
 1

Unit I

1

INTRODUCTION TO JAVA
PROGRAMMING

Unit Structure

1.0 Objectives
1.1 Introduction
1.2 History
1.3 Java Architecture and its components

1.3.1 The Java Virtual Machine
1.3.1.1 JVM Components

1.3.2 Java Runtime Environment
1.3.3 Java Development Kit

1.4 The Java API
1.5 Java Platform
1.6 Lambda Expressions
1.7 Methods References
1.8 Type Annotations
1.9 Method Parameter Reflection
1.10 Setting the path environment variable
1.11 Java Compiler and Interpreter
1.12 Java class file
1.13 Java Programs
1.14 Java Applications
1.15 Whitespace and case sensitivity
1.16 Identifiers and keywords
1.17 Comments
1.18 Braces and code block
1.19 Variables and variable name
1.20 Summary
1.21 List of References
1.22 Bibliography
1.23 Model Questions

mu
no
tes
.in

 2

1.0 OBJECTIVES

In this chapter, you will be going to learn following topics:

 Introduction to java programming and its various features
 Java architecture
 JVM Components
 Different Java platforms
 How to write and execute a java program?
 Different terms used in java language like variables, keywords,

identifiers

1.1 INTRODUCTION

What is Java?

Java is a programming language and platform. Java is High-level,
object-oriented programming language developed by sun microsystems. It
is simple programming language. Java Language is used to developed
Standalone Applications, Web Applications, Enterprise Applications and
Mobile Applications. Java Provides a runtime Environment (JRE) and
Java API, that’s why it is called as a platform.

Features of Java language:
1) Simple: Java was designed to be a very easy to learn and understand

and use effectively. If you understand the basic concepts of object-
oriented programming, learning java will be easier.

2) Object- Oriented: Java is purely an object-oriented programming

language. In Java, everything is an object which has some data and its
own behavior.

Following are some basic concepts of OOPs:

 Class: Class is collection of objects. You can create multiple objects
of a class. It represents properties and methods that are common to all
objects of one type.

 Object: Any entity that has state and behaviors is called as an object.
Object can be defined as instance of a class.

 Inheritance: Inheritance is a mechanism in java which allows one
class to inherit properties and behavior of another class (parent class).

 Polymorphism: If one task is performed in many different ways, it is
called as polymorphism. In java method overloading and method
overriding is used to implement polymorphism.

 Abstraction: Hiding internal details and showing only functionality
is known as abstraction. For example, we don’t know the internal
processing of car, when it is moving.

mu
no
tes
.in

 3

 Encapsulation: Binding or wrapping code and data together into a
single unit are known as encapsulation. For example, capsule
wrapped it with so many medicines.

3) Robust: Java is robust because it provides strong memory management

and automatic garbage collection. Java Virtual machine is responsible
to manage allocation and deal location of memory for objects. It will
automatically free the memory for such objects which have not been
used in java application. It also provides compile time and run-time
error checking mechanism.

4) Platform Independent: Java code is not complied into platform
specific machines. Java Code can be executed on multiple platforms
like Windows, Linux, Mac/OS etc.

5) Secured:We can develop secured and virus free applications. Java is

secured because java programs always get executed inside java virtual
machine which has no interaction with OS.

6) Architecture-Neutral: Java has no implementation dependent features.

In java size of the primitive data type is fixed. Once byte code is
generated it can be executed on 32-bit architecture as well as 64-bit
architecture.

7) Portable:Java is writing once and run anywhere language. Java byte

code generated after compilation can be executed on any machine.

8) High- Performance:Java is an interpreted language. It faster than other
traditional interpreted languages.

9) Distributed: Java is distributed because it supports creating distributed

applications. Using RMI and EJB you can create distributed
applications in java.

10) Multi-Threaded: Java multi-threading allows you to create multiple

threads to executed simultaneously. With this feature we can divide
program in multiple threads that will execute different tasks at once.

11) Dynamic: Java support dynamic loading of classes.

1.2 HISTORY

Java language was Initially developed by James Gosling, Patrick,
Chris Wart hand Mike Sheridan at Sun Microsystems in 1991.This
language was initially called “Oak” but was renamed “Java” in 1995.
Initially it was developed to create software to be embedded in various
electronic devices like microwave ovens, remote controls, set-top boxes
etc.

mu
no
tes
.in

 4

Sun micro system releases first version JDK 1.0 in Jan 1996. It
provides Write once and run anywhere functionality. After first release
they have added various new features in each new release version. Second
version JDK 1.1 was released in Feb 1997.

On 13 November 2006 Sun Micro system released some part of

Java Virtual Machine(JVM) as free and open source software, under the
General Public License. On May 8, 2007, Sun finished the process of
making all of its JVM Code available under free and open source
distribution term, except small portion of the code to which sun did not
have copyright. In 2010 java was acquired by Oracle Corporation. Later
on, Oracle Corporation keeps on releasing new versions by adding many
new features in each version. Oracle released current version JDK SE 16
on 16 march, 2021.

1.3 JAVA ARCHITECTURE AND ITS COMPONENTS

Java Architecture includes components JVM, JRE and JDK. It
combines the process of compilation and Interpretation. It defines all the
processes involves in creating a java program. Architecture explains all
steps like creating program, how program is compiled and how it is
executed.

Java architecture performs following steps:
1) In Java, Program execution is a two-step process which include

Compilation and Interpretation.
2) In first Step, Java compiler converts the source code into byte code.
3) In second step, JVM converts byte code into machine code.
4) Then machine code is executed by Operating System.

Fig. Java Architecture

mu
no
tes
.in

 5

Components of Java Architecture
Java Architecture includes three main components:

1) Java Virtual Machine (JVM)
2) Java Runtime Environment (JRE)
3) Java Development Kit (JDK)

1.3.1 The Java Virtual Machine

Java virtual machine is a part of Java Runtime Environment. The
primary function of JVM is to execute the java bytecode. It is a
specification that provides java runtime environment in which java
bytecode is executed. JVM is responsible to load java code in memory and
calls main method present in java code and then execute that method.

Java language provides a feature of Write Once Run Anywhere.
Which means we can write code once and execute it anywhere and on any
operating system. Java program executes on any platform only because of
Java Virtual Machine.

1.3.1.1 JavaVirtual Machine Components
JVM performs following operations:

Loads java byte code, verifies code, execute code, provides
runtime Environment

Fig. JVM Architecture

1) Class Loader: Class Loader is used to loads the .class files into
memory. Whenever we execute the java program, class loader loads it
first.

There are three built in class loader are available in Java.

1) Bootstrap Class Loader: Bootstrap class loader is super class of
Extension Class Loader. It loads all the packages included in Java
Standard Edition like java.lang package, java.io package, java.util
package, java.net package and so on.

2) Extension Class Loader: Extension classloader is subclass of
bootstrap classloader and superclass of application classloader. It

mu
no
tes
.in

 6

loads all jar files present in the $JAVA_HOME/jre/lib/ext
directory.

3) Application Class Loader: Application Classloader is subclass of
the Extension Classloader. It loads files from classpath. By default,
classpath is set to a current working directory. You can able to
modify classpathby using -cp or -classpath command.

2) Method Area: Method Area stores the all the class level data such as
runtime constant pool, fields, method data and code for methods. There
is only one method area par JVM.

3) Heap: Heap memory created when JVM Start up. It stores all the

objects created during program execution and their corresponding
instance variable. It is the run-time data area from which memory for
all class instances and array is allocated. There is only one heap area
par JVM.

4) Stack: Java Stack memory stores Stack frames, local variable, method

calls, partial results. Whenever a new thread is created in the JVM, a
separate JVM stack is also created at the same time for that thread. A
new frame is created whenever a method is invoked and it is deleted
when method invocation process is completed.

5) Program Counter (PC) Registers: Program Counter Register stores

address of the currently executing JVM Instruction. JVM Support
Multiple threads, so each thread has it own PC register. Once the
instruction is executed PC register is updated with new instruction.

6) Native Method Stack: It contains all the native methods used in

application. These methods are written any other language than java
like c, c++ etc. For each thread separate native Method Stack is created.

7) Execution Engine: Once the bytecode has been loaded into memory,
next step is to execute the program. Execution engine is responsible to
execute the program. Before executing program, bytecode need to be
converted into machine language instructions. The JVM uses
interpreter or JIT Compiler to converts byte code into machine
language instructions.

8) Execution engine includes:
Interpreter: The interpreter read and executes byte code instructions
line by line.

Just-In-Time Compiler: it is used to improved performance. JIT
complies the parts of the bytecode that have similar functionality at the
same time. It reduces amount of time needed for compilation.

Garbage Collector: The Garbage Collector collects and remove
unused objects from the heap area. It is the process of automatically

mu
no
tes
.in

 7

destroying unused objects and making runtime memory available to use
for some other objects.

9) Java Native Interface: Java Native Interface(JNI) provides an
interface to communicate with another application written in another
language like c, c++ etc. Java provides execution of native code
through JNI.

10) Native Libraries: Java Native Libraries provides a collection of
libraries which are written in other programming languages needed by
execution engine.

1.3.2 Java Runtime Environment (JRE)
Java Runtime Environment is a set of software tools which are

used for developing Java applications. It is used to provide a runtime
environment where we can execute our java program. JRE is part of JDK
means it get install automatically along with JDK. JRE includes JVM, set
of libraries, plugins and applet support. JRE initiates JVM for its
execution.

1.3.3 Java Development Kit (JDK)

We need JDK for execution of java programs and for developing
java applications. Java Development Kit is a software development
environment which is used to developed Java applications. It includes
JRE, a compiler, an interpreter, aa debugger and other tools like document
generator etc.

1.4 THE JAVA API

Java API (Application Programming Interface) provides a large
collection of packages. Each package includes a large collection of classes
and interfaces along with their methods.

Java API Packages:
java.io Provides Classes for system input and output through data

streams and the file system.

java.net Provides classes for implementing networking application.

java.util It contains date and time facilities and collection
framework and classes.

java.awt Provides a large list of classes for creating user interfaces
and for painting graphics and images.

java.sql Provides classes and interface required for accessing and
processing data stored in data based

javax.swing Provides a set of lightweight components required for
creating graphical user interface.

mu
no
tes
.in

 8

Java.math Provides classes and interfaces for performing arbitrary-
precision integer arithmetic and arbitrary-precision decimal
arithmetic..

1.5 JAVA PLATFORM

Java platforms is a collection of programs that helps programmer
to develop and run java programs written in java programming language.
It is hardware and software environment in which programs runs. Java
platform includes an JVM, a compiler and set of libraries called as API.
Java Platforms:

1) Java SE (Standard Edition): It is a java programming platform.
It includes java programming APIs like java.io, java.net,
java.util,java.math, etc.

2) Java EE (Enterprise Edition): It is an enterprise platform which

is usedto developed web applications and enterprise applications.it
includes java technologies like Servlet, JSP, Web Services, EJB
etc.

3) Java ME (Micro Edition): Java micro edition used to develop

mobile applications.

1.6 LAMBDA EXPRESSIONS

Lambda Expression is an anonymous method (unnamed method).
Lambda expression is used to implement a method defined by functional
interface. Lambda expression is treated as function.

Lambda expression provides an implementation of functional

interface. Functional interface is an interface which has only one abstract
method. A method which includes only declaration not any
implementation is called as abstract method. Functional interface is also
known as Single Abstract Method (SAM) interface.

Syntax for creating functional interface:
interface interface_name
{
 Return_typemethod_name(); //abstract method
}

Example:

1) interface Draw
{

 void circle();
}

mu
no
tes
.in

 9

2) interface Addition
{
 add(int a, int b);
}

Lambda Expression Syntax:
(argument list) ->{ body }
-> This operator is called as lambda operator or arrow operator. This
operator divides lambda expression in two parts, left side includes
parameters required by lambda expression and right side include body,
which specifies actions of the lambda expression. Body part includes
expressions or statements for lambda expression.

Examples:1) () -> 123.14
 This lambda expression returns constant value 123.14.
2) () -> 12*6

Program:
interface Area
{
 void findArea();
}
public class LambdaExpressionDemo1
{
 public static void main(String arg[])
 {
 Area obj1;
 int r = 3;
 //Lambda Expression without any argument
 obj1 = () ->System.out.println("Circle Area:" + (3.14*r*r));
 obj1.findArea();

 int side = 5;
 obj1 = () ->System.out.println("Square Area: " +(side*side));
 obj1.findArea();
 }

}

Output:

Circle Area:28.259999999999998
Square Area: 25

Lambda expression with parameter:
1) (n) -> n*n
2) (r) -> 3.14*r*r

mu
no
tes
.in

 10

Program:
interface Calculate
{
 int display(int p, int q);
}
public class LambdaExpressionDemo2
{

 public static void main(String arg[])
 {
 Calculate obj1;
 obj1 = (a,b) -> (a+b); //lambda expression with argument

 System.out.println("Addition: " + obj1.display(10,20));

 obj1 = (h,w) -> (h*w);
 System.out.print("Rectangle Area:" + obj1.display(5,4));

 }

}

Output:
Addition: 30
Rectangle Area:20

1.7 METHOD REFERENCES

Lambda Expression is used to create anonymous methods. Method
references is similar to lambda expression. Sometimes, a lambda
expression only calls an existing method. When you want to refer existing
method by name then you can use method references. Method reference
provides a way to refer to a method without executing. Whenever you are
using a lambda expression just to refer a method, you can replace that
lambda expression with method reference.

Types of method references:

1) Method reference to a static method:
You can refer a static method created in class.

To create static method reference use following syntax:

Class_name :: methodName

Program:
interface Calculate //functional interface
{
 void cube(int a); //abstract method

mu
no
tes
.in

 11

}
class StaticReference
{
 public static void display(int b)
 {
 System.out.println("Cube: " + (b*b*b));
 }
 public static void main(String arg[])
 {
 Calculate c = StaticReference :: display;
 c.cube(5);
 }
}

Output:
Cube: 125

2) Method Reference to anInstance Method

To create instance method reference use following syntax:

Object_reference :: methodName

 This syntax is similar to static method reference, except it uses a
object reference instead of class name.

Program:
interface Calculate
{
 void square(int a);
}
class InstanceReference
{
 public void display(int b)
 {
 System.out.println("Square: " + (b*b));
 }
 public static void main(String arg[])
 {
 InstanceReference instance =new InstanceReference();
 Calculate c = instance :: display;
 c.square(15);
 }
}

Output:
Square: 225

mu
no
tes
.in

 12

3) Method Reference to a constructor

Constructor: Constructor is a one kind of function in java which has
same name as the class name. It does not have any return type.
Constructor will get called automatically after creating an object (instance)
of a class. Constructor is mostly used to initialized object of class. Every
time you will create object of a class, the constructor will get executed.

Syntax: class_name() {}

Example of creating constructor:

 Class Demo
{
 Demo() //constructor
 {

 //Statements
 }
}

Similarly, you are creating references to a method, you can also
create a reference to a constructor.

Syntax for creating reference to a constructor:
Class_name :: new
Program:
interface Calculate
{
 void display();
}
public class MyConstructor
{
 MyConstructor()
 {
 System.out.println("Creating reference to a constructor");
 }
 public static void main(String arg[])
 {
 Calculate c = MyConstructor :: new;
 c.display();
 }
}

Output:
Creating reference to a constructor

mu
no
tes
.in

 13

1.8 TYPE ANNOTATIONS

Java Annotations are used to provide supplementary information
about your program. Java Annotations represents a metadate or
information attached with class, interface, methods, instance variables and
constructor etc. Annotations can be used by compiler to detect errors or
suppress warnings. Annotations can be applied while declaring methods,
fields, classes, constructor and other program elements.

All the annotations in java start with ‘@’ symbol. Annotations do
not change action or execution of a compiled program. Annotations are
not considered as comments as they change the way the compiler treats a
program.

Types of Java Annotations:
1) Marker Annotation: The purpose of market annotation is to mark a

declaration. Marker annotation do not contain any members or do not
consist of any data. Marker interface in java does not consists of any
method, for declaring this interface we can use marker annotation.
@Override and @Deprecated are the examples of Marker Annotation
Example of declaring marker Annotation:

 @TestAnnotation()
 @interface MyAnnotation{}

2) Single Value Annotation:
 Single Value Annotation contain only one value. They allow
shorthand form of specifying the value to of the member. While using this
annotation, we only need to specify the value for that member and also do
not need to specify the name of the member.
Example:
@TestAnotation(name = “amit”)
@MyAnnotation(value= 10)

3) Multi Value Annotation:
 Multi value Annotation consists of multiple data members, values and
pairs.

Example of declaring Multi value annotation:

1) @interfaceMyAnnotation
{
 int id();
 String name();
 String class();
}

2) // you can also provide default value to each member
@interface MyAnnotation2
{
 int id() default 101;

mu
no
tes
.in

 14

 String name() “Pranali”;
}

3) @TestAnnotaion(id = 1, name= “shruti”, class = “SYIT”)
4) @Author(name= “balguru swami” , date = “28/8/2021”)

Predefined Java Annotations used in java code:

1) @Deprecated: The @Deprecated Annotation is marker annotation
that indicates the element is deprecated and should no longer be
used. The compiler generated a warning whenever program uses a
method, class and field with @Deprecated annotation.

2) @Override: the @override annotation informs the compiler that
element is meant to override an element declared in a superclass.

3) @SuppressWarnings: The @SuppressWarnings annotation
instruct the compiler to suppress warning that are generated while
program executes. The java language specification lists two
categories of warnings: Deprecation and Unchecked.

Example: To suppress particular category of warning, we use
@SupressWarning(“Deprecation”)
To suppress multiple category of warnings, we use
@SupressWarning({“Deprecation”, “Unchecked”})

4) @Safevarargs: This annotation asserts that the annotated method
or constructor does not perform unsafe operations on its varargs
(variable number of argument).

5) @Functional Interface: This annotation is introduced in JDK SE

8, indicates that the type declaration is intended to be a functional
interface.

Predefined Java annotation applied to other Annotation:
1) @Retention: Retention annotation specifies how the marked

annotation is stored:
 @RetentionPolicy.SOURCE: The marked annotation is

retained only in the source level and is ignored by the
compiler.

 @RetentionPolicy.CLASS: The marked annotation is
retained by the compiler at compile time, but it is ignored
by JVM.

 @RetentionPolicy.RUNTIME: The marked annotation is
retained by the JVM so that it can be used by the runtime
environment.

2) @Documented:Documented annotation indicated that whenever
the specified annotation is used those elements should be
documented using the Javadoc tool.

mu
no
tes
.in

 15

3) @Terget: Target annotation marks another annotation to restrict
what kind of java elements the annotation can be applied to. It
specifies one of the following element types as its value:

 @ElementType.ANNOTATION_TYPE
 @ElementType.CONSTRUCTOR
 @ElementType.FIELD
 @ElementType.LOCAL_VARIABLE
 @ElementType.METHOD
 @ElementType.PACKAGE
 @ElementType.PARAMETER
 @ElementType.TYPE

4) @Inherited:This annotation indicates that the annotation type can

be inherited from the super class
5) @Repeatable: repeatable annotation indicates that the marked

annotation can be applied more than once to the same declaration
or type use.

1.9 METHOD PARAMETER REFLECTION

Method contains executable code which may be invoked, once you
called method. By default, .class file generated after compilation does not
store formal parameter names of any method or constructor. Method
Parameter Reflection provides you feature in which you can able to store
names of formal parameters. The java.lang.reflect package provides you
all classes required for method parameter reflection. Method and
Parameter class are mainly used to store and read formal parameter.

Method class:

The java.lang.reflect.Method class provides APIs to access
information about a method’s modifiers, return type, parameter,
annotations and thrown exception. It is also used to invoked methods.
Reflected method can be a class method or instance method.

Method Class Methods
Method Description

int getModifiers() Returns java language modifiers for the
executable represented by objects.

String getName() Return the name of the method
represented by this method object.

Annotation[][]
getParameterAnnotations()

It returns array of array of annotations
that represents the annotations of the
formal parameter, in declaration order,
of the executable represented by object.

Class<?>getReturnType()
It returns a class object that represents
the formal return type of the method
represented by this Method Object

mu
no
tes
.in

 16

int getParameterCount()
Returns a number of formal parameters
for the executable represented by this
object.

Class<?>[]
getParameterTypes()

Returns an array of Class objects that
represents the formal parameter types, in
declaration order, of the executable
represented by object.

Parameter Class:

It is used to obtain information about method parameters, including
its name, and modifier. To store formal parameter names in a particular
.class file, and thus enable the reflection API to retrieve formal parameter
names, compile the source file with the -parameters option to the javac
compiler.

Parameter Class Methods:
Method Description

int getModifiers() Get the modifier flags for the parameter
represented by this parameter object.

String getName() Return the name of the parameter.

Type
getParameterizedType()

Return a type object that identifies the
parameterized type for the parameter
represented by this parameter object.

Class<?>getType()
Return a class object that identifies the
declared type for the parameter represented
by this parameter object.

booleanisNamePresent() Return true if the parameter has a name
according to class file.

booleanisImplicit() Return true if this parameter is implicitly
declared in source code.

booleanisSynthetic()
Return true is this parameter is neither
implicitly nor explicitly declared in source
code.

Program:
Calculate.java
public class Calculate
{
 int add(int a, int b, int c)
 {
 return (a+b+c);
 }
 int sub(int a, int b)
 {

mu
no
tes
.in

 17

 return (a-b);
 }
}

Compile this class with following command:
javac -parameters Calculate.java
MethodReflection.java
import java.lang.reflect.*;
public class MethodReflection
{
 public static void main(String arg[])
 {
 Calculate c = new Calculate();
 Class obj1 = c.getClass(); //creating instance of Class

// returns array of methods from calculate class

 Method[] m1 = obj1.getDeclaredMethods();

 for(Method m2 :m1)
 {

 System.out.print(m2.getName());//returns name of method

Parameter p[] = m2.getParameters(); // returns parameter
od each method

 for(Parameter p2: p)
 {
 System.out.print(" " + p2.getParameterizedType());
 System.out.print(" " +p2.getName());

 }
 System.out.println();
 System.out.println(" no of parameter : " +
m2.getParameterCount());
 System.out.println(" Return Type : " +
m2.getReturnType());
 }

 }
}

Command to compile and execute the program
Compile: javac MethodReflection.java
Execute: java MethodReflection

mu
no
tes
.in

 18

1.10 SETTING THE PATH ENVIRONMENT VARIABLE

The Path is the system variable that your operating system uses to
locate needed executables from the command line. If you have saved your
java file in JDK/bin directory, the path is not required to be set. If you
save your java files in other directory then you need to set path of JDK.

There are two ways to set the JDK path:
1) Temporary:It will be valid till your command prompt is open.
Steps to set temporary path of JDK:

 Open the command prompt.
 Copy the path of JDK/bin Directory
 Write the command in command prompt: set path = copied_path
 Example: Set path=” C:\Program Files\Java\jdk1.8.0_261\bin”

2) Permanent:

Steps to set Permanent path of JDK in Windows 10 and Windows 8:
1) Open My Computer properties.
2) Click on Advanced System Setting
3) Click on Environment Variable options.
4) In system variable section, click on new option.
5) Specify variable name as Path and in place of variable value specify

path of java bin folder, then click OK.

1.11 JAVA COMPILER AND INTERPRETER

Java program execution is a two-step process i.e., Compilation and
interpretation.

Java Compiler: Compiler Translate the source code written by
programmer into byte code. The bytecode generated after compilationis
save with .class file extension. File name is same as a class name.
Compiler also responsible to check source code for errors. It cannot fix
errors if present in program; it generates error message and programmer
have to solve that all errors. If your program is having no errors then
compiler convert it into byte code.

Java Interpreter:

Java Interpreter is a computer program, which implements the
JVM specification and helps to actually execute the java bytecode. After
compilation compiler generates bytecode (.class file), interpreter takes this

mu
no
tes
.in

 19

byte code and translate it into machine code. Then interpreter executes
instruction available in machine code line by line.

1.12 JAVA CLASS FILE

Java class file contains bytecode. It is saved with .class extension.
This file automatically gets generated after successful compilation of the
program. It has a same name as the class name. This file is executed on
Java Virtual Machine. If your java program contains more than one class,
then in such cases after compilation we get same number of .class files as
the number of classes present in java program. It is saved in same
directory where your java file is stored.

1.13 JAVA PROGRAMS

Structure of java program:

Java source code file saved with .java extension. Source code
includes one class definition. We can also include multiple classes t single
source code file. Class includes one or more methods. All the methods
need to be defined inside the class. Within the curly braces of the method,
you can write instructions that method should be performed. Method
includes collection of statements. Every Java program must have at least
one class and one main method in each program.
class Example
{
 public static void main(String arg[])
 {
 System.out.print("we are learning java programming");
 }
}
Program should be saved with Example.java file name.

Parameters use in above java program:
class: class is inbuild keyword use to declare class in java. Class keyword
followed with class_name.

public:It is a access specifier which represents the visibility of main
method. Public means accessible everywhere.

static: It is defined keyword in java. If you declared any method as a static
in java, then this method should be called without creating any object of
the class. Main method is executed by JVM, so there is no need to create
any class object to called main method.

void: It is one return type. Void means not returning any value.

mu
no
tes
.in

 20

main(): main is starting point of program execution. Java program
execution starts from main method.

String arg[]: It is argument to the method. Main method must be array of
string. This will be use to read command line argument.

System.out.print(): It is used to print statement on output screen. System
is a class, out is an object. Print method is used to print statement.
Java program will be executed on command prompt.
Command used to compile java program:

C:\>javac classname.java
example: javacExample.java

This javac compiler create a file with name Example.class stored
in save location where you have saved java file. It is the byte code version
of original program. This byte code is latter on executed by Java Virtual
Machine.

command use to execute the java program:
c:\>java classname
example: java Example
when you run this program, following output is displayed.
Output:
we are learning java programming

1.14 JAVA APPLICATIONS

There are four different types of applications we can developed using
java language.

1) Standalone Application:Standalone Application also called as
desktop application or windows-based application. This kind of
software we need to install on every system where you want to use
that software. Examples of standalone applications are office suite,
media player and all other programming software like turbo++
compiler, python etc. AWT and SWING in java used to developed
standalone applications.

2) Web Application: Like standalone applications which need to be
install on machine, Web Applications we can be access through
internet. It is installed on the server and users can used it through
internet. Currently, Servlet, JSP, Struts Framework, Spring
Framework, Hibernate Framework etc.

3) Enterprise Application: An Application that is distributed in
nature are called as enterprise application. Examples of enterprise
applications are banking application, Skype, call center and
customer support application, Health Information Management
system etc. Technologies used to develop Enterprise Application

mu
no
tes
.in

 21

include Java Persistence API, Java Transaction API, Java
Enterprise Bean, Java Mail etc.

4) Mobile Application:An Applications which is created for mobile

devices are called as Mobile Application. It will work only on
smart phones.

