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1.0 OBJECTIVES 
 
This chapter would make you understand the following concepts:  

• Definition of Sets. 

• Understanding concepts of Relations and Functions. 

• Proof of Subsets. 

• Proving Property of Sets using Venn Diagram 

• Boolean Algebras, Russell’s Paradox and the Halting Problem 
 

1.1 INTRODUCTION 
 
 A variable can sometimes be thought of as a placeholder for values 
that are not known or can act as representatives for values that form a 
series and can also be represented as elements in a set. To bring clarity to 
the above definition certain examples can be considered. Consider the 
statement {For i = 1 to n}….. herei acts as placeholder for values ranging 
from 1 till n where n can vary based on users input. This means that i, n 
both being variables, i takes up values from 1 till the user specified input 
that is “n”. 

mu
no
tes
.in



2 
 

 Similarly the other example of a variable can be in the form of “n2 + 
n” which can also be represented in the form of a set of elements {12+1, 
22+2, 32 +3,…..}. 
 
 A variable is basically a temporary register that accords names and 
places to values so that one can perform actual computations to help 
discover its possible values. 
 
 Some other examples of variables can be in the form of equations as 
a whole 3x2 + x+ 4 and can assume the values of x = 4/3 or x = 1. 
 
Another example can be as follows that given a real number p, p2≥ 0. 
 
Types of Mathematical Statements: 
 
 There are three types of mathematical statements: universal 
statements, conditional statements, and existential statements. 
 
 A universal statement specifies that a certain property is true for all 
elements in a set. For example: All positive integers are greater than zero. 
 
 A conditional statement depends on the true value of the condition. 
For example If starfish is a sea animal then it can swim. 
 
 An existential statement says that there exists certain items for 
which the property is true. For example there exists a prime number that is 
even which is true. 
 
Universal Conditional Statements: 
  
 Universal statements contain words like “For All” and conditional 
statements have words such as “If then” and a universal conditional 
statement contain both. A universal conditional statement is a statement 
that is both universal and conditional. For example “For All” birds if a is a 
crow then it can fly. The said example gives a flavor of more of a 
conditional statement. Whereas if the sentence is constructed in the form 
as follows “If a crow can fly then crow belongs to the bird species”. A few 
more variations of rewriting a universal conditional statement is shown as 
below: 
 

For all positive integers x, if x is not equal to 0 then square of x is 
positive. For all non-zero positive integers, then square of the integer is 
also positive. If x > 0 then square(x) > 0. 
 

The square of any positive integer is positive. All non-zero positive 
integers have squares which are positive. 
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Universal Existential Statements: 
 
 A universal existential statement is a statement that constitutes the 
first part containing a property that is true for all and the second part being 
existential it asserts the existence of something. For example: 
 
  

All real numbers when multiplied with its inverse generate an 
identity I is equal to 1. 
 

In this statement the property “multiplied with its inverse” applies 
universally to all real numbers. This statement asserts every number has an 
inverse however the inverse formats are different for different forms of 
real numbers. The statement can also be written as follows: 
 
 All real numbers have multiplicative inverses that on multiplication 
generates I as an identity. 
 
 For all real numbers r, there is a multiplicative inverse which when 
multiplied generates identity I OR  
 
 For all real numbers r, there is a real number s such that s is a 
multiplicative inverse for r. Using variables in mathematics helps in 
referring to quantities without ambiguity while not restricting specific 
values for them. 
 
Example 1: Rewriting a Universal Existential Statement: 
 
The statement is as follows: Every category of wheel has spokes Possible 
solutions are as follows: 

a. All wheels have spokes 

b. For all category of wheel W there exists spokes for W. 

c. C is a type of spoke that is meant for the wheel W. 
 
Existential Universal Statements: 
 
 An existential universal statement is exactly the opposite of the 
above as the first part of the statement asserts that a certain entity exists 
and is universal because the suffixed part says that this entity satisfies a 
property common to all for a specific kind or type. 
 
 For example an integer which is greater than 0 belongs to the set of 
natural numbers. The sentence can be written in multiple ways: 
 
 There exists a positive number greater than zero that belongs to the 
set of natural numbers OR Every positive integer m in set of natural of 
numbers n such that m, n is always >=0 
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Example 2: Rewriting an Existential Universal Statement: 
 
Fill in the blanks to rewrite the following statement in three different 
ways: 
 
A rectangle has two opposite sides equal and parallel and belongs to the 
parallelogram family. The other forms of writing the statement are as 
follows: 

a) A rectangle having equal and opposite sides that are parallel is a 
 parallelogram. 

b) Each parallelogram that has two opposite sides equal and parallel is 
 a rectangle. 
 

Some of the important mathematical concepts, like the limit of a 
sequence, can be represented by existential, conditional and universal 
phrases and require all the three phases like “For All”, “There Exists,” and 
“IF Then Else”. A sequence of real numbers is represented in the form as 
follows: Lim an = l if given €> 0, an≈ l for n ≥1 
 
It is built in three steps as follows:  

• an ≈ l (an approximates to l within €)  

• an ≈ l for n ≥ 1 ( This approximation holds for all n)  

• If given €> 0, an≈l for n ≥ 1 ( Condition is smaller the 
€,approximation can be made as close as  

 

1.2 INTRODUCTION TO SETS 
 
Notation: Imagine S to be a set, and if x is an element of this set then it is 
represented as x ∈ S. If x is not an element of the set S then it is 
represented as x ∉ S. The notation for the set is that all the elements within 
the set should be included within braces. For example a set can comprise 
of elements as such {1, 2, 3} and these elements are members of the set. 
Sometimes very large sets are represented as follows: {1,2,3,…….,99}and 
these can be termed as set of positive integers. Infinite sets can be 
represented in this format as follows: {23,24,25………}. 
 
Example 3: Solving Problems on Sets: 
 
Consider A = {5, 6, 7}, B = {7, 5, 6}, and C = {7, 7, 6,6, 6,5,5}. 

a.  Specify the elements of set A, B, and C and identify the relation that 
exists between them. 

b.  Is {0} = 0? 

c.  Specify the number of elements that are present in the set {5, {5}}? 

d.  For each positive integer m, let Nm = {m, −m}. Find N3, N4, and N0. 
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To solve the above please note that for part “a” elements of asset are 
never repeated i.e. 

a.  All the sets denoted by A, B, C have exactly the same number of 
elements within the set and also the elements are the same. 

b.  As per the set notation the set containing “0” represents that there 
exists a single element in the set and it is not equal to 0. 

c. There are two elements in the set the first element being “5” and the 
second element being a set containing the number5. 

d. N3 = {3,-3},N4={4,-4},N = {0,0} 

 

There are certain set of numbers which are commonly referenced through 
symbolic names and are presented in the table below: 
 

Set Represented by 

R Set of all real numbers 

R+ Set of all positive real numbers 

Z Set of all integers 

Q Set of all rational numbers 

W Set of whole numbers 

N Set of all positive whole 
numbers 

 

 Real numbers can be represented using a number line as shown 
below. These primarily constitute of rational numbers. Rational numbers 
majorly constitute of integers (positive and negative) and fractions 
(positive and negative). The set of integers comprise of negative integers 
and whole numbers and the whole numbers constitute of natural numbers 
and 0. 
 

 
 

 The real number when represented using a line is said to be 
continuous and the integers positive and negative are located at fixed 
intervals along the line and every integer is said to be discrete as its 
position on the number line is unique and discrete. Hence the term 
Discrete Mathematics comes from the distinction between continuous and 
discrete mathematical objects. 
 

The real number when represented using a line is said to be 
continuous and the integers positive and negative are located at fixed 
intervals along the line and every integer is said to be discrete as its 
position on the number line is unique and discrete. 
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Coming back to the concept of set the set can be represented using 
set builder notation. 
 
Set-Builder Notation:  
 
 Let S be a set and let P(x) be a property such that for the elements of 
the set S the property might either hold true or false. The above can be 
represented as follows: We may define a new set to be the set of all 
elements x in S such that P(x) is true. The most natural way of denoting it 
is as follows: 

{ x | P(x)} or {x ∈ S | P(x)} 
 

 Understanding sets by making use of set builder notation can be 
achieved by solving a few examples: 
 
 Consider R , Z and Z + where R denotes the real numbers, Z denotes 
the integers and Z+ the set of positive integers and values range from -1 to 
4 . It is required to depict the same through a number line. 
 

a. { x∈ R | -1 < x < 4, x ∈ Z | -1 < x < 4, x ∈ Z+ | -1 < x < 4 } 
 
Solution: 
 

 
 
So the solution sets are as follows:  
R = { 0,1,2,3}, Z = { 0,1,2,3} and Z+ = { 1,2,3}  
 
Subsets:  
 

A is a subset of B written A⊆	B, when every element of A is also an 
element of B. In other words A ⊆	B means that for all elements x, if x 
belongs to A then x also belongs to B written as if x ∈	A then x ∈	B. If A 
is a subset of B and B is not a subset of A then there exists at least one 
element in B that is not in A. This is represented as follows that there is at 
least one element x such that x ∈	B and x ∉	A. This type of set is also 
known as proper subset.  
 
Example 4: Subsets:  

Let A = {Set of whole numbers, B = {n ∈	W | 0 ≤ n ≤ 100}, and C 
= {40, 50, 60, 70, 80,120}. Evaluate the truth and falsity of each of the 
following statements.  

a.  B ⊆A- True  

b.  C is a proper subset of A - True  

2 3 

3 (For real numbers and integers 2 1 0 
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c.  C and B have at least one element in common - True  

d.  C ⊆	B - False 120 is not in B  

e.  C ⊆	C True because every element in C is also in C and every set is a  
 subset of itself.  
 
Example 5: Distinction between ∈	and ⊆		
True or False  

a. 6∈	{4, 6, 9} -True  

b.  {2} ∈	{1, 2, 3} - False It should have been {1, {2}, 3}  

c.  6⊆	{4, 6, 9} False as 6 has to be a set in itself  

d.  {6}⊆{4, 6, 9} True  

e.  6 ⊆	{{4},{6},{9}}  

f.  {6} ∈	{{4},{6}} True  
 
Cartesian Products: 
 
 Before defining Cartesian products it is mandatory to note and 
understand ordered pairs. Given elements a and b, the representation (a, b) 
denotes the ordered pair where a is the first element of the pair and b is the 
second element. Two ordered pairs (a, b) and (c, d) are said to be equal if, 
and only if, a = c and b = d. This is represented as (a, b) = (c, d) means 
that a = c and b = d.  
 
Cartesian Product:  
 

This can now be defined as follows: Given sets A and B the 
Cartesian product of A and B denoted as AxB is the set of ordered 
pairs(a,b) where a is in A and b is in B.  

Symbolically: A × B = {(a, b)| a ∈	A and b ∈	B}.  
 

1.3 RELATIONS AND FUNCTIONS  
 

Let P and Q be two sets. A relation R from P to Q is typically a 
subset of P × Q. An ordered pair (m, n) in P × Q, where m is related to n 
by relation R, written m R n, if, and only if (m, n) is in R. The set P is 
called the domain of R and the set Q is called its co-domain.The relation R 
is represented by (m,n) ∈	R. and when m is not in relation with n then it is 
written as m,n∉	R.		
	
Example 7:  

Let P = {8, 9} and B = {8,9,10} and define a relation R from P to Q as 
follows: Given any (m, n) ∈	P × Q, means that m – n/2 is an integer. 	
a. State the ordered pairs are in P × Q and which are in R.  

b.  Is 8 R 10? Is 9 R 10? Is 9 R 9?  
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c.  What are the domain and co-domain of R?  
 
Solution:  

a. P x Q= {(8, 8), (8, 9), (8, 10), (9, 8), (9, 9), (9, 10)}. To determine 
explicitly the composition  of R, examine each ordered pair in P × Q to see 
whether its elements satisfy the defining condition for R. 

(8, 8) ∈	R because 8−8/2 = 0/2 = 0, which is an integer.  

(8, 9) ∉	R because 8−9/2 = −1/2, which is not an integer.  

(8, 10) ∈	R because 8−10/2 = −2/2 = −1, which is an integer.  

(9, 8) ∉	R because 9−8/2 = 1/2, which is not an integer.  

(9, 9) ∈	R because 9−9/ 2 = 0/2 = 0, which is an integer.  

(9, 10) ∉	R because 9−10/ 2 = −1/ 2 , which is not an integer.  
 
Thus  

a)  R = {(8,8) (8, 10), (9, 9)} 

b)  Yes, 8 R 10 because (8, 10) ∈	R.  

No, 9 R 10 because (2, 3) ∉	R.  

Yes, 9 R 9 because (9, 9) ∈	R.  

c)  The domain of R is {8, 9} and the co-domain is {8, 9, 10}.  
 
Representation of relation through a diagram:  
 
Let R be a relation from a set P to a set Q. A diagram representing the 
relationship is obtained as follows:  

a. The elements of P are represented as points in one region and the 
elements of Q in another region.  

b.  For each m in P and n in Q , an arrow has to be drawn from m to n if, 
and  only if, m is related to n by R.  

 
Example 8:  

Let P = {7, 8, 9} and B = {8, 9, 10} and define relations S and T from P to 
Q as follows: For all (m, n) ∈	P × Q, (m, n) ∈	S means that m < n. S is a 
“less than” relation.  

T = {(7, 8), (7, 9)}.  

Draw arrow diagrams for S and T .  
 
Solution: 
 
S.T. 
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From every element in a set, based on a condition we can show 

single or multiple relationships within elements of two different sets using 
the arrow diagram.  
 
Functions:  
 
A function F from a set P to a set Q is a relation with domain P and co-
domain Q that satisfies the two essential properties:  
 
a.  Each element m in P has a corresponding element n in Q such that 

(m, n) ∈	F.  

b.  For all elements m in P and n in Q if (m,n) ∈	F	and	(m,o)	∈	F	then	n	
=	o.		

 
In other words a relation P to Q is a function if an only if every 

element of P is the first element of an ordered pair of the function F and no 
two distinct ordered pair have the same first element.  
 

More precisely, if F is a function from a set P to a set Q, by 
property (1) there is at least one element of Q that is related to m by F and 
by property (2) there is at most one such element. Here if the element of P 
is referred to as x then the corresponding element in Q is referred as F(x)  
 

1.4 SUBSETS – PROOF OF THE CONCEPT 

 
In this section the incorporation of the previously discussed 

universal conditional statement to formally represent the concept of 
subsets is shown below:  P⊆	Q⇔∀m, if m∈	P then m∈	Q  
 
The negation is, therefore, existential  
 

P ⊆ Q ⇔∃ m such that m ∈ P and m ∉ Q 
 

A proper subset of a set is a subset that does not have at least one 
element of the original set. Thus P is a proper subset of Q⇔ P⊆ Q and 
there is at least one element in Q that is not in P. 
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Example 10: 

Let P = {5} and B = {5,{5}}.  

a. Is P⊆	Q?  

b. P a proper subset of Q 
 
Solution:  

a.  Yes P is a subset of Q. P has an element from the set of elements 
present in Q   

b.  P is also a proper subsetof Q because there exists at least one element 
in Q that is not in P.  

 
A method of direct proof can be used to show one set is a subset of the 
other using the concept of element argument. 
 
Element Argument:  This is a method for proving that a set is the subset 
of another. Given X and Y. To prove that X ⊆	Y  

a.  suppose that m is a particular but arbitrarily chosen element of P  

b.  m has to be an element of Q .  
 
Proving and Disproving Subset Relations:  

Define sets P and Q as follows 

P = {m ∈	Z| m = 6a + 12 for some a∈	Z}  

Q = {n ∈	Z | n = 2b for some b∈	Z}.  
 
a.  To prove that P ⊆	Q		
b.  Q⇔	P⊆	Q (To prove that it is a proper subset)  

c.  Disprove that Q⊆	P.  
 
Solution: 
 
a. Suppose m is randomly chosen from the set P. We have to prove that 

m belongs to Q as well.  
  

So P  constitutes of elements as follows: {18, 24,30,36…..} since Z is 
a set of integers. The “a” s of the set are {1,2, 3……}. The “b’s “ of 
the set are {1,2,3…..} and n =2b i.e. 2,4,6,8,10,12,14, 16,18,20, 
22,24,26, 28,……}. Hence every elements of P is in Q i.e. P ⊆	Q.  
 

b.  To prove that P is a proper subset of Q which means that an element 
of Q is not in P. As can be seen that set Q is a set of all even numbers 
and the equation represented in set P is seen it to be in arithmetic 
progression with a common difference “d” of 6. Hence the set P will 
not constitute of all even numbers as even numbers grow in a series 
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with a common difference “d” of 2. Hence it is proved that it is a 
proper subset of Q. 

  
c.  To disprove the above statement and show that Q is not a subset of P 

we assume that there exist an integer m =2 such that m ∈	Q because 2 
= 2 *1.But m does not belong to P as there is no integer “a” such that 
2= 6a + 12. For if there were such an integer, then  

 
6a + 12 = 2by assumption  

3a + 4 = 1 by reduction  

a= -1 which is not an integer Hence P cannot be a subset of set Q. 
 
Set Equality:  
 

Sets P and Q are said to be equal if, and only if, they have exactly 
the same number of elements. The definition can still be formulated using 
the set language.  
 

Let there be two sets P and Q. It is said that they are equal if every 
element of set P is in set Q and vice versa represented as P = Q⇔	P⊆	Q 
and Q⊆	P. 
 
Example 11Set Equality: 
 
Define sets P and Q as follows  

P = {m ∈	Z | m = 2a for some integer a}  

Q = {n ∈	Z | n = 2b − 2 for some integer b}  

To prove P = Q  
 
There exist an element in P that is in Q. Let x be the element. Then x 
should necessarily be equal to 2a.  
 
To be equal the set Q should be represented by x. In other words x should 
be = 2b – 2. 
 
So 2a = 2b – 2 or b = a+1. Substituting in the equation of Q i.e. 2b -2  

x = 2b – 2 = 2(a+1)-2 = 2a. So x which represents set Q also represents set 
P and both are stated to be equal. Whether x is an integer then the proof is 
as follows:  

since b= a + 1 and a being an integer as defined b is also represented as 
sum of integer i.e. (a+1).   

So x = 2b +2 is also an integer. 
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Set Operations: 

Union of sets: Let P and Q be the subsets of a universal set U. The union 
of P and Q is the setdenoted by P U Q such that the set contains all 
elements those which either belong to P or to Q. 
 
Intersection of sets: Represented by P ∩ Q this set constitutes of elements 
that are common to bothP and Q 
 
Complement of a Set: The complement of P denoted by Pc is the set of 
all elements of a Universal set that are not in A. 
 
Difference of sets: The difference of sets Q minus P denoted by Q − P, is 
the set of all elements that are in Q but not in P. 
 
Represented through notations the above operations are as follows: 
 
P∪ Q = {m∈ U | m ∈ P or m∈ Q} 

P ∩ Q={m ∈ U | m∈ P and m∈ Q} 

Q – P or Q/p = {x ∈ U | x ∈ Q and x ∉ P}, 

Pc or P = {x ∈ U | x ∉ P}. 
 

Here the above symbols are commonly used set theory symbols 
introduced in 1889 by the Italian mathematician G Peano.Venn diagrams 
embody mathematical or logical sets pictorially as circles enclosed within 
rectangles (the universal set U), and the common elements of the sets 
being represented by intersections of the circles. 

 

 
 
Example 12: Unions, Intersections, Differences, and Complements 
Let the universal set be U = {m, n, o, p, q} and let P = {m,n,p,q} and 
Q = {n, o, p, q}. Find P∪ Q, P ∩ Q, P − Q, and Pc. 
 
Solution: 

P ∪	Q  =  {m. n, o, p, q}  

P ∩ Q  =  {m.n,p, q}  

Q - P  =  {o}  

Pc =  {}  
 
A notation for subsets of real numbers that are intervals  

Given real numbers m and n with  
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m ≤ n: (m, n) = {y∈	R | m < y < n} [m, n]={y ∈	R | m ≤ y ≤ n}  

(m,n)=n{y ∈	R | m < y ≤ n} [a, b) = {y∈	R | m ≤ y ≤ n} 
 
Unbounded intervals are shown using ∞ and −∞ are used to indicate 
intervals that are unbounded either on the right or on the left  

(m,∞) = {y ∈	R | y> m} [m, ∞]= {y∈	R | y≥ m}  

(−∞, n) = {y∈	R | y < n} [−∞, n) = {y∈	R | y ≤ n} 
 
Example 13 Using Intervals (Real Numbers):  

U = Set R of all real numbers  

P = (−1, 0) ={y∈	R | −1< y≤ 0} and  

Q = [0, 1) = {y∈	R | 0 ≤ y ≤ 1}. 
 
Represented by shaded region is the above relation Find 

 
Find P∪	Q, P ∩ Q, Q − P, and Pc  
 
Solution:  

P∪	Q = {y∈	R | y∈	(−1, 0] OR y∈	[0, 1)}={y∈	R | y∈	(−1, 1)} = { (-1,0) 
∪	(0,1)} = (-1,1)  

P ∩ Q  =  {y∈	R | y∈	(−1, 0] AND y∈	[0, 1)}={(-1,0) ∩(0,1) = 0}  

Q – P  =  {y∈R | y∈	[0, 1) and y∉(−1, 0]} = {y∈	R | 0< y<= 1} = {1}  

Pc =  {y∈	R | y∉	(−1, 0]} 
 
The Empty Set:  
 

Empty sets are otherwise known as the null sets and denotedby∅. 
For example if we take { 3,4 } ∩ {2,5} then it is = ∅		
	
Example 14 Set S = {y ∈	R | 5< y < 3}. 
 
Solution: Such an element does not exist hence the set is an empty set 
 
Partitions of Sets:  
 

The applications of Set Theory require that a set can be partitioned 
into a number of disjoint sets which is otherwise known as partitioning 
and the sets constitute of the disjoint sets. Such a division is called a 
partition. Two disjoint sets have no element in common. When sets are 
disjoint with no overlaps then sets are said to be disjoint as shown  
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Sets P and Q are disjoint ⇔	P ∩ Q = ∅.  
 
Example 15 : Disjoint Sets  
 
Let P = {9, 3, 2} and B = {1, 4, 8}. Prove that P and Q are disjoint 
 
Solution : 
 
Since these two sets have no element in common they are said to be 
disjoint  
{9, 3, 2}∩{1, 4, 8}=∅. 
 
Pairwise Disjoint Sets : 
 
P1, P2, P3 ... are pairwise disjoint or non-overlapping if, and only if, no two 
sets Pi and Pj with distinct subscripts have any element in common i.e. Pi 
∩ Pj = ∅	where i,j = 1,2,3………..  
 
Example 16 Mutually Disjoint Sets:  

a.  Let P1 = {1,3, 5}, P2 = {1, 5, 6}, and P3 = {2}. Are P1, P2, and P3 
mutually disjoint?  

b.  Let P1 = {2, 5, 8}, P2 = {3, 7}, and P3 = {6, 8}. Are P1, P2, and P3 

mutually disjoint? 
 
Solution: 

a.  P1 and P2 have {1,5} as common elements, P1 and P3 have no 
elements and P2 and P3 have no elements common. Hence P1 and P3 
and P2 and P3 are mutually disjoint.  

 
b.  P1 and P2 have no elements in common and P1 and P3 have common 

element {8}. P2 and P3 are mutually disjoint. 
 
Partition: 

P1, P2 , P3 and P4 if mutually disjoint can also act as partitions for the total 
set P and P can be written as P = P1∪P2 ∪, P3∪ P4 and is represented in the 
following manner. 
 

 
 
Partition of P is a collection of finite or infinite collection of nonempty 
sets P1, P2 ,P3 and P4 and  
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a. P is the union of Pi’s.  

b.  P1, P2 , P3 and P4 are all mutually disjoint 
 
Example 17 Partitions of Sets  

a.  Let P = {1, 2, 3, 4, 5, 6}, P1 = {1, 2}, P2 = {3, 4}, and P3 = {5, 6}. Is 
{P1, P2, P3} a partition of P?  

 
Solution:  

a. P = P1∪	P2∪	P3 and the sets are mutually disjoint  

b.  Let S = { Set of all integers}  

P1 = {n ∈	S| m = 5n, for some integer n},  

P2 = {n∈	S| m = 5n + 1, for some integer n},  

P3 = {n ∈	S| m = 5n + 2, for some integer n}.  

Is { P1 , P2 ,P3} a partition of P?  
 

Yes the sets are disjoint and no two sets have any common elements 
in them because the remainders 0, 1, 2 added to the equations give 
different values of m each time. For example for 5n (n = 1,2,3,4) i.e. 
5,10,15 20 …… the remainders are 0 in each case. For example for 5n + 1 
(n = 1,2,3,4) i.e. 6,11,16,21 the remainders are 1 in each case. For 5n+2 (n 
= 1,2,3,4) i.e.7,12,17,22 the remainders are 2 in each case.  
 
Power Sets:  
The power set of B, denoted P (B), is the set of all subsets of B  
 
Example 18 Power Set  

Find the power set of the set {m, n}. That is, find P ({m, n}).  
 
Solution  

P({m,n}) = { ∅,{m},{n},{m,n}}		
	
Cartesian Products (additional):  
 

An ordered 2-tuple deduced from a cartesian product of two sets is 
an ordered pair representation, and so is an ordered 3-tuple also called an 
ordered triple. Two ordered n-tuples are equal if, and only if a1 = b1, a2 = 
b2 ….an = bn Symbolically represented as (a1, b1) = (a2, b2) ⇔	a1 = a2 and 
b1 = b2.  
 

1.5 PROPERTIES OF SET 
 
Some subset relations are represented as follows:  

Intersection : For all sets P and Q  

(a) P ∩ Q⊆	P and (b) P ∩ Q ⊆	Q  
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Union : For all sets P and Q,  
(a) P ⊆	P∪	Q and (b) Q⊆	P∪	Q 
 
Property of Transitivity: For all sets P, Q, and R,  
if P⊆	Q and Q⊆	R, then P⊆R  
Procedural Versions of Set Definitions  
 
Let P and Q be subsets of a universal set U and suppose p and q are 
elements of U. 

a.  p∈	P∪	Q⇔	p∈	P or q∈	Q  

b.  p ∈	P ∩ Q⇔	p∈	P and q∈	Q  

c.  p∈	P – Q ⇔	p∈	P and p ∉Q  

d.  p∈	Pc⇔	p∉P  

e.  (p, q) ∈	P × Q⇔	p∈	P and q∈Q  
 
Set Identities : for all p An identity is an equation that is universally true 
for all elements in some set. For example, p + q  =  q + p is an identity for 
real numbers  and q.  The set identities are equations that are true for all 
sets in some universal set. 
 
Set Identities  
Consider the universal set U and the following identities as represented  
 
Commutative Laws : For all sets P and Q  
(a) P∪	Q= Q∪	P and (b) P ∩ Q = Q ∩ P.  
 
2. Associative Laws: For all sets P, Q, and R,  

(a)  (P∪	Q) ∪	R = P∪	(Q∪	R) and  

(b)  (P ∩ Q) ∩ R = P ∩ (Q ∩ R). 
 
3. Distributive Laws : For all sets, P, Q, and R 

(a)  P∪	(Q ∩ R) = (P∪	Q) ∩ (P∪	R) and 

(b)  P∩ (Q∪	R) = (P ∩ Q) ∪	(P ∩ R). 
 
4. Identity Laws: For all sets P, 

(a)  P∪∅= P and 

(b)  P ∩ U = P. 
 
5. Complement Laws: 

(a)  P ∪	Pc = U and (b) P ∩ Pc = ∅. 
 
6. Double Complement Law: For all sets P, (Pc) c = P. 
 
7. Idempotent Laws: For all sets P, (a) P∪	P = P and (b) P ∩ P = P. 
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8.  Universal Bound Laws: For all sets P, (a) P∪	U = U and (b) P ∩∅=∅. 
 
9.  De Morgan’s Laws:For all sets P and Q, 
(a)   (P∪	Q) c = Pc ∩ Qc and (b) (P ∩ Q) c = Pc∪	Qc 
 
10. Absorption Laws: For all sets P and Q 
(a)   P∪	(P ∩ Q) = P and (b) P ∩ (P∪	Q) = P 
 
11.  Complements of U and ∅: 
(a)   Uc= ∅	and (b) ∅c = U 
 
12. Set Difference Law: For all sets P and Q, 
 P − Q = P ∩ Qc 
 

Proof of Set Identities :  

Two sets are said to be equal ⇔	if each is a subset of the other. Let sets P 
and Q be given. To prove that P = Q we have to do the following : 

Prove that P⊆	Q 

Prove that Q⊆	P 
 
Example 20 Proof of Distributive Law 
Prove that for all sets P, Q, and R, 
P ∪	(Q ∩ R) = (P∪	Q) ∩ (P∪	R) 
 
Solution: 
The two sets are equal if, and only if, each is a subset of the other. Hence, 
it is essential to prove the following: 
P∪	(Q ∩ R) ⊆	(P∪	Q) ∩ (P∪	R) 
and (P∪	Q) ∩ (P∪	R) ⊆	P∪	(Q ∩ R) 
 
To prove the above one has to necessarily show that for 
∀x, if x ∈ P∪ (Q∩ R) then x ∈ (P∪ Q) ∩ (P∪ R) and also 
∀x, if x ∈ (P∪ Q) ∩ (P∪ R) then x ∈ P∪ (Q ∩ R)  
 
Suppose P, Q, and R are sets and x be an arbitrary element of P ∪ (Q ∩ R) 
which means x ∈ P or x ∈(Q ∩ R). If x ∈ P then x necessarily belongs to 
(P∪ Q) and (P∪ R). Hence x ∈(P∪ Q) ∩ (P∪ R). If x ∈ (Q ∩ R) then x ∈ 
Q and x ∈ R. Hence x ∈ (P∪Q) and (P ∪R). Therefore P ∪ (Q ∩ R) ⊆ (P∪	
Q) ∩ (P∪ R)  
 
For reverse inclusion let x ∈(P∪ Q) and x ∈(P∪ R) which means x ∈ P or 
x ∈ Q and x ∈ P or x ∈	R.If x ∉ P then x need to belong to Q and x need to 
belong to R i.e. x ∈ (P ∪ Q) and x ∈(P ∪ R) which means x should be both 
in Q and R. If x ∈ P then x should also belong to P ∪( Q∩ R). Hence (P∪ 
Q) ∩ (P∪ R)⊆P ∪ (Q ∩ R) 
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The Empty Set: 
 

It is said that a set with no elements is an empty set i.e. if E is a set 
with no elements and P is any set then E ⊆	P.		
	

The above statement can be solved by contradicting it and saying 
that let E be the empty set having at least one element that is in E and not 
in P. But since E is an empty set and cannot have any element in it hence 
the statement to contradict is false and the above statement that E is a 
subset of P is true. 
 

1.6 PROVING PROPERTY OF SETS USING VENN 
DIAGRAM 
 
To prove that for all sets P,Q,R,(P – Q) ∪	(Q	–	R)	=	P	-	R		
	

The property is true if and only if the given equality holds for all sets 
P,Q and R false otherwise. The following can be proved using Venn 
Diagram by shading the different regions of the Venn diagram as per the 
formula given and arrive at the result Shade the region corresponding to (P 
− Q) ∪ (Q − R) and then shade the region corresponding to P − R. They 
are not the same . Here take A = P ,B= Q and C = R 

 

 
 
(P – Q) ∪	(Q − R)(P – R) 
 
Solving the above by taking into considerations sets comprising of 
numbers further proves that (P − Q) ∪	(Q − R) (P – R) 

 
P – Q = {1, 4},Q-R = {7,2}, P-R = {1,2}  
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{P – Q} ∪	{Q	–	R}	=	{1,4,	7,	2}		
{P	–	R}	=	{1,	2}	Hence	they	are	not	equal	
	
Power Sets:  
 

A set having n elements, has 2n elements in its power set. It can be 
proved using mathematical induction and is based on the following 
observations. P set with n elements has 2n subsets which is known as the 
Power Set. 
 

Basis step :P(0) is true, because the set with cardinality 0 (the empty set) 
has 1 subset (itself) and 20 = 1.  
 

Inductive step: To prove P(k) → P(k+1) That is, prove that if a set with k 
elements has 2K subsets, then a set with k+1 elements has 2K+1 subsets.  
 

Proof: Any set with cardinality k has 2K subsets. Let P be a set such that 
|P| = k+1. Enumerate the elements of P: P = c1……ck+1. Let S = c1……..ck. 
Then |S|=k, so S has 2k subsets, and according to theory of mathematical 
induction P = S ∪	{ck+1}.Hence every subset of S is also a subset of P. 
Any subset of Pcontains the element ck+1, or it doesn’t contain ck+1. If a 
subset of P doesn’t contain ck+1, then it is also a subset of S, and there are 
2k of those subsets. On the other hand, if a subset of P contains the 
element ck+1, then that subset is formed by including ck+1 in one of the 2k 
subsets of S, so P has 2k subsets containing ck+1. We have shown that P has 
2k subsets containing ck+1 , and another 2k subsets not containing c k+1, so 
the total number of subsets of P is 2k + 2k = 2k+1 which is of the order of 
2k. 
 

Proofs for Set Identities: 
 

Set Difference: 

Construct an algebraic proof that for all sets P, Q, and R,  
(P∪	Q) − R = (P − R) ∪	(Q − R). 
 

Solution:  

Let P, Q and R be any sets. Then  

= (P U Q) − R = (P U Q) ∩ Rc by the set difference law  

= Rc∩ (P∪	Q) by the commutative law 

= (Rc∩ P) ∪	(Rc ∩ Q) by the distributive law 

= (P ∩ Rc )∪	(Q ∩ Rc ) by the commutative law 

= (P − R) ∪	(Q− R) by the set difference law. 
 

Set Identity Proof 

Consider sets P and Q 

P − (P ∩ Q) = P − Q 
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Solution: 

Suppose P and Q are sets. Then 

P − (P ∩ Q) = P ∩ (P ∩ Q) c by the set difference law 

= P ∩ (Pc ∪Qc) by De Morgan’s laws 

= (P ∩ Pc )∪	(P ∩ Qc ) by the distributive law 

=∅∪( P ∩ Qc ) by the complement law 

= (P ∩ Qc) ∪∅	by the commutative law 

= P ∩ Qc by the identity law 

= P – Q by the set difference law.  
 
Associative Law 
Prove that for any sets A1, A2, A3, and A4, 
((A1 ∪	A2) ∪	A3) ∪	A4 = A1 ∪	((A2 ∪	A3) ∪	A4). 
 
Solution: 
Above can be written as (A U B) U C = A U( B UC) where A = A1 ∪	A2 
for L.H.S and B = A2 ∪	A3 for R.H.S and solved using associative law. 
 

1.7 BOOLEAN ALGEBRAS, RUSSELL’S PARADOX 
AND THE HALTING PROBLEM 
 
Logical Equivalances Set Properties 
For all statement variable m,n and p For all sets x,yand z  
i) m ∨ n=n ∨ m 
ii) m ∧  n=n ∧ m 

i) X ∪ Y=Y=X 
ii) X ∩ Y=Y ∩ X 

i) m ∧ n (n ∧ p)=(m ∧ n) ∧ p 
ii) m ∨  (n ∨ p)=(m ∨ p) ∧ p) ∨  p 

i) (X ∪ Y) ∪ Z=X ∪ (Y ∪ Z) 
ii) (X ∩ Y) ∪ Z=X ∩ (Y ∩ Z) 

i) m ∧  (n ∨ p)=(m ∧ n) ∨ (m ∧ p 
ii) m ∨  (n ∧ p)=(m ∨ n) ∧ (m ∨  p) 

i) X ∩ (Y ∪ Z) (X ∩ Y) ∪  (X ∩ Z) 
ii) X ∪ (Y ∩ Z)= (X ∪ Y) ∩ (x ∩
Z) 

i)  m ∨ c=m 
ii) m ∧ t=m 

i) X ∪∅ =X 
ii) X ∩ U =X 

i) m ∨ ∼m=t 
ii) m ∧ ∼ t=c 

i) X ∪ XC = ∪ ∅  
ii) X ∩ XC=X∅  

i) m ∼ (∼m)=m i) (XC)C=X  
i) m ∨ t=m 
ii) m ∧ C=C∼  

i) X ∪ U=U 
ii) X ∩  ∅  = ∅  

i) m ∨ m=m 
ii) m ∧ m=m 

i) X ∪ X=X 
ii) X ∩ X=X 

i) ∼  (m ∨ n)=∼m ∧ ∼ n 
ii) ∼ (m ∧ n)= ∼  m ∨ ∼ n 

i) (X ∪  Y)C= XC
∩  YC 

i) (X ∩  Y)C= XC
∪  YC 

i) m ∨ (m ∧ n) =m 
ii) m ∧ ( m ∨ n)=m 

i) X ∪ ( X ∩  Y)=X 
ii) X ∩  (X ∪ Y) )=X 
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Boolean Algebra: 
A Boolean algebra typically constitutes of a set with two 

operations i.e. + and ·. If p and q are elements of that set then p+q and p·q 
are in that set and the following properties hold true: 
 
Commutative Laws: For all p and q in the set suppose S, 
(a) p + q = q + p and (b) p ·q = q·p. 
 
Associative Laws: For all p, q, and r in S, 
(a) (p + q) + r = p + (q + r) and (b) (p ·q)·r = p ·(q·r). 
 
Distributive Laws: For all p, q, and r in S, 
(a) p + (q·r) = (p + q)·(p+ r) and (b) p ·(q + r) = (p·q) + (p ·r). 
 
Identity Laws: There exist distinct elements 0 and 1 in S such that for all 
p in S, (a) p + 0 = p and (b) p ·1 = p. 
 
Complement Laws: For each p in S, there exists an element in S, denoted 
p and called the complement or negation of p, such that (a) p + p = 1 and 
(b) p ·p = 0. 
 
Properties of a Boolean Algebra: 
 
Uniqueness of the Complement Law: For all p and x in S, if p + x = 1 
and p · x = 0 then x = p. 
 
Uniqueness of 0 and 1: If there exists x in S such that p + x = p for all p 
in B, then p = 0, and p· y =p for all p in S, then y = 1. 
 
Double Complement Law: For all p∈	S,(p) = p 
 
Idempotent Law: For all p∈	S, 
(a) p + p = p and (b) p·p = p. 
 
Universal Bound Law: For all p∈S, 
(a) p + 1 = 1 and (b) p·0 = 0. 
 
De Morgan’s Laws: For all p and q∈S, 
(a) p + q= p ·q and (b) p ·q = p + q 
 
Absorption Laws: For all p and q∈S, 
(a) (p + q)·p = p and (b) (p·q) + p = p. 
 
Complements of 0 and 1: (a) 0 = 1 and (b) 1 = 0. 
 
Proof: 

Uniqueness of the Complement Law: Suppose p and x are particular, but 
arbitrarily chosen,elements of B that satisfy the following hypothesis: p + 
x = 1 and p · x = 0. Then 
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=  x = x ·1 because 1 is an identity 

=  x ·(p + p) by the complement law 

=  x ·p + x ·p by the distributive law 

=  p ·  x + x ·p by the commutative law 

=  0 + x ·p by hypothesis 

=  p ·p + x ·p by the complement law 

=  (p ·p) + (p· x) by the commutative law for 

=  p·(p + x) by the distributive law 

=  p ·1 by hypothesis 

=  p because 1 is an identity 
 
Double Complement Law: 
 
Prove that for all elements p in Boolean algebra S,(a) = a. 
 
Proof: Suppose S is a Boolean algebra and p is any element of S. Then 
p + p  = p + p by the commutative law 
 = 1 by the complement law for 1 
 
and 
p ·p  = p ·p by the commutative law 
 = 0 by the complement law for 0. 
  
Thus p satisfies the above conditionswith respect to p that are satisfied by 
the complement of p. From the fact that the complement of p is unique, we 
conclude that (p) = p. 
 
Russell’s Paradox: 

Russell’s paradox is the most famous set-theoretical paradoxes. Also 
known as the Russell-Zermeloparadox, it considers that the set of all sets 
are not members of themselves. Such a set appears to bea member of itself 
if and only if it is not a member of itself. Hence the paradox. Example S = 
{S1,S2, S3…}. Hence S is not a member of itself. If S is not a member of 
itself then S is a member ofitself. 
 
S = {{ S}, S1, S2, S3}} 
Is S an element of itself? 
 

The answer is neither yes nor no. For if S ∈	S, then S satisfies the 
defining property for S. But if S ∉	S, then S is a set such that S ∉	S and so 
S satisfies the defining property for S, which implies that S ∈	 S. Thus 
neither is S ∈	S nor is S ∉	S, which is a contradiction 
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The Halting Problem: 
 

It is said that a problem statement has initially a binary solution in 
the form of “Yes” or a “No” where a “Yes “ is a 1 and a “No” is a 
0.Examples of such types are as follows: Is the sum of two integers an 
integer only or is a number even/odd/prime etc. An algorithm is the 
execution of a sequence of steps which can conclude on the following 
questions and those which can answer correctly the question asked in a 
finite time period. The problems which can be solved using algorithms in 
finite amount of time are said to be the decidable problems whereas those 
which cannot be are said to be undecidable. Craig Kaplan, Associate 
Professor, Computer Graphics from University of Waterloo wrote a code 
as follows to prove the decidability or un-decidability specifically as an 
adaptation of Turing proof.  

boolwould_it_stop( char * program, char * input ) {  

if( something terribly clever ) { 

return TRUE; 

  } else { 

return FALSE; 

  } 

 } 

This program was then given the input as the program itself and this was 
done using the following code. 

boolstops_on_self( char * program ) { 

returnwould_it_stop( program, program ); 

} 
 
He then included an infinite loop in a small program that detects infinite 
loops as follows: 

boolbobs_yer_uncle( char * program ) { 

if(stops_on_self( program ) ) { 

while( 1 ) {} 

return FALSE; 

} else { 
 
return TRUE; 

  } 

} 
The assumption was that the first algorithm that was written was a 

solution to the halting problem. That is the first algorithm will terminate 
after answering whether a program will loop forever on specific inputs. 
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Where as “stops_on_self” algorithm conducts two passes where one is to 
execute the program and second is to provide the same program as an 
input sequence to the program. Now if stops_on_self”  
 
algorithm is true then “boolbobs_yer_uncle” goes into an infinite loop else 
terminates and returns true. But the paradox is that when the third program 
i.e. “boolbobs_yer_uncle” is given as an input to itself either it runs for 
ever or stops and returns true depending on the true and false status of 
“stops_on_self”. 
 
- If bobs_yer_uncle(bobs_yer_uncle ) goes into an infinite loop, it is 

because stops_on_self( bobs_yer_uncle ) returned TRUE, which 
means that would_it_stop( bobs_yer_uncle,bobs_yer_uncle ) returned 
TRUE. But this means that bobs_yer_uncle would stop when feditself 
as input! This contradicts the assumption that it goes into an infinite 
loop. 

 

−  If bobs_yer_uncle( bobs_yer_uncle ) stops and returns TRUE, it's 
because stops_on_self(bobs_yer_uncle ) returned FALSE, which 
means that would_it_stop( bobs_yer_uncle,bobs_yer_uncle ) returned 
FALSE. But this means that bobs_yer_uncle would run forever when 

 fed itself as input! This contradicts the assumption that it terminates. 
 
