
1

UNIT I

1
INTRODUCTION

Unit Structure
1.0 Objectives
1.1 Introduction
1.2 What is operating system

1.2.1 Definition
1.2.2 The Operating System as an Extended Machine
1.2.3 The Operating System as a Resource Manager

1.3 History of operating system
1.3.1 First Generation OS
1.3.2 Second Generation OS
1.3.3 Third Generation OS
1.3.4 Fourth Generation OS
1.3.5 Fifth Generation OS

1.4 Computer hardware
1.4.1 Processor
1.4.2 Memory
1.4.3 Disk
1.4.4 Booting of system

1.5 Let us Sum Up
1.6 List of Reference
1.7 Bibliography
1.8 Unit End Questions

1.0 OBJECTIVES

The objective of the chapter is as follow
• To get familiar with core component of operating systems
• To understand the different generation of operating system
• To understand the different functionality of system

1.1 INTRODUCTION

• Operating systems provides a clear, best and simple view of the
computer to the users.

mu
no
tes
.in

2

• Operating system performs the function of resource handling and
distributing the resources to the different part of the system.

• It is the intermediary between users and the computer system and
provide a level of abstraction due to which complicated details can be
kept hidden from the user.

1.2 WHAT IS OPERATING SYSTEM

1.2.1 Definition:
• Operating System is a system software which acts as an intermediary

between user and hardware.
• Operating System keeps the complicated details of the hardware

hidden from the user and provides user with easy and simple interface.
• It performs functions which involves allocation of resources efficiently

between user program, file system, Input Output device.

Figure 1. Abstract view of Operating system
Reference: Modern Operating system, Fourth edition,

Andrew S. Tanenbaum, Herbert Bos

Explanation of Figure 1:

• The hardware components lies at the bottom of the diagram. It is
considered as the most crucial part of computer system. To protect
the hardware from direct access, it is kept at the lowest level of
hierarchy. Hardware components includes circuits, input output
device, monitor etc

• Operating system runs in the kernel mode of the system wherein the
OS gets an access to all hardware and can execute all machine
instructions. Other part of the system runs in user mode.

2

• Operating system performs the function of resource handling and
distributing the resources to the different part of the system.

• It is the intermediary between users and the computer system and
provide a level of abstraction due to which complicated details can be
kept hidden from the user.

1.2 WHAT IS OPERATING SYSTEM

1.2.1 Definition:
• Operating System is a system software which acts as an intermediary

between user and hardware.
• Operating System keeps the complicated details of the hardware

hidden from the user and provides user with easy and simple interface.
• It performs functions which involves allocation of resources efficiently

between user program, file system, Input Output device.

Figure 1. Abstract view of Operating system
Reference: Modern Operating system, Fourth edition,

Andrew S. Tanenbaum, Herbert Bos

Explanation of Figure 1:

• The hardware components lies at the bottom of the diagram. It is
considered as the most crucial part of computer system. To protect
the hardware from direct access, it is kept at the lowest level of
hierarchy. Hardware components includes circuits, input output
device, monitor etc

• Operating system runs in the kernel mode of the system wherein the
OS gets an access to all hardware and can execute all machine
instructions. Other part of the system runs in user mode.

2

• Operating system performs the function of resource handling and
distributing the resources to the different part of the system.

• It is the intermediary between users and the computer system and
provide a level of abstraction due to which complicated details can be
kept hidden from the user.

1.2 WHAT IS OPERATING SYSTEM

1.2.1 Definition:
• Operating System is a system software which acts as an intermediary

between user and hardware.
• Operating System keeps the complicated details of the hardware

hidden from the user and provides user with easy and simple interface.
• It performs functions which involves allocation of resources efficiently

between user program, file system, Input Output device.

Figure 1. Abstract view of Operating system
Reference: Modern Operating system, Fourth edition,

Andrew S. Tanenbaum, Herbert Bos

Explanation of Figure 1:

• The hardware components lies at the bottom of the diagram. It is
considered as the most crucial part of computer system. To protect
the hardware from direct access, it is kept at the lowest level of
hierarchy. Hardware components includes circuits, input output
device, monitor etc

• Operating system runs in the kernel mode of the system wherein the
OS gets an access to all hardware and can execute all machine
instructions. Other part of the system runs in user mode.

mu
no
tes
.in

3

1.2.2 The Operating System as an Extended Machine:
• The structure of computers system at the machine-language level is

complicated to program, especially for input/output. Programmers
don’t deal with hardware, so a level of abstraction is supposed to be
maintained.

• Operating systems provides layer of abstraction for using disks: files.
• Abstraction allows a programs to create, write, and read files,

without having to deal with the messy details of how the hardware
actually works

• Abstraction is the key to managing all the complexity.
• Good abstractions turn a nearly impossible task into two manageable

ones.
• The first is defining and implementing the abstractions.
• The second is using these abstractions to solve the problem at hand.
• operating system primarily provides abstractions to application

programs in a top- down view
• E.g.: It is much easier to deal with photos, emails, songs, and Web

pages than with the details of these files on SATA (or other) disks.

1.2.3 The Operating System as a Resource Manager:

• Modern computers consist of processors, memories, timers, disks,
mice, network interfaces, printers, and a wide variety of other devices.

• In the bottom-up view, the operating system provides for an orderly
and controlled allocation of the processors, memories, and I/O devices
among the various programs.

• Operating system allows multiple programs to be in memory and run
at the same time.

• Resource management includes multiplexing (sharing) resources in
two different ways: in time and in space.

• In time multiplexed, different programs takes turns using CPU. First
one of them gets to use the resource, then the another, and so on.

• E.g.: Sharing the printer. When multiple print jobs are queued up for
printing on a single printer, a decision has to be made about which one
is to be printed next

• In space multiplexing, Instead of the customers taking turns, each one
gets part of the resource.

• E.g.: main memory is divided up among several running programs, so
each one can be resident at the same time.

mu
no
tes
.in

4

1.3 HISTORY OF OPERATING SYSTEM

English mathematician Charles Babbage (1792–1871) developed the first
true digital computer which was purely mechanical, and the technology of his
day could not produce

1.3.1 First Generation OS:
• First generation were also known as Vacuum Tube
• Single group of people were responsible for creating, building,

programming, operating, and maintenance of each machine
• Programming was done by connecting the electrical circuit on

plugboard with thousands of cables
• Programmer used to sign up for a block of time using the signup sheet

on the wall then come down to the machine room, insert his or her
plugboard into the computer, and spend the next few hours hoping that
none of the 20,000 or so vacuum tubes would burn out during the run.

1.3.2 Second Generation OS:
• Second Generation computers were also known as Transistors and

Batch Systems.
• Computer in this era was reliable and manufactured for the

purpose of selling it to the customers like government agencies or
universities.

• Separate groups were formed for working on designing, building
and coding aspects of computer

• Computers were known as mainframes and were kept in separate
rooms.

• Separate machines were build for calculation and for input/output.
• Programs were known as job. Jobs were entered in groups called as

batch
• Second-generation computers were used for scientific and engineering

calculations of physics and engineering.

Year 1955 -65
Programming language Fortran, assembler
Operating system IBM’s operating system FM
Hardware Transistors and Batch Systems,

punch card, magnetic tape

1.3.3 Third Generation OS:
• Third Generation computers were known ICs and Multiprogramming
• Maintaining two computers were not easy so IBM introduced its first

computer names System 360 made by using Integrated circuit

mu
no
tes
.in

5

• The main purpose of this generation was all software, including the
operating system, OS/360, worked on all models

• Important feature identified in this generation was multiprogramming
where in when one job was waiting for I/O to complete, another job
could be using the CPU. This way maximum utilization of CPU could
be achieved

• Spooling that has an ability to read jobs from cards onto the disk

• Time sharing, which allocates the CPU in turns to number of users

• Third generation computers were used for Large scientific
calculations and massive commercial data-processing runs

1.3.4 Fourth Generation OS:

• Fourth generation computers were also known as Personal computers

• Extremely small size computers could be created using microchips
which made it possible for a single individual to have his own
personal computer

• Companies like Intel and IBM started creating OS for their respective
CPU

• User friendly GUI were built for general purpose usage

• Microsoft came up with different versions of Windows

• Network operating systems and distributed systems became popular in
this era

• In network operating system, users log in to remote machines and
copy files from one machine to another.

• A distributed operating system, is composed of multiple
processors but appears to its users as a single uniprocessor unit

Year 1980 – Present
Programming language High level programming language
Operating system DOS, Windows, UNIX, FreeBSD
Hardware LSI(large Scale Integration) circuit,

chips, transistors
Computers IBM 4341, DEC 10,STAR 100

1.3.5 Fifth Generation OS:
• Fifth generation was also known as Mobile computer, made by

using Ultra Large Scale Integrated Chips
• New operating systems like symbians, Blackberry OS, iOS ,Android

became popular in the market
• Devices become more portable and smaller in size
• Artificial intelligence is used on a large scale to construct a device

mu
no
tes
.in

6

which uses natural language processing for analysis of input.
• Computers in this era were capable of self learning

Year 1990 – Present
Programming language High level programming language
Operating system iOS, Android, Symbians,RIM
Hardware Ultra large scale integrated chip
Computers Handheld devices, wearable devices, PDA,

Smart phone

1.4.1 Processor:
• CPU is the most vital part of the computer. The instructions are

fetched from the memory and executed by CPU using fetch-
decode-execute

• CPUs contains registers inside to hold key variables and temporary
data.

• Special registers called as program counter contains memory
address of the next instruction to be fetched. Program Status
Word contains the condition code bits

• The Intel Pentium 4 introduced multithreading or
hyperthreading to the x86 processor, allowing the CPU to hold
the state of two different threads and then switch back and forth
in nanosecond.

• A GPU is a processor with thousands of tiny cores which are
very good for many small computations done in parallel like
rendering polygons in graphics applications

1.4.2 Memory:
• The basic expectations from the memory is its speed, storage and

performance but a single memory is not capable of fulfilling the same
• The memory system is based on hierarchy of layers.
• Registers inside the CPU forms the top layer in the hierarchy which

gives quick access to data.
• Cache memory is next in the hierarchy. Most heavily used data are kept

inside the cache for high speed access using cache hit and cache miss.
• Two types of cache are present in the system depending upon the

manufacturing company cache L1 and L2
• The cache that is always inside the CPU is L1 which enters decoded

instructions inside the CPU
• L2 cache holds megabytes of memory words which were recently used

The difference between the L1 and L2 caches lies in the timing.
• Main memory comes next in the hierarchy also known as RAM. Cache

Miss request goes inside the main memory for

mu
no
tes
.in

7

Figure 2. Memory hierarchy
Reference: ModernOperating system, Fourth edition, Andrew S.
Tanenbaum, Herbert

Figure 3. Disk Structure
Reference: Modern Operating system, Fourth edition, Andrew S.

Tanenbaum, Herbert Bos

• Disk is a mechanical device capable of storage which is cheaper
and larger than RAM.

• The only problem is that the time to randomly access data on it is
slower.

• A disk consists metal plats that rotate at 5400, 7200, 10,800 RPM or
more.

• An arm pivots over the plats from the corner
• Each of the heads can read an annular region called a track.
• Together, all the tracks for a given arm position form a cylinder.
• Each track is divided into some number of sectors, typically 512 bytes

per sector.

1.4.3Booting the computer:
• Process of loading the kernel is known as booting the system

mu
no
tes
.in

8

• Parent board consist of a program called as BIOS(Basic Input Output
System)

• BIOS starts with its responsibility of checking RAM, basic devices
and PCI buses as soon as the system is booted. It scans and checks
the response of the devices.

• Once the initial check is done, BIOS starts the boot device from the
hard disk

• First section of the boot device is read into the memory and executed
• The secondary boot loader present inside the sector is read inside the

memory
• The loader reads the operating system and starts it

1.5 LET US SUM UP

• Operating System is a system software which acts as an
intermediary between user and hardware

• The Operating System acts as an Extended Machine by providing level
of abstraction.

• Operating System is responsible for Resource allocation
• Five generations of computer operating systems have evolved.

• Different components of hardware interact with operating system
which in turn interacts with the other applications

1.6 LIST OF REFERENCE

Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos
https://www.geeksforgeeks.org/generations-of-computer/

1.7 BIBLIOGRAPHY
Modern Operating System by galvin

1.8 UNIT END QUESTIONS

1. Explain Third Generation operating system
2. Define Operating System. Explain the role of OS as an extended

machine.
3. Write a short note on the fifth generation Operating System.
4. With a suitablediagram, explain the structure of the disk drive.
5. Explain the process of Booting in computer
6. Define Operating System. How it can be used as a resource manager.

mu
no
tes
.in

9

2
OPERATING SYSTEM CONCEPT

Unit Structure
2.0 Objectives
2.1 Introduction
2.2 Different Operating Systems

2.2.1 Mainframe Operating Systems
2.1.1 Server Operating Systems
2.1.2 Multiprocessor Operating System
2.1.3 Personal Operating Systems
2.1.4 Handheld Operating System
2.1.5 Embedded Operating Systems
2.1.6 Sensor-Node Operating System
2.1.7 Real-Time Operating Systems
2.1.8 Smart Card Operating System

2.3 Operating system Concepts
2.4 System Calls

2.4.1 System calls for Process management
2.4.2 System calls for File management
2.4.3 System calls for Directory management
2..4.4 Windows Win32
2.4.4 API

2.5 Operating System
2.5.1 Monolithic System
2.5.2 Layered System
2.5.3 Microkernels
2.5.4 Client Server System
2.5.5 Exokernel

2.6 Let us Sum Up
2.6 List of Reference
2.7 Bibliography
2.8 Unit End Exercise

2.0 OBJECTIVES

• The objective of the chapter is as follow

mu
no
tes
.in

10

• To understand the operating system services provided to the users and
processes,

• To understand the various operating system structures.
• To describe various types of operating system.

2.1 INTRODUCTION

An operating system provides the environment within which
programs are executed. It is important to understand the goals of the
system which will help us to select the algorithm and strategies for the
designing of the system

2.2 DIFFERENT OPERATING SYSTEM

2.2.1 Mainframe Operating Systems:
• Mainframe operating systems are used in web servers of e commerce

websites or servers dedicated for business-to-business transaction.
• The operating systems of Mainframe operating systems are oriented in

such a way that it can handle many jobs simultaneously
• Mainframe Operating systems can deal with large amount of input

output transaction.
• The main services of mainframe operating systems are

• to handle batch processing of jobs.
• to handle transaction processing of multiple request.
• timesharing of servers allowing multiple remote users to have an

access to the server.

2.2.2 Server Operating Systems:
• Server Operating Systems are the ones that runs on the machine which

are dedicated servers.
• Solaris, Linux and Windows are some examples of Server Operating

Systems
• Server Operating Systems allows sharing of multiple resources like

hardware, files or print services
• Web pages are stored on a dedicated server to handle request and

response.

2.2.3 Multiprocessor Operating System:
• Multiprocessor Operating Systems are also known as parallel

computers or multicomputer depending upon how multiple processors
are connected and shared.

mu
no
tes
.in

11

• These computers have high speed communication mechanism with
strong connectivity.

• Personal computer are also created and embedded with the
multiprocessor technology.

• Multiprocessor operating system give high processing speed as
multiple processors into single system.

2.2.4 Personal Operating Systems:
• Personal operating systems are installed in machines used by common

and large number of users.
• They support multiprogramming, running multiple programs like

word, excel, games, and Internet access simultaneously on one
machine.

• Examples Linux, Windows, Mac.

2.2.5 Handheld Operating System:
• Handheld operating systems are found in all handheld devices like

Smart phone and tablets. It is also known as Personal Digital Assistant.
• The most popular operating systems in today’s market are android and

iOS.
• These operating systems need high processing processor. It is also

embedded with different types of sensor.

2.2.6 Embedded Operating Systems:
• Embedded operating systems are designed for those devices which are

not considered as computers. These operating systems are preinstalled
on the devices by the device manufacturer.

• All pre installed softwares are in ROM and no changes could be done
to it by the users.

• The best example of embedded operating systems is washing
machines, oven etc.

2.2.7 Real-Time Operating Systems:
• Real Time Operating systems have strict time constraints due to which

it is used in applications that are very critical in terms of safety.
• Real time operating system are classified into hard real time and soft

real time
• Hard real time systems have very stringent time constraints, certain

actions should occur at that time only. Components are tightly coupled
in hard real time

• Soft real time operating system is the one where missing of deadlines
some time will not cause damage

mu
no
tes
.in

12

2.2.8 Smart Card Operating System:
• Smart Card Operating Systems runs on smart cards. They contain

processor chip embedded inside the CPU chip.
• They have very high processing power and memory constraints
• These operating systems can handle single function like making

electronic payment and are license softwares.

2.3 OPERATING SYSTEM CONCEPTS

Operating Systems concepts deals with process, address space, file,
input output devices

Process: A process is a program which is in execution mode. Each
process has an address space. All data related to process is stored in a table
called as process table. All details for running the program is contained in
the process. A process can reside in anyone of the five states in its life
time. There are background and foreground processes running in the
systems carrying out different functions. These processes communicates
with each other using interprocess communication

Address space: Computer need a mechanism to distinguish between
process sitting inside the main memory. This is done by allocating he
process to an address space. computers addresses are 32 or 64 bits, giving
an address space of 232 or 264 bytes. Virtual address spaces are playing
an important role in dealing with the problem of insufficient memory
space.

Files are the data which the user want to retrieve back from the
computer. Operating systems is supposed to maintain the data in hard disk
and retrieve it from it when ever needed. Operating system arranges files
in the form of hierarchy. The data goes inside the directory.

Shell :Shell is the command interpreter for UNIX. Shell become the
intermediate between the user on the terminal and the operating systems.
Every shell has a terminal for entering the data and to get the output.
Instructions are given in the form of commands to the computer.

2.4 SYSTEM CALLS

It is a way by which user program request for services from the kernel.
System calls provide an interface to the services made available by an
operating system.

Step by step explanation of system call mechansim:
• A process running a user program in user mode want to execute read

instruction a file, it has to execute a trap instruction to transfer control
to the operating system.

mu
no
tes
.in

13

• System call read has three parameters: the first one specifying the file,
the second one pointing to the buffer, and the third one giving the
number of bytes to read.

• count = read(fd, buffer, nbytes);
• the parameters are first pushed onto stack.
• library procedure are called in the step 4
• The library procedure, possibly written in assembly language, typically

puts the system- call number in a place where the operating system
expects it, such as a register (step 5)

• Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel
(step 6).

• The kernel code that starts following the TRAP examines the system-
call number and then dispatches to the correct system-call handler,
usually via a table of pointers to system-call handlers indexed on
system-call number (step 7).

• At that point the system-call handler runs (step 8).
• Once it has completed its work, control may be returned to the user-

space library procedure at the instruction following the TRAP
instruction (step 9).

• 12. This procedure then returns to the user program in the usual way
procedure calls return (step 10).

Figure 2.1 system call for read

Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

2.4.1 System calls for Process management:
• A system to create a new process or a duplicate process is fork

13

• System call read has three parameters: the first one specifying the file,
the second one pointing to the buffer, and the third one giving the
number of bytes to read.

• count = read(fd, buffer, nbytes);
• the parameters are first pushed onto stack.
• library procedure are called in the step 4
• The library procedure, possibly written in assembly language, typically

puts the system- call number in a place where the operating system
expects it, such as a register (step 5)

• Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel
(step 6).

• The kernel code that starts following the TRAP examines the system-
call number and then dispatches to the correct system-call handler,
usually via a table of pointers to system-call handlers indexed on
system-call number (step 7).

• At that point the system-call handler runs (step 8).
• Once it has completed its work, control may be returned to the user-

space library procedure at the instruction following the TRAP
instruction (step 9).

• 12. This procedure then returns to the user program in the usual way
procedure calls return (step 10).

Figure 2.1 system call for read

Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

2.4.1 System calls for Process management:
• A system to create a new process or a duplicate process is fork

13

• System call read has three parameters: the first one specifying the file,
the second one pointing to the buffer, and the third one giving the
number of bytes to read.

• count = read(fd, buffer, nbytes);
• the parameters are first pushed onto stack.
• library procedure are called in the step 4
• The library procedure, possibly written in assembly language, typically

puts the system- call number in a place where the operating system
expects it, such as a register (step 5)

• Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel
(step 6).

• The kernel code that starts following the TRAP examines the system-
call number and then dispatches to the correct system-call handler,
usually via a table of pointers to system-call handlers indexed on
system-call number (step 7).

• At that point the system-call handler runs (step 8).
• Once it has completed its work, control may be returned to the user-

space library procedure at the instruction following the TRAP
instruction (step 9).

• 12. This procedure then returns to the user program in the usual way
procedure calls return (step 10).

Figure 2.1 system call for read

Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

2.4.1 System calls for Process management:
• A system to create a new process or a duplicate process is fork

mu
no
tes
.in

14

• The duplicate process will have all data in the file description and
registers common.

• The original process is known as parent process and the duplicate is
known as the child process

• The fork call returns a value, which is zero in the child and equal to the
child’s PID (Process IDentifier) in the parent.

• System calls like exit would request the services for terminating a
process

• Loading of program or changing of the original image with duplicate
needs execution of exec

• Pid would help to distinguish between child and parent process
• Eg of Process management system calls in Linux
• fork: for creating a duplicate process from parent process
• wait: process are supposed to wait for other processes to complete

their work
• exec: loads the selected program into the memory
• exit: terminates the process

2.4.2 System calls for File management:
• A file is open using a system call open.
• The mode in which the file is supposed to be open is specified using

the parameter. Parameters also consist of the names of the file to open
or a new one to be created.

• The files are closed using the close systems.
• Associated with each file is a pointer that indicates the current position

in the file.
• When reading (writing) sequentially, it normally points to the next

byte to be read (written). The lseek call changes the value of the
position pointer, so that subsequent calls to read or write can begin
anywhere in the file.

• Lseek has three parameters: the first is the file descriptor for the file,
the second is a file position, and the third tells whether the file position
is relative to the beginning of the file, the current position, or the end
of the file.

• Eg of systems calls for file management
• open: for opening the file for reading, writing
• close: to close the opened file
• read: for reading the data from the file into buffer
• write: for writing the data from the buffer into file

mu
no
tes
.in

15

2.4.3 System calls for Directory management:
• mkdir is a system call that creates and empty directories, whereas

rmdir removes an empty directories.
• link allows the same file to appear under two or more names, often in

different directories for allowing several members of the same
programming team to share a common file, with each of them having
the file appear in his own directory, possibly under different names.

• By executing the mount system call, the USB file system can be
attached to the root file system

• The mount call makes it possible to integrate removable media into a
single integrated file hierarchy, without having to worry about which
device a file is on

2.4.5 Windows Win32 API:
• Window’s program are event driven. An event occurs that calls the

procedure to handle it. Windows functioning is most driven by GUI
based interactions like mouse movement. There are system calls which
are exclusively present windows to deal with GUI and many of the
systems calls which are present in UNIX are missing here.Following
are some of it:

• CreateProcess: Creates a new process in Win32
• WaitForSingleObject: Waits for a process to exit
• ExitProcess: Terminates the execution of process
• CreateFile: Opens an existing file or creates a new one

2.5 OPERATING SYSTEM

2.5.1 Monolithic System:
• In the monolithic approach the entire operating system runs as a single

program in kernel mode
• The operating system is written as a collection of procedures, linked

together into a single large executable program.
• Each procedure in the system is free to call any other process
• Being able to call any procedure makes the system very efficient
• No information hiding —every procedure is visible to every other

procedure
• E.g. MS DOS and LINUX
• This organization suggests a basic structure for the operating system:
• Main Function- invokes requested service procedure
• Service Procedures- carry out system calls
• Utility functions- Help service procedures to perform certain tasks

mu
no
tes
.in

16

Disadvantage:

• Difficult and complicated structure
• A crash in any of these procedures will take down the entire operating

system

Figure 2.2 Monolithic Structure

Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

2.5.2 Layered System:

Figure 2.2. Layered Struture
Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

• The operating system is organized as a hierarchy of layers, each one
constructed upon the one below it. The first system constructed in this
way was the THE system. The same concept of layered approach was
also implemented by MULTICS with concentric rings. The procedures

16

Disadvantage:

• Difficult and complicated structure
• A crash in any of these procedures will take down the entire operating

system

Figure 2.2 Monolithic Structure

Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

2.5.2 Layered System:

Figure 2.2. Layered Struture
Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

• The operating system is organized as a hierarchy of layers, each one
constructed upon the one below it. The first system constructed in this
way was the THE system. The same concept of layered approach was
also implemented by MULTICS with concentric rings. The procedures

16

Disadvantage:

• Difficult and complicated structure
• A crash in any of these procedures will take down the entire operating

system

Figure 2.2 Monolithic Structure

Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

2.5.2 Layered System:

Figure 2.2. Layered Struture
Reference: Modern Operating system, Fourth edition, Andrew S.
Tanenbaum, Herbert Bos

• The operating system is organized as a hierarchy of layers, each one
constructed upon the one below it. The first system constructed in this
way was the THE system. The same concept of layered approach was
also implemented by MULTICS with concentric rings. The procedures

mu
no
tes
.in

17

in out rings are supposed to make a system call to access the process in
the inner ring

• The diagram reflects the structure of The operating system with
following details

• Layer 0 dealt with allocation of the processor, switching between
processes when interrupts occurred or timers expired.

• Layer 1 did the memory management. It allocated space for processes
in main memory.

• Layer2 handled communication between each process and the operator
console·

• Layer 3 took care of managing the I/O devices and buffering the
information streams·

• Layer 4 was where the user programs were found.
• Layer 5 : The system operator process was located.
• TRAP instruction whose parameters were carefully checked for

validity before the call was allowed to proceed.

2.5.3 : Microkernels:

• Microkernel structure focusses on making the kernel smaller by
reducing the non essential components from the kernel. These non
essential components are placed in user space.

• The basic idea behind the microkernel design is to achieve high
reliability by splitting the operating system up into small, well-defined
modules.

• the microkernel—runs in kernel mode.
• The main function of microkernel is to provide a communication

facility between the client program and various services that are also
running in user space

17

in out rings are supposed to make a system call to access the process in
the inner ring

• The diagram reflects the structure of The operating system with
following details

• Layer 0 dealt with allocation of the processor, switching between
processes when interrupts occurred or timers expired.

• Layer 1 did the memory management. It allocated space for processes
in main memory.

• Layer2 handled communication between each process and the operator
console·

• Layer 3 took care of managing the I/O devices and buffering the
information streams·

• Layer 4 was where the user programs were found.
• Layer 5 : The system operator process was located.
• TRAP instruction whose parameters were carefully checked for

validity before the call was allowed to proceed.

2.5.3 : Microkernels:

• Microkernel structure focusses on making the kernel smaller by
reducing the non essential components from the kernel. These non
essential components are placed in user space.

• The basic idea behind the microkernel design is to achieve high
reliability by splitting the operating system up into small, well-defined
modules.

• the microkernel—runs in kernel mode.
• The main function of microkernel is to provide a communication

facility between the client program and various services that are also
running in user space

17

in out rings are supposed to make a system call to access the process in
the inner ring

• The diagram reflects the structure of The operating system with
following details

• Layer 0 dealt with allocation of the processor, switching between
processes when interrupts occurred or timers expired.

• Layer 1 did the memory management. It allocated space for processes
in main memory.

• Layer2 handled communication between each process and the operator
console·

• Layer 3 took care of managing the I/O devices and buffering the
information streams·

• Layer 4 was where the user programs were found.
• Layer 5 : The system operator process was located.
• TRAP instruction whose parameters were carefully checked for

validity before the call was allowed to proceed.

2.5.3 : Microkernels:

• Microkernel structure focusses on making the kernel smaller by
reducing the non essential components from the kernel. These non
essential components are placed in user space.

• The basic idea behind the microkernel design is to achieve high
reliability by splitting the operating system up into small, well-defined
modules.

• the microkernel—runs in kernel mode.
• The main function of microkernel is to provide a communication

facility between the client program and various services that are also
running in user space

mu
no
tes
.in

18

• All new services are added to the user space and the kernel don’t need
to be modified.

• Microkernel provides high security and reliability as most of the
services are running in user space , if a service fails the rest operating
system remains untouched.

• Disadvantage
• Performance decrease due to increased system function overhead

2.5.4 Client Server System:

• The servers, each of which provides some service, and the clients,
which use these services. This model is known as the client-server
model.

• Since clients communicate with servers by sending messages, the
clients need not know whether the messages are handled locally on
their own machines, or whether they are sent across a network to
servers on a remote machine.

• As far as the client is concerned,: requests are sent and replies come
back.

• Thus the client-server model is an abstraction that can be used for a
single machine or for a network of machines

2.5.5 Exokernel:
• Exokernel runs in the bottom layer of kernel mode.
• Its job is to allocate resources to virtual machines and then check

attempts to use them to make sure no machine is trying to use
somebody else’s resources.

• The advantage of the exokernel scheme is that it saves a layer of
mapping whereas the virtual machine monitor must maintain tables to
remap disk addresses

• The exokernel need only to keep track of which virtual machine
• has been assigned which resource

18

• All new services are added to the user space and the kernel don’t need
to be modified.

• Microkernel provides high security and reliability as most of the
services are running in user space , if a service fails the rest operating
system remains untouched.

• Disadvantage
• Performance decrease due to increased system function overhead

2.5.4 Client Server System:

• The servers, each of which provides some service, and the clients,
which use these services. This model is known as the client-server
model.

• Since clients communicate with servers by sending messages, the
clients need not know whether the messages are handled locally on
their own machines, or whether they are sent across a network to
servers on a remote machine.

• As far as the client is concerned,: requests are sent and replies come
back.

• Thus the client-server model is an abstraction that can be used for a
single machine or for a network of machines

2.5.5 Exokernel:
• Exokernel runs in the bottom layer of kernel mode.
• Its job is to allocate resources to virtual machines and then check

attempts to use them to make sure no machine is trying to use
somebody else’s resources.

• The advantage of the exokernel scheme is that it saves a layer of
mapping whereas the virtual machine monitor must maintain tables to
remap disk addresses

• The exokernel need only to keep track of which virtual machine
• has been assigned which resource

18

• All new services are added to the user space and the kernel don’t need
to be modified.

• Microkernel provides high security and reliability as most of the
services are running in user space , if a service fails the rest operating
system remains untouched.

• Disadvantage
• Performance decrease due to increased system function overhead

2.5.4 Client Server System:

• The servers, each of which provides some service, and the clients,
which use these services. This model is known as the client-server
model.

• Since clients communicate with servers by sending messages, the
clients need not know whether the messages are handled locally on
their own machines, or whether they are sent across a network to
servers on a remote machine.

• As far as the client is concerned,: requests are sent and replies come
back.

• Thus the client-server model is an abstraction that can be used for a
single machine or for a network of machines

2.5.5 Exokernel:
• Exokernel runs in the bottom layer of kernel mode.
• Its job is to allocate resources to virtual machines and then check

attempts to use them to make sure no machine is trying to use
somebody else’s resources.

• The advantage of the exokernel scheme is that it saves a layer of
mapping whereas the virtual machine monitor must maintain tables to
remap disk addresses

• The exokernel need only to keep track of which virtual machine
• has been assigned which resource

mu
no
tes
.in

19

2.5 LET US SUM UP

1. Different types of operating systems are used in different types of
machines depending upon the need of the user. Some of it are
mainframe operating system, server operating system, embedded
operating system, handheld operating system

2. System calls explains what the operating system does. Different types
of system calls are used in operating system activities like file
management, process creation, directory management.

3. The structure of the operating system has evolved with time. Most
common ones includes monolithic, layered, microkernel etc

2.6 LIST OF REFERENCE

Modern Operating system, Fourth edition, Andrew S. Tanenbaum, Herbert
Bos

2.7 BIBLIOGRAPHY

Operating System concepts, Eighth edition, Silberschatz, Galvin Gagne

2.8 UNIT END EXERCISE

1. Explain the micro kernel approach of Operating System design
2. Explain client-server model
3. List various Operating Systems. Explain any two.
4. With suitable diagram explain the structure of disk drive.
5. What do you mean by system call? Write system calls for directory

management.
6. List and explain any five system calls used in file management

mu
no
tes
.in

20

3
PROCESSES AND THREADS

Unit Structure
3.0 Objectives
3.1 Introduction
3.2 Process

3.2.1 Process Creation
3.2.2 Process Termination
3.2.3 Process State

3.3 Threads
3.3.1 Thread Usage
3.3.2 Classical Thread Model
3.3.3 Implementing thread in User Space
3.4.4 Implementing thread in Kernel Space
3.4.5 Hybrid Implementation

3.4 Interprocess Communication
3.4.1 Race Condition
3.4.2 Critical Region
3.4.3 Mutual Exclusion and busy waiting
3.4.4 Sleep and Wake up
3.4.5 Semaphores
3.4.6 Mutex

3.5 Scheduling
3.5.1 First Come First Serve Scheduling
3.5.2 Shortest Job First Scheduling
3.5.3 Priority Scheduling
3.5.4 Round Robin Scheduling
3.5.5 Multiple Queue

3.6 Classical IPC problem
3.6.1 Dinning Philosopher
3.6.2 Reader Writer

3.7 Let us Sum Up
3.8 List of Reference
3.9 Bibliography
3.10 Unit End Questions

mu
no
tes
.in

21

3.0 OBJECTIVES

• The objective of the chapter is as follow.
• To understand process and thread and its importance in operating

system.
• To understand various concepts related to process like scheduling,

termination, creation.
• To understand interprocess communication in process.

3.1 INTRODUCTION

• The most important concept of any operating system is process which
is an abstraction of a running program.

• They support the ability to perform concurrent operation even with
single processorModern computing exists only because of process.

• Operating system can make the computer more productive by
switching the CPU between processes

3.2PROCESS

• Definition : Process is a program in execution
• A running process are organized into sequential processes. Every

process needs CPU for completing its execution. CPU switches back
and forth between these running processes

• In any multiprogramming system, the CPU switches from process to
process quickly, running each for tens or hundreds of milliseconds

• A process is an activity of some kind. It has a program, input, output,
and a state.

o A single processor may be shared among several processes, with some
scheduling algorithm being accustomed to determine when to stop
work on one process and service a different one. In contrast, a program
is something that may be stored on disk, not doing
anythingProcessmemory is divided into four sections:

• The text section comprises the compiled program code, read in from
non-volatile storage when the program is launched.

• The data section stores global and static variables, allocated and
initialized prior to executing main.

• The heap is used for dynamic memory allocation, and is managed via
calls to new, delete, malloc, free, etc.

• The stack is used for local variables

mu
no
tes
.in

22

3.2.1 Process Creation:
Four principle events cause processes to be created:

1. System initialization:
• When an operating system is booted, numerous processes are created.
• Some of these are foreground processes: processes that interact with

(human) users and perform work for them.
• Others run in the background also called as daemons and not

associated with particular users, but instead have some specific
function.

2. Execution of a process-creation system call by a running process.
• A running process will issue system calls to create one or more new

processes to help it do its job

3. A user request to create a new process:

• A new process is created by having an existing process execute a
process creation system call

• In UNIX, system call to create a new process: fork()

• In Windows, CreateProcess(), with 10 parameters handles both process
creation and loading the correct program into the new process.

4. Initiation of a batch job:
• Users can submit batch jobs to the system.
• When the operating system creates a new process and runs the next job

from the input queue in it

3.2.2 Process Termination:
Process can be terminated by a call to kill in UNIX or TerminateProcess in
windows Process will be terminated due to following reason Normal exit:
• Most processes terminates when they have completed their work and

executes a system call to exit
• This call is exit() in UNIX and ExitProcess in windows

Error exit:
• The third type of error occurs due to program bug like executing an

illegal instruction, referencing
• 3on-existent memory or dividing by zero.

Fatal exit:
• A termination of a process occurs when it discovers a fatal error.
• For example, if a user types the command

mu
no
tes
.in

23

• cc xyz.c
• to compile the program xyz.c and if no such file exists, the compiler

simply announces this fact and exits.

Killed by another process:
A process executes a system call to kill some other process.
In UNIX this call is called as kill. The corresponding Win32 function is
TerminateProcess.

3.2.3 Process States:

Figure 3.1
Reference: “Operating System Concepts” by Abraham Silberschatz,
Greg Gagne, and Peter Baer Galvin

Process model makes it easier to understand what is going on
inside the system. Some of the processes run programs that carry out
commands typed in by a user other processes are part of the system
processes.

When a disk interrupt occurs, the system makes a decision to stop
running the current process and run the disk process, which was blocked
waiting for that interrupt.

Any process in the system is present in any one of the given states

New – The process is in the stage of being created.
Ready – The process has all the resources available that it needs to run,
but the CPU is not currently working on this process’s instructions.

Running – The CPU is working on this process’s instructions.
Waiting – The process cannot run at the moment, because it is waiting for
some resource to become available or for some event to occur. For
example the process may be waiting for keyboard input, disk access
request, inter-process messages, a timer to go off, or a child process to
finish.
Terminated – The process has completed.

23

• cc xyz.c
• to compile the program xyz.c and if no such file exists, the compiler

simply announces this fact and exits.

Killed by another process:
A process executes a system call to kill some other process.
In UNIX this call is called as kill. The corresponding Win32 function is
TerminateProcess.

3.2.3 Process States:

Figure 3.1
Reference: “Operating System Concepts” by Abraham Silberschatz,
Greg Gagne, and Peter Baer Galvin

Process model makes it easier to understand what is going on
inside the system. Some of the processes run programs that carry out
commands typed in by a user other processes are part of the system
processes.

When a disk interrupt occurs, the system makes a decision to stop
running the current process and run the disk process, which was blocked
waiting for that interrupt.

Any process in the system is present in any one of the given states

New – The process is in the stage of being created.
Ready – The process has all the resources available that it needs to run,
but the CPU is not currently working on this process’s instructions.

Running – The CPU is working on this process’s instructions.
Waiting – The process cannot run at the moment, because it is waiting for
some resource to become available or for some event to occur. For
example the process may be waiting for keyboard input, disk access
request, inter-process messages, a timer to go off, or a child process to
finish.
Terminated – The process has completed.

23

• cc xyz.c
• to compile the program xyz.c and if no such file exists, the compiler

simply announces this fact and exits.

Killed by another process:
A process executes a system call to kill some other process.
In UNIX this call is called as kill. The corresponding Win32 function is
TerminateProcess.

3.2.3 Process States:

Figure 3.1
Reference: “Operating System Concepts” by Abraham Silberschatz,
Greg Gagne, and Peter Baer Galvin

Process model makes it easier to understand what is going on
inside the system. Some of the processes run programs that carry out
commands typed in by a user other processes are part of the system
processes.

When a disk interrupt occurs, the system makes a decision to stop
running the current process and run the disk process, which was blocked
waiting for that interrupt.

Any process in the system is present in any one of the given states

New – The process is in the stage of being created.
Ready – The process has all the resources available that it needs to run,
but the CPU is not currently working on this process’s instructions.

Running – The CPU is working on this process’s instructions.
Waiting – The process cannot run at the moment, because it is waiting for
some resource to become available or for some event to occur. For
example the process may be waiting for keyboard input, disk access
request, inter-process messages, a timer to go off, or a child process to
finish.
Terminated – The process has completed.

mu
no
tes
.in

24

3.3 THREAD

3.3.1 Thread Usage:
▪ A thread is a basic unit of CPU utilization, consisting of a program

counter, a stack, and a set of registers.
▪ A process have a single thread of control – There is one program

counter, and one sequence of instructions that can be carried out at any
given time

▪ Decomposing an application into multiple sequential threads that run
in quasi-parallel, the programming model becomes simpler

▪ Thread has an ability to share an address space and all of its data
among themselves. This ability is essential for certain applications.

▪ Threads are lighter weight than processes, they are faster to create and
destroy than processes.

3.3.2 Classical Thread Model:
▪ A process contains a number of resources such as address space, open

files, accounting information, etc.
▪ In addition to these resources, a process has a thread of control, e.g.,

program counter, register contents, stack.
▪ The idea of threads is to permit multiple threads of control to execute

within one process.
▪ This is often called multithreading and threads are also known as

lightweight processes. Since threads in the same process share state
and stack so switching between them is much less expensive than
switching between separate processes.

▪ Individual threads within the same process are not completely
independent but are cooperating and all are from the same process.

▪ The shared resources makes it easier between threads to use each other
resources.

▪ A new thread in the same process is created by a library routine like
thread_create; similarly thread_exit terminatea a thread.

3.3.3 Implementing thread in User Space:
▪ The entire thread package is kept in the user space and kernel has no

knowledge about it.
▪ Kernel manages ordinary and single threaded processes
▪ The threads run on top of a run-time system.
▪ Run time system is a collection of procedures that manage threads.
▪ e.g. pthread create, pthread exit, pthread join, and pthread yield,
▪ Each process needs to have its own private thread table to keep track

of the threads in that process.

mu
no
tes
.in

25

▪ The thread table keeps a track of each thread’s properties
▪ Thread tables are managed by runtime system

Advantages:
▪ Can be implemented on the OS that do not support thread and thread

are implemented by library
▪ Requires no modification in the operating system.
▪ It gives better performance as there is no context switching involved

from kernel.
▪ Each process is allowed to have its own customized scheduling

algorithm.

