
1

1
PROGRAMMINGWITH PYTHON- I

Unit Structure
1.1 Objective
1.2 Reasons for Python as the learner’s first programming language.
1.3 Introduction to the IDLE interpreter (shell) and its documentation.

Expression evaluation: similarities and differences compared to a
calculator; expressions and operators of types int, float,boolean.

1.4 Built-in function type.
1.5 Operator precedence
1.6 Summary
1.7 Reference for further reading
1.8 Unit End Exercises

1.1OBJECTIVE

1. Understand the fundamentals of writing Python scripts
2. Learn core Python scripting elements such as variables, expression,
and operators

3. Use Python to input and output function
4. Understand the Built-in Functions

1.2REASONS FOR PYTHON AS THE LEARNER’S
FIRST PROGRAMMING LANGUAGE

1. Reasons for Python are the learner's first programming language
are:
1. Presence of Third Party Modules:

The Python Package Index (PyPI) contains numerous third-party
modules that make Python capable of interacting with most of the other
languages and platforms.

2. Extensive Support Libraries:
Python provides a large standard library that includes areas like

internet protocols, string operations, web service tools, and operating
system interfaces. Many highly used programming tasks have already
been scripted into the standard libraries which reduces the length of code
to be written significantly.

mu
no
tes
.in



2

3. Open Source and Community Development:
Python language is developed under an OSI-approved open source

license, which makes it free to use and distribute, for commercial purposes
also.

4. Learning Ease and Support Available:
Python offers excellent readability and uncluttered simple-to-learn

syntax which helps beginners to easily use this programming language.

5. User-friendly Data Structures:
Python has built-in list and dictionary data structures that can be

used to construct fast runtime data structures. Further, Python also
provides an option of dynamic high-level data typing which reduces the
length of support code.

6. Productivity and Speed:
Python supportsthe object-oriented design, provides enhanced

process control capabilities,and possesses strong integration and text
processing capabilities and,a unit testing framework all of which
contribute to increasing its speed and productivity.

Applications of Python
 GUI based desktop applications

o Image processing and graphic design applications
o Scientific and computational applications
o Games

 Web frameworks and web applications
 Enterprise and business applications
 Operating systems
 Language development
 Prototyping

1.3INTRODUCTION TO THE IDLE INTERPRETER
(SHELL) AND ITS DOCUMENTATION.

Introduction to the IDLE interpreter (shell) and its documentation
IDLE has the following features:

a. coded in 100% pure Python, using the Tkinter GUI toolkit

b. cross-platform: works mostly same on Windows, Unix, and
macOS

c. Python shell window (interactive interpreter) with colorizing code
input, output, and error messages

d. multi-window text editor with multiple undo, Python colorizing,
smart indent, call tips, auto-completion, and other features

mu
no
tes
.in



3

e. search within any window, replace within editor windows and
search through multiple files (grep)

f. debugger with persistent breakpoints, stepping, and viewing of
global and local namespaces configuration, browsers, and other
dialogs

Menus
IDLE has two main window types, the Shell window, and the Editor
window. It is possible to have multiple editor windows
simultaneously. On Windows and Linux, each has its top menu. Each
menu documented below indicates which window type it is associated
with.

Output windows, such as used for Edit => Find in Files, are a subtype
of editor window. They currently have the same top menu but a
different default title and context menu.

On macOS, there is one application menu. It dynamically changes
according to the window currently selected. It has an IDLE menu, and
some entries described below are moved around to conform to Apple
guidelines.

File menu
New File
Create a new file editing window.
Open…
Open an existing file with an Open dialog.
Recent Files
Open a list of recent files. Click one to open it.
Open Module…
Open an existing module (searches sys.path).
Class Browser
Show functions, classes, and methods in the current Editor file in a tree
structure. In the shell, open a module first.
Path Browser
Show sys.path directories, modules, functions, classes and methods in
a tree structure.
Save
Save the current window to the associated file, if there is one.
Close
Close the current window (ask to save if unsaved).
Exit
Close all windows and quit IDLE (ask to save unsaved windows).

Edit menu (Shell and Editor)
Undo
Undo the last change to the current window. A maximum of 1000
changes may be undone.
Redo

mu
no
tes
.in



4

Redo the last undone change to the current window.
Cut
Copy selection into the system-wide clipboard; then delete the
selection.
Copy
Copy selection into the system-wide clipboard.

Format menu (Editor window only)
Indent Region
Shift selected lines right by the indent width (default 4 spaces).
Dedent Region
Shift selected lines left by the indent width (default 4 spaces).
Comment Out Region
Insert ## in front of selected lines.
Uncomment Region
Remove leading # or ## from selected lines.

Run menu (Editor window only)
Run Module

Do Check Module. If no error, restart the shell to clean the
environment, then execute the module. Output is displayed in the Shell
window. Note that output requires use of print or write. When
execution is complete, the Shell retains focus and displays a prompt.
At this point, one may interactively explore the result of execution.
This is similar to executing a file with python -i file at a command
line.

Run… Customized

Same as Run Module, but run the module with customized settings.
Command Line Arguments extend sys.argv as if passed on a command
line. The module can be run in the Shell without restarting.

Check Module

Check the syntax of the module currently open in the Editor window.
If the module has not been saved IDLE will either prompt the user to
save or autosave, as selected in the General tab of the Idle Settings
dialog. If there is a syntax error, the approximate location is indicated
in the Editor window.
Python Shell
Open or wake up the Python Shell window.

2 Expression evaluation: similarities and differences compared to a
calculator; expressions and operators of types int, float, boolean.

3. Expression evaluation:
Python’s eval() allows to evaluate arbitrary Python expressions

from a string-based or a compiled code object input . This function can be

mu
no
tes
.in



5

used to dynamically evaluate Python expressions from any input that
comes as a string or a compiled code object.

The eval() is defined as :

eval(expression[, globals[, locals]])

The function takes three arguments. The function takes a first
argument, called expression, which holds the expression that you need to
evaluate. eval() also takes two optional arguments:

1. globals

2. locals

The First Argument: expression
The first argument to eval() is called expression. It’s a required

argument that holds the string-based or compiled-code-based input to the
function. When eval() function call , the content of expression is evaluated
as a Python expression.
>>>eval("90 + 10")
100

>>>eval("sum([10, 50, 25])")
85

>>> x = 50

>>>eval("x * 2")
100

To evaluate a string-based expression, Python’s eval() runs the
following steps:

1. Parse expression
2. Compile it to bytecode
3. Evaluate it as a Python expression
4. Return the result of the evaluation

The Second Argument: globals
The second argument to eval() is called globals. It’s optional and

holds a dictionary that provides a global namespace to eval(). With
globals, you can tell eval() which global names to use while evaluating
expression. Global names are all those names that are available in your
current global scope or namespace. All the names passed to globals in a
dictionary will be available to eval() at execution time.

Python
>>>x1 = 100 # A global variable
>>>eval("x1 + 100", {"x1": x1})
200
>>> y1 = 200 # Another global variable

mu
no
tes
.in



6

>>>eval("x1 + y1", {"x1": x1})

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 1, in <module>

NameError: name 'y1' is not defined

If you supply a custom dictionary to the globals argument of
eval(), then eval() will take only those names as globals. Any global
names defined outside of this custom dictionary won’t be accessible from
inside eval(). That’s why Python raises a NameError when you try to
access y1 in the above code: The dictionary passed to globals doesn’t
include y1.

You can insert names into globals by listing them in your
dictionary, and then those names will be available during the evaluation
process. For example, if you insert y1 into globals, then the evaluation of
"x1 + y1" in the above example will work as expected:

Python
>>>eval("x1 + y1", {"x1": x1, "y1": y1})
300

Since you add y1 to your custom globals dictionary, the evaluation of "x1
+ y1" is successful and you get the expected return value of 300.

The following examples show that even though you supply an empty
dictionary to globals, the call to eval() will still have access to Python’s
built-in names:

Python
>>>eval("sum([13, 12, 25])", {})
50
>>>eval("min([19, 55, 12])", {})
12
>>>eval("pow(10, 2)", {})
100

In the above code, you supply an empty dictionary ({}) to globals.
Since that dictionary doesn’t contain a key called "__builtins__", Python
automatically inserts one with a reference to the names in builtins. This
way, eval() has full access to all of Python’s built-in names when it parses
expression.

If eval() is call without passing a custom dictionary to globals, then
the argument will default to the dictionary returned by globals() in the
environment where eval() is called:

mu
no
tes
.in



7

Python
>>>x1 = 10
>>> y1 = 20
>>>eval("x1 + y1") # Access global variables
30

Wheneval() is called without supplying a globals argument, the
function evaluates expression using the dictionary returned by globals() as
its global namespace. So, in the above example, you can freely access x1
and y1 because they’re global variables included in your current global
scope.

The Third Argument: locals

Python’s eval() takes a third argument called locals. This is another
optional argument that holds a dictionary. In this case, the dictionary
contains the variables that eval() uses as local names when evaluating
expression.