 So the contradiction is that bobs_yer_uncle stops if and only if it 

runs forever. 
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1.9 UNIT END EXERCISE 
 
1. Find Products Problem  

Let A = {4, 5, 6} and B = {a,b}.  

a.  Find A × B  

b.  Find B × A  

c.  Find B × B  

d.  How many elements are in A × B, B × A, and B × B?  

e.  Let R denote the set of all real numbers. Describe R × R.  
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2. Let P = {8, 4, 6} and Q = {1, 3, 4}. Which of the relations D, E, and F 
defined below are functions from P to Q?  

a.  D = {(8, 1), (4, 1), (4, 3), (6, 4)}  

b.  For all (m, n) ∈	P × Q, (m, n) ∈	E means that n = m + 1.  

c.  T is defined by the arrow diagram  
 

 
 
3. Let A = {m, n}, B = {1, 2, 3}, and C = {y, z}.  

a.  Find A × B.   

b.  Find (A × B) × C   

c.  Find A × B× C  
 
 
 
 

***** 
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2 
 

THE LOGIC OF COMPOUND 
STATEMENTS 

Unit Structure 

2.0  Objectives 

2.1  Introduction 

2.2  Logical Form and Logical Equivalence 

2.3  Conditional Statements 

2.4  Valid and Invalid Arguments 

2.5  Unit End Exercise  

2.6  List of References 
 

2.0 OBJECTIVES 
 
This chapter would make you understand the following concepts:  

• Definition Logical Form 

• Understanding of Logical Equivalence 

• Compound Statements 

• Understanding valid and Invalid Arguments 

• Bi-conditional Statements 
 

2.1 INTRODUCTION 
 
Statements:  
 
Definition- A statement (or proposition) is a sentence that is true or false 
but not both. For example, “Two plus three equals five” and “Two plus 
three equals six” are both statements, the first because it is true and the 
second because it is false. 
 
Compound Statements:  
 

We now introduce three symbols that are used to build more 
complicated logical expressions out of simpler ones. The symbol ~ 
denotes not, ˄ denotes and, and ˅ denotes or. Given a statement p, the 
sentence “~p” is read “not p” or “It is not the case that p” and is called the 
negation of p. In some computer languages the symbol¬ is used in place 
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of ~. Given another statement q, the sentence “p ˄q” is read “p and q” and 
is called the conjunction of p and q. The sentence “p ˅ q” is read “p or q” 
and is called the disjunction of p and q. 
 

2.2 LOGICAL FORM AND LOGICAL EQUIVALENCE 
 
Truth Values:  
 
Definition- If p is a statement variable, the negation of p is “not p” or “It 
is not the case that p” and is denoted as ∼p. It has opposite truth value 
from p: if p is true, ∼p is false; if p is false, ∼p is true.  
 
The truth values for negation are summarized in a truth table. Truth Table 
for ∼p 
 

P ∼P 
T F 
F T 

 
In ordinary language the sentence “It is hot and it is sunny” is 

understood to be true when both conditions being hot and being sunny are 
satisfied. If it is hot but not sunny, or sunny but not hot, or neither hot nor 
sunny, the sentence is understood to be false. The formal definition of 
truth values for an and statement agrees with this general understanding. 
 
Definition:  

If p and q are statement variables, the conjunction of p and q is “p 
and q,” denoted p ˄ q. It is true when, and only when, both p and q are 
true. If either p or q is false, or if both are false, p ˄ q is false.  
 
The truth values for conjunction can also be summarized in a truth table. 
Truth Table for p ˄ q  
 

P q p ˄˄˄˄ q 
T T T 
T F T 
F T T 
F F F 

 

Definition:  
 

If p and q are statement variables, the disjunction of p and q is “p 
or q,” denoted p ˅ q. It is true when either p is true, or q is true, or both p 
and q are true; it is false only when both p and q are false.  
 
Here is the truth table for disjunction  
Truth Table for p ∨	q  
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p q p ∨ q 
T T T 
T F T 
F T T 
F F F 

 
Example 1 Truth Table for Exclusive Or:  
Construct the truth table for the statement form (p ˅ q) ˄~(p ˄ q). Note 
that when or is used in its exclusive sense, the statement “p or q” means “p 
or q but not both” or “p or q and not both p and q,” which translates into 
symbols as (p ˅ q) ˄ ~(p ˄ q).  
 
Solution: Set up columns labeled p, q, p ∨	q, p ∧	q, ∼(p ∧	q), and (p ∨	q) 
∧	 ∼(p ∧	 q). Fill in the p and q columns with all the logically possible 
combinations of T’s and F’s. Then use the truth tables for ∨	and ∧	to fill in 
the p ∨	q and p ∧	q columns with the appropriate truth values. Next fill in 
the ∼(p ∧	q) column by taking the opposites of the truth values for p ∧	q. 
For example, the entry for ∼(p ∧	q) in the first row is F because in the first 
row the truth value of p ∧	q is T. Finally, fill in the (p ∨	q) ∧	∼(p ∧	q) 
column by considering the truth table for an and statement together with 
the computed truth values for p ∨	q and ∼(p ∧	q). For example, the entry 
in the first row is F because the entry for p ∨	q is T, the entry for ∼(p ∧	q) 
is F, and an and statement is false unless both components are true. The 
entry in the second row is T because both components are true in this row.  
 

Truth Table for Exclusive Or: ( p ∨	∨	∨	∨	q) ∧	∼∧	∼∧	∼∧	∼( p ∧	∧	∧	∧	q)  
 

P Q ( p ∨	∨	∨	∨	q) ( p∧∧∧∧q) ∼∼∼∼( p ∧	∧	∧	∧	q) ( p ∨∨∨∨ q) ∧∧∧∧ ∼∼∼∼( p ∧∧∧∧ q) 
T T T T F F 
T F T F T T 
F T T F T T 
F F F F T F 

 
Example 2 Truth Table for ( p ˄˄˄˄ q) ˅˅˅˅ ~r  
Construct a truth table for the statement form ( p ˄˄˄˄ q) ˅˅˅˅ ~r  
 
Solution: Make columns headed p, q, r, p ∧	q, ∼r, and (p ∧	q) ∨	∼r. Enter 
the eight logically possible combinations of truth values for p, q, and r in 
the three left-most columns. Then fill in the truth values for p ∧	q and for 
∼r. Complete the table by considering the truth values for (p ∧	q) and for 
∼r and the definition of an or statement. Since an or statement is false only 
when both components are false, the only rows in which the entry is F are 
the third, fifth, and seventh rows because those are the only rows in which 
the expressions p ∧	q and ∼r are both false. The entry for all the other 
rows is T. 
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Truth Table for ( p ˄˄˄˄ q) ˅˅˅˅ ~r 
 

P q r ( p ˄˄˄˄ q) ~r ( p ˄˄˄˄ q) ˅˅˅˅ ~r 
T T T T F T 
T T F T T T 
T F T F F F 
T F F F T T 
F T T F F F 
F T F F T T 
F F T F F F 
F F F F T T 

 
Logical Equivalence: 
 
Definition: Two statement forms are called logically equivalent if, and 
only if, they have identical truth values for each possible substitution of 
statements for their statement variables. The logical equivalence of 
statement forms P and Q is denoted by writing P ≡ Q. Two statements are 
called logically equivalent if, and only if, they have logically equivalent 
forms when identical component statement variables are used to replace 
identical component statements.  
 
Testing Whether Two Statement Forms P and Q Are Logically 
Equivalent 
   
1.  Construct a truth table with one column for the truth values of P and 

another column for the truth values of Q.  

2.  Check each combination of truth values of the statement variables to 
see whether the truth value of P is the same as the truth value of Q.  

a.  If in each row the truth value of P is the same as the truth value of Q, 
then P and Q are logically equivalent.  

b.  If in some row P has a different truth value from Q, then P and Q are 
not logically equivalent. 

 
Example 3 Negative Property: ~(~p) ≡≡≡≡ p  
 
Construct a truth table to show that the negation of the negation of a 
statement is logically equivalent to the statement. 
 
Solution: 
 

p ~p ~(~p) 
T F T 
F T F 

 
In the above truth table p and ~(~p) always have the same truth values, so 
they are logically equivalent 
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Example 4 Showing Nonequivalence:  
 
Show that the statement forms ~(p ˄ q) and ~p ˄ ~q are not logically 
equivalent. 
 
Solution: By using method of truth table 
 

P Q ~p ~q p ˄˄˄˄ q ~(p ˄˄˄˄ q) ~p ˄˄˄˄ ~q 
T T F F T F F 
T F F T F T F 
F T T F F T F 
F F T T F T T 

 
∼(p ∧ q) and ∼p ∧∼q have different truth values in rows 2 and 3, so they 
are not logically equivalent. 
 
Example 5 Negations of And and Or: De Morgan’s Laws:  
 

For the statement “Rahul is tall and Rohit is redheaded” to be true, 
both components must be true. So for the statement to be false, one or both 
components must be false. Thus the negation can be written as “Rahul is 
not tall or Rohit is not redheaded.” In general, the negation of the 
conjunction of two statements is logically equivalent to the disjunction of 
their negations. That is, statements of the forms ~(p ˄ q) and ~p ˅ ~q are 
logically equivalent. Check this using truth tables. 
 
Solution: 
 

P Q ~p ~q p ˄˄˄˄ q ~(p ˄˄˄˄ q) ~p ˅˅˅˅ ~q 
T T F F T F F 
T F F T F T T 
F T T F F T T 
T F T T F T T 

 
In the above truth table ~ (p ˄ q) and ~p ˅ ~q always have the same truth 
values, so they are logically equivalent.  
Symbolically, 
~ (p ˄ q) ≡ ~p ˅ ~q.  
 
Tautologies and Contradiction 
 
Definition- A tautology is a statement form that is always true regardless 
of the truth values of the individual statements substituted for its statement 
variables. A statement whose form is a tautology is a tautological 
statement. 
 
A contradiction is a statement form that is always false regardless of the 
truth values of the individual statements substituted for its statement 
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variables. A statement whose form is a contradiction is a contradictory 
statement. 
 
According to this definition, the truth of a tautological statement and the 
falsity of a contradictory statement are due to the logical structure of the 
statements themselves and are independent of the meanings of the 
statements. 
 
Example 6 Tautologies and Contradictions:  
Show that the statement form p ˅ ~p is a tautology and that the statement 
form p ˄~p is a contradiction.  
 
Solution: 
 

P ~p p ˅˅˅˅ ~p p ˄˄˄˄~p 
T F T T 
F T T T 

 
In the above truth table in the 3rd column all the values are T, 

Hence prove p ˅ ~p is a tautology and 4th column all the values are F, 
hence prove p ˄~p is a contradiction.  
 

2.3 CONDITIONAL STATEMENTS  
 
Definition: If p and q are statement variables, the conditional of q by p is 
“If p then q” or “p implies q” and is denoted p → q. It is false when p is 
true and q is false; otherwise it is true.  
 
Truth Table for p → q 
 

P q p →→→→ q 
T T T 
T F F 
F T T 
F F T 

 
Example 8 Truth Table for p ∨	∼q →→→→∼p 
 
Construct a truth table for the statement form p ∨	∼q →∼p  
 
Solution: By the order of operations given above, the following two 
expressions are equivalent: p ∨	∼q →∼p and (p ∨	(∼q)) → (∼p), and this 
order governs the construction of the truth table. First fill in the four 
possible combinations of truth values for p and q, and then enter the truth 
values for ∼p and ∼q using the definition of negation. Next fill in the p ∨	
∼q column using the definition of ∨. Finally, fill in the p ∨	 ∼q →∼p 
column using the definition of →. The only rows in which the hypothesis p 
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∨	∼q is true and the conclusion ∼p is false are the first and second rows. 
So you put F’s in those two rows and T’s in the other two rows. 
 

p qqqq				 ∼∼∼∼p ∼∼∼∼q p ∨	∼∨	∼∨	∼∨	∼q p ∨	∼∨	∼∨	∼∨	∼q →∼→∼→∼→∼p 
T T F F T F 
T F F T T F 
F T T F F T 
F F T T T T 

 
Logical Equivalences Involving →→→→ 
 

Imagine that you are trying to solve a problem involving three 
statements: p, q, and r. suppose you know that the truth of r follows from 
the truth of p and also that the truth of r follows from the truth of q. Then 
no matter whether p or q is the case, the truth of r must follow. The 
division in to cases method of analysis is based on this idea. 
 
Example 9 Division into Cases 
 
p ˅˅˅˅ q →→→→ r ≡≡≡≡ ( p →→→→ r) ˄˄˄˄ (q →→→→ r)  
 
Use truth tables to show the logical equivalence of the statement forms p ∨	
q → r and (p → r) ∧	(q → r). 
 
Solution: First fill in the eight possible combinations of truth values for p, 
q, and r. Then fill in the columns for p ∨	q, p → r, and q → r using the 
definitions of or and if-then. For instance, the p → r column has F’s in the 
second and fourth rows because these are the rows in which p is true and q 
is false. Next fill in the p ∨	q → r column using the definition of if-then. 
The rows in which the hypothesis p ∨	q is true and the conclusion r is false 
are the second, fourth, and sixth. So F’s go in these rows and T’s in all the 
others. The complete table shows that p ∨	q → r and (p → r) ∧	(q → r) have 
the same truth values for each combination of truth values of p, q, and r. 
Hence the two statement forms are logically equivalent. 
 

P q R p ∨	∨	∨	∨	q p →→→→ r q →→→→ r p ∨	∨	∨	∨	q →→→→ r (p →→→→ r) ∧	∧	∧	∧	(q →→→→ r) 
T T T T T T T T 
T T F T F F F F 
T F T T T T T T 
T F F T F T F F 
F T T T T T T T 
F T F T T F F F 
F F T F T T T T 
F F F F T T T T 

 
p ∨	q → r and (p → r) ∧	(q → r) always have the same truth values, so they 
are logically equivalent.  
Hence proof p ∨	q → r ≡ ( p → r) ∧	(q → r) 
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Bi-conditional Statements:  
Definition: Given statement variables p and q, the bi-conditional of p 
and q is “p if, and only if, q” and is denoted p ↔ q. It is true if both p and 
q have the same truth values and is false if p and q have opposite truth 
values. The words if and only if are sometimes abbreviated iff.  
 
The biconditional has the following truth table:  
Truth Table for p ↔ q 
 

P q p ↔↔↔↔ q 
T T T 
T F F 
F T F 
F F T 

 
In order of operations ↔ is coequal with →. As with ∧	and ∨, the only way 
to indicate precedence between them is to use parentheses. The full 
hierarchy of operations for the five logical operators is as follows. 
 
Order of Operations for Logical Operators  

1. ~ Evaluate negations first.  

2.  ˄, ˅ Evaluate ˄ and ˅ second. When both are present, parentheses may 
be needed.  

3.  →, ↔ Evaluate → and ↔ third. When both are present, parentheses 
may be needed. 

 
According to the separate definitions of if and only if, saying “p if, and 
only if, q” should mean the same as saying both “p if q” and “p only if q.” 
The following annotated truth table shows that this is the case:  
Truth Table Showing that p ↔ q ≡ ( p → q) ˄ (q → p) 
 

P q p ↔↔↔↔ q q →→→→ p p →→→→ q ( p →→→→ q) ˄˄˄˄ (q →→→→ p) 
T T T T T T 
T F F T F F 
F T T F F F 
F F T T T T 

 
In the above truth table p ↔ q and (p → q) ∧	(q → p) always have 

the same truth values, so they are logically equivalent. 
 

2.4 VALID AND INVALID ARGUMENTS 
 
Definition: An argument is a sequence of statements, and an argument 
form is a sequence of statement forms. All statements in an argument and 
all statement forms in an argument form, except for the final one, are 
called premises (or assumptions or hypotheses). The final statement or 
statement form is called the conclusion. The symbol ∴, which is read 
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“therefore,” is normally placed just before the conclusion. To say that an 
argument form is valid means that no matter what particular statements 
are substituted for the statement variables in its premises, if the resulting 
premises are all true, then the conclusion is also true. To say that an 
argument is valid means that its form is valid. 
 
Testing an Argument Form for Validity 

1.  Identify the premises and conclusion of the argument form. 

2. Construct a truth table showing the truth values of all the premises 
and the conclusion. 

3.  A row of the truth table in which all the premises are true is called a 
critical row. If there is a critical row in which the conclusion is false, 
then it is possible for an argument of the given form to have true 
premises and a false conclusion, and so the argument form is invalid. 
If the conclusion in every critical row is true, then the argument form 
is valid. 

 
Example 10 Determining Validity or Invalidity: 
 

Determine whether the following argument form is valid or invalid 
by drawing a truth table, indicating which columns represent the premises 
and which represent the conclusion, and annotating the table with a 
sentence of explanation. When you fill in the table, you only need to 
indicate the truth values for the conclusion in the rows where all the 
premises are true (the critical rows) because the truth values of the 
conclusion in the other rows are irrelevant to the validity or invalidity of 
the argument 
 
p → q ∨	∼r 
q → p ∧	r 
∴	p → r 
 
Solution: 
 

1 2 3 4 5 6 7 8 9 
p q r ∼r q ∨	∼r p ∧	r p → q ∨	∼r q → p ∧	r p → r 
T T T F T T T T T 
T T F T T F T F  
T F T F F T F T  
T F F T T F T T F 
F T T F T F T F  
F T F T F T F F  
F F T F F F T T T 
F F F T T F T T T 

 
In the above truth table column number (7) & column number (8) are the 
premises and column number (9) is the conclusion. 
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In above truth table row number (4) shows that an argument of this form 
can have true premises and a false conclusion. 
 
Hence this form of argument is invalid. 
 
Example 11 An Invalid Argument with True Premises and a True 
Conclusion: 

The argument below is invalid by the converse error, but it has a true 
conclusion. 

If New York is a big city, then New York has tall buildings. 

New York has tall buildings. 

∴	New York is a big city. 
 
Definition: 
An argument is called sound if, and only if, it is valid and all its premises 
are true. An argument that is not sound is called unsound. 
 
Contradictions and Valid Arguments: The concept of logical 
contradiction can be used to make inferences through a technique of 
reasoning called the contradiction rule. Suppose p is some statement 
whose truth you wish to deduce. 
 
Contradiction Rule: 
If you can show that the supposition that statement p is false leads 
logically to a contradiction, then you can conclude that p is true 
 

2.5 LIST OF REFERENCES 
 
1. Discrete Mathematics with Applications by Sussana S. Epp 4th 

edition. 

2.  Discrete Mathematics Schaums Outline Series 

3.  Discrete Mathematics and its Applications by Kenneth H. Rosen 

4.  Discrete Strictures by Liu 
 

2.6 UNIT END EXERCISE 
 
1.  Logical Equivalence Involving Tautologies and Contradictions  

If t is a tautology and c is a contradiction, show that p ˄ t ≡ p and p 
˄ c ≡ c  

 
2.  Example 12 Contradiction Rule 

Show that the following argument form is valid: 
∼p → c, where c is a contradiction ∴	p 

 
 

***** 
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Unit II 

3 
 

QUANTIFIED STATEMENTS 
 

Unit Structure  

3.0  Objectives  

3.1  Introduction 

3.2  Predicates and Quantified Statements  

3.3  Statements with Multiple Quantifiers  

3.4  Arguments with Quantified Statements  

3.5  List of References 

3.6  Unit End Exercises 
 

3.0 OBJECTIVES   
 
This chapter would make you understand the following concepts:  

• Definition of Predicates and Quantified Statements,  

• The Universal Quantifier: ∀		
• Existential Quantifier: ∃		
• Equivalent Forms of Universal and Existential Statements  

• Truth of a ∃∀	Statement in a Tarski World  

• Quantifier Order in a Tarski World  

• Validity of Arguments with Quantified Statements 
 

3.1 INTRODUCTION 
 

We have seen that the symbols ∧, ∨, ∼, ⇒ and ⇔ can guide the 
logical flow of algorithms. We have learned how to use them to 
deconstruct many English sentences into a symbolic form. We have 
studied how this symbolic form can help us understand the logical 
structure of sentences and how different sentences may actually have the 
same meaning (as in logical equivalence). This will be particularly 
significant as we begin proving theorems in the next chapter. But these 
logical symbols alone are not powerful enough to capture the full meaning 
of every statement. To see why, imagine that we are dealing with some set 
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S = { x1, x2, x3,...} of integers. (For emphasis, say S is an infinite set.) 
Suppose we want to express the statement “Every element of S is odd.” 
We would have to write  

 
P(x1)∧ P(x2)∧ P(x3)∧ P(x4)∧· · ·  , 

  
where P(x) is the open sentence “x is odd.” And if we wanted the express 
“There is at least one element of S that is odd,” we’d have to write  
              

P(x1)∨ P(x2)∨ P(x3)∨ P(x4)∨· · ·  . 
 
The problem is that these expressions might never end. To overcome this 
defect, we will introduce two new symbols ∀ and ∃. The symbol ∀ stands 
for the phrase “for all” and ∃ stands for “there exists.” Thus the statement 
“Every element of S is odd.” is written symbolically as  
 

∀x ∈ S,P(x), 
 
and “There is at least one element of S that is odd,” is written succinctly as           
∃x ∈ S,P(x),  
 
These new symbols are called quantifiers. 

 

3.2 PREDICATES AND QUANTIFIED STATEMENTS  
 

In Chapter 2 we discussed the logical analysis of compound 
statements—those made of simple statements joined by the connectives ~, 
˄, ˅, →, and ↔. Such analysis casts light on many aspects of human 
reasoning, but it cannot be used to determine validity in the majority of 
everyday and mathematical situations. 
 

We discussed earlier that the sentence ‘‘She is a college Student’’ is 
not a statement, because we don’t know who ‘‘she’’ is. The sentence could 
be true or false depending on the value of the pronoun ‘‘she.’’ Similarly, 
the sentence ‘‘x + y ≥ 0’’ is not a statement, since the truth of the sentence 
depends on the value of x and y. 
 
We are going to use the word ‘‘predicate	 to talk’’ about sentences with 
variables. 
 
Definition: A predicate is a sentence that contains a finite number of 
variables and becomes a statement when specific values are substituted for 
the variables. The domain of a predicate variable is the set of all values 
that may be substituted in place of the variable 
 
Here is example of predicate: ‘‘x 2 > 2x.’’ This is a not statement yet, but 
when you put a specific number for x, we do get a statement. Let’s let P(x) 
denote this predicate.  
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Lets plug in a few values of x to see if we get true or false statements.  

P(2) : 22 > 2(2), or 4 > 4. False 

P(3) : 32 > 2(3), or 9 > 6. True 
 
The truth set of a predicate is the set of numbers that make the predicate 
true. We must always specify a ‘‘domain’’ of the predicate – that’s the set 
from which we may plug in values into the predicate variable. 
 
Example 3.2.1: let Q(n) be the predicate ‘‘n has no common factors (other 
than 1) with 12’’ Find the truth set of Q(n) if its domain is 
{1,2,3,…..,11,12}. 
 
Solution: The truth set is {1,5,7,11}. Since all other natural numbers less 
than or equal to 12 will have a common factor (other than 1) with 12. For 
example 8 and 12 have the common factor 4. What if we change the 
domain to {1,2,3,….,23,24}? Now there are more numbers that will not  
have a common factor (other than 1) with 12. Now the answer will be 
{1,5,7,11,13,17,19,23}. You should check this answer. 
 
It’s important to keep in mind that the truth set of a predicate depends on 
the domain of predicate variable. 
 
The Universal Quantifier: ∀∀∀∀ 
 
Let Q(x) be a predicate and D the domain of x. A universal statement is a 
statement of the form ‘‘∀x ∈	D, Q(x).’’ It is defined to be true if, and only 
if, Q(x) is true for every x in D. It is defined to be false if, and only if, 
Q(x) is false for at least one x in D. A value for x for which Q(x) is false is 
called a counterexample to the universal statement. 
 
Example 3.2.2: Truth and Falsity of Universal Statements  

a.  Let D = {1, 2, 3, 4, 5}, and consider the statement ∀x ∈ D, x2 ≥ x. 
Show that this statement is true.  

b.  Consider the statement ∀x ∈	R, x2 ≥ x. Find a counterexample to 
show that this statement is false.  

 
Solution:  
a.  Check that ‘‘x 2 ≥ x’’ is true for each individual x in D.  

12 ≥ 1, 22 ≥ 2, 32 ≥ 3, 42 ≥ 4, 52 ≥ 5  
 

Hence ‘‘∀x ∈ D, x 2 ≥ x’’ is true 
 
b.  Counterexample: Take x =1/2. Then x is in R (since 1/2 is a real  

number) and  

 
 

Hence ‘‘∀x ∈ R, x 2 ≥ x’’is false. 
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The Existential Quantifier: ∃∃∃∃ 
The symbol ∃ denotes ‘‘there exists’’and is called the existential 
quantifier. For example, the sentence ‘‘There is a student in Math 140’’ 
can be written as ∃ a person p such that p is a student in Math 140 
 
Definition: Let Q(x) be a predicate and D the domain of x. An existential 
statement is a statement of the form ‘‘∃x ∈	D such that Q(x).’’ It is 
defined to be true if, and only if, Q(x) is true for at least one x in D. It is 
false if, and only if, Q(x) is false for all x in D.  
 
Example 3.2.3 Truth and Falsity of Existential Statements:  
 
a. Consider the statement 
	 ∃m ∈	Z+ such that m2 = m. 
 Show that this statement is true 
 
b.  Let E = {5, 6, 7, 8} and consider the statement 
	 ∃m ∈	E such that m2 = m. 
 Show that this statement is false 
 
Solution:  

a. Observe that 12 = 1. Thus ‘‘m2 = m’’ is true for at least one integer 
m. Hence ‘‘∃	m ∈	Z such that m2 = m’’ is true. 

b. Note that m2 = m is not true for any integers m from 5 through 8: 
52 = 25 ≠ 5, 62 = 36 ≠ 6, 72 = 49 ≠ 7, 82 = 64 ≠8. 

 
Thus ‘‘∃m ∈	E such that m2 = m’’ is false. 
 
Example 3.2.4: Translating from Formal to Informal Language: 
 
Rewrite the following formal statements in a variety of equivalent but 
more informal ways. Do not use the symbol ∀	or ∃. 

a.  ∀x ∈	R, x2 ≥ 0. 

b.  ∀x ∈	R, x 2 ≠−1. 

c.  ∃m ∈	Z+ such that m2 = m. 
 
Solution: 

a.  All real numbers have nonnegative squares. 

Or: Every real number has a nonnegative square. 

Or: Any real number has a nonnegative square. 

Or: The square of each real number is nonnegative 
 
 Note : The singular noun is used to refer to the domain when the  ∀	

symbol is translated as every, any, or each. 
 
b.  All real numbers have squares that are not equal to −1. 
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 Or: No real numbers have squares equal to −1. 
 (The words none are or no ... are are equivalent to the words all are not.) 
 
c.  There is a positive integer whose square is equal to itself. 

 Or: We can find at least one positive integer equal to its own  square. 
Or: Some positive integer equals its own square.  

Or: Some positive integers equal their own squares. 
 
Universal Conditional Statements: 
A reasonable argument can be made that the most important form of 
statement in mathematics is the universal conditional statement: 
∀x, if P(x) then Q(x). 
 

Familiarity with statements of this form is essential if you are to 
learn to speak mathematics.  

 
Example 3.2.5: Writing Universal Conditional Statements Informally 
Rewrite the following statement informally, without quantifiers or 
variables.  
∀x ∈	R, if x > 2 then x 2 > 4. 
 
Solution:   

If a real number is greater than 2 then its square is greater  than 4. 

Or: Whenever a real number is greater than 2, its square is greater than 4. 
Or: The square of any real number greater than 2 is greater than 4. 

Or: The squares of all real numbers greater than 2 are greater than 4. 
 
Equivalent Forms of Universal and Existential Statements: Observe 
that the two statements ‘‘∀	real numbers x, if x is an integer then x is  
rational’’ and ‘‘∀	integers x, x is rational’’mean the same thing. Both have 
informal translations ‘‘All integers are rational.’’ In fact, a statement of 
the form 
 
∀x ∈	U, if P(x) then Q(x) 
can always be rewritten in the form 
∀x ∈	D, Q(x) 
 
by narrowing U to be the domain D consisting of all values of the variable 
x that make P(x) true. 
Conversely, a statement of the form 
∀x ∈	D, Q(x) 
can be rewritten as 
∀x, if x is in D then Q(x). 
 
Negations of Quantified Statements: 
 

Consider the statement ‘‘All mathematicians wear glasses.’’ Many 
people would say that its negation is ‘‘No mathematicians wear glasses,’’ 

mu
no
tes
.in



41 
 

but if even one mathematician does not wear glasses, then the sweeping 
statement that all mathematicians wear glasses is false. So a correct 
negation is ‘‘There is at least one mathematician who does not wear 
glasses.’’ The general form of the negation of a universal statement 
follows immediately from the definitions of negation and of the truth 
values for universal and existential statements 
 
Theorem 3.1 Negation of a Universal Statement: 
 
The negation of a statement of the form 
∀x in D, Q(x)  
is logically equivalent to a statement of the form 
∃x in D such that ∼Q(x). 
Symbolically, ∼(∀x ∈	D, Q(x)) ≡∃x ∈	D such that ∼Q(x). 
 
Thus 
The negation of a universal statement (‘‘all are’’) is logically equivalent to 
an existential statement (‘‘some are not’’ or ‘‘there is at least one that is 
not’’). 
 
Theorem 3.2 Negation of an Existential Statement: 
 
The negation of a statement of the form 
∃x in D such that Q(x)  is logically equivalent to a statement of the form 
∀x in D, ∼Q(x). 
Symbolically, ∼(∃x ∈	D such that Q(x)) ≡∀x ∈	D, ∼Q(x). 
 
Thus 
The negation of an existential statement (‘‘some are’’) is logically 
equivalent to a universal statement (‘‘none are’’ or ‘‘all are not’’). 
 
Example 3.2.6 Negating Quantified Statements: 
 
Write formal negations for the following statements: 

a.  ∀	primes p, p is odd. 

b.  ∃	a triangle T such that the sum of the angles of T equals 200◦. 
 
Solution:  

a. By applying the rule for the negation of a ∀	statement, you can see 
 that the answer is ∃	a prime p such that p is not odd.  

b . By applying the rule for the negation of a ∃	statement, you can see 
 that the answer is ∀	triangles T, the sum of the angles of T does not 
 equal 200 

 
Example 3.2.7 Negating Quantified Statements:  
 
Rewrite the following statement formally. Then write formal and informal 
negations. No politicians are honest.  
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Solution: 

Formal version : ∀	politicians x, x is not honest.  

Formal negation : ∃	a politician x such that x is honest.  

Informal negation : Some politicians are honest 
 

3.3 STATEMENTS WITH MULTIPLE QUANTIFIERS 
 
Quantifiers are performed in the order in which the quantifiers occur:  
Example 3.3.1 Truth of a ∀∃	Statement in a Tarski World  
Consider the Tarski world shown in Figure  
 

 
 
Show that the following statement is true in this world: For all triangles x, 
there is a square y such that x and y have the same color  
 
Solution: The statement says that no matter which triangle someone gives 
you, you will be able to find a square of the same color. There are only 
three triangles, d, f , and i. The following table shows that for each of 
these triangles a square of the same color can be found. 
 

Given x = Choose y = and check that y is 
the same color as x. 

d E yes 
f or i h or g yes 

 
Now consider a statement containing both ∀	 and ∃, where the ∃	 comes 
before the ∀:  
 
∃	an x in D such that ∀y in E, x and y satisfy property P(x, y).  
To show that a statement of this form is true 
 
You must find one single element (call it x) in D with the following 
property:  

• After you have found your x, someone is allowed to choose any 
element whatsoever from E. The person challenges you by giving 
you that element. Call it y.  

• Your job is to show that your x together with the person’s y satisfy 
property P(x, y). Note that your x has to work for any y the person 
gives you; you are not allowed to change your x once you have 
specified it initially.  
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Example 3.3.2 Truth of a ∃∀	Statement in a Tarski World 
Consider again the Tarski world in Figure  
 

 
 
Show that the following statement is true: There is a triangle x such that 
for all circles y, x is to the right of y. 
 
Solution: The statement says that you can find a triangle that is to the 
right of all the circles. Actually, either d or i would work for all of the 
three circles, a, b, and c, as you can see in the following table 
 

Choose x = Then, given y = check that x is to 
the right of y. 

d or i A yes 

 B yes 

 C yes 

 
Negations of Multiply-Quantified Statements:  

You can use the same rules to negate multiply-quantified statements that 
you used to negate simpler quantified statements. Recall that ∼(∀x in D, 
P(x)) ≡∃x in D such that ∼P(x).  

and 

∼(∃x in D such that P(x)) ≡∀x in D, ∼P(x).  

We apply these laws to find  

∼(∀x in D, ∃y in E such that P(x, y))  

by moving in stages from left to right along the sentence.  

First version of negation: ∃x in D such that ∼(∃y in E such that P(x, y)).  

Final version of negation: ∃x in D such that ∀y in E, ∼P(x, y).  

Similarly, to find 

∼(∃x in D such that ∀y in E, P(x, y)),  

we have  

First version of negation: ∀x in D, ∼(∀y in E, P(x, y)).  

Final version of negation: ∀x in D, ∃y in E such that ∼P(x, y).  
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These facts can be summarized as follows: 

 
Negations of Multiply-Quantified Statements:  

∼(∀	x in D, ∃y in E such that P(x, y)) ≡∃x in D such that ∀y in E, ∼P(x, 
y).  

∼(∃x in D such that ∀y in E, P(x, y)) ≡∀x in D, ∃y in E such that ∼P(x, 

y). 

 
Example 3.3.3 Interpreting Multiply-Quantified∗	Statements: 
 

A college cafeteria line has four stations: salads, main courses, 
desserts, and beverages. The salad station offers a choice of green salad or 
fruit salad; the main course station offers spaghetti or fish; the dessert 
station offers pie or cake; and the beverage station offers milk, soda, or 
coffee. Three students, Uta, Tim, and Yuen, go through the line and make 
the following choices: 

Uta : green salad, spaghetti, pie, milk 

Tim :  fruit salad, fish, pie, cake, milk, coffee 

Yuen :  spaghetti, fish, pie, soda 
 
These choices are illustrated in Figure 

 
 
Write each of following statements informally and find its truth value.  

a.  ∃	an item I such that ∀	students S, S chose I.  

b.  ∃	a student S such that ∀	items I, S chose I.  

c.  ∃	a student S such that ∀	stations Z, ∃	an item I in Z such that S chose 
I.  

d.  ∀	students S and ∀	stations Z, ∃	an item I in Z such that S chose I. 
 
Solution:  

a.  There is an item that was chosen by every student. This is true; every 
student chose pie.  
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b.  There is a student who chose every available item. This is false; no 
student chose all nine items.  

c.  There is a student who chose at least one item from every station. 
This is true; both Uta and Tim chose at least one item from every 
station.  

d.  Every student chose at least one item from every station. This is false; 
Yuen did not choose a salad.  

 
Order of Quantifiers: 

Consider the following two statements: 

∀	people x, ∃	a person y such that x loves y.  

∃	a person y such that ∀	people x, x loves y.  
 

Note that except for the order of the quantifiers, these statements 
are identical. However, the first means that given any person, it is possible 
to find someone whom that person loves, whereas the second means that 
there is one amazing individual who is loved by all people. (Reread the 
statements carefully to verify these interpretations!) The two sentences 
illustrate an extremely important property about multiply-quantified 
statements:  
 
In a statement containing both ∀	and ∃, changing the order of the 
quantifiers usually ! changes the meaning of the statement.  
 

Interestingly, however, if one quantifier immediately follows 
another quantifier of the same type, then the order of the quantifiers does 
not affect the meaning. Consider the commutative property of addition of 
real numbers, for example:  

	 ∀	real numbers x and ∀	real numbers y, x + y = y + x.  
 
This means the same as  

	 ∀	real numbers y and ∀	real numbers x, x + y = y + x.  

 Thus the property can be expressed more briefly as  

	 ∀	real numbers x and y, x + y = y + x.  
 
Example 3.3.4 Quantifier Order in a Tarski World  
Look again at the Tarski world of Figure  
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Do the following two statements have the same truth value?  

a.  For every square x there is a triangle y such that x and y have different 
colors.  

b.  There exists a triangle y such that for every square x, x and y have 
different colors. 

 
Solution: 
 

Statement (a) says that if someone gives you one of the squares 
from the Tarski world, you can find a triangle that has a different color. 
This is true. If someone gives you square g or h (which are gray), you can 
use triangle d (which is black); if someone gives you square e (which is 
black), you can use either triangle f or triangle i (which are both gray); and 
if someone gives you square j (which is blue), you can use triangle d 
(which is black) or triangle f or i (which are both gray).  
 

Statement (b) says that there is one particular triangle in the Tarski 
world that has a different color from every one of the squares in the world. 
This is false. Two of the triangles are gray, but they cannot be used to 
show the truth of the statement because the Tarski world contains gray 
squares. The only other triangle is black, but it cannot be used either 
because there is a black square in the Tarski world. Thus one of the 
statements is true and the other is false, and so they have opposite truth 
values. 
 
Formal Logical Notation: 
 

In some areas of computer science, logical statements are 
expressed in purely symbolic notation. The notation involves using 
predicates to describe all properties of variables and omitting the words 
such that in existential statements. (When you try to figure out the 
meaning of a formal statement, however, it is helpful to think the words 
such that to yourself each time they are appropriate.) The formalism also 
depends on the following facts: 
 
"∀x in D, P(x)" can be written as―∀x(x in D → P(x))," and 
"∃x in D such that P(x)" can be written as ―∃x(x in D ∧	P(x))."	
	
Example 3.3.5 Formalizing Statements in a Tarski World 
Consider once more the Tarski world of Figure 
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Let Triangle(x), Circle(x), and Square(x) mean ‘‘x is a triangle,’’ 
‘‘x is a circle,’’ and ‘‘x is a square’’; let Blue(x), Gray(x), and Black(x) 
mean ‘‘x is blue,’’ ‘‘x is gray,’’	 and ‘‘x is black’’; let RightOf (x, y), 
Above (x, y), and Same Color As(x, y) mean ‘‘x is to the right of y,’’ ‘‘x 
is above y,’’ and ‘‘x has the same color as y’’; and use the notation x = y 
to denote the predicate ‘‘x is equal to y’’. Let the common domain D of all 
variables be the set of all the objects in the Tarski world. Use formal, 
logical notation to write each of the following statements, and write a 
formal negation for each statement. 

a.  For all circles x, x is above f .  

b.  There is a square x such that x is black.  

c.  For all circles x, there is a square y such that x and y have the same 
color.  

d.  There is a square x such that for all triangles y, x is to right of y. 
 
Solution:  

a.  Statement: ∀x(Circle(x) → Above(x, f )).  

 Negation: ∼(∀x(Circle(x) → Above(x, f )))  

	 ≡∃x ∼	(Circle(x) → Above(x, f ))  

by the law for negating a ∀	statement  

	 ≡∃x(Circle(x) ∧	∼Above(x, f ))  

by the law of negating an if-then statement 
 
b.  Statement: ∃x(Square(x) ∧	Black(x)).  

 Negation: ∼(∃x(Square(x) ∧		Black(x))) 
 
≡∀x ∼	(Square(x) ∧	Black(x)) 

by the law for negating a ∃	statement 
≡∀x(∼Square(x) ∨	∼Black(x)) 

by De Morgan’s law 
 

c.  Statement: ∀x(Circle(x) →∃y(Square(y) ∧	SameColor(x, y))). 
 Negation: ∼(∀x(Circle(x) →∃y(Square(y) ∧	SameColor(x, y)))) 
	 ≡∃x ∼	(Circle(x) →∃y(Square(y) ∧	SameColor(x, y))) 

by the law for negating a ∀	statement 

	 ≡∃x(Circle(x) ∧	∼(∃y(Square(y) ∧	SameColor(x, y)))) 

by the law for negating an if-then statement 

	 ≡∃x(Circle(x) ∧	∀y(∼(Square(y) ∧	SameColor(x, y)))) 

by the law for negating a ∃	statement 

	 ≡∃x(Circle(x) ∧	∀y(∼Square(y) ∨	∼SameColor(x, y))) 

by De Morgan’s law 
 

d. Statement: ∃x(Square(x) ∧	∀y(Triangle(y) → RightOf(x, y))). 

 Negation: ∼(∃x(Square(x) ∧	∀y(Triangle(y) → RightOf(x, y)))) 
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	 ≡∀x ∼	(Square(x) ∧	∀y(Triangle(x) → RightOf(x, y))) 

 by the law for negating a ∃	statement 

	 ≡∀x(∼Square(x) ∨	∼(∀y(Triangle(y) → RightOf(x, y)))) 

by De Morgan’s law 

	 ≡∀x(∼Square(x) ∨	∃y(∼(Triangle(y) → RightOf(x, y)))) 

by the law for negating a ∀	statement 

	 ≡∀x(∼Square(x) ∨	∃y(Triangle(y) ∧	∼RightOf(x, y))) 

by the law for negating an if-then statement 
 

3.4 ARGUMENTS WITH QUANTIFIED STATEMENTS 
 
Universal instantiation: if some property is true of everything in a set, then 
it is true of any particular thing in the set. 
 
Example :  All men are mortal. 
  Socrates is a man. 
	 	 ∴	Socrates is mortal. 
 
Universal Modus Ponens: 
 

The rule of universal instantiation can be combined with modus 
ponens to obtain the valid form of argument called universal modus 
ponens. 
 
Universal Modus Ponens 
Formal Version        Informal Version  
∀x, if P(x) then Q(x).                                         If x makes P(x) true, then x 
                  makes Q(x) true. 
P(a) for a particular a. a makes P(x) true. 
∴	Q(a). 

∴	a makes Q(x) true. 
 
Example: ∀	x, if E(x) then S(x).                        If an integer is even, then                                                   
its square is even. E(k),for a particular k.    k is a particular integer that is 
even. 
	
∴S(k).  ∴k2 is even. 
 
Example 3.4.1 Recognizing Universal Modus Ponens: 
Rewrite the following argument using quantifiers, variables, and predicate 
symbols. Is thisargument valid? Why? 
If an integer is even, then its square is even. 
k is a particular integer that is even. 
∴	k2 is even. 
 
Solution: The major premise of this argument can be rewritten as 
∀x, if x is an even integer then x2 is even. 
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Let E(x) be ‘‘x is an even integer,’’ let S(x) be ‘‘x 2 is even,’’ and let k 
stand for a particular integer that is even. Then the argument has the 
following form: 
∀x, if E(x)then S(x). 
E(k),for a particular k. ∴	S(k).  

This argument has the form of universal modus ponens and is therefore 

valid. 

Example 3.4.2 Drawing Conclusions Using Universal Modus Ponens: 
  
Write the conclusion that can be inferred using universal modus ponens. If 
T is any right triangle with hypotenuse c and legs a and b, then c2 = a2 + 
b2. The triangle shown at the right is a right triangle with both legs equal 
to 1 and hypotenuse c. 

    

 Pythogorean theorem           c 

                1 

    

  1 

Solution: c2= 12+ 12= 2 

Note that if you take the nonnegative square root of both sides of this 

equation, you obtain c = √2. This shows that there is a line segment whose 

length is √2. 

Universal Modus Tollens:  
Another crucially important rule of inference is universal modus tollens. 
Its validity results from combining universal instantiation with modus 
tollens. Universal modus tollens is the heart of proof of contradiction, 
which is one of the most important methods of mathematical argument.  
 
Universal Modus Tollens :  
Formal Version         Informal 
Version  
∀x, if P(x) then Q(x).    If x makes P(x) true, then x makes Q(x)  
true. ∼Q(a), for a particular a.    a does not make Q(x) true. 
∴	∼P(a).        ∴	 a does not make P(x) 
true. 
 
Example 3.4.3 Recognizing the Form of Universal Modus Tollens: 
 
Rewrite the following argument using quantifiers, variables, and predicate 
symbols. Write the major premise in conditional form. Is this argument 
valid? Why?  All human beings are mortal. 
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Zeus is not mortal. 
∴	Zeus is not human. 
 
Solution: The major premise can be rewritten as 
∀x, if x is human then x is mortal. 
Let H(x) be ‘‘x is human,’’ let M(x) be ‘‘x is mortal,’’ and let Z stand for 
Zeus. The argument becomes 
∀x, if H(x) then M(x) 
∼M(Z) 
∴	∼H(Z). 
This argument has the form of universal modus tollens and is therefore 
valid. 
 
Validity of Arguments with Quantified Statements: 
 

An argument form is valid, if and only if, for any particular 
predicates substituted for the predicate symbols in the premises if the 
resulting premise statements are all true, then the conclusion is also true. 
 
Using Diagrams to Test for Validity 
 
Example 3.4.4 Using a Diagram to Show Validity 
 

Use diagrams to show the validity of the following syllogism: 
All human beings are mortal. 
Zeus is not mortal. 
∴	Zeus is not a human being. 
 

