available for Parallels.

Not a lot has been written about OpenVZ/Parallels in the enterprise space,
but there are quite a few glowing user testimonials about the product.

URL: http://openvz.org

License: GPL

VirtualBox
VirtualBox is an open-source desktop virtualization tool originally
developed by German company, innotek, which was acquired by Sun
Microsystems in February 2008.

Since acquiring Sun, Oracle has continued VirtualBox development and
the latest version, 4.0, was released in December 2010.

VirtualBox runs on Windows, Linux, Solaris, and Mac OS X and can
support all those operating systems as guests.

While it is mostly used on desktops, VirtualBox is a full virtualization app
and can be used on servers as well.

The closed-source edition of VirtualBox is now distributed as an
"extension pack" and includes features like RDP and USB support.

URL: http://www.virtualbox.org
Licence: GPL & CDDL

mu
no
tes
.in

83

Lguest
Lguest is an interesting virtualization project started by Australian
developer, Paul "Rusty" Russell.

Designed with Linux in mind, lguest allows multiple copies of the same
kernel to run alongside each other.

While not a full virtualization hypervisor, lguest prides itself on ease of
use and uses the same kernel image for host and guest operating systems.

Computerworld has run with a number of articles about lguest over the
past few years.

There's not much information about whether lguest is being used in a
business production environment, but that would be interesting.

URL: http://lguest.ozlabs.org/

Licence: GPL

5.3 CONTAINERIZATION TECHNOLOGIES

Docker is a software platform for building applications
based on containers — small and lightweight execution environments that
make shared use of the operating system kernel but otherwise run-in
isolation from one another. While containers as a concept have been
around for some time, Docker, an open-source project launched in 2013,
helped popularize the technology, and has helped drive the trend towards
containerization and microservices in software development that has come
to be known as cloud-native development.

What are containers?
One of the goals of modern software development is to keep

applications on the same host or cluster isolated from one another so they
don’t unduly interfere with each other’s operation or maintenance. This
can be difficult, thanks to the packages, libraries, and other software
components required for them to run. One solution to this problem has
been virtual machines, which keep applications on the same hardware
entirely separate, and reduce conflicts among software components and
competition for hardware resources to a minimum. But virtual machines
are bulky—each requires its own OS, so is typically gigabytes in size—
and difficult to maintain and upgrade.

Containers, by contrast, isolate applications’ execution
environments from one another, but share the underlying OS kernel.
They’re typically measured in megabytes, use far fewer resources than
VMs, and start up almost immediately. They can be packed far more
densely on the same hardware and spun up and down en masse with far
less effort and overhead. Containers provide a highly efficient and highly
granular mechanism for combining software components into the kinds of
application and service stacks needed in a modern enterprise, and for
keeping those software components updated and maintained.

mu
no
tes
.in

84

What is Docker?
Docker is an open-source project that makes it easy to create

containers and container-based apps. Originally built for Linux, Docker
now runs on Windows and MacOS as well. To understand how Docker
works, let’s take a look at some of the components you would use to
create Docker-containerized applications.

Docker file
Each Docker container starts with a Docker file. A Docker file is a

text file written in an easy-to-understand syntax that includes the
instructions to build a Docker image (more on that in a moment). A
Docker file specifies the operating system that will underlie the container,
along with the languages, environmental variables, file locations, network
ports, and other components it needs—and, of course, what the container
will actually be doing once we run it.

Docker image
Once you have your Docker file written, you invoke the Docker

build utility to create an image based on that Docker file. Whereas the
Docker file is the set of instructions that tells build how to make the
image, a Docker image is a portable file containing the specifications for
which software components the container will run and how. Because a
Docker file will probably include instructions about grabbing some
software packages from online repositories, you should take care to
explicitly specify the proper versions, or else your Docker file might
produce inconsistent images depending on when it’s invoked. But once an
image is created, it’s static.