1.15 WHITESPACE AND CASE SENSITIVITY

Whitespace: Java is free form language. There is no need to follow any
special indentation while writing program like you are doing in python
programming language. This means you can write entire java program in
one line. Whitespace in java includes a space, tab and new line.

Case Sensitivity: Java is case sensitive language. In java program add
variable will be different from ADD variable. If you are using some
inbuild methods in program then it needs to use in same defined format.
Example: int add;
int ADD;
Both will be considered as completely different variables.

1.16 IDENTIFIERS AND KEYWORDS

Identifiers:Identifier is a sequence of one or more characters. Identifiers
are used to name things, like variables, methods and classes. An Identifier
is descriptive sequence of uppercase and lowercase letters, numbers, and
underscore sign and dollar-sign.

Rules for defining Identifiers:

 You can use combination uppercase and lower-case letters, numbers,
dollar-sign and underscore sign for creating variable name. No other
special characters are allowed to use while creating identifiers.

 Identifier name must not be start with digit. Example “111add” will
not be consider as valid identifier.

 Identifiers are case sensitive.

 Identifier name should be start with either alphabet, underscore sign or
dollar-sign.

 Inbuild keywords in java cannot be used as an identifiers.

Example: varaible1, $add, _test2;
 This allare the valid identifiers in java language.

Example: 1test, lower-case, ok/cancel;

This all are invalid identifiers in java. Wecannot able to use dash
or any other special character while creating identifiers.

mu
no
tes
.in

 22

Keywords: Keywords are the reserved words in java. Keywords cannot be
used as identifiers, means you cannot use it as variable name, method
name and class name. The keywords const and goto are reserved but
currently not in use. The keyword strictfp is added in JDK 1.2 version.
The keyword assert is added in JDK 1.4 version. Enum keyword is added
in JDK 5.0.

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

Java reserved other four names like null, true, false and var. you may not
use these words as variable, class and method name.
Example: class Example2
 {
 public static void main(String arg[])
 {
 int x=10;
 int y=20;

int z= x+y;
System.out.print("Addition:" + z);

 }
 }

Output:
Addition: 30

In this example, Example2, arg, x,y and z are called as identifiers
which are user defined.

Class, public, static, void, main, String is called as keywords which
are predefined in java.

1.17 COMMENTS

Comments are statements in java which are not executed by java
compiler and interpreter. Comments are used to make the program more
readable by adding details of the code. You can add small description
about your program in comments section. You can use comments to
provide description about variable, methods, class and any other
statement.

mu
no
tes
.in

 23

There are three types of comments in java:

1) Single Line Comment: Single Line comment is use to add single
line description for your code. It is easy to use. Single Line comment start
with two forwordslashes (//). Any statement written in front of this slash is
not executed by compiler.
Syntax: // this is single line comment

2) Multi Line Comment: Multi Line comment is use to comment
multiple lines of code. It is mostly used to provide explanation about
particular method or your program. Multi line comments start with /* and
ends with */. The statements written inside these comments are ignore by
the compiler and interpreter.

Syntax: /* This is multiline comment
 This part is not executed.
 This will be used to provide description about the program.
*/
Example: class Comment Example
{
 public static void main(String arg[])

{
 /* In this example, we will learn how to create variables and
 How to display value of variable on output screen. */
 double a =4.6755;// we have created variable here

System.out.print("Variable a:" + a);
 }
}

3) Documentation Comment: This type of comment is used
produced an HTML file that documents your program. These comments
are usually used to write a code for project or software application, since it
helps to generate documentation page for reference, which can be used for
getting information about present methods, classes and arguments etc.
Documentation comments start with /** and ends with */.

Syntax:
 /** Comment start
*You can used various tag to specify a parameters or method or heading
*we can use various HTML tags here.
*
*/

mu
no
tes
.in

 24

1.18 BRACES AND CODE BLOCK

Curly Braces {}: Used to defined values of during array initialization. It is
also used to defined block of code for classes, interface. Method and
constructor bodies also enclosed in curly braces. Braces are used to group
statements in an if statement, a loop and other control statements.

Example: class Example3
 {
 //statements
 }

Brackets []: It is used to declare array type. It is also used to access
individual elements from array list. And dereferencing array values.

Parentheses (): It is used to declare method and constructor. It is used to
provide parameters in method definition and invocation. It is also used to
defined order of operation in expression.

1.19 VARIABLES AND VARIABLE NAME

Variable is the basic unit of storage in java program. It is like a
container which holds value while java program is executed. A variable is
the name given to a memory location. A variable is assigned with data
type. A value stored in variable can be changed during program execution.
A variable can be defined by the combination of an identifier, a type and
an option initializer. All the variables have a scope, which defines their
visibility and the lifetime.

Syntax for Variable Declaration:
Type identifier; // variable declaration only
Type identifier = value; // variable with initialization

Here, type defines what type of data is stored in this variable. It defines
data type of variable. Identifier is the name of the variable. You can
initialize variable by assigning equal sign after name of variable.

Few Examples of variable declaration:
 int a, b, c;// declaring three int variables
int d=3, e;// declaring two int variable and initializing one int variable d
double d=3.14;// declaring and initializing double variable
char c=’a’;//declaring and initializing char variable

There are three types of variables you can create in java.
1) Local variable: The variable declare inside the body of method or

constructor is called local variable. Scope of local variable exists only
within the block where it is declared. We can access variable only

mu
no
tes
.in

 25

within same block. You cannot able to use local variable outside of
that method.

2) Instance Variable:Variable which is declare inside the class and
outside the method is called as instance variable. Instance variables are
created when an object of class is created and destroyed when object
get destroyed. Value of instance variable is instance specific. You can
use access specifier to defined scope of instance variable. According to
defined access specifier visibility and lifetime of this variable get
changed.

3) Static Variable: A variable that is declared with static keyword is

called static variable. This variable is also declared inside the class.
For static variable, memory allocated only once when class is loaded
in the memory. Like instance variable static variable is not instance
specific. Static variable is created when you want to share same value
among all objects of the class. Means Value of static variable is similar
for all objects of class.

Programs:
1) Write a java program to find out area of triangle.
class Triangle
{
 public static void main(String arg[])
 {
 Double pi= 3.14, r = 3, area;
 area = 3.14*r*r;

System.out.print("Area of Triangle" + area);
}

}
Output:
Area of Triangle: 28.26

2) Program to calculate simple Interest
public class SimpleInterest
{
 public static void main(String args[])
 {
 float p =2000, r = 6, t =3, sinterest;
 //simple interest formula (principal* rate of interest * time
period)/100
sinterest = (p * r * t) / 100;
System.out.print("Simple Interest is: " +sinterest);
 }
}

mu
no
tes
.in

 26

Output:
Simple Interest is: 360.0
1.20 SUMMARY

In this chapter, we learn introduction to java language, features of
java, Java virtual machine, Java Runtime Environment, Java Development
Kit, LambdaExpression, Method References, Writing and executing java
programs, identifiers, keywords, java API and variables with examples.

1.21 LIST OF REFERENCES

Java, A Beginner’s Guide, Eighth Edition, Herbert Schildt, McGraw Hill
Publisher
Java: The Complete Reference, Eleventh Edition, Herbert Schildt,
McGraw Hill Publisher

1.22 BIBLIOGRAPHY

 https://www.javatpoint.com/java-tutorial
 https://www.geeksforgeeks.org/java
 https://www.beginnersbook.com/java-tutorial-for-beginners-with-

examples/
 http://www.programiz.com/java-programming/
 https://docs.oracle.com/javase/tutorial/

1.23 MODEL QUESTIONS

1) Which component is used to compile, debug and execute java program?

a) JVM
b) JRE
c) JDK
d) JIT

2) Which component is responsible for converting bytecode into machine
specific code?

a) JVM
b) JRE
c) JDK
d) JIT

3) What is extension of java byte code?
a) .txt
b) .class
c) .java
d) .js

mu
no
tes
.in

 27

4) JRE stand for?
a) Java Runnable Environment
b) Java Runtime Environment
c) Java Runtime Extension
d) None of the above

5) ____ are the reserved words in java?
a) Keywords
b) Variables
c) Identifiers
d) All of the above

6) _____ is a sequence of one and more characters?
a) Identifiers
b) Keywords
c) Variables
d) Literals

mu
no
tes
.in

 28

2

DATA TYPES

Unit Structure
2.0 Objective
2.1 Introduction
2.2 Primitive Data Types
2.3 Object Reference Types
2.4 Strings
2.5 Auto Boxing and Unboxing
2.6 Operators and Properties of Operators

2.6.1 Arithmetic Operators
2.6.2 Assignment Operators
2.6.3 Increment and Decrement Operators
2.6.4 Relational Operators
2.6.5 Logical Operators
2.6.6 Bitwise Operators
2.6.7 Conditional Operator

2.7 Summary
2.8 List of References
2.9 Bibliography
2.10 Model Questions

2.0 OBJECTIVE

In this chapter, you will be going to learn following topics:

 Primitive data types supported in java.
 Creating string in java using String class and different methods of

string class.
 How to convert primitive type to object type.
 Use of different types operators available in java.

2.1 INTRODUCTION

 Data types and Operator are the main fundamental elements of java
Programming. In this chapter we will learn different data types supported

mu
no
tes
.in

 29

in java language. Java is strongly type language, which means that you
must need to declare variable before they can be used. This declaration
includes variable’s type and name. Data types defines type of value stored
in variable.

 Another concept we will going to learn in this chapter is operators
and types of operators supported in java. Java provide a rich set of
operators. Java supports all basic operators and some additional operators
for handing special condition.

2.2 PRIMITIVE DATA TYPES

Data Types: When you define a variable in java, you must need to defined
what kind of value that variable will stored. This will be defined with the
help of data types. Based on this information compiler will decide how
much space to allocate in the memory for the variable.

 Java programming language defines eight primitive data types: byte,
short. int, float, double, char, boolean. A primitive type is predefined in
java language. Primitive types are the most basic data types available in
java. Size of these primitive data type is fixed; it does change from one
operating system to another. This primitive type can be placed into four
group.

Integers: This group includes byte, short, int and long, which represents
whole numbers. All these integers support signed, positive and negative
values.

Floating- point numbers: This group include float and double data type,
which represents numbers with fractional value. Floating point numbers
are used when evaluating expression that require fractional precision.

Character: this group include char data type.

Boolean: This group include Boolean data type, which includes binary
value like true/false.

Data Type Size Default value

byte 1 byte 0

short 2 byte 0

int 4 byte 0

long 8 byte 0

float 4 byte 0.0f

double 8 byte 0.0d

char 2 byte \u0000

mu
no
tes
.in

 30

boolean 1 bit false
Fig. Primitive Data Types

byte:
It is a smallest integer type. The Byte data type is 8 bits (1 byte)

signed two’s complement integer. It has value range lies between -128 to
127. Its default value is zero.

Syntax of declaring byte variable:
byte variable1;

short:
 It is a signed 16 bits (2 byte) two’s complement integer. It has value
range lies between -32,768 to 32,767. Its default value is zero.

Syntax:
short t, s;

int:
 The int data type is 32 bits (4 bytes) signed two’s complement
integer. It has the value range lies between- (2 31)to (231 -1). Its default
value is zero. It is most commonly used data type.
Syntax:
int a, b;
int c=2;

long:
 The long data type is 64 bits (8 byte) signed two’s complement
integer. It has value range lies between – (263) to (263-1). Its default value
is zero.
Example:
class DataTypesExample1
{
 public static void main(String arg[])
 {
 byte b = -100;
 short num = 150;
 int a = 1;
 long l = 4562455555555L;
 System.out.println("Byte Value :" + b);
 System.out.println("Integer Value:" + a);
 System.out.println(" Int value: " + a);
 System.out.println("Long value: " + l);
 }
}

Output:
Byte Value :-100
Integer Value:1
 Int value: 1

mu
no
tes
.in

 31

Long value: 4562455555555

float:
 The float data type is single precision 32 bits (4 byte) floating point.
It is useful for storing smaller precision but not suited for large degree of
precision. Its default value is 0.0f.
Syntax:
Float f = 3.14f, a;

double:
 The double data type is double precision 64 bits (8 byte) floating
point. It is useful for storing floating point values with large precision. Its
default value is 0.0d.
Syntax:
double d = 45.78521457;

char:
 The char is 16 bits (2 byte) Unicode character. It has the value range
lie between 0 to 65,535. This data type is used to stored characters.

 Unicode defines a fully international character set that can represents
all of the characters that are available in all human languages. Its default
value is ‘\u0000’.
Syntax:
char c = ‘g’;

Boolean:
 The Boolean data type is used to stored logical value. It stores only
two possible values: true and false. It represents only one bit of
information. Values of Boolean variable can not be converted into any
other type. Its default value is false.

Example:
class DataTypesExample2
{
 public static void main(String arg[])
 {
 float f = 22.14f;
 double d = 12.11122452;
 char c='g';
 boolean flag = true;
 System.out.println("float value:" + f);
 System.out.println("double value:" +d);
 System.out.println("Char value:"+ c);
 System.out.println("boolean value:"+ flag);
 }

mu
no
tes
.in

 32

}

Output:
float value:22.14
double value:12.11122452
Char value:g
booleanvalue:true

2.3 OBJECT REFERENCE TYPES

 In java, not- primitive data type is also known as object reference
type. Java object reference type holds the references of dynamically
created class objects and provide a means to access those objects stored in
memory. For example, if you have created class Example and you have
created its object d, then d is called as object reference type. All the
reference types are subclass of type java.lang.Object. Object reference
type includes class, Annotation, Array, Enumeration and Interface. Like
primitive data type it is not predefined.

Reference
Type Description

Class Class is a collection of objects. You can create multiple
objects of class.

Annotation It provides a way to associate metadate with program
elements.

Array It provides a data structure that stores the elements of
similar type.

Enumeration A reference to a set of objects that represents a related
set of choices.

Interface It is implemented by java classes. interface provides you
collection of abstract methods.

Fig. Object Reference Types

2.4 STRINGS

 Java String is an object that represents a sequence of characters.
String class is used to create string object in java. It is defined in java.lang
package. Java string is immutable. Once string is created, you cannot able
to change its value.

There are two ways to create string in java:
1) Using String Literal
Examples: String name = “Amit”;
 String address = “thane”;

mu
no
tes
.in

 33

2) Using new keyword
 Examples: String s1 = new String(“Welcome”);
 String s2 = new String(“we are learning java programming”);

Program:
class StringExample
{
 public static void main(String arg[])
 {
 //creating string using string literal
 String name = "Kunal";
 System.out.println("Name: " + name);

 //creating string using new keyword
 String s = new String("java is easy to learn");
 System.out.println(s);
 }
}

Output:
Name: Kunal
Java is easy to learn

 String class also provides you lots of methods to perform different
operations on string.

List of Methods:

Method Description

toUpperCase(String str) Convert the given string in uppercase.

toLowerCase(String str) Convert the given string in lowercase.

startWith(String prefix) Test if given string starts with specified
prefix. True or false result.

endsWith(String Suffix) Test if given string ends with specified
suffix. Return true or false result.

charAt(int index) Return the character value for specified
index number.

length() Return the length of this string.

substring(int beginindex) Return new string that is substring of the
given string.

replace() Used to replace all the occurrences of old
char in this string with new char.

contains(CharSequence s) Return true or false after matching specified

mu
no
tes
.in

 34

character sequence in given string.

indexOf(int ch) Return the index value of specified char.

equals(String str) Compares the given string with this
specified string. Return true or false result.

trim() Use to remove leading and trailing
whitespaces in this string.

valueOf(int value)
valueOf(float value)
valueOf(double value)
valueOf(long value)

Used to convert given type to string.

concat(String str) Concatenates specified string at the end of
this string.

Example:
class StringMethods
{
 public static void main(String arg[])
 {
 String s="java programming";
 String s1= " PYTHON";
 System.out.println("Upper Case : " + s.toUpperCase());
 System.out.println("Lowercase : " +s1.toLowerCase());
 System.out.println("Trim : " + s.trim());
 System.out.println("Start With : " + s.startsWith("Sa"));
 System.out.println("Ends with: " + s.endsWith("g"));
 System.out.println("Char at: " + s.charAt(3));
 System.out.println("length: " + s.length());
 System.out.println("substring : " +s.substring(2,4));
 String r=s.replace("java","python");
 System.out.println(r);
 System.out.println("Contains: " + r.contains("java"));
 int index1=s.indexOf("a");
 System.out.println("Index OF : " + index1);
 int index2=s.lastIndexOf('g');
 System.out.println("last Index of: " + index1);
 String str1 = "Hello";
 String str2 = "Javatpoint";

 // Concatenating one string

mu
no
tes
.in

 35

 String str4 = str1.concat("javatpoint");
 System.out.println(str4);
 }
 }

Output:
Upper Case : JAVA PROGRAMMING
Lowercase : python
Trim : java programming
Start With : false
Ends with: true
Char at: a
length: 16
substring :va
python programming
Contains: false
Index OF : 1
last Index of: 1
Hellojavatpoint

2.5 AUTOBOXING AND UNBOXING

Autoboxing:
 The Automatic conversion of primitive type into its corresponding
wrapper class type is called Autoboxing. For example, converting an int to
an Integer. Converting an float to Float type.

Unboxing:
 The automatic conversion of object of wrapper type into its
corresponding primitive type is called as unboxing. For example,
converting Integer object into int type, Double object into double type.

List of primitive type and their corresponding wrapper type:

Primitive Type (Data Types) Wrapper Type (Classes)
byte Byte
short Short
int Int
long Long
float Float
double Double
char Char
boolean Boolean

mu
no
tes
.in

 36

Example:
class AutoboxingEx
{
 public static void main(String arg[])
 {
 int a=20;
 Integer n1 = new Integer(a); // autoboxing
 Integer n2 = a; //autoboxing
 System.out.println("n1 : " +n1);
 System.out.println("n2: " + n2);

 Integer n3 = new Integer(50); //unboxing
 int b = n3;
 System.out.print("b: " +b);
 }
}
Output:
n1 : 20
n2: 20
b: 50

2.6 OPERATORS AND PROPERTIES OF OPERATORS

 Operators are used to performed some mathematical and logical
operations. Java provides a rich set of operators. All basic operators are
classified into four types; relational, arithmetic, logical and bitwise. It also
provides you some additional operators like conditional operator,
assignment operator and increment and decrement operator.

2.6.1 Arithmetic Operators
 Arithmetic operators are used to perform operations like addition,
subtraction, multiplication and division. These are the basic mathematical
operator.

List of arithmetic operators:
Operators Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus division

mu
no
tes
.in

 37

Example:
class ArithmeticOperator
{
 public static void main(String arg[])
 {
 double a=20, b=4;
 System.out.println("Addition: " + (a+b));
 System.out.println("Subtraction: " + (a-b));
 System.out.println("Multiplication: " + (a*b));
 System.out.println("Division: " + (a/b));
 System.out.println("Modulus: " + (a%b));
 }
}

Output:
Addition: 24.0
Subtraction: 16.0
Multiplication: 80.0
Division: 5.0
Modulus: 0.0

2.6.2 Assignment Operators
 Assignment operator is one of the most common operators; you are
using in java program. It is used to assign value on its right to the operand
(variable) on its left.
Symbol: =

 Example: int a = 4;
 double d = 3.2;

Compound Assignment Operators:

Operator Description

+=
Addition Assignment:It work by adding the current value
of the variable on left to the value on the right and then
assign result to the operand on the left.

-=
Subtraction Assignment: It work by subtracting the
current value of the variable on left to the value on the right
and then assign result to the operand on the left.

mu
no
tes
.in

 38

/=
Division Assignment: It work by dividing the current value
of the variable on left to the value on the right and then
assign result to the operand on the left.

*=
Multiplication Assignment: It work by multiplying the
current value of the variable on left to the value on the right
and then assign result to the operand on the left.

%=
Modulus Assignment: It work by dividing the current
value of the variable on left to the value on the right and
then assign remainder to the operand on the left.

Program:
class AssignmentOperator
{
 public static void main(String arg[])
 {
 int num = 60; // simple asignment operator
 double a=20, b=30;
 a += 10; // it is similar to the expression a= a+10
 b -= 5; // it is similar to b= b-5;
 System.out.println(" Assignment operator: " + num);
 System.out.println("Addition Assignment: " + a);
 System.out.println("Subtraction Assignment: " + b);
 }
}

Output:
Assignment operator: 60
Addition Assignment: 30.0
Subtraction Assignment: 25.0

2.6.3 Increment and Decrement Operators
 Increment operator is used to increase value of operand by one.
Decrement operator is used to decrease value of operand by one. Both
operators required only one operand.These operators can be used in either
prefix and postfix form. In prefix form, the operand is incremented and
decremented before the value is obtain for used in the expression. In
postfix form, the operand is incremented and decremented after the value
is obtain for used in the expression.

Operator Description
++ Increment Operator
-- Decrement Operator

mu
no
tes
.in

 39

Program:
class Operator
{
 public static void main(String arg[])
 {
 int num1 = 20, num2 = 10;
 System.out.println(num1++); // num1++ is post-increment
 System.out.println(++num1); // ++num1is pri-increment
 System.out.println(num2--); //it is post-decrement
 System.out.println(--num2); // it is pri-decrement
 }
}

Output:
20
22
10
18

Relational Operators
 Relational operators are used to determine relationship between two
variables, like value of one operand is greater then, equal to or less than
another operand. The relational operator generates true and false result.

Operator Description
== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than and equal to
<= Less than and equal to

Fig. Relational Operators

Program:
class Relationaloperator
{
 public static void main(String arg[])
 {
 int a=10, b=30, c=20;
 System.out.println("a<b : " + (a<b));
 System.out.println("a>b :" + (a>b));
 System.out.println("a==b :" +(a==b));
 System.out.println(" a!=b : " + (a!=b));
 }
}

mu
no
tes
.in

 40

Output:
a<b : true
a>b :false
a==b :false
a!=b : true

2.6.4 Logical Operators
 Logical operators are used to perform logical AND, OR and NOT
operation. Its function is similar to AND gate, OR gate and NOT gate in
digital electronics. Logical AND gate return true result if both the
expressions are true. Logical OR gate return true result if either one
expression is true. Logical Not return true if expression is false and vice
versa.

Operator Description

&& Logical AND

|| Logical OR

! Logical NOT
Fig. Logical Operators

Program:
class LogicalOperator
{
 public static void main(String arg[])
 {
 int a=10, b=30, c=20;
 System.out.println("Logical AND: " + (a<c && a<b));
 System.out.println("Logical OR: " + (a>c || a<b));
 System.out.println("Logical OR: " + (a>c && a<b));
 System.out.print("Logical NOT:" + !(a>b));
 }
}

Output:
Logical AND: true
Logical OR: true
Logical OR: false
Logical NOT:true

mu
no
tes
.in

 41

2.6.5 Bitwise Operators

 Bitwise operators operate on binary value. It returns result by
performing manipulation on individual bit of a number. In Bitwise OR
operation, it performs bit by bit OR operation of input value and it return 1
if either of the bits is 1 otherwise it returns 0.

 In bitwise AND operation, it performs bit by bit AND operation of
input value and it return 0 if either of the bits is 0 otherwise it returns 1.

 In bitwise XOR operation, it performs bit by bit XOR operation of
input value and it return 1 if corresponding bits different, else it gives zero
if bits are same. Bitwise Complement operator returns one’s complement
of input value.

Operator Description

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise Exclusive OR

~ Bitwise Complement

Program:
class BitwiseOperator
{
 public static void main(String arg[])
 {
 int a=5, b=12;
 System.out.println("Bitwise AND: " + (a&b));
 System.out.println("Bitwise Inclusive OR: " + (a|b));
 System.out.println(" Bitwise Exclusive OR: " + (a^b));
 System.out.print("Bitwise Complement:" + (~a));
 }

}

Output:
Bitwise AND: 4
Bitwise Inclusive OR: 13
Bitwise Exclusive OR: 9
Bitwise Complement:-6

mu
no
tes
.in

 42

2.6.6 Conditional Operator

Operator Description

&& Logical or Conditional AND

|| Logical or Conditional OR

?: Ternary operator

 Ternary operator is similar to If-then-else statement in java. A
ternary operator evaluates the test condition and execute the block of code
based on result of the condition.

Syntax: condition ? expression1 : expression2

 It first checks the test condition and execute expression1 if
condition is true, else it execute expression2.
Program:

class TernaryOperator
{
 public static void main(String args[])
 {
 int marks=40;
 String result = (marks>40) ? "PASS" : "FAIL";
 System.out.print(result);

 }
}

Output:
FAIL

2.7 SUMMARY

 In this chapter, we learn primitive data types, object reference types,
creating string in java and different methods of string class, converting
primitive date type to object type and vice-versa, operators and their
different types.

2.8 LIST OF REFERENCES

Java, A Beginner’s Guide, Eighth Edition, Herbert Schildt, McGraw Hill
Publisher

Java: The Complete Reference, Eleventh Edition, Herbert Schildt,
McGraw Hill Publisher

mu
no
tes
.in

 43

2.9 BIBLIOGRAPHY

 https://www.javatpoint.com/java-tutorial
 https://www.geeksforgeeks.org/java
 https://www.beginnersbook.com/java-tutorial-for-beginners-with-

examples/
 http://www.programiz.com/java-programming/
 https://docs.oracle.com/javase/tutorial/

2.10 MODEL QUESTIONS

1) How many primitive types are there in java?

a) 5
b) 6
c) 7
d) 8

2) Size of int type in java?
a) 8 bit
b) b) 4 bit
c) 16 bit
d) d) 32 bit

3) The smallest integer type is ___ and its size is ___ bits.
a) short, 16
b) byte, 16
c) short, 8
d) byte, 8

4) which of the following is a symbol of assignment operator?
a) ==
b) =
c) !
d) ~

5) Size of double data type in java?
a) 4 byte
b) 8 byte
c) 2 byte
d) 1 byte

6) What is the range of byte data type in java?
a) - 128 to 127
b) -128 to 128
c) -127 to 128
d) -127 to 127

mu
no
tes
.in

 44

7) Increment operator increases value of operand by which value?
a) 2
b) 3
c) 1
d) 4

8) Which of the following is not conditional operator?
a) &&
b) ||
c) ?:
d) ~

9) What is the size of short data type in java?
a) -128 to 127
b) -32768 to 32767
c) – (231) to (231-1)
d) None of this

10) In java, byte, short, int and long all of these are ____ integers.
a) Signed
b) Unsigned
c) Both of the above
d) None of the above

mu
no
tes
.in

45

Unit II

3
CONTROL STATEMENTS

Unit Structure
3.1 Introduction
3.2 Java Control Statements

3.2.1. Decision-Making statements
3.2.2. If Statement
3.2.3. if-else statement
3.2.4.if-else-if ladder
3.2.5. Nested if-statement

3.3. Switch Statement
3.4. Jump Statements

3.4.1. Java for loop
3.4.2. Java for-each loop
3.4.3. Java while loop
3.4.4. Java do-while loop
3.4.5. Jump Statements

3.4.5.1. Java break statement
3.4.5.2. Java continue statement

3.5. Summary
3.6. List of References
3.7. Questions

3.1. INTRODUCTION

Java compiler executes the code through and through. The
assertions in the code are executed by the request where they show up.
Nonetheless, Java gives proclamations that can be utilized to control the
progression of Java code. Such proclamations are called control stream
explanations. It is one of the crucial components of Java, which gives a
smooth progression of program.