Solution: The major premise is pictured on the left in Figure by placing a 
disk labeled ‘‘human beings’’ inside a disk labeled ‘‘mortals.’’ The minor 
premise is pictured on the right in Figure by placing a dot labeled ‘‘Zeus’’ 
outside the disk labeled "mortals."	
	

                   Mortals                    
    
 Mortals Zeus 
                Human beings    
    
    
     

Major premise Minor premise  

	
The two diagrams fit together in only one way, as shown in Figure below 

   
Mortals  

   
Human beings Zeus 
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Since the Zeus dot is outside the mortals disk, it is necessarily 
outside the human beings disk. Thus the truth of the conclusion follows 
necessarily from the truth of the premises. It is impossible for the premises 
of this argument to be true and the conclusion false; hence the argument is 
valid. 
 
Example 3.4.5 Using Diagrams to Show Invalidity: 
 
Use a diagram to show the invalidity of the following argument: 
All human beings are mortal. 
Felix is mortal. 
∴	Felix is a human being 
 
Solution: The major and minor premises are represented diagrammatically 
in Figure 

                   Mortals                   
   
 mortals 
                Human beings   
   
 Felix 
    

Major premise Minor premise 

 
 All that is known is that the Felix dot is located somewhere inside 
the mortals disk. Where it is located with respect to the human beings disk 
cannot be determined. Either one of the situations shown in Figure below 
might be the case. 
 

                   mortals mortals 
   
      Felix  
                human beings                 human beings 
   

     Felix  
    

(a) (b) 

 
The conclusion ‘‘Felix is a human being’’ is true in the first case 

but not in the second (Felixmight, for example, be a cat). Because the 
conclusion does not necessarily follow from the premises, the argument is 
invalid. The argument of Example 3.3.5 would be valid if the major 
premise were replaced by its converse. But since a universal conditional 
statement is not logically equivalent to its converse, such a replacement 
cannot, in general, be made. We say that this argument exhibits the 
converse error. 
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Converse Error (Quantified Form): 
 
Formal Version     Informal Version 
∀x, if P(x) then Q(x).  If x makes P(x) true, then x makes Q(x) 
true. Q(a) for a particular a.  a makes Q(x) true. 
∴	P(a). ← invalid conclusion  ∴	a makes P(x) true. ← invalid conclusion 
 
The following form of argument would be valid if a conditional statement 
were logically equivalent to its inverse. But it is not, and the argument 
form is invalid. We say that it exhibits the inverse error. 
 
Inverse Error (Quantified Form) 
 
Formal Version      Informal Version   
∀x, if P(x) then Q(x).    If x makes P(x) true, then x makes  
        Q(x)  
true. ∼P(a), for a particular   a. a does not make P(x) true.  
∴	∼Q(a). ← invalid conclusion  ∴	a does not make Q(x) true. ← invalid 
conclusion 
 

3.5 REFERENCES 
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3.  Discrete Mathematics and its Applications by Kenneth H. Rosen 

4.  Discrete Strictures by Liu 
 

3.6 UNIT END EXERCISES 
 
3.6.1 Write negations for each of the following statements: 

 –  All dinosaurs are extinct  

–  No irrational numbers are integers  

–  Some exercises have answers  

–  All COBOL programs have at least 20 lines 

–  The sum of any two even integers is even  

–  The square of any even integer is even 
 
3.6.2 Find the Truth Set of a Predicate: 

Let Q(n) be the predicate ‘‘n is a factor of 8.’’Find the truth set of Q(n) if 

a.  the domain of n is the set Z+ of all positive integers 

b.  the domain of n is the set Z of all integers. 
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3.6.3 Negating Statements in a Tarski World:  
Refer to the Tarski world of Figure 3.3.1, 

 

 
 

Write a negation for each of the following statements, and determine 
which is true, the given statement or its negation. 

a.  For all squares x, there is a circle y such that x and y have the same 
color.  

b.  There is a triangle x such that for all squares y, x is to the right of y. 
 

***** 
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4 
 

ELEMENTARY NUMBER THEORY AND  
METHODS OF PROOF 

 
Unit Structure 

4.0 Objectives  

4.1  Introduction to Direct Proofs  

4.2  Rational Numbers  

4.3  Divisibility  

4.4  Division into Cases and the Quotient-Remainder Theorem  

4.5  Floor and Ceiling  

4.6  Contradiction and Contraposition  

4.7 Two Classical Theorem  

4.8  Unit End Exercises 

4.9    List of References 
 

4.0 OBJECTIVES   
 
This chapter would make you understand the following concepts:  

• Definition of Direct Proofs, Proving Existential Statements  

• Disproving Universal Statements by Counterexample  

• Proving Universal Statements  

• Method of Direct Proof  

• Proving Properties of Divisibility  

• The Unique Factorization of Integers Theorem  

• Division into Cases and the Quotient-Remainder Theorem  

• div and mod  

• Representations of Integers  

• Argument by Contraposition  

• Relation between Proof by Contradiction and Proof by 
Contraposition 

 

4.1 INTRODUCTION TO DIRECT PROOFS   
 

Both discovery and proof are integral parts of problem solving. 
When you think you have discovered that a certain statement is true, try to 
figure out why it is true. If you succeed, you will know that your discovery 
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is genuine. Even if you fail, the process of trying will give you insight into 
the nature of the problem and may lead to the discovery that the statement 
is false. For complex problems, the interplay between discovery and proof 
is not reserved to the end of the problem-solving process but, rather, is an 
important part of each step. 

 
Assumptions: 
 
We use the three properties of equality: For all objects A, B, and C,  
A = A, (2) if A = B then B = A, and (3) if A = B and B = C, then A = C. 
 

In addition, we assume that there is no integer between 0 and 1 and 
that the set of all integers is closed under addition, subtraction, and 
multiplication. This means that sums, differences, and products of integers 
are integers. 
 
Of course, most quotients of integers are not integers. For example, 3 ÷ 2, 
which equals 3/2, is not an integer, and 3 ÷ 0 is not even a number. 
 
Definitions: 
 
An integer n is even if, and only if, n equals twice some integer. An  
integer n is odd if, and only if, n equals twice some integer plus 1. 
Symbolically, if n is an integer, then  

n is even ⇔	∃	an integer k such that  

n = 2k. n is odd ⇔	∃	an integer k such that n = 2k + 1. 
 
Example 4.1.1 Even and Odd Integers 
 
Use the definitions of even and odd to justify your answers to the 
following questions. 

a. Is 0 even? 

b. Is −301 odd? 

c. If a and b are integers, is 6a2b even? 

d. If a and b are integers, is 10a + 8b + 1 odd? 
 
Solution: 

a.  Yes, 0 = 2·0. 

b.  Yes, −301 = 2(−151) + 1. 

c.  Yes, 6a2b = 2(3a2b), and since a and b are integers, so is 3a2b (being a 
product of integers). 

d.  Yes, 10a + 8b + 1 = 2(5a + 4b) + 1, and since a and b are integers, so 
is 5a + 4b (being a sumof products of integers). !!!!

• Definition: 

An integer n is prime if, and only if, n > 1 and for all positive 
integers r and s, ifn = rs, then either r or s equals n. An integer n is 
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composite if, and only if, n > 1and n = rs for some integers r and s with 1 
< r < n and 1 < s < n. 
 
In symbols: 
 
n is prime ⇔	∀	positive integers r and s, if n = r s then either r = 1 and s = 
n or r = n and s = 1. 
n is prime ⇔	∀	positive integers r and s, if n = r s then either r = 1 and s = 
n or r = n and s = 1. 
 
Example 4.1.2 Prime and Composite Numbers: 

a.  Is 1 prime? 

b.  Is every integer greater than 1 either prime or composite? 

c.  Write the first six prime numbers. 

d.  Write the first six composite numbers. 
 
Solution: 

a.  No. A prime number is required to be greater than 1. 

b.  Yes. Let n be any integer that is greater than 1. Consider all pairs of 
positive integers r and such that n = r s. There exist at least two such 
pairs, namely r = n and s = 1 and r = 1 and s = n Moreover, since n = r 
s, all such pairs satisfy the inequalities 1 ≤ r ≤ n and 1 ≤ s ≤ n. If n is 
prime, then the two displayed pairs are the only ways to write n as rs. 
Otherwise, there exists a pair of positive integers r and s such that n = r 
s and neither r nor s equals either 1 or n. Therefore, in this case 1 < r < 
n and 1 < s < n, and hence n is composite. 

c.  2, 3, 5, 7, 11, 13 

d.  4, 6, 8, 9, 10, 12 
 
Proving Existential Statements: 
 
According to the definition given, a statement in the form 
∃x ∈	D such that Q(x) 
is true if, and only if, 
Q(x) is true for at least one x in D. 
One way to prove this is to find an x in D that makes Q(x) true. Another 
way is to give a set of directions for finding such an x. Both of these 
methods are called constructive proofs of existence. 
 
Example 4.1.3 Constructive Proofs of Existence: 

a.  Prove the following: ∃	an even integer n that can be written in two 
ways as a sum of two prime numbers. 

b.  Suppose that r and s are integers. Prove the following: ∃	an integer k 
such that 22r + 18s = 2k. 
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Solution: 

a.  Let n = 10. Then 10 = 5 + 5 = 3 + 7 and 3, 5, and 7 are all prime 
numbers. 

b.  Let k = 11r + 9s. Then k is an integer because it is a sum of products 
of integers; and by substitution, 2k = 2(11r + 9s), which equals 22r + 
18s by the distributive law of algebra. 

 
Disproving Universal Statements by Counterexample: 
 

To disprove a statement means to show that it is false. Consider the 
question of disproving a statement of the form ∀x in D, if P(x) then Q(x). 
 

Showing that this statement is false is equivalent to showing that 
its negation is true. The negation of the statement is existential:  
 
∃x in D such that P(x) and not Q(x). 
 

But to show that an existential statement is true, we generally give 
an example, and because the example is used to show that the original 
statement is false, we call it a counter example. Thus themethod of 
disproof by counterexample can be written as follows: 
 

Disproof by Counterexample To disprove a statement of the form 
“∀x ∈	 D, if P(x) then Q(x),” find a value of x in D for which the 
hypothesis P(x) is true and the conclusion Q(x) is false. Such an x is called 
a counterexample. 
 
Proving Universal Statements: 
 

The vast majority of mathematical statements to be proved are 
universal. In discussing how to prove such statements, it is helpful to 
imagine them in a standard form: 
 
∀x ∈	D, if P(x)then Q(x). 
 
When D is finite or when only a finite number of elements satisfy P(x), 
such a statement can be proved by the method of exhaustion. 
 
Example 4.1.4 The Method of Exhaustion: 

Use the method of exhaustion to prove the following statement: 
∀n ∈	Z, if n is even and 4 ≤ n ≤ 26, then n can be written as a sum of two 
prime numbers. 
 
Solution: 

4 = 2 + 2  6 = 3 + 3  8 = 3 + 5   10 = 5 + 5 

12 = 5 + 7  14 = 11 + 3  16 = 5 + 11   18 = 7 + 11 

20 = 7 + 13 22 = 5 + 17  24 = 5 + 19   26 = 7 + 19 
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In most cases in mathematics, however, the method of exhaustion 
cannot be used. For instance, can you prove by exhaustion that every even 
integer greater than 2 can be written as a sum of two prime numbers? No. 
To do that you would have to check every even integer, and because there 
are infinitely many such numbers, this is an impossible task. 
 
Example 4.1.5 Generalizing from the Generic Particular:  
 

At some time you may have been shown a “mathematical trick” like 
the following. You ask a person to pick any number, add 5, multiply by 4, 
subtract 6, divide by 2, and subtract twice the original number. Then you 
astound the person by announcing that their final result was 7. How does 
this “trick” work? Let an empty box or the symbol x stand for the number 
the person picks. 
 
Here is what happens when the person follows your directions: 

Step Visual Result Algebric Result 
Pick a number            
Add 5         | | | | | 	 + 5 
Multiply by 4         | | | | | 

        | | | | | 
        | | | | | 
        | | | | | 

 
.(X+5).4= 4x+20 

Subtract 6         | |   
        | |   
        | | | | |   
        | | | | | 

 

( )4 20 6 4 14x x+ − = +  

Divide By 2         | |    
        | | | | |   

4 + 14
2 = 2 + 7 

Subtract twice the 
original number 

        | |  
        | | | | |     

( )2 7 2 7x x+ − =  

 
Thus no matter what number the person starts with, the result will 

always be 7. Note that the x in the analysis above is particular (because it 
represents a single quantity), but it is also arbitrarily chosen or generic 
(because any number whatsoever can be put in its place). This illustrates 
the process of drawing a general conclusion from a particular but generic 
object.  
 
Method of Direct Proof : 

1.  Express the statement to be proved in the form “∀x ∈ D, if P(x) then 
Q(x).” (This step is often done mentally.)  

2.  Start the proof by supposing x is a particular but arbitrarily chosen 
element of D for which the hypothesis P(x) is true. (This step is often 
abbreviated “Suppose x ∈ D and P(x).”)  

3. Show that the conclusion Q(x) is true by using definitions, previously 
established results, and the rules for logical inference. 
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Example 4.1.6 A Direct Proof of a Theorem:  
Prove that the sum of any two even integers is even. 
 
Proof:  
Suppose m and n are [particular but arbitrarily chosen] even integers. [We 
must show that m + n is even.] By definition of even, m = 2r and n = 2s 
for some integers r and s. Then m + n = 2r + 2s by substitution. 
 
= 2(r + s) by factoring out a 2. Let t = r + s. Note that t is an integer 
because it is a sum of integers. Hence m + n = 2t where t is an integer.  
It follows by definition of even that m + n is even. [This is what we 
needed to show.] 
 
Example 4.1.7 Identifying the “Starting Point” and the “Conclusion to 
Be Shown” :  
Write the first sentence of a proof (the “starting point”) and the last 
sentence of a proof (the “conclusion to be shown”) for the following 
statement:  Every complete, bipartite graph is connected. 
 
Solution : 
It is helpful to rewrite the statement formally using a quantifier and a 
variable: 
 

Re :  ,  if  G is complete and bipartite, then G is connected

hypothesisdomain conclusion

Formal statement graphs G∀
  

 

The first sentence, or starting point, of a proof supposes the 
existence of an object (in this case G) in the domain (in this case the set of 
all graphs) that satisfies the hypothesis of the if-then part of the statement 
(in this case that G is complete and bipartite). The conclusion to be shown 
is just the conclusion of the if-then part of the statement (in this case that 
G is connected). Starting Point: Suppose G is a [particular but arbitrarily 
chosen] graph such that G is complete and bipartite 
 
Conclusion to Be Shown: G is connected.  
Thus the proof has the following shape:  
Proof: Suppose G is a [particular but arbitrarily chosen] graph such that G 
is complete and bipartite. . . . Therefore, G is connected. 
 
Showing That an Existential Statement Is False  
 

Recall that the negation of an existential statement is universal. It 
follows that to prove an existential statement is false, you must prove a 
universal statement (its negation) is true.  
 
Example 4.1.8 Disproving an Existential Statement:  
Show that the following statement is false:  
There is a positive integer n such that n2 + 3n + 2 is prime. 
 
Solution:  
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Proving that the given statement is false is equivalent to proving its 
negation is true. The negation is   
For all positive integers n, n2 + 3n + 2 is not prime.  
Because the negation is universal, it is proved by generalizing from the 
generic particular.  
Claim: The statement “There is a positive integer n such that n2 + 3n + 2 is 
prime” is false   
 
Proof: 
 

Suppose n is any [particular but arbitrarily chosen] positive integer. 
[We will show that n2 + 3n + 2 is not prime.] We can factor n2 + 3n + 2 to 
obtain n2 + 3n + 2 = (n + 1)(n + 2). We also note that n + 1 and n + 2 are 
integers (because they are sums of integers) and that both n + 1 > 1 and n 
+ 2 > 1 (because n ≥ 1). Thus n2 + 3n + 2 is a product of two integers each 
greater than 1, and so n2 + 3n + 2 is not prime 
 

4.2 RATIONAL NUMBERS  
 
• Definition A real number r is rational if, and only if, it can be expressed 
as a quotient of two integers with a nonzero denominator. A real number 
that is not rational is irrational. More formally, if r is a real number, then 

r is rational ⇔ ∃  integers a and b such that r = 
a

b  and 0b ≠  

Example 4.2.1 Determining Whether Numbers Are Rational or 
Irrational:  

a. Is 10/3 a rational number?  

b.  Is 0.281 a rational number?  

c.  Is 7 a rational number?  

d.  Is 0 a rational number?  

e.  Is 2/0 a rational number?  

f.  Is 2/0 an irrational number?  

g.  Is 0.12121212 ... a rational number (where the digits 12 are assumed 
to repeat forever)?  

h.  If m and n are integers and neither m nor n is zero, is (m + n)/mn a 
rational number?  

 
Solution: 

a.  Yes, 10/3 is a quotient of the integers 10 and 3 and hence is rational.  

b. Yes, 0.281 = 281/1000. Note that the real numbers represented on a 
typical calculator display are all finite decimals. An explanation 
similar to the one in this example shows that any such number is 
rational. It follows that a calculator with such a display can represent 
only rational numbers. 

c.  Yes, 7 = 7/1. 
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d.  Yes, 0 = 0/1. f. No, 2/0 is not a number (division by 0 is not allowed). 

e.  No, because every irrational number is a number, and 2/0 is not a 
number. 

f.  No, because every irrational number is a number, and 2/0 is not a 
 number. 

g.  Yes. Let x = 0.12121212 .... Then 100x = 12.12121212 .... Thus 

 100x − x = 12.12121212 ... − 0.12121212 ... = 12. 

 But also 100x − x = 99x by basic algebra 

 Hence 99x = 12, 

 and so x = 12 99. 

 Therefore, 0.12121212 ... = 12/99, which is a ratio of two nonzero 
 integers and thus is a rational number. 

h.  Yes, since m and n are integers, so are m + n and mn (because sums 
 and products of integers are integers). 
 
Theorem 4.2.2 The sum of any two rational numbers is rational: 
 
Proof: 
Suppose r and s are rational numbers. [We must show that r + s is 
rational.] Then, by definition of rational, r = a/b and s = c/d for some 
integers a, b, c, and d with b≠0 and d ≠ 0. 
 
Thus 
 
r + s  = a/ b + c /d by substitution 
  = ad + bc/ bd by basic algebra. 
 
Let p = ad + bc and q = bd. Then p and q are integers because products 
and sums of integers are integers and because a, b, c, and d are all integers. 
Also q ≠ 0 by the zero product property. Thus r + s = p/q where p and q 
are integers and q ≠ 0. 
 
Therefore, r + s is rational by definition of a rational number 
 

4.3 DIVISIBILITY 
 
• Definition 
If n and d are integers and d ≠ 0 then 
n is divisible by d if, and only if, n equals d times some integer. 
Instead of “n is divisible by d,” we can say that 
n is a multiple of d, 
or d is a factor of n, or 
d is a divisor of n, or 
d divides n. 
The notation d | n is read “d divides n.” Symbolically, if n and d are 
integers and d ≠ 0: 
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d | n ⇔	∃	an integer k such that n = dk. 
 
Example 4.3.1 Divisibility: 
a. Is 21 divisible by 3?    b. Does 5 divide 40?     c. Does 7 | 42? 
d. Is 32 a multiple of −16?   e. Is 6 a factor of 54?  f. Is 7 a factor of −7? 
 
Solution 
a. Yes, 21 = 3·7.   b. Yes, 40 = 5·8.   c. Yes, 42 = 7·6. 
d. Yes, 32 = (−16)·(−2).  e. Yes, 54 = 6·9.   f. Yes, −7 = 7·(−1). 
 
Example 4.3.2 Divisors of Zero 
If k is any nonzero integer, does k divide 0? 
 
Solution: 
Yes, because 0 = k ·0. 
Two useful properties of divisibility are (1) that if one positive integer 
divides a second positive integer, then the first is less than or equal to the 
second, and (2) that the only divisors of 1 are 1 and −1. 
 
Theorem 4.3.1 A Positive Divisor of a Positive Integer 
For all integers a and b, if a and b are positive and a divides b, then a ≤ b 
 
Proof: 
Suppose a and b are positive integers and a divides b. [We must show that 
a ≤ b.] Then there exists an integer k so that b = ak. By property T25 of 
Appendix A, k must be positive because both a and b are positive. It 
follows that  
 
1 ≤ k 
because every positive integer is greater than or equal to 1. Multiplying 
both sides by a gives 
a ≤ ka = b 
because multiplying both sides of an inequality by a positive number 
preserves the inequality by property T20 of Appendix A. Thus a ≤ b 
 
Theorem 4.3.2 Divisors of 1 
The only divisors of 1 are 1 and −1. 
 
Proof: 

Since 1·1 = 1 and (−1)(−1) = 1, both 1 and −1 are divisors of 1. Now 
suppose m is any integer that divides 1. Then there exists an integer n such 
that 1 = mn. By Theorem T25 in Appendix A, either both m and n are 
positive or both m and n are negative. If both m and n are positive, then m 
is a positive integer divisor of 1. By Theorem 4.3.1, m ≤ 1, and, since the 
only positive integer that is less than or equal to 1 is 1 itself, it follows that 
m = 1. On the other hand, if both m and n are negative, then, by Theorem 
T12 in Appendix A, (−m)(−n) = mn = 1. In this case −m is a positive 
integer divisor of 1, and so, by the same reasoning, −m = 1 and thus m = 
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−1. Therefore there are only two possibilities: either m = 1 or m = −1. So 
the only divisors of 1 are 1 and −1. 
 
Example 4.3.3 Checking Non divisibility:  

Does 4 | 15?  
 
Solution:  

No, 15/4 = 3.75, which is not an integer. Be careful to distinguish between 
the notation a | b and the notation a/b. The notation a | b stands for the 
sentence “a divides b,” which means that there is an integer k such that b = 
ak. Dividing both sides by a gives b/a = k, an integer. Thus, when a ≠ 0, a 
| b if, and only if, b/a is an integer. On the other hand, the notation a/b 
stands for the number a/b which is the result of dividing a by b and which 
may or may not be an integer. In particular, be sure to avoid writing things 
like 
 

( )4 | 3 5 4 | 8+ =  

 
 
If read out loud, this becomes, “4 divides the quantity 3 plus 5 equals 4 
divides 8,” which is nonsense.  
 
Example 4.3.4 Prime Numbers and Divisibility:  
An alternative way to define a prime number is to say that an integer n > 1 
is prime if, and only if, its only positive integer divisors are 1 and itself.  
 
Proving Properties of Divisibility: 
 
One of the most useful properties of divisibility is that it is transitive. If 
one number divides a second and the second number divides a third, then 
the first number divides the third.  
 
Theorem 4.3.3 Transitivity of Divisibility  
For all integers a, b, and c, if a divides b and b divides c, then a divides c.  
 
Proof:  
 
Suppose a, b, and c are [particular but arbitrarily chosen] integers such that 
a divides b and b divides c. [We must show that a divides c.] By definition 
of divisibility,  
b = ar and c = bs for some integers r and s.  
 
By substitution 
c = bs 
 = (ar)s 
 = a(r s) by basic algebra. 
 

mu
no
tes
.in



64 
 

Let k = r s. Then k is an integer since it is a product of integers, and 
therefore 
c = ak where k is an integer. 
 
Thus a divides c by definition of divisibility. 
 
Theorem 4.3.4 The Unique Factorization of Integers Theorem: 
Given any integer n > 1, there exist a positive integer k, distinct prime 
numbers p1, p2,..., pk , and positive integers e1, e2,..., ek such that 

n = p1
e1

 p2 
e2

 p3e3
 ...... p k 

ek 
 

  
and any other expression for n as a product of prime numbers is identical 
to this except, perhaps, for the order in which the factors are written.  
 
Because of the unique factorization theorem, any integer n > 1 can be put 
into a standard factored form in which the prime factors are written in 
ascending order from left to right. 
 
Definition 
Given any integer n > 1, the standard factored form of n is an expression 
of the form  

n = p1
e1

 p2e2
 p3e3

 ...... p k
ek 

 
 
where k is a positive integer; p1, p2,..., pk are prime numbers; e1, e2,..., ek 
are positive integers; 
 
and p1 < p2 < ·· ·  < pk . 
 
Example 4.3.5 Writing Integers in Standard Factored Form 
 
Write 3,300 in standard factored form. 
 
Solution: 
 
First find all the factors of 3,300. Then write them in ascending order: 
3,300 = 100·33 = 4·25·3·11 
= 2·2·5·5·3·11 = 22 ·31 ·52 ·111 
 

4.4 DIVISION INTO CASES AND THE QUOTIENT-
REMAINDER THEOREM  
 
Theorem 4.4.1 The Quotient-Remainder Theorem:  
 

Given any integer n and positive integer d, there exist unique 
integers q and r such that  n = dq + r and 0 ≤ r < d. The proof that there 
exist integers q and r with the given properties If n is positive, the 
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quotient-remainder theorem can be illustrated on the number line as 
follows: 

 

 
If n is negative, the picture changes. Since n = dq + r, where r is 
nonnegative, d must be multiplied by a negative integer q to go below n. 
Then the nonnegative integer r is added to come back up to n. This is 
illustrated as follows :  
 
Example 4.4.1 The Quotient-Remainder Theorem: 
  
For each of the following values of n and d, find integers q and r such that 
n = dq + r and 0 ≤ r < d. 
 
a. n = 54, d = 4   b. n = −54, d = 4   c. n = 54, d = 70 
 
Solution : 
 
a. 54 = 4·13 + 2; hence q = 13 and r = 2.  

b.  −54 = 4·(−14) + 2; hence q = −14 and r = 2.  

c.  54 = 70·0 + 54; hence q = 0 and r = 54. 
 
div and mod:  
 
• Definition  
 
Given an integer n and a positive integer d,  
n div d  = the integer quotient obtained  
 when n is divided by d, and  
 
n mod d  = the nonnegative integer remainder obtained  
 when n is divided by d.  
 
Symbolically, if n and d are integers and d > 0, then  
n div d = q and n mod d = r ⇔	n = dq + r  
where q and r are integers and 0 ≤ r < d.  
 
Example 4.4.2 Computing div and mod:  
Compute 32 div 9 and 32 mod 9 by hand and with a calculator.  
 
Solution:  
 
Performing the division by hand gives the following results: 
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If you use a four-function calculator to divide 32 by 9, you obtain an 
expression like 3.555555556. Discarding the fractional part gives 32 div 9 
=  
3, and so 32 mod 9 = 32 − 9·(32 div 9) = 32 − 27 = 5. 
 
A calculator with a built-in integer-part function iPart allows you to input 
a single expression for each computation: 32 div 9 = iPart(32/9) and 32 
mod 9 = 32 − 9·iPart (32/9) = 5. 
 
Example 4.4.3 Computing the Day of the Week:  
Suppose today is Tuesday, and neither this year nor next year is a leap 
year. What day of the week will it be 1 year from today? 
 
Solution:  
There are 365 days in a year that is not a leap year, and each week has 7 
days. 
 
Now 
365 div 7 = 52 and 365 mod 7 = 1 
because 365 = 52·7 + 1. Thus 52 weeks, or 364 days, from today will be a 
Tuesday, and so 365 days from today will be 1 day later, namely 
Wednesday. 
More generally, if Day T is the day of the week today and DayN is the day 
of the week in N days, then 
 
DayN = (DayT + N) mod 7, 
where Sunday = 0, Monday = 1,..., Saturday = 6. 
 
Example 4.4.4 Solving a Problem about mod: 
Suppose m is an integer. If m mod 11 = 6, what is 4m mod 11? 
 
Solution: 
 
Because m mod 11 = 6, the remainder obtained when m is divided by 11 is 
6. This means that there is some integer q so that 
m = 11q + 6. 
 
Thus  4m = 44q + 24 = 44q + 22 + 2 = 11(4q + 2) + 2. 
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Since 4q + 2 is an integer (because products and sums of integers are 
integers) and since 2 < 11, the remainder obtained when 4m is divided by 
11 is 2. Therefore, 4m mod 11 = 2. 
 
Representations of Integers: 
 

We defined an even integer to have the form twice some integer. 
At that time we could have defined an odd integer to be one that was not 
even. Instead, because it was more useful for proving theorems, we 
specified that an odd integer has the form twice some integer plus one. 
The quotient-remainder theorem brings these two ways of describing odd 
integers together by guaranteeing that any integer is either even or odd. To  
see why, let n be any integer, and consider what happens when n is 
divided by 2. By the quotient-remainder theorem (with d = 2), there exist 
unique integers q and r such that  
 
n = 2q + r and 0 ≤ r < 2. 
 
But the only integers that satisfy 0 ≤ r < 2 are r = 0 and r = 1. It follows 
that given any integer n, there exists an integer q with 
 
n = 2q + 0 or n = 2q + 1.  
 
In the case that n = 2q + 0 = 2q, n is even. In the case that n = 2q + 1, n is 
odd. Hence n is either even or odd, and, because of the uniqueness of q 
and r, n cannot be both even and odd.  
 
The parity of an integer refers to whether the integer is even or odd. For 
instance, 5 has odd parity and 28 has even parity. We call the fact that any 
integer is either even or odd the parity property 
 
Example 4.4.5 Representations of Integers Module 4:  
 
Show that any integer can be written in one of the four forms  
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3 for some integer q. 
 
Solution:  
 
Given any integer n, apply the quotient-remainder theorem to n with d = 4. 
This implies that there exist an integer quotient q and a remainder r such 
that 
 
n = 4q + r and 0 ≤ r < 4. 
 
But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 
3. Hence  n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3 for some integer 
q. 
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4.5 FLOOR AND CEILING  
 
Given any real number x, the floor of x, denotedis defined as follows:  

 = that unique integer n such that n ≤ x < n + 1.  
 
Symbolically, if x is a real number and n is an integer, then 
= n ⇔	n ≤ x < n + 1.  
 

x 
                                           
                             n                                     n+1 

                         floor of x=[x]                                 
 
• Definition: 
 
Given any real number x, the ceiling of x, denoted, is defined as follows:  

= that unique integer n such that n − 1 < x ≤ n. 
 

Symbolically, if x is a real number and n is an integer, then  
 = = n ⇔	n − 1 < x ≤ n. 
 

                                          x 
              ( n-1)                                                n 

                                                          Ceiling of x=[x] 

Example 4.5.1 Computing Floors and Ceilings:  
 
Compute and for each of the following values of x:  
a.  25/4  b.  0.999  c. −2.01 
 
Solution: 

a.  25/4 = 6.25 and 6 < 6.25 < 7; hence 25/4 = 6		25/4 = 7  

b.  0 < 0.999 < 1; hence 0.0999 = 0		0.999 = 1  

c.  −3 <−2.01 <=  and   
 

Note that on some calculators is denoted INT (x). hence 

 −2.01 = −3		−2.01 = −2  
 
Example 4.5.2 An Application:  
 
The 1,370 students at a college are given the opportunity to take buses to 
an out-of-town game. Each bus holds a maximum of 40 passengers. 

a.  For reasons of economy, the athletic director will send only full buses. 
What is the maximum number of buses the athletic director will send?  
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b.  If the athletic director is willing to send one partially filled bus, how 
many buses will be needed to allow all the students to take the trip? 

 
Solution : 
a. 1370/40 = 34.25 = 34   
b. 1370/40 = 34.25 = 35 
 

4.6 CONTRADICTION AND CONTRAPOSITION 
 
Method of Proof by Contradiction 

1.  Suppose the statement to be proved is false. That is, suppose that the 
negation of the statement is true. 

2. Show that this supposition leads logically to a contradiction. 

3.  Conclude that the statement to be proved is true. 
 There are no clear-cut rules for when to try a direct proof and when to 

try a proof by contradiction, but there are some general guidelines. 
Proof by contradiction is indicated if you want to show that there is no 
object with a certain property, or if you want to show that a certain 
object does not have a certain property. The examples illustrate these 
situations. 

 
Theorem 4.6.1: 
 

Proof: 
[We take the negation of the theorem and suppose it to be true.] 

Suppose not. That is, suppose there is a greatest integer N. [We must 
deduce a contradiction.] Then N ≥ n for every integer n. Let M = N + 1. 
Now M is an integer since it is a sum of integers. Also M > N since M = N 
+ 1. 

 
Thus M is an integer that is greater than N. So N is the greatest 

integer and N is not the greatest integer, which is a contradiction. [This 
contradiction shows that the supposition is false and, hence, that the 
theorem is true.] 
 

Theorem 4.6.2: 
There is no integer that is both even and odd. 
 

Proof:  
[We take the negation of the theorem and suppose it to be true.] Suppose 
not. That is, suppose there is at least one integer n that is both even and 
odd. [We must deduce a contradiction.] By definition of even, n = 2a for 
some integer a, and by definition of odd, n = 2b + 1 for some integer b. 
Consequently, 
 
2a = 2b + 1 by equating the two expressions for n and so 

2a − 2b = 1 
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2(a − b) = 1 

a − b = 1/2 by algebra 
 

Now since a and b are integers, the difference a − b must also be an 
integer. But a − b = 1/2, and 1/2 is not an integer. Thus a − b is an integer 
and a − b is not an integer, which is a contradiction. [This contradiction 
shows that the supposition is false and, hence, that the theorem is true.] 
 
Theorem 4.6.3: 
The sum of any rational number and any irrational number is irrational. 
 
Proof: 
[We take the negation of the theorem and suppose it to be true.] Suppose 
not. That is, suppose there is a rational number r and an irrational number 
s such that r + s is rational. [We must deduce a contradiction.] By 
definition of rational, r = a/b and r + s = c/d for some integers a, b, c, and d 
with b ≠ 0 and d ≠ 0. By substitution, 
 
a/b + s = c/d , 
and so 
 
s = c/d – a/b   by subtracting a/b from both side 
 
    = bc – ad/bd by the laws of algebra. 
 
Now bc − ad and bd are both integers [since a, b, c, and d are integers and 
since products and differences of integers are integers], and bd ≠ 0 [by the 
zero product property]. Hence s is a quotient of the two integers bc − ad 
and bd with bd ≠ 0. Thus, by definition of rational, s is rational, which 
contradicts the supposition that s is irrational. [Hence the supposition is 
false and the theorem is true.] 
 
Argument by Contraposition: 
 A second form of indirect argument, argument by contraposition, is 
based on the logical equivalence between a statement and its 
contrapositive. To prove a statement by contraposition, you take the 
contrapositive of the statement, prove the contrapositive by a direct proof, 
and conclude that the original statement is true. The underlying reasoning 
is that since a conditional statement is logically equivalent to its 
contrapositive, if the contrapositive is true then the statement must also be 
true. 
 
Method of Proof by Contraposition: 

1.  Express the statement to be proved in the form 

	 ∀x in D, if P(x) then Q(x). 

2.  Rewrite this statement in the contrapositive form 

	 ∀x in D, if Q(x) is false then P(x) is false. 
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3.  Prove the contrapositive by a direct proof. 

a.  Suppose x is a (particular but arbitrarily chosen) element of D such 
that Q(x) is false. 

b.  Show that P(x) is false 
 
Proposition: 
For all integers n, if n2 is even then n is even. 
 
Proof(by contraposition): 
Suppose n is any odd integer. [We must show that n2 is odd.] By definition 
of odd, n = 2k + 1 for some integer k. By substitution and algebra, n2 = 
(2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. But 2k2 + 2k is an integer 
because products and sums of integers are integers. So n2 = 2·(an integer) 
+ 1, and thus, by definition of odd, n2 is odd [as was to be shown]. 
 
Relation between Proof by Contradiction and Proof by 
Contraposition: 
Observe that any proof by contraposition can be recast in the language of 
proof by contradiction. 
In a proof by contraposition, the statement 
∀x in D, if P(x) then Q(x) 
is proved by giving a direct proof of the equivalent statement 
∀x in D, if ∼Q(x) then ∼P(x). 
To do this, you suppose you are given an arbitrary element x of D such 
that ∼Q(x). You then show that ∼P(x). This is illustrated in Figure. 
 

 
Suppose x is an arbitrary element 

of D such that – Q(x) 
sequence of steps  -P(x) 
   

 

 
Exactly the same sequence of steps can be used as the heart of a 

proof by contradiction for the given statement. The only thing that changes 
is the context in which the steps are written down. To rewrite the proof as 
a proof by contradiction, you suppose there is an x in D such that P(x) and 
∼Q(x). You then follow the steps of the proof by contraposition to deduce 
the statement ∼P(x). But ∼P(x) is a contradiction to the supposition that 
P(x) and ∼Q(x). (Because to contradict a conjunction of two statements, it 
is only necessary to contradict one of them.) This process is illustrated in 
Figure. 
          

Suppose ∃ x in D such 
that P(x)and ∼Q(x) 

Same sequence of 
steps 

Contradiction 
P(x) and 
∼P(x) 

 

4.7 TWO CLASSICAL THEOREM 
 
Theorem 4.7.1 Irrationality of √2 
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√2 is irrational. 
 
Proof: 
[We take the negation and suppose it to be true.] Suppose not. That is, 
suppose √2 is rational. Then there are integers m and n with no common 
factors such that √2 = m/n 
 
[by dividing m and n by any common factors if necessary]. [We must 
derive a contradiction.] 
 
Squaring both sides of equation gives 
2 = m2/n2 
Or, equivalently 
m2 = 2n2.    
Note that equation implies that m2 is even (by definition of even). It 
follows that m is even. We file this fact away for future reference and also 
deduce (by definition of even) that  
m = 2k for some integer k. 
 

Substituting equation (2) into equation (1), we see that 
m2 = (2k)2 = 4k2 = 2n2. 
 

Dividing both sides of the right-most equation by 2 gives 
n2 = 2k2. 
 
Consequently, n2 is even, and so n is even. But we also know that m is 
even. [This is the fact we filed away.] Hence both m and n have a common 
factor of 2. But this contradicts the supposition that m and n have no 
common factors. [Hence the supposition is false and so the theorem is 
true.] 
 

Example 4.7.1 Irrationality of 1 + 3 √√√√2: 
Prove by contradiction that 1 + 3 √2 is irrational. 
 

Solution: 
The essence of the argument is the observation that if 1 + 3 √2 could be 
written as a ratio of integers, then so could √2. But by Theorem 4.7.1, we 
know that to be impossible. 
1 + 3 √2 is irrational 
 

Proof: 
Suppose not. Suppose 1 + 3 √2 is rational. [We must derive a 
contradiction.] Then by definition of rational 1 + 3 √ 2 = a/b for some 
integers a and b with b ≠ 0.  
 
It follows that 3 √2 = a/b − 1 by subtracting 1 from both sides 
= a/b – b/b by substitution 
 

= a – b/b by the rule for subtracting fractions with a 
common denominator. 
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Hence 
√2 = a – b/3b  by dividing both sides by 3. 
 
But a − b and 3b are integers (since a and b are integers and differences 
and products of integers are integers), and 3b ≠ 0 by the zero product 
property. Hence √2 is a quotient of the two integers a − b and 3b with 3b 
≠ 0, and so √2 is rational (by definition of rational.) This contradicts the 
fact that √2 is irrational. [This contradiction shows that the supposition is 
false.] Hence 1 + 3 √2 is irrational. 
 
Theorem 4.7.3 Infinitude of the Primes 
The set of prime numbers is infinite. 
 
Proof (by contradiction): 
Suppose not. That is, suppose the set of prime numbers is finite. [We must 
deduce a contradiction.] Then some prime number p is the largest of all 
the prime numbers, and hence we can list the prime numbers in ascending 
order:  
2, 3, 5, 7, 11,. . . ,p. 
Let N be the product of all the prime numbers plus 1: 
N = (2·3·5·7·11· ··p) + 1 
 
Then N > 1, and so, N is divisible by some prime number q. Because q is 
prime, q must equal one of the prime numbers 2, 3, 5, 7, 11, ..., p. 
 
Thus, by definition of divisibility, q divides 2·3·5·7·11· ··p, and so, by 
Proposition 4.7.3, q does not divide (2·3·5·7·11·· ·p) + 1, which equals N. 
Hence N is divisible by q and N is not divisible by q, and we have reached 
a contradiction. [Therefore, the supposition is false and the theorem is 
true.] 
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4.9 UNIT END EXERCISE   
 
1 Derive Additional Results about Even and Odd Integers 
Suppose that you have already proved the following properties of even 
and odd integers: 

1.  The sum, product, and difference of any two even integers are even. 

2.  The sum and difference of any two odd integers are even. 
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3.  The product of any two odd integers is odd. 

4.  The product of any even integer and any odd integer is even. 

5.  The sum of any odd integer and any even integer is odd. 

6.  The difference of any odd integer minus any even integer is odd. 

7.  The difference of any even integer minus any odd integer is odd. Use 
the properties listed above to prove that if a is any even integer and b 
is any odd integer, then a2+b2+1/2 is an integer. 

 
2. Using Unique Factorization to Solve a Problem 
Suppose m is an integer such that 
8·7·6·5·4·3·2·m = 17·16·15·14·13·12·11·10.  
Does 17 | m? 
 
3. Compute div and mod  
Use the floor notation to compute 3850 div 17 and 3850 mod 17.  

 

 

***** 
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Unit III 

5 
 

 

SEQUENCES, MATHEMATICAL 
INDUCTION AND RECURSION 

 
Unit Structure  

5.0  Objectives  

5.1  Introduction  

5.2  Sequences  

5.3  Mathematical Induction  

5.4 Strong Mathematical Induction and The Well Ordering Principle for 
the Integers  

5.5  Defining Sequences Recursively  

5.6  Solving Recurrence Relation by Iteration 

5.7  Second Order Linear Homogeneous Recurrence Relation with 
Constant Co-effcients  

5.8  General Recursive Definition and Structural Induction  

5.9  Summary  

5.10  Bibliography  

5.11  Unit End Exercise 

 

5.0 OBJECTIVES  

 
Student will be able to understand the following from the Chapter:  

• The various terminologies used to define Sequence. Various Laws 
used to prove the Sequence known as Mathematical Induction and 
also the various types of Mathematical Induction.  

• Represent any sequence interns of Previous values (Recursive 
Function).  

• Study of Strong Mathematical Induction and Structural Induction for 
dening a Recursive Function. 
 

5.1 INTRODUCTION  

 
Identication of a regular pattern and generalizing these patterns to a 

Mathematical Equation is the most important component in Mathematics. 
A Se-quence is a study of repetitive numbers which can be generalized to a 
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single mathematical equation satisfying the given Range of integers.The 
validity of the sequences can be veried by using a set of laws known as 
Mathematical Induction. The sequences can also be generalized using 
arithmetic operations on Previous values, thus forming a sequence in a 
Recursive manner. 

 

5.2 SEQUENCES  
 

A Sequence is defined as a process of enumerated collection of 
objects or num- bers such that the numbers possess a common dierence or 
a multiplicative factor. It is also represented in the form of a function such 
that its domain may include all the integer value existing between two 
integers or the set of all integers greater than or equal to a given integer.For 
example: 

1, 2,3,4,5,....,n where n is an integer. 

2, 4,8,16,..., 2n where n is an integer. 
 

In the above examples the starting integer is considered as the 
Initial Term and the last integer present in the sequence is defined as Final 
Term. A sequence can be operated arithmetically by using two basic 
arithmetic operation:  

 

Addition: If the sequence is to be added, then all the terms are needed to 
be added continuously hence the Continuous addition method is 
represented by Summation (∑) 

1 2........

n

k m m m n
k m

a a a a a+ + +
=

= + +∑  

Multiplication:  If the sequence is to be Multiplied, then all the terms are 
needed to be multiplied continuously hence the Continuous addition 
method is represented by Pi ( ∏ ). 

1 2.........

n

k m m m n

k m

a a a a a+ +
=

= × × ×∏  

If am,am+1,am+2,...andbm,bm+1,bm+2,...are sequence so f real numbers and c 
is any real number, then the following equations hold for any integer n ≥  m. 