Local names are those names (variables, functions, classes, and so
on) that you define inside a given function. Local names are visible only
from inside the enclosing function. You define these kinds of names when
you’re writing a function.

Since eval() is already written, you can’t add local names to its
code . However, you can pass a dictionary to locals, and eval() will treat
those names as local names:
>>>eval("x1 + 100", {}, {"x1": 100})
200

Evaluating Expressions With Python’s eval()

Python’s eval() can be used to evaluate Boolean, math, and
general-purpose Python expressions.

Boolean Expressions

Boolean expressions are Python expressions that return a True or
False when the interpreter evaluates them. They’re commonly used in if
statements to check if some condition is true or false.

Python
>>>x1 = 100

>>> y1 = 100

>>>eval("x1 != y1")
False

mu
no
tes
.in



8

>>>eval("x1< 300 and y1> 100")
False

>>>eval("x1 is y1")
True

>>>eval("x1 in {155, 100, 180, 190}")
True

eval()can be used with Boolean expressions that use any of the following
Python operators:

 Value comparison operators: <, >, <=, >=, ==, !=
 Logical (Boolean) operators: and, or, not
 Membership test operators: in, not in
 Identity operators: is, is not

Math Expressions
One common use case of Python’s eval() is to evaluate math expressions
from a string-based input.
The following examples show how you can use eval() along with math to
perform math operations:

>>> import math
>>> # Area of a circle
>>>eval("math.pi * pow(2, 2)")
12.56

General-Purpose Expressions

eval() can be used with more complex Python expressions that incorporate
function calls, object creation, attribute access, comprehensions, and so
on.

For example, you can call a built-in function or one that you’ve
imported with a standard or third-party module:

>>> import subprocess
>>>eval("subprocess.getoutput('echo Hi, Friends')")
'Hi, Friends'

Operators
Operators are special symbols in Python that carry out arithmetic

or logical computation. The value that the operator operates on is called
the operand.

For example:
>>>12+93
115

mu
no
tes
.in



9

Here, + is the operator that performs addition. 12 and 93 are the operands
and 115 is the output of the operation.

Arithmetic operators:

Arithmetic operators are used to perform mathematical operations
like addition, subtraction, multiplication, etc.

Operator Meaning Example
+ Add two operands or

unary plus
x + y+ 2

- Subtract right operand
from the left or unary
minus

x - y- 2

* Multiply two operands x * y
/ Divide left operand by

the right one (always
results into float)

x / y

% Modulus - remainder of
the division of left
operand by the right

x % y (remainder of
x/y)

// Floor division - division
that results into whole
number adjusted to the
left in the number line

x // y

** Exponent - left operand
raised to the power of
right

x**y (x to the power y)

Example 1: Arithmetic operators in Python

x = 15
y = 4

print('x + y =',x+y)
# Output: x + y = 19

print('x - y =',x-y)
# Output: x - y = 11

print('x * y =',x*y)
# Output: x * y = 60

print('x / y =',x/y)
# Output: x / y = 3.75

print('x // y =',x//y)
# Output: x // y = 3

mu
no
tes
.in



10

print('x ** y =',x**y)
# Output: x ** y = 50625

Comparison operators:

Comparison operators are used to compare values. The comparison
operators are also known as relational operator. It returns either True or
False according to the condition.

Operator Meaning Syntax
> Greater than:- True if the

left operand is greater than
the right

a>b

< Less than:- True if the left
operand is less than the
right

a < b

== Equal to:- True if both
operands are equal

a == b

!= Not equal to:- True if
operands are not equal

a != b

>= Greater than or equal to:-
True if the left operand is
greater than or equal to the
right

a >= b

<= Less than or equal to:- True
if the left operand is less
than or equal to the right

a <= b

a = 100
b = 112

print('a> b is',a>b)
Output: a > b is False

print('a<bis',a<b)
Output: a < b is True

print('a == b is',a==b)
Output: a == b is False

print('a != b is',a!=b)
Output: a != b is True

print('a >= b is',a>=b)
Output: a>= b is False

print('a <= b is',a<=b)
Output: a<= b is True

mu
no
tes
.in



11

Logical operators

Logical operators are and, or, not operators.

Operator Meaning
and if both the operands are true then condition become true.

or if either of the operands is true then condition become true.

not Used to reverse the logical state of its operand.

a = True
b = False

print('a and bis',a and b)

print('a or bis',x or y)

print('not ais',nota)
Output

a and b is False
a or b is True
nota is False

Bitwise operators

Bitwise operator works on bits and performs bit by bit operation.

& Binary AND Operator This Operator is used to copy a bit to the
result if it exists in both operands.

| Binary OR Operator It copies a bit if it exists in any operand.

^ Binary XOR Operator It copies a bit if it is set in one operand
but not both.

~ Binary ones
Complement Operator

It is unary and will flip the bits, so 1 will
become 0, and 0 will become 1.

<< Binary Left Shift
Operator

It shifts the value of the left operand to
left by the number of bits given by the
right operand.

>> Binary Right Shift
Operator

It shifts the value of the left operand to
right by the number of bits given by the
right operand.

mu
no
tes
.in



12

Assignment operators

Assignment operators are used to assigning values to variables.

= These operators are used to assign the values for the
right side operands to the left side operand.

a = 25

+= These operators are used to add the right operand to
the left operand and the result is aassign to the left
operand.

a += 10
a = a + 10

-= The right operand gets subtracted from the left
operand and the result is assigned to the left
operand.

a -= 10
a = a - 10

*= The right operand gets multiplied with the left
operand and the result is assigned to the left
operand.

a *= 10
a = a * 10

/= The left operand is divided by the right operand and
the result is assigned to the left operand.

a /= 10
a = a / 10

%= It performs the modulus operation and the result is
assigned to the left operand.

a %= 10
a = a % 10

a = 25 is a simple assignment operator that assigns the value 25 on the
right to the variable a on the left.

a=25
a += 10
print(“ a is : ”,a)
#output:a is : 35

a -= 10
print(“ a is : ”,a)
#output:a is : 15

a *= 2
print(“ a is : ”,a)
#output:a is : 50

a /= 5
print(“ a is : ”,a)
#Output:a is : 5

a %= 4
print(“ a is : ”,a)
#output:a is : 1

mu
no
tes
.in



13

Special operators

Python language offers some special types of operators like the identity
operator or the membership operator.

Identity operators

Identity operators are used to compare the memory locations of
two objects.

is True - If the variable on either side of the operator point
to the same object
False - If the variable on either side of the operator does
not point to the same object

is not False - if the variable on either side of the operator point
to the same object.
True - if the variable on either side of the operator point
to the different object.

Example:

p=50
q=50

print(‘p =’,p,’:’,id(p))
#output:-p=50 : 80983211
print(‘q =’,p,’:’,id(q))
#output:-q=50 : 80983211

if(p is q) :
print(‘p and q have same identity’)
else :
print(‘p and q do not have same identity’)

#output:-p and q have same identity

if(id(p) = = id(q)) :
print(‘p and q have same identity’)
else :
print(‘p and q do not have same identity’)

#output:-p and q have same identity

if(p is not q) :
print(‘p and q do not have same identity’)
else :
print(‘p and q have same identity’)

#output:p and q do not have same identity

mu
no
tes
.in



14

Membership operators

There are two membership operators in Python (in and not in).
They are used to test for membership in a sequence(string, list, tuple and
dictionary).

in Evaluates to true if it finds a variable in the sequence and
return false if it does not find a variable in the sequence

not in Evaluates to false if it finds a variable in the sequence
and return true if it does not find a variable in the
sequence

p=60
q=30
list1=[10,30,50,66]
example 1:
if(p in list1):
print(‘p is in the list’)
else :
print(‘p is not in the list’)
#output:-p is not in the list
example 2:
if(p not in list1):
print(‘p is not in the list’)
else :
print(‘p is in the list’)
#output:-p is not in the list

example 3:
if(q in list1):
print(‘q is in the list’)
else:
print(‘q is not in the list’)
#output:-q is in the list

3 Built-in function type.

type() function in python returns the data type of the object which is
passes as an argument in this function. It is basically used for debugging
process.

syntax
type(object)
type(name, bases, dict)
a. object – for which type needs to be returned
b. name – name of the class
c. bases – a tuple of classes
d. dict – dictionary that holds namespace for the class

mu
no
tes
.in



15

>>>print(type([1,2,3]))
#output :- <type ‘list’>

>>>print(type((1,2,3)))
#output :- <type ‘tuple’>

>>>print(type({1:’a’,2:’b’,3:’c’}))
#output :- <type ‘dict’>

>>>print(type(“Good”))
#output :- <type ‘str’>

>>>print(type(1))
#output :- <type ‘int’>

>>>print(type(3.14))
#output :- <type ‘float’>

>>>print(type(True))
#output :- <type ‘bool’>

4 Operator precedence.

The order of the operation means the operator precedence to evaluate
an expression. The operator will help to evaluate the expression.
Following table shows all operatorsthat has highest precedence to lowest.