Disadvantages
• Implementing blocking system calls would cause all thread to stop.
• If a thread starts running, no other thread would be able to run unless

the thread voluntarily leaves the CPU.

Figure 3.2
3.3.4 Implementing thread in User Kernel:
• Kernel manages the thread by keeping a track of all threads by

maintaining a thread table in the system.
• When a thread wants to create a new thread or destroy an existing

thread, it makes a kernel call, which then does the creation or
destruction by updating the kernel thread table.

• The kernel’s thread table holds each thread’s registers, state, and other
information and also maintains the traditional process table to keep
track of processes

Advantages:
• Thread-create and friends are now systems and hence much slower.

25

▪ The thread table keeps a track of each thread’s properties
▪ Thread tables are managed by runtime system

Advantages:
▪ Can be implemented on the OS that do not support thread and thread

are implemented by library
▪ Requires no modification in the operating system.
▪ It gives better performance as there is no context switching involved

from kernel.
▪ Each process is allowed to have its own customized scheduling

algorithm.

Disadvantages
• Implementing blocking system calls would cause all thread to stop.
• If a thread starts running, no other thread would be able to run unless

the thread voluntarily leaves the CPU.

Figure 3.2
3.3.4 Implementing thread in User Kernel:
• Kernel manages the thread by keeping a track of all threads by

maintaining a thread table in the system.
• When a thread wants to create a new thread or destroy an existing

thread, it makes a kernel call, which then does the creation or
destruction by updating the kernel thread table.

• The kernel’s thread table holds each thread’s registers, state, and other
information and also maintains the traditional process table to keep
track of processes

Advantages:
• Thread-create and friends are now systems and hence much slower.

25

▪ The thread table keeps a track of each thread’s properties
▪ Thread tables are managed by runtime system

Advantages:
▪ Can be implemented on the OS that do not support thread and thread

are implemented by library
▪ Requires no modification in the operating system.
▪ It gives better performance as there is no context switching involved

from kernel.
▪ Each process is allowed to have its own customized scheduling

algorithm.

Disadvantages
• Implementing blocking system calls would cause all thread to stop.
• If a thread starts running, no other thread would be able to run unless

the thread voluntarily leaves the CPU.

Figure 3.2
3.3.4 Implementing thread in User Kernel:
• Kernel manages the thread by keeping a track of all threads by

maintaining a thread table in the system.
• When a thread wants to create a new thread or destroy an existing

thread, it makes a kernel call, which then does the creation or
destruction by updating the kernel thread table.

• The kernel’s thread table holds each thread’s registers, state, and other
information and also maintains the traditional process table to keep
track of processes

Advantages:
• Thread-create and friends are now systems and hence much slower.

mu
no
tes
.in

26

• A thread that blocks causes no particular problem. The kernel can run
another thread from this process or can run another process.

• Similarly a page fault in one thread does not automatically block the
other threads in the process.

Disadvantages:
• Relatively greater cost of creating and destroying threads in the kernel
• When a signal comes in then which thread should handle it is a

problem

Figure 3.4
3.3.5 Hybrid implementation:

• Hybrid implementation combines the advantages of userlevel threads
with kernel-level threads. One way is use kernel-level threads and then
multiplex user-level threads onto some or all of them.

• This model provides maximum flexibility
• The kernel is aware of only the kernel-level threads and schedules

those.
• These user-level threads are created, destroyed, and scheduled like the

user-level threads in a process that runs on an operating system
without multithreading capability

Figure 3.4
26

• A thread that blocks causes no particular problem. The kernel can run
another thread from this process or can run another process.

• Similarly a page fault in one thread does not automatically block the
other threads in the process.

Disadvantages:
• Relatively greater cost of creating and destroying threads in the kernel
• When a signal comes in then which thread should handle it is a

problem

Figure 3.4
3.3.5 Hybrid implementation:

• Hybrid implementation combines the advantages of userlevel threads
with kernel-level threads. One way is use kernel-level threads and then
multiplex user-level threads onto some or all of them.

• This model provides maximum flexibility
• The kernel is aware of only the kernel-level threads and schedules

those.
• These user-level threads are created, destroyed, and scheduled like the

user-level threads in a process that runs on an operating system
without multithreading capability

Figure 3.4
26

• A thread that blocks causes no particular problem. The kernel can run
another thread from this process or can run another process.

• Similarly a page fault in one thread does not automatically block the
other threads in the process.

Disadvantages:
• Relatively greater cost of creating and destroying threads in the kernel
• When a signal comes in then which thread should handle it is a

problem

Figure 3.4
3.3.5 Hybrid implementation:

• Hybrid implementation combines the advantages of userlevel threads
with kernel-level threads. One way is use kernel-level threads and then
multiplex user-level threads onto some or all of them.

• This model provides maximum flexibility
• The kernel is aware of only the kernel-level threads and schedules

those.
• These user-level threads are created, destroyed, and scheduled like the

user-level threads in a process that runs on an operating system
without multithreading capability

Figure 3.4

mu
no
tes
.in

27

3.4 INTERPROCESS COMMUNICATION
• It is a mechanism that allows the exchange of data between processes
• Enables resource and data sharing between the processes without

interference.
• To provide information about process status to other processes.
• Three problems which are faced,
• How one process can pass information to another?
• The second has to do with making sure two or more processes do not

get in each other’s way.

• The third concerns proper sequencing when dependencies are present.

3.4.1 Race Condition:
1. In operating system processes that are working together may share

some common storage that each one can read and write.
2. The shared storage may be in main memory.
3. Several processes access and manipulates shared data simultaneously.
4. Final value of shared data depends upon which process finishes last.

Fig. shows

Figure 3.5

1. In the above example, file name is entered in the special spooler
directory for printing.

2. he printer daemon prints the files and then removes their names from
the directory.

3. Imagine that our spooler directory has a very large number of slots,
numbered 0, 1, 2, …, each one capable of holding a file name.

mu
no
tes
.in

28

4. two shared variables,
5. in – variable pointing to next free slot
6. out – variable pointing to next file to be printed.
7. Process A reads in and stores the value, 7, next free slot. Just then a

clock interrupt occurs and the CPU decides that process switches to
process B.

8. Process B also reads in and gets a 7 in local variable next free slot.
9. Process B now continues to run. It stores the name of its file in slot 7

and Then it goes off and does other things.
10. Eventually, process A runs again, starting from the place it left off.
11. It looks at next free slot, finds a 7 there, and writes its file name in slot

7, erasing the name that process B just put there.

3.4.2 Critical Region:

Definition: Part of the program where the shared memory is accessed is
called the critical region or critical section

Race condition can be avoided by ensuring that no two processes are ever
in their critical regions at the same time.

Following four conditions needed to have a good solution:
1. No two processes may be simultaneously inside their critical regions.
2. No assumptions may be made about speeds or the number of CPUs.
3. No process running outside its critical region may block any process.
4. No process should have to wait forever to enter its critical region.

3.4.3 Mutual Exclusion and busy waiting:

No other process will enter its critical region, when one process is
in its critical region; Following are the ways for achieving mutual
exclusion

3.4.3.1 Disabling interrupts:
• Each process disables all interrupts just after entering in its critical

section and re-enable all interrupts just before leaving critical section.
• With interrupts turned off the CPU could not be switched to other

process. Hence, no other process will enter its critical section and
mutual exclusion will be achieved.

• But disabling interrupts is sometimes a useful technique within the
kernel of an operating system, but it is not appropriate as a general
mutual exclusion mechanism for user’s process. The reason is that it is
unwise to give user process the power to turn off interrupts.

mu
no
tes
.in

29

3.4.3.2 Lock Variables:

A single, shared, lock variable is considered initially at 0. When a
process wants to enter in its critical section, it first test the lock. If lock is
0, the process first sets it to 1 and then enters the critical section. If the
lock is already 1, the process just waits until lock variable becomes 0.
Thus, a 0 means that no process in its critical section, and 1 means to wait
since some process is in its critical section.

But the technique has a drawback as explained Suppose that one
process reads the lock and sees that it is 0. Before it can set the lock to 1,
another process is scheduled, runs, and sets the lock to 1.

When the first process runs again, it will also set the lock to 1, and
two processes will be in their critical regions at the same time.

3.4.2.3 Strict Alternation:

The integer variable ‘turn’ keeps track of whose turn is to enter the
critical section. Initially, process A inspect turn, finds it to be 0, and enters
in its critical section.

Process B also finds it to be 0 and sits in a loop continually testing
‘turn’ to see when it becomes 1. Continuously testing a variable waiting
for some value to appear is called the Busy-Waiting.
Busy waiting wastes CPU time and should be avoided

3.4.4 Sleep and Wake:
sleep: A system call that causes the caller to block or remain suspended
until another process wakes it up.
Wakeup: The process to be awakened is passed as a parameter to the
wakeup system call.

3.4.4.1 Producer Consumer Problem (Bounded Buffer):
• The producer-consumer problem also known as bounded buffer

problem which assumes that there is a fixed sized buffer available.
• To suspend the producers when the buffer is full, to suspend the

consumers when the buffer is empty, and to make sure that only one
process at a time manipulates a buffer so there are no race conditions.

• Two processes share a common, fixed-size (bounded) buffer. The
producer puts information into the buffer and the consumer takes
information out.

• Problem arises if the following scenario comes across:
• The producer wants to put a new data in the buffer, but buffer is

already full.

mu
no
tes
.in

30

Solution: Producer goes to sleep and to be awakened when the consumer
has removed data. The consumer wants to remove data from the buffer but
buffer is already empty.

Solution: Consumer goes to sleep until the producer puts some data in
buffer and wakes consumer up.

Conclusion:

This approaches also leads to same race conditions we have seen in
earlier approaches. Race condition can occur due to the fact that access to
‘count’ is unconstrained. The essence of the problem is that a wakeup call,
sent to a process that is not sleeping, is lost.

3.4.5 Semaphore:

E. W. Dijkstra (1965) suggest semaphore, an integer variable to
count the number of wakeups saved for future use. A semaphore could
have the value 0, indicating that no wakeups were saved, or some positive
value if one or more wakeups were pending.

Two operations are performed on semaphores called as
down(sleep) and up(wakeup). Processes to synchronize their activities.
These operations are also known as: wait() denoted by P and signal() is
denoted by V. wait(S)
{
while (S <= 0)
;
S—;
}

signal(S)
{ S++;
}

3.4.6 Mutex:
• Mutex is a simplified version of the semaphore used for managing

mutual exclusion of shared resources.
• They are easy and efficient to implement and useful in thread packages

that are implemented entirely in user space.
• A mutex is a shared variable that can be in one of two states: unlocked

orLocked.
• The semaphore is initialized to the number of resources available.
• Each process that wishes to use a resource performs a wait() operation

on the semaphore. When a process releases a resource, it performs a
signal() operation.

mu
no
tes
.in

31

• When the count for the semaphore goes to 0, all resources are being
used.

• Any processes that wish to use a resource will block until the count
becomes greater than 0.

3.5 SCHEDULING
• The part of the operating system that makes the choice is called the

scheduler, and the algorithm it uses is called the scheduling algorithm
• Processes are of two types Compute bound or Input output bound

Compute-bound processes have long CPU bursts and infrequent I/O
waits I/O-bound processes have short CPU bursts and frequent I/O
waits.

• The length of the CPU burst is an important factor
• It takes the same time to issue the hardware request to read a disk

block no matter how much or how little time it takes to process the
data after they arrive. Scheduling is of two types preemptive and non
preemptive

• Scheduling algorithm are classified as Batch, Interactive and Real
Time

• CPU scheduling takes place when one of the following condition is
true Switching of process from the running state to waiting state

• Switching of process from the running state to ready state Switching of
process from the waiting state to ready state When a process
terminates

• scheduling under conditions 1 and 4 is called as non-preemptive
scheduling. scheduling under conditions 2 and 3 is preemptive
scheduling

3.5.1 First Come First Serve(Fcfs):
• It is a non preemtive algorithm where the ready queue is based on

FIFO procedure.
• Processes are assigned to the CPU in the order they requested it.
• The strength of FCFS algorithm is that it is easy to understand and

equally easy to program.
• It has a major disadvantage of high amount of waiting time
• It also suffers from convoy effect where in many small process have to

wait for a longer process to release CPU.

Process Burst
Time

Arrival Start Wait Finish TA

1 24 0 0 0 24 24
2 3 0 24 24 27 27
3 3 0 27 27 30 30

mu
no
tes
.in

32

Gantt chart:

average waiting time: (0+24+27)/3 = 17
average turnaround time: (24+27+30) = 27

3.5.2 Shortest Job First(SJF):
• Each process is associated the length of its next CPU burst.
• According to the algorithm the scheduler selects the process with the

shortest time SJF is of two types
• non-preemptive: A process once scheduled will continue running

until the end of its CPU burst time preemptive also known as shortest
remaining time next(SRTN): A process preempt if a new process
arrives with a CPU burst of less length than the remaining time of the
currently executing process. SJF is an optimal algorithm which gives
minimum average waiting time for any set of processes but suffers
from the drawback of assuming the run times are known in advance.

SJF (Non Preemptive)

Process Burst
Time

Arrival Start Wait Finish TA

1 6 0 3 3 9 9
2 8 0 16 16 24 24
3 7 0 9 9 16 16
4 3 0 0 0 3 3

Gantt chart:

average waiting time: (3+16+9+0)/4 = 7
average turnaround time: (9+24+16+3)/4 = 13

Process Burst Time Arrival Start Wait Finish TA
1 8 0 0 9 17 17
2 4 1 1 0 5 4
3 9 2 17 15 26 24
4 5 3 5 2 10 7

average waiting time: (9+0+15+2)/4 = 6.5
average turnaround time: (17+4+24+7)/4 = 13

mu
no
tes
.in

33

3.5.3 Priority Scheduling:
• Priority scheduling associates a priority number with each process in

its PCB block
• The runnable process with the highest priority is assigned to the CPU
• A clash of 2 processes with the same priority is handled using FCFS
• The need to take external factors into account leads to priority

scheduling.
• To prevent high-priority processes from running indefinitely, the

scheduler may decrease the priority of the currently running process at
each clock tick

• Priorities can be assigned to processes statically or dynamically
• The algorithm faces with starvation low priority processes may never

execute, they may have to wait indefinitely for the CPU therefore as a
solution ageing is attached with each

Process Burst
Time

Priority
Number

Arrival Start Wait Finish TA

1 10 3 0 6 6 16 16
2 1 1 0 0 0 1 1
3 2 4 0 16 16 18 18
4 1 5 0 18 18 19 19
5 5 2 0 1 1 6 6

average waiting time: (6+0+16+18+1)/5 = 8.2
average turnaround time: (16+1+18+19+6)/4 = 12

3.5.4 Round Robin Scheduling(RR):
• Round Robin scheduling algorithm has been designed specifically for

time sharing system
• Time quantum or time slice is a small unit of time defined after which

pre-emption of process would take place.
• The ready queue is based on FIFO order with each process getting

access in circular manner
• The RR scheduling algorithm is thus preemptive. If there are n

processes in the ready queue and the time quantum is q, then each
process gets 1/n of the CPU time in chunks of at most q time units.

• Each process must wait no longer than (n 1) × q time units until its
next time quantum.

• The selection of time slice (q) plays an important role.

mu
no
tes
.in

34

if q is very large, Round Robin behaves like FCFS
if q is very small, it will result into too many context switch leading to
the overhead time

Process Burst
Time

Arrival Start Wait Finish TA

1 24 0 0 6 30 30
2 3 0 4 4 7 7
3 3 0 7 7 10 10

Time quantum = 4
Gantt chart:

Average Waiting Time: (6+4+7)/3= 5.67
Average Turn around Time: (30+7+10) = 15.67

3.5.5 Multiple Queues:
• Division is made between foreground or interactive and background or

batch processes and batch processes
• These two types of processes have different response-time

requirements and so may have different scheduling needs.
• foreground processes may have priority over background processes.
• A multilevel queue scheduling algorithm partitions the ready queue

into several separate queues
• The processes are permanently assigned to one queue, generally based

on some property of the process, such as memory size, process
priority, or process type.

• Each queue has its own scheduling algorithm.
• The foreground queue might be scheduled by an RR algorithm, while

the background queue is scheduled by an FCFS algorithm
• There must be scheduling among the queues, which is commonly

implemented as fixed- priority preemptive scheduling

3.6 CLASSICAL IPC PROBLEM

3.6.1 Dinning Philosophers problem:
• Five silent philosophers sit at a round table with bowls of spaghetti.

Forks are placed between each pair of adjacent philosophers.
• Each philosopher must alternately think and eat.

mu
no
tes
.in

35

• However, a philosopher can only eat spaghetti when he has both left
and right forks. Each fork can be held by only one philosopher and so
a philosopher can use the fork only if it is not being used by another
philosopher.

• After he finishes eating, he needs to put down both forks so they
become available to others.

• A philosopher can take the fork on his right or the one on his left as
they become available, but cannot start eating before getting both of
them.

• The problem is how to design a discipline of behaviour (a concurrent
algorithm) such that no philosopher will starve.

• Mutual exclusion is the basic idea of the problem; the dining
philosophers create a generic and abstract scenario useful for
explaining issues of this type.

• The failures these philosophers may experience are analogous to the
difficulties that arise in real computer programming when multiple
programs need exclusive access to shared resources

Problem:

Dinning philosopher suffers from the problem of deadlock when
everyone want to eat simultaneously. If all five philosophers take their
left forks simultaneously. None will be able to take their right forks, and
there will be a deadlock.

The second problem of starvation arises when the philosophers
could start the algorithm simultaneously, picking up their left forks,
seeing that their right forks were not available, putting down their left
forks, waiting, picking up their left forks again simultaneously, and so
on, forever.

Figure 3.6 Dinning Philosopher Problem
35

• However, a philosopher can only eat spaghetti when he has both left
and right forks. Each fork can be held by only one philosopher and so
a philosopher can use the fork only if it is not being used by another
philosopher.

• After he finishes eating, he needs to put down both forks so they
become available to others.

• A philosopher can take the fork on his right or the one on his left as
they become available, but cannot start eating before getting both of
them.

• The problem is how to design a discipline of behaviour (a concurrent
algorithm) such that no philosopher will starve.

• Mutual exclusion is the basic idea of the problem; the dining
philosophers create a generic and abstract scenario useful for
explaining issues of this type.

• The failures these philosophers may experience are analogous to the
difficulties that arise in real computer programming when multiple
programs need exclusive access to shared resources

Problem:

Dinning philosopher suffers from the problem of deadlock when
everyone want to eat simultaneously. If all five philosophers take their
left forks simultaneously. None will be able to take their right forks, and
there will be a deadlock.

The second problem of starvation arises when the philosophers
could start the algorithm simultaneously, picking up their left forks,
seeing that their right forks were not available, putting down their left
forks, waiting, picking up their left forks again simultaneously, and so
on, forever.

Figure 3.6 Dinning Philosopher Problem
35

• However, a philosopher can only eat spaghetti when he has both left
and right forks. Each fork can be held by only one philosopher and so
a philosopher can use the fork only if it is not being used by another
philosopher.

• After he finishes eating, he needs to put down both forks so they
become available to others.

• A philosopher can take the fork on his right or the one on his left as
they become available, but cannot start eating before getting both of
them.

• The problem is how to design a discipline of behaviour (a concurrent
algorithm) such that no philosopher will starve.

• Mutual exclusion is the basic idea of the problem; the dining
philosophers create a generic and abstract scenario useful for
explaining issues of this type.

• The failures these philosophers may experience are analogous to the
difficulties that arise in real computer programming when multiple
programs need exclusive access to shared resources

Problem:

Dinning philosopher suffers from the problem of deadlock when
everyone want to eat simultaneously. If all five philosophers take their
left forks simultaneously. None will be able to take their right forks, and
there will be a deadlock.

The second problem of starvation arises when the philosophers
could start the algorithm simultaneously, picking up their left forks,
seeing that their right forks were not available, putting down their left
forks, waiting, picking up their left forks again simultaneously, and so
on, forever.

Figure 3.6 Dinning Philosopher Problem

mu
no
tes
.in

36

3.6.2 Readers and Writers problem:

The dining philosophers problem is useful for modelling processes
that are competing for exclusive access to a limited number of resources,
such as I/O devices
▪ There is a data area that is shared among a number of processes.
▪ Any number of readers may simultaneously write to the data area.

Only one writer at a time may write to the data area.
▪ If a writer is writing to the data area, no reader may read it.
▪ If there is at least one reader reading the data area, no writer may write

to it.
▪ Readers only read and writers only write.
▪ The Reader and Writer problem, which models access to a database.
▪ For example, an airline reservation system, with many competing

processes wishing to read and write it.
▪ It is acceptable to have multiple processes reading the database at the

same time, but if one process is updating the database, no other
process should access the database, not even readers.

▪ To avoid this situation, the program could be written slightly
differently: when areader arrives and a writer is waiting, the reader is
suspended behind the writer instead of being admitted immediately.

3.7 LET US SUM UP

• Processes can communicate with one another using interprocess
communication

• Primitives
• A process can be running, runnable, or blocked and can change state

when it or another process executes one of the interprocess
communication primitives.

• Interprocess communication primitives can be used to solve such
problems asthe producer-consumer, dining philosophers, and reader-
writer

3.8 LIST OF REFERENCE

• Modern Operating system, Fourth edition, Andrew S. Tanenbaum,
Herbert Bos Operating System concepts, Eighth edition, Silberschatz,
Galvin Gagne

• http://academic.udayton.edu/SaverioPerugini/courses/cps346/lecture_n
otes/scheduling.ht ml

mu
no
tes
.in

37

3.9 BIBLIOGRAPHY

Operating Systems – Internal Design and Principles , William Stallings

3.10 UNIT END QUSTIONSS

1. Write a short note on process termination
2. Write a short note on the process model.
3. What is race condition? How mutual exclusion handles race condition
4. With suitable example explain the shortest job first scheduling

algorithm.
5. Explain round robin scheduling give proper example.

mu
no
tes
.in

38

UNIT II

4
MEMORY MANAGEMENT

Unit Structure
4.0 Objectives
4.1 Introduction
4.2 Address Space
4.3 Virtual Memory
4.4 Let us Sum Up
4.5 List of Reference
4.6 Bibliography
4.7 Unit End Questions

4.0 OBJECTIVES

• Description of various ways of organizing memory hardware.
• Techniques of allocating memory to processes.
• Paging works in contemporary computer systems.
• To describe the benefits of a virtual memory system.
• To explain the concepts of demand paging, page-replacement

algorithms, and allocation of page frames.
• To discuss the principles of the working-set model.
• To examine the relationship between shared memory and memory-

mapped files.
• To explore how kernel memory is managed

4.1 INTRODUCTION

We showed how the CPU can be shared by a set of processes. As a
result of CPU scheduling, we can improve both the utilization of the CPU
and the speed of the computer’s response to its users. To realize this
increase in performance, however, we must keep several processes in
memory— that is, we must share memory. In this chapter, we discuss
various ways to manage memory. The memory management algorithms
vary from a primitive bare-machine approach to paging and segmentation
strategies. Each approach has its own advantages and disadvantages.

Selection of a memory-management method for a specific system
depends on many factors, especially on the hardware design of the system.
As we shall see, many algorithms require hardware support, leading many

mu
no
tes
.in

39

systems to have closely integrated hardware and operating- system
memory management.

4.2 ADDRESS SPACE

An address space defines a range of discrete addresses, each of
which may correspond to a network host, peripheral device, disk sector, a
memory cell or other logical or physical entity.

For software programs to save and retrieve stored data, each unit of
data must have an address where it can be individually located or else the
program will be unable to find and manipulate the data. The number of
address spaces available will depend on the underlying address structure
and these will usually be limited by the computer architecture being used.

4.2.1 Logical Versus Physical Address Space:

An address generated by the CPU is commonly referred to as a
logical address,whereas an address seen by the memory unit—that is, the
one loaded into the memory-address register of the memory—is
commonly referred to as a physical address.

The compile-time and load-time address-binding methods generate
identical logical and physical addresses. However, the execution-time

Fig: Convert logical addresses to physical addresses?

4.2.2 Address Mapping & Translation:

Another common feature of address spaces are mappings and
translations, often forming numerous layers. This usually means that some
higher-level address must be translated to lower- level ones in some way.
For example, a file system on a logical disk operates linear sector
numbers, which have to be translated to absolute LBA sector addresses, in
simple cases, via addition of the partition’s first sector address. Then, for a
disk drive connected via Parallel ATA, each of them must be converted to
logical cylinder-head-sector address due to the interface's historical
shortcomings. It is converted back to LBA by the disk controller then,
finally, to physical cylinder, head and sector numbers.

39

systems to have closely integrated hardware and operating- system
memory management.

4.2 ADDRESS SPACE

An address space defines a range of discrete addresses, each of
which may correspond to a network host, peripheral device, disk sector, a
memory cell or other logical or physical entity.

For software programs to save and retrieve stored data, each unit of
data must have an address where it can be individually located or else the
program will be unable to find and manipulate the data. The number of
address spaces available will depend on the underlying address structure
and these will usually be limited by the computer architecture being used.

4.2.1 Logical Versus Physical Address Space:

An address generated by the CPU is commonly referred to as a
logical address,whereas an address seen by the memory unit—that is, the
one loaded into the memory-address register of the memory—is
commonly referred to as a physical address.

The compile-time and load-time address-binding methods generate
identical logical and physical addresses. However, the execution-time

Fig: Convert logical addresses to physical addresses?

4.2.2 Address Mapping & Translation:

Another common feature of address spaces are mappings and
translations, often forming numerous layers. This usually means that some
higher-level address must be translated to lower- level ones in some way.
For example, a file system on a logical disk operates linear sector
numbers, which have to be translated to absolute LBA sector addresses, in
simple cases, via addition of the partition’s first sector address. Then, for a
disk drive connected via Parallel ATA, each of them must be converted to
logical cylinder-head-sector address due to the interface's historical
shortcomings. It is converted back to LBA by the disk controller then,
finally, to physical cylinder, head and sector numbers.

39

systems to have closely integrated hardware and operating- system
memory management.

4.2 ADDRESS SPACE

An address space defines a range of discrete addresses, each of
which may correspond to a network host, peripheral device, disk sector, a
memory cell or other logical or physical entity.

For software programs to save and retrieve stored data, each unit of
data must have an address where it can be individually located or else the
program will be unable to find and manipulate the data. The number of
address spaces available will depend on the underlying address structure
and these will usually be limited by the computer architecture being used.

4.2.1 Logical Versus Physical Address Space:

An address generated by the CPU is commonly referred to as a
logical address,whereas an address seen by the memory unit—that is, the
one loaded into the memory-address register of the memory—is
commonly referred to as a physical address.

The compile-time and load-time address-binding methods generate
identical logical and physical addresses. However, the execution-time

Fig: Convert logical addresses to physical addresses?

4.2.2 Address Mapping & Translation:

Another common feature of address spaces are mappings and
translations, often forming numerous layers. This usually means that some
higher-level address must be translated to lower- level ones in some way.
For example, a file system on a logical disk operates linear sector
numbers, which have to be translated to absolute LBA sector addresses, in
simple cases, via addition of the partition’s first sector address. Then, for a
disk drive connected via Parallel ATA, each of them must be converted to
logical cylinder-head-sector address due to the interface's historical
shortcomings. It is converted back to LBA by the disk controller then,
finally, to physical cylinder, head and sector numbers.

mu
no
tes
.in

40

Fig: Illustration of translation from logical block addressing to physical
geometry
4.2.3 virtual address space to physical address space:

The Domain Name System maps its names to (and from) network-
specific addresses (usually IP addresses), which in turn may be mapped to
link layer network addresses via Address Resolution Protocol. Also,
network address translation may occur on the edge of different IP spaces,
such as a local area network and the Internet.

An iconic example of virtual-to-physical address translation is
virtual memory, where different pages of virtual address space map either
to page file or to main memory physical address space. It is possible that
several numerically different virtual addresses all refer to one physical
address and hence to the same physical byte of RAM. It is also possible
that a single virtual address maps to zero, one, or more than one physical
address

Fig: Illustration of translation from
virtual address space to physical address space.

mu
no
tes
.in

41

4.2.4 Types of Memory Address:

The operating system takes care of mapping the logical addresses
to physical addresses at the time of memory allocation to the program.
There are three types of addresses used in a program before and after
memory is allocated −

S.N. Memory Addresses & Description
1 Symbolic addresses

The addresses used in a source code. The variable names,
constants, and instruction labels are the basic elements of the
symbolic address space.

2 Relative addresses
At the time of compilation, a compiler converts symbolic
addresses into relative addresses.

3 Physical addresses
The loader generates these addresses at the time when a
program is loaded into main memory

4.2.4.1 symbolic addressing :

An addressing scheme whereby reference to an address is made by
some convenient symbol that (preferably) has some relationship to the
meaning of the data expected to be located at that address. It serves as an
aid to the programmer. The symbolic address is replaced by some form of
computable/computed address during the operation of an assembler or
compiler.

4.2.4.2 Relative addressing:

This is the technique of addressing instructions and data areas by
designating their location in relation to the location counter or to some
symbolic location. This type of addressing is always in bytes—never in
bits, words, or instructions. Thus, the expression *+4 specifies an address
that is 4 bytes greater than the current value of the location counter. In the
sequence of instructions in the following example, the location of the CR
machine instruction can be expressed in two ways, ALPHA+2, or BETA-
4, because all the machine instructions in the example are for 2 byte
instructions.

Fig: Relative Addressing

mu
no
tes
.in

42

4.2.4.3 Physical Address:

This identifies a physical location of required data in a memory.
The user never directly deals with the physical address but can access by
its corresponding logical address. The user program generates the logical
address and thinks that the program is running in this logical address but
the program needs physical memory for its execution, therefore, the
logical address must be mapped to the physical address by MMU before
they are used. The term Physical Address Space is used for all physical
addresses corresponding to the logical addresses in a Logical address
space.

4.2.5 Difference between logical address and physical address:
Parameter Logical Address Physical Address
Basic Generated by CPU
Address Logical Address

Space is set of all
logical addresses
generated by cpu
in

All physical addresses
mapped to the corresponding
logical addresses

Visibility User can view the
logical address of
the programme

User can never view the
address of the programme

Generation Generated by CPU Computed by MMU
Access The user can use

the logical address
to access the
physical address

User can indirectly access the
physical address but not
directly

4.3 VIRTUAL MEMORY

The memory-management algorithms outlined in Chapter 8 are
necessary because of one basic requirement: The instructions being
executed must be the entire logical address space in physical memory.

mu
no
tes
.in

43

Dynamic loading can help to ease this restriction, but it generally requires
special precautions and extra.

A computer can address more memory than the amount physically
installed on the system. This extra memory is actually called virtual
memory and it is a section of a hard disk that's set up to emulate the
computer's RAM.

The main visible advantage of this scheme is that programs can be
larger than physical memory. Virtual memory serves two purposes. First,
it allows us to extend the use of physical memory by using a disk. Second,
it allows us to have memory protection, because each virtual address is
translated to a physical address.

Following are the situations, when the entire program is not required to be
loaded fully in main memory.
• User written error handling routines are used only when an error

occurred in the data or computation.
• Certain options and features of a program may be used rarely.
• Many tables are assigned a fixed amount of address space even though

only a small amount of the table is actually used.
• The ability to execute a program that is only partially in memory

would counter many benefits.
• Less number of I/O would be needed to load or swap each user

program into memory. A program would no longer be constrained by
the amount of physical memory that is available.

• Each user program could take less physical memory; more programs
could be run at the same time, with a corresponding increase in CPU
utilization and throughput.

Modern microprocessors intended for general-purpose use, a
memory management unit, or MMU, is built into the hardware. The
MMU's job is to translate virtual addresses into physical addresses. A
basic example is given belowmu

no
tes
.in

44

Virtual memory is commonly implemented by demand paging. It
can also be implemented in a segmentation system. Demand segmentation
can also be used to provide virtual memory.

Virtual memory involves the separation of logical memory as
perceived by users from physical memory. This separation allows an
extremely large virtual memory to be provided for programmers when
only a smaller physical memory is available.Virtual memory makes the
task of programming much easier, because the programmer no longer
needs to worry about the amount of physical memory available; she can
concentrate instead on the problem to be programmed.

4.3.1 Demand Paging:

A demand paging system is quite similar to a paging system with
swapping where processes reside in secondary memory and pages are
loaded only on demand, not in advance. When a context switch occurs, the
operating system does not copy any of the old program’s pages out to the
disk or any of the new program’s pages into the main memory. Instead, it
just begins executing the new program after loading the first page and
fetches that program’s pages as they are referenced.

While executing a program, if the program references a page
which is not available in the main memory because it was swapped out a
little ago, the processor treats this invalid memory reference as a page
fault and transfers control from the program to the operating system to
demand the page back into the memory.

44

Virtual memory is commonly implemented by demand paging. It
can also be implemented in a segmentation system. Demand segmentation
can also be used to provide virtual memory.

Virtual memory involves the separation of logical memory as
perceived by users from physical memory. This separation allows an
extremely large virtual memory to be provided for programmers when
only a smaller physical memory is available.Virtual memory makes the
task of programming much easier, because the programmer no longer
needs to worry about the amount of physical memory available; she can
concentrate instead on the problem to be programmed.

4.3.1 Demand Paging:

A demand paging system is quite similar to a paging system with
swapping where processes reside in secondary memory and pages are
loaded only on demand, not in advance. When a context switch occurs, the
operating system does not copy any of the old program’s pages out to the
disk or any of the new program’s pages into the main memory. Instead, it
just begins executing the new program after loading the first page and
fetches that program’s pages as they are referenced.

While executing a program, if the program references a page
which is not available in the main memory because it was swapped out a
little ago, the processor treats this invalid memory reference as a page
fault and transfers control from the program to the operating system to
demand the page back into the memory.

44

Virtual memory is commonly implemented by demand paging. It
can also be implemented in a segmentation system. Demand segmentation
can also be used to provide virtual memory.

Virtual memory involves the separation of logical memory as
perceived by users from physical memory. This separation allows an
extremely large virtual memory to be provided for programmers when
only a smaller physical memory is available.Virtual memory makes the
task of programming much easier, because the programmer no longer
needs to worry about the amount of physical memory available; she can
concentrate instead on the problem to be programmed.

4.3.1 Demand Paging:

A demand paging system is quite similar to a paging system with
swapping where processes reside in secondary memory and pages are
loaded only on demand, not in advance. When a context switch occurs, the
operating system does not copy any of the old program’s pages out to the
disk or any of the new program’s pages into the main memory. Instead, it
just begins executing the new program after loading the first page and
fetches that program’s pages as they are referenced.

While executing a program, if the program references a page
which is not available in the main memory because it was swapped out a
little ago, the processor treats this invalid memory reference as a page
fault and transfers control from the program to the operating system to
demand the page back into the memory.

mu
no
tes
.in

45

Advantages:

Following are the advantages of Demand Paging
• Large virtual memory.
• More efficient use of memory.
• There is no limit on the degree of multiprogramming.

Disadvantages:

Number of tables and the amount of processor overhead for
handling page interrupts are greater than in the case of the simple paged
management techniques.

4.3.4 Page Replacement Algorithm:

Page replacement algorithms are the techniques using which an
Operating System decides which memory pages to swap out, write to disk
when a page of memory needs to be allocated. Paging happens whenever a
page fault occurs and a free page cannot be used for allocation purpose
accounting to reason that pages are not available or the number of free
pages is lower than required pages.

When the page that was selected for replacement and was paged
out, is referenced again, it has to read in from disk, and this requires for
I/O completion. This process determines the quality of the page
replacement algorithm: the lesser the time waiting for page-ins, the better
is the algorithm.

A page replacement algorithm looks at the limited information
about accessing the pages provided by hardware, and tries to select which
pages should be replaced to minimize the total number of page misses,
while balancing it with the costs of primary storage and processor timeof
the algorithm itself. There are many different page replacement
algorithms. We evaluate an algorithm by running it on a particular string
of memory reference and computing the number of page faults,

4.3.5 Optimal Page algorithm:

• An optimal page-replacement algorithm has the lowest page-fault rate
of all algorithms. An optimal page-replacement algorithm exists, and
has been called OPT or MIN.

• Replace the page that will not be used for the longest period of time.
Use the time when a page is to be used

mu
no
tes
.in

46

4.3.6 Least Recently Used (LRU) algorithm:
• Page which has not been used for the longest time in main memory is

the one which will be selected for replacement.
• Easy to implement, keep a list, replace pages by looking back into

time.

4.3.7 Page Buffering algorithm:
• To get a process start quickly, keep a pool of free frames.
• On page fault, select a page to be replaced.
• Write the new page in the frame of the free pool, mark the page table

and restart the process.
• Now write the dirty page out of disk and place the frame holding

replaced page in the free pool.

46

4.3.6 Least Recently Used (LRU) algorithm:
• Page which has not been used for the longest time in main memory is

the one which will be selected for replacement.
• Easy to implement, keep a list, replace pages by looking back into

time.

4.3.7 Page Buffering algorithm:
• To get a process start quickly, keep a pool of free frames.
• On page fault, select a page to be replaced.
• Write the new page in the frame of the free pool, mark the page table

and restart the process.
• Now write the dirty page out of disk and place the frame holding

replaced page in the free pool.

46

4.3.6 Least Recently Used (LRU) algorithm:
• Page which has not been used for the longest time in main memory is

the one which will be selected for replacement.
• Easy to implement, keep a list, replace pages by looking back into

time.

4.3.7 Page Buffering algorithm:
• To get a process start quickly, keep a pool of free frames.
• On page fault, select a page to be replaced.
• Write the new page in the frame of the free pool, mark the page table

and restart the process.
• Now write the dirty page out of disk and place the frame holding

replaced page in the free pool.

mu
no
tes
.in

47

4.3.8 Least frequently Used (LFU) algorithm:
• The page with the smallest count is the one which will be selected for

replacement.
• This algorithm suffers from the situation in which a page is used

heavily during the initial phase of a process, but then is never used
again.

4.3.9 Most frequently Used (MFU) algorithm:
• This algorithm is based on the argument that the page with the smallest

count was probably just brought in and has yet to be used

4.7 SUMMARY

• Memory management is the process of controlling and coordinating
computer memory, allocating portions called blocks to various running
programs to optimize the complete performance of the system.

• It allows you to check how ample memory needs to be allocated to
processes that decide which processor should get memory at what
time.

• In Single Contiguous Allocation, all types of computer's memory
excluding a small portion which is reserved for the OS is available for
one application

• Partitioned Allocation method splits primary memory into various
memory partitions, which is mostly contiguous areas of memory.

4.8 UNIT END QUESTIONS

1. What is Memory Management?
2. Why Use Memory Management?
3. Memory Management Techniques
4. What is Swapping?
5. What is Memory allocation?
6. Explain Disk replacement algorithms.
7. Disk replacement algorithms numerical

mu
no
tes
.in

48

5
PAGING AND SEGMENTATION

Unit Structure
5.0 Objectives
5.1 Memory management goals
5.2 Segmentation
5.3 Paging
5.4 Page replacement algorithms
5.5 Design issues for paging System
5.6 Summary
5.7 Unit End Questions

5.0 OBJECTIVES OF A MEMORY MANAGEMENT
(MM) SYSTEM

Relocation:
• Relocatability - the ability to move process around in memory without

it affecting its execution
• OS manages memory, not programmer, and processes may be moved

around in memory
• MM must convert program's logical addresses into physical addresses
• Process's first address is stored as virtual address 0
• Static Relocation - Program must be relocated before or during loading

of process into memory. Programs must always be loaded into the
same address space in memory, or relocator must be run again.

• Dynamic Relocation - Process can be freely moved around in memory.
Virtual-to-physical address space mapping is done at run-time.

5.1MEMORY MANAGEMENT GOALS

Protection:
• Write Protection - to prevent data & instructions from being

overwritten.
• Read Protection - To ensure privacy of data & instructions.
• OS needs to be protected from user processes, and user processes need

to be protected from each other.
• Memory protection (to prevent memory overlaps) is usually supported

by the hardware (limit registers), because most languages allow
memory addresses to be computed at run-time.

mu
no
tes
.in

49

Sharing:
• Sometimes distinct processes may need to execute the same process

(e.g., many users executing the same editor), or even the same data
(when one process prepares data for another process).

• When different processes signal or wait the same semaphore, they
need to access the same memory address.

• OS has to allow sharing, while at the same time ensure protection.

Logical Organisation of Memory:

• Uni-dimensional address space

• If memory was segmented then it would be possible to code programs
and subroutines separately, each with its own degree of protection.

• The MM would manage inter-segment references at run-time, and
could allow a segment to be accessed by many different processes.

Physical Organisation of Memory:
• PM is expensive, so tends to be limited - but the amount of PM helps

to determine the degree of multiprogramming (the number of runnable
processes that can be simultaneously maintained)

• A two-level storage scheme (one RAM, the other slower secondary
disk) can be used to virtually increase the overall amount of PM.

• Processes can be kept in secondary storage and only brought into PM
when needed. MM and OS have to manage the operation of moving
processes between the two levels.

Paging and segmentation:

Paging and segmentation are processes by which data is stored to,
then retrieved from, a computer's storage disk.

Paging is a computer memory management function that presents
storage locations to the computer's CPU as additional memory, called
virtual memory. Each piece of data needs a storage address.