(a)  ( )
n n n

k k k k
k m k m k m

a b a b
= = =

+ = +∑ ∑ ∑  

( b)  ( )
n n

k k
k m k m

c a c a
= =

× = ×∑ ∑
 

(c) ( )
n n n

k k k k

k m k m k m

a b a b
= = =

   
× = ×   

   
∏ ∏ ∏  

 
5.2.1 Solved Examples: 
 
Example1: Write the first four terms of these quences defined by the formulas 

mu
no
tes
.in



77 

 

A. 
10 '

k

k
a

k
=

+
 for all integers k ≥ 1 

 
Sol: The terms are 

 
1

1 1

10 1 11
a = =

+
  for (k=1) 

 
2

2 2

10 2 12
a = =

+
  for (k=2) 

 
3

3 3

10 3 13
a = =

+
  for (k=3) 

 
4

4 4

10 4 14
a = =

+
  for (k=4) 

 

B. ( )1

10 3

i

ic
−

=
+

, for all integers i ≥ 0 

 
Sol: The terms are:  

 

( )1

1 1

1 1

3 3
c

− −
= =   for (i=1) 

 

( )2

2 2

1 1

3 9
c

−
= =   for (i=2) 

 

( )3

3 3

1 1

3 27
c

− −
= =   for (i=3) 

 

( )4

4 4

1 1

3 81
c

−
= =   for (i=4) 

 
Example 2: Find an explicit formula for the given sequences:  
A . -1,1,-1,1,-1,1 
  

In the given sequence the sign (Positive or negative) is present al- 
ternatively. Hence, the signs are position dependent which means: 

 -1 = (-1)1 (First Position Term). 

 1 = (-1)2 (Second Position Term). 

 1  =  (-1)3 (Third Position Term). 

 1 =  (-1)4 (Fourth Position Term). 

 1  =  (-1)5 (Fifth Position Term). 

 
Hence the explicit formula is: 

( )1
k

ka = −  
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Sol :  Since 

 
1

1
1

2
a = −  (First Position Term). 

 
2

1 1

2 3
a = −  (Second Position Term). 

 
3

1 1

3 4
a = −  (Third Position Term). 

 
4

1 1

4 5
a = −   (Fourth Position Term). 

 
5

1 1

5 6
a = −  (Fifth Position Term). 

 

Hence the explicit formula is: 

 

1 1

1
ka

k k
= −

+
 

 

Example3 Compute the summations and products of the following: 

 A ( )
5

1

1
k

k
=

+∑  

 

Sol: Let ak= (k + 1) where k is varying from 1 to 5. Hence the summation 
or the addition of the terms will be: 

 
( )

5

1

1 (1 1) (1 2) (1 3) (1 4) (1 5)
k

k
=

+ = + + + + + + + + +∑  

 (2)+(3)+(4)+(5)+(6) 

 = 20 
 

B.  
7

1

1 1

1k n n=

 
− + 

∑  

Let  
1 1

1
ka

n n

 
= − + 

where k is varying from 1to7. Hence the summation 

or the addition of the terms will be : 
5

1

1 1

1k n n=

 
− + 

∑  

 

1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 1 3 3 1 4 4 1 5 5 1

         
= − + − + − + − + − +         + + + + +         

 

 

1 1 1 1

6 6 1 7 7 1

   
− + −   + +   

 

 

1 1 1 1

6 7 7 8

   
− + −   

   
 

 

1 1 1 1 1 1 1

2 6 12 20 30 42 56
+ + + + + +  

 = 
7

8  
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C. 
4

2

1k

k
=

∏  

Sol: Let ak=k2awhere k is varying from 1 to 4. Hence the product or the 
multiplication of the terms will be : 

 
( ) ( ) ( ) ( ) ( )

5
2 2 2 2 2

1

1 2 3 4
k

k
=

= × × ×∏  

 
( ) ( ) ( ) ( )1 4 9 16× × ×  

 = 576 
 

D. 
6

2

1
1

k k=

  
−    

∏  

Sol: Let 
1 1

1 1
2

ka
k

      
= − = −            

where k is varying from 2 to 6. Hence 

the product or the multiplication of the terms will be: 

 

2

2

1 1 1 1
1 1 1 1

2 3 4k k=−

              
− = − × − × − ×                            

∏  

 

1 1
1 1

5 6

      
− × −            

 

 =
1 2 3 4 5

2 3 4 5 6

         
× × × ×         

         
 

 =
1

6

 
 
   

 

5.3 MATHEMATICAL INDUCTION  

 
Mathematical Induction is defined as a Mathematical Technique used for 
proving any mathematical expression, a statement or at theorem such that it 
holds true for a given set of Natural Number.  
 
It requires Two Steps for proving as statement:  

(a)  Basic Step: This step will help to prove that the statement is true for 
the initial value.  

(b)  InductiveStep: This step will prove that if a statement is true at nth 
Natural Number, the n the same statement should be True at(n + 1) th 
Natural Number. 

   
The above mentioned steps can be implemented by using the following 
steps:  

• Step 1: Prove that the statement is true for the very first value or the 
initial value.(The value from which the given statement or expression is 
defined) 
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• Step 2: This step is performed if and only if Step 1 is True. In this step 
we assume that the given expression is valid at k(Where k is a Natural 
Number.). According to the assumption made, it is to be proved that the 
same expression will be valid at (k+1)also.(Where(k+1)is a Natural 
Number or the number successive to k.)  

 
5.3.1 Solved Examples:  

Example 1. For each integer n with n ≥  2, let P(n) be the formula: 

( ) ( )
( ) ( )1

1

1 1
1

3

n

i

n n n
i i

−

=

+ − 
+ =  

 
∑  

A. Write P(2). Is P(2) true?  

B.  Write P(k)  

C.  Write P(k+1) 

D.  In a proof by mathematical induction that the formula holds for all 
integers n n ≥ 2, what must be shown in the inductive step? 

 
Sol:  

Given ( ) ( )
( ) ( )1

1

1 1
1

3

n

i

n n n
i i

−

=

+ − 
+ =  

 
∑ where ( ) ( ) ( )

1

1

1
n

i

p n i i
−

=

+∑  

A.  ( ) ( ) ( )
2 1

1

2 1
i

p i i
−

=

+∑  

 
( ) ( ) ( )

1

1

2 1
i

p i i
=

+∑  

 
( ) ( ) ( )2 1 1 1p = + +  

 
( )2 2p =  

It is expressed in the form of the following equation: 

 

( ) ( )1 1

3

n n n+ − 
=  
 

 

Hence the value at n=2 

 

( ) ( )2 2 1 2 1

3

+ − 
=  
 

 

 

( ) ( )2 3 1

3

 
=  
 

 

 = 2 
 
B. Similarly P(k) will be expressed as: 

 

( ) ( ) ( )
( )( )1

1

1 1
1

3

k

i

k k k
p k i i

−

=

+ − 
= +  

 
∑  

 
 

mu
no
tes
.in



81 

 

C. Similarly P(k+1) will be expressed as: 

 

( ) ( )( )
( ) ( ) ( )

1

1 2
1

3

k

i

k k k k
p k i i

=

+ + 
= +  

 
∑  

 
D.  Solving LHS and RHS in (c) separately. 

 
( )( )

1

1
1

K

I
LHS i i

+

=
= +∑  

 

( ) ( )( )1 2

3

k k k
RHS

+ + 
=  
 

 

Considering LHS 

 
( )( )

1

1

1
K

i

LHS i i
+

=

= +∑  

 
( )( ) ( ) ( )

1

1 1
K

i

i i k k
=

= + + + +∑  

From the expression in (b) 

 

( )( )
( )( ) ( )1

1

1 2
1

3

K

i

k k k k
i i

−

=

+ + 
+ =  

 
∑  

Hence, 

 

( )
( )( )1 1

1
3

k k k
k k

+ − 
= + + +  

 
 

Taking k(k + 1) common 

 

( )
( )1

1 1
3

k
k k

− 
= + × + 

 
 

 
( )

3 1
1

3

k
k k

+ − 
= + × 

 
 

 
( )

2
1

3

k
k k

+ 
= + × 

 
 

 

( )( )( )1 2

3

k k k+ + 
=  
 

 

Thus, LHS=RHS Hence Proved by Mathematical Induction. 
 
Example 2. Prove the Following statement by using Mathematical 

Induction: 
( )

1 1 1
......

1.2 2.3 1 1

n

n n n
+ + =

+ +
for all integers 1n ≥  

 

Sol:  

Given:  
( )

1 1 1
......

1.2 2.3 . 1 1

n

n n n
+ + =

+ +
 

 LHS  = 
( )

1 1 1
......

1.2 2.3 . 1n n
+ +

+
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 RHS = 
1

n

n +
 

Substitute n=1 in LHS and RHS respectively 

 LHS = 
1

1.2
 

  =
1

2
 

 RHS =
1

1 1+
 

  =
1

2
 

 
Hence the expression is valid at n=1 
Let the expression is valid at n=k hence, 

 ( )
1 1 1

...... ........(1)
1.2 2.3 . 1 1

k

k k k
+ + =

+ +
 

 
Prove that the same will be valid for n=k+1 also, 

 ( ) ( )
1 1 1 1

......
1.2 2.3 1 . 2 2

k

k k k

+
+ + =

+ + +
 

Let LHS =
( ) ( ) ( ) ( )

1 1 1 1 1 1
...... ......

1.2 2.3 1 . 2 1.2 2.3 1 . 2k k k k
+ + + +

+ + + +
 

RHS 
1

2

k

k

+
=

+
 

 
Solving LHS 

 ( ) ( ) ( )
1 1 1 1

......
1.2 2.3 . 1 1 . 2k k k k

+ + +
+ + +

 

But  
( )

1 1 1
......

1.2 2.3 . 1 1

k

k k k
+ + =

+ +
         from (1) 

Hence,  
( ) ( ) ( )

1

1 1 . 2

k

k k k
+

+ + +
 

Taking
( )

1

1k +
 common 

 ( )
1 1

1 2
k

k k

 
= × + + + 

 

 
( )

( )2 11

1 2

k k

k k

+ + 
= × 

+ + 
 

 
( )

21 2 1

1 2

k k

k k

 + +
= × 

+ + 
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Since ( )22 22a ab b a b+ + = +  

 
( )

( )
2

11

1 2

k

k k

 +
= × 

 + + 
 

 

( )2
1

2

k

k

 +
=  
 + 

 

Thus LHS=RHS hence proved 

 

Example 3.  Prove that 5n -11is divisible by 4, for each integer n ≥ 0 

Sol: To prove 5n -1is divisible by 4 by using Mathematical Induction, 

substitute the value of n=0 

   = 50-1 

   = 1-1 

 = 0 

Since, 0 is divisible by all the integers.  
Hence, 0 is divisible by 4 also. 
Therefore, let 5n -1 is divisible by 4 at n=k 
Hence, by using Quotient Remainder theorem we can represent the 
divisibility as: 
 

 5k -1=4q where ‘q’ is an integer........(1) 

 
To prove the statement to be correct, it is required to prove that the 
statement is true for n=k+1 also such that 5k+1 - 1 = 4p, where ‘p’ is an 
integer.  
 

Considering, 15 1k+ −  

 5 5 1k= × −  

But   5 4 1k q= +   from (1) 

Hence,  (4q + 1) x 5 - 1 

 = 4q  x  5 + 5 - 1 

 = 4q x 5 + 4 

 = 4(q x 5+1) 

Since, q is an integer hence (q x 5+1) will also be an integer.  

Let  q x 5 + 1 = p 

Therefore, 5k+1 – 1 = 4p 

 
From Quotient Remainder Theorem, 5k+1– 1 is divisible by 4, Hence 
proved. 
 
Example 4.  Prove that, for any integer  n ≥ 0, 7n – 2nis divisible by 5. 
 
Sol: 
To prove 7n – 2nis divisible by 5 by using Mathematical Induction, 
substitute the value of n=0 
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 = 70 – 20 

 = 1 – 1 

 = 0 

 
Since, 0 is divisible by all the integers.  
Hence, 0 is divisible by 5 also. 
Therefore, let 7n – 2nis divisible by 5 at n = k 
 

Hence, by using Quotient Remainder theorem we can represent the 
divisibility as: 
 = 7k – 2k  = 5q  where ’q’ is an integer........(1) 
 
To prove the statement to be correct, it is required to prove that the 
statement is true for n=k+1 also such that 7k+1 – 2k +1 = 5p, where ‘p’ is an 
integer.  
 
Considering 7k+1 – 2k +1 

 = 7 7 2 2k k× − ×  

 = ( )7 5 2 2 2k k× + − ×  

 = 7 5 7 2 2 2k k k× + × − ×  

 = ( )7 5 7 2 2k k k× + − ×  

But 7 2k k− = 5q from ….1 

Hence, ( )7 5 5 2k q× + ×  

 = ( )7 2 5k q+ ×  

Since, q is an integer hence ( )7 2k q+ will also be an integer.  

Let ( )7 2k q+ = p 

Therefore, 
1 17 2 5k k p+ +− =  

 

From Quotient Remainder Theorem 1 17 2k k+ +− is divisible by 5, 
 

Hence Proved. 
 

Example 5. Prove that, ( )2 5 1 !n n< + + for all integers n ≥ 2, 

Sol: 

Let LHS = 2nand RHS= (n+1)! 

To prove 2n<(n+1)! by using Mathematical Induction, substitute the value 
of n=2 in both the sides. 

 LHS  =  22    

  =  4 

 RHS =  (2+1)! 

  = 3! 

  = 6 
 

Since 4 <6, Hence the statement is valid at n=2.  
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Therefore, let the statement is valid at n=k such that:  
 

 
( )2 1 !k k< + holds True.......(1) 

Furthermore, it is required to prove that the statement will hold True at 

n=k+1 also i.e. ( )12 2 !k k+ < +  

From above, let LHS = 12k + and RHS = ( )2 !k +  

Considering, LHS = 12k +  

 = 2 2k ×  

Considering, RHS = ( )2 !k +  

 = (k + 2) x (k+1)! 
 

From (1) we know that ( )2 1 !k k< +  and ( )2 2k< + because, k is an 

integer and any number added with 2 will yield a number always greater 
than 2. 

Hence, ( )12 2 !k k+ < + by Mathematical Induction method 

 

5.4 STRONG MATHEMATICAL INDUCTION AND 
THE WELL-ORDERING PRINCIPLE FOR THE 
INTEGERS 
 

Strong Mathematical Induction can be considered similar to that of 
an Ordinary Mathematical Induction. Unlike  Ordinary  Mathematical  
Induction  method, the Strong Mathematical Induction’s Basic Step 
requires several initial integers on the basis of which the statement or the 
expression can be proved (whereas, in an Ordinary Induction, Basis Step 
requires only a single initial value for satisfying the statement’s validity). 
In case of an Inductive step of a Strong Mathematical Induction, validity of 
P(k+1) is proved only if P(n) holds true for all integers through k. 

 

Principle of Strong Mathematical Induction: 

Let P(n) be the statement or the expression to be proved for the integers n. 

Let ‘a’ and ‘b’ be the two integers such that a b≤ and: 

• P(a), P(a+1) ,….. upto P(b) are all True. (Basis Step) 

• For any integer k such that k a≥ , P(i) should hold True for the 
integersfrom a to k. Then it can be concluded that, P(k+1) will also 
hold true by Inductive Hypothesis 

 

5.4.1 Solved Examples: 

 

Example 1. Suppose  a1, a2, a3 ……. is a sequence defined as follows: 

a1= 1, a2= 3, an ak =a k– 2+2a k – 1, for all integers Prove that anis odd for all 

integers 1n ≥ . 
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Sol: 

an is odd for all integers 1n ≥ i. e. an = 2n-1 

We know that a1= 1, a2= 3, and  

an = 2n-1………..(1) 

 

Hence, Substitute n=1 and n=2 respectively in (1)  

at n=1:   a1 = 2(1) – 1 

 a1 = 2 – 1 

 a1 =  1 

at n=2:   a2 = 2(2) – 1 

 a1 = 4 – 1 

 a1 =  3 
 

which satisfies the given values of a1 and a2 respectively. 
 

Let k be an integer such that 2k ≥ and it satisfies the equation as  

ak = 2k– 1. It is required to prove that the sequence is valid at ‘k+1’ 

also. 

Considering ak = ak-2+ 2ak- 1. 

So for k+1 the equation will be: ak + 1 = ak - 1+ 2ak. 

Where, ak– 1 = 2(k – 1) – 1 and ak = 2(k) – 1 

Substituting the values in ak + 1   = ak - 1+ 2ak and solving further, 

 
( )( ) ( )( )1 2 1 1 2 2 1ka k k+ = − − + × −  

 
( ) ( )( )1 2 2 1 2 2 1ka k k+ = − − + × −  

 
( )( )1 2 3 2 2 1ka k k+ = − + × −  

 
( )1 2 3 4 2ka k k+ = − + × −  

 1 6 5ka k+ = −  

 1 6 4 1ka k+ = − −  

 
( )1 2 3 2 1ka k+ = − −  let ( )3 2k p− = , where p is an integer. 

 1 2 1ka p+ = −  

Thus ak+1 is an odd integer by Strong Mathematical Induction method. 

 

Example 2. Suppose  that f0, f1, f2,……. is  a  sequence  defined  as  follows 

f0=5,  f1=16 
1 17 10k k kf f f− −= −  for all integers 2k ≥  Prove that 

3 2 2 5n n

nf = × + × for all integers 0n ≥  

 

Sol: 

To Prove, 3 2 2 5n n

nf = × + × by using Strong Mathematical Induction 

We know that 0 15, 6f f= = and 

 
3 2 2 5n n

nf = × + × …………(1) 
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Hence, Substitute n=0 and n=1 respectively in (1). 

at n=0:  0 0

0 3 2 2 5f = × + ×  

 0 3 2f = +  

 0 5f =  

at n=1:  1 1

1 3 2 2 5f = × + ×  

 
( ) ( ) ( ) ( )1 3 2 2 5f = × + ×  

 1 6 10f = +  

 1 16f =  

 
which satisfies the given values of f0 and f1 respectively. 

Let k be an integer such that 1k ≥  and it satisfies the equation as 

3 2 2 5k k

kf = × + × . It is required to prove that the sequence is valid at ‘k+1’ 

also. 
 

Considering 1 27 10k k kf f f− −= −  

So for k+1 the equation will be 1 17 10k k kf f f+ −= −  

where and 3 2 2 5k k

kf = × + ×  and 1 1

1 3 2 2 5k k

kf
− −

− = × + ×  

Substituting the values in 1 17 10k k kf f f+ −= −  and solving further, 

Substituting the values in and solving further, 

 
( ) ( )1 1

1 7 3 2 2 5 10 3 2 2 5k k k k

kf
− −

+ = × × + × − × × + ×
 

 
1 1

1 21 2 14 5 30 2 20 5k k k k

kf
− −

+ = × + × − × − ×  

  
1

2 5
21 2 14 5 30 20

2 5

k k
k k

kf +

   
= × + × − × − ×   

   
 

 1 21 2 14 5 15 2 4 5k k k k

kf + = × + × − × − ×  

 
( ) ( )1 3 2 2 5 2 5k k

kf + = × × + × ×  

 
( ) ( )1 1

1 3 2 2 5k k

kf
+ +

+ = × + ×  

 

Thus ( ) ( )1 1

1 3 2 2 5k k

kf
+ +

+ = × + × is an odd integer by Strong Mathematical 

Induction method. 
 

5.3 DEFINING SEQUENCES RECURSIVELY 

 
A Recurrence function is defined as a function which is used to 

represent the sequence in form of a functions having previous as well as 
the present values. A Recurrence function can be mathematically defined 
as: 
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A Recurrence Relation for a sequence b0, b1, b2, .... is an expression which 
is used to represent each term bkusing its predecessor terms b0, b1, b2, ...., 

bk-i, where k i a− ≥ and i is a non-negative integer. 
 
To develop a recurrence relation, it is important to have the information 
regarding the Initial conditions or the values of b0, b1, b2, ...., bi-1  to define 
the value of bi 
 

The vary famous example of a Recurrence Relation is Fibonacci Series. 
1, 2, 3, 5, 8, 13, 21,……… 

 

In Fibonacci, the present value is determined by adding the previous two 
values. It can be mathematically expressed as: 

1 2k k kf f f− −= +  

which is a Recurrence Relation.  
 
5.5.1 Solved Example: 
 
Example 1. Find the first four terms o f each of the recursively defined 
sequences: 

A. 12k ka a k−= + , for all integers 2k ≥ a1=1 

Sol : 

 K=1 :  1 1a =
 

(First Position Term) 

 K=2 :  ( )2 12 2 2 1 2 4a a= + = + =   (Second Position Term) 

 K=3 :  ( )3 22 2 2 4 2 10a a= + = + =   (Third Position Term) 

 K=4 :  ( )4 32 2 2 10 2 22a a= + = + =
 
(Fourth Position Term) 

 

B. 12 3k kb b k−= + , for all integers 2k ≥ b1=1 

Sol : 

 K=1 :  1 1b =
  

(First Position Term) 

 K=2 :  ( )2 12 3(1) 2 1 3 5b b= + = + =   (Second Position Term) 

 K=3 :  ( ) ( )3 22 3 2 2 5 6 16b b= + = + =  (Third Position Term) 

 K=4 :  ( )4 32 3(3) 2 16 9 41b b= + = + =  (Fourth Position Term) 

  

Example 2. Let 0 1 2, , ........b b b , be defined by the formula, bn=4n for all 

integers 0n ≥ . Show that this sequence satisfies the recurrence relation, 

bk=4bk-1  for all integers 1k ≥  
 
Sol: 

Given:bn= 4n, for 0n ≥ Hence b0 = 40 = 1 

Let ‘k’ be an integer such that 1k ≥  
Therefore,  bk-1= 4k-1 
 4 x bk-1= 4 x 4k-1 
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4
4

4

k

= ×  

 = 4k  

which is, bk, Hence Proved. 

Example 3. Let 0 1 2, , ........s s s , be defined by the formula, 
( )1

,
!

n

ns
n

−
= for 

all integers 0n ≥ . Show that this sequence satisfies the recurrence relation, 

1 ,k
k

s
s

k
−= for all integers 1k ≥  

Sol :  Given:
( )1

,
!

n

ns
n

−
= , for 0n ≥ Hence 

( )0

0

1
1

0!
s

−
= =  

Let ‘k’ be an integer such that 1k ≥  

Therefore,  
( )
( )

1

1

1

1 !

k

ks
k

−

−

−
=

−
 

 1ks

k
−= −  

 = 

( )
( )

1
1

1 !

k

k

k

− −
  − −  

 = ( )
( )

( )

1
1

1
1 !

k

k k

− −
− × 

 × − 
 

 

( )
( )

1

!

k

k

 −
−  
 
   

Which is, sk Hence Proved. 
 

5.6 SOLVING RECURRENCE RELATION 
BYITERATION 
 

If a sequence satisfies a recurrence relation with its initial 
conditions or values given, then an explicit formula can be defined for the 
given sequence by the method of iterations. In this section, the different 
ways of solving a recurrence relations have been mentioned. 

 
A sequence a0, a1, a2, ..... is called an Arithmetic Sequence of the 

form 0na a nd= + where ‘n’ and ‘d’ are the integers, iff the recurrence 

relation is given as 1k ka a d−= +  
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A sequence a0, a1, a2, ..... is called an Geometric Sequence of the 

form ( ) 0

n

na r a= where ‘n’ and ‘r’ are the integers, if the recurrence 

relation is given as 1k ka r a −= ×  

 

5.6.1 Solved Examples: 

Example 1. The formula:  
1

2 3 1
1 .......

1

n
n r

r r r r
r

+ −
+ + + + + =

−
 is true for all 

even numbers r except r = 1 and for all integers 0n ≥ . Use this fact to 
solve each of the following problems: 

A. If n is an integer and 1n ≥ , find a formula for the expression  

       1 + 3 + 32 + + 3n-1. 

B. If n is an integer and 2n ≥ find a formula for the expression is an 

integer and 1i ≥ 1, find a formula for the expression 1 + 2 + 

22 + + 2i-1. 

C. If 2 n+ 2n-2 × 3 + 2n-3× 3 + + 22× 3 + 2 × 3 + 3 
 
Sol: 

Given: 
1

2 3 1
1 .......

1

n
n r

r r r r
r

+ −
+ + + + + =

−
 

(a) 2 11 2 2 ....... 2 i−+ + + + on comparing the expression r = 2. 
 

Hence, the sum will be:  

 

1 12 1

2 1

i− + −
=

−
 

 
2 1

1

i −
=  

 2 1i= −  
  

(b)  2 11 3 3 ....... 3n−+ + + + on comparing the expression r=3. 
Hence, the sum will be: 

 

1 13 1

3 1

n− + −
=

−
 

 

3 1

2

n −
=  

 
(C) 2 n+ 2n-2 × 3 + 2n-3× 3 + + 22× 3 + 2 × 3 + 3simplifying the expression 

we get. 2 n ( )2 3 22 2 ........ 2 2 1 3,n n− −+ + + + + + × where r=2 

Hence, the sum will be: 

 

2 12 1
2 3

2 1

n
n

− + −
= + × 

− 
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12 1
2 3

1

n
n

− −
= + × 

 
 

 
12 3 2 3n n−= + × −  

 
1 12 2 3 2 3n n n− −= × + × −  

 
( ) 12 3 2 3n−= + × −  

 
( ) 15 2 3n−= × −  

 
Example 2. Following sequence is defined recursively.  Use iteration to 
guess an explicit formula for the sequence. 

A 1,k ka k a −= × for all integers 01, 1k a≥ =  

Sol: 

Given: 1,k ka k a −= ×  and a0=1 

 At ( )1 01: 1 1k a a= = × =  

 At ( ) ( )2 12 : 2 2 1 2k a a= = × = × =  

 At ( ) ( )3 23 : 3 3 2 6k a a= = × = × =  

 
( ) 1: n nk n a n a −= = ×  

 At ( ) ( ) 21 nn n a −= × − ×  

 At ( ) ( ) ( ) ( ) ( ) ( )1 2 ............ 3 2 1n n n= × − × − × × × ×  

  !n=  

 

B. At 13 1,k kc c −= × + for all integers 12, 1k c≥ =  

Sol: 

Given: 13 1k kc c −= × +  and 1 1c =  

 At ( ) ( ) ( ) 1

2 12 : 3 1 3 1 1 3 1k c c= = × + = × + = +  

 At ( ) ( ) 2 1

3 23 : 3 1 3 3 1 1 3 3 1k c c= = × + = × + + = + +  

 At ( ) ( )2 1 3 2 1

4 34 : 3 1 3 3 3 1 1 3 3 3 1k c c= = × + = × + + + = + + +  

 At ( ) 1: 3 1n nk n c c −= = × +  

which is a Geometric progression with r=3. Hence,  

 

1 13 1

3 1

n− + −
=  

− 
 

 

3 1

2

n −
=  

 

C. 1

1 2
k

k

k

g
g

g
−

−

 
=  

+ 
for all integers 12, 1k g≥ =  
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Sol: 

Given: 1

1 2
k

k

k

g
g

g
−

−

 
=  

+ 
,  

At k = 2 2 1 1
2

2 1 12 2

g g
g

g g
−

−

   
= =   

+ +   
 

 
2

1 1

1 2 3
g

 
= = + 

 

 
2 2

1

2 1
g

 
=  − 

 

At k = 3: 3 1 2
3

3 1 22 2

g g
g

g g
−

−

   
= =   

+ +  
 

 

3

1 1

3 3
1 7

2
3 3

g

   
   

= =   
   +
   

 

 
3

1 1

7 2 1
=

−
 

At k = 4: 34 1
4

4 1 32 2

gg
g

g g
−

−

  
= =   

+ +   
 

 

4

1 1

7 7
1 15

2
7 7

g

   
   

= =   
   +
   

 

  
4

1 1

15 2 1
k n= =

−
 

At k = n 1

1 2
n

n

n

g
g k n

g
−

−

 
= = 

+ 
 : 

on simplifying 
1

2 1n
=

−
 

 

D. 2

1k ky y k−= + , for all integers 12, 1k y≥ =  

Sol: 

 Given: 2

1k ky y k−= + and 1 1y =  

 At k = 2 2 2

2 2 1 12 2y y y−= + = +  

 
21 2= +  

 

 At k = 3 2 2

3 3 1 23 3y y y−= + = +  

 
2 21 2 3= + +  
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 At k = 4 2 2 2

4 4 1 34 3 4y y y−= + = + +  

 
2 2 21 2 3 4= + + +  

 At 2

1: n nk n y y n−= = +  

 

on simplifying: 

 
2 2 2 21 2 3 4 ........ n= + + + + +  

 

which is equal to the sum of the square of n integers 

 

( ) ( ) 3 11 2 1

6

n n n g −+ +
=

 
 

5.7 SECOND ORDER LINEAR HOMOGENEOUS 
RECURRENCE RELATION WITH CON- STANT 
COEFFICIENTS  
 

If a recurrence relation is expressed in the following form: 

1 2k k ka Aa Ba− −= ±  

 

Then such relations will be considered as Second Order Linear 
Homogeneous Recurrence Relation. In the recurrence relation mentioned 
above ‘A’ and ‘B’ are the parameters of the recurrence function. The 
Order of any recurrence relation depends on the maximum level of 
previous values, a relation is referring to. 
 

For example: 2 3k k ka k a Ba− −= × ±  in this case the order of recurrence 

relation will be 3. 
 

The values or the solution of the recurrence relation are determined 
by using Characteristic Equation of a Relation which is formed from the 

recurrence relation. If the recurrence relation is given 1 2k k ka Aka Ba− −= ± , 

then the recurrence relation will be: 2x Ax B− −    
Steps for finding the generalized equation: 

Step 1: Find the characteristic equation from the recurrence relation. 
Since, order of there recurrence relation is 2. Hence, the degree of 
the characteristic equation will be also 2. 

Step 2: Find the roots of the Characteristic Equation. 

Step 3:  Form the generalized equation using the roots of the Characteristic 
Equation. 

 

Case(a): If the roots are distinct then the generalized solution of the 
recurrence relation will be: 

( ) ( )1 2

n n

nf C r D r= +  

 where, r1 and r2 are the roots of the Characteristic Equation.   
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Case(b): If the roots are repeated then the generalized solution of the 
recur-rencerelation will be: 

( ) ( )1

n n

nf C nD r= +  

where,r1 and r2 are the roots of the Characteristic Equation. 
Step 4: Find the value of A and B by using the initial condition values. 

 
5.7.1  Solved Example: 
 
Example1. Which of the following are second-order linear homogeneous 

recurrence relations with constant coefficients? 

A.  1 22 5k k ka a a− −= −  

Sol: 
The given recurrence relation is a Second order recurrence relation with 
constant coefficients as: A= 2 and B= -5. 

B.  1 2k k kb kb b− −= +  

Sol: 
The given recurrence relation is not a Second order recurrence relation 
with constant coefficients because one of the coefficients is not constant 
(A=k). 

C. ( )2

1 23k k kc c c− −= ×  

Sol: 
The given recurrence relation is not a Second order recurrence relation 
with constant coefficients because the relation is non- linear. 

D.  1 23k k kd d d− −= ×  

Sol: 
The given recurrence relation is a Second order recurrence relation with 
constant coefficients as: A= 3 and B= 1. 

E.  1 2 2k k kr r r− −= − −  

Sol: 
The given recurrence relation is not a Second order recurrence relation 
with constant coefficients because an extra non-zero constant (Offset) -2 is 
present. 

F.  210k sks −=  

Sol: 
The given recurrence relation is a Second order recurrence relation with 
constant coefficients as: A=0 and B= 10. 
 
Example 2. Let a0; a1; a2; :::::: be the sequence defied by the explicit 
formula 

2n

na c D= × + for all integers 0n ≥ where C and D are real numbers. 

A. Find C and D so that a0 = 1 and a1 = 3.What is a2 in this case?  
B. Find C and D so that a0 = 0 and a1 = 2. What is a2 in this case? 
 
Sol: 

The given 2n

na c D= × +  
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A. To find C and D use the initial values of  an. 

At  n = 0 and 0

0 2a c D= × + where 0 1a =  

1= C + D………(1) 

At n=1; 1

1 2a c D= × + , where 1 3a +  

3 = 2c + D……… (2) 
Solving (1) and (2) simultaneously 
C=2 and D= -1. 

Hence recurrence relation becomes: 2 2 1n

na = × −  

Therefore, a2 will be: 

 
2

2 2 2 1a = × −  

 = 2x 4 -1 

 = 7 

 
B. To find ‘C’ and ‘D’ use the initial values of  an. 
At n=0; a0 = C × 20 + D, where a0 = 0 

0= C + D …… (1) 
At n=1; a1 = C × 21 + D, where a1 = 2 
 2=2C+D.......(2) 
Solving (1) and (2) simultaneously. 
 C=2 and D=-2 
Hence, the recurrence relation 
 an=2×2n – 2 

 =2×4 -2 
 =6 
 
Example 3. Let b0,b1 ,b2,.....be the sequence defined by the explicit 
formula: 

( ) ( )2 2
n n

nb C D= + − for all integers 0n ≥  

 
Where C and D are real numbers. Show that for any choice of C and D, 

1 26k k kb b b− −= +  for all integers 2k ≥  

Sol : 

Given ( ) ( )3 2
n n

nb C D= + −  

from the generalized function the roots of the characteristic equation 
can be determined. They are: 3 and -2.  
Hence, the characteristic equation will be 

 
( ) ( ) ( )3 2 0f x x x= − × + =  

 
( ) ( )0 2 3 2x x x= + − +  

 
20 2 3 6x x x= + − −  

 
20 6x x= − −  

 
26x x+ =  

Thus the recurrence relation will be: 1 26k k kb b b− −= + , Hence 

Proved. 
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Example 4. Following sequences satisfies the given recurrence relation and 
initial conditions. Find an explicit formula for the sequence. 

A 1 22 3k k ka a a− −= + , for all integers 2k ≥ a0 = 1, a1 = 2. 

 

Sol: 

Given: 1 22 3k k ka a a− −= + , 2k ≥  with initial conditions given as: 

a0 = 1, a1 = 2. 

By using the recurrence relation: 1 22 3k k ka a a− −= + , the characteristic 

equation will be: 

 
2 2 3 0t t− − =  

 
( ) ( )1 3 0t t+ − =  

Hence, the roots are: t = -1 and 3. 
Now, the generalized explicit formula will be an = A(“1)n +B(3)n 
To find the value ‘A’ and ‘B’ we need initial conditions: 

at n=0, a0 = A(-1)0 + B(3)0 but a0 = 1 
Therefore, 1 = A + B .......(1)  
Similarly, at n=1 the equation will be: 
 2 = -A + 3B .......(2) 
Solving equation (1) and (2) simultaneously. 

 

1

4
A =  and 

3

4
B =  

Hence the explicit formula is: ( ) ( )
1 3

1 3
4 4

n n

nA = − +  

 

B. 1 24 4k k ks s s− −= − − , for all integers 2k ≥ so 0 10, 1s s= = −  

Sol: 

Given: 1 24 4k k ks s s− −= − − 2k ≥ with initial conditions given as: 0 0,s = and 

1 1s = −  

By using the recurrence relation: 1 24 4k k ks s s− −= − − the characteristic 

equation will be: 

 
2 4 4 0t t+ + =  

 
( )( )2 2 0t t+ + =  

Hence, the roots are: t = -2.  

Now, the generalized explicit formula will be ( ) ( )2
n

ns A n B= − + ×  

To find the value ‘A’ and ‘B’ we need initial conditions:  

At 0n = , ( ) ( )( )0

0 2 0s A B= − + × but 0 0s =  

 

Therefore,0=A…………(1)  
Similarly, at n=1 the equation will be: 

-1= -2A - 2B…….(2) 

Solving equation (1) and (2) simultaneously. 

A = 0 and B=
1

2
  

mu
no
tes
.in



97 

 

Hence the explicit formula is: sn =  ( )
1

2
2

n

ns n
 

= − × 
   

 

5.8  GENERAL RECURSIVE DEFINITION AND 
STRUCTURAL INDUCTION  

 
A Recursive function is not always used to represent a sequence of 

numbers but also used for building a set of objects. In case of building a set 
of object it is necessary to define a recursive definition for finding new 
elements of the sets which are defined by using a set of rules. A recursive 
definition mainly consists of three basic components or rules.  

(a)  BASE: A statement in which particular object belongs too the set.  

(b) RECURSION: A collection of rules which will help to find new 
elements belonging to the set.  

(c)  RESTRICTION: A disclaimer statement indicating that no other 
element exist in the set which does not satisfies statement 1 and 2 

 

When a recursive definition of the set is proved by using 
Mathematical Induction. It is known as Structural Induction. The steps for 
executing structural Induction is: 

(a) Show that the element in the set S has been derived from the BASE.  

(b) Show that the rules provided by the RECURSION is satisfied by the 
new object defined for the given set. 

 

5.8.1 Solved Example:  

Example 1. The set of Boolean expressions involving letters from the 
alphabet such as p, q, and r , and the symbols ∧, ∨ and ∼. he set of Boolean 
expressions over a general alphabet is defined recursively.  

• BASE: Each symbol of the alphabet is a Boolean expression.  

• RECURSION: If P and Q are Boolean expressions, then so are:  

 A. P ∧ Q  

 B.  P ∨ Q    

 C.  ∼ P  

• RESTRICTION: There are no Boolean expressions over the alphabet 
other than those obtained from a and b 

 
Derive the fact that the following is a Boolean expression over the English 
alphabet a, b, c, . . . , x, y, z:  

( ) ( )( )p q r p∧ ∨ ∧∼ ∼  

Sol: 

A.  In the given expression, all the symbols are included, Hence from 
1. the p, q and r are Boolean expression  

B.  ∼ r is a Boolean expression from 1 and 2 C.  
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C.  ∼ r ∧ p is a Boolean expression from 1 and 2 A.  

D.  p ∧ q is a Boolean expression from 1 and 2 A.  

E.  ∼ (p ∧ q) is a Boolean expression from 1 and 2 C.  

F.  (∼ (p ∧ q) ∨ (∼ r ∧ p)) is a Boolean expression from 1 and 2 B. 

 

Example 2. The set of arithmetic expressions over the real numbers can be 
defined recursively as follows:  

• BASE: Each real number r is an arithmetic expression.  

• RECURSION: If u and v are arithmetic expressions, then the 
following are also arithmetic expressions:  

A. ( )u+  

B. ( )u−  

C. ( )u v+  

D. ( )u v−  

E. ( )u v×  

F. 
u

v
 

• RESTRICTION: There are no arithmetic expressions over the real 
numbers other than those obtained from a and b.  

 
Give derivations showing that each of the following is an arithmetic 

expression. (Note: that the expression  
u

v
  is legal even though the value of 

v may be 0.) 

 
A. In the expression since all the number are real numbers hence, from 

1. 9, 6.1, 2, 7 and 6 are arithmetic expressions. 

B. 6.1 + 2 is an Arithmetic expression from 1. and 2 C 

C. 9 × (6.1 + 2) is an Arithmetic expression from 1. and 2 E.  

D.  4 − 7 is an Arithmetic expression from 1. and 2 D.  

E.  (4 − 7) × 6 is an Arithmetic expression from 1. and 2 E.  

F.     
( )

( )
9 6.1 2

4 7 6

 × +
  − × 

is an Arithmetic expression from 1. and 2 F.  

 
Example 3. In Godel, Escher, Bach, Douglas Hofstadter introduces the 

following recursively defined set of strings of M’s, I ’s, and U’s, 
which he calls the MIU-system.  

• BASE: MI is in the MIU-system.  
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• RECURSION:  

A.  If x I is in the MIU-system, where x is a string, then x I U is in the 
MIU-system. (In other words, you can add a U to any string that 
ends in I. For example, since MI is in the system, so is MIU.)  

B.  If Mx is in the MIU-system, where x is a string, then Mxx is in the 
MIU system. (In other words, you can repeat all the characters in a 
string that follow an initial M. For example, if MUI is in the 
system, so is MUIUI.)  

C.  If x I I I y is in the MIU-system, where x and y are strings (possibly 
null), then xUy is also in the MIU-system.(In other words, you can 
replace I I I by U. For example, if M I I I I is in the system, so are 
MIU and MUI.) D. If x. 

D.  If xUUy is in the MIU-system, where x and y are strings (possibly 
null), then xUy is also in the MIU-system. (In other words, you can 
replace UU by U. For example, if MIIUU is in the system, so is 
MIIU.)  

• RESTRICTION: No strings other than those derived from I and II are 
in the MIU-system.  
 

Derive the fact that MUIU and MIUI is in the MIU-system.  

• Sol:  

A.  MI is in the MIU-system from 1.  

B.  MII is in the MIU-system from 1. and 2 B.  

C.  MIIII is in the MIU-system from 1. and 2 B.  

D.  MUI is in the MIU-system from 1. and 2 C.  

E.  MUIU is in the MIU-system from 1. and 2 A. 

A.  MI is in the MIU-system from 1.  

B.  MII is in the MIU-system from 1 and 2 B.  

C.  MIIII is in the MIU-system from 1. and 2 B.  

D.  MIIIIIIII is in the MIU-system from 1. and 2 B.  

E.  MIUIIII is in the MIU-system from 1. and 2 C.  

F.  MIUUI is in the MIU-system from 1. and 2 C.  

G.  MIUI is in the MIU-system from 1. and 2D 

 
Example 4. Define a set S recursively as follows:  

• BASE: 1 ∈ S  

• RECURSION: If s ∈ S, then  

A.  0s ∈ S  

B.  s1 ∈ S 

• RESTRICTION: Nothing is in S other than objects defined in a 
and b above  
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Use structural induction to prove that every string in S ends in a 1.  

 

Sol: 
In the given statement, the string should end with 1 and according 

to BASE of the recursion, one of the object is present in S is 1. Hence 
BASE condition is satisfied.  
 

In RECURSION component, there are two rules given. According 
to the first rule the string is starting with 0, hence it may or may not end 
with 1 and in the second rule the string should compulsorily get terminated 
by 1. Hence both the rules are satisfying the statement that the string in S 
should end with a 1. 
 
Example 5. Define a set S recursively as follows:  

• BASE: 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, 5 ∈ S, 6 ∈ S, 7 ∈ S, 8 ∈ S, 9 ∈ S  

• RECURSION: If s ∈ S and t ∈ S, then  
A. s0 ∈ S  

B. st ∈ S  

• RESTRICTION: Nothing is in S other than objects defined in a and b 
above.  

• Use structural induction to prove that no string in S represents an 
integer with a leading zero.  

 
Sol: 

In the given statement, the string should not start with 0 and 
according to BASE of the recursion, only 0 does not belong to S. Hence 
BASE condition is satisfied.  

 
In the RECURSION component there are two rules mentioned. 

According to the first rule the string should end with 0, and in second rule 
the concatenation of the string has been mentioned. Hence, both the rules 
are satisfying the statement that the string in S should not start with 0 or 
the string should not have a leading 0.  
 

5.9 SUMMARY  

• The symbol to represent continuous addition is ∑ .  

• The symbol to represent continuous multiplication is ∏  .  

• A generalized expression of a sequence can be verified by using 
Mathematical Induction.  

• If the statement is needed to be proved for all the available values of 
the sequence, then the given induction is known as Mathematical 
Induction.  
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• The sequence whose values depends on the previous value or the 
initial value is known as Recurrence Function.  

• If the elements of set is to be determined by using Mathematical 
Induction. Such inductions are known as Structural Mathematical 
Induction.  

 

5.10 REFERENCES 

 

• Susanna S. Epp ”Discrete mathematics with applications.” (2010). 
(Chp 5)  

• Lipschutz, Seymour. ”Schaum’s Outlines of Theory and Problems of 
Discrete Mathematics.” (2016). (Chp3) 

 

5.11 UNIT END EXERCISE 

 
(1) Write the following expression as a single summation or product. 