Operator Description
( ) Parentheses
** Exponent
+a, -a, ~a Unary plus, Unary minus, Bitwise NOT
*, /, //, % Multiplication, Division, Floor division, Modulus
+, - Addition, Subtraction
<<, >> Bitwise shift operator
& Bitwise and
^ Bitwise XOR
| Bitwise or
==, !=, >, >=, <, <= Comparisons operator
Not Logical NOT
And Logical AND
Or Logical OR

Operators with the highest precedence appear at the top of the table

Example:
>>> 5*2+10
20

mu
no
tes
.in



16

In this example the first precedence is given to the multiplication
then addition operator.

>>>5*(2+10)
60

In this example the first precedence is given to the parenthesis then
multiplication operator.

>>>10/5+10
12
In this example the first precedence is given to the division then addition
operator.

1.6 SUMMARY

a. We learnt Reasons for Python as the learner’s first programming
language.

b. We have studied IDLE interpreter (shell) and its documentation.

c. We learnt syntax of expression evaluation: similarities and differences
compared to a Calculator

d. We used different types of expressions and operators.

e. We also used Built-in function type & operator precedence in python
programs.

1.7 REFERENCE FOR FURTHER READING

a. Charles Dierbach, Introduction to Computer Science using Python,
Wiley, 2013

b. Paul Gries , Jennifer Campbell, Jason Montojo, Practical Programming:
An Introduction to Computer Science Using Python 3, Pragmatic
Bookshelf, 2/E 2014

1.8 UNIT END EXERCISES

1. What are the features of the python programming language?
2. Explain Expression evaluation in python.
3. Explain various operators used in python.
4. Write a python program using Math Expressions.
5. Explain the use of Built-in type function with an example.
6. Explain operator precedence with an example.



mu
no
tes
.in



17

2
PROGRAMMINGWITH PYTHON- II

Unit Structure

2.1 Objective
2.2 Enumeration of simple and compound statements.
2.3 The expression statement. Theassert statement,
2.4 Boolean expression (values true or false).
2.5 The assignment statement, dynamic binding of names to values,

(type is associated with data and not with names); automatic and
implicit declaration of variable names with the assignment
statement; assigning the value None to a name.

2.6 The del (delete)statement.
2.7 Input/output with print and input functions.
2.8 A statement list (semicolon-separated list of simple statements on a

single line) as a single interpreter command.
2.9 The import statement for already defined functions and constants.
2.10 The augmented assignment statement.
2.11 The built-inhelp() function.
2.12 Summary
2.13 Reference for further reading
2.14 Unit End Exercises

2.1 OBJECTIVE

1. Understand the simple statements
2. Understand the compound statements
3. Use Python to delete the statement
4. Understand print and input functions in python.
5. Understand the built-inhelpFunctions

2.2ENUMERATION OF SIMPLE AND COMPOUND
STATEMENTS.

A Simple statement in python:
As the name suggests, simple statements are comprised in one

single line.These types of statements will never affect the flow of a
program.

mu
no
tes
.in



18

There are many simple statements like assert, break, continue,
pass, del, import, return, etc.
The syntax for simple statement is:
simple_stmt ::= expression_stmt

| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt
| del_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| future_stmt
| global_stmt
| nonlocal_stmt

Compound statements in python:

A compound statement is defined as a group of statements that
affect or control the execution of other statements in some way. Python
programming language provides different ways to construct or write
compound statements. These are mainly defined as:

If Statement:
This statement is used for conditional execution.
The syntax of the statement is as follows:-

if expression: suite
elif expression: suite
else: suite

while Statement:
While statement is used to execute a block of statements repeatedly

until a given condition is fulfilled. Syntax of the statement is as follows
while expression:
statement(s)

for statement:
for statement is used to traverse a list or string or array in a

sequential manner for example
print("List Iteration")
li1 = ["python", "for", "programmers"]
fori in li1:
print(i)

mu
no
tes
.in



19

Try statement:
The try statement specifies exception handlers and/or cleanup code

for a group of statements.

With statement:
The with statement is used to wrap the execution of a block with

methods defined by a context manager where a context manager is an
object that defines the runtime context to be established.

2.3THE EXPRESSION STATEMENT, ASSIGNMENT
STATEMENT, THE ASSERT STATEMENT,

2.3.1 The expression statement.
These types of statements are formed using operators, variables or

values which create one mathematical expression.
Example:
>>>i=5
>>> v=i-2
>>>v
3
>>> z=i**2
>>>z
25

2.3.2 Assignment Statement:

In this type of statement, we assign value to a variable. This
statement has one equal (=) sign. We cannot set keywords as a variable
name.

Example:

>>>i=5
>>> a=10
>>> #keyword cannot be used in assignment
>>>for=5
SyntaxError: invalid syntax

2.3.2 The assert statement
Assert statements:
Assert statements are a convenient way to insert debugging assertions
into a program:

assert_stmt ::= "assert" expression ["," expression]
The simple form, assert expression, is equivalent to

if __debug__:
if not expression: raise AssertionError
The extended form, assert expression1, expression2, is equivalent to

mu
no
tes
.in



20

if __debug__:
if not expression1: raise AssertionError(expression2)
These equivalences assume that __debug__ and AssertionError refers
to the built-in variables with those names. In the current
implementation, the built-in variable __debug__ is True under normal
circumstances, False when optimization is requested (command-line
option -O). The current code generator emits no code for an assert
statement when optimization is requested at compile time. Note that it
is unnecessary to include the source code for the expression that failed
in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in
variable is determined when the interpreter starts.

2.4 BOOLEAN EXPRESSION (VALUES TRUE OR
FALSE).

A boolean expression is an expression that yields just the two
outcomes: true or false. When we work with multiple boolean expressions
or perform some actions on them, we make use of the boolean operators.
Since the boolean expression reveals true or false, the operations on these
expressions also result in either “true” or “false“. Consequently, there are
three types of boolean operators:
1. The AND operator (&& or “and”)
2. The OR operator (|| or “or”)
3. The NOT operator (not)

1. AND Boolean Operator in Python
The AND boolean operator is similar to the bitwise AND operator

where the operator analyzes the expressions written on both sides and
returns the output.

mu
no
tes
.in



21

True and True = True
True and False = False
False and True = False
False and False = False

In python, you can directly use the word “and ” instead of “&&” to
denote the “and ” boolean operator while for other languages, you need to
put “&&” instead.

a = 30
b = 45
if(a > 30 and b == 45):
print("True")
else:
print("False")

Output:-False

2. OR Boolean Operator in Python
The OR operator is similar to the OR bitwise operator. In the

bitwise OR, we were focusing on either of the bit being 1. Here, we take
into account if either of the expression is true or not. If at least one
expression is true, consequently, the result is true.
True or True = True
True or False = True
False or True = True
False or False = False

a = 25
b = 30
if(a > 30 or b < 45):
print("True")
else:
print("False")

Output:-True

3. NOT Boolean Operator in Python
The NOT operator reverses the result of the boolean expression

that follows the operator. It is important to note that the NOT operator will
only reverse the final result of the expression that immediately follows.
Moreover, the NOT operator is denoted by the keyword “not“.
a = 2
b = 2
if(not(a == b)):
print("If Executed")
else:
print("Else Executed")

Output:-Else Executed

mu
no
tes
.in



22

2.5 DYNAMIC BINDING OF NAMES TO VALUES,
(TYPE IS ASSOCIATED WITH DATA AND NOTWITH
NAMES); AUTOMATIC AND IMPLICIT
DECLARATION OF VARIABLE NAMES WITH THE
ASSIGNMENT STATEMENT; ASSIGNING THE
VALUENONE TO A NAME.

2.5.1 Python is a dynamically typed language. It doesn’t know about the
type of the variable until the code is executed. So variable declaration is of
no use. What it does is store that value at some memory location and then
bind that variable name to that memory container. And makes the contents
of the container accessible through that variable name. So the data type
does not matter. As it will get to know the type of the value at run-time.

Example:
#This will store 99 in the memory and bind the name x to it. After it
executes, the type of x will be int.
x = 99
print(type(x))
# This will store 'India' at some location in the memory and binds name x
to it. After it runs type of x will be str.
x = 'India'
print(type(x))

Output:
<class 'int'>
<class 'str'>

Variables
As the name implies, a variable is something that can change. A

variable is a way of referring to a memory location used by a computer
program. A variable is a symbolic name for this physical location. This
memory location contains values, like numbers, strings etc.

A variable can be seen as a container to store values. While the
program is running, variables are accessed and sometimes changed, i.e. a
new value will be assigned to the variable.