3.2. JAVA CONTROL STATEMENTS

In Java, program is a bunch of articulations and which are executed
consecutively all together in which they show up. In that assertions, some

mu
no
tes
.in

46

estimation have need of executing for certain conditions and for that we
need to give control to that assertions. All in all, Control explanations are
utilized to furnish the progression of execution with condition. In this unit,
we will gain proficiency with the control structure exhaustively. Java
provides three types of control flow statements.

Decision Making statements
 if statements
 switch statement

Loop statements
 do while loop
 while loop
 for loop
 for-each loop

Jump statements
 break statement
 continue statement

3.2.1. Decision-Making statements:
As the name recommends, dynamic proclamations choose which

articulation to execute and when. Dynamic articulations assess the
Boolean articulation and control the program stream contingent on the
consequence of the condition gave. There are two sorts of dynamic
explanations in Java, i.e., If articulation and switch proclamation.

3.2.2. If Statement
In Java, the "if" articulation is utilized to assess a condition. The

control of the program is redirected relying on the particular condition.
The state of the If articulation gives a Boolean worth, either obvious or
bogus. In Java, there are four kinds of if-proclamations given underneath.

 Simple if statement
 if-else statement
 if-else-if ladder
 Nested if-statement

Let's understand the if-statements one by one.

Simple if statement:
It is the most basic statement among all control flow statements in

Java. It evaluates a Boolean expression and enables the program to enter a
block of code if the expression evaluates to true.

mu
no
tes
.in

47

Syntax of if statement is given below.
if(condition) {
statement 1; //executes when condition is true
}
Statement-a;

In proclamation block, there might be single explanation or various
articulations. Assuming the condition is valid, articulation square will be
executed. Assuming the condition is bogus, proclamation square will
preclude and articulation a will be executed. Consider the accompanying
model wherein we have utilized the if articulation in the java code.

1) Student.java
public class Student {
public static void main(String[] args) {
int x = 10;
int y = 12;
if(x+y > 20)
{

System.out.println("x + y is greater than 20");
}
}
}

Output:
x + y is greater than 20

mu
no
tes
.in

48

3.2.3. if-else statement
The if-else statement is an extension to the if-statement, which

uses another block of code, i.e., else block. The else block is executed if
the condition of the if-block is evaluated as false.
Following figure shows the flow of statement.

Syntax:
if(condition) {
statement 1; //executes when condition is true
}
else{
statement 2; //executes when condition is false
}
Statement-a;

If the condition is true then True - statement block will be
executed. If the condition is false then False - statement block will
beexecuted. In both cases the statement-a will always executed.

Consider the following example.
1) Student.java
public class Student {
public static void main(String[] args) {
int x = 10;
int y = 12;
if(x+y < 10)

mu
no
tes
.in

49

{
System.out.println("x + y is less than 10");
}
else {
System.out.println("x + y is greater than 20");
}
}
}
Output:
x + y is greater than 20

2) write a program to check whether the number is divisible by 2 or
not.
import java.io.*;
classdivisorDemo
{
public static void main(String[] args)
{
int a =11;
if(a%2==0)
{
System.out.println(a +" is divisible by 2");
}
else
{
System.out.println(a+" is not divisible by 2");
}
}
}
Output:
11 is not divisible by 2

3.2.4.if-else-if ladder
The if-else-if explanation contains the if-articulation followed by

different else-if proclamations. At the end of the day, we can say that it is
the chain of if-else articulations that make a choice tree where the program
might enter in the square of code where the condition is valid. We can
likewise characterize an else explanation toward the finish of the chain.

Syntax of if-else-if statement is given below.
if(condition 1)
{

mu
no
tes
.in

50

statement 1; //executes when condition 1 is true
}
else if(condition 2)
{
statement 2; //executes when condition 2 is true
}
else {
statement 2; //executes when all the conditions are false
}

Consider the following example.
1) Student.java
public class Student {
public static void main(String[] args) {
String city = "Delhi";
if(city == "Meerut")
{

System.out.println("city is meerut");
}
else if (city == "Noida")
{

System.out.println("city is noida");
}
else if(city == "Agra")
{

System.out.println("city is agra");
}
else
{

System.out.println(city);
}
}
}
Output:
Delhi

3.2.5. Nested if-statement
In nested if-statements, the if statement can contain a if or if-

else statement inside another if or else-if statement.

mu
no
tes
.in

51

Syntax of Nested if-statement is given below.
if(condition 1) {
statement 1; //executes when condition 1 is true
if(condition 2) {
statement 2; //executes when condition 2 is true
}
else{
statement 2; //executes when condition 2 is false
}
}
statement 4;

If the condition1 is true then it will be goes for condition2. If the
condition2 is true then statement block1 will be executed otherwise
statement2 will be executed. If the condition1 is false then statement
block3 will be executed. In both cases the statement4 will always
executed.

Consider the following example.

1) Student.java
public class Student {
public static void main(String[] args) {
String address = "Delhi, India";

if(address.endsWith("India"))
{

mu
no
tes
.in

52

if(address.contains("Meerut"))
{

System.out.println("Your city is Meerut");
}
else if(address.contains("Noida"))
{

System.out.println("Your city is Noida");
}
else
{

System.out.println(address.split(",")[0]);
}

}
Else
{

System.out.println("You are not living in India");
}
}
}
Output:
Delhi

3.3. SWITCH STATEMENT:

In Java, Switch articulations are like if-else-if explanations. The
switch explanation contains various squares of code called cases and a
solitary case is executed dependent on the variable which is being
exchanged. The switch proclamation is simpler to use rather than if-else-if
explanations. It likewise improves the intelligibility of the program.

Focuses to be noted with regards to switch proclamation:
The case factors can be int, short, byte, roast, or list. String type is

likewise upheld since rendition 7 of Java

Cases can't be copy

Default explanation is executed when any of the case doesn't
coordinate with the worth of articulation. It is discretionary.

Break explanation ends the switch block when the condition is fulfilled.

It is discretionary, if not utilized, next case is executed.

While utilizing switch proclamations, we should see that the case
articulation will be of a similar kind as the variable. Nonetheless, it will
likewise be a consistent worth.

mu
no
tes
.in

53

The syntax to use the switch statement is given below.
switch (expression){
case value1:
statementblock1;
break;

case value 2:
statement block 2;
break;

case value 3:
statementblock 3;
break;
.
.
.
case valueN:
statementN;
break;
default:
default statement;

}

The condition is byte, short, character or a number. value1,value-
2,value-3,… are steady and is called as marks. Every one of these qualities
be inimitable or special with the assertion. Proclamation block1,
Articulation block2, Explanation block3,..are rundown of explanations
which contain one articulation or more than one proclamations. Case mark
is consistently end with ":" (colon).

Consider the following example to understand the flow of the
switch statement.
1) Student.java
public class Student implements Cloneable
{
public static void main(String[] args)
{
int num = 2;
switch (num)
{
case 0:
System.out.println("number is 0");
break;

mu
no
tes
.in

54

case 1:
System.out.println("number is 1");
break;
default:
System.out.println(num);
}
}
}
Output:
2

While utilizing switch articulations, we should see that the case
articulation will be of a similar kind as the variable. Be that as it may, it
will likewise be a steady worth. The switch allows just int, string, and
Enum type factors to be utilized.

Program: write a program for bank account to perform following
operations.
-Check balance
-withdraw amount
-deposit amount
1) For example:
import java.io.*;
classbankac
{
public static void main(String args[]) throws Exception
{
intbal=20000;
intch=Integer.parseInt(args[0]);
System.out.println("Menu");
System.out.println("1:check balance");
System.out.println("2:withdraw amount... plz enter choiceand amount");
System.out.println("3:deposit amount... plz enter choiceand amount");
System.out.println("4:exit");
switch(ch)
{
case 1:

System.out.println("Balance is:"+bal);
break;
case 2:

int w=Integer.parseInt(args[1]);
if(w>bal)

mu
no
tes
.in

55

{
System.out.println("Not sufficient balance");

}
bal=bal-w;
System.out.println("Balance is"+bal);

break;

case 3:
int d=Integer.parseInt(args[1]);
bal=bal+d;
System.out.println("Balance is"+bal);

break;

default:
break;
}
}
}

Output:
Menu
1:check balance
2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit
Balance is:20000

3.4. LOOP STATEMENTS

In programming, now and again we need to execute the square of
code more than once while some condition assesses to valid. Be that as it
may, circle explanations are utilized to execute the arrangement of
guidelines in a rehashed request. The execution of the arrangement of
directions relies on a specific condition.

In Java, we have three kinds of circles that execute also.
Notwithstanding, there are contrasts in their grammar and condition really
looking at time.

 for loop
 while loop
 do-while loop

Let's understand the loop statements one by one.

mu
no
tes
.in

56

3.4.1. Java for loop
In Java, for circle is like C and C++. It empowers us to introduce

the circle variable, actually look at the condition, and addition/decrement
in a solitary line of code. We utilize the for circle just when we precisely
know the occasions, we need to execute the square of code.
for(initialization, condition, increment/decrement)
{
//block of statements
}
The flow chart for the for-loop is given below.

Consider the following example to understand the proper
functioning of the for loop in java.

1) Calculation.java
public class Calculattion
{
public static void main(String[] args)
{
// TODO Auto-generated method stub
int sum = 0;
for(int j = 1; j<=10; j++)
{

sum = sum + j;
}
System.out.println("The sum of first 10 natural numbers is " + sum);
}
}
Output:
The sum of first 10 natural numbers is 55

3.4.2. Java for-each loop
Java gives an improved to circle to navigate the information

structures like exhibit or assortment. In the for-each circle, we don't have

mu
no
tes
.in

57

to refresh the circle variable. The linguistic structure to utilize the for-each
circle in java is given beneath.
for(data_type var : array_name/collection_name)
{
//statements
}
Consider the following example to understand the functioning of the for-
each loop in Java.
1) Calculation.java
public class Calculation
{
public static void main(String[] args)
{
// TODO Auto-generated method stub
String[] names = {"Java","C","C++","Python","JavaScript"};
System.out.println("Printing the content of the array names:\n");
for(String name:names)
{
System.out.println(name);
}
}
}
Output:
Printing the content of the array names:
Java
C
C++
Python
JavaScript

3.4.3. Java while loop
The while circle is likewise used to emphasize over the quantity of

explanations on numerous occasions. Notwithstanding, in the event that
we don't have the foggiest idea about the quantity of emphasess ahead of
time, it is prescribed to utilize some time circle. Not at all like for circle,
the instatement and addition/decrement doesn't occur inside the circle
proclamation in while circle.

It is otherwise called the passage controlled circle since the
condition is checked toward the beginning of the circle. On the off chance
that the condition is valid, the circle body will be executed; any other way,
the assertions after the circle will be executed.

mu
no
tes
.in

58

The grammar of the while circle is given underneath.
while(condition)
{
//looping statements
}
The flow chart for the while loop is given in the following image.

Consider the following example.
Calculation .java
public class Calculation {
public static void main(String[] args) {
// TODO Auto-generated method stub
int i = 0;
System.out.println("Printing the list of first 10 even numbers \n");
while(i<=10)
{
System.out.println(i);
i = i + 2;
}
}
}

mu
no
tes
.in

59

Output:
Printing the list of first 10 even numbers
0
2
4
6
8
10

3.4.4. Java do-while loop
The do-while circle really takes a look at the condition toward the

finish of the circle subsequent to executing the circle explanations. At the
point when the quantity of cycle isn't known and we need to execute the
circle once, we can utilize do-while circle.

It is otherwise called the exit-controlled circle since the condition
isn't checked ahead of time. The sentence structure of the do-while circle
is given beneath.
do
{
//statements
} while (condition);
The flow chart of the do-while loop is given in the following image.

Consider the following example to understand the functioning of
the do-while loop in Java.

mu
no
tes
.in

60

1) Calculation.java
public class Calculation
{
public static void main(String[] args)
{
// TODO Auto-generated method stub
int i = 0;
System.out.println("Printing the list of first 10 even numbers \n");
do
{
System.out.println(i);
i = i + 2;
}while(i<=10);
}
}
Output:
Printing the list of first 10 even numbers
0
2
4
6
8
10

3.4.5. Jump Statements
Hop articulations are utilized to move the control of the program to

the particular assertions. At the end of the day, bounce articulations move
the execution control to the next piece of the program. There are two kinds
of hop proclamations in Java, i.e., break and proceed.

3.4.5.1. Java break statement
As the name recommends, the break proclamation is utilized to

break the current progression of the program and move the control to the
following assertion outside a circle or switch explanation. Be that as it
may, it breaks just the inward circle on account of the settled circle.

The break articulation can't be utilized autonomously in the Java
program, i.e., it must be composed inside the circle or switch explanation.

The break statement example with for loop
Consider the following example in which we have used the break

statement with the for loop.
1) BreakExample.java
public class Break Example
{

mu
no
tes
.in

61

public static void main(String[] args)
{
// TODO Auto-generated method stub
for(int i = 0; i<= 10; i++)
{
System.out.println(i);
if(i==6) {
break;
}
}
}
}
Output:
0
1
2
3
4
5
6
break statement example with labeled for loop
1) Calculation.java
public class Calculation {
public static void main(String[] args)
{
// TODO Auto-generated method stub
a:
for(int i = 0; i<= 10; i++) {
b:
for(int j = 0; j<=15;j++) {
c:
for (int k = 0; k<=20; k++) {
System.out.println(k);
if(k==5) {
break a;
}
}
}
}
}
}

mu
no
tes
.in

62

Output:
0
1
2
3
4
5

3.4.5.2. Java continue statement
Unlike break statement, the continue statement doesn't break the

loop, whereas, it skips the specific part of the loop and jumps to the next
iteration of the loop immediately.

Consider the following example to understand the functioning of
the continue statement in Java.
public class Continue Example
{
public static void main(String[] args)
{
// TODO Auto-generated method stub

for(int i = 0; i<= 2; i++) {

for (int j = i; j<=5; j++) {

if(j == 4)
{

continue;
}
System.out.println(j);
}
}
}
}

Output:
0
1
2
3

mu
no
tes
.in

63

5
1
2
3
5
2
3
5

3.5. SUMMARY:

 In this Chapter, we covered control flow statement

 In Decision-Making statements, we learned if, if-else,if-else-if ladder,
Nested if-statement, Switch Statement

 In this chapter we study about Looping statement like for loop, for-
each loop, while loop, do-while loop, also jump statement break
statement, continue statement.

3.6. LIST OF REFERENCES

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata

McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C

THOMAS WU3. www.javatpoint.com

3.7. QUESTION

1) What mean by Decision control statement?

2) Explain If Else statement with suitable example.

3) Explain Nested if statement with suitable example.

4) Explain loop control statement

5) What is mean by switch control statement with example.

6) Explain loop control statement with example.

mu
no
tes
.in

 64

4

CLASSES

Unit Structure
4.1 Objective
4.2 Class

4.2.1 Creating “main” in a separate class
4.2.2 Methods with parameters
4.2.3 Methods with a Return Type
4.2.4 Method Overloading
4.2.5 Passing Objects as Parameters
4.2.6 Passing Values to methods and Constructor:
4.2.7 Abstract Classes
4.2.8 Extending the class:

4.3 Summary
4.4 List of references
4.5 Questions

4.1 OBJECTIVE

In this lesson of Java Tutorial, you will learn...
 How to create class
 How to create method
 How to create constructor

4.2 CLASS

Definition: A class is a collection of objects of similar type. Once a class
is defined, any number of objects can be produced which belong to that
class.
Class Declaration
classclassname
{
…
ClassBody
…
}
Objects are instances of the Class. Classes and Objects are very much
related to each other. Without objects you can't use a class.

mu
no
tes
.in

 65

A general class declaration:
class name1
{

//public variable declaration
voidmethodname()
{

//body of method…
//Anything

}
}
Now following example shows the use of method.
class Demo
{

privateintx,y,z;
public void input()
{

x=10;
y=15;

}
public void sum()
{

z=x+y;
}
public void print_data()
{

System.out.println(“Answer is =” +z);
}
public static void main(String args[])
{

Demo object=new Demo();
object.input();
object.sum();
object.print_data();

}
}
In program,
Demo object=new Demo();
object.input();
object.sum();
object.print_data();
In the first line we created an object.

mu
no
tes
.in

 66

The three methods are called by using the dot operator. When we call a
method the code inside its block is executed.
The dot operator is used to call methods or access them.

4.2.1 Creating “main” in a separate class
We can create the main method in a separate class, but during compilation
you need to make sure that you compile the class with the “main”
method.
class Demo
{

privateintx,y,z;
public void input() {

x=10;
y=15;

}
public void sum()
{

z=x+y;
}
public void print_data()
{

System.out.println(“Answer is =” +z);
}

}
classSumDemo
{

public static void main(String args[])
{

Demo object=new Demo();
object.input();
object.sum();
object.print_data();

}
}

Use of dot operator
We can access the variables by using dot operator.
Following program shows the use of dot operator.
classDotDemo
{

intx,y,z;

mu
no
tes
.in

 67

public void sum(){
z=x+y;

}
public void show(){

System.out.println("The Answer is "+z);
}

}
class Demo1
{

public static void main(String args[]){
DotDemo object=new DotDemo();
DotDemo object2=new DotDemo();
object.x=10;
object.y=15;
object2.x=5;
object2.y=10;
object.sum();
object.show();
object2.sum();
object2.show();

}}
output :
C:\cc>javac Demo1.java
C:\cc>java Demo1
The Answer is 25
The Answer is 15

 Instance Variable

All variables are also known as instance variable. This is because
of the fact that each instance or object has its own copy of values for the
variables. Hence other use of the “dot” operator is to initialize the value of
variable for that instance.

4.2.2 Methods with parameters
Following program shows the method with passing parameter.
classprg
{

int n,n2,sum;
public void take(intx,int y)
{

n=x;
n2=y;

mu
no
tes
.in

 68

}
public void sum()
{

sum=n+n2;
}
public void print()
{

System.out.println("The Sum is"+sum);
}

}
class prg1
{

public static void main(String args[])
{

prgobj=new prg();
obj.take(10,15);
obj.sum();
obj.print();

}
}

4.2.3 Methods with a Return Type

At the point when technique return some worth that is the sort of
that strategy. For Instance: a few techniques are with boundary yet that
strategy didn't return any worth that implies kind of technique is void.
Furthermore, in the event that strategy return whole number worth, the
sort of technique is a whole number.

Following program shows the method with their return type.
class Demo1
{
int n,n2;
public void take(intx,int y)
{

n=x;
n=y;

}
publicintprocess()
{

return (n+n2);
}
}

mu
no
tes
.in

 69

Class prg
{

public static void main(String args[])
{

int sum;
Demo1 obj=new Demo1();
obj.take(15,25);
sum=obj.process();
System.out.println("The sum is"+sum);

}
}
Output:
The sum is25

4.2.4 Method Overloading

Method overloading means method name will be same but each
method should be different parameter list.
class prg1
{

int x=5,y=5,z=0;
public void sum()
{

z=x+y;
System.out.println("Sum is "+z);

}
public void sum(inta,int b)
{

x=a;
y=b;
z=x+y;
System.out.println("Sum is "+z);

}
Public intsum(int a)
{

x=a;
z=x+y;
return z;

}
}
class Demo
{

mu
no
tes
.in

 70

public static void main(String args[])
{

prg1obj=new prg1();
obj.sum();
obj.sum(10,12);
System.out.println(+obj.sum(15));

}
}
Output:
sum is 10
sum is 22
27

4.2.5 Passing Objects as Parameters
Objects can even be passed as parameters.
class para123
{

int n,n2,sum,mul;
public void take(intx,int y)
{

n=x;
n2=y;

}
public void sum()
{

sum=n+n2;
System.out.println("The Sum is"+sum);

}
public void take2(para123 obj)
{

n=obj.n;
n2=obj.n2;

}
public void multi()
{

mul=n*n2;
System.out.println("Product is"+mul);

}
}
classDemoPara
{

mu
no
tes
.in

 71

public static void main(String args[])
{

para123ob=new para123();
ob.take(3,7);
ob.sum();
ob.take2(ob);
ob.multi();

}
}
Output:
C:\cc>javac DemoPara.java
C:\cc>java DemoPara
The Sum is10
Product is21

We have defined a method “take2” that declares an object named
obj as parameter. We have passed ob to our method. The method “take2”
automatically gets 3,7 as values for n and n2.

4.2.6 Passing Values to methods and Constructor:
These are two different ways of supplying values to methods.
Classified under these two titles -
1.Pass by Value
2.Pass by Address or Reference
� Pass by Value-When we pass a data type like int, float or any other
datatype to a method or some constant values like(15,10). They are all
passed by value. A copy of variable’s value is passed to the receiving
method and hence any changes made to the values do not affect the actual
variables.
class Demopbv
{
int n,n2;
public void get(intx,int y)
{
x=x*x; //Changing the values of passed arguments
y=y*y; //Changing the values of passed arguments
}
}
class Demo345
{

public static void main(String args[])
{

mu
no
tes
.in

 72

inta,b;
a=1;
b=2;
System.out.println("Initial Values of a & b "+a+" "+b);
Demopbvobj=new Demopbv();
obj.get(a,b);
System.out.println("Final Values "+a+" "+b);

}
}
Output:
C:\cc>javac Demo345.java
C:\cc>java Demo345
Initial Values of a & b 1 2
Final Values 1 2
� Pass by Reference
Objects are always passed by reference. When we pass a value by
reference, the reference or the memory address of the variables is passed.
Thus any changes made to the argument causes a change in the values
which we pass.
Demonstrating Pass by Reference---
class Pass_by_Ref
{

int n,n2;
public void get(inta,int b)
{

n=a;
n2=b;

}
public void doubleit(pass_by_ref temp)
{

temp.n=temp.n*2;
temp.n2=temp.n2*2;

}
}
class apply7
{

public static void main(String args[])
{

int x=5,y=10;
pass_by_refobj=new pass_by_ref();
obj.get(x,y); //Pass by Value

mu
no
tes
.in

 73

System.out.println("Initial Values are-- ");
System.out.println(+obj.n);
System.out.println(+obj.n2);
obj.doubleit(obj); //Pass by Reference
System.out.println("Final Values are");
System.out.println(+obj.n);
System.out.println(+obj.n2);

}
}

4.2.7 Abstract Classes
Definition: An abstract class is a class that is declared as abstract. It may
or may not include abstract methods. Abstract classes cannot be
instantiated, but they can be subclass. An abstract method is a method that
is declared without an implementation (without braces, and followed by a
semicolon), like this:
abstract void studtest (introllno, double test fees);
If a class includes abstract methods, the class itself must be declared
abstract, as in:
public abstract class Graphic Object
{
// declare fields
// declare non-abstract methods
abstract void draw();
}
When an abstract class is subclass, the subclass usually provides
implementations for all of the abstract methods in its parent class.
However, if it does not, the subclass must also be declared abstract.

For example: In an object-oriented drawing application, you can draw
circles, rectangles, lines, Bezier curves, and many other graphic objects.
These objects all have certain states (for example: position, orientation,
line color, fill color) and behaviors (for example: move To, rotate, resize,
draw) in common. Some of these states and behaviors are the same for all
graphic objects—for example: position, fill color, and move To. Others
require different implementations—for example, resize or draw. All
Graphic Objects must know how to draw or resize themselves; they just
differ in how they do it. This is a perfect situation for an abstract super
class. You can take advantage of the similarities and declare all the
graphic objects to inherit from the same abstract parent object—for
example, Graphic Object, as shown in the following figure.

mu
no
tes
.in

 74

How to implement above diagram concept with source code:
abstract class Graphic Object
{
int x, y;
...
Voidmove To (intnew X, intnew Y)
{
...
}
abstract void draw();
abstract void resize();
}
Each non-abstract subclass of Graphic Object, such as Circle and
Rectangle, must provide implementations for the draw and resize
methods:
class Circle extends Graphic Object {
void draw() {
...
}
void resize() {
...
}
}
class Rectangle extends Graphic Object {
void draw() {
...
}
void resize() {
...
}
}

Abstract classes are those which can be used for creation of
objects. However their methods and constructors can be used by the child
or extended class. The need for abstract classes is that you can generalize
the super class from which child classes can share its methods. The
subclass of an abstract class which can create an object is called as
"concrete class".

mu
no
tes
.in

 75

For example:
abstract class A
{

abstract void method1();
void method2()
{
System.out.println("this is real method");
}

}
class B extends A
{

void method1()
{
System.out.println("B is execution of method1");
}

}
class demo
{

public static void main(String arg[])
{

B b=new B();
b.method1();
b.method2();

}
}

4.2.8 Extending the class:
Inheritance allows to subclass or child class to access all methods and
variables of parent class.
Syntax:
Class subclass name extends super class name
{

Varables;
Methods;
…..

}
For example: calculate area and volume by using In hertance.
class data
{

int l;
int b;

mu
no
tes
.in

 76

data(int c, int d)
{

l=c;
b=d;

}
int area()
{

return(l*b);
}

}
class data2 extends data
{

int h;
data2(intc,int d, int a)
{

super(c,d);
h=a;

}
int volume()
{

return(l*b*h);
}

}
class DataDemo
{

public static void main(String args[])
{

data2 d1=new data2(10,20,30);
int area1=d1.area(); //superclass method
int volume1=d1.volume();// subclass method
System.out.println("Area="+area1);
System.out.println("Volume="+volume1);

}
}
Output:
C:\cc>javac dataDemo.java
C:\cc>java dataDemo
Area=200
Volume=6000
"Is A" - is a subclass of a super class (ex: extends)
"Has A" - has a reference to (ex: variable, ref to object).

mu
no
tes
.in

 77

o Access Control –
Away to limit the access others have to your code.
� Same package - can access each others’ variables and
methods, except for private members.
� Outside package - can access public classes. Next, can
access members that are public. Also, can access protected
members if the class is a subclass of that class.
Same package - use package keyword in first line of source file, or
no package keyword and in same directory.
o Keywords -
1. public - outside of package access.
2. [no keyword] - same package access only.
3. protected - same package access. Access if class is a
subclass of, even if in another package.
4. private - same class access only.

4.3 SUMMARY:

In this unit, we learn the concept of class and how to create method
and how to pass parameters by value and by reference and method
overloading with example. In this unit, we also learn the concept of
inheritance.