(Hint: Use Properties of Summation and Product) 

i. ( ) ( )
1 1

3 2 3 4 5
n n

k k

k k= =

× − + −∑ ∑  

ii. 
1 1

1

1 2

n n

k k

k k

k k= =

   +    
×      + +      

∏ ∏  

 
2)  Find an explicit formula for the given sequences 

i.  0,1,-2,3,-4,-5 

ii.  
1 2 3 4 5 6

, , , , ,
4 9 16 25 36 49

 

iii. 
1 2 3 4 5

0, , , , ,
2 3 4 5 6

− − −
 

iv. 3, 6, 12, 24, 48, 96 

v.  
1 4 9 16 25 36

, , , , ,
3 9 27 81 243 729

 

 
(3)   Let a0 = 2, a1 = 3, a2 = −2, a3 = 1, a4 = 0, a5 = −1, a6 = −2. Compute 

each of the summations and products below : 

i ( )
6

0
i

i

a
=
∑

  
ii ( )

1

1
i

i

a
=
∑

  
iii ( )

5

2
i

i

a
=
∑

   

iv ( )
6

0

i

i

a
=

∏
  

v ( )
5

5

i

i

a
=

∏  

 
(4)  Compute the Summation and Product of the following  

i
3

0

1

2m
m=

 
 
 

∑
   

ii ( ) ( )
5

1

1 2i

i

i
=

+ ×∑  
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iii ( ) ( )
1

1

1
i

i i
=−

× +∑
 

iv
( )

( ) ( )

5

2

2

1 1i

i i

i i=

 +
  − × + 

∏  

 
5)  Prove the following statement by using Mathematical Induction  
 

i.  For each positive integer n, let P(n) be the formula:   

( )( )2 3 2 2 2 1 2 1
1 2 3 4 .........

6

n n n
n

+ +
+ + + + =  

ii. ( )
1

2

0

2 2 2
n

i n

i

i n
+

+

=

× = × +∑  for all integer 0n ≥  

iii. ( ) ( )
1

0

! 1 ! 1
n

i

i i n
+

=

× = + −∑ , for all integers 1n ≥  

iv. If x is a real number not divisible by π, then for all integers n ≥ 1,  
 

( ) ( ) ( ) ( )( ) ( )
( )

1 cos 2
sin sin 3 sin 5 ........ sin 2 1

2sin

nx
x x x n x

x

−
+ + + + − =  

v. 
( )0

1 1 1
.

2 1 2 2 2 2 !

n

i i i n=

 
= + + + 

∏  for all integer n ≥ 0. 

vi.   7 1n − is divisible by 6, for each integer n ≥ 0.  

vii.  3 7 3n n− +  is divisible by 3, for each integer n ≥ 0.  

viii.  3n n− is divisible by 6, for each integer n ≥ 0.  

ix.   23 1n −  is divisible by 8, for each integer n ≥ 0.  

x.   ( )2 5n n + is divisible by 6, for each integer n ≥ 0.  

xi.   ( )1 3 4n n+ ≤ , for every integer n ≥ 0.  

xii.  ( )9 5 6n n+ ≤ , for every integer n ≥ 2.  

xiii.  2 2nn ≤ , for every integer n ≥ 5.  

xiv.  ( )2 2 !n n< + ) for all integers n ≥ 0.  

xv.  ( )3 2 1n n> + for all integers n ≥ 2.  
 

(6)  Suppose b1, b2, b3, .... is a sequence defined as follows:  

b1 = 4, b2 = 12, 2 1k k kb b b− −= +  for all integers 3k ≥ . Prove that bn is 

divisible by 4 for all integers n ≥ 1. 
  

(7)  Suppose 0 1 2, , ,......c c c is a sequence defined as follows: 

0 1 2 32, 2, 34, 3k kc c c c c −= = = = for all integers k ≥ 3. Prove that cn is 

an even number for all integers n ≥ 0.  
 

(8)  Suppose 0 1 2, , ,......e e e is a sequence defined as follows:  

0 1 1 212, 29, 5e 6ek k ke e e − −= = = − for all integers k ≥ 2. Prove that 

5 3 7 2n n

ne = × + × for all integers n ≥ 0.  
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(9)  Suppose 1 2 3, , ,......p p p is a sequence defined as follows: 

1 2 1 23, 5,p 3 2k k kp p p p− −= = = − for all integers k ≥ 3. Prove that 

2 1n

ng = +  for all integers n ≥ 1.  

 

(10)  Suppose 0 1 2, , ,......s s s is a sequence defined as follows:  

0 1 1 20, 4, 6, 6 5k k k ks s s s s s− −= = = = − for all integers k ≥ 2. Prove that  

5 1n

ns = − for all integers n ≥ 0.  

 
(11)  Find the first four terms of each of the recursively defined sequences:  

i.  ( )2

1kk kc c −=  , for all integers k ≥ 1 c0 = 1  

ii.  1 22k k ks s s− −= + ,for all integers 2k ≥  0 11, 1s s= =  

iii.  1 2 1k k kv v v− −= + + , for all integers 3k ≥   1 21, 3v v= =  

iv.  1 2 1k k ku ku u− −= − +   for all integers k ≥ 3 u1 = 1, u2 = 1  

 

(12)  Let 0 1 2, , ,......a a a .. be defined by the formula 3 1na n= + , for all 

integers n ≥ 0. Show that this sequence satisfies the recurrence 

relation 1 3k ka a −= + , for all integers k ≥ 1.  

 

(13)  Let 0 1 2, , ,......t t t be defined by the formula 2ns n= + , for all integers 

n ≥ 0. Show that this sequence satisfies the recurrence relation 

1 22k k kt t t− −= − for all integers k ≥ 2.  

 

(14) Let 0 1 2, , ,......d d d be defined by the formula 3 2n n

nd = − , for all 

integers n ≥ 0. Show that this sequence satisfies the recurrence 

relation 1 25 6k k kd d d− −= − , for all integers k ≥ 2.  

 

(15)  Let 0 1 2, , ,......t t t , be defined by the formula 2ns n= + , for all 

integers n ≥ 0. Show that this sequence satisfies the recurrence 

relation 1 22k k kt t t− −= − , for all integers k ≥ 2. 

 

(16)  The formula: 
( )1

1 2 3 4 .....
2

n n
n

+
+ + + + + =  true for all integers  

n ≥ 1. Use this fact to solve each of the following problems:  

i.  If k is an integer and k ≥ 2, find a formula for the expression 1 

( )1 2 3 ..... 1k+ + + + −  

ii.  If n is an integer and n ≥ 1, find a formula for the expression 

3 2 4 6 8 ....... 2n+ + + + + +  

iii.  If n is an integer and n ≥ 1, find a formula for the expression 

3 3 2 3 3 ....... 3 n n+ × + × + + × +  
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(17)  Following sequence is defined recursively. Use iteration to guess an 
explicit formula for the sequence.  

i.  gk = 1

1 1
k

k

k

b
g

b
−

−

 
=  

+ 
for all integers k ≥ 2, b0 = 1  

ii.  ek = 4 × ek−1 + 5, for all integers k ≥ 1,  e0= 2  

iii.  tk = tk−1 + 3k+1, for all integers k ≥ 1, t0 = 0  

iv.  sk = sk−1 + 2k, for all integers k ≥ 1, s0 = 3  

v.  pk = pk−1 + 2 × 3 k , for all integers k ≥ 2, p1 = 2  

vi.  dk = 2 × dk−1 + 3, for all integers k ≥ 2, d1 = 2 
 

(18)  Which of the following are second-order linear homogeneous 
recurrence relations with constant coefficients?  

i.  ak = (k − 1)ak−1 + 2kak−2 

ii.  bk = −bk−1 + 7bk−2 

iii.  ck = 3ck−1 + 1  

iv.  dk = 3 (dk−1) 2 + dk−2 v. 

v.  rk = rk−1 − 6r k−3 

vi.  sk = s k−2 + 10s k−2 
 

19)   Let b0, b1, b2, ....... be the sequence defined by the explicit formula:  
        bn = C × 3 n + D × (−2)n for all integers n ≥ 0, where C and D are real 

numbers. 

i. Find C and D so that b0 = 0 and b1 = 5. What is b2 in this case?  

ii.  Find C and D so that b0 = 3 and b1 = 4. What is b2 in this case? 
  

(20)   Let a0, a1, a2, ...... be the sequence defined by the explicit formula:  
 

an = C × 2 n + D for all integers n ≥ 0, where C and D are real 
numbers. Show that for any choice of C and D, ak = 3 ak −1 − 2 ak −2 
for all integers k ≥ 2.  

 

(21)   Following sequences satisfies the given recurrence relation and initial 
conditions. Find an explicit formula for the sequence.  

i.  bk = 7bk-1  − 10bk-2 , for all integers k ≥ 2, b0 = 2, b1 = 2  

ii.  tk = 6tk-1 − 9t k-2, for all integers k ≥ 2, t0 = 1, t1 = 3  

iii.  sk = 2sk-1 + 2sk-2, for all integers k ≥ 2, s0 = 1, s1 = 3  

iv.  ck = ck −1 + 6 ck −2, for all integers k ≥ 2, c0 = 0, c1 = 3  

v.  ek = 9 ck −2, for all integers k ≥ 2,ec0 = 0, e1 = 2  
 

(22)  Consider the set of Boolean expressions defined in Example 1.(5.8.1) 
Give derivations showing that each of the following is a Boolean 
expression over the English alphabet a, b, c, . . . , x, y, z.  

• (∼ p ∨ (q ∧ (r∨∼ s)))  

• ((p ∨ q)∨∼ ((p∧∼ s) ∧ r))  
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(23)   Consider the Arithmetic  expression discussed in Example 2.(5.8.1) 
Give derivations showing that ((2 × (0.3–4.2)) + (−7)) is an 
arithmetic expression.  

 
(24)   Consider the MIU-system discussed in Example 2.(5.8.1)  Give 

derivations showing that MUIIU is in the MIU-system.  
 

(25)   Define a set S recursively as follows:  

• BASE: a ∈ S  

• RECURSION: If s ∈ S, then  
– as ∈ S  
– sb ∈ S  

 

• RESTRICTION: Nothing is in S other than objects defined in a 
and b above.  
Use structural induction to prove that every string in S begins 
with an a.  

 

(26)   Define a set S recursively as follows:  
BASE: 1 ∈ S, 3 ∈ S, 5 ∈ S, 7 ∈ S, 9 ∈ S  
RECURSION: If s ∈ S, then  
– st ∈ S  
– 2s ∈ S  
– 4s ∈ S  
– 6s ∈ S  
– 8s ∈ S  

 

• RESTRICTION: Nothing is in S other than objects defined in a and 
b above. Use structural induction to prove that every string in S 
represents an odd integer.  

 

(27)   Define a set S recursively as follows:  

• BASE: 0 ∈ S, 5 ∈ S  

• RECURSION: If s ∈ S and t ∈ S then  

– s + t ∈ S  

– s − t ∈ S  

• RESTRICTION: Nothing is in S other than objects defined in a 
and b above Use structural induction to prove that every integer in 
S is divisible by 5.  

 
(28)   Give a recursive definition for the set of all strings of 0’s and 1’s that 

have the same number of 0’s as 1’s. 
   

***** 
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6  
 

FUNCTIONS 
 

Unit Structure  

6.0  Objectives  

6.1  Introduction  

6.2  Functions Defined on Sets  

6.3  One-One, Onto and Inverse Function  

6.4  Composition of Function  

6.5  Summary  

6.6  Bibliography  

6.7  Unit End Exercise 
 

6.0 OBJECTIVES  
 
Student will be able to understand the following from the Chapter:  

• The various terminologies related to Function, such as: Domain, 
CoDomain, Range, Image and Difference between them.  

• Identify a valid Function on the basis of mapping between the two set 
of elements.  

• Determine Function within a function and its various properties.  
 

6.1 INTRODUCTION  
 

The representation of two varying variables in the form of some 
equations is an algebraic part of Mathematics. These equations are referred 
to as Functions in which one variable will be considered as Independent 
variable and another one will be considered as Dependent Variable. A 
Function can be considered valid if and only if a single value is having 
exactly on value at the output. It may happen that a single function will not 
help to define the correct relation between thevariables, Hence in such 
cases two or more functions are incorporated to define the relation more 
appropriately 

 

6.2 FUNCTIONS DEFINED ON SETS  
 

A function f is defined as a relation between two sets. The set of 
elements which are provided to the functions are referred as Domain of the 
function and the set of elements in which probable outputs of the function 
is present are known as Co-Domain and the set of elements which are the 
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actual output of the functions are known as Range or Image. If we 
consider y = f(x), then x will be considered as Inverse Image of y.  
 
Note: Co-Domain and Range may or may not become equal. Range ⊆ Co 
− domain  
A function can be mathematically expressed as: 

:f X Y→  

Where, f is a function, X is Domain and Y is Co-Domain.  
A function f will be considered as a valid function if and only if it satisfies 
two basic properties. 

(a)  Every element in the Domain should get mapped with some elements of 
the Co-Domain.  

(b)  No element in Domain should be mapped with more than one element in 
Co-Domain. 

 
The mapping between Domain and Co-Domain values can be 

represented pictorially by using Arrow Diagram. A typical arrow diagram 
has been shown below as for reference. 

   f   

      

  P     Q  

      

  P0           q0    

  P1            q1  

  P2            q2     

  P3           q3  

         

Fig. 6.2.1 Basic Arrow Diagram 

 
Logarithmic Function to the base ‘b’ of ‘x’ yields the value which is 

raised to the power of ‘b’ to get ‘x’. It is mathematically expressed as 
logbx, where b > 0 and x >0.  

 
The properties of Logarithmic function are: 

a. 10 ( ) yy log x x b= ⇔ =  

b. 10 ( ) ( ) and ( ) ( )elog x log x log x in x= =  

c. ( ) 1blog b =  and (1) 0blog =  

d. ( ) ( ) ( )b b blog x y log x log y× = +  

e. ( ) ( )b b b

x
log log x log y

y

 
= − 

 
 

f. 10

10

( )
( )

( )
b

log x
log x

log b
=  

g. ( ) ( )y

b blog x y log x= ×  
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Boolean Function : is defined as the function whose Domain is an ordered 
n-tuples of 0’s and 1’s. The Co-Domain of the function is {0,1} . The 
mapping of the function can be mathematically expressed as:  

{ } { }: 0,1 0,1f →  

where, { }: 0,1
n

f is the cartesian product of n copies of 0, 1.  

Let, : a bF →   and :G A B→  be the two functions. The functions will be  

equal if and only if ( ) ( ) ,F x G x x X= ∈  

 
6.2.1 Solved Examples:  
Example 1  : Let X = {1, 3, 5} and Y = {s, t, u, v}. Define F : X → Y by 
the  following arrow diagram. 

   f   

      

  X        Y  

      

  1              s    

      

  3             t     

  5             u  

                v  

      

A.  Write the domain off and the co-domain of f. 

B.  Find f (1), f (3), and f (5).  

C.  What is the range of f ?  

D.  Is 3 an inverse image of s? Is 1 an inverse image of u?  

E.  What is the inverse image of s? of u? of v?  

F.  Represent f as a set of ordered pairs.  

 
Sol: 

A. Domain= {1, 3, 5}  

     Co-Domain= {s, t, u, v}  

B. Referring the Arrow Diagram  

 f(1) = v  

 f(3) = s  

 f(5) = v 

C. Range= {s, v}  

D. Yes, 3 is an inverse image of s.  

            No,1 is not an inverse image of u.  

E. Inverse image of s is 3.  

Inverse image of u is φ.  

Inverse image of v is 5. 

F.  The ordered pairs are f = {(1, v); (3, s); (5, v)} 
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Example 2 :  Let A = {1, 2, 3, 4, 5} and define a function F : P(A) → Z as 
follows: For all sets X in P(A), 

 
Find the following:  

A.  F({1, 3, 4})  

B.  F({2, 3})  

C.  F({2, 3, 4, 5})  

D.  F(φ)  
 

Sol:  
 

In the given function, the Domain is the elements of the Power Set of A 
(P(A)).  

A.  F({1, 3, 4}) = 0  (Number of Element= 3 (Odd))  

B.  F({2, 3}) = 1  (Number of elements= 2 (Even))  

C.  F({2, 3, 4, 5}) = 1 (Number of elements= 2 (Even))  

D.  F(φ) = 1  (Number of elements= 0 (Even)) 

 
Example 3  Let J5 = {0, 1, 2, 3, 4}, and define functions f : J5 → J5 and g : 
J5 → J5 as follows: For each x ∈ J5, f(x) = (x + 4)2 mod 5 and g(x) = (x 2 + 
3x + 1) mod 5 Is f = g? Explain.  
Sol:   
Given: J5 = {0, 1, 2, 3, 4}, f(x) = (x + 4)2 mod 5 and g(x) = (x2 + 3x + 1) 
mod 5.  
Substituting each elements present in J5 in f(x) and g(x).  

At x=1 = (1 + 4)2 mod 5  

= 25 mod 5  

=0 

At x=2 f(x) = (2 + 4)2 mod 5  

= 36 mod 5  

=1  

At x=3 f(x) = (3 + 4)2  

mod 5 = f(x) = 49 mod 5  

=4 

At x=4 f(x) = (4 + 4)2 mod 5  

= 64 mod 5  

=4 

At x=5 f(x) = (5 + 4)2 mod 5  

= 81 mod 5  

=1  
 

Similarly for g(x).  

At x=1 g(x) = (12 + 3(1) + 1) mod 5 
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= 5 mod 5  

=0  

At x=2 g(x) =(22 + 3(2)+1) mod 5  

= 11 mod 5  

=1  

At x=3 g(x) =(32 + 3(3)+1) mod 5  

= 19 mod 5  

=4  

At x=4 g(x) =(42 + 3(4)+1) mod 5  

= 29 mod 5  

=4  

At x=5 g(x) =(52 + 3(5)+1) mod 5  

= 41 mod 5  

              =1  

Since each element of  J5 is providing outputs in f(x) which are equal to 
g(x). Hence, f=g. 

 
Example 4 :  Let F and G be functions from the set of all real numbers to 

itself. Define the product functions F · G : R → R and G · F : 
R → R as follows: For all x ∈ R 

(F · G)(x) = F(x) · G(x) 

(G · F)(x) = G(x) · F(x) 

Does (F · G)(x) = (G · F)(x)? Explain  

Sol:  

Given: (F · G)(x) = F(x) · G(x) and (G · F)(x) = G(x) · F(x)  

Since, multiplication follows Commutative Property a ·  b = b· a  

Hence,  F(x) · G(x) = G(x) · F(x)  

Therefore, it can be concluded that (F · G)(x) = (G · F)(x) 

 

Example 5 Find exact values for each of the following quantities. Do not 
use a calculator.  

A. log381  

Sol: 81 = 34  
481 33 3log log= by using the following property: 

( ) ( )y

b blog x y log x= × ) where b= 3, x= 3 and y= 4.  

( )34 3log= ×  

but, ( ) 1blog b = Hence, ( )3 3 1log =  

=4 
 

B.  21024log  

Sol:  
101024 2=  

 
10

2 21024 2log log=  
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by using the following property ( ) ( )y

b blog x y log x= × where 2b x=  and 

10y =  

 
( )210 2log= ×  

but, ( ) 1blog b = Hence, ( )2 2 1log =  

  =10 

C. 
3

1

27
log

 
 
 

 

Sol:  

 
327 3=  

 = 
3 3 3

1 1

27 3
log log

   
=   

   
 

by using the following property: ( ) ( )b b b

x
log log x log y

y

 
= − 

 
 

where b= 3, x= 1 and y= 27.  

( ) ( )3

3 31 3log log−  

but, ( )1 0blog = Hence, ( )3 1 0log =  

( )3

3 3log= −  

by using the following property: ( ) ( )y

b blog x y log x= × where b= 3, x= 3 

and y= 3.  

( )33 3log= − ×  

but, ( ) 1blog b = Hence, ( )2 2 1log =  

= - 3 
 

Example 6 If b and y are positive real numbers such that logb(y) = 2, 
what is logb 2 (y)?  

Sol:   

Given: ( ) 2blog y =  

But according to the property, ( )
( )
( )

log

log
b

x
log x

b

 
=   
 

   

Hence, ( )
( )
( )

log

log
b

y
log y

b

 
=   
 

 

Therefore, 
( )
( )

log
2

log

y

b

 
=  

 
  

Similarly, ( )
( )
( )

2 2

log

logb

y
log y

b

 
 =
 
 

  

from the property, ( ) ( )y

b blog x y log x= ×  
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( )
( )

( )
2

log

2 log( )log

y log y

bb

   
  =    ×  

 

( )1

2 log( )

log y

b

 
= × 

 
 

but, ( )
2

log( )

log y

b

 
= 

 
 

( )
2

1
2

log( ) 2

log y

b

 
= × 

 
 

=1 
 

Example 7 :  Draw arrow diagram for the Boolean function defined by the 
following input/output table. 
 

Input Output 

P Q R 

1 1 0 

1 0 1 

0 1 0 

0 0 1 

 
Sol:  

According to the Table given above, the Boolean functions have 
been defined using 3 variables in which 2 are used in the Input and 1 has 
been used as an Output. Thus the domain will be the Combinations formed 
by 0’s and 1’s in the Input and Co-Domain will be 0 and 1.  

Domain: {00, 01, 10, 11}  
Co-Domain: {0, 1}  
Function: Boolean  

Hence, The arrow diagram will be: 
   Boolean   

      

   

Input 

      

Output 

 

      

  11           

            0  

  10             

            1  

  01       

      

  00    
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Example 8   Student A tries to define a function g : Q Z→ by the rule 

m
g m n

n

 
= − 

 
 for all integers m and n with n 6= 0. Student B claims that 

g is not well defined. Justify student B’s claim. 
 

Sol:  

Given: Student A defined the following function: 
m

g m n
n

 
= − 

 
 

Let 
1

2
x = and 

3

6
y =  

According to the divisibility theorem, 
1 3

2 6
g
   

=   
   

 

but according to the definition, 

 

1
1 2 1

2
g
 

= − = − 
 

 

 

3
3 6 3

6
g
 

= − = − 
 

 

Since −1 ≠ −3 
Hence, the function defined by Student A is wrong.  
Therefore, Student B’s claim is Correct. 

 

6.3  ONE-ONE, ONTO AND INVERSE FUNCTION 
 

The type of mapping done by a function from Domain to Co-Domain are: 
  

One-One: All the elements in the domain is mapped with exactly one 
element of the Co-domain. It is also termed as Bijective. It can be 
mathematically defined as: A Function f : X → Y will be a One-One 
function if and only if: 

( ) ( )f a f b=   a=b a and b X∈  

   F   

      

  P        Q  

      

  P0           q0    

      

  P1            q1     

      

  P2          q2  

      

 

Fig. 6.3.1 A One-One Function F 
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   F   

      

  P      Q  

      

  P0            q0    

      

  P1            q1     

      

  P2     q2  

      

Fig. 6.3.2 Not a One-One Function F 

   F   

      

  P      Q  

      

  P0         q0    

      

  P1         q1     

  P2    

  P3     q2  

      

Fig. 6.3.3 Not a One-One Function 

 
Onto:  All the elements in the Co-Domain should have at-least on element 
in Domain. It is also termed as Surjective. It can be mathematically 
expressed as: A function f defined as f : X → Y is an Onto function if and 
only if: 

∀y ∈ Y, ∃x ∈ X such that f(x) = y. 
   F   

      

  P       Q  

      

  P0         q0    

      

  P1         q1     

      

  P2          q2  

      

Fig. 6.3.4 An ONTO Function F 
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   F   

      

  P      Q  

      

  P0         q0    

      

  P1         q1     

      

  P2     q2  

      

Fig. 6.3.5 Not an ONTO Function 

   F   

      

  P       Q  

      

  P0         q0    

      

  P1         q1     

  P2    

  P3     q2  

      

Fig. 6.3.6 An ONTO Function 
 

Note:  If a Function possess both One-One and Onto, then the function will 
be considered as One-One Correspondence 
 

Inverse: If a function f is defined as f : X → Y is a One-One 
correspondence, then the function f−1 : Y → X will be defined as an Inverse 
Function such that: f−1(y) = x. 

P F Q 

    

  

P0 

      

           

  

Q0    

    

              

Fig. 6.3.7 Inverse Function Arrow Diagram 
 

6.3.1 Solved Examples: 
 
Example 1. All but two of the following statements are correct ways to 
express the fact that a function f is onto. Find the three that are correct. 

A. f is onto ⇐⇒ every element in its co-domain is the image of some 
element in its domain. 

B. f is onto ⇐⇒ every element in its domain has a corresponding image 
in its co-domain. 

mu
no
tes
.in



116 

 

C. f is onto ⇐⇒∀y ∈ Y, ∃x ∈ X such that f(x) = y. 

D. f is onto ⇐⇒∀x ∈ X, ∃y ∈ Y such that f(x) = y. 

E. f is onto ⇐⇒ the range of f is the same as the co-domain of f .  
 

Sol: 
A function is an Onto if and only if all the elements of co-domain 

are mapped (having images) to at least one element in the Domain.  
 

Therefore, it can be concluded that the Range of the function will 
be equal to the Co-Domain. 
 

Hence, the correct statements are (a), (c) and (e). 
 

Example 2. Let X = {1, 5, 9} and Y = {3, 4, 7}. Define f : X → Y by 
specifying that. f (1) = 4, f (5) = 7, f (9) = 4. Is f one-to-one? Is f onto? 
Explain your answers. 
 

Sol: 
Given: X = {1, 5, 9} and Y = {3, 4, 7}, f : X → Y such that f (1) = 4, f  
(5) = 7, f (9) = 4. 
 

The following function is not a One-One function because two differ-ent  
values of x (1 and 9) are having same value of y (4). 
 

The following function is not an Onto function because y=3 is not having  
any image in X (Domain). 
 
Example 3. Define g : Ƶ → Ƶ by the rule g(n) = 4n − 5, for all integers n 
A. Is g one-to-one? Prove or give a counter example. 
B. Is g onto? Prove or give a counter example. 
Sol: 
Given: g : Ƶ → Ƶ defined as g(n) = 4n – 5 
 
A. To check whether the g(n) is One-One function, let us consider two 

integers m and n such that m and n ∈ Z and g(m) = g(n).  
 = 4m − 5 = 4n − 5 
 = 4m = 4n 
 = m = n 
Since, m = n if g(m) = g(n). Hence g(n) is One-One Function. 
 
B. To check whether the g(n) is Onto function,let y be an integer such that 

g(n) = y. 
 4n − 5 = y 
 4n = y + 5 

 

5

4

y
n

+
=  

Since 
5

4

y
n

+
= is not an integer for any value of y,  
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Thus, all the integer value will not be have the corresponding image in the 
Domain. Hence, g(n) is not an Onto function. 

 
Example 4. Define G : R → R by the rule G(x) = 2 − 3x for all real 
numbers x. 

A. Is G one-one? Prove or give a counter example. 

B. Is G onto? Prove or give a counter example.  

 
Sol: 
A.  To check whether the G(x) is One-One function, let us consider two 

integers m and n such that m and n ∈ R and G(m) = G(n). 
 =2 − 3m = 2 − 3n 

 =−3m = −3n 

 =m = n 
 
Since, m = n if G(m) = G(n). Hence G(x) is One-One Function. 
 
B. To check whether the G(x) is Onto function,let y be a Real number such 
that G(x) = y.  
 2 − 3x = y 

 3x = 2 – y 

 

2

3

y
x

−
=  

Since 
2

3

y−
 is a Real number for any value of y, 

Thus, all the Real number will have the corresponding image in the 
Domain. Hence, G(x) is an Onto function. 

 
Example 5.  Function f is defined on a set of real numbers. Determine 
whether or not f is one-to-one and justify your answer. 

A.  ( ) 2 1

x
f x

x
=

+
for all real numbers x 

Sol: 
To check whether the f(x) is One-One function, let us consider two integers 
m and n such that m and n ∈ R and f(m) = f(n). 

 
2 21 1

m n

m n
=

+ +
 

 m × (n2 + 1) = n × (m2 + 1) 

 m × (n) 2 + m = n × (m) 2 + n 

Since, m ≠ n if f(m) = f(n). Hence f(x) is not One-One Function. 

 
( )

3 1x
f x

x

−
= for all real numbers x 

 
Sol: 
To check whether the f(x) is One-One function, let us consider two integers 
m and n such that m and n ∈ R and f(m) = f(n). 

mu
no
tes
.in



118 

 

 

3 1 3 1m n

m n

− −
=  

 n × (3m − 1) = m × (3n − 1) 
 n × (3m) − n = m × (3n) − m 
 3mn − n = 3mn − m 
 n = m 
Since, m = n if f(m) = f(n). Hence f(x) is a One-One Function. 
 
Example 6  Let S be the set of all strings of 0’s and 1’s, and define 

: nonnegI S → Ζ  by l(s) = the length of s, for all strings s in S. 
 
A.  Is l one-to-one? Prove or give a counterexample. 
B.  Is l onto? Prove or give a counterexample. 
 
Sol: 
Given: l(s) = the length of s, for all strings s in S. 
A. Let a=101 and b=110. The length of ’a’ and ’b’ are 3. 
 Since, the definition of l(s) = the length of s, for all strings s in  
 S. 

 And in this case, l(a) = l(b) but a b≠  
 Thus violating the basic definition of One-One Function. 
 

B. The function is mapped as: : nonnegI S → Ζ . Hence all the the non-
negative integers are having an image in its domain value.  

 Therefore, l(s) is an Onto Function. 
 
Example 7.Let S be the set of all strings in a’s and b’s, and define C : S → 
S by: 
C(s) = as, for all s ∈ S.(C is called concatenation by a on the left.) 

A. Is C one-to-one? Prove or give a counter example. 

B. Is C onto? Prove or give a counter example. 

 
Sol: 
Given: C(s) = as, for all s ∈ S.(C is called concatenation by a on the left.) 
A. In One-One function, all the domain value should be mapped with 

exactly one element in the Co-Domain. But, in the function defined by 
C : S → S the string s=a will not get mapped to any of the element in 
the Co-Domain. Hence, the function is not One-One Function. 

 

B. In Onto function, all the Co-Domain value should have at least one 
image in the Domain. 

 But, in the function defined by C : S → S the string s=a will not have 
any image Domain. Hence, the function is not an Onto Function. 

 
Example 8.  Define G : R × R → R × R as follows: G(x, y) = (2y, −x) for 
all (x, y) ! R × R. 

A. Is G one-to-one? Prove or give a counter example. 
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B. Is G onto? Prove or give a counter example. 

 
Sol: 
Given: G(x, y) = (2y, −x) for all (x, y) ! R × R. 
 
A. To check whether the G(x, y) is One-One function, let us consider 

two pairs of integers m, n and a, b such that (m, n) and (a, b) ! R × R 
and G(m, n) = G(a, b). 

      2n = 2b 

 n = b 

Similarly, 

 −m = −a 

 m = a 

Since, m = a and n = b if G(m, n) = G(a, b). Hence G (x, y) is One-
One Function. 
 

B. To check whether the G (x, y) is Onto function, let (u, v) be the Real  
number pair such that G (x) = (u, v). 

 2y = u 

 
U

Y=
2

 

Similarly, 
 −x = v 
 x = −v 

Since ,
2

u
v

 
− 

 
 are also a Real number pairs for any value of u and v, 

Thus, all the Real number pairs will have the corresponding image in the 
Domain.  
Hence, G(x, y) is an Onto function. 
 

6.4 COMPOSITION OF FUNCTION 
 

In a function, the mapping is done between Domain and Co-
Domain. But, if there are three sets A,B and C such that the a function f is 
defined f : A → B and an  another function g is defined g : B → C and the 
range of the function f is equal to the Domain of the function g, then such 
type of function is known as Composition of Function. It is represented as: 

g ◦ f : A → C 
 
The above definition can be explained by using the following Arrow 
Diagram. 

mu
no
tes
.in



120 

 

 
Fig. 6.4.1 Representation of Composite Function using Arrow 

Diagram 
 
Theorems of Composite Functions. 
 

Theorem 1: If f is a function define from set A to set B. Let Ix be the 
Identity function of x and Iy be the Identity function of y then: 

f ◦ Ix = f and Iy ◦ f = f 
 
Theorem 2  If a function f : X → Y whose inverse is defined as f−1 : Y → 
X then:  

f ◦ f−1 = Ix and f−1 ◦ f = Iy 

 
Where, Ix and Iy are Identity functions of x and y respectively. 
 
Theorem 3  If a function f : X → Y is a One-One function and an another 
function g : Y → Z is also a One-One function, then g ◦ f : X → Z will be a 
One-One function.  
 
Theorem 4 If a function f : X → Y is an Onto function and an another 
function  
g : Y → Z is also an Onto function, then g ◦ f : X → Z will be an Onto 
function. 
  
 

6.4.1 Solved Examples: 
 

Example 1. Functions f and g are defined by arrow diagrams. Find g ◦ f 
and f ◦ g and determine whether g ◦ f equals f ◦ g. 

   f       y   

             

 X   X    X   X  

 1   1    1   1  

 3   3    3   3  

 5   5    5   5  

Sol: 
From the above arrow diagram: 
 g ◦ f(1)  =  1 
 g ◦ f(3)  =  5 
 g ◦ f(5)  =  3 
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Similarly, 
  f ◦ g(1)  =  3 
  f ◦ g(3)  =  1 
  f ◦ g(5)  =  5 
 

Since, the output of g ◦ f and f ◦ g are not equal hence, g ◦ f ≠  f ◦ g Steps to 
map the composite functions using arrow diagram. 

   f    g    

           

 X    X    X  

 1    1    1  

 3    3    3  

 5    5    5  
 

C. find the output in the direction of the arrowheads of mapping.For eg. in 
case of g ◦ f at x=1, due to function f 1 is mapped with 5 and then,due 
to function g 5 is mapped with 1. Hence the end product becomes 1. 
Therefore, g ◦ f(1) = 1. 

   f    g    

           

 X    X    X  

 1    1    1  

 3    3    3  

 5    5    5  

In this method the complete arrow diagram has been shown below. 
   f    g    

           

 X    X    X  

 1    1    1  

 3    3    3  

 5    5    5  

 

Example 2.  functions F and G are defined by formulas: 
F (x) = x3 and G(x) = x − 1, for all real numbers x. 

 

Find G ◦ F and F ◦ G and determine whether G ◦ F equals F ◦ G. Sol 
Given: F (x) = x3 and G(x) = x − 1. 
 G ◦ F = G (F (x)) 
 G ◦ F = G (x3) 
 G ◦ F = x3 − 1 Similarly, 
 F ◦ G = F (G(x)) 
 F ◦ G = F ((x − 1)) 
 F ◦ G = (x − 1)3 

Since, x3 − 1 ≠  (x − 1)3 
Hence, G ◦ F ≠  F ◦ G 

mu
no
tes
.in



122 

 

Example 3. Define F : Z → Z and G : Z → Z by the rules F (a) = 7a and 
G(a) = a mod 5 for all integers a. Find (G ◦ F )(0), (G ◦ F )(1), (G ◦ F )(2), 
(G ◦ F )(3), and (G ◦ F )(4). 

Sol : 

Given: F (a) = 7a and G(a) = a mod 5 for all integers a. 
Hence, (G ◦ F ) = G (F (x)) 

 (G ◦ F ) = G (7a) 

 (G ◦ F ) = (7a mod 5) 

 (G ◦ F ) (0) = 7(0) mod 5 

 (G ◦ F ) (0) = 0 mod 5 

 (G ◦ F ) (0) = 0 

 (G ◦ F ) (1) = 7(1) mod 5 

 (G ◦ F ) (1) = 7 mod 5 

 (G ◦ F ) (1) = 2 

 (G ◦ F ) (2) = 7(2) mod 5 

 (G ◦ F ) (2) = 14 mod 5 

 (G ◦ F ) (2) = 4 

 (G ◦ F ) (3) = 7(3) mod 5 

 (G ◦ F ) (3) = 21 mod 5 

 (G ◦ F ) (3) = 1 

 (G ◦ F ) (4) = 7(4) mod 5  

 (G ◦ F ) (4) = 28 mod 5  

 (G ◦ F ) (4) = 3 
 

Example 4. The function H and H−1 are both defined from R − {1} to R − 
{1} by the formula: 

  ( ) ( )1 1

1

x
H x H x

x

− +
= =

−
 for all x ∈ R − {1}. 

Sol: 

Given: ( ) ( )1 1

1

x
H x H x

x

− +
= =

−
for all x ∈ R − {1}. 

 
( )1 1HoH H H− −=  

 

1 1

1

x
HoH H

x

− + 
=  − 

 

 

1

1
1

1
1

1
1

x

xHoH
x

x

−

+ 
+ −=  + −

− 

 

 

1 1 1

1 1

x x
HoH

x x

− + + − 
=  + − − 

 

 

1 2

2

x
HoH −  

=  
 

 

 H ◦ H−1 = x  

 H ◦ H−1 = Ix 
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Example 5. True or False? Given any set X and given any functions f : X 
→ X, g : X → X and h : X → X, if h is one-to-one and h ◦ f = h ◦ g, then f 
=  g. Justify your answer. 
 
Sol: 
Given: h is one-to-one and h ◦ f = h ◦ g 
Since, h is a One-One function: h(a) = h(b) if and only if a = b. 
But, h ◦ f = h ◦ g  
 h(f(x)) = h(g(x)) 
According to the definition of  One-One  
 f(x) = g((x) 
Hence Proved. 

 
Example 6. Define f : R → R and f : R → R by the formulas: 

f (x) = x +3 and g(x) = -x for all x ∈ R. 
find g ◦ f, (g ◦ f)−1, g−1, f−1 and f−1 ◦ g−1. 

Sol: 

Given: f (x) = x +3 and g(x) = -x for all x ∈ R. 

 g ◦ f = g(f(x)) 

 g ◦ f = g(x + 3) 

 g ◦ f = −(x + 3) 

 let g ◦ f = −(x + 3) = y 

 (x + 3) = −y 

 x = −y − 3 

 x = −(y + 3) 

 (g ◦ f)−1 = −(y + 3) 

 Let g(x) = -x = m 

 x = -m 

 g−1 = −m 
 
Let h(x) = x+3 = n 
 x = n-3 
 f−1 = n −3 
 f−1 ◦ g−1 = f−1 (g−1) 
 f−1 ◦ g−1 = f−1 ((−m)) 
 f−1  ◦ g−1 = (−m) − 3 
 f−1 ◦ g−1 = −(m + 3) 
 
f−1 ◦ g−1 = −(y + 3) because all the functions are defined within the same 
sets X. 
hence, f−1 ◦ g−1 = (g ◦ f)−1 
 

6.5 SUMMARY 

 

• If a single Domain value does not have more than one number of values 
in the Co-Domain, then function is Valid. 
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• If each Domain value is mapped with exactly one Co-Domain value, 
then the function is known as One-One. 

• If each Co-domain value is mapped with at least one Domain value, 
then the function is known as Onto. 

• if f is a function then f−1 is known as Inverse function. 

 

6.6 REFERENCES 
 

• Susanna S. Epp ” Discrete mathematics with applications.” (2010). 
(Chp 7) 

• Lipschutz, Seymour.” Schaum’s Outlines of Theory and Problems of 
Dis-crete Mathematics.” (2016). (Chp 3) 

 

6.7 UNIT END EXERCISE 
 

(1) Let X = {1, 3, 5} and Y = {a, b, c, d}. Define g : X → Y by the 
following arrow diagram. 

   g    

       

 X    Y  

 1    a  

  

3 

   b  

     c  

 5     d  

       

i. Write the domain of g and the co-domain of g. 

ii. Find g(1), g(3), and g(5). 

iii. What is the range of g ? 

iv. Is 3 an inverse image of a? Is 1 an inverse image of b? 

v. What is the inverse image of b? of c? 

vi. Represent g as a set of ordered pairs. 

 
(2) Indicate whether the statements in parts (a)–(d) are true or false. Justify 
your answers. 

i. If two elements in the domain of a function are equal, then their 
images in the co-domain are equal. 

ii. If two elements in the co-domain of a function are equal, then 
their preimages in the domain are also equal. 

iii. A function can have the same output for more than one input. 
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iv. A function can have the same input for more than one output. 
 

(3)  Define a function S : Z+ → Z+ as follows: For each positive integer n, 
S(n) = the sum of the positive divisors of n. Find the following: 

i. S(1)  ii. S(15) 

iii. S(17)  iv. S(5) 

v. S(18)  vi. S(21) 
 

(4)  Let J5 = {0, 1, 2, 3, 4}, and define a function F : J5 → J5 as follows: 
For each x ∈ J51, F (x) = (x3 + 2x + 4) mod5. Find the following: 

i. F(0)   ii. F(1)  

iii. F(2)  iv. F(3)  

v. F(4) 
 

(5)   Let J5 = {0; 1; 2; 3; 4}, and define functions h : J5 →  J5 and k : J5 →  J5 

as follows:For each x ∈  J5, h(x) =(x+3)3 mod 5 and k(x) =(x3 +4x2 + 2x 
+ 2) mod 5. Is h=k? Explain. 

 
(6)  Let F and G be functions from the set of all real numbers to itself. 

Define new functions F − G : R → R and G − F : R → R as follows: 
For all x ∈ R, 

(F − G)(x) = F (x) − G(x) 

(G − F )(x) = G(x) − F (x) 

Does F − G = G − F ? Explain. 
 

(7) If b and y are positive real numbers such that ( )
1

log y
b

 why? 

  
(8)   Let S be the set of all strings of a’s and b’s. Define f : S → Z as 

follows: For each string s in S. 

  
Find f(aba), f(bbab) and f(b). What is the range of f ? 
 
 

(9)  Draw arrow diagram for the Boolean function defined by the 
following input/output table. 

 

Input Output 

P Q R S 

1 1 1 1 

1 1 0 0 

1 0 1 1 

1 0 0 1 
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0 1 1 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

 
(10)   Student C tries to define a function h : Q → Q by the rule 

2m m
g

n n

 
= 

 
 for all integers m and n with n ≠ 0. Student D claims 

that h is not well defined. Justify student D’s claim. 
 
(11)  Fill in each blank with the word most or least. 

i. A function F is one-to-one if, and only if, each element in the co-
domain of F is the image of at _______one element in the domain 
of F. 

ii. A function F is onto if, and only if, each element in the co-domain 
of F is the image of at ___one element in the domain of F. 

 
(12)  Define g : X → Y by specifying that 

g(1) = 7, g(5) = 3, g(9) = 4. 
Is g one-to-one? Is g onto? Explain your answers. 
 

(13)  Define G : R → R by the rule G(x) = 4x − 5 for all real numbers x. Is 
G onto? Is G One-One? Prove or give a counterexample. 

 
(14)  Define H : R → R by the rule H(x) = x2, for all real numbers x. 

 i. Is H one-to-one? Prove or give a counterexample. 

ii. Is H onto? Prove or give a counterexample. 
 

(15)  Define F : Z → Z  by the rule F (n) = 2 − 3n, for all integers n.  

 i. Is F one-to-one? Prove or give a counterexample. 

ii. Is F onto? Prove or give a counterexample. 
 

(16)  A function f is defined on a set of real numbers. Determine whether 
or not f is one-to-one and justify your answer. 

i.      ( )
1x

F x
x

+
= , for all real numbers x ≠ 0. 

       ii.       ( )
1

1

x
F x

x

+
=

−
, for all real numbers x ≠1 

(17)  Define Floor: R → Z by the formula Floor x = x x=    , for all real 

numbers x. 

i. Is Floor one-to-one? Prove or give a counterexample. 

ii. Is Floor onto? Prove or give a counterexample. 
 

(18)  Let S be the set of all strings of 0’s and 1’s, and define D : S → Z as 
follows: 
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For all s ∈ S,D(s) = the number of 1’s in s minus the number of 0’s in 
s. 
i. Is D one-to-one? Prove or give a counterexample. 

ii. Is D onto? Prove or give a counterexample. 
 

(19) Define F : P({a, b, c}) → Z as follows: 
For all A in P({a, b, c}), F (A) = the number of elements in A.  
i. Is F one-to-one? Prove or give a counterexample.  
ii. Is F onto? Prove or give a counterexample. 
 

(20)  Define H : R × R → R × R as follows: 
 H(x, y) = (x + 1, 2 − y) for all (x, y) ∈ R × R. 

i.  Is H one-to-one? Prove or give a counterexample. 
ii.  Is H onto? Prove or give a counterexample. 
 

