

1

1
INTRODUCING .NET

Unit Structure
1.0 Objectives
1.1 Introducing .NET
1.1.1 C#, VB, and the .NET Languages
1.1.2 Intermediate Language
1.1.3 Components of .Net Framework
1.1.4 Common Language Runtime (CLR)
1.1.5 The .NET Class Library
1.1.6 Common Type System (CTS)
1.1.7 Meta Data in .NET
1.1.8 Common Language Specification (CLS)
1.5 Example Programs
1.6 Summary
1.7 Exercise
1.8 Reference

1.0 OBJECTIVE

After going through this unit you will be able to,

1. Create and Console Application with basics code.

2. Create the Application using different types of statements and loops.

3. Know about namespaces and assemblies and how to create the same.

4. Create console application using delegates and methods.

1.1 THE .NET FRAMEWORK

• Microsoft .NET is much more than XML Web services.

• At the heart of Microsoft .NET is the .NET Framework, consisting
of the common language runtime and the class libraries.

• These two components provide the execution engine and
programming APIs for building .NET applications.

• Applications compiled for the .NET Framework are not compiled
directly to native code. Instead, they are compiled into an

mu
no
tes
.in

2

Advanced Web
Programming

2

intermediate language called Microsoft Intermediate Language
(MSIL).

• When an application is run for the first time, the common language
runtime just-in-time compiler compiles the MSIL code into native
code before it is executed.

• The common language runtime is more than a simple JIT compiler;
it is also responsible for providing low-level execution services,
such as

• garbage collection,

• exception handling,

• security services, and

• Run time type-safety checking.

• Because of the common language runtime's role in managing
execution, programs that target the .NET Framework are sometimes
called "managed" applications.

• The .NET Framework also includes a set of classes for building
applications that run on the common language runtime.

• These class libraries provide rich support for a wide range of tasks,
including data access, security, file IO, XML manipulation,
messaging, class reflection, XML Web services, user-interface
construction, text processing, ASP.NET, and Microsoft Windows
services.

• The most unique attribute of the .NET Framework is its support for
multiple languages.

• It provides support for over 20 programming languages including
Perl, Python, and COBOL.

• Relying on the common language runtime, code compiled with these
compilers can interoperate.

• The .NET Framework is composed of the four extended applications
named as four blue boxes—representing

1. ASP.NET,
2. Windows Forms,
3. ADO.NET and
4. XML, and subcomponents.

mu
no
tes
.in

3

Introducing .NET

This book uses the Visual Basic language, which enables you to create
readable, modern code. The .NET version of VB is similar in syntax to
older flavors of VB that you may have encountered, including “classic”
VB 6 and the Visual Basic for Applications (VBA) language often used to
write macros in Microsoft Office programs.

1.1.1 C#, VB, and the .NET Languages

• This book uses the Visual Basic language, which enables you to
create readable, modern code. The .NET version of VB is similar in
syntax to older flavors of VB that you may have encountered,
including “classic” VB 6 and the Visual Basic for Applications
(VBA) language often used to write macros in Microsoft Office
programs such as Word and Excel. However, you cannot convert
classic VB into the .NET flavor of Visual Basic, just as you cannot
convert C++ into C#.

• This book uses C#, Microsoft’s .NET language of preference. C#
resembles Java, JavaScript, and C++ in syntax, so programmers who
have coded in one of these languages will quickly feel at home.
Interestingly, VB and C# are quite similar. Though the syntax is
different, both VB and C# use the .NET class library and are
supported by the CLR. In fact, almost any block of C# code can be
translated, line by line, into an equivalent block of VB code (and
vice versa). An occasional language difference pops up, but for the
most part, a developer who has learned one .NET language can
move quickly and efficiently to another.

mu
no
tes
.in

4

Advanced Web
Programming

4

• There are even software tools that translate C# and VB code
automatically (see http://converter.telerik.com or
http://tangiblesoftwaresolutions.com for examples).

• In short, both VB and C# are elegant, modern languages that are
ideal for creating the next generation of web applications.

1.1.2 Intermediate Language

• All the .NET languages are compiled into another lower-level
language before the code is executed. This lower level language is
the Common Intermediate Language (CIL, or just IL).

• The CLR, the engine of .NET, uses only IL code. Because all .NET
languages are based on IL, they all have profound similarities. This
is the reason that the VB and C# languages provide essentially the
same features and performance.

• In fact, the languages are so compatible that a web page written with
C# can use a VB component in the same way it uses a C#
component, and vice versa.

• The .NET Framework formalizes this compatibility with something
called the Common Language Specification (CLS).

• Essentially, the CLS is a contract that, if respected, guarantees that a
component written in one .NET language can be used in all the
others.

• One part of the CLS is the common type system (CTS), which
defines the rules for data types such as strings, numbers, and arrays
that are shared in all NET languages.

• The CLS also defines object-oriented ingredients such as classes,
methods, events, and quite a bit more.

• For the most part, .NET developers don’t need to think about how
the CLS works, even though they rely on it every day.

• Following Figure shows how the .NET languages are compiled to
IL.

• Every EXE or DLL file that you build with a .NET language
contains IL code.

• This is the file you deploy to other computers. In the case of a web
application, you deploy your compiled code to a live web server.

mu
no
tes
.in

5

Introducing .NET

Language compilation in .NET

1.1.3 Components of .NET Framework

• The following pointers describe the components of the .Net
framework 3.5 and the job they perform:

Common Language Runtime:
• It is built around CTS. It performs runtime tasks like memory

management and garbage collection.

Base Class Libraries:
• It is a rich set of functional base classes.

mu
no
tes
.in

6

Advanced Web
Programming

6

Extended Class Libraries:

• Extended from base class libraries and designed to make it easier
and faster to develop a specific application.

CLS: (Common Language Specification)

• It defines requirements for .net languages. It contains the
specifications for the .Net supported languages and implementation
of language integration.

CTS: (Common Type System)

• It provides guidelines for declaring, using and managing types at
runtime and cross-language communication.

Metadata and Assemblies:

• Metadata is the binary information describing the program, which is
either stored in a portable executable file(PE) or in the memory.

• Assembly is a logical unit consisting of the assembly manifest, type
metadata, IL code and a set of resources like image files.

Multiple programming languages:

• It provides unified programming model for several languages.

Visual Studio .net:

• It is the IDE for coding with .net framework that spans the entire .net
framework.

Windows & COM+ services:

• Today’s requirements for today’s .net framework SDK is Windows
and COM+ services which provides facility to access the lower level
system functionality.

• The class framework encapsulates the following functionality:

• Data Access

• Thread management

• Interoperability with unmanaged code

• Network protocol support

• XML support

• Web services support and Windows Forms support Access
to assembly meta data

mu
no
tes
.in

7

Introducing .NET 1.1.4 Common Language Runtime

• The CLR provides a rich level of support that simplifies application
development and provides for better code reuse.

• The CLR provides a broad set of runtime services, including
compilation, garbage collection and memory management.

• The CLR is built around the CTS, which defines standard, object-
oriented data types that are used across all .NET programming
languages.

• Code that runs under the control of the CLR is called managed code.
Managed code allows the CLR to do the following.

• Read meta data that describes the component interfaces and
types

• walk the code stack

• handle exceptions

• retrieve security information

Design Goals of the CLR:

1. Simplify Development

• Define standards that promote code reuse

• provide a broad range of services, including memory
management and garbage collection

2. Simplify application deployment

• Components use meta data instead of registration

• support side-by-side, multiple component versions

• command-line deployment (Xcopy) and uninstall(DEL)

3. support development languages

• provide rich base classes for developer tools and languages

4. support multiple languages

• define CTS that are used by all .NET languages

5. enable convergence of programming models

• Build languages and tools on a common framework. For
example, ASP .NET, VB .NET, and C# have access to the
same base classes.

mu
no
tes
.in

8

Advanced Web
Programming

8

Structure of the CLR:

1.1.5 The .NET Class Library

• The .NET class library is a giant repository of classes that provide
prefabricated functionality for everything from reading an XML file
to sending an e-mail message.

• If you’ve had any exposure to Java, you may already be familiar
with the idea of a class library. However, the .NET class library is
more ambitious and comprehensive than just about any other
programming framework.

• Any .NET language can use the .NET class library’s features by
interacting with the right objects.

• This helps encourage consistency among different .NET languages
and removes the need to install numerous components on your
computer or web server.

• Some parts of the class library include features you’ll never need to
use in web applications (such as the classes used to create desktop
applications with Windows interfaces). Other parts of the class
library are targeted directly at web development.

• Still more classes can be used in various programming scenarios and
aren’t specific to web or Windows development.

• These include the base set of classes that define common variable
types and the classes for data access, to name just a few.

1.1.6 Common Type System

• CTS defines standard, object oriented types and value types that are
supported by all .NET programming languages.

• The CTS standards are what allow .NET to provide a unified
programming model, and to support multiple languages.

mu
no
tes
.in

9

Introducing .NET • CTS is the first prerequisite for allowing languages to interoperate.

• This is easy to understand, if you consider that languages can only
interoperate if they are based on the same system of types.

• In the past, type discrepancies have caused many interoperability
problems, particularly for VB developers.

• So, CTS is an important new feature in the .NET framework. The
CTS must support a range of languages, some of which are object-
oriented, and some of which are not. Much has been made of the
fact that COBOL is now a first class .NET language. COBOL is a
procedural language, not an object-oriented one.

• The CTS provides two main types:

• Value Types

• Reference Types
Value types are further classified into

• Built-in types
• User defined types

 Reference types are further classified into

• Pointers
• Objects
• Interfaces

• Value types are simple data types that roughly correspond to simple
bit patterns like integers and floats.

• In .NET, a value type derives from the System.Object namespace,
and supports an interface that provides information about the kind of
data that is stored, as well as the data value.

• They are useful for representing simple data types, and nay not-
object user defined type, including enumerations.

• They are known as exact types which mean that they fully describe
the value they hold.

• Reference types are also derived from the system.

• Object namespace, and may hold object references.

• They are self typing, which means that they describe their own
interface.

• They are very specific to the type of object you are assigning.

• Once the reference is assigned, you expect to query the object
reference according to what its interface provides.

mu
no
tes
.in

10

Advanced Web
Programming

10

Some of the primitive data types are:

• Bool

• Char

• int 8

• int 16

• float 32

• float 64

• unsigned int8

• unsigned int16

Type Safety:

• The CTS promotes type safety, which in turn improves code
stability.

• In .NET, type safety means that type definitions are completely
known, and cannot be compromised.

• The CTS ensures that object references are strongly typed.

• It checks whether the array index out of range or not, whether the
arithmetic exceptions are handled properly or not etc.

1.1.7 Metadata in .NET

Meta Data is organized information that the CLR uses to provide compile
time and runtime services, including:

• Loading of class files

• Memory Management

• Debugging

• Object Browsing

• MSIL translation no Native Code

• NET components are self describing, because the Meta Data is
stored as part of the compiled component known in .NET as an
assembly.

• Combine this with the fact that .NET components do not require
windows registry entries, and you can immediately appreciate why
deployments are so much easier in .NET.

mu
no
tes
.in

11

Introducing .NET The figure below illustrates different Meta Data Consumers:

profiler

designers
debugger

Proxy generator

reflection

Meta Data Code

Type
Browser

Other IL
Compilers

Schema
Generator

serialization

CONTENTS OF META DATA

• Description of the assembly (the deployment unit)
• identity: name, version and culture

• dependencies (other assemblies)

• security permission that the assembly requires to run

• Description of the Types

• Base classes and interfaces

• Custom attributes

• defined by the User

• defined by the Compiler

• defined by the Framework

1.1.8 Common Language Specification(CLS)

• The purpose of the NET framework is to define standards that makes
it easier to write robust, secure and reusable code.

• The NET framework extends this concept by allowing any language
to participate in the framework; so long as it conforms to the
specifications embodied by the common Type System and the
Common Language Specification.

mu
no
tes
.in

12

Advanced Web
Programming

12

• The common language Specification (CLS) defines conventions that
languages must support in order to be interoperable within .NET.

• The CLS defines rules that range from naming conventions for
interface members, to rules governing method overloading.

• In order to provide interoperation, a CLS-compliant language must
obey the following conventions:

• Public identifiers are case- sensitive.

• Language must be able to resolve identifiers that are equivalent to
their keywords.

• Stricter overloading rules; a given method name may refer to any
number of methods, as long as each one differs in the number of
parameters, or argument types.

• Properties and events must follow strict naming rules.

• All pointers must be managed, and reference must be typed;
otherwise, they cannot be verified.

1.5 EXAMPLE PROGRAMS

Command Line Arguments
using System;
class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Enter The Name =");
 string name = Console.ReadLine();
 Console.WriteLine("Enter The Roll No.=");
 int rollno = Int32.Parse (Console.ReadLine()); // Convert.ToInt32()
 Console.WriteLine("Enter The Percentage :");
 double per = Double.Parse(Console.ReadLine());
 // Convert.ToDouble()
 // Console.WriteLine("Name=" + name);
 // Console.WriteLine("Roll No.=" + rollno);
 // Console.WriteLine("Percentage =" + per);
 Console.WriteLine("name={0} \t rollno={1} \t Percentage={2}",
name, rollno, per);
 Console.ReadKey(); // To hold the output
 }
}

mu
no
tes
.in

13

Introducing .NET

Boxing and Unboxing
using System;
class Program
{
 public static void Main(string[] args)
 {
 int a = 10; // Value Type
 object obj = a; // Refence Type
 Console.WriteLine("a={0} ", a);
 Console.WriteLine("obj={0}", obj);
 int b = (int) obj ;
 Console.WriteLine("b={0}", b);
 Console.ReadKey(); // To hold the output
 }
}
Conditional Operator ?:
using System;
class Program
{
 public static void Main(string[] args)
 {

 Console.WriteLine("Enter The FOUR Numbers=");
 int a = Convert.ToInt32(Console.ReadLine());
 int b = Convert.ToInt32(Console.ReadLine());
 int c = Convert.ToInt32(Console.ReadLine());
 int d = Convert.ToInt32(Console.ReadLine());

 int large = a > b ? a : b;
 int larger = large > c ? large : c;
 int largest = larger > d ? larger : d;
 Console.WriteLine("Large={0}", largest);
 Console.ReadKey(); // To hold the output
 }
}

mu
no
tes
.in

14

Advanced Web
Programming

14

WAP to accept a number from the user and check whether it is positive,
negative or zero.
using System;
class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Enter The Number");
 int num = Convert.ToInt32(Console.ReadLine());

 if (num > 0)
 {
 Console.WriteLine("Positive Number");
 }
 if (num < 0)
 {
 Console.WriteLine("Negative Number");
 }
 if (num == 0)
 {
 Console.WriteLine("Number is ZERO");
 }
 Console.ReadKey(); // To hold the output
 }
}

WAP to accept a number from the user and check whether it is even or
odd.
using System;
class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Enter The Number");
 int num = Convert.ToInt32(Console.ReadLine());

 if (num % 2 == 0)

mu
no
tes
.in

15

Introducing .NET {
 Console.WriteLine("Even Number");
 }
 else
 {
 Console.WriteLine("Odd Number");
 }
 Console.ReadKey(); // To hold the output
 }
}

Fall-through in Switch
using System;
class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Enter The Option");
 int opt = Convert.ToInt32(Console.ReadLine());

 switch (opt)
 {
 case 1:
 Console.WriteLine("ONE");
 goto case 3;
 case 2:
 Console.WriteLine("TWO");
 break;
 case 3:
 Console.WriteLine("THREE");
 break;
 case 4:
 Console.WriteLine("FOUR");
 break;
 default :
 Console.WriteLine("Invalid Option");

mu
no
tes
.in

16

Advanced Web
Programming

16

 break;
 }
 Console.ReadKey(); // To hold the output
 }
}

While Loop
using System;
class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Incremented Loop");
 int i = 1;
 while (i <= 10)
 {
 Console.Write(i + "\t");
 i++;
 }
 Console.WriteLine("\nDecremented Loop");
 int j = 10;
 while (j >= 1)
 {
 Console.Write(j + "\t");
 j--;
 }
 Console.ReadKey();
 }
}

do while Loop
int i = 1;
 do
 {
 Console.Write(i + "\t");
 i++;
 } while (i <= 10);

 int j = 10;

mu
no
tes
.in

17

Introducing .NET do
 {
 Console.Write(j + "\t");
 j--;
 } while (j > 0);

For Loop
Console.WriteLine("Incremented Loop");
 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + "\t");
 }
 Console.WriteLine ("Decremented Loop")
 for(int j=10;j>=1;j--)
 {
 Console.Write (j+"\t");
 }

Foreach Loop
int[] num = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for (int i = 0; i < 10; i++)
 {
 Console.Write(num[i] + "\t");
 }
 foreach(int s in num)
 {
 Console.Write(s + "\t");
 }

1.6 SUMMARY

This chapter 1 gives the basic syntax of C#. It discusses about variables,
keywords, data types, creation of arrays, operators, control structures,
methods debugging and few example programs. After learning the above
topics, you can write many useful programs and built a strong foundation
for larger programming projects.

mu
no
tes
.in

18

Advanced Web
Programming

18

1.7 EXERCISE: REVIEW QUESTIONS

Chapter 1

1) Write a note on .NET Framework.

2) Explain the data types in C#.

3) Explain the various operators in C#.

4) Discuss the various looping structures in C#.

5) Explain how arrays are created in C#.

6) What is a method? Explain its components.

7) How is debugging done in C#?

Program

1) WAP to accept a character from the user and check whether it is
vowel or not.

2) WAP to accept two numbers from the user and display the greater
number using if...else.

3) WAP to accept three numbers from the user and display the greater
number.

4) WAP to accept a year from the user and display whether it is leap
year or not.

5) WAP to accept a number from the user and display the factorial.

6) WAP to accept a number from the user and display sum of digits and
reverse of that number.

7) WAP to accept a number from the user and check whether it is
palindrom number or not.

8) WAP to accept a number from the user and check whether it is
armstrong number or not.

9) WAP to accept a number from the user and check whether it is
prime number or not.

10) WAP to accept two numbers from the user and display the GCD and
LCM of that numbers.

11) WAP to accept a number from the user and check whether it is
perfect number or not?

a. Example : 6 -> 1+2+3 = 6 28 = 1 + 2 + 4 + 7 + 14 = 28

mu
no
tes
.in

19

Introducing .NET 12) WAP to display all the prime numbers between 1 to 1000?

13) WAP to display all the armstrong numbers between 1 to 1000?

14) WAP to display the following output :

1.8 REFERENCE

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/



Numbers Factorials

1 1

2 2

3 6

4 24

5 120

6 720

mu
no
tes
.in

20

Advanced Web
Programming

20

2
THE C# LANGUAGE

Unit Structure
2.0 The C# Language
2.1 Introduction
2.2 The .NET Languages
2.3 C# Language Basics
2.4 Variables and Data Types
2.5 Variables Operations
2.6 Keywords in C#
2.7 Object-Based Manipulation
 2.7.1 The String Type
 2.7.2 The Date Time and Time Span Types
 2.7.3 The Array Type
2.8 Conditional Logic
 2.8.1 Conditional Statements
2.9 Loops in C#
 2.9.1 The for Loop
 2.9.2 The foreach Loop
 2.9.3 The While Loop
2.10 Methods in C#
 2.10.1 Parameters
 2.10.2 Method Overloading
2.11 Delegates
2.12 Summary
2.13 Questions
2.14 References

2.1 INTRODUCTION

 Before you can create an ASP.NET application, you need to choose
a .NET language in which to program it.

 Both VB and C# are powerful, modern languages, and you won’t go
wrong using either of them to code your web pages.

 Often the choice is simply a matter of personal preference or your
work environment. For example, if you’ve already programmed in a

mu
no
tes
.in

21

The C# Language language that uses C-like syntax (for example, Java), you’ll probably
be most comfortable with C#. Or if you’ve spent a few hours writing
Microsoft Excel macros in VBA, you might prefer the natural style
of Visual Basic. Many developers become fluent in both. This
chapter presents an overview of the C# language.

 You’ll learn about the data types you can use, the operations you can
perform, and the code you’ll need to define functions, loops, and
conditional logic.

 This chapter assumes that you have programmed before and are
already familiar with most of these concepts—you just need to see
how they’re implemented in C#. If you’ve programmed with a
similar language such as Java, you might find that the most
beneficial way to use this chapter is to browse through it without
reading every section.

 This approach will give you a general overview of C#.
 You can then return to this chapter later as a reference when needed.

But remember, though you can program an ASP.NET application
without mastering all the language details, this deep knowledge is
often what separates the casual programmer from the true
programming guru.

2.2 THE .NET LANGUAGES

 The .NET Framework ships with two core languages that are
commonly used for building ASP.NET applications: C# and VB.

 These languages are, to a large degree, functionally equivalent.
Microsoft has worked hard to eliminate language conflicts in the
.NET Framework.

 These battles slow down adoption, distract from the core framework
features, and makes it difficult for the developer community to solve
problems together and share solutions.

 According to Microsoft, choosing to program in C# instead of VB is
just a lifestyle choice and won’t affect the performance,
interoperability, feature set, or development time of your
applications.

 Surprisingly, this ambitious claim is essentially true.
 .NET also allows other third-party developers to release languages

that are just as feature-rich as C# or VB.
 These languages (which include Eiffel, Pascal, and even COBOL)

“snap in” to the .NET Framework effortlessly.
 In fact, if you want to install another .NET language, all you need to

do is copy the compiler to your computer and add a line to register it
in a configuration file.

mu
no
tes
.in

22

Advanced Web
Programming

22

 Typically, a setup program would perform these steps for you
automatically.

 Once installed, the new compiler can transform your code creations
into a sequence of Intermediate Language (IL) instructions, just as
the VB and C# compilers do with VB and C# code.

 IL is the only language that the Common Language Runtime (CLR)
recognizes.

 When you create the code for an ASP.NET web form, it’s changed
into IL using the C# compiler (csc.exe) or the VB compiler ().
Although you can perform the compilation manually, you’re more
likely to let ASP.NET handle it automatically when a web page is
requested.

2.3 THE C# LANGUAGE

 New C# programmers are sometimes intimidated by the quirky
syntax of the language, which includes special characters such as
semicolons (;), curly braces ({}), and backward slashes (\).

 Fortunately, once you get accustomed to C#, these details will
quickly melt into the background.

 In the following sections, you’ll learn about four general principles
you need to know about C# before you learn any other concepts.

Case Sensitivity
 Some languages are case-sensitive, while others are not. Java, C,

C++, and C# are all examples of case-sensitive languages.

 VB is not. This difference can frustrate former VB programmers
who don’t realize that keywords, variables, and functions must be
entered with the proper case.

 For example, if you try to create a conditional statement in C# by
entering If instead of if, your code will not be recognized, and the
compiler will flag it with an error when you try to build your
application.

Commenting
 Comments are lines of descriptive text that are ignored by the

compiler. C# provides two basic types of comments.

 The first type is the single-line comment. In this case, the comment
starts with two forward slashes and continues for the entire current
line:

// A single-line C# comment.
 Optionally, C# programmers can use /* and */ comment brackets to

indicate multiple-line comments:

/* A multiple-line
C# comment. */

mu
no
tes
.in

23

The C# Language  This way, the code won’t be executed, but it will still remain in your
source code file if you need to refer to it or use it later.

Statement Termination
 C# uses a semicolon (;) as a statement-termination character.

 Every statement in C# code must end with this semicolon, except
when you’re defining a block structure. (Examples of such
statements include methods, conditional statements, and loops,
which are three types of code ingredients that you’ll learn about later
in this chapter.) By omitting the semicolon, you can easily split a
statement of code over multiple physical lines.

 You just need to remember to put the semicolon at the end of the last
line to end the statement.

 The following code snippet demonstrates four equivalent ways to
perform the same operation (adding three numbers together):

// A code statement on a single line.
myValue = myValue1 + myValue2 + myValue3;
// A code statement split over two lines.
myValue = myValue1 + myValue2 +
myValue3;
// A code statement split over three lines.
myValue = myValue1 +
myValue2 +
myValue3;
// Two code statements in a row.
myValue = myValue1 + myValue2;
myValue = myValue + myValue3;

Blocks
 The C#, Java, and C languages all rely heavily on curly braces—

parentheses with a little more attitude: {}.

 You can find the curly braces to the right of most keyboards (next to
the P key); they share a key with the square brackets: [].

 Curly braces group multiple code statements together. Typically,
you’ll group code statements because you want them to be repeated
in a loop, executed conditionally, or grouped into a function. These
are all block structures, and you’ll see all these techniques in this
chapter.

mu
no
tes
.in

24

Advanced Web
Programming

24

 But in each case, the curly braces play the same role, which makes
C# simpler and more concise than other languages that need a
different syntax for each type of block structure.

{

// Code statements go here.

}

2.4 VARIABLES AND DATA TYPES

Variables
 As with all programming languages, you keep track of data in C# by

using variables.
 Variables can store numbers, text, dates, and times, and they can

even point to full-fledged objects.
 When you declare a variable, you give it a name and specify the type

of data it will store.
 To declare a local variable, you start the line with the data type,

followed by the name you want to use. A final semicolon ends the
statement.

// Declare an integer variable named errorCode.

int errorCode;

// Declare a string variable named myName.

string myName;

The variables in C#, are categorized into the following types:

 Value types
 Reference types
 Object types

Value Type
 Value type variables can be assigned a value directly. They are

derived from the class System.ValueType.
 The value types directly contain data. Some examples are int, char,

and float, which stores numbers, alphabets, and floating point
numbers, respectively. When you declare an int type, the system
allocates memory to store the value.

For example if you type

Console.WriteLine(sizeof(int)),

you will get the output as 4, the bytes occupied by an integer.

mu
no
tes
.in

25

The C# Language

Reference Type

 The reference types do not contain the actual data stored in a
variable, but they contain a reference to the variables.

 In other words, they refer to a memory location. Using multiple
variables, the reference types can refer to a memory location. If the
data in the memory location is changed by one of the variables, the
other variable automatically reflects this change in value.

 Example of built-in reference types are:
 object,
 dynamic, and
 string.

Object Type
 The Object Type is the ultimate base class for all data types in C#

Common Type System (CTS). Object is an alias for System.Object
class.

 The object types can be assigned values of any other types, value
types, reference types, predefined or user-defined types.

 However, before assigning values, it needs type conversion.

Data Types
 The types of data that a variable contain is called Datatype. A

Datatype is a classification of things that share similar type of
qualities or characteristics or behaviour .

 C# is strongly typed language so every variable and object must
have a type.

 These are two types of data type in C#.

Primitive types or predefined
 Eg:-byte, short, int, float, double, long, char, bool, DateTime, string

object etc.

Non-primitive types or user defined
 Eg:- class , struct, enum, interface, delegate, array.

Strings and Escaped Characters
 C# treats text a little differently than other languages such as VB. It

interprets any embedded backslash (\) as the start of a special
character sequence.

 For example, \n means add a new line (carriage return).

 The most useful character literals are as follows:

 \" (double quote)

mu
no
tes
.in

26

Advanced Web
Programming

26

 \n (new line)
 \t (horizontal tab)
 \\ (backward slash)

You can also insert a special character based on its hex code by using the
syntax \x250. This inserts a single character with hex value 250 (which is
a character that looks like an upside-down letter a).
 Note that in order to specify the backslash character (for example, in

a directory name), you require two slashes. Here’s an example:

Alternatively, you can turn off C# escaping by preceding a string with an
@ symbol, as shown here: string path = @"c:\MyApp\MyFiles";

2.5 VARIABLES OPERATIONS

 You can use all the standard types of variable operations in C#.
 When working with numbers, you can use various math symbols, as

listed in Table below C# follows the conventional order of
operations, performing exponentiation first, followed by
multiplication and division and then addition and subtraction. You
can also control order by grouping sub expressions with parentheses:

Operator Description Example
+ Addition 1 + 1 = 2
- Subtraction 5 - 2 = 3
* Multiplication 2 * 5 = 10
/ Division 5.0 / 2 = 2.5
% Gets the remainder left after integer division 7 % 3 = 1

 The operators above are designed for manipulating numbers.
However, C# also allows you to use the addition operator (+) to
join two strings:

// A C# variable holding the path c:\MyApp\MyFiles
string path = "c:\\MyApp\\MyFiles";

int number;
number = 4 + 2 * 3;// number will be 10.
number = (4 + 2) * 3;
// number will be 18.

mu
no
tes
.in

27

The C# Language // Join three strings together.
myName = firstName + " " + lastName;
In addition, C# provides special shorthand assignment operators.
Here are a few examples:
// Add 10 to myValue. This is the same as myValue = myValue + 10;
myValue += 10;
// Multiple myValue by 3. This is the same as myValue = myValue * 3;
myValue *= 3;
// Divide myValue by 12. This is the same as myValue = myValue / 12;
myValue /= 12;

2.6 KEYWORDS IN C#

 Keywords are predefined, reserved identifiers that have special
meanings to the compiler.

 They cannot be used as identifiers in your program unless they
include @ as a prefix. There are 77 keywords.

 Some of them are: is, base, checked, decimal, delegate, event,
explicit, extern, fixed, for each, implicit, in, internal, is, lock ,object ,
override, params, read only, ref, sealed, stack, alloc, unchecked,
unsafe, using.

Type Conversions
 Converting information from one data type to another is a fairly

common programming task.

 For example, you might retrieve a user’s text input that contains the
number you want to use for a calculation.

 Or, you might need to take a calculated value and transform it into
text you can display in a web page. Conversions are of two types:
widening and narrowing. Widening conversions always succeed.

 For example, you can always convert a 32-bit integer into a 64-bit
integer. You won’t need any special code:

int mySmallValue;
long myLargeValue;
// Get the largest possible value that can be stored as a 32-bit integer.
// .NET provides a constant named Int32.MaxValue that provides this
number.
mySmallValue = Int32.MaxValue;
// This always succeeds. No matter how large mySmallValue is,
// it can be contained in myLargeValue.
myLargeValue = mySmallValue;

mu
no
tes
.in

28

Advanced Web
Programming

28

 On the other hand, narrowing conversions may or may not succeed,
depending on the data.

 If you’re converting a 32-bit integer to a 16-bit integer, you could
encounter an error if the 32-bit number is larger than the maximum
value that can be stored in the 16-bit data type.

 All narrowing conversions must be performed explicitly. C# uses an
elegant method for explicit type conversion.

 To convert a variable, you simply need to specify the type in
parentheses before the expression you’re converting.

 The following code shows how to change a 32-bit integer to a 16-bit
integer:

int count32 = 1000;

short count16;

// Convert the 32-bit integer to a 16-bit integer.

// If count32 is too large to fit, .NET will discard some of the

// information you need, and the resulting number will be
incorrect.

count16 = (short)count32;

This process is called as Casting.

2.7 OBJECT-BASED MANIPULATION

 .NET is object-oriented to the core. In fact, even ordinary variables
are really full-fledged objects in disguise.

 This means that common data types have the built-in smarts to
handle basic operations (such as counting the number of characters
in a string).

 Even better, it means you can manipulate strings, dates, and numbers
in the same way in C# and in VB.

 You’ll learn far more about objects in Chapter 3. But even now it’s
worth taking a peek at the object underpinnings in seemingly
ordinary data types.

 For example, every type in the .NET class library includes a
ToString() method.

 The default implementation of this method returns the class name.

mu
no
tes
.in

29

The C# Language  In simple variables, a more useful result is returned: the string
representation of the given variable.

 The following code snippet demonstrates how to use the ToString()
method with an integer:

string myString;

int myInteger = 100;

// Convert a number to a string. myString will have the contents
"100".

myString = myInteger.ToString();

2.7.1 The String Type
 One of the best examples of how class members can replace built-in

functions is found with strings.

 In the past, every language has defined its own specialized functions
for string manipulation.

 In .NET, however, you use the methods of the String class, which
ensures consistency between all .NET languages.

 The following code snippet shows several ways to manipulate a
string by using its object nature:

string myString = "This is a test string ";

myString = myString.Trim(); // = "This is a test string"

myString = myString.Substring(0, 4); // = "This"

myString = myString.ToUpper(); // = "THIS"

myString = myString.Replace("IS", "AT"); // = "THAT"

int length = myString.Length; // = 4

 The first few statements use built-in methods, such as Trim(),
Substring(), ToUpper(), and Replace().

 These methods generate new strings, and each of these statements
replaces the current myString with the new string object.

 The final statement uses a built-in Length property, which returns an
integer that represents the number of characters in the string.

 Note that the Substring() method requires a starting offset and a
character length.

 Strings use zero-based counting. This means that the first letter is in
position 0, the second letter is in position 1, and so on.

mu
no
tes
.in

30

Advanced Web
Programming

30

 You’ll find this standard of zero-based counting throughout .NET
Framework for the sake of consistency.

Methods in System.String Class

Length() Returns the number of characters in the string (as an integer).

ToUpper() and ToLower()

Returns a copy of the string with all the characters changed to uppercase
or lowercase characters.

Trim(), TrimEnd(), and TrimStart()

Removes spaces (or the characters you specify) from either end (or both
ends) of a string.

PadLeft() and PadRight()

Adds the specified character to the appropriate side of a string as many
times as necessary to make the total length of the string equal to the
number you specify. For example, "Hi".PadLeft(5, '@') returns the string
@@@Hi.

Insert()

Puts another string inside a string at a specified (zero-based) index
position. For example, Insert(1, "pre") adds the string pre after the first
character of the current string.

Remove()

Removes a specified number of characters from a specified position. For
example, Remove(0, 1) removes the first character.

Replace()

Replaces a specified substring with another string. For example,
Replace("a", "b") changes all a characters in a string into b characters.

Substring()

Extracts a portion of a string of the specified length at the specified
location (as a new string). For example, Substring(0, 2) retrieves the first
two characters.

StartsWith() and EndsWith()

Determines whether a string starts or ends with a specified substring. For
example, StartsWith("pre") will return either true or false, depending on
whether the string begins with the letters pre in lowercase.

mu
no
tes
.in

31

The C# Language 2.7.2 The DateTime and TimeSpan Types

 The DateTime and TimeSpan data types also have built-in methods
and properties.

 These class members allow you to perform three useful tasks:

 Extract a part of a DateTime (for example, just the year) or
convert a TimeSpan to a specific representation (such as the
total number of days or total number of minutes).

 Easily perform date calculations.

 Determine the current date and time and other information
(such as the day of the week or whether the date occurs in a
leap year)

 For example, the following block of code creates a DateTime object,
sets it to the current date and time, and adds a number of days.

 It then creates a string that indicates the year that the new date falls
in (for example, 2012).

DateTime myDate = DateTime.Now;

myDate = myDate.AddDays(100);

string dateString = myDate.Year.ToString();

 The next example shows how you can use a TimeSpan object to find
the total number of minutes between two DateTime objects:

DateTime myDate1 = DateTime.Now;

DateTime myDate2 = DateTime.Now.AddHours(3000);

TimeSpan difference;

difference = myDate2.Subtract(myDate1);

double numberOfMinutes;

numberOfMinutes = difference.TotalMinutes;

 The DateTime and TimeSpan classes also support the + and –
arithmetic operators, which do the same work as the built-in
methods. That means you can rewrite the example shown earlier like
this:

mu
no
tes
.in

32

Advanced Web
Programming

32

// Adding a TimeSpan to a DateTime creates a new DateTime.

DateTime myDate1 = DateTime.Now;

TimeSpan interval = TimeSpan.FromHours(3000);

DateTime myDate2 = myDate1 + interval;

// Subtracting one DateTime object from another produces a
TimeSpan.