4.4 LIST OF REFERENCES

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata

McGraw Hill.
2. An Introduction to Object oriented Programming with JAVA, C

THOMAS WU
3. www.javatpoint.com

4.5. QUESTION

1. Explain class in detail with suitable example.
2. Explain Methods with a Return Type with suitable example.
3. What is method overloading explain with suitable example.
4. Write a short note on abstract class.

mu
no
tes
.in

78

5
CONSTRUCTORS

Unit Structure
5.1. Introduction

5.1.1. Rules for creating constructor
5.1.2. Default Constructor
5.1.3. Java Parameterized Constructor
5.1.4. Constructor Overloading
5.1.5. Copy Constructor
5.1.6. Super Keyword
5.1.7. Static keyword
5.1.8. Understanding the problem without static variable
5.1.9. Java static method

5.2. Garbage Collection
5.2.1. Two types of garbage collection

5.3. Summary
5.4 List of References
5.5 Questions

5.1. INTRODUCTION

In Java, a constructor is a block of codes similar to the method. It
is called when an instance of the class is created. At the time of calling
constructor, memory for the object is allocated in the memory.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least
one constructor is called.

It calls a default constructor if there is no constructor available in
the class. In such case, Java compiler provides a default constructor by
default.

There are two types of constructors in Java:

1) Default constructor

2) Parameterized constructor.

Note: It is called constructor because it constructs the values at the time of
object creation. It is not necessary to write a constructor for a class. It is
because java compiler creates a default constructor if your class doesn't
have any.

mu
no
tes
.in

79

5.1.1. Rules for creating constructor
There are two rules defined for the constructor.
1. Constructor name must be the same as its class name
2. A Constructor must have no explicit return type
3. A Java constructor cannot be abstract, static, final, and
synchronized

5.1.2. Default Constructor
A constructor is called "Default Constructor" when it doesn't have any
parameter.
Syntax of default constructor:
<class_name>(){}
Example of default constructor
1. Java Default Constructor
//Java Program to create and call a default constructor
class Bike1{
//creating a default constructor
Bike1(){System.out.println("Bike is created");}
//main method
public static void main(String args[]){
//calling a default constructor
Bike1 b=new Bike1();
}
}
Output:
Bike is created

2. Example of default constructor that displays the default values
//Let us see another example of default constructor
//which displays the default values
class Student3{
int id;
String name;
//method to display the value of id and name
void display(){System.out.println(id+" "+name);}

public static void main(String args[]){
//creating objects
Student3 s1=new Student3();
Student3 s2=new Student3();
//displaying values of the object

mu
no
tes
.in

80

s1.display();
s2.display();
}
}
Output:
0 null
0 null
In the above class, you are not creating any constructor so compiler
provides you a default constructor. Here 0 and null values are provided by
default constructor.

5.1.3. Java Parameterized Constructor
A constructor which has a specific number of parameters is called

a parameterized constructor. The parameterized constructor is used to
provide different values to distinct objects. However, you can provide the
same values also.

Example of parameterized constructor
In this example, we have created the constructor of Student class that have
two parameters. We can have any number of parameters in the
constructor.

//Java Program to demonstrate the use of the parameterized constructor.

class Student4{

int id;

String name;

//creating a parameterized constructor

Student4(inti,String n){

id = i;

name = n;

}

//method to display the values

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

//creating objects and passing values

Student4 s1 = new Student4(111,"Karan");

Student4 s2 = new Student4(222,"Aryan");

//calling method to display the values of object

s1.display();

s2.display();

mu
no
tes
.in

81

}

}

Output:
111 Karan

222 Aryan

5.1.4. Constructor Overloading in Java
In Java, a constructor is just like a method but without return type.

It can also be overloaded like Java methods.

Constructor overloading in Java is a technique of having more than
one constructor with different parameter lists. They are arranged in a way
that each constructor performs a different task. They are differentiated by
the compiler by the number of parameters in the list and their types.

Example of Constructor Overloading
//Java program to overload constructors
class Student5{
int id;
String name;

int age;
//creating two arg constructor

Student5(inti,String n){
id = i;
name = n;
}
//creating three arg constructor

Student5(inti, Stringn, int a){
id = i;
name = n;
age=a;
}

void display(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){
Student5 s1 = new Student5(111,"Karan");
Student5 s2 = new Student5(222,"Aryan",25);

s1.display();
s2.display();
}
}

mu
no
tes
.in

82

Output:
111 Karan 0
222 Aryan 25

5.1.5. Copy Constructor
There is no copy constructor in Java. However, we can copy the values

from one object to another like copy constructor in C++.

There are many ways to copy the values of one object into another in
Java. They are:

 By constructor
 By assigning the values of one object into another
 By clone() method of Object class

In this example, we are going to copy the values of one object into
another using Java constructor.

//Java program to initialize the values from one object to another object.
class Student6{
int id;
String name;
//constructor to initialize integer and string

Student6(inti,String n){
id = i;
name = n;
}
//constructor to initialize another object

Student6(Student6 s){
id = s.id;
name =s.name;
}

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){
Student6 s1 = new Student6(111,"Karan");
Student6 s2 = new Student6(s1);

s1.display();
s2.display();
}
}
Output:
111 Karan
111 Karan

mu
no
tes
.in

83

5.1.6. Super Keyword
The super keyword in Java is a reference variable which is used to

refer immediate parent class object.

Whenever you create the instance of subclass, an instance of parent
class is created implicitly which is referred by super reference variable.

Usage of Java super Keyword
1. super can be used to refer immediate parent class instance variable.
2. super can be used to invoke immediate parent class method.
3. super() can be used to invoke immediate parent class constructor.

super is used to refer immediate parent class instance variable.
We can use super keyword to access the data member or field of

parent class. It is used if parent class and child class have same fields.
class Animal{
String color="white";
}
class Dog extends Animal{
String color="black";
voidprintColor(){
System.out.println(color);//prints color of Dog class
System.out.println(super.color);//prints color of Animal class
}
}
class TestSuper1{
public static void main(String args[]){
Dog d=new Dog();
d.printColor();
}}
Output:
black
white

In the above example, Animal and Dog both classes have a
common property color. If we print color property, it will print the color of
current class by default. To access the parent property, we need to use
super keyword.

5.1.7.static keyword
The static keyword in Java is used for memory management

mainly. We can apply static keyword with variables, methods, blocks and
nested classes. The static keyword belongs to the class than an instance of
the class.

mu
no
tes
.in

84

The static can be:
1. Variable (also known as a class variable)
2. Method (also known as a class method)
3. Block
4. Nested class

1) Java static variable
If you declare any variable as static, it is known as a static variable.

 The static variable can be used to refer to the common property of
all objects (which is not unique for each object), for example, the
company name of employees, college name of students, etc.

 The static variable gets memory only once in the class area at the
time of class loading.

Advantages of static variable
It makes your program memory efficient (i.e., it saves memory).

6.1.8. Understanding the problem without static variable
class Student{
introllno;
String name;
String college="ITS";

}

Suppose there are 500 students in my college, now all instance data
members will get memory each time when the object is created. All
students have its unique rollno and name, so instance data member is good
in such case. Here, "college" refers to the common property of all objects.
If we make it static, this field will get the memory only once.

1) Example of static variable
//Java Program to demonstrate the use of static variable
class Student{
introllno;//instance variable
String name;
static String college ="ITS";//static variable
//constructor
Student(int r, String n){
rollno = r;
name = n;
}
//method to display the values

mu
no
tes
.in

85

void display (){System.out.println(rollno+" "+name+" "+college);}
}
//Test class to show the values of objects
public class TestStaticVariable1{
public static void main(String args[]){
Student s1 = new Student(111,"Karan");
Student s2 = new Student(222,"Aryan");
//we can change the college of all objects by the single line of code
//Student.college="BBDIT";
s1.display();
s2.display();
}
}
Output:
111 Karan ITS
222 Aryan ITS

2) Program of counter by static variable
As we have mentioned above, static variable will get the memory

only once, if any object changes the value of the static variable, it will
retain its value.

//Java Program to illustrate the use of static variable which
//is shared with all objects.
class Counter2{
staticint count=0;//will get memory only once and retain its value

Counter2(){
count++;//incrementing the value of static variable
System.out.println(count);
}

public static void main(String args[]){
//creating objects
Counter2 c1=new Counter2();
Counter2 c2=new Counter2();
Counter2 c3=new Counter2();
}
}

mu
no
tes
.in

86

Output:
1
2
3

5.1.9. Java static method
If you apply static keyword with any method, it is known as static method.

 A static method belongs to the class rather than the object of a
class.

 A static method can be invoked without the need for creating an
instance of a class.

 A static method can access static data member and can change the
value of it.

Example of static method
//Java Program to demonstrate the use of a static method.
class Student{
introllno;
String name;

static String college = "ITS";
//static method to change the value of static variable

static void change(){
college = "BBDIT";
}
//constructor to initialize the variable

Student(int r, String n){
rollno = r;
name = n;
}
//method to display values

void display(){System.out.println(rollno+" "+name+" "+college);}
}
//Test class to create and display the values of object
public class TestStaticMethod{
public static void main(String args[]){
Student.change();//calling change method
//creating objects
Student s1 = new Student(111,"Karan");

mu
no
tes
.in

87

Student s2 = new Student(222,"Aryan");
Student s3 = new Student(333,"Sonoo");
//calling display method

s1.display();
s2.display();
s3.display();
}

}
Output:
111 Karan BBDIT
222 Aryan BBDIT
333 Sonoo BBDIT

5.2. GARBAGE COLLECTION

Java applications obtain objects in memory as needed. It is the task
of garbage collection (GC) in the Java virtual machine (JVM) to
automatically determine what memory is no longer being used by a Java
application and to recycle this memory for other uses. Because memory is
automatically reclaimed in the JVM, Java application developers are not
burdened with having to explicitly free memory objects that are not being
used. The GC operation is based on the premise that most objects used in
the Java code are short-lived and can be reclaimed shortly after their
creation. Because unreferenced objects are automatically removed from
the heap memory, GC makes Java memory-efficient.

Garbage collection frees the programmer from manually dealing
with memory deallocation. As a result, certain categories of application
program bugs are eliminated or substantially reduced by GC:

 Dangling pointer bugs, which occur when a piece of memory is freed
while there are still pointers to it, and one of those pointers is
dereferenced. By then the memory may have been reassigned to
another use with unpredictable results.

 Double free bugs, which occur when the program tries to free a
region of memory that has already been freed and perhaps already
been allocated again.

 Certain kinds of memory leaks, in which a program fails to free
memory occupied by objects that have become unreachable, which
can lead to memory exhaustion.

mu
no
tes
.in

88

5.2.1. Two types of garbage collection
 A minor or incremental garbage collection is said to have
occurred when unreachable objects in the young generation heap
memory are removed.

 A major or full garbage collection is said to have occurred when
the objects that survived the minor garbage collection and copied
into the old generation or permanent generation heap memory are
removed. When compared to young generation, garbage collection
happens less frequently in old generation.

To free up memory, the JVM must stop the application from
running for at least a short time and execute GC. This process is called
“stop-the-world.” This means all the threads, except for the GC threads,
will stop executing until the GC threads are executed and objects are freed
up by the garbage collector.

Modern GC implementations try to minimize blocking “stop-the-
world” stalls by doing as much work as possible on the background (i.e.
using a separate thread), for example marking unreachable garbage
instances while the application process continues to run.

Garbage collection consumes CPU resources for deciding which memory
to free. Various garbage collectors have been developed over time to
reduce the application pauses that occur during garbage collection and at
the same time to improve on the performance hit associated with garbage
collection.

The traditional Oracle HotSpot JVM has four ways of performing the
GC activity:

 Serial where just one thread executed the GC

 Parallel where multiple minor threads are executed simultaneously
each executing a part of GC

 Concurrent Mark Sweep (CMS), which is similar to parallel, also
allows the execution of some application threads and reduces the
frequency of stop-the-world GC

 G1 which is also run in parallel and concurrently but functions
differently than CMS

Many JVMs, such as Oracle HotSpot, JRockit, OpenJDK, IBM J9,
and SAP JVM, use stop-the-world GC techniques. Modern JVMs like
Azul Zing use Continuously Concurrent Compacting Collector (C4),
which eliminates the stop-the-world GC pauses that limit scalability in the
case of conventional JVMs.

mu
no
tes
.in

89

5.3. SUMMARY

In this chapter we study about constructor, Rules for creating
constructor, Default Constructor, Constructor Overloading, Copy
Constructor.

Also we study about Super Keyword, static keyword, static
method, Last point of this chapter is Garbage Collection and types of
Garbage Collection

5.4 LIST OF REFERENCES

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata
McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C
THOMAS WU

3. www.javatpoint.com

5.5 QUESTIONS

1. Write a short note on constructor.

2. Explain default contractors with suitable Example.

3. Explain Parameterized constructor with suitable example.

4. Explain static keyword.

5. write a short note on garbage collection

mu
no
tes
.in

90

Unit III

6
INHERITANCE

Unit Structure
6.0 Objective
6.1. Introduction

6.1.1. Why use inheritance in java
6.1.2. Terms used in Inheritance
6.1.3. Types of inheritance in java

6.2. Types of inheritance in java
6.2.1. Single Inheritance

6.3. Multilevel Inheritance
6.4. Hierarchical Inheritance
6.5. Multiple inheritance is not supported in java
6.6. Abstract class in Java

6.6.1. Ways to achieve Abstraction
6.7. Abstract class having constructor, data member and methods
6.8. Interface in Java
6.9. The relationship between classes and interfaces
6.10. Multiple inheritance in Java by interface
6.11. Interface inheritance
6.12. Default Method in Interface
6.13. Static Method in Interface
6.14. Difference between abstract class and interface
6.15. Summary
6.16 Questions
6.17 References

6.0 OBJECTIVE

To understand the concept of Inheritance, Types of Inheritance,
Abstract class, Difference between abstract class and interface, etc…

6.1.INTRODUCTION INHERITANCE

Inheritance in Java is a mechanism in which one object acquires all the
properties and behaviors of a parent object. It is an important part
of OOPs (Object Oriented programming system).

mu
no
tes
.in

91

The idea behind inheritance in Java is that you can create
new classes that are built upon existing classes. When you inherit from an
existing class, you can reuse methods and fields of the parent class.
Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known
as a parent-child relationship.

6.1.1. Why use inheritance in java
o For Method Overriding (so runtime polymorphism can be
achieved).

o For Code Reusability.

6.1.2. Terms used in Inheritance
o Class: A class is a group of objects which have common
properties. It is a template or blueprint from which objects are
created.

o Sub Class/Child Class: Subclass is a class which inherits the
other class. It is also called a derived class, extended class, or child
class.

o Super Class/Parent Class: Superclass is the class from where a
subclass inherits the features. It is also called a base class or a
parent class.

o Reusability: As the name specifies, reusability is a mechanism
which facilitates you to reuse the fields and methods of the existing
class when you create a new class. You can use the same fields and
methods already defined in the previous class.

6.1.3.The syntax of Java Inheritance
class Subclass-name extends Superclass-name

{

//methods and fields

}

The extends keyword indicates that you are making a new class that
derives from an existing class. The meaning of "extends" is to increase the
functionality.

In the terminology of Java, a class which is inherited is called a parent or
superclass, and the new class is called child or subclass.

mu
no
tes
.in

92

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and
Employee is the superclass. The relationship between the two classes
is Programmer IS-A Employee. It means that Programmer is a type of
Employee.

class Employee{
float salary=40000;

}

class Programmer extends Employee{
int bonus=10000;

public static void main(String args[]){
Programmer p=new Programmer();

System.out.println("Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus);

}

}

Output:
Programmer salary is:40000.0

Bonus of programmer is:10000

In the above example, Programmer object can access the field of own
class as well as of Employee class i.e. code reusability.

mu
no
tes
.in

93

6.2. TYPES OF INHERITANCE IN JAVA

On the basis of class, there can be three types of inheritance in
java: single, multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported
through interface only. We will learn about interfaces later.

When one class inherits multiple classes, it is known as multiple
inheritance. For Example:

6.2.1. Single Inheritance Example
When a class inherits another class, it is known as a single

inheritance. In the example given below, Dog class inherits the Animal
class, so there is the single inheritance.
File: TestInheritance.java
class Animal{
void eat(){System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){System.out.println("barking...");}

mu
no
tes
.in

94

}
class TestInheritance{
public static void main(String args[]){
Dog d=new Dog();
d.bark();
d.eat();
}}
Output:
barking...
eating...

6.3. MULTILEVEL INHERITANCE EXAMPLE

When there is a chain of inheritance, it is known as multilevel
inheritance. As you can see in the example given below, BabyDog class
inherits the Dog class which again inherits the Animal class, so there is a
multilevel inheritance.
File: TestInheritance2.java
class Animal{
void eat(){System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){System.out.println("barking...");}
}
class BabyDog extends Dog{
void weep(){System.out.println("weeping...");}
}
class TestInheritance2{
public static void main(String args[]){
BabyDog d=new BabyDog();
d.weep();
d.bark();
d.eat();
}}
Output:
weeping...
barking...
eating...

mu
no
tes
.in

95

6.4. HIERARCHICAL INHERITANCE

When two or more classes inherits a single class, it is known
as hierarchical inheritance. In the example given below, Dog and Cat
classes inherits the Animal class, so there is hierarchical inheritance.
File: TestInheritance3.java
class Animal{
void eat(){System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){System.out.println("barking...");}
}
class Cat extends Animal{
void meow(){System.out.println("meowing...");}
}
class TestInheritance3{
public static void main(String args[]){
Cat c=new Cat();
c.meow();
c.eat();
//c.bark();//C.T.Error
}}
Output:
meowing...
eating...

6.5. MULTIPLE INHERITANCE IS NOT SUPPORTED
IN JAVA

To reduce the complexity and simplify the language, multiple
inheritance is not supported in java.

Consider a scenario where A, B, and C are three classes. The C class
inherits A and B classes. If A and B classes have the same method and you
call it from child class object, there will be ambiguity to call the method of
A or B class.

Since compile-time errors are better than runtime errors, Java renders
compile-time error if you inherit 2 classes. So whether you have same
method or different, there will be compile time error.
class A{
void msg(){System.out.println("Hello");}

mu
no
tes
.in

96

}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B{//suppose if it were

public static void main(String args[]){
C obj=new C();
obj.msg();//Now which msg() method would be invoked?
}
}

Output:
Compile Time Error

6.6. ABSTRACT CLASS IN JAVA

A class which is declared with the abstract keyword is known as an
abstract class in Java. It can have abstract and non-abstract methods
(method with the body).

Before learning the Java abstract class, let's understand the
abstraction in Java first.

Abstraction is a process of hiding the implementation details and showing
only functionality to the user.

Another way, it shows only essential things to the user and hides
the internal details, for example, sending SMS where you type the text and
send the message. You don't know the internal processing about the
message delivery.

Abstraction lets you focus on what the object does instead of how
it does it.

6.6.1. Ways to achieve Abstraction
There are two ways to achieve abstraction in java
1. Abstract class (0 to 100%)
2. Interface (100%)

A class which is declared as abstract is known as an abstract
class. It can have abstract and non-abstract methods. It needs to be
extended and its method implemented. It cannot be instantiated.

o An abstract class must be declared with an abstract keyword.
o It can have abstract and non-abstract methods.
o It cannot be instantiated.
o It can have constructors and static methods also.

mu
no
tes
.in

97

o It can have final methods which will force the subclass not to
change the body of the method.

Example of abstract class
abstract class A{}

A method which is declared as abstract and does not have
implementation is known as an abstract method.

Example of abstract method
abstract void printStatus();//no method body and abstract

Example of Abstract class that has an abstract method
In this example, Bike is an abstract class that contains only one

abstract method run. Its implementation is provided by the Honda class.
abstract class Bike{
abstract void run();
}
class Honda4 extends Bike{
void run(){System.out.println("running safely");}
public static void main(String args[]){
Bike obj = new Honda4();
obj.run();
}
}
Output:
running safely

example of Abstract class in java
File: TestBank.java
abstract class Bank{
abstract int getRateOfInterest();
}
class SBI extends Bank{
int getRateOfInterest(){return 7;}
}
class PNB extends Bank{
int getRateOfInterest(){return 8;}
}

class TestBank{
public static void main(String args[]){
Bank b;
b=new SBI();

mu
no
tes
.in

98

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");
b=new PNB();
System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");
}}
Output:
Rate of Interest is: 7 %
Rate of Interest is: 8 %

6.7. ABSTRACT CLASS HAVING CONSTRUCTOR,
DATA MEMBER AND METHODS

An abstract class can have a data member, abstract method,
method body (non-abstract method), constructor, and even main() method.
File: TestAbstraction2.java
//Example of an abstract class that has abstract and non-abstract methods
abstract class Bike{
Bike(){System.out.println("bike is created");}
abstract void run();
void changeGear(){System.out.println("gear changed");}
}
//Creating a Child class which inherits Abstract class
class Honda extends Bike{
void run(){System.out.println("running safely..");}
}
//Creating a Test class which calls abstract and non-abstract methods
class TestAbstraction2{
public static void main(String args[]){
Bike obj = new Honda();
obj.run();
obj.changeGear();
}
}
Output:
bike is created

running safely..
gear changed

6.8. INTERFACE IN JAVA

An interface in Java is a blueprint of a class. It has static
constants and abstract methods.

mu
no
tes
.in

99

The interface in Java is a mechanism to achieve abstraction. There
can be only abstract methods in the Java interface, not method body. It is
used to achieve abstraction and multiple inheritance in Java.

In other words, you can say that interfaces can have abstract
methods and variables. It cannot have a method body.

 Java Interface also represents the IS-A relationship.
 It cannot be instantiated just like the abstract class.
 we can have default and static methods in an interface.
 we can have private methods in an interface.

Why use Java interface?
There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.
o By interface, we can support the functionality of multiple
inheritance.

o It can be used to achieve loose coupling.

How to declare an interface?
An interface is declared by using the interface keyword. It provides

total abstraction; means all the methods in an interface are declared with
the empty body, and all the fields are public, static and final by default. A
class that implements an interface must implement all the methods
declared in the interface.
Syntax:
interface <interface_name>{

// declare constant fields
// declare methods that abstract
// by default.

}

6.9. THE RELATIONSHIP BETWEEN CLASSES AND
INTERFACES

As shown in the figure given below, a class extends another class,
an interface extends another interface, but a class implements an
interface.

mu
no
tes
.in

100

Java Interface Example
In this example, the Printable interface has only one method, and its
implementation is provided in the A6 class.
interface printable{
void print();
}
class A6 implements printable{
public void print(){System.out.println("Hello");}

public static void main(String args[]){
A6 obj = new A6();
obj.print();
}
}

Output:
Hello

Java Interface Example: Bank
Let's see another example of java interface which provides the
implementation of Bank interface.
File: TestInterface2.java
interface Bank{
float rateOfInterest();
}
class SBI implements Bank{
public float rateOfInterest(){return 9.15f;}
}
class PNB implements Bank{
public float rateOfInterest(){return 9.7f;}
}
class TestInterface2{
public static void main(String[] args){
Bank b=new SBI();
System.out.println("ROI: "+b.rateOfInterest());
}}

Output:
ROI: 9.15

mu
no
tes
.in

101

6.10 MULTIPLE INHERITANCE IN JAVA BY
INTERFACE

If a class implements multiple interfaces, or an interface extends multiple
interfaces, it is known as multiple inheritance.

interface Printable{
void print();
}
interface Showable{
void show();
}
class A7 implements Printable,Showable{
public void print(){System.out.println("Hello");}
public void show(){System.out.println("Welcome");}

public static void main(String args[]){
A7 obj = new A7();
obj.print();
obj.show();
}
}
Output:

Hello
Welcome

6.11. INTERFACE INHERITANCE

A class implements an interface, but one interface extends another
interface.
interface Printable{
void print();
}

mu
no
tes
.in

102

interface Showable extends Printable{
void show();
}
class TestInterface4 implements Showable{
public void print(){System.out.println("Hello");}
public void show(){System.out.println("Welcome");}

public static void main(String args[]){
TestInterface4 obj = new TestInterface4();
obj.print();
obj.show();
}
}
Output:
Hello
Welcome

6.12. DEFAULTMETHOD IN INTERFACE

We can have method body in interface. But we need to make it
default method. Let's see an example:
File: TestInterfaceDefault.java
interface Drawable{
void draw();
default void msg(){System.out.println("default method");}
}
class Rectangle implements Drawable{
public void draw(){System.out.println("drawing rectangle");}
}
class TestInterfaceDefault{
public static void main(String args[]){
Drawable d=new Rectangle();
d.draw();
d.msg();
}}
Output:
drawing rectangle
default method

mu
no
tes
.in

103

6.13. STATIC METHOD IN INTERFACE

We can have static method in interface. Let's see an example:
File: TestInterfaceStatic.java
interface Drawable{
void draw();
static int cube(int x){return x*x*x;}
}
class Rectangle implements Drawable{
public void draw(){System.out.println("drawing rectangle");}
}

class TestInterfaceStatic{
public static void main(String args[]){
Drawable d=new Rectangle();
d.draw();
System.out.println(Drawable.cube(3));
}}
Output:
drawing rectangle
27

6.14. DIFFERENCE BETWEEN ABSTRACT CLASS AND
INTERFACE

Abstract class and interface both are used to achieve abstraction
where we can declare the abstract methods. Abstract class and interface
both can't be instantiated.

But there are many differences between abstract class and interface
that are given below.

Abstract class Interface

1) Abstract class can have abstract
and non-abstract methods.

Interface can have only
abstract methods. Since Java 8, it
can have default and static
methods also.

2) Abstract class doesn't support
multiple inheritance.

Interface supports multiple
inheritance.

3) Abstract class can have final,
non-final, static and non-static
variables.

Interface has only static and final
variables.

mu
no
tes
.in

104

4) Abstract class can provide the
implementation of interface.

Interface can't provide the
implementation of abstract class.

5) The abstract keyword is used to
declare abstract class.

The interface keyword is used to
declare interface.

6) An abstract class can extend
another Java class and implement
multiple Java interfaces.

An interface can extend another
Java interface only.

7) An abstract class can be
extended using keyword "extends".

An interface can be implemented
using keyword "implements".

8) A Java abstract class can have
class members like private,
protected, etc.

Members of a Java interface are
public by default.

9)Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable {
void draw();
}

Simply, abstract class achieves partial abstraction (0 to 100%) whereas
interface achieves fully abstraction (100%).

6.15. SUMMARY:

In this chapter we discuss the detailed concept of Inheritance, types
of inheritance, Super keyword, Abstract classes, how to use interfaces,
Static Method in Interface, Static Method in Interface, Difference between
abstract class and interface, etc..

6.16. QUESTIONS:

1) Explain the term used in Inheritance.
2) What are the types of Inheritance?
3) Explain multiple inheritances with satiable example.
4) Why multiple inheritances is not supported in java.
5) Write a short note on abstract class.
6) Write a Difference between abstract class and interface.