(21)  Functions f and g are defined by arrow diagrams. Find g ◦ f and f ◦ g 
 and determine whether g ◦ f equals f ◦ g. 

   f        g   

              

 X    X    X   X  

 1    1    1   1  

 3    3    3   3  

 5    5    5   5  

 
(22) Define H : Z → Z and K : Z → Z by the rules H(a) = 6a and K(a) = a 

mod 4 for all integers a. Find (H ◦ K)(0), (H ◦ K)(1), (H ◦ K)(2), (H ◦ 
K)(3),. 

 
(23)  Define L : Z → Z and M : Z → Z by the rules L(a) = a2 and M(a) =a 

mod 4 for all integers a. Find (L ◦ M)(9), (M ◦ L)(9), (L ◦ M)(12), (M 
◦ L)(12),. 

 
(24)  The function F and F−1 are both defined from R → R by the 

formula:H(x) = 3x + 2, H−1(x) =
2

3

y
x

−
= , for all x ∈ R. 

 
(25)  True or False? Given any set X and given any functions f : X → X, g 

: X → X and h : X → X, if h is one-to-one and f ◦ h = g ◦ h, then f 
=g. Justify your answer. 

 
(26)  If f : X → Y and g : Y → Z are functions and g ◦ f is one-to-one, 

must g be one-to-one? Prove or give a counterexample. 
 
(27)  If f : X → Y and g : Y → Z are functions and g ◦ f is onto, must g be 

onto? Prove or give a counterexample. 
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(28)  Let X = {a, c, b}, Y = {x, y, z}, and Z = {u, v,w}. Define f : X → Y 
 and g : Y → Z by the arrow diagrams below. 

   f    g    

           

 X    Y    Z  

 a    x    u  

 b    y    v  

 c    z    w  

 

 find g ◦ f, (g ◦ f) −1, g−1, f−1 and f−1 ◦ g−1 

 

 

 

***** 
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Unit IV 

7 
RELATIONS 

 
Unit structure  

7.0  Objectives  

7.1  Introduction  

7. 2  An overview  

7.2.1 Basic concepts related to set 

7.3  Relation  

7.3.1  Binary relation  

7.3.2  Domain and range of a relation  

7.3.3  Types of relation  

7.3.4  Properties of relation  

7.3.5  Representation of types of relation  

7.4  Equivalence Relation  

7.5  Partial Order Relation  

7.5.1 Antisymmetric  

7.5.2 Linear or Totally ordered relation 

7.5.3 Hasse Diagram  

7.6  Summary  

7.7  References 

 

7.0 OBJECTIVES   
 
After going through this unit, students will able  

1.  To understand the basics of relation, types of relation and properties of 
relation.  

2.  To define and provide examples of a relation  

3.  To determine if a binary relation is reflexive, symmetric, or transitive 
or is an equivalence relation or partial order relation  

4.  To apply the knowledge of relation to differentiate between 
equivalence relation and partial order relation 

5.  To draw Hasse diagram.  

  

7.1 INTRODUCTION   

 Often in mathematics, we come across with the word ‘relation’. 
Generally speaking, by relation we usually understand some connection 
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between the two living or non-living things. Like the relations of mother-
daughter, brother-sister, teacher-student etc. We are quite familiar with 
these relations. In this chapter we will learn about a new concept of 
“relations” in mathematics. We can also define a relationship between the 
two elements of a set. Associated with a relation is the act of comparing 
objects which are related to one another. In this chapter we first formulize 
the concept of a relation, various basic types and properties of relation. We 
will learn about well-known relations like equivalence relation and the 
partial order relation, linear or totally ordered relation. 
 

7.2 AN OVERVIEW   
 
7.2.1 Basic concepts related to set: 
Set: 
A Collection of objects is called as a set.  
e.g. A = {1, 3, 5, 7, 9}  
A is a set having objects 1, 3, 5, 7 and 9.  
All are odd numbers.  
Any object belonging to a set is called a member or an element of that set.  

 
Subset:-Let A and B be any two sets 

If set B contains some or all the elements of the set A then set B is called 
subset of A.  
e. g.   A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
  B = {2, 4, 6, 8, 10}  

 ∴ B is subset of A  

  B ⊆ A 

We can say that A is a subset of A itself. i.e. A ⊆ A.  
 
Equal Sets: Let A and B be any two sets. Two sets A & B are said to be 

equal if they contain the exact same elements.   i.e. A ⊆ B and B ⊆ A.  
 

Symbolically, A = B ⇔ (A ⊆ B Λ B ⊆ A) 
 
Proper Subset: Let A and B be any sets. Set B is said to be proper subset 

of set A if B ⊆ A and B ≠ A, it is denoted by B ⊂ A. 
 

Symbolically, B ⊂ A ⇔ (B ⊆ A Λ A ≠ B) 
 
Empty set or Null set: A set which does not contain any element is called 

an empty set or null set. It is denoted by ϕ. 
 
Power set: For any set A, a collection or family of all subsets of A is 
called the Power set of A. The power set of A is denoted by p(A) or 2A 

 

If A = {a, b, c} 

We know that the null set ϕ and the set A are both subsets of A.  

∴ p(A) or 2A = {ϕ, A, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} 
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7. Cartesion Product: Let A and B be any two non empty sets. The set of 
all ordered pairs such that the first member of the ordered pair is an 
element of A and the second member is an element of B is called Cartesion 
Product of A and b and it is written as A X B. 
 
Symbolically,    

 A X A = {(x, y) / (x ∈A Λ y ∈ B) }  
 e. g. If A = {1, 2, 3}, B = {a, b} 
 A X B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}  
 B X A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}  
 

7.3 RELATION   
 

The word Relation suggests some familiar examples of relations 
such as the relation of father to daughter, mother to son, brother to sister 
etc.  
 

We know the relations such as “greater than”, “less than” or “equal 
to” between to two real numbers in mathematics. 
 
7.3.1 Binary Relation:  
 

These examples suggest relationships between two objects. 
Relations may be present between objects of the same set or between 
objects of two or more sets.  
 

Here, we consider relation between two objects, called binary 
relations. Any set of ordered pairs defines a binary relation.  
 

We would call a binary relation simply as a relation. Sometimes it’s 
convenient to express the fact that a particular ordered pair, let’s say (a, b) 

∈ R, where R is relation, by writing aRb which may be read as “a is in 
relation R to b”.  
 
A binary relation R on a single set A is a subset of A X A. 

 
We would call a binary relation simply as a relation. Sometimes 

it‟s convenient to express the fact that a particular ordered pair, let‟s say 

(a, b) ∈ R, where R is relation, by writing aRb which may be read as “a is 
in relation R to b”.  

 
A binary relation R on a single set A is a subset of A X A.  
 
For two distinct sets, A and B, A relation R from a set A to a set B is a 
subset of A X B.  
 

If (a, b) ∈ to R then we can say that a is related to b and write aRb.  

If (a, b) ∉ R then we can say that a is not related to b.  
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e.g.: Let A = {2, 3, 9} and B = {2, 4, 8} and let R be a relation given by, R 
= {(a, b) | a < b}  
 
Then, R = { (2, 4), (2, 8), (3, 4), (3,8)} 
 
7.3.2 Domain and Range of a Relation:  
 

If there are two sets A and B and relation R have order pair (x, y) 
then the set of all first coordinators of elements of R is called the domain 
of R, written as dom (R) and the set of al second coordinates of R is called 
the range of R, written as Range (R) 

 ∴ dom (R) = {a: (a, b) ∈ R} and 
 

Range (R) = {b: (a, b) ∈ R}  
e.g.: Let A = {2, 3, 9} and B = {2, 4, 8} and let R be a relation given by,  
R = {(a, b) | a > b}  
Then, R = {(3, 2), (9, 2), (9, 4), (9, 8)}  
dom(R) = {3, 9}  
Range = {2, 4, 8} 
 
7.3.3 Types of Relation: 
 
1.  Empty Relation ( or void relation): A relation R in a set A is called an 
empty relation, if no element of A is related to any element of A. Such a 

relation is denoted by ϕ.  

 Thus R = ϕ⊆ A X A  
 e.g.: A = {1, 2, 3}  
 R = {(a, b) | a - b = 8}  

 Since no element in (a, b) ∈ A X A satisfies the property a – b = 8.  

 ∴ R is an empty relation in A  

 R = ϕ⊆ A X A 
 
2.  Universal Relation: A universal (or full relation) is a type of relation in 
which each element of a set is related to every element of a set.  

 Thus R = (A X A) ⊆ (A X A)  
 e.g.: A = {a, b, c} then  

R = A X A = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, 
c)} is the universal relation in A. 

 
3.  Identity Relation: If every element of a set is related to itself only, then 
it is called identity relation.  
 e.g.: In a set A = {x, y, z} the identity relation will be  
 I = {(x, x), (y, y), (z, z)}  
 For identity relation,  

 I = {(a, a) | a ∈ A} 
 

4.  Inverse Relation :  The inverse relation R′ of a relation R is defined as 

 R′ = {(b, a) | (a, b) ∈ R}  
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 e.g: If R = {(a, b), (c, d)} then  

 R′ = {(b, a), (d, c)} 
 
7.3.4 Properties of Binary Relation: 
 

1.  Reflexive: Let R be a relation on set X. R is reflexive if (x, x) ∈ R for 

every x ∈ X. i.e. ∀ x ∈ X, xRx  
e.g: The relation ≤ is reflexive in set of real numbers but relation < is not 
reflexive.150pdf  
 

2. Symmetric: Let R be a relation on set X. R is symmetric if for all x, y ∈ 

X such that (x, y) ∈ R then, (y, x) ∈ R.  

 i.e. ∀ x, y ∈ X, whenever xRy then yRx  
 e.g: The relation ≤ and < is not symmetric in set of real numbers 
while the relation of equality is 
 

3. Transitive: Let R be a relation on set X. R is transitive if for all x, y, z ∈ 

X if (x, y) ∈ R and (y, z) ∈ R then, (x, z) ∈ R.  

 i.e. ∀ x, y, z ∈ X, whenever xRy and yRz then xRz  
 e.g: The relation ≤ , < and = are transitive in the set of real numbers.  
 
4. Irreflexive : Let R be a relation on set X. R is irreflexive if for every x 

∈ X, (x, x) ∉R  
 
Representation of types of Relations:  
 

Relation type Condition 

Empty Relation R = ϕ⊆ A X A 

Universal Relation R = (A X A) 

Identity Relation I = {(a, a) | a ∈ A} 

Inverse Relation R′ = {(b, a) | (a, b) ∈ R} 

Reflexive Relation aRa, ∀a∈A 

Symmetric Relation aRb ⇒bRa, ∀ a, b ∈A 

Transitive Relation aRb , bRc ⇒aRc, ∀ a, b, c ∈A 

 
Exercise: 
 
Q.1 State the domain and range of the following relation.  

a)  (3, -4), (5, 7), (4, -2), (7, 7), (3, 4)}  
b) {(-4, 6), (-2, 6), (-3, 6), (1, 6), (0, 6), (3, 6)} 
 

Q.2 State whether True or False 
a)  Let A be the set of all students of boys‟ school. The relation R 

on A given by R = {(a, b)| a is sister of b} Therefore R is empty 
relation.  
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b)  Let A be the set of all students of girls school. The relation R on 
A given by R = {(a, b)| difference between the height of a and b 
is less than 2 meters}. Therefore R is universal Relation.  

c)  Every identity relation on a non empty set A is a reflexive 
relation, but not conversely. 

 
Q.3 Identify the relation. 

a)  Every element is related to itself  

b)  Every element is related to itself only  

c)  Let A be the set of two male children in a family and R be a 
relation defined on set A as R = “ is brother of”.  

d)  If R = {(1, 1), (2, 3), (3, 4), (2, 7)} 

  R′ = {(1, 1), (3, 2), (4, 3), (7, 2)}  

  Find domain (R′) = range (?)  

  Range(R′) = domain (?) 
 
Example 1:  Let A = {1, 2, 3} and R be the relation defined on set A as R 
= {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}. Verify R is symmetric. 
 
Soln:  A = {1, 2, 3}  
 R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}.  
 By definition of symmetric relation,  

  If (a, b) ∈ R then (b, a) ∈ R ∴ 
  from above relation, 
 

   (1, 1) ∈ R ⇒ (1, 1) ∈ R  

   (2, 2) ∈ R ⇒ (2, 2) ∈ R  

   (3, 3) ∈ R ⇒ (3, 3) ∈ R  

   (1, 2) ∈ R ⇒ (2, 1) ∈ R  

   (2, 1) ∈ R ⇒ (1, 2) ∈ R 

  ∴ R is symmetric 
 
Example 2: Let A = {1, 2, 3} and R be the relation defined on set A as “ is 
less than” and R = { (1, 2), (2, 3), (1, 3)}. Verify R is transitive. 
 
Soln:  A = {1, 2, 3}  
  R = { (1, 2), (2, 3), (1, 3)} and relation is less than.  
  Let a = 1, b = 2 and c = 3  

 By definition of transitive relation, for all x, y, z ∈ X if (x, y) ∈ 

R and (y, z) ∈ R then, (x, z) ∈ R.  

  ∴ (1, 2) ∈ R and (2, 3) ∈ R ⇒ (1, 3) ∈ R  

  ∴ R is transitive.  
 
Example 3:  Let S be the set of all real numbers and let R be a relation in 
S, defined by R = {(a, b) | a ≤ b}. Which properties satisfy by the relation.  
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Soln: S be the set of all real numbers  
 R = {(a, b) | a ≤ b}  
 
1.  Reflexive: Let a be any real number. 

 Then a ≤ a ⇒ (a, a) ∈ R  

 Thus (a, a) ∈ R ∀ a ∈ S  

 ∴ R is reflexive.  
 

2. Symmetric: consider 4, 6 ∈ S  

 ∴ (4, 6) ∈ R as 4 < 6  

 But (6, 4) ∉ R as 6 ≤ 4 is not true.  

 ∴ R is not symmetric  
 

3.  Transitive :  Let a, b, c be real numbers such that (a, b) ∈ R and ( b, c) 

∈ R  

 Then (a, b) ∈ R and ( b, c) ∈ R  

  ⇒ a ≤ b and b ≤ c  

  ⇒ a ≤ c  

  ⇒ (a, c) ∈ R  

 ∴ R is transitive.  

 ∴ R satisfies reflexive and transitive but not symmetric.  
 
Exercise:   
 
Q.1  Let A = {1, 2, 3,4} and define relations are as follows. Check which 
relations are reflexive relations?  

 a)  R1 = {(1, 1), (2, 2), (3, 3), (4, 4)}  

 b)  R2 = {(1, 1), (1, 4), (2, 2), (3, 3), (4, 3)}  [not Reflexive]  

 c)  R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}  

 d)  R4 = {(1, 3), (2, 2),(2, 4), (3, 1), (4, 4)}  [not Reflexive]  

 
Q. 2. Let N be the set of all natural numbers and let R be a relation in N, 
defined by R = {(a, b) | a is a factor of b}. Show that R is reflexive, 
transitive but not symmetric.  
 

7.4 EQUIVALENCE RELATION  
 

A relation R in a set X is said to be an equivalence relation if it is 
reflexive, symmetric and transitive.  
 
Example1: Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), 
(3, 3), (4, 1), (4, 4)} show that it is equivalence relation.  
 
Soln: To show R is an equivalence relation, we have to show R should 
satisfies following properties.  
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1.  Reflexive: X = {1, 2, 3, 4} 

  (1, 1) ∈ R  

  (2, 2) ∈ R  

  (3, 3) ∈ R  

  (4, 4) ∈ R  

 ∴∀ a ∈ X, (a, a)∈R  

 ∴ R is reflexive.  
 
2.  Symmetric: X = {1, 2, 3, 4}  

 (1, 1) ∈ R ⇒ (1, 1) ∈ R  

 (1, 4) ∈ R ⇒ (4, 1) ∈ R  

 (2, 2) ∈ R ⇒ (2, 2) ∈ R  

 (2, 3) ∈ R ⇒ (3, 2) ∈ R  

 (3, 3) ∈ R ⇒ (3, 3) ∈ R  

 (4, 1) ∈ R ⇒ (1, 4) ∈ R  

 (4, 4) ∈ R ⇒ (4, 4) ∈ R  

  ∴  R is symmetric.  
 
3. Transitive: X = {1, 2, 3, 4}  

 (1, 1)  ∈ R, (1,4)  ∈ R ⇒  (1, 4) ∈ R  

 (1, 4)  ∈ R, (4,1)  ∈ R ⇒  (1, 1) ∈ R  

 (2, 2)  ∈ R, (2,3)  ∈ R ⇒  (2, 3) ∈ R  

 (2, 3)  ∈ R, (3,3)  ∈ R ⇒  (2, 3) ∈ R  

 (3, 2)  ∈ R,  (2,2)  ∈ R ⇒  (3, 2) ∈ R  

 (3, 3)  ∈ R,  (3,2)  ∈ R ⇒  (3, 2) ∈ R 

 (4, 1)  ∈ R, (1,1)  ∈ R ⇒  (4, 1) ∈ R  

 (4, 4)  ∈ R, (4,1)  ∈ R ⇒  (4, 1) ∈ R  

 ∴R is transitive. Thus R is reflexive,  

 symmetric and transitive.  

 ∴ R is an equivalence relation.  
  
Example 2: Let Z be the set of all integers and let R be a relation in Z, 
defined by R = {(a, b)| (a – b) is even}. Show that R is an equivalence 
relation in Z.  
 
Soln: To show R is an equivalence relation, we have to show R should 
satisfies following properties.  
 
1. Reflexive: Let a be any element of Z.  

  Then (a – a) = 0 and 0 is even.  

  ∴ (a, a) ∈ R ∀ a ∈ Z.  

  ∴ R is reflexive.  
 

2.  Symmetric: Let a, b ∈Z such that (a, b) ∈R  

  Then (a, b) ∈R  
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  ⇒ (a – b) is even  

  ⇒ - (a – b) is even  

  ⇒ (b – a) is even  

  ⇒ (b – a) ∈ R  

  ∴ R is symmetric.  
 
3.  Transitive:  

 Let a, b, c ∈Z such that (a, b) ∈R  and (b, c) ∈R  

 Then (a, b) ∈R and (b, c) ∈R  ⇒ (a – b) is even and (b–c) is even  

  ⇒ (a – b) +  (b – c) is even  

  ⇒ (a – c) is even  

  ⇒ (a, c)∈R  

  ∴ R is transitive.  

 Thus R is reflexive, symmetric and transitive.  

 ∴ R is an equivalence relation.  
 
Example 3: Let N be the set of all natural numbers and let R be a relation 

on N X N, defined by (a, b)R(c, d ) ⇔ ad = bc Show that R is an 
equivalence relation.  
 
Soln: To show R is an equivalence relation, we have to show R should 
satisfies following properties.  
 
1.  Reflexive:  

 Let (a, b) ∈ R then by definition,  

 (a, b)R(a, b ) as ab = ba.  

 (a, b)R(a, b ) ∀ (a,b) ∈ R.  

 ∴ R is reflexive.  

 
2.  Symmetric:  

  Let (a, b) ∈ R and (c, d) ∈ R  

 (a, b)R(c, d ) ⇒ ad = bc  

 ⇒ bc = ad  

 ⇒ cb = da  

 ⇒ (c, b)R (d,a)  

  ∴ R is symmetric.  
 
3.  Transitive:  

  Let (a, b) ∈ R, (c, d) ∈ R and (e,f) ∈ R,  

  (a, b)R(c, d ) and (c, d)R(e, f )  

  i.e. ad = bc and cf = de  

 ⇒ adcf =bcde  

 ⇒ (af)(cd) = (be)(cd)  

 ⇒ af = be  

 ⇒(a, b) R (e, f)  
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  ∴(a, b)R(c, d ) and (c, d)R(e, f ) ⇒(a, b) R (e, f)  

  ∴ R is transitive.  

  Thus R is reflexive, symmetric and transitive.  

  ∴ R is an equivalence relation.  
 
Exercise: 
 
Q.1.  Let A = {a, b, c}. Check which relation is an equivalence relation.  

 a)  R1 = {(a, a), (b, b), (c, c)}]   [Ans: Yes]  

 b)  R2 = {(a, a), (b, b), (c, c), (b, a)}   [Ans: Not symmetric]  

 c)  R3 = {(a, a), (a, c) (b, a), (c, a)}   [Ans: Not reflexive]  

 d)  R4 = {(a, a), (b, b), (c, c), (a, b), (a, c) (b, a), (c, a)}  [Ans: Yes]  

 e)  R5 = A X A   [Ans: Yes]  

 
Q. 2. Let N be the set of natural numbers and let R be a relation in N, 

defined by R = {(a, b) | a- b is multiple of 3}. Check whether R is an 
equivalence relation or not.  

 
Q. 3  Let N be the set of natural numbers and let R be a relation in N, 

defined by  R = {(a, b) | a- b is divisible by 2}. Check whether R is an 
equivalence relation or not.  

 
Q. 4  A = {0, 1, 2, 3, 4, 5, 6, 7}, R = {(x, y) |x + y = 3}.Which properties 

does the above relation satisfy?  
 

7. 5 PARTIAL ORDER RELATION 
 
7.5.1 Antisymmetric:  
 
Let R be a relation on set X. R is said to be antisymmetric relation if, for 
every x,  

 y ∈ X if (x, y) ∈ R as well as (y, x) ∈ R then x = y.  

 i.e. ∀ x, y ∈ X, whenever xRy and yRx then x = y.  

 
Partial order Relation : A binary Relation R in a set P is called a Partial 
order relation or a partial ordering in P iff R is reflexive, antisymmetric and 
transitive.  
 
It is convential to denote a partial ordering by the symbol ≤.  
 
This symbol does not necessarily mean “less than or equal to” as is used 
for real numbers.  
 
Since, the relation of partial ordering is reflexive, we call it a relation on 
set P. 
 

mu
no
tes
.in



139 

 

If ≤ is a partial ordering relation on P, then the ordered pair (P, ≤) is called 
a Partially ordered set or POSET. 
 
It is denoted by (P, ≤) known as Partially Ordered Set(POSET).  
 
Note: It is not necessary to have x ≤ y and y ≤ x for every x and y in a 
partially ordered set.  
 
Example1: Let X = {2, 3, 6, 12, 24, 36} and the relation ≤ be such that 
x≤y ifff x divides y. Show that (X, ≤) is Partially Ordered Relation.  
 
Soln: X = {2, 3, 6, 12, 24, 36}  
 
Relation is x divides y  

i. e. x | y.  ∴ R = {(2, 2), (2, 6), (2, 12), (2, 24), (2, 36), (3, 3), (3, 6), (3, 
12), (3, 24), (3, 36), (6, 6), (6, 12), (6, 24), (6, 36), (12, 12), (12, 24), (12, 
36), (24, 24), (36, 36)}  
 
Relation is said to be partial opder relation it it is Reflexive, Antisymmetric 
and Transitive.  
 

1. Reflexive: R is said to be reflexive if (x, x) ∈ R for every x ∈ X.  

 (2, 2)  ∈ R  

 (3, 3)  ∈ R  

 (6, 6)  ∈ R  

 (12, 12)  ∈ R  

 (24, 24)  ∈ R  

 (36, 36)  ∈ R  

 
2. Antisymmetric: R is said to be antisymmetric relation if, for every x, y 

∈ X if (x, y) ∈ R as well as (y, x) ∈ R then x = y. In this relation,  

 (2, 2)  ∈ R  and  (2, 2)  ∈ R then  2 = 2  

 (3, 3)  ∈ R  and  (3, 3)  ∈ R then  3 = 3  

 (6, 6)  ∈ R  and  (6, 6)  ∈ R then  6 = 6  

 (12, 12)  ∈ R  and  (12, 12)  ∈ R then 12 = 12  

 (36, 36)  ∈ R  and  (36, 36)  ∈ R then 36 = 36  
 

3. Transitive : A relation R is said to be transitive if ∀ x, y, z ∈ X,  

  (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R In the relation,  

 (2, 2)  ∈ R and  (2, 6)  ∈ R → (2, 6)  ∈ R  

 (2, 6)  ∈ R and  (2, 12)  ∈ R → (2, 12)  ∈ R  

 (2, 12)  ∈ R and  (12, 24)  ∈ R → (2, 24)  ∈ R  

 (2, 24)  ∈ R and  (24, 24)  ∈ R → (2, 24)  ∈ R  

 (2, 36)  ∈ R and  (36, 36)  ∈ R → (2, 36)  ∈ R  

 (3, 3)  ∈ R and  (3, 6)  ∈ R → (3, 6)  ∈ R  
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 (3, 6)  ∈ R and  (6, 12)  ∈ R → (3, 12)  ∈ R 

 (3, 12)  ∈ R and  (12, 24)  ∈ R → (3, 24)  ∈ R 

 (3, 24)  ∈ R and  (24, 24)  ∈ R → (3, 24)  ∈ R 

 (3, 36)  ∈ R and  (36, 36)  ∈ R → (3, 36)  ∈ R  

 (6, 6)  ∈ R and  (6, 12)  ∈ R → (6, 12)  ∈ R  

 (6, 12)  ∈ R and  (12, 24)  ∈ R → (6, 24)  ∈ R  

 (6, 24)  ∈ R and  (24, 24)  ∈ R → (6, 24)  ∈ R  

 (6, 36)  ∈ R and  (36, 36)  ∈ R → (6, 36) ∈ R  

 (12, 12) ∈ R and  (12, 24)  ∈ R → (12, 24)  ∈ R  

 (12, 24) ∈ R and  (24, 24)  ∈ R → (12, 24)  ∈ R  

 (12, 36) ∈ R and  (36, 36)  ∈ R → (12, 36)  ∈ R  

  ∴ The relation satisfies all three properties.  

  ∴It is partial ordered relation.  
 

Let (P, ≤) be a partial order relation and x ∈ p, y ∈ p are said to be 
comparable either x ≤ y or y ≤ x. (≤ is not less than equal to but it is a 
relation (whatever it may be))  
 

In the above example (2, 6), (3, 6), (3, 12), (3, 24), (3, 36) are 
comparable. But (2, 3) are not comparable as 2|3 or 3|2 is not possible. i.e. 
2 doesn’t divide 3 or vice versa.  
 
7.5.2 Linear or Totally ordered Relation: 
 

Let (P, ≤) be a poset relation. ≤ are said to be linearly relation if 
every pair of observation of P are comparable. In that case, (P, ≤) is called 
as Chain.  
 

In a partially ordered set (P, ≤), an element y ∈ P is said to cover an 

element x ∈ P if x < y and if there does not exist any element z ∈ P such 
that x ≤ z and z ≤ y, that is 
 

y covers x ⇔ (x < y Λ (x ≤ z ≤ y ⇒ x = z ∨ z = y)) 
 

Sometimes the term “immediate predecessor” is also used.  
 

Note that “cover” as used here should not be confused with the 
“cover” of set defined in the part of set.  
 

7.5.3 Hasse Diagram: 
  

A partial ordering ≤ on a set P can be represented by means of a 
diagram known as a Hasse diagram, or a partially ordered set diagram of 
(P, ≤).  
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In such diagram, each element is represented by a small circle or 

dot. The circle for x ∈ P is drawn below the circle for y ∈ P if x < y and a 
line is drawn between x and y if y covers x.  
 

If x < y but y does not cover x, then x and y are not connected 
directly by a single line, However, they are connected through one or more 
elements of P.  
 

It is possible to obtain the set of ordered pairs in ≤ from such a diagram.  
 

Example1: Let P = {1, 2, 3, 6, 12} and (P, ≤) is a partially ordered relation 
on relation ≤ (less than and equal to). Show that it is linear or totally 
ordered relation. Also draw Hasse diagram.  

 

Soln: P = { 1, 2, 3, 6, 12}  

R = {(1, 1), (1, 2), (1, 3), (1, 6), (1, 12), (2, 2), (2, 3), (2, 6), (2, 12), (3, 3), 
(3, 6), (3, 12), (6, 6), (6, 12), (12, 12)}  

 
Fig. 7.1 Hasse Diagram 

All the observations in the relations are comparable. i.e. x ≤ y.  
 

∴ The relation is linear or totally ordered relation.  
 

Example 2: Let A = {a, b}. The relation is ⊆ defined on power set of A. 
Check whether this is linearly / totally ordered relation or not.  
 

Soln: A = {a, b}  

   p(A) = { ϕ,  A,  {a}, {b}}  

  B0  B1 B2 B3 
 

Relation R = ⊆ = {(B0, B0), (B0, B1), (B0, B2), (B0, B3), (B1, B1), (B2, B1), 
(B2, B2), (B3, B1), (B3, B3)} 12 6 3 2 1 B1 B3 B2 B0 

 
Fig. 7.2 Hasse Diagram 
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In the relation, {a} is not subset of {b} i.e. B2 is not subset of B3 or B3 is 
not subset of B2.  

∴ Relation is not comparable.  

∴ It is not totally ordered set or linear ordered set.  
 

Example 3: Let A = { 2, 3, 6, 12, 24, 36}. Check the relation divide on set 
A is linear or totally ordered relation and draw its Hasse diagram.  
 

Soln: A = { 2, 3, 6, 12, 24, 36}  
Relation is divide relation.  
 

∴ R = {(2, 2), (2, 6), (2, 12), (2, 24), (2, 36), (3, 3), (3, 6), (3, 12), (3, 24), 
(3, 36), (6, 6), (6, 12), (6, 24), (6, 36), (12, 12), (12, 24), (12, 36), (24, 24), 
(36, 36)} 12 6 2 3 24 36  

 
Fig. 7.3 Hasse Diagram 

 
It is not linear or totally ordered relation because 2 does not divide 3, 3 
does not divide 2, 24 does not divide 36 
 
Example 4: Let A be set of factors of positive integer 30. Let ≤ be the 

relation divides i.e. ≤ = {(x, y) | x∈ A and y∈ A Λ (x divides y}. Draw 

Hasse diagram. Soln: A is the set of factors of positive integer 30. ∴ A = 
{1, 2, 3, 5, 6, 10, 15, 30}  
 

∴ R = {(1, 1), (1, 2), (1, 3), (1, 5), (1, 6), (1, 10), (1, 15), (1, 30), (2, 2), (2, 
6), (2, 10), (2, 30), (3, 3), (3, 6), (3, 15), (3, 30), (6, 6), (6, 30), (10, 10), 
(10, 30), (15, 15), (15, 30), (30, 30)}  
 
Fig.  

 
7.4 Hasse diagram 
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Exercise:  
 

Q. 1  Which of the following realtion is partial order realtion?  

a)  R = {(x, y) | x, y ∈ Z, x ≤ b}  [Ans: partial order relation]  

b)  R = {(x, y) | x, y ∈ Z, x < b}  [Ans: not partial order relation]  

c)  A= {1, 2, 3, 4}, R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), 
(2, 4), (3, 3), (3, 4), (4, 4)}  [Ans: partial order relation]  

 
Q.2   Let A = {1, 2, 3, 6, 12, 18}. Let R be the relation “is divisor of”. 

Show that relation is partial ordered relation and draw its hasse 
diagram.  

 

Q.3   Let A = { 2, 3, 5, 6, 8, 16, 18}. (x, y)∈ R if x divides y. Check the 
relation divide on set A is a partial ordered relation or not.  

 

Q.4  Let A = { 1,2, 3, 4} and R = {(1, 1) and (x, y)∈ R if x divides y. 
Check the relation divide on set A is a partial ordered relation or not.  

 

7.6 SUMMARY  
 

In this chapter, we learned about basics of relation, Binary relation, 
and types of  relation and properties of relation. We now understand what 
theequivalence relation, partial order relation and linear or totally ordered 
relation is. Students differentiated between equivalence relation and partial 
order relation. Students could draw Hasse diagram.  
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8.0 OBJECTIVES   
 
After going through this unit, students will able  

1.  To explain the basic concepts of graph theory.  

2. To describe and solve some real time problems using concepts of graph 
theory  

3.  To determine if a given graph is simple or a multigraph, directed or 
undirected, cyclic or acyclic  

4.  To represent a graph using an adjacency matrix and an incidence 
matrix.  

5.  To determine if a graph has a Hamilton path or circuit.  

6.  To check the isomorphism of graphs.  

 

8.1 INTRODUCTION  
 

In mathematics, graph theory is the study of graphs which are 
mathematical structure used to give relationship between objects. Graph 
theory has a wide range of applications in engineering, in physical, social, 
and biological sciences, in linguistics and many other areas. Graph theory 
also plays an important role in computer science. Graphs are used to 
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represent networks of communication, data organization, operating system 
and AI. 

 
In this chapter, some basic concepts of graph theory, basic 

properties of graph have been introduced. The concepts such as walk, path, 
circuit, Hamiltonian path and Hamiltonian circuit, indegree and outdegree 
of graph have been discussed. Then we discussed two most frequently used 
matrix representation of a graph, a correspondence between graphs.  

 

8.2 WHAT IS A GRAPH? 
 
A Graph consisting of nodes and edges. The nodes are sometimes 

also referred to as vertices and the edges are lines or arcs that connect any 
two nodes in the graph.  
 
Definition: A linear graph or simply a graph G = (V, E) consists of a set of 
of objects V = {v1, v2, v3,….} called vertices (nodes, point ) and another 
set E = { e1, e2, e3, ……..}, whose elements are called edges, such that each 
ek is identified with an unordered pair (vi , vj) of vertices. The vertices vi , 
vj associated with edge ek are called end vertices of ek or 
adjacentvertices. 
 

We shall assume all over that both the sets V and E of a graph are 
finite. It would be suitable to write a graph G as (V, E) or simply as G.  
 
In a graph G = (V, E) in which every edge is directed is called a digraph 
or directedgraph. 
 
A graph In which every edge is undirected is called an undirected graph. 
 
If some edges are directed and some are undirected in a graph the graph is 
called mixed.  

 
Fig 8.1 Directed Graph 

 
 Fig: Directed Graph  Fig: Mixed Graph 

Fig 8.2 
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Exercise: 

Q.1. Draw all simple graphs of one, two, three and four vertices. 

Q.2.  Draw a graph representing problems of:  

a.  Two children and three games.  

b.  Four children and four games  

 
Note that, in drawing a graph it is immaterial whether the lines are drawn 
straight or curve, long or short. What is important is the incidence between 
the edges and vertices.  
 
e.g. The two graphs shown in the following figure are same.  

 
Same  graph drawn differently 

Fig 8.3 
 
8.2.1 Definitions: 
 

Let (V,E) be a graph and let e1 ∈ E be a directed edge associated with the 
ordered pair of nodes (v1, v2).  
 
The node v1 is called the initial node of the edge e1.  
 
The node v2 is called the terminal node of the edge e1.  
 

An edge e1 ∈ E which joins the nodes v1 and v2 whether it be directed or  
undirected, is said to be incident to the notes v1 and v2.  
 
An edge of a graph which joins a node to itself is called a loop. 
 

In directed and undirected graphs, when there are more than one 
edge between pairs of nodes such edges are called parallel edges. 

 
Fig 8.4  
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In Fig (a), there are two parallel edges joining the nodes a and d 
while there is a loop at node b. In fig 8.4 (b), there are two parallel edges 
between nodes c and d.  
 
Any graph which contains some parallel edges is called a multigraph. 
 
If there is no more than one edge between a pair of nodes then such a graph 
is called  a simple graph. 
 
A graph in which weights are assigned to every edge is called a 
weightedgraph. 

 
Fig 8.5: weighted Graphs 

 
A vertex which is not adjacent to any other vertex is called isolated vertex.  
 
A graph containing only isolated vertices is called null graph.  
 
We can say that in a null graph, set of edges is empty.  
 

 
Fig 8.6 

 
The graph in fig. 8.6 is null graph  
 

 
Fig 8.7 

 
while fig 8.7 has an isolated node v4  
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8.3 BASIC PROPERTIES OF A GRAPH  
 
1. Distance between two vertices: Distance is the number of edges in a 

shortest path between vertex A and vertex B. If there are more than one 
path onnecting two vertices, then consider the shortest path as the 
distance between two vertices.  

 
It is denoted by d (A, B).  

 
Fig 8.8 

 
Suppose, we want to find the distance between vertex A and C, 

then first of all we have to find the shortest path between vertex A and C.  
 
There are many paths from vertex A to vertex C: 

 A → B→ C, length = 2  

 A → E → C, length = 2  

 A → D → E → C, length = 3  

 A → D → E → F→ C, length = 4  

 A → D → G → F→ C, length = 4  

 ∴ The minimum distance between vertex A and C is 2.  
 
2. Eccentricity of a vertex: Eccentricity of a vertex is the maximum 
distance between a vertex to all other vertices.  
 
It is denoted by e (V).  
 
To find the eccentricity of vertex, first find the distance from a vertex to all 
other vertices and the maximum distance is the eccentricity of that vertex.  
  
In the above example, if we want to find the eccentricity of vertex 'a' then:  

d (a, b) = 1  

d (a, c) = 2, i. e (a→ b→ c , do not take path A → D → G → F→ C )  

d (a, d) = 1  

d (a, e) = 1  

d (a, f) = 2  

d (a, g)= 2  
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Hence, the eccentricity of vertex 'a' is 2, which is a maximum distance 
from vertex a to all other vertices.  

 
Similarly, eccentricies of other vertices of the given graph are:  

 
 e (b) = 3  

 e (c) = 3  

 e (d) = 3  

 e (e) = 2  

 e (f) = 2  

 e (g) = 3  

 
3. Radius of Graph: The radius of graph is the minimum eccentricity 
from all the vertices of graph. It is denoted by r (G). From the above 
example, radius of the graph r (G) = 2  
 
4. Diameter of a graph: The diameter of graph is the maximum 
eccentricity from all the vertices of graph. It is denoted by d (G). From the 
above example, diameter of the graph d (G) = 3.  
 
5. Central Point: If the eccentricity of the graph is equal to its radius, then 
it is called as central point of the graph. i.e. if r (G) = e (V) then V is the 
central point of the graph. In the above example, vertex e and vertex f are 
central point of the graph. r (G) = e (e ) = e (f )=2  
 
6. Centre: The set of all central point of the graph is called as Centre of the 
graph. In the above example, {e, f} are central point of the graph.  
 
7. Circumference: The total number of edges in the longest cycle of the 
graph is called as circumference of graph.  
 
In the above example, circumference is 6, which is derived from longest 

path A→B→C→F→G→D→A or A →D→G→F→C→B→A or              

A →D→E→F→C→B→A.  
 

8.4 TRAILS, PATH AND CIRCUIT  
 

Trail / Walk: Finite alternative sequence of vertices and edges is 
called walk / trail. No edge can appear more than once in the sequence.  

 

 
Fig. 8.9 
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Walk – v1 e10 v7 e8 v2 e2 v3  
 
Closed Walk: If initial and ending vertices are same then the walk is 
called closed walk. Closed Walk - v2 e2 v3 e3 v4 e5 v6 e4 v2  
 

Open Walk: If initial and ending vertices are not same then the walk is 
called open walk. Open Walk – v2 e2 v3 e3 v4 e5 v6  
 

Path: Any sequence of edges of diagram is called path.  
 

Simple Path: A path in a diagram in which the edges are all distinct is 
called a simple path (edge simple).  
 

Elementary Path: A path in which all the nodes through which it 
traverses are distinct is called an elementary path (node simple).  
 

Note: every elementary path of a diagraph is also simple.  

 
Fig: 8.10 

 
Simple path  1)  v1 e1 v2 e8 v4 e6 v1 e7 v4 e5 v3 

 2)  v4 e6 v1 e1 v2 e4 v3 e3 v2 e2 v1 
Elementary path:   1)  v1 e1 v1 e8 v4 e5 v3 

 2)  v4 e6 v1 e1 v2 e2 v3 
 
Circuit : A path which originates and ends in the same node is a circuit or 
cycle.  
 
Simple circuit: A circuit is called simple circuit if its path is simple. i.e. no 
edge in the circuit appears more than once in the path.  
 
Elementary circuit: A circuit is called elementary if it does not traverse 
through any node more than once.  
 
A simple diagram which does not have any cycles (circuits) is called 
acyclic. From fig 8.10,  
 
Elementary Circuit: v1 e7 v4 e5 v3 e3 v2 e2 v1 

 

Simple circuit: v1 e7 v4 e5 v3 e2 v2 e9 v2 e2 v1  
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Exercise:  
Q.1 Find Simple path, Elementary path and Elementary circuit from 
following graph.  

 
Fig 8.11 

 
Simple path:     v1 e1 v9 e4 v8 e5 v3 e10 v7 e9 v6 e8 v5 e7 v4 e6 v3 e3 v2  

 Since v3 is repeated, it is not elementary.  

Elementary path:   v1 e2 v2 e3 v3 e5 v8 e4 v9  

 No edge and vertex is repeated here.   

Elementary circuit:  v1 e2 v2 e3 v3 e5 v8 e4 v9 e1 v1   

 

8.5 HAMILTONIAN PATHS AND CIRCUITS 
 
Hamiltonian circuit: A Hamiltonian circuit in a connected graph is 
defined as a closed walk that traverses every vertex of G exactly once, 
except the starting vertex at which the path also terminates.  
 
Hamiltonian Path: If we remove any one edge from a Hamiltonian 
circuit, we are left with path. This path is called Hamiltonian Path.  
 
Note:    
1.  Every graph that has a Hamiltonian circuit, also has a Hamiltonian 

path. 
 
2.  Hamiltonian circuit in a graph on n vertices consists of exactly n edges. 
 

 
 (a) (b) (c) 

8.11.1 Figure 
From fig. 8.11.1 (a),   
Hamiltonian path: u1 u2 u3 u4  
Hamiltonian Circuit: u1 u2 u3 u4 u1  
From Fig 8.11.1 (b),  
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Hamiltonian Circuit: u2 u3 u4 u5 u1 u2  
Fig 8.11.1 (c)  
Hamiltonian Circuit: v1 v2 v3 v4 v7 v8 v5 v6 v1  

 
Exercise:   
Q.1 Find different paths and circuits for the following graph. 

 
Fig 8.12 

 

8.6 INDEGREE AND OUTDEGREE   
 

For Undirected graph:  
 
Degree of vertex: Number of edges incident on vertex. For loop, we 
consider degree as 2.  

 
Fig 8.13 

 
d(v1) =  2 d 

(v2)  =  2 d 

(v3)  =  3 + 2(loop) = 5  

d(v4) =  3  

d(v5) =  2  

d(v6) =  0 (isolated vertex)  

 
For Directed graph: 
 
Indegree: In directed graph, the number of edges coming towards a vertex 
v is the indegree of v.  
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Outdegree: In directed graph, the number of edges going out from a vertex 
v is the outdegree of v.  
 
The sum of indegree of all vertices is equal to the sum of outdegree of all 
vertices.  

 
Fig. 8.14 

 

 Indegree:  Outdegree:  

 I (v1) = 2 O (v1) = 3  

 I (v2) = 2  O (v2) = 2  

 I (v3) = 2 O (v3) = 2  

 I (v4) = 2 O (v4) = 1  

 Σ I (vi) = Σ  O (vi) = 8.  

 
Exercise: Find indegree and outdegree of following graphs.  
Q. 1 a)  

 
Fig 8.15a 

b)  

 
Fig 8.15b 
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c)  

 
Fig 8.15c 

 

8.7 MATRIX REPRESENTATION OF GRAPH 
 

There are two method of matrix representation.  

1.  Adjacency Matrix   

2.  Incidence Matrix  
 
8.7.1 Adjacency Matrix: 
 

Let G = (V,E) be a simple diagraph in which V = {v1, v2, 
v3,……,vn) and nodes are assumed to be ordered from v1 to vn. An n X n 
matrix A whose elements aij are given by  

 

     aij = 1 if (vi , vj) ∈ E  

  = 0otherwise,  
, 

is called the adjacency matrix of the graph G.  
 

Here we plot the n X n matrix, where n is number of vertices.  
i.e. We take number of vertices present in the graph in row as well as in 
column.  
 

In the following graph, there are 5 vertices. So it is 5 X 5 matrix.  
If an edge is present between any pair of vertices then we put 1 otherwise 
we put 0 in the matrix.  
 

Consider the following directed graph.  
 