Segmentation is a virtual process that creates variable-sized
address spaces in computer storage for related data, called segments. This
process speed retrieval.

Managing computer memory is a basic operating system function -
- both paging and segmentation are basic functions of the OS. No system
can efficiently rely on limited RAM alone. So the computer’s memory

mu
no
tes
.in

50

management unit (MMU) uses the storage disk, HDD or SSD, as virtual
memory to supplement RAM.

What is Paging?:

As mentioned above, the memory management function called
paging specifies storage locations to the CPU as additional memory, called
virtual memory. The CPU cannot directly access storage disk, so the
MMU emulates memory by mapping pages to frames that are in RAM.

Before we launch into a more detailed explanation of pages and frames,
let’s define some technical terms.
• Page: A fixed-length contiguous block of virtual memory residing on

disk.
• Frame: A fixed-length contiguous block located in RAM; whose

sizing is identical to pages.
• Physical memory: The computer’s random access memory (RAM),

typically contained in DIMM cards attached to the computer’s
motherboard.

• Virtual memory: Virtual memory is a portion of an HDD or SSD that
is reserved to emulate RAM. The MMU serves up virtual memory
from disk to the CPU to reduce the workload on physical memory.

• Virtual address: The CPU generates a virtual address for each active
process. The MMU maps the virtual address to a physical location in
RAM and passes the address to the bus. A virtual address space is the
range of virtual addresses under CPU control.

• Physical address: The physical address is a location in RAM. The
physical address space is the set of all physical addresses orresponding
to the CPU’s virtual addresses.A physical address space is the range of
physical addresses under MMU control.

5.0 Fig: Paging concept

mu
no
tes
.in

51

By assigning an address to a piece of data using a "page table" between
the CPU andthe computer's physical memory, a computer's MMU enables
the system to retrieve thatdata whenever needed.

The Paging Process:

A page table stores the definition of each page. When an active
process requests data,the MMU retrieves corresponding pages intoframes
located in physical memory forfaster processing. The process is called
paging.

The MMU uses page tables to translate virtual addresses to
physical ones. Each tableentry indicates where a page is located: in RAM
or on disk as virtual memory. Tablesmay have a single or multi-level page
table such as different tables for applications andsegments.

However, constant table lookups can slow down the MMU. A
memory cache called theTranslation Lookaside Buffer (TLB) stores
recenttranslations of virtual to physicaladdresses for rapid retrieval. Many
systems have multiple TLBs, which may reside atdifferent locations,
including between the CPU and RAM, or between multiple pagetable
levels.

Different frame sizes are available for data sets with larger or
smaller pages andmatching-sized frames. 4KB to 2MB are common sizes,
and GB-sized frames areavailable in high-performance servers.

Paging with Example:

In Operating Systems, Paging is a storage mechanism used to
retrieve processes from the secondary storage into the main memory in the
form of pages.

The main idea behind the paging is to divide each process in the
form of pages. The main memory will also be divided in the form of
frames.

One page of the process is to be stored in one of the frames of the
memory. The pagescan be stored at the different locations of the memory
but the priority is always to find the contiguous frames or holes.

Pages of the process are brought into the main memory only when
they are required otherwise they reside in the secondary storage.

Different operating system defines different frame sizes. The sizes
of each frame must be equal. Considering the fact that the pages are
mapped to the frames in Paging, page size needs to be as same as frame
size.

mu
no
tes
.in

52

5.1A fig: Paging process
Example:

Let us consider the main memory size 16 Kb and Frame size is 1
KB therefore the main memory will be divided into the collection of 16
frames of 1 KB each.

There are 4 processes in the system that is P1, P2, P3 and P4 of 4
KB each. Each process is divided into pages of 1 KB each so that one page
can be stored in one frame.

Initially, all the frames are empty therefore pages of the processes
will get stored in the contiguous way.

Frames, pages and the mapping between the two is shown in the
image below.

5.1 B fig: Paging process

mu
no
tes
.in

53

Let us consider that, P2 and P4 are moved to waiting state after
some time. Now, 8 frames become empty and therefore other pages can be
loaded in that empty place. The process P5 of size 8 KB (8 pages) is
waiting inside the ready queue.

Given the fact that, we have 8 non contiguous frames available in
the memory and paging provides the flexibility of storing the process at
the different places. Therefore, we can load the pages of process P5 in the
place of P2 and P4.

5.1 C fig: Paging process

Design Issues of Paging.
• The Working Set Model. In the purest form of paging, processes are

started up with none of their pages in memory.
• Local versus Global Allocation Policies. In the preceding sections we

have discussed several algorithms for choosing a page to replace when
a fault occurs. ...

• Page Size. ...
• Virtual Memory Interface.

5.2 SEGMENTATION

In Operating Systems, Segmentation is a memory management
technique in which the memory is divided into the variable size parts.
Each part is known as a segment which can be allocated to a process.

What is Segmentation?

The process known as segmentation is a virtual process that creates
address spaces of various sizes in a computer system, called segments.

mu
no
tes
.in

54

Each segment is a different virtual address space that directly corresponds
to process objects.

The details about each segment are stored in a table called a
segment table. Segment table is stored in one (or many) of the segments.
Segment table contains mainly two information about segment:

1. Base: It is the base address of the segment
2. Limit: It is the length of the segment.

5.2.1 Why Segmentation is required??

Till now, we were using Paging as our main memory
management technique. Paging is more close to the Operating system
rather than the User. It divides all the process into the form of pages
regardless of the fact that a process can have some relative parts of
functions which need to be loaded in the same page.

Operating system doesn't care about the User's view of the process.
It may divide the same function into different pages and those pages may
or may not be loaded at the same time into the memory. It decreases the
efficiency of the system.

It is better to have segmentation which divides the process into the
segments. Each segment contain same type of functions such as main
function can be included in one segment and the library functions can be
included in the other segment,

5.2.2 Translation of Logical address into physical address by segment
table

CPU generates a logical address which contains two parts:
1. Segment Number
2. Offset

The Segment number is mapped to the segment table. The limit of
the respective segment is compared with the offset. If the offset is less
than the limit then the address is valid otherwise it throws an error as the
address is invalid.

In the case of a valid address, the base address of the segment is
added to the offset to get the physical address of the actual word in the
main memory.

mu
no
tes
.in

55

Fig : Segmentation

Advantages of Segmentation:
1. No internal fragmentation
2. Average Segment Size is larger than the actual page size.
3. Less overhead
4. It is easier to relocate segments than entire address space.
5. The segment table is of lesser size as compare to the pagetable in

paging.

Disadvantages:
1. It can have external fragmentation.
2. It is difficult to allocate contiguous memory to variable sized partition.
3. Costly memory management algorithms.

Difference between Paging and Segmentation:
S.NO PAGING SEGMENTATION
1. In paging, program is

divided into fixed or
mounted size pages.

In segmentation, program is
divided into variable size sections

2. For paging operating
system is accountable

For segmentation compiler is
accountable

3. Page size is determined by
hardware.

Here, the section size is given by
the user

.4. It is faster in the
comparison of
segmentation.

Segmentation is slow.

5. Paging could result in
internal fragmentation

Segmentation could result in
external fragmentation.

6. In paging, logical address
is split into page number
and page offset.

Here, logical address is split into
section number and section offset

mu
no
tes
.in

56

7. Paging comprises a page
table which encloses the
base address of every
page.

While segmentation also
comprises the segment table
which encloses segment number
and segment offset

Page Replacement Algorithms in Operating Systems:

In an operating system that uses paging for memory management,
a page replacement algorithm is needed to decide which page needs to be
replaced when a new page comes in.

Page Fault: A page fault happens when a running program accesses a
memory page that is mapped into the virtual address space, but not loaded
in physical memory. Since actual physical memory is much smaller than
virtual memory, page faults happen. In case of page fault, the Operating
System might have to replace one of the existing pages with the newly
needed page. Different page replacement algorithms suggest different
ways to decide which page to replace. The target for all algorithms is to
reduce the number of page faults.

Page Replacement Algorithms:

First In First Out (FIFO)

This is the simplest page replacement algorithm. In this algorithm,
the operating system keeps track of all pages in the memory in a queue,
the oldest page is in the front of the queue. When a page needs to be
replaced page in the front of the queue is selected for removal.

Example-1Consider page reference string 1, 3, 0, 3, 5, 6 with 3 page
frames. Find number of page faults

mu
no
tes
.in

57

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the
empty slots —>3 Page Faults. when 3 comes, it is already in memory so
—>0 Page Faults. Then 5 comes, it is not available in memory so it
replaces the oldest page slot i.e 1. —>1 Page Fault.

6 comes, it is also not available in memory so it replaces the oldest page
slot i.e 3 >1 Page Fault.

Finally when 3 come it is not available so it replaces 0 1 page fault

Optimal Page replacement:

In this algorithm, pages are replaced which would not be used for the
longest duration of time in the future.

Example-2:Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,
with a 4 page frame. Find the number of page fault.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty
slots —>4

Page faults 0 is already there so —>0 Page fault.
when 3 came it will take the place of 7 because it is not used for the
longest duration
of time in the future. —> 1 Page fault.
0 is already there so —> 0 Page fault..
4 will takes place of 1 —> 1 Page Fault.

Now for the further page reference string —>0 Page fault because
they are already available in the memory.

Optimal page replacement is perfect, but not possible in practice as
the operating system cannot know future requests. The use of Optimal
Page replacement is to set up a benchmark so that other replacement
algorithms can be analyzed against it.

mu
no
tes
.in

58

Least Recently Used:
In this algorithm page will be replaced which is least recently used.

Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0,
3, 2 with 4 page frames. Find number of page faults.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty
slots —>4 Page faults

0 is already their so —>0 Page fault.
when 3 came it will take the place of 7 because it is least recently used
—>1 Page fault
0 is already in memory so —>0 Page fault.
4 will takes place of 1 —>1 Page Fault
Now for the further page reference string —>0 Page fault because they
are already available in the memory.

5.5 DESIGN ISSUES OF PAGING

• The Working Set Model. In the purest form of paging, processes are
started up with none of their pages in memory. .

• Local versus Global Allocation Policies. In the preceding sections we
have discussed several algorithms for choosing a page to replace when
a fault occurs. ...

• Page Size. ...
• Virtual Memory Interface.

5.6 SUMMARY

1. Paging is a storage mechanism that allows the OS to retrieve processes
from the secondary storage into the main memory in the form of
pages.

2. Fragmentation refers to the condition of a disk in which files are
divided into pieces scattered around the disk.

3. Segmentation method works almost similarly to paging. The only

mu
no
tes
.in

59

difference between the two is that segments are of variable-length,
whereas, in the paging method, pages are always of fixed size.

4. Dynamic loading is a routine of a program which is not loaded until
the program calls it.

5. Linking is a method that helps OS to collect and merge various
modules of code and data into a single executable file.

5.7 UNIT END QUESTIONS

1. What is Paging?
2. What is Segmentation? and Paging vs. Segmentation
3. Advantages of Paging
4. Advantage of Segmentation and Disadvantages of Paging
5. Disadvantages of Segmentation
6. Page replacement algorithms numerical

mu
no
tes
.in

60

6
FILE SYSTEM

Unit Structure
6.0 Objectives
6.1 Introduction
6.2 File structure
6.3 File type
6.4 File access mechanism
6.5 Space Allocations
6.6 Let us Sum Up
6.6 List of Reference
6.7 Bibliography
6.8 Unit End Questions

6.0 OBJECTIVES

• Files
• Directories
• file system implementation
• file-system management and optimization
• MS-DOS file system
• UNIX V7 file system
• CDROM file system

6.1FILE

A file is a named collection of related information that is recorded
on secondary storage such as magnetic disks, magnetic tapes and optical
disks. In general, a file is a sequence of bits, bytes, lines or records whose
meaning is defined by the files creator and user.

6.2 FILE STRUCTURE

A File Structure should be according to a required format that the
operating system can understand.
• A file has a certain defined structure according to its type.
• A text file is a sequence of characters organized into lines.
• A source file is a sequence of procedures and functions.

mu
no
tes
.in

61

• An object file is a sequence of bytes organized into blocks that are
understandable by the machine.

• When an operating system defines different file structures, it also
contains the code to support these file structures. Unix, MS-DOS
support a minimum number of file structures.

6.3 FILE TYPE

File type refers to the ability of the operating system to distinguish
different types of file such as text files, source files and binary files etc.
Many operating systems support many types of files. Operating system
like MS-DOS and UNIX have the following types of files ’’

1) Ordinary files:
• These are the files that contain user information.
• These may have text, databases or executable programs.
• The user can apply various operations on such files like add, modify,

delete or even remove the entire file.

2) Directory files:
• These files contain a list of file names and other information related to

these files.

3) Special files:
• These files are also known as device files.
• These files represent physical devices like disks, terminals, printers,

networks, tape drive etc.

These files are of two types “
• Character special files “data is handled character by character as in

case of terminals or printers.
• Block special files “data is handled in blocks as in the case of disks

and tapes.

6.4 FILE ACCESS MECHANISMS

File access mechanism refers to the manner in which the records of a file
may be accessed. There are several ways to access files “
• Sequential access
• Direct/Random access
• Indexed sequential access 1)Sequential access

A sequential access is that in which the records are accessed in
some sequence, i.e., the information in the file is processed in order, one
record after the other. This access method is the most primitive one.
Example: Compilers usually access files in this fashion.

mu
no
tes
.in

62

2) Direct/Random access:
• Random access file organization provides, accessing the records

directly.
• Each record has its own address on the file with the help of which it

can be directly accessed for reading or writing.
• The records need not be in any sequence within the file and they need

not be in adjacent locations on the storage medium.

Indexed sequential access:
• This mechanism is built up on the basis of sequential access.
• An index is created for each file which contains pointers to various

blocks.
• Index is searched sequentially and its pointer is used to access the file

directly.

6.5 SPACE ALLOCATION

Files are allocated disk spaces by operating system. Operating systems
deploy following three main ways to allocate disk space to files.
• Contiguous Allocation
• Linked Allocation
• Indexed Allocation

1) Contiguous Allocation
• Each file occupies a contiguous address space on disk.
• Assigned disk address is in linear order.
• Easy to implement.
• External fragmentation is a major issue with this type of allocation

technique.

2) Linked Allocation:
• Each file carries a list of links to disk blocks.
• Directory contains a link / pointer to the first block of a file.
• No external fragmentation
• Effectively used in a sequential access file.
• Inefficient in case of direct access file.

3) Indexed Allocation:
• Provides solutions to problems of contiguous and linked allocation.
• An index block is created having all pointers to files.
• Each file has its own index block which stores the addresses of disk

space occupied by the file.
• Directory contains the addresses of index blocks of files.

mu
no
tes
.in

63

Structure of directory in OS:

A directory is a container that is used to contain folders and files. It
organizes files and folders into a hierarchical manner.

There are several logical structures of a directory, these are given below.

1. Single-level directory:

Single level directory is the simplest directory structure. In it all
files are contained in the same directory which make it easy to support and
understand.

A single level directory has a significant limitation, however, when
the number of files increases or when the system has more than one user.
Since all the files are in the same directory, they must have the unique
name . If two users call their dataset test, then the unique name rule
violated.

Advantages:
• Since it is a single directory, so its implementation is very easy.
• If the files are smaller in size, searching will become faster.
• The operations like file creation, searching, deletion, updating are very

easy in such a directory structure.

Disadvantages:
• There may be a chance of name collision because two files can not

have the same name.

mu
no
tes
.in

64

• Searching will become time taking if the directory is large.
• This can not group the same type of files together.

2. Two-level directory:

As we have seen, a single level directory often leads to confusion
of files names among different users. The solution to this problem is to
create a separate directory for each user.

In the two-level directory structure, each user has their own user
files directory (UFD). The UFDs have similar structures, but each lists
only the files of a single user. The system’s master file directory (MFD) is
searched whenever a new user id=s logged in. The MFD is indexed by
username or account number, and each entry points to the UFD for that
user.

Advantages:
• We can give a full path like /User-name/directory-name/.
• Different users can have the same directory as well as file name.
• Searching for files becomes more easy due to path name and user-

grouping.

Disadvantages:
• A user is not allowed to share files with other users.
• Still it is not very scalable; two files of the same type cannot be

grouped together in the same user.

3. Tree-structured directory:

Once we have seen a two-level directory as a tree of height 2, the
natural generalization is to extend the directory structure to a tree of

64

• Searching will become time taking if the directory is large.
• This can not group the same type of files together.

2. Two-level directory:

As we have seen, a single level directory often leads to confusion
of files names among different users. The solution to this problem is to
create a separate directory for each user.

In the two-level directory structure, each user has their own user
files directory (UFD). The UFDs have similar structures, but each lists
only the files of a single user. The system’s master file directory (MFD) is
searched whenever a new user id=s logged in. The MFD is indexed by
username or account number, and each entry points to the UFD for that
user.

Advantages:
• We can give a full path like /User-name/directory-name/.
• Different users can have the same directory as well as file name.
• Searching for files becomes more easy due to path name and user-

grouping.

Disadvantages:
• A user is not allowed to share files with other users.
• Still it is not very scalable; two files of the same type cannot be

grouped together in the same user.

3. Tree-structured directory:

Once we have seen a two-level directory as a tree of height 2, the
natural generalization is to extend the directory structure to a tree of

64

• Searching will become time taking if the directory is large.
• This can not group the same type of files together.

2. Two-level directory:

As we have seen, a single level directory often leads to confusion
of files names among different users. The solution to this problem is to
create a separate directory for each user.

In the two-level directory structure, each user has their own user
files directory (UFD). The UFDs have similar structures, but each lists
only the files of a single user. The system’s master file directory (MFD) is
searched whenever a new user id=s logged in. The MFD is indexed by
username or account number, and each entry points to the UFD for that
user.

Advantages:
• We can give a full path like /User-name/directory-name/.
• Different users can have the same directory as well as file name.
• Searching for files becomes more easy due to path name and user-

grouping.

Disadvantages:
• A user is not allowed to share files with other users.
• Still it is not very scalable; two files of the same type cannot be

grouped together in the same user.

3. Tree-structured directory:

Once we have seen a two-level directory as a tree of height 2, the
natural generalization is to extend the directory structure to a tree of

mu
no
tes
.in

65

arbitrary height. This generalization allows the user to create their own
subdirectories and to organize their files accordingly.

A tree structure is the most common directory structure. The tree
has a root directory, and every file in the system has a unique path.

Advantages:
• Very generalize, since full path names can be given.
• Very scalable, the probability of name collision is less.
• Searching becomes very easy; we can use both absolute paths as well

as relative paths.

Disadvantages:
• Every file does not fit into the hierarchical model; files may be saved

into multiple directories.
• We cannot share files.
• It is inefficient, because accessing a file may go under multiple

directories.

4. Acyclic graph directory:

An acyclic graph is a graph with no cycle and allows to share
subdirectories and files. The same file or subdirectories may be in two
different directories. It is a natural generalization of the tree-structured
directory.

It is used in situations like when two programmers are working on
a joint project and they need to access files. The associated files are stored

mu
no
tes
.in

66

in a subdirectory, separating them from other projects and files of other
programmers, since they are working on a joint project so they want the
subdirectories to be into their own directories. The common subdirectories
should be shared. So here we use Acyclic directories.

It is the point to note that shared file is not the same as copy file. If
any programmer makes some changes in the subdirectory it will reflect in
both subdirectories.

Advantages:
• We can share files.
• Searching is easy due to different-different paths.

Disadvantages:
• We share the files via linking, in case of deleting it may create the

problem,
• If the link is softlink then after deleting the file we left with a dangling

pointer.
• In the case of hardlink, to delete a file we have to delete all the

references associated with it.

General graph directory structure:

In general graph directory structure, cycles are allowed within a
directory structure where multiple directories can be derived from more
than one parent directory. The main problem with this kind of directory
structure is to calculate total size or space that has been taken by the files
and directories.

66

in a subdirectory, separating them from other projects and files of other
programmers, since they are working on a joint project so they want the
subdirectories to be into their own directories. The common subdirectories
should be shared. So here we use Acyclic directories.

It is the point to note that shared file is not the same as copy file. If
any programmer makes some changes in the subdirectory it will reflect in
both subdirectories.

Advantages:
• We can share files.
• Searching is easy due to different-different paths.

Disadvantages:
• We share the files via linking, in case of deleting it may create the

problem,
• If the link is softlink then after deleting the file we left with a dangling

pointer.
• In the case of hardlink, to delete a file we have to delete all the

references associated with it.

General graph directory structure:

In general graph directory structure, cycles are allowed within a
directory structure where multiple directories can be derived from more
than one parent directory. The main problem with this kind of directory
structure is to calculate total size or space that has been taken by the files
and directories.

66

in a subdirectory, separating them from other projects and files of other
programmers, since they are working on a joint project so they want the
subdirectories to be into their own directories. The common subdirectories
should be shared. So here we use Acyclic directories.

It is the point to note that shared file is not the same as copy file. If
any programmer makes some changes in the subdirectory it will reflect in
both subdirectories.

Advantages:
• We can share files.
• Searching is easy due to different-different paths.

Disadvantages:
• We share the files via linking, in case of deleting it may create the

problem,
• If the link is softlink then after deleting the file we left with a dangling

pointer.
• In the case of hardlink, to delete a file we have to delete all the

references associated with it.

General graph directory structure:

In general graph directory structure, cycles are allowed within a
directory structure where multiple directories can be derived from more
than one parent directory. The main problem with this kind of directory
structure is to calculate total size or space that has been taken by the files
and directories.

mu
no
tes
.in

67

Advantages:
• It allows cycles.
• It is more flexible than other directories structure.

Disadvantages:
• It is more costly than others.
• It needs garbage collection.

File System Implementation:
A file is a collection of related information. The file system resides

on secondary storage and provides efficient and convenient access to the
disk by allowing data to be stored, located, and retrieved.

File system organized in many layers:
Application Programs

Logical file system

File organization module

Basic file system

I/O Control

Devices

• I/O Control level:

Device drivers act as an interface between devices and Os, they
help to transfer data between disk and main memory. It takes block

mu
no
tes
.in

68

number as input and as output it gives low level hardware specific
instruction.
/li>

• Basic file system:

It Issues general commands to device drivers to read and write
physical blocks on disk. It manages the memory buffers and caches. A
block in buffer can hold the contents of the disk block and cache stores
frequently used file system metadata.

• File organization Module:

It has information about files, location of files and their logical and
physical blocks. Physical blocks do not match with logical blocks
numbered from 0 to N. It also has a free space which tracks unallocated
blocks.

• Logical file system:

It manages metadata information about a file i.e includes all details
about a file except the actual contents of the file. It also maintains via file
control blocks. File control block (FCB) has information about a file –
owner, size, permissions, location of file contents.

Advantages:
1. Duplication of code is minimized.
2. Each file system can have its own logical file system.

Disadvantages:
• If we access many files at same time then it results in low

performance. We can implement file system by using two types data
structures :

1.On-disk Structures:

Generally they contain information about total number of disk
blocks, free disk blocks, location of them and etc. Below given are
different on-disk structures:

1) Boot Control Block:

It is usually the first block of volume and it contains information
needed to boot an operating system. In UNIX it is called boot block and in
NTFS it is called as partition boot sector.

mu
no
tes
.in

69

2) Volume Control Block:

It has information about a particular partition ex: - free block
count, block size and block pointers etc. In UNIX it is called super block
and in NTFS it is stored in the master file table.

3) Directory Structure:

They store file names and associated inode numbers. In UNIX,
includes file names and associated file names and in NTFS, it is stored in
the master file table.

3) Per-File FCB:

It contains details about files and it has a unique identifier number
to allow association with directory entry. In NTFS it is stored in master
file table

File Control Block (FCB)

File permissions

File dates (create, access, write)

File owner, group, ACL

File size

File data blocks or pointers to file
data blocks

2) In-Memory Structure:

They are maintained in main-memory and these are helpful for file
system management for caching. Several in-memory structures given
below:

Mount Table :
It contains information about each mounted volume.
1) Directory-Structure cache :

This cache holds the directory information of recently accessed
directories.

2) System wide open-file table :
It contains the copy of FCB of each open file.

3) Per-process open-file table :
It contains information opened by that particular process and it maps
with appropriate system wide open-file.

mu
no
tes
.in

70

3) Directory Implementation:

1) Linear List:
It maintains a linear list of filenames with pointers to the data

blocks. It is time- consuming also. To create a new file, we must first
search the directory to be sure that no existing file has the same name then
we add a file at end of the directory. To delete a file, we search the
directory for the named file and release the space. To reuse the directory
entry either we can mark the entry as unused or we can attach it to a list of
free directories.

2) Hash Table:

The hash table takes a value computed from the file name and
returns a pointer to the file. It decreases the directory search time. The
insertion and deletion process of files is easy. The major difficulty is hash
tables are its generally fixed size and hash tables are dependent on hash
function on that size.

File System Management and Optimization

1) Disk-Space Management

1) Disk-Space Management:

Since all the files are normally stored on disk one of the main
concerns of file system is management of disk space.

2) Block Size:

The main question that arises while storing files in a fixed-size
block is the size of the block. If the block is too large, space gets wasted
and if the block is too small, time gets wasted. So, to choose a correct
block size some information about the file-size distribution is required.
Performance

70

3) Directory Implementation:

1) Linear List:
It maintains a linear list of filenames with pointers to the data

blocks. It is time- consuming also. To create a new file, we must first
search the directory to be sure that no existing file has the same name then
we add a file at end of the directory. To delete a file, we search the
directory for the named file and release the space. To reuse the directory
entry either we can mark the entry as unused or we can attach it to a list of
free directories.

2) Hash Table:

The hash table takes a value computed from the file name and
returns a pointer to the file. It decreases the directory search time. The
insertion and deletion process of files is easy. The major difficulty is hash
tables are its generally fixed size and hash tables are dependent on hash
function on that size.

File System Management and Optimization

1) Disk-Space Management

1) Disk-Space Management:

Since all the files are normally stored on disk one of the main
concerns of file system is management of disk space.

2) Block Size:

The main question that arises while storing files in a fixed-size
block is the size of the block. If the block is too large, space gets wasted
and if the block is too small, time gets wasted. So, to choose a correct
block size some information about the file-size distribution is required.
Performance

70

3) Directory Implementation:

1) Linear List:
It maintains a linear list of filenames with pointers to the data

blocks. It is time- consuming also. To create a new file, we must first
search the directory to be sure that no existing file has the same name then
we add a file at end of the directory. To delete a file, we search the
directory for the named file and release the space. To reuse the directory
entry either we can mark the entry as unused or we can attach it to a list of
free directories.

2) Hash Table:

The hash table takes a value computed from the file name and
returns a pointer to the file. It decreases the directory search time. The
insertion and deletion process of files is easy. The major difficulty is hash
tables are its generally fixed size and hash tables are dependent on hash
function on that size.

File System Management and Optimization

1) Disk-Space Management

1) Disk-Space Management:

Since all the files are normally stored on disk one of the main
concerns of file system is management of disk space.

2) Block Size:

The main question that arises while storing files in a fixed-size
block is the size of the block. If the block is too large, space gets wasted
and if the block is too small, time gets wasted. So, to choose a correct
block size some information about the file-size distribution is required.
Performance

mu
no
tes
.in

71

3) Keeping track of free blocks:
After a block size has been finalized the next issue that needs to be

catered is how to keep track of the free blocks. In order to keep track there
are two methods that are widely used:

Using a linked list: Using a linked list of disk blocks with
eachblock holding as many free disk block numbers as will fit.

Bitmap: A disk with n blocks has a bitmap with n bits. Freeblocks are
represented using 1's and allocated blocks as 0'sas seen below in the
figure.
mu
no
tes
.in

72

1) Disk quotas:

Multiuser operating systems often provide a mechanism for
enforcing disk quotas. A system administrator assigns each user a
maximum allotment of files and blocks and the operating system makes
sure that the users do not exceed their quotas. Quotas are kept track of on a
per-user basis in a quota table.

5) File-system Backups:

If a computer’s file system is irrevocably lost, whether due to hardware or
software restoring all the information will be difficult, time consuming
and in many cases impossible. So it is advised to always have file-system
backups.
• Backing up files is time consuming and as well occupies a large

amount of space, so doing it efficiently and conveniently is important.
Below are few points to be considered before creating backups for
files.

• Is it required to backup the entire file system or only a part of it.
• Backing up files that haven’t been changed from previous backup

leads to incremental dumps. So it’s better to take a backup of only
those files which have changed from the time

• of previous backup. But recovery gets complicated in such cases.

mu
no
tes
.in

73

• Since there is an immense amount of data, it is generally desired to
compress the data before taking a backup for the same.

• It is difficult to perform a backup on an active file-system since the
backup may be inconsistent.

• Making backups introduces many security issues

There are two ways for dumping a disk to the backup disk:
• Physical dump: In this way the dump starts at block 0 of the disk,

writes all the disk blocks onto the output disk in order and stops after
copying the last one.

• Advantages: Simplicity and great speed.
• Disadvantages: inability to skip selected directories, make

incremental dumps, and restore individual files upon request
• Logical dump: In this way the dump starts at one or more specified

directories and recursively dump all files and directories found that
have been changed since some given base date. This is the most
commonly used way

The above figure depicts a popular algorithm used in many UNIX
systems wherein squares depict directories and circles depict files. This
algorithm dumps all the files and directories that have been modified and
also the ones on the path to a modified file or directory. The dump
algorithm maintains a bitmap indexed by i-node number with several bits
per i-node. Bits will be set and cleared in this map as the algorithm
proceeds. Although logical dumping is straightforward, there are few
issues associated with it.
• Since the free block list is not a file, it is not dumped and hence it must

be reconstructed from scratch after all the dumps have been restored

mu
no
tes
.in

74

• If a file is linked to two or more directories, it is important that the file
is restored only one time and that all the directories that are supposed
to point to it do so

• UNIX files may contain holes
• Special files, named pipes and all other files that are not real should

never be dumped.

6) File-system Consistency:

To deal with inconsistent file systems, most computers have a
utility program that checks file-system consistency. For example, UNIX
has fsck and Windows has sfc. This utility can be run whenever the system
is booted. The utility programs perform two kinds of consistency checks.

• Blocks: To check block consistency the program builds two tables,
each one containing a counter for each block, initially set to 0. If the
file system is consistent, each block will have a 1 either in the first
table or in the second table as you can see in the figure below.

In case if both the tables have 0 in it that may be because the block
is missing and hence will be reported as a missing block. The two other
situations are if a block is seen more than once in a free list and the same
data block is present in two or more files.
• In addition to checking to see that each block is properly accounted

for, the file-system checker also checks the directory system. It too
uses a table of counters but per file- size rather than per block. These
counts start at 1 when a file is created and are incremented each time a
(hard) link is made to the file. In a consistent file system, both counts
will agree

7) File-system Performance:

Since the access to disk is much slower than access to memory,
many file systems have been designed with various optimizations to
improve performance as described below.

mu
no
tes
.in

75

8) Caching:

The most common technique used to reduce disk access time is the
block cache or buffer cache. Cache can be defined as a collection of items
of the same type stored in a hidden or inaccessible place. The most
common algorithm for cache works in such a way that if a disk access is
initiated, the cache is checked first to see if the disk block is present. If yes
then the read request can be satisfied without a disk access else the disk
block is copied to cache first and then the read request is processed.

The above figure depicts how to quickly determine if a block is
present in a cache or not. For doing so a hash table can be implemented
and look up the result in a hash table.

9) Block Read Ahead:

Another technique to improve file-system performance is to try to
get blocks into the cache before they are needed to increase the hit rate.
This works only when files are read sequentially. When a file system is
asked for block ‘k’ in the file it does that and then also checks beforehand
if ‘k+1’ is available if not it schedules a read for the block k+1 thinking
that it might be of use later.

10) Reducing disk arm motion:

Another way to increase file-system performance is by reducing
the disk- arm motion by putting blocks that are likely to be accessed in
sequence close to each other, preferably in the same cylinder.

mu
no
tes
.in

76

In the above figure all the i-nodes are near the start of the disk, so the
average distance between an inode and its blocks will be half the number
of cylinders, requiring long seeks. But to increase the performance the
placement of i-nodes can be modified as below next setting

I-nodes are
located near
the start of the
disk

Disk Is Divided
Into cylinder
groups, each
with its own i-
nodes

mu
no
tes
.in

77

8) Defragmenting Disks:

Due to continuous creation and removal of files the disks get badly
fragmented with files and holes all over the place. As a consequence,
when a new file is created, the blocks used for it may be spread all over
the disk, giving poor performance. The performance can be restored by
moving files around to make them contiguous and to put all (or at least
most) of the free space in one or more large contiguous regions on the
disk.

MS-DOS Filesystem:

The MS-DOS filesystem is very straightforward. It is a 16-bit system
based on a File Allocation Table, or FAT16 (FAT for short). The purpose
of the file allocation table is to keep track of where to find files on the
disk.

In MS-DOS, every DOS based partition has a letter: (A: or B: or
C:). Typically, the drive letters A: and B: are reserved for floppy drives.
You will most frequently find that the C: drive is the ‘bootable partition’.
Each drive has a root directory (‘\’) so the root directory on a given drive
looks like this: C:\

Changing drives is as simple as typing the name of the drive letter:
A:> C: <enter>
C:>

MS-DOS then stores files to the system in any arrangement you
choose. You can create directories, and store files within those
directories. A typical file/path might look like this:
C:\ms-dos\dir\filename.txt

Limitations:

FAT16 file systems are compatible with all Microsoft operating
systems, but it has severe limitations. First, all files on the system are
limited to eight characters and a three letter extension. The MS-DOS file
system also has a limit of approximately 2.1 Gigabytes owing to the fact
that the MS-DOS operating system doesn’t recognize ‘Int 13’ based
commands, and therefore cannot issue commands to access the remainder
of larger disks.

Keep in mind that MS-DOS is a legacy system kept around for
doing command line based work in Windows.

Unix File System:

Unix file system is a logical method of organizing and storing large
amounts of information in a way that makes it easy to manage. A file is a
smallest unit in which the information is stored. The Unix file system has
several important features. All data in Unix is organized into files. All files

mu
no
tes
.in

78

are organized into directories. These directories are organized into a tree-
like structure called the file system.

Files in the Unix System are organized into a multi-level hierarchy
structure known as a directory tree. At the very top of the file system is a
directory called “root” which is represented by a “/”. All other files are
“descendants” of root.

Directories or Files and their description:

• / : The slash / character alone denotes the root of the filesystem tree.

• /bin : Stands for “binaries” and contains certain fundamental utilities,
such as ls or cp, which are generally needed by all users.

• /boot : Contains all the files that are required for a successful booting
process.

• /dev : Stands for “devices”. Contains file representations of peripheral
devices and pseudo-devices.

• /etc : Contains system-wide configuration files and system databases.
Originally also contained

• “dangerous maintenance utilities” such as init,but these have typically
been moved to /sbin or elsewhere.

• /home : Contains the home directories for the users.

• /lib : Contains system libraries, and some critical files such as kernel
modules or device drivers.

• /media : Default mount point for removable devices, such as USB
sticks, media players, etc.

• /mnt : Stands for “mount”. Contains filesystem mount points. These
are used, for example, if the

• system uses multiple hard disks or hard disk partitions. It is also often
used for remote (network)

• filesystems, CD-ROM/DVD drives, and so on.

mu
no
tes
.in

79

• /proc : procfs virtual filesystem showing information about processes
as files.

• /root : The home directory for the superuser “root” – that is, the
system administrator. This account’s home directory is usually on the
initial filesystem, and hence not in /home (which may be a mount
point for another filesystem) in case specific maintenance needs to be
performed, during

• which other filesystems are not available. Such a case could occur, for
example, if a hard disk drive suffers physical failures and cannot be
properly mounted.

● /tmp : A place for temporary files. Many systems clear this directory
upon startup; it might have tmpfs mounted atop it, in which case its
contents do not survive a reboot, or it might be explicitly cleared by a
startup script at boot time.

• /usr : Originally the directory holding user home directories, its use
has changed. It now holds executables, libraries, and shared resources
that are not system critical, like the X Window System,

• KDE, Perl, etc. However, on some Unix systems, some user accounts
may still have a home directory that is a direct subdirectory of /usr,
such as the default as in Minix. (on modern systems, these user
accounts are often related to server or system use, and not directly
used by a person).

• /usr/bin : This directory stores all binary programs distributed with the
operating system not residing in /bin, /sbin or (rarely) /etc.

• /usr/include : Stores the development headers used throughout the
system. Header files are mostly used by the #include directive in
C/C++ programming language.

• /usr/lib : Stores the required libraries and data files for programs
stored within /usr or elsewhere.

• /var : A short for “variable.” A place for files that may change often –
especially in size, for example e-mail sent to users on the system, or
process-ID lock files.

• /var/log : Contains system log files.

• /var/mail : The place where all the incoming mails are stored. Users
(other than root) can access their own mail only. Often, this directory
is a symbolic link to /var/spool/mail.

• /var/spool : Spool directory. Contains print jobs, mail spools and other
queued tasks.

• /var/tmp : A place for temporary files which should be preserved
between system reboots.

mu
no
tes
.in

80

Types of Unix files – The UNIX files system contains several different
types of files :

Ordinary Files
Directories
Special Files
Pipes
Sockets
Symbolic Links

1. Ordinary files: An ordinary file is a file on the system that contains
data, text, or program instructions.
• Used to store your information, such as some text you have written or

an image you have drawn. This is the type of file that you usually
work with.

• Always located within/under a directory file.
• Do not contain other files.
• In long-format output of ls -l, this type of file is specified by the “-”

symbol.

2. Directories:

Directories store both special and ordinary files. For users familiar
with Windows or Mac OS, UNIX directories are equivalent to folders. A
directory file contains an entry for every file and subdirectory that it
houses. If you have 10 files in a directory, there will be 10 entries in the
directory. Each entry has two components.
(1) The Filename
(2) A unique identification number for the file or directory (called the

inode number)
• Branching points in the hierarchical tree.
• Used to organize groups of files.
• May contain ordinary files, special files or other directories.
• Never contain “real” information which you would work with

(such as text). Basically, just used for organizing files.
• All files are descendants of the root directory, (named /) located

at the top of the tree.

In long-format output of ls –l , this type of file is specified by the “d”
symbol.

3. Special Files:
Used to represent a real physical device such as a printer, tape

drive or terminal, used for Input/Output (I/O) operations. Device or

mu
no
tes
.in

81

special files are used for device Input/Output(I/O) on UNIX and Linux
systems. They appear in a file system just like an ordinary
file or a directory.

On UNIX systems there are two flavors of special files for each device,
character special files and block special files:
• When a character special file is used for device Input/Output(I/O), data

is transferred one character at a time. This type of access is called raw
device access.

• When a block special file is used for device Input/Output(I/O), data is
transferred in large fixed-size blocks. This type of access is called
block device access.

For terminal devices, it’s one character at a time. For disk devices
though, raw access means reading or writing in whole chunks of data –
blocks, which are native to your disk.

• In long-format output of ls -l, character special files are marked by the
“c” symbol.

• In long-format output of ls -l, block special files are marked by the “b”
symbol.

4. Pipes:

UNIX allows you to link commands together using a pipe. The
pipe acts a temporaryfile which only exists to hold data from one
command until it is read by another.A Unix pipe provides a one-way flow
of data.The output or result of the first command sequence is used as the
input to the second command sequence. To make a pipe, put a vertical bar
(|) on the command line between two commands.For example: who | wc -l

7.0 What is CDFS (Compact Disc File System)?:

Introduction:

CDFS stands for Compact Disc File System. Before the era of
CDFS, there was no medium for people to store their memories or files
that they want to store for the long term purpose. The storing of data and
information was a major problem because in that time the world needs a
system that can store multiple files incompressed format. But the
revolution of technology changed the culture of the world and new
advanced things started coming to the market. CDFS came into the picture
on 21 August 1999. At that time CDFS is considered the most advanced
technology in the technology Industry. There were many features offered
by CDFS that came into limelight immediately:
1. It is a file system for read-only and write-once CD-ROMs.
2. It exports all tracks and boot images on a CD as normal files.

mu
no
tes
.in

82

3. CDFS provides a wide range of services which include creation,
replacing, renaming, or deletion of files on write-oncemedia.

4. It uses a VCACHE driver to control the CD-ROM disc cache allowing
for a smoother playback.

5. It includes several disc properties like volume attributes, file attributes,
and file placement.

History:
CDFS was developed by Simson Garfinkel and J. Spencer Love at

the MIT Media Lab between 1985 and 1986. CDFS was developed from
the write-once CD-ROM simulator. They are designed to store any data
and information on read-only and write-once media.A great setback for
CDFS was that it never gets sold. The File System source code was
published on the internet.

Disk Images can be saved using the CDFS standard, which may be
used to burn ISO 9660 discs. ISO 9660 also referred to as CDFS by some
hardware and software providers, is a file system published by ISO
(International Organization for Standardization) for optical disc media.

Applications:

A file system is a systematic organized way in which files have to
get organized in a hard disk. The file system is initiated when a user opens
a hard disk to access files. Here aresome applications of the Compact Disk

File System:
1. CDFS creates a way in which the system first sets up the root directory

and then automatically creates all the subsequent folders for it.
2. The system also provides a wide range of services for all users. You

can create new files or folders which are added to the main root file or
we can say the “file tree” of the system.