6.17 REFERENCE:

1) Java™: The Complete Reference, Seventh Edition
2) www.javatpoint.com

mu
no
tes
.in

105

7
PACKAGES

Unit Structure
7.0 Objective
7.1 Introduction
7.2 Creating Packages
7.3 Default Packages
7.4 Importing Packages
7.5 Using A Package
7.6 Summary
7.7 List of References
7.8 Bibliography
7.9 Model Questions

7.0 OBJECTIVE

In this chapter, you will be going to learn:
 Concept of package
 Built-In packages available
 Creating and using user defined packages

7.1 INTRODUCTION

Package in java is a mechanism to encapsulate a group of classes,
sub packages and interfaces. Package in java can be categorized in two
forms, built- in package and user defined package. Packages are used for:

 Preventing naming conflicts.
 Making searching, usage of classes, interfaces, enumerations and
annotations easier.

 Package provides access protection.

7.2 CREATING PACKAGES

The package keyword is used to create a package in java. We can
add multiple classes and interfaces to a created package by using package
name at the top of the program and saving it in package directory.

mu
no
tes
.in

106

Example:
1) //SAVE AS Addition.java
package mypack;
public class Addition
{
public void add(double a,double b)
{

System.out.println("Addition :" + (a+b));
}
}

Compiling Java Package:
Syntax: javac-d directory javafilename
javac -d . Addition.java
Here, -d specifies the destination where to put the generated class file. To
keep the package in the same directory , use .(dot).

2) // save as Factorial.java
package mypack;
import java.util.*;
public class Factorial
{
int i,fact=1;
public void fact(int number)
{
for(i=1;i<=number;i++)
{
fact=fact*i;

}
System.out.println("Factorial of "+number+" is: "+fact);
}
}

Compiling Java Package:
javac -d .Factorial.java

mu
no
tes
.in

107

7.3 DEFAULT PACKAGES

Package Description

java.io
Provides system input and output through data stream,
serialization and the file system. Example, Input Stream,
Output Stream, Print Writer, Writer etc.

java.lang
Provides classes that are fundamental to the design of the
java programming language. Example, Object, System,
Runnable etc.

java.sql
Provides the API for accessing and processing data stored
in a data source. Example, Statement, ResultSet, Drier
Manager etc.

java.time The main API for Dates, times, instances and durations.

java.util Contains collection Framework.

java.applet Contains classes for creating applet

java.awt Contains the classes for implementing the components for
graphical user interface.

java.net
Contains the classes for supporting networking
operations.

7.4 IMPORTING PACKAGES

There are two ways to access the package from outside the package.

1) Using packagename.*

Syntax: import packagename.*
Using this syntax, all the classes and interfaces of this package will

be accessible but not subpackage.

Example: import mypack.*;

2) Using packagename.classname

Syntax import packagename.classname
If you import package.classname then only declared class of this

package will be accessible.

Example: import mypack.Factorial;
import mypack.addition;

mu
no
tes
.in

108

7.5 USING A PACKAGE

Example:
import java.util.Scanner;
import mypack.Factorial;
import mypack.Addition;

class TestPackage
{
public static void main(String arg[])
{

Factorial f=new Factorial();
System.out.println("enter number to find out factorial ");
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
f.fact(n);

System.out.println("Enter 2 numbers: ");
Addition a=new Addition();
double p=sc.nextDouble();
double q=sc.nextDouble();

a.add(p,q);
}
}

Output:
enter number to find out factorial
5
Factorial of 5 is: 120
Enter 2 numbers:
5
6
Addition :11.0

mu
no
tes
.in

109

7.6 SUMMARY

In this chapter, we learn concept of package, built in collection of
packages available in java language, creating and accessing user defined
packages.

7.7 LIST OF REFERENCES

Java, A Beginner’s Guide, Eighth Edition, Herbert Schildt, McGraw Hill
Publisher

Java: The Complete Reference, Eleventh Edition, Herbert Schildt,
McGraw Hill Publisher

7.8 BIBLIOGRAPHY

 https://www.javatpoint.com/java-tutorial
 https://www.geeksforgeeks.org/java
 https://www.beginnersbook.com/java-tutorial-for-beginners-with-
examples/

 http://www.programiz.com/java-programming/
 https://docs.oracle.com/javase/tutorial/

7.9 MODEL QUESTIONS

1. Which of these keywords is used to define packages in Java?
a) pkg
b) Pkg
c) package
d) Package

2. Which of these is a mechanism for naming and visibility control of a
class and its content?
a) Object
b) Packages
c) Interfaces
d) None of the Mentioned.

3. Which of these access specifiers can be used for a class so that its
members can be accessed by a different class in the different package?
a) Public
b) Protected
c) Private
d) No Modifier

mu
no
tes
.in

110

4. Which of the following is the correct way of importing an entire
package ‘pkg’?
a) import package.;
b) Import package;
c) import package.*;
d) Import package.*;

5. What is the maximum number of Java Class files that can be kept inside
a single Java Package?
a) 8
b) 64
c) 128
d) Unlimited

6. When importing a package, the Class is actually importing ____.
a) Classes or Interfaces from the package
b) Constants
c) Methods
d) None of the above

mu
no
tes
.in

111

Unit IV

8
ENUMERATIONS, ARRAYS

Unit Structure :
8.0 Introduction
8.1 Objectives
8.2 Java Array

8.2.0 Advantages
8.2.1 Disadvantages

8.3 Types of Array in java
8.3.0 Single Dimensional Array in Java
8.3.1 Multidimensional Array in Java

8.4 Java - The Vector Class
8.5 Sample Questions

8.0 INTRODUCTION

An array is a data structure supported by all the programming
languages that stores multiple values of the same type in a fixed length
structure. Vector implements a dynamic array. It is similar to Array List.

In this chapter we will cover about Enumerations, Arrays . We
will discuss about Vector. Then we will cover Operations with Array and
Vector supported in Java. At the end we will discuss program of array and
vector in Java language.

8.1 OBJECTIVES

After going through this unit, you should be able to:
 Know theory behind Array and Vector
 Write Array Program with its different Types
 Write Vector Program with its different Methods

8.2 JAVA ARRAY

 An array is a collection of similar type of elements that have a
contiguousmemory location.

 Java array is an object which contains elements of a similar data
type.

mu
no
tes
.in

112

 It is a data structure where we store similar elements.
 We can store only a fixed set of elements in a Java array.
 Array in java is index - based, the first element of the array is stored

at the 0 index.

8.2.0 Advantages

 Code Optimization: It makes the code optimized, we can retrieve or
sort the data Efficiently.

 Random access:We can get any data located at an index position.

8.2.1 Disadvantages

 Size Limit: We can store only the fixed size of elements in the array.
It doesn't grow its size at runtime. To solve this problem, collection
framework is used in Java which grows automatically.

8.3 TYPES OF ARRAY IN JAVA

There are two types of array.
 Single Dimensional Array
 Multidimensional Array

8.3.0 Single Dimensional Array in Java

Syntax to Declare an Array in Java
1. dataType[] arr;
2. dataType []arr;
3. dataType arr[];

Instantiation of an Array in Java

1. array RefVar=new datatype[size];

Example of Java Array
Let's see the simple example of java array, where we are going to

declare, instantiate,initialize and traverse an array.

class Testarray{
public static void main(String args[]){
int a[]=new int[5];//declaration and instantiation
a[0]=10;//initializationa
[1]=20;
a[2]=70;
a[3]=90;
a[4]=10;
//traversing array

mu
no
tes
.in

113

for(int i=0;i<a.length;i++) //length is the property of array
System.out.println(a[i]);
}}
Output:
10
20
70
90
10

Declaration, Instantiation and Initialization of Java Array
We can declare, instantiate and initialize the java array together by:

int a[]={33,3,4,5,6};//declaration, instantiation and initializationLet's see
the simple example to print this array.
//Java Program to illustrate the use of declaration, instantiation
//and initialization of Java array in a single line
class Testarray1{
public static void main(String args[]){
int a[]={33,3,4,5,6};//declaration, instantiation and initialization
//printing array
for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]);
}}

Output:

33
3
4
5
6

8.3.1 Multidimensional Array in Java

In such case, data is stored in row and column based index (also known as
matrix form).

Syntax to Declare Multidimensional Array in Java

1. dataType[][] arrayRefVar;
2. dataType [][]arrayRefVar;
3. dataType arrayRefVar[][];
4. dataType []arrayRefVar[];

mu
no
tes
.in

114

Example to instantiate Multidimensional Array in Java

int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in Java

arr[0][0]=1;
arr[0][1]=2;
arr[0][2]=3;
arr[1][0]=4;
arr[1][1]=5;
arr[1][2]=6;
arr[2][0]=7;
arr[2][1]=8;
arr[2][2]=9;

Example of Multidimensional Java Array
Let's see the simple example to declare, instantiate, initialize and print the
2Dimensionalarray.
//Java Program to illustrate the use of multidimensional array
class Testarray3
{
public static void main(String args[])
{
//declaring and initializing 2D array
int arr[][]={{1,2,3},{2,4,5},{4,4,5}};
//printing 2D array
for(int i=0;i<3;i++){

for(int j=0;j<3;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}}

Output:
1 2 3
2 4 5
4 4 5

8.4 JAVA- VECTOR CLASS

Vector implements a dynamic array. It is similar to Array List, but
with two differences −

 Vector is synchronized.

mu
no
tes
.in

115

 Vector contains many legacy methods that are not part of the
collections framework.

Vector proves to be very useful if you don't know the size of the array
in advance or you justneed one that can change sizes over the lifetime of
a program.

Following is the list of constructors provided by the vector class.

Sr.No. Constructor & Description

1 Vector()
This constructor creates a default vector, which has an initial
size of 10.

2 Vector(int size)
This constructor accepts an argument that equals to the
required size, and creates a vector whose initial capacity is
specified by size.

3 Vector(Collection c)
This constructor creates a vector that contains the elements of
collection c.

4 Vector(int size, int incr)
This constructor creates a vector whose initial capacity is
specified by size and whose increment is specified by incr.
The increment specifies the number of elements to allocate
each time that a vector is resized upward.

Apart from the methods inherited from its parent classes, Vector
defines the following methods
−
Sr.No. Constructor & Description

1 void add(int index, Object element)
Inserts the specified element at the specified position in this
Vector.

2 boolean add(Object o)
Appends the specified element to the end of this Vector.

3 boolean addAll(Collection c)
Appends all of the elements in the specified Collection to the
end of this Vector, in the order that they are returned by the
specified Collection's Iterator.

4 boolean addAll(int index, Collection c)
Inserts all of the elements in in the specified Collection into
this Vectorat the specified position.

mu
no
tes
.in

116

5 void addElement(Object obj)
Adds the specified component to the end of this vector,
increasing itssize by one.

6 int capacity()
Returns the current capacity of this vector.

7 void clear()
Removes all of the elements from this vector.

8 Object clone()
Returns a clone of this vector.

9 boolean contains(Object elem)
Tests if the specified object is a component in this vector.

10 boolean containsAll(Collection c)
Returns true if this vector contains all of the elements in
the specifiedCollection.

11 void copy Into(Object[] an Array)
Copies the components of this vector into the specified array.

12 Object elementAt(int index)
Returns the component at the specified index.

13 Enumeration elements()
Returns an enumeration of the components of this vector.

14 void ensure Capacity(int min Capacity)
Increases the capacity of this vector, if necessary, to ensure
that it can hold at least the number of components specified
by the minimum capacity argument.

15 boolean equals(Object o)
Compares the specified Object with this vector for equality.

16 Object firstElement()
Returns the first component (the item at index 0) of this
vector.

17 Object get(int index)
Returns the element at the specified position in this vector.

18 int hash Code()
Returns the hash code value for this vector.

19 int index Of(Object elem)
Searches for the first occurence of the given argument,
testing forequality using the equals method.

mu
no
tes
.in

117

20 int index Of(Object elem, int index)
Searches for the first occurence of the given argument,
beginning the search at index, and testing for equality using
the equals method.

21 void insert Element At (Object obj, int index)
Inserts the specified object as a component in this vector at
thespecified index.

22 boolean is Empty()
Tests if this vector has no components.

23 Object last Element()
Returns the last component of the vector.

24 int last IndexOf(Object elem)
Returns the index of the last occurrence of the specified
object in thisvector.

25 int last Index Of (Object elem, int index)
Searches backwards for the specified object, starting from
the specifiedindex, and returns an index to it.

26 Object remove(int index)
Removes the element at the specified position in this vector.

27 boolean remove (Object o)
Removes the first occurrence of the specified element in
this vector, If the vector does not contain the element, it is
unchanged.

28 boolean remove All(Collection c)
Removes from this vector all of its elements that are
contained in thespecified Collection.

29 void remove All Elements()
Removes all components from this vector and sets its size to
zero.

30 boolean remove Element(Object obj)
Removes the first (lowest-indexed) occurrence of the
argument fromthis vector.

31 void remove Element At (int index)
remove Element At(int index).

32 protected void remove Range (int from Index, int to
Index)
Removes from this List all of the elements whose index
is between from Index, inclusive and to Index, exclusive.

mu
no
tes
.in

118

33 boolean retain All(Collection c)
Retains only the elements in this vector that are contained in
thespecified Collection.

34 Object set(int index, Object element)
Replaces the element at the specified position in this
vector with thespecified element.

35 void set Element At(Object obj, int index)
Sets the component at the specified index of this vector
to be the

36 specified object.

37 void set Size (int new Size)
Sets the size of this vector.

38 int size()
Returns the number of components in this vector.

39 List sub List (int from Index, int to Index)
Returns a view of the portion of this List between from
Index, inclusive,and to Index, exclusive.

40 Object[] toArray()
Returns an array containing all of the elements in this
vector in thecorrect order.

41 Object[] to Array(Object[] a)
Returns an array containing all of the elements in this vector
in the correct order; the runtime type of the returned array is
that of the specified array.

42 String to String()
Returns a string representation of this vector, containing
the Stringrepresentation of each element.

Example
The following program illustrates several of the methods supported by
this
collection –
import java.util.*;
public class VectorDemo
{

public static void main(String args[]){
// initial size is 3, increment is 2
Vector v =new Vector(3,2);
System.out.println("Initial size: "+ v.size());

mu
no
tes
.in

119

System.out.println("Initial capacity: "+ v.capacity());
v.addElement(newInteger(1));
v.addElement(newInteger(2));
v.addElement(newInteger(3));
v.addElement(newInteger(4));
System.out.println("Capacity after four additions: "+
v.capacity());
v.addElement(newDouble(5.45));
System.out.println("Current capacity: "+ v.capacity());
v.addElement(newDouble(6.08));
v.addElement(newInteger(7));
System.out.println("Current capacity: "+ v.capacity());
v.addElement(newFloat(9.4));
v.addElement(newInteger(10));
System.out.println("Current capacity: "+ v.capacity());
v.addElement(newInteger(11));
v.addElement(newInteger(12));
System.out.println("First element:
"+(Integer)v.firstElement());
System.out.println("Last element:
"+(Integer)v.lastElement());
if(v.contains(newInteger(3))) System.out.println("Vector
contains 3.");
// enumerate the elements in the vector.
Enumeration vEnum = v.elements();
System.out.println("\nElements in vector:");
while(vEnum.hasMoreElements())
System.out.print(vEnum.nextElement()+" ");
System.out.println();

}
}

This will produce the following result –

Output :
Initial size: 0
Initial capacity: 3
Capacity after four additions: 5 Current capacity: 5
Current capacity: 7
Current capacity: 9
First element: 1
Last element: 12
Vector contains 3.

mu
no
tes
.in

120

Elements in vector:
1 2 3 4 5.45 6.08 7 9.4 10 11 12

8.5 SAMPLE QUESTIONS

Q1. What is the need of Array ? Explain

Q2. What is Array ? Explain with Example.

Q3. What is Array ? what are the Types of Array ?

Q4. What are the Advantages of Vector Class over Java Array ?

Q5. What is vector ? Explain with Example.

Q6. Explain various methods vectors.

Q7. What is the difference between Array and Vector ?

mu
no
tes
.in

121

9

MULTITHREADING

Unit Structure :
9.0 Introduction
9.1 Objectives
9.2 Multithreading in Java

9.2.0 Advantages of Java Multithreading
9.3 Multitasking
9.4 What is Thread in java
9.5 Java Thread class
9.6 Life cycle of a Thread (Thread States)
9.7 Thread class
9.8 Synchronization in Java
9.9 Mutual Exclusive
9.10 Sample Questions

9.0 INTRODUCTION

A thread is single sequence of execution that can run
independently in an application. This unit covers the very important
concept of multithreading in programming. Uses of thread in programs
are good in terms of resource utilization of the system on which
application is running. Multithreaded programming is very useful in
network and Internet applications development. In this unit you will learn
what is multithreading, how thread works, how to write programs in Java
using multithreading. Also, in this unit will be explained about thread-
properties, synchronization, and interthread communication.

9.1 OBJECTIVES

After going through this unit, you will be able to:
 describe the concept of multithreading;
 explain the Java thread model;
 create and use threads in program;
 describe how to set the thread priorities;
 use the concept of synchronization in programming, and
 use inter-thread communication in programs.

mu
no
tes
.in

122

9.2 MULTITHREADING IN JAVA

Multithreading in java is a process of executing multiple threads
simultaneously.

Thread is basically a lightweight sub-process, a smallest unit of
processing. Multiprocessing and multithreading, both are used to achieve
multitasking.

But we use multithreading than multiprocessing because threads
share a common memory area. They don't allocate separate memory area
so saves memory, and context-switching between the threads takes less
time than process.

Java Multithreading is mostly used in games, animation etc.

9.2.0 Advantages of Java Multithreading
1) It doesn't block the user because threads are independent and you can

performmultiple operations at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if
exception occur in asingle thread.

9.3 MULTITASKING

Multitasking is a process of executing multiple tasks
simultaneously. We use multitasking to utilize the CPU. Multitasking can
be achieved by two ways:

 Process-basedMultitasking(Multiprocessing)
 Thread-based Multitasking(Multithreading)

1) Process-based Multitasking (Multiprocessing)

 Each process have its own address in memory i.e. each process
allocatesseparate memory area.

 Process is heavyweight.
 Cost of communication between the process is high.

 Switching from one process to another require some time for saving
and loadingregisters, memory maps, updating lists etc.

2) Thread-based Multitasking (Multithreading)

 Threads share the same address space.
 Thread is lightweight.
 Cost of communication between the thread is low.

mu
no
tes
.in

123

9.4 WHAT IS THREAD IN JAVA

A thread is a lightweight sub process, a smallest unit of
processing. It is a separatepath of execution.

Threads are independent, if there occurs exception in one thread, it
doesn't affect otherthreads. It shares a common memory area.

9.5 JAVA THREAD CLASS

Thread class is the main class on which java's multithreading system is
based. Thread class provide constructors and methods to create and
perform operations on a thread. Thread class extends Object class and
implements Runnable interface.

Java Thread Methods

S.N. Modifie r and
Type

Method Description

1 void start() It is used to start the
execution of thethread.

2 void run() It is used to perform action for
a thread.

3 static void sleep() It sleepsa thread for the
specifiedamount of time.

mu
no
tes
.in

124

4 static Thread current
Thread()

It returns a reference to
the currentlyexecuting thread
object.

5 void join() It waits for a thread to die.

6 int get Priority() It returns the priority of the
thread.

7 void set Priority() It changes the priority of the
thread.

8 String get Name() It returns the name of the
thread.

9 void set Name() It changes the name of the
thread.

10 long getId() It returns the id of the thread.

11 boolean isAlive() It tests if the thread is alive.

12 static void yield() It causes the currently
executing thread object to
temporarily pause and allow
other threads to execute.

13 void suspend() It is used to suspend the
thread.

14 void resume() It is used to resume the
suspended thread.

15 void stop() It is used to stop the thread.

16 void destroy() It is used to destroy the thread
group and all of its subgroups.

17 boolean is Daemon() It tests if the thread is a
daemon thread.

18 void set
Daemon()

It marks the thread as daemon
or user thread.

19 void interrupt() It interrupts the thread.

20 boolean is
interrupted()

It tests whether the thread has
been interrupted.

21 static boolean interrupted() It tests whether the current
thread has been interrupted.

22 static int active
Count()

It returns the number of active
threads in the current thread's
thread group.

mu
no
tes
.in

125

23 void check
Access()

It determines if the currently
running thread has permission
to modify the thread.

24 static boolean hold Lock() It returns true if and only if
the current thread holds the
monitor lock on the specified
object.

25 static void dump
Stack()

It is used to print a stack trace
of the current thread to the
standard error stream.

26 Stack Trace
Element[]

get Stack
Trace()

It returns an array of stack
trace elements representing
the stack dump of the thread.

27 static int enumerate() It is used to copy every active
thread's thread group and its
subgroup into the specified
array.

28 Thread. State get State() It is used to return the state of
the thread.

29 Thread Group get Thread
Group()

It is used to return the thread
group to which this thread
belongs

30 String to String() It is used to return a string
representation of this thread,
including the thread's name,
priority, and thread group.

31 void notify() It is used to give the
notification for only one
thread which is waiting for a
particular object.

32 void notify All() It is used to give the
notification to all waiting
threads of a particular object.

9.6 LIFE CYCLE OF A THREAD (THREAD STATES)

A thread can be in one of the five states. According to sun,
there is only 4 states in thread life cycle in java new, runnable, non-
runnable and terminated. There is no running state.

But for better understanding the threads, we are explaining it in the
5 states.

mu
no
tes
.in

126

The life cycle of the thread in java is controlled by JVM. The java
thread states are as follows:

1. New
2. Runnable
3. Running
4. Non-Runnable (Blocked)
5. Terminated

1) New
The thread is in new state if you create an instance of Thread class

but before theinvocation of start() method.

2) Runnable
The thread is in runnable state after invocation of start() method, but

the threadscheduler has not selected it to be the running thread.

3) Running
The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)
This is the state when the thread is still alive, but is currently not

eligible to run.

5) Terminated
A thread is in terminated or dead state when its run() method exits.

How to create thread
There are two ways to create a thread:

1. By extending Thread class
2. By implementing Runnable interface.

9.7 THREAD CLASS

Thread class provide constructors and methods to create and
perform operations on a thread. Thread class extends Object class and
implements Runnable interface.

mu
no
tes
.in

127

Commonly used Constructors of Thread class:

 Thread()
 Thread(String name)
 Thread(Runnable r)
 Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.
2. public void start(): starts the execution of the thread.JVM calls the

run() method on the thread.

3. public void sleep (long miliseconds): Causes the currently
executing thread to sleep (temporarily cease execution) for the
specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the
specified miliseconds.

6. public int getPriority(): returns the priority of the thread.
7. public int setPriority(int priority): changes the priority of the

thread.

8. public String get Name(): returns the name of the thread.
9. public void setName(String name): changes the name of the

thread.

10. public Thread current Thread(): returns the reference of currently
executing thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.
14. public void yield(): causes the currently executing thread

object totemporarily pause and allow other threads to execute.

15. public void suspend(): is used to suspend the thread (depricated).
16. public void resume(): is used to resume the suspended

thread(depricated).

17. public void stop(): is used to stop the thread (depricated).
18. public boolean is Daemon(): tests if the thread is a daemon thread.

19. public void set Daemon (boolean b): marks the thread as daemon
or userthread.

20. public void interrupt(): interrupts the thread.
21. public boolean is Interrupted(): tests if the thread has been

interrupted.

mu
no
tes
.in

128

22. public static boolean interrupted(): tests if the current thread
has beeninterrupted.

1) Java Thread Example by extending Thread class

classMulti extends Thread
{
public void run()
{
System.out.println("thread is running...");
}
public static void main(String args[])
{
Multi t1=newMulti();
t1.start();
}
}

Output: thread is running...

9.8 SYNCHRONIZATION IN JAVA

Synchronization in java is the capability to control the access of
multiple threads to anyshared resource.

Java Synchronization is better option where we want to allow
only one thread to accessthe shared resource.

Why use Synchronization ?
The synchronization is mainly used to
1. To prevent thread interference.
2. To prevent consistency problem.
Types of Synchronization
There are two types of synchronization

1. Process Synchronization
2. Thread Synchronization

Here, we will discuss only thread synchronization.

Thread Synchronization
There are two types of thread synchronization mutual exclusive and inter-
threadcommunication.

 Mutual Exclusive
 Synchronized method.
 Synchronized block.
 static synchronization.
 Cooperation (Inter-thread communication in java)

mu
no
tes
.in

129

9.9 MUTUAL EXCLUSIVE

Mutual Exclusive helps keep threads from interfering with one another
while sharingdata. This can be done by three ways in java:

 by synchronized method
 by synchronized block
 by static synchronization

class Table{
void printTable(int n){//method not synchronized
for(int i=1;i<=5;i++){
System.out.println(n*i);
try{
Thread.sleep(400);
}
catch(Exception e)
{
System.out.println(e);
}}}}
classMyThread1 extends Thread{
Table t;
MyThread1(Table t){
this.t=t;
}
public void run(){
t.printTable(5);
}}
classMyThread2 extends Thread{
Table t;
MyThread2(Table t){
this.t=t;
}
public void run(){
t.printTable(100);
}
}
class TestSynchronization1{
public static void main(String args[]){
Table obj = new Table();//only one object
MyThread1 t1=newMyThread1(obj);
MyThread2 t2=newMyThread2(obj);

mu
no
tes
.in

130

t1.start();
t2.start();
}}

Output:
5
100
10
200
15
300
20
400
25
500

9.10 SAMPLE QUESTIONS

Q1. How does multithreading take place on a computer with a single
CPU?

Q2. State the advantages of multithreading.
Q3. Explain how a thread is created by extending the Thread class.
Q4. Explain Lifecycle of Thread.
Q5. Explain the need of synchronized method
Q6. List And Explain Various Methods of Thread

mu
no
tes
.in

131

10
EXCEPTIONS

Unit Structure :
10.0 Introduction
10.1 Objectives
10.2 Exception Handling in Java
10.3 Hierarchy of Java Exception classes
10.4 Types of Exception
10.5 Common scenarios where exceptions may occur
10.6 Java Exception Handling Keywords
10.7 Java try block
10.8 Java catch block
10.9 Java finally block
10.10 Java throw exception
10.11 Java throws keyword
10.12 Difference between throw and throws in Java
10.13 Sample Questions

10.0 INTRODUCTION

During programming in languages like c, c++ you might have
observed that even after successful compilation some errors are detected
at runtime. For handling these kinds of errors there is no support from
programming languages like c, c++. Some error handling mechanisms
like returning special values and setting flags are used to determine that
there is some problem at runtime. In C++ programming language there is
a very basic provision for exception handling. Basically exception
handlings provide a safe escape route from problem or clean-up of error
handling code. In Java exception handling is the only semantic way to
report error .In Java exception is an object, which describes error
condition, occurs in a section of code. In this unit we will discuss how
exceptions are handled in Java, you will also learn to create your own
exception classes in this unit.

10.1 OBJECTIVES

After going through this unit you will be able to:
 describe exception;
 explain causes of exceptions;
 writing programs with exceptions handling;

mu
no
tes
.in

132

 use built–in exceptions;
 create your own exception classes.

10.2 EXCEPTION HANDLING IN JAVA

The exception handling in java is one of the powerful
mechanism to handle the runtime errors so that normal flow of the
application can be maintained.