TimeSpan difference;

difference = myDate2 - myDate1;

Now : Gets the current date and time.
Today: Gets the current date and leaves time set to 00:00:00.
Year, Date, Month, Hour, Minute, Second, and Millisecond
Returns one part of the DateTime object as an integer. For example,
Month will return 12 for any day in December.
Add() and Subtract()
Adds or subtracts a TimeSpan from the DateTime. For convenience, these
operations are mapped to the + and – operators, so you can use them
instead when performing calculations with dates.
AddYears(), AddMonths(), AddDays(), AddHours(), AddMinutes(),
AddSeconds(), AddMilliseconds()
Adds an integer that represents a number of years, months, and so on, and
returns a new DateTime. You can use a negative integer to perform a date
subtraction.
IsLeapYear()
Returns true or false depending on whether the specified year is a leap
year.
ToString()
Returns a string representation of the current DateTime object. You can
also use an overloaded version of this method that allows you to specify a
parameter with a format string.
2.7.3 The Array Type
 Arrays also behave like objects in the world of .NET. (Technically,

every array is an instance of the System.Array type.)
 For example, if you want to find out the size of a one-dimensional

array, you can use the Length property or the GetLength() method,
both of which return the total number of elements in an array:

int[] myArray = {1, 2, 3, 4, 5};
int numberOfElements;
numberOfElements = myArray.Length; // numberOfElements = 5

mu
no
tes
.in

33

The C# Language  You can also use the GetUpperBound() method to find the highest
index number in an array. When calling GetUpperBound(), you
supply a number that indicates what dimension you want to check.

 In the case of a one-dimensional array, you must always specify 0 to
get the index number from the first dimension.

 In a two dimensional array, you can also use 1 for the second bound;
in a three-dimensional array, you can also use 2 for the third bound;
and so on.

The following code snippet shows GetUpperBound() in action:
int[] myArray = {1, 2, 3, 4, 5};
int bound;
// Zero represents the first dimension of an array.
bound = myArray. GetUpperBound(0); // bound = 4

 On a one-dimensional array, GetUpperBound() always returns a
number that’s one less than the length. That’s because the first index
number is 0.

 For example, the following code snippet uses GetUpperBound() to
find the total number of rows and the total number of columns in a
two-dimensional array:

// Create a 4x2 array (a grid with four rows and two columns).
int[,] intArray = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
int rows = intArray.GetUpperBound(0) + 1; // rows = 4
int columns = intArray.GetUpperBound(1) + 1; // columns = 2

Length
Returns an integer that represents the total number of elements in all
dimensions of an array. For example, a 3 × 3 array has a length of 9.
GetLowerBound() and GetUpperBound()
Determines the dimensions of an array. As with just about everything
in.NET, you start counting at zero (which represents the first dimension).
Clear()
Empties part or all of an array’s contents, depending on the index values
that you supply. The elements revert to their initial empty values (such as
0 for numbers).
IndexOf () and LastIndexOf ()
Searches a one-dimensional array for a specified value and returns the
index number. You cannot use this with multidimensional arrays.
Sort()
Sorts a one-dimensional array made up of comparable data such as strings
or numbers.

mu
no
tes
.in

34

Advanced Web
Programming

34

Reverse ()
Reverses a one-dimensional array so that its elements are backward, from
last to first.

2.8 CONDITIONAL LOGIC

 Conditional logic means deciding which action to take based on user
input, external conditions, or other information—is the heart of
programming.

 All conditional logic starts with a condition: a simple expression that
can be evaluated to true or false.

 Your code can then make a decision to execute different logic
depending on the outcome of the condition.

 To build a condition, you can use any combination of literal values
or variables along with logical operators. Table below lists the basic
logical operators.

 You can use all the comparison operators with any numeric types.

With string data types, you can use only the equality operators (==
and !=). C# doesn’t support other types of string comparison
operators.

int result;

result = String.Compare("apple", "attach"); // result = -1

result = String.Compare("apple", "all"); // result = 1

result = String.Compare("apple", "apple"); // result = 0

// Another way to perform string comparisons.

string word = "apple";

result = word.CompareTo("attach"); // result = -1

mu
no
tes
.in

35

The C# Language 2.8.1 Conditional Statements
The if Statement

 The if statement is the
powerhouse of conditional
logic, able to evaluate any
combination of conditions
and deal with multiple and
different pieces of data.

 Here’s an example with an if
statement that features two
else conditions:

 An if block can have any
number of conditions. If you
test only a single condition,
you don’t need to include any
else blocks.

if (myNumber > 10)
{
// Do something.
}
else if (myString == "hello")
{
// Do something.
}
else
{
// Do something.
}

 Keep in mind that the if construct matches one condition at most.

 For example, if myNumber is greater than 10, the first condition will
be met.

 That means the code in the first conditional block will run, and no
other conditions will be evaluated.

 Whether my String contains the text hello becomes irrelevant,
because that condition will not be evaluated. If you want to check
both conditions, don’t use an else block—instead, you need two if
blocks back-to-back, as shown here:

if (myNumber > 10)
{
// Do something.
}
if (myString == "hello")
{
// Do something.
}

The switch Statement

 C# also provides a switch statement that you can use to evaluate a
single variable or expression for multiple possible values. The only
limitation is that the variable you’re evaluating must be an integer-
based data type, a bool, a char, a string, or a value from an
enumeration. Other data types aren’t supported.

mu
no
tes
.in

36

Advanced Web
Programming

36

 In the following code, each case examines the myNumber variable
and tests whether it’s equal to a specific integer:

switch (myNumber)

{

case 1:

// Do something.

break;

case 2:

// Do something.

break;

default:

// Do something.

break;

}

 You’ll notice that the C# syntax
inherits the convention of C/C++
programming, which requires that
every branch in a switch statement be
ended by a special break keyword.

 If you omit this keyword, the
compiler will alert you and refuse to
build your application.

 The only exception is if you choose to
stack multiple case statements directly
on top of each other with no
intervening code.

 This allows you to write one segment
of code that handles more than one
case. Here’s an example:

switch (myNumber)

{

case 1:

case 2:

// This code executes if
myNumber is 1 or 2.

break;

default:

// Do something.

break;

}

 Unlike the if statement, the
switch statement is limited to
evaluating a single piece of
information at a time.

 However, it provides a
cleaner, clearer syntax than
the if statement when you
need to test a single variable.

2.8 LOOPS IN C#

Introduction
 Loops allow you to repeat a segment of code multiple times. C# has

three basic types of loops. You choose the type of loop based on the
type of task you need to perform. Your choices are as follows:

mu
no
tes
.in

37

The C# Language  You can loop a set number of times with a for loop.

 You can loop through all the items in a collection of data by using a
foreach loop.

 You can loop while a certain condition holds true with a while or
do...while loop.

 The for and foreach loops are ideal for chewing through sets of data
that have known, fixed sizes.

 The while loop is a more flexible construct that allows you to
continue processing until a complex condition is met. The while
loop is often used with repetitive tasks or calculations that don’t
have a set number of iterations.

2.8.1 The for Loop

 The for loop is a basic ingredient in many programs. It allows you to
repeat a block of code a set number of times, using a built-in
counter.

 To create a for loop, you need to specify a starting value, an ending

value, and the amount to increment with each pass. Here’s one
example:

 You’ll notice that the for loop starts with parentheses that indicate
three important pieces of information. The first portion (int i = 0)
creates the counter variable (i) and sets its initial value (0).

 The third portion (i++) increments the counter variable. In this
example, the counter is incremented by 1 after each pass.

 That means i will be equal to 0 for the first pass, equal to 1 for the
second pass, and so on. However, you could adjust this statement so
that it decrements the counter (or performs any other operation you
want).

for (int i = 0; i < 10; i++)
{
// This code executes ten times.
System.Diagnostics.Debug.Write(i);
}

string[] stringArray = {"one", "two", "three"};
for (int i = 0; i < stringArray.Length; i++)
{
System.Diagnostics.Debug.Write(stringArray[i] + " "); }

mu
no
tes
.in

38

Advanced Web
Programming

38

 The middle portion (i < 10) specifies the condition that must be met
for the loop to continue. This condition is tested at the start of every
pass through the block. If i is greater than or equal to 10, the
condition will evaluate to false, and the loop will end.

2.8.2 The foreach Loop

 C# also provides a foreach loop that allows you to loop through the
items in a set of data.

 With a foreach loop, you don’t need to create an explicit counter
variable.

 Instead, you create a variable that represents the type of data for
which you’re looking. Your code will then loop until you’ve had a
chance to process each piece of data in the set.

 The foreach loop is particularly useful for traversing the data in
collections and arrays.

 For example, the next code segment loops through the items in an
array by using foreach.

 This code has exactly the same effect as the example in the previous
section, but it’s a little simpler:

 In this case, the foreach loop examines each item in the array and
tries to convert it to a string. Thus, the foreach loop defines a string
variable named element.

 If you used a different data type, you’d receive an error.

 The foreach loop has one key limitation: it’s read-only.

 For example, if you wanted to loop through an array and change the
values in that array at the same time, foreach code wouldn’t work.

string[] stringArray = {"one", "two", "three"};

foreach (string element in stringArray)

{

// This code loops three times, with the element variable set
to

// "one", then "two", and then "three".

System.Diagnostics.Debug.Write(element + " ");

} mu
no
tes
.in

39

The C# Language

 Here’s an example of some flawed code:

2.8.3 The While Loop

 Finally, C# supports a while loop that tests a specific condition
before or after each pass through the loop.

 When this condition evaluates to false, the loop is exited. Here’s an
example that loops ten times.

 At the beginning of each pass, the code evaluates whether the
counter (i) is less than some upper limit (in this case, 10). If it is, the
loop performs iteration.

 You can also place the condition at the end of the loop by using the
do...while syntax. In this case, the condition is tested at the end of
each pass through the loop:

int i = 0;
while (i < 10)
{
i += 1;
// This code executes ten times. }

int i = 0;
do
{
i += 1;
// This code executes ten times.
}
while (i < 10);

int[] intArray = {1,2,3};

foreach (int num in intArray)

{

num += 1;

}

mu
no
tes
.in

40

Advanced Web
Programming

40

2.9 METHODS IN C#

 Methods are the most basic building block you can use to organize
your code.

 Essentially, a method is a named grouping of one or more lines of
code.

 Ideally, each method will perform a distinct, logical task.

 By breaking down your code into methods, you not only simplify
your life, but also make it easier to organize your code into classes
and step into the world of object-oriented programming.

 When you declare a method in C#, the first part of the declaration
specifies the data type of the return value, and the second part
indicates the method name.

 If your method doesn’t return any information, you should use the
void keyword instead of a data type at the beginning of the
declaration.

 Notice that the method name is always followed by parentheses.
This allows the compiler to recognize that it’s a method.

 In this example, the methods don’t specify their accessibility. This is
just a common C# convention. You’re free to add an accessibility
keyword (such as public or private), as shown here:

// This method doesn’t return any information.
void MyMethodNoReturnedData()
{
// Code goes here.
}
// This method returns an integer.
int MyMethodReturnsData()
{
// As an example, return the number 10.
return 10;
}

mu
no
tes
.in

41

The C# Language

 The accessibility determines how different classes in your code can

interact.

 Private methods are hidden from view and are available only locally,
whereas public methods can be called by all the other classes in your
application.

 To really understand what this means, you’ll need to read the next
chapter, which discusses accessibility in more detail.

 Invoking your methods is straightforward—you simply type the
name of the method, followed by parentheses.

 If your method returns data, you have the option of using the data it
returns or just ignoring it:

2.9.1 Parameters
 Methods can also accept information through parameters.

Parameters are declared in a similar way to variables.

 By convention, parameter names always begin with a lowercase
letter in any language.

private void MyMethodNoReturnedData()
{
// Code goes here.
}

// This call is allowed.

MyMethodNoReturnedData();

// This call is allowed.

MyMethodReturnsData();

// This call is allowed.

int myNumber;

myNumber = MyMethodReturnsData();

// This call isn’t allowed.

// MyMethodNoReturnedData() does not return any
information.

myNumber = MyMethodNoReturnedData();

mu
no
tes
.in

42

Advanced Web
Programming

42

 Here’s how you might create a function that accepts two parameters
and returns their sum:

 When calling a method, you specify any required parameters in

parentheses or use an empty set of parentheses if no parameters are
required:

2.9.2 Method Overloading

 C# supports method overloading, which allows you to create more
than one method with the same name but with a different set of
parameters.

 When you call the method, the CLR automatically chooses the
correct version by examining the parameters you supply.

 This technique allows you to collect different versions of several
methods together.

 For example, you might allow a database search that returns an array
of Product objects representing records in the database.

 Rather than create three methods with different names depending on
the criteria, such as GetAllProducts(), GetProductsInCategory(), and
GetActiveProducts(), you could create three versions of the
GetProducts() method.

 Each method would have the same name but a different signature,
meaning it would require different parameters.

 This example provides two overloaded versions for the
GetProductPrice() method:

private int AddNumbers(int number1, int number2)
{

return number1 + number2;

}

// Call a method with no parameters.
MyMethodNoReturnedData();
// Call a method that requires two integer parameters.
MyMethodNoReturnedData2(10, 20);
// Call a method with two integer parameters and an
integer return value.
int returnValue = AddNumbers(10, 10);

mu
no
tes
.in

43

The C# Language

 Now you can look up product prices based on the unique product ID
or the full product name, depending on whether you supply an
integer or string argument:

 You cannot overload a method with versions that have the same

signature that is, the same number of parameters and parameter data
types because the CLR will not be able to distinguish them from
each other.

 When you call an overloaded method, the version that matches the
parameter list you supply is used. If no version matches, an error
occurs.

Optional and Named Parameters

 Method overloading is a time-honored technique for making
methods more flexible, so you can call them in a variety of ways.

 C# also has another feature that supports the same goal: optional
parameters.

 An optional parameter is any parameter that has a default value.
 If your method has normal parameters and optional parameters, the

optional parameters must be placed at the end of the parameter list.
 Here’s an example of a method that has a single optional parameter:

private decimal GetProductPrice(int ID)
{
// Code here.
}
private decimal GetProductPrice(string name)
{
// Code here.
}
// And so on...

decimal price;
// Get price by product ID (the first version).
price = GetProductPrice(1001);
// Get price by product name (the second version).
price = GetProductPrice("DVD Player");

mu
no
tes
.in

44

Advanced Web
Programming

44

2.11 DELEGATES

 Delegates allow you to create a variable that “points” to a method.
You can then use this variable at any time to invoke the method.

 Delegates help you write flexible code that can be reused in many
situations.

 They’re also the basis for events, an important .NET concept that
you’ll consider in the next chapter.

 The first step when using a delegate is to define its signature.
 The signature is a combination of several pieces of information

about a method: its return type, the number of parameters it has, and
the data type of each parameter.

 A delegate variable can point only to a method that matches its
specific signature.

 In other words, the method must have the same return type, the same
number of parameters, and the same data type for each parameter as
the delegate.

 For example, if you have a method that accepts a single string
parameter and another method that accepts two string parameters,
you’ll need to use a separate delegate type for each method.

 To consider how this works in practice, assume that your program
has the following method:

private string GetUserName(int ID, bool useShortForm = false)
{
// Code here.
}
// Explicitly set the useShortForm parameter.
name = GetUserName(401, true);
// Don't set the useShortForm parameter, and use the default
value (false).
name = GetUserName(401);

private string TranslateEnglishToFrench(string english)

{

// Code goes here.

}

mu
no
tes
.in

45

The C# Language  This method accepts a single string argument and returns a string.

 With those two details in mind, you can define a delegate that
matches this signature. Here’s how you would do it:

 Notice that the name you choose for the parameters and the name of
the delegate don’t matter.


The only requirement is that the data types for the return value and
parameters match exactly.

 Once you’ve defined a type of delegate, you can create and assign a
delegate variable at any time. Using the String Function delegate
type, you could create a delegate variable like this:

 Using your delegate variable, you can point to any method that has
the matching signature. In this example, the StringFunction delegate
type requires one string parameter and returns a string. Thus, you
can use the functionReference variable to store a reference to the
TranslateEnglishToFrench() method

 Now that you have a delegate variable that references a method, you
can invoke the method through the delegate. To do this, you just use
the delegate name as though it were the method name:

 In the previous code example, the method that the function
Reference delegate points to will be invoked with the parameter
value "Hello", and the return value will be stored in the French
String variable.

 The following code shows all these steps—creating a delegate
variable, assigning a method, and calling the method—from start to
finish:

2.12 SUMMARY:

This chapter 2 gives the basic syntax of OOP in C#. It discusses about
class, methods, constructors, destructor, method overloading and few
example programs. After learning the above topics, you can write many
useful programs and built a strong foundation for larger programming
projects.

private delegate string StringFunction(string inputString);

StringFunction functionReference;
functionReference = TranslateEnglishToFrench;

string frenchString;
frenchString = functionReference("Hello");

mu
no
tes
.in

46

Advanced Web
Programming

46

2.13 QUESTIONS

1) Explain OOP in C#.
2) Explain class and its member in C#.
3) Explain the methods in C#.
4) Explain constructor with example in C#.
5) Explain method overloading with example in C#.
6) Explain properties and indexer in C#?
7) Explain inheritance with example.
8) Explain method overriding with example.
9) Explain abstract class.
10) Explain Interface with example.
11) Explain structure with example.

2.14 REFERENCES:

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/



 mu
no
tes
.in

https://docs.microsoft.com/en-us/dotnet/csharp/

47

3
TYPES, OBJECTS, AND NAMESPACES

Unit Structure
3.0 Types, Objects, and Namespaces
3.1 Introduction
3.2 The Basics about Classes
 3.2.1 Objects in C#
 3.2.2 Constructors
 3.2.3 Destructors
3.3 Building a Basic Class
 3.3.1 Static Data Members and Member Functions
 3.3.2 this Object in C#
 3.3.3 Access Specifier
 3.3.4 Adding Properties in Class
3.4 Value Types and Reference Types
3.5 Understanding Namespaces and Assemblies
 3.5.1 using Keyword
 3.5.2 Nested Namespace
 3.5.3 Assemblies in C#
3.6 Advanced Class Programming
 3.6.1 Inheritance in C#
 3.6.2 Interfaces in C#
 3.6.3 Delegates in C#
3.7 Summary
3.8 Questions
3.9 References

3.1 INTRODUCTION

 In this chapter, you’ll learn how objects are defined and how you
manipulate them in your code. Taken together, these concepts are
the basics of what’s commonly called object-oriented programming.

 This chapter explains objects from the point of view of the .NET
Framework.

 It doesn’t rehash the typical object-oriented theory, because
countless excellent programming books cover the subject. Instead,
you’ll see the types of objects .NET allows, how they are
constructed, and how they fit into the larger framework of
namespaces and assemblies.

mu
no
tes
.in

48

Advanced Web
Programming

48

3.2 THE BASICS ABOUT CLASSES

 Class and Object are the basic concepts of Object-Oriented
Programming which revolve around the real-life entities.

 A class is a user-defined blueprint or prototype from which objects
are created.

 Basically, a class combines the fields and methods (member
function which defines actions) into a single unit.

 In C#, classes support polymorphism, inheritance and also provide
the concept of derived classes and base classes.

 Generally, a class declaration contains only keyword class, followed
by an identifier(name) of the class.

 But there are some optional attributes that can be used with class
declaration according to the application requirement.

 In general, class declarations can include these components, in
order:

Modifiers: A class can be public or internal etc. By default modifier of
class is internal.
Keyword class: A class keyword is used to declare the type class.
Class Identifier: The variable of type class is provided. The identifier(or
name of class) should begin with an initial letter which should be
capitalized by convention.
Base class or Super class: The name of the class’s parent (superclass), if
any, preceded by the : (colon). This is optional.
Interfaces: A comma-separated list of interfaces implemented by the
class, if any, preceded by the : (colon). A class can implement more than
one interface. This is optional.
Body: The class body is surrounded by { } (curly braces).

Note:

Constructors in class are used for initializing new objects.
Fields are variables that provide the state of the class and its
objects, and methods are used to implement the behavior of
the class and its objects.

Syntax :
//[access modifier] - [class] - [identifier]
public class Customer
{
 // Fields, properties, methods and events go here...
}

mu
no
tes
.in

49

Types, Objects, And
Namespaces

3.2.1 Objects in C#

 It is a basic unit of Object-Oriented Programming and represents the
real-life entities.

 A typical C# program creates many objects, which as you know,
interact by invoking methods. An object consists of :

State: It is represented by attributes of an object. It also reflects the
properties of an object.

Behavior: It is represented by methods of an object. It also reflects the
response of an object with other objects.

Identity: It gives a unique name to an object and enables one object to
interact with other objects.

Consider Dog as an object and see the below diagram for its identity,
state, and behavior.

 Objects correspond to things found in the real world. For example, a

graphics program may have objects such as “circle”, “square”,
“menu”.

 An online shopping system might have objects such as “shopping
cart”, “customer”, and “product”.

 Declaring Objects (Also called instantiating a class)

 When an object of a class is created, the class is said to be
instantiated.

 All the instances share the attributes and the behaviour of the class.
But the values of those attributes, i.e. the state are unique for each
object. A single class may have any number of instances.

mu
no
tes
.in

50

Advanced Web
Programming

50

Syntax:

Example 1:

using System;
public class Student
{
int id;//data member (also instance variable)
String name;//data member(also instance variable)
 public static void Main(string[] args)
 {
 Student s1 = new Student();//creating an object of Student
 s1.id = 101;
 s1.name = "Sonoo Jaiswal";
 Console.WriteLine(s1.id);
 Console.WriteLine(s1.name);
 } }

Example 2: Initialize and Display data through method
using System;

 public class Student

 {

 public int id;

 public String name;

 public void insert(int i, String n)

 {

 id = i;

 name = n;

 }

 public void display()

 {

 Console.WriteLine(id + " " + name);

 }

 }

 class TestStudent{

Classname objectname = new classname();

mu
no
tes
.in

51

Types, Objects, And
Namespaces

 public static void Main(string[] args)

 {

 Student s1 = new Student();

 Student s2 = new Student();

 s1.insert(101, "Ajeet");

 s2.insert(102, "Tom");

 s1.display();

 s2.display();

 } }

3.2.2 Constructors
 Constructors are methods that are called when the object is first

created. To create an object, the constructor call is preceded by the
keyword “new”.

 The process of doing this is called instantiation.
 An object is then referred to as an instance of its class. They are

often used to initialize the data of an object.
 A constructor has the same name as the name of its type (name of

class).

 Its method signature includes only the method name and its
parameter list; it does not include a return type.

 Objects are allocated on the heap (a memory region allocated for the
program).

 Objects must be created with new Eg. Stack stk = new Stack(50);
 If you don't provide a constructor for your class, C# creates one by

default that instantiates the object and sets member variables to the
default values.

 If a constructor was declared, no default constructor is generated.

How constructors are different from a normal member function?

 A constructor is different from normal functions in following ways:
 Constructor has same name as the class itself
 Constructors don’t have return type
 A constructor is automatically called when an object is created.
 It must be placed in public section of class.
 If we do not specify a constructor, C++ compiler generates a default

constructor for object (expects no parameters and has an empty
body).

mu
no
tes
.in

52

Advanced Web
Programming

52

In C#, constructors can be divided into 5 types

1) Default Constructor
2) Parameterized Constructor
3) Copy Constructor
4) Static Constructor
5) Private Constructor

1) Default Constructor in C#
 A constructor without any parameters is called a default constructor;

in other words, this type of constructor does not take parameters.
 The drawback of a default constructor is that every instance of the

class will be initialized to the same values and it is not possible to
initialize each instance of the class with different values.

 The default constructor initializes:

All numeric fields in the class to zero.
All string and object fields to null.

using System;
namespace DefaultConstructor
{
 class addition
 {
 int a, b;
 public addition() //default constructor
 {
 a = 100;
 b = 175;
 }
 public static void Main()
 {
 addition obj = new addition(); //an object is created ,
constructor is called
 Console.WriteLine(obj.a);
 Console.WriteLine(obj.b);
 Console.Read();
 }
 }

}

mu
no
tes
.in

53

Types, Objects, And
Namespaces

2) Parameterized Constructor in C#
 A constructor with at least one parameter is called a parameterized

constructor.
 The advantage of a parameterized constructor is that you can

initialize each instance of the class with a different value.

using System;

namespace Constructor

{

 class paraconstrctor

 {

 public int a, b;

 public paraconstrctor(int x, int y) // declaring Parameterized
Constructor with int x, y parameter

 {

 a = x;

 b = y;

 }

 }

 class MainClass

 {

 static void Main()

 {

 paraconstrctor v = new paraconstrctor(100, 175); // Creating
object of Parameterized Constructor and int values

 Console.WriteLine("-----------parameterized constructor
example by vithal wadje---------------");

 Console.WriteLine("\t");

 Console.WriteLine("value of a=" + v.a);

 Console.WriteLine("value of b=" + v.b);

 Console.Read();

 }

 }

}

mu
no
tes
.in

54

Advanced Web
Programming

54

3) Copy Constructor in C#
 The constructor which creates an object by copying variables from

another object is called a copy constructor.
 The purpose of a copy constructor is to initialize a new instance to

the values of an existing instance.

public employee(employee emp)

{

 name=emp.name;

 age=emp.age;

}

The copy constructor is invoked by instantiating an object of type
employee and bypassing it the object to be copied. Example

employee emp1=new employee (emp2);

using System;

namespace copyConstructor

{

 class employee

 {

 private string name;

 private int age;

 public employee(employee emp) // declaring Copy constructor.

 {

 name = emp.name;

 age = emp.age;

 }

 public employee(string name, int age) // Instance constructor.

 {

 this.name = name;

 this.age = age;

 }

 public string Details // Get details of employee

 {

mu
no
tes
.in

55

Types, Objects, And
Namespaces

 get

 {

 return " The age of " + name +" is "+ age.ToString();

 }

 }

 }

 class empdetail

 {

 static void Main()

 {

 employee emp1 = new employee("Vithal", 23); // Create a new
employee object.

 employee emp2 = new employee(emp1); // here is emp1
details is copied to emp2.

 Console.WriteLine(emp2.Details);

 Console.ReadLine();

 }

 }}

4) Static Constructor in C#
 When a constructor is created using a static keyword, it will be

invoked only once for all of the instances of the class and it is
invoked during the creation of the first instance of the class or the
first reference to a static member in the class.

 A static constructor is used to initialize static fields of the class and
to write the code that needs to be executed only once.

Some key points of a static constructor are:
 A static constructor does not take access modifiers or have

parameters.

 A static constructor is called automatically to initialize the class
before the first instance is created or any static members are
referenced.

 A static constructor cannot be called directly.

 The user has no control over when the static constructor is executed
in the program.

 A typical use of static constructors is when the class is using a log
file and the constructor is used to write entries to this file.

mu
no
tes
.in

56

Advanced Web
Programming

56

using System;
namespace staticConstructor
{
 public class employee
 {
 static employee() // Static constructor
 declaration{Console.WriteLine("The static constructor ");
 }
 public static void Salary()
 {
 Console.WriteLine();
 Console.WriteLine("The Salary method");
 }
}
class details
{
 static void Main()
 {
 Console.WriteLine("----------Static constructor example by vithal
wadje----------");
 Console.WriteLine();
 employee.Salary();
 Console.ReadLine();
 }
 }
}

5) Private Constructor in C#
 When a constructor is created with a private specifier, it is not

possible for other classes to derive from this class, neither is it
possible to create an instance of this class.

 They are usually used in classes that contain static members only.
Some key points of a private constructor are:

 One use of a private constructor is when we have only static
members.

 It provides an implementation of a singleton class pattern

mu
no
tes
.in

57

Types, Objects, And
Namespaces

 Once we provide a constructor that is either private or public or any,
the compiler will not add the parameter-less public constructor to the
class.

using System;

namespace defaultConstructor

{

 public class Counter

 {

 private Counter() //private constructor declaration

 {

 }

 public static int currentView;

 public static int visitedCount()

 {

 return ++ currentView;

 }

 }

 class viewCountedetails

 {

 static void Main()

 {

 // Counter aCounter = new Counter(); // Error

 Console.WriteLine("-------Private constructor example by
vithal wadje----------");

 Console.WriteLine();

 Counter.currentView = 500;

 Counter.visitedCount();

 Console.WriteLine("Now the view count is: {0}",
Counter.currentView);

 Console.ReadLine();

 }

 }
}

mu
no
tes
.in

58

Advanced Web
Programming

58

3.2.3 Destructors
 Destructors in C# are methods inside the class used to destroy

instances of that class when they are no longer needed.

 The Destructor is called implicitly by the .NET Framework’s
Garbage collector and therefore programmer has no control as
when to invoke the destructor.

 An instance variable or an object is eligible for destruction when it
is no longer reachable.

Important Points:

 A Destructor is unique to its class i.e. there cannot be more than
one destructor in a class.

 A Destructor has no return type and has exactly the same name as
the class name (Including the same case).

 It is distinguished apart from a constructor because of the Tilde
symbol (~) prefixed to its name.

 A Destructor does not accept any parameters and modifiers.

 It cannot be defined in Structures. It is only used with classes.

 It cannot be overloaded or inherited.

 It is called when the program exits.

 Internally, Destructor called the Finalize method on the base class
of object.

3.2.4 Static Data Members and Member Functions

class Example

{

 // Rest of the class

 // members and methods.

 // Destructor

 ~Example()

 {

 // Your code

 }

}

mu
no
tes
.in

59

Types, Objects, And
Namespaces

 We can define class members as static using the static keyword.
 When we declare a member of a class as static, it means no matter

how many objects of the class are created, there is only one copy of
the static member.

 The keyword static implies that only one instance of the member
exists for a class. Static variables are used for defining constants
because their values can be retrieved by invoking the class without
creating an instance of it.

 Static variables can be initialized outside the member function or
class definition. You can also initialize static variables inside the
class definition.

using System;
namespace StaticVarApplication {
 class StaticVar {
 public static int num;

 public void count() {
 num++;
 }
 public int getNum() {
 return num;
 }
 }
 class StaticTester {
 static void Main(string[] args) {
 StaticVar s1 = new StaticVar();
 StaticVar s2 = new StaticVar();
 s1.count();
 s1.count();
 s1.count();
 s2.count();
 s2.count();
 s2.count();
 Console.WriteLine("Variable num for s1: {0}", s1.getNum());
 Console.WriteLine("Variable num for s2: {0}", s2.getNum());
 Console.ReadKey();
 }
 }
}

mu
no
tes
.in

60

Advanced Web
Programming

60

Static Method
 A static method in C# is a method that keeps only one copy of the

method at the Type level, not the object level.
 That means, all instances of the class share the same copy of the

method and its data. The last updated value of the method is shared
among all objects of that Type.

 Static methods are called by using the class name, not the instance of
the class.

class StaticDemo
{
 public static void withoutObj()
 {
 Console.WriteLine("Hello");
 }
 static void Main()
 {
 Program. withoutObj();
 Console.ReadKey();
 }
}

Using Static Method
 Usually we define a set of data members for a class and then every

object of that class will have a separate copy of each of those data
members.

class Program

 {

 public int myVar; //a non-static field

 static void Main()

 {

 StaticDemo p1 = new StaticDemo(); //an object of class

 p1.myVar = 10;

 p1.withoutObj();
 Console.WriteLine(p1.myVar);

 Console.ReadKey();

 }

 }

mu
no
tes
.in

61

Types, Objects, And
Namespaces

3.3.2 this Object in C#

 The “this” keyword in C# is used to refer to the current instance of
the class. It is also used to differentiate between the method
parameters and class fields if they both have the same name.

 Another usage of “this” keyword is to call another constructor from
a constructor in the same class.

 Here, for an example, we are showing a record of Students i.e: id,
Name, Age, and Subject. To refer to the fields of the current class,
we have used the “this” keyword in C#.

public Student(int id, String name, int age, String subject) {
 this.id = id;
 this.name = name;
 this.subject = subject;
 this.age = age;
}

using System.IO;
using System;

class Student {
 public int id, age;
 public String name, subject;

 public Student(int id, String name, int age, String subject) {
 this.id = id;
 this.name = name;
 this.subject = subject;
 this.age = age;
 }
 public void showInfo() {
 Console.WriteLine(id + " " + name+" "+age+ " "+subject);
 }
}

class StudentDetails {
 public static void Main(string[] args) {
 Student std1 = new Student(001, "Jack", 23, "Maths");

mu
no
tes
.in

62

Advanced Web
Programming

62

 Student std2 = new Student(002, "Harry", 27, "Science");
 Student std3 = new Student(003, "Steve", 23,
"Programming");
 Student std4 = new Student(004, "David", 27, "English");

 std1.showInfo();
 std2.showInfo();
 std3.showInfo();
 std4.showInfo();
 }
}

3.3.3 Access Specifier

3.3.4 Adding Properties in Class

 Property in C# is a member of a class that provides a flexible
mechanism for classes to expose private fields. Internally, C#
properties are special methods called accessors.

 A C# property have two accessors, get property accessor and set
property accessor.

 A get accessor returns a property value, and a set accessor assigns a
new value. The value keyword represents the value of a property.

 Properties in C# and .NET have various access levels that is defined
by an access modifier.

 Properties can be read-write, read-only, or write-only. The read-
write property implements both, a get and a set accessor.

 A write-only property implements a set accessor, but no get
accessor. A read-only property implements a get accessor, but no set
accessor.

mu
no
tes
.in

63

Types, Objects, And
Namespaces

class Person
{
 private string name; // field

 public string Name // property
 {
 get { return name; } // get method
 set { name = value; } // set method
 }
}

Example:

class Person
{
 private string name; // field
 public string Name // property
 {
 get { return name; }
 set { name = value; }
 }
}

class Program
{
 static void Main(string[] args)
 {
 Person myObj = new Person();
 myObj.Name = "Liam";
 Console.WriteLine(myObj.Name);
 }
}

3.4 VALUE TYPES AND REFERENCE TYPES

 In C#, these data types are categorized based on how they store their
value in the memory. C# includes the following categories of data
types:

 Value type

 Reference type

mu
no
tes
.in

64

Advanced Web
Programming

64

Value Type
 A data type is a value type if it holds a data value within its own

memory space. It means the variables of these data types directly
contain values.

 For example, consider integer variable int i = 100;
 The system stores 100 in the memory space allocated for the

variable i.
 The following image illustrates how 100 is stored at some
hypothetical location in the memory (0x239110) for 'i':

The following data types are all of value type:
 bool
 byte
 char
 decimal
 double
 enum
 float
 int
 long etc.

Passing Value Type Variables

 When you pass a value-type variable from one method to another,
the system creates a separate copy of a variable in another method.

 If value got changed in the one method, it wouldn't affect the
variable in another method

static void ChangeValue(int x)
{
 x = 200;
 Console.WriteLine(x);
}
static void Main(string[] args)
{
 int i = 100;
 Console.WriteLine(i);
 ChangeValue(i);
 Console.WriteLine(i);
}

mu
no
tes
.in

65

Types, Objects, And
Namespaces

Reference Type
 Unlike value types, a reference type doesn't store its value directly.

Instead, it stores the address where the value is being stored.
 In other words, a reference type contains a pointer to another

memory location that holds the data.
 For example, consider the following string variable:

string s = "Hello World!!";
 The following image shows how the system allocates the memory

for the above string variable.

 As you can see in the above image, the system selects a random

location in memory (0x803200) for the variable s.
 The value of a variable s is 0x600000, which is the memory address

of the actual data value.
 Thus, reference type stores the address of the location where the

actual value is stored instead of the value itself.

The followings are reference type data types:
String
Arrays (even if their elements are value types)
Class
Delegate
Passing Reference Type Variables
 When you pass a reference type variable from one method to

another, it doesn't create a new copy; instead, it passes the variable's
address.

 So, If we change the value of a variable in a method, it will also be
reflected in the calling method.

mu
no
tes
.in

66

Advanced Web
Programming

66

static void ChangeReferenceType(Student std2)

{
 std2.StudentName = "Steve";
}
static void Main(string[] args)
{
 Student std1 = new Student();
 std1.StudentName = "Bill";
 ChangeReferenceType(std1);
 Console.WriteLine(std1.StudentName);
}

3.5 UNDERSTANDING NAMESPACES AND ASSEMBLIES

Namespaces in C#
 Namespaces are used to organize the classes.
 It helps to control the scope of methods and classes in larger .Net

programming projects.
 The biggest advantage of using namespace is that the class names

which are declared in one namespace will not clash with the same
class names declared in another namespace.