3. There was also a problem of transferring data or files from CDs to a
laptop or computer. But CDFS shows us a great solution to solve this
problem. It is useful for burning discs that can be exchanged between
different devices.

4. CDFS is not specific to a single Operating System, it means that a disc
burned on Macintosh using CDFS can be read on a Windows or Linux
based computer.

5. It can operate over numerous Operating Systems. It means if a user
started shifting files from Macintosh using Compact Disk File System,
he can also operate the files in Windows Operating System.

6. Disc Pictures are also saved using proper system standards. All files
have a typical.ISO name extension.

Types:

There are different versions of Compact Disk File System:
1. Clustered operated system. (can be Global or Grid)
2. Flash operated

mu
no
tes
.in

83

3. Object file system
4. Semantic
5. Steganographic process
6. Versioning
7. Synthetic operated system

6.6 SUMMARY
• A file is a collection of correlated information which is recorded on

secondary or non-volatile storage like magnetic disks, optical disks,
and tapes.

• It provides I/O support for a variety of storage device types.
• Files are stored on disk or other storage and do not disappear when a

user logs off.
• A File Structure needs to be predefined format in such a way that an

operating system understands it.
• File type refers to the ability of the operating system to differentiate

different types of files like text files, binary, and source files.
• Create find space on disk and make an entry in the directory.
• Indexed Sequential Access method is based on simple sequential

access
• In Sequential Access method records are accessed in a certain

predefined sequence
• The random access method is also called direct random access
• Three types of space allocation methods are: Linked

Allocation,Indexed Allocation,Contiguous Allocation
• Information about files is maintained by Directories

6.7 UNIT END QUESTIONS

1. Explain File System?
2. State the Objectives of File management System
3. Discuss the properties of a File System
4. Explain File structure
5. Discuss File Attributes
6. Explain File Type
7. List the Functions of File
8. State and explain Commonly used terms in File systems
9. Explain different File Access Methods
10. Explain Space Allocation
11. Discuss the File Directories
12. Explain File types- name, extension

mu
no
tes
.in

84

UNIT III

7
PRINCIPLES OF I/O HARDWARE AND

SOFTWARE
Unit Structure
7.0 Objectives
7.1 Introduction
7.2 Principles of I/O software
7.3 I/O software layers
7.4 Summary
7.5 Unit End Questions

7.0 OBJECTIVES

• To understand principles of i/o hardware
• To learn principles of i/o software
• To learn different, i/o software layers

In addition to providing abstractions such as processes, address
spaces, and files, an operating system also controls all the computer’s I/O
(Input/Output) devices. It must issue commands to the devices, catch
interrupts, and handle errors. It should also provide an interface between
the devices and the rest of the system that is simple and easy to use. To the
extent possible, the interface should be the same for all devices (device
independence). The I/O code represents a significant fraction of the total
operating system. How the operating system manages I/O is the subject of
this chapter.

This chapter is organized as follows. We will look first at some of
the principles of I/O hardware and then at I/O software in general. I/O
software can be structured in layers, with each having a well-defined task.
We will look at these layers to see what they do and how they fit together.
Next, we will look at several I/O devices in detail: disks, clocks,
keyboards, and displays. For each device we will look at its hardware and
software. Finally, we will consider power management.

7.1 INTRODUCTION

Different people look at I/O hardware in different ways. In this
book we are concerned with programming I/O devices, not designing,

mu
no
tes
.in

85

building, or maintaining them, so our interest is in how the hardware is
programmed, not how it works inside.

7.1.1 I/O Devices:

I/O devices can be roughly divided into two categories: block
devices and character devices. A block device is one that stores
information in fixed-size blocks, each one with its own address. Common
block sizes range from 512 to 65,536 bytes. All transfers are in units of
one or more entire (consecutive) blocks. The essential property of a block
device is that it is possible to read or write each block independently of all
the other ones. Hard disks, Blu-ray discs, and USB sticks are common block
devices.

The other type of I/O device is the character device. A character
device delivers or accepts a stream of characters, without regard to any block
structure. It is not addressable and does not have any seek operation. Printers,
network interfaces, mice (for pointing), rats (for psychology lab experiments),
and most other devices that are not disk-like can be seen as character devices.
I/O devices cover a huge range in speeds, which puts considerable pressure
on the software to perform well over many orders of magnitude in data rates.
Figure 7.1 shows the data rates of some common devices.

Figure 7.1 data rates of devices

7.1.2 Device Controllers:

I/O units often consist of a mechanical component and an
electronic component. It is possible to separate the two portions to provide
a more modular and general design. The electronic component is called

85

building, or maintaining them, so our interest is in how the hardware is
programmed, not how it works inside.

7.1.1 I/O Devices:

I/O devices can be roughly divided into two categories: block
devices and character devices. A block device is one that stores
information in fixed-size blocks, each one with its own address. Common
block sizes range from 512 to 65,536 bytes. All transfers are in units of
one or more entire (consecutive) blocks. The essential property of a block
device is that it is possible to read or write each block independently of all
the other ones. Hard disks, Blu-ray discs, and USB sticks are common block
devices.

The other type of I/O device is the character device. A character
device delivers or accepts a stream of characters, without regard to any block
structure. It is not addressable and does not have any seek operation. Printers,
network interfaces, mice (for pointing), rats (for psychology lab experiments),
and most other devices that are not disk-like can be seen as character devices.
I/O devices cover a huge range in speeds, which puts considerable pressure
on the software to perform well over many orders of magnitude in data rates.
Figure 7.1 shows the data rates of some common devices.

Figure 7.1 data rates of devices

7.1.2 Device Controllers:

I/O units often consist of a mechanical component and an
electronic component. It is possible to separate the two portions to provide
a more modular and general design. The electronic component is called

85

building, or maintaining them, so our interest is in how the hardware is
programmed, not how it works inside.

7.1.1 I/O Devices:

I/O devices can be roughly divided into two categories: block
devices and character devices. A block device is one that stores
information in fixed-size blocks, each one with its own address. Common
block sizes range from 512 to 65,536 bytes. All transfers are in units of
one or more entire (consecutive) blocks. The essential property of a block
device is that it is possible to read or write each block independently of all
the other ones. Hard disks, Blu-ray discs, and USB sticks are common block
devices.

The other type of I/O device is the character device. A character
device delivers or accepts a stream of characters, without regard to any block
structure. It is not addressable and does not have any seek operation. Printers,
network interfaces, mice (for pointing), rats (for psychology lab experiments),
and most other devices that are not disk-like can be seen as character devices.
I/O devices cover a huge range in speeds, which puts considerable pressure
on the software to perform well over many orders of magnitude in data rates.
Figure 7.1 shows the data rates of some common devices.

Figure 7.1 data rates of devices

7.1.2 Device Controllers:

I/O units often consist of a mechanical component and an
electronic component. It is possible to separate the two portions to provide
a more modular and general design. The electronic component is called

mu
no
tes
.in

86

the device controller or adapter. On personal computers, it often takes
the form of a chip on the parent board or a printed circuit

7.1.3 Memory-Mapped I/O:

Each controller has a few registers that are used for communicating
with the CPU. By writing into these registers, the operating system can
command the device to deliver data, accept data, switch itself on or off, or
otherwise perform some action. By reading from these registers, the operating
system can learn what the device’s state is, whether it is prepared to accept a
new command, and so on.

Each control register is assigned a unique memory address to
which no memory is assigned. This system is called memory-mapped
I/O. In most systems, the assigned addresses are at or near the top of the
address space.

7.1.4 Direct Memory Access:

No matter whether a CPU does or does not have memory-mapped
I/O, it needs to address the device controllers to exchange data with them.
The CPU can request data from an I/O controller one byte at a time, but doing
so wastes the CPU’s time, so a different scheme, called DMA (Direct
Memory Access) is often used. To simplify the explanation, we assume that
the CPU accesses all devices and memory via a single system bus that
connects the CPU, the memory, and the I/O devices. We already know that
the real organization in modern systems is more complicated, but all the
principles are the same. The operating system can use only DMA if the
hardware has a DMA controller, which most systems do.

Sometimes this controller is integrated into disk controllers and other
controllers, but such a design requires a separate DMA controller for each
device. More commonly, a single DMA controller is available (e.g., on the
parentboard) for regulating transfers to multiple devices, often concurrently

Fig 7.2 DMA controller
86

the device controller or adapter. On personal computers, it often takes
the form of a chip on the parent board or a printed circuit

7.1.3 Memory-Mapped I/O:

Each controller has a few registers that are used for communicating
with the CPU. By writing into these registers, the operating system can
command the device to deliver data, accept data, switch itself on or off, or
otherwise perform some action. By reading from these registers, the operating
system can learn what the device’s state is, whether it is prepared to accept a
new command, and so on.

Each control register is assigned a unique memory address to
which no memory is assigned. This system is called memory-mapped
I/O. In most systems, the assigned addresses are at or near the top of the
address space.

7.1.4 Direct Memory Access:

No matter whether a CPU does or does not have memory-mapped
I/O, it needs to address the device controllers to exchange data with them.
The CPU can request data from an I/O controller one byte at a time, but doing
so wastes the CPU’s time, so a different scheme, called DMA (Direct
Memory Access) is often used. To simplify the explanation, we assume that
the CPU accesses all devices and memory via a single system bus that
connects the CPU, the memory, and the I/O devices. We already know that
the real organization in modern systems is more complicated, but all the
principles are the same. The operating system can use only DMA if the
hardware has a DMA controller, which most systems do.

Sometimes this controller is integrated into disk controllers and other
controllers, but such a design requires a separate DMA controller for each
device. More commonly, a single DMA controller is available (e.g., on the
parentboard) for regulating transfers to multiple devices, often concurrently

Fig 7.2 DMA controller
86

the device controller or adapter. On personal computers, it often takes
the form of a chip on the parent board or a printed circuit

7.1.3 Memory-Mapped I/O:

Each controller has a few registers that are used for communicating
with the CPU. By writing into these registers, the operating system can
command the device to deliver data, accept data, switch itself on or off, or
otherwise perform some action. By reading from these registers, the operating
system can learn what the device’s state is, whether it is prepared to accept a
new command, and so on.

Each control register is assigned a unique memory address to
which no memory is assigned. This system is called memory-mapped
I/O. In most systems, the assigned addresses are at or near the top of the
address space.

7.1.4 Direct Memory Access:

No matter whether a CPU does or does not have memory-mapped
I/O, it needs to address the device controllers to exchange data with them.
The CPU can request data from an I/O controller one byte at a time, but doing
so wastes the CPU’s time, so a different scheme, called DMA (Direct
Memory Access) is often used. To simplify the explanation, we assume that
the CPU accesses all devices and memory via a single system bus that
connects the CPU, the memory, and the I/O devices. We already know that
the real organization in modern systems is more complicated, but all the
principles are the same. The operating system can use only DMA if the
hardware has a DMA controller, which most systems do.

Sometimes this controller is integrated into disk controllers and other
controllers, but such a design requires a separate DMA controller for each
device. More commonly, a single DMA controller is available (e.g., on the
parentboard) for regulating transfers to multiple devices, often concurrently

Fig 7.2 DMA controller

mu
no
tes
.in

87

Some DMA controllers can also operate in either mode. In the former
mode, the DMA controller requests the transfer of one word and gets it. If the
CPU also wants the bus, it has to wait. The mechanism is called cycle
stealing because the device controller sneaks in and steals an occasional bus
cycle from the CPU once in a while, delaying it slightly.

In block mode, the DMA controller tells the device to acquire the
bus, issue a series of transfers, then release the bus. This form of operation
is called burst mode. It is more efficient than cycle stealing because
acquiring the bus takes time and multiple words can be transferred for the
price of one bus acquisition. The down side to burst mode is that it can
block the CPU and other devices for a substantial period if a long burst is
being transferred.

7.1.5 Interrupts Revisited:

In a typical personal computer system, the interrupt structure is as
shown in Fig. 7.3 At the hardware level, interrupts work as follows. When
an I/O device has finished the work given to it, it causes an interrupt
(assuming that interrupts have been enabled by the operating system). It
does this by asserting a signal on a bus line that it has been assigned. This
signal is detected by the interrupt controller chip on the parent board,
which then decides what to do.

Fig 7.3 Interrupts

If no other interrupts are pending, the interrupt controller handles
the interrupt immediately. However, if another interrupt is in progress, or
another device has made a simultaneous request on a higher-priority
interrupt request line on the bus, the device is just ignored for the moment.
In this case it continues to assert an interrupt signal on the bus until it is
serviced by the CPU. To handle the interrupt, the controller puts a number
on the address lines specifying which device wants attention and asserts a
signal to interrupt the CPU. The interrupt signal causes the CPU to stop

87

Some DMA controllers can also operate in either mode. In the former
mode, the DMA controller requests the transfer of one word and gets it. If the
CPU also wants the bus, it has to wait. The mechanism is called cycle
stealing because the device controller sneaks in and steals an occasional bus
cycle from the CPU once in a while, delaying it slightly.

In block mode, the DMA controller tells the device to acquire the
bus, issue a series of transfers, then release the bus. This form of operation
is called burst mode. It is more efficient than cycle stealing because
acquiring the bus takes time and multiple words can be transferred for the
price of one bus acquisition. The down side to burst mode is that it can
block the CPU and other devices for a substantial period if a long burst is
being transferred.

7.1.5 Interrupts Revisited:

In a typical personal computer system, the interrupt structure is as
shown in Fig. 7.3 At the hardware level, interrupts work as follows. When
an I/O device has finished the work given to it, it causes an interrupt
(assuming that interrupts have been enabled by the operating system). It
does this by asserting a signal on a bus line that it has been assigned. This
signal is detected by the interrupt controller chip on the parent board,
which then decides what to do.

Fig 7.3 Interrupts

If no other interrupts are pending, the interrupt controller handles
the interrupt immediately. However, if another interrupt is in progress, or
another device has made a simultaneous request on a higher-priority
interrupt request line on the bus, the device is just ignored for the moment.
In this case it continues to assert an interrupt signal on the bus until it is
serviced by the CPU. To handle the interrupt, the controller puts a number
on the address lines specifying which device wants attention and asserts a
signal to interrupt the CPU. The interrupt signal causes the CPU to stop

87

Some DMA controllers can also operate in either mode. In the former
mode, the DMA controller requests the transfer of one word and gets it. If the
CPU also wants the bus, it has to wait. The mechanism is called cycle
stealing because the device controller sneaks in and steals an occasional bus
cycle from the CPU once in a while, delaying it slightly.

In block mode, the DMA controller tells the device to acquire the
bus, issue a series of transfers, then release the bus. This form of operation
is called burst mode. It is more efficient than cycle stealing because
acquiring the bus takes time and multiple words can be transferred for the
price of one bus acquisition. The down side to burst mode is that it can
block the CPU and other devices for a substantial period if a long burst is
being transferred.

7.1.5 Interrupts Revisited:

In a typical personal computer system, the interrupt structure is as
shown in Fig. 7.3 At the hardware level, interrupts work as follows. When
an I/O device has finished the work given to it, it causes an interrupt
(assuming that interrupts have been enabled by the operating system). It
does this by asserting a signal on a bus line that it has been assigned. This
signal is detected by the interrupt controller chip on the parent board,
which then decides what to do.

Fig 7.3 Interrupts

If no other interrupts are pending, the interrupt controller handles
the interrupt immediately. However, if another interrupt is in progress, or
another device has made a simultaneous request on a higher-priority
interrupt request line on the bus, the device is just ignored for the moment.
In this case it continues to assert an interrupt signal on the bus until it is
serviced by the CPU. To handle the interrupt, the controller puts a number
on the address lines specifying which device wants attention and asserts a
signal to interrupt the CPU. The interrupt signal causes the CPU to stop

mu
no
tes
.in

88

what it is doing and start doing something else. The number on the address
lines is used as an index into a table called the interrupt vector to fetch a
new program counter. This program counter points to the start of the
corresponding interrupt-service procedure.

Precise Interrupts:

An interrupt that leaves the machine in a well-defined state is called a
precise interrupt.

Such an interrupt has four properties:
1. The PC (Program Counter) is saved in a known place.
2. All instructions before the one pointed to by the PC have completed.
3. No instruction beyond the one pointed to by the PC has finished.
4. The execution state of the instruction pointed to by the PC is known.

7.2 PRINCIPLES OF I/O SOFTWARE

First we will look at its goals and then at the different ways I/O can be
done from the point of view of the operating system.

7.2.1 Goals of the I/O Software:

A key concept in the design of I/O software is known as device
independence.

What it means is that we should be able to write programs that can
access any I/O device without having to specify the device in advance. For
example, a program that reads a file as input should be able to read a file
on a hard disk, a DVD, or on a USB stick without having to be modified
for each different device.

It is up to the operating system to take care of the problems caused
by the fact that these devices really are different and require very different
command sequences to read or write.

Another important issue for I/O software is error handling. In
general, errors should be handled as close to the hardware as possible. If
the controller discovers a read error, it should try to correct the error itself
if it can.

Still another important issue is that of synchronous (blocking) vs.
asynchronous (interrupt-driven) transfers. Most physical I/O is
asynchronous—the CPU starts the transfer and goes off to do something
else until the interrupt arrives. User programs are much easier to write if
the I/O operations are blocking—after a read system call the program is
automatically suspended until the data are available in the buffer. It is up

mu
no
tes
.in

89

to the operating system to make operations that are actually interrupt-
driven look blocking to the user programs.

The final concept that we will mention here is sharable vs.
dedicated devices. Some I/O devices, such as disks, can be used by many
users at the same time. No problems are caused by multiple users having
open files on the same disk at the same time. Other devices, such as
printers, have to be dedicated to a single user until that user is finished.
Then another user can have the printer.

7.2.2 Programmed I/O:

The simplest form of I/O is to have the CPU do all the work. This
method is called programmed I/O.

It is simplest to illustrate how programmed I/O works by means of
an example. Consider a user process that wants to print the eight-character
string ‘‘ABCDEFGH’’on the printer via a serial interface. Displays on
small embedded systems sometimes work this way. The software first
assembles the string in a buffer in user space, as shown in Fig. 7.4

Fig 7.4 programmed I/O

The user process then acquires the printer for writing by making a
system call to open it. If the printer is currently in use by another process,
this call will fail and return an error code or will block until the printer is
available, depending on the operating system and the parameters of the
call. Once it has the printer, the user process makes a system call telling
the operating system to print the string on the printer.

The operating system then (usually) copies the buffer with the
string to an array, say, p, in kernel space, where it is more easily accessed
(because the kernel may have to change the memory map to get at user
space). It then checks to see if the printer is currently available. If not, it

89

to the operating system to make operations that are actually interrupt-
driven look blocking to the user programs.

The final concept that we will mention here is sharable vs.
dedicated devices. Some I/O devices, such as disks, can be used by many
users at the same time. No problems are caused by multiple users having
open files on the same disk at the same time. Other devices, such as
printers, have to be dedicated to a single user until that user is finished.
Then another user can have the printer.

7.2.2 Programmed I/O:

The simplest form of I/O is to have the CPU do all the work. This
method is called programmed I/O.

It is simplest to illustrate how programmed I/O works by means of
an example. Consider a user process that wants to print the eight-character
string ‘‘ABCDEFGH’’on the printer via a serial interface. Displays on
small embedded systems sometimes work this way. The software first
assembles the string in a buffer in user space, as shown in Fig. 7.4

Fig 7.4 programmed I/O

The user process then acquires the printer for writing by making a
system call to open it. If the printer is currently in use by another process,
this call will fail and return an error code or will block until the printer is
available, depending on the operating system and the parameters of the
call. Once it has the printer, the user process makes a system call telling
the operating system to print the string on the printer.

The operating system then (usually) copies the buffer with the
string to an array, say, p, in kernel space, where it is more easily accessed
(because the kernel may have to change the memory map to get at user
space). It then checks to see if the printer is currently available. If not, it

89

to the operating system to make operations that are actually interrupt-
driven look blocking to the user programs.

The final concept that we will mention here is sharable vs.
dedicated devices. Some I/O devices, such as disks, can be used by many
users at the same time. No problems are caused by multiple users having
open files on the same disk at the same time. Other devices, such as
printers, have to be dedicated to a single user until that user is finished.
Then another user can have the printer.

7.2.2 Programmed I/O:

The simplest form of I/O is to have the CPU do all the work. This
method is called programmed I/O.

It is simplest to illustrate how programmed I/O works by means of
an example. Consider a user process that wants to print the eight-character
string ‘‘ABCDEFGH’’on the printer via a serial interface. Displays on
small embedded systems sometimes work this way. The software first
assembles the string in a buffer in user space, as shown in Fig. 7.4

Fig 7.4 programmed I/O

The user process then acquires the printer for writing by making a
system call to open it. If the printer is currently in use by another process,
this call will fail and return an error code or will block until the printer is
available, depending on the operating system and the parameters of the
call. Once it has the printer, the user process makes a system call telling
the operating system to print the string on the printer.

The operating system then (usually) copies the buffer with the
string to an array, say, p, in kernel space, where it is more easily accessed
(because the kernel may have to change the memory map to get at user
space). It then checks to see if the printer is currently available. If not, it

mu
no
tes
.in

90

waits until it is. As soon as the printer is available, the operating system
copies the first character to the printer’s data register, in this example
using memory-mapped I/O. This action activates the printer. The character
may not appear yet because some printers buffer a line or a page before
printing anything. In Fig. 7.4 (b), however, we see that the first character
has been printed and that the system has marked the ‘‘B’’ as the next
character to be printed. As soon as it has copied the first character to the
printer, the operating system checks to see if the printer is ready to accept
another one. Generally, the printer has a second register, which gives its
status. The act of writing to the data register causes the status to become
not ready. When the printer controller has processed the current character,
it indicates its availability by setting some bit in its status register or
putting some value in it.

At this point the operating system waits for the printer to become
ready again. When that happens, it prints the next character, as shown in
Fig. 7.4 (c). This loop continues until the entire string has been printed.
Then control returns to the user process.

7.2.3 Interrupt-Driven I/O:

Now let us consider the case of printing on a printer that does not
buffer characters but prints each one as it arrives. If the printer can print,
say 100 characters/ sec, each character takes 10 msec to print. This means
that after every character is written to the printer’s data register, the CPU
will sit in an idle loop for 10 msec waiting to be allowed to output the next
character. This is more than enough time to do a context switch and run
some other process for the 10 msec that would otherwise be wasted.

The way to allow the CPU to do something else while waiting for
the printer to become ready is to use interrupts. When the system call to
print the string is made, the buffer is copied to kernel space, as we showed
earlier, and the first character is copied to the printer as soon as it is
willing to accept a character. At that point the CPU calls the scheduler and
some other process is run. The process that asked for the string to be
printed is blocked until the entire string has printed.

7.2.4 I/O Using DMA:

An obvious disadvantage of interrupt-driven I/O is that an interrupt
occurs on every character. Interrupts take time, so this scheme wastes a
certain amount of CPU time. A solution is to use DMA. Here the idea is
to let the DMA controller feed the characters to the printer one at time,
without the CPU being bothered. In essence, DMA is programmed I/O,
only with the DMA controller doing all the work, instead of the main
CPU. This strategy requires special hardware (the DMA controller) but
frees up the CPU during the I/O to do other work.

mu
no
tes
.in

91

The big win with DMA is reducing the number of interrupts from
one per character to one per buffer printed. If there are many characters
and interrupts are slow, this can be a major improvement. On the other
hand, the DMA controller is usually much slower than the main CPU. If
the DMA controller is not capable of driving the device at full speed, or
the CPU usually has nothing to do anyway while waiting for the DMA
interrupt, then interrupt-driven I/O or even programmed I/O may be better.

7.3 I/O SOFTWARE LAYERS

I/O software is typically organized in four layers, as shown in Fig. 7.5
Each layer has a well-defined function to perform and a well-defined
interface to the adjacent layers

Figure 7.5 I/O SOFTWARE LAYERS

7.3.1 Interrupt Handlers:

When the interrupt happens, the interrupt procedure does whatever
it has to in order to handle the interrupt. Then it can unblock the driver that
was waiting for it. In some cases it will just complete up on a semaphore.
In others it will do a signal on a condition variable in a monitor. In still
others, it will send a message to the blocked driver. In all cases the net
effect of the interrupt will be that a driver that was previously blocked will
now be able to run. This model works best if drivers are structured as
kernel processes, with their own states, stacks, and program counters. Of
course, reality is not quite so simple. Processing an interrupt is not just a
matter of taking the interrupt, doing an up on some semaphore, and then
executing an IRET instruction to return from the interrupt to the previous
process. There is a great deal more work involved for the operating
system. We will now give an outline of this work as a series of steps that
must be performed in software after the hardware interrupt has completed.
It should be noted that the details are highly system dependent, so some of
the steps listed below may not be needed on a particular machine, and

91

The big win with DMA is reducing the number of interrupts from
one per character to one per buffer printed. If there are many characters
and interrupts are slow, this can be a major improvement. On the other
hand, the DMA controller is usually much slower than the main CPU. If
the DMA controller is not capable of driving the device at full speed, or
the CPU usually has nothing to do anyway while waiting for the DMA
interrupt, then interrupt-driven I/O or even programmed I/O may be better.

7.3 I/O SOFTWARE LAYERS

I/O software is typically organized in four layers, as shown in Fig. 7.5
Each layer has a well-defined function to perform and a well-defined
interface to the adjacent layers

Figure 7.5 I/O SOFTWARE LAYERS

7.3.1 Interrupt Handlers:

When the interrupt happens, the interrupt procedure does whatever
it has to in order to handle the interrupt. Then it can unblock the driver that
was waiting for it. In some cases it will just complete up on a semaphore.
In others it will do a signal on a condition variable in a monitor. In still
others, it will send a message to the blocked driver. In all cases the net
effect of the interrupt will be that a driver that was previously blocked will
now be able to run. This model works best if drivers are structured as
kernel processes, with their own states, stacks, and program counters. Of
course, reality is not quite so simple. Processing an interrupt is not just a
matter of taking the interrupt, doing an up on some semaphore, and then
executing an IRET instruction to return from the interrupt to the previous
process. There is a great deal more work involved for the operating
system. We will now give an outline of this work as a series of steps that
must be performed in software after the hardware interrupt has completed.
It should be noted that the details are highly system dependent, so some of
the steps listed below may not be needed on a particular machine, and

91

The big win with DMA is reducing the number of interrupts from
one per character to one per buffer printed. If there are many characters
and interrupts are slow, this can be a major improvement. On the other
hand, the DMA controller is usually much slower than the main CPU. If
the DMA controller is not capable of driving the device at full speed, or
the CPU usually has nothing to do anyway while waiting for the DMA
interrupt, then interrupt-driven I/O or even programmed I/O may be better.

7.3 I/O SOFTWARE LAYERS

I/O software is typically organized in four layers, as shown in Fig. 7.5
Each layer has a well-defined function to perform and a well-defined
interface to the adjacent layers

Figure 7.5 I/O SOFTWARE LAYERS

7.3.1 Interrupt Handlers:

When the interrupt happens, the interrupt procedure does whatever
it has to in order to handle the interrupt. Then it can unblock the driver that
was waiting for it. In some cases it will just complete up on a semaphore.
In others it will do a signal on a condition variable in a monitor. In still
others, it will send a message to the blocked driver. In all cases the net
effect of the interrupt will be that a driver that was previously blocked will
now be able to run. This model works best if drivers are structured as
kernel processes, with their own states, stacks, and program counters. Of
course, reality is not quite so simple. Processing an interrupt is not just a
matter of taking the interrupt, doing an up on some semaphore, and then
executing an IRET instruction to return from the interrupt to the previous
process. There is a great deal more work involved for the operating
system. We will now give an outline of this work as a series of steps that
must be performed in software after the hardware interrupt has completed.
It should be noted that the details are highly system dependent, so some of
the steps listed below may not be needed on a particular machine, and

mu
no
tes
.in

92

steps not listed may be required. Also, the steps that do occur may be in a
different order on some machines.
1. Save any registers (including the PSW) that have not already been

saved by the interrupt hardware.
2. Set up a context for the interrupt-service procedure. Doing this may

involve setting up the TLB, MMU and a page table.
3. Set up a stack for the interrupt service-procedure.
4. Acknowledge the interrupt controller. If there is no centralized

interrupt controller, re enable interrupts.
5. Copy the registers from where they were saved (possibly some stack)

to the process table.
6. Run the interrupt-service procedure. It will extract information from

the interrupting device controller’s registers.
7. Choose which process to run next. If the interrupt has caused some

high-priority process that was blocked to become ready, it may be
chosen to run now.

8. Set up the MMU context for the process to run next. Some TLB setup
may also be needed.

9. Load the new process’ registers, including its PSW.
10. Start running the new process.

7.3.2 Device Drivers:

Earlier in this chapter we looked at what device controllers do. We
saw that each controller has some device registers used to give it
commands or some device registers used to read out its status or both. The
number of device registers and the nature of the commands vary radically
from device to device. For example, a mouse driver has to accept
information from the mouse telling it how far it has moved and which
buttons are currently depressed. In contrast, a disk driver may have to
know all about sectors, tracks, cylinders, heads, arm motion, motor drives,
head settling times, and all the other mechanics of making the disk work
properly. Obviously, these drivers will be very different.

Consequently, each I/O device attached to a computer needs some
device-specific code for controlling it. This code, called the device driver,
is generally written by the device’s manufacturer and delivered along with
the device. Since each operating system needs its own drivers, device
manufacturers commonly supply drivers for several popular operating
systems.

Each device driver normally handles one device type, or at most,
one class of closely related devices. For example, a SCSI disk driver can
usually handle multiple SCSI disks of different sizes and different speeds,
and perhaps a SCSI Blu-ray disk as well. On the other hand, a mouse and
joystick are so different that different drivers are usually required.

mu
no
tes
.in

93

However, there is no technical restriction on having one device driver
control multiple unrelated devices. It is just not a good idea in most cases.

Sometimes though, wildly different devices are based on the same
underlying technology. The best-known example is probably USB, a serial
bus technology that is not called ‘‘universal’’ for nothing. USB devices
include disks, memory sticks, cameras, mice, keyboards, mini-fans,
wireless network cards, robots, credit card readers, rechargeable shavers,
paper shredders, barcode scanners, disco balls, and portable thermometers.
They all use USB and yet they all do very different things. The trick is that
USB drivers are typically stacked, like a TCP/IP stack in networks.

In order to access the device’s hardware, actually, meaning the
controller’s registers, the device driver normally has to be part of the
operating system kernel, at least with current architectures. Actually, it is
possible to construct drivers that run in user space, with system calls for
reading and writing the device registers. This design isolates the kernel
from the drivers and the drivers from each other, eliminating a major
source of system crashes—buggy drivers that interfere with the kernel in
one way or another. For building highly reliable systems, this is definitely
the way to go.

7.3.3 Device-Independent I/O Software:

Although some of the I/O software is device specific, other parts of it
are device independent. The exact boundary between the drivers and the
device-independent software is system (and device) dependent, because
some functions that could be done in a device-independent way may
actually be done in the drivers, for efficiency or other reasons. The
functions shown in Fig. 7.6 are typically done in the device independent
software.

Uniform interfacing for device drivers
Buffering
Error reporting
Allocating and releasing dedicated devices
Providing a device-independent block size

Fig 7.6 Device-Independent I/O Software Function

The basic function of the device-independent software is to perform
the I/O functions that are common to all devices and to provide a uniform
interface to the user-level software. We will now look at the above issues
in more detail.

Uniform Interfacing for Device Drivers:
A major issue in an operating system is how to make all I/O devices

and drivers look more or less the same. If disks, printers, keyboards, and

mu
no
tes
.in

94

so on, are all interfaced in different ways, every time a new device comes
along, the operating system must be modified for the new device. Having
to hack on the operating system for each new device is not a good idea

Buffering:

Buffering is also an issue, both for block and character devices, for a
variety of reasons. To see one of them, consider a process that wants to
read data from an (ADSL—Asymmetric Digital Subscriber Line) modem,
something many people use at home to connect to the Internet. One
possible strategy for dealing with the incoming characters is to have the
user process do a read system call and block waiting for one character.
Each arriving character causes an interrupt. The interrupt-service
procedure hands the character to the user process and unblocks it. After
putting the character somewhere, the process reads another character and
blocks again.

Error Reporting:

Errors are far more common in the context of I/O than in other
contexts. When they occur, the operating system must handle them as best
it can. Many errors are device specific and must be handled by the
appropriate driver, but the framework for error handling is device
independent.

One class of I/O errors is programming errors. These occur when a
process asks for something impossible, such as writing to an input device
(keyboard, scanner, mouse, etc.) or reading from an output device (printer,
plotter, etc.). Other errors are providing an invalid buffer address or other
parameter, and specifying an invalid device (e.g., disk 3 when the system
has only two disks), and so on. The action to take on these errors is
straightforward: just report back an error code to the caller. Another class
of errors is the class of actual I/O errors, for example, trying to write a
disk block that has been damaged or trying to read from a camcorder that
has been switched off. In these circumstances, it is up to the driver to
determine what to do. If the driver does not know what to do, it may pass
the problem back up to device independent software.

What this software does depends on the environment and the
nature of the error. If it is a simple read error and there is an interactive
user available, it may display a dialog box asking the user what to do. The
options may include retrying a certain number of times, ignoring the error,
or killing the calling process. If there is no user available, probably the
only real option is to have the system call fail with an error code.

Allocating and Releasing Dedicated Devices:

Some devices, such as printers, can be used only by a single
process at any given moment. It is up to the operating system to examine
requests for device usage and accept or reject them, depending on whether

mu
no
tes
.in

95

the requested device is available or not. A simple way to handle these
requests is to require processes to perform opens on the special files for
devices directly. If the device is unavailable, the open fails. Closing such a
dedicated device then releases it.

An alternative approach is to have special mechanisms for
requesting and releasing dedicated devices. An attempt to acquire a device
that is not available blocks the caller instead of failing. Blocked processes
are put on a queue. Sooner or later, the requested device becomes
available and the first process on the queue is allowed to acquire it and
continue execution.

Device-Independent Block Size:

Different disks may have different sector sizes. It is up to the
device-independent software to hide this fact and provide a uniform block
size to higher layers, for example, by treating several sectors as a single
logical block. In this way, the higher layers deal only with abstract devices
that all use the same logical block size, independent of the physical sector
size. Similarly, some character devices deliver their data one byte at a time
(e.g., mice), while others deliver theirs in larger units (e.g., Ethernet
interfaces). These differences may also be hidden

7.3.4 User-Space I/O Software:

Although most of the I/O software is within the operating system, a
small portion of it consists of libraries linked together with user programs,
and even whole programs running outside the kernel. System calls,
including the I/O system calls, are normally made by library procedures.
When a C program contains the call
count = write(fd, buffer, nbytes);

The library procedure write might be linked with the program and
contained in the binary program present in memory at run time. In other
systems, libraries can be loaded during program execution. Either way, the
collection of all these library procedures is clearly part of the I/O system.

While these procedures do little more than put their parameters in
the appropriate place for the system call, other I/O procedures actually do
real work.

In particular, formatting of input and output is done by library procedures.

One example from C is printf, which takes a format string and
possibly some variables as input, builds an ASCII string, and then calls
write to output the string. As an example of printf, consider the statement.

printf("The square of %3d is %6d\n", i, i*i);

mu
no
tes
.in

96

It formats a string consisting of the 14-character string ‘‘The
square of ’’ followed by the value i as a 3-character string, then the 4-
character string ‘‘ is ’’, then i2 as 6 characters, and finally a line feed.

An example of a similar procedure for input is scanf, which reads
input and stores it into variables described in a format string using the
same syntax as printf.

The standard I/O library contains a number of procedures that
involve I/O and all run as part of user programs.

Not all user-level I/O software consists of library procedures.
Another important category is the spooling system. Spooling is a way of
dealing with dedicated I/O devices in a multiprogramming system.

Consider a typical spooled device: a printer. Although it would be
technically easy to let any user process open the character special file for
the printer, suppose a process opened it and then did nothing for hours. No
other process could print anything.

Instead what is done is to create a special process, called a
daemon, and a special directory, called a spooling directory. To print a
file, a process first generates the entire file to be printed and puts it in the
spooling directory. It is up to the daemon, which is the only process
having permission to use the printer’s special file, to print the files in the
directory. By protecting the special file against direct use by users, the
problem of having someone keeping it open unnecessarily long is
eliminated. Spooling is used not only for printers. It is also used in other
I/O situations.

7.4 SUMMARY

Different people look at I/O hardware in different ways. In this
book we are concerned with programming I/O devices, not designing,
building, or maintaining them, so our interest is in how the hardware is
programmed, not how it works inside. Different disks may have different
sector sizes. It is up to the device-independent software to hide this fact
and provide a uniform block size to higher layers, for example, by treating
several sectors as a single logical block.

7.5 UNIT END QUESTIONS
1) What is the use of Boot Block?
2) What is Sector Sparing?
3) Explain Direct Memory Access?
4) Explain Programmed I/O in detail.
5) Explain Device-Independent I/O Software.

mu
no
tes
.in

97

8
I/O DEVICES

Unit structure
8.0 Objectives
8.1 Introduction
8.2 Clocks
8.3 User interface
8.4 Thin clients
8.5 power management
8.6 Summary
8.7 Unit End Questions

8.0 OBJECTIVES

• To understand the Disk concept
• To learn CLOCKS Concept
• To learn different, USER INTERFACES
• To understand THIN CLIENTS and Power management

In addition to providing abstractions such as processes, address
spaces, and files, an operating system also controls all the computer’s I/O
(Input/Output) devices. It must issue commands to the devices, catch
interrupts, and handle errors. It should also provide an interface between
the devices and the rest of the system that is simple and easy to use. To the
extent possible, the interface should be the same for all devices (device
independence). The I/O code represents a significant fraction of the total
operating system. How the operating system manages I/O is the subject of
this chapter.

This chapter is organized as follows. We will look first at some of
the principles of I/O hardware and then at I/O software in general. I/O
software can be structured in layers, with each having a well-defined task.
We will look at these layers to see what they do and how they fit together.
Next, we will look at several I/O devices in detail: disks, clocks,
keyboards, and displays. For each device we will look at its hardware and
software. Finally, we will consider power management.

8.1 INTRODUCTION

We will begin with disks, which are conceptually simple, yet very
important. After that we will examine clocks, keyboards, and displays.

mu
no
tes
.in

98

8.1.1 Disk Hardware:

Disks come in a variety of types. The most common ones are the
magnetic hard disks. They are characterized by the fact that reads and
writes are equally fast, which makes them suitable as secondary memory
(paging, file systems, etc.). Arrays of these disks are sometimes used to
provide highly reliable storage. For distribution of programs, data, and
movies, optical disks (DVDs and Blu-ray) are also important. Finally,
solid-state disks are increasingly popular as they are fast and do not
contain moving parts. In the following sections we will discuss magnetic
disks as an example of the hardware and then describe the software for
disk devices in general.

Magnetic Disks:

Magnetic disks are organized into cylinders, each one containing as
many tracks as there are heads stacked vertically. The tracks are divided
into sectors, with the number of sectors around the circumference typically
being 8 to 32 on floppy disks, and up to several hundred on hard disks.
The number of heads varies from 1 to about 16.

Older disks have little electronics and just deliver a simple serial bit
stream. On these disks, the controller does most of the work. On other
disks, in particular, IDE (Integrated Drive Electronics) and SATA
(Serial ATA) disks, the disk drive itself contains a microcontroller that
does considerable work and allows the real controller to issue a set of
higher-level commands. The controller often does track caching, bad-
block remapping, and much more.

A device feature that has important implications for the disk driver
is the possibility of a controller doing seeks on two or more drives at the
same time. These are known as overlapped seeks. While the controller
and software are waiting for a seek to complete on one drive, the
controller can initiate a seek on another drive. Many controllers can also
read or write on one drive while seeking on one or more other drives, but a
floppy disk controller cannot read or write on two drives at the same time.
(Reading or writing requires the controller to move bits on a microsecond
time scale, so one transfer uses up most of its computing power.) The
situation is different for hard disks with integrated controllers, and in a
system with more than one of these hard drives they can operate
simultaneously, at least to the extent of transferring between the disk and
the controller’s buffer memory. Only one transfer between the controller
and the main memory is possible at once, however. The ability to perform
two or more operations at the same time can reduce the average access
time considerably.

Figure 8.1 compares parameters of the standard storage medium
for the original IBM PC with parameters of a disk made three decades
later to show how much disks changed in that time. It is interesting to note

mu
no
tes
.in

99

that not all parameters have improved as much. Average seek time is
almost 9 times better than it was, transfer rate is 16,000 times better, while
capacity is up by a factor of 800,000. This pattern has to do with relatively
gradual improvements in the moving parts, but much higher bit densities
on the recording surfaces.

Fig 8.1 compares parameters

One thing to be aware of in looking at the specifications of modern
hard disks is that the geometry specified, and used by the driver software,
is almost always different from the physical format. On old disks, the
number of sectors per track was the same for all cylinders. Modern disks
are divided into zones with more sectors on the outer zones than the inner
ones.