5.4 DEVELOPMENT TOOLS

Docker:
The first and still most popular container technology, Docker's

open-source containerization engine works with most of the products that
follow, as well as many open-source tools.

mu
no
tes
.in

85

Docker Enterprise
This set of extensions not only adds features to Docker, but also

makes it possible for Docker (the company) to add commercial support. If
you need a support matrix to know exactly which versions of what
software are supported—and a phone number to call if things go wrong—
then Docker Enterprise might be for you.

CRI-O
The first implementation of the Container Runtime Interface, CRI-O

is an incredibly lightweight, open-source reference implementation.

rktlet
The aforementioned rkt, redesigned and retooled to use the CRI as

rktlet, now has a set of supported tools and community to rival Docker.

containerd
A project of the Cloud Native Computing Foundation, containerd

was an early container format. More recently the developers of containerd
built a CRI plugin that lets Kubernetes run containerd in the same way it
runs rktlet or CRI-O.

Microsoft Containers
Positioned as an alternative to Linux, Microsoft Containers can

support Windows containers under very specific circumstances. They
generally run in a true virtual machine and not in a cluster manager like
Kubernetes.

5.5 IDES

What is Container Management Software?
Container management platforms facilitate the organization and

virtualization of software containers, which may also be referred to as
operating-system-level virtualizations. Developers use containers to
launch, test, and secure applications in resource-independent
environments. Containers house components of applications, libraries, or
groups of source code that can be executed on demand. The management
platforms help users allocate resources to optimize efficiency and balance
system workloads. Containers provide a flexible, portable platform to
organize, automate, and distribute applications. Companies use container
management software to streamline container delivery to avoid the
complexities of interdependent system architectures. The tools are scalable
and can greatly improve the performance of widely distributed
applications.

Amazon Elastic Container Service (Amazon ECS)
Amazon EC2 Container Service (ECS) is a container

management service that supports Docker containers and allows users to
easily run applications on a managed cluster of Amazon EC2 instances.

mu
no
tes
.in

86

Mirantis Kubernetes Engine (formerly Docker Enterprise)
Mirantis Kubernetes Engine (formerly Docker Enterprise) is the

fastest way to modern apps at enterprise scale. Mirantis Kubernetes
Engine is the industry-leading and only container platform providing a
simple, as-a-service experience and a central point of collaboration across
dev and ops to build, share and run modern applications. Schedule a live
demo at: www.mirantis.com/demo

Google Kubernetes Engine (GKE)
Deploy, manage, and scale containerized applications, powered by

Kubernetes

AWS Fargate
AWS Fargate is a technology for Amazon ECS and EKS that

allows you to run containers without having to manage servers or clusters.
AWS Fargate removes the need for you to interact with or think about
servers or clusters.

Kubernetes
Kubernetes is a Linux container management tool.

IBM Cloud Kubernetes Service
Advanced capabilities for building cloud-native apps, adding

DevOps to existing apps, and relieving the pain around security, scale and
infrastructure management.

Azure Kubernetes Service (AKS)
Azure Kubernetes Service (AKS) is a solution that optimizes the

configuration of popular open-source tools and technologies specifically
for Azure, it provides an open solution that offers portability for both users
containers and users application configuration.

Portainer
Portainer is the definitive open-source UI for simplifying

Kubernetes, Docker, Swarm, and ACI container management. Simplicity
without compromise - run and manage your complex Kubernetes and
Docker environments in a simple, low code/no code manner. Get the best
of both worlds - some developers support Kubernetes, while others prefer
Docker Swarm or ACI for container orchestration. Portainer helps manage
all these environments from a single product. Let devs be devs -
developers and DevOps don't always blend. With Portainer's easy low
code/no code UI, DevOps can quickly deploy apps without having in-
depth knowledge of Kubernetes or Docker Swarm.

Rancher
Rancher is an open-source platform for managing containers that

provides a full set of infrastructure services for containers, including
networking, storage services, host management and load balancing, work
across any infrastructure, and make it simple to reliably deploy and

mu
no
tes
.in

87

manage applications. Check out our Kubernetes Online Master Class
Training Series: https://rancher.com/kubernetes-master-class/

56 LAMP

LAMP is an open-source Web development platform that uses
Linux as the operating system, Apache as the Web server, MySQL as the
relational database management system and PHP as the object-oriented
scripting language. (Sometimes Perl or Python is used instead of PHP.)