In this page, we will learn about java exception, its type and
the difference betweenchecked and unchecked exceptions.

What is exception
Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the
program. It is anobject which is thrown at runtime.

What is exception handling
Exception Handling is a mechanism to handle runtime errors such as
Class Not Found,IO, SQL, Remote etc.

Advantage of Exception Handling
The core advantage of exception handling is to maintain the

normal flow of the application. Exception normally disrupts the normal
flow of the application that is why we use exception handling. Let's take a
scenario:

1. statement 1;
2. statement 2;
3. statement 3;
4. statement 4;
5. statement 5;//exception occurs
6. statement 6;
7. statement 7;
8. statement 8;
9. statement 9;
10. statement 10;

Suppose there is 10 statements in your program and there occurs
an exception at statement 5, rest of the code will not be executed i.e.
statement 6 to 10 will not run. If we perform exception handling, rest of
the statement will be executed. That is why we use exception handling in
java.

mu
no
tes
.in

133

10.3 HIERARCHY OF JAVA EXCEPTION CLASSES

10.4 TYPE OF EXCEPTION

There are mainly two types of exceptions: checked and unchecked
where error is considered as unchecked exception. The sun micro system
says there are three types of exceptions:

1. Checked Exception
2. Unchecked Exception
3. Error

Difference between checked and unchecked exceptions
1) Checked Exception

The classes that extend Throwable class except Runtime
Exception and Error are known as checked exceptions e.g. IO

mu
no
tes
.in

134

Exception, SQL Exception etc. Checked exceptions are checked at
compile-time.

2) Unchecked Exception
The classes that extend Runtime Exception are known as

unchecked exceptions e.g. Arithmetic Exception, Null Pointer Exception,
Array Index Out Of Bounds Exception etc.Unchecked exceptions are not
checked at compile-time rather they are checked at runtime.

3) Error
Error is irrecoverable e.g. out of Memory Error, Virtua Machine

Error, Assertion Error etc.

10.5 COMMOM SCENARIOS WHERE EXCEPTION
MAY OCCUR

There are given some scenarios where unchecked exceptions
can occur. They are asfollows:

1) Scenario where Arithmetic Exception occurs
If we divide any number by zero, there occurs an Arithmetic Exception.

1. int a=10/0;//ArithmeticException

2) Scenario where Null Pointer Exception occurs

If we have null value in any variable, performing any operation
by the variable occursan Null Pointer Exception.

1. String s=null;
2. System.out.println (s.length());//Null Pointer Exception

3) Scenario where Number Format Exception occurs
The wrong formatting of any value, may occur Number

Format Exception. Suppose Ihave a string variable that have characters,
converting this variable into digit will occur Number Format Exception.

1. String s="abc";
2. int i=Integer.parseInt(s);//Number Format Exception

4) Scenario where Array Index Out Of Bounds Exception occurs
If you are inserting any value in the wrong index, it would result

Array Index Out Of Bounds Exception as shown below:

1. int a[]=new int[5];
2. a[10]=50; //Array Index Out Of Bounds Exception

mu
no
tes
.in

135

10.6 JAVA EXCEPTION HANDLING KEYWORDS

There are 5 keywords used in java exception handling.

1. try
2. catch
3. finally
4. throw
5. throws

10.7 JAVA TRY BLOCK

Java try block is used to enclose the code that might throw an
exception. It must beused within the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch
try{
//code that may throw exception
}catch(Exception_class_Name ref){}
Syntax of try-finally block
try{
//code that may throw exception
}finally{}

10.8 JAVA CATCH BLOCK

Java catch block is used to handle the Exception. It must be
used after the try blockonly.

You can use multiple catch block with a single try.

Problem without exception handling
Let's try to understand the problem if we don't use try-catch block.

public class Testtrycatch1{
public static void main(String args[]){
int data=10/0;//may throw exception
System.out.println("rest of the code...");
}
}

Output:

Exception in thread main java.lang. Arithmetic Exception:/ by zero

mu
no
tes
.in

136

10.9 JAVA FINALLY BLOCK

Java finally block is a block that is used to execute important
code such as closingconnection, stream etc.

Java finally block is always executed whether exception is
handled or not.Java finally block follows try

Usage of Java finally
Let's see the different cases where java finally block can be used.

Case 1
Let's see the java finally example where exception doesn't occur.

class Test Finally Block{
public static void main(String args[]){
try{
int data=25/5;
System.out.println(data);
}
catch(Nul Pointer Exception e){System.out.println(e);}
finally{System.out.println("finally block is always executed");}
System.out.println("rest of the code...");
}
}

mu
no
tes
.in

137

Output:5

finally block is always executedrest of the code...

10.10 JAVA THROW EXCEPTION

Java throw keyword
The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by
throw keyword. The throw keyword is mainly used to throw custom
exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

throw exception;

Let's see the example of throw IO Exception.

throw new IO Exception("sorry device error);

java throw keyword example
In this example, we have created the validate method that takes

integer value as a parameter. If the age is less than 18, we are throwing
the Arithmetic Exception otherwise print a message welcome to vote.

public class TestThrow1{
static void validate(int age){
if(age<18)
throw new Arithmetic Exception("Age not valid");
else
System.out.println("welcome You can vote");
}
public static void main(String args[]){
validate(12);
System.out.println("rest of the code...");
}
}

Output:

Exception in thread main java.lang. Arithmetic Exception:not valid

10.11 JAVA THROWS KEYWORD

The Java throws keyword is used to declare an exception. It
gives an information to the programmer that there may occur an

mu
no
tes
.in

138

exception so it is better for the programmer to provide the exception
handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked
exceptions. If there occursany unchecked exception such as Null Pointer
Exception, it is programmers fault that he is not performing check up
before the code being used.

Syntax of java throws

return_type method_name() throws exception_class_name{
//method code }

Which exception should be declared ?
Ans : checked exception only, because:

 unchecked Exception: under your control so correct your code.
 error: beyond your control e.g. you are unable to do anything if
there occursVirtual Machine Error or Stack Over flow Error.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call
stack). It provides information to the caller of the method about the
exception

Java throws example
Let's see the example of java throws clause which describes

that checked exceptionscan be propagated by throws keyword.

import java.io.IOException;
class Testthrows1{
void m()throws IOException{
throw new IOException("device error");//checked exception

}
void n()throws IOException{
m();
}
void p(){
try{
n();
}catch(Exception e){System.out.println("exception handled");}
}
public static void main(String args[]){
Testthrows1 obj=new Testthrows1();

mu
no
tes
.in

139

obj.p();
System.out.println("normal flow...");
}
}
Output:

exception handlednormal flow...

10.12 DIFFRENCE BETWEEN THROW AND THROWS
IN JAVA

There are many differences between throw and throws keywords. A list
of differencesbetween throw and throws are given below:

Sr.No throw throws
1 Java throw keyword is used

to explicitly throw an
exception.

Java throws keyword is used to
declare exception.

2 Checked exception cannot
propagated using throw
only.

Checked exception can be
propagated with throws.

3 Throw is followed by an
instance.

Throws is followed by class.

4 Throw is used within the
method.

Throws is used with the
method signature.

5 You cannot throw multiple
exceptions.

You can declare multiple
exceptions eg. public void
method()throws IO Exception,
SQL Exception.

10.13 SAMPLE QUESTIONS

Q1. What is an exception? Write any three actions that can be taken after
an exception occurs in a program.

Q2. Write a program to catch more than two exceptions.
Q3. Write a partial program to show the use of finally clause.
Q4. Differentiate between checked and unchecked exceptions.
Q5. Explain how you can throw an exception from a method in Java.
Q6.Write a program to create your own exception subclass that throws

exception if the sum of two integers is greater that 99.
Q7.Draw and Explain Exception class Hirerchy in detail.
Q8.Differentiate between throw and throws exceptions / Keywords.

mu
no
tes
.in

140

11
BYTE STREAMS

Unit Structure :
11.0 Introduction
11.1 Objectives
11.2 Java I/O Tutorial
11.3 Stream
11.4 Output Stream vs Input Stream
11.5 Output Stream class
11.6 Input Stream class
11.7 Java File Output Stream Class
11.8 Java File Input Stream Class
11.9 Java Byte Array Output Stream Class
11.10 Java Byte Array Input Stream Class
11.11 Java Char Array Writer Class
11.12 Java File Class
11.13 Reading and Writing Files
11.14 Sample Questions

11.0 INTRODUCTION

Input is any information that is needed by a program to complete
its execution. Output is any information that the program must convey to
the user. Input and Output are essential for applications development. To
accept input a Java program opens a stream to a data source, such as a file
or remote socket, and reads the information serially. Whether reading data
from a file or from a socket, the concept of serially reading from, and
writing to, different data sources is the same. For that very reason, it is
essential to understand the features of top-level classes (Java.io.Reader,
Java.io.Writer). In this unit you will be working on some basics of I/O
(Input–Output) in Java such as Files creation through streams in Java
code. A stream is a linear, sequential flow of bytes of input or output data.
Streams are written to the file system to create files. Streams can also be
transferred over the Internet. In this unit you will learn the basics of Java
streams by reviewing the differences between byte and character streams,
and the various stream classes available in the Java.io package. We will
cover the standard process for standard Input (Reading from console) and
standard output (writing to console).

mu
no
tes
.in

141

11.1 OBJECTIVES

After going through this unit you will be able to:
 explain basics of I/O operations in Java;
 use stream classes in programming;
 take inputs from console;
 write output on console;
 read from files, and
 write to files.

11.2 JAVA I/O TUTORIAL

Java I/O (Input and Output) is used to process the input and produce the
output.

Java uses the concept of a stream to make I/O operation fast. The
java.io package contains all the classes required for input and output
operations.

We can perform file handling in Java by Java I/O API.

11.3 STREAM

A stream is a sequence of data. In Java, a stream is composed of
bytes. It's called a streambecause it is like a stream of water that continues
to flow.

In Java, 3 streams are created for us automatically. All these
streams are attached with theconsole.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and an error message to the console.

System.out.println("simple message");
System.err.println("error message");

Let's see the code to get input from console.

int i=System.in.read();//returns ASCII code of 1st character
System.out.println((char)i);//will print the character

mu
no
tes
.in

142

11.4 OUTPUT STREAM VS INPUT STREAM

The explanation of Output Stream and Input Stream classes are
given below:

Output Stream
Java application uses an output stream to write data to a

destination; it may be a file, an array,peripheral device or socket.

Input Stream
Java application uses an input stream to read data from a source; it

may be a file, an array,peripheral device or socket.

Let's understand the working of Java Output Stream and Input
Stream by the figure given below.

11.5 OUTPUT STREAM

Output Stream class is an abstract class. It is the super class of all
classes representing an output stream of bytes. An output stream accepts
output bytes and sends them to some sink.

Useful methods of Output Stream

Method Description

public void write(int)throws
IOException

is used to write a byte to the current
output stream.

public void write(byte[])throws
IOException

is used to write an array of byte to
thecurrent output stream.

public void flush()throws
IOException

flushes the current output stream.

public void close()throws
IOException

is used to close the current output
stream.

11.6 INPUT STREAM CLASS

Input Stream class is an abstract class. It is the superclass of all
classes representing an inputstream of bytes.

mu
no
tes
.in

143

Useful methods of Input Stream

Method Description

public abstract int read()throws IO
Exception

reads the next byte of data from the
input stream.It returns -1 at the end
of the file.

public int available()throws IO
Exception

returns an estimate of the number
of bytes that can be read from the
current input stream.

public void close()throws IO
Exception

is used to close the current input
stream.

11.7 JAVA FILE OUTPUT STREAM CLASS

Java File Output Stream is an output stream used for writing data to a file.

If you have to write primitive values into a file, use File Output
Stream class. You can write byte- oriented as well as character-oriented
data through File Output Stream class. But, for character- oriented data, it
is preferred to use File Writer than File Output Stream.

File Output Stream class declaration
Let's see the declaration for Java.io.File Output Stream class:

1. public class File Output Stream extends Output Stream

File Output Stream class methods

Method Description
protected void finalize() It is used to clean up the connection

with the file outputstream.
void write(byte[] ary) It is used to write ary.length bytes

from thebyte array to the file output
stream.

void write(byte[] ary, int off, int
len)

It is used to write len bytes from the
byte array startingat offset off to the
file output stream.

void write(int b) It is used to write the specified byte
to the file outputstream.

File Channel get Channel() It is used to return the file channel
object associatedwith the file output
stream.

File Descriptor get FD() It is used to return the file descriptor
associated withthe stream.

void close() It is used to closes the file output
stream.

mu
no
tes
.in

144

Java FileOutputStream Example 1: write byte
import java.io.FileOutputStream;
public class FileOutputStreamExample {
public static void main(String args[]){
try{
FileOutputStream fos=new FileOutputStream("D:\\test.txt");
fos.write(65);
fos.close();
System.out.println("success...");
}
catch(Exception e)
{System.out.println(e);}
}
}

Output:

Success...
The content of a text file test.txt is set with the data A.test.txt
A
Java FileOutputStream example 2: write string
import java.io.FileOutputStream;
public class FileOutputStreamExample {
public static void main(String args[]){
try{
FileOutputStream fos=new FileOutputStream("D:\\test.txt");
String s="Welcome to java.";
byte b[]=s.getBytes();//converting string into byte array
fos.write(b);
fos.close();
System.out.println("success ! check text file...");
}catch(Exception e){System.out.println(e);}
}
}

Output:

Success...
The content of a text file test.txt is set with the dataWelcome to java.
test.txt

Welcome to java.

mu
no
tes
.in

145

11.8 JAVA FILEINPUTSTREAM CLASS

Java File Input Stream class obtains input bytes from a file. It is
used for reading byte-oriented data (streams of raw bytes) such as image
data, audio, video etc. You can also read character- stream data. But, for
reading streams of characters, it is recommended to use File Reader class.

Java File Input Stream class declaration
Let's see the declaration for java.io.File Input Stream class:

1. public class File Input Stream extends Input Stream

Java FileInput Stream class methods

Method Description

int available() It is used to return the estimated
number of bytes that canbe read from
the input stream.

int read() It is used to read the byte of data
from the input stream.

int read(byte[] b) It is used to read up to b.length bytes
of data from theinput stream.

int read(byte[] b, intoff, int len) It is used to read up to len bytes of
data from the inputstream.

long skip(long x) It is used to skip over and discards x
bytes of data from theinput stream.

File Channel get Channel() It is used to return the unique File
Channel object associated with the
file input stream.

File Descriptorget FD() It is used to return the File Descriptor
object.

protected voidfinalize() It is used to ensure that the close
method is call when thereis no more
reference to the file input stream.

void close() It is used to closes the stream.

11.9 JAVA BYTE ARRAY OUTPUT STREAM CLASS

Java Byte Array Output Stream class is used to write common
data into multiple files. In thisstream, the data is written into a byte array
which can be written to multiple streams later.

The Byte Array Output Stream holds a copy of data and forwards
it to multiple streams. The buffer of Byte Array Output Stream
automatically grows according to data.

mu
no
tes
.in

146

Java Byte Array Output Stream class declaration
Let's see the declaration for Java.io.Byte Array Output Stream class:

1. public class Byte Array Output Stream extends Output Stream

Java Byte Array Output Stream class constructors

Constructor Description
Byte Array Output Stream() Creates a new byte array output

stream with the initial capacity of
32 bytes, though its size increases
if necessary.

Byte Array Output Stream (int size) Creates a new byte array output
stream, with a buffer capacity of
the specified size, in bytes.

Java Byte Array Output Stream class methods

Method Description

int size() It is used to returns the current size of a
buffer.

byte[] to Byte Array() It is used to create a newly allocated byte
array.

String to String() It is used for converting the content into
a string decoding bytes using a platform
defaultcharacter set.

String to String (String
charset Name)

It is used for converting the content into a
string decoding bytes using a specified
charset Name.

void write(int b) It is used for writing the byte specified to
the bytearray output stream.

void write(byte[] b, int
off,int len

It is used for writing len bytes from
specified bytearray starting from the offset
off to the byte array output stream.

void write To (Output
Streamout)

It is used for writing the complete content
of a bytearray output stream to the specified
output stream.

void reset() It is used to reset the count field of a byte
arrayoutput stream to zero value.

void close() It is used to close the Byte Array Output
Stream.

mu
no
tes
.in

147

A

A

Example of Java Byte Array Output Stream
Let's see a simple example of java Byte Array Output Stream class to
write common data into 2files: f1.txt and f2.txt.

import java.io.*;
public class Data Stream Example {
public static void main(String args[])throws Exception{
File Output Stream fos1=new File Output Stream("D:\\test1.txt");
File Output Stream fos2=new File Output Stream("D:\\test2.txt");7.
Byte Array Output Stream bos=new Byte Array Output Stream();
bos.write(65);
bos.writeTo(fout1);
bos.writeTo(fout2);
bos.flush();
bos.close();//has no effect
System.out.println("Success...");
}
}
Output:

test1.txt:

test2.txt:

11.10 JAVA BYTE ARRAY INPUT STREAM CLASS

The Byte Array Input Stream is composed of two words: Byte
Array and Input Stream. As the namesuggests, it can be used to read byte
array as input stream.

Java Byte Array Input Stream class contains an internal buffer
which is used to read byte array asstream. In this stream, the data is read
from a byte array.

The buffer of Byte Array Input Stream automatically grows
according to data.

Java Byte Array Input Stream class declaration
Let's see the declaration for Java.io.Byte Array Input Stream class:

1. public class Byte Array Input Stream extends Input Stream

Java Byte Array Input Stream class constructors

Success...

mu
no
tes
.in

148

Constructor Description

Byte Array Input Stream(byte[] ary) Creates a new byte array input
stream whichuses ary as its buffer
array.

Byte Array Input Stream(byte[] ary,
int offset, int len)

Creates a new byte array input
stream which uses ary as its buffer
array that can read up to specified
len bytes of data from an array.

Java Byte Array Input Stream class methods

Methods Description

int available() It is used to return the number of
remaining bytes thatcan be read from the
input stream.

int read() It is used to read the next byte of data
from the inputstream.

int read(byte[] ary, int off,
int len)

It is used to read up to len bytes of data
from an arrayof bytes in the input stream.

boolean mark Supported() It is used to test the input stream for mark
and resetmethod.

long skip(long x) It is used to skip the x bytes of input from
the inputstream.

void mark (int read Ahead
Limit)

It is used to set the current marked
position in the stream.

void reset() It is used to reset the buffer of a byte
array.

void close() It is used for closing a Byte Array Input
Stream.

Example of Java Byte Array Input Stream
Let's see a simple example of java Byte Array Input Stream class to read
byte array as inputstream.

import java.io.*;
public class Read Example {
public static void main(String[] args) throws IO Exception {

byte[] buf = { 35, 36, 37, 38 };
// Create the new byte array input stream
Byte Array Input Stream byt = new Byte Array Input Stream(buf);

mu
no
tes
.in

149

int k = 0;
while ((k = byt.read()) != -1) {
//Conversion of a byte into character
char ch = (char) k;
System.out.println("ASCII value is:" + k + "; Special character is: " + ch);
}
}
}

Output:

ASCII value is:35; Special character is: #
ASCII value is:36; Special character is: $
ASCII value is:37; Special character is: %
ASCII value is:38; Special character is: &

Java Char Array Reader Class
The Char Array Reader is composed of two words: Char Array and
Reader. The Char Array Readerclass is used to read character array as a
reader (stream). It inherits Reader class.
Java Char Array Reader class declaration
Let's see the declaration for Java.io.Char Array Reader class:

1. public class Char Array Reader extends Reader

Java Char Array Reader class methods
Method Description

int read() It is used to read a single character

int read(char[] b, int off, intlen) It is used to read characters into the
portion of anarray.

boolean ready() It is used to tell whether the stream is
ready to read.

boolean mark Supported() It is used to tell whether the stream
supports mark()operation.

long skip(long n) It is used to skip the character in the
input stream.

void mark(int read Ahead Limit) It is used to mark the present position
in the stream.

void reset() It is used to reset the stream to a most
recent mark.

Example of Char Array Reader Class:
Let's see the simple example to read a character using Java Char

Array Reader class.

mu
no
tes
.in

150

import java.io.CharArrayReader;
public class CharArrayExample{
public static void main(String[] ag) throws Exception
{
char[] ary = { 'j', 'a', 'v', 'a'};
CharArrayReader reader = new CharArrayReader(ary);
int k = 0;
// Read until the end of a file
while ((k = reader.read()) != -1) {
char ch = (char) k;
System.out.print(ch + " : ");
System.out.println(k);
}
}
}

Output :

j : 106
a : 97
v : 118
a : 97

11.11 JAVA CHAR ARRAYWRITER CLASS

The Char Array Writer class can be used to write common data to
multiple files. This class inherits Writer class. Its buffer automatically
grows when data is written in this stream. Calling the close() method on
this object has no effect.

Java Char Array Writer class declaration
Let's see the declaration for Java.io.Char Array Writer class:

public class Char Array Writer extendsWriter

Java Char Array Writer class Methods
Method Description

int size() It is used to return the current size of
thebuffer.

char[] to Char Array() It is used to return the copy of an input
data.

String to String() It is used for converting an input data
toa string.

mu
no
tes
.in

151

Char Array Writer append
(char c)

It is used to append the specified
character to the writer.

Char Array Writer append
(Char Sequence csq)

It is used to append the specified
character sequence to the writer.

Char Array Writer append
(Char Sequence csq, int start,
intend)

It is used to append the subsequence of
aspecified character to the writer.

void write(int c) It is used to write a character to the
buffer.

void write(char[] c, int off,
int len)

It is used to write a character to the
buffer.

void write(String str, int off,
int len)

It is used to write a portion of string to
the buffer.

void write To(Writer out) It is used to write the content of buffer
to different character stream.

void flush() It is used to flush the stream.

void reset() It is used to reset the buffer.

void close() It is used to close the stream.

Example of Char Array Writer Class:
In this example, we are writing a common data to 4 files a.txt, b.txt, c.txt
and d.txt.

import java.io.CharArrayWriter;
import java.io.FileWriter;
public class CharArrayWriterExample {
public static void main(String args[])throws Exception{
CharArrayWriter out=new CharArrayWriter();
out.write("Welcome to java");
FileWriter f1=new FileWriter("D:\\testa.txt");
FileWriter f2=new FileWriter("D:\\ testb.txt");
FileWriter f3=new FileWriter("D:\\ testc.txt");
FileWriter f4=new FileWriter("D:\\ testd.txt");
out.writeTo(f1);
out.writeTo(f2);
out.writeTo(f3);
out.writeTo(f4);
f1.close();
f2.close();
f3.close();

mu
no
tes
.in

152

f4.close();
System.out.println("Success...");
}
}

Output

Success...
After executing the program, you can see that all files have

common data: Welcome tojava.

testa.txt:

Welcome to java
testb.txt:
c.txt:

Welcome to java
testd.txt:

Welcome to java

11.12 JAVA FILE CLASS

The File class is an abstract representation of file and directory
pathname. A pathname can beeither absolute or relative.

The File class have several methods for working with directories
and files such as creating newdirectories or files, deleting and renaming
directories or files, listing the contents of a directoryetc.

Fields

Modifier Type Field Description

static String path Separator It is system-dependent path-
separator character, represented as
a string for convenience.

static char path Separator
Char

It is system-dependent path-
separator character.

static String separator It is system-dependent default
name-separator character,
represented as a string for
convenience.

static char separator Char It is system-dependent default
name-separator character.

mu
no
tes
.in

153

Constructors

Constructor Description

File(File parent, Stringchild) It creates a new File instance from a
parent abstract pathname and a child
pathname string.

File(String pathname) It creates a new File instance by
converting the given pathname string
into an abstract pathname.

File(String parent,String child) It creates a new File instance from a
parent pathname string and a child
pathname string.

File(URI uri) It creates a new File instance by
converting the givenfile: URI into an
abstract pathname.

Useful Methods

Modifier and
Type

Method Description

static File create Temp
File(String prefix,
String suffix)

It creates an empty file in the
default temporary-file directory,
using the given prefix and suffix
to generate its name.

boolean create New File() It atomically creates a new,
empty file named by this
abstract pathname if and only if
a file with this name does not
yet exist.

boolean canWrite() It tests whether the application
can modify the file denoted by
this abstract pathname.String[]

boolean canExecute() It tests whether the application
can execute the file denoted by
this abstract pathname.

boolean canRead() It tests whether the application
can
read the file denoted by this
abstract pathname.

boolean isAbsolute() It tests whether this abstract
pathname is absolute.

mu
no
tes
.in

154

boolean isDirectory() It tests whether the file denoted
by this abstract pathname is a
directory.

boolean isFile() It tests whether the file denoted
by this abstract pathname is a
normal file.

String getName() It returns the name of the file or
directory denoted by this
abstract pathname.

String getParent() It returns the pathname string of
this abstract pathname's parent,
or null if this pathname does not
name a parent directory.

Path toPath() It returns a java.nio.file.Path
object constructed from the this
abstract path.

URI toURI() It constructs a file: URI that
represents this abstract
pathname.

File[] listFiles() It returns an array of abstract
pathnames denoting the files in
the directory denoted by this
abstract pathname

long get Free Space() It returns the number of
unallocated bytes in the
partition named by this abstract
path name.

String[] list (Filename Filter
filter)

It returns an array of strings
naming the files and directories
in the directory denoted by this
abstract pathname that satisfy
the specified filter.

boolean mkdir() It creates the directory named
by this abstract pathname.

Java File Example 1
import java.io.*;
public class FileDemo {
public static void main(String[] args)
{
try {
File file = new File("javaFile123.txt");
if (file.createNewFile()) {
System.out.println("New File is created!");

mu
no
tes
.in

155

} else {
System.out.println("File already exists.");
}
} catch (IOException e) {
e.printStackTrace();
}
}
}

Output:

New File is created!
Java File Example 2
import java.io.*;
public class FileDemo2 {
public static void main(String[] args) {
String path = "";
boolean bool = false;
try {
// createing new files
File file = new File("testFile1.txt");
file.createNewFile();
System.out.println(file);
// createing new canonical from file object
File file2 = file.getCanonicalFile();
// returns true if the file exists
System.out.println(file2);
bool = file2.exists();
// returns absolute pathname
path = file2.getAbsolutePath();
System.out.println(bool);
// if file exists
if (bool) {
// prints
System.out.print(path + " Exists? " + bool);
}
} catch (Exception e) {
// if any error occurs
e.printStackTrace();
}
}
}

mu
no
tes
.in

156

testFile1.txt
/home/Work/Project/File/t
estFile1.txttrue
/home/Work/Project/File/testFile1.txt Exists? true

Output:

Java File Example 3
import java.io.*;
public class File Example {
public static void main(String[] args) {
File f=new File("/Users/test/Documents");
String filenames[]=f.list();
for(String filename:filenames){
System.out.println(filename);
}
}
}

Output:
bestreturn_orgtest.rtf BIODATA10.pagesBIODATA1.pdf BIODATA9.png
struts2jars_test.zip workspace_test
Java File Example 4
import java.io.*;
public class FileExample {
public static void main(String[] args) {
File dir=new File("/Users/Test/Documents");
File files[]=dir.listFiles();
for(File file:files){
System.out.println(file.getName()+" Can Write: "+file.canWrite()+"
Is Hidden: "+file.isHidden()+" Length: "+file.length()+" bytes");
}
}
}

Output:

apache-tomcat-9.0.0.M19 Can Write: true Is Hidden: false Length: 476
bytes
apache-tomcat-9.0.0.M19.tar Can Write: true Is Hidden: false Length:
13711360 bytes
bestreturn_org.rtf Can Write: true Is Hidden: false Length: 389 bytes
BIODATA10.pages Can Write: true Is Hidden: false Length: 707985

mu
no
tes
.in

157

InputStream f = new FileInputStream("C:/java/hello");

bytes BIODATA1.pdf Can Write: true Is Hidden: false Length: 69681
bytes BIODATA5.png Can Write: true Is Hidden: false Length: 282125
bytes workspace Can Write: true Is Hidden: false Length: 1972 bytes

11.13 READING ANDWRITING FILES

As described earlier, a stream can be defined as a sequence
of data. The Input Stream is used to read data from a source
and the Output Stream is used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

The two important streams are File Input Stream and File
Output Stream, which would be discussed in this tutorial.