RAID:

CPU performance has been increasing exponentially over the past
decade, roughly doubling every 18 months. Not so with disk performance.
In the 1970s, average seek times on minicomputer disks were 50 to 100
msec. Now seek times are still a few msec. In most technical industries
(say, automobiles or aviation), a factor of 5 to 10 performance
improvement in two decades would be major news (imagine 300-MPG
cars), but in the computer industry it is an embarrassment.

Thus the gap between CPU performance and (hard) disk
performance has become much larger over time. Can anything be done to
help?

Yes! As we have seen, parallel processing is increasingly being
used to speed up CPU performance. It has occurred to various people over
the years that parallel I/O might be a good idea, too. In their 1988 paper,
Patterson et al. suggested six specific disk organizations that could be used
to improve disk performance, reliability, or both (Patterson et al., 1988).

99

that not all parameters have improved as much. Average seek time is
almost 9 times better than it was, transfer rate is 16,000 times better, while
capacity is up by a factor of 800,000. This pattern has to do with relatively
gradual improvements in the moving parts, but much higher bit densities
on the recording surfaces.

Fig 8.1 compares parameters

One thing to be aware of in looking at the specifications of modern
hard disks is that the geometry specified, and used by the driver software,
is almost always different from the physical format. On old disks, the
number of sectors per track was the same for all cylinders. Modern disks
are divided into zones with more sectors on the outer zones than the inner
ones.

RAID:

CPU performance has been increasing exponentially over the past
decade, roughly doubling every 18 months. Not so with disk performance.
In the 1970s, average seek times on minicomputer disks were 50 to 100
msec. Now seek times are still a few msec. In most technical industries
(say, automobiles or aviation), a factor of 5 to 10 performance
improvement in two decades would be major news (imagine 300-MPG
cars), but in the computer industry it is an embarrassment.

Thus the gap between CPU performance and (hard) disk
performance has become much larger over time. Can anything be done to
help?

Yes! As we have seen, parallel processing is increasingly being
used to speed up CPU performance. It has occurred to various people over
the years that parallel I/O might be a good idea, too. In their 1988 paper,
Patterson et al. suggested six specific disk organizations that could be used
to improve disk performance, reliability, or both (Patterson et al., 1988).

99

that not all parameters have improved as much. Average seek time is
almost 9 times better than it was, transfer rate is 16,000 times better, while
capacity is up by a factor of 800,000. This pattern has to do with relatively
gradual improvements in the moving parts, but much higher bit densities
on the recording surfaces.

Fig 8.1 compares parameters

One thing to be aware of in looking at the specifications of modern
hard disks is that the geometry specified, and used by the driver software,
is almost always different from the physical format. On old disks, the
number of sectors per track was the same for all cylinders. Modern disks
are divided into zones with more sectors on the outer zones than the inner
ones.

RAID:

CPU performance has been increasing exponentially over the past
decade, roughly doubling every 18 months. Not so with disk performance.
In the 1970s, average seek times on minicomputer disks were 50 to 100
msec. Now seek times are still a few msec. In most technical industries
(say, automobiles or aviation), a factor of 5 to 10 performance
improvement in two decades would be major news (imagine 300-MPG
cars), but in the computer industry it is an embarrassment.

Thus the gap between CPU performance and (hard) disk
performance has become much larger over time. Can anything be done to
help?

Yes! As we have seen, parallel processing is increasingly being
used to speed up CPU performance. It has occurred to various people over
the years that parallel I/O might be a good idea, too. In their 1988 paper,
Patterson et al. suggested six specific disk organizations that could be used
to improve disk performance, reliability, or both (Patterson et al., 1988).

mu
no
tes
.in

100

These ideas were quickly adopted by industry and have led to a new class
of I/O device called a RAID. Patterson et al.

defined RAID as Redundant Array of Inexpensive Disks, but
industry redefined the I to be ‘‘Independent’’ rather than ‘‘Inexpensive’’
(maybe so they could charge more?). Since a villain was also needed (as in
RISC vs. CISC, also due to Patterson), the bad guy here was the SLED
(Single Large Expensive Disk).

The fundamental idea behind a RAID is to install a box full of
disks next to the computer, typically a large server, replace the disk
controller card with a RAID controller, copy the data over to the RAID,
and then continue normal operation. In other words, a RAID should look
like a SLED to the operating system but have better performance and
better reliability. In the past, RAIDs consisted almost exclusively of a
RAID SCSI controller plus a box of SCSI disks, because the performance
was good and modern SCSI supports up to 15 disks on a single controller.
Now a days, many manufacturers also offer (less expensive) RAIDs based
on SATA. In this way, no software changes are required to use the RAID,
a big selling point for many system administrators.

In addition to appearing like a single disk to the software, all RAIDs
have the property that the data are distributed over the drives, to allow
parallel operation. Several different schemes for doing this were defined
by Patterson et al. Nowadays, most manufacturers refer to the seven
standard configurations as RAID level 0 through RAID level 6. In
addition, there are a few other minor levels that we will not discuss. The
term ‘‘level’’ is something of a misnomer since no hierarchy is involved;
there are simply seven different organizations possible.

8.1.2 Disk Formatting:

A hard disk consists of a stack of aluminum, alloy, or glass platters
typically 3.5 inch in diameter (or 2.5 inch on notebook computers). On
each platter is deposited a thin magnetizable metal oxide. After
manufacturing, there is no information whatsoever on the disk. Before the
disk can be used, each platter must receive a low-level format done by
software. The format consists of a series of concentric tracks, each
containing some number of sectors, with short gaps between the sectors.
The format of a sector is shown in Fig. 8.2

Fig 8.2

The preamble starts with a certain bit pattern that allows the
hardware to recognize the start of the sector. It also contains the cylinder
and sector numbers and some other information. The size of the data

mu
no
tes
.in

101

portion is determined by the low level formatting program. Most disks use
512-byte sectors. The ECC field contains redundant information that can
be used to recover from read errors. The size and content of this field
varies from manufacturer to manufacturer, depending on how much disk
space the designer is willing to give up for higher reliability and how
complex an ECC code the controller can handle. A 16-byte ECC field is
not unusual.

Furthermore, all hard disks have some number of spare sectors
allocated to be used to replace sectors with a manufacturing defect.

The position of sector 0 on each track is offset from the previous
track when the low-level format is laid down. This offset, called cylinder
skew, is done to improve performance. The idea is to allow the disk to
read multiple tracks in one continuous operation without losing data.

8.1.3 Disk Arm Scheduling Algorithms:

In this section we will look at some issues related to disk drivers in
general.

First, consider how long it takes to read or write a disk block. The time
required is determined by three factors:

1. Seek time (the time to move the arm to the proper cylinder).
2. Rotational delay (how long for the proper sector to appear under the

reading head).
3. Actual data transfer time.

If the disk driver accepts requests one at a time and carries them
out in that order, that is, FCFS (First-Come, First-Served), little can be
done to optimize seek time. However, another strategy is possible when
the disk is heavily loaded. It is likely that while the arm is seeking on
behalf of one request, other disk requests may be generated by other
processes. Many disk drivers maintain a table, indexed by cylinder
number, with all the pending requests for each cylinder chained together in
a linked list headed by the table entries.

Given this kind of data structure, we can improve upon the first-
come, first servedscheduling algorithm. To see how, consider an
imaginary disk with 40 cylinders. A request comes in to read a block on
cylinder 11. While the seek to cylinder 11 is in progress, new requests
come in for cylinders 1, 36, 16, 34, 9, and 12, in that order.

They are entered into the table of pending requests, with a separate
linked list for each cylinder. The requests are shown in Fig. 8.3 . When the
current request (for cylinder 11) is finished, the disk driver has a choice of
which request to handle next. Using FCFS, it would go next to cylinder 1,

mu
no
tes
.in

102

then to 36, and so on. This algorithm would require arm motions of 10, 35,
20, 18, 25, and 3, respectively, for a total of 111 cylinders.

Fig 8.3
8.1.4 Error Handling:

Disk manufacturers are constantly pushing the limits of the
technology by increasing linear bit densities. A track midway out on a
5.25-inch disk has a circumference of about 300 mm. If the track holds
300 sectors of 512 bytes, the linear recording density may be about 5000
bits/mm taking into account the fact that some space is lost to preambles,
ECCs, and intersector gaps. Recording 5000 bits/mm requires an
extremely uniform substrate and a very fine oxide coating. Unfortunately,
it is not possible to manufacture a disk to such specifications without
defects. As soon as manufacturing technology has improved to the point
where it is possible to operate flawlessly at such densities, disk designers
will go to higher densities to increase the capacity. Doing so will probably
reintroduce defects.

Manufacturing defects introduce bad sectors, that is, sectors that do
not correctly read back the value just written to them. If the defect is very
small, say, only a few bits, it is possible to use the bad sector and just let
the ECC correct the errors every time. If the defect is bigger, the error
cannot be masked

There are two general approaches to bad blocks: deal with them in
the controller or deal with them in the operating system. In the former
approach, before the disk is shipped from the factory, it is tested and a list
of bad sectors is written onto the disk. For each bad sector, one of the
spares is substituted for it.

There are two ways to do this substitution. In Fig. 8.4 (a) we see a
single disk track with 30 data sectors and two spares. Sector 7 is defective.
What the controller can do is remap one of the spares as sector 7 as shown
in Fig. 8.4(b). The other way is to shift all the sectors up one, as shown in
Fig. 8.4 (c). In both cases the controller has to know which sector is
which. It can keep track of this information through internal tables (one
per track) or by rewriting the preambles to give the remapped sector
numbers. If the preambles are rewritten, the method of Fig. 8.4(c) is more

102

then to 36, and so on. This algorithm would require arm motions of 10, 35,
20, 18, 25, and 3, respectively, for a total of 111 cylinders.

Fig 8.3
8.1.4 Error Handling:

Disk manufacturers are constantly pushing the limits of the
technology by increasing linear bit densities. A track midway out on a
5.25-inch disk has a circumference of about 300 mm. If the track holds
300 sectors of 512 bytes, the linear recording density may be about 5000
bits/mm taking into account the fact that some space is lost to preambles,
ECCs, and intersector gaps. Recording 5000 bits/mm requires an
extremely uniform substrate and a very fine oxide coating. Unfortunately,
it is not possible to manufacture a disk to such specifications without
defects. As soon as manufacturing technology has improved to the point
where it is possible to operate flawlessly at such densities, disk designers
will go to higher densities to increase the capacity. Doing so will probably
reintroduce defects.

Manufacturing defects introduce bad sectors, that is, sectors that do
not correctly read back the value just written to them. If the defect is very
small, say, only a few bits, it is possible to use the bad sector and just let
the ECC correct the errors every time. If the defect is bigger, the error
cannot be masked

There are two general approaches to bad blocks: deal with them in
the controller or deal with them in the operating system. In the former
approach, before the disk is shipped from the factory, it is tested and a list
of bad sectors is written onto the disk. For each bad sector, one of the
spares is substituted for it.

There are two ways to do this substitution. In Fig. 8.4 (a) we see a
single disk track with 30 data sectors and two spares. Sector 7 is defective.
What the controller can do is remap one of the spares as sector 7 as shown
in Fig. 8.4(b). The other way is to shift all the sectors up one, as shown in
Fig. 8.4 (c). In both cases the controller has to know which sector is
which. It can keep track of this information through internal tables (one
per track) or by rewriting the preambles to give the remapped sector
numbers. If the preambles are rewritten, the method of Fig. 8.4(c) is more

102

then to 36, and so on. This algorithm would require arm motions of 10, 35,
20, 18, 25, and 3, respectively, for a total of 111 cylinders.

Fig 8.3
8.1.4 Error Handling:

Disk manufacturers are constantly pushing the limits of the
technology by increasing linear bit densities. A track midway out on a
5.25-inch disk has a circumference of about 300 mm. If the track holds
300 sectors of 512 bytes, the linear recording density may be about 5000
bits/mm taking into account the fact that some space is lost to preambles,
ECCs, and intersector gaps. Recording 5000 bits/mm requires an
extremely uniform substrate and a very fine oxide coating. Unfortunately,
it is not possible to manufacture a disk to such specifications without
defects. As soon as manufacturing technology has improved to the point
where it is possible to operate flawlessly at such densities, disk designers
will go to higher densities to increase the capacity. Doing so will probably
reintroduce defects.

Manufacturing defects introduce bad sectors, that is, sectors that do
not correctly read back the value just written to them. If the defect is very
small, say, only a few bits, it is possible to use the bad sector and just let
the ECC correct the errors every time. If the defect is bigger, the error
cannot be masked

There are two general approaches to bad blocks: deal with them in
the controller or deal with them in the operating system. In the former
approach, before the disk is shipped from the factory, it is tested and a list
of bad sectors is written onto the disk. For each bad sector, one of the
spares is substituted for it.

There are two ways to do this substitution. In Fig. 8.4 (a) we see a
single disk track with 30 data sectors and two spares. Sector 7 is defective.
What the controller can do is remap one of the spares as sector 7 as shown
in Fig. 8.4(b). The other way is to shift all the sectors up one, as shown in
Fig. 8.4 (c). In both cases the controller has to know which sector is
which. It can keep track of this information through internal tables (one
per track) or by rewriting the preambles to give the remapped sector
numbers. If the preambles are rewritten, the method of Fig. 8.4(c) is more

mu
no
tes
.in

103

work (because 23 preambles must be rewritten) but ultimately gives better
performance because an entire track can still be read in one rotation.

Fig 8.4

Errors can also develop during normal operation after the drive has been
installed.

The first line of defense upon getting an error that the ECC cannot
handle is to just try the read again. Some read errors are transient, that is,
are caused by specks of dust under the head and will go away on a second
attempt. If the controller notices that it is getting repeated errors on a
certain sector, it can switch to a spare before the sector has died
completely. In this way, no data are lost and the operating system and user
do not even notice the problem. Usually, the method of Fig. 8.4(b) has to
be used since the other sectors might now contain data. Using the method
of Fig. 8.4(c) would require not only rewriting the preambles, but copying
all the data as well.

8.1.5 Stable Storage:

As we have seen, disks sometimes make errors. Good sectors can
suddenly become bad sectors. Whole drives can die unexpectedly. RAIDs
protect against a few sectors going bad or even a drive falling out.
However, they do not protect against write errors laying down bad data in
the first place. They also do not protect against crashes during writes
corrupting the original data without replacing them by newer data.

For some applications, it is essential that data never be lost or
corrupted, even in the face of disk and CPU errors. Ideally, a disk should
simply work all the time with no errors. Unfortunately, that is not
achievable. What is achievable is a disk subsystem that has the following
property: when a write is issued to it, the disk either correctly writes the
data or it does nothing, leaving the existing data intact.

Such a system is called stable storage and is implemented in
software (Lampson and Sturgis, 1979). The goal is to keep the disk
consistent at all costs. Below we will describe a slight variant of the
original idea.

103

work (because 23 preambles must be rewritten) but ultimately gives better
performance because an entire track can still be read in one rotation.

Fig 8.4

Errors can also develop during normal operation after the drive has been
installed.

The first line of defense upon getting an error that the ECC cannot
handle is to just try the read again. Some read errors are transient, that is,
are caused by specks of dust under the head and will go away on a second
attempt. If the controller notices that it is getting repeated errors on a
certain sector, it can switch to a spare before the sector has died
completely. In this way, no data are lost and the operating system and user
do not even notice the problem. Usually, the method of Fig. 8.4(b) has to
be used since the other sectors might now contain data. Using the method
of Fig. 8.4(c) would require not only rewriting the preambles, but copying
all the data as well.

8.1.5 Stable Storage:

As we have seen, disks sometimes make errors. Good sectors can
suddenly become bad sectors. Whole drives can die unexpectedly. RAIDs
protect against a few sectors going bad or even a drive falling out.
However, they do not protect against write errors laying down bad data in
the first place. They also do not protect against crashes during writes
corrupting the original data without replacing them by newer data.

For some applications, it is essential that data never be lost or
corrupted, even in the face of disk and CPU errors. Ideally, a disk should
simply work all the time with no errors. Unfortunately, that is not
achievable. What is achievable is a disk subsystem that has the following
property: when a write is issued to it, the disk either correctly writes the
data or it does nothing, leaving the existing data intact.

Such a system is called stable storage and is implemented in
software (Lampson and Sturgis, 1979). The goal is to keep the disk
consistent at all costs. Below we will describe a slight variant of the
original idea.

103

work (because 23 preambles must be rewritten) but ultimately gives better
performance because an entire track can still be read in one rotation.

Fig 8.4

Errors can also develop during normal operation after the drive has been
installed.

The first line of defense upon getting an error that the ECC cannot
handle is to just try the read again. Some read errors are transient, that is,
are caused by specks of dust under the head and will go away on a second
attempt. If the controller notices that it is getting repeated errors on a
certain sector, it can switch to a spare before the sector has died
completely. In this way, no data are lost and the operating system and user
do not even notice the problem. Usually, the method of Fig. 8.4(b) has to
be used since the other sectors might now contain data. Using the method
of Fig. 8.4(c) would require not only rewriting the preambles, but copying
all the data as well.

8.1.5 Stable Storage:

As we have seen, disks sometimes make errors. Good sectors can
suddenly become bad sectors. Whole drives can die unexpectedly. RAIDs
protect against a few sectors going bad or even a drive falling out.
However, they do not protect against write errors laying down bad data in
the first place. They also do not protect against crashes during writes
corrupting the original data without replacing them by newer data.

For some applications, it is essential that data never be lost or
corrupted, even in the face of disk and CPU errors. Ideally, a disk should
simply work all the time with no errors. Unfortunately, that is not
achievable. What is achievable is a disk subsystem that has the following
property: when a write is issued to it, the disk either correctly writes the
data or it does nothing, leaving the existing data intact.

Such a system is called stable storage and is implemented in
software (Lampson and Sturgis, 1979). The goal is to keep the disk
consistent at all costs. Below we will describe a slight variant of the
original idea.

mu
no
tes
.in

104

Before describing the algorithm, it is important to have a clear
model of the possible errors. The model assumes that when a disk writes a
block (one or more sectors), either the write is correct or it is incorrect and
this error can be detected on a subsequent read by examining the values of
the ECC fields. In principle, guaranteed error detection is never possible
because with a, say, 16-byte ECC field guarding a 512-byte sector, there
are 24096 data values and only 2144 ECC values. Thus if a block is
garbled during writing but the ECC is not, there are billions upon billions
of incorrect combinations that yield the same ECC. If any of them occur,
the error will not be detected. On the whole, the probability of random
data having the proper 16- byte ECC is about 2−144, which is small
enough that we will call it zero, even though it is really not.

The model also assumes that a correctly written sector can
spontaneously go bad and become unreadable. However, the assumption is
that such events are so rare that having the same sector go bad on a second
(independent) drive during a reasonable time interval (e.g., 1 day) is small
enough to ignore.

The model also assumes the CPU can fail, in which case it just
stops. Any disk write in progress at the moment of failure also stops,
leading to incorrect data in one sector and an incorrect ECC that can later
be detected. Under all these conditions, stable storage can be made 100%
reliable in the sense of writes either working correctly or leaving the old
data in place. Of course, it does not protect against physical disasters, such
as an earthquake happening and the computer falling 100 meters into a
fissure and landing in a pool of boiling magma. It is tough to recover from
this condition in software.

Stable storage uses a pair of identical disks with the corresponding
blocks working together to form one error-free block. In the absence of
errors, the corresponding blocks on both drives are the same. Either one
can be read to get the same result. To achieve this goal, the following three
operations are defined:

1. Stable writes. A stable write consists of first writing the block on drive
1, then reading it back to verify that it was written correctly. If it was not,
the write and reread are done again up to n times until they work. After n
consecutive failures, the block is remapped onto a spare and the operation
repeated until it succeeds, no matter how many spares have to be tried.
After the write to drive 1 has succeeded, the corresponding block on drive
2 is written and reread, repeatedly if need be, until it, too, finally succeeds.
In the absence of CPU crashes, when a stable write completes, the block
has correctly been written onto both drives and verified on both of them.

2. Stable reads: A stable read first reads the block from drive 1. If this
yields an incorrect ECC, the read is tried again, up to n times. If all of
these give bad ECCs, the corresponding block is read from drive 2. Given
the fact that a successful stable writeleaves two good copies of the block

mu
no
tes
.in

105

behind, and our assumption that the probability of the same block
spontaneously going bad on both drives in a reasonable time interval is
negligible, a stable read always succeeds.

3. Crash recovery: After a crash, a recovery program scans both disks
comparing corresponding blocks. If a pairof blocks are both good and the
same, nothing is done. If one of them has an ECC error, the bad block is
overwritten with the corresponding good block. If a pairof blocks are both
good but different, the block from drive 1 is written onto drive 2. In the
absence of CPU crashes, this scheme always works because stable writes
always write two valid copies of every block and spontaneous errors are
assumed never to occur on both corresponding blocks at the same time.
What about in the presence of CPU crashes during stable writes? It
depends on precisely when the crash occurs. There are five possibilities, as
depicted in Fig. 8.5

In the absence of CPU crashes, this scheme always works because
stable writes always write two valid copies of every block and
spontaneous errors are assumed never to occur on both corresponding
blocks at the same time. What about in the presence of CPU crashes
during stable writes? It depends on precisely when the crash occurs. There
are five possibilities, as depicted in Fig. 8.5

Fig 8.5

8.2 CLOCKS

Clocks (also called timers) are essential to the operation of any
multiprogrammed system for a variety of reasons. They maintain the time
of day and prevent one process from monopolizing the CPU, among other
things. The clock software can take the form of a device driver, even
though a clock is neither a block device, like a disk, nor a character
device, like a mouse. Our examination of clocks will follow the same
pattern as in the previous section: first a look at clock hardware and then a
look at the clock software.

105

behind, and our assumption that the probability of the same block
spontaneously going bad on both drives in a reasonable time interval is
negligible, a stable read always succeeds.

3. Crash recovery: After a crash, a recovery program scans both disks
comparing corresponding blocks. If a pairof blocks are both good and the
same, nothing is done. If one of them has an ECC error, the bad block is
overwritten with the corresponding good block. If a pairof blocks are both
good but different, the block from drive 1 is written onto drive 2. In the
absence of CPU crashes, this scheme always works because stable writes
always write two valid copies of every block and spontaneous errors are
assumed never to occur on both corresponding blocks at the same time.
What about in the presence of CPU crashes during stable writes? It
depends on precisely when the crash occurs. There are five possibilities, as
depicted in Fig. 8.5

In the absence of CPU crashes, this scheme always works because
stable writes always write two valid copies of every block and
spontaneous errors are assumed never to occur on both corresponding
blocks at the same time. What about in the presence of CPU crashes
during stable writes? It depends on precisely when the crash occurs. There
are five possibilities, as depicted in Fig. 8.5

Fig 8.5

8.2 CLOCKS

Clocks (also called timers) are essential to the operation of any
multiprogrammed system for a variety of reasons. They maintain the time
of day and prevent one process from monopolizing the CPU, among other
things. The clock software can take the form of a device driver, even
though a clock is neither a block device, like a disk, nor a character
device, like a mouse. Our examination of clocks will follow the same
pattern as in the previous section: first a look at clock hardware and then a
look at the clock software.

105

behind, and our assumption that the probability of the same block
spontaneously going bad on both drives in a reasonable time interval is
negligible, a stable read always succeeds.

3. Crash recovery: After a crash, a recovery program scans both disks
comparing corresponding blocks. If a pairof blocks are both good and the
same, nothing is done. If one of them has an ECC error, the bad block is
overwritten with the corresponding good block. If a pairof blocks are both
good but different, the block from drive 1 is written onto drive 2. In the
absence of CPU crashes, this scheme always works because stable writes
always write two valid copies of every block and spontaneous errors are
assumed never to occur on both corresponding blocks at the same time.
What about in the presence of CPU crashes during stable writes? It
depends on precisely when the crash occurs. There are five possibilities, as
depicted in Fig. 8.5

In the absence of CPU crashes, this scheme always works because
stable writes always write two valid copies of every block and
spontaneous errors are assumed never to occur on both corresponding
blocks at the same time. What about in the presence of CPU crashes
during stable writes? It depends on precisely when the crash occurs. There
are five possibilities, as depicted in Fig. 8.5

Fig 8.5

8.2 CLOCKS

Clocks (also called timers) are essential to the operation of any
multiprogrammed system for a variety of reasons. They maintain the time
of day and prevent one process from monopolizing the CPU, among other
things. The clock software can take the form of a device driver, even
though a clock is neither a block device, like a disk, nor a character
device, like a mouse. Our examination of clocks will follow the same
pattern as in the previous section: first a look at clock hardware and then a
look at the clock software.

mu
no
tes
.in

106

8.2.1 Clock Hardware:

Two types of 4 are commonly used in computers, and both are
quite different from the clocks and watches used by people. The simpler
clocks are tied to the 110- or 220-volt power line and cause an interrupt on
every voltage cycle, at 50 or 60 Hz. These clocks used to dominate, but
are rare nowadays.

When a piece of quartz crystal is properly cut and mounted under
tension, it can be made to generate a periodic signal of very great
accuracy, typically in the range of several hundred megahertz to a few
gigahertz, depending on the crystal chosen. Using electronics, this base
signal can be multiplied by a small integer to get frequencies up to several
gigahertz or even more. At least one such circuit is usually found in any
computer, providing a synchronizing signal to the computer’s various
circuits. This signal is fed into the counter to make it count down to zero.
When the counter gets to zero, it causes a CPU interrupt.

Programmable clocks typically have several modes of operation. In
one-shot mode, when the clock is started, it copies the value of the
holding register into the counter and then decrements the counter at each
pulse from the crystal. When the counter gets to zero, it causes an interrupt
and stops until it is explicitly started again by the software. In square-
wave mode, after getting to zero and causing the interrupt, the holding
register is automatically copied into the counter, and the whole process is
repeated again indefinitely. These periodic interrupts are called clock ticks

8.2.2 Clock Software:

All the clock hardware does is generate interrupts at known
intervals. Everything else involving time must be done by the software,
the clock driver. The exact duties of the clock driver vary among operating
systems, but usually include most of the following:
1. Maintaining the time of day.
2. Preventing processes from running longer than they are allowed to.
3. Accounting for CPU usage.
4. Handling the alarm system call made by user processes.
5. Providing watchdog timers for parts of the system itself.
6. Doing profiling, monitoring, and statistics gathering.

The first clock function, maintaining the time of day (also called the
real time) is not difficult.

8.3 USER INTERFACES: KEYBOARD, MOUSE,
MONITOR

Every general-purpose computer has a keyboard and monitor (and
sometimes a mouse) to allow people to interact with it. Although the
keyboard and monitor are technically separate devices, they work closely

mu
no
tes
.in

107

together. On mainframes, there are frequently many remote users, each
with a device containing a keyboard and an attached display as a unit.
These devices have historically been called terminals.

People frequently still use that term, even when discussing
personal computer keyboards and monitors (mostly for lack of a better
term).

8.3.1 Input Software:

User input comes primarily from the keyboard and mouse (or
sometimes touch screens), so let us look at those. On a personal computer,
the keyboard contains an embedded microprocessor which usually
communicates through a specialized serial port with a controller chip on
the parentboard (although increasingly keyboards are connected to a USB
port). An interrupt is generated whenever a key is struck and a second one
is generated whenever a key is released. At each of these keyboard
interrupts, the keyboard driver extracts the information about what
happens from the I/O port associated with the keyboard. Everything else
happens in software and is pretty much independent of the hardware.

Most of the rest of this section can be best understood when
thinking of typing commands to a shell window (command-line interface).
This is how programmers commonly work. We will discuss graphical
interfaces below. Some devices, in particular touch screens, are used for
input and output. We have made an (arbitrary) choice to discuss them in
the section on output devices. We will discuss graphical interfaces later in
this chapter.

Keyboard Software:

The number in the I/O register is the key number, called the scan
code, not the ASCII code. Normal keyboards have fewer than 128 keys, so
only 7 bits are needed to represent the key number. The eighth bit is set to
0 on a key press and to 1 on a key release. It is up to the driver to keep
track of the status of each key (up or down). So all the hardware does is
give press and release interrupts. Software does the rest.

When the A key is struck, for example, the scan code (30) is put in
an I/O register. It is up to the driver to determine whether it is lowercase,
uppercase, CTRLA, ALT-A, CTRL-ALT-A, or some other combination.
Since the driver can tell which keys have been struck but not yet released
(e.g., SHIFT), it has enough information to do the job.

For example, the key sequence DEPRESS SHIFT, DEPRESS A,
RELEASE A, RELEASE SHIFT indicates an uppercase A. However, the
key sequence DEPRESS SHIFT, DEPRESS A, RELEASE SHIFT,
RELEASE A also indicates an uppercase A. Although this keyboard
interface puts the full burden on the software, it is extremely flexible. For

mu
no
tes
.in

108

example, user programs may be interested in whether a digit just typed
came from the top row of keys or the numeric keypad on the side. In
principle, the driver can provide this information.

Two possible philosophies can be adopted for the driver. In the
first one, the driver’s job is just to accept input and pass it upward
unmodified. A program reading from the keyboard gets a raw sequence of
ASCII codes. (Giving user programs the scan codes is too primitive, as
well as being highly keyboard dependent.) This philosophy is well suited
to the needs of sophisticated screen editors such as emacs, which allow the
user to bind an arbitrary action to any character or sequence of characters.
It does, however, mean that if the user types dste instead of date and then
corrects the error by typing three backspaces and ate, followed by a
carriage return, the user program will be given all 11 ASCII codes typed,
as follows:

d s t e←←←a t e CR
Not all programs want this much detail. Often they just want the

corrected input, not the exact sequence of how it was produced. This
observation leads to the second philosophy: the driver handles all the
intraline editing and just delivers corrected lines to the user programs. The
first philosophy is character oriented; the second one is line oriented.
Originally they were referred to as raw mode and cooked mode,
respectively.

Mouse Software:

Most PCs have a mouse, or sometimes a trackball, which is just a
mouse lying on its back. One common type of mouse has a rubber ball
inside that protrudes through a hole in the bottom and rotates as the mouse
is moved over a rough surface. As the ball rotates, it rubs against rubber
rollers placed on orthogonal shafts. Motion in the east-west direction
causes the shaft parallel to the y-axis to rotate; motion in the north-south
direction causes the shaft parallel to the x-axis to rotate. Another popular
type is the optical mouse, which is equipped with one or more light-
emitting diodes and photodetectors on the bottom. Early ones had to
operate on a special mousepad with a rectangular grid etched onto it so the
mouse could count lines crossed. Modern optical mice have an image-
processing chip in them and make continuous low-resolution photos of the
surface under them, looking for changes from image to image. Whenever
a mouse has moved a certain minimum distance in either direction or a
button is depressed or released, a message is sent to the computer. The
minimum distance is about 0.1 mm (although it can be set in software).
Some people call this unit a mickey. Mice (or occasionally, mouses) can
have one, two, or three buttons, depending on the designers’ estimate of
the users’ intellectual ability to keep track of more than one button. Some
mice have wheels that can send additional data back to the computer.
Wireless mice are the same as wired mice except that instead of sending
their data back to the computer over a wire, they use low-power radios, for
example, using the Bluetooth standard.

mu
no
tes
.in

109

8.3.2 Output Software:

Now let us consider output software. First we will look at simple
output to a text window, which is what programmers normally prefer to
use. Then we will consider graphical user interfaces, which other users
often prefer.

Text Windows:

Output is simpler than input when the output is sequentially in a
single font, size, and color. For the most part, the program sends
characters to the current window and they are displayed there. Usually, a
block of characters, for example, a line, is written
in one system call.

Screen editors and many other sophisticated programs need to be
able to update the screen in complex ways such as replacing one line in the
middle of the screen. To accommodate this need, most output drivers
support a series of commands to move the cursor, insert and delete
characters or lines at the cursor, and so on. These commands are often
called escape sequences. In the heyday of the dumb 25 × 80 ASCII
terminal, there were hundreds of terminal types, each with its own escape
sequences. As a consequence, it was difficult to write software that
worked on more than one terminal type.

One solution, which was introduced in Berkeley UNIX, was a
terminal database called termcap. This software package defined a
number of basic actions, such as moving the cursor to (row, column). To
move the cursor to a particular location, the software, say, an editor, used
a generic escape sequence which was then converted to the actual escape
sequence for the terminal being written to. In this way, the editor worked
on any terminal that had an entry in the termcap database.

Much UNIX software still works this way, even on personal
computers. Eventually, the industry saw the need for standardizing the
escape sequence, so an ANSI standard was developed.

8.4 THIN CLIENTS

Over the years, the main computing paradigm has oscillated
between centralized and decentralized computing. The first computers,
such as the ENIAC, were, in fact, personal computers, albeit large ones,
because only one person could use one at once. Then came time sharing
systems, in which many remote users at simple terminals shared a big
central computer. Next came the PC era, in which the users had their own
personal computers again.

While the decentralized PC model has advantages, it also has some
severe disadvantages that are only beginning to be taken seriously.
Probably the biggest problem is that each PC has a large hard disk and
complex software that must be maintained. For example, when a new

mu
no
tes
.in

110

release of the operating system comes out, aa great deal of work has to be
done to perform the upgrade on each machine separately.

At most corporations, the labor costs of doing this kind of software
maintenance dwarf the actual hardware and software costs. For home
users, the labor is technically free, but few people are capable of doing it
correctly and fewer still enjoy doing it. With a centralized system, only
one or a few machines have to be updated and those machines have a staff
of experts to do the work. A related issue is that users should make regular
backups of their gigabyte file systems, but few of them do. When disaster
strikes, a great deal of moaning and wringing of hands tends to follow.
With a centralized system, backups can be made every night by automated
tape robots.

Another advantage is that resource sharing is easier with
centralized systems. A system with 256 remote users, each with 256 MB
of RAM, will have most of that RAM idle most of the time. With a
centralized system with 64 GB of RAM, it never happens that some user
temporarily needs a lot of RAM but cannot get it because it is on someone
else’s PC. The same argument holds for disk space and other resources.
Finally, we are starting to see a shift from PC-centric computing to Web
Centric computing. One area where this shift is very far along is email.
People used to get their email delivered to their home machine and read it
there. Nowadays, many people log into Gmail, Hotmail, or Yahoo and
read their mail there. The next step is for people to log into other Websites
to do word processing, build spreadsheets, and other things that used to
require PC software. It is even possible that eventually the only software
people run on their PC is a Web browser, and maybe not even that. It is
probably a fair conclusion to say that most users want high-performance
interactive computing but do not really want to administer a computer.
This has led researchers to reexamine timesharing using dumb terminals
(now politely called thin clients) that meet modern terminal expectations.

8.5 POWER MANAGEMENT

The first general-purpose electronic computer, the ENIAC, had
18,000 vacuum tubes and consumed 140,000 watts of power. As a result,
it ran up a nontrivial electricity bill. After the invention of the transistor,
power usage dropped dramatically and the computer industry lost interest
in power requirements. However, nowadays power management is back in
the spotlight for several reasons, and the operating system is playing a role
here.

Let us start with desktop PCs. A desktop PC often has a 200-watt
power supply (which is typically 85% efficient, that is, loses 15% of the
incoming energy to heat). If 100 million of these machines are turned on at
once worldwide, together they use 20,000 megawatts of electricity. This is
the total output of 20 average-sized nuclear power plants. If power
requirements could be cut in half, we could get rid of 10 nuclear power
plants. From an environmental point of view, getting rid of 10 nuclear

mu
no
tes
.in

111

power plants (or an equivalent number of fossil-fuel plants) is a big win
and well worth pursuing.

The other place where power is a big issue is on battery-powered
computers, including notebooks, handhelds, and Webpads, among others.
The heart of the problem is that the batteries cannot hold enough charge to
last very long, a few hours at most. Furthermore, despite massive research
efforts by battery companies, computer companies, and consumer
electronics companies, progress is glacial. To an industry used to a
doubling of performance every 18 months (Moore’s law), having no
progress at all seems like a violation of the laws of physics, but that is the
current situation. As a consequence, making computers use less energy so
existing batteries last longer is high on everyone’s agenda. The operating
system plays a major role here, as we will see below.

At the lowest level, hardware vendors are trying to make their
electronics more energy efficient. Techniques used include reducing
transistor size, employing dynamic voltage scaling, using low-swing and
adiabatic buses, and similar techniques.

These are outside the scope of this book, but interested readers can
find a good survey in a paper by Venkatachalam and Franz (2005). There
are two general approaches to reducing energy consumption. The first one
is for the operating system to turn off parts of the computer (mostly I/O
devices) when they are not in use because a device that is off uses little or
no energy. The second one is for the application program to use less
energy, possibly degrading the quality of the user experience, in order to
stretch out battery time. We will look at each of these approaches in turn,
but first we will say a little bit about hardware design with respect to
power usage.

8.6 SUMMARY

While using memory mapped IO, the OS allocates a buffer in
memory and informs I/O device to use that buffer to send data to the CPU.
I/O device operates asynchronously with CPU, interrupts CPU when
finished. Memory mapped IO is used for most high-speed I/O devices like
disks, communication interfaces.

8.7 UNIT END QUESTIONS
1) What problems could occur if a system allowed a file system to be

mounted simultaneously at more than one location?
2) What criteria should be used in deciding which strategy is best utilized for

a particular file?
3) What is meant by RAID?
4) What are the various Disk-Scheduling Algorithms?
5) What is Low-Level Formatting?
6) Explain POWER MANAGEMENT in details
7) Explain Thin Clients in detail.

mu
no
tes
.in

112

9
DEADLOCKS

Unit Structure
9.0 Objectives
9.1 Resources
9.2 Introduction
9.3 Ignoring the problem --The ostrich algorithm
9.4 Detecting the deadlock
9.5 Deadlock avoidance
9.6 Deadlock Prevention
9.7 Issues
9.8 Summary
9.9 Unit End Questions

9.0 OBJECTIVES

• To understand what is a Deadlock
• learn how to make Resource acquisition
• learn different methods Detecting Deadlocks and Recovering
• To understand The Ostrich Algorithm

A deadlock occurs when every member of a set of processes is
waiting for an event that can only be caused by a member of the set.

Often the event waited for is the release of a resource. In the
automotive world deadlocks are called gridlocks.

The processes are the cars. The resources are the spaces occupied by the cars

Figure 9.a Deadlock
112

9
DEADLOCKS

Unit Structure
9.0 Objectives
9.1 Resources
9.2 Introduction
9.3 Ignoring the problem --The ostrich algorithm
9.4 Detecting the deadlock
9.5 Deadlock avoidance
9.6 Deadlock Prevention
9.7 Issues
9.8 Summary
9.9 Unit End Questions

9.0 OBJECTIVES

• To understand what is a Deadlock
• learn how to make Resource acquisition
• learn different methods Detecting Deadlocks and Recovering
• To understand The Ostrich Algorithm

A deadlock occurs when every member of a set of processes is
waiting for an event that can only be caused by a member of the set.

Often the event waited for is the release of a resource. In the
automotive world deadlocks are called gridlocks.

The processes are the cars. The resources are the spaces occupied by the cars

Figure 9.a Deadlock
112

9
DEADLOCKS

Unit Structure
9.0 Objectives
9.1 Resources
9.2 Introduction
9.3 Ignoring the problem --The ostrich algorithm
9.4 Detecting the deadlock
9.5 Deadlock avoidance
9.6 Deadlock Prevention
9.7 Issues
9.8 Summary
9.9 Unit End Questions

9.0 OBJECTIVES

• To understand what is a Deadlock
• learn how to make Resource acquisition
• learn different methods Detecting Deadlocks and Recovering
• To understand The Ostrich Algorithm

A deadlock occurs when every member of a set of processes is
waiting for an event that can only be caused by a member of the set.

Often the event waited for is the release of a resource. In the
automotive world deadlocks are called gridlocks.

The processes are the cars. The resources are the spaces occupied by the cars

Figure 9.a Deadlock

mu
no
tes
.in

113

For a computer science example consider two processes A and B that each
want to print a file currently on tape.
1. A has obtained ownership of the printer and will release it after printing

one file.
2. B has obtained ownership of the tape drive and will release it after

reading one file.
3. A tries to get ownership of the tape drive, but is told to wait for B to

release it.
4. B tries to get ownership of the printer, but is told to wait for A to release

the printer.

9.1 RESOURCES

The resource is the object granted to a process.

9.1.1: Preemptable and Non-preemptable Resources

● Resources come in two types
1. Preemptable, meaning that the resource can be taken away from its

current owner (and given back later). An example is memory.
2. Non-preemptable, meaning that the resource cannot be taken away. An

example is a printer.

● The interesting issues arise with non-preemptable resources so those are
the ones we study.

● Life history of a resource is a sequence of
1. Request
2. Allocate
3. Use
4. Release

● Processes make requests, use the resource, and release the resource. The
allocation decisions are made by the system and we will study policies
used to make these decisions.

Simple example of the trouble you can get into.

Two resources and two processes.
• Each process wants both resources.
• Use a semaphore for each. Call them S and T.
• If both processes execute P(S); P(T); --- V(T); V(S) all is well.
• But if one executes instead P(T); P(S); -- V(S); V(T) disaster! This was

the printer/tape example just above

Recall from the semaphore/critical-section treatment, that it is easy
to cause trouble if a process dies or stays forever inside its critical section.
Similarly, we assume that no process maintains a resource forever. It may

mu
no
tes
.in

114

obtain the resource an unbounded number of times (i.e. it can have a loop
forever with a resource request inside), but each time it gets the resource,
it must release it eventually.