 

For Directed Graph 

A(G) =  

 1 2 3 4 5v v v v v  

1

2

3

4

5

0 0 1 1 0

1 0 0 0 1

0 1 0 0 0

0 1 0 0 0

0 0 1 1 0

v

v

v

v

v

 
 
 
 
 
 
  

 

Fig 8.16 For directed graph (Graph and matrix) 
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In the above graph, there is an edge is from v1 to v3. So we put 1 
from v1 to v3 in the matrix. There is no edge is from v3 to v1. So we put 0 
from v3 to v1 in the matrix and so on.  

 

Consider the following undirected graph: 
 

 

For Undirected Graph 

A(G) = 

 a b c d e  

2 1 1 1 0

1 0 0 2 0

1 0 0 1 2

1 2 1 0 1

0 0 2 1 0

a

b

c

d

e

 
 
 
 
 
 
  

 

Fig 8.17 For undirected graph (graph and matrix) 

 
Here, in the above graph,  
Here an edge is present between a to b.  

∴ We put 1 from a to b as well as from b to a.  
 

There is self loop at vertex a. So we put 2 from a to a in the matrix. 
Also, there are two edges from b to d. So we put 2 from b to d and d to b 
and so on.  

 
8.7.2 Incidence Matrix: 

 
If G be a graph having n number of vertices and e edges then n X e which 
is represented by A.  
 
 A = [Aij],  n – number of rows corresponds to number of vertices.  

e – number of columns corresponds to e edges.  

 aij  = 1, if vertex vi is incident on edge ej  

  = 2, if there is a self loop  

  = 0, otherwise.  

 
Here we plot the n X e matrix, where n is number of vertices and e 

is number of edges. i.e. We take number of vertices present in the graph in 
row and number of edges present in the graph in column.  
 
In the following graph, there are 5 vertices and 8 edges. So we plot 5 X 8 
matrix.  
 
If an edge is incident on the vertex then we put 1 otherwise we put 0 in the 
matrix.  
 
Consider the following directed graph. 
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Fig 8.18.For directed graph (Graph and matrix)  

 
In the above graph, an edge e1 is incident on vertex v1. So we put 1 from v1 
to e1 in the matrix.  
 
An edge e2 is incident on vertex v3. So we put 1 from v3 to e2 in the matrix.  
 
An edge e3 is incident on vertex v2. So we put 1 from v2 to e3 in the matrix 
and so on.  
 
Consider the following undirected graph: 
 

 
Fig 8.19 For undirected graph (Graph and matrix) 

 
In the above graph, a self-loop e1 is incident on vertex a. So we put 2 

from a to e1 in the matrix.  
 

An edge e2 is present in between vertex a and vertex b. So we put 1 
from a to e2 as well as b to e2 in the matrix. An edge e3 is present in 
between vertex a and vertex d. So we put 1 from a to e3 as well as d to e3 in 
the matrix and so on.  
 
Exercise: 
 
Q.1  Determine adjacency and incidence matrix for following graphs  
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a) 
 

 
Fig.8.20 

 
b) 

 
Fig 8.21 

c) 

 
Fig 8.22 

 

8.8 ISOMORPHISM OF GRAPHS   
 

Two graphs are isomorphic if there exists a one to one 
correspondence between the nodes of the two graphs which preserves 
adjacency of the nodes as well as the direction of the edges if any.  
 

It is denoted by G1≅≅≅≅ G2 
 

To check whether the G1 and G2 are isomorphic graphs, we have to check 
following conditions.  

1.  Equal number of vertices  

2.  Equal number of edges  
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3.  Incidence relationship should be preserved Example  
 

1: Check whether G1 and G2 are isomorphic or not.  
 

 
 G1  G2 

Fig 8.23  
Soln: 

To check graphs are isomorphic  

1. In graph G1 and G2, numbers of vertices are same.  

2. In graph G1 and G2, numbers of edges are same.  

3. Degree of vertices in graph G1 and G2  
 

 d (G1)  d (G2)  

 d(u1) = 2  d(v1) = 2  

 d(u2) = 3  d(v2) = 3  

 d(u3) = 3  d(v3) = 3  

 d(u4) = 2 d(v4) = 2  
 

In G1, vertices of degree 3 is adjacent to two vertices of degree 2. Same in 
G2 as well as vertices of degree 2 is adjacent to two vertices of degree 3 in 
both the graphs.  

∴ Incidence relation is preserved.  
 

Correspondence:  

 u1 → v1 

 u2 → v2 

 u3 → v3 

 u4 → v4 

 ∴ G1 ≅ G2 

Example 2:  
Check whether G1 and G2 are isomorphic or not.  
 

 
 G1  G2 

Fig 8.24 

mu
no
tes
.in



159 

 

Soln: Number of vertices are same in G1 and G2.  

Number of edges are same in both the graphs.  
 

In both the graphs, there are 4 vertices of degree 3 and 2 vertices of degree 
2. Also, incidence relation is preserved.  
 

In G1, vertices of degree 3 is adjacent with two vertices of degree 3 and 1 
vertex of degree 2. Same in G2.  
 

The vertex of degree 2 is adjacent with vertices of degree 3 in both G1 and 
G2. Correspondence:  

 u1→ v1 

 u2→ v2 

 u3→ v3 

 u4→ v4 

 ∴ G1 ≅ G2  

 
Example 3: Check whether G1 and G2 are isomorphic or not.  

 
 G1  G2 

Fig 8.25 
 

Soln: The number of vertices are same in G1 and G2  
Number of degrees are same in G1 and G2  
 

In G1 every vertex having 1 indegree and 1 outdegree but in G2 it is not. ∴ 
G1 and G2 are not isomorphic.  
 
Example 4: Check whether G1 and G2 are isomorphic or not. 

 
 G1  G2 

Fig. 8.26 
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Soln: Number of vertices are same in G1 and G2  
Number of edges are same in G1 and G2  

d(G1)        d(G2)  

I(v1) = 2   O(v1) = 1    I(u1) = 2   O(u1) = 2  

I(v2) = 1   O(v2) = 2    I(u2) = 2   O(u2) = 1  

I(v3) = 2   O(v3) = 2    I(u3) = 2   O(u3) = 1  

I(v4) = 1   O(v4) = 2    I(u4) = 1   O(u4) = 2  

I(v5) = 2   O(v5) = 1    I(u5) = 1   O(u5) = 2  
  

Correspondence:  

v1→ u2 

v2→ u4 

v3→ u1 

v4→ u5  

v5→ u3 

∴ G1 ≅ G2  
 

Exercise: Check whether graphs are isomorphic or not.  
a) 

 
 G1  G2 

Fig 8.27  [Ans: Graphs are not isomorphic graphs] 
b)  

 
Fig 8.28   [Ans: Graphs are isomorphic graphs] 

c)  

 
 G1  G2 

Fig 8.29 [Ans: Graphs are isomorphic graphs] 
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d) 

 
 G1  G2 

d) Fig 8.30   [Ans: Graphs are not isomorphic graphs ] 
 
Example 1: Prove that the sum of degree of vertices of a non directed 
graph G is twice the number of edges in G.  
 

i.e. Σ d(v) = 2E This is called Hand Shaking Lemma.  
 
Proof : Let G be a graph with vertex and edges i.e. G (V,E).  
The number of incident pairs (v, e) where e is an edge and v is a vertex.  
 
Vertex v belongs to d(v) pairs where degree is number of edges incident to 
it.  
 

∴ The number of incident pair is the sum of degree since every edge is 
incident with exactly two vertices, each edge gets counted twice, once at 
each end.  
 
Thus the sum of degrees is equal to twice the number of edges.  
 

Σ d(v) = 2E  
 
e.g: Consider the following graph.  
 

 
Fig 8.31 
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The number of edges in G are 10 and total degree of graph is  
 d(G)  = d(v1) + d(v2) + d(v3) + d(v4) + d(v5) + d(v6) + d(v7)  

  = 3 + 4 + 4 + 4 + 4 + 1 + 0  

  = 20   

  = 2 x 10  

  = 2 x E  

Thus the sum of degrees is equal to twice the number of edges.  
 
Example 2: A graph G has 16 edges, each vertex is of degree 2. Find the 
number of vertices in G.  

Soln: Let G be a graph with n vertices and 16 edges.  
 

Given that each vertex is of degree 2.  
 

∴ By Hand Shaking Lemma,  

Σ d(v) = 2E  

2n  = 2xE  

= 2 x 16 = 32  

∴n = 32 / 2 = 16  

∴Number of vertices in G is 16. 

  

8.9 SUMMARY  
 

In this chapter, some basic concepts of graph theory had been 
introduced and some results have been obtained. After reading this chapter 
we can understand that graphs can be used to represent almost any 
problems involving arrangements of objects. We can show the relationship 
between the objects. We also discussed the walks, paths, circuits, 
Hamiltonian paths and Hamiltonian circuits, matrix representation of 
graphs using adjacency matrix and incidence matrix. We also checked the 
isomorphism of graphs.  
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9.0 OBJECTIVE  
 
After going through this unit, students will able  

1.  To determine if a tree is a binary, m-ary tree or not a tree.  

2. To understand the properties of trees to classify trees, identify 
ancestors, descendants, parents, children, and siblings.  

3.  To determine the level of node, the height of a tree, depth of node  

4.  To check the isomorphism of tree.  

5.  To find minimum spanning tree using Prim’s algorithm and Kruskal’s 
algorithm.  

 

9.1 INTRODUCTION  

The concept of tree is probably the most important in graph theory. 
To describe any structure which involves hierarchy, trees are very useful. 
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Our family is the best example of tree. In this chapter we shall define a tree 
and its properties. There are many new terms and definitions introduced in 
this chapter. This chapter will discuss level of node, height of node, height 
of tree, depth of node as well as some concepts of binary tree. Here we also 
introduced isomorphism of tree, spanning tree, different spanning tree and 
shortest path. Prim’s Algorithm and Kruskal’s Algorithm are used for 
finding the Minimum Spanning Tree (MST) of a given graph. To apply 
these algorithms, the given graph must be weighted, connected and 
undirected.  
 

9.2 TREE   
 

Tree: A directed tree is an acyclic diagraph which has one node called its 
root with indegree 0, while all other nodes have indegree 1.  
 

Every directed tree must have atleast one node. An isolated node is also a 
directed tree.  
 

A tree is a connected undirected graph with  

• No simple circuit  

• No multiple edges  

• No loop  
 

Therefore, any tree must be a simple graph.  
 

9.2.1 Basic terms:  
  

An undirected graph is a tree if and only if there is a unique simple 
path between any two of its vertices 
 

It consists of nodes with a parent child relation.  
  

Examples of tree:  
                             a         b          c                  e                 

     

     

     

                        d                 e           f   

           b        c      d 

(a) (b) 

Fig 9.1 
Examples of not a tree:  
                             a         b          c         a           b        

     

     

     

                            d                         f         c       d 

(a) (b) 

Fig 9.2 
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Figure a is not a tree because it contains a cycle or loop. Figure b is not a 
tree because it is not a connected graph.  
 
There is only one path between every pair of vertices in a tree.  
 

 
Fig 9.3 

 
If we want to travel from b to g, there is only one path. Every edge in a tree 
is a bridge.  
If a tree has n vertices then it has n – 1 edges.  
Any connected graph with n vertices and n – 1 edges is also a tree  
 
Exercise: 
Q.1 Which of the following graphs are trees?  
 

 
Fig 9.4. (a – e) [Ans: Fig 9.4. (a) & (e) are Not a tree] 

 

9.2.2 Properties of Tree:  
 

1. Distance : Distance is the shortest path between two vertices. It is 
denoted by d (a, b). Consider the following tree. 

 
Fig 9.5 

b 
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d (a, b) is distance between a and b.  

 d (a, b)  = d (a, c)  = 1  

 d (a, d)  = d (a, e)  = d (a, f) 2  

 d (a, g)  = d (a, h)  = 3  

 d (a, i)  = d (a, j)  = 4  

 d (a, k)  = d (a, l)  = d (a, m) = 5  

 d (a, n)  = d (a, o)  = d (a, p) = 6  

 
2 Eccentricity: Eccentricity of a vertex is the maximum distance of a 
vertex from other end, either from left or right side.  

 e (a) = 6 i. e. maximum distance from p  

 e (b) = 7  

 e (c) = 5  

 e (d) = e (e) = 6  

 e (f) = 4 i. e. maximum distance from p  

 e (h) = 4 i. e. maximum distance from b  

 e (g) = e (i) = e (j) = 5  

 e (k) = e (l) = e (m) = 6  

 e (n) = e (o) = e (p) = 7  

 
3. Centre of Tree: Vertex having minimum eccentricity is called Centre of 
tree. i.e. minimum eccentricity among all.  
 
 e (f) = e (h) = 4 is the Centre of tree.  

 

9.3 ROOTED TREE 
 
9.3.1 Basic Terms and definitions: 
 
Rooted Tree: A rooted tree is a tree in which one vertex has been 
designated as the root and every edge is directed away from the root.  
 

 
Fig 9.6 

 
Node: Element of tree  
Here a too are nodes.  
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Root Node: Starting node of a tree.  
a is a root node. Tree will have only one root.  
 
Edge: Edge is link or connection between two nodes.  
If there are n nodes then there are (n - 1) edges in tree. Here n = 14, e = 13 
Every node in the tree is having some children.  
 
If v is a vertex in a rooted tree other than the root, the parent of v is the 
unique vertex u such that there is a directed edge from u to v.  
 
Parent of d, e, f is b.  
 
Ancestor: Ancestor is a node higher than parent.  
 
If b is a parent of d, e and f then higher than b is a.  
 

∴ a is ancestor for d, e, f 
 
Descendant: d, e and f are descendant of a.  
Siblings: Siblings means having same parent.  

 
Node g and node h are siblings because they have same parent i.e. 

parent c. But node f and node g are not siblings because they have different 
parent. Node f is having parent b and node g is having parent c.  
 
Leaf Node: Leaf nodes are those nodes which do not have any child.  
 
In the above tree, d, e, f, g, m, n, o, j, k are leaf nodes.  
 
Internal/branch nodes: the nodes which are neither roots node nor leaf 
nodes are called internal nodes or we can say that vertices that have 
children are called internal nodes.  
 
In the above tree, b, c, h, i are internal / branch node.  
 
9.3.2 Level of node: 
 
The level of any node is the length of its path from the root.  
Level of node b and c is 1  
Level of node d, e, f, g, and h is 2.  
Level of node i, j and k is 3.  
Level of node m, n, o is 4.  
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Fig 9.7 

9.3.3 Height of node: 
 
Longest path from leaf node to that node is height of node.  
 

Height of node B is 2 (from G→E→B, or H→E→B)  
 

Height of node A is 3 (from G→E→B→A, or H→E→B→A). Here don’t 
consider the path  
 

D→B→A or F→B→A because these are not longest path.  
 

Height of node H is 1 (from G→E, or H→E)  
 
Height of a tree: Height of a tree is length of the longest path between root 
node to any leaf node.  
So here height of tree is 3.  
 
9.3.4 Depth of a node: Longest path from root node to that node.  

Depth (B) =1 (from A→B)  

Depth (C) =1 (from A→C)  

Depth (D) =2 (from A→B→D)  

Depth (E) =2 (from A→B→E)  

Depth (F) =2 (from A→B→F)  

Depth (G) =3 (from A→B→E→G)  

Depth (H) =3 (from A→B→E→H)  

 
Subtree: Node with child node forms subtree.  
 
Exercise: 
 
Q.1  Show root node, leaves, siblings, internal nodes, ancestors of v11, 

descendants of v2, subtree of node v4.  
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Fig. 9.8 

 
Q.2 Answer the following questions from the given tree. 

 
Fig. 9.9 

 

a)  Which is the root vertex?  

b)  Which vertices are internal vertices?  

c)  Which are the leaf vertices?  

d)  Which vertex is the parent of vertex h?  

e)  Which are the children of vertex f?  

f)  Which vertices are siblings of vertex i?  

g)  Which vertices are ancestors of h?  

h)  Which vertices are descendants of e?  

 
Example:  Consider the following tree. Find the height and depth of tree. 
 

 
fig. 9.10 
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 Node  Height  Depth  

 a  3  0  

 b  1  1  

 c  0  1  

 d  2  1  

 e  0  2  

 f  0 2  

 g  0  2  

 h  1 2  

 i  0  3 
 

Exercise: Find height and depth of each node of tree.  

 
Fig. 9.11 

 

9.4 BINARY TREE   
 
m-ary tree: An m-ary tree is a rooted tree in which each node has no more 
than m children. 

  
Fig. 9.12 

 

In this tree maximum number of children are 4. i.e. the children of vertex e 
are f, g, h and i. e.  

∴ It is 4-ary tree.  
 
The tree is called a full m ary tree if every vertex has exactly m children.  
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Fig 9.13 

This is full binary tree.  
Internal node, i = 6 
The total number of nodes in a full m ary tree with i internal nodes, 
 n = m*I +1, where n= number of nodes 
     = 2 * 6 + 1, m = 2 
     = 13 

 
Fig 9.14 

This is full ternary tree. 
Internal node, i = 5 
The total number of nodes with i internal nodes, 
 n = m*I +1, where n= number of nodes 
     = 3 * 5 + 1, m = 3 
     = 16 
Example: Draw 2 binary tree with 6 leaves. 
Soln: 

 

          

          

          

                

              1     4   

    3  4        

    1       2  5   6     2     3   

               5        6  

  (a)     (b)   

 
Fig. 9.15 (a) and (b) are two different binary trees with 6 leaves. 

 

These are binary trees because it has almost two children and have 6 leaves 
as shown in the tree.  
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Note: Binary tree with n vertices has (n+1)/2 pendent vertices. (Pendent 
vertex is same as leaf vertex).  
 

Example: Draw a tree with 7 vertices and count the pendent (leaf) vertices.  
 

Soln: A tree with 7 vertices is as follows.  
 

       1   

     

     3  

        2   5 

     

     4       7 

   6  

Fig. 9.16 
 
Number of vertices,  n = 7  

∴Pendent vertex  = (n + 1)/2  

 = (7 + 1)/2  

 = 8/2  

 = 4  

∴Pendent (leaf) vertices are 4, i. e. vertices 2, 4, 6, 7.  
 
Example: In a full 5 – ary tree with 100 internal vertices. Count:  

a)  Number of nodes  

b)  Number of edges  

c)  Number of leaf nodes  

 
Soln: Given m = 5, i = 100  

a)  Number of nodes for full m-ary tree is given by,  

  n = m * I + 1  

  = 5 * 100 + 1  

  = 501  

b)  Number of edges for tree with n vertices having (n – 1) edges  

 ∴  number of edges = n – 1  

  = 501 – 1  

  = 500  

c)  Number of leaf nodes = other than internal nodes  

  = n – i  

  = 501 – 100  

  = 401  
Exercise: 

Q.1.  Draw two ternary tree with 11 leaves.  

Q.2.  How many edges does a full binary tree with 1000 internal vertices 
have? Find the number of leaf nodes. [Ans: Number of leaf nodes = 
1001]  
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9.5 ISOMORPHISM OF TREE 
 
Two trees are called isomorphic if one of them can be obtained from 

other by a series of flips, i.e. by swapping left and right children of a 
number of nodes. Any number of nodes at any level can have their children 
swapped.  
 

Two Tree are isomorphic if and only if they preserve same no of 
levels and same no of vertices in each level  
 
The conditions which needed to be satisfied are:  

1.  Empty trees are isomorphic  

2.  Roots must be the same  

3.  Either left subtree & right subtree of one must be same with the same 
of other's,  

 
Eg.  

 

         1   1  

      

      

                                                

            2      3              2      3 
or  
 

Left subtree of one must been same with right subtree of other's & right 
subtree of one must same with left subtree of other's.  

      1   1  

      

      

                                                

            2    3              3      2 

 
So either of the two is present in the trees, trees are isomorphic. 
 

Example: Check whether the following trees are isomorphic or not. 

 
Fig. 9.17 
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Soln: Consider the above trees.  
 
Here 1 = 1 The left subtree of 1 in T1 is isomorphic to right subtree of 1 in 
T2.  
 
The right subtree of 1 in T1 is isomorphic to left subtree of 1 in T2.  
 
Inside the subtree, left subtree of 2 in T1 is isomorphic to right subtree of 2 
in T2 and right subtree of 2 in T1 is isomorphic to left subtree of 2 in T2.  
 

 
Fig. 9.18 

 
In above tree, left child of 4 is equal to left child of 4 and right child of 4 is 
equal to right child of 4.  

Also, left child of 5 is equal to right child of 5 and right child of 5 is equal 
to left child of 5.  

∴ In every subtree of tree, isomorphism is preserved.  

∴ Trees T1 and T2 are Isomorphic Trees.  

 
Exercise: 
Q.1 Check whether the following trees are isomorphic or not.  
 
a)  

 
Fig. 9.19 

 

9.6 SPANNING TREE  

Spanning tree is a graph which contains all vertices with minimum 
number of edges. We can say that a spanning tree is a spanning subgraph 
and it should be a tree.  
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Consider the following graph.  
 

 
Fig: 9.20 

 
We have to draw the spanning tree for the above graph.  
 
First, it contains all the vertices.  

 

 
We draw an edge between v1 and v2 , then we draw an edge between v2 
and v4 and from v4 to v3  

 
Now if we draw, v3 to v1, it forms a cycle. As it is a tree, We do not want 
a cycle.  
 

∴This would be final spanning tree.  
 

There are more than one spanning tree for the same graph. Only condition 
is minimum number of edges with all vertices.  
 

∴The different spanning trees for graph given in the Fig 9.20 are,  
 

 
Fig. 9.21 

 
Number of edges in spanning tree are always (n – 1), for n vertices. If there 
are four vertices, the number of edges are three.  
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In a spanning tree, there are two terms, 1. Branch 2. Chord  

1.  Branch: Branch is an edge in a spanning tree  

2.  Chord : Chord is an edge in a graph which is not in a spanning tree  
 

 
Fig 9.22 

 
Different spanning trees for above graph are:  
a) 

 
Fig 9.23 

n = 5, e = 4  
 
Branch = {a, b, c, f}  
Chord = {d, e, g, h} 
  
b) 

 
Fig 9.24 

n = 5, e = 4  
Branch ={a, b, f, h }  
Chord = {c, d, e, g}  
 
9.6.1 Fundamental Circuit: Let G be a connected graph, T be its 
spanning tree.  
 
A circuit formed by adding a chord to spanning tree T is called as a 
fundamental circuit.  
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Consider the graph G.  
 

 
Fig. 9.25 

  

Take any arbitrary spanning tree.  
 

 
Fig. 9.26 

 

Branch ={a, b, c, f }, Chord = { d, e, g, h}  
We add one edge from chord set to form a fundamental circuit. Number of 
edges in chord set will generate that many number of fundamental circuits.  
 

We add chord d, that form the following circuit:  
 

 
Fig: 9.27 

 

We add chord e, which form the following circuit.  

 
Fig: 9.28 

 

We add chord g, which form the following circuit. 
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Fig: 9.29 

We add chord h, which form the following circuit.  
 

 
Fig: 9.30 

 
If graph G, having e edges and n vertices.  
 
T is a spanning tree with n – 1 branches, then there are exactly (e – n + 1) 

chord. ∴ (e – n + 1) fundamental circuit  
 
In the above example,  
G is a graph having 8 edges, 5 vertices.  
 
T is a spanning tree with n – 1 i.e. 5 -1 = 4 branches  

∴ chord = e – (n – 1)  
     = e – n + 1  
     = 8 – 5 + 1  
     = 4.  

∴ chord = 4 and fundamental circuit = 4.  
 
Exercise:  
Q.1  Draw the different spanning tree from the following graph: 
 

 
Fig 9.31 
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Fig 9.32 

9.6.2 Minimum Spanning Tree:  
 
 Minimum spanning tree is a tree or a subgraph which has total 
weight of all the edges to be minimum. For this there must be a weight 
over every edge.  
 
The weight of a spanning tree is the sum of all the weight’s assigned to 
each edge of the spanning tree. 
 

 
Fig. 9.33 

 
Here is a graph with 4 vertices and weights on each edge. In minimum 
spanning tree, total of weights of edges must be minimum.  
 
Here vertices are 4 so in spanning tree, there must be n – 1 edges .i.e. 3 
edges  

 
 

Consider minimum weight in the graph, minimum weight is 1 for the edge 
c to d.  
 

Next minimum weight is 2 for the edge d to a 
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Next minimum weight is for two edges. Take that edge which do not form 
a cycle. If we take edge from a to c, then it forms a cycle so take another 
edge d to b with weight 3.  

 
This is the minimum spanning tree.  
Minimum spanning tree with weight = 1 + 2 + 3 = 6  
 
Example: Draw the minimum spanning tree for the following graph.  

 
Fig 9.34 

 

Soln: In this graph, n = 6. ∴Number of edges = 5  
 

Minimum weight Edge 

1 B → D 

2 B → C 

7 B → F 

12 B → A 

14 D → E 

 

 
Fig 9.35 

 
Minimum spanning tree with weight = 1 + 2 + 7 + 12 + 14 = 36  
Exercise: 
 
Q. 1 Find minimum spanning tree for following graph. 
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a) 

 
Fig 9.36 

 

b) 

 
Fig 9.37 

[Hint: You can take all edges with same weight but the condition is there 
should not form a cycle.]  
 
Methods for finding the minimum spanning tree.  
1) Prim’s Algorithm  
2) Kruskal’s Algorithm  
 
9.6.3 Prim’s algorithm for Minimum Spanning Tree:  
  

  Prim’s Algorithm finds a minimum spanning tree for a weighted graph. 
It is initiate with a node. Prim’s algorithm consider the nodes as a single 
tree and keeps on adding new nodes to the spanning tree from the given 
graph.  
 
Following are the steps for Prim’s algorithm:  
 

Step-1: Remove all the loops and parallel edges (keep that parallel edge 
which has minimum weight.)  
 

Step-2: Find all the edges that connect the tree to new vertices, find the 
minimum and add it to the tree (no cycle allowed)  
 

Step-3 keep repeating Step 2 until we get (n-1) edges  
Consider the following graph. 
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Fig 9.38 

 

Here There are 7 vertices i.e. n = 7  

 

∴ Number of edges in spanning tree are, n - 1 = 7 – 1 = 6.  
 

Here we start with the vertex ‘‘a’’ and proceed  
 

 
 

Visited vertices = {a}, Edges to choose from = {af, ab}  
Here weight of edge af is minimum. So we select edge af.  
 

 
Visited vertices = {a, f}, Edges to choose from = {ab, fe}  
 
Here weight of edge fe is minimum. So we select edge fe.  

 
Visited vertices = {a, f, e}, Edges to choose from = {ab, eg, ed}  
 
Here weight of edge ed is minimum. So we select edge ed.  
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Visited vertices = {a, f, e, d}, Edges to choose from = {ab, eg, dg, dc}  
Here weight of edge dc is minimum. So we select edge dc.  
 

 
  

Visited vertices = {a, f, e, d, c}, Edges to choose from = {ab, eg, dg, cb}  
Here weight of edge cb is minimum. So we select edge cb.  

 
Visited vertices = {a, f, e, d, c, b}, Edges to choose from = {ab, eg, dg, bg}  
Here weight of edge bg is minimum. So we select edge bg.  
 

 
 

In above figure, there are all 7 vertices with 6 edges.  
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It satisfy both the conditions i. e. number of vertices n and n-1 edges.  

∴ This is minimum spanning tree.  
 

Weight of the minimum spanning tree = Sum of all the edge weights  
  = 8 + 23 + 21 + 10 + 14 + 12 = 88  
 

Exercise: 
 

Q. 1  Find minimum spanning tree for following graph using Prim’s 
algorithm.  
a) 

 
Fig 9.39 

b)  

 
Fig 9.40 

 

[ Hint: Remove all loops and parallel edges from the given graph. In case 
of parallel edges, keep the one which has the least weight and remove all 
others.]  
 

c) 

 
Fig 9.41 
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9.6.3 Kruskal’s Algorithm for minimum spanning tree: 

 
  Kruskal algorithm is used to find a minimum spanning tree for a 
connected weighted graph. It includes every edge of given graph and the 
total weight of all the edges in the tree.  

 
Following are the steps for Kruskal’s algorithm:  
 
Step-1: Arrange all the edges of the given graph. In ascending order as per 
their weight.  
 
Step-2: Select the edge with minimum weight from the graph and check if 
it forms a cycle with the spanning tree.  
 
Step-3: Include this edge to the spanning tree, if there is no cycle. 
Otherwise discard that edge.  
 
Step-4: Repeat step 2 and step 3 until we get (n-1) edges.  
 
Example: Find the minimum spanning tree of the following graph.  
 

 
Fig 9.42 Soln: From the above graph, 

 

Edge with minimum weight Vertex pair 

6 (a, f) 

8 (c, d) 

10 (b,g) 

12 (c ,b) 

14 (d, g) 

18 (d, e) 

21 (e, f) 

24 (a, b) 
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Now draw all the vertices  

 
 

We start with minimum weighted edge i. e. edge (a, f) with weight 6/873. 
After adding edge (a, f)  

 
 

After adding edge (c, d)  

 
 

After adding edge (b, g)  

 
 

After adding edge (c, b)  

 
 
Next minimum weighted edge (d, g). If we add edge (d, g), it will form 
cycle.  
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∴ We ignore edge (d, g).  
 
Next minimum weighted edge is (d, e).  
After adding edge (d, e)  

 
 
Again if we add edge (e, g) then it will form cycle. So ignore edge (e, g).  
Next minimum weighted edge is (e, f).  
After adding edge (e, f)  
 

 
Fig 7 

 

Since all the vertices have been included in the minimum spanning tree, so 
we stop here. Number of edges are 6 which is equal to n-1 (where n is 
number of vertices).  
 
It satisfy both the conditions i. e. number of vertices n and n-1 edges.  

∴ This is minimum spanning tree.  
 
Weight of the minimum spanning tree = sum of all the edge weights  
= 6 + 8 + 10 + 12 + 18 + 21 = 75  
 
Exercise:  
 

Q.1 Find minimum spanning tree for following graph using Kruskal’s 
algorithm.  
 

a)  

 
Fig 9.43 
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b)  

 
Fig 9.44 

 

 9.7 SUMMARY   
 

In this chapter, we learnt the most important topic of graph theory 
i.e. tree. Other related concepts such as distance, eccentricity, Centre of 
tree, height of tree, depth of tree were also studied. Different types of trees 
such as rooted tree, binary tree, spanning tree were discussed. We are now 
able to find out all different spanning tree of a given graph, find a shortest 
spanning tree in a given weighted graph.  
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UNIT V 

10 
 

COUNTING 
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10.8  Unit end Exercises  

10.9  List of References   

 

 10.0 OBJECTIVES   
 

After going through this unit, you will able to :  

• Possibility trees and multiplication rule.  

• Counting elements of disjoint sets and addition rule.  

• The Pigeonhole Principle.  

• Counting Subset of a Set.  

• Combinations and combinations with repetition allowed.  

 

10.1 INTRODUCTION   

 
 Combinatorial mathematics is the field of mathematics concerned 
with problems of selection, arrangement and operation with in a finite or 
discrete system. Its objective is how to count without ordinary counting. 
One of the basic problems of combinatorics is to determine the number of 
possible configurations of objects of a given type. This chapter includes 
numerous quite elementary topics, such as enumerating multiplication rule, 
addition rule and all combinations of a finite set. These are called as 
counting techniques. 
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10.2 POSSIBILITY TREES AND THE 
MULTIPLICATION RULE 
 
We define a possibility tree to track outcomes of a sequence of events as 
follows:  
 
Definition: Suppose that there is a sequence of events occurring in a 
specific order. Then, starting at a point, we draw a line out from that point 
for all possible outcomes of the first event. From the end of each of these 
lines, we then draw a line for each possible outcome from the next event 
and so on until we reach the final outcome of all events. We call such a 
diagram a possibility tree for that sequence of events.  

 
To understand this complicated definition of possibility tree of 

sequence of events with easy to give actually example:  
 

 Suppose that there are two box, each containing an equal number of 
black and white marbles. You take one marble from one box and then one 
marble from other box. Draw the possibility tree to determine all possible 
outcomes. 

 
 

However since there are equal numbers of marbles in each box, it is 
equally likely that either are drawn in both tree, and so we restrict branches 
to the two possibilities. As shown in above tree.  
 
Therefore above example suggest the following method to count the 
number of possible outcomes which is the consequence of a sequence of 
events.  
 
Example 1: There are 9 points A ,B, C, D, E, F, G,H, and I as shown in 
figure below 

 
 

X---------------G-------------N 

 
Suppose man begins at A and allowed to move horizontally or 

vertically, one step at a time. He stops when he cannot continue to walk 
without reaching the same point more than once. Find the number of ways 
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he walks, if he moves from X to D. Also find the number of such trips 
which cover all points. Using possible tree diagram. 
 
Solution: The possible tree diagram for all point by given condition is 
given below,  
 
Step I: Start with X and towards D. 
 

X---------------------D 

 

Step II: From D he can travel E and G.  

 
 

Step III : From E he can travel B , G and F or From A he can travel B 

 

 
Step IV: From B he can travel A and C, G to H, and F to C and H or from 
or from B he can travel C and E.  

 

 

Step V : From C he can travel F to H to G, From H he can travel F to C 
to  B to  A, from H to G, From C to B to A, from C he can 
travel F, from E he can travel F and G. 
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Step VI: from F he can travel E and H than from E to G to H and from H 
to G to E, From F to G and H to G , from G to H to F to C. 

   
 
i) From possible tree total number of walks = 10 ways.  
ii) Number of trips which cover all points = 4 ways. 
 
Multiplication Rule:  
 

If the procedure can be broken into first and second stages, and if 
there are m possible outcomes for the first stage and for each of these 
outcomes, there are n possible outcomes for second stage, then the total 
procedure can be carried out in the designate order, in ways. This principle 
can be extended to a general form as follows:  
 
Theorem : If a process consists of n steps, and  

i)  The first step can be performed by ways.  

ii)  The second step can be performed by ways.  

iii)  The step can be performed by ways.  

Then the whole process can be completed by different ways.  
 
Example 2: There are 8 men and 7 women in a drama company. How 
many way the director has to choose a couple to play lead roles in a stage 
show? 
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Solution: The director can choose a man (task 1) in 8 ways and then a 
woman (task 2) in 7 ways. Then by multiplication rule he can choose a 
couple from ways.  
 
Example 3: How many four digits numbers can be formed contains each 
of the digits 7, 8, and 9 exactly once?  
 
Solution: To construct four digits number we have four places 
      _______       _______   _______   
_________  
 
 Thousand place         Hundred place  Ten place     Unit place 
 
First for ‘7’ there are 4 places, for ‘8’ there are 3 places and for ‘9’ there 
are 2 places. For last digit, we can choose any of 0,1,2,3,4,5,6 so there will 
be 7 digits. 
 
Thus these can be done by  4x3x2x7 = 168 ways. 
 
Example 4: To generate typical  personal identification number (PIN) is a 
sequence of any four symbols chosen from the letters in the alphabet and 
the digits , How many different PIN’s are generated? 

i)   repetition is not allowed. 

ii)   repetition is allowed. 
 
Solution: There are 26 letters of alphabets and 10 digits. Total different 
symbols are 36. 
 
i)  Repetition is not allowed:  
 There are four place to generate PIN with four symbols,  
 First place can be filled by 36 ways, second place can be filled by 35 

ways, third place can be filled by 34 ways and last fourth place can 
be filled by 33 ways.  

 By the multiplication rule,  
   Therefore these can be done by 36 x 35 x 34 x 33  = 1413720 ways 
 
ii)   Repetition is allowed: Since repetition is allowed, so each place can 

be filled by 36 ways, By multiplication rule,   
 
   These can be done by ways 36 x 36 x 36 x 36 = 1679161  ways. 
 
Check your progress:  
1. A license plate can be made by 2 letters followed by 3 digits. How  

many different license plates can be made if  
i) repetition is not allowed. ii)  Repetition is allowed.  

   

2.  Mr. Modi buying a personal computer system is offered a choice of  4 
models of basic units, 2 models keyboard, and 3 models of  printer. 
How many distinct systems can be purchased? 
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10.3  COUNTING ELEMENTS OF DISJOINT SETS WITH 
ADDITION RULE   
 

In above section we have discussed counting problem that can be 
solved using possibility tree. Here we discuss counting problem that can be 
solved using the operation sets like union, intersection and the difference 
between two sets. 
 
10.3.1 The addition rule:  

 
If a task can be performed in m ways and another task in n ways 

assuming that these two tasks cannot perform simultaneously, then the 
performing either task can be accomplished in any one of the m+n ways. 
 
In general from as follows:  
 

If there are n1,n2,n3 different objects in m different sets respectively 
and the sets are disjoint, then the number of ways to select an object from 
one of the m sets is n1+ n2 + n3+ .......+nm  
 
Example 5: How many different number of signals that can be sent by 5 
flags of different colours taking one or more at a time ?  
 
Solution: Let number of signal made by one colour flag =5ways.  
Number of signal made by two colours flag = 5 x 4 = 20  ways.  
Number of signal made by three flag colours = 5 x 4 x 3 = 60 ways.  
Number of signal made by four flag colours = 5 x 4 x 3 x 2 = 120 ways. 
Number of signal made by five flag colours = 5 x 4 x 3 x 2 x 1 = 120 ways.  
Using Addition rule we get,  
 
Therefore total number of signals = 5 +20+60+120+120=325 ways.  
 
Example 6: There are 4 different English books, 5 different Hindi books 
and 7 different Marathi books. How many ways are there to pick up an pair 
of two books not both with the same subjects?  
 
Solution:  
One English and one Hindi book is chosen, that selection can be done by  
4 x 5 = 20 ways.  

One English and one Marathi book is chosen, that selection can be done by 
ways. 4 x 7 = 28 ways.  

One Hindi and one Marathi book is chosen, that selection can be done by 
ways = 5 x 7 = 35 ways.  
  
These three types of selection are disjoint, therefore by addition rule, 
Total selection can be done by = 20+28+35=83 ways. 
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10.3.2 Additive Principle with Disjoint sets: 
Given two sets A and B, both sets are disjoint i.e. if , A B=φ∩  than 

A B = A B+∪  

 
Example 7: In college 200 students visit to canteen every day of which 80 
likes coffee and 70 likes tea. If no one student like both than find i) number 
of students like atleast one of them? ii) number of students like none of 
them? 
 
Solution: Total number of students = 200 

Total number of students who like coffee = |A| = 80 
Total number of students who like tea = |B| = 70 

Total number of students like at least one A B = A B+∪ =80+70=150 

Total number of students like none of them 200-150=50 

 

10.4 THE PIGEONHOLE PRINCIPLE 
 
We represent the basic principle of counting which is easily derived and 
extremely useful. 
 

Statement: If there n -pigeons to be placed in m -pigeonhole where  m < n. 
Then there is at least one pigeonhole which receives more than one pigeon. 
 

 
Pigeonhole Principle 

 
Here is a simple consequence of the pigeonhole principle. 
 
In one set 13 or more people there are at least two whose birthdays fall in 
the same month. 
 

In this case we have to think of putting the people in to pigeonhole. 
it can be January, February, March and so on. Since there are 13 people 
and only 12 pigeon holes one of the pigeonhole must contain at least two 
people. 
 
That this intuitively obvious result can be quite useful is illustrated by the 
following example. 
 
Example 8: If eight people are chosen in any way what so ever at least two 
of them will have been born on the same day of the week. 
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Solution: Here each person (pigeon) is assigned the day of the 
week(pigeonhole) on which he and she was born since there are eight 
people and only seven days of the week, the pigeonhole principle. Tells us 
that at least two people must be assigned to the same day. 
 
Example 9: Consider the area shown it is bounded by a regular hexagon. 
Whose sides have length 1units. Show that if any seven points are chosen 
with in this area then two of them must be on further apart then 1 unit. 
 
Solution: Suppose that the area is divided in to six equilateral triangles. As 
shown in figure 1.1 
 

1 

            6         2 

  

            5                 3 

4 

 

If seven points are chosen we can assign each one to a triangle that 
contains it.   
 

If the point belongs to several triangles, assigns it arbitrarily to one 
of them. The seven points one assigned to six triangles so by pigeonhole 
principle, at least two points must belong to the same triangle. These two 
can not be more then 1 unit apart. 
 
Example 10: Five points are located inside a square whose sides are of 

length 2. Show that two of the points are within a distance  2  of each 
other.  
 
Solution: Divide up the square into four square regions of area 1 unit. as 
indicated in figure 1.2.  

 
 

By Pigeonhole principle, it follows that at least one of these regions 
will contain at least two points. The result now follows since two points in 
a square of radius 1.can not be further apart then length of the diagonal of 

the square is which ( by Pythagoras theorem) 2  . 
 
Example 11: Show that if any five numbers from 1 to 8 are chosen, then 
two of that will add to 9. 
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Solution: Constructs four different sets each contains two numbers that 

add to 9, as follows { } { } { } { }1 2 3 41,8 , 2,7 , 3,6 , 4,5A A A A= = = = each of 

the five numbers chosen will be assigned to the set that contains it .Since 
there are only four sets. The pigeonhole principle tells that two of the 
chosen numbers will be assigned to the same set. These two numbers will 
add to 9. 
 

Example 12: Fifteen children together gathered 100 nuts. Prove that some 
pair of children gathered the same numbers of nuts. 
 
Solution: Now to prove that we use method of contradiction. Suppose all 
the children gathered a different numbers of nuts. Then the fewest total 

number is 0 1 2 3 4 5 6 ........... 14 105+ + + + + + + + = , but this is more then 
100. which is contradiction to our assumption. There fore at least pair of 
children gathered same number of nuts. 
 
Example 13: Show that in any set of 10 integers there are at least pair of 
integers who have same remainder when divided by 9. 
 
Solution: Set of 10 integers, when it divide by 9, lie in the same residue 
classes of modulo 9. i.e. the remainder is 0,1,2,3,4,5,6,7,8. Here there will 
be 9 remainder and 10 integers. Therefore by pigeonhole principle, at least 
one integer has same remainder. 
 
10.4.1 The extended pigeonhole principle: 
 
If there n -pigeons are assigned to m -pigeonholes, then one of the 

pigeonhole must contain at least 
( )1

1
n

m

− 
+ 

 
  

Proof: If each contain number more then 
( )1

1
n

m

− 
+ 

 
 pigeons, then there 

are at most 
( ) ( )1 1

1
n n

m n
m m

− − 
≤ = − 

 
 

 
Example 14: Show that if 30 dictionaries in a library contains a total of 
61,327 pages, then one of the dictionaries must have at least 2045 pages. 
 
Solution: Let the pages be the pigeons and the dictionaries are the 
pigeonholes. Assigns each to the dictionaries in which it appears then by 
the extended pigeonhole principle are dictionary must contain at least  
 

pages 

 
 

( )61,327 1 61,326
1 1 2045

30 30

− 
+ = + = 
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Example 15: Show that if any 29 people are selected then one may choose 
subset of 5. So that all 5 were born on the same day of the week. 
 
Solution: Assign each person to the day of week on which he and she was 

born. Then n = 29 persons are being assigned to m = 7 pigeonholes. By the 
extended pigeonholes principle at least  
 

persons 

 
Therefore 5 persons must have been born on the same day of the week. 
 
Check Your Progress: 
 
1.  Show that if there are seven numbers from 1 to 12 are chosen then 
 two of them will add to 13. 
 
2.  Let T be an equilateral triangle whose sides has length 1 unit. Show 
 that if any five point are chosen lying on inside T. Then two of them 

 will be more then 
1

2
unit apart 

 
3.  Show that if any Eight positive integer are chosen two of them will 
 have the same remainder when divided by 7. 
 
4.  Show that if seven colors are used to paint 50 bicycles at least eight 
 bicycles must have the same colors. 
 
5.  All 82 entering student of a certain high school take courses in 
 English, History, Maths and science. If three section of each of these 
 four subjects. Show that there are two students that have all four 
 classes together. 
 