 It is also referred as named group of classes having common
features.

 The members of a namespace can be namespaces, interfaces,
structures, and delegates.

 There are two types of namespaces.
1. User Defined Namespace
2. Build in Namespaces.

Defining a User-Defined Namespace

 To define a namespace in C#, we will use the namespace keyword
followed by the name of the namespace and curly braces containing
the body of the namespace as follows:

Example:
// defining the namespace name1
namespace name1
{
 // C1 is the class in the namespace name1
 class C1
 {
 // class code
 }
}

mu
no
tes
.in

67

Types, Objects, And
Namespaces

using System;
namespace first_space {
 class namespace_cl {
 public void func() {
 Console.WriteLine("Inside first_space");
 }
 }
}
namespace second_space {
 class namespace_cl {
 public void func() {
 Console.WriteLine("Inside second_space");
 }
 }
}
class TestClass {
 static void Main(string[] args) {
 first_space.namespace_cl fc = new first_space.namespace_cl();
 second_space.namespace_cl sc = new
second_space.namespace_cl();
 fc.func();
 sc.func();
 Console.ReadKey();
 }
}

When the above code is compiled and executed, it produces the
following result -
Inside first_space
Inside second_space

3.5.1 The Using Keyword
 The using keyword states that the program is using the names in the

given namespace. For example, we are using the System namespace
in our programs. The class Console is defined there. We just write -

Console.WriteLine ("Hello there");
We could have written the fully qualified name as -
System.Console.WriteLine("Hello there");
 You can also avoid prepending of namespaces with the using

namespace directive.

mu
no
tes
.in

68

Advanced Web
Programming

68

 This directive tells the compiler that the subsequent code is making
use of names in the specified namespace.

 The namespace is thus implied for the following code –

using System;
using first_space;
using second_space;

namespace first_space {
 class abc {
 public void func() {
 Console.WriteLine("Inside first_space");
 }
 }
}
namespace second_space {
 class efg {
 public void func() {
 Console.WriteLine("Inside second_space");
 }
 }
}
class TestClass {
 static void Main(string[] args) {
 abc fc = new abc();
 efg sc = new efg();
 fc.func();
 sc.func();
 Console.ReadKey();
 }
}
When the above code is compiled and executed, it produces the
following result -

Inside first_space
Inside second_space

mu
no
tes
.in

69

Types, Objects, And
Namespaces

3.5.2 Nested Namespace

You can define one namespace inside another namespace as follows -
namespace namespace_name1 {
 // code declarations
 namespace namespace_name2 {
 // code declarations
 }
}
using System;
using first_space;
using first_space.second_space;
namespace first_space {
 class abc {
 public void func() {
 Console.WriteLine("Inside first_space");
 }
 }
 namespace second_space {
 class efg {
 public void func() {
 Console.WriteLine("Inside second_space");
 }
 }
 }
}
class TestClass {
 static void Main(string[] args) {
 abc fc = new abc();
 efg sc = new efg();
 fc.func();
 sc.func();
 Console.ReadKey();
 }
}
When the above code is compiled and executed, it produces the following
result -
Inside first_space
Inside second_space

mu
no
tes
.in

70

Advanced Web
Programming

70

3.5.3 Assemblies in C#
 An assembly is a collection of types and resources that are built to

work together and form a logical unit of functionality.
 Assemblies take the form of executable (.exe) or dynamic link

library (. dll) files, and are the building blocks of .NET applications.
 An Assembly is a basic building block of .Net Framework

applications. It is basically a compiled code that can be executed by
the CLR.

 An assembly is a collection of types and resources that are built to
work together and form a logical unit of functionality. An Assembly
can be a DLL or exe depending upon the project that we choose.

Assemblies have the following properties:
 Assemblies are implemented as .exe or .dll files.
 For libraries that target the .NET Framework, you can share

assemblies between applications by putting them in the global
assembly cache (GAC). You must declare strong-name assemblies
before you can include them in the GAC.

 Assemblies are only loaded into memory if they are required. If they
aren't used, they aren't loaded. This means that assemblies can be an
efficient way to manage resources in larger projects.

Assemblies are basically the following two types:
1. Private Assembly
2. Shared Assembly

1. Private Assembly
 It is an assembly that is being used by a single application only.
 Suppose we have a project in which we refer to a DLL so when we

build that project that DLL will be copied to the bin folder of our
project.

 That DLL becomes a private assembly within our project. Generally,
the DLLs that are meant for a specific project are private assemblies.

 2. Shared Assembly

 Assemblies that can be used in more than one project are known to
be a shared assembly.

 Shared assemblies are generally installed in the GAC.
 Assemblies that are installed in the GAC are made available to all

the .Net applications on that machine.

 GAC(Global Assembly Cache)
 GAC stands for Global Assembly Cache. It is a memory that is used

to store the assemblies that are meant to be used by various
applications.

 Every computer that has CLR installed must have a GAC. GAC is a
location that can be seen at “C:\Windows\assembly” for .Net

mu
no
tes
.in

71

Types, Objects, And
Namespaces

applications with frameworks up to 3.5. For higher frameworks like
4 and 4.5 the GAC can be seen at:
“C:\Windows\Microsoft.NET\assembly\GAC_MSIL”.

Components of Assembly:

A static assembly consist of 4 elements:-

1. The assembly manifest, which contains assembly metadata.

2. Type metadata

3. Microsoft Intermediate Language(MSIL) code that implement the
type.

4. A set of resources.

Assembly manifest :-

 Every assembly whether static or dynamic contain a collection of
data that describes how the element in assembly relates to each
other.

 It contains its assembly metadata such as assembly version
requirement & security identity & all metadata needed to define this
scope of the assembly & resolve references to resources & classes.

 It can be stored in either PE file(portable exe file) or .dll file with
Microsoft intermediate language(MSIL) code or in a standalone PE
file that contains only assembly manifest information.

The following illustration show the different ways to manifest can be
stored.

The following table shows the information contain in the assembly
manifest.

Information Description

Assembly
name

A text string specifying the assembly name.

Version
number

A major & minor version number & a revision & build
number. The common language runtime uses this no. to
enforce version policy.

mu
no
tes
.in

72

Advanced Web
Programming

72

Culture Information on the culture or language the assembly
supports the information should be used only to
designate an assembly as a satellite assembly
containing culture or language specific information.

Strong name
Information

The public key from the publisher if the assembly has
been given a strong name.

3.6 ADVANCED CLASS PROGRAMMING

 Part of the art of object-oriented programming is determining object
relations.

 For example, you could create a Product object that contains a
ProductFamily object or a Car object that contains four Wheel
objects.

 To create this sort of object relationship, all you need to do is define
the appropriate variable or properties in the class. This type of
relationship is called containment (or aggregation).

3.6.1 Inheritance in C#

 One of the most important concepts in object-oriented programming
is inheritance.

 Inheritance allows us to define a class in terms of another class,
which makes it easier to create and maintain an application.

 This also provides an opportunity to reuse the code functionality and
speeds up implementation time.

 The process of creating new class from an existing class is called as
inheritance.

 When creating a class, instead of writing completely new data
members and member functions, the programmer can designate that
the new class should inherit the members of an existing class.

 This existing class is called the base class, and the new class is
referred to as the derived class.

<acess-specifier> class <base_class> {

 ...

}

class <derived_class> : <base_class> {

 ...

}

mu
no
tes
.in

73

Types, Objects, And
Namespaces

Types of Inheritance

OOPs support the six different types of inheritance as given below :

1. Single inheritance
2. Multi-level inheritance
3. Multiple inheritance
4. Hierarchical Inheritance
5. Hybrid Inheritance

Single inheritance

 In this inheritance, a derived class is created from a single base
class.

 In the given example, Class A is the parent class and Class B is the
child class since Class B inherits the features and behavior of the
parent class A.

Multi-level inheritance

 In this inheritance, a derived class is created from another
derived class.

 In the given example, class c inherits the properties and behavior of
class B and class B inherits the properties and behavior of class B.
So, here A is the parent class of B and

mu
no
tes
.in

74

Advanced Web
Programming

74

 class B is the parent class of C. So, here class C implicitly inherits
the properties and behavior of class A along with Class B i.e there is
a multilevel of inheritance.

Multiple inheritance

 In this inheritance, a derived class is created from more than one
base class. This inheritance is not supported by .NET Languages like
C#, F# etc. and Java Language.

 In the given example, class c inherits the properties and behavior of
class B and class A at same level. So, here A and Class B both are
the parent classes for Class C.

Hierarchical Inheritance

 In this inheritance, more than one derived classes are created from a
single base class and further child classes act as parent classes for
more than one child classes.

 In the given example, class A has two children class B and class D.
Further, class B and class C both are having two children - class D
and E; class F and G respectively.

Hybrid inheritance

 This is combination of more than one inheritance. Hence, it may be
a combination of Multilevel and Multiple inheritance or Hierarchical
etc.

 Example Of Multilevel Inheritance

using System;
class A
{
 public void displayA()
 {
 Console.WriteLine("Base Class Function");
 }
}
class B : A
{
 public void displayB()
 {
 Console.WriteLine("Derived Class Function");
 }
}

mu
no
tes
.in

https://www.dotnettricks.com/learn/netframework

75

Types, Objects, And
Namespaces

class C : B
{
 public void displayC()
 {
 Console.WriteLine("Derived Class Function");
 }
}
class Programs
{
 public static void Main(string[] args)
 {
 C obj = new C();
 obj.displayA();
 obj.displayB();
 obj.displayC();
 Console.ReadKey();
 }
}

Hierarchical Inheritance
using System;
class A
{
 public void displayA()
 {
 Console.WriteLine("Base Class Function");
 }
}
class B : A
{
 public void displayB()
 {
 Console.WriteLine("Derived Class Function");
 }
}
class C : A

mu
no
tes
.in

76

Advanced Web
Programming

76

{
 public void displayC()
 {
 Console.WriteLine("Derived Class Function");
 }
}
class Programs
{
 public static void Main(string[] args)
 {

 B obj1 = new B();
 C obj = new C();

 obj.displayA();
 obj.displayC();

 obj1.displayA();
 obj1.displayB();
 Console.ReadKey();
 }
}

3.6.2 Interfaces in C#

 Interface is like a contract. In the human world, the contract between
the two or more humans binds them to act as per the contract.

 In the same way, the interface includes the declaration of one or
more functionalities.

 Entities that implement the interface must define functionalities
declared in the interface. In C#, a class or a struct can implement one
or more interfaces

 In C# an interface can be defined using the interface keyword.

 Interfaces can contain methods, properties, indexers, and events as
members.

 You cannot use any access modifier for any member of an interface.
All the members by default are public members.

mu
no
tes
.in

77

Types, Objects, And
Namespaces

Implementing an Interface

A class or a Struct can implement one or more interfaces using colon (:).
Syntax: <Class or Struct Name> : <Interface Name>

using System;
interface MyInterface
{
 void display();
}
class CallInterface : MyInterface
{
 public void display()
 {
 Console.WriteLine("Interface is called");
 }
}
class CallInterface1 : MyInterface
{
 public void display()
 {
 Console.WriteLine("Interface Method");
 }
}
class Programs
{
 public static void Main(string[] args)
 {
 CallInterface obj = new CallInterface();
 CallInterface1 obj1 = new CallInterface1();

 obj.display();
 obj1.display();

 Console.ReadKey();
 }
}

mu
no
tes
.in

78

Advanced Web
Programming

78

using System;
interface Addition
{
 void add(int n1, int n2);
}
interface Subtraction
{
 void sub(int n1, int n2);
}
class CallInterface : Addition,Subtraction
{
 public void add(int n1, int n2)
 {
 Console.WriteLine("Addition :" + (n1 + n2));
 }
 public void sub(int n1, int n2)
 {
 Console.WriteLine("Subtraction :" + (n1 - n2));
 }
}
class Programs
{
 public static void Main(string[] args)
 {
 CallInterface obj = new CallInterface();

 obj.add(10,10);
 obj.sub(100,10);
 Console.ReadKey();
 }
}

Explicit Interface Implementation

 Explicit implementation is useful when class is implementing
multiple interface thereby it is more readable and eliminates the
confusion.

 It is also useful if interfaces have same method name coincidently.

mu
no
tes
.in

79

Types, Objects, And
Namespaces

using System;
interface I1
{
 void show();
}
interface I2
{
 void show();
}
class CallInterface : I1,I2
{
 void I1.show()
 {
 Console.WriteLine("I1 interface Method");
 }
 void I2.show()
 {
 Console.WriteLine("I2 Interface Method");
 }
}
class Programs
{
 public static void Main(string[] args)
 {
 CallInterface obj = new CallInterface();
 I1 i1 = (I1) obj;
 i1.show();
 I2 i2 = (I2)obj;
 i2.show();
 Console.ReadKey();
 }
}

3.6.3 Delegates in C#

 A function can have one or more parameters of different data types,
but what if you want to pass a function itself as a parameter?

 How does C# handle the callback functions or event handler? The
answer is - delegate.

mu
no
tes
.in

80

Advanced Web
Programming

80

 Delegate is like a pointer to a function.
 It is a reference type data type and it holds the reference of a

method.
 All the delegates are implicitly derived from System.Delegate class.
 A delegate can be declared using delegate keyword followed by a

function signature as shown below.

<accessmodifier>delegate<returntype><delegate_name>(<parameters>);

Steps to used Delegate
1) Declaration of delegate
 <accessmodifier> delegate <returntype>
<delegate_name>(<paramets);
 public delegate void show();
2) Delegate method declaration

class DelegateMethod
{
 public void display()
 {
 Console.WriteLine("Delegate is called");
 }
}

3) Delegate Instantiation(delegate object creation)

DelegateMethod dm = new DelegateMethod();

MyDelegate d = new MyDelegate(dm.display);

4) Calling Delegate

d();

Example
using System;
public delegate void MyDelegate(); // Step1
class DelegateMethod
{
 public void display()
 {
 Console.WriteLine("Delegate is called");
 }
}

mu
no
tes
.in

81

Types, Objects, And
Namespaces

class Programs
{
 public static void Main(string[] args)
 {

 DelegateMethod dm = new DelegateMethod();
 MyDelegate d = new MyDelegate(dm.display);

 d();

 Console.ReadKey();
 }
}

Types of Delegate

1) Simple Delegate

 When delegate uses only one method to execute on the behalf of the
delegate then it is called as simple delegate.

2) Multicast Delegate

 The delegate can points to multiple methods. A delegate that points
multiple methods is called a multicast delegate.

 The "+" operator adds a function to the delegate object and the "-"
operator removes an existing function from a delegate object.

using System;
public delegate void MathOptr(int n1, int n2);
class DelegateMethod
{
 public void add(int n1, int n2)
 {
 Console.WriteLine("Addition =" + (n1 + n2));
 }
 public void sub(int n1, int n2)
 {
 Console.WriteLine("Subtraction =" + (n1 - n2));
 }
 public void mult(int n1, int n2)
 {
 Console.WriteLine("Mult =" + (n1 * n2));

mu
no
tes
.in

82

Advanced Web
Programming

82

 }
 public void div(int n1, int n2)
 {
 Console.WriteLine("Div =" + (n1 / n2));
 }
}
class Programs
{
 public static void Main(string[] args)
 {

 DelegateMethod dm = new DelegateMethod();

 MathOptr d1 = new MathOptr(dm.add);
 MathOptr d2 = new MathOptr(dm.sub);
 MathOptr d3 = new MathOptr(dm.mult);
 MathOptr d4 = new MathOptr(dm.div);

 d1(10, 20);
 d2(20, 10);
 d3(10, 10);
 d4(20, 5);

 MathOptr d5 = d1 + d2 + d3 + d4;
 d5(10,2);

 Console.ReadKey();
 }
}

3.7 SUMMARY:

This chapter 3 gives the basic syntax of exception handling in C#. It
discusses about exception, Assembly, Components of Assembly, Private
and Shared Assembly, Garbage Collector, JIT compiler, Namespaces and
few example programs. After learning the above topics, you can write
many useful programs and built a strong foundation for larger
programming projects.

mu
no
tes
.in

83

Types, Objects, And
Namespaces

3.8 QUESTIONS:

1. Write a short note on Assembly.

2. What is the significance of Assemblies in .NET?

3. List and Explain the Components of assemblies.
4. How Garbage collector works?
5. Explain JIT compiler.
6. What is namespace? Explain System namespace.

3.9 REFERENCE:

1) The Complete Reference: C#

2) Visual C# 2012: How to program.

3) https://docs.microsoft.com/en-us/dotnet/csharp/



mu
no
tes
.in

84

Advanced Web
Programming

84

4
WEB FORM FUNDAMENTALS

4.0 Objectives
4.1 Introduction
4.2 An Overview
 4.2.1 Writing Code
 4.2.2 Using the Code-Behind Class
 4.2.3 Adding Event Handlers
4.3 Understanding the Anatomy of an ASP.NET Application
 4.3.1 ASP.NET File Types
 4.3.2 ASP.NET Web Folders
 4.3.3 Debugging
4.4 Introducing Server Controls
 4.4.1 HTML Server Controls
 4.4.2 View State
 4.4.3 Using the Page Class
 4.4.4 Using Application Events
 4.4.5 Configuring an ASP.NET Application.
4.5 Questions
4.6 References

4.0 OBJECTIVES

After going through this unit, you will be able to:

 To gain knowledge about what is web form and why it is used.
 How to design a webform and its applications
 How to write a code in C#.

 Explain about the controls and its uses.
 Various elements of Navigation.

4.1 INTRODUCTION

 Web Forms are web pages built on the ASP.NET Technology. It executes

on the server and generates output to the browser. It is compatible to any

browser to any language supported by .NET common language runtime. It

is flexible and allows us to create and add custom controls.

mu
no
tes
.in

85

AWP 4.2 AN OVERVIEW

4.2.1 Writing Code

To start with writing a code i.e. dynamic and operational coding we need
to switch to code-behind class. To switch up and down the code we use
View code or View Designer buttons which appears just above the
Solution Explorer window. Another approach is by double clicking either
on .aspx page in the solution explorer or .aspx.cs page. Here we will be
discussing C# code not the HTML code .

4.2.2 Using the Code-Behind class

Code-Behind class refers to the code that is written in separate class file
that has extension .aspx.cs or .aspx.vb depending on the language used.
When we switch to code view we will see the page class for our webpage.

For example when we create a webpage named SamplePage.aspx we will
see a code behind class looks like this :

Using System;
Using.System.Collection.Generic;
Using.System.Linq;
Using.System.Web;
Using.System.Web.UI;
Using.System.Web.UI.WebControls;
Public partial class SamplePage: System.Web.UI.Page
{
 Protected void Page_Load(object sender , EventArgs e)
 {
 }
}

4.2.3 Adding Event Handlers

ASP.NET allows to implement event based model for our application.

To create an event handler in properties window we do the following

1) Double-click to create a new event handler for that event.

2) Type the name of the handler to create.

3) In the drop-down list select the name of existing handler.

For e.g:- The following diagram suggests that

Select the Button and right click and click on properties. In the properties
window click the yellow icon event

mu
no
tes
.in

86

Advanced Web
Programming

86

Or simple double click the button it will show code behind file where we
can write the code if the user click button what action has to be performed.

public partialclass_EventHandlerDemo:System.Web.UI.Page

{

 protected void Page_Load(object sender, Event Args e)

 {

 }

 protected void Button_Click(object sender, EventArgs e)

 {

 }

}

Where object sender represents the object raising the event.

EventArgs represents the event arguments.

4.3 UNDERSTANDING THE ANATOMY OF AN
ASP.NET APPLICATION

ASP.NET pages are divided into multiple webpages. Every webpage
shares a common resource and configuration. Each webpage is executed in
separate application domain.

If error occurs in application domain it does not affect other applications
running on the same computer. Each web application is a combination of

mu
no
tes
.in

87

AWP files, pages, handlers, modules and executable code that can be invoked
from a virtual directory on the web server.

4.3.1 ASP.NET File Types

1) .aspx- This file is basically an extension of ASP.NET Web Pages. It
is used for web form pages.

2) .ascx – This extension is basically used for web form user controls.
The .ascx extension is often used for consistent parts of a website
like headers, footers etc.

3) .asmx – This extension is used for files that implement ASP.NET
Web Services.

4) .vb – This extension is used for VisualBasic.NET code modules.
These files are code-behind files and are used to separate code from
user interface.

5) .resx – These files are basically used for Windows Form Application
for storing resources such as text strings for internationalization of
applications.

6) Global.asax – These files are basically used to define Application-
and-Session level variables and start up procedures.

4.3.2 ASP.NET Web Folders

ASP.NET defines several special folders. These special folders can be
added to a Web site from Visual Studio menu system. We can add it by
right clicking the Website Application Project and selecting Add
ASP.NET folder.

The diagram shows the following :-

mu
no
tes
.in

88

Advanced Web
Programming

88

 ASP.Net folders are as follows:-

1) App_Browsers - ASP.net reserve this folder name for storing
browser definition files. These files are used to determine the client
browser capabilities and have .browser extension.

2) App_Code – App_code folder can contain source code for utility
classes as well business objects (i.e .cs, .vb and .jsl files).The
Classes that are present in App_Code folder are automatically
compiled when your web application compiled.

3) App_Data - .App_Data folder is used by ASP.NET application for
storing ASP.NET application local database. App_Data is used to
store files that can be used as database files (.mdf and xml files).
Developers can also use this folder for storing data for their
ASP.NET Application.

4) App_GlobalResources - App_GlobalResources folder contains
resources (.resx and .resources files) that are compiled into
assemblies and have a global scope. These files are used to
externalize text and images from our application code. This also
helps us to support multiple languages and design-time changes
without recompilation of your source code. These files are strongly
typed and can be accessed programmatically.

5) App_LocalResources - App_LocalResources folder contains
resources (.resx and .resources files). These files are available to a
particular project, web page, master page or web user control.

6) App_Themes -These files contain subfolders that defines a specific
theme or look and feel for your Web site. These consist of files
(such as .skin, .css and image files) that defines the appearance of
Web pages and controls.

7) App_WebReferences – It contains Web references files (.wsdl,
.xsd, .disco, and .discomap files) that define references to Web
services.

8) Bin - Bin folder contains compiled assemblies (.dll files) for code
that we want to reference in our application. Assemblies in Bin
folder are automatically reference in our application.

4.3.3 Debugging

Debugging enables programmers to see how the Code works step-by-step,
how the variables values change, how objects are created and destroyed,
and so on. Debugging is the application’s method of inserting breakpoints.
Such breakpoints are used to pause running a program from running.

We start the debugging session using F5(Debug/Start Debugging). This
command starts our app with the debugger attached.

The Green arrow also starts the debugger

mu
no
tes
.in

89

AWP When running code in the debugger we often realize that we don’t need to
see what happens to a particular function. We use some commands to skip
through code

Keyboard

Command

Menu

Command

Description

F10 Step Over If a current line contains a function
call, Step Over runs the code then
suspends execution at the first line of
code after the called function returns.

Shift+F11 Step Out Step Out continues running code and
suspends execution when the current
function returns.

Run to a specific location or function

These methods are useful when we know exactly what code we want to
inspect and where we want to start debugging.

 Set breakpoints in the code :- To set a simple breakpoint in our
code, open the source file in the Visual Studio editor. Set the cursor
at the line of code where we want to suspend execution and then
right-click in the code window to see the context menu and choose
Breakpoint/Insert Breakpoint(or Press F9)

 Run to the cursor location:- To run to the cursor location, place
the cursor on an executable line of code in a source window. On the
editors context menu, choose Run to Cursor.

 Manually break into the code :- To break into the line of code in
an executing app, choose Debug, Break All
(Keyboard:Ctrl+Alt+Delete)

 Run to a function on call stack :- In the Call Stack Window, select
the function, right-click and choose Run to Cursor.

 When the site is executed for the first time, Visual Studio displays a
prompt asking whether it should be enabled for debugging:

mu
no
tes
.in

90

Advanced Web
Programming

90

4.4 INTRODUCTION TO SERVER CONTROLS

The server controls are the heart of ASP.NET pages which represents
dynamic elements that our user can interact with. Server controls are tags
that are understood by the server. There are three kinds of server controls

1) HTML Server Controls – Traditional HTML tags.
2) Web Server Controls – New ASP.NET tags.
3) Validation server Controls – For input validation.

 Advantages of Server Controls

 ASP .NET Server Controls can detect the target browser's
capabilities and render themselves accordingly.

 Newer set of controls that can be used in the same manner as any
HTML control like Calender controls.

 ASP .NET Server Controls have an object model different from the
traditional HTML and even provide a set of properties and methods
that can change the outlook and behavior of the controls.

 ASP .NET Server Controls have higher level of abstraction.

4.4.1 HTML Server Controls :-

The HTML elements are considered as text in ASP.NET file. They cannot
be referred as server side code. These controls can be treated as server
control by adding runat= “server” attribute. The id attribute in the
element can be added as reference to the control. All the HTML server
controls are written in the <form> tag.

Some of the HTML Controls are as follows:-

 HtmlAnchor – Controls an <a> HTML element
 HtmlButton – Controls a <button> HTML element
 HtmlForm – Controls a <form> HTML element
 HtmlGeneric – Controls other HTML element not specified by a

specific HTML server control.
 HtmlImage – Controls an <image> HTML element
 HtmlInputButtonControl - The HtmlInputButton control is used to

control <input type= “button”>, <input type= “reset”> and
<input type= “submit”> elements.

 HTMlInputCheckbox control - The HtmlInputCheckBox control is
used to control as <input type=”checkbox”> element.

 HtmlInputFile control - The HtmlInputFile control is used to control
an <input type= “file”> element.

 HtmlInputHidden control - The HtmlInputHidden control is sued to
control an <input type= “hidden”> element.

mu
no
tes
.in

91

AWP  HtmlInputRadioButton -The HtmlInputRadioButton control is used
to control an <input type= “radio”> element.

 HtmlSelect control - The HtmlSelect control is used to
control <select> element.

 HtmlTextArea control – The HtmlTextArea control is used to
control <textarea> element

 HtmlTable control - The HtmlTable control is used to control
<table> element.

HTML Control Events

Events Controls
ServerClick HtmlAnchor, HtmlButton, HtmlInputButton,

HtmlInputImage, HtmlInputReset
ServerChange HtmlInputText, HtmlInputCheckBox,

HtmlInputRadioButton, HtmlInputHidden,
HtmlSelect, HtmlTextArea

For example:- This example has one button and one textbox. When user
clicks the Button the result is shown in textbox

htmlcontrolsexample.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="html
controlsexample.aspx.cs"
Inherits="asp.netexample.htmlcontrolsexample" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title></title>
</head>
<body>
<form id="form1" runat="server">
<div>
<input id="Text1" type="text" runat="server"/>
<asp:Button ID="Button1" runat="server" Text="Button" OnClick="Butto
n1_Click"/>
</body>
</html>
// htmlcontrolsexample.aspx.cs
using System;
namespace asp.netexample
{

mu
no
tes
.in

92

Advanced Web
Programming

92

 public partial class htmlcontrolsexample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 string a = Request.Form["Text1"];
 Response.Write(a);
 }
 }
}
OUTPUT :-

When we click the button after entering text, it responses back to client.

4.4.2 View State

View State is used to store user data on page at the time of post back of
web page. It does not hold the controls, it holds the values of controls. It
does not restore the value to control after page post back.

mu
no
tes
.in

93

AWP View State can hold the value on single web page, if we go to other page
using response.redirect then View State will be null.

Syntax:-

Store the value in viewstate
ViewState[“name”]=”ASP.NET Programming”;
Retrieve information from viewstate
string value=ViewState[“name”].ToString();
Example of viewstate
//aspprogramming.aspx
protected void Button1_click(Object sender,EventArgs e)
{
//value of Textbox1 and TextBox2 is assigned on Viewstate
Viewstate[“name”]=TextBox1.Text;
Viewstate[“password”]=TextBox2.Text;
//after clicking on Button TextBox Value will be cleared
TextBox1.Text-TextBox2.Text=string.Empty;
}
protected void Button3_Click(object sender,EventArgs e)
{
//If Viewstate value is not null then value of viewstate is assign to TextB
If (Viewstate[“name”] != null)
 {
 TextBox1.Text=Viewstate[“name”].ToString();
 }
 If(Viewstate[“password’’] != null)
 {
 TextBox2.Text=Viewstate[“password”].ToString();
 }
}

Output:-

mu
no
tes
.in

94

Advanced Web
Programming

94

4.4.3 Using Page Class

Every web Page is a custom class that inherits from the system.
web.UI.Page control. By inheriting form this class, your page class
acquires a number of properties that our code can use. These include
properties for enabling caching, validation and tracing.

Some fundamental properties of page class are as follows:-

Properties Description

Application Instance of the HttpApplicationState class; represents
the state of the application. It is functionally
equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for
an ASP.NET application. More efficient and powerful
than Application, it supports item priority and
expiration.

Request Instance of the HttpRequest class; represents the
current HTTP request. It is functionally equivalent to
the ASP intrinsic Request object.

Response Instance of the HttpResponse class; sends HTTP
response data to the client. It is functionally equivalent
to the ASP intrinsic Response object.

Server Instance of the HttpServerUtility class; provides
helper methods for processing Web requests. It is
functionally equivalent to the ASP
intrinsic Server object.

Session Instance of the HttpSessionState class; manages user-
specific data. It is functionally equivalent to the ASP
intrinsic Session object

mu
no
tes
.in

95

AWP Trace Instance of the TraceContext class; performs tracing
on the page.

User the Principal object that represents the user making
the request.

IsPostBack Indicates whether the page is being loaded in response
to a client postback or whether it is being loaded for
the first time.

Sending the User to the New page

Sending the user to the new page means page navigation. It is the
technique to navigate between webforms in asp.net

1. Hyperlink control – It is used to navigate to another page. Using
hyperlink, you can navigate to another page within same application
or to an external website. The hyperlink control is rendered as an
HTML anchor<a> tag. The Hyperlink control does not expose server
side events, so when the user clicks on a hyperlink there is no server
side event to intercept the click.

 Example:- Accounting
2. Response.Redirect - It provides a method Redirect() which is used

to redirects the user to another webpage which may or may not be on
the same server. It can redirect the user to an external website on
different server. This method updates the address bar and adds the
updated URL to the browser history.

 Syntax:- Response.Redirect(path) Here the path is required which is
the location of the ASP file to which control should be transferred.

3. Server.Transfer – The Server object provides method Transfer()
which cause to quit current execution of web page and redirects the
user to another web page on the same server. It reduces the server
request and conserves server resources.
Synatx :- Server.Transfer(path) Here the path is required which is
the location of the ASP file to which control should be transferred.

4.4.4 Using Application Events

Application events are important in an ASP.NET application as the events
are fired by server controls, we use them to perform additional processing
tasks. For example, by using application events, we can write logging code
that runs every time a request is received, no matter what page is being
requested. Basic ASP.NET features such as session state and
authentication use application events to plug into the ASP.NET processing
pipeline.

Global.asax allows us to write event handlers that react to global events in
web applications. Global.asax files are never called directly by the user,
rather they are called automatically in response to application events.

mu
no
tes
.in

96

Advanced Web
Programming

96

Some points to remember about global.asax:-

1. They do not contain any HTML or ASP.NET tags.
2. Contain methods with specific predefined names.
3. They defined methods for a single class, application class.
4. They are optional, but a web application has no more than one

global.asax file.

How to add global.asax file:

Select Website >>Add New Item (or Project >> Add New Item if you're
using the Visual Studio web project model) and choose the Global
Application Class template.

After you have added the global.asax file, you will find that Visual Studio
has added Application Event handlers:

The Event Handling Methods are as follows:-

Event Handling Method Description
Application_Start() This event is fired when the first instance

of the HTTP Application class is created.
It allows us to create objects that are
accessible by all HTTP Application
instances

Application_End() This event is fired when the last instance
of an HTTP Application class is
destroyed. It’s fired only once during an
application lifetime.

Application_BeginRequest() This event is fired when an application
request is received. It’s first event fired
for a request which is often a page request

mu
no
tes
.in

97

AWP (URL) that a user enters
Application_EndRequest() This is the last Event fired for an

application request
Session_Start() This event is fired when a new user visits

the application Website
Session_End() This event is fired when a user’s session

times out, ends, or they leave the
application website

Application_Error() Application_Error() event occurs in
response to an unhandled error

4.4.5 Configuring in ASP.NET Application

A configuration file (web.config) is used to manage various settings that
define a website. The settings are stored in XML files that are separate
from your application code. In this way you can configure settings
independently from your code. Generally a website contains a single
Web.config file stored inside the application root directory. However there
can be many configuration files that manage settings at various levels
within an application.

There are number of important settings that can be stored in the
configuration file. Some of the most frequently used configurations, stored
conveniently inside Web.config file are:

 Database connections
 Caching settings
 Session States
 Error Handling
 Security

Configuration file looks like this

 <configuration>
 <connectionStrings>
 <add name=”myCon” connectionstring=”server=MyServer;
database=apeksha;uid=apekshashirke;pwd=mydata1223" />
 </connectionStrings>
</configuration/>

Different types of configuration files

1) Machin.config :- Server or machine-wide configuration file.
2) Web.config :- Application configuration files which deal with a

single application.

mu
no
tes
.in

98

Advanced Web
Programming

98

Example :- Program to display the number of visitors currently browsing
your website
To Create a website and adding a webform to it
Adding a Global.asax to web applications
Add New Item>Global Application Class >Add

Global.asax

<%@ Application Language="C#" %>
<script runat=”server”>
 void Application_Start(object sender, EventArgs e)
 {
 Application[“OnlineUsers’]=0; //application variable
 }
 void Application_End(object sender, EventArgs e)
 {
 //Code that runs on application shutdown
 }
 Void Application_Error(object sender, EventArgs e)
 {
 //Code that runs when an unhandled error occurs
 }
 Void Session_Start(object sender, EventArgs e)
 {
 Application.Lock();
 Application[“OnlineUsers’]=(int) Application[“OnlineUsers’]-1;
 Application.UnLock();

mu
no
tes
.in

99

AWP }
</script>

Web.config

<?xml version=“1.0”>
<configuration>
 <system.web>
 <sessionState mode=”InProc” cookieless=”false” timeout=”1”/>
 <compilation debug=”true” targetFramework=”4.5.2”/>
 <httpruntime targetFramework=”4,5.2”/>
 </system.web>
</configuration>
Default.aspx
<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”Default.aspx.cs” Inherits=”_Default” %>
<html xmlns=http://www.w3.org/1999/xhtml>
<head runat=”server”>
<title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 Visitors Count :<%=Application[“OnlineUsers”].ToString()%>
 </div>
 </form>
</body>
</html>
Where

 Mode :- The mode setting supports three options : inproc, sqlserver
and stateserver.ASP.NET supports two modes : in process and out of
process.

 Cookieless :- The cookieless option for ASP.NET is configured with
this simple Boolean setting(true/false)

 Timeout :- This option controls the length of time a session is
considered valid. The session timeout is a sliding value, on each
request the timeout period is set to the current time plus the timeout
value.

mu
no
tes
.in

http://www.w3.org/1999/xhtml

100

Advanced Web
Programming

100

4.5 QUESTIONS:-

1. What is Code behind class in ASP.Net?
2. How to add Event Handlers in ASP.Net?
3. What are different types of ASP.Net files?
4. What are ASP.Net Folders?
5. Write a short note on Debugging.
6. Explain in detail the concept of HTMLServer Controls.
7. What do you mean by View state?
8. What are the Properties of Page class?
9. What are Event handling methods in ASP.Net?
10. Explain in detail Web Control hierarchy.