One of the main differences between Python and other
programming languages is the way it deals with types. In strongly-typed
languages, every variable must have a unique data type. E.g. if a variable
is of type integer, solely integers can be saved in the variable. In Java or C,
every variable has to be declared before it can be used.

Declaration of variables is not required in Python. If there is a need
for a variable, you type a name and start using it as a variable.

mu
no
tes
.in



23

Another aspect of Python: Not only the value of a variable may
change during program execution but the type as well. You can assign a
float value to a variable, use it as a float for a while and then assign a
string to the variable.

Example:
x = 122
>>>print x
122
>>> x =”Mumbai”
>>>print x
Mumbai

x = 82 # data type is integer
x = 82 + 0.11 # data type is changed to float
x = "Mumbai" # and now it will be a string

Python automatically takes care of the physical representation for
the different data types, i.e. an integer value will be stored in a different
memory location than a float or a string.

Dynamic Typing vs Static Typing:

Dynamic Typing Static Typing

Variable type checking will happen
at runtime.

Variable type checking will happen
at compile time.

As the typing checking happens in
runtime the dynamically typed code
can compile even it has some errors
which might lead logical issues.

The statically typed code won't
compile if it has any error. In order
to run the code, we must fix the
error.

Dynamically typed languages don't
expect the variable declaration
before using them. The variable
declaration will happen
automatically when we assign
values to it.

Statically typed languages expect
the variable declaration before
assigning values to it.

Python, Perl, etc. C, Java, etc.

Assigning the valueNone to a name:

Python None Keyword:

Python has a set of keywords that are reserved words that cannot be used
as variable names, function names, or any other identifiers.

Keyword None: Represents a null value

Assign the value None to a variable:

mu
no
tes
.in



24

a = None
print(a)

Definition and Usage
The None keyword is used to define a null value or no value at all.

None is not the same as 0 (Zero), False, or an empty string. None is a data
type of its own and only None can be None.

2.6 THE DEL (DELETE) STATEMENT.

The del statement :

del〈 object ,...〉

Each object is any kind of Python object. Usually, these are
variables, but they can be functions, modules, classes.

The del statement works by unbinding the name, removing it from
the set of names known to the Python interpreter. If this variable was the
last remaining reference to an object, the object will be removed from
memory. If, on the other hand, other variables still refer to this object, the
object won't be deleted.

The del statement is typically used only in rare, specialized cases.
Ordinary namespace management and garbage collection are generally
sufficient for most purposes.

The del statement can be used to delete an item at a given index.
Also, it can be used to remove slices from a list.

List1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# deleting the third item
del list1[2]
print(list1)
# Output: [1, 2, 4, 5, 6, 7, 8, 9]
# deleting items from 2nd to 4th
del list1[1:4]
print(list1)
# Output: [1, 6, 7, 8, 9]
# deleting all elements
del list1[:]
print(list1)
# Output: []

mu
no
tes
.in



25

2.7 INPUT/OUTPUT WITH PRINT AND INPUT
FUNCTIONS.

Python provides numerous built-in functions that are readily
available. Some of the functions like input() and print() are used for input
and output operations respectively.

Python Input:
In Python, input() function is used totake input from the user.
The syntax for input() is:
input([prompt])

>>>na = input('Enter your name: ')
Enter your name :Amit
>>>na
'Amit'

>>>num = int(input('Enter a number: '))
Enter a number: 10
>>>num
10

>>>num = float(input('Enter a number: '))
Enter a number: 10
>>>num
10.0

print() function is used to output data to the output device.

print('Python programming')
Output:-Python programming

a = 56
print(‘a is', a)

Output:-a is 56

The syntax of the print() function :

print(*objects, sep=' ', end='\n', file=sys.stdout)

objects is the value(s) to be printed.

The sep separator is used between the values.

Once all values are printed, end is printed. It defaults into a new line.

The file is the object where the values are printed and its default value is
sys.stdout.

print(11, 21, 31, 41)
print(11, 21, 31, 41, sep='$')
print(11, 21, 31, 41, sep='@', end='#')

mu
no
tes
.in



26

Output
11 21 31 41
11$21$31$41
11@21@31@41#

2.8 A STATEMENT LIST (SEMICOLON SEPARATED
LIST OF SIMPLE STATEMENTS ON A SINGLE
LINE) AS A SINGLE INTERPRETER COMMAND.

A statement list (semicolon-separated list of simple statements on a
single line) as a single interpreter command
Each statement is written on a separate physical line in the editor.
However, statements in a block can be written in one line if they are
separated bysemicolon.

Following is the code of three statements written in separate lines

a=10
b=20
c=a*b
print (c)

These statements can very well be written in one line by putting a
semicolon in between.

a=10; b=20; c=a*b; print (c)

A new block of increased indent starts after : symbol as in case of
if, else, while, for, try statements. However, using syntax, statements in a
block can be written in one line by adding a semicolon.

Following is the example of a block of statements in a for loop

fori in range(4):
print ("Mumbai")
print ("i=",i)

This block can also be written in single line using :

fori in range(4): print ("Mumbai"); print ("i=",i)

2.9 THE IMPORT STATEMENT FOR ALREADY-
DEFINED FUNCTIONS AND CONSTANTS.

The import statement for already-defined functions and constants
Any text file with the .py extension containing Python code is

basically a module. Different Python objects such as functions, classes,
variables, constants, etc., defined in one module can be made available to

mu
no
tes
.in



27

an interpreter session or another Python script by using the import
statement. Functions defined in built-in modules need to be imported
before use. On similar lines, a custom module may have one or more user-
defined Python objects in it. These objects can be imported into the
interpreter session or another script.

If the programming algorithm requires defining a lot of functions
and classes, they are logically organized in modules. One module stores
classes, functions, and other resources of similar relevance. Such a
modular structure of the code makes it easy to understand, use and
maintain.

Creating a Module
The definition of sum() function. It is saved as cal.py.
cal.py

def sum(x, y):
return x + y

Importing a Module

now import this module and execute the sum() function in Python.

Example:

>>> import cal
>>>cal.sum(55, 44)
99

The import statement for constants
Constant:

A constant value is similar to a variable, with the exception that it
cannot be changed once it is set. Constants have a variety of uses, from
setting static values to writing more semantic code.
create two files, constants1.py and main.py to demonstrate.
# constants1.py
No1 = 20

# main.py
import constants1
No2 = 170
total = No2 + constants1.No1
print("Total is {total}")

Output:
Total is 190

mu
no
tes
.in



28

2.10 THE AUGMENTED ASSIGNMENT STATEMENT.

The augmented assignment statement :
unlike normal assignment operators, augmented assignment operators are
used to replace those statements where binary operator takes two operands
says var11 and var12 and then assigns a final result back to one of
operands i.e. var11 or var12.

For example: statement var11 = var11 + 5 is same as writing var11 += 5 in
python and this is known as augmented assignment operator. Such type of
operators are known as augmented because their functionality is extended
or augmented to two operations at the same time.

List of Augmented Assignment Operators in Python

Addition & Assignment (+=): x+=y is equivalent to x=x+y

# Addition
a = 10
b = 5
a += b
print('Addition = %d' %(a))

OUTPUT :-Addition = 15

Subtraction & Assignment (-=): x-=y is equivalent to x=x-y

# Subtraction
a = 10
b = 5
a -= b
print('Subtraction = %d' %(a))

OUTPUT :-Subtraction = 5

Multiplication & Assignment (*=): x*=y is equivalent to x=x*y

# Multiplication
a = 10
b = 5
a *= b
print('Multiplication = %d' %(a))

OUTPUT :-Multiplication = 50

Division & Assignment (/=): x/=y is equivalent to x=x/y

# Division
a = 23

mu
no
tes
.in



29

b = 3
a /= b
print('Division = %f' %(a))

OUTPUT :-Division = 7.666667

Remainder(or Modulo) & Assignment (%=): x%=y is equivalent tox=x%y

# Remainder or Modulo
a = 12
b = 5
a %= b
print('Remainder or Modulo = %d' %(a))

OUTPUT :-Remainder or Modulo = 2

2.11 THE BUILT-INHELP() FUNCTION.

The python help function is used to display the documentation of
modules, functions, classes, keywords etc.

The help function has the following syntax:
help(print)

It gives the following output:

Help on built-in function print in module built-ins:
print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout)
Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.

2.12 SUMMARY

a. In this chapter, we learn the use of Enumeration of simple and
compound statements.

b. Study of expression statement and the assert statement.

c. We have studied Boolean expression (values true or false). The
assignment statement, dynamic binding of names to values, (type is
associated with data and not with names); automatic and implicit
declaration of variable names with the assignment statement; assigning
the value None to a name.

d. Understood the concept of the del (delete) statement in python.

mu
no
tes
.in



30

2.13 REFERENCE FOR FURTHER READING

a. Charles Dierbach, Introduction to Computer Science using Python,
Wiley, 2013

b. Paul Gries, Jennifer Campbell, Jason Montojo, Practical Programming:
An Introduction to ComputerScience Using Python 3, Pragmatic
Bookshelf, 2/E 2014

2.14 UNIT END EXERCISES

1 Explain Simple statements.
2 What is assigning the value None to a name?
3 Explain the augmented assignment statement.
4 Write a Python program for the import statement for already-defined
functions.