6.  Nineteen points are chosen inside a regular hexagon whose side 
 length 1. Prove that two of these points may be chosen whose 

 distance them is less then 
1

3
 

7.  In any group of 15 people there are at least three born on the same 
 day of the week 

 

10.5 COUNTING SUBSET OF A SET 
 
Sets : A set is any well defined collection of distinct objects. Objects could 
be fans in a class room, numbers, books etc. 
 
 For example, collection of fans in a class room collection of all 
people in a state etc. Now, consider the example, collection of Brave 

( ) ( )1 29 1 28
1 1 1 5

7 7

n

m

− −   
+ = + = + =   
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people in a class. Is  it a set? The answer is no because Brave is a relative 
word and it varies from person to person so it is not a set. 
 
Note : Well-defined means that it is possible to decide whether a given 
object belongs to given collection or not. 
 
Subset:  Set A is said to be a subset of B if every element of A is an 

element of B and this is denoted by A ⊆ B or B ⊇ A. If A is not a subset of 

B we write A B⊄  A ⊆ B.For example, 
 

For example, 

1) { } { }2A 1 , B= 1,x x x Z= = ∈  then A B⊆ and B A⊄  

2) N⊆ W ⊆ Z  ⊆Q ⊆ R   

 

Note:   

(1)  Every set A is a subset of itself i.e. A ⊆ A 

(2)  If A ⊆ B but A ≠ B then we say A is a proper subset of B and we 

write A ⊂ B. If A is not a proper subset of B then we write A ⊄ B. 

(3)  ∅ ⊆ A for any set ‘A’ 

(4)  A = B iff A ⊆ B and B ⊆ A 

 
Cardinality of a set:  
The number of elements in a set is called as cardinality of a set and it is 

denoted by n(A) or |A|. For example, 

  (1)  A = {1, 2, 3, 4, 5}, |A| = 5 

  (2)  B = ∅ , |B| = 0 
 

Power set : Let A be a given set. Then set of all possible subsets of A is 
called as a power set of 

(1) If A = {1, 2} than P(A) = { ∅ , {1}, {2}, {1, 2}} 
 
Example 16: If X is a finite set having n elements, then the total number of 
subset of X is 2n 

 

Solution: consider X contain n elements. 

∴ X = {x1, x2 , x3 , x4 ,......., xn} . 
 
There are two possibility of every element of X it may or may not be the 

subset of X . ∴It is true for every element of xi ∈ X . 
 

x2  x3  x4  x ………………… x n 
2  2  2  2 …………………. 2 
 

∴  By multiplication principle, the total number of way it can be done 

 by = 2×2×2×2×..............×2( n times). 
 

= 2 n. 
 

∴ The total number of subset of X is 2n . 
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10.6 COMBINATIONS  
 

Before giving the definition of combination, we need the following 
terminology, which are useful in writing proofs and solving problems 
 
Factorial Notation:  For any integer ≥0,  factorial is denoted by !  is 
defined by, ! = (  1(  2( 3… (2)(1),    for  ≥ 1  with an 
understanding 0!  ! = 1. Thus we have a simple relation, ! =n(n-1!. 
 

In a set {w,x,y,z) + all the combinations taken three at a time are 
{, , +} There are four such combinations. In combinations we are 
concerned only that and  have been selected. And are the same 
combination. Therefore the objects are an unordered. A formal definition 
for a combination is given below: 
 
Definition: An r-combination of n distinct objects is an unordered 

selection, or subset, of r out of the n objects. We use C (n,r)  n

r C  to denote 

the number of r-combinations. This number is called as binomial number. 
 

1 2 3, , ,.......... nx x x x    are n distinct objects, and r is any integer, with 

1 .r n≤ ≤   Therefore selecting r-objects from n objects  is given by 

( )
( )

!
,

! !

n
C n r

r n r
=

−
 

Example 17:  
How many elements of set  3-bit string   with weight 2?  
 
Solution: there are 3-bit with weight 2, i.e. n=3, r=2        

These can be done by  = c (n, r) = c (3, 2) = 3 

Therefore the bit string is 011, 101, 110 
 

Example 18:  A bag contains 4 red marbles and 5 green marbles. Find the 
number of ways that 4 marbles can be selected from the bag, if selection 
contain i) No restriction of colors. ii)  all are of same colors. 

 

Solution: Total number of marbles: 4 Red + 5 Green = 9 marbles 

To select 4 marbles from the bag with condition, 

i)  No restriction of colors: 

These can be done by :  C (9, 4) =  126 ways. 

ii)  All are of same colors: 

 First select the colors by C  (2,1) = 2 

 If all is Red in colors than these can be done = C (4+4) = 1 

  by If all is Green in colors then these can be done by = C (5+4) = 5 

  Therefore total number of ways 2 1 5 10× × =  ways. 
 
Example 19: There are 10 members in a society who are eligible to attend 
annual meeting. Find the number of ways a 4 members can be selected that   
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i) No restriction 

ii) If 2 of them will not attend meeting together. 

iii) If 2 of them will always attend meeting together. 

 
Solution: 

i)  To select 4 members from 10 members, it can be done by = C 
(10,4)=210 ways 

 
ii) If 2 of them will not attend meeting together, 

Let A and B denote the 2 members who will not attend meeting 

together. ( )2 8,3 112C× =   

It possible that both will not attend meeting, i.e.  Neither A nor B will 
attend meeting, these can be done by = c (8,2)=28 ways. 
Therefore total number of ways = 112 + 28 =140 ways.  

  
iii) If 2 of them will  attend meeting together, 

Let  A and B denote the 2 members who will attend meeting together. 
i.e. A or B = C (8,2) = 28 ways 

It possible that both will not attend meeting, i.e.  Neither A nor B will 
attend meeting, these can be done by = C (8,4) 70 ways. 

Therefore total number of ways = 28 +70 = 88 ways. 

 
Example 20: How many diagonal has a regular polygon with n sides?   
 
Solution: The regular polygon with n sides has  n vertices. Any two 
vertices determine either a side or diagonal. Therefore these can be done by  

( )
( )1

,2
2

n n
C n

−
= = . But there are n sides by which are not diagonal.  

Therefore total number of diagonals are 

( ) ( )2 21 31 2 3

2 2 2 2 2

n n n nn n n n
n

− −− −
= − = − = =  diagonals. 

 
10.7.1 r-combinations with Repetition Allowed: 
 

Till now, we have seen the formula for the number of combinations 
when r objects are chosen from the collection of n distinct objects. The 
following results is very important to find the number of selection of n 
objects when not all n are distinct. 
  
The number of selection with repetition of r objects chosen from n types of 
objects is 

( )1,C n r r+ −  

Example 21: How many ways are there to fill a box with a dozen marbles 
chosen five different colors of marbles with the requirement that at least 
one fruit of each colors is picked?  
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Solution: One can pick one marble of each colors and then the remaining 
seven marbles in any way. There is no choice in picking one marble of 
each type. The choice occurs in picking the remaining 7 marbles from 5 
colors. By the result of r-combination with repetition allowed, 

These can be done by ( ) ( )5 7 1,7 11,7 330C C+ − = =  ways 

 
Example 22: How many solution does the following equation 

1 2 3 4 15x x x x+ + + =  have 1 2 3, ,x x x   and 4x are non-negative integers?  

 

Solution: Assume we have four types of unknown 1 2 3, ,x x x   and 4x .There 

are 15 items or units (since we are looking for an integer solution). Every 
time an item is selected it adds one to the type it picked it up. Observe that 
a solution corresponds to a way of selecting 15 items from set of four 
elements. Therefore, it is equal to r-combinations with repetition allowed 
from set with four elements, we have   

( ) ( ) ( )
18 17 16

4 15 1,15 18,15 18,3 816
3 2 1

C C C
× ×

+ − = = = =
× ×

 

 

Example 23: In how many ways can a teacher choose one or more 
students from 5 students?  
 
Solution: Let set of student are 5, therefore total number of subsets are 

52 32=    
To select one or more students, we must deleted empty set,.  
Therefore total number of selection = 32 – 1= 31 ways.  
 

10.7 LET US SUM UP  
 
In this chapter we have learn; 

• Possible tree with multiplication Rule. 

• Counting elements of disjoint sets with addition Rule. 

• The pigeonhole principle and its generalization. 

• Counting subsets of set. 

• Combination and r-combination with repetition allowed. 
 

10.8 UNIT END EXERCISES  
 

1. Suppose A, B, C, …., F is denote island and the line connecting them 
bridges. A man begins at A and walks from island to island. He stops 
for lunch when he cannot continue to walk without crossing the same 
bridge twice. i) Find the number of ways that he can take his walk 
before eating lunch. ii) At which islands cab he eat his lunch? 
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A    B C 

   

   

   

   E F 

 
2.  5 teachers are required to teach maths to 8 divisions of school. In how 

many ways can the teacher chose the classes if one teacher teaches one 
class at a time? 

 
3. In how many ways can 3 prize be awarded to 10students if  i)a student 

is eligible to get only one prize?  ii) a student is eligible to get any 
number of prize? 

 
4. How many four digit passwords can be formed using the digits 

1,2,3,4,5,6,7 if  i) no digit is repeated in password? ii) Repetition of 
digits is allowed in password? 

 
5. How many six digit Gpay  PIN can be generated by using two letters 

and digits, if i) no digit is repeated in PIN? ii) Repetition of digits is 
allowed in PIN? 

 
6. 10 people want to go to the movies, and there are only 7 cars, then at 

least more then one person in the same car. 
 
7. Prove that among the 51 positive integers less than 100. There is  a pair 

whose sum is 100. 
 
8. There are 33 students in the class and sum of their ages 430 year.  Is it 

true that one can find 20 students in the class such that sum of their 
ages greater 260? 

 
9. A bag contains 5 black marbles and 6 white marbles. Find the number 

of ways that five marbles can be drawn from the bag such that it 
contains i) No restriction ii) no black marbles, iii) 3 black and 2 white, 
iv) at least 4 black, v) All are of same colors. 

 
10. A student is to answer 8 out of 10 questions on an exam. Find the 

number of ways that the student can chose the 8 questions if i) No 
restriction, ii) student must answer the first 4 questions, iii) student 
must answer atleast 4 out of the five questions. 

 
11. There are 12 points in a given plane, no three on the same line. i) How 

many triangle are determine by the points? ii) How many of these 
triangle contain a particular point as a vertex? 

 
12. Which regular polygon has the same number of diagonal as sides? 
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13. How many committees of two or more can be selected from 8 people? 
 
14. How many non-integer solutions are there to the equations 

x1+x2+x3+x4+x5=67 
 
15. Find the number of combinations if the letters of the letters of the word 

EXAMINATION taken out at a time. 
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11.0 OBJECTIVES   
 
After going through this unit, you will able to: 

• Know the basic concept of probability. 

• Probability axioms. 

• Conditional probability and its examples. 

• Independent events and multiplication theorem of probability. 

• Baye’s formula of probability. 

• Expected value of probability. 

 

11.1 INTRODUCTION   
 

Some time in daily life certain things come to mind like “I will be 
success today’, I will complete this work in hour, I will be selected for job 
and so on. There are many possible results for these things but we are 
happy when we get required result. Probability theory deals with 
experiments whose outcome is not predictable with certainty.  Probability 
is very useful concept. These days many field in computer science such as 
machine learning, computational linguistics, cryptography, computer 
vision, robotics other also like science, engineering, medicine and 
management.   

 
Probability is mathematical calculation to calculate the chance of 
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occurrence of particular happing, we need some basic concept on random 
experiment , sample space, and events.  

  

11.2 BASIC CONCEPT OF PROBABILITY  
 
Random experiment: When experiment can be repeated any number of 
times under the similar conditions but we get different results on same 
experiment, also result is not predictable such experiment is called random 
experiment. For. e.g.  A coin is tossed, A die is rolled and so on.  
 
Outcomes: The result which we get from random experiment is called 
outcomes of random experiment. 
  
Sample space:  The set of all possible outcomes of random experiment is 
called sample space. The set of sample space is denoted by S and number 
of elements of sample space can be written as(). For e.g. A die is rolled, 

we get { }1,2,3,4,5,6 , ( ) = 6n S=  

 
Events: Any subset of the sample space is called an event. Or a set of 
sample point which satisfies the required condition is called an events. 
Number of elements in event set is denoted by n(). For example in the 

experiment of throwing of a dia. The sample space is { }1,2,3,4,5,6S =  

each of the following can be event i) A: even number i.e. A = { 2, 4, 6}  ii) 
B: multiple of 3 i.e. B = { 3, 6} iii) C: prime numbers i.e. C = { 2, 3, 5}.  
 
Types of events:  
 
Impossible event: An event which does not occurred in random 
experiment is called impossible event. It is denoted by ∅ set. i.e. (∅) = 0. 
For example getting number 7 when die is rolled. The probability measure 
assigned to impossible event is Zero.  
 
Equally likely events: when all events get equal chance of occurrences is 
called equally likely events.  For e.g. Events of occurrence of head or tail 
in tossing a coin are equally likely events. 
 

Certain event: An event which contains all sample space elements is 
called certain events. i.e. n() = () 
 
Mutually exclusive events: Two events A and B of sample space S, it 
does not have any common elements are called mutually exclusive events. 
In the experiment of throwing of a die A: number less than 2 , B: multiple 
of 3. There fore ( ∩ ) = 0 
 
Exhaustive events: Two events A and B of sample space S, elements of 
event A and B occurred together are called exhaustive events. For e.g. In a 
thrown of fair die occurrence of even number and occurrence of odd 
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number are exhaustive events. Therefore ( ∪ ) = 1. 
 
Complement event: Let S be sample space and A be any event than 
complement of A is denoted by  ̅  is set of elements from sample space S, 
which does not belong to A. For e.g. if a die is thrown, S = {1, 2, 3, 4, 5, 6} 
and A: odd numbers,  A = {1, 3, 5}, then  ̅ = {2,4,6}.   
 
Probability: For any random experiment, sample space S with required  
chance of happing event E than the probability of event E is define as 

( )
( )
( )

n E
P E

n S
=  

Basic properties of probability: 

1) The probability of an event E lies between 0 and 1. i.e. 0 ≤ P(E) ≤1. 

2) The probability of impossible event is zero. i.e. (∅) 

3)  The probability of certain event is unity. i.e. ()=1 

4)  If A and B are exhaustive events than probability of  ( ) 1P A B =∪  
(AUB)=10 

5)  If A and B are mutually exclusive events than probability of  
( ) 0P A B =∩  

6)  If A be any event of sample space than probability of complement of A 
is given by () + ( ̅) = 1 ⇒∴ ( ̅) = 1 − (). 

 

11.3 PROBABILITY AXIOMS  
 
Let S be a sample space. A probability function P from the set of all event 
in S to the set of real numbers satisfies the following three axioms for all 
events A and B in S. 
i.)   ( ) 0P A ≥  

ii) ( ) 0P φ =  and P (S) =1 

iii)  If A and B are two disjoint sets ( )A B φ=∩   i.e. equation than the 

probability of the union of A and B is ( ) ( ) ( )P A B P A P B= +∪  

 
Theorem: Prove that for every event A of sample space ,0 ( ) 1S P A≤ ≤  

Proof:   , A AS A A φ= ∪ = ∩  

( ) ( ) ( ) ( )1 A AP S P A A P P∴ = = +∪  

( ) ( )1 A AP P∴ = +  

( ) ( )A 1 AP P⇒ = −  

( ) 0P A ≥ . Than ( ) 1P A ≤  

For every event A 0 (A) 1P≤ ≤  
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11.3.1 Addition theorem of probability:  

Theorem: If A and B are two events of sample space S, then probability of 

union of A and B is given by ( ) ( ) ( )(A B)P P A P B P A B∪ = + − ∩  

Proof:  A and B are two events of sample space S. 
 

S    

     A B∩   B A∩   

         A   

         ∩    

         B   

    

    
 

Now from diagram probability of union of two events A and B is given by, 

( ) ( ) ( )(A B)P P A B P A B P B A∪ = ∩ + ∩ + ∩  

( ) ( )(A B)P P A A B∩ = − ∩  and ( ) ( ) ( )P B A P B P A B∩ = − ∩  

( ) ( ) ( ) ( ) ( ) ( )P A B P A P A B P A B P B P A B∴ ∪ = − ∩ + ∩ + − ∩  

( ) ( ) ( ) ( )P A B P A P B P A B∴ ∪ = + − ∩  

 
Note: The above theorem can be extended  to three events A, B and C as 

shown below: 

( ) ( ) ( ) ( ) ( ) ( )P A B C P A P B P C P A B P B C∴ ∪ ∪ = + + − ∩ − ∩

( ) ( )P C A P A B C− ∩ + ∩ ∩  

 
Example 1:  
A bag contains 4 black and 6 white balls; two balls are selected at random. 
Find the probability that balls are i) both are different colors. ii) both are of 
same colors.  
 
Solution: Total number of balls in bag = 4 blacks + 6 white  = 10 balls  
To select two balls at random, we get  () = (10,2) = 45. 
 
i) A be the event to select both are different colors. 

 
( ) ( ) ( )A 4,1 6,1 4 6 24n C C∴ = × = × =  

 ( )
( )
( )

24
0.53

45

n A
P A

n S
= = =  

ii) To select both are same colors. 
Let Abe the event to select both are black balls 

 
( ) ( )A 4,2 6n C∴ = =  

 

( )
( )
( )

6

45

n A
P A

n S
= =  
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Let B be the event to select both are white balls. 

 
( ) ( )6,2 15n B C∴ = =  

 

( )
( )
( )

15

45

n B
P B

n S
= =  

A and B are disjoint event. 
  The required probability is 

( ) ( ) ( )
6 15 21

0.467
45 45 45

P A B P A P B∴ ∪ = + = + = =  

 
Example 2:  
From 40 tickets marked from 1 to 40, one ticket is drawn at random.  

( ) ( )40,1 40n S C∴ = = Find the probability that it is marked with a 

multiple of 3 or 4.  
 
Solution: From 40 tickets marked with 1 to 40, one ticket is drawn at 
random  
n(S) = C ( 40, 1) = 40  
it is marked with a multiple of 3 or 4, we need to select in two parts. 
 
Let A be the event to select multiple of 3,  

i. e. { }3,6,9...39A =  

( ) ( )13,1 13n A C= =  

( )
( )
( )

13

40

n A
P A

n S
= =  

Let B be the event to select multiple of 4. 

{ }4,8,12......., 40B =  

( ) ( )10,1 10n B C= =  

( )
( )
( )

10

40

n B
P B

n S
= =  

Here A and B are not disjoint.  
A B∩ be the event to select multiple of 3 and 4. 

( )12,24,36A B∩ =  

( ) ( )3,1 3n A B C∩ = =  

( )
( )

( )
3

40

n A B
P A B

n S

∩
∴ ∩ = =  

The required probability is 

( ) ( ) ( ) ( )
13 10 3 20

0.5
40 40 40 40

P A B P A P B P A B∪ = + − ∩ = + − = =  

 

Example 3: If the probability is 0.45 that a program development job; 0.8 
that a networking job applicant has a graduate degree and 0.35 that applied 
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for both. Find the probability that applied for at least one of jobs. If number 
of graduate are 500 then how many are not applied for jobs? 
 

Solution: Let Probability of program development job = ( ) 0.45P A =  

Probability of networking job = ( ) 0.8P B =  

Probability of both jobs = ( ) 0.35P A B∩ =  

Probability of atleast one i.e. to find  
 

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  

( ) 0.45 0.8 0.35 0.9P A B∪ = + − =  

Now there are 500 application, first to find probability that not applied for  

( ) ( )1 1 0.9 0.1P A B P A B∪ = − ∪ = − =   

Number of graduate not applied for job = 0.1 500 50× =            . 

 

Check your Progress: 

1. A card is drawn from pack of 52 cards at random. Find the probability 
that it is a face card or a diamond card 

2.  If  ( )
3

8
P A =  and ( )

5

8
B = ( )

7

8
P A B∪ = than find i) ( )P A B∪  ii)  

 ( )P A B∩  

3.  In a class of 60 students, 50 passed in computers, 40 passed in 
mathematics and 35 passed in both. What is the probability that a 
student selected at random has i) Passed in atleast one subject, ii) failed 
in both the subjects, iii) passed in only one subject. 

 

11.4 CONDITIONAL PROBABILITY  
 

In many case we have the occurrence of an event A  and are required 
to find out the probability of occurrence  an event B  which depend on 
event A this kind of problem is called conditional probability problems.  
 
Definition: Let A and B be two events. The conditional probability of 
event B, if an event A has occurred is defined by the relation, 

( )
( )

( )
/

P B A
P B A

P A

∩
=  if and only if ( ) 0P A >  

In case when P (A) P(B | A ) is not define because  ( ) 0P B A∩ = and 

( )
0

0
P B A =  an indeterminate quantity.    

 

Similarly, Let A and B be two events. The conditional probability of event 
A, if an event B has occurred is defined by the relation, 

( )P A B∪
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( )
( )

( )
/

P A B
P A B

P B

∩
=  If and only if  ( ) 0P B >  

 
Example 4:  A pair of fair dice is rolled. What is the probability that the 
sum of upper most face is 6, given that both of the numbers are odd?   
 
Solution: A pair of fair dice is rolled, therefore  n(s)=36 
A to select both are odd number, i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1,1 , 1,3 , 1,5 , 3,1 , 3,3 , 3,5 , 5,1 , 5,3 , 5,5A =  

( )
( )
( )

9

36

n A
P A

n S
= =  

 

B is event that the sum is 6, i.e. ( ) ( ) ( ) ( ) ( ){ }1,5 , 2,4 , 3,3 , 4,2 , 5,1B =  

 

( )
( )
( )

5

36

n B
P B

n S
= =   

 
( ) ( ) ( ) ( ){ }1,5 , 3,3 , 5,1P A B∩ =  

 

( )
( )

( )
3

36

n A B
P A B

n S

∩
∩ = =  

By the definition of conditional probability, 

 

( )
( )

( )

3
136/ A

9 3
36

P A B
P B

P A

∩
= = =  

 
Example 5: If A and B are two events of sample space S, such that 

( ) ( )0.85, 0.7P A P B= = and ( ) 0.95,P A B∪ =
 

Find i) ( )P A B∩  ii) P (A/B) iii) P(B/A) 

Solution: Given that ( ) ( )0.85, 0.7P A P B= =  and ( ) 0.95,P A B∪ =  

i) By Addition Theorem  

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  

( )0.95 0.85 0.7 P A B= + − ∩  

( ) 1.55 0.95 0.6P A B∩ = − =  
 

ii)  By the definition of conditional probability 

( )
( ) 0.6

/ 0.857
( ) 0.7

P A B
P A B

P B

∩
= = =  

iii) ( )
( ) 0.6

/ 0.706
( ) 0.85

P A B
P B A

P A

∩
= = =  

 

Example 6: An urn A contains 4 Red and 5 Green balls. Another urn B 
contains 5 Red and 6 Green balls. A ball is transferred from the urn A to 
the urn B, then a ball is drawn from urn B. find the probability that it is 
Red.  
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Solution: Here there are two cases of transferring a ball from urn A to B.  
 
Case I: When Red ball is transferred from urn A to B.  

There for probability of Red ball from urn A is  ( )
4

9
AP R =  

After transfer of red ball, urn B contains 6 Red and 6 Green balls.  
Now probability of red ball from urn   

 ( ) ( )
6 4 24

/
12 9 108

B A AB P R R P R= × = × =  

 
Case II: When Green ball is transferred from urn A to B. 

 There for probability of Green ball from urn A is  ( )
5

9
AP G =  

After transfer of red ball, urn B contains 5 Red and 7 Green balls.  
Now probability of red ball from urn  

( ) ( )
5 5 25

/
12 9 108

B A AB P R G P G= × = × =  

Therefore required probability 
24 25 49

0.4537
108 108 108

= + = =  

 
Check your progress: 

1. A family has two children. What is the probability that both are boys, 
given at least one is boy? 

2. Two dice are rolled. What is the condition probability that the sum of 
the numbers on the dice exceeds 8, given that the first shows 4? 

3. Consider a medical test that screens for a COVID-19 in 10 people in 
1000. Suppose that the false positive rate is 4% and the false negative 
rate is 1%. Then 99% of the time a person who has the condition tests 
positive for it, and 96% of the time a person who does not have the 
condition tests negative for it. a) What is the probability that a 
randomly chosen person who tests positive for the COVID-19 
actually has the disease? b) What is the probability that a randomly 
chosen person who tests negative for the COVID-19 does not indeed 
have the disease? 

 

 

 

 

 

 

11.5 INDEPENDENT EVENTS   
 
Independent events: Two events are said to be independent if the 
occurrence of one of them does not affect and is not affected by the 
occurrence or non-occurrence of other. 
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i.e. ( ) ( )BP P B
A

×  or ( ) ( )AP P A
B

=  

 
Multiplication theorem of probability: If A and B are any two events 
associated with an experiment, then the probability of simultaneous 
occurrence of events A and B is given by 

( ) ( ) ( )BP A B P A P
A

∩ =  

 
Where  P( B⁄A ) denotes the conditional probability of event B given that  
event A has already occurred. 

OR 
 

( ) ( ) ( )AP A B P B P
B

∩ =  

Where  ( )AP
B

  denotes the conditional probability of event A given that 

event B has already occurred. 
 
11.5.1 For Independent events multiplication theorem: 
 
If A and B are independent events then multiplication theorem can be 
written as, 

( ) ( ) ( )P A B P A P B∴ ∩ =  

 
Proof: Multiplication theorem can be given by, 
If A and B are any two events associated with an experiment, then the 
probability of simultaneous occurrence of events A and B is given by   

( ) ( ) ( )BP A B P A P
A

∩ =  

By definition of independent events, ( ) ( ) ( ) ( )B AP P B orP P A
A B

= =  

( ) ( ) ( )P A B P A P B∴ ∩ =  

 
Note: 

1)  If A and B are independent event then, A  and B  are independent event. 

2)  If A and B are independent event then, A  and B are independent event. 

3)  If A and B are independent event then, A and B are independent event.  

  
Example 7:   
Manish and Mandar are trying to make Software for company. Probability 

that Manish can be success is 
1

5
 and Mandar can be success is 

3

5
, both are 

doing independently. Find the probability that i) both are success. ii)  At 
least one will get success. iii) None of them will success. iv) Only Mandar 
will success but Manish will not success. 
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Solution:  Let probability that Manish will success is  ( )
1

0.2
5

P A = =  

Therefore probability that Manish will not success is 

( ) ( )1 1 0.2 0.8P A P A= − = − =   

Probability that Mandar will success is ( )
3

0.6
5

P B = =  

Therefore probability that Mandar will not success is 

( ) ( )1 1 0.6 0.4.P B P B= − = − =     

i) Both are success i.e.  ( )P A B∩  

( ) ( ) ( ) 0.2 0.6 0.12P A B P A P B∩ = × = × = ∵A and B are 

independent events. 

ii) At least one will get success. i.e. ( )P A B∪  By addition theorem 

( ) ( ) ( ) ( ) 0.2 0.6 0.12 0.68P A B P A P B P A B∪ = + − ∩ = + − = .  

iii)  None of them will success.  ( )P A B∪   or ( )P A B∩  

[ By De Morgan’s law both are same] 

( ) ( )1 1 0.68 0.32P A B P A B∪ = − ∪ = − =  

Or 
 

If A and B are independent than A and B   and are also independent 

( ) ( ) ( ) 0.8 0.4 0.32P A B P A P B∩ = × = × =  

iv) Only Mandar will success but Manish will not success. i.e. ( )P A B∩  

( ) ( ) ( ) 0.8 0.6 0.48P A B P A P B∩ = × = × =  

 
Example 8: 50 coding done by two students A and B, both are trying 
independently. Number of correct coding by student A is 35 and student B 
is 40. Find the probability of  only one of them will do correct coding.  

Solution: Let probability of student A get correct coding is  P(A) 

( )
35

0.7
50

P A = =  

Probability of student A get wrong coding is ( ) 1 0.7 0.3P A = − =  

Probability of student B get correct coding is ( )
40

0.8
50

P B = =  

Probability of student B get wrong coding is ( ) 1 0.8 0.2P B = − =  

The probability of only one of them will do correct coding.  
i.e. A will correct than B will not or B will correct than A will not. 

( ) ( ) ( ) ( ) ( ) ( )P A B P B A P A P B P B P A∩ + ∩ = × + ×  
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0.7 0.2 0.8 0.3 0.14 0.24 0.38= × + × = + =  
 

Example 9 : Given  that ( ) ( )
3 2

, ,
7 7

P A P B= =  if A and B are independent 

events than find  i) ( )P A B∩  ii) ( )P B   iii) ( )P A B∪  iv) ( )P A B∩  

Solution: Given that ( ) ( )
3 2

, ,
7 7

P A P B= =  

i) A and B are independent events, 

( ) ( ) ( )
3 2 6

0.122
7 7 49

P A B P A P B∴ ∩ = × = × = =  

 ii)  ( ) ( )
2 5

1 1 0.714
7 7

P B P B= − = − = =  

iii)  By addition theorem, 

( ) ( ) ( ) ( )
3 2 6 29

0.592
7 7 49 49

P A B P A P B P A B∪ = + − ∩ = + − = =  

iv) ( ) ( ) ( )1 1 0.592 0.408P A B P A B P A B∩ = ∪ = − ∪ = − =  

 
Check your progress:  

1. If ( ) ( )
2 1

,
5 3

P A P B= =  and if A and B are independent events, find  

(i) ( )P A B∩ , (ii) ( )P A B∪  (iii) ( )P A B∩ . 

2. The probability that A,B, and C can solve the same p-roblem 

independently are 
1 2

,
3 5

 and 
3

4
 respectively. Find the probability that i0 

the problem remain unsolved, ii) the problem is solved , iii) only one of 
them solve the problem. 

3. The probability that Ram can shoot a target is 2/5 and probability of 
Laxman can shoot at the same target is 4/5. A and B shot 
independently.Find the probability that (i) the target is not shot at all, 
(ii) the target is shot by at least one of them. (iii) the target shot by only 
one of them. iv) target shot by both. 

 

 

 

 

11.6 BAYES FORMULA  
 

In 1763, Thomas Bayes put forward a theory of revising the prior 
probabilities of mutually exclusive and exhaustive events whenever new 
information is received. These new probabilities are called as posterior 
probabilities. The generalized formula of bayes theorem is given below:   
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Suppose 1, 2, ,........... kA A A are k mutually exclusive events defined in 

B (a collection of events) each being a subset of the sample space S such 

that 1

K

i iU A S= = and ( ) 0, 1,2........iP A i k> ∀ = . 

 
For Some arbitrary event B, which is associated with Ai such that 

P(B) >0, we can find out the probabilities  

( ) ( ) ( )1 2, ,........... .kP B A P B A P B A  

    
In Baye’s approach we want to find the posterior probability of an 

event Ai given that B has occurred. i.e. ( )iP A B  

By definition of conditional probability, ( )
( )

( )
i

i

p A B
P A B

P B

∩
=  

B S∴ ∈ such that B S B∩ = . 

( )1 2 ........ kB B A A A= ∩ ∪ ∪ ∪  

 

1

K

i iU A S= =  and Ai ’s are disjoint. 

 

i.e.i.e.i.e.i.e.    ( ) ( ) ( )1 2 ....... kB B E B E B E= ∩ ∪ ∩ ∪ ∪ ∩  

( ) ( )
1

k

i
i

P B P B A
=

∴ = ∩∑  

( ) ( ) ( ) ( )
( )

( )
i

i i i

P B A
P B A p A B P B p A B

P B

∩
∩ = × ⇒ =  

But ( ) ( ) ( )i i iP B A p B A P A∩ = and ( ) ( ) ( )
1

/
k

i ii
P B P B A P A

=
=∑  

 
Therefore we get, 

( )
( ) ( )

( ) ( )
1

/
/

i i

i k

i ii

p B A P A
P A B

P B A P A
=

=
∑

  this known as Baye’s formula.    

    
Example 10:  

There are three bags, first bag contains 2 white, 2 black,  2 red 
balls; second bag 3 white, 2 black, 1 red balls and third bag 1 white 2 
black, 3 red balls. Two balls are drawn from a bag chosen at random. 
These are found to be one white and I black. Find the probability that the 
balls so drawn came from the third bag. 

 
Solution: Let  B1  be the first bag, B2  be the second bag and B3 be the third 
bag 

A denotes the two ball are white and black.  
First select the bag from any three bags,))  

( ) ( ) ( )1 2 3

1

3
P B P B P B= = =  

mu
no
tes
.in



217 

 

 
Probability of white and black ball from first bag: 

 

( )
( ) ( )

( )1

2,1 2,1 4
/

6, 2 15

c c
P A B

c

×
= =  

  
Probability of white and black ball from second bag: 

( )
( ) ( )

( )2

3,1 2,1 6
/

6, 2 15

c c
P A B

c

×
= =  

 
Probability of white and black ball from third bag: 

( )
( ) ( )

( )3

1,1 2,1 2
/

6, 2 15

c c
P A B

c

×
= =  

By Baye’s theorem, 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
3 3

3

1 1 2 2 3 3

/
/

/ / /

P B P A B
P B A

P B P A B P B P A B P B P A B
=

+ +
 

1 2
2

13 15 45
1 4 1 6 1 2 12 6

45
3 15 3 15 3 15

×
= = =

× + × + ×
 

 

Example 11:  
 

A company has two factories F1 and F2   that produce the same 
chip, each producing 55% and 45% of the total  production. The 
probability of a defective chip at F1 and F2 is 0.07 and 0.03 respectively. 
Suppose someone shows us a defective chip. What is the probability that 
this chip comes from factory F1. 

Solution: Let  Fi denote the event that the chip is produced by factory. A 
denote the event that chip is defective. 
 
Given that  P(F1) = 55 P(F2)=0.45 P(A|F1) =0.07, P(A|F2) = 0.03 
  
By Bayes’ formula, 

( )
( ) ( )

( ) ( ) ( ) ( )
1 1

1

1 1 2 2

/ 0.55 0.07
/

/ / 0.55 0.07 0.45 0.03

0.0385
0.74

0.052

P F P A F
P F A

P F P A F P F P A F

×
= =

+ × + ×

= =

 

 

11.7 EXPECTED VALUE  
 

In order to understand the behavior of a random variable, we may 
want  to look at its average value.  For probability we need to find Average 
is called expected value of random variable X. for that first we have to 
learn some basic concept of random variable.  
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Random Variable: A probability measurable real valued functions, say X,  
defined over the sample space of a random experiment with respective 
probability is called a random variable.  
 
Types of random variables: There are two type of random variable. 
 
Discrete Random Variable: A random variable is said to be discrete 
random variable if it takes finite or countably infinite number of values. 
Thus discrete random variable takes only isolated values.  
 
Continuous Random variable: A random variable is continuous if its set 
of possible values consists of an entire interval on the number line.   
 
Probability Distribution of a random variable: All possible values of the 
random variable, along with its corresponding probabilities, so that 

1
1

=
=∑ , is called a probability distribution of a random variable.  

The probability function always follow the following properties: 

i. ( ) 0iP x ≥ for all value of i. 

ii. 1
n

ii
P =∑  

 

The set of values ix with their probability iP  constitute a discrete 

probability distribution of the discrete variable X. 
 
For e.g. Three coins are tossed, the probability distribution of the discrete 
variable X is getting head. 
 

iX x=  0 1 2 3 

iP x=  1

8
 

3

8
 

3

8
 

1

8
 

 
Expectation of a random variable (Mean) :  
 

All the probability information of a random variable is contained in 
probability mass function for random variable, it is often useful to consider 
various numerical characteristics of that random variable. One such 
number is the expectation of a random variable. 
 
If random variable X takes values x1, x2, ………….. xn, with corresponding 
probabilities P1, P2, ………….Pn, respectively, then expectation of random 
variable X is 

( )
1

n

i ii
E X p x

=
=∑  where 

1
1

n

ii
p

=
=∑  

 
Example 12:  
 
In Vijay sales  every day sale of  number of laptops with his past 
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experience the probability per day are given below: 
 

No. of laptop 0 1 2 3 4 5 

Probability 0.05 0.15 0.25 0.2 0.15 0.2 

 
Find his expected number of laptops can be sale? 

Solution: Let X be the random variable that denote number of laptop sale 
per day. 

To calculate expected value,   ( )
1

n

i ii
E X p x

=
=∑  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0.05 1 0.15 2 0.25 3 0.2 4 0.15 5 0.2E X = × + × + × + × + × + ×  

( ) 2.85 3E X = ∼  

Therefore expected number of laptops sale per day is 3.  
 
Example 13: A random variable X has probability  mass function as 
follow:   
 

X= ix  -1 0 1 2 3 

P=( ix ) K 0.2 0.3 2k 2k 

 
Find the value of k, and expected value. 
 
Solution: A random variable X has probability mass function, 

1
1

n

ii
p

=
=∑  

0.2 0.3 2 2 1k k k⇒ + + + + =  

5 0.5k⇒ =  

0.1k⇒ =  
 
Therefore the probability distribution of random variable X is 
 

X= ix  -1 0 1 2 3 

P=( ix ) 0.1 0.2 0.3 0.2 0.2 

 

To calculate expected value, ( )
1

n

i ii
E X p x

=
=∑  

( ) ( ) ( ) ( ) ( ) ( )1 0.1 0 0.2 1 0.3 2 0.2 3 0.2 1.2E X = − × + × + × + × + × =  

 
Example 15:  

A box contains 5 white and 7 black balls. A person draws 3 balls at 
random. He gets Rs. 50 for every white ball and losses Rs. 10 every black 
ball. Find the expectation of him.  

Solution: Total number of balls in box = 5 white + 7 black = 12 balls.  
 

To select 3 balls at random,  ( ) ( )
12 11 10

1, 2,3 220
3 2 1

n s C
× ×

= = =
× ×
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Let A  be the event getting white ball. 
A takes value of 0, 1, 2 and 3 white ball.  
 
Case I : no white ball. i.e. A = 0, 

( )
( )7,3 35

0
220 220

C
P A = = =  

 
Case II: one white ball i.e. A = 1, 

( )
( ) ( )5,1 7,2 105

1
220 220

C C
P A

×
= = =  

 
Case III: two white balls i.e. A = 2, 

( )
( ) ( )5,2 7,1 70

2
220 220

C C
P A

×
= = =  

 
Case IV: three white balls i.e. A = 3, 

( )
( )5,3 10

3
220 220

C
P A = = =  

 
Now let X be amount he get from the game. 
Therefore the probability distribution of X is as follows:- 
 

X= ix  -30 30 90 150 

P=( ix ) 35

220
 

105

220
 

70

220
 

10

220
 

 

To calculate expected value, ( )
1

n

i ii
E X p x

=
=∑  

( )
35 105 70 10

30 30 90 150 .45.
220 220 220 220

E X Rs
       

= − × + × + × + × =       
         

 

11.8 LET US SUM UP  
 
In this chapter we have learn: 

• Basic concept of probability like random experiment, outcomes, 
sample space, events and types of events. 

• Probability Axioms and its basic properties. 

• Addition theorem of probability for disjoint events. 

• Condition Probability for dependent events. 

• Independent events. 

• For Independent events multiplication theorem. 

• Baye’s formula and its application. 

• Expected Value for discrete random probability distribution. 
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11.9 UNIT END EXERCISES  
 

1. A card is drawn at random from well shuffled pack of card find the 
probability that it is red or king card. 

2. There are 30 tickets bearing numbers from 1 to 15 in a bag. One 
ticket is drawn from the bag at random. Find the probability that the 
ticket bears a number, which is even, or a multiple of 3. 

3. In a group of 200 persons, 100 like sweet food items, 120 like salty 
food items and 50 like both. A person is selected at random find the 
probability that the person (i). Like sweet food items but not salty 
food items (ii). Likes neither. 

4. A bag contains 7 white balls & 5 red balls. One ball is drawn from 
bag and it is replaced after noting its color. In the second draw again 
one ball is drawn and its color is noted. The probability of the event 
that both the balls drawn are of different colors. 

5. The probability of A winning a race is 
1

3
 & that B wins a race is 

1

5
. 

Find the probability that (a). either of the two wins a race. b), no one 
wins the race.   

6. Three machines A, B & C manufacture respectively 0.3, 0.5 & 0.2 of 
the total production. The percentage of defective items produced by 
A, B & C is 4 , 3 & 2 percent respectively. for an item chosen at 
random , what is the probability it is defective. 

7. An urn A contains 3 white & 5 black balls. Another urn B contains 5 
white & 7 black balls. A ball is transferred from the urn A to the urn 
B, then a ball is drawn from urn B. find the probability that it is 
white. 

8. A husband & wife appear in an interview for two vacancies in the 

same post. The probability of husband selection is 
1

7
 & that of wife’s 

selection is. 
1

5
 What is the probability that, a). both of them will be 

selected. b). only one of them will be selected. c). none of them will 
be selected?  

9. A problem statistics is given to 3 students A,B & C whose chances of 

solving if are 
1 3 1

, &
2 4 4

 respectively. What is the probability that the 

problem will be solved? 

10. A bag contains 8 white & 6 red balls. Find the probability of drawing 
2 balls of the same color. 

11. Find the probability of drawing an ace or a spade or both from a deck 
of cards? 

12. A can hit a target 3 times in a 5 shots, B 2 times in 5 shots & C 3 
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times in a 4 shots. they fire a volley. What is the probability that a).2 
shots hit?  b). at least 2 shots hit? 

13. A purse contains 2 silver & 4 cooper coins & a second purse contains 
4 silver & 4 cooper coins. If a coin is selected at random from one of 
the two purses, what is the probability that it is a silver coin? 

14. The contain of a three urns are : 1 white, 2 red, 3 green balls; 2 white, 
1 red, 1 green balls & 4 white, 5 red, 3 green balls. Two balls are 
drawn from an urn chosen at random. This are found to be 1 white & 
1 green. Find the probability that the balls so drawn come from the 
second urn. 

15. Three machines A,B & C produced identical items. Of there 
respective output 2%, 4% & 5%of items are faulty. On a certain day 
A has produced 30% of the total output, B has produced 25% & C the 
remainder. An item selected at random is found to be faulty. What are 
the chances that it was produced by the machine with the highest 
output? 

16. A person speaks truth 3 times out of 7. When a die is thrown, he says 
that the result is a 1. What is the probability that it is actually a 1? 

17. There are three radio stations A, B and C which can be received in a 
city of 1000 families. The following information is available on the 
basis of a survey: 

(a).  1200 families listen to radio station A  

(b).  1100 families listen to radio station B.  

(c).  800 families listen to radio station C.  

(d).  865 families listen to radio station A & B.  

(e).  450 families listen to radio station A & C.  

(f).   400 families listen to radio station B & C.  

(g).  100 families listen to radio station A, B & C.  

The  probability that a family selected at random listens at least to one 
radio station. 

18. The probability distribution of a random variable x is as follows. 
X 1 3 5 7 9 

P( x ) K 2K 3K 3K K 

Find  value of (i). K  (ii). E(x) 

19. A player tossed 3 coins. He wins Rs. 200 if all 3 coins show tail, Rs. 
100 if 2 coins show tail, Rs. 50 if one tail appears and loses Rs. 40 if 
no tail appears. Find his mathematical expectation. 

20. The probability distribution of daily demand of cell phones in a 
mobile gallery is given below. 

           Find the expected mean . 

Demand 5 10 15 20 

Probability 0.4 0.22 0.28 0.10 
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21. If ( ) ( )
4 7

P ,P
15 15

A B= =  and if A and B are independent events, 

find ( i ( )P A B∩ , (ii) ( )P A B∪ , (iii) ( )P A B∩ . 

22. If ( ) ( )5 2
P ,P

9 9
A B= =  and if A and B are independent events, find 

( i ( )P A B∩ , (ii) ( )P A B∪ , (iii) ( )P A B∩  

23. If ( ) ( )P 0.65,P 0.75A B= = and ( ) 0.45P A B∩ = where A and B are 

events of sample space S, find (i) ( )/P A B , (ii) ( )P A B∪ , (iii) 

( )P A B∩ . 

24. A box containing 5 red and 3 black balls, 3 balls are drawn at 
random from box. Find the expected number of red balls drawn. 

25. Two fair dice are rolled. X denotes the sum of the numbers 
appearing on the uppermost faces of the dice. Find the expected 
value. 
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