4.6 REFERENCES

https://developer.mozilla.org/en-US/docs/Learn/Forms/Your_first_form
https://www.oreilly.com/library/view/designing-web-
navigation/9780596528102/ch01.html
https://flylib.com/books/en/2.370.1.28/1/ (Anatomy of ASP.NET
application)
https://flylib.com/books/en/2.321.1.16/1/ (ASP.Net File Types)
https://www.c-sharpcorner.com/uploadfile/puranindia/special-folders-
in-asp-net/ (ASP.Net Web folders)
https://www.tutorialspoint.com/asp.net/asp.net_debugging.htm
(Debugging)
https://www.wideskills.com/aspnet/html-server-controls
https://www.c-sharpcorner.com/UploadFile/225740/what-is-view-state-
and-how-it-works-in-Asp-Net53/



mu
no
tes
.in

https://developer.mozilla.org/en-US/docs/Learn/Forms/Your_first_form
https://www.oreilly.com/library/view/designing-web-navigation/9780596528102/ch01.html
https://www.oreilly.com/library/view/designing-web-navigation/9780596528102/ch01.html
https://flylib.com/books/en/2.370.1.28/1/
https://flylib.com/books/en/2.321.1.16/1/
https://www.c-sharpcorner.com/uploadfile/puranindia/special-folders-in-asp-net/
https://www.c-sharpcorner.com/uploadfile/puranindia/special-folders-in-asp-net/
https://www.tutorialspoint.com/asp.net/asp.net_debugging.htm
https://www.wideskills.com/aspnet/html-server-controls
https://www.c-sharpcorner.com/UploadFile/225740/what-is-view-state-and-how-it-works-in-Asp-Net53/
https://www.c-sharpcorner.com/UploadFile/225740/what-is-view-state-and-how-it-works-in-Asp-Net53/

101

5

FORM CONTROLS
Unit Structure

5.0 Form Controls
5.1 Stepping Up to Web Controls
5.2 Web Control Classes
 5.2.1 Units
 5.2.2 Enumerations
 5.2.3 Colors
 5.2.4 Fonts
 5.2.5 Default Button
5.3 List Controls
5.4 Table Controls
5.5 Web Control Events and AutoPostBack
5.6 Validation Controls
5.7 Rich Controls
 5.7.1 The Calendar
 5.7.2 The AdRotator
 5.7.3 Pages with Multiple Views
5.8 User Controls and Graphics
 5.8.1 User Controls
 5.8.2 Dynamic Graphics
 5.8.3 The Chart Control
5.9 Website Navigation
 5.9.1 The SiteMapPath Control
 5.9.2 The Menu Control
 5.9.3 The TreeView Control
5.10 Questions
5.11 References

5.0 FORM CONTROLS

ASP.NET is Fully Based on Controls. the use of controls can easily make any

Application without any problem in Asp.Net.There are some Types of

controls which are used in Asp.Net.

1. Web Forms Standard controls.

2. Navigation Controls

mu
no
tes
.in

http://www.msdotnet.co.in/2013/07/bindingnavigator-control-in-windows.html

102

Advanced Web
Programming

102

3. Validation Controls

4. Web Parts controls

5. HTML Controls

5.1 STEPPING UP TO WEB CONTROLS

Controls are building blocks in web form. Server controls are tags that are
understood by the server. Web server controls are special ASP.NET tags
understood by the server. Web server controls are also created on the
server and they require runat=”server” attribute to work. Basic Web
control include additional methods, events and properties

5.2 WEB CONTROL CLASSES

Web control classes are the basic control classes used in ASP.Net. Web
control classes are defined in System.Web.UI.WebControls namespace.

The following diagram shows the web control hierarchy

Webserver controls can be divided into following categories

1) Validation controls - These are used to validate user input and they
work by running client-side script.

2) Data source controls - These controls provides data binding to
different data sources.

3) Data view controls - These are various lists and tables, which can
bind to data from data sources for displaying.

4) Personalization controls - These are used for personalization of a
page according to the user preferences, based on user information.

mu
no
tes
.in

103

AWP 5) Login and security controls - These controls provide user
authentication.

6) Master pages - These controls provide consistent layout and
interface throughout the application.

7) Navigation controls - These controls help in navigation. For
example, menus, tree view etc.

8) Rich controls - These controls implement special features. For
example, AdRotator, FileUpload, and Calendar control.

The syntax for creating web server control is:
<asp:control_name id=”some_id” runat=”server” />
Example :-
<asp:Button id=”btn1” Text=”Click Here” runat=”server”/>
Properties of web controls
1. AccessKey- Pressing this key with the Alt key moves focus to the

control.
2. BackColor, ForeColor – Used to change the color of the background

(BackColor) and text (ForeColor) of the control
3. BorderColor, BorderStyle, BorderWidth – Used to change the

border of control in the browser. Each of these three ASP.NET
properties maps directly to its CSS counterpart

4. CssClass – It is used to define the HTML class attribute for the
control in the browser.

5. Enabled - Indicates whether the control is grayed out.
6. Font – Used to define different font related settings such as Font-

Size, Font-Names and Font-Bold
7. Height, Width – It determines the height and width of the control in

the browser
8. TabIndex - Gets or sets the tab index of the Web server control.
9. ToolTip - Gets or sets the text displayed when the mouse pointer

hovers over the web server control.
10 Visible - It indicates whether a server control is visible.
11. UniqueID - Unique identifier.
12. SkinID - Gets or sets the skin to apply to the control.
13. Style - Gets a collection of text attributes that will be rendered as a

style attribute on the outer tag of the Web server control.
5.2.1 Units

Many properties of the controls use measurements such as Border width,
Height and Width. The values here requires the unit structure which
combines a numeric value with a type of measurement(pixels, percentage
and so on)

Example :- <asp:Label ID=”Label1” runat=”server” Height=”10px”
Text=”Label”> </asp:Label>

mu
no
tes
.in

104

Advanced Web
Programming

104

5.2.2 Enumerations

Enumerations are used in heavily in the .NET class library to group a set
of related constants, which may use for collection type values for the
controls such as font names, colours or styles. For example, When you set
a controls BorderStyle property, we can choose one of the several
predefined values from the Borderstyle enumeration
Example :-
Button1.BorderStyle=BorderStyle.Dashed; //C#
<asp:Label BorderStyle=”Dashed” Text=”Border Test” ID=”lbl”
runat=”server” />

5.2.3 Colors
The color property refers to a color object from System.Drawing
namespace. we can create color objects in several ways:-
 ARGB(alpha,red,gren,blue) color value : we specify each value as

an integer from 0 to 255. The alpha component represents the
transparency of a color.

 predefined .NET color name : we choose the corresponding name
read-only property from color structure. These properties include the
140 HTML color names.

 HTML color name : we specify this value as a string by using the
ColorTranslator class.

Example :-
Label1.ForeColor=System.Drawing,Color.Red
Label1.ForeColor=System.Drawing.ColorTranslator.FromHtml(“#FF0000
”)
 Label1.ForeColor=Color.Red
 Label1.ForeColor= ColorTranslator.FromHtml(“#FF0000”)
5.2.4 Fonts
The Font Property actually references a full Font Info Object which
defines in the System. Web. UI. Web Controls namespace

Property Description
Name A String indicating the font name (such

as Verdana)
Names An array of strings with font names in

the order of preference. The browser will
use the first matching font that’s
installed on the user’s computer.

Size The size of the font as a FontUnit object.
This can represent an absolute or relative
size

Bold, Italic, Overline,
Strikeout, Underline

Boolean properties that apply the given
style attribute.

mu
no
tes
.in

105

AWP 5.2.5 Default Button

Default Button property ensures that whenever user presses Enter key the
button that is set as default will be triggered. we can set the default button
at the form level meaning of all the buttons in the form the one that is set
as default will be triggered whenever user presses Enter key.

Example :-

<form id="form1" runat="server" defaultbutton="Button1">
<asp:Button ID="Button1" runat="server" Text="Button"
OnClick = "Button1_Click" />
<asp:Button ID="Button2" runat="server" Text="Button"
 OnClick = "Button2_Click" />
<asp:Button ID="Button3" runat="server" Text="Button"
 OnClick = "Button3_Click" />
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
</form>

5.3 LIST CONTROLS

These controls are used to display the list with some list items in the page.
These controls include List Box, Drop Down List, Check Box List, Radio
Button List and Bulleted List. To add items to the list we have to define
<asp:ListItem> elements between the opening and closing tags of the
control.

1. ListBox

We can select multiple items from ListBox at a time.
Basic syntax of list box control:

 <asp:ListBox ID="ListBox1" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="ListBox1_SelectedIndexChanged">
</asp:ListBox>

2. DropDownList

DropDownList control is used select single option from multiple listed
items.
Basic syntax of DropDown List :

<asp:DropDownList ID="DropDownList1" runat="server"
AutoPostBack="True"
OnSelectedIndexChanged="DropDownList1_SelectedIndexChanged">
</asp:DropDownList>

mu
no
tes
.in

106

Advanced Web
Programming

106

Common properties of List Box and Drop Down List are as follows

Properties Description
SelectedValue Get the value of the selected item from the

dropdown list.
SelectedIndex Gets the index of the selected item from the

dropdown box.
SelectedItem Gets the text of selected item from the list.

Items Gets the collection of items from the

dropdown list.
DataTextField Name of the data source field to supply the

text of the items. Generally this field came
from the data source.

DataValueField Name of the data source field to supply the
value of the items. This is not visible field
to list controls, but you can use it in the
code.

DataSourceID ID of the data source control to provide
data.

Common properties of each list item objects:

 Text :- The text displayed for the item.
 Selected :- Indicates whether the item is selected.
 Value :- A string value associated with the item.

3. CheckBoxList

The CheckBox control allows the user to set true/false or yes/no type
options. The user can select or deselect it. When a check box is selected it
has the value True, and when it is cleared, it holds the value False.

Properties of CheckBox Control

Properties Description
Appearance Gets or sets a value determining the appearance of the

check box.
AutoCheck Gets or sets a value indicating whether the Checked or

CheckedState value and the appearance of the control
automatically change when the check box is selected.

CheckAlign Gets or sets the horizontal and vertical alignment of
the check mark on the check box.

Checked Gets or sets a value indicating whether the check box

mu
no
tes
.in

107

AWP is selected.
CheckState Gets or sets the state of a check box.
Text Gets or sets the caption of a check box.
ThreeState Gets or sets a value indicating whether or not a check

box should allow three check states rather than two.

4. RadioButtonList

Radio Button List Control is same as Drop Down List but it displays a list
of radio buttons that can be arranged either horizontally or vertically. We
can select only one item from the given Radio Button List of options.

Properties of Radio Button List

Properties Description
RepeatColumns It displays the number of columns of radio

buttons.
RepeatDirection It pacifies the direction in which the

controls to be repeated. The values
available are Horizontal and Vertical.
Default value is vertical.

RepeatLayout Determines whether the radio buttons
display in an HTML table.

5. Bulleted List

The bulleted list control creates bulleted lists or numbered lists.

 Properties Description

Bulletstyle Determines the type of list. We can choose from
Numbered(1,2,3 …);Lower Alpha (a, b, c,…); Upper
Alpha(A,B,C,…);Lower Roman(i, ii, iii….)and Upper
Roman(I.II,III,…) and the bullet symbols Disc, Circle,
Square or Custom Image

BulletImageUrl If the Bullet Style is set to Custom Image, this points
to the image that is placed to the left to each item as a
bullet.

FirstBulletNumber In a ordered list (using (using Numbered, Lower
Alpha, Upper Alpha, Lower Roman and Upper
Roman) this sets the first value. For example if you
set First Bullet Number to 3, the list might read
3,4,5…

DisplayMode It determines whether the text of each item is rendered
as a text or hyperlink

mu
no
tes
.in

108

Advanced Web
Programming

108

5.4 TABLE CONTROLS

In .NET Framework the Table class enables us to build an HTML Table.
The System.Web.UI Controls namespace defines the Table class along
with other web controls

Control Code Description
Table <asp:table> Parent control for Table

Row controls.
The Rows property of
the Table object is a
collection of Table
Row objects.

TableRow <asp:TableRow> Parent control for Table
Cell controls.
The Cells property of
the Table Row object
contains a collection of Table
Cell objects.

TableCell <asp:TableCell> Contains content to be
displayed. The Text property
contains HTML text.
The Controls collection can
contain other controls.

TableRow
Collection

<asp:TableRowCollection> It encapsulates Table Row
Collection and is used to
manage a collection of table
or removing a row from it.

TableCell
Collection

<asp:TableCellCollection> It manages collection of table
cells such as adding a cell to
a row or removing a cell
from it.

TableHeader
Collection

<asp:TableHeadercell> It encapsulates a table header
cell.

Properties of Table class

Property Description

BackImageUrl An URL to an image is used as background

for the table

Caption The caption of the table.

CaptionAlign The alignment of the caption text.

CellPadding The space between the cell walls and content.

CellSpacing The space between cells.

GridLines The gridline format in the Table.

mu
no
tes
.in

109

AWP HorizontalAlign The horizontal alignment of the table in the page

Rows A collection of rows in the table

Runat Specifies that the control is a server control.

Must be set to “server”

5.5 WEB CONTROL EVENTS AND AUTO POST BACK

The following diagram shows the order of event in ASP.NET page
processing:

Sometimes we need to write the server code that will react immediately to
an event that occurs on the client. Some events, such as Click event of a
button take place immediately, because when clicked, the button posts
back the page. However, other actions do cause events but don’t trigger a
post back.

For example when user chooses a new item in a list (which triggers
SelectedIndexChanged event) or changes the text in a text box (the
TextChangedevent). In these cases without post back your code has no
way to run.

ASP.NET handles this by giving you two options:

– To wait until the next post back to react to the event. For example
imagine you want to react to the SelectedIndexChanged event in a list. If
the user selects an item in a list, nothing happens immediately. But, if the
user clicks a button to post back the page, two events fire: ButtonClick
followed by ListBox.SelectedIndexChanged. And if you have several

mu
no
tes
.in

110

Advanced Web
Programming

110

controls, it’s quite possible for a single post back to result in several
change events, which fire one after the other, in an undetermined order.

– To use the automatic post back feature to force a control to post back the
page immediately when it detects a specific user action. In this scenario,
when the user clicks a new item in the list, the page is posted back, your
code executes, and a new version of the page is returned.

Event Web controls AlwaysPostBack
Click Button, ImageButton True
TextChanged TextBox False
CheckedChanged CheckBox, RadioButton False
SelectedIndexChanged DropDownList, ListBox,

CheckBoxList,
RadioButtonList

False

If you want to capture a change event (such as TextChanged,
CheckedChanged, or SelectedIndexChanged) immediately, by setting the
control’s AutoPostBack property to true. This way the page will be
submitted automatically when the user interacts with the control.

When the page is posted back, ASP.NET examines the page, loads all the
current information, and then allows your code to perform some extra
processing before returning the page back to the user. The next picture
illustrates this:

mu
no
tes
.in

111

AWP AutoPostBack in ASP.NET

 AutoPostback or Postback is nothing but submitting page to server.
 AutoPostback is webpage going to server, Server processes the

values and sends back to same page or redirects to different page

What is AutoPostBack Property in ASP.NET?

The web Pages with one or more web controls are configured to use
AutoPostBack, the ASP.NET adds a special JavaScript function to the
rendered HTML page. This function is named _doPostBack(). When
called, it triggers a PostBack sending data back to the web server.

The _doPostBack() function has the responsibility for setting these values
with the appropriate information about the event and submitting the form.
The _doPostBack() function is shown below:

<script language= “text/javascript”>

 Function _doPostBack (event Target, event Argument)

 {

 If (!theForm.onsubmit || (theForm.onsubmit()!=false))

 the Form._EVENTTARGET.value=eventTarget;

 theForm._EVENTTARGET.value=eventTarget;

 theForm.submit();

 }

</script>

ASP.NET generates the _doPostBack() function automatically provided
atleast one control on three page uses automatic postbacks.

Life Cycle of a Web Page

To work with ASP.NET web Controls events, we need to understand the
webpage lifecycle. The following actions will be taken place when a user
changes the control that has Auto Post Back property set to true:

1 On the client side the Javascript_doPostBack function is invoked
and the page is submitted to the server.

2. ASP.NET recreates the Page object using the .aspx file.

3. ASP.NET retrieves state information from the hidden view state
field and updates the control accordingly.

4. The Page Load event is fired.

5. The appropriate change event is fired for the control.

mu
no
tes
.in

112

Advanced Web
Programming

112

6. The Page.PreRender event fired and the page is rendered.

7. Finally, the Page.Unload event is fired.

8. The new page is sent to the client.

5.5 VALIDATION CONTROLS

Validation controls are used to implement presentation logic, to validate
user input data and it is also used for data format, data type and data range.
Validation consist of two types client side and server side.
Client Side – Dependent on browser and scripting language support.
Sever Side – It is not dependent on browser and scripting language
support.
Validation controls in ASP.NET
There are six types of validation controls in ASP.NET
1. Required Field Validation Control
2. Compare Validator Control
3. Range Validator Control
4. Regular Expression Validator Control
5. Custom Validator Control
6. Validation Summary
1. RequiredFieldValidator Control
The RequiredFieldValidator control is simple validation control, which
checks to see if the data is entered for the input control. We can have a
RequiredFieldValidator control for each form element on which you wish
to enforce Mandatory Field rule.
Syntax:-
<asp:RequiredFieldValidator ID=”RequiredFielsdValidator3”
runat=”server” Style=”top: 98px;left: 367px; position: absolute; height:
26px;width: 162px”
ErrorMessage=”password required” ControlToValidate=”TextBox2” >
</asp: RequiredFieldValidator>

Example:-

Your Name :

<asp:TextBox runat=”server” id=”txtName”/>
<asp:RequiredFieldValidator runat=”server” id=”reqName”
ForeColor=”Red” controltovalidate”txtName” errormessage=”Please enter
your name !”/>

mu
no
tes
.in

113

AWP 2. CompareValidator Control

The CompareValidator control allows us to make comparison to compare
data entered in an input control with a constant value or a value in a
different control.
Syntax:-
<asp:RequiredFieldValidator ID=”RequiredFieldValidator3”
runat=”server” Style=”top: 145px; left: 367px; position: absolute; height:
26px; width: 162px” ErrorMessage=”password required”
ControlToValidate=”TextBox3” ></asp: RequiredFieldValidator>
Example :-
Password:

<asp:TextBox runat=”server” id=”txt11” TextMode=”Password”/>

ReEnter password :

<asp:TextBox runat=”server” id=”txt11” TextMode=”Password”/>

<asp:CompareValidator runat=”server” id=”cmpNumbers”
ForeColor=”Red” Controltovalidate=”txt12” controltocompare=”txt11”
operator=”LessThan” type=”Integer” errormessage=”Password should
match !”> Password should match!</asp:CompareValidator>
3. RangeValidator Control
The RangeValidator control verifies that the input value falls within a
predetermined range.
Syntax:-
<asp:RangeValidatorID=”rvclass” runat=”server”
ControlToValidate=”txtclass” Errormessage=”Enter your class (6-12)”
Maximum Value=”12” Minimum Value=”6” Type=”Integer”/>
Example:-
Enter age :

<asp:TextBox runat=”server” id=”txt1”/>
<asp:RangeValidator ID=”RangeValidator2” Type=”Integer”
runat=”server” ForeColor=”Red” ControlToValidate=”txt1”
MinimumValue=”18” MaximumValue=”100” Error Message=”Not valid
age”>Not valid age</asp:RangeValidator>

Property Description
Type It specifies the data type
ControlToCompare It specifies the value of the input control to compare

with.
ValueToCompare It specifies constant value to compare with.
Operator It specifies the comparison operator the available

values are Equal, NotEqual, GreaterThanEqual,
LessThan, LessThanEqual and DataTypeCheck.

mu
no
tes
.in

114

Advanced Web
Programming

114

4. Regular Expression Validator Control

The RequiredExpressionValidator allows validating the input text by
matching against a pattern of regular expression. The regular expression is
set in the ValidationExpression property. The following table summarizes
the commonly used syntax construct for regular expressions.

Character Escapes Description
\b Matches a backspace.
\t Matches a tab.
\r Matches a carriage return.
\v Matches a vertical tab
\f Matches a form feed
\n Matches a new line
\ Escape character
Apart from single character match, class of characteristics could be
specified that can be matched called the meta characters.

Meta characters Description
. Matches any character except \n
[abcd] Matches any character in the set
[^abcd] Excludes any character in the set
[2-7a-mA-M] Matches any character specified in the range
\w Matches any alphanumeric character and

underscore
\W Matches any non-word character
\s Matches whitespace characters like space, tab, new

line etc.
\S Matches any non-whitespace character
\d Matches any decimal character
\D Matches any non-decimal character

Syntax:-

<asp:RegularExpressionValidator ID="string" runat="server"
ErrorMessage="string" ValidationExpression="string"
ValidationGroup="string">

</asp:RegularExpressionValidator>

Example :-

Email ID :

<asp:TextBox runat=”server” id=”txtnumber”/>

mu
no
tes
.in

115

AWP <asp:RegularExpressionvalidator runat=”server” ForeColor=”Red”
id=”rexNumber” controlToValidate =”txtnumber” errormessage=”Please
enter valid email address!”
ValidationExpression=”\w=([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-
.]\w+)*”>Please enter valid email
address!</asp:regularExpressionValidator>
5. CustomValidator

The CustomValidator control allows writing application specific custom
validation routines for both the client side and the server side
validation. The client side validation routine should be written in a
scripting language, such as JavaScript or VBScript, which the browser can
understand. The server side validation routine must be called from the
control's ServerValidate event handler. The server side validation routine
should be written in any .Net language, like C# or VB.Net.

Syntax:-

<asp:CustomValidator ID="CustomValidator1" runat="server"
 ClientValidationFunction=.cvf_func.ErrorMessage="CustomValidator>
</asp:CustomValidator>

Example:-

Custom text :

<asp:TextBox runat=”server” id=”txtCustom”/>
<asp:CustomValidator id=”CustomValidator1”
ControlToValidate=”txtCustom”
ClientValidationFunction=”ServerValidation” Display=”Static”
ForeColor=”Red” runat=”server”/>

5.7 RICH CONTROLS

Rich controls are built with multiple HTML elements and contain rich
functionality. Examples of rich controls are the calendar control and
AdRotator.

5.7.1 The Calendar Control

The calendar control is used to display a calendar in the browser. This
control displays a one month calendar that allows the user to select dates
and move to the next and previous months. It is a functionality rich web
control which provides displaying one month at a time, selecting a day, a
week or a month, selecting a range of days moving from month to month
and controlling the display of the days programmatically.

Syntax:-

 <asp:Calendar ID=”Calendar1” runat=”server”>
 </asp:Calendar>

mu
no
tes
.in

mailto:*@/w+(%5b-.%5d/w+)*/./w+(%5b-.%5d/w+)*
mailto:*@/w+(%5b-.%5d/w+)*/./w+(%5b-.%5d/w+)*

116

Advanced Web
Programming

116

 Properties and events of calendar control

Properties Description
Caption Gets or sets the caption for the calendar control.
CaptionAlign Gets or sets the alignment for the caption.
CellPadding Gets or sets the number of spaces between the

data and the cell border
CellSpacing Gets or sets the space between cells.
DayHeaderStyle Gets the style properties for the section that

displays the day of the week.
DayNameFormat Gets or sets format of days of the week.
DayStyle Gets the style properties for the days in the

displayed month.
FirstDayOfWeek Gets or sets the day of week to display in the first

column.
NextMonthText Gets or sets the text for next month navigation

control. The default value is >.
NextPrevFormat Gets or sets the format of the next and previous

month navigation control.
OtherMonthDayStyle Gets the style properties for the days on the

Calendar control that are not in the displayed
month.

PrevMonthText Gets or sets the text for previous month navigation
control. The default value is <.

SelectedDate Gets or sets the selected date.
SelectedDates Gets a collection of Date Time objects

representing the selected dates.
SelectedDayStyle Gets the style properties for the selected dates.
SelectionMode Gets or sets the selection mode that specifies

whether the user can select a single day, a week or
an entire month.

SelectMonthText Gets or sets the text for the month selection
element in the selector column.

SelectorStyle Gets the style properties for the week and month
selector column.

SelectWeekText Gets or sets the text displayed for the week
selection element in the selector column.

ShowDayHeader Gets or sets the value indicating whether the
heading for the days of the week is displayed.

ShowGridLines Gets or sets the value indicating whether the
gridlines would be shown.

ShowNextPrevMonth Gets or sets a value indicating whether next and
previous month navigation elements are shown in

mu
no
tes
.in

117

AWP the title section.
ShowTitle Gets or sets a value indicating whether the title

section is displayed.
TitleFormat Gets or sets the format for the title section.
Titlestyle Get the style properties of the title heading for the

Calendar control.
TodayDayStyle Gets or sets the value for today's date.
UseAccessibleHeader Gets or sets a value that indicates whether to

render the table header <th> HTML element for
the day headers instead of the table data <td>
HTML element.

VisibleDate Gets or sets the date that specifies the month to
display.

WeekendDayStyle Gets the style properties for the weekend dates on
the Calendar control.

The calendar control has the following three most important events that
allow the developers to program the calendar control. They are

Events Description
SelectionChanged It is raised when a day, a week or an entire month

is selected.
DayRender It is raised when each data cell of the calendar

control is rendered.
VisibleMonthChanged It is raised when user changes a month.

5.7.2 The AdRotator

The AdRotator is to provide a graphic on a page that is chosen randomly
from a group of possible images. Every time the page is requested an
image is selected at random and displayed which is the “rotation”
indicated by the name Adrotator. One use of Adrotator is to show banner-
style advertisements on a page but we can use it any time we want to vary
an image randomly.

The Advertisment file

The AdRotator stores its list of image files in an XML file. This file uses
the format shown here:

<Advertisements>
<Ad>
<ImageUrl>proetech.jpg<ImageUrl>
<NavigateUrl>http://www.prosetech.com<NavigateUrl>
<AlternateText><ProseTech Site</Alternate text>
<Impressions>1</Impressions>

mu
no
tes
.in

118

Advanced Web
Programming

118

<Keyword>Computer</Keyword>
</Ad>
</Advertisements>

Advertisement File Elements

1. ImageUrl - The path of image that will be displayed.
2. NavigateUrl - The link that will be followed when the user clicks the

ad.
3. AlternateText - The text that will be displayed instead of the picture

if it cannot be displayed.
4. Keyword - Keyword identifying a group of advertisements. This is

used for filtering.
5. Impressions - The number indicating how often an advertisement

will appear.

The AdRotator class

The actual AdRotator class provides a limited set of properties

1. _blank :- The link opens a new unframed window.
2. _parent :- The link opens in the parent of the current frame.
3. _self :- The link opens in the current frame
4. _top :- The link opens in the topmost frame of the current window.

5.7.3 Pages with Multiple Views

MultiView and View controls allow you to divide the content of a page
into different groups, displaying only one group at a time. Each View
control manages one group of content and all the View controls are held
together in a MultiView control.

The MultiView control is responsible for displaying one View control at a
time. The View displayed is called the active view.

Syntax of Multiview

<asp:Multview ID=”MultiView1” runat=”server”>

</asp:MultiView>

Syntax of View

<asp:View ID=“View1” runat=”server”>

</asp:View>

Properties of View and MultiView Controls

Both View and MultiView controls are derived from Control class and
inherit all its properties, methods, and events. The most important property
of the View control is Visible property of type Boolean, which sets the
visibility of a view.

mu
no
tes
.in

119

AWP The MultiView control has the following important properties:

Properties Description

Views Collection of View controls within the Multi View.

ActiveViewIndex A zero based index that denotes the active view. If
no view is active, then the index is -1.

The Command Name attribute of the button control associated with the
navigation of the MultiView control are associated with some related field
of the MultiView control. For example, if a button control with
CommandName value as NextView is associated with the navigation of
the multi view, it automatically navigates to the next view when the button
is clicked.
The following table shows the default command names of the above
properties:
Properties Description
NextViewCommandName Next View
PreviousViewCommandName Prev View
SwitchViewByIDCommandName Switch View By ID
SwitchViewByIndexCommandName Switch View By Index

The important methods of the multi view control are:
Methods Description
SetActiveView Sets the active view
GetActiveView Retrieves the active view
Every time a view is changed, the page is posted back to the server and a
number of events are raised. Some important events are:
Events Description
ActiveViewChanged Raised when a view is changed
Activate Raised by the active view
Deactivate Raised by the inactive view

5.8 USER CONTROLS AND GRAPHICS

User controls are used to have code which is used multiple times in an
application. The user control can then be reused across the application.
The user control needs to be registered on the ASP.Net page before it can
be used. To use user control across all pages in an application, register it
into the web.

5.8.1 User Controls

User controls behaves like a miniature ASP.NET pages and webforms
which could be used by many other pages. These are derived from the

mu
no
tes
.in

120

Advanced Web
Programming

120

System.Web.UI.UserControl Class. These controls have the following
characteristics:

 They have an .ascx extension.

 They may not contain any <html>, <body>, or <form> tags.

 They have a Control directive instead of a Page directive.

To understand the concept, let us create a simple user control, which will
work as footer for the web pages. To create and use the user control, take
the following steps:

 Create a new web application.

 Right click on the project folder on the Solution Explorer and choose
Add New Item.

 Select Web User Control from the Add New Item dialog box and
name it footer.ascx. Initially, the footer.ascx contains only a Control
directive.

footer.ascx
<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="footer.ascx.cs" Inherits="customcontroldemo.footer" %>
<table>
 <tr>
 <td align="center"> Copyright ©2010 TutorialPoints Ltd.</td>
 </tr>
 <tr>
 <td align="center"> Location: Hyderabad, A.P </td>
 </tr>
</table>
To add the user control to your web page, you must add the Register
directive and an instance of the user control to the page. The following
code shows the content file:

mu
no
tes
.in

121

AWP <%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="Default.aspx.cs" Inherits="customcontroldemo._Default"
%>
 <%@ Register Src="~/footer.ascx" TagName="footer"
TagPrefix="Tfooter" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head runat="server">
 <title>
 Untitled Page
 </title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Welcome to
ASP.Net Tutorials "></asp:Label>

 <asp:Button ID="Button1" runat="server"
onclick="Button1_Click" Text="Copyright Info" />
 </div>
 <footer:footer ID="footer1" runat="server" />
 </form>
 </body>
</html>

When executed, the page shows the footer and this control could be used
in all the pages of your website.

5.8.2 Dynamic Graphics

Graphics device interface resides in System.Drawing.dll assembly.
Graphics classes are System.Drawing, System.Text, System.Printing,
System.Internal, System.imaging, System.Drawing2D and System.Design
name spaces.

mu
no
tes
.in

122

Advanced Web
Programming

122

The Graphics Class

The Graphics class encapsulates Graphics Device interface drawing
surfaces. Before drawing any object we have to create surface using
Graphics class

Methods Description

DrawArc Draws an arc from the specified ellipse
DrawBeizer Draws a cubic beizer curve
DrawBeizers Draws a series of cubic Beizer curves
DrawClosedCurve Draw closed curve defined by array of points
DrawCurve Draws a curve defined by an array of points
DrawEllipse Draws an ellipse
DrawImage Draws an Image
DrawLine Draws a line
DrawPath Draws the lines and curves defined by a

GraphicsPath
DrawPie Draws the outline of a pie section
FillEllipse Fills the interior of an ellipse defined by

bounding rectangle.
FillPath Fills the interior of a path
FillPie Fills the interior of a pie section
FillPolygon Fills the interior of a polygon defined by an

array of points.
FillRectangle Fills the interior of a series of rectangles with a

Brush

FillRegion Fills the interior of a Region

Graphics Objects

After creating a Graphics object, You can use it draw lines, fill shapes and
draw text so on, The major objects are as follows:-

Methods Description

Brush Used to fill enclosed surfaces with patterns, colors
or bitmaps

Pen Used to draw lines and polygons including
rectangles, arcs and pies

Font Used to describe the font to be used to render text

Color Used to describe the color used to render a
particular object

mu
no
tes
.in

123

AWP 5.8.3 The Chart control

The chart control can create chart images of different types with many
formatting options and labels. It can create standard charts like area charts,
bar charts, column charts, line charts and pie charts along with more
specialized charts like stock charts with the provided data.

To fill the data for chart we can use datasource option for the database
values with the help of visual studio or we can provide the data from file
or collection.

The Chart.Series collection contains all data series(Series objects) in the
chart control. Each series is assigned the following:

 A chart type(the Series.ChartType property)

 A chart area(the Series.ChartArea property)

 A legend(the Series.Legend property),if applicable

 An X axis(the Series.XaxisType property)

 A Y axis(the Series.XaxisType property)

Each series contains a collection of Datapoint objects(the Series.Points
collection property). Each data point contains :

 An X value(the DataPoint.Xvalue property)

 One or more Y values(the DataPoint.Yvalues property)



Chart Properties and Methods

 New Chart - Creates a new chart object and sets its width and height.
 AddTitle() – This method specifies the chart title
 AddSeries() – This method adds data to the chart
 chartType – This parameter defines the type of chart
 xValues – This parameter defines x-axis names
 yValues - This parameter defines the y-axis values
 Write() - method displays the chart

mu
no
tes
.in

124

Advanced Web
Programming

124

5.9 WEBSITE NAVIGATION

Maintaining the menu of a large web site is difficult and time consuming.

In ASP.NET the menu can be stored in a file to make it easier to maintain.
This file is normally called web.sitemap, and is stored in the root
directory of the web.

Different Navigation Controls in ASP.NET

5.9.1 SiteMapPath Control:-

Site maps are XML files which are mainly used to describe the logical
structure of the web application. It defines the layout of all pages in web
application and how they relate to each other. Whenever you want you can
add or remove pages to your site map there by managing navigation of
website efficiently. Site map files are defined with .sitemap extension.
<sitemap> element is the root node of the sitemap file.

It has three attributes:

 Title: It provides textual description of the link.
 URL: It provides the location of the valid physical file.
 Description: It is used for tooltip of the link.

Properties of SiteMapPath Control:

 PathSeparator: This property is to get or set the out separator text.

 NodeStyle: This property is used to set the style of all nodes that
will be displayed.

 RootNodeStyle: This property is used to set the style on the
absolute root node.

 PathDirection: This property is used to set the direction of the links
generated in the output.

 CurrentNodeStyle: This property is used to set the style on node
that represent the current page.

 ShowToolTips: This property is used to set the tooltip for the
control. Default value is true.

 PathSeparatorStyle: This property is used to set the style of path
separator.

 pathSeparator: This property is to get or set the out separator text.

 NodeStyle: This property is used to set the style of all nodes that
will be displayed.

 RootNodeStyle: This property is used to set the style on the
absolute root node.

mu
no
tes
.in

125

AWP  PathDirection: This property is used to set the direction of the links
generated in the output.

 CurrentNodeStyle: This property is used to set the style on node
that represent the current page.

 ShowToolTips: This property is used to set the tooltip for the
control. Default value is true.

 PathSeparatorStyle: This property is used to set the style of path
separator.

Creation of Site Map

Below is the HTML Markup of the Master Page Main.Master that contains
the SiteMapPath control as well as the SiteMapDataSource control.

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" Sho
wStartingNode="true" />

<asp:SiteMapPath ID="SiteMapPath1" runat="server" PathSeparator=">"
RenderCurrentNodeAsLink="false">

</asp:SiteMapPath>

<hr />

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">

</asp:ContentPlaceHolder>

Sitemap can be added using AddNewItemDialog of Visual Studio as
shown below.

5.9.2 The Menu Control

The Menu control is used to create a menu of hierarchical data that can be
used to navigate through the pages. The Menu control conceptually
contains two types of items.

 StaticMenu that is always displayed on the page
 DynamicMenu that appears when opens the parent item.