5 Explain Compound statements.
6 Write the difference between Dynamic Typing and Static Typing
7 Explain Assert statement.




mu
no
tes
.in



31

3
PROGRAMMINGWITH PYTHON- III

Unit Structure
3.1 Objective
3.2 Interactive and script modes of IDLE, running a script, restarting

the shell.
3.3 The compound statement def to define functions; the role of

indentation for delimiting the body of a compound statement;
calling a previously defined function. Compound data types str,
tuple and list (enclosed in quotes, parentheses and brackets,
respectively). Indexing individual elements within these types.
Strings and tuples are immutable, lists are mutable.

3.4 Built-in functions min, max, sum.
3.5 Interactive solution of model problems, (e.g., finding the square

root of a number or zero of a function), by repeatedly executing the
body of a loop (where the body is a statement list).

3.6 Summary
3.7 Reference for further reading
3.8 Unit End Exercises

3.1 OBJECTIVE

1. Understand the IDLE
2. Learn use of user define function and its application
3. Understand the List, Tuple
4. Understand the mutable

3.2 INTERACTIVE AND SCRIPT MODES OF IDLE,
RUNNING A SCRIPT, RESTARTING THE SHELL.

• Interactive Mode

Python provides Interactive Shell to execute code immediately and
produce instant output. To get into this shell, we have to write python
code in the command prompt and start working on it.

mu
no
tes
.in



32

• Script Mode

Using Script Mode, we can write our Python code in a separate file of
any editor.

i) Click on Start button -> All Programs -> Python ->IDLE(Python GUI)

ii) Python Shell will be opened. Now click on File -> New Window.

• A new Editor will be opened. Write our Python code here.

To execute a file in IDLE, simply press the F5 key on your
keyboard. You can also select Run → Run Module from the menu bar.
Either option will restart the Python interpreter and then run the code that
you've written with a fresh interpreter.

How to Use the Python IDLE Shell
The shell is the default mode of operation for Python IDLE. When

you click on the icon to open the program, the shell is the first thing that
you see:

You can restart the shell from this menu. If you select that option,
then you’ll clear the state of the shell. It will act as though you’ve started a
fresh instance of Python IDLE. The shell will forget about everything
from its previous state.

mu
no
tes
.in



33

3.3THE COMPOUND STATEMENT DEF TO DEFINE
FUNCTIONS; THE ROLE OF INDENTATION FOR
DELIMITING THE BODY OF A COMPOUND
STATEMENT; CALLING A PREVIOUSLY
DEFINED FUNCTION.

What is a function in Python?

In Python, a function is a group of related statements that performs
a specific task.

Functions help break our program into smaller and modular
chunks. As our program grows larger and larger, functions make it more
organized and manageable.

Furthermore, it avoids repetition and makes the code reusable.

Syntax of Function

deffunction_name(parameters):
"""docstring"""
statement(s)

Above shown is a function definition that consists of the following
components.

Keyword def that marks the start of the function header.
A function_name to uniquely identify the function. Function naming
follows the same rules of writing identifiers in Python.
Parameters (arguments) through which we pass values to a function.
A colon (:) to mark the end of the function header.
Optional documentation string (docstring) to describe what the function
does.
One or more valid python statements that make up the function body.
Statements must have the same indentation level.
An optional return statement to return a value from the function.

Example of a function
defdisp(name):
print("Hi, " + name + ". Good morning!")

How to call a function?
Once we defined a function, we can call it from another function,

program. To call a function type the function name with appropriate
parameters.

>>>disp('Raj')
Hi, Raj. Good morning!

mu
no
tes
.in



34

Although optional, documentation is a good programming practice.
In the above example, we have a docstring immediately below the
function header. We can generally use triple quotes so that docstring can
extend up to multiple lines. This string is available to us as the __doc__
attribute of the function.

For example:

>>>print(disp.__doc__)

This function greets tothe person passed in as a parameter

Role of indentation

Indentation, one of the important features of python, refers to the spaces at
the beginning of a code line.Python uses indentation to indicate a block of
code. It conveys a better structure of a program to the readers. It explains
relationship between control flow constructs such as conditions or loops,
and code contained inside and outside of it.
Indentation makes our program :-

– Easy to read
– Easy to understand
– Easy to modify
– Easy to maintain
– Easy for code debugging

The return statement
The return statement is used to exit a function and go back to the

place from where it was called.

Syntax of return
return [expression_list]

This statement can contain an expression that gets evaluated and
the value is returned. If there is no expression in the statement or the
return statement itself is not present inside a function, then the function
will return the None object.

For example:

>>>print(disp("Deep"))
Hello, deep. Good morning!
None

Here, None is the returned value since disp() directly prints the name
and no return statement is used.

Example of return

defabsolute_value(num):
"""This function returns the

value of the entered number"""
if number >= 0:

mu
no
tes
.in



35

return number
else:
return -number

print(absolute_value(92))

print(absolute_value(-64))
Output
92
64

Types of Functions
Basically, we can divide functions into the following two types:

1) Built-in functions - Functions that are built into Python.
2) User-defined functions - Functions defined by the users
themselves.

The Python Square Root Function:

Python’s math module, in the standard library, this library can help
you work on math-related problems in code. It contains useful
functions, such as remainder() and factorial(). It also includes the
Python square root function, sqrt().

>>> import math #importing math module
You can now use math.sqrt() to calculate square roots.

>>>math.sqrt(49)
7.0

>>>math.sqrt(70.5)
8.396427811873332

4 Compound data types str, tuple and list (enclosed in quotes,
parentheses and brackets, respectively). Indexing individual
elements within these types. Strings and tuples are immutable,
lists are mutable

Compound data types in Python :

List

Dictionaries

Tuples

List:

A list is an array of objects. An object can be an
integer,astring,float or other things. List is a container which holds
the items or element. The elements in the list not of the same type.
The element are separated by the comma in a square bracket.

mu
no
tes
.in



36

The list are mutable data type. Mutable means you can do changes
in the list elements after creating the list.

PYTHON LIST PROPERTIES

 Lists are ordered.
 Lists can contain any arbitrary objects.
 List elements can be accessed by index.
 Lists can be nested to arbitrary depth.
 Lists are mutable.
 Lists are dynamic.

Initializing Values of List:

>>> List1 = [“India”, “Maharashtra”, 81]
Empty List:

>>> List2=[]

List creation
>>>list=[13,66,88,45,76,77]

Indexing individual elements within list
The expression in brackets is called an index. The index indicates
which character in the sequence you want to access. Index starts
with zero.

Accessing first element of the list:-

>>>list[0]

output :- 13

>>>list[3]

Output :- 45

Negative indexing returns last element of the list.
>>>list[-1]
output :- 77

>>>list[-3]
output :- 45

Mutable Concept:
The list are the mutable data type. Mutable means you can do
changes in the list elements after creating the list.

>>>print(“value of second index position ”,list[2])
88
>>list[2]=999
>>>print(“value of second index position ”,list[2])
999

mu
no
tes
.in



37

Initialize two Lists in a single line:

>>> L1, L2=[‘mango’,’apple’,’banana’],[‘Raj’,’Deep’]

>>L2
[‘Raj’,’Deep’]

Delete element from list:
Del statement is use to delete the element from list.

>>>list=[10, 20, 30, 40, 50]

>>>del list[2]

>>print(list)
[10,20,40,50]

Built in function:

Min Function:
The min() function is used to find the minimum value from the list.

>>>list=[100, 20, 320, 140, 56]
>>min(list)
20

Max Function:
The max() function is used to find the maximum value from the
list.

>>>list=[100, 20, 320, 140, 56]
>>max(list)
320

Sum Function:
Python provides an inbuilt function sum() which sums up the numbers
in the list.
Syntax:
sum(iterable, start)
iterable :iterable can be anything list , tuples or dictionaries ,but most
importantly it should be numbers.
start : this start is added to the sum of numbers in the iterable.
If start is not given in the syntax , it is assumed to be 0.
>>>numbers = [1,2,3,4,5,1,4,5]
>>>print(sum(numbers) )

List Operators:
There are two list operators ‘+’and ‘*’ used in python.

Operator ‘+’ is used for concatenation and operator ‘*’ is used for
repetition.

mu
no
tes
.in



38

Example:
>>>x1=[11,33,55]
>>>x2=[67,87,92]
>>>x3=x1+x2
>>>x3
[11,33,55,67,87,92]

>>> x=[11,33,55]
>>>x*2
[11,33,55,11,33,55]

In Operator:
Operator ‘in’ is used to checkwhether the given element is present
in the list or not. If the given elementis present in the list it returns
true.