Because the platform has four layers, LAMP is sometimes referred
to as a LAMP stack. Stacks can be built on different operating systems.
Developers that use these tools with a Windows operating system instead
of Linux are said to be using WAMP; with a Macintosh system, MAMP;
and with a Solaris system, SAMP.

What is the LAMP Stack?
The widely popular LAMP stack is a set of open-source software

used for web application development.

For a web application to work smoothly, it has to include an
operating system, a web server, a database, and a programming language.
The name LAMP is an acronym of the following programs:

 Linux Operating System
 Apache HTTP Server
 MySQL database management system
 PHP programming language

Each represents an essential layer of the stack, and together they
can create a database-driven and dynamic website.

The illustration below can help visualize how the layers stack together:

Four Components of LAMP Stack
Linux

Linux is the operating system layer and the backbone of the LAMP
stack.

All the other components of the stack run on top of this foundation.
You can efficiently manage the rest of the stack components on different
operating systems such as Windows, macOS, and others. However, Linux

mu
no
tes
.in

88

has become the front-runner for web development not just because it is
open source, but also due to its flexibility, customization and easy to use
technology.

Also, the programming language and database management used
in developing a website may dictate the platform you choose to build it on.
PHP and MySQL are better suited for Linux. On the other hand, SQL,
ASP.NET, and ASP work more efficiently on Windows.

Apache
Apache HTTP Server is a web server software that runs on top of

the Linux operating system.

It is the most widely used server, powering more than half of the
websites on the internet. The role of the web server is to process requests
and transmit information through the internet, using HTTP.

An alternative to Apache is NGINX, a web server whose
popularity has been continually increasing since 2008. Whether you go for
one or the other depends on what kind of material you want to serve on a
webpage, as well as the hosting.

NGINX is a better choice for static content. When it comes to
dynamic content, there is a minor difference in performance between the
two. Also, Apache is commonly used by shared hosting users, whereas
NGINX is mainly used for virtual private servers, dedicated hosting or
cluster containers.

MySQL
SQL (Structured Query Language) is the most prevalent query

language out there. A query is what we call a request for information or
data stored in your database table.

MySQL earned its reputation as an acclaimed database system as it
supports SQL and relational tables. By doing so, it makes it much easier to
establish dynamic enterprise-level databases.
Consider MySQL if you:

 Need to change the content of your website often
 Have a lot of user-contributed content
 Rely on user feedback
 Have a lot of content that needs to be stored and easily retrieved

Another relational database management system that can be part of
the LAMP platform is MariaDB. Both are quite similar, and MariaDB
claims to be completely compatible with MySQL, allowing users to
transfer their database without any complications or losses. Deciding
between the two comes down to whether you feel more comfortable
storing data with a large corporation (MySQL under the direction of
Oracle Corp) or a completely open-source solution (MariaDB).

mu
no
tes
.in

89

PHP
PHP (Hypertext Pre-processor) is a programming language which

has the role of combining all the elements of the LAMP stack and
allowing the website or web application to run efficiently. In short, when a
visitor opens the webpage, the server processes the PHP commands and
sends the results to the visitor’s browser.

PHP is the fourth layer of the original stack because it interacts
exceptionally well with MySQL. It is commonly used for web
development because it is a dynamically typed language, making it fast
and easy to work with. This feature may be especially appealing if you are
a beginner. The reason why PHP is so convenient to use is that it can be
embedded into HTML enabling to jump in and out of it as you wish.

In the LAMP stack, the P can also refer to two other programming
languages – Perl or Python. All three are simple, yet useful, dynamic tools
for creating environments in which you can successfully develop
applications. Nowadays, there is a wide variety of scripting languages to
choose from, including JavaScript, Ruby, and many more.