Its properties like BackColor, ForeColor, BorderColor, BorderStyle,
BorderWidth, Height etc. are implemented through style properties of
<table, tr, td/> tag.

mu
no
tes
.in

126

Advanced Web
Programming

126

Following are some important properties that are very useful.

Properties Description

DataSourceID Indicates the data source to be used (You can use
.sitemap file as datasource).

Text Indicates the text to display in the menu.

Tooltip Indicates the tooltip of the menu item when you
mouse over.

Value Indicates the nondisplayed value (usually unique id to
use in server side events

NavigateUrl Indicates the target location to send the user when
menu item is clicked. If not set you can handle
MenuItemClick event to decide what to do.

Target If NavigationUrl property is set, it indicates where to
open the target location (in new window or same
window).

Selectable true/false. If false, this item can't be selected. Usually
in case of this item has some child.

ImageUrl Indicates the image that appears next to the menu
item.

ImageToolTip Indicates the tooltip text to display for image next to
the item.

PopOutImageUrl

Indicates the image that is displayed right to the
menu item when it has some subitems

Target If NavigationUrl property is set, it indicates where to
open the target location (in new window or same
window).

Styles of Menu Control

Properties Description

StaticMenuStyle Sets the style of the parent box in which all
menu items appears.

DynamicMenuStyle Sets the style of the parent box in which
dynamic menu items appears.

StaticMenuItemStyle Sets the style of the individual static menu items.

mu
no
tes
.in

127

AWP DynamicMenuItemStyle Sets the style of the individual dynamic menu
items

StaticSelectedStyle Sets the style of the selected static items.

DynamicSelectedStyle Sets the style of the selected dynamic items.

StaticHoverStyle Sets the mouse hovering style of the static items.

DynamicHoverStyle Sets the mouse hovering style of the dynamic
items (subitems).

5.9.3 The Tree Control

The TreeView control is used to display hierarchical representations of
items similar to the ways the files and folders are displayed in the left pane
of the Windows Explorer. Each node may contain one or more child
nodes.

Let's click on a TreeView control from the Toolbox and place it on the
form.

Now we have to set Data Source property of this control to
SiteMapdataSource1.

Properties of Tree View Control

Properties Description

BackColor Gets or sets the background color for
the control.

BackgroundImage Gets or set the background image for
the TreeView control.

mu
no
tes
.in

128

Advanced Web
Programming

128

BackgroundImageLayout Gets or sets the layout of the
background image for the TreeView
control.

BorderStyle Gets or sets the border style of the tree
view control.

CheckBoxes Gets or sets a value indicating whether
check boxes are displayed next to the
tree nodes in the tree view control.

DataBindings Gets the data bindings for the control.

Font Gets or sets the font of the text
displayed by the control.

FontHeight Gets or sets the height of the font of
the control.

ForeColor The current foreground color for this
control, which is the color the control
uses to draw its text.

5.10 QUESTIONS:-

1. What are different types of WebServer controls?
2. Write short notes on

a) Units
b) Enumeration
c) Colors
d) Fonts

3. Explain in detail List controls.
4. What are Table controls?
5. What is an Autopostback method in ASP.Net?
6. What is Life Cycle of a Web Page?
7. Write a short note on Validation Controls.
8. Explain in detail Calendar control.
9. What are User Controls?
10. Explain in detail Graphic Class .
11. What are different Navigation controls in ASP.Net?

mu
no
tes
.in

129

AWP 5.11 REFERENCES

https://www.tutorialride.com/asp-net/list-controls-in-asp-net.htm
https://w3schools.sinsixx.com/aspnet/control_table.asp.htm
https://www.tutorialspoint.com/asp.net/asp.net_multi_views.htm
https://www.dotnetfunda.com/tutorials/controls/menu.aspx



mu
no
tes
.in

130

Advanced Web
Programming

130

6
ERROR HANDLING, LOGGING

AND TRACING
Unit Structure

6.0 Objective
6.1 Introduction
6.2 An Overview
6.3 Avoiding Common Errors
6.4 Understanding Exception Handling
 6.4.1 The Exception Class
 6.4.2 The Exception Chain
6.5 Handling Exceptions
 6.5.1 Catch Specific Exceptions
 6.5.2 Using Nested Exception Handlers
 6.5.3 Exception Handling in Action
 6.5.4 Mastering Exceptions
6.6 Throwing your own Exceptions
6.7 User-Defined Exceptions
6.8 Page Tracing
 6.8.1 Enabling Tracing
 6.8.2 Application Level Tracing
6.9 List of References
6.10 Unit End Exercise

6.0 OBJECTIVE

 To learn about errors and how to handle the errors.
 To learn about exceptions and how to handle the exceptions.
Error handling refers to the anticipation, detection, and resolution of
programming errors.
Exception Handling in C# is a process to handle runtime errors. We
perform exception handling so that normal flow of the application can be
maintained even after runtime errors.
In C#, exception is an event or object which is thrown at runtime. All
exceptions the derived from System.Exception class. It is a runtime error
which can be handled. If we don't handle the exception, it prints exception
message and terminates the program.

mu
no
tes
.in

131

Error Handling,
Logging and Tracing

6.1 INTRODUCTION

 Handling mechanism consists of try-catch blocks.
 A try statement specifies a code block subject to error-handling or

cleanup code.
 The try block must be followed by a catch block, a finally block, or

both. The catch block executes when an error occurs in the try block.
 The finally block executes after execution leaves the try block (or if

present, the catch block), to perform cleanup code, whether or not an
error occurred.

 A catch block has access to an Exception object that contains
information about the error. You use a catch block to either
compensate for the error or rethrow the exception.

 You rethrow an exception if you merely want to log the problem, or
if you want to rethrow a new, higher-level exception type.

 A finally block adds determinism to your program, by always
executing no matter what. It’s useful for cleanup tasks such as
closing network connections.

6.2 AN OVERVIEW

An exception is a problem that arises during the exception of a program. A
C# exception is a response to an exceptional circumstance that arises
while a program is running, such as an attempt to divide by zero.
Exceptions provide a way to transfer control from one part of a program to
another. C# exception handling is built upon four keywords: try, catch,
finally and throw. –

 try - A try block identifies a block of code for which particular
exceptions is activated. It is followed by one or more catch blocks.

 catch - A program catches an exception with an exception handler at
the place in a program where you want to handle the problem. The
catch keyword indicates the catching of an exception.

 finally - The finally block is used to execute a given set of
statements, whether an exception is thrown or not thrown. For
example, if you open a file, it must be closed whether an exception
is raised or not.

 throws - A program throws an exception when a problem shows up.
This is done using a throw keyword.

6.3 AVOIDING COMMON ERRORS

 Errors can occur in a variety of situations. Some of the most
common causes of errors include attempts to divide by zero (usually
caused by invalid input or missing information) and attempts to
connect to a limited resource such as a file or a database (which can

mu
no
tes
.in

132

Advanced Web
Programming

132

fail if the file doesn’t exist, the database connection times out, or the
code has insufficient security credentials)

 One infamous type of error is the null reference exception, which
usually occurs when a program attempts to use an uninitialized
object. As a .NET programmer, you’ll quickly learn to recognize and
resolve this common but annoying mistake.

 The following code example shows the problem in action, with two
SqlConnection objects that represent database connections:

// Define a variable named conOne and create the object.
private SqlConnection conOne = new SqlConnection();
 // Define a variable named conTwo, but don't create the object.
private SqlConnection conTwo;
public void cmdDoSomething_Click(object sender, EventArgs e)
{
// This works, because the object has been created with the new keyword.
conOne.ConnectionString = "...";
// The following statement will fail and generate a null reference
exception.
// You cannot modify a property (or use a method) of an object that doesn't
exist!
conTwo.ConnectionString = "...";
}

When an error occurs in your code, .NET checks to see whether any error
handlers appear in the current scope. If the error occurs inside a method,
.NET searches for local error handlers and then checks for any active error
handlers in the calling code. If no error handlers are found, the page
processing is aborted.

mu
no
tes
.in

133

Error Handling,
Logging and Tracing

 Even if an error is the result of invalid input or the failure of a third-
party component, an error page can shatter the professional
appearance of any application.

 The application users end up feeling that the application is unstable,
insecure, or of poor quality—and they’re at least partially correct.

6.4 UNDERSTANDING EXCEPTION HANDLING

 Most .NET languages support structured exception handling.
Essentially, when an error occurs in your application, the .NET
Framework creates an exception object that represents the problem.

 You can catch this object by using an exception handler. If you fail
to use an exception handler, your code will be aborted, and the user
will see an error page.

 If you catch the exception, you can notify the user, attempt to
resolve the problem, or simply ignore the issue and allow your web
page code to keep running.

Structured exception handling provides several key features:

 Exceptions are object-based: Each exception provides a significant
amount of diagnostic information wrapped into a neat object, instead
of a simple message and error code. These exception objects also
support an Inner Exception property that allows you to wrap a
generic error over the more specific error that caused it. You can
even create and throw your own exception objects.

 Exceptions are caught based on their type: This allows you to
streamline error-handling code without needing to sift through
obscure error codes.

 Exception handlers use a modern block structure: This makes it
easy to activate and deactivate different error handlers for different
sections of code and handle their errors individually.

 Exception handlers are multilayered: You can easily layer
exception handlers on top of other exception handlers, some of
which may check for only a specialized set of errors. As you’ll see,
this gives you the flexibility to handle different types of problems in
different parts of your code, thereby keeping your code clean and
organized.

 Exceptions are a generic part of the .NET Framework: This
means they’re completely cross-language compatible. Thus, a .NET
component written in C# can throw an exception that you can catch
in a web page written in VB.

6.4.1 The Exception Class

Every exception class derives from the base class System.Exception. The
.NET Framework is full of predefined exception classes, such as
NullReferenceException, IOException, SqlException, and so on. The

mu
no
tes
.in

134

Advanced Web
Programming

134

Exception class includes the essential functionality for identifying any
type of error.

Exception Properties

Members Description

HelpLink A link to a help document, which can be a relative or fully
qualified uniform resource locator (URL) or uniform resource name
(URN). The .NET Framework doesn’t use this property, but you can set it
in your custom exceptions if you want to use it in your web page code
InnerException A nested exception. For example, a method might catch
a simple file input/output (IO) error and create a higher-level “operation
failed” error. The details about the original error could be retained in the
InnerException property of the higher-level error.
Message A text description with a significant amount of information
describing the problem.
Source The name of the application or object where the exception was
raised.
StackTrace A string that contains a list of all the current method calls on
the stack, in the order of most recent to least recent. This is useful for
determining where the problem occurred.
TargetSite A reflection object (an instance of the
System.Reflection.Method Base class) that provides some information
about the method where the error occurred. This information includes
generic method details such as the method name and the data types for its
parameter and return values. It doesn’t contain any information about the
actual parameter values that were used when the problem occurred.
GetBaseException () A method useful for nested exceptions that may
have more than one layer. It retrieves the original (deepest nested)
exception by moving to the base of the InnerException chain.

 When you catch an exception in an ASP.NET page, it won’t be an
instance of the generic System.Exception class. Instead, it will be an
object that represents a specific type of error.

 This object will be based on one of the many classes that inherit
from System.Exception.

 These include diverse classes such as DivideByZeroException,
ArithmeticException, IOException, SecurityException, and many
more. Some of these classes provide additional details about the
error in additional properties.

 Visual Studio provides a useful tool to browse through the
exceptions in the .NET class library.

 Click on Debug ➤ Exceptions from the menu.

 The Exceptions dialog box will appear. Expand the Common
Language Runtime Exceptions group, which shows a hierarchical

mu
no
tes
.in

135

Error Handling,
Logging and Tracing

tree of .NET exceptions arranged by namespace (see in following
figure).

Figure: Visual Studio’s Exception Viewer

6.4.2 The Exception Chain

Figure: Exception chain

 In the above scenario, FileNotFoundException led to a
NullReferenceException, which led to a custom Update Failed
Exception.

 Using an exception-handling block, the application can catch the
UpdateFailedException.

 It can then get more information about the source of the problem by
following the InnerException property to the
NullReferenceException, which in turn references the original
FileNotFoundException.

6.5 HANDLING EXCEPTIONS

The first line of defense in an application is to check for potential error
conditions before performing an operation. For example, a program can
explicitly check whether the divisor is 0 before performing a calculation or
whether a file exists before attempting to open it:

mu
no
tes
.in

136

Advanced Web
Programming

136

if (divisor != 0)
{

 // It's safe to divide some number by divisor.

}

 if (System.IO.File.Exists("myfile.txt"))

{

 // You can now open the myfile.txt file.

// However, you should still use exception handling because a variety of

// problems can intervene (insufficient rights, hardware failure, etc.).

}
Best way to handle the exceptions is by implementing try catch block
which is structured exception handling.
try

 {

 // Risky code goes here (opening a file, connecting to a database, and so
on).

}

 catch

{

 // An error has been detected. You can deal with it here.

}

finally

 {

 // Time to clean up, regardless of whether or not there was an error.

}

 The try statement enables error handling. Any exceptions that occur
in the following lines can be “caught” automatically.

 The code in the catch block will be executed when an error is
detected. And either way, whether a bug occurs or not, the finally
block of the code will be executed last.

 This allows you to perform some basic cleanup, such as closing a
database connection. The finally code is important because it will
execute even if an error has occurred that will prevent the program
from continuing.

 In other words, if an unrecoverable exception halts your application,
you’ll still have the chance to release resources.

mu
no
tes
.in

137

Error Handling,
Logging and Tracing

A try statement looks like this:

try
{
... // exception may get thrown within execution of this block
}
catch (ExceptionA e)
{
... // handle exception of type ExceptionA
}
catch (ExceptionB e)
{
... // handle exception of type ExceptionB
}
finally
{
... // cleanup code
}
Example
FileStream s = null;
try
{
s = new FileStream(curName, FileMode.Open);
...
}
catch (FileNotFoundException e)
{
Console.WriteLine("file {0} not found", e.FileName);
}
catch (IOException)
{
Console.WriteLine("some IO exception occurred");
} catch
{
Console.WriteLine("some unknown error occurred");
}
finally
{
if (s != null) s.Close();
}

mu
no
tes
.in

138

Advanced Web
Programming

138

6.5.1 Catch Specific Exceptions

 Structured exception handling is particularly flexible because it
allows you to catch specific types of exceptions.

 To do so, you add multiple catch statements, each one identifying
the type of exception (and providing a new variable to catch it in), as
follows:

try
 {
 // Risky database code goes here.
}
catch (System.Data.SqlClient.SqlException err)
{
 // Catches common problems like connection errors.
 }
 catch (System.NullReferenceException err)
 {
 // Catches problems resulting from an uninitialized object.
}
catch (System.Exception err)
{
// Catches any other errors.
}

6.5.2 Using Nested Exception Handlers

 When an exception is thrown, .NET tries to find a matching catch
statement in the current method.

 If the code isn’t in a local structured exception block or if none of
the catch statements matches the exception, .NET will move up the
call stack one level at a time, searching for active exception
handlers.

 Consider the example shown here, where the Page.Load event
handler calls a private DivideNumbers() method:

protected void Page_Load(object sender, EventArgs e)
{
 try
{
 DivideNumbers(5, 0);

mu
no
tes
.in

139

Error Handling,
Logging and Tracing

}
 catch (DivideByZeroException err)
{
 // Report error here.
}
}
 private decimal DivideNumbers(decimal number, decimal divisor)
{
 return number/divisor;
}

6.5.3 Exception Handling in Action

mu
no
tes
.in

140

Advanced Web
Programming

140

Output

6.5.4 Mastering Exceptions

Remember these points when working with structured exception handling:

 Break down your code into multiple try/catch blocks: If you put
all your code into one exception handler, you’ll have trouble
determining where the problem occurred. You have no way to
“resume” the code in a try block.

 The rule of thumb is to use one exception handler for one related
task (such as opening a file and retrieving information).

 Report all errors: During debugging, portions of your application’s
error-handling code may mask easily correctable mistakes in your
application. To prevent this from happening, make sure you report
all errors, and consider leaving out some error handling logic in
early builds.

 Don’t use exception handlers for every statement: Simple code
statements (assigning a constant value to a variable, interacting with
a control, and so on) may cause errors during development testing
but will not cause any future problems once perfected. Error
handling should be used when you’re accessing an outside resource
or dealing with supplied data that you have no control over.

6.6 THROWING YOUR OWN EXCEPTIONS

 You can also define your own exception objects to represent custom
error conditions.

 All you need to do is create an instance of the appropriate exception
class and then use the throw statement.

protected void Page_Load(Object sender, EventArgs e)

{

 try { DivideNumbers(5, 0);

}

mu
no
tes
.in

141

Error Handling,
Logging and Tracing

 catch (DivideByZeroException err)

{

 // Report error here.

}

}

private decimal DivideNumbers(decimal number, decimal divisor)

{

 if (divisor == 0)

{

 DivideByZeroException err = new DivideByZeroException();

 throw err;

 }

 else

 {

 return number/divisor;

}

}

Alternatively, you can create a .NET exception object and specify a
custom error message by using a different constructor:

private decimal DivideNumbers(decimal number, decimal divisor)

{

 if (divisor == 0)

{

 DivideByZeroException err = new DivideByZeroException("You
supplied 0 for the divisor parameter. You must be stopped.");

throw err;

 }

 else

{

 return number/divisor;

}

 }

mu
no
tes
.in

142

Advanced Web
Programming

142

Example of Exception handling using Try Catch block

Output:

Exception occurred

Result is 0

6.7 CUSTOM EXCEPTION / USER-DEFINED
EXCEPTION

 We have seen built-in exception classes however; we often like to
raise an exception when the business rule of our application gets
violated. So, for this we can create a custom exception class by
deriving Exception or Application Exception class.

 C# allows us to create user-defined or custom exception. It is used to
make the meaningful exception.

 Custom exception classes should always inherit from System.
Application Exception, which itself derives from the base Exception
class. This allows .NET to distinguish between two broad classes of
exceptions—those you create and those that are native to the .NET
Framework

mu
no
tes
.in

143

Error Handling,
Logging and Tracing

public class CustomDivideByZeroException : ApplicationException
{
 // Add a variable to specify the "other" number.
// This might help diagnose the problem. public decimal DividingNumber;
}
You can throw this custom exception like this:
private decimal DivideNumbers(decimal number, decimal divisor)
{
 if (divisor == 0)
{
CustomDivideByZeroException err = new
CustomDivideByZeroException ();
err.DividingNumber = number;
throw err;
}
 else
{
 return number/divisor;
}
}
To perfect the custom exception, you need to supply it with the three
standard constructors.

This allows your exception class to be created in the standard ways that
every exception supports:

 On its own, with no arguments
 With a custom message
 With a custom message and an exception object to use as the inner

exception

public class CustomDivideByZeroException : ApplicationException
{
 // Add a variable to specify the "other" number.
private decimal dividingNumber;
public decimal DividingNumber
{
 get
{

mu
no
tes
.in

144

Advanced Web
Programming

144

 return dividingNumber;
}
 set
{
 dividingNumber = value;
}
}
public CustomDivideByZeroException() : base()
{}
public CustomDivideByZeroException(string message) :
base(message)
{}
 public CustomDivideByZeroException(string message, Exception
inner) : base(message, inner)
{}
}
One more Example of User-defined Exception
For example, create InvalidStudentNameException class in a school
application, which does not allow any special character or numeric value
in a name of any of the students.
class Student
{
public int StudentID
{ get; set; }
public string StudentName
{ get; set; }
}
class InvalidStudentNameException : Exception
{
public InvalidStudentNameException()
{}
public InvalidStudentNameException (string name) :
base(String.Format("InvalidStudentName: {0}", name))
{ }
}
class Program
{
static void Main(string[] args)

mu
no
tes
.in

145

Error Handling,
Logging and Tracing

{
Student newStudent = null;
try
{
newStudent = new Student();
newStudent.StudentName = "James007";
ValidateStudent(newStudent);
}
catch(InvalidStudentNameException ex)
{
Console.WriteLine(ex.Message);
}
Console.ReadKey();
}
private static void ValidateStudent(Student std)
{
Regex regex = new Regex("^[a-zA-Z]+$");
if (!regex.IsMatch(std.StudentName))
throw new InvalidStudentNameException(std.StudentName);
}
}

6.8 PAGE TRACING

 Visual Studio’s debugging tools and ASP.NET’s detailed error
pages are extremely helpful when you’re testing an application.
However, sometimes you need a way to identify problems after
you’ve deployed an application, when you don’t have Visual Studio
to rely on.

 When you don’t have Visual Studio to rely on. You could try to
identify these errors by recording diagnostic information in an event
log, but this assumes that someone will actually review the log
regularly.

 Otherwise, your website users could see strange debugging
messages when they least expect it.

 ASP. NET provides a feature called tracing that gives you a far
more convenient and flexible way to report diagnostic information.

6.8.1 Enabling Tracing

To use tracing, you need to explicitly enable it. There are several ways to
switch on tracing. One of the easiest ways is by adding an attribute to the
Page directive in the .aspx file:

mu
no
tes
.in

146

Advanced Web
Programming

146

<%@ Page Trace=”true” ….. %>
You can also enable tracing by using the built-in Trace object (which is an
instance of the System.Web.TraceContext class).
Here’s an example of how you might turn on tracing in the Page.Load
event handler:
protected void Page_Load(Object sender, EventArgs e)
{
 Trace.IsEnabled = true;
}
This technique is useful because it allows you to enable or disable tracing
for a page under specific circumstances that you test for in your code.

Tracing Information

 ASP.NET tracing automatically provides a lengthy set of standard,
formatted information.

 This information allows you to monitor several important aspects of
your application, such as the contents of the current session and the
time taken to execute portions of code.

Output

 Request Details

 This section includes some basic information such as the current
session ID, the time the web request was made, and the type of web
request and encoding

mu
no
tes
.in

147

Error Handling,
Logging and Tracing

 Trace Information

 Trace information shows the stages of processing that the page went
through before being sent to the client

 Control Tree

 The control tree shows you all the controls on the page, indented to
show their hierarchy (which controls are contained inside other
controls).

 Session State and Application State

 These sections display every item that is in the current session or
application state. Each item in the appropriate state collection is
listed with its name, type, and value.

mu
no
tes
.in

148

Advanced Web
Programming

148

 If you’re storing simple pieces of string information, the value is
straightforward—it’s the actual text in the string. If you’re storing an
object, .NET calls the object’s ToString() method to get an
appropriate string representation.

 Request Cookies and Response Cookies

 These sections display the cookies that were sent by the web
browser with the request for this page and display the cookies that
were returned by the web server with the response.

 ASP.NET shows the content and the size of each cookie in bytes.

 Headers Collection

 This section lists all the HTTP headers. Technically, the headers are
bits of information that are sent to the server as part of a request.

 They include information about the browser making the request, the
types of content it supports, and the language it uses. In addition, the
ResponseHeadersCollection lists the headers that are sent to the
client as part of a response.

mu
no
tes
.in

149

Error Handling,
Logging and Tracing

 Form Collection

 Query String Collection

 This section lists the variables and values submitted in the query
string. You can see this information directly in the web page URL in
the address box in the browser.

Server Variable

mu
no
tes
.in

150

Advanced Web
Programming

150

 Writing Trace Information

 In addition to the standard trace information, you can generate your
own tracing messages.

 To write a custom trace message, you use the Write() method or the
Warn() method of the built-in Trace object. These methods are
equivalent.

 The only difference is that Warn() displays the message in red
lettering, which makes it easier to distinguish from other messages
in the list.

6.8.2 Application Level Tracing

 Application-level tracing allows you to enable tracing for an entire
application.

 However, the tracing information won’t be displayed in the page.
Instead, it will be collected and stored in memory for a short amount
of time.

mu
no
tes
.in

151

Error Handling,
Logging and Tracing

 You can review the recently traced information by requesting a
special URL.

 To enable application-level tracing, you need to modify settings in
the web.config file.

Attribute Values Description
enabled true, false Turns application-level

tracing on or off.
requestLimit Any integer

(for example, 10)
Stores tracing information
for a maximum number of
HTTP requests.

pageOutput true, false Determines whether
tracing information will be
the displayed on the page.

traceMode SortByTime,
SortByCategory.

Determines the sort order
of trace messages The
default is SortByTime

localOnly true, false Determines whether
tracing information will be
shown only to local clients
or to remote clients also.

mostRecent true, false Keeps only the most recent
trace messages if true.
When the request Limit
maximum is reached the
information for the oldest
request is abandoned every
time a new request is
received.

6.9 REFERENCES

 Beginning ASP.NET 4.5 in C# by Mathew MacDonald – Apress
Publication (2012)

 Murach‟s ASP.NET 4.6 Web Programming in C#2015 by Anne
Bohem and Joel Murach – Murach Publication (2016)

 ASP.NET 4.0 Programming by J. Kanjilal - Tata MsGrawhill
Publication (2011)

mu
no
tes
.in

152

Advanced Web
Programming

152

6.10 UNIT END QUESTIONS

Answer the following questions

1) Explain different types of exceptions in .Net.
2) Write a shot note on Exception class and explain the properties of

Exception class?
3) What is Exception chaining? Explain with examples.
4) Write a program to implement exception handling.
5) Explain DivideByZero Exception with an example.
6) Explain with examples try, catch and finally blocks in exception.
7) Explain Nested Exceptions with examples.
8) Write in detail about custom exceptions and explain with an

example.
9) What is tracing? Explain page tracing in detail with examples

Explain in detail Application level tracing. Explain its properties.



mu
no
tes
.in

153

7

STATE MANAGEMENT

Unit Structure

7.0 Objectives
7.1 Understanding the Problem of State
7.2 Using View State
7.3 Transferring Information between Pages
7.4 Using Cookies
7.5 Managing Session State
7.6 Configuring Session State
7.7 Using Application State
7.8 Using QueryString
7.9 Comparing State Management Options
7.10 List of References
7.11 Unit End Exercise

7.0 OBJECTIVE

After going through this unit, you will be able to,

 Create a Web Application with Session Tracing.
 Create the Application using different types Session Management

Methods.

 Know about Cookies and Session State Management.
 Create Web Application with View State Management.

7.1 UNDERSTANDING THE PROBLEM OF STATE

 A web application is stateless. That means that a new instance of a
page is created every time when we make a request to the server to
get the page and after the round trip our page has been lost
immediately.

 It only happens because of one server; all the controls of the Web
Page are created and after the round trip the server destroys all the
instances. So, to retain the values of the controls we use state
management techniques.

 In this method we will trace the user activity when user visits
multiple pages.

mu
no
tes
.in

154

Advanced Web
Programming

154

 7.2 USING VIEW STATE

The State Management techniques are classified into two categories

View State

View State is the method to preserve the Value of the Page and Controls
between round trips. It is a Page-Level State Management technique.
View State is turned on by default and normally serializes the data in
every control on the page regardless of whether it is actually used during a
post-back.

Features of View State
These are the main features of view state:

 Retains the value of the Control after post-back without using a
session.

 Stores the value of Pages and Control Properties defined in the page.

 Creates a custom View State Provider that lets you store View State
Information in a SQL Server Database or in another data store.

Advantages of View State

 Easy to Implement.
 No server resources are required: The View State is contained in a

structure within the page load.
 Enhanced security features: It can be encoded and compressed or

Unicode implementation.

mu
no
tes
.in

155

State Management Disadvantages of View State
Security Risk: The Information of View State can be seen in the page
output source directly. We can manually encrypt and decrypt the contents
of a Hidden Field, but it requires extra coding. If security is a concern,
then consider using a Server-Based State Mechanism so that no sensitive
information is sent to the client.
Performance: Performance is not good if we use a large amount of data
because View State is stored in the page itself and storing a large value
can cause the page to be slow.
Device limitation: Mobile Devices might not have the memory capacity
to store a large amount of View State data.
It can store values for the same page only.

Example:
If we want to add one variable in View State,
ViewState["Var"]=Count;
For Retrieving information from View State
string Test=ViewState["TestVal"];

7.3 TRANSFERRING INFORMATION BETWEEN
PAGES

 These are the Response objects of Asp.Net which are used to
redirect page from one page to another page and true and false are
the optional parameters of the Redirect methods which decides
whether the current page response terminate or not.

 Response.Redirect method takes the following parameter

1. Url (string)
2. EndResponse (Boolean)

In the above image you have seen that Redirect method takes the two
parameters
 Url: This is a string parameter in which url or page name is given

that helps to navigate from one page to another page.

Syntax
1. Response.Redirect("Default.aspx");
 EndResponse: EndResponse is the optional parameter of the

Redirect method having true and false values, when you false value
then it does not terminate the execution of the current page, the
default is true.

Syntax
1. Response.Redirect("Default.aspx", false);

mu
no
tes
.in

156

Advanced Web
Programming

156

2. Response.Redirect("Default.aspx", true);

Difference between Response.Redirect() and Server.Transfer()
Both Response.Redirect and Server.Transfer methods are used to transfer
a user from one web page to another web page. Both methods are used for
the same purpose but still there are some differences as follows.

The Response.Redirect method redirects a request to a new URL and
specifies the new URL while the Server.Transfer method for the current
request, terminates execution of the current page and starts execution of a
new page using the specified URL path of the page.

Both Response.Redirect and Server.Transfer has the same syntax like:
1. Response.Redirect("UserDetail.aspx");
2. Server.Transfer("UserDetail.aspx");

7.4 USING COOKIES

1. A cookie is a small piece of information stored on the client
machine.

2. This file is located on client machines "C:\Document and
Settings\Currently_Login user\Cookie" path.

3. It is used to store user preference information like Username,
Password, City and Phone No etc. on client machines.

4. We need to import namespace called Systen.Web.HttpCookie before
we use cookie

Types of Cookies:
Persist Cookie - A cookie has not had expired time which is called as
Persist Cookie
Non-Persist Cookie - A cookie has expired time which is called as Non-
Persist Cookie
Creation of cookies:
It’s really easy to create a cookie in the Asp.Net with help of Response
object or HttpCookie
Example 1:
HttpCookie userInfo = new HttpCookie("userInfo");
userInfo["UserName"] = "abc";
userInfo["UserColor"] = "Black";
userInfo.Expires.Add(new TimeSpan(0, 1, 0));
Response.Cookies.Add(userInfo);
Example 2:
Response.Cookies["userName"].Value = "abc";
Response.Cookies["userColor"].Value = "Black";

mu
no
tes
.in

157

State Management
Retrieve from cookie
Its easy way to retrieve cookie value form cookies by help of Request
object.
Example 1:
string User_Name = string.Empty;
string User_Color = string.Empty;
User_Name = Request.Cookies["userName"].Value;
User_Color = Request.Cookies["userColor"].Value;
Example 2:
string User_name = string.Empty;
string User_color = string.Empty;
HttpCookie reqCookies = Request.Cookies["userInfo"];
if (reqCookies != null)
{
 User_name = reqCookies["UserName"].ToString();
 User_color = reqCookies["UserColor"].ToString();
}

1. When we make request from client to web server, the web server
process the request and give the lot of information with big pockets
which will have Header information, Metadata, cookies etc., Then
repose object can do all the things with browser.

Cookie's common property:

Domain: This is used to associate cookies to domain.
Secure: We can enable secure cookie to set true (HTTPs).
Value: We can manipulate individual cookie.
Values: We can manipulate cookies with key/value pair.
Expires: Which is used to set expire date for the cookies.
Advantages of Cookie:

 Its clear text so user can able to read it.
 We can store user preference information on the client machine.
 Its easy way to maintain.
 Fast accessing.

Disadvantages of Cookie

 If user clears cookie information we can't get it back.

 No security.
 Each request will have cookie information with page.

mu
no
tes
.in

158

Advanced Web
Programming

158

7.5 MANAGING SESSION STATE

 ASP.NET maintains a unique id which is called as "session id" for
each session. This id is generated using a custom algorithm and it is
unique always.

 Session id will be sent to the client as a cookie and the browser
resends this upon each request.

 ASP.NET uses this session id to identify the session object.

string sessionId = Session.SessionID

Session State

 Session state is user and browser specific.
 Session state can be stored in memory on the server as well as

client's cookies.
 If client has disabled cookies in his browser then session state will

be stored in URL.
 Session state has scope to the current browser only. If we change the

browser session id is changed.

 The following code shows storing a string value in session.
Session["name"] = "Value";
Values stored in sessions can be removed by several methods.
Session.Abandon() : Cancels the session and fires end event. This is used
when you are done with the session.
Session.Clear()/Session.RemoveAll() : Clears all contents of the session.
This will not end the session
Session.Remove(string) : Removes the session name supplied.

7.6 CONFIGURING SESSION STATE

 ASP.NET session state supports several different storage
options for session data. Each option is identified by a value in
the SessionStateMode enumeration.

 The following list describes the available session state modes:

 InProc mode, which stores session state in memory on the
Web server. This is the default.

 StateServer mode, which stores session state in a separate
process called the ASP.NET state service. This ensures that
session state is preserved if the Web application is restarted
and also makes session state available to multiple Web servers
in a Web farm.

mu
no
tes
.in

159

State Management  SQLServer mode stores session state in a SQL Server
database. This ensures that session state is preserved if the
Web application is restarted and also makes session state
available to multiple Web servers in a Web farm.

 Custom mode, which enables you to specify a custom storage
provider.

 Off mode, which disables session state.
 You can specify which mode you want ASP.NET session state to

use by assigning a SessionStateMode enumeration values to the
mode attribute of the sessionState element in your application's
Web.config file. Modes other than InProc and Off require
additional parameters, such as connection-string values. You can
view the currently selected session state by accessing the value of
the HttpSessionState.Mode property.

7.7 USING APPLICATION STATE

 If the information that we want to be accessed or stored globally
throughout the application, even if multiple users access the site or
application at the same time, then we can use an Application Object
for such purposes.

 It stores information as a Dictionary Collection in key - value pairs.
This value is accessible across the pages of the application / website.

There are 3 events of the Application which are as follows
Application_Start
Application_Error
Application_End
Example - Just for an example, I am setting the Page title in the
Application Start event of the Global.asax file.
Code for setting value to the Application Object - "PageTitle" is the Key
and "Welcome to State Management Application" is the value.

<%@ Application Language="C#" %>
<script runat="server">
 void Application_Start(object sender, EventArgs e)
 {
 // Code that runs on application startup
 }
 void Application_End(object sender, EventArgs e)
 {
 // Code that runs on application shutdown
 }
 void Application_Error(object sender, EventArgs e)
 {

mu
no
tes
.in

160

Advanced Web
Programming

160

 // Code that runs when an unhandled error occurs
 }
 void Session_Start(object sender, EventArgs e)
 {
 // Code that runs when a new session is started
 }
 void Session_End(object sender, EventArgs e)
 {
 // Code that runs when a session ends.
 // Note: The Session_End event is raised only when the sessionstate
mode is set to InProc in the Web.config file. If session mode is set to
StateServer or SQLServer, the event is not raised.
 }
</script>

7.8 USING QUERYSTRING

 Query String is the most simple and efficient way of maintaining
information across requests.

 The information we want to maintain will be sent along with the
URL. A typical URL with a query string looks like
www.somewebsite.com/search.aspx?query=foo

 The URL part which comes after the ? Symbol is called a
QueryString.

 QueryString has two parts, a key and a value. In the above example,
query is the key and foo is its value.

 We can send multiple values through querystring, separated by the
& symbol. The following code shows sending multiple values to the
foo.aspx page.

Response.Redirect("foo.aspx?id=1&name=foo");
The following code shows reading the QueryString values in foo.aspx
String id = Request.QueryString["id"];
String name = Request.QueryString["name"];

 The HtmlEncode() method is particularly useful if you’re retrieving
values from a database and you aren’t sure if the text is valid
HTML.

 We can use the HtmlDecode() method to revert the text to its
normal form if we need to perform additional operations or
comparisons with it in your code.