File Input Stream
This stream is used for reading data from the files. Objects can be

created using the keyword new and there are several types of constructors
available.

Following constructor takes a file name as a string to create an input
streamobject to read the file −

Following constructor takes a file object to create an input stream object

toread the file. First we create a file object using File() method as follows
−
File f = new File("C:/java/hello");

mu
no
tes
.in

158

Once you have Input Stream object in hand, then there is a list of
helper methods which can be used to read to stream or to do other
operations on the stream.

Sr.No. Method & Description

1 public void close() throws IO Exception{}

This method closes the file output stream. Releases any
system resources associated with the file. Throws an IO
Exception.

2 protected void finalize()throws IO Exception {}

This method cleans up the connection to the file. Ensures
that the close method of this file output stream is called
when there are no more references to this stream. Throws
an IO Exception.

3 public int read(int r)throws IO Exception{}

This method reads the specified byte of data from the
InputStream. Returns an int. Returns the next byte of data
and -1 will be returned if it's the end of the file.

4 public int read(byte[] r) throws IO Exception{}

This method reads r. length bytes from the input stream into
an array. Returns the total number of bytes read. If it is the
end of the file, -1 will be returned.

5 public int available() throws IO Exception{}

Gives the number of bytes that can be read from this file
input stream.Returns an int.

11.14 SAMPLE QUESTIONS

Q1. What is stream? Differentiate between stream source and stream
destination.

Q2. Write a program for I/O operation using Buffered Input Stream and
Buffered Output Stream

Q3. Write a program using File Reader and Print Writer classes for file
handling.

Q4. Which class may be used for reading from console?

InputStream f = new FileInputStream(f);

mu
no
tes
.in

159

Q5. Write a program to read the output of a file and display it on console.

Q7.What is Java Stream Explain in with example.

Q8. What is Serialization?

Q9. Explain File Reader class With Example.

Q10. Explain File Writer class With Example.

Q11. Explain File class With Example.

Q12. Explain Char Array Reader class With Example.

Q13. Explain Char Array Writer class With Example.

Q12. Explain Byte Array Input Stream class With Example.

Q13. Explain Byte Array Output Stream class With Example.

UNIT SUMMARY :-

 In this unit we first discussed about an array, which is a fixed-length
data structure that can contain multiple objects of the same type. An
element within an array can be accessed by its index. Indices begin at
0 and end at the length of the array.

 Also we discuss about how Java goes to great lengths to help you deal
with error conditions. In this unit we have discussed how Java's
exception mechanisms give a structured way to perform a go-to from
the place where an error occurs to the code that knows how to handle
the error. In this unit we have discussed different causes of exception,
using try, catch, finally, throw and throws clauses in exception
handling. This unit deals with ways to handle error conditions in a
structured, methodical way. This unit discusses types of exceptions,
Throwable class hierarchy, and explains how to write own exception
subclasses.

 Also we discuss about working of multithreading in Java. Also you
have learned what is the main thread and when it is created in a Java
program. Different states of threads are described in this unit. This unit
explained how threads are created using Thread class and Runnable
interface. It explained how thread priority is used to determine which
thread is to execute next. This unit explains concept of
synchronization, creating synchronous methods and inter thread
communication. It is also explained how object locks are used to
control access to shared resources.

 Also we discuss about various methods of I/O streams-binary,
character and object in Java. This unit briefs that input and output in
the Java language is organised around the concept of streams. All
input is done through subclasses of Input Stream and all output is done
through subclasses of Output Stream. (Except for Random Access
File). We have covered how various streams can be combined together
to get the added functionality of standard input and stream input. In

mu
no
tes
.in

160

this unit you have also learned the operations of reading from a file
and writing to a file. For this purpose objects of File Reader and File
Writer classes are used.

UNIT FURTHER READINGS :-

 Core Java for Beginners by Sharanam Shah
 Java: The Complete Reference , Oracle , Author: Herbert Schildt
 E.Balaguruswamy, Programming with Java, second edition, Tata
McGraw Hill publications,2000

 Programming with java , Tata McGraw-Hill Education by
E.Balgurusamy

Web Refrences :-

www.w3school.com
www.tutorialspoint.com
www.javatpoint.com
www.programiz.com

mu
no
tes
.in

161

Unit V

12
EVENT HANDLING

Unit Structure
12.0 Objectives
12.1 Introduction
12.2 Event Handling

12.2.1 Delegation Event Model
12.2.2 Events
12.2.3 Event classes and Event listener interfaces
12.2.4 Using delegation event model
12.2.5 Adapter classes and inner classes

12.3 Let us Sum Up
12.4 List of References
12.5 Chapter End Exercises

12.0 OBJECTIVES

This chapter would make you understand the following concepts:
 Define Event Handling in Java
 Describe Event Handling in Java
 Explain Two Event Handling Mechanisms.
 Illustrate the Delegation Event Model in Java
 Describe Components of Event Handling
 Explain steps to handle an event in java

12.1 INTRODUCTION

In this chapter we will learn Event handling which is fundamental
to Java programming because it is integral to the creation of applets and
other types of GUI-based programs. Change in the state of an object is
known as event. Event describes the change in state of source. Events are
generated as result of user interaction with the graphical user interface
components. Event Handling is the mechanism that controls the event and
decides what should happen if an event occurs. This mechanism has the
code which is known as event handler that is executed when an event
occurs.

mu
no
tes
.in

162

12.2 EVENT HANDLING

Event handling is prime to Java programming because it’s integral
to the creation of applets and other sorts of GUI-based programs. Events
are supported by a variety of packages, including java.util, java.awt, and
java.awt.event. The program response is generated when the user interacts
with a GUI-based program.

Two event handling mechanisms in java
1. Original Version of Java (1.0)
2. Modern Versions of Java, beginning with Java version 1.1

The way during which events are handled changed significantly
between the first version of Java (1.0) and every one subsequent version of
Java, beginning with version 1.1. Although the 1.0 method of event
handling remains supported, it’s not recommended for brand spanking
new programs.

Also, many of the methods that support the old 1.0 event model are
deprecated. The modern approach is the way that events should be handled
by all-new programs.

12.2.1 Delegation Event Model in Java
The Delegation Event model is defined to handle events in GUI

programming languages. The GUI stands for Graphical User Interface,
where a user graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user
initiates an activity such as a mouse activity, clicks, scrolling, etc., each is
known as an event that is mapped to a code to respond to functionality to
the user. This is known as event handling.

In this section, we will discuss event processing and how to
implement the delegation event model in Java. We will also discuss the
different components of an Event Model.

Advantage of using delegation event model
The advantage of this design is that the appliance logic that

processes events is cleanly separated from the interface logic that
generates those events. An interface element is in a position to “delegate”
the processing of an occasion to a separate piece of code. In the delegation
event model, listeners must register with a source so as to receive an
occasional notification. This provides is a crucial benefit: notifications are
sent only to listeners that want to receive them. This is a more efficient
way to handle events.

Event Processing in Java
Java support event processing since Java 1.0. It provides support

for AWT (Abstract Window Toolkit), which is an API used to develop

mu
no
tes
.in

163

the Desktop application. In Java 1.0, the AWT was based on inheritance.
To catch and process GUI events for a program, it should hold subclass
GUI components and override action() or handleevent() methods. The
below image demonstrates the event processing.

But, the modern approach for event processing is based on the
Delegation Model. It defines a standard and compatible mechanism to
generate and process events. In this model, a source generates an event
and forwards it to one or more listeners. The listener waits until it receives
an event. Once it receives the event, it is processed by the listener and
returns it. The UI elements are able to delegate the processing of an event
to a separate function.

The key advantage of the Delegation Event Model is that the
application logic is completely separated from the interface logic.

In this model, the listener must be connected with a source to
receive the event notifications. Thus, the events will only be received by
the listeners who wish to receive them. So, this approach is more
convenient than the inheritance-based event model (in Java 1.0).

In the older model, an event was propagated up the containment
until a component was handled. This needed components to receive events
that were not processed, and it took lots of time. The Delegation Event
model overcame this issue.

Basically, an Event Model is based on the following three components:

 Events
 Events Sources
 Events Listeners

12.2.2 Event
An event is an object that describes a phase change during a

source. It is often generated as a consequence of an individual interacting
with the weather during a graphical interface. Some activities that cause
events to be generated are pressing a button, entering a personality via the

mu
no
tes
.in

164

keyboard, selecting an item during a list, and clicking the mouse. Events
can also occur that aren’t directly caused by interactions with an interface.
For example, an occasion could also be generated when a timer expires, a
counter exceeds a worth, a software or hardware failure occurs, or an
operation is completed.

Changing the state of an object is known as an event. For example,
click on button, dragging mouse etc. The java.awt.event package provides
many event classes and Listener interfaces for event handling.

12.2.3 Java Event classes and Listener interfaces

Event Classes
The classes that represent events ae at the core of Java’s event

handling mechanism. At the root of the Java event class hierarchy is event
object, which is in java.util. It is the super class for all events.

THE ACTION EVENT CLASS
An actioneventis generated when a button is pressed, a list item is

double-clicked, or a menu item is selected. It defines four integer
constants that can be used to identify any modifiers associated with an
action event: ALT_MASK, CTRL_MASK,META_MASK, and SHIFT
_ MASK. There is also an integer constant, ACTION_ PERFORMED,
which can be used to identify action events.

Event listeners
A listener is an object that’s notified when an occasion occurs. It

has two major requirements. First, it registered with one or more sources
to receive notifications about specific sorts of events. Second, it
implements methods to receive and process these notifications. The
methods that receive and process events are defined in interfaces found
in java.awt.event.

Event Classes Listener Interfaces
Actionevent Actionlistener
Mouseevent Mouselistener and

mousemotionlistener
Mousewheelevent Mousewheellistener
Keyevent Keylistener
Itemevent Itemlistener
Textevent Textlistener
Adjustmentevent Adjustmentlistener
Windowevent Windowlistener
Componentevent Componentlistener

Actionlistener
 The class which processes the action event should implement this
interface. The object of that class must be registered with a
component.

mu
no
tes
.in

165

 The object can be registered using the add action listener() method.
 When the action event occurs, that object's action performed
method is invoked.

Interface methods

S.N. Method & Description

1 Void actionper formed (actionevente)
Invoked when an action occurs.

//program to calculate factorial of a number entered in the textfield
Import java.awt.*;
Import java.awt.event.*;

Public class action listenerexextends Frame implements action listener{
Label l1,l2;

Textfieldt1;
Button b1;

Actionlistenerex()
{

Super("Action Listerner Example");
Setsize(200,200);
Setvisible(true);
Setlayout(new flowlayout());

L1=new Label("Enter a Number");
T1=new textfield(10);
B1=new Button("Factorial");
L2=new Label();

Add(l1);
Add(t1);
Add(b1);
Add(l2);

B1.addactionlistener(this);
}

Public void actionperformed(actionevente)
{

mu
no
tes
.in

166

String s=t1.gettext();
Int n=Integer.parseint(s);
Int f=1;
For(int i=1;i<=n;i++)
F=f*i;
L2.settext("Factorial of "+s+" is " +f);
}

Public static void main(String[] args) {
New actionlistenerex();
}

}

OUTPUT:

Itemlistener
 The class which processes the itemevent should implement this
interface.

 The object of that class must be registered with a component.
 The object can be registered using the additemlistener() method.
 When the action event occurs, that object's item state changed
method is invoked.

Interface methods

S.N. Method & Description

1 Void itemstatechanged(itemevente)
Invoked when an item has been selected or deselected by the
user.

// program to change the background color of a frame according to
the selection in choice control
Import java.awt.*;
Import java.awt.event.*;

mu
no
tes
.in

167

Public class choiceexextends Frame implements itemlistener{
Choice color;

Choiceex()
{

Setsize(300,400);
Setvisible(true);
Setlayout(new flowlayout());
Color=new Choice();
Color.add("Red");
Color.add("Green");
Color.add("blue");

Add(color);
Color.additemlistener(this);

}

Public void itemstatechanged(itemevente)

{
If(color.getselectedindex()==0)
System.out.println(color.getitemcount());
Else if(color.getselectedindex()==1)
Setbackground(Color.green);
Else if(color.getselecteditem().equalsignorecase("Blue"))
Setbackground(Color.blue);
}

Public static void main(String[] args) {
New choiceex();
}

}

OUTPUT:

mu
no
tes
.in

168

Windowlistener
 The class which processes the window event should implement
this interface.

 The object of that class must be registered with a component.
 The object can be registered using the addwindowlistener()
method.

Interface Methods

S.N. Method & Description

1 Void window activated (windowevente)
Invoked when the Window is set to be the active Window.

2 Void window closed (windowevente)
Invoked when a window has been closed as the result of calling
dispose on the window.

3 Void window closing (windowevente)
Invoked when the user attempts to close the window from the
window's system menu.

4 Void window deactivated (windowevente)
Invoked when a Window is no longer the active Window.

5 Void window deiconified (windowevente)
Invoked when a window is changed from a minimized to a
normal state.

6 Void windowiconified(windowevente)
Invoked when a window is changed from a normal to a
minimized state.

7 Void window opened (windowevente)
Invoked the first time a window is made visible.

// program to implement Window Listener methods
Import java.awt.*;
Import java.awt.event.*;
Public class windowex2 extends Frame implements windowlistener{
Windowex2()
{

Super("Window Listener");
Setsize(300,300);
Setvisible(true);
Addwindowlistener(this);

mu
no
tes
.in

169

}
Public static void main(String[] args) {
New windowex2();
}

@Override
Public void windowopened(windowevente) {
System.out.println("Opened");
}

@Override
Public void windowclosing(windowevente) {
Dispose();
}

@Override
Public void windowclosed(windowevente) {
System.out.println("Closed");

}

@Override
Public void windowiconified(windowevente) {
System.out.println("Iconified");

}

@Override
Public void windowdeiconified(windowevente) {
System.out.println("deiconified");

}

@Override
Public void windowactivated(windowevente) {
System.out.println("Activated");

}

@Override
Public void windowdeactivated(windowevente) {
System.out.println("Deactivated");

}
}

mu
no
tes
.in

170

OUTPUT:

12.2.4 Using delegation event model
Using the delegation event model is actually quite easy. Just follow

these two steps: 1. Implement the appropriate interface in the listener so
that it will receive the type of event desired. 2. Implement code to register
and unregister (if necessary) the listener as a recipient for the event
notifications.

Keylistener
 The class which processes the keyevent should implement this
interface. The object of that class must be registered with a
component.

 The object can be registered using the add key listener() method.

Interface Methods

S.N. Method & Description

1 Void keypressed(keyevente)
Invoked when a key has been pressed.

2 Void keyreleased(keyevente)
Invoked when a key has been released.

3 Void keytyped(keyevente)
Invoked when a key has been typed.

//program to check whether the entered number is even or odd as
soon as you typed the number

Import java.awt.*;
Import java.awt.event.*;
Public class keylistenerexextends Frame implements keylistener{
Label l1,l2;

mu
no
tes
.in

171

Textfieldt1;
Keylistenerex()
{

Super("Key Listener Example");
Setsize(200,200);
Setvisible(true);
Setlayout(new flowlayout());

L1=new Label("Enter a Number");
T1=new textfield(10);
L2=new Label();

Add(l1);
Add(t1);
Add(l2);

T1.addkeylistener(this);

}
Public void keytyped(keyevente)
{
}

Public void keypressed(keyevente)
{
}

Public void keyreleased(keyevente)
{
String s=t1.gettext();

Int n=Integer.parseint(s);
If(n%2==0)
L2.settext("Even");
Else
L2.settext("Odd");
}

Public static void main(String[] args) {
New keylistenerex();
}

}

mu
no
tes
.in

172

OUTPUT:

Mouse listener
 The class which processes the mouse event should implement this
interface.

 The object of that class must be registered with a component.
 The object can be registered using the add mouse listener() method.

Interface Methods

S.N. Method & Description

1 Void mouse clicked (mouseevente)
Invoked when the mouse button has been clicked (pressed and
released) on a component.

2 Void mouseentered (mouseevente)
Invoked when the mouse enters a component.

3 Void mouseexited (mouseevente)
Invoked when the mouse exits a component.

4 Void mousepressed (mouseevente)
Invoked when a mouse button has been pressed on a
component.

5 Void mousereleased(mouseevente)
Invoked when a mouse button has been released on a
component.

//program to change background color of frame on every mouse event

Import java.awt.*;
Import java.awt.event.*;
Public class mouselistenerexextends Frame implements mouselistener{

Mouselistenerex(){
Super("Mouse Listener");

mu
no
tes
.in

173

Addmouselistener(this);
Setsize(300,300);
Setlayout(null);
Setvisible(true);
}

Public void mouseclicked(mouseevente) {
Setbackground(Color.red);
}

Public void mouseentered(mouseevente) {
Setbackground(Color.green);
}

Public void mouseexited(mouseevente) {
Setbackground(Color.blue);
}

Public void mousepressed(mouseevente) {
Setbackground(Color.yellow);
}

Public void mousereleased(mouseevente) {
Setbackground(Color.black);
}

Public static void main(String[] args) {
New mouselistenerex();
}
}

OUTPUT:

 Mouse motion listener
 The inter face mouse motion listener is used for receiving mouse
motion events on a component.

 The class that process mouse motion events needs to implements
this interface.

mu
no
tes
.in

174

S.N. Method & Description

1 Void mousedragged(mouseevente)
Invoked when a mouse button is pressed on a component and
then dragged.

2 Void mousemoved(mouseevente)
Invoked when the mouse cursor has been moved onto a
component but no buttons have been pushed.

//program to implement Mouse Motion Listener

Import java.awt.*;
Import java.awt.event.*;
Public class mouse motion list enerexextends Frame implements
mousemotionlistener{

Mousemotionlistenerex()
{

Super("Mouse Listener");
Addmousemotionlistener(this);

Setsize(300,300);
Setvisible(true);
}

Public void mousedragged(mouseevente)
{

System.out.println("mousedragged");
}

Public void mousemoved(mouseevente)
{

System.out.println("mousemoved");
}

Public static void main(String[] args) {
New mousemotionlistenerex();
}

}

mu
no
tes
.in

175

OUTPUT:

13.2.5 adapter classes and inner classes
Java adapter classes provide the default implementation of listener

interfaces. If you inherit the adapter class, you will not be forced to
provide the implementation of all the methods of listener interfaces. So it
saves code.

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

Windowadapter Example
Import java.awt.*;
Import java.awt.event.*;
Public class adapterexample{
Frame f;

Adapterexample(){
F=new Frame("Window Adapter");
F.addwindowlistener(new windowadapter(){

mu
no
tes
.in

176

Public void windowclosing(windowevente) {
F.dispose();

}
});

F.setsize(400,400);
F.setlayout(null);
F.setvisible(true);
}

Public static void main(String[] args) {
New adapterexample();
}
}

OUTPUT:

Inner class:
The inner class is defined inside the body of another class (known

as an outer class). The class written within is called the nested class, and
the class that holds the inner class is called the outer class. Java inner class
can be declared private, public, protected, or with default access whereas
an outer class can have only public or default access.

We use inner classes to logically group classes and interfaces in
one place so that it can be more readable and maintainable. The Syntax is
given below.

Class Outerclass
{

Class Innerclass
{
//code
}

}

mu
no
tes
.in

177

Types of inner classes in java:
1. Nested Inner Class
2. Method Local Inner Class
3. Anonymous Inner Class
4. Static Nested Class

Nested inner class in java:
A class created within the class and outside the method is known

as Nested Inner Class. It can access the private instance variable of the
outer class.

Example:
Package Demo;

Public class nestedinnerclass{
Class Inner {
Public void show() {
System.out.println("In a nested class method");

}
}

Public static void main(String[] args) {
Nestedinnerclass.Inner in = new nestedinnerclass().new Inner();
In.show();
}

}

Method local inner class in java:
A class created within the method of the enclosing class is known

as Method Local Inner Class. Since the local inner class is not associated
with Object, we can’t use private, public, or protected access modifiers
with it. The only allowed modifiers are abstract or final.

Example:
Package Demo;

Public class methodlocalinnerclass{
Void outermethod() {
System.out.println("Inside outermethod");

// Inner class is local to outermethod()
Class Inner {
Void innermethod() {
System.out.println("Inside innermethod");

}
}
Inner y = new Inner();

mu
no
tes
.in

178

Y.innermethod();
}

Public static void main(String[] args) {
Methodlocalinnerclassouter = new methodlocalinnerclass();
Outer.outermethod();
}

}

Anonymous inner class in java:
An inner class declared without a class name is known as

an anonymous inner class. It is created for implementing an interface or
extending class. Since an anonymous class has no name, it is not possible
to define a constructor for an anonymous class. Its name is decided by the
java compiler.

Example:
Package Demo;
Abstract class Animal{
Abstract void dog();
}
Class anonymousinnerclass{
Public static void main(String args[]){
Animal p=new Animal(){
Void dog(){
System.out.println("Dog is an Animal.");
}
};
P.dog();
}
}

Static nested class:
Static nested classes are not technically inner classes. They are like

static members of the outer class. A static nested class is the same as any
other top-level class and is nested for only packaging convenience.
Because this is static in nature so this type of inner class doesn’t share any
special kind of relationship with an instance of the outer class. A static
nested class cannot access non-static members of the outer class.

Example:
Package Demo;

Public class staticnestedclass{
Static class Nested_Demo {
Public void my_method() {

mu
no
tes
.in

179

System.out.println("This is my nested class");
}
}

Public static void main(String args[]) {
Staticnestedclass.Nested_Demo nested = new
staticnestedclass.Nested_Demo();
Nested.my_method();
}

}

12.3 LET US SUM UP

Changing the state of an object is known as an event. For example,
click on button, dragging mouse etc. The java.awt.event package provides
many event classes and Listener interfaces for event handling.

12.4 LIST OF REFERENCES

1. Core Java 8 for Beginners, Vaishali Shah, Sharnam Shah SPD 1st 2015
2. Java: The Complete Reference Herbert Schildt McGraw Hill 9th 2014

12.5 CHAPTER END EXERCISES

1. Explain Delegation Event Model in Java
2. Explain keyadapter class defined in Java with code segment.
3. Explain mouseadapter class defined in Java with code segment.
4. Develop a frame that has three radio buttons Red, Green, Blue. On
Click of any one of them background color of the frame should change
accordingly.

5. Explain the following interfaces:
i) Key Listener ii) Mouse Listener

6. What is the use of adapter class in Java? Explain any one of the
adapter classes defined in Java.

7. Define Event Handling in Java.
8. Describe Event Handling in Java.
9. Explain Two Event Handling Mechanisms.
10. Illustrate the Delegation Event Model in Java.
11. Describe Components of Event Handling.
12. Explain steps to handle an event in java.

mu
no
tes
.in

 180

13

ABSTRACT WINDOW TOOLKIT

Unit Structure
13.0 Objectives
13.1 Introduction
13.2 Abstract Window Toolkit

13.2.1 Window Fundamentals,
13.2.2 Component, Container, Panel, Window, Frame, Canvas.
13.2.3 Components – Labels, Buttons, Check Boxes, Radio Buttons,

Choice Menus, Text Fields, Text, Scrolling List, Scrollbars,
Panels, Frames

13.3 Programs
13.4 Let us Sum Up
13.5 List of References
13.6 Chapter End Exercises

13.0 OBJECTIVES

This chapter would make you understand the following concepts:
 Define Abstract Windows Toolkit (AWT) in Java
 Describe Why AWT is platform dependent
 Explain Features of AWT in Java
 Illustrate AWT Hierarchy
 Define AWT Component

13.1 INTRODUCTION

In this chapter we will learn AWT. To develop the GUI based
applications we have to use AWT.AWT stands for Abstract Windowing
Toolkit. The set of classes and interfaces which are required to develop
GUI components together are called “Toolkit”. The GUI components will
be used to design GUI programs. Writing a program to display the created
GUI components on the windows is called “windowing”. To display the
components on the windows we need to take the support of graphics
available in the operating system. For a developer, there is no direct
interaction with the graphics and hence graphics is “Abstract” to the
developer. Every GUI component will have a corresponding “PEER” class
which is responsible to interact with the graphics of the operating system.

mu
no
tes
.in

 181

13.2 ABSTRACT WINDOW TOOLKIT

The Java AWT creates components by calling the subroutines of
native platforms. Hence, an AWT GUI application will have the look and
feel of Windows OS while running on Windows and Mac OS look and
feel when running on Mac and so on. This explains the platform
dependency of Abstract Window Toolkit applications.

 Due to its platform-dependence and a kind of heavyweight nature of
its components, it is rarely used in Java applications these days.
Besides, there are also newer frameworks like Swing which are light-
weight and platform-independent.

 Java AWT (Abstract Window Toolkit) is an API to develop GUI or
window-based applications in java.

 Java AWT components are platform-dependent i.e. Components are
displayed according to the view of operating system. AWT is
heavyweight i.e. Its components are using the resources of OS.

 The java.awt package provides classes for AWT API such as textfield,
Label, textarea, radiobutton, checkbox, Choice, List etc.

13.2.1 Window Fundamentals

The AWT defines windows according to a class hierarchy that adds
functionality and specificity with each level. The two most common
windows are those derived from Panel, which is used by applets, and those
derived from Frame, which creates a standard application window.

13.2.2 Components, Container, Panel, Window, Frame, Canvas
The hierarchy of Java AWT classes are given below:

mu
no
tes
.in

 182

As shown in the above figure the root AWT component
‘Component’ extends from the ‘Object’ class. The component class is the
parent of the other components including Label, Button, List, Checkbox,
Choice, Container, etc.