Advantages of a LAMP Stack
1. The LAMP stack consists of four components, all of which are
examples of Free and Open-Source Software (FOSS). As they are free
and available for download, it attracts the attention of many users who
wish to avoid paying large sums of money when developing their
website.

2. Because it is FOSS, the source code of the software is shared and
available for people to make changes and improvements, enhancing its
overall performance.

3. The LAMP stack has proven to be a secure and stable platform thanks
to its vast community that contributes when any problems arise.

4. What makes it so attractive is that you can easily customize the stack
and interchange the components with other open-source software to
suit your needs.

5.7 OPEN-SOURCE DATABASE TECHNOLOGIES

What is open-source database software?
Traditionally, databases have been proprietary tools provided by

Oracle, IBM, Microsoft, and a number of other smaller vendors. Over
recent years though, and especially for new projects, open-source
databases and database management tools have steadily grown in maturity
and importance. In many cases, open-source database software includes
both database software, and the database management tools needed to
support the database.

As open-source databases become adopted by more and more
companies for large-scale enterprise projects, there has been a concomitant

mu
no
tes
.in

90

rise in the availability of skilled DBAs, with extensive knowledge of these
platforms to be able to assist with mission-critical deployments.

In addition to the obvious cost savings, open-source database
software have largely reached feature parity with their proprietary cousins.
The open-source model also allows for heavy customization and
community development, which makes the software very flexible
compared to proprietary database software. Training materials are also
often provided for free by user communities.

Open-Source Database Software Features & Capabilities
Some of the most common features provided by open-source

database software include:

 Relational and Nonrelational Databases
 Support for Multiple Platforms
 Supports databases and database management
 Data Security
 Data Collaboration

Pricing Information
All open-source database software options are available for free to

businesses that can support them independently. That said, a number of
open-source database options offer paid support, hosting, or monitoring.
Pricing depends highly on which features are needed by the organization.

MySQL
MySQL is by far the most popular open-source database out there.

Vendors often include it in software packages as the application database.

Even Oracle’s own Virtual Machine software runs on MySQL.

MySQL is an open-source relational database management system.
It is frequently used in web applications and is even one of the pillars in
the LAMP open-source web application software stack (Linux, Apache,
MySQL, Perl/PHP/Python). Even websites created in WordPress or
Drupal use it as their database.

PostgreSQL
PostgreSQL is a powerful, open-source object-relational database

system that uses and extends the SQL language combined with many
features that safely store and scale the most complicated data workloads.
The origins of PostgreSQL date back to 1986 as part of the POSTGRES
project at the University of California at Berkeley and has more than 30
years of active development on the core platform.

PostgreSQL has earned a strong reputation for its proven
architecture, reliability, data integrity, robust feature set, extensibility, and
the dedication of the open-source community behind the software to
consistently deliver performant and innovative solutions. PostgreSQL runs

mu
no
tes
.in

91

on all major operating systems, has been ACID-compliant since 2001, and
has powerful add-ons such as the popular PostGIS geospatial database
extender. It is no surprise that PostgreSQL has become the open-source
relational database of choice for many people and organisations.

Getting started with using PostgreSQL has never been easier - pick
a project you want to build and let PostgreSQL safely and robustly store
your data.

MariaDB Server
MariaDB Server is one of the most popular database servers in the

world. It’s made by the original developers of MySQL and guaranteed to
stay open source. Notable users include Wikipedia, WordPress.com and
Google.

MariaDB turns data into structured information in a wide array of
applications, ranging from banking to websites. Originally designed as
enhanced, drop-in replacement for MySQL, MariaDB is used because it is
fast, scalable and robust, with a rich ecosystem of storage engines, plugins
and many other tools make it very versatile for a wide variety of use cases.
MariaDB is developed as open-source software and as a relational
database it provides an SQL interface for accessing data. The latest
versions of MariaDB also include GIS and JSON features.

Summary
In this chapter we learn about various open-source operating

systems, Open-source hardware, virtualization technologies, open-source
databases, IDEs, LAMP.

Reference
https://www.bsd.org/
https://www.docker.com/
http://www.linuxfoundation.org/

mu
no
tes
.in