 The UrlEncode() method changes text into a form that can be used
in a URL, escaping spaces and other special characters. This step is
usually performed with information we want to add to the query
string.

mu
no
tes
.in

161

State Management Label1.Text = Server.HtmlEncode("To bold text use the tag.");
Advantages

 Query string is lightweight and will not consume any server
resources.

 It is very easy to use, and it is the most efficient state management
technique.

Disadvantages

 We can pass information only as a string.
 URL length has limitations. So, we can't send much information

through URL.
 Information passed is clearly visible to everyone and can be easily

altered.

7.9 COMPARING STATE MANAGEMENT OPTIONS

mu
no
tes
.in

162

Advanced Web
Programming

162

7.10 REFERENCE

 Beginning ASP.NET 4.5 in C# by Mathew MacDonald – Apress
Publication (2012)

 Murach‟s ASP.NET 4.6 Web Programming in C#2015 by Anne
Bohem and Joel Murach – Murach Publication (2016)

 ASP.NET 4.0 Programming by J. Kanjilal - Tata MsGrawhill
Publication (2011)

7.11 UNIT END QUESTION

Answer the following questions

1. How to manage states in ASP .Net?
2. What are the different types of State Management techniques?
3. Explain Client Side Management technique with its types.
4. Explain Viewstate with an example.
5. Explain Query string with an example.
6. Explain Cross page posting with an example.
7. Explain cookies with an example.
8. Explain session state with an example.
9. Explain application state with an example.



mu
no
tes
.in

163

8

STYLES, THEMES AND MASTER PAGES
Unit Structure

8.0 Objectives
8.1 Styles
8.1.1 What is CSS?
8.1.2 Types of CSS
8.1.3 Types of CSS Selectors
8.2 Themes
8.3 Master Pages
8.4 List of References
8.5 Unit End Exercise

8.0 OBJECTIVE

After going through this unit, you will be able to,

 Create a Web Application with better design.

 Create the Application using different types CSS.
 Know about Master Pages and Themes.
 Create Web Application with Master Pages and Styles.

8.1 STYLES

A style sheet is a file or form that is used in word processing and desktop
publishing to define the layout style of a document.

A style sheet contains the specifications of a document's layout, such as
the page size, margins, fonts and font sizes

8.1.1 What is CSS?

CSS stands for Cascading Style Sheets.
CSS saves a lot of work. It can control the layout of multiple web pages all
at once.
Cascading Style Sheets (CSS) is used to format the layout of a webpage.
With CSS, you can control the color, font, size of text, the spacing
between elements, how elements are positioned and laid out, what
background images or background colors are to be used, different displays
for different devices and screen sizes, and much more!

mu
no
tes
.in

164

Advanced Web
Programming

164

8.1.2 Types of CSS

There are three types of CSS as follows:

 External CSS
 Internal CSS or Embedded CSS
 Inline CSS
External Style Sheet

The first way to add CSS style sheets to your web pages is through the
<link> element that points to an external CSS file.
For example the following <link> shows what options you have when
embedding a style sheet in your page:
<link href=”StyleSheet.css” rel=”Stylesheet” type=”text/css”
media=”screen” />
The href property points to a file within our site when we create links
between two pages. The rel and type attributes tell the browser that the
linked file is in fact a cascading style sheet. The media attribute enables us
to target different devices, including the screen, printer, and handheld
devices. The default for the media attribute is screen.

Embedded style sheet

The second way to include style sheets is using embedded <style>
elements. The <style> element should be placed at the top of your ASPX
or HTML page, between the <head> tags.
For example, to change the appearance of an <h1> element in the current
page alone, we can add the following code to the <head> of our page:

<head runat=”server”>
<style type=”text/css”>
h1
{
color: Blue;
}
</style>
</head>

Inline style sheet

The third way to apply CSS to your HTML elements is to use inline styles.
Because the style attribute is already applied to a specific HTML element,
we don’t need a selector and we can write the declaration in the attribute
directly:

This is white text on a black background.

mu
no
tes
.in

165

Styles, Themes and Master
Pages

8.1.3 Types of CSS Selectors

1) Universal Selector

The Universal selector, indicated by an asterisk (*), applies to all elements
in your page. The Universal selector can be used to set global settings like
a font family. The following rule set changes the font for all elements in
our page to Arial:

* {
 font-family: Arial;
 }

2) Type Selector

The Type selector enables us to point to an HTML element of a specific
type. With a Type selector all HTML elements of that type will be styled
accordingly.

h1
{
color: Green;
}

This Type selector now applies to all <h1> elements in your code and
gives them a green color. Type Selectors are not case sensitive, so you can
use both h1 and H1 to refer to the same heading.

3) ID Selector

The ID selector is always prefixed by a hash symbol (#) and enables us to
refer to a single element in the page. Within an HTML or ASPX page, we
can give an element a unique ID using the id attribute. With the ID
selector, we can change the behavior for that single element, for example:

#IntroText
{
font-style: italic;
}

Because we can reuse this ID across multiple pages in our site (it only
must be unique within a single page), you can use this rule to quickly
change the appearance of an element that you use once per page, but more
than once in our site, for example with the following HTML code:

<p id=”IntroText”>I am italic because I have the right ID. </p>

mu
no
tes
.in

166

Advanced Web
Programming

166

4) Class Selector

The Class selector enables us to style multiple HTML elements through
the class attribute. This is handy when we want to give the same type of
formatting to several unrelated HTML elements. The following rule
changes the text to red and bold for all HTML elements that have their
class attributes set to highlight:
.Highlight
{
font-weight: bold; color: Red;
}

The following code snippet uses the Highlight class to make the contents
of a element and a link (<a>) appear with a bold typeface:
This is normal text but this is Red and
Bold.
This is also normal text but <a href=”CssDemo.aspx”
class=”Highlight”>this link is Red and Bold as well
The link tag

The HTML <link> tag is used for defining a link to an external document.
It is placed in the <head> section of the document.
The <link> tag defines a link between a document and an external
resource.
The <link> tag is used to link to external style sheets.
Syntax:
<head><link rel="stylesheet" type="text/css"
href="theme.css"></head>
Example:
<html>
<head>
<title>HTML link Tag</title>
<link rel="stylesheet" type="text/css" href="default.css" />
</head>
<body>
<div>
<p>Welcome to our website. We provide tutorials on various
subjects.</p>
</div>
</body>
</html>
Where,

mu
no
tes
.in

167

Styles, Themes and Master
Pages

rel-can be used to specify the relationship of the target of the link to the
current page.
type-This attribute Provides information about the content type of the
destination resource, telling whether it's an HTML document, a JPG
image, an Excel document, etc.
href(uri)-The "href" attribute specifies the destination resource, which the
element is linking to. It may specify a resource in the same website or in
an external one.

8.2 THEMES

A theme decides the look and feel of the website. It is a collection of files
that define the looks of a page. It can include skin files, CSS files &
images.

We define themes in a special App_Themes folder. Inside this folder is
one or more subfolders named Theme1, Theme2 etc. that define the actual
themes. The theme property is applied late in the page's life cycle,
effectively overriding any customization we may have for individual
controls on our page.

There are 3 different options to apply themes to our website:

1. Setting the theme at the page level: The Theme attribute is added to
the page directive of the page.

 <%@PageLanguage="C#"AutoEventWireup="true"CodeFile="Defa
ult.aspx.cs "Inherits="Default" Theme="Theme1"%>

2. Setting the theme at the site level: to set the theme for the entire
website we can set the theme in the web.config of the website. Open
the web.config file and locate the <pages> element and add the
theme attribute to it:

 <pagestheme="Theme1">

 </pages>
3. Setting the theme programmatically at runtime: here the theme is set

at runtime through coding. It should be applied earlier in the page's
life cycle ie. Page_PreInit event should be handled for setting the
theme. The better option is to apply this to the Base page class of the
site as every page in the site inherits from this class.

 Page.Theme = Theme1;

Uses of Themes

1. Since themes can contain CSS files, images and skins, you can
change colors, fonts, positioning and images simply by applying the
desired themes.

mu
no
tes
.in

168

Advanced Web
Programming

168

2. We can have as many themes as we want, and we can switch
between them by setting a single attribute in the web.config file or
an individual aspx page. Also, we can switch between themes
programmatically.

3. Setting the themes programmatically, we are offering our users a
quick and easy way to change the page to their likings.

4. Themes allow us to improve the usability of our site by giving users
with vision problems the option to select a high contrast theme with
a large font size.

1. "Start" - "All Programs" - "Microsoft Visual Studio
2010"

2. "File" - "New Website" - "C# - Empty website" (to avoid
adding a master page)

3. Provide the web site a name, such as Using Skins or
whatever you wish and specify the location

4. Then right-click on the solution in the Solution Explorer
then select "Add New Item" - "Default.aspx page" .

Skin file

ASP.Net skins can only be used to apply the styles to the ASP.Net
controls. So in this article let us see the procedure for using ASP.Net
Skins.
First create the web application as in the following:
Add an ASP.Net Themes Folder
To use the themes in the web site, we need to add an ASP.Net Themes
folder by right-clicking on Solution Explorer as in the following:

After adding the theme folder, add the SkinFile.skin file by right-clicking
on the ASP.Net theme folder. The Solution Explorer will then look as
follows:

mu
no
tes
.in

169

Styles, Themes and Master
Pages

Now add the ASP.Net controls inside the SkinFile. Skin and assign the
Style to the controls using their properties as in the following:

1. A control Id cannot be assigned to ASP.Net controls inside the
SkinFile.skin.

2. SkinId must be assigned to the ASP.Net controls inside the
SkinFile.skin.

3. The SkinId should be uniquely defined because duplicate SkinId's
per control type are not allowed in the same theme.

4. Only one default control skin per control type is allowed in the same
theme.

To use existing ASP.Net Skins in an ASP.Net page we need to assign the
existing theme at page level as in the following.

In the preceding source code, we are assigning the existing ASP.Net Skin
File at page level, the existing ASP.Net Skin automatically appears in the
box after using the Themes property in the page header.

mu
no
tes
.in

170

Advanced Web
Programming

170

Assigning the Skin to the ASP.Net Controls

To assign the skin to the ASP.Net controls, you need to assign it to the
control's SkinId Property as in the following:

8.3 MASTER PAGE

ASP.NET master pages allow us to create a consistent layout for the pages
in our application.

 A single master page defines the look and feel and standard behavior
that we want for all of the pages (or a group of pages) in our
application.

 We can then create individual content pages that contain the content
we want to display.

 When users request the content pages, they merge with the master
page to produce output that combines the layout of the master page
with the content from the content page.

 Master pages actually consist of two pieces, the master page itself
and one or more content pages.

 A centralized way to change the above created set of controls which
will effectively change all the web pages.

 To some extent, a master page looks like a normal ASPX page.
 It contains static HTML such as the <html>, <head>, and <body>

elements, and it can also contain other HTML and ASP.NET server
controls.

mu
no
tes
.in

171

Styles, Themes and Master
Pages

 Inside the master page, you set up the markup that you want to
repeat on every page, like the general structure of the page and the
menu.

 However, a master page is not a true ASPX page and cannot be
requested in the browser directly it only serves as the template that
real web pages called content pages

 One difference is that while web forms start with the Page directive,
a master page starts with a Master directive that specifies the same
information.

Use of Master Pages

The master pages can be used to accomplish the following:

Creating a set of controls that are common across all the web pages and
attaching them to all the web pages.

Content page and Master page

 Master page provides a framework (common content as well as the
layout) within which the content from other pages can be displayed.

 It provides elements such as headers, footers, style definitions, or
navigation bars that are common to all pages in your web site.

 So the Content Pages need not have to duplicate code for shared
elements within your Web site.

 It gives a consistent look and feel for all pages in your application.
 The master page layout consists of regions where the content from

each content page should be displayed.

 These regions can be set using ContentPlaceHolder server controls.
 These are the regions where you are going to have dynamic content

in your page
 A derived page also known as a content page is simply a collection

of blocks the runtime will use to fill the regions in the master.
 To provide content for a ContentPlaceHolder, you use another

specialized control, called Content.
 The ContentPlaceHolder control and the Content control have a one-

to-one relationship.
 For each ContentPlaceHolder in the master page, the content page

supplies a matching Content control
 ASP.NET links the Content control to the appropriate

ContentPlaceHolder by matching the ID of the ContentPlaceHolder
with the Content ContentPlaceHolderID property of the
corresponding Content control.

mu
no
tes
.in

172

Advanced Web
Programming

172

8.4 REFERENCE

 Beginning ASP.NET 4.5 in C# by Mathew MacDonald – Apress
Publication (2012)

 Murach‟s ASP.NET 4.6 Web Programming in C#2015 by Anne
Bohem and Joel Murach – Murach Publication (2016)

 ASP.NET 4.0 Programming by J. Kanjilal - Tata MsGrawhill
Publication (2011)

8.5 UNIT END QUESTIONS

1. What is CSS? Explain with its advantages and disadvantages.
2. What are different types of CSS?
3. Explain different CSS selectors.
4. Explain Theme and Global Theme.
5. How to create and add skin files in a web form?
1. Give the uses of master page. How master pages work?

 mu
no
tes
.in

173

9
ADO.NET FUNDAMENTALS

Unit Structure

9.1 Objectives
9.2 Understanding Databases
9.2.1 Relational Table Design
9.2.2 Types of relationships among the table
9.3 Introduction to ADO.NET
9.3.1 ADO.NET Architecture
9.4 Understanding Data Provider Model
9.5 Understanding SQL Basics
9.5.1 SQL Server Data Types
9.6 Configuring Database
9.7 Using Direct data access
9.8 Using Indirect data access
9.9 Summary
9.10 References
9.11 Unit End Exercises

9.1 OBJECTIVES:

This chapter would make you understand the following concepts:

• Concept of database and its configuration.
• Basic of SQL
• Data Provider model
• Direct and indirect way of accessing the data

9.2 UNDERSTANDING THE DATABASE:

• A database is a collection of information which is structured for
storing, managing and retrieving information.

• In relational database approach, data is stored in different tables
instead of placing all data in one large table.

• A table is a collection of related data entities and it consists of
columns and rows.

• It allows defining relationships between different tables.

mu
no
tes
.in

174

Advanced Web
Programming

174

 The relationship allows merging of data from several tables for
querying and reporting.

 This is accomplished by the use of keys which are used to uniquely
identify specific records in a table.

9.2.1 Relational table design:

 Primary key: Each table must have a column which uniquely
identifies every record of the table which is called as Primary Key.
For example, CustomerID.

 Foreign key: The column in a table which is used to reference a
Primary key in another table is called as Foreign key.

9.2.2 Types of Relationships among tables:

One to One :

 Each record in Table A relates to one, and only one, record in Table
B, and each record in Table B relates to one, and only one, record in
Table A.

 Look at the following example of tables from a company's
Employees database:

PERSONAL

Employee
ID

First
Name

Last
Name Address City State Zip

EN1-10 Carol Schaaf 2306 Palisade
Ave. Union City NJ 07087

EN1-12 Gayle Murray 1855 Broadway New York NY 12390

EN1-15 Steve Baranco 742 Forrest St. Kearny NJ 07032

EN1-16 Kristine Racich 416 Bloomfield
St. Hoboken NJ 07030

EN1-19 Barbara Zumbo 24 Central Ave. Ritchfield
Park NJ 07660

EN1-20 Daniel Gordon 2 Angelique St. Weehawken NJ 07087

mu
no
tes
.in

175

ADO.NET Fundamentals PAYROLL

EmployeeID PayRate

EN1-10 $25.00

EN1-12 $27.50

EN1-15 $20.00

EN1-16 $19.00

EN1-19 $22.75

EN1-20 $23.00

From above, each record in the Personal table is about one employee. That
record relates to one, and only one, record in the Payroll table.

One to Many :

 It means a record in Table A can relate to zero, one, or many records
in Table B. Many records in Table B can relate to one record in
Table A.

 Look at the following tables about a company's Customers and
Orders.

CUSTOMERS

Customer
ID

Customer
Name Address City State Zip

20151 Engel's Books 19 International
Dr Ryebrook NY 10273-9764

20493 Jamison Books 396 Apache Ave Fountain Valley CA 92708-4982

20512 Gardening
Galore 79 Gessner Pk Houston TX 77024-6261

20688 Books Abound 51 Ulster St Denver CO 80237-3386

ORDERS

Order Num Customer ID Order Date Ship Date Shipper

76654 20151 2/1/00 2/6/00 USPS

74432 20151 6/30/99 7/2/99 Federal Express

75987 20151 11/10/99 11/12/99 UPS

62922 20493 9/5/99 9/6/99 UPS

65745 20493 10/1/99 10/3/99 USPS

From above, the Customers table holds a unique record for each customer.
Each customer can (and, we hope, does) place many orders. Many records
in the Orders table can relate to only one record in the Customers table.

mu
no
tes
.in

176

Advanced Web
Programming

176

Many to many :

 It means a record in Table A can relate many records in Table B and
records in Table B can relate to many record in Table A.

 Look at the following tables about Employees and Projects.

EMPLOYEES

EmployeeID Last Name First Name ProjectNum

EN1-26 O'Brien Sean 30-452-T3

EN1-26 O'Brien Sean 30-457-T3

EN1-26 O'Brien Sean 31-124-T3

EN1-33 Guya Amy 30-452-T3

EN1-33 Guya Amy 30-482-TC

EN1-33 Guya Amy 31-124-T3

PROJECTS

ProjectNum ProjectTitle EmployeeID

30-452-T3 Woodworking Around The House EN1-26

30-452-T3 Woodworking Around The House EN1-33

30-452-T3 Woodworking Around The House EN1-35

30-457-T3 Basic Home Electronics EN1-26

30-482-TC The Complete American Auto Repair Guide EN1-33

31-124-T3 The Sport Of Hang Gliding EN1-26

Above, tables with a many-to-many relationship.

9.3 INTRODUCTION TO ADO.NET:

 ADO (ActiveX Data Object) is the database access technologies
including components for retrieving data, storing data in memory
and binding data to controls.

 It is an Object Oriented set of libraries that allows us to interact with
data source.

 The data source can be a database, text file, Excel spreadsheet or an
XML file.

 We can use the ADO.NET libraries with several types of database
systems like Microsoft SQL Server, Microsoft Access, Oracle etc.

mu
no
tes
.in

177

ADO.NET Fundamentals 9.3.1 ADO.NET Architecture:

Fig. ADO.NET Architecture

Let us understand each of the components in detail.

Connection:

The first important component is the connection object. The connection
object is required to connect with your backend database which can be
SQL Server, Oracle, MySQL, etc. To create a connection object, you need
at least two things. The first one is where is your database located i.e. the
Machine name or IP Address or someplace where your database is located.
And the second thing is the security credentials i.e. whether it is a
windows authentication or user name and password-based authentication.
So, the first is to create the connection object and the connection is
required to connect to the backend data source.

Command:

The second important component is the command object. When we talk
about databases like SQL Server, Oracle, MySQL, then understand SQL.
The command object is the component where you go and write your SQL
queries. Later you take the command object and execute it over the
connection. Then you can fetch data or send data to the database using the
command object and SQL queries.

Data Reader:

Data Reader is a read-only connected record set that helps us to read the
records only in the forward mode. Here, you need to understand three
things i.e. read-only, connected, and forward mode.

mu
no
tes
.in

178

Advanced Web
Programming

178

DataSet:

It is a disconnected recordset that can be browsed in both i.e. forward and
backward. It is also possible to update via dataset. DataSet gets filled by
somebody called DataAdapter.

DataAdapter:

The DataAdapter acts as a bridge between the command object and the
dataset. What the DataAdapter does, it takes the data from the command
object and fills the data set.

DataView:

A DataView enables you to create different views of the data stored in
a DataTable, a capability that is often used in data-binding applications.
Using a DataView, you can expose the data in a table with different sort
orders, and you can filter the data by row state or based on a filter
expression.

9.4 UNDERSTANDING DATA PROVIDER MODEL:

 ADO.NET provides common way to interact with data sources, but
comes in different sets of libraries for each we can talk to a data
source.

 These libraries are called Data Providers and usually named for the
protocol or data source type they allow us to interact with.

 Following table shows some well known data providers, the API
prefix they use.

Provider Name API Prefix Data Source Description

ODBC Data Provider Odbc Data Sources with an ODBC
interface. Normally older data
bases.

OleDb Data Provider OleDb Data Sources that expose an
OleDb interface i.e. Access or
Excel.

Oracle Data Provider Oracle For Oracle Databases.

SQL Data Provider Sql For interacting with Microsoft
SQL Server

mu
no
tes
.in

179

ADO.NET Fundamentals 9.5 UNDERSTANDING SQL BASICS:

We are going to study the connection of ASP.NET website to SQL Server
in this unit.

a. Create Command:

CREATE DATABASE database-name;
The CREATE DATABASE command is used is to create a new SQL
database.

The following SQL creates a database called "testDB":
CREATE DATABASE testDB;

CREATE TABLE
The CREATE TABLE command creates a new table in the database.

The following SQL creates a table called "Persons" that contains five
columns: PersonID, LastName, FirstName, Address, and City:
CREATE TABLE Persons (
PersonID int,

LastName varchar(255),

FirstName varchar(255),

Address varchar(255),

City varchar(255)

);

CREATE VIEW
The CREATE VIEW command creates a view. A view is a virtual table
based on the result set of an SQL statement.

The following SQL creates a view that selects all customers from Brazil:
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers
WHERE Country = "Brazil";

b. Inserting the data:

INSERT INTO

The INSERT INTO command is used to insert new rows in a table.

The following SQL inserts a new record in the "Customers" table:

INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country) VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway');

mu
no
tes
.in

180

Advanced Web
Programming

180

c. Selecting the data:

The SELECT command is used to select data from a database. The data
returned is stored in a result table, called the result set.

The following SQL statement selects the "CustomerName" and "City"
columns from the "Customers" table:

SELECT CustomerName, City FROM Customers;

The following SQL statement selects all the columns from the Customers"
table:

SELECT * FROM Customers;

d. Updating the data:

UPDATE

The UPDATE command is used to update existing rows in a table.

The following SQL statement updates the first customer (CustomerID = 1)
with a new contact person and a new city.

UPDATE Customers
SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

e. Deleting the data:

DELETE

The DELETE command is used to delete existing records in a table.

The following SQL statement deletes the customer "Alfreds Futterkiste"
from the "Customers" table:

DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

f. Altering the table:
ALTER TABLE
The ALTER TABLE command adds, deletes, or modifies columns in a
table.

The ALTER TABLE command also adds and deletes various constraints
in a table.

The following SQL adds an "Email" column to the "Customers" table:
ALTER TABLE Customers
ADD Email varchar(255);

The following SQL deletes the "Email" column from the "Customers"
table:
ALTER TABLE Customers
DROP COLUMN Email;

mu
no
tes
.in

181

ADO.NET Fundamentals g. Drop:
The DROP COLUMN command is used to delete a column in an existing
table.

The following SQL deletes the "ContactName" column from the
"Customers" table:
ALTER TABLE Customers
DROP COLUMN ContactName;

The DROP TABLE command deletes a table in the database.

The following SQL deletes the table "Shippers":
DROP TABLE Shippers;

The DROP DATABASE command is used to delete an existing SQL
database.

The following SQL drops a database named "testDB":
DROP DATABASE testDB;

9.5.1 SQL Server Data Types :

String Data Types

Data type Description

char(n) Fixed width character string

varchar(n) Variable width character string

varchar(max) Variable width character string

text Variable width character string

nchar Fixed width Unicode string

nvarchar Variable width Unicode string

nvarchar(max) Variable width Unicode string

ntext Variable width Unicode string

binary(n) Fixed width binary string

varbinary Variable width binary string

varbinary(max) Variable width binary string

image Variable width binary string

mu
no
tes
.in

182

Advanced Web
Programming

182

Numeric Data Types

Data type Description

bit Integer that can be 0, 1, or NULL

tinyint Allows whole numbers from 0 to 255

smallint Allows whole numbers between -32,768 and 32,767

int Allows whole numbers between -2,147,483,648 and
2,147,483,647

bigint
Allows whole numbers between -
9,223,372,036,854,775,808 and

9,223,372,036,854,775,807

decimal(p,s)

Fixed precision and scale numbers.
Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of
digits that can be stored (both to the left and to the right of
the decimal point). p must be a value from 1 to 38. Default

is 18.
The s parameter indicates the maximum number of digits
stored to the right of the decimal point. s must be a value

from 0 to p. Default value is 0

numeric(p,s)

Fixed precision and scale numbers.
Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of
digits that can be stored (both to the left and to the right of
the decimal point). p must be a value from 1 to 38. Default

is 18.
The s parameter indicates the maximum number of digits
stored to the right of the decimal point. s must be a value

from 0 to p. Default value is 0

smallmoney Monetary data from -214,748.3648 to 214,748.3647

money Monetary data from -922,337,203,685,477.5808 to
922,337,203,685,477.5807

float(n)

Floating precision number data from -1.79E + 308 to 1.79E
+ 308.

The n parameter indicates whether the field should hold 4
or 8 bytes. float(24) holds a 4-byte field and float(53) holds

an 8-byte field. Default value of n is 53.

real Floating precision number data from -3.40E + 38 to 3.40E
+ 38

mu
no
tes
.in

183

ADO.NET Fundamentals Date and Time Data Types

Data type Description

datetime From January 1, 1753 to December 31,
9999 with an accuracy of 3.33 milliseconds

datetime2 From January 1, 0001 to December 31,
9999 with an accuracy of 100 nanoseconds

smalldatetime From January 1, 1900 to June 6, 2079 with
an accuracy of 1 minute

date Store a date only. From January 1, 0001 to
December 31, 9999

time Store a time only to an accuracy of 100
nanoseconds

datetimeoffset The same as datetime2 with the addition of
a time zone offset

timestamp Stores a unique number that gets updated
every time a row gets created or modified.
The timestamp value is based upon an
internal clock and does not correspond to
real time. Each table may have only one
timestamp variable

9.6 CONFIGURING DATABASE

Requirements

 Visual Studio 2015 Update 3
 ASP.NET 4.5.2
 SQL Server

If you want to connect to the SQL database into ASP.NET, using C#, it
should follow the steps given below.

mu
no
tes
.in

184

Advanced Web
Programming

184

Step 1

Now, Open Visual Studio 2015 Update 3, go to the File >> New >>
Project or use the shortcut key "Ctrl+Shift +N".

Step 2

Here, select Visual C# >> Web >> ASP.NET Web Application. Finally,
click "OK" button.

mu
no
tes
.in

185

ADO.NET Fundamentals Step 3

Here, you can select the template for your ASP.NET Application. We are
choosing "Empty" here. Now, click OK button.

Step 4

Now, open the project and look for the Solution Explorer.

mu
no
tes
.in

186

Advanced Web
Programming

186

Here, open the default .aspx. If you want a Webform, you can add the
page (Web Form). Add+New item (Ctrl+Shift+A).

 Now, we can create a login page, using ASP.NET code. You need to
follow the drag and drop method. Here, we already created the login page.

Step 5

Now, open the project. If you want a SQL Server database, you can add
the page (SQL Server database). Add+New item (Ctrl+Shift+A).

Here, you can select Visual C# and choose SQL Server database.
Afterwards, click "OK" button.

mu
no
tes
.in

187

ADO.NET Fundamentals

 Here, open the new Window and click YES button.

 Now, add this to the database in our project.

mu
no
tes
.in

188

Advanced Web
Programming

188

 Step 6

Now, we can go to the Server Explorer and add your database. You can
click the Tables and afterwards, click Add New Table.

Now, open the new table and you can fill the data, which is like
(studentname, password) and afterwards, you click the Update.

mu
no
tes
.in

189

ADO.NET Fundamentals Here, click database in update and subsequently click update the database.

Here, the database is updated.

Here, the database and data are added.

mu
no
tes
.in

190

Advanced Web
Programming

190

Now, we can click on the right click and click Show Table Data.

 Now, the data is stored.

 Step 7

Now, you can add SQL Data Source. Drag and drop method. Here, click
Configure Data Source

mu
no
tes
.in

191

ADO.NET Fundamentals Now, we can choose your database and click NEXT button.

Now, you can select the ConnectionString and Click NEXT button

Now, we can choose Specify columns from a table or view and afterwards,
click Next button.

mu
no
tes
.in

192

Advanced Web
Programming

192

Now, click Test Query.

Here, add the data and click Finish button.

9.7 USING DIRECT DATA ACCESS:

 It is also known as connected architecture refers to the fact that the
connection is established for the full time between the database and
application. For e.g. we make a program in C# that is connected with
the database for the full time, so that will be connected architecture.

 Connected architecture is forward only and read-only. This means
the connected mode will work only in one particular direction i.e.
forward and that too for read-only purpose. Application issues query
then read back results and process them.

mu
no
tes
.in

193

ADO.NET Fundamentals  For connected architecture, we mainly use the object of the
DataReader class.

 DataReader is used to retrieve the data from the database and it also
ensures that the connection is maintained for the complete interval
of time.

 In connected architecture, the application is directly linked with the
Database.

DataReader in Connected architecture:

 DataReader class is used to read the data from the database. It works
in forward only and reads the only mode and requires the connection
for the complete time. That is why we use it in connected
architecture.

 The forward only feature makes it an efficient way to read data.
Thus we can say, DataReader is connection-oriented and requires an
active connection while reading the data.

In order to make an object of the DataReader class, we never use the new
keyword instead we call the ExecuteReader() of the command object. For
e.g.

SqlCommand cmd= new SqlCommand(“Select * from Table”);

SqlDatareader rdr=cmd.ExecuteReader(cmd);

mu
no
tes
.in

194

Advanced Web
Programming

194

Here cmd.ExecuteReader() executes the command and creates the instance
of DataReader class and loads the instance with data.

9.8 USING INDIRECT DATA ACCESS:

 Disconnected architecture refers to the mode of architecture in
Ado.net where the connectivity between the database and
application is not maintained for the full time. Connectivity within
this mode is established only to read the data from the database and
finally to update the data within the database.

 This means during the processing of the application, we need data so
that data is fetched from the database and kept in temporary tables.
After that whenever data is required, it is fetched from the temporary
tables. And finally, when the operations were completed, the
connection was established to update the data within the database
from the temporary tables.

 In this mode, application issues query then retrieves and store results
for processing. For this purpose, we use objects of SqlDataAdapter
and DataSet classes.

 In disconnected architecture, a Dataset is used for retrieving data
from the database. This way there is no need to establish a
connection for the full time because DataSet acts as temporary
storage. All the operations can be performed on the data using the
Dataset and finally modified at the database.

DataAdapter in Disconnected architecture

 DataAdapter class acts as an interface between application and
database. It provides the data to the Dataset which helps the user to
perform the operations and finally the modifications are done in the
Dataset which is passed to the DataAdapter which updates the
database. DataAdapter takes the decision for the establishment and
termination of the connection.

 DataAdapter is required for connectivity with the database.
DataAdapter established a connection with the database and fetches
the data from the database and fill it into the Dataset. And finally,
when the task is completed it takes the data from the DataSet and
updates it into the database by again establishing the connection.

mu
no
tes
.in

195

ADO.NET Fundamentals  It can be said that DataAdapter acts as a mediator between the
application and database which allows the interaction in
disconnected architecture.

For example:-
public DataTable GetTable(string query)
 {
SqlDataAdapter adapter = new SqlDataAdapter(query, ConnectionString);
 DataTable Empl = new DataTable();
 adapter.Fill(Empl);
 return Empl;
 }
In the above lines of code, the object of the SqlDataAdapter is responsible
for establishing the connection. It takes query and ConnectionString as a
parameter. The query is issued on the database to fetch the data.
ConnectionString allows connectivity with the database. The fill() of the
SqlDataAdapter class adds the Table.

9.9 SUMMARY:

 A database is a collection of information which is structured for
storing,managing and retrieving information.

 Primary key: Each table must have a column which uniquely
identifies every record of the table which is called as Primary Key.
For example, CustomerID.

 Foreign key: The column in a table which is used to reference a
Primary key in another table is called as Foreign key.

 Types of Relationships among tables : One to One, One to Many,
Many to Many

 ADO (ActiveX Data Object) is the database access technologies
including components for retrieving data, storing data in memory
and binding data to controls.

 ADO.NET provides common way to interact with data sources, but
comes in different sets of libraries for each we can talk to a data
source. These libraries are called Data Providers

 Direct data access or connected architecture refers to the fact that the
connection is established for the full time between the database and
application

 Indirect data access or Disconnected architecture refers to the mode
of architecture in Ado.net where the connectivity between the
database and application is not maintained for the full time.

mu
no
tes
.in

196

Advanced Web
Programming

196

9.10 REFERENCES :

Reference Books:

 Beginning ASP.NET 4.5 in C# by Apress.

 Murach’s ASP.NET 4.6 Web Programming in C#2015 by SPD

 ASP.NET 4.0 programming by Tata McGrawHill.

 Programming ASP.NET by Microsoft Press

Web References:

 https://www.c-sharpcorner.com/
 https://www.aspsnippets.com/
 http://asp.net-informations.com/

9.11 UNIT END EXERCISES :

i. What do you mean by Database? How many types of relationships
are available to have between tables?

ii. Explain the architecture of ADO DOT NET in detail.
iii. How to retrieve table data with SQL?
iv. How to manipulate table data with SQL?
v. What are the different data types in SQL server?

vi. How to create SQL server database and table?
vii. Explain different types of Data Providers.

viii. Write a note on Direct data access.
ix. Write a note on indirect data access.

 mu
no
tes
.in

https://www.c-sharpcorner.com/
https://www.aspsnippets.com/
http://asp.net-informations.com/

197

10

DATA BINDING
Unit Structure

10.1 Objectives
10.2 Introduction to Data Binding
10.3 Using Single-Value Data Binding
10.4 Using Repeated-Value Data Binding
10.5 Working with Data Source Controls
10.5.1 The SqlDataSource Control
10.6 Summary
10.7 References
10.8 Unit End Exercises

10.1 OBJECTIVES:

This chapter would make you understand the following concepts:

 Concept of Data Binding.

 Single value and Repeated value data binding
 SqlDataSource Control

10.2 INTRODUCTION TO DATA BINDING:

 Data binding is the process of connecting the Application User
Interface with the Data from database.

 Web Forms provides many controls that support data binding. You
can connect these controls to ADO.NET components such as a
DataView, DataSet, or DataViewManager at design-time as well as
at run-time.

 The advantages of using data binding in .NET are as follows:-
 Reduction in code size.
 Better performance.
 Rapid development of data driven application.
 Fine control on data binding through events.

mu
no
tes
.in

198

Advanced Web
Programming

198

10.3 USING SINGLE-VALUE DATA BINDING:

 You use the single-item data-bound controls to display the value of a
single item of a database table. These controls don't provide direct
binding with the data source.

 Expression is enclosed in angle brackets and percent signs
(<%....%>) and prefixed by the symbol (#).

 Use a single quotation mark (‘) to wrap the whole expression as
shown below.

 Label1.Text = ‘<%# ”Hello,world” %>’;
 You use the Text, Caption, or Value property of these controls to

show the data a field.
 Examples of single-item data-bound controls are textboxes, buttons,

labels, images, and so on.
 Consider the following page, which defines a variable named LOC

and uses it to point an image in the web directory.

Code :
public partial class SingleValueDB : System.Web.UI.Page
{
 protected string LOC;
 protected void Page_Load(Object sender,EventArgs e)
 {
 LOC = “Images/img01.jpg”;
 this.DataBind();
 }
}

 With Label control:
 <asp:Label id=”lb1” runat=”server”><%#LOC%></asp:Label>

 With CheckBox control:
 <asp:CheckBox id=”chk1” “ text=”<%#LOC%>runat=”server” />

10.4 USING REPEATED-VALUE DATA BINDING:

 You use the multi-item data bound controls to display the entire or a
partial table. These controls provide direct binding to the data
source.