9.2 INTRODUCTION TO DEADLOCKS

To repeat: A deadlock occurs when every member of a set of
processes is waiting for an event that can only be caused by a member of
the set.

Often the event waited for is the release of a resource.

9.2.1: (Necessary) Conditions for Deadlock

The following four conditions (Coffman; Havender) are necessary but not
sufficient for deadlock. Repeat: They are not sufficient.
1. Mutual exclusion: A resource can be assigned to at most one process

at a time (no sharing).
2. Hold and wait: A processing holding a resource is permitted to

request another.
3. No preemption: A process must release its resources; they cannot be

taken away.
4. Circular wait: There must be a chain of processes such that each

member of the chain is waiting for a resource held by the next
member of the chain.

The first three are characteristics of the system and resources. That
is, for a given system with a fixed set of resources, the first three
conditions are either true or false: They don't change with time. The truth
or falsehood of the last condition does indeed change with time as the
resources are equested/allocated/released.

9.2.2: Deadlock Modeling:

Following are several examples of a Resource Allocation Graph,
also called a Reusable Resource Graph.

Figure 9.1 Resource Allocation Graph
114

obtain the resource an unbounded number of times (i.e. it can have a loop
forever with a resource request inside), but each time it gets the resource,
it must release it eventually.

9.2 INTRODUCTION TO DEADLOCKS

To repeat: A deadlock occurs when every member of a set of
processes is waiting for an event that can only be caused by a member of
the set.

Often the event waited for is the release of a resource.

9.2.1: (Necessary) Conditions for Deadlock

The following four conditions (Coffman; Havender) are necessary but not
sufficient for deadlock. Repeat: They are not sufficient.
1. Mutual exclusion: A resource can be assigned to at most one process

at a time (no sharing).
2. Hold and wait: A processing holding a resource is permitted to

request another.
3. No preemption: A process must release its resources; they cannot be

taken away.
4. Circular wait: There must be a chain of processes such that each

member of the chain is waiting for a resource held by the next
member of the chain.

The first three are characteristics of the system and resources. That
is, for a given system with a fixed set of resources, the first three
conditions are either true or false: They don't change with time. The truth
or falsehood of the last condition does indeed change with time as the
resources are equested/allocated/released.

9.2.2: Deadlock Modeling:

Following are several examples of a Resource Allocation Graph,
also called a Reusable Resource Graph.

Figure 9.1 Resource Allocation Graph
114

obtain the resource an unbounded number of times (i.e. it can have a loop
forever with a resource request inside), but each time it gets the resource,
it must release it eventually.

9.2 INTRODUCTION TO DEADLOCKS

To repeat: A deadlock occurs when every member of a set of
processes is waiting for an event that can only be caused by a member of
the set.

Often the event waited for is the release of a resource.

9.2.1: (Necessary) Conditions for Deadlock

The following four conditions (Coffman; Havender) are necessary but not
sufficient for deadlock. Repeat: They are not sufficient.
1. Mutual exclusion: A resource can be assigned to at most one process

at a time (no sharing).
2. Hold and wait: A processing holding a resource is permitted to

request another.
3. No preemption: A process must release its resources; they cannot be

taken away.
4. Circular wait: There must be a chain of processes such that each

member of the chain is waiting for a resource held by the next
member of the chain.

The first three are characteristics of the system and resources. That
is, for a given system with a fixed set of resources, the first three
conditions are either true or false: They don't change with time. The truth
or falsehood of the last condition does indeed change with time as the
resources are equested/allocated/released.

9.2.2: Deadlock Modeling:

Following are several examples of a Resource Allocation Graph,
also called a Reusable Resource Graph.

Figure 9.1 Resource Allocation Graph

mu
no
tes
.in

115

• The processes are circles.
• The resources are squares.
• An arc (directed line) from a process P to a resource R signifies that

process P has requested (but not yet been allocated) resource R.
• An arc from a resource R to a process P indicates that process P has

been allocated resource R.

There are four strategies used for dealing with deadlocks
1. Ignore the problem
2. Detect deadlocks and recover from them
3. Avoid deadlocks by carefully deciding when to allocate resources.
4. Prevent deadlocks by violating one of the 4 necessary conditions.

9.3 IGNORING THE PROBLEM--THE OSTRICH
ALGORITHM

The “put your head in the sand approach”.

• If the likelihood of a deadlock is sufficiently small and the cost of
avoiding a deadlock is sufficiently high it might be better to ignore the
problem.

• For example if each PC deadlocks once per 100 years, the one reboot may
be less painful than the restrictions needed to prevent it.

• Clearly not a good philosophy for nuclear missile launchers.

• For embedded systems (e.g., missile launchers) the programs run are
fixed in advance so many of the questions Tanenbaum raises (such as
many processes wanting to fork at the same time) don't occur.

9.4 DETECTING DEADLOCKS AND RECOVERING

9.4.1Detecting Deadlocks with Single Unit Resources

• Consider the case in which there is only one instance of each resource.

• Thus a request can be satisfied by only one specific resource.

• In this case the 4 necessary conditions for deadlock are also sufficient.

• Remember we are making an assumption (single unit resources) that is
often invalid. For example, many systems have several printers and a
request is given for “a printer” not a specific printer. Similarly, one can
have many tape drives.

• So the problem comes down to finding a directed cycle in the resource
allocation graph. Why?

• Answer: Because the other three conditions are either satisfied by the
system we are studying or are not in which case deadlock is not a

mu
no
tes
.in

116

question. That is, conditions 1,2,3 are conditions on the system in
general not on what is happening right now.

To find a directed cycle in a directed graph is not hard. The idea is simple.
1. For each node in the graph do a depth first traversal to see if the graph

is a DAG(directed acyclic graph), building a list as you go down the
DAG (and pruning it as you backtrack back up).

2. If you ever find the same node twice on your list, you have found a
directed cycle, the graph is not a DAG, and deadlock exists among the
processes in your current list.

3. If you never find the same node twice, the graph is a DAG and no
deadlock occurs.

4. The searches are finite since there are a finite number of nodes.

9.4.2: Detecting Deadlocks with Multiple Unit Resources:

This is more difficult.

Figure 9.2 Resource allocation graph

• The figure on the above shows a resource allocation graph with multiple
unit resources.

• Each unit is represented by a dot in the box.

• Request edges are drawn to the box since they represent a request for any
dot in the box.

• Allocation edges are drawn from the dot to represent that this unit of the
resource has been assigned (but all units of a resource are equivalent and
the choice of which one to assign is arbitrary).

• Note that there is a directed cycle in red, but there is no deadlock. Indeed
the middle process might finish, erasing the green arc and permitting the
blue dot to satisfy the rightmost process.

• An algorithm for detecting deadlocks in this more general setting. The
idea is as follows.

116

question. That is, conditions 1,2,3 are conditions on the system in
general not on what is happening right now.

To find a directed cycle in a directed graph is not hard. The idea is simple.
1. For each node in the graph do a depth first traversal to see if the graph

is a DAG(directed acyclic graph), building a list as you go down the
DAG (and pruning it as you backtrack back up).

2. If you ever find the same node twice on your list, you have found a
directed cycle, the graph is not a DAG, and deadlock exists among the
processes in your current list.

3. If you never find the same node twice, the graph is a DAG and no
deadlock occurs.

4. The searches are finite since there are a finite number of nodes.

9.4.2: Detecting Deadlocks with Multiple Unit Resources:

This is more difficult.

Figure 9.2 Resource allocation graph

• The figure on the above shows a resource allocation graph with multiple
unit resources.

• Each unit is represented by a dot in the box.

• Request edges are drawn to the box since they represent a request for any
dot in the box.

• Allocation edges are drawn from the dot to represent that this unit of the
resource has been assigned (but all units of a resource are equivalent and
the choice of which one to assign is arbitrary).

• Note that there is a directed cycle in red, but there is no deadlock. Indeed
the middle process might finish, erasing the green arc and permitting the
blue dot to satisfy the rightmost process.

• An algorithm for detecting deadlocks in this more general setting. The
idea is as follows.

116

question. That is, conditions 1,2,3 are conditions on the system in
general not on what is happening right now.

To find a directed cycle in a directed graph is not hard. The idea is simple.
1. For each node in the graph do a depth first traversal to see if the graph

is a DAG(directed acyclic graph), building a list as you go down the
DAG (and pruning it as you backtrack back up).

2. If you ever find the same node twice on your list, you have found a
directed cycle, the graph is not a DAG, and deadlock exists among the
processes in your current list.

3. If you never find the same node twice, the graph is a DAG and no
deadlock occurs.

4. The searches are finite since there are a finite number of nodes.

9.4.2: Detecting Deadlocks with Multiple Unit Resources:

This is more difficult.

Figure 9.2 Resource allocation graph

• The figure on the above shows a resource allocation graph with multiple
unit resources.

• Each unit is represented by a dot in the box.

• Request edges are drawn to the box since they represent a request for any
dot in the box.

• Allocation edges are drawn from the dot to represent that this unit of the
resource has been assigned (but all units of a resource are equivalent and
the choice of which one to assign is arbitrary).

• Note that there is a directed cycle in red, but there is no deadlock. Indeed
the middle process might finish, erasing the green arc and permitting the
blue dot to satisfy the rightmost process.

• An algorithm for detecting deadlocks in this more general setting. The
idea is as follows.

mu
no
tes
.in

117

1. look for a process that might be able to terminate (i.e., all its request
arcs can be satisfied).

2. If one is found pretend that it does terminate (erase all its arcs), and
repeat step 1.

3. If any processes remain, they are deadlocked.

• The algorithm just given makes the most optimistic assumption about a
running process: it will return all its resources and terminate normally. If
we still find processes that remain blocked, they are deadlocked.

9.4.3 Recovery from deadlock:

Suppose that our deadlock detection algorithm has succeeded and
detected a deadlock. What next? Some way is needed to recover and get
the system going again.

In this section we will discuss various ways of recovering from
deadlock.

Preemption:

In some cases it may be possible to temporarily take a resource
away from its current owner and give it to another process

Perhaps you can temporarily preempt a resource from a process.
Not likely.

For example, to take a laser printer away from its owner, the
operator can collect all the sheets already printed and put them in a pile.
Then the process can be suspended (marked as not runnable). At this point
the printer can be assigned to another process. When that process finishes,
the pile of printed sheets can be put back in the printer’s output tray and
the original process restarted.

Rollback:

If the system designers and machine operators know that deadlocks
are likely, they can arrange to have processes checkpointed periodically.
Checkpointing a process means that its state is written to a file so that it
can be restarted later

Database (and other) systems take periodic checkpoints. If the
system does take checkpoints, one can roll back to a checkpoint whenever
a deadlock is detected.

Somehow must guarantee forward progress.

mu
no
tes
.in

118

Kill processe:

The crudest but simplest way to break a deadlock is to kill one or
more processes. One possibility is to kill a process in the cycle. With a
little luck, the other processes will be able to continue. If this does not
help, it can be repeated until the cycle is broken.

Can always be done but might be painful. For example some
processes have had effects that can't be simply undone. Print, launch a
missile, etc.

9.5 DEADLOCK AVOIDANCE

In the discussion of deadlock detection, we tacitly assumed that
when a process asks for resources, it asks for them all at once (Figure 9.3
R Matrix). In most systems, however, resources are requested one at a
time. The system must be able to decide whether granting a resource is
safe or not and make the allocation only when it is safe. Thus, the question
arises: Is there an algorithm that can always avoid deadlock bymaking the
right choice all the time? The answer is a qualified yes—we can avoid
deadlocks, but only if certain information is available in advance.

9.5.1 Resource Trajectories:

We plot progress of each process along an axis. In the example we
show, there are two processes, hence two axes, i.e., planar. This procedure
assumes that we know the entire request and release pattern of the processes
in advance so it is not a practical solution. I present it as it is some motivation
for the practical solution that follows, the Banker's Algorithm.

Figure 9.3 R Matrix

118

Kill processe:

The crudest but simplest way to break a deadlock is to kill one or
more processes. One possibility is to kill a process in the cycle. With a
little luck, the other processes will be able to continue. If this does not
help, it can be repeated until the cycle is broken.

Can always be done but might be painful. For example some
processes have had effects that can't be simply undone. Print, launch a
missile, etc.

9.5 DEADLOCK AVOIDANCE

In the discussion of deadlock detection, we tacitly assumed that
when a process asks for resources, it asks for them all at once (Figure 9.3
R Matrix). In most systems, however, resources are requested one at a
time. The system must be able to decide whether granting a resource is
safe or not and make the allocation only when it is safe. Thus, the question
arises: Is there an algorithm that can always avoid deadlock bymaking the
right choice all the time? The answer is a qualified yes—we can avoid
deadlocks, but only if certain information is available in advance.

9.5.1 Resource Trajectories:

We plot progress of each process along an axis. In the example we
show, there are two processes, hence two axes, i.e., planar. This procedure
assumes that we know the entire request and release pattern of the processes
in advance so it is not a practical solution. I present it as it is some motivation
for the practical solution that follows, the Banker's Algorithm.

Figure 9.3 R Matrix

118

Kill processe:

The crudest but simplest way to break a deadlock is to kill one or
more processes. One possibility is to kill a process in the cycle. With a
little luck, the other processes will be able to continue. If this does not
help, it can be repeated until the cycle is broken.

Can always be done but might be painful. For example some
processes have had effects that can't be simply undone. Print, launch a
missile, etc.

9.5 DEADLOCK AVOIDANCE

In the discussion of deadlock detection, we tacitly assumed that
when a process asks for resources, it asks for them all at once (Figure 9.3
R Matrix). In most systems, however, resources are requested one at a
time. The system must be able to decide whether granting a resource is
safe or not and make the allocation only when it is safe. Thus, the question
arises: Is there an algorithm that can always avoid deadlock bymaking the
right choice all the time? The answer is a qualified yes—we can avoid
deadlocks, but only if certain information is available in advance.

9.5.1 Resource Trajectories:

We plot progress of each process along an axis. In the example we
show, there are two processes, hence two axes, i.e., planar. This procedure
assumes that we know the entire request and release pattern of the processes
in advance so it is not a practical solution. I present it as it is some motivation
for the practical solution that follows, the Banker's Algorithm.

Figure 9.3 R Matrix

mu
no
tes
.in

119

• We have two processes H (horizontal) and V.

• The origin represents them both starting.

• Their combined state is a point on the graph.

• The parts where the printer and plotter are needed by each process are
indicated.

• The dark green is where both processes have the plotter and hence
execution cannot reach this point.

• Light green represents both having the printer; also impossible.

• Pink is both having both a printer and plotter; impossible.

• Gold is possible (H has plotter, V has printer), but the system can't get
there.

• The upper right corner is the goal; both processes have finished.

• The red dot is ... (cymbals) deadlock. We don't want to go there.

• The cyan is safe. From anywhere in the cyan we have horizontal and
vertical moves to the finish point (the upper right corner) without hitting
any impossible area.

• The magenta interior is very interesting. It is

• Possible: each processor has a different resource

• Not deadlocked: each processor can move within the magenta

• Deadly: deadlock is unavoidable. You will hit a magenta-green
boundary

• and then will have no choice but to turn and go to the red dot.

• The cyan-magenta border is the danger zone.

• The dashed line represents a possible execution pattern.

• With a uniprocessor no diagonals are possible. We either move to the
right meaning H is executing or move up indicating V is executing.

• The trajectory shown represents.
1. H executing a little.
2. V executing a little.
3. H executes; requests the printer; gets it; executes some more.
4. V executes; requests the plotter

• The crisis is at hand!

• If the resource manager gives V the plotter, the magenta has been
entered and all is lost. “Abandon all hope ye who enter here” --Dante.

• The right thing to do is to deny the request, let H execute moving
horizontally under the magenta and dark green. At the end of the dark
green, no danger remains, both processes will complete successfully.
Victory!

mu
no
tes
.in

120

• This procedure is not practical for a general purpose OS since it
requires knowing the programs in advance. That is, the resource
manager, knows in advance what requests each process will make and
in what order.

9.5.2: Safe States:

Avoiding deadlocks gives some extra knowledge.

• Not surprisingly, the resource manager knows how many units of each
resource it had to begin with.

• Also it knows how many units of each resource it has given to each
process.

• It would be great to see all the programs in advance and thus know all
future requests, but that is asking for too much.

• Instead, when each process starts, it announces its maximum usage.

• That is each process, before making any resource requests, tells the
resource manager the maximum number of units of each resource the
process can possibly need.

• This is called the claim of the process.
• If the claim is greater than the total number of units in the system

the resource manager kills the process when receiving the claim (or
returns an error code so that the process can make a new claim).

• If during the run the process asks for more than its claim, the
process is aborted (or an error code is returned and no resources
are allocated).

• If a process claims more than it needs, the result is that the
resource manager will be more conservative than it needs to be and
there will be more waiting.

Definition: A state is safe if there is an ordering of the processes
such that: if the processes are run in this order, they will all terminate
(assuming none exceeds its claim).

Recall the comparison made above between detecting deadlocks (with
multi-unit) resources) and the banker's algorithm

• The deadlock detection algorithm given makes the most optimistic
assumption about a running process: it will return all its resources and
terminate normally. If we still find processes that remain blocked, they
are deadlocked.

• The banker's algorithm makes the most pessimistic assumption about a
running process: it immediately asks for all the resources it can
(details later on “can”). If, even with such demanding processes, the
resource manager can assure that all processesterminate, then we can
assure that deadlock is avoided.

mu
no
tes
.in

121

In the definition of a safe state no assumption is made about the
running processes; that is, for a state to be safe termination must occur no
matter what the processes do (providing the all terminate and to not
exceed their claims). Making no assumption is the same as making the
most pessimistic assumption.

Give an example of each of the four possibilities. A state that is
1. Safe and deadlocked--not possible.
2. Safe and not deadlocked--trivial (e.g., no arcs).
3. Not safe and deadlocked--easy (any deadlocked state).
4. Not safe and not deadlocked—interesting

Is the figure on the Below safe or not?

Figure 9.4 safe state

• You can NOT tell until I give you the initial claims of the process.

• Please do not make the unfortunately common exam mistake to give an
example involving safe states without giving the claims.

• For the figure on the right, if the initial claims are: P: 1 unit of R and 2
units of S (written (1,2)) Q: 2 units of R and 1 units of S (written (2,1))
the state is NOT safe.

• But if the initial claims are instead: P: 2 units of R and 1 unit of S (written
(2,1)) Q: 1 unit of R and 2 units of S (written (1,2)) the state IS safe.

• Explain why this is so.

A manager can determine if a state is safe.
• Since the manager knows all the claims, it can determine the maximum

amount of additional resources each process can request.
• The manager knows how many units of each resource it has left.

121

In the definition of a safe state no assumption is made about the
running processes; that is, for a state to be safe termination must occur no
matter what the processes do (providing the all terminate and to not
exceed their claims). Making no assumption is the same as making the
most pessimistic assumption.

Give an example of each of the four possibilities. A state that is
1. Safe and deadlocked--not possible.
2. Safe and not deadlocked--trivial (e.g., no arcs).
3. Not safe and deadlocked--easy (any deadlocked state).
4. Not safe and not deadlocked—interesting

Is the figure on the Below safe or not?

Figure 9.4 safe state

• You can NOT tell until I give you the initial claims of the process.

• Please do not make the unfortunately common exam mistake to give an
example involving safe states without giving the claims.

• For the figure on the right, if the initial claims are: P: 1 unit of R and 2
units of S (written (1,2)) Q: 2 units of R and 1 units of S (written (2,1))
the state is NOT safe.

• But if the initial claims are instead: P: 2 units of R and 1 unit of S (written
(2,1)) Q: 1 unit of R and 2 units of S (written (1,2)) the state IS safe.

• Explain why this is so.

A manager can determine if a state is safe.
• Since the manager knows all the claims, it can determine the maximum

amount of additional resources each process can request.
• The manager knows how many units of each resource it has left.

121

In the definition of a safe state no assumption is made about the
running processes; that is, for a state to be safe termination must occur no
matter what the processes do (providing the all terminate and to not
exceed their claims). Making no assumption is the same as making the
most pessimistic assumption.

Give an example of each of the four possibilities. A state that is
1. Safe and deadlocked--not possible.
2. Safe and not deadlocked--trivial (e.g., no arcs).
3. Not safe and deadlocked--easy (any deadlocked state).
4. Not safe and not deadlocked—interesting

Is the figure on the Below safe or not?

Figure 9.4 safe state

• You can NOT tell until I give you the initial claims of the process.

• Please do not make the unfortunately common exam mistake to give an
example involving safe states without giving the claims.

• For the figure on the right, if the initial claims are: P: 1 unit of R and 2
units of S (written (1,2)) Q: 2 units of R and 1 units of S (written (2,1))
the state is NOT safe.

• But if the initial claims are instead: P: 2 units of R and 1 unit of S (written
(2,1)) Q: 1 unit of R and 2 units of S (written (1,2)) the state IS safe.

• Explain why this is so.

A manager can determine if a state is safe.
• Since the manager knows all the claims, it can determine the maximum

amount of additional resources each process can request.
• The manager knows how many units of each resource it has left.

mu
no
tes
.in

122

The manager then follows the following procedure, which is part of Banker's
Algorithms discovered by Dijkstra, to determine if the state is safe.
1. If there are no processes remaining, the state is safe.
2. Seek a process P whose max additional requests is less than what remains

(for each resource type).
• If no such process can be found, then the state is not safe.
• The banker (manager) knows that if it refuses all requests except

those from P, then it will be able to satisfy all of P's requests. Why?
Ans: Look at how P was chosen.

3. The banker now pretends that P has terminated (since the banker knows
that it can guarantee this will happen). Hence the banker pretends that all
of P's currently held resources are returned. This makes the banker richer
and hence perhaps a process that was not eligible to be chosen as P
previously, can now be chosen.

4. Repeat these steps.

Example 1

• One resource type R with 22 unit

• Three processes X, Y, and Z with initial claims 3, 11, and 19 respectively.

• Currently the processes have 1, 5, and 10 units respectively.

• Hence the manager currently has 6 units left.

• Also note that the max additional needs for the processes are 2, 6, 9
respectively.

• So the manager cannot assure (with its current remaining supply of 6
units) that Z can terminate. But that is not the question.

• This state is safe

1. Use 2units to satisfy X; now the manager has 7 units.

2. Use 6 units to satisfy Y; now the manager has 12 units.

3. Use 9 units to satisfy Z; done

122

The manager then follows the following procedure, which is part of Banker's
Algorithms discovered by Dijkstra, to determine if the state is safe.
1. If there are no processes remaining, the state is safe.
2. Seek a process P whose max additional requests is less than what remains

(for each resource type).
• If no such process can be found, then the state is not safe.
• The banker (manager) knows that if it refuses all requests except

those from P, then it will be able to satisfy all of P's requests. Why?
Ans: Look at how P was chosen.

3. The banker now pretends that P has terminated (since the banker knows
that it can guarantee this will happen). Hence the banker pretends that all
of P's currently held resources are returned. This makes the banker richer
and hence perhaps a process that was not eligible to be chosen as P
previously, can now be chosen.

4. Repeat these steps.

Example 1

• One resource type R with 22 unit

• Three processes X, Y, and Z with initial claims 3, 11, and 19 respectively.

• Currently the processes have 1, 5, and 10 units respectively.

• Hence the manager currently has 6 units left.

• Also note that the max additional needs for the processes are 2, 6, 9
respectively.

• So the manager cannot assure (with its current remaining supply of 6
units) that Z can terminate. But that is not the question.

• This state is safe

1. Use 2units to satisfy X; now the manager has 7 units.

2. Use 6 units to satisfy Y; now the manager has 12 units.

3. Use 9 units to satisfy Z; done

122

The manager then follows the following procedure, which is part of Banker's
Algorithms discovered by Dijkstra, to determine if the state is safe.
1. If there are no processes remaining, the state is safe.
2. Seek a process P whose max additional requests is less than what remains

(for each resource type).
• If no such process can be found, then the state is not safe.
• The banker (manager) knows that if it refuses all requests except

those from P, then it will be able to satisfy all of P's requests. Why?
Ans: Look at how P was chosen.

3. The banker now pretends that P has terminated (since the banker knows
that it can guarantee this will happen). Hence the banker pretends that all
of P's currently held resources are returned. This makes the banker richer
and hence perhaps a process that was not eligible to be chosen as P
previously, can now be chosen.

4. Repeat these steps.

Example 1

• One resource type R with 22 unit

• Three processes X, Y, and Z with initial claims 3, 11, and 19 respectively.

• Currently the processes have 1, 5, and 10 units respectively.

• Hence the manager currently has 6 units left.

• Also note that the max additional needs for the processes are 2, 6, 9
respectively.

• So the manager cannot assure (with its current remaining supply of 6
units) that Z can terminate. But that is not the question.

• This state is safe

1. Use 2units to satisfy X; now the manager has 7 units.

2. Use 6 units to satisfy Y; now the manager has 12 units.

3. Use 9 units to satisfy Z; done

mu
no
tes
.in

123

9.6 DEADLOCK PREVENTION

Attack one of the coffman/havender conditions.

9.6.1: Attacking Mutual Exclusion:

First let us attack the mutual exclusion condition. If no resource were
ever assigned exclusively to a single process, we would never have
deadlocks. For data, the simplest method is to make data read only, so that
processes can use the data concurrently. However, it is equally clear that
allowing two processes to write on the printer at the same time will lead to
chaos. By spooling printer output, several processes can generate output at
the same time. In this model, the only process that actually requests the
physical printer is the printer daemon. Since the daemon never requests
any other resources, we can eliminate deadlock for the printer. If the
daemon is programmed to begin printing even before all the output is
spooled, the printer might lie idle if an output process decides to wait
several hours after the first burst of output. For this reason, daemons are
normally programmed to print only after the complete output file is
available. However, this decision itself could lead to deadlock. What
would happen if two processes each filled up one half of the available
spooling space with output and neither was finished producing its full
output? In this case, we would have two processes that had each finished
part, but not all, of their output, and could not continue. Neither process
will ever finish, so we would have a deadlock on the disk.

9.6.2: Attacking Hold and Wait:

Require each process to request all resources at the beginning of
the run. This is often called One Shot.

If we can prevent processes that hold resources from waiting for
more resources, we can eliminate deadlocks. One way to achieve this goal
is to require all processes to request all their resources before starting
execution. If everything is available, the process will be allocated
whatever it needs and can run to completion. If one or more resources are
busy, nothing will be allocated and the process will just wait.

An immediate problem with this approach is that many processes do
not know how many resources they will need until they have started
running.

9.6.3: Attacking No Preempt:

If a process has been assigned the printer and is in the middle of
printing its output, forcibly taking away the printer because a needed
plotter is not available is tricky at best and impossible at worst. However,
some resources can be virtualized to avoid this situation. Spooling printer
output to the disk and allowing only the printer daemon access to the real

mu
no
tes
.in

124

printer eliminates deadlocks involving the printer, although it creates a
potential for deadlock over disk space. With large disks though, running
out of disk space is unlikely.

9.6.4: Attacking Circular Wait:

The circular wait can be eliminated in several ways. One way is
simply to have a rule saying that a process is entitled only to a single
resource at any moment. If it needs a second one, it must release the first
one. For a process that needs to copy a huge file from a tape to a printer,
this restriction is unacceptable. Another way to avoid the circular wait is
to provide a global numbering of all the resources, as shown in Fig. 9.b
Now the rule is this: processes can request resources whenever they want
to, but all requests must be made in numerical order. A process may
request first a printer and then a tape drive, but it may not request first a
plotter and then a printer.

Figure 9. a) numerically order resource b) resource graph

9.7 ISSUES

9.7.1: Two-phase locking:

Although both avoidance and prevention are not terribly promising
in the general case, for specific applications, many excellent special-
purpose algorithms are known. As an example, in many database systems,
an operation that occurs frequently is requesting locks on several records
and then updating all the locked records. When multiple processes are
running at the same time, there is a real danger of deadlock. The approach
often used is called two-phase locking.

9.7.2: Starvation:
As usual FCFS is a good cure. Often this is done by priority aging

and picking the highest priority process to get the resource. Also can
124

printer eliminates deadlocks involving the printer, although it creates a
potential for deadlock over disk space. With large disks though, running
out of disk space is unlikely.

9.6.4: Attacking Circular Wait:

The circular wait can be eliminated in several ways. One way is
simply to have a rule saying that a process is entitled only to a single
resource at any moment. If it needs a second one, it must release the first
one. For a process that needs to copy a huge file from a tape to a printer,
this restriction is unacceptable. Another way to avoid the circular wait is
to provide a global numbering of all the resources, as shown in Fig. 9.b
Now the rule is this: processes can request resources whenever they want
to, but all requests must be made in numerical order. A process may
request first a printer and then a tape drive, but it may not request first a
plotter and then a printer.

Figure 9. a) numerically order resource b) resource graph

9.7 ISSUES

9.7.1: Two-phase locking:

Although both avoidance and prevention are not terribly promising
in the general case, for specific applications, many excellent special-
purpose algorithms are known. As an example, in many database systems,
an operation that occurs frequently is requesting locks on several records
and then updating all the locked records. When multiple processes are
running at the same time, there is a real danger of deadlock. The approach
often used is called two-phase locking.

9.7.2: Starvation:
As usual FCFS is a good cure. Often this is done by priority aging

and picking the highest priority process to get the resource. Also can
124

printer eliminates deadlocks involving the printer, although it creates a
potential for deadlock over disk space. With large disks though, running
out of disk space is unlikely.

9.6.4: Attacking Circular Wait:

The circular wait can be eliminated in several ways. One way is
simply to have a rule saying that a process is entitled only to a single
resource at any moment. If it needs a second one, it must release the first
one. For a process that needs to copy a huge file from a tape to a printer,
this restriction is unacceptable. Another way to avoid the circular wait is
to provide a global numbering of all the resources, as shown in Fig. 9.b
Now the rule is this: processes can request resources whenever they want
to, but all requests must be made in numerical order. A process may
request first a printer and then a tape drive, but it may not request first a
plotter and then a printer.

Figure 9. a) numerically order resource b) resource graph

9.7 ISSUES

9.7.1: Two-phase locking:

Although both avoidance and prevention are not terribly promising
in the general case, for specific applications, many excellent special-
purpose algorithms are known. As an example, in many database systems,
an operation that occurs frequently is requesting locks on several records
and then updating all the locked records. When multiple processes are
running at the same time, there is a real danger of deadlock. The approach
often used is called two-phase locking.

9.7.2: Starvation:
As usual FCFS is a good cure. Often this is done by priority aging

and picking the highest priority process to get the resource. Also can

mu
no
tes
.in

125

periodically stop accepting new processes until all old ones get their
resources

A problem closely related to deadlock is starvation. In a dynamic
system, requests for resources happen all the time. Some policy is needed
to make a decision about who gets which resource when. This policy,
although seemingly reasonable, may lead to some processes never getting
service even though they are not deadlocked. As an example, consider
allocation of the printer. Imagine that the system uses some algorithm to
ensure that allocating the printer does not lead to deadlock. Now suppose
that several processes all want it at once. Who should get it? One possible
allocation algorithm is to give it to the process with the smallest file to
print (assuming this information is available). This approach maximizes
the number of happy customers and seems fair. Now consider what
happens in a busy system when one process has a huge file to print. Every
time the printer is free, the system will look around and choose the process
with the shortest file. If there is a constant stream of processes with short
files, the process with the huge file will never be allocated to the printer. It
will simply starve to death (be postponed indefinitely, even though it is
not blocked).

Problems on Deadlock:

Problem 01:

A system is having 3 user processes each requiring 2 units of resource R.
The minimum number of units of R such that no deadlock will occur-

1. 3
2. 5
3. 4
4. 6

Solution:
In worst case,

The number of units that each process holds = One less than its
maximum demand

So,
• Process P1 holds 1 unit of resource R
• Process P2 holds 1 unit of resource R
• Process P3 holds 1 unit of resource R

Thus,
• Maximum number of units of resource R that ensures deadlock = 1 + 2

+ 3 = 6
• Minimum number of units of resource R that ensures no deadlock = 6

+ 1 = 7

mu
no
tes
.in

126

9.8 SUMMARY

A deadlock state occurs when two or more processes are waiting
indefinitely for an event that can be caused only by one of the waiting
processes.

There are three principal methods for dealing with deadlocks:
• Use some protocol to prevent or avoid deadlocks, ensuring that the

system will never enter a deadlock state.
• Allow the system to enter a deadlock state, detect it, and then recover.
• Ignore the problem altogether and pretend that deadlocks never occur

in the system. The third solution is the one used by most operating
systems, including UNIX and Windows

A deadlock can occur only if four necessary conditions hold
simultaneously in the system: mutual exclusion, hold and wait, no
preemption, and circular wait. To prevent deadlocks, we can ensure that at
least one of the necessary conditions never holds.

A method for avoiding deadlocks that is less stringent than the
prevention algorithms requires that the operating system have a priori
information on how each process will utilize system resources.

9.9 UNIT END QUSTIONS

1) Explain how the system can recover from the deadlock using
(a) recovery through preemption.
(b) recovery through rollback.
(c) recovery through killing processes.

2) Explain deadlock detection and recovery.

3) How can deadlocks be prevented?
4) Explain deadlock prevention techniques in Details.
5) Explain Deadlock Ignorance.
6) Define the Deadlock with Suitable examples.
7) Explain Deadlock Avoidance in detail.
8) Explain other issues in deadlocks.
9) Explain Resource Acquisition in Deadlock.
10) A system has 3 user processes P1, P2 and P3 where P1 requires 21

units of resource R, P2 requires 31 units of resource R, P3 requires
41 units of resource R. The minimum number of units of R that
ensures no deadlock is _____?

mu
no
tes
.in

127

UNIT IV

10
VIRTUALIZATION AND CLOUD

Unit Structure
10.0 Objectives
10.1 Introduction

10.1.1 About VMM
10.1.2Advantages

10.2 Introduction - Cloud
10.3 Requirements for Virtualization
10.4 Type 1 & Type 2 Hypervisors
10.5 Let us sum it up
10.6 List of references
10.7 Bibliography
10.8 Unit End Questions

10.0 OBJECTIVES

The objectives of this chapter is as follows:
i) The objective of this chapter is make students learn about the different

Virtualization and Cloud technologies.
ii) To learn why there is a need of virtualization in a company or a data

centre.
iii) What are the requirements of Virtualization

10.1 INTRODUCTION TO VIRTUALIZATION &
CLOUD

In some situations, an organization needs a multi-computer, for
example a company has an email server, a Web server, an FTP server,
some e-commerce servers, and others. These all run on different
computers in the same equipment rack, all connected by a high-speed
network. The only objective to gain reliability, because a company can’t
trust on single operating system which is working 24X7. By putting each
service on a separate computer, if one of the server crashes, at least the
other ones are not affected. This is good for security also. Even if some
malevolent intruder manages to compromise the Web server, he will not
immediately have access to sensitive emails also this property sometimes
referred to as sandboxing.

mu
no
tes
.in

128

For instance, organizations often depend on more than one
operating system for their daily operations: a Web server on Linux, a mail
server on Windows, an e-commerce server for customers running on OS
X, and a few other services running on various types of UNIX. The
obvious solution to this is making use of virtual machine technology

10.1.1 About VMM:
1) The main idea is that a VMM (Virtual Machine Monitor) creates the

illusion of multiple (virtual) machines on the same physical hardware.
2) VMM is also known as a hypervisor.
3) we distinguish between type 1 hypervisors which run on the bare

metal, and type 2 hypervisors that may make use of all the wonderful
services and abstractions offered by an underlying operating system.

4) Either way, virtualization allows a single computer to host multiple
virtual machines, each potentially running a completely different
operating system.

5) The advantage of this approach is that a failure in one virtual machine
does not bring down any others

6) On a virtualized system, different servers can run on different virtual
machines, thus maintaining the partial-failure model that a
multicomputer has, but at a lower cost and with easier maintainability.

7) Moreover, we can now run multiple different operating systems on the
same hardware, benefit from virtual machine isolation in the face of
attacks.

8) With virtual machine technology, the only software running in the
highest privilege mode is the hypervisor, which has two orders of
magnitude fewer lines of code than a full operating system, and thus
two orders of magnitude fewer bugs.

10.1.2 Having Virtualization has many advantages:
1. A failure in one virtual machine does not bring down any others.
2. Run multiple different operating systems on the same hardware
3. Having fewer physical machines saves money
4. Less hardware and electricity and takes up less rack space.
5. Helps in trying out new ideas
6. Each application can take its own environment with it.
7. Check-pointing and migrating virtual machines is much easier than

migrating processes running on a normal operating system.
8. Easy to migrate from one operating system to another.
9. Helps to run legacy applications which are no longer supported or

which do not work on current hardware.
10. Helps in software development.

mu
no
tes
.in

129

10.2 CLOUD - INTRODUCTION
1. The key idea of a cloud is simple: Outsource.
2. Your computation or storage needs to a well-managed data center run

by a company specializing in this and staffed by experts in the area.
3. Because the data center typically belongs to someone else, you will

probably have to pay for the use of the resources, but at least you will
not have to worry about the physical machines, power, cooling, and
maintenance.

4. Because of the isolation offered by virtualization, cloud-providers can
allow multiple clients, even competitors, to share a single physical
machine.

5. Earlier the organizations were not comfortable sharing their
information on cloud. By now, however, virtualized machines in the
cloud are used by countless organization for countless applications,
and while it may not be for all organizations and all data, there is no
doubt that cloud computing has been a success.

6. After a lot of research from the year 1960, finally in the year 1990
researchers at Stanford University developed a new hypervisor and
found VMware. VMware offers type 1 & type 2 hypervisors.

10.3 REQUIREMENTS OF VIRTUALIZATION

1. It is important that virtual machines act just like the real McCoy (real
thing).

2. In particular, it must be possible to boot them like real machines and
install arbitrary operating systems on them, just as can be done on the
real hardware.

3. It is the task of hypervisor to provide this illusion and to do it
efficiently. Every hypervisor measured on following three
dimensions:
a. Safety: The hypervisor should have full control of the virtualized

resources.
b. Fidelity: The behaviour of the program on a virtual machine

should be identical to that of the same program running on bare
hardware.

c. Efficiency: Much of the code in a virtual machine should run
without intervention of hypervisor.

4. The interpreter may be able to execute an INC (increment) as it is, but
instructions that are not safe to execute directly must be simulated by
the interpreter.

5. For instance, we cannot really allow the guest operating system to
disable interrupts for the entire machine or modify the page-table
mappings.

mu
no
tes
.in

130

6. The idea is to make the operating system on top of the hypervisor
think that it has disabled interrupts, or changed the machine’s page
mappings.

7. Every CPU with kernel mode and user mode has a set of instructions
that behave differently when executed in kernelmode than when
executed in user mode.

8. These include instructions that do I/O, change the MMU settings, and
so on.

9. Popek and Goldberg called these sensitive instructions. There is also a
set of instructions that cause a trap if executed in user mode.

10. Popek and Goldberg called these privileged instructions. Their paper
stated for the first time that a machine is “virtualizable” only if the
sensitive instructions are a subset of the privileged instructions.

10.4 TYPE 1 & TYPE 2 HYPERVISORS

1. It is important to mention that not all virtualization technology tries to
trick the guest into believing that it has the entire system.

2. Sometimes, the aim is simply to allow a process to run that was
originally written for a different operating system and/or architecture.

3. We therefore distinguish between full system virtualization and
process-level virtualization.

4. In the year 1972, Goldberg distinguished between two approaches of
virtualization.

a) Type 1 Hypervisor: Technically, it is like an operating system, since
it is the only program running in the most privileged mode. Its job is to
support multiple copies of the actual hardware, called virtual
machines, similar to the processes a normal operating system runs.

Fig shows Type 1 Hypervisor

130

6. The idea is to make the operating system on top of the hypervisor
think that it has disabled interrupts, or changed the machine’s page
mappings.

7. Every CPU with kernel mode and user mode has a set of instructions
that behave differently when executed in kernelmode than when
executed in user mode.

8. These include instructions that do I/O, change the MMU settings, and
so on.

9. Popek and Goldberg called these sensitive instructions. There is also a
set of instructions that cause a trap if executed in user mode.

10. Popek and Goldberg called these privileged instructions. Their paper
stated for the first time that a machine is “virtualizable” only if the
sensitive instructions are a subset of the privileged instructions.

10.4 TYPE 1 & TYPE 2 HYPERVISORS

1. It is important to mention that not all virtualization technology tries to
trick the guest into believing that it has the entire system.

2. Sometimes, the aim is simply to allow a process to run that was
originally written for a different operating system and/or architecture.

3. We therefore distinguish between full system virtualization and
process-level virtualization.

4. In the year 1972, Goldberg distinguished between two approaches of
virtualization.

a) Type 1 Hypervisor: Technically, it is like an operating system, since
it is the only program running in the most privileged mode. Its job is to
support multiple copies of the actual hardware, called virtual
machines, similar to the processes a normal operating system runs.

Fig shows Type 1 Hypervisor

130

6. The idea is to make the operating system on top of the hypervisor
think that it has disabled interrupts, or changed the machine’s page
mappings.

7. Every CPU with kernel mode and user mode has a set of instructions
that behave differently when executed in kernelmode than when
executed in user mode.