A container is further divided into panels and windows. An Applet

class derives from Panel while Frame and Dialog derive from the Window
component.

Components are as follows:
 Container

The Container is a component in AWT that can contain another
components like buttons, textfields, labels etc. The classes that extends
Container class are known as container such as Frame, Dialog and Panel.

 Window

The window is the container that have no borders and menu bars.
You must use frame, dialog or another window for creating a window.

 Panel

The Panel is the container that doesn't contain title bar and menu
bars. It can have other components like button, textfield etc.

 Frame

The Frame is the container that contain title bar and can have menu
bars. It can have other components like button, textfield etc.

 Canvas

The Canvas control represents a blank rectangular area where the
application can draw or trap input events from the user. It inherits the
Component class.

 Component Class

Method Description

Public void add(Component c) Inserts a component on this component.

Public void setsize (int width,
int height)

Sets the size (width and height) of the
component.

Public void setlayout (layout
managerm)

Defines the layout manager for the
component.

Public void setvisible (boolean
status)

Changes the visibility of the component,
by default false.

 Creating Frames

To create simple awt example, you need a frame. There are two ways
to create a frame in AWT.
o By extending Frame class (inheritance)
o By creating the object of Frame class (association)

mu
no
tes
.in

 183

Creating Frame by Association
The given example creates instance of empty Frame class with

“MYFRAME” as title.
importjava.awt.*;
class frame1{
frame1(){
frame f=new Frame(“MYFRAME”);
f.setsize(300,300); //frame size 300 width and 300 height
f.setvisible(true); //now frame will be visible, by default not
visible
}
public static void main(string args[]){
frame1 f=new frame1();
}}

OUTPUT:

Creating Frame by Inheritance
The given example creates instance of empty Frame class with

“MYFRAME” as title.

import java.awt.*;
class first extends frame{
first(){
super(“MYFRAME”); //frame title
setsize(300,300);//frame size 300 width and 300 height
setvisible(true);//now frame will be visible, by default not visible
}
public static void main(string args[]){
first f=new first();
}}

mu
no
tes
.in

 184

OUTPUT:

13.2.3 Components – Labels, Buttons, Check Boxes, Radio Buttons,
Choice Menus, Text Fields, Text, Scrolling List, Scrollbars, Panels,
Frames

Label

The object of Label class is a component for placing text in a
container. It is used to display a single line of read only text. The text can
be changed by an application but a user cannot edit it directly.

Constructors Description

label() Constructs an empty label.

label(String text) Constructs a new label with the specified
string of text, left justified.

label(string text, int
alignment)

Constructs a new label that presents the
specified string of text with the specified
alignment.

Methods Description

string gettext() Gets the text of this label.

void settext(String text) Sets the text for this label to the specified
text.

int getalignment() Gets the current alignment of this label.

void setalignment
(intalignment)

Sets the alignment for this label to the
specified alignment.

//creates two labels

import java.awt.*;
public class labelex extends frame {
 label l1,l2;
labelex()
 {
super("label example");
setsize(300,300);

mu
no
tes
.in

 185

setvisible(true);
setlayout(new flowlayout());
L1=new label("first label");
L2=new label("second label");
add(l1);
add(l2);

 }
public static void main(string[] args) {
new labelex();
 }

}

OUTPUT:

Button

The button class is used to create a labeled button that has platform
independent implementation. The application result in some action when
the button is pushed.

Constructors Description
button() Constructs a button with an empty string for its

label.
button(string text) Constructs a new button with specified label.

Methods Description
void setlabel(string label) Sets the button's label to be the

specified string.
string getlabel() Gets the label of this button
void add action listener (action
listener l)

Adds the specified action listener to
receive action events from this button.

void remove action listener
(action listener l)

Removes the specified action listener so
that it no longer receives action events
from this button.

mu
no
tes
.in

 186

//creating button

import java.awt.*;

public class buttonex extends frame {
 button b1,b2;
buttonex()
 {
super("button example");
setsize(300,300);
setvisible(true);
setlayout(new flowlayout());
b1=new button("first button");
b2=new button("second button");
add(b1);
add(b2);

 }
public static void main(string[] args) {
new buttonex();
 }
}
OUTPUT

Text field

The object of a text field class is a text component that allows the
editing of a single line text. It inherits text component class.
Constructors Description
text field() Constructs a new text field.
text field(int columns) Constructs a new empty text field with the

specified number of columns.
text field(string text) Constructs a new text field initialized with the

specified text.
text field(string text, int
columns)

Constructs a new text field initialized with the
specified text to be displayed, and wide enough
to hold the specified number of columns.

mu
no
tes
.in

 187

Methods Description

void settext(string t) Sets the text that is presented by this text
component to be the specified text.

string gettext() Gets the text of the text field.

void setechochar
(char c)

Sets the echo character for this text field.

char getechochar() Gets the character that is to be used for echoing.

void addactionlistener
(actionlistener l)

Adds the specified action listener to receive
action events from this text field.

int getcolumns() Gets the number of columns in this text field.

void setcolumns
(intcolumns)

Sets the number of columns in this text field.

//creating textfield

import java.awt.*;

public class textfieldex extends frame {
textfield t1,t2;
textfieldex()
 {
super("button example");
setsize(300,300);
setvisible(true);
setlayout(new flowlayout());
t1=new textfield(10); // creates empty textfield
t2=new textfield("Hello", 20);
add(t1);
add(t2);
 }
public static void main(string[] args) {
new textfieldex();
 } }

mu
no
tes
.in

 188

OUTPUT

Text area

The object of a text area class is a multi line region that displays
text. It allows the editing of multiple line text. It inherits text component
class.

 Field
Following are the fields for java.awt.text area class:

 Static int SCROLLBARS_BOTH -- Create and display both
vertical and horizontal scrollbars.

 Static int SCROLLBARS_HORIZONTAL_ONLY -- Create
and display horizontal scrollbar only.

 Static int SCROLLBARS_NONE -- Do not create or display any
scrollbars for the text area.

 Static int SCROLLBARS_VERTICAL_ONLY -- Create and
display vertical scrollbar only.

Constructors Description

textarea() Constructs a new text area with the
empty string as text.

textarea (int rows, int columns) Constructs a new text area with the
specified number of rows and columns
and the empty string as text.

textfield (string text) Constructs a new text area initialized
with the specified text.

textfield (string text, int rows,
int columns)

Constructs a new text area with the
specified text, and with the specified
number of rows and columns.

textarea (string text, int rows,
int columns, int scrollbars)

Constructs a new text area with the
specified text, and with the rows,
columns, and scroll bar visibility as
specified.

mu
no
tes
.in

 189

Methods Description

void settext(string t) Sets the text that is presented by this
text component to be the specified
text.

string gettext() Gets the text of the textarea.

int getcolumns() Gets the number of columns in this
text area.

void setcolumns(int columns) Sets the number of columns in this
text area.

int getrows() Gets the number of rows in this text
area.

void setrows(int rows) Sets the number of rows in this text
area.

void append(string str) Appends the given text to the text
area's current text.

void insert(string str, int pos) Inserts the specified text at the
specified position in this text area.

//creating textarea

import java.awt.*;

public class textareaex extends frame {

textarea t1,t2,t3;

textareaex()

 {

super("textfield example");

setsize(300,300);

setvisible(true);

setlayout(new flowlayout());

t1=new textarea(5,10); // creates empty textfield

t2=new textarea("Hello",10, 10);

t3=new textarea("i am a student of VSIT

college",5,10,textarea.SCROLLBARS_HORIZONTAL_ONLY);

add(t1);
add(t2);
add(t3);

 }

mu
no
tes
.in

 190

public static void main(string[] args) {
new textareaex();
 }
}

OUTPUT:

Checkbox

The Checkbox class is used to create a checkbox. It is used to turn
an option on (true) or off (false). Clicking on a Checkbox changes its state
from "on" to "off" or from "off" to "on".

Constructor Description

checkbox() Creates a check box with an empty string
for its label.

checkbox(string label) Creates a check box with the specified
label.

checkbox(String label, boolean
state)

Creates a check box with the specified
label and sets the specified state.

checkbox(String label, boolean
state, check boxgroup group)

Constructs a Checkbox with the
specified label, set to the specified state,
and in the specified check box group.

checkbox(string label,
checkbox group group,
boolean state)

Creates a check box with the specified
label, in the specified check box group,
and set to the specified state.

mu
no
tes
.in

 191

Methods Description

void setlabel (string label) Sets this check box's label to be the string
argument.

string getlabel() Gets the label of this check box.

void setstate (boolean state) Sets the state of this check box to the
specified state.

boolean getstate() Determines whether this check box is in
the on or off state.

void additemlistener
(itemlistener l)

Adds the specified item listener to receive
item events from this check box.

//creating Checkbox
import java.awt.*;
public class checkboxex extends frame {
 label l1;
 checkbox c1,c2,c3;
checkboxex()
 {
super("checkbox example");
setsize(300,300);
setvisible(true);
setlayout(new flowlayout());
l1=new label("select your hobbies");
c1=new checkbox("singing",true);
c2=new checkbox("dancing",false);
c3=new checkbox("reading",true);
add(l1); add(c1); add(c2); add(c3);
 }
public static void main(string[] args) {
new checkboxex();
 } }

OUTPUT:

mu
no
tes
.in

 192

Checkbox group
The object of checkbox group class is used to group together a set

of Checkbox. At a time only one check box button is allowed to be in "on"
state and remaining check box button in "off" state. It inherits the object
class.

Constructor Description
Checkbox group() () Creates a new instance of checkbox group.

Methods Description
checkbox getselected
checkbox()

Gets the current choice from this check box
group.

void setselected
checkbox (checkbox
box)

Sets the currently selected check box in this
group to be the specified check box.

//creating radiobuttons
import java.awt.*;
public class radiobuttonex extends Frame {
 label l1;
 checkbox c1,c2,c3;
checkboxgroup cg;
radiobuttonex()
 {
super("radiobutton example");
setsize(300,300);
setvisible(true);
setlayout(new flowlayout());
cg=new checkboxgroup();
l1=new label("select your color");
c1=new checkbox("red",cg,true);
c2=new checkbox("green",cg,false);
c3=new checkbox("blue",cg,false);
add(l1);
add(c1);
add(c2);
add(c3);
 }
public static void main(string[] args) {
new radiobuttonex();
 }

}

mu
no
tes
.in

 193

OUTPUT:

Choice

The object of Choice class is used to show popup menu of choices.
Choice selected by user is shown on the top of a menu. It inherits
Component class.
Constructor Description
Choice() Creates a new choice menu.

Methods Description
void add(string item) Adds an item to this Choice menu.
void additemlistener
(itemlistener l)

Adds the specified item listener to receive
item events from this Choice menu.

string getitem (int index) Gets the string at the specified index in this
Choice menu.

int getitemcount() Returns the number of items in this Choice
menu.

int getselectedindex() Returns the index of the currently selected
item.

string getselecteditem() Gets a representation of the current choice
as a string.

void insert(string item, int
index)

Inserts the item into this choice at the
specified position.

void remove(int position) Removes an item from the choice menu at
the specified position.

void remove(string item) Removes the first occurrence of item from
the Choice menu.

void removeall() Removes all items from the choice menu.

//creating dropdown list
import java.awt.*;
public class choiceex extends frame {
 label l1;
 choice c;
choiceex()
 {
super("choice example");

mu
no
tes
.in

 194

setsize(300,300);
setvisible(true);
setlayout(new flowlayout());
l1=new label("select color");
c=new choice();
c.add("red");
c.add("green");
c.add("blue");
add(l1);
add(c);
 }
public static void main(string[] args) {
new choiceex();
 } }

OUTPUT:

List

The object of List class represents a list of text items. By the help
of list, user can choose either one item or multiple items. It inherits
Component class.

Constructor Description

list() Creates a new scrolling list.

list(int rows) Creates a new scrolling list initialized
with the specified number of visible lines.

list(int rows, boolean
multiplemode)

Creates a new scrolling list initialized to
display the specified number of rows.

Methods Description
void add(string item) Adds the specified item to the end of

scrolling list.
void add(string item, int
index)

Adds the specified item to the the scrolling
list at the position indicated by the index.

int getitemcount() Gets the number of items in the list.
string getitem(int index) Gets the item associated with the specified

index.

mu
no
tes
.in

 195

string[] getitems() Gets the items in the list.
int getselectedindex() Gets the index of the selected item on the

list,
int[] getselectedindexes() Gets the selected indexes on the list.
string getselecteditem() Gets the selected item on this scrolling list.
string[] getselecteditems() Gets the selected items on this scrolling

list.
void remove(int position) Removes the item at the specified position

from this scrolling list.
void remove(string item) Removes the first occurrence of an item

from the list.
void removeall() Removes all items from this list.

// creating scrolling list
import java.awt.*;
public class listex extends frame {
 label l1,l2;
 list course,subject;
listex()
 {
super("list example");
setsize(300,300);
setvisible(true);
setlayout(new flowlayout());
l1=new label("select course");
l2=new label("select subjects");
course=new list(5);
subject=new list(5,true); //multi select list
course.add("fyit");
course.add("syit");
course.add("tyit");
course.add("mscit part 1");
course.add("mscit part 2");
course.add("fybms");

subject.add("dm"); //0
subject.add("cj"); //1
subject.add("ies"); //2
subject.add("am");
subject.add("ma");

mu
no
tes
.in

 196

subject.add("ip");
subject.add("dbms");
subject.add("python",2);

add(l1); add(course); add(l2);
add(subject);
 }
public static void main(string[] args) {
new listex();
 } }

OUTPUT

13.3 PROGRAMS

a. Create an AWT application to create a Frame with a Button named
cube, a Label and a Text Field. Click of the button should display
cube of that number in the Label.
import java.awt.*;
import java.awt.event.*;
public class numex extends frame implements actionlistener{
label l1,l2;
textfield t1;
button b1;
numex()
 {
 super("cube");
setlayout(new flowlayout());
 l1=new label("enter a number:-");
 l2=new label();
 t1=new textfield();
 b1=new button("cube");
 b1.addactionlistener(this);

mu
no
tes
.in

 197

 add(l1);
 add(t1);
 add(b1);
 add(l2);
setsize(300,300);
 setvisible(true);
}
 public static void main(string[] args) {
 new numex();
 }

 public void actionperformed(actionevent e) {
 int n=integer.parseint(t1.gettext());
 l2.settext((n*n*n)+"");
 }
}

b. Develop a frame that has three radio buttons Red, Green, Blue. On
Click of any one of them background color of the frame should
change accordingly.
import java.awt.*; import java.awt.event.*;
public class colorclass extends frame implements itemlistener
{
 checkbox r1,r2,r3;
checkboxgroup chg;
colorclass()
{
setlayout(new flowlayout());
chg=new checkboxgroup();
r1=new checkbox("red",chg,true);
r2=new checkbox("green",chg,false);
r3=new checkbox("blue",chg,false);
add(r1); add(r2); add(r3);
r1.additemlistener(this); r2.additemlistener(this); r3.additemlistener(this);
setbackground(color.red);
setsize(500,500);
setvisible(true);
}
public static void main(string args[])
{
new colorclass();
}

mu
no
tes
.in

 198

@override public void item state changed(item event e)
{
if(e.getsource()==r1)
setbackground(color.red);
else if(e.getsource()==r2)
setbackground(color.green);
else setbackground(color.blue);
}
}

c. Write a program to demonstrate the use of Canvas.
Canvas control represents a rectangular area where application can

draw something or can receive inputs created by user.
 import java.awt.*;
public class canvasexample
{
public canvasexample()
{
frame f= new frame("canvas example");
f.add(new mycanvas());
f.setlayout(null);
f.setsize(400, 400);
f.setvisible(true);
}
public static void main(string args[])
{
new canvasexample();
}
}
class mycanvas extends canvas
{
public mycanvas()
{
setbackground (color.gray);
setsize(300, 200);
}
public void paint(graphics g)
{
g.setcolor (color.red);
g.filloval(75, 75, 150, 75);
}
}

mu
no
tes
.in

 199

13.4 LET US SUM UP

The java.awt.event package provides many event classes and
Listener interfaces for event handling. The java.awt package provides a
great deal of functionality and flexibility. With the help of this notes, you
should get an excellent grasp of the java.awt, java.awt.event.

13.5 LIST OF REFERENCES

1. Core Java 8 for Beginners, Vaishali Shah, Sharnam Shah SPD 1st 2015
2. Java: The Complete Reference Herbert Schildt McGraw Hill 9th 2014

13.6 CHAPTER END EXERCISES

1. Define Component, Panel, Canvas, Window and Frame.

2. Write a short note on checkbox and checkbox group class.

3. List various layouts in AWT and Explain Border Layout with
example.

4. Write the constructors and methods of checkbox class. Also explain
the use of checkbox group class.

5. Explain any two overloaded constructors and three methods of Label
class.

6. Write a short note on Choice and List class.

7. Write a program to display “Good Morning” in blue with font size 20
and font name Times New Roman in bold and italic.

8. Develop a frame that has three radio buttons Red, Green, Blue. On
Click of any one of them background color of the frame should change
accordingly.

9. Write aprogram to Design a AWT program to print the factorial for an
input value.

10. Design a Registration Form.

11. Explain the hierarchy of AWT components.

12. Explain any two overloaded constructors and three methods of class
Text Field.

13. What is the use of adapter class in Java? Explain any one of the
adapter classes defined in Java.

14. Create an AWT application to create a Frame with a Button named
cube, a Label and a Text Field. Click of the button should display cube
of that number in the Label.

15. Explain Choice class along with constructors in detail.

mu
no
tes
.in

200

14
LAYOUTS

Unit Structure
14.0 Objectives
14.1 Introduction
14.2 Layouts

14.2.1 Flow Layout
14.2.2 Grid Layout
14.2.3 Border Layout
14.2.4 Card Layout

14.3 Let us Sum Up
14.4 List of References
14.5 Unit End Exercises

14.0 OBJECTIVES

This chapter would make you understand the following concepts:
 Flow Layout
 Grid Layout
 Border Layout
 Card Layout
 Programs using layouts

14.1 INTRODUCTION

In this unit we will learn different layouts. Layouts defines how UI
elements should be organized on the screen and provide a final look and
feel to the GUI.The layout is used to enhance the look and feel of the
application. To arrange the components in a container, the various layout
classes can be used such as Flow layout and Border Layout. These layouts
use relative positioning to place the components on the container, which
means the components automatically adjust their position according to the
frame size.

14.2 LAYOUT MANAGERS

The layout managers are used to arrange components in a
particular manner. Layout manager is an interface that is implemented by
all the classes of layout managers. There are following classes that
represents the layout managers:

mu
no
tes
.in

201

1. Java.awt.flowlayout
2. Java.awt.gridlayout
3. Java.awt.borderlayout
4. Java.awt.cardlayout

14.2.1 Flow Layout
The flowlayout is used to arrange the components in a line, one

after another (in a flow). It is the default layout of applet or panel.

Fields of flowlayout class
 Public static final int LEFT
 Public static final int RIGHT
 Public static final int CENTER
 Public static final int LEADING
 Public static final int TRAILING

Constructors

Flowlayout() Creates a flow layout with centered
alignment and a default 5 unit
horizontal and vertical gap.

Flowlayout(int align) Creates a flow layout with the given
alignment and a default 5 unit
horizontal and vertical gap.

Flowlayout(int align, int hgap, int
vgap)

Creates a flow layout with the given
alignment and the given horizontal
and vertical gap.

Example

Import java.awt.*;
Public class flowlayoutex extends Frame{
Button b1,b2,b3,b4,b5;
Flowlayoutex(){

B1=new Button("1");
B2=new Button("2");
B3=new Button("3");
B4=new Button("4");
B5=new Button("5");

Add(b1);add(b2);add(b3);add(b4);add(b5);

Setlayout(new flowlayout(flowlayout.RIGHT));
//setting flow layout of right alignment

mu
no
tes
.in

202

Setsize(300,300);
Setvisible(true);

}
Public static void main(String[] args) {
New flowlayoutex();

}
}

OUTPUT:

14.2.2 Grid Layout
The gridlayout is used to arrange the components in rectangular

grid. One component is displayed in each rectangle.

Constructor

Gridlayout() Creates a grid layout with one column
per component in a row.

Gridlayout(int hgap, int vgap) Creates a grid layout with the given
rows and columns but no gaps
between the components.

Gridlayout(int rows, int
columns, int hgap, int vgap)

Creates a grid layout with the given
rows and columns alongwith given
horizontal and vertical gaps.

// Example
Import java.awt.*;
Import java.awt.event.*;
Public class gridlayoutex extends Frame {
Label lbname,lbpass;
Textfield txtname,txtpass;
Button btnlogin,btncancel;
Gridlayoutex()
{

mu
no
tes
.in

203

Super("Grid Layout");
Setsize(300,400);
Setvisible(true);
Setlayout(new gridlayout(3,2));
Lbname=new Label("Username");
Lbpass=new Label("Password");
Txtname=new textfield(20);
Txtpass=new textfield(20);
Txtpass.setechochar('*');
Btnlogin=new Button("Login");
Btncancel=new Button("Cancel");
Add(lbname);
Add(txtname);
Add(lbpass);
Add(txtpass);
Add(btnlogin);
Add(btncancel);

Addwindowlistener(new windowadapter(){
Public void windowclosing(windowevent e)
{
Dispose();
}
});

}
Public static void main(String[] args) {
New gridlayoutex();

}
}

OUTPUT:

mu
no
tes
.in

204

14.2.3 Border Layout
The borderlayout is used to arrange the components in five

regions: north, south, east, west and center. Each region (area) may
contain one component only. It is the default layout of frame or window.
The borderlayout provides five constants for each region:

 Public static final int NORTH
 Public static final int SOUTH
 Public static final int EAST
 Public static final int WEST
 Public static final int CENTER

Constructor

Borderlayout() Creates a border layout but with no gaps
between the components.

Jborderlayout(int hgap, int
vgap)

Creates a border layout with the given
horizontal and vertical gaps between the
components.

Example

Import java.awt.*;

Public class borderlayoutex extends Frame {
Button b1,b2,b3,b4,b5;

Borderlayoutex(){
Super("Border Layout");
Setsize(500,500);
Setvisible(true);
B1=new Button("EAST");
B2=new Button("WEST");
B3=new Button("NORTH");
B4=new Button("SOUTH");
B5=new Button("CENTRE");

Add(b1,borderlayout.EAST);
Add(b2,borderlayout.WEST);
Add(b3,borderlayout.NORTH);
Add(b4,borderlayout.SOUTH);
Add(b5,borderlayout.CENTER);
}

Public static void main(String[] args) {
New borderlayoutex();
} }

mu
no
tes
.in

205

OUTPUT:

14.2.4 Card Layout
The cardlayout class manages the components in such a manner

that only one component is visible at a time. It treats each component as a
card that is why it is known as cardlayout.

Constructor

Cardlayout() Creates a card layout with zero horizontal
and vertical gap.

Cardlayout(int hgap, int
vgap)

Creates a card layout with the given
horizontal and vertical gap.

Method Description

Public void next(Container
parent)

Is used to flip to the next card of the
given container.

Public void previous(Container
parent)

Is used to flip to the previous card of
the given container.

Public void first(Container
parent)

Is used to flip to the first card of the
given container.

Public void last(Container
parent)

Is used to flip to the last card of the
given container.

Public void show(Container
parent,String name)

Is used to flip to the specified card
with the given name.

mu
no
tes
.in

206

// Example

Import java.awt.*;
Import java.awt.event.*;

Public class cardlayoutex extends Frame implements actionlistener {
Button b1,b2,b3;

Cardlayout c;
Panel p;

Cardlayoutex()
{

Super("Card Layout");
Setsize(300,300);
Setvisible(true);
P=new Panel();
B1=new Button("First");
B2=new Button("Second");
B3=new Button("Third");

C=new cardlayout(40,30);
P.setlayout(c);
P.add("a",b1);
P.add("b",b2);
P.add("c",b3);
B1.addactionlistener(this);
B2.addactionlistener(this);
B3.addactionlistener(this);
Add(p);
}

Public void actionperformed(actionevent e)
{

C.next(p);
}

Public static void main(String[] args) {
New cardlayoutex();
}

}

mu
no
tes
.in

207

OUTPUT:

14.3 LET US SUM UP

LayoutManager is an interface that is implemented by all the classes
of layout managers. The Layout Managers are used to arrange components
in a particular manner. Layout Manager is an interface that is implemented
by all the classes of layout managers.

The default layout of frame is border layout. It is used to arrange
component in five regions east,west,center,north and south
Constructor
1.BorderLayout()
2.BorderLayout(int horz,int vert)

14.4 LIST OF REFERENCES

1. Core Java 8 for Beginners, Vaishali Shah, Sharnam Shah SPD 1st 2015
2. Java: The Complete Reference Herbert Schildt McGraw Hill 9th 2014

mu
no
tes
.in

S.Y. B.Sc. (IT)
SEMESTER - IV(CBCS)

CORE JAVA

SUBJECT CODE :USIT401
mu
no
tes
.in

© UNIVERSITY OF MUMBAI

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,
Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
 Institute of Distance and Open Learning ,
 University of Mumbai,Vidyanagari, Mumbai -400 098.

December 2021, Print - I

 Programme Co-ordinator : Shri Mandar Bhanushe
Head, Faculty of Science and Technology
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Ms. Gouri Sawant
Asst. Professor, B.Sc. IT,
IDOL, University of Mumbai, Mumbai

Editor : Dr Asif Rampurawala
Asst. Professor,
Vidyalankar college of Information Technology,
Wadala, Mumbai

Course Writers : Ms. Pragati Ubale
Asst. Professor,
Satish Pradhan Dnyanasadhana College, Thane

: Mr Vinayak Pujari
Asst. Professor,
I.C.S. College of Arts, Commerce and
Science, khed, Ratnagiri

: Mr Tejas R. Jadhav
Asst. Professor,
VPM’s B.N.Bandodkar College of Science
(Autonomous), Thane.

: Ms Pallavi Tawde
Asst. Professor,
Vidyalankar college of Information Technology,
Wadala, Mumbai

DTP Composed : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400 098

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai

Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai IDOL, University of Mumbai

mu
no
tes
.in

CONTENTS

Unit No. Title Page No.

Unit - I

1. Introduction To Java Programming 01

2. Data Types 28

Unit - II

3. Control Statements 45

4. Classes 64

5. Constructors 78

Unit - III

6. Inheritance 90

7. Packages 105

Unit - IV

8. Enumerations, Arrays 111

9. Multithreading 121

10. Exceptions 131

11. Byte Streams 140

Unit - V

12. Event Handling 161

13. Abstract Window Toolkit 180

14. Layouts 200

mu
no
tes
.in

208

14.5 CHAPTER END EXERCISES

1. Write a program to display a content using Flow Layout.

2. What is the role of layout manager? What is the default layout of
Frame? Explain its working.

3. Write a program to display a registration page using Grid Layout.

4. Write a program to display a home page using Border Layout.

5. Write a program to display a about page using Card Layout.

mu
no
tes
.in