 You use the DataSource property of these controls to bind a database
table to these controls

mu
no
tes
.in

199

Data Binding  Some examples of multi-item data-bound controls are GridView,
FormView, DetailsView, ListBox, DataList, DropDownList, and so
on.

 Example : Data Binding with List Controls
 Create and fill data object. We can use any type of collection like

ArrayList, Hashtable, Dictionary, Data Table, Data set object.

 Link the object to the respective control using Data Source property.
 Activate the binding using DataBind() method.

Let us take the following steps:

Step (1) : Create a new website. Add a class named booklist by right
clicking on the solution name in the Solution Explorer and choosing the
item 'Class' from the 'Add Item' dialog box. Name it as booklist.cs.

using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
namespace databinding
{
 public class booklist
 {
 protected String bookname;
 protected String authorname;
 public booklist(String bname, String aname)
 {
 this.bookname = bname;
 this.authorname = aname;
 }

 public String Book
 {
 get
 {
 return this.bookname;
 }
 set

mu
no
tes
.in

200

Advanced Web
Programming

200

 {
 this.bookname = value;
 }
 }
 public String Author
 {
 get
 {
 return this.authorname;
 }
 set
 {
 this.authorname = value;
 }
 }
 }
}
Step (2) : Add four list controls on the page a list box control, a radio
button list, a check box list, and a drop down list and four labels along
with these list controls. The page should look like this in design view:

Fig. Form Design

mu
no
tes
.in

201

Data Binding The source file should look as the following:

<form id="form1" runat="server">
 <div>

 <table style="width: 559px">
 <tr>
 <td style="width: 228px; height: 157px;">
 <asp:ListBox ID="ListBox1" runat="server"
AutoPostBack="True"
OnSelectedIndexChanged="ListBox1_SelectedIndexChanged">
 </asp:ListBox>
 </td>

 <td style="height: 157px">
 <asp:DropDownList ID="DropDownList1" runat="server"
 AutoPostBack="True"
OnSelectedIndexChanged="DropDownList1_SelectedIndexChanged">
 </asp:DropDownList>
 </td>
 </tr>

 <tr>
 <td style="width: 228px; height: 40px;">
 <asp:Label ID="lbllistbox" runat="server"></asp:Label>
 </td>

 <td style="height: 40px">
 <asp:Label ID="lbldrpdown" runat="server">
 </asp:Label>
 </td>
 </tr>

 <tr>
 <td style="width: 228px; height: 21px">
 </td>

 <td style="height: 21px">

mu
no
tes
.in

202

Advanced Web
Programming

202

 </td>
 </tr>

 <tr>
 <td style="width: 228px; height: 21px">
 <asp:RadioButtonList ID="RadioButtonList1" runat="server"
 AutoPostBack="True"
OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">
 </asp:RadioButtonList>
 </td>

 <td style="height: 21px">
 <asp:CheckBoxList ID="CheckBoxList1" runat="server"
 AutoPostBack="True"
OnSelectedIndexChanged="CheckBoxList1_SelectedIndexChanged">
 </asp:CheckBoxList>
 </td>
 </tr>

 <tr>
 <td style="width: 228px; height: 21px">
 <asp:Label ID="lblrdlist" runat="server">
 </asp:Label>
 </td>

 <td style="height: 21px">
 <asp:Label ID="lblchklist" runat="server">
 </asp:Label>
 </td>
 </tr>
 </table>

 </div>
</form>

Step (3) : Finally, write the following code behind routines of the
application:

mu
no
tes
.in

203

Data Binding public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 IList bklist = createbooklist();

 if (!this.IsPostBack)
 {
 this.ListBox1.DataSource = bklist;
 this.ListBox1.DataTextField = "Book";
 this.ListBox1.DataValueField = "Author";

 this.DropDownList1.DataSource = bklist;
 this.DropDownList1.DataTextField = "Book";
 this.DropDownList1.DataValueField = "Author";

 this.RadioButtonList1.DataSource = bklist;
 this.RadioButtonList1.DataTextField = "Book";
 this.RadioButtonList1.DataValueField = "Author";

 this.CheckBoxList1.DataSource = bklist;
 this.CheckBoxList1.DataTextField = "Book";
 this.CheckBoxList1.DataValueField = "Author";

 this.DataBind();
 }
 }

 protected IList createbooklist()
 {
 ArrayList allbooks = new ArrayList();
 booklist bl;

 bl = new booklist("UNIX CONCEPTS", "SUMITABHA DAS");
 allbooks.Add(bl);

mu
no
tes
.in

204

Advanced Web
Programming

204

 bl = new booklist("PROGRAMMING IN C", "RICHI
KERNIGHAN");
 allbooks.Add(bl);

 bl = new booklist("DATA STRUCTURE", "TANENBAUM");
 allbooks.Add(bl);
 bl = new booklist("NETWORKING CONCEPTS", "FOROUZAN");
 allbooks.Add(bl);

 bl = new booklist("PROGRAMMING IN C++", "B.
STROUSTROUP");
 allbooks.Add(bl);

 bl = new booklist("ADVANCED JAVA", "SUMITABHA DAS");
 allbooks.Add(bl);

 return allbooks;
 }
 protected void ListBox1_SelectedIndexChanged(object sender,
EventArgs e)
 {
 this.lbllistbox.Text = this.ListBox1.SelectedValue;
 }
 protected void DropDownList1_SelectedIndexChanged(object sender,
EventArgs e)
 {
 this.lbldrpdown.Text = this.DropDownList1.SelectedValue;
 }
 protected void RadioButtonList1_SelectedIndexChanged(object sender,
EventArgs e)
 {
 this.lblrdlist.Text = this.RadioButtonList1.SelectedValue;
 }
protected void CheckBoxList1_SelectedIndexChanged(object sender,
EventArgs e)
 {
 this.lblchklist.Text = this.CheckBoxList1.SelectedValue;
 }
}

mu
no
tes
.in

205

Data Binding Observe the following:

 The booklist class has two properties: bookname and authorname.
 The createbooklist method is a user defined method that creates an

array of booklist objects named allbooks.
 The Page_Load event handler ensures that a list of books is created.

The list is of IList type, which implements the IEnumerable interface
and capable of being bound to the list controls. The page load event
handler binds the IList object 'bklist' with the list controls. The
bookname property is to be displayed and the authorname property
is considered as the value.

 When the page is run, if the user selects a book, its name is selected
and displayed by the list controls whereas the corresponding labels
display the author name, which is the corresponding value for the
selected index of the list control.

Example : Data Binding with ADO.NET

 To use data binding with the data fetched from a database we need
to first create data source which will be DataReader or DataSet
object.

 DataReader offers the best performance, but it limits data binding to
a single control because it is a forward only reader. After it is
finished, it can’t go back to the beginning so it can’t be used in
another data binding operation.

 For this reason, a DataSet is more common choice.
 To fill DataSet use following steps.

mu
no
tes
.in

206

Advanced Web
Programming

206

 Create the DataSet.
 Create new table and add it to the DataSet.Tables collection.
 Define the structure of the table by adding DataColumn objects to

the DataTable.Column collection.

 Add the data using DataTable.NewRow() method.
Code :
<%@ Page Language="C#" %>
<%@Import namespace="System.Data.SqlClient" %>
<%@Import namespace="System.Data" %>
<html>
<body>
<head><TITLE>Bind Films data to a ListBox</TITLE>
<script runat="Server">
void Page_Load(object sender, EventArgs e)
{ if(!this.IsPostBack)
 {
 getMovies();
 }
}
private void getMovies()
{
 string cnstr=GetConnString(); // Get a connection string
SqlConnection conn = new SqlConnection(cnstr);
IDbCommand cmd = new SqlCommand();
cmd.Connection= conn;
conn.Open();
cmd.Connection=conn;
string sql="SELECT movie_id, movie_title FROM movies";
SqlDataAdapter da = new SqlDataAdapter(sql,conn);
DataSet ds = new DataSet();
da.Fill(ds,"Movies");
dview = new DataView(ds.Tables["Movies"]);
dview.RowFilter = "movie_year < 1951";
// List box containing movies before 1951
ListBoxMovie.DataSource= dview;
ListBoxMovie.DataBind();
conn.Close();

mu
no
tes
.in

207

Data Binding }
</script>
</head>
<FORM NAME="FORM1" runat=server>
<asp:ListBox id=”ListBoxMovie” dataValueField = "movie_ID"
dataTextField = "movie_title" AppendDataBoundItems=true Rows="10"
BackColor=#efefe4 font-size=9pt runat="server" >
<asp:ListItem Value=-1 Text="Select Movie" />
</asp:ListBox>
</FORM> </body> </html>

10.5 WORKING WITH DATA SOURCE CONTROLS:

A data source control interacts with the data-bound controls and hides the
complex data binding processes. These are the tools that provide data to
the data bound controls and support execution of operations like
insertions, deletions, sorting, and updates.

Fig Data Source Controls

 The data source controls used for hierarchical data are:

 XMLDataSource - It allows binding to XML files and strings
with or without schema information.

 SiteMapDataSource - It allows binding to a provider that
supplies site map information.

 The data source controls used for tabular data are:

mu
no
tes
.in

208

Advanced Web
Programming

208

Data source
controls

Description

SqlDataSource It represents a connection to an ADO.NET data
provider that returns SQL data, including data
sources accessible via OLEDB and ODBC.

ObjectDataSource It allows binding to a custom .Net business object
that returns data.

LinqdataSource It allows binding to the results of a Linq-to-SQL
query (supported by ASP.NET 3.5 only).

AccessDataSource It represents connection to a Microsoft Access
database.

The following table provides the methods of the DataSourceView class:

Methods Description

CanExecute Determines whether the specified command can be
executed.

ExecuteCommand Executes the specific command.

ExecuteDelete Performs a delete operation on the list of data that the
DataSourceView object represents.

ExecuteInsert Performs an insert operation on the list of data that
the DataSourceView object represents.

ExecuteSelect Gets a list of data from the underlying data storage.

ExecuteUpdate Performs an update operation on the list of data that
the DataSourceView object represents.

Delete Performs a delete operation on the data associated
with the view.

Insert Performs an insert operation on the data associated
with the view.

Select Returns the queried data.

Update Performs an update operation on the data associated
with the view.

mu
no
tes
.in

209

Data Binding 10.5.1 The SqlDataSource Control

The SqlDataSource control represents a connection to a relational database
such as SQL Server or Oracle database, or data accessible through
OLEDB or Open Database Connectivity (ODBC). Connection to data is
made through two important properties ConnectionString and
ProviderName.

The following code snippet provides the basic syntax of the control:

<asp:SqlDataSource runat="server" ID="MySqlSource"
 ProviderName='<%$ConnectionStrings:LocalNWind.ProviderName%>'
 ConnectionString='<%$ ConnectionStrings:LocalNWind %>'
 SelectionCommand= "SELECT * FROM EMPLOYEES" />
<asp:GridView ID="GridView1" runat="server"
DataSourceID="MySqlSource" />

Configuring various data operations on the underlying data depends upon
the various properties (property groups) of the data source control.

The following table provides the related sets of properties of the
SqlDataSource control, which provides the programming interface of the
control:

Property Group Description

DeleteCommand,
DeleteParameters,
DeleteCommandType

Gets or sets the SQL statement,
parameters, and type for deleting rows in
the underlying data.

FilterExpression,
FilterParameters

Gets or sets the data filtering string and
parameters.

InsertCommand,
InsertParameters,
InsertCommandType

Gets or sets the SQL statement,
parameters, and type for inserting rows in
the underlying database.

SelectCommand,
SelectParameters,
SelectCommandType

Gets or sets the SQL statement,
parameters, and type for retrieving rows
from the underlying database.

SortParameterName Gets or sets the name of an input
parameter that the command's stored
procedure will use to sort data.

UpdateCommand,
UpdateParameters,
UpdateCommandType

Gets or sets the SQL statement,
parameters, and type for updating rows in
the underlying data store.

mu
no
tes
.in

210

Advanced Web
Programming

210

The following code snippet shows a data source control enabled for
data manipulation:

<asp:SqlDataSource runat="server" ID= "MySqlSource"

 ProviderName='<%$ConnectionStrings:LocalNWind.ProviderName>'

 ConnectionString='<%$ ConnectionStrings:LocalNWind %>'

 SelectCommand= "SELECT * FROM EMPLOYEES"

 UpdateCommand= "UPDATE EMPLOYEES SET
LASTNAME=@lame"

 DeleteCommand= "DELETE FROM EMPLOYEES WHERE
EMPLOYEEID=@eid"

 FilterExpression= "EMPLOYEEID > 10">

</asp:SqlDataSource>

10.6 SUMMARY

 Data binding is the process of connecting the Application User
Interface with the Data from database.

 You use the single-item data-bound controls to display the value of a
single item of a database table.

 You use the multi-item data bound controls to display the entire or a
partial table.

 DataReader offers the best performance, but it limits data binding to
a single control because it is a forward only reader. After it is
finished, it can’t go back to the beginning so it can’t be used in
another data binding operation.

 For this reason, a DataSet is more common choice.

 A data source control interacts with the data-bound controls and
hides the complex data binding processes.

 These are the tools that provide data to the data bound controls and
support execution of operations like insertions, deletions, sorting,
and updates.

mu
no
tes
.in

211

Data Binding 10.7 REFERENCES:

Reference Books:

 Beginning ASP.NET 4.5 in C# by Apress.
 Murach’s ASP.NET 4.6 Web Programming in C#2015 by SPD
 ASP.NET 4.0 programming by Tata McGrawHill.
 Programming ASP.NET by Microsoft Press

Web References:

 https://www.c-sharpcorner.com/
 https://www.aspsnippets.com/
 http://asp.net-informations.com/

10.8 UNIT END EXERCISES :

1) What is Data Binding? Explain its types.
2) Explain Single Value Data binding.
3) Explain Repeated Value Data binding.
4) How to bind data with Simple List Control? Give Example.
5) Explain data binding with ADO.NET.
6) Write a note on Data Source Controls.
7) Explain Sql Data Source with properties.



mu
no
tes
.in

https://www.c-sharpcorner.com/
https://www.aspsnippets.com/
http://asp.net-informations.com/

212

Advanced Web
Programming

212

11

DATA CONTROLS
Unit Structure

11.1 Objectives
11.2 Introduction of Grid view
11.2.1 Creating a GridView
11.2.2 Properties of GridView
11.3 Formatting the GridView:
11.3.1 Numeric Format Strings
11.3.2 Time and Date Format Strings:
11.3.3.Styles
11.4 Creating Table in SQL Server Database
11.5 Selecting a GridView Row
11.6 Editing with the GridView
11.7 Sorting and Paging the GridView
11.8 Using GridView Templates
11.9 DetailsView
11.10 Form View
11.11 Summary
11.12 References
11.13 Unit End Exercises

11.1 OBJECTIVES:

This chapter would make you understand the following concepts:

 Introduction to GridView control and its different operations like
select, edit etc.

 How to use DetailsView and FormView controls

11.2 INTRODUCTION OF GRID VIEW:

 The GridView control displays the values of a data source in a table. Each
column represents a field, while each row represents a record. The
GridView control supports the following features:

 Binding to data source controls, such as SqlDataSource.
 Built-in sort capabilities.

mu
no
tes
.in

213

Data Controls  Built-in update and delete capabilities.
 Built-in paging capabilities.
 Built-in row selection capabilities.
 Programmatic access to the GridView object model to dynamically

set properties, handle events, and so on.
 Multiple key fields.
 Multiple data fields for the hyperlink columns.
 Customizable appearance through themes and styles.

11.2.1 Creating a GridView:

<asp:GridView ID="gridService" runat="server">
</asp:GridView>

11.2.2 Properties of GridView :

ID The name assigned to the control.
DataSourceID ID assigned to the Data Source.
AllowSorting It is Boolean value. True value generates

clickable column headers that sort the column’s
data when selected.

AllowPaging It is Boolean value indicating whether control
will provide paging with page size defined in
PageSize property.

PageSize No of records included on each page of data.
BackColor Color name or hex value assigned to GridView

background.
BorderColor Color name or hex value assigned to GridView’s

border.

11.3 FORMATTING THE GRIDVIEW:

 To format the grid view you have to ensure that dates, currency and
other number values are in good format. Grid View has property
"DataFormatString" to apply formatting.

 You can change colors, fonts, borders and alignment of grid. Each
BoundField column provides a DataFormatString property that you
can use to configure the numbers and dates using a format string.

 Format strings are generally made up of a placeholder and format
indicator, which are wrapped inside curly brackets, like this: {0:C}

 Here 0 shows the value that will be formatted and the letter indicates
a predetermined format style. In this case C means currency format
which formats a number as a dollar.

<asp:BoundField DataField="Price" HeaderText="Price"
DataFormatString="{0:C}" HtmlEncode="false" />

mu
no
tes
.in

214

Advanced Web
Programming

214

Here we are going to discuss about few format strings.
11.3.1 Numeric Format Strings :

 Currency {0:C} - $1,234.50 Brackets indicate negative
values($1,234.50). Currency sign is locale specific (?1,234.50).

 Scientific (Exponential) {0:E } - 1.234.50E+004
 Percentage {0:P} - 35.5%
 Fixed Decimal {0:F?} - Depends on the number of decimal places

you set {0:F3} would be 123.400. {0:F0} would be 123.

11.3.2 Time and Date Format Strings:

<asp:BoundField DataField="DOB" HeaderText="DOB"
DataFormatString="{0:MM/dd/yy}" HtmlEncode="false" />

 Short Date {0:d} - M/d/yyyy (11/21/2003)
 Long Date {0:D} - dddd, MMMM dd, yyyy (Saturday, March 21,

2001)
 Long Date and Short Time {0:f} - dddd, MMMM dd, yyyy HH:mm

aa (Saturday, March 21, 2003 11:00 AM)
 Long Date and Long Time {0:F} - dddd, MMMM dd, yyyy

HH:mm:ss aa (Saturday, March 21, 2003 11:00:20 AM)
 ISO Sortable Standard {0:s} - yyyy-MM-dd HH:mm:ss (2003-01-21

11:00:21)
 Month and Day {0:M} - MMMM dd (March 21)
 General {0:G} - M/d/yyyy HH:mm:ss aa (depends on local specific

setting) (10/21/2003 11:00:21 AM)

11.3.3.Styles : you can set eight GridView styles.

 Header Style: Set the header row style that contains column titles if
you do ShowHeader property true.

 RowStyle: Set the style of every data row.
 AlternatingRowStyle: Set the style of every alternate row in

gridview.
 SelectedRowStyle: Set the style of currently selected row.
 EditRowStyle: Set the style of row that is in edit mode. This

formatting acts in addition to the RowStyle formatting.
 EmptyDataRowStyle: Set the style that is used for the single row in

the special case where the bound data object contains no rows.
 FooterStyle: Set the style of the footer row at the bottom of the

GridView, if you choose ShowFooter property true.
 PagerStyle: Set the style of the row with the page links if you enable

AllowPaging property true.

mu
no
tes
.in

215

Data Controls Example:

<asp:GridView ID="GridView1" runat="server" AllowPaging="True" Sh
owFooter="True">
<RowStyle BackColor="Gray" Font-Italic="True" />
<EmptyDataRowStyle BackColor="Yellow" />
<PagerStyle BackColor="#FFC0C0" Font-Italic="True" Font-
Underline="True" />
<SelectedRowStyle BackColor="#00C000" Font-Bold="True" Font-
Italic="True" />
<EditRowStyle BackColor="#0000C0" />
<AlternatingRowStyle BackColor="Red" BorderColor="Green" BorderSt
yle="Dashed" BorderWidth="1px" Font-Bold="True" />
<FooterStyle BackColor="#00C0C0" />
<HeaderStyle BackColor="#00C000" Font-Bold="True" Font-
Italic="True" Font-Underline="True" />
</asp:GridView>

11.4 CREATING TABLE IN SQL SERVER DATABASE:

Step 1 : Create a table named UserDetail with the columns UserID and
UserName. The table looks as below.

Step 2: Now insert data into the table.

Step 3 : Drag the GridView control from the Data controls menu.
You will need to set the Bound column in order to see the text in the cells
of the GridView control.

mu
no
tes
.in

https://www.c-sharpcorner.com/UploadFile/raj1979/gridview-formatting/GridViewFormatting.aspx

216

Advanced Web
Programming

216

.aspx source code
<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="WebForm1.aspx.cs"
Inherits="WebApplication120.WebForm1" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 UserID:<asp:TextBox ID="TextBoxUserID" runat="server">
</asp:TextBox>

 UserName:
 <asp:TextBox ID="TextBoxUserName" runat="server">
</asp:TextBox>

 <asp:GridView ID="GridView1" runat="server"
AutoGenerateSelectButton="True"
OnSelectedIndexChanged="GridView1_SelectedIndexChanged"
 BackColor="#DEBA84" BorderColor="#DEBA84"
BorderStyle="None" BorderWidth="1px" CellPadding="3"
CellSpacing="2" AutoGenerateColumns="False">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True"
ForeColor="White" />
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
ForeColor="White" />
 <SortedAscendingCellStyle BackColor="#FFF1D4" />
 <SortedAscendingHeaderStyle BackColor="#B95C30" />
 <SortedDescendingCellStyle BackColor="#F1E5CE" />
 <SortedDescendingHeaderStyle BackColor="#93451F" />
 <Columns>

mu
no
tes
.in

217

Data Controls <asp:BoundField HeaderText="UserID" DataField="UserID" />
 <asp:BoundField HeaderText="UserName"
DataField="UserName" />
 </Columns>
 </asp:GridView>
 </div>
 </form>
</body>
</html>
 See the following image of a GridView after setting
'AutoGenerateSelectButton=True'.

Step 4 : See the Design view of your GridView. You will find a Hyperlink
with a text as 'Select'.

mu
no
tes
.in

218

Advanced Web
Programming

218

Step 5 : Now double-click on the page and write the following code for
binding the data with the GridView.
Source code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data.SqlClient;
using System.Data;
namespace WebApplication120
{
 public partial class WebForm1 : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 show();
 }
 private void show()
 {
 {
 SqlConnection con = new SqlConnection("Data Source=.;
uid=sa; pwd=wintellect; database=Rohatash;");
 string strSQL = "Select * from UserDetail";

mu
no
tes
.in

219

Data Controls SqlDataAdapter dt = new SqlDataAdapter(strSQL, con);
 DataSet ds = new DataSet();
 dt.Fill(ds, "UserDetail");
 con.Close();
 GridView1.DataSource = ds;
 GridView1.DataBind();
 }
 }
 }
}
Step 6 :Now run the application.

11.5 SELECTING A GRID VIEW ROW:

Selecting the row event is fired when you make a click on the select link.
If you need any particular item in that row you can easily select it using
the cells property. In the Gridview, double-Click on the
SelectedIndexChanged Event and write the following code:

mu
no
tes
.in

220

Advanced Web
Programming

220

protected void GridView1_SelectedIndexChanged(object sender,
EventArgs e)

{

 TextBoxUserID.Text = GridView1.SelectedRow.Cells[1].Text;

 TextBoxUserName.Text = GridView1.SelectedRow.Cells[2].Text;

}

Now run the application and select a row; that will show the selected row
data in the TextBoxes.

11.6 EDITING WITH THE GRIDVIEW:

There is a method in GridView to edit, delete and update.

Design

The design part will look as in the following image:

mu
no
tes
.in

221

Data Controls

Using a CommandField , we can display one or more command buttons in
a column of Grid control.

To add the Command field in a Grid view control, first select the control
and click on add new column. It will display the following window.

From this, select command buttons “Edit/Update”

Code behind:

using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
public partial class _Default: System.Web.UI.Page {

mu
no
tes
.in

222

Advanced Web
Programming

222

 private SqlConnection conn = new SqlConnection("Data
Source=NEHASHAMA; Integrated Security=true; Initial Catalog=rp");
 protected void Page_Load(object sender, EventArgs e) {
 if (!IsPostBack) {
 gvbind();
 }
 }
 protected void gvbind() {
 conn.Open();
 SqlCommand cmd = new SqlCommand("Select * from detail",
conn);
 SqlDataAdapter da = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();
 da.Fill(ds);
 conn.Close();
 if (ds.Tables[0].Rows.Count > 0) {
 GridView1.DataSource = ds;
 GridView1.DataBind();
 } else {
 ds.Tables[0].Rows.Add(ds.Tables[0].NewRow());
 GridView1.DataSource = ds;
 GridView1.DataBind();
 int columncount = GridView1.Rows[0].Cells.Count;
 GridView1.Rows[0].Cells.Clear();
 GridView1.Rows[0].Cells.Add(new TableCell());
 GridView1.Rows[0].Cells[0].ColumnSpan = columncount;
 GridView1.Rows[0].Cells[0].Text = "No Records Found";
 }
 }
 protected void GridView1_RowDeleting(object sender,
GridViewDeleteEventArgs e) {
 GridViewRow row = (GridViewRow)
GridView1.Rows[e.RowIndex];
 Label lbldeleteid = (Label) row.FindControl("lblID");
 conn.Open();
 SqlCommand cmd = new SqlCommand("delete FROM detail where
id='" +
Convert.ToInt32(GridView1.DataKeys[e.RowIndex].Value.ToString()) +
"'", conn);

mu
no
tes
.in

223

Data Controls cmd.ExecuteNonQuery();
 conn.Close();
 gvbind();
 }
 protected void GridView1_RowEditing(object sender,
GridViewEditEventArgs e) {
 GridView1.EditIndex = e.NewEditIndex;
 gvbind();
 }
 protected void GridView1_RowUpdating(object sender,
GridViewUpdateEventArgs e) {
 int userid =
Convert.ToInt32(GridView1.DataKeys[e.RowIndex].Value.ToString());
 GridViewRow row = (GridViewRow)
GridView1.Rows[e.RowIndex];
 Label lblID = (Label) row.FindControl("lblID");
 //TextBox txtname=(TextBox)gr.cell[].control[];
 TextBox textName = (TextBox) row.Cells[0].Controls[0];
 TextBox textadd = (TextBox) row.Cells[1].Controls[0];
 TextBox textc = (TextBox) row.Cells[2].Controls[0];
 //TextBox textadd = (TextBox)row.FindControl("txtadd");
 //TextBox textc = (TextBox)row.FindControl("txtc");
 GridView1.EditIndex = -1;
 conn.Open();
 //SqlCommand cmd = new SqlCommand("SELECT * FROM detail",
conn);
 SqlCommand cmd = new SqlCommand("update detail set name='" +
textName.Text + "',address='" + textadd.Text + "',country='" + textc.Text
+ "'where id='" + userid + "'", conn);
 cmd.ExecuteNonQuery();
 conn.Close();
 gvbind();
 //GridView1.DataBind();
 }
 protected void GridView1_PageIndexChanging(object sender,
GridViewPageEventArgs e) {
 GridView1.PageIndex = e.NewPageIndex;
 gvbind();
 }

mu
no
tes
.in

224

Advanced Web
Programming

224

 protected void GridView1_RowCancelingEdit(object sender,
GridViewCancelEditEventArgs e) {
 GridView1.EditIndex = -1;
 gvbind();
 }
}
Save all or press "Ctrl+S" and hit "F5" to run the page, the page will look
as in the following image:

Click on "Edit the GridView", it will display Textboxes in each cell as in
the following image:

Edit the value(s) here and click on the Update link, it will update all the
data or to remove it click on the "Delete" link above the image shown.

11.7 SORTING AND PAGING THE GRID VIEW:

The ASP.NET GridView control is used to display the values of a data
source in a table. ASP.NET provides the sorting feature in a GridView
Control. The records displayed in a GridView control can be sorted in
ascending or descending order.

mu
no
tes
.in

225

Data Controls In this article I will explain how to do paging and sorting in ASP.NET
GridView.

The following is the step-by-step explanation.
Step1: Create a table in the database.
CREATE TABLE [dbo].[Teacher](
[TeacherId] [int] NULL,
[FirstName] [varchar](50) NULL,
[LastName] [varchar](50) NULL,
[Status] [varchar](50) NULL,
[Nationality] [varchar](50) NULL,
[Grade] [nchar](10) NULL
) ON [PRIMARY]
Step 2: Create a new ASP.NET web application and drag a GridView
control in the Default.aspx design view. Set the property
AllowSorting="true".
Step 3: Write the following in the page load event:
if (!Page.IsPostBack)
{
gvTeacher.DataSource = BindGridView();
gvTeacher.DataBind();
}
Step 4: The BindGridView() method populates the data in the GridView.
Write the following method in the Default.aspx.cs file:
protected void gvTeacher_Sorting(object sender, GridViewSortEventArgs
e)
{
string sortingDirection = string.Empty;
if (direction == SortDirection.Ascending)
{
direction = SortDirection.Descending;
sortingDirection = "Desc";
 }
else
{
direction = SortDirection.Ascending;
sortingDirection = "Asc";
}
DataView sortedView = new DataView(BindGridView());

mu
no
tes
.in

226

Advanced Web
Programming

226

sortedView.Sort = e.SortExpression + " " + sortingDirection;
Session["SortedView"] = sortedView;
gvTeacher.DataSource = sortedView;
gvTeacher.DataBind();
}
Note: GridViewSortEventArgs is used to perform GridView sorting.
There are two properties.
SortDirection specifies the direction to sort the GridView column, either
by ascending or descending order.
Step 5: Select the GridView and double-click on PageIndexChanging
.Write the following code:
protected void gvTeacher_PageIndexChanging(object sender,
GridViewPageEventArgs e)
{
gvTeacher.PageIndex = e.NewPageIndex;
if (Session["SortedView"] != null)
{
gvTeacher.DataSource = Session["SortedView"];
gvTeacher.DataBind();
}
else
{
gvTeacher.DataSource = BindGridView();
gvTeacher.DataBind();
}
}
Step 6: Now maintain the SortDirection (Ascending or Descending) in
ViewState by adding the following code.
public SortDirection direction
{
get
{
if (ViewState["directionState"] == null)
{
ViewState["directionState"] = SortDirection.Ascending;
}
return (SortDirection)ViewState["directionState"];
}

mu
no
tes
.in

227

Data Controls set
{
ViewState["directionState"] = value;
}
}
Step 7: The First Name is in ascending order as in the following:

The First Name in descending order as in the following:

11.8 USING GRIDVIEW TEMPLATES:

i. We use TemplateFields when we wish to display ASP.Net controls
in a GridView column.

ii. We display ASP.Net controls in a GridView column to provide
additional functionality in the user interface.

iii. For example, by placing a DropDownList control in a GridView
column, users will be able to select a list of options from within the
Gridview control interface.

iv. A Template field supports many types of templates and a list of
template types is given in the table below.

mu
no
tes
.in

228

Advanced Web
Programming

228

TemplateType Description

AlternatingItemTemplate
The contents of this template are displayed
for every other row rendered by the
GridView

EditItemTemplate The contents of this template are displayed
when a row is selected for editing

FooterTemplate The contents of this template are displayed
in the column footer

HeaderTemplate The contents of this template are displayed
in the column header

InsertTemplate The contents of this template are displayed
when a new data item is inserted

ItemTemplate The contents of this template are displayed
for every row rendered by the GridView

We can create TemplateFields in the GridView control using
<TemplateField> element.
Steps to create the <TemplateField> element in the GridView control
a. Declare the GridView and set the AutoGenerateColumns property to

'false'.
b. Create a Template column using <asp:TemplateField> tag within the

<Columns> element.
Create within the <asp:TemplateField> element to display value of field as
text.
Create <EditItemTemplate> to display TextBox control to modify value of
field when editing the record.

<asp:GridView ID="GridView1" DataSourceId="MyDataSource"
DataKeyNames="Code" AutoGenerateColumns="false"
AutoGenerateEditButton="true" AutoGenerateDeleteButton="true"
runat="server">
<Columns>
<asp:TemplateField HeaderText="Name">
<ItemTemplate>
<%#Eval("Name")%>
</ItemTemplate>
<EditItemTemplate>
<asp:TextBox ID="txtName" Text='<%# Bind("Name")%>'
runat="server" />
</EditItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Description">
<ItemTemplate>
<%#Eval("Description")%>
</ItemTemplate>
<EditItemTemplate>

mu
no
tes
.in

229

Data Controls <asp:TextBox ID="txtDesctiption"Text='<%# Bind("Description")%>'
runat="server" />
</EditItemTemplate>
</asp:TemplateField>
</Columns>
</asp:GridView>

<asp:SqlDataSource ID="MyDataSource"
ConnectionString="<%$Connectionstrings:ERPConnectionString%>"
SelectCommand="SELECT * FROM Sample"
UpdateCommand="Update SAMPLE SET
Name=@Name,Description=@Description Where Code=@Code"
DeleteCommand="Delete SAMPLE Where Code=@Code"
runat="server"/>

 Configure the SqlDataSource control and set the SelectCommand
and UpdateCommand properties to display and update records from
the Sample Table.

 We have created two Template fields the GridView control.
 The first TemplateField is used to display and edit the value of the

'Name' field in the SAMPLE table.
 The second TemplateField is used to display and edit the value of

the 'Description' field in the SAMPLE table.
 The contents of the ItemTemplate are displayed when a row is in

normal mode and the contents of the EditItemTemplate are
displayed when a row is in edit mode.

Extra Example:

Now let’s take an asp.net example to bind data in to GridView.
Here, we learn how to bind and display data in GridView control from sql
server database in asp.net c#.
Step 1 – Open the Visual Studio –> Create a new empty Web application.
Step 2 – Create a New web page.
Step 3 – Drag and drop GridView Control on web page from toolbox.
Step 4 – Create New Database in SQL Server
Step 5 – Make connection between Database and web application.

In this asp.net example we will bind data to GridView from SQL server
database. So, we need to do connection between our web application and
sql server database. There are several method for make connection, we
will explain three different connection method in our example.

1. Bind data using SQL Connection and SQL DataAdapter
2. Bind Data using DataSet and Table Adapter
3. Bind Data using LINQ method.

mu
no
tes
.in

230

Advanced Web
Programming

230

Please check the following steps:

Step 1: Design asp.net web form with GridView control along with three

button as show s in below figure.
ASP.Net GridView Control.
Step 2: add namespace on code page.
using System.Data.SqlClient;
using System.Data;

Step 3: Bind data using SQL Connection and SQL
DataAdapter

Now, write below code on ‘Display Data’ button.
This connection method we use SQLConnection and SQLDataAdapter
object and write sql query in code behind page. This sql connection
method are basic connection method.

protected void btnview_Click(object sender, EventArgs e)

{

SqlConnection SQLConn = new SqlConnection("Data
Source=.\\SQLEXPRESS;Initial Catalog='Blog';Integrated
Security=True");

SqlDataAdapter SQLAdapter = new SqlDataAdapter("Select * from
UserMst", SQLConn);

DataTable DT = new DataTable();

SQLAdapter.Fill(DT);

mu
no
tes
.in

231

Data Controls GridView1.DataSource = DT;

GridView1.DataBind();

}

Step 4: Bind Data using DataSet and Table Adapter

Write below code on ‘Display Data using SP’ Button.

In this method we use DataSet and SQL Stored Procedure for sql
connection. Use Table Adapter instead of DataAdapter.

protected void btnviewdataSP_Click(object sender, EventArgs e)

{

DS_USER.USERMST_SELECTDataTable UDT = new

DS_USER.USERMST_SELECTDataTable();

DS_USERTableAdapters.USERMST_SELECTTableAdapter UAdapter =

new DS_USERTableAdapters.USERMST_SELECTTableAdapter();

UDT = UAdapter.SelectData();

GridView1.DataSource = UDT;

GridView1.DataBind();

}

Step 5: Bind Data using LINQ method.