Example:
>>>x=[11,33,55,66,78,98,211]
>>> 66 in x
True
>>>22 in x
False

Tuple:

Tuples are the immutable sequence data type. Immutable means
once we create data types, the contents of it cannot be changed.
Tuples are used to store the heterogeneous data.

Creating Tuple

>>> tuple1=(‘a’,’b’,’c’,’d’)

>>>print(tuple1)
(‘a’,’b’,’c’,’d’)

Accessing the elements in a tuple

>>> tuple1=(‘Deep’,’Raj’,’Sam’,’Geet’)

>>>print(“Name is: “,tuple1[0])
Name is : Deep

>>>print(“Name is: “,tuple1[2])
Name is : Sam

Min method:

The min() function is used to find the minimum value in the tuple.
>>>tuple2=(12,34,5,67,55)
>>>print(“Minimum value”,min(tuple2))
5

mu
no
tes
.in



39

Max method:

The max() function is used to find maximum value in the tuple.
>>>tuple2=(12,34,5,67,55)
>>>print(“Maximum values”,max(tuple2))
67

Len Method:

The len() function is used to find the total number of elements in
the tuple.
>>>tuple2=(12,34,65,67,55)
>>>len(tuple2)
5

Tuple Operators:
There are two operators ‘+’and ‘*’ used in python.

Operator ‘+’ is used for concatenation and operator ‘*’ is used for
repetition.

Operator ‘+’
>>>x1=(1,3,5)
>>>x2=(67,87,92)
>>x3=x1+x2
>>>x3
(1,3,5,67,87,92)

Operator ‘*’
>>> x=(1,3,5)
>>>x*2
(1,3,5,1,3,5)

In Operator:
Operator ‘in’ is used to checkwhether the given element is present
in the tuple or not. If the given element is present, it returns true.

>>>x=(11,33,55,66,78,98,211)
>>> 66 in x
True
>>>22 in x
False

Dictionary:

Dictionaries are the mutable data types. Each key available in the
dictionary is separated from its values by using the colon(:). The
items of the dictionary are separated by using a comma(,) and the
entire thing is enclosed in curly braces.

mu
no
tes
.in



40

Dictionary creation
>>>mydict = {“name”:”Deep”, “surname”:”patil”, “age”:29}

Accessing the values in a Dictionary:
>>print(“Name is”,mydict([“name”])
Name is Deep

>>print(“Age is”,mydict([“age”])
Age is 29

Deleting Dictionary Elements:
The del() statement is used to delete the dictionary element.
>>>del(mydict([“name”]))
>>>mydict
{“surname”:”patil”, “age”:29}

Built-in Dictionary Methods
There are several built-in methods that can be invoked on
dictionaries.

 d.clear() :- empties dictionary d with all key-value pairs:
>>> d1 = {'a1': 10, 'a2': 20, 'a3': 30}
>>> d1
{'a1': 10, 'a2': 20, 'a3': 30}
>>>d1.clear()
>>> d1
{}

 d.get(<key>[, <default>]) - Returns the value for a key if it exists
in the dictionary.
d1.get(<key>) searches dictionary d for <key> and returns the
associated value if it is found. If <key> is not found, it returns
None.

>>> d1 = {'a1': 10, 'a2': 20, 'a3': 30}
>>>print(d.get('a2'))
20
>>>print(d.get('a8'))
None

 d.items() - Returns a list of key-value pairs in a dictionary.
d1.items() returns a list of tuples containing the key-value pairs in
d. The first item in each tuple is the key, and the second item is the
key’s value:

>>> d1 = {'a1': 10, 'a2': 20, 'a3': 30}
>>> d1
{'a1': 10, 'a2': 20, 'a3': 30}
>>>list(d1.items())

mu
no
tes
.in



41

[('a1', 10), ('a2', 20), ('a3', 30)]
>>>list(d1.items())[1][1]
20

 d.keys() - Returns a list of keys in a dictionary.

>>> d1 = {'a1': 10, 'a2': 20, 'a3': 30}
>>> d1
{'a1': 10, 'a2': 20, 'a3': 30}

>>>list(d1.keys())
['a1', 'a2', 'a3']

3.4 BUILT-IN FUNCTIONS MIN, MAX, SUM.
INTERACTIVE SOLUTION OF MODEL PROBLEMS,
(E.G., FINDING THE SQUARE ROOT OF A NUMBER
OR ZERO OF A FUNCTION), BY REPEATEDLY
EXECUTING THE BODY OF A LOOP (WHERE THE
BODY IS A STATEMENT LIST).

The Python Square Root Function:

Python’s math module, in the standard library, can help you work on
math-related problems in code. It contains many useful functions, such
as remainder() and factorial(). It also includes the Python square root
function, sqrt().
You’ll begin by importing math:

>>> import math
You can now use math.sqrt() to calculate square roots.
The return value of sqrt() is the square root of x, as a floating point
number.

>>>math.sqrt(49)
7.0

>>>math.sqrt(70.5)
8.396427811873332

3.5 SUMMARY

In this chapter we studied the use of Interactive and script modes
of IDLE, running a script, restarting the shell.The compound statement def
to define functions; the role of indentation for delimiting the body of a
compound statement; calling a previously defined function.Compound
data types str, tuple and list (enclosed in quotes, parentheses and brackets,
respectively). Indexing individual elements within these types. Strings and

mu
no
tes
.in



42

tuples are immutable, lists are mutable. Built-in functions min, max, sum.
Interactive solution of model problems, (e.g., finding the square root of a
number or zero of a function), by repeatedly executing the body of a loop
(where the body is a statement list).

3.6 REFERENCE FOR FURTHER READING

1. Charles Dierbach, Introduction to Computer Science using Python,
Wiley, 2013

2. Paul Gries , Jennifer Campbell, Jason Montojo, Practical Programming:
An Introduction to ComputerScience Using Python 3, Pragmatic
Bookshelf, 2/E 2014

3.7 UNIT END EXERCISES

1. What are two modes of working in IDLE?
2. What is list? Explain with example?
3. Explain the function of tuple with example.
4. What is difference between mutable and immutable?
5. What is difference between list and tuple?



mu
no
tes
.in



43

4
FUNCTIONS

Unit Structure
4.1.1 Definition
4.1.2 Advantages
4.1.3 Function types
4.1.4 Parameters and arguments
4.1.5 Return statement
4.1.6 Recursive function
4.1.7 Global and local variables

4.1.1 DEFINITION OF FUNCTION

A function is a block of organized, reusable code.That means a
function created once and can be used multiple times.

4.1.2 ADVANTAGES OF USING FUNCTIONS

 Use of functions makes the code shorter
 Use of functions makes the code easier to understand
 It reduces duplication of code
 Code can be reused easily
 Implements information hiding
 Divides a larger problem into smaller parts
 Improves modularity of code

4.1.3 FUNCTION TYPES

Functions are divided into two categories :
 Built-in functions
 User-defined functions

Built-in functions
 A function that is already defined in a program or programming
framework with a set of statements, which together performs a task is
called a Built-in function. There is no need for a user to create these
functions and these can be used directly in their program or
application.

mu
no
tes
.in



44

 The Python interpreter has a number of built-in functions.
 abs() - returns absolute value of a number
 bin() - converts integer to binary string
 dict() - Creates a Dictionary
 float() - returns floating point number from number, string
 help() - Invokes the built-in Help System
 input() - reads and returns a line of string
 int() - returns integer from a number or string
 iter() - returns an iterator
 len() - Returns Length of an Object
 list() - creates a list in Python
 max() - returns the largest item
 min() - returns the smallest value
 pow() - returns the power of a number
 print() - Prints the Given Object
 range() - return sequence of integers between start and stop
 round() - rounds a number to specified decimals
 sum() - Adds items of an Iterable
 tuple() - Returns a tuple
 type() - Returns the type of the object

User defined function
They are functions created by the user. They are defined once and
called multiple times.

 Syntax:-
deffunctionname( parameters ):
block of statements
return [expression]

function call
function call

 Example:
def display(name):

print(name)
return

display()
display()

mu
no
tes
.in



45

4.1.4 PARAMETER AND ARGUMENT

A parameter is the variable listed inside the parentheses in the
function definition.

An argument is a value that is sent to the function when it is called.
Types
 Actual parameters

Here actual data is sent into a function
e.g add(10,20)

 Formal parameters
A variable containing a value is passed
e.g add(x,y)

Actual parameters

Example:
Defadd(a,b):

print(a+b)

add(20,30)
output: 50

Formal parameters
Example
defcube(x):

return x*x*x

4.1.5 RETURN STATEMENT

 The Python return statement is a special statement that you can use
inside a function or method to send the function's result back to the
caller. A return statement consists of the return keyword followed by
an optional return value. The return value of a Python function can be
any Python object

 Example:-
 def add(a,b):

return(a+b)
print((“sum =”,add(10,20))

output:
sum= 30

mu
no
tes
.in



46

4.1.6 GLOBAL AND LOCAL VARIABLES

Global Variables
In Python, a variable declared outside of the function or in global

scope is known as a global variable. This means that a global variable can
be accessed inside as well as outside of the function.