8. These include instructions that do I/O, change the MMU settings, and
so on.

9. Popek and Goldberg called these sensitive instructions. There is also a
set of instructions that cause a trap if executed in user mode.

10. Popek and Goldberg called these privileged instructions. Their paper
stated for the first time that a machine is “virtualizable” only if the
sensitive instructions are a subset of the privileged instructions.

10.4 TYPE 1 & TYPE 2 HYPERVISORS

1. It is important to mention that not all virtualization technology tries to
trick the guest into believing that it has the entire system.

2. Sometimes, the aim is simply to allow a process to run that was
originally written for a different operating system and/or architecture.

3. We therefore distinguish between full system virtualization and
process-level virtualization.

4. In the year 1972, Goldberg distinguished between two approaches of
virtualization.

a) Type 1 Hypervisor: Technically, it is like an operating system, since
it is the only program running in the most privileged mode. Its job is to
support multiple copies of the actual hardware, called virtual
machines, similar to the processes a normal operating system runs.

Fig shows Type 1 Hypervisor

mu
no
tes
.in

131

b) Type 2 Hypervisor: is a different kind of animal. It is a program that
relies on, say, Windows or Linux to allocate and schedule resources,
very much like a regular process. Of course, the type 2 hypervisor still
pretends to be a full computer with a CPU and various devices. Both
types of hypervisor must execute the machine’s instruction set in a
safe manner. For instance, an operating system running on top of the
hypervisor may change and even mess up its own page tables, but not
those of others.

Fig shows Type 2 Hypervisor

5. The operating system running on top of the hypervisor in both cases is
called the guest operating system.

6. For a type 2 hypervisor, the operating system running on the hardware
is called the host operating system.

7. Type 2 hypervisors, sometimes referred to as hosted hypervisors,
depend for much of their functionality on a host operating system such
as Windows, Linux, or OS X.

8. When it starts for the first time, it acts like a newly booted computer
and expects to find a DVD, USB drive, or CD-ROM containing an
operating system in the drive. however, the drive could be a virtual
device.

10.5 LET US SUM IT UP

1. VMM creates the illusion of multiple machines on the same physical
hardware. 2. Virtualization gives a range of advantages from running
different operating systems to developing software. 3. Outsourcing is
the best option for storing data in the data centre. 4. Type 1 and type 2
are the two categories offered by VMM to achieve virtualization.

131

b) Type 2 Hypervisor: is a different kind of animal. It is a program that
relies on, say, Windows or Linux to allocate and schedule resources,
very much like a regular process. Of course, the type 2 hypervisor still
pretends to be a full computer with a CPU and various devices. Both
types of hypervisor must execute the machine’s instruction set in a
safe manner. For instance, an operating system running on top of the
hypervisor may change and even mess up its own page tables, but not
those of others.

Fig shows Type 2 Hypervisor

5. The operating system running on top of the hypervisor in both cases is
called the guest operating system.

6. For a type 2 hypervisor, the operating system running on the hardware
is called the host operating system.

7. Type 2 hypervisors, sometimes referred to as hosted hypervisors,
depend for much of their functionality on a host operating system such
as Windows, Linux, or OS X.

8. When it starts for the first time, it acts like a newly booted computer
and expects to find a DVD, USB drive, or CD-ROM containing an
operating system in the drive. however, the drive could be a virtual
device.

10.5 LET US SUM IT UP

1. VMM creates the illusion of multiple machines on the same physical
hardware. 2. Virtualization gives a range of advantages from running
different operating systems to developing software. 3. Outsourcing is
the best option for storing data in the data centre. 4. Type 1 and type 2
are the two categories offered by VMM to achieve virtualization.

131

b) Type 2 Hypervisor: is a different kind of animal. It is a program that
relies on, say, Windows or Linux to allocate and schedule resources,
very much like a regular process. Of course, the type 2 hypervisor still
pretends to be a full computer with a CPU and various devices. Both
types of hypervisor must execute the machine’s instruction set in a
safe manner. For instance, an operating system running on top of the
hypervisor may change and even mess up its own page tables, but not
those of others.

Fig shows Type 2 Hypervisor

5. The operating system running on top of the hypervisor in both cases is
called the guest operating system.

6. For a type 2 hypervisor, the operating system running on the hardware
is called the host operating system.

7. Type 2 hypervisors, sometimes referred to as hosted hypervisors,
depend for much of their functionality on a host operating system such
as Windows, Linux, or OS X.

8. When it starts for the first time, it acts like a newly booted computer
and expects to find a DVD, USB drive, or CD-ROM containing an
operating system in the drive. however, the drive could be a virtual
device.

10.5 LET US SUM IT UP

1. VMM creates the illusion of multiple machines on the same physical
hardware. 2. Virtualization gives a range of advantages from running
different operating systems to developing software. 3. Outsourcing is
the best option for storing data in the data centre. 4. Type 1 and type 2
are the two categories offered by VMM to achieve virtualization.

mu
no
tes
.in

132

10.6 LIST OF REFERENCES

• Modern Operating system, Fourth edition, Andrew S. Tanenbaum,
Herbert Bos.

• https://www.geeksforgeeks.org/generations-of-computer/

10.7 BIBLIOGRAPHY

• Modern Operating System by Galvin

10.8 UNIT END QUESTIONS

1. What is Cloud?
2. Explain Virtualization.
3. Explain types of Hypervisor with neat diagrams.

mu
no
tes
.in

133

11
MULTIPROCESSING SYSTEM

Unit Structure
11.0 Objectives
11.1 Pre-requisites
11.2 Techniques for efficient virtualization
11.3 Memory virtualization
11.4 I/O Virtualization
11.5 Virtual appliances
11.6 Let us sum it up
11.7 List of References
11.8 Bibliography
11.9 Unit End Questions

11.0 OBJECTIVES

The objectives of this chapter is as follows:
1. The objective of this chapter is make students learn about the different

Virtualization and Cloud technologies.
2. To learn what are the different techniques used for Virtualization.
3. Understand Memory Virtualization as well as I/O Virtualization.

11.1 PRE-REQUISITES

1. VMM creates the illusion of multiple machines on the same physical
hardware.

2. Virtualization gives a range of advantages from running different
operating systems to developing software.

3. Outsourcing is the best option for storing data in the data centre.
4. Type 1 and type 2 are the two categories offered by VMM to achieve

virtualization.

11.2 TECHNIQUES FOR EFFICIENT VIRTUALIZATION S

1. The Type 1 Hypervisor runs on bare metal.
2. The virtual machine runs as a user process in user mode, and as such is

not allowed to execute sensitive instructions.

mu
no
tes
.in

134

3. However, the virtual machine runs a guest operating system that thinks
it is in kernel mode. We will call this virtual kernel mode.

4. The virtual machine also runs user processes, which think they are in
user mode.

5. What happens when the guest operating system (which thinks it is in
kernel mode) executes an instruction that is allowed only when the
CPU really is in kernel mode? Normally, on CPUs without VT, the
instruction fails and the operating system crashes.

6. On CPUs with VT, when the guest operating system executes a
sensitive instruction, a trap to the hypervisor does occur.

7. Now, let’s understand how to migrate from One Virtual machine to
another.

a) To move the virtual machine from the hardware to the new machine
without taking it down at all.

b) Modern virtualization solutions offer is something known as live
migration. They move the virtual machine while it is still
operational.

c) For instance, they employ techniques like pre-copy memory
migration.

d) This means that they copy memory pages while the machine is still
serving requests.

e) Most memory pages are not written much, so copying them over is
safe.

f) Remember, the virtual machine is still running, so a page may be
modified after it has already been copied.

g) When memory pages are modified, we have to make sure that the
latest version is copied to the destination, so we mark them as dirty.

h) They will be recopied later. When most memory pages have been
copied, we are left with a small number of dirty pages.

i) We now pause very briefly to copy the remaining pages and resume
the virtual machine at the new location. While there is still a pause, it
is so brief that applications typically are not affected.

j) When the downtime is not noticeable, it is known as a seamless live
migration.

11.3 MEMORY VIRTUALIZATION

1. We have discussed the issue of how to virtualize the CPU so far. But a
computer system has more than just a CPU.

2. It also has memory and I/O devices. They have to be virtualized, too.

mu
no
tes
.in

135

a) The boxes represent pages, and the arrows show the different
memory mappings.

b) The arrows from guest virtual memory to guest physical memory
show the mapping maintained by the page tables in the guest
operating system.

c) The arrows from guest physical memory to machine memory show
the mapping maintained by the VMM.

d) The dashed arrows show the mapping from guest virtual memory
to machine memory in the shadow page tables also maintained by
the VMM.

e) The underlying processor running the virtual machine uses the
shadow page table mappings

4. Modern operating systems nearly all support virtual memory, which is
basically a mapping of pages in the virtual address space onto pages
of physical memory.

5. This mapping is defined by (multilevel) page tables. Typically, the
mapping is set in motion by having the operating system set a control
register in the CPU that points to the top-level page table.

6. Virtualization greatly complicates memory management. In fact, it
took hardware manufacturers two tries to get it right.

11.4 I/O VIRTUALIZATION

1. The guest operating system will typically start out probing the
hardware to find out what kinds of I/O devices are attached. These
probes will trap to the hypervisor. Hypervisor will do two things:

135

a) The boxes represent pages, and the arrows show the different
memory mappings.

b) The arrows from guest virtual memory to guest physical memory
show the mapping maintained by the page tables in the guest
operating system.

c) The arrows from guest physical memory to machine memory show
the mapping maintained by the VMM.

d) The dashed arrows show the mapping from guest virtual memory
to machine memory in the shadow page tables also maintained by
the VMM.

e) The underlying processor running the virtual machine uses the
shadow page table mappings

4. Modern operating systems nearly all support virtual memory, which is
basically a mapping of pages in the virtual address space onto pages
of physical memory.

5. This mapping is defined by (multilevel) page tables. Typically, the
mapping is set in motion by having the operating system set a control
register in the CPU that points to the top-level page table.

6. Virtualization greatly complicates memory management. In fact, it
took hardware manufacturers two tries to get it right.

11.4 I/O VIRTUALIZATION

1. The guest operating system will typically start out probing the
hardware to find out what kinds of I/O devices are attached. These
probes will trap to the hypervisor. Hypervisor will do two things:

135

a) The boxes represent pages, and the arrows show the different
memory mappings.

b) The arrows from guest virtual memory to guest physical memory
show the mapping maintained by the page tables in the guest
operating system.

c) The arrows from guest physical memory to machine memory show
the mapping maintained by the VMM.

d) The dashed arrows show the mapping from guest virtual memory
to machine memory in the shadow page tables also maintained by
the VMM.

e) The underlying processor running the virtual machine uses the
shadow page table mappings

4. Modern operating systems nearly all support virtual memory, which is
basically a mapping of pages in the virtual address space onto pages
of physical memory.

5. This mapping is defined by (multilevel) page tables. Typically, the
mapping is set in motion by having the operating system set a control
register in the CPU that points to the top-level page table.

6. Virtualization greatly complicates memory management. In fact, it
took hardware manufacturers two tries to get it right.

11.4 I/O VIRTUALIZATION

1. The guest operating system will typically start out probing the
hardware to find out what kinds of I/O devices are attached. These
probes will trap to the hypervisor. Hypervisor will do two things:

mu
no
tes
.in

136

2. One approach is for it to report back that the disks, printers, and so on
are the ones that the hardware actually has.

i. The guest will then load device drivers for these devices and try to
use them.

ii. When the device drivers try to do actual I/O, they will read and
write the device’s hardware device registers.

iii. These instructions are sensitive and will trap to the hypervisor,
which could then copy the needed values to and from the hardware
registers, as needed.

iv. But here, too, we have a problem. Each guest OS could think it
owns an entire disk partition, and there may be many more virtual
machines (hundreds) than there are actual disk partitions.

3. The usual solution is for the hypervisor to create a file or region on
the actual disk for each virtual machine’s physical disk.

i. Since the guest OS is trying to control a disk that the real hardware
has (and which the hypervisor understands), it can convert the
block number being accessed into an offset into the file or disk
region being used for storage and do the I/O.

ii. It is also possible for the disk that the guest is using to be different
from the real one.

11.5 VIRTUAL APPLIANCES

1. Virtual machines offer a solution to a problem that has long plagued
users, especially users of open source software: how to install new
application programs?

2. The problem is that many applications are dependent on numerous
other applications and libraries, which are themselves dependent on a
host of other software packages, and so on.

3. Furthermore, there may be dependencies on particular versions of the
compilers, scripting languages, and the operating system.

4. With virtual machines now available, a software developer can
carefully construct a virtual machine, load it with the required
operating system, compilers, libraries, and application code, and
freeze the entire unit, ready to run.

5. This virtual machine image can then be put on a CD-ROM or a
Website for customers to install or download.

6. This approach means that only the software developer has to
understand all the dependencies. The customers get a complete
package that actually works, completely independent of which
operating system they are running and which other software,
packages, and libraries they have installed.

mu
no
tes
.in

137

7. These „„shrink wrapped����
���������	
��� ���� ����� ������� ��
�����
appliances”.

8. As an example, Amazon’s EC2 cloud has many pre-packaged virtual
appliances available for clients, which it offers as convenient software
services („„Software as a Service����

11.6 LET US SUM IT UP

1. There are two techniques used to migrate virtual machine:
1. Migrate by pausing the virtual machine 2. Live Migration.

2. Modern operating systems nearly all support virtual memory,
which is basically a mapping of pages in the virtual address space
onto pages of physical memory. 3. It is the job of the hypervisor to
look after the virtualization of I/O. 4. Virtual machines offer a
solution to a problem especially with users of open source
software on how to install new application programs?

11.7 LIST OF REFERENCES

• Modern Operating system, Fourth edition, Andrew S. Tanenbaum,
Herbert Bos.

• https://www.geeksforgeeks.org/generations-of-computer/

• Docs.vmware.com

11.8 BIBLIOGRAPHY

• Modern Operating System by Galvin

11.9 UNIT END QUESTIONS

1. How to migrate Virtual machine quickly?
2. What are virtual appliances?
3. Explain memory virtualization.
4. What is I/O Virtualization?

mu
no
tes
.in

138

12
MULTIPLE PROCESSING SYSTEMS

Unit Structure
12.0 Objectives
12.1 Pre-requisites
12.2 Virtual machines on multicore CPUs
12.3 Licensing Issues
12.4 Clouds

12.4.1 Characteristics
12.4.2 Services Offered
12.4.3 Advantages

12.5 Multiple Processor Systems
12.5.1 Multiprocessors
12.5.2 Multi-computers
12.5.3 Distributed Systems

12.6 Let us sum it up
12.7 List of References
12.8 Bibliography
12.9 Unit End Questions

12.0 OBJECTIVES

The objectives of this chapter is as follows:
i) The objective of this chapter is make students learn about the different

Virtualization and Cloud technologies.
ii) Understand the characteristics, advantages of Cloud.
iii) Different types of Multiprocessor, multicomputer & Distributed

systems.

12.1 PRE-REQUISITES

1. There are two techniques used to migrate virtual machine:
a. Migrate by pausing the virtual machine
b. Live Migration.

2. Modern operating systems nearly all support virtual memory, which is
basically a mapping of pages in the virtual address space onto pages of
physical memory.

3. It is the job of the hypervisor to look after the virtualization of I/O.

mu
no
tes
.in

139

4. Virtual machines offer a solution to a problem especially with users of
open source software on how to install new application programs?

12.2 VIRTUAL MACHINES ON MULTICORE CPUS

1. It has never been possible for an application designer to first choose
how many CPUs he wants and then write the software accordingly.

2. The combination of virtual machines and multicore CPUs creates a
whole new world in which the number of CPUs available can be set
by the software.

3. This is clearly a new phase in computing. Moreover, virtual machines
can share memory.

4. A typical example where this is useful is a single server hosting
multiple instances of the same operating systems.

5. All that has to be done is map physical pages into the address spaces
of multiple virtual machines.

6. Memory sharing is already available in deduplication solutions.
Deduplication avoids storing the same data twice.

7. It is a common technique in storage systems, but is now appearing in
virtualization as well.

8. In general, the technique revolves around scanning the memory of
each of the virtual machines on a host and hashing the memory pages.

9. Should some pages produce an identical hash, the system has to first
check to see if they really are the same, and if so, de-duplicate them,
creating one page with the actual content and two references to that
page. Since the hypervisor controls the nested (or shadow) page
tables, this mapping is straightforward.

10. The combination of multicore, virtual machines, hypervisor, and
microkernels is going to radically change the way people think about
computer systems.

11. Current software cannot deal with the idea of the programmer
determining how many CPUs are needed, whether they should be a
multicomputer or a multiprocessor, and how minimal kernels of one
kind or another fit into the picture.

12.3 LICENSING ISSUES

1. Some software is licensed on a per-CPU basis, especially software for
companies. In other words, when they buy a program, they have the
right to run it on just one CPU.

2. Does this contract give them the right to run the software on multiple
virtual machines all running on the same physical machine? Many
software vendors are somewhat unsure of what to do here.

mu
no
tes
.in

140

3. The problem is much worse in companies that have a license allowing
them to have ‘n’ machines running the software at the same time,
especially when virtual machines come and go on demand.

4. In some cases, software vendors have put an explicit clause in the
license forbidding the licensee from running the software on a virtual
machine or on an unauthorized virtual machine.

5. For companies that run all their software exclusively on virtual
machines, this could be a real problem. Whether any of these
restrictions will hold up in court and how users respond to them
remains to be seen.

12.4 CLOUDS

1. Virtualization technology played a crucial role in the dizzying rise of
cloud computing. There are many clouds.

2. Some clouds are public and available to anyone willing to pay for the
use of resources, others are private to an organization. 3. Likewise,
different clouds offer different things. Some give their users access to
physical hardware, but most virtualize their environments.

4. Some offer the bare machines, virtual or not, and nothing more, but
others offer software that is ready to use and can be combined in
interesting ways, or platforms that make it easy for their users to
develop new services.

5. Cloud providers typically offer different categories of resources.

12.4.1 Characteristics of Cloud:

The National Institute of Standards and Technology has listed five
essential characteristics:
a. On-demand self-service: Users should be able to provision resources

automatically, without requiring human interaction.
b. Broad network access: All these resources should be available over

the network via standard mechanisms so that heterogeneous devices
can make use of them.

c. Resource pooling: The computing resource owned by the provider
should be pooled to serve multiple users and with the ability to assign
and reassign resources dynamically

d. Rapid elasticity: It should be possible to acquire and release resources
elastically, perhaps even automatically, to scale immediately with the
users’ demands.

e. Measured service: The cloud provider meters the resources used in a
way that matches the type of service agreed upon.

mu
no
tes
.in

141

12.4.2 Services offered by Cloud:
12.4.2.1 Software as a Service (It offers specific software)
12.4.2.2 Platform as a Service (It creates environment which gives

specific Operating system, database, web server etc.)
12.4.2.3 Infrastructure as a Service (Same cloud can run different

Operating Systems) We can refer the diagram below for more
understanding:

12.4.3 Advantages of Cloud

Following are the advantages of using Cloud:
1. Unlimited storage: Clouds provide unlimited storage.
2. Flexibility: If your needs increase, it’s easy to scale up your cloud

capacity. Likewise, if you need to scale down again, you can scale
down the cloud capacity again.

3. Disaster recovery: Backup and recovery of data is possible.
4. Automatic software updates
5. Capital-expenditure free: Cloud computing cuts the high cost of

hardware. You simply pay as you use subscription-based model.
6. Work from anywhere: With an internet connection, you can work

from anywhere.
7. Security: Your data is stored in the cloud; you can access it no matter

what happens to your machine

12.5 MULTIPLE PROCESSOR SYSTEMS

12.5.1.1 Each CPU has its own OS:
a. Memory is divided into equal sized partitions, where each partition

belongs to one CPU.

141

12.4.2 Services offered by Cloud:
12.4.2.1 Software as a Service (It offers specific software)
12.4.2.2 Platform as a Service (It creates environment which gives

specific Operating system, database, web server etc.)
12.4.2.3 Infrastructure as a Service (Same cloud can run different

Operating Systems) We can refer the diagram below for more
understanding:

12.4.3 Advantages of Cloud

Following are the advantages of using Cloud:
1. Unlimited storage: Clouds provide unlimited storage.
2. Flexibility: If your needs increase, it’s easy to scale up your cloud

capacity. Likewise, if you need to scale down again, you can scale
down the cloud capacity again.

3. Disaster recovery: Backup and recovery of data is possible.
4. Automatic software updates
5. Capital-expenditure free: Cloud computing cuts the high cost of

hardware. You simply pay as you use subscription-based model.
6. Work from anywhere: With an internet connection, you can work

from anywhere.
7. Security: Your data is stored in the cloud; you can access it no matter

what happens to your machine

12.5 MULTIPLE PROCESSOR SYSTEMS

12.5.1.1 Each CPU has its own OS:
a. Memory is divided into equal sized partitions, where each partition

belongs to one CPU.

141

12.4.2 Services offered by Cloud:
12.4.2.1 Software as a Service (It offers specific software)
12.4.2.2 Platform as a Service (It creates environment which gives

specific Operating system, database, web server etc.)
12.4.2.3 Infrastructure as a Service (Same cloud can run different

Operating Systems) We can refer the diagram below for more
understanding:

12.4.3 Advantages of Cloud

Following are the advantages of using Cloud:
1. Unlimited storage: Clouds provide unlimited storage.
2. Flexibility: If your needs increase, it’s easy to scale up your cloud

capacity. Likewise, if you need to scale down again, you can scale
down the cloud capacity again.

3. Disaster recovery: Backup and recovery of data is possible.
4. Automatic software updates
5. Capital-expenditure free: Cloud computing cuts the high cost of

hardware. You simply pay as you use subscription-based model.
6. Work from anywhere: With an internet connection, you can work

from anywhere.
7. Security: Your data is stored in the cloud; you can access it no matter

what happens to your machine

12.5 MULTIPLE PROCESSOR SYSTEMS

12.5.1.1 Each CPU has its own OS:
a. Memory is divided into equal sized partitions, where each partition

belongs to one CPU.

mu
no
tes
.in

142

b. Each CPU has its own private memory and its own private copy of the
operating system.

c. Alternative to this scheme is to allow all the CPUs to share the
operating system code and make private copies of only the data
structures of OS.

d. There are 4 aspects of this design,
i. When a process makes a system call, the system call is caught and

handled on its own CPU using the data structures in that operating
system’s tables.

ii. Each operating system has its own tables; it also has its own set of
processes that it schedules by itself.

iii. Third, there is no sharing of physical pages. So some CPU is
overburdened and some is idle, as there is no load sharing.

iv. No additional memory, so programs cannot grow

12.5.1.2 Master-Slave Multiprocessor:
a. Only one copy of OS is present in memory.
b. Master CPU can only run the operating system from memory. So here,

only CPU1 can run the OS and not any others.
c. All system calls from other CPUs are redirected to CPU 1 for

processing there.
d. CPU 1 is the master and all the others are slaves.
e. When a CPU goes idle, it asks the operating system on CPU 1 for a

process to run and is assigned one.
f. Thus it can never happen that one CPU is idle while another is

overloaded. g. Similarly, pages can be allocated among all the
processes dynamically and there is only one buffer cache, so
inconsistencies never occur.

h. The problem with this model is that with many CPUs, the master will
become a bottleneck.

mu
no
tes
.in

143

12.5.1.3 Symmetric Multiprocessor:
a. It eliminates the asymmetry in Master-Slave configuration.
b. There is one copy of the operating system in memory, but any CPU

can run it.
c. It eliminates the master CPU bottleneck, since there is no master.
d. No need to redirect system calls to 1 CPU as each CPU can run the

OS.
e. While running a process, the CPU on which the system call was made

processes the system call.

12.5.2 Multi-computers:
a Following are the various inter-connection technologies used in

Multi-computer:

143

12.5.1.3 Symmetric Multiprocessor:
a. It eliminates the asymmetry in Master-Slave configuration.
b. There is one copy of the operating system in memory, but any CPU

can run it.
c. It eliminates the master CPU bottleneck, since there is no master.
d. No need to redirect system calls to 1 CPU as each CPU can run the

OS.
e. While running a process, the CPU on which the system call was made

processes the system call.

12.5.2 Multi-computers:
a Following are the various inter-connection technologies used in

Multi-computer:

143

12.5.1.3 Symmetric Multiprocessor:
a. It eliminates the asymmetry in Master-Slave configuration.
b. There is one copy of the operating system in memory, but any CPU

can run it.
c. It eliminates the master CPU bottleneck, since there is no master.
d. No need to redirect system calls to 1 CPU as each CPU can run the

OS.
e. While running a process, the CPU on which the system call was made

processes the system call.

12.5.2 Multi-computers:
a Following are the various inter-connection technologies used in

Multi-computer:mu
no
tes
.in

144

b. Single Switch/ Star topology: Every node contains a network
interface card and all computers are connected to switches/hubs. Fast,
expandable but single point failure systems. Failure in switch/hub can
take down entire system.

c. Ring Topology: Each node has two wires coming out the network
interface card, one into the node on the left and one going into the
node on the right. There is no use of switches in this topology.

d. Grid/mesh topology: two dimensional design with multiple switches
and can be expanded easily to large size. Its diameter is the longest
path between any two nodes.

e. Double Torus: alternative to grid, which is a grid with the edges
connected. With compare to grid its diameter is less and it is more
fault tolerant. The diameter is less as opposite corners communicates
in only two hops.

f. Cube: Fig e. shows 2 x 2 x 2 cube which is a regular three-
dimensional topology. In general case it could be a n x n x n cube. No
of nodes = 2n. So for 3D cube, 8 nodes can be attached.

g. A 4-D Hypercube: Fig (f) shows four –dimensional cube constructed
from two three – dimensional cubes with the equivalent nodes
connected. An n-dimensional cube formed this way is called a
hypercube. Many parallel computers can be building using hypercube
topology.

12.5.3 Distributed Systems:
a. A distributed system is defined as set of autonomous computers that

appears to its users as a single coherent system.
b. Users of distributed system feel that, they are working with as a single

system.
c. Distributed system is like multi-computers spread worldwide.
d. Each node in distributed system is having its own CPU, RAM,

network board. OS, and disk for paging.
e. Following are the main characteristics of distributed systems:

i. A distributed system comprises computers with different
architecture and different OS. These dissimilarities and the ways
all these machines communicate are hidden from users.

ii. The manner in which distributed system is organized is also
hidden from the users of the distributed system.

iii. The interaction of users and applications with distributed system is
in consistent and identical way.

iv. It should be always available to the users and applications inspite
of failures. Failure handling should be hidden from users and
applications.

mu
no
tes
.in

145

12.6 LET US SUM IT UP

ITEM Multiprocessor Multicomputer Distributed
System

Node Configuration CPU CPU, RAM, net
interface

Complete
computer

Node peripherals All shared Shared exc.
Maybe disk

Full set per
node

Location Same rack Same room Possibly
worldwide

Internode
communication

Shared RAM Dedicated
interconnect

Traditional
network

Operating systems One, shared Multiple, same Possibly at
different

File systems One Shared One Shared Each Node Has
Own

Administration One
organization

One
organization

Many
organizations

mu
no
tes
.in

146

12.7 LIST OF REFERENCES

• Modern Operating system, Fourth edition, Andrew S. Tanenbaum,
Herbert Bos.

• https://www.geeksforgeeks.org/generations-of-computer/

12.8 BIBLIOGRAPHY

• Modern Operating System by Galvin

12.9 UNIT END QUESTIONS

1. List and explain different types of multiprocessor operating system?

2. With neat diagram explain various interconnection technologies used
in multicomputer.

3. Define and explain distributed systems with neat diagram.

4. List and explain different types of multiprocessor operating system.

5. Differentiate between Multiprocessor, Multicomputer and Distributed
Systems.

6. What are the services and advantages of Cloud computing?

7. What is cloud? Write essential characteristic of cloud.

*****mu
no
tes
.in

147

13

LINUX CASE STUDY
Unit Structure
13.0 Objectives
13.1 History

13.1.1 History of UNIX
13.1.2 History of Linux

13.2 OVERVIEW
13.2.1 An Overview of Unix
13.2.2 Overview of Linux

13.3 PROCESS in Linux
13.4 Memory Management
13.5 Input output in Linux
13.6 Linux File system
13.7 Security in Linux
13.8 Summary
13.9 List of references
13.10 Bibliography
13.11 Unit End Questions

13.0 OBJECTIVES

• To understand principles of Linux
• To learn principles of Process Management, Memory Management
• To learn principles of I/O in Linux, File System and Security

13.1 HISTORY OF UNIX AND LINUX

13.1.1 History of UNIX:
I. The UNIX Operating System is derived from MULTICS

(Multiplexed Operating System and Computer System).It was begun
in mid 1960’s.

II. In 1969, Kem Thompson wrote the first version of UNIX called
UNICS. It stands for Uniplexed Operating and Computing System.

III. In 1973, Ken Thompson teamed up with Dennis Ritchie and rewrote
the Unix kernel in C.

mu
no
tes
.in

148

IV. Ken Thompson spent a year's sabbatical with the University of
California at Berkeley. While there he and two graduate students,
Bill Joy and Chuck Haley, wrote the first Berkely version of Unix,
which was distributed to students.

V. This resulted in the source code being worked on and developed by
many different people.

VI. The Berkeley version of Unix is known as BSD, Berkeley Software
Distribution. From BSD came the vi editor, C shell, virtual memory,
Sendmail, and support for TCP/IP.

VII. For several years SVR4 was the more conservative, commercial, and
well supported.

VIII. Today SVR4 and BSD look very much alike. Probably the biggest
cosmetic difference between them is the way the ps command
functions.

IX. The Linux operating system was developed as a Unix look alike and
has a user command interface that resembles SVR4.

Following figure shows history in better way

13.1.2 History of Linux:

Linux is an open source family of Unix-like Linux based kernel
applications, a kernel operating system that was first released on
September 17, 1991, by Linus Torvalds Linux usually included in the
Linux distribution. Popular Linux distributions include Debian, Fedora,
and Ubuntu. Commercial distribution includes Red Hat Enterprise Linux

mu
no
tes
.in

149

and SUSE Linux Enterprise Server. Because Linux is distributed freely,
anyone can create a distribution for any purpose.

Popular Linux distributions include Debian, Fedora, and Ubuntu.
Commercial distribution includes Red Hat Enterprise Linux and SUSE
Linux Enterprise Server. Because Linux is distributed freely, anyone can
create a distribution for any purpose.

Linux was originally designed for computers based on the Intel
x86 architecture, but has since been deployed to more platforms than any
other operating system. Linux is a leading operating system on servers and
other large-scale systems such as keyword computers.

The Unix operating system was developed in 1969 at AT & T Bell
Laboratories in America by Ken Thompson and Dennis Ritchie. Unix's
high-performance language acquisition has made it easy to be deployed
across different computer platforms.

Creation:

In 1991, Torvalds became interested in the operating system.
Torvalds introduced a switch from its original license, which prohibited
commercial re-distribution to the GNU GPL. The developers worked to
integrate the GNU components into the Linux kernel, creating a fully
functional and free operating system.

Commercial and public reproduction:

Today the Linux systems are used in throughout computing that is
from all theembedded systems on almost all the supercomputers, and on
the server installations such as the very much popular the LAMP
Application Stack. The use of Linux distribution on home and enterprise
desktops is growing. Linux are also popular in the netbook market, many
devices install customized Linux distributions, and Google hasreleased its
own Chrome OS designed for netbooks.

13.2 OVERVIEW

13.2.1 An Overview of UNIX:

The UNIX operating system is designed to allow many
programmers to simultaneously access the computer and share its
resources.

The operating system controls all commands from all keyboards
and all data generated, and allows each user to believe that he or she is the
only person working on the computer.

mu
no
tes
.in

150

The real-time sharing of resources makes UNIX one of the most
powerful operating systems ever.

UNIX was developed by programmers for community of
programmers, the functionality it provides is so powerful and flexible that
it can be found in business, science, academia, and industry.

The uniqueness of UNIX and Features provided by UNIX are:

Multitasking capability:

Many computers can only do one thing at a time, and anyone with a
PC or laptop can prove it. While opening the browser and opening the
word processing program, try to log in to the company's network. When
arranging multiple instructions, the processor may freeze for a few
seconds.

Multiuser capability:

The same design that allows multitasking allows multiple users to use
the computer. The computer can accept many user commands (depending
on the design of the computer) to run programs, access files and print
documents at the same time.

UNIX programs:

UNIX tools - Hundreds of programs come with UNIX, and these
programs can be divided into two categories: Integrated utilities essential
for computer operation, such as command interpreters and Tools that are
not required for UNIX operation, but provide users with additional
functions, such as typesetting functions and e-mail.

Library of application software:

In addition to the applications that come with UNIX, hundreds of
UNIX applications can be purchased from third-party vendors. Although
third-party vendors have written some tools for specific applications, there
are hundreds of tools available for UNIX users.

Generally, tools are divided into categories for certain functions
(such as word processing, business applications, or programming).

13.2.2 Overview of Linux|:

Linux is a UNIX - like computer OS which is assembled & made
under the model of free and open source software development and
distribution. The most defined component of Linux is the Linux kernel, an
OS kernel was first released on 1991 by Linus Torvalds.

mu
no
tes
.in

151

A Linux-based system is a modular Unix-like Operating System. It
derives much of its basic design from principles established in Unix
during the 1970 and 1980. Such a system uses a monolithic kernel, the
Linux kernel, which handles process control, networking, & peripheral &
file system access. Device drivers are integrated directly with the kernel or
they added as modules loaded while the system is running.

• A bootloader - for example GRUB or LILO. This is a program which
is executed by the computer when it is first turned on, & loads the
Linux kernel into memory.

• An init program - This is a process launched by the Linux kernel, &
is at the root of the process tree, in other words, all processes are
launched through in it. It starts processes such as system services &
login prompts (whether graphical or in terminal mode)

• Software libraries which contain code which can be used by running
processes. On Linux OS using ELF-format executable files, the
dynamic linker which manages use of dynamic libraries is "ld-
linux.so".

• The most commonly used software library on Linux systems is the
GNU C. Library. If the OS is set up for the user to compile software
themselves, header files will also be included to describe the interface
of installed libraries.

• User interface programs such as comm. & shells or windowing
environments

Linux is a widely ported operating system kernel. Currently most
of the distribution include a graphical user environment, with the 2 most
popular environments which are GNOME (it basically utilizes additional
shells such as the default GNOME Shell & Ubuntu Unity), & KDE
Plasma Desktop.

13.3 PROCESS IN LINUX

A Linux-based system may be a modular Unix-like OS. It derives
much of its basic design from principles established in Unix during the
1970s and 1980s. Such a system uses a monolithic kernel, the Linux
kernel, which handles process control, networking, and peripheral and
filing system access. Device drivers are either integrated directly with the
kernel or added as modules loaded while the system is running.

Various parts of an OS UNIX and 'UNIX-like' operating systems
(such as Linux) contains a kernel and a few system programs. There also
are some application programs for doing work. The kernel is that the heart
of the OS. In fact, it's often mistakenly considered to be the OS itself, but
it's not. An OS provides more services than a clear kernel. It keeps track of
files on the disk, starts programs and runs them concurrently, assigns
memory and other resources to varied processes, receives packets from

mu
no
tes
.in

152

and sends packets to the network, and so on. The kernel does little or noby
itself, but it provides tools with which all services are often built. It also
prevents anyone from accessing the hardware directly, forcing everyone to
use the tools it provides. This manner the kernel provides some protection
for users from one another. The tools provided by the kernel are used via
system calls. The system programs use the tools provided by the kernel to
implement the varied services required from an OS. System programs, and
every one other programs, run `on top of the kernel', in what's called the
user mode. The difference between system and application programs is
one among intent: applications are intended for getting useful things done
(or for enjoying, if it happens to be a game), whereas system programs are
needed to urge the system working. A word processing system may be an
application; mount is a systems program. The difference is usually
somewhat blurry, however, and is vital only to compulsive categorizers.
An OS also can contain compilers and therefore their corresponding
libraries (GCC and the C library especially under Linux), although not all
programming languages need be a part of the OS. Documentation, and
sometimes even games, also can be a part of it. Traditionally, the OS has
been defined by the contents of the installation tape or disks; with Linux
it's not as clear since it's spread everywhere the FTP sites of the planet.

Important parts of the kernel:

The Linux kernel consists of several important parts: process
management, memory management, hardware device drivers, filesystem
drivers, network management, and various other bits and pieces. Memory
management takes care of assigning memory areas and swap file areas to
processes, parts of the kernel, and for the buffer cache. Process
management creates processes, and implements multitasking by switching
the active process on the processor. At rock bottom level, the kernel
contains a hardware driver for every quite hardware it supports. There are
often many otherwise similar pieces of hardware that differ in how they're
controlled by software. The similarities make it possible to possess general
classes of drivers that support similar operations; each member of the
category has an equivalent interface to the remainder of the kernel but
differs in what it must do to implement them. for instance, all disk drivers
look alike to the remainder of the kernel, i.e., all of them have operations
like `initialize the drive', `read sector N', and `write sector N'. Some
software services provided by the kernel itself have similar properties, and
may therefore be abstracted into classes. for instance, the varied network
protocols are abstracted into one programming interface, the BSD socket
library. Another example is that the virtual filesystem (VFS) layer that
abstracts the filesystem operations faraway from their implementation.
Each filesystem type provides an implementation of every filesystem
operation. When some entity tries to use a filesystem, the request goes via
the VFS, which routes the request to the right filesystem driver.

mu
no
tes
.in

153

Major services during a UNIX :

Init the only most vital service during a UNIX is provided by init,
init is started because the first process of each UNIX, because the last item
the kernel does when it boots. When init starts, it continues the boot
process by doing various start-up chores (checking and mounting
filesystems, starting daemons, etc). When the system is pack up, it's init
that's responsible of killing all other processes, unmounting all filesystems
and stopping the processor, along side anything it's been configured to try
to do

Syslog:

The kernel and lots of system programs produce error, warning,
and other messages. It’s often important that these messages are often
viewed later, even much later, in order that they should be written to a file.
The program doing this is often syslog. It is often configured to sort the
messages to different files consistent with writer or degree of importance.
for instance, kernel messages are often directed to a separate file from the
others, since kernel messages are often more important and wish to be
read regularly to identify problems.

Both users and system administrators often got to run commands
periodically. For instance, the supervisor might want to run a command to
wash the directories with temporary files (/tmp and /var/tmp) from old
files, to stay the disks from filling up, since not all programs pack up after
themselves correctly.

The cron service is about up to try to this. Each user can have a
crontab file, where she lists the commands she wishes to execute and
therefore the times they ought to be executed. The cron daemon takes care
of starting the commands when specified.

Graphical interface:

This arrangement makes the system more flexible, but has the
disadvantage that it's simple to implement a special interface for every
program, making the system harder to find out.

The graphical environment primarily used with Linux is named the
X Window System (X for short). Some popular window managers are:
fvwm, icewm, blackbox, and windowmaker. There also are two popular
desktop managers, KDE and Gnome.

Networking:

Networking is that the act of connecting two or more computers in
order that they will communicate with one another. the particular methods
of connecting and communicating are slightly complicated, but the top
result's very useful.

mu
no
tes
.in

154

UNIX operating systems have many networking features. most
elementary services (filesystems, printing, backups, etc) are often done
over the network.

Network logins:
Network logins work a touch differently than normal logins. for

every person logging in via the network there's a separate virtual network
connection, and there are often any number of those counting on the
available bandwidth. It’s therefore impossible to run a separate getty for
every possible virtual connection

13.4 MEMORY MANAGEMENT

It is the process of managing the computer memory. The goal is to
keep track of which parts of memory are in use and which parts are not, to
allocate memory to processes when they need it and de-allocate it when
they are done.

UNIX operating system is works on two memory management schemes,
These are as follows-

1. swapping
2. demand paging

Non-Contiguous Memory Allocation

Techniques are:

1.Paging:

It is a storage mechanism that allows OS to fetch processes from
the non-volatile memory into the volatile memory in the form of pages.
The partitions of nonvolatile are called as pages & volatile memory is
divided into small fixed-size blocks of physical memory, which is called
frames.

Example :

Consider a process is divided into 4 pages A0, A1, A2 and A3.

Depending upon the availability, these pages may be stored
in the main memory frames as shown in the below diagram-

A2
A3
A0
A1

Main Memory

mu
no
tes
.in

155

2. Segmentation:

A process is divided into division called Segments. These
segments are not of same size. There are types of segmentation:
1. Virtual memory segmentation: Every process is divided into

multiple number of segments, which do not reside at any one point in
time.

2. Simple segmentation: Every process is divided into a number of
segments, all the processes are loaded in run time.

Segment Table:

A table which stores the information about every segment of the
process. It has two columns. Column 1 gives information about size or
length of the segment. Column 2 gives information about the base address

Consider the below diagram for segment table.

Limit Base
1500 1500
1000 4700
500 4500

Segment Table

According to the above table, the segments are stored in the main
memory as:

Segment- 0

Segment- 3
Segment- 2

Main Memory

The advantages of segmentation are
• Segment table takes less space as compared to Page Table in paging.
• It solves the problem of internal fragmentation.

The disadvantages of segmentation are
• Unequal size is problem for swapping.
• Though it solves internal fragmentation, it do suffer from external

fragmentation.