Write below code on ‘Display Data using LINQ’ button.
Here, we use LINQ method to fetch data from sql server and Display data
in to GridView control.
protected void btnviewLINQ_Click(object sender, EventArgs e)
{
DataClassesDataContext Ctx = new DataClassesDataContext();
GridView1.DataSource = Ctx.USERMST_SELECT();
GridView1.DataBind();
}
Here is the result of above GridView example.

mu
no
tes
.in

232

Advanced Web
Programming

232

Full code of code behind page C# code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data.SqlClient;
using System.Data;
public partial class GridviewExample : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected void btnview_Click(object sender, EventArgs e)
 {
 SqlConnection SQLConn = new SqlConnection("Data
Source=.\\SQLEXPRESS;Initial Catalog='Blog';Integrated
Security=True");
 SqlDataAdapter SQLAdapter = new SqlDataAdapter("Select * from
UserMst", SQLConn);
 DataTable DT = new DataTable();
 SQLAdapter.Fill(DT);
 GridView1.DataSource = DT;

mu
no
tes
.in

233

Data Controls GridView1.DataBind();
 }
 protected void btnviewdataSP_Click(object sender, EventArgs e)
 {
 DS_USER.USERMST_SELECTDataTable UDT = new
DS_USER.USERMST_SELECTDataTable();
 DS_USERTableAdapters.USERMST_SELECTTableAdapter
UAdapter = new
DS_USERTableAdapters.USERMST_SELECTTableAdapter();
 UDT = UAdapter.SelectData();
 GridView1.DataSource = UDT;
 GridView1.DataBind();
 }
 protected void btnviewLINQ_Click(object sender, EventArgs e)
 {
 DataClassesDataContext Ctx = new DataClassesDataContext();
 GridView1.DataSource = Ctx.USERMST_SELECT();
 GridView1.DataBind();
 }
}

11.9 DETAILS VIEW :

DetailsView control used to display a single database record of table
layout in ASP.Net. Means it works with a single data item at a time.
DetailsView control used to display record, insert, update, and delete
records from database.

DetailsView Control Syntax :

<asp:DetailsView ID=“DetailsView1“ runat=“server“></asp:DetailsVie
w>

Now let’s take an asp.net example to bind data to DetailsView.

Here, we learn how to bind and display data in DetailsView control from
sql server database in asp.net c#.

DetailsView Control Example in ASP.Net C#

Step 1 – Open the Visual Studio –> Create a new empty Web application.
Step 2 – Create a New web page.
Step 3 – Drag and drop DetailsView Control on web page from toolbox.
Step 4 – Create New Database in SQL Server

mu
no
tes
.in

234

Advanced Web
Programming

234

Step 5 – Make connection between Database and web application.
Step 6 – Bind and Display data to DetailsView.

Code:
<table>
<tr>
<td align="right">
Name :</td>
<td>
<asp:TextBox ID="txtname" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td align="right">
City :</td>
<td>
<asp:TextBox ID="txtcity" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>
 </td>
<td>
<asp:Button ID="btnSave" runat="server" onclick="btnSave_Click"
Text="SAVE" />
</td>
</tr>
<tr>
<td>
 </td>
<td>

mu
no
tes
.in

235

Data Controls <asp:DetailsView ID="DetailsView1" runat="server"
BackColor="LightGoldenrodYellow" BorderColor="Tan"
BorderWidth="1px" CellPadding="2" DataKeyNames="ID"
ForeColor="Black" GridLines="None" Height="50px"
onitemdeleting="DetailsView1_ItemDeleting"
onitemupdating="DetailsView1_ItemUpdating"
onmodechanging="DetailsView1_ModeChanging"
onpageindexchanging="DetailsView1_PageIndexChanging"
Width="125px">
<FooterStyle BackColor="Tan" />
<PagerStyle BackColor="PaleGoldenrod" ForeColor="DarkSlateBlue"
HorizontalAlign="Center" />
<HeaderStyle BackColor="Tan" Font-Bold="True" />
<EditRowStyle BackColor="DarkSlateBlue" ForeColor="GhostWhite"
/>
<AlternatingRowStyle BackColor="PaleGoldenrod" />
</asp:DetailsView>
</td>
</tr>
</table>
Now, After doing this next step to bind the DetailsView control from
Database.
Here, we first insert record in to database and fetch record from database
and display it to DetailsView control in ASP.Net.
Write below code on SAVE button for insert and bind data to DetailsView
in ASP.net.
protected void btnSave_Click(object sender, EventArgs e)
{
SqlConnection SQLConn = new SqlConnection("Data
Source=COMPUTER_1\\SQLEXPRESS;Initial
Catalog=BOOK;Integrated Security=True");
SqlDataAdapter SQLAdapter = new SqlDataAdapter("insert into
UserMst values ('"+ txtname.Text +"','"+ txtcity.Text +"')", SQLConn);
DataTable DT = new DataTable();
SQLAdapter.Fill(DT);
BindDetailsView();
}
private void BindDetailsView()
{

mu
no
tes
.in

236

Advanced Web
Programming

236

SqlConnection SQLConn = new SqlConnection("Data
Source=COMPUTER_1\\SQLEXPRESS;InitialCatalog=BOOK;Integrat
ed Security=True");
SqlDataAdapter SQLAdapter = new SqlDataAdapter("select * from
UserMst", SQLConn);
DataTable DT = new DataTable();
SQLAdapter.Fill(DT);
DetailsView1.DataSource = DT;
DetailsView1.DataBind();
}

The Output of DetailsView control example is :

 Note : If you use DetailsView control in your website, then it can display
a single record at a time, so you must have do paging with DetailsView
control for show all the records one by one.

11.10 FORM VIEW:

The Form View control is used to display a single record at a time from a
data source. When you use the Form View control, you create templates to
display and edit data-bound values. The templates contain controls,
binding expressions, and formatting that define the look and functionality
of the form.

Step 1 - Create database table in SQL server

CREATE TABLE [dbo].[StudentsResult](
 [RollNumber] [int] IDENTITY(10000,1) NOT NULL,
 [StudentName] [nvarchar](50) NULL,
 [Hindi] [int] NULL,
 [English] [int] NULL,
 [Physics] [int] NULL,
 [Chemistry] [int] NULL,
 [Biology] [int] NULL,
 [Mathematics] [int] NULL,
 [Total_Marks] [int] NULL,

mu
no
tes
.in

237

Data Controls [Percentage] [float] NULL,
 CONSTRAINT [PK_StudentsResult] PRIMARY KEY CLUSTERED
(
 [RollNumber] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
CREATE PROCEDURE [dbo].[spGetStudentResult]
AS
BEGIN
SELECT*FROM [dbo].[StudentsResult]
END
Step 2: Open Visual Studio click on New Project and create an empty web
application project.
Step 3 : Drag and drop a FormView control on the web form. Design
FormView control.
Complete web form code:
<!DOCTYPE html>
 <html>
<head runat="server">
 <title>FormView</title>
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.
css">
 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></s
cript>
 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/js/bootstrap.min.js"
></script>
</head>
<body>
 <form id="form1" runat="server">
 <div class="container py-4">
 <h5 class="text-center text-uppercase">FormView control in
asp.net</h5>
 <asp:FormView CssClass="container" ID="FormView1"
AllowPaging="true"OnPageIndexChanging="FormView1_PageIndexCha
nging" runat="server">

mu
no
tes
.in

238

Advanced Web
Programming

238

 <ItemTemplate>
 <table class="table table-bordered table-striped">
 <tr>
 <td>Roll Number</td>
 <td><%#Eval("RollNumber") %></td>
 </tr>
 <tr>
 <td>Student Name</td>
 <td><%#Eval("StudentName") %></td>
 </tr>
 <tr>
 <td>Hindi</td>
 <td><%#Eval("Hindi") %></td>
 </tr>
 <tr>
 <td>English</td>
 <td><%#Eval("English") %></td>
 </tr>
 <tr>
 <td>Physics</td>
 <td><%#Eval("Physics") %></td>
 </tr>
 <tr>
 <td>Chemistry</td>
 <td><%#Eval("Chemistry") %></td>
 </tr>
 <tr>
 <td>Biology</td>
 <td><%#Eval("Biology") %></td>
 </tr>
 <tr>
 <td>Mathematics</td>
 <td><%#Eval("Mathematics") %></td>
 </tr>
 <tr>
 <td>Total Marks</td>
 <td><%#Eval("Total_Marks") %></td>
 </tr>
 <tr>

mu
no
tes
.in

239

Data Controls <td>Percentage</td>
 <td><%#Eval("Percentage")%></td>
 </tr>
 </table>
 </ItemTemplate>
 </asp:FormView>
 </div>
 </form>
</body>
</html>
Step 4 : Right click and view web form code. Write the following code.
using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
namespace BindDataControl_Demo
{
 public partial class FormView : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 BindFormView();
 }
 }

 private void BindFormView()
 {
 string CS =
ConfigurationManager.ConnectionStrings["DBCS"].ConnectionString;
 using (SqlConnection con = new SqlConnection(CS))
 {
 SqlCommand cmd = new SqlCommand("spGetStudentResult", con);
 cmd.CommandType = CommandType.StoredProcedure;
 SqlDataAdapter sda = new SqlDataAdapter(cmd);
 con.Open();
 DataTable dt = new DataTable();
 sda.Fill(dt);

mu
no
tes
.in

240

Advanced Web
Programming

240

 FormView1.DataSource = dt;
 FormView1.DataBind();
 }
 }
 protected void FormView1_PageIndexChanging(object sender,
System.Web.UI.WebControls.FormViewPageEventArgs e)
 {
 FormView1.PageIndex = e.NewPageIndex;
 this.BindFormView();
 }
 }
}
Step 5: Run the project ctrl+F5

Screenshot:

11.10 SUMMARY:

 GridView can used for binding to data source controls, such as
SqlDataSource.

 It has Built-in sort, update and delete, paging, row selection
capabilities.

 BoundField column provides a DataFormatString property that you
can use to configure the numbers and dates using a format string.

 Use TemplateFields when we wish to display ASP.Net controls in a
GridView column.

mu
no
tes
.in

241

Data Controls  DetailsView control used to display a single database record of
table.

 The FormView control is used to display a single record at a time
from a data source.

11.11 REFERENCES :

Reference Books:

 Beginning ASP.NET 4.5 in C# by Apress.

 Murach’s ASP.NET 4.6 Web Programming in C#2015 by SPD

 ASP.NET 4.0 programming by Tata McGrawHill.

 Programming ASP.NET by Microsoft Press

Web References:

 https://www.c-sharpcorner.com/
 https://www.aspsnippets.com/
 http://asp.net-informations.com/

11.12 UNIT END EXERCISES :

i. Explain the GridView control in detail.
ii. Explain any five properties of GridView control.

iii. What are different style properties of GridView control?
iv. How to sort the data with GridView control?
v. How to include paging in GridView control?

vi. What is used of CommandField in GridView control?
vii. What are the different types of Template in GridView control?

viii. How to use DetailView control?
ix. How to display data in FormView control?



mu
no
tes
.in

https://www.c-sharpcorner.com/
https://www.aspsnippets.com/
http://asp.net-informations.com/

242

XML

242

12
EXTENSIBLE MARKUP LANGUAGE (XML)

Unit Structure

12.0 Overview
12.1 XML Explained
12.2 The XML Classes
12.3 XML Validation
12.4 XML Display and Transforms
12.5 Understanding Security Requirements
12.6 Authentication and Authorization
12.7 Windows Authentication
12.8 Understanding Ajax
12.9 Using Partial Refreshes
12.10 Using Progress Notification
12.11 Implementing Timed Refreshes
12.12 Working with the ASP.NET AJAX Control Toolkit
12.13 Summary
12.14 Questions

12.0 OVERVIEW

In this unit you will be able to learn some concepts about XML. A few of
the concepts are:

 What is XML and how it is important
 What are the classes in XML and why they are important?

 Different types of validations in XML
 How to display XML

The XML Security standards include XML Digital Signature for integrity
and signing solutions, XML Encryption for confidentiality, XML Key
Management (XKMS) for public key registration, location and validation,
Security Assertion Markup Language (SAML) for conveying
authentication, authorization and attribute assertions, XML Access
Control Markup Language (XACML) for defining access control rules,
and Platform for Privacy Preferences (P3P) for defining privacy policies
and preferences. Major use cases include securing Web Services (WS-
Security) and Digital Rights Management (eXtensible Rights Markup
Language 2.0 – XrML).

mu
no
tes
.in

243

Extensible Markup
Language (XML)

These days, most of the web applications are using AJAX concepts
to create better and more responsive applications. AJAX reduces the
traffic between client and server and also, makes the response time faster
which directly increases the performance of an application.

12.1 XML EXPLAINED

XML is a software- and hardware-independent tool for storing and
transporting data. It is stands for eXtensible Markup Language. In simple
words it’s a markup language same as your HTML. The tags in XML are
used to store and organize the data rather than how to display the data. In
HTML you can see tags are used to display the data and with the help of
CSS, you are stylizing the data the way you want. There is no comparison
between HTML and XML and neither the party is going to replace them,
but one can adopt many successful features of HTML.

XML is a markup language that defines set of rules for encoding
documents in a format that is both human-readable and machine-readable.
In simple words, a markup language is a set of symbols that can be placed
in the text of a document to demarcate and label the parts of that
document. It also uses Document Type Definitions (DTD) to define the
XML document structure. Unlike HTML tags, XML tags are self-
descriptive. It’s an open format. The filename extension of XML
document is .xml.

Below is simple example how XML markup looks:

<message>

 <text>Hello, world!</text>

</message>

In the above example, <message> and <text> are tags. Here, tags
<message> and </message> mark the start and end of the XML code
fragment. The tags <text> and </text> surround the text Hello, world!

Let’s dive into some of the key features of XML:

 It is extensible and human-readable.
 It is platform and language independent.
 It preserves white space.
 Overall simplicity.
 Self-descriptive nature.
 It separates data from HTML.
 XML tags are not predefined. You need to define your customized

tags.

 XML was designed to carry data, not to display that data.
 Mark-up code of XML is easy to understand for a human.

mu
no
tes
.in

244

XML

244

 Well-structured format is easy to read and write from programs.
 XML is an extensible markup language like HTML.

12.2 THE XML CLASSES

The XML file may be loaded at the beginning of the program or at a later
stage. In the same way as you can load a model from a file, you can also
load the corresponding data from a file. The example below shows how to
describe the dynamic classes Event and Alarm in XML format. These
classes will be created when the XML file is loaded. The Event class has
the ID attribute of type string. The Alarm class is a subclass of the Event
class that has two attributes, PerceivedSeverity, of type String, and
Acknowledged, a Boolean attribute that defaults to false. The Alarm class
inherits the ID attribute from the Event class.

<classes xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "ilog/cpl/schema/model.xsd">

<classes>

 <class>

 <name>Event</name>

 <attribute>

 <name>ID</name>

 <javaClass>java.lang.String</javaClass>

 </attribute>

 </class>

 <class>

 <name>Alarm</name>

 <superClass>Event</superClass>

 <attribute>

 <name>PerceivedSeverity</name>

 <javaClass>java.lang.String</javaClass>

 </attribute>

 <attribute>

 <name>Acknowledged</name>

 <javaClass>java.lang.Boolean</javaClass>

mu
no
tes
.in

245

Extensible Markup
Language (XML)

 <defaultValue>false</defaultValue>

 </attribute>

 </class>

</classes>

The dynamic classes created from an XML file can inherit from existing
classes.

12.3 XML VALIDATION

An XML document is referred as ‘well formed’ if it has a correct syntax.
Below are some of the points that validates an XML document:

i. It must have a root element
ii. It should contain a closing tag

iii. XML tags are case sensitive
iv. Attribute values must be quoted
v. XML elements must be properly nested

If your XML document contains error, it will stop your XML applications.
Unlike HTML documents, XML will display errors in browser if it
contains error. In HTML, browsers will display HTML documents with
error (like missing end tags). In another words, with XML errors are not
allowed.

There are numbers of XML validators available online. One can test their
XML markup using one of these validators.

<?xml version="1.0" encoding="UTF-8"?>

<note>

<to>John</to>

<from>Loffer</from>

<heading>Reminder Note</pheading>

<body>We are catching tomorrow</body>

</note>

In the above example, line no. 5 contains error. Closing tag should be
</heading> instead of </pheading>. This closing tag is mismatching with
its opening tag.

A "well formed" XML document is not the same as a "valid" XML
document.

mu
no
tes
.in

246

XML

246

A "valid" XML document must be well formed. In addition, it must
conform to a document type definition.

If an XML document is well-formed and has an associated Document
Type Declaration (DTD), then it is said to be a valid XML document. We
will study more about DTD in the chapter XML - DTDs

12.4 XML DISPLAY AND TRANSFORMS

A raw XML file can be viewed in all major browsers. You cannot expect
XML files to be displayed as HTML pages. Most browsers will display an
XML document with color-coded elements. It is rather displayed in a
proper hierarchy with a plus (+) or minus (-) to the left of the elements. It
can be clicked to expand or collapse the element structure. To view raw
XML source, try to select "View Page Source" or "View Source" from the
browser menu.

 XSLT stands for Extensible Stylesheet Language Transformation.
 XSLT is used to transform XML document from one form to

another form.
 XSLT uses Xpath to perform matching of nodes to perform these

transformation.
 The result of applying XSLT to XML document could be an another

XML document, HTML, text or any another document from
technology perspective.

 The XSL code is written within the XML document with the
extension of (.xsl).

 In other words, an XSLT document is a different kind of XML
document.

Below is the example explaining XML Transformation

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

<h1 align="center">Students' Basic Details</h1>

<table border="3" align="center" >

<tr>

 <th>Name</th>

mu
no
tes
.in

247

Extensible Markup
Language (XML)

 <th>Branch</th>

 <th>Age</th>

 <th>City</th>

</tr>

 <xsl:for-each select="student/s">

<tr>

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="branch"/></td>

 <td><xsl:value-of select="age"/></td>

 <td><xsl:value-of select="city"/></td>

</tr>

 </xsl:for-each>

 </table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

12.5 UNDERSTANDING SECURITY REQUIREMENTS

Security has always been vitally important in the business world to ensure
the integrity of content and transactions, to maintain privacy and
confidentiality, and to make sure information is used appropriately.
However, in today’s web-based business environment, the means for
providing that security have changed. Using physical security, no longer
works as well as it did in the past when all the computing resources were
locked in a central computing room with all jobs submitted locally.

An essential requirement of new security standards is that they work
naturally with content created using eXtensible Markup Language (XML).
XML is being adopted widely for a growing variety of applications and
types of content. It is also forming the basis for distributed system
protocols to integrate applications across the Internet, such as Web
Services protocols. XML languages are text based and designed to be
extended and combined. It should be natural to provide integrity,
confidentiality and other security benefits to entire XML documents or
portions of these documents in a way that does not prevent further
processing by standard XML tools [XMLRef]. XML Security therefore
must be integrated with XML in such a way as to maintain the advantages

mu
no
tes
.in

248

XML

248

and capabilities of XML while adding necessary security capabilities. This
is especially important in XML-based protocols, such as XML Protocol
(XMLProt, Simple Object Access Protocol, SOAP), that are explicitly
designed to allow intermediary processing and modification of messages.

Older security technologies provide a set of core security algorithms and
technologies that can be used in XML Security, but the actual formats
used to implement security requirements are inappropriate for most XML
Security applications. One reason is that these standards use binary
formats that require specialized software for interpretation and use, even
for extracting portions of the security information. A second reason is that
these standards are not designed for use with XML and do not support
common XML technical approaches for managing content, such as
specifying content with uniform resource identifier strings (URIs) or using
other XML standard definitions for locating portions of XML content (like
XPath [XPath]). In addition, some existing security technologies assume
that security-specific software will be integrated with applications to
enable security. In practice, this is not always the case due to the details of
custom integration.

XML Security addresses these issues by defining a common framework
and processing rules that can be shared across applications using common
tools, avoiding the need for extensive customization of applications to add
security. XML Security reuses the concepts, algorithms and core
technologies of legacy security systems while introducing changes
necessary to support extensible integration with XML. This allows
interoperability with a wide range of existing infrastructures and across
deployments.

XML Security reduces barriers to adoption by defining the minimum
modular mechanisms to obtain powerful results. By employing existing
technologies and enabling use of XML paradigms and tools, XML
Security minimizes the need to modify applications to meet security
requirements.

12.6 AUTHENTICATION AND AUTHORIZATION

Authentication is the process of verifying that an individual, entity or
website is whom it claims to be. Authentication in the context of web
applications is commonly performed by submitting a username or ID and
one or more items of private information that only a given user should
know.

Session Management is a process by which a server maintains the state of
an entity interacting with it. This is required for a server to remember how
to react to subsequent requests throughout a transaction. Sessions are
maintained on the server by a session identifier which can be passed back
and forward between the client and server when transmitting and receiving
requests. Sessions should be unique per user and computationally very
difficult to predict. The Session Management Cheat Sheet contains further
guidance on the best practices in this area.

mu
no
tes
.in

249

Extensible Markup
Language (XML)

Let’s dive into the SAML which is used in the XML authentication.

What is SAML?

SAML is an acronym used to describe the Security Assertion Markup
Language (SAML). Its primary role in online security is that it enables
you to access multiple web applications using one set of login credentials.
It works by passing authentication information in a particular format
between two parties, usually an identity provider (idP) and a web
application.

What SAML is and how it works

SAML is an open standard used for authentication. Based upon the
Extensible Markup Language (XML) format, web applications use SAML
to transfer authentication data between two parties - the identity provider
(IdP) and the service provider (SP).

The technology industry created SAML to simplify the authentication
process where users needed to access multiple, independent web
applications across domains. Prior to SAML, single sign-on (SSO) was
achievable but relied on cookies that were only viable within the same
domain. It achieves this objective by centralizing user authentication with
an identity provider. Web applications can then leverage SAML via the
identity provider to grant access to their users. This SAML authentication
approach means users do not need to remember multiple usernames and
passwords. It also benefits service providers as it increases security of
their own platform, primarily by avoiding the need to store (often weak
and insecure) passwords and not having to address forgotten password
issues.

Forms Authentication

Web App assumes that authentication happens in the host, such as IIS,
which uses HTTP modules for authentication. One can configure the
project to use any of the authentication modules built into IIS or
ASP.NET, or write your own HTTP module to perform custom
authentication.

When the host authenticates the user, it creates a principal, which is an
IPrincipal object that represents the security context under which code is
running. For example, Web API authentication and authorization the
process could be like this:

mu
no
tes
.in

250

XML

250

Authentication Types:

 Windows Authentication
 Forms Authentication
 Passport Authentication
 None

 Windows Authentication, IIS performs the authentication, and the
authenticated token is forwarded to the ASP.NET worker process.

 Forms Authentication: authenticates the user by inspecting the
forms authentication ticket, which is typically included in the user's
cookies collection. If no form of authentication ticket is present, the
user is anonymous.

 Passport Authentication: Centralized authentication service
provided by Microsoft that offers single logon and core profile
services for member sites.

 None: No Authentication provided. This is the default
Authentication mode.

12.7 WINDOWS AUTHENTICATION

In Windows authentication, IIS performs the authentication, and the
authenticated token is forwarded to the ASP.NET worker process. The
advantage of using Windows authentication is that it requires minimal
coding. One may want to use Windows authentication to impersonate the
Windows user account that IIS authenticates beforehand off the request to
ASP.NET.

The following is ASP.NET app Windows Authentication configuration in
web.config file:

For .NET Core, configuration is in the launchSettings.json file under
Profiles folder:

mu
no
tes
.in

251

Extensible Markup
Language (XML)

Such as,

12.8 UNDERSTANDING AJAX

What is AJAX?

Asynchronous JavaScript and XML (AJAX) is a development technique
used to create interactive web applications or rich internet applications.
AJAX uses a number of existing technologies together, including:
XHTML, CSS, JavaScript, Document Object Model, XML, XSLT, and
the XML Http Request object.

With AJAX, web applications can retrieve data from the server
asynchronously, in the background, without reloading the entire browser
page. The use of AJAX has led to an increase in interactive animation on
web pages.

Advantages

 Reduces the traffic travels between the client and the server.
 No cross browser pain.
 Better interactivity and responsiveness.
 With AJAX, several multipurpose applications and features can be

handled using a single web page(SPA).
 API's are good because those work with HTTP method and

JavaScrtipt.

mu
no
tes
.in

252

XML

252

Disadvantages

 Search engines like Google would not be able to index an AJAX
application.

 It is totally built-in JavaScript code. If any user disables JS in the
browser, it won't work.

 The server information cannot be accessed within AJAX.
 Security is less in AJAX applications as all the files are downloaded

at client side.
 The data of all requests is URL-encoded, which increases the size of

the request.

How AJAX works

AJAX communicates with the web server using XMLHttpRequest object.
The following diagram illustrates how AJAX communicates between
Client and Server.

12.9 USING PARTIAL REFRESHES

As name suggests, it gives a flexibility to web application to refresh the
objects like tables, divisions or sections without refreshing the whole page.
For an example, if your web application contains a table with several
records, and you want to delete a specific record from it. Upon deleting a
specific record, it gets partially refreshed the table and the database
without refreshing the whole page. That’s the beauty of AJAX.

mu
no
tes
.in

253

Extensible Markup
Language (XML)

Let’s check below example:

Partial View Code:

1. <div id="wrapper">

2. @model IEnumerable<MyAppModels.StudentModel>

3. <table class="table">

4. <tr>

5. <th>

6. @Html.DisplayNameFor(model => model.FName)

7. </th>

8. <th>

9. @Html.DisplayNameFor(model => model.LName)

10. </th>

11. <th>

12. @Html.DisplayNameFor(model => model.Email)

13. </th>

14. <th>

15. @Html.DisplayNameFor(model => model.address.Details)
 </th>

16. <th>

17. @Html.DisplayNameFor(model => model.address.Country)
 </th>

18. <th>

19. @Html.DisplayNameFor(model => model.address.State)

20. </th>

21. <th></th>

22. </tr>

23. @foreach (var item in Model)

24. {

25. <tr>

26. <td>

mu
no
tes
.in

254

XML

254

27. <input type="hidden" name="stid" id="stid" value="@ite
m.Id" />

28. @Html.DisplayFor(modelItem => item.FName)

29. </td>

30. <td>

31. @Html.DisplayFor(modelItem => item.LName)

32. </td>

33. <td>

34. @Html.DisplayFor(modelItem => item.Email)

35. </td>

36. <td>

37. @Html.DisplayFor(modelItem => item.address.Details)

38. </td>

39. <td>

40. @Html.DisplayFor(modelItem => item.address.Country)
 </td>

41. <td>

42. @Html.DisplayFor(modelItem => item.address.State)

43. </td>

44. <td>

45. <button id="btnDelete" data-Id="@item.Id">Delete</button>

46. <button id="btnEdit" data-Id="@item.Id">Edit</button>

47. <button id="btnDetails" data-Id="@item.Id">Details</button>

48. </td>

49. </tr>

50. }

51. </table>

52. </div>

53. <div id="EditArea"></div>

54. <div id="DetailArea"></div>

mu
no
tes
.in

255

Extensible Markup
Language (XML)

Controller Code:

1. public ActionResult GetStudents()

2. {

3. var res = stude.GettAllStudents();

4. return View(res);

5. }

Ajax/JS Code

1. $("#Edit").click(function () {

2. var id = $(this).attr("data-Id");

3. $.ajax({

4. method: "POST",

5. url: "Home/Edit/" + id,

6. contentType: "application/json; charset=utf-8",

7. cache: false,

8. success: function (data) {

9. $("#EditArea").html(data);

10. },

11. error: function (err) {

12. console.log('Failed to get data' + err);

13. }

14. });

15. });

Edit Action:

1. public ActionResult Edit(int id)

2. {

3. var res = stude.GettAllStudents().Where(x=>x.Id==id);

4. return partiaView(res);

5. }

mu
no
tes
.in

256

XML

256

Partial View for Edit:

1. @model MyAppModels.StudentModel

2. <form action="/home/update">

3. Name:<input type="text" value="@model.Name">

4.other fields.....

5. <button type="submit">Update<button>

6. <form>

Ajax for Delete:

1. $("#Delete").click(function () {

2. var id = $(this).attr("data-Id");

3. $.ajax({

4. method: "POST",

5. url: "Home/Delete/" + id,

6. contentType: "application/json; charset=utf-8",

7. cache: false,

8. success: function (data) {

9. $("#wrapper").Html(data);

10. },

11. error: function (err) {

12. console.log('Failed to get data' + err);

13. }

14. });

15. });

Action for Delete:

1. public ActionResult Delete(int id)

2. {

3. var Student= stude.GettAllStudents().Where(x=>x.Id==id);

4. _context.Students.Remove(Student);

5. _context.SaveChanges();

6. return View("GetStudents",res);

7. }

mu
no
tes
.in

257

Extensible Markup
Language (XML)

When you clicked the delete link, it deletes the record and loads the View
as you want but the issue is that When you clicked on another record then
it shows an error" record not found" and this is because of the view
overload on the First view instead of refreshing it. You don't know how to
refresh it, instead of overload. From overload, you mean that the ajax code
load a Partial view on the already loaded view, and because of that the
error occurs and stays until you refresh the page.

12.10 USING PROGRESS NOTIFICATION

ASP.NET includes another control that can help—the UpdateProgress
control. The UpdateProgress control works in conjunction with the
UpdatePanel. Essentially, the UpdateProgress control allows you to show
a message while a time-consuming update is under way.

The UpdateProgress control is slightly misnamed. It doesn’t actually
indicate progress; instead, it provides a wait message that reassures the
user that the page is still working and the last request is still being
processed.

When you add the UpdateProgress control to a page, you get the ability to
specify some content that will appear as soon as an asynchronous request
is started and disappear as soon as the request is finished. This content can
include a fixed message, but many people prefer to use an animated GIF,
because it more clearly suggests that the page is still at work. Often, this
animated GIF simulates a progress bar.

The markup for this page defines an UpdatePanel followed by an
UpdateProgress:

8. <asp:UpdatePanel ID="UpdatePanel1" runat="server">

9. <ContentTemplate>

10. <div style="background-color:#FFFFE0;padding: 20px">

11. <asp:Label ID="lblTime" runat="server" Font-
Bold="True"></asp:Label>

12.

13. <asp:Button ID="cmdRefreshTime" runat="server"

14. Text="Start the Refresh Process" />

15. </div>

16. </ContentTemplate>

17. </asp:UpdatePanel>

18.

19.

20. <asp:UpdateProgress ID="updateProgress1" runat="server">

mu
no
tes
.in

258

XML

258

21. <ProgressTemplate>

22. <div style="font-size: xx-small">

23. Contacting Server ...

24. </div>

25. </ProgressTemplate>

26. </asp:UpdateProgress>

12.11 IMPLEMENTING TIMED REFRESHES

Using the two controls you’ve seen so far—the UpdatePanel and
UpdateProgress controls—you can create self-contained regions on your
page that refresh themselves when certain actions take place. Of course, in
order for this technique to work, the user needs to initiate an action that
would ordinarily cause a postback, such as clicking a button, selecting an
item in an AutoPostBack list, checking an AutoBostBack check box, and
so on.

In some situations, you might want to force a full or partial page refresh
without waiting for a user action. For example, you might create a page
that includes a stock ticker, and you might want to refresh this ticker
periodically (say, every five minutes) to ensure it doesn’t become
drastically outdated. ASP.NET includes a Timer control that allows you to
implement this design easily.

The Timer control is refreshingly straightforward. You simply add it to a
page and set its Interval property to the maximum number of milliseconds
that should elapse before an update. For example, if you set Interval to
60000, the timer will force a postback after one minute elapses.

To use the timer with partial rendering, wrap the updateable portions of
the page in UpdatePanel controls with the UpdateMode property set to
Conditional. Then, add a trigger that forces the UpdatePanel to update
itself whenever the Timer.Tick event occurs. Here’s the markup you need:

1. <asp:UpdatePanel ID="UpdatePanel1" runat="server"
UpdateMode="Conditional">

2. <ContentTemplate>

3. ...

4. </ContentTemplate>

5. <Triggers>

6. <asp:AsyncPostBackTrigger ControlID="Timer1"
EventName="Tick" />

7. </Triggers>

8. </asp:UpdatePanel>

mu
no
tes
.in

259

Extensible Markup
Language (XML)

12.12 WORKING WITH THE ASP.NET AJAX
CONTROL TOOLKIT

Working with the ASP.NET AJAX Control Toolkit

Ajax Control Toolkit is an open source library for web development. The
ASP.net Ajax Control toolkit contains highly rich web development
controls for creating responsive and interactive AJAX enabled web
applications. ASP.Net Ajax Control Toolkit contains 40 + ready controls
which is easy to use for fast productivity. Controls are available in the
Visual Studio Toolbox for easy drag and drop integration with your web
application. Some of the controls are like AutoComplete, Color Picker,
Calendar, Watermark, Modal Popup Extender, Slideshow Extender and
more of the useful controls.

14.6 Summary:

Extensible Markup Language (XML) is a markup language used to
describe the content and structure of data in a document. It is a simplified
version of Standard Generalized Markup Language (SGML). XML is an
industry standard for delivering content on the Internet. Because it
provides a facility to define new tags, XML is also extensible. XSLT is
used to transform XML into other formats, such as HTML.
XMLHttpRequest object provides a page load after communicating with
the server the way.

XML security refers to standard security requirements of XML documents
such as confidentiality, integrity, message authentication, and non-
repudiation. The need for digital signature and encryption standards for
XML documents prompted the World Wide Web Consortium (W3C) to
put forth an XML Signature standard and an XML Encryption standard.
Using security fundamentals, one can validate and authenticate various
applications.

Asynchronous JavaScript and XML (AJAX) is a development technique
used to create interactive web applications or rich internet applications.
AJAX uses a number of existing technologies together, including:
XHTML, CSS, JavaScript, Document Object Model, XML, XSLT, and
the XMLHttpRequest object. With AJAX, web applications can retrieve
data from the server asynchronously, in the background, without reloading
the entire browser page. The use of AJAX has led to an increase in
interactive animation on web pages. Using AJAX one can create simple to
complex web applications.

12.13 QUESTIONS:

 How XML is different from HTML?
 What is a valid XML document?

 What is the XML data binding?

mu
no
tes
.in

260

XML

260

 What is XML Namespace?
 What is authentication and authorization in XML?
 What are the different types of authentication in XML?
 What is XPath in XML?
 Why security is essential?
 What are different types of authentication?
 What is SAML?
 What is ASP.NET AJAX?
 Which is the current version of ASP.NET AJAX Control Toolkit?
 What is the use of partial refreshes in ASP.NET using AJAX?

 What is the role of UpdatePanel in ASP.NET AJAX?
 What are the limitations of AJAX?

12.14 BIBLIOGRAPHY:

 Javapoint – https://www.javatpoint.com/xml-tutorial
 Tutorialspoint - https://www.tutorialspoint.com/xml/index.htm
 C-SharpCorner - https://www.c-sharpcorner.com/article/ajax-in-asp-

net/



mu
no
tes
.in

https://www.javatpoint.com/xml-tutorial
https://www.tutorialspoint.com/xml/index.htm
https://www.c-sharpcorner.com/article/ajax-in-asp-net/
https://www.c-sharpcorner.com/article/ajax-in-asp-net/

	0 76 Starting pages
	1. SLM AWP UNIT-I Chapter 1 (1-19)
	2. SLM AWP UNIT-I Chapter 2 (20-46)
	3. SLM AWP UNIT-I Chapter 3 (47-83)
	4. Unit 2 -chapter 4 AWP (84-100)
	5. Unit 2 -Chapter 5 AWP (101-129)
	6. SLM AWP -III Error Handling, Logging and Tracing - Chapter 6 (130-152)
	7. SLM AWP UNIT-III State Management Idol Final Chapter 7 (153-162)
	8. SLM AWP UNIT-III Styles,Themes & Master Pages Chapter 8 (163-172)
	9. Unit 04 ADO NET Fundamentals Chapter 09 (173-196)
	10. Unit 04 Data Binding Chapter 10 (197-211)
	11. Unit 04 Data Controls Chapter 11 (212-241)
	12 Unit 5 Extensible Markup Language (XML) (242-260)