Example :

g = "global"

defdisplay():
print("Global variable inside the Function :", g)

display()
print("Global variable outside the Function:", g)

Local Variables
A variable declared inside the function's body or in the local scope is
known as a local variable.
Example :
def display():

l=”Local”
print(l)

display()



mu
no
tes
.in



47

5
CONDITIONAL STATEMENTS AND

LOOPS

Unit Structure
5.2.1 Range function
5.2.2 Iterative for statement
5.2.3 Conditional statements if, if…else, if…elif…else and Nested if
5.2.4 Loops

5.2.1 RANGE FUNCTION

The range() function returns a sequence of numbers, starting from
0 by default, and increments by 1 (by default), and stops before a specified
number.
Syntax:
range(start,stop,step):
range() takes mainly three arguments.
 start: integer starting from which the sequence of integers is to
be returned

 stop: integer before which the sequence of integers is to be
returned.
The range of integers end at stop – 1.

 step: integer value which determines the increment between each
integer in the sequence

Some examples using the range function are given below:
Example 1:
fori in range(10):
print(i, end =" ")

Output:
0 1 2 3 4 5 6 7 8 9

Example 2:
l = [10, 20, 30, 40]
fori in range(len(l)):
print(l[i], end =" ")

Output:
10 20 30 40

mu
no
tes
.in



48

Example 3:
fori in range(3, 6):
print(i, end =" ")

Output:
3 4 5

Example 4:
fori in range(2, 10, 2):
print(i, end =" ")

Output:
2 4 6 8

5.2.2 ITERATIVE FOR STATEMENT

A for loop is used for iterating over a sequence.

Example:

fruits = ["apple", "banana", "cherry"]
for x in fruits:
print(x)

forch in ‘FYCS’:
print(ch)

5.2.3 CONDITIONAL STATEMENTS

Conditional Statements in Python perform different computations
or actions depending on whether a specific Boolean constraint evaluates to
true or false. Conditional statements are handled by IF statements in
Python.

If statement

Python if Statement is used for decision-making operations. It
contains a body of code that runs only when the condition given in ‘if’
statement is true. If the condition is false, then the optional else statement
runs which contains some code for the else condition.

Syntax:
if expression:
Statement
else:
Statement

mu
no
tes
.in



49

Example:
a = 33
b = 200
if b > a:
print("b is greater than a")

Else
If the condition is false the block of else is executed. Else is optional
Syntax:

if test expression:
Body of if

else:
Body of else

mu
no
tes
.in



50

Elif
If condition for if is false the conditions in elif are checked if the

conditions are true the blocks are executed. It allows us to check for
multiple expressions.

Syntax:

if test expression:
Body of if

elif test expression:
Body of elif

elif test expression:
Body of elif

else:
Body of else

Example
n = int(input(“Enter a number”))
f = 1
if n < 0 :
print(“Factorial Does not exist”)
elif n == 0 :
print(“Factorial of 0 is 1”)
else:
fori in range(1,n + 1):
f = f * i
print(“factorial = “,f)

Python Nested if statements
We can have a if statement inside another if statement. Such

statements are called nested if statements.

mu
no
tes
.in



51

Example:
x = 105
if x > 10:
print("Above ten,")
if x > 100:
print("and also above 100")
else:
print("but not above 20.")

5.2.4 LOOPS

A loop statement allows us to execute a statement or group of
statements multiple times
Python has two primitive loop commands:

 while loop
 for loop

The while Loop
The while loop is used to execute a set of statements as long as the

condition is true.

Syntax:

while expression:
Block of statements

Example:

i = 1
while i< 10:
print(i)
i += 1

While …else
While loops can also have an optional else block. The else part is

executed if the condition in the while loop is evaluated as false.

counter = 0
while counter <5:
print("Inside loop")
counter = counter + 1
else:
print("Inside else")

The Continue Statement
The continue statement in Python returns the control to the

beginning of the while loop. The continue statement rejects all the
remaining statements in the current iteration of the loop and moves the
control back to the top of the loop.

mu
no
tes
.in



52

Syntax:
while expression:
Block of statements
If condition:

continue

Example:
forch in ‘Python’ :
ifch == ‘h’:
continue
print(“Current character : “, ch)

output :-
Currentcharacter : P
Currentcharacter :y
Currentcharacter :t
Currentcharacter :o
Currentcharacter :n

The break statement
The break statement in Python terminates the current loop and

resumes execution at the next statement.
Syntax:
while expression:
Block of statements
If condition:

break

Example:
forch in ‘Python’ :
ifch == ‘h’:
break
print(“Current character : “, ch)

output :-
Currentcharacter : P
Currentcharacter : y
Currentcharacter : t



mu
no
tes
.in



53

6
DICTIONARIES

Unit Structure
6.3.1 Dictionary
6.3.2Operations and functions of dictionary

A dictionary is an unordered collection of key value pairs. It is
mutable and does not allow duplicates. Creating a dictionary is as simple
as placing items inside curly braces {} separated by commas.

Key and values
An item has a key and a corresponding value that is expressed as a

pair and can be referred to by using the key name.Keys are unique within
a dictionary while values may not be.

Creating dictionary
Syntax:
Dictionaryname={“key”:”value”}
Example:
studentinfo = {
"Name": "John",
"Class": "FYCS",
"Rollno": 01
}

Accessing valuesin a dictionary
>>>print(studentinfo[‘Name’])
>>>print(studentinfo.get(‘Class’))

Adding an item to a dictionary
Adding an item to the dictionary is done by using a new index key

and assigning a value to it
Syntax:
Dictionaryname[“Key”]=”value”
Example:
>>>studentinfo["DOB"] = "01/01/2020" #new item added
>>>print(studentinfo)

mu
no
tes
.in



54

Updating Dictionary
Dictionaries are mutable. If the key is present then the corresponding
value gets updated.
>>>studentinfo[‘Rollno’] = 5
>>>print(studentinfo)

Deleting an item from a dictionary
Individual elements can be removed from a dictionary
Syntax:
deldictionary_name[item]

Example:
>>>del studentinfo[Rollno]
>>>print(studentinfo)

Deleting all elements
All the elements can be deleted using clear()
Syntax:
Dictionary_name.clear();
Example:
>>>studentinfo.clear()

Deleting entire dictionary
An entire dictionary can be deleted by using del.
Syntax:
deldictionary_name;
Example:
delstudentinfo;

mu
no
tes
.in



55

7
ANONYMOUS FUNCTIONS

Unit Structure
7.1 Introduction to Anonymous function
7.1.1 What are Anonymous functions in Python?
7.1.2 Use of Anonymous functions
7.1.3 How to use Anonymous Functions in a Python program?
7.1.4 Using Anonymous functions with other built-in functions
7.1.5 Using Anonymous function with filter()
7.1.6 Using Anonymous function with map()

7.1 INTRODUCTION TO ANONYMOUS FUNCTION

7.1.1 What are Anonymous functions in Python?

 In Python, an anonymous function is a function that is defined without
a name. It is the same as a regular python function but can be defined
without a name.

 While normal functions are defined using the def keyword in Python,
anonymous functions are defined using the lambda keyword.

 Hence, anonymous functions are also called lambda functions

7.1.1 Use of Anonymous functions

 We use lambda functions when we require a nameless function for a
short period of time.

 In Python, we generally use it as an argument to a higher-order
function

 Lambda functions are used along with other built-in functions

7.1.2 How to use Anonymous Functions in a Python program?

Syntax: Lambda arguments: Expression
Example:
l = lambda a : a + 10
print(l(20))
output: 30

mu
no
tes
.in



56

In the above example lambda a : a + 10 is the lambda function, l is the
argument and a+10 is the expression that gets evaluated and returned.

7.1.3 Using Anonymous functions with other built-in functions
Anonymous or Lambda functions can be used effectively with other
functions

7.1.4 Using Anonymous function with filter()
The filter() function in Python takes in a function and a list as arguments.
The function is called with all the items in the list and a new list is
returned which contains items for which the function evaluates to True.

Example:
my_list = [10, 15, 20, 25, 30]
new_list = list(filter(lambda x: (x%2 == 0) , my_list))
print(new_list)
Output:
[10, 20, 30]

7.1.5 Using Anonymous function with map()
The map() function in Python takes in a function and a list.
The function is called with all the items in the list and a new list is
returned which contains items returned by that function for each item.
Here is an example of the use of map() function to double all the items in a
list.

EXAMPLE:
my_list = [1, 2, 3, 4, 5]
new_list = list(map(lambda x: x * 10 , my_list))
print(new_list)

OUTPUT:
[10, 20, 30, 40, 50]

Questions:
1. Explain the concept of Anonymous functions?
2. Explain with example the use ofAnonymous function with filter().
3. Explain with example the use ofAnonymous function with map().



mu
no
tes
.in



57

8
LIST COMPREHENSION

Unit Structure
8.2 List Comprehension
8.2.1 What is list comprehension?
8.2.2 Using list comprehension with an existing list
8.2.3 Using list comprehension with range()

8.2 LIST COMPREHENSION

8.2.1 What is list comprehension?
List comprehension offers a shorter syntax when you want to

create a new list based on the values of an existing list.
List comprehension is considerably faster than processing a list

using for loop.
The list comprehension syntax contains three parts: an

expression, one or more for loop, and optionally, one or more if
conditions.
The list comprehension must be in the square brackets [].

The result of the first expression will be stored in the new list.
The for loop is used to iterate over the iterable object that optionally
includes the if condition.

8.2.2 Using List Comprehension with an existing list
List comprehension can be easily used with existing lists to create

a new list.

EXAMPLE:
>>>fruits = ["apple", "banana", "cherry", "kiwi", "mango"]
>>>newlist = []

for x in fruits:
if "a" in x:
newlist.append(x)

print(newlist)

OUTPUT:
["apple", "banana", "mango"]

8.2.3 Using list comprehension with range()
List comprehension can be easily used with range() to create a new list.

mu
no
tes
.in



58

EXAMPLE :
#list of even numbers with list comprehension
even_nums = [x for x in range(31) if x%2 == 0]
print(even_nums)

OUTPUT:
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]

Questions:
1. Explain list comprehension with an Example.

2. Explain with an example how list comprehensions can be used with an
existing list.

3. Explain with an example how list comprehensions can be used with
range().



mu
no
tes
.in



59

9
INTRODUCTION TO OBJECT ORIENTED

PROGRAMMING

Unit Structure
9.3 Introduction to Object-Oriented Programming
9.3.1 What is Object-oriented programming?
9.3.2 Major Python OOPs concepts
9.3.3Class
9.3.4 Object
9.3.5 Method
9.3.6 Inheritance
9.3.7 Encapsulation
9.3.8 Polymorphism
9.3.9 Data Abstraction
9.4 Built-in function dir()
9.5 methods of strings, tuples, lists, dictionaries

9.3 INTRODUCTION TO OBJECT ORIENTED
PROGRAMMING

9.3.1 What is Object oriented programming?

 Object-oriented programming (OOP) is a programming model that
relies on the concept of classes and objects.

 An object can be defined as a data field that has unique attributes and
behavior.

 It is used to structure a software program into simple, reusable pieces
of code, which are used to create individual instances of objects.

9.3.2 Major Python OOPs concept
1. Class
2. Object
3. Method
4. Inheritance
5. Encapsulation
6. Polymorphism
7. Data Abstraction

mu
no
tes
.in



60

9.3.3Class
 A class is a collection of objects.
 Class creates a user-defined data structure, which holds its own data
members and member functions.

 A class can be accessed and used by creating an instance of that class
which is an object

 Classes are created by keyword class

Syntax:
classclassname:

statements
Example:

classnewclass:
display():

print(“new class”)
9.3.4 Object

 An object is a self-contained component which consists of methods
and properties to make a particular type of data useful.

 An Object is an identifiable entity with some characteristics and
behavior

 An Object is an instance of a Class.

 When a class is defined, no memory is allocated but when an object is
created memory is allocated.

Syntax:
classclassname:

statements

Object = classname()

Example:
classnewclass:

def display():
print(“new class”)

obj=newclass()

9.3.5 Methods in Python
 Python method is like a Python function, but it must be called on
an object. And to create it, you must put it inside a class.
 Syntax:

classclassname:
method(arguments):

Example:
classnewclass:
def display(a):
print(“new class”)
obj=newclass()
obj.display()

mu
no
tes
.in



61

9.3.6 Inheritance
Inheritance allows us to define a class that inherits all the methods

and properties from another class
Syntax:

Class Child_class(Parent_class)
Example:
classParent_class:
def display(a):
print(“new class”)
class Child_class(Parent_class):
obj= Child_class()
obj.display()

Types of inheritance
1. Single -When one class inherits members of just one class.
2. Multiple -When one class inherits members of multiple classes

Syntax:
Class Base1:

Body of the class

Class Base2:
Body of the class

Class Derived(Base1, Base2):
Body of the class

Example:
classParent_class:
def display(a):
print(“new class”)
class Parent_class2:
def display2(a):
print(“new class”)
class Child_class(Parent_class, Parent_class2):
obj= Child_class()
obj.display()

3. Multilevel
When there is inheritance at various levels
Syntax:

Class level1:
Body of the class

Class level2(level1):
Body of the class

Class level3(level2):
Body of the class

mu
no
tes
.in



62

Example:
Class level1:
def display(a):
print(“new class”)
Class level2(level1):
Class level3(level2):
obj= level3()
obj.display()

4. Hierarchical
When two or more classes inherit members of one class.

Class Base:
Body of the class

Class child1(base):
Body of the class

Class child2(base):
Body of the class

Example:
classParent_class:
def display(a):
print(“new class”)
class Child_class1(Parent_class):
class Child_class2(Parent_class):
obj= Child_class1()
obj.display()
obj1= Child_class2()
obj1.display()

5. Hybrid
When there is a mix of any of the above types

9.3.7 Encapsulation
Encapsulation refers to the bundling of data, along with the methods that
operate on that data, into a single unit.

9.3.8 Polymorphism
 Polymorphism is one of the OOPs features that allow us to perform
a single action in different ways.
 With polymorphism, we can create multiple entities with the same
name.

Example:
classnewclass:
def display(a):
print(“new class”)
def display(a,b):
obj=newclass()
obj.display()

mu
no
tes
.in



63

9.3.9 Data Abstraction
Data abstraction hides the details and complexities of the program so the
user only has to know how to work with an object.

Questions:

1. State and explain various object-oriented concepts?
2. Explain class in python with an example.
3. Explain inheritance in python with an example.
4. State and explain various types of inheritance.
5. Explain Hierarchical inheritance with an example.
6. Define the terms encapsulation, polymorphism, abstraction.

9.4 BUILT-IN DIR() FUNCTION

9.4.1 What is dir() function?
dir() is a powerful built-in function in Python3, which returns list of the
attributes and methods of any object

The dir() function returns all properties and methods of the specified
object, without the values.

This function will return all the properties and methods, even built-in
properties which are default for all objects.

Syntax:
dir(object)

Example
import random

print(dir(random)) #lists all names of attributes in random function

9.5 METHODS

9.5.1 String for functions
Python has a set of built-in methods that you can use on strings.
Some of the important string functions are defined below:
 format() :- Formats specified values in a string
 lower():- Converts a string into lower case
 upper():- Converts a string into upper case
 replace():- Returns a string where a specified value is replaced with a
specified value

 center():-Returns a centered string
 count():-Returns the number of times a specified value occurs in a
string

mu
no
tes
.in



64

9.5.2 Methods for Tuples
Python has a set of built-in methods that you can use on tuples.
 cmp(tuple1,tuple2):- Compares elements of both tuples
 len():-Gives the total length of the tuple.
 max():-Returns item from the tuple with max value.
 min():-Returns item from the tuple with min value.
 tuple():- converts a list into tuple

mu
no
tes
.in



65

9.5.5 Methods of lists
Python has a set of built-in methods that you can use on lists
 sort(): Sorts the list in ascending order.
 type(list): It returns the class type of an object.
 append(): Adds one element to a list.
 extend(): Adds multiple elements to a list.

mu
no
tes
.in



66

 index(): Returns the first appearance of a particular value.
 max(list): It returns an item from the list with a max value.
 min(list): It returns an item from the list with a min value.
 len(list): It gives the overall length of the list.
 clear(): Removes all the elements from the list.
 insert(): Adds a component at the required position.
 count(): Returns the number of elements with the required value.
 pop(): Removes the element at the required position.
 remove(): Removes the primary item with the desired value.
 reverse(): Reverses the order of the list.
 copy(): Returns a duplicate of the list.

mu
no
tes
.in



67

9.5.6 methods of dictionaries
 values():-Returns a list of all the values in the dictionary
 clear() Removes all the elements from the dictionary
 update:- Updates the dictionary with the specified key-value pairs
 copy()Returns a copy of the dictionary
 fromkeys()Returns a dictionary with the specified keys and value
 get():-Returns the value of the specified key
 items():- Returns a list containing a tuple for each key value pair
 keys():- Returns a list containing the dictionary's keys
 pop():-Removes the element with the specified key
 popitem():-Removes the last inserted key-value pair
 setdefault():-Returns the value of the specified key. If the key does not
exist: insert the key, with the specified value

mu
no
tes
.in



68

Questions:
1. State and explain any 5 string functions.
2. State and explain any 5 tuple functions.
3. State and explain any 5 list functions.
4. State and explain any 5 dictionary functions.



mu
no
tes
.in