Paging vs Segmentation:

Paging divides program into fixed size Segmentation divides program into

mu
no
tes
.in

156

Paging Segmentation
Paging divides program into
fixed size pages.

Segmentation divides program
into variable size segments.

Operating System is responsible. Compiler is responsible
Faster than segmentation. It is slower than paging
It is closer to operating system. Segmentation is closer to User.

Memory Management:

Demand Paging:

Deciding which pages need to be kept in the main memory and
which need to be kept in the secondary memory, is going to be difficult
because we can’t say in advance that a process might require a particular
page at a particular moment of time. So, to beat this problem, there comes
a concept called Demand Paging. It advises keeping all pages of the
frames in the secondary memory till they are required. We can also say
that, it says that do not load other pages in the main memory till they are
required. Whenever any page is referred for the 1st time in the main
memory, then that page will appear in the secondary memory

Page fault:

If the mention page is not available in the main memory then there
will be a gap and this theory is called Page miss or page fault. Then the
CPU has to work on the missed page from the secondary memory. If the
number of page faults is very high then the time to access a page of the
system will become very high.

Thrashing:

If number of page faults is equal to the number of mention pages
or the number of page faults are so very high so that the CPU cannot
remain vacant in just reading the pages from the secondary memory then
the important access time will be the time taken by the CPU to read 1
word from the secondary memory and it will be very much high. The
process is called thrashing. So, assume If the page fault rate is pp %, the
time taken in getting a page from the secondary memory & again
restarting is S(processing time) and the memory access time is m then the
effective access time can be given as;

1. EAT = PF x S + (1 pp) x (m)

Page Replacement:

The page replacement algorithm tells us that which memory page
is to be changed. This moment of replacement is sometimes called a swap

mu
no
tes
.in

157

out or write to disk. Page replacement is to be done when the requested
page is not been able to access or found in the main memory (page fault)

There are 2 main types of virtual memory, Frame allocation and
Page Replacement. Frame allocation is all about how many frames can be
allocated to a process while the page replacement tells us about
determining the number of the pages which requires to be replaced in
command to make space for the requested page

What If the algorithm is not optimal?
1. Due to the absence of frames, many of the pages will be occupying

the main memory and however more page faults might occur. So, if
the OS specifies more frames to the process then there can be interior
fragmentation.

2. If the page replacement algorithm is not optimal the n there might
also lead to the problem of thrashing. If the number of pages that are
to be replaced by the requested pages will be referred to in the near
future then there will be more number of swap-out & swap-in and so
after the OS has to work on more replacements then usual which
causes performance shortage. So, the task of an optimal page
replacement algorithm is to check the page which can restrict the
thrashing.

Types of Page Replacement Algorithms:

There are various types of page replacement algorithms. Each of
the algorithms has a different way of working by which the pages can be
replaced.

1. Optimal Page Replacement algorithm→The algorithms replaces the
page which will not be mentioned for a long time in future. Anyways it
cannot be practically implementable but it can be definitely used as a

mu
no
tes
.in

158

benchmark. Other algorithms are balanced to this in terms of
optimality.

2. Least recent used (LRU) page replacement algorithm→This
algorithm replaces the page which has not been mentioned for a longer
time. This algorithm is just an exchange to the optimal page
replacement algorithm. In this, we check the past instead of staring at
the future.

3. FIFO→ In this type algorithm, a line is to be maintained. This page
which is assigned the frame 1st will be replaced 1st. In other words,
the page which stays at the rare end of the line will be changed on the
every page fault.

13.5 INPUT

Linux operating system considers and works with the below
devices, by the same way we open and close a file.
• Block devices(Hard-disks, Compact Disks, Floppy, Flash Memory)
• Serial devices (Mouse, keyboard)
• Network Devices

A user can do operations on these devices, as he does operations on
a file.

I/O redirection allows you to alter input source of a command as
well as its output and error messages are sent. And this is possible by the
‘<’ and ‘>’ redirection operators.

The main advantages with block devices are the fact that they can
be read randomly. Also, serial devices are operated.

158

benchmark. Other algorithms are balanced to this in terms of
optimality.

2. Least recent used (LRU) page replacement algorithm→This
algorithm replaces the page which has not been mentioned for a longer
time. This algorithm is just an exchange to the optimal page
replacement algorithm. In this, we check the past instead of staring at
the future.

3. FIFO→ In this type algorithm, a line is to be maintained. This page
which is assigned the frame 1st will be replaced 1st. In other words,
the page which stays at the rare end of the line will be changed on the
every page fault.

13.5 INPUT

Linux operating system considers and works with the below
devices, by the same way we open and close a file.
• Block devices(Hard-disks, Compact Disks, Floppy, Flash Memory)
• Serial devices (Mouse, keyboard)
• Network Devices

A user can do operations on these devices, as he does operations on
a file.

I/O redirection allows you to alter input source of a command as
well as its output and error messages are sent. And this is possible by the
‘<’ and ‘>’ redirection operators.

The main advantages with block devices are the fact that they can
be read randomly. Also, serial devices are operated.

158

benchmark. Other algorithms are balanced to this in terms of
optimality.

2. Least recent used (LRU) page replacement algorithm→This
algorithm replaces the page which has not been mentioned for a longer
time. This algorithm is just an exchange to the optimal page
replacement algorithm. In this, we check the past instead of staring at
the future.

3. FIFO→ In this type algorithm, a line is to be maintained. This page
which is assigned the frame 1st will be replaced 1st. In other words,
the page which stays at the rare end of the line will be changed on the
every page fault.

13.5 INPUT

Linux operating system considers and works with the below
devices, by the same way we open and close a file.
• Block devices(Hard-disks, Compact Disks, Floppy, Flash Memory)
• Serial devices (Mouse, keyboard)
• Network Devices

A user can do operations on these devices, as he does operations on
a file.

I/O redirection allows you to alter input source of a command as
well as its output and error messages are sent. And this is possible by the
‘<’ and ‘>’ redirection operators.

The main advantages with block devices are the fact that they can
be read randomly. Also, serial devices are operated.mu

no
tes
.in

159

Another advantage of using block devices is that, if allows access
to random location's on the device. Also data from the device is read with
a fixed block size. Input & output to the block devices works on the
"elevator algorithm" It says that it works on the same principle, as an
elevator would.

Mechanical devices like hard-disks are very slow in nature, when it
comes to data input and output compared to system memory (RAM) &
Processor.

Sometimes applications have to wait for the input and output
requests to complete, because different applications are in queue for its
input output operations to complete.

The slowest part of any Linux system (or any other operating
system), is the disk I/O systems. There is a large difference between, the
speed and the duration taken to complete an input/output request of CPU,
RAM and Hard-disk. Sometimes if one of the processes running on your
system does a lot of read/write operations on the disk, there will be an
intense lag or slow response from other processes since they are all
waiting for their respective I/O operations to get completed.

Linux Io Commands:

Output Redirection:

The output from the command normally intended for normal
output are often easily diverted to a file instead., this capability is
understood as output redirection.

Notice that no output appears at the terminal. This is often because
the output has been redirected from the default standard output device (the
terminal) into the required file.

If a command has its output redirected to a file and therefore the
file already contains some data, that data are going to be lost. Example

The >> operator are often used to append the output in an existing file as
follows

159

Another advantage of using block devices is that, if allows access
to random location's on the device. Also data from the device is read with
a fixed block size. Input & output to the block devices works on the
"elevator algorithm" It says that it works on the same principle, as an
elevator would.

Mechanical devices like hard-disks are very slow in nature, when it
comes to data input and output compared to system memory (RAM) &
Processor.

Sometimes applications have to wait for the input and output
requests to complete, because different applications are in queue for its
input output operations to complete.

The slowest part of any Linux system (or any other operating
system), is the disk I/O systems. There is a large difference between, the
speed and the duration taken to complete an input/output request of CPU,
RAM and Hard-disk. Sometimes if one of the processes running on your
system does a lot of read/write operations on the disk, there will be an
intense lag or slow response from other processes since they are all
waiting for their respective I/O operations to get completed.

Linux Io Commands:

Output Redirection:

The output from the command normally intended for normal
output are often easily diverted to a file instead., this capability is
understood as output redirection.

Notice that no output appears at the terminal. This is often because
the output has been redirected from the default standard output device (the
terminal) into the required file.

If a command has its output redirected to a file and therefore the
file already contains some data, that data are going to be lost. Example

The >> operator are often used to append the output in an existing file as
follows

159

Another advantage of using block devices is that, if allows access
to random location's on the device. Also data from the device is read with
a fixed block size. Input & output to the block devices works on the
"elevator algorithm" It says that it works on the same principle, as an
elevator would.

Mechanical devices like hard-disks are very slow in nature, when it
comes to data input and output compared to system memory (RAM) &
Processor.

Sometimes applications have to wait for the input and output
requests to complete, because different applications are in queue for its
input output operations to complete.

The slowest part of any Linux system (or any other operating
system), is the disk I/O systems. There is a large difference between, the
speed and the duration taken to complete an input/output request of CPU,
RAM and Hard-disk. Sometimes if one of the processes running on your
system does a lot of read/write operations on the disk, there will be an
intense lag or slow response from other processes since they are all
waiting for their respective I/O operations to get completed.

Linux Io Commands:

Output Redirection:

The output from the command normally intended for normal
output are often easily diverted to a file instead., this capability is
understood as output redirection.

Notice that no output appears at the terminal. This is often because
the output has been redirected from the default standard output device (the
terminal) into the required file.

If a command has its output redirected to a file and therefore the
file already contains some data, that data are going to be lost. Example

The >> operator are often used to append the output in an existing file as
follows

mu
no
tes
.in

160

Input Redirection:

The commands that normally take their input from the standard
input can have their input redirected from a file in this manner. For
example, to count the number of lines in the file users generated above,
you can execute the command as follows

Upon execution, you will receive the following output. You can
count the number of lines in the file by redirecting the standard input of
the wc command from the file users

Note that there is a difference in the output produced by the two
forms of the wc command. In the first case, the name of the file users is
listed with the line count; in the second case, it is not.

In the first case, we knows that it is reading its input from the file
users. In the second case, it only knows that it is reading its input from
standard input so it does not display file name.

Redirection Commands:

Following is a complete list of commands which you can use for
redirection

Sr.
No

Command & Description

1 Pgm > file
Output of pgm is redirected to file.

2 Pgm < file
Program pgm reads its input from file.

3 Pgm >> file
Output of pgm is appended to file.

160

Input Redirection:

The commands that normally take their input from the standard
input can have their input redirected from a file in this manner. For
example, to count the number of lines in the file users generated above,
you can execute the command as follows

Upon execution, you will receive the following output. You can
count the number of lines in the file by redirecting the standard input of
the wc command from the file users

Note that there is a difference in the output produced by the two
forms of the wc command. In the first case, the name of the file users is
listed with the line count; in the second case, it is not.

In the first case, we knows that it is reading its input from the file
users. In the second case, it only knows that it is reading its input from
standard input so it does not display file name.

Redirection Commands:

Following is a complete list of commands which you can use for
redirection

Sr.
No

Command & Description

1 Pgm > file
Output of pgm is redirected to file.

2 Pgm < file
Program pgm reads its input from file.

3 Pgm >> file
Output of pgm is appended to file.

160

Input Redirection:

The commands that normally take their input from the standard
input can have their input redirected from a file in this manner. For
example, to count the number of lines in the file users generated above,
you can execute the command as follows

Upon execution, you will receive the following output. You can
count the number of lines in the file by redirecting the standard input of
the wc command from the file users

Note that there is a difference in the output produced by the two
forms of the wc command. In the first case, the name of the file users is
listed with the line count; in the second case, it is not.

In the first case, we knows that it is reading its input from the file
users. In the second case, it only knows that it is reading its input from
standard input so it does not display file name.

Redirection Commands:

Following is a complete list of commands which you can use for
redirection

Sr.
No

Command & Description

1 Pgm > file
Output of pgm is redirected to file.

2 Pgm < file
Program pgm reads its input from file.

3 Pgm >> file
Output of pgm is appended to file.

mu
no
tes
.in

161

4 n > file
Output from stream with descriptor n redirected to file

5 n >> file
Output from stream with descriptor n appended to file

6 n >& m
Merges output from stream n with stream m

7 n <& m
Merges input from stream n with stream m

8 << tag
Standard input comes from here through next tag at the start
of line

9 I
Takes output from one program, or process, and sends it to
another.

Note that the file descriptor 0 is normally standard input (STDIN), 1 is
standard output (STDOUT), and 2 is standard error output (STDERR).

13.6 LINUX FILE SYSTEM

Linux File System or any file system generally is a layer which is
under the operating system that handles the positioning of your data on the
storage. The starting and ending of file is not known by the system. Ever if
you find any unsupported file system type.

Linux File System Directories:

/bin: Where core commands of Linux exists for example ls, mv.

/boot: Where boot loader and boot files located.

/dev: Physical drives like USBs DVDs are mounted in this.
/etc: Contains configurations for the installed packages.

/home: Here personal folders are allotted to the users to store his folders
with his/her name like/home/like geeks.

/lib: Here the libraries are located of the installed package. You may find
duplicates in different folders since libraries are shared among all
packages unlike windows.

/media: Here is the external devices like DVDs and USB sticks that are
mounted and you can access their files here.

/root: The home folder for the root user.

/sbin: Similar to /bin but difference is that the binaries here are for root
user only.

mu
no
tes
.in

162

/tmp: Contains the temporary files.

/usr: Where the utilities and files shared between users od linux.

/var: Contains system logs and other variable data.

Linux File System Types:

Following are the Linux File System types:

Ext: It is an older one which is not used due to its limitations.

Ext2: It is the first Linux file system which allows 2 terabytes of data
allowed.

Ext3: It is arrived from Ext2 which is more upgraded and has backward
compatibility.

Ext4: It is quite faster which allows larger files to operate with significant
speed.

JFS: old file system made by IBM. Working of this is very well with
small and big files but when used for longer time the files get orrupted.

XFS: It is old file system which works slowly with small files.

Btrfs: made by oracle. It is not stable as Ext in some distros, but you can
say that it is replacement for it if you too. It has a good performance.

Working of file system in Linux:

The Linux file system unifies all physical hard drives and
partitions into a single directory structure. It starts at the top-the root
directory.

Storing file in Linux:

In Linux as in MS-DOS and Microsoft Windows, program is
stored in files. It can be launched by simply typing its filename. However,
this assumes that the file is stored in one of a series of directories known
as path. A directory included in this series is said to be on a path.

Linux File Commands:

1. pwd – This command displays the present working directory where
you are currently in.

162

/tmp: Contains the temporary files.

/usr: Where the utilities and files shared between users od linux.

/var: Contains system logs and other variable data.

Linux File System Types:

Following are the Linux File System types:

Ext: It is an older one which is not used due to its limitations.

Ext2: It is the first Linux file system which allows 2 terabytes of data
allowed.

Ext3: It is arrived from Ext2 which is more upgraded and has backward
compatibility.

Ext4: It is quite faster which allows larger files to operate with significant
speed.

JFS: old file system made by IBM. Working of this is very well with
small and big files but when used for longer time the files get orrupted.

XFS: It is old file system which works slowly with small files.

Btrfs: made by oracle. It is not stable as Ext in some distros, but you can
say that it is replacement for it if you too. It has a good performance.

Working of file system in Linux:

The Linux file system unifies all physical hard drives and
partitions into a single directory structure. It starts at the top-the root
directory.

Storing file in Linux:

In Linux as in MS-DOS and Microsoft Windows, program is
stored in files. It can be launched by simply typing its filename. However,
this assumes that the file is stored in one of a series of directories known
as path. A directory included in this series is said to be on a path.

Linux File Commands:

1. pwd – This command displays the present working directory where
you are currently in.

162

/tmp: Contains the temporary files.

/usr: Where the utilities and files shared between users od linux.

/var: Contains system logs and other variable data.

Linux File System Types:

Following are the Linux File System types:

Ext: It is an older one which is not used due to its limitations.

Ext2: It is the first Linux file system which allows 2 terabytes of data
allowed.

Ext3: It is arrived from Ext2 which is more upgraded and has backward
compatibility.

Ext4: It is quite faster which allows larger files to operate with significant
speed.

JFS: old file system made by IBM. Working of this is very well with
small and big files but when used for longer time the files get orrupted.

XFS: It is old file system which works slowly with small files.

Btrfs: made by oracle. It is not stable as Ext in some distros, but you can
say that it is replacement for it if you too. It has a good performance.

Working of file system in Linux:

The Linux file system unifies all physical hard drives and
partitions into a single directory structure. It starts at the top-the root
directory.

Storing file in Linux:

In Linux as in MS-DOS and Microsoft Windows, program is
stored in files. It can be launched by simply typing its filename. However,
this assumes that the file is stored in one of a series of directories known
as path. A directory included in this series is said to be on a path.

Linux File Commands:

1. pwd – This command displays the present working directory where
you are currently in.

mu
no
tes
.in

163

2. ls – This command will list the content of present directory.

3. ls -l – This command is used to show formatted listing of files and
directory

4. ls -la – This command will list all the content of present directory
including the hidden files and directories.

163

2. ls – This command will list the content of present directory.

3. ls -l – This command is used to show formatted listing of files and
directory

4. ls -la – This command will list all the content of present directory
including the hidden files and directories.

163

2. ls – This command will list the content of present directory.

3. ls -l – This command is used to show formatted listing of files and
directory

4. ls -la – This command will list all the content of present directory
including the hidden files and directories.

mu
no
tes
.in

164

5. mkdir – This command will create a new directory

6. rmdir – This command will delete specified directory, provided it is
empty

7. cd – This command is used to change directory

8. cd / - This command takes us to root directory

9. cd .. – This command takes us one level up the directory tree.

10. rm filename – This command deletes specified file.

11. rm -r directoryname – This command deletes the specified directory
along with it’s contents

164

5. mkdir – This command will create a new directory

6. rmdir – This command will delete specified directory, provided it is
empty

7. cd – This command is used to change directory

8. cd / - This command takes us to root directory

9. cd .. – This command takes us one level up the directory tree.

10. rm filename – This command deletes specified file.

11. rm -r directoryname – This command deletes the specified directory
along with it’s contents

164

5. mkdir – This command will create a new directory

6. rmdir – This command will delete specified directory, provided it is
empty

7. cd – This command is used to change directory

8. cd / - This command takes us to root directory

9. cd .. – This command takes us one level up the directory tree.

10. rm filename – This command deletes specified file.

11. rm -r directoryname – This command deletes the specified directory
along with it’s contents

mu
no
tes
.in

165

12. cp file1 file2 – This command copies contents of file file1 into file
file2

13. mv – This command is used to rename files and directories

14. cat>filename – This command is used to create a file and open it in
write mode

15. cat filename – This command is used to display content of a file

Linux Commands:

Linux is an open-source free OS. It supports all administrative
tasks through the terminal. This also includes file manipulation, package
installation and user management.

File Commands:
• ls = Listing the entire directory
• ls -at = Show formatted listing of hidden files
• ls -lt = Sort the formatted listing by time modified
• cd dir = To change the directory user is in

165

12. cp file1 file2 – This command copies contents of file file1 into file
file2

13. mv – This command is used to rename files and directories

14. cat>filename – This command is used to create a file and open it in
write mode

15. cat filename – This command is used to display content of a file

Linux Commands:

Linux is an open-source free OS. It supports all administrative
tasks through the terminal. This also includes file manipulation, package
installation and user management.

File Commands:
• ls = Listing the entire directory
• ls -at = Show formatted listing of hidden files
• ls -lt = Sort the formatted listing by time modified
• cd dir = To change the directory user is in

165

12. cp file1 file2 – This command copies contents of file file1 into file
file2

13. mv – This command is used to rename files and directories

14. cat>filename – This command is used to create a file and open it in
write mode

15. cat filename – This command is used to display content of a file

Linux Commands:

Linux is an open-source free OS. It supports all administrative
tasks through the terminal. This also includes file manipulation, package
installation and user management.

File Commands:
• ls = Listing the entire directory
• ls -at = Show formatted listing of hidden files
• ls -lt = Sort the formatted listing by time modified
• cd dir = To change the directory user is in

mu
no
tes
.in

166

• cd = Shift to home directory
• pwd = To see which directory user is working
• mkdir dir = Creating a directory to work on
• cat >file = Places the standard input into the file
• more file = Shows output of the content of the file
• head file = Shows output of the first 10 files of file
• tail file = Shows output of the last 10 files of file
• tail -f file = Shows output content of the file as it grows, starting with

the last 10 lines
• touch file = Used to create or upload a file
• rm file = For deleting a file
• rm -r dir = For deleting an entire directory
• rm -f file = This will force remove the file
• rm -rf dir = This will force remove a directory
• cp file1 file2 = It’ll copy the contents of file1 to file2
• cp -r dir1 dir2 = it’ll copy the contents of dir1 to dir2; Also create the

directory if not present.
• mv file1 file2 = It’ll rename or move file1 to file2, only if file2 is

existing
• ln -s file link = It creates symbolic-link to a file

Process Management:
• ps = It displays the currently working processes
• top = It displays all running process
• kill pid = It’ll kill the given process (as per specific PID)
• killall proc = It kills all the process named proc
• pgkill pattern = It will kill all processes matching the pattern given
• bg = It lists stopped or bg jobs, resume a stopped job in the

background
• fg = It brings the most recent job to foreground

13.7 SECURITY IN LINUX

13.7.1 Security features:

Minimal set of security features were provided by kernel.
Discretionary access control: Authentication is performed outside the
kernel by user-level applications such as login. Authentication Allows
system administrators to redefine access control policies. Customize the

mu
no
tes
.in

167

way Linux authenticates users specify encryption algorithms that protect
system resources.

13.7.2 Authentication:

Default authentication: User enters username and password via
login. Passwords are hashed (using MD5 or DES).Encryption cannot be
reversed and stored in /etc/passwd or /etc/shadow. Pluggable
authentication modules (PAMs) can reconfigure the system at run time to
include enhanced authentication techniques. Example: Disallow terms
found in a dictionary and require users to choose new passwords regularly.
It supports smart cards, Kerberos and voice authentication

13.7.3 Access Control Methods:

Access control attributes specify file permissions and file attributes

File permissions: Combination of read, write and/or execute permissions
specified for three categories: user, group and other

File attributes: Additional security mechanism supported by some file
systems allow users to specify constraints on file access beyond read write
and execute. Examples: append-only, immutable

Linux security module (LSM) is a framework that allows a system
administrator to customize the access control policy using loadable kernel
modules. Kernel uses hooks inside the access control verification code to
allow LSM to enforce its access control policy. Example: SELinux which
is developed by NSA, It Replaces Linux’s default discretionary access
control policy with a mandatory access control (MAC) policy.

Privilege inheritance: Normally a process executes with same privileges
as the user who launched it .Some applications require process to execute
with other user privileges

Example: passwd – setuid and setgid allow process to run with the
privileges of the file owner – Improper use of setuid and setgid can lead to
security breaches – LSM

Capabilities allow administrator to assign privileges to applications as
opposed to users to prevent this situation.

13.8 SUMMARY
• Linux is an open source family of Unix-like Linux based kernel

applications, a kernel operating system that was first released on
September 17, 1991, by Linus Torvalds Linux usually included in the
Linux distribution.

mu
no
tes
.in

168

• Many of the available software programs, utilities, games available on
Linux are freeware or open source. Even such complex programs such
as Gimp,OpenOffice, StarOffice are available for free or at a low cost.

• GUI makes the system more flexible, but has the disadvantage that it's
simple to implement a special interface for every program, making the
system harder to find out.

• The Linux kernel consists of several important parts: process
management, memory management, hardware device drivers,
filesystem drivers, network management, and various other bits and
pieces.

• Memory management takes care of assigning memory areas and swap
file areas to processes, parts of the kernel, and for the buffer cache.
Process management creates processes, and implements multitasking
by switching the active process on the processor.

• Linux File System or any file system generally is a layer which is
under the operating system that handles the positioning of your data on
the storage.

• The Linux file system unifies all physical hard drives and partitions
into a single directory structure. It starts at the top-the root directory.

• Kernel provides a minimal set of security features

13.9 LIST OF REFERENCES
1. Modern Operating Systems, Andrew S. Tanenbaum, Herbert, Pearson

4 th, 2014
2. Operating Systems – Internals and Design Principles, Willaim

Stallings, Pearson 8 th, 2009
3. Operating System -Concepts Abraham Silberschatz, Peter B.

Galvineg Gagne Wiley ,8 th Edition.
4. Operating Systems Godbole and Kahate McGraw Hill 3 rd Edition.

13.10 BIBLIOGRAPHY
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://www.javatpoint.com
https://guru99.com
www.slideshare.net

13.11 UNIT END QUESTIONS
1. Explain Architecture of Linux.
2. Explain memory management in Linux
3. Write short note on Process management in Linux
4. Write short note on security in Linux

mu
no
tes
.in

169

14
ANDROID CASE STUDY

Unit Structure
14.0 Objectives
14.1 Android History
14.2 Android Overview

14.2.1 Features
14.2.2 Android Architecture

14.3 Android Programming
14.4 Process

14.4.1 Introduction
14.4.2 Process in the application
14.4.3 Structure of process
14.4.4 States of process
14.4.5 Process lifecycle
14.4.6 Interprocess communication

14.5 Android memory management
14.5.1 Introduction
14.5.2 Garbage collection
14.5.3 How to improve memory usage
14.5.4 How to avoid memory leaks
14.5.5 Allocate and reclaim app memory

14.6 File system
14.6.1 Flash memory- android OS file system
14.6.2 Media-based android file system
14.6.3 Pseudo file systems
14.6.4 Android / android application file structure
14.6.5 Files in android studio and explained below

14.7 Security in android
14.7.1 Authentication
14.7.2 Biometrics
14.7.3 Encryption
14.7.4 Keystore
14.7.5 Trusty trusted execution environment (TEE)
14.7.6 Verified boot

14.8 Summary

mu
no
tes
.in

170

14.9 List of references
14.10 Bibliography
14.10 Unit End Questions

14.0 OBJECTIVES

• To understand principles of Android
• To learn principles of Process, Memory Management
• To learn principles of File System and Security

14.1 ANDROID HISTORY

Android OSis recognized by a consortium of developers: known as
the Open Handset Alliance, with the main funder and commercial
marketer being Google. It was being developed by Google for all the
tablets, and smartphones. Android OS first industrialize by Android
Incorporated, which is located in Silicon Valley before it was developed
by Google in 2005. Versions of android are as follows:

Versions Description
1) Android versions 1.0 to

1.1: The early days
Android made this version
authorized in the year 2008, with
Android 1.0. This version included
a group Google apps; like Gmail,
Maps, Calendar, and YouTube.

2) Android 1.5 Cupcake The first official public code for
Android didn't appear until; this
version 1.5 Cupcake was released
in April 2009. New few features
and
enhancements, compared to the first
two versions i.e.; including ability
to upload videos to YouTube; and a
way for a phone's screen display to
automatically rotate to the right
positions.

3) Android 1.6 Donut Google released this version of
Android 1.6 Donut in September
2009. It included the support for
carriers that used CDMA - based
networks and phones to be sold by
all carriers around the world.
Others are; Quick Search Box, and
quick toggling between the Camera,
Camcorder, and Gallery to
streamline the media-capture
experience & even Power Control

mu
no
tes
.in

171

widget for the Wi-Fi, Bluetooth,
GPS, etc.

4) Android 2.0 - 2.1 Éclair Google launched the second version
of Android and named it as éclair in
October 2009.First version of
Android; with a text-to-speech
support feature & also included:
multiple account support,
navigation with Google Maps. The
first smartphone with Éclair version
was Motorola Droid, which was
also the first one, that was sold by
Verizon wireless company.

5) Android 2.2 Froyo Released in May 2010, also called
―frozen yogurt‖. New features,
including Wi-Fi mobile hotspot
functions, push notifications via
Android Cloud to Device
Messaging (C2DM) service, flash
support and also Wi-Fi mobile
hotspot functions were introduced.

6) Android 2.3 Gingerbread Launched in Sept. 2010, is
currently, the oldest versions of the
OS that Google. Android devices
are currently running on this
version. The first mobile phone was
the Nexus S mobile to add both
Gingerbread and
NFC hardware, co-developed by
Google and Samsung. It also
introduced features like selfie, by
adding in support for multiple
cameras and video chat support
within Google Talk.

7) Android 3.0 Honeycomb This Version introduced in Feb,
2011, Motorola Xoom tablet along
with, was released by Google only
for tablets and other mobile devices
with larger displays than normal
smartphones. Honeycomb would
offer specific features that could
not be handled by the smaller
displays found on smartphones at
the time.

8) Android 4.0 Ice Cream
Sandwich

Launched in October 2011. First to
introduce the feature to unlock the
phone using its camera. Other
features are support for all the on-
screen buttons, the ability to

mu
no
tes
.in

172

monitor the mobile and Wi-Fi data
usage, and swipe gestures to
dismiss notifications and browser
tabs.

9) Android 4.1- 4.3 Jelly Bean Google released versions 4.2 and
4.3, both under the Jelly Bean label,
in Oct. 2012 and July 2013.
Features include software updates,
notifications that showed more
content or action buttons, along
with full support for the Android
version of Google's Chrome web
browser. Google now made Search,
and "Project Butter to speed up and
improve touch responsiveness

10) Android 4.4 KitKat Officially launched in Sept. 2013,
codename is ―Key Lime Pie‖. It
helped to expand the overall market
&was optimized to run on the
smartphones that had as little as 512
MB of RAM. This allowed many
makers to get the latest version &
installed it on a much cheaper
handset.

11) Android 5.0 Lollipop Released in the first month of
2014.This included the support for
dual-SIM Card Feature, HD Voice
calls, Device Protection to keep
thieves locked out of your phone
even after a factory reset.

12)Android 6.0 Marshmallow Initially called as
Macadamia Nut Cookie, but later
was released as Marshmallow in
May 2015. Features are app drawer
& the first version that had native
support for unlocking the
smartphone with biometrics, Type
C support & Android pay was also
there. Google’s Nexus 6P and
Nexus 5X were the first handsets.

13) Android 7.0 Nougat Released in August 2016.
Multitasking features that designed
for smartphones with bigger
screens. It included a split-screen
feature and fast switching between
applications. Other changes are
made by Google such as switching
to a new JIT compiler that could
speed. Pixel, and Pixel XL, and LG

mu
no
tes
.in

173

V20 were released with this
version.

14) Android 8.0 Oreo
(August 21, 2017)

Second time Google used a
trademarked name for it’s Android
version, the first was KitKat.
Android 8.0 Oreo launched in
August 2017. It included, visual
changes such as native support for
picture-in-picture mode feature,
new autofill APIs;help in better
managing the passwords and fill
data, notification hannels.
15)Android 9.0 Pie (August 6,
2018)

15)Android 9.0 Pie
(August 6, 2018)

Released in August 2018. New
features & updates such as battery
life. Home - button was added in
this version. When swiped up it
brings the apps that were used
recently, a search bar, and
suggestions of five apps at the
bottom of the screen. New option
added of swiping left to see the
currently running applications.

16) Android 10 (September
3, 2019)

Finally, Google opted to drop the
tradition of naming the Android
version after sweets, desserts, and
candies. It was launched in
September 2019. Several new
features were added such as support
for the upcoming foldable smart
phones with flexible displays.
Android 10 also has a dark mode
feature, along with the newly
introduced navigation control using
gestures, the feature for smart reply
for all the messaging apps, and a
sharing menu that is more effective.

14.2 ANDROID OVERVIEW

Android is an operating system based on the Linux kernel and
other open-source software such as smartphones and table ts. Android
approach to application development for mobile devices which means
developers need only develop for Android and their applications should be
able to run on different devices powered by Android. The source code for
Android is available free and open-source software licenses.

mu
no
tes
.in

174

14.2.1 Features:
Android is an operating system as well as supports great features. Few of
them are listed below:
1. Beautiful UI: Android OS provides a beautiful and intuitive user

interface.
2. Connectivity: Supports a large group of networks like GSM/EDGE,

CDMA, UMTS, Bluetooth, WiFi, LTE, and WiMAX.
3. Storage: Uses SQLite, lightweight relational database storage for data

storage. It is really helpful when there is limited mobile memory
storage to be considered.

4. Media support: It Includes support for a large number of media
formats, Audio as well as for Video, like H.263, H.264, MPEG 4 SP,
AMR, AMR WB, AAC, MP3, JPEG, PNG, GIF & BMP.

5. Messaging: Both SMS and MMS are supported.
6. Web Browser: Based on Open Source WebKit, now known as

Chrome.
7. Multi-Touch: Supports multi-touch screen. -
8. Multi-Task: Supports application multitasking.i.e, task to another and

same time various applications can run simultaneously.
9. Resizable widgets: Widgets are resizable, so users can reuseit to show

more content or to save space.
10. Multi-Language: Supports single direction and bi-irectionaltext.
11. Hardware Support: Accelerometer Sensor, Camera, DigitalN

Compass, Proximity Sensor & GPS, and a lot more.

14.2.2 Android Architecture: Android is a stack of components of the
software which is divided into five layers that are shown below in the
diagram:

174

14.2.1 Features:
Android is an operating system as well as supports great features. Few of
them are listed below:
1. Beautiful UI: Android OS provides a beautiful and intuitive user

interface.
2. Connectivity: Supports a large group of networks like GSM/EDGE,

CDMA, UMTS, Bluetooth, WiFi, LTE, and WiMAX.
3. Storage: Uses SQLite, lightweight relational database storage for data

storage. It is really helpful when there is limited mobile memory
storage to be considered.

4. Media support: It Includes support for a large number of media
formats, Audio as well as for Video, like H.263, H.264, MPEG 4 SP,
AMR, AMR WB, AAC, MP3, JPEG, PNG, GIF & BMP.

5. Messaging: Both SMS and MMS are supported.
6. Web Browser: Based on Open Source WebKit, now known as

Chrome.
7. Multi-Touch: Supports multi-touch screen. -
8. Multi-Task: Supports application multitasking.i.e, task to another and

same time various applications can run simultaneously.
9. Resizable widgets: Widgets are resizable, so users can reuseit to show

more content or to save space.
10. Multi-Language: Supports single direction and bi-irectionaltext.
11. Hardware Support: Accelerometer Sensor, Camera, DigitalN

Compass, Proximity Sensor & GPS, and a lot more.

14.2.2 Android Architecture: Android is a stack of components of the
software which is divided into five layers that are shown below in the
diagram:

174

14.2.1 Features:
Android is an operating system as well as supports great features. Few of
them are listed below:
1. Beautiful UI: Android OS provides a beautiful and intuitive user

interface.
2. Connectivity: Supports a large group of networks like GSM/EDGE,

CDMA, UMTS, Bluetooth, WiFi, LTE, and WiMAX.
3. Storage: Uses SQLite, lightweight relational database storage for data

storage. It is really helpful when there is limited mobile memory
storage to be considered.

4. Media support: It Includes support for a large number of media
formats, Audio as well as for Video, like H.263, H.264, MPEG 4 SP,
AMR, AMR WB, AAC, MP3, JPEG, PNG, GIF & BMP.

5. Messaging: Both SMS and MMS are supported.
6. Web Browser: Based on Open Source WebKit, now known as

Chrome.
7. Multi-Touch: Supports multi-touch screen. -
8. Multi-Task: Supports application multitasking.i.e, task to another and

same time various applications can run simultaneously.
9. Resizable widgets: Widgets are resizable, so users can reuseit to show

more content or to save space.
10. Multi-Language: Supports single direction and bi-irectionaltext.
11. Hardware Support: Accelerometer Sensor, Camera, DigitalN

Compass, Proximity Sensor & GPS, and a lot more.

14.2.2 Android Architecture: Android is a stack of components of the
software which is divided into five layers that are shown below in the
diagram: mu

no
tes
.in

175

All these layers are responsible for different roles and features that have been
discussed below.

Linux Kernel:

This layer provides a level of abstraction between hardware and it
contains all the essential hardware drivers like camera, keypad, display.
This layer is the foundation of the android platform.

Hardware Abstraction Layer:

It provides an abstraction between hardware and the rest ofthe
software stack.

Libraries:

Libraries are present above the Linux kernel including open-source
web browser engine WebKit it is the well-known library, SQLite database
which is useful for storage and sharing of application data, libraries to
play, and record audio and video, SSL libraries are responsible for Internet
security, etc.

Android Runtime:

This layer provides a key component called Dalvik Virtual
Machine which is a kind of Java Virtual Machine. JVM is specially
designed and optimized for Android and designed to run apps in a
constrained environment that has limited muscle power in terms of
battery, processing, and memory. It contains a set of libraries that enables
developers to write code for android apps using java programming.

Application Framework:

It provides a higher level of services to applications in the form of
java classes. Developers are allowed to make the use of these services in
their applications.

Android framework includes key services ofter are as follows:
1) Activity Manager: It controls all aspects of the application lifecycle

and activity stack.
2) Content Providers: Allows applications to publish and share their

data with other applications.
3) Resource Manager: Provides access to non-code embedded resources

such as strings, color settings, and also user interface layouts.
4) Notifications Manager: Allows applications to display notifications

to the user.

mu
no
tes
.in

176

5) View System: Extensible set of views used to create application user
interfaces.

Applications:

At the top, the layer you will find all android applications. This
layer uses all the layers below it for the proper functioning of the mobile
app, such applications are Contacts Books, Calendar, Browser, Games,
and many more.

So Android holds layered or we can say a group of functionalities
as software stack that makes Android work very fluently in any device.

14.3 ANDROID PROGRAMMING

If we want to develop Android apps, it is essential to pick a
language. To differentiate between the various Android programming
languages it may be a little complex. To choose which one to start with it
requires an understanding of their strength and weakness.

The best way to develop an Android app is to download Android
Studio. There is a piece of software called an Integrated Development
Environment(IDE). It is offered as a package with the Android SDK,
which is nothing but a set of tools used to facilitate Android development.
It will give you everything you need in one place to get up and get going.

Features such as the visual designer make the process easier.
Powerful features are being added to give developers access to things like
cloud storage. While Java is the official.language for Android but there are
so many other languages that can be used for Android App Development.

Below mentioned are these programming languages which are currently
used for Android development:

1. Java:

• Java is the official.language for Android App Development and it is
the most used language as well. Apps in the Play Store are most of
built with Java and it is also the most supported language by Google.
Java has a great online community for support in case of any
problems.

• Java was developed by Sun Microsystems in 1995, and it is used for a
wide range of programming.applications. Java code is run by a virtual
machine. That runs on Android devices and interprets the code.

• However, Java is complicated. Language for a beginner to use as it
contains complex topics like constructors, null pointer, exceptions,
concurrency, checked exceptions, etc. Android Software Development
Kit(SDK) increases the complexity at a greater extent.

mu
no
tes
.in

177

• Development using java also requires a basic understanding of
concepts like Gradle, Android Manifest, and the markup language
XML.

2. Kotlin:

• Kotlin is a cross-platform programming language that is used as an
alternative to Java for Android App Development. It has been
introduced as a secondary - official‖ Java language in 2017.

• It can inter-operate with Java and it runs on the Java Virtual Machine.

• The only sizable difference is that Kotlin removes the superfluous
features of Java such as null pointer exceptions and removes the
necessity of ending every line with a semicolon.

• In short, It is much simpler for beginners to try as compared to Java
and it can also be used as an entry point‖ for Android App
Development.

3. C++:

• C++ is used for Android App Development using the Android Native
Development Kit(NDK). An app cannot be created using C++ and the
Native Development Kit is used to implement parts of the app in C++
native code. This helps in using C++ code libraries for the app as
required.

• While C++ is useful for Android App Development in some cases, it is
much more difficult to set up and is much less flexible. For
applications like 3D games, this will use out some extra performance
from an Android device, which means that you’ll be able to use
libraries written in C or C++.

• It may also lead to more bugs because of the increased complexity.So,
it is better to use Java as compared to C++ as it does not provide
enough gain to offset the efforts required.

4. C#:

• C# is a little bit similar to Java and so it is ideal for Android App
Development. Like Java, C# also implements garbage collection
sothere are fewer chances of memory leaks. And C# also has a cleaner
and simpler syntax than Java which makes coding with it
comparatively easier.

• Earlier, the biggest drawback of C# was that it could run only on
Windows systems as it used the .NET Framework. However, this
problem was handled by Xamarin.

• Android is a cross-platform implementation of the Common Language
Infrastructure. Now, Xamarin. The android tool can be used to write
native Android apps and share the code across multiple platforms.

mu
no
tes
.in

178

5. Python:

• It is used for Android App Development even though Android doesn’t
support native Python development. This is done using various tools
that convert the Python apps into Android Packages that can be run on
Android devices.

• An example of this can be Kivy that is an open-source Python library
used for developing mobile apps. It supports Android and also
provides rapid app development. However, a downside to this is that
there won’t be native benefits for Kivy as it isn’t natively supported.

6. Corona:

• It is a software development kit that is used for developing Android
apps using Lua. It contains two operational modes, i.e. Corona
Simulator and Corona Native. The Corona Simulator is used to build
apps directly whereas the Corona Native is used to integrate the Lua
code with an Android Studio project to build an app using native
features.

• While Lua is a little limited as compared to Java, it is also much
simpler and easy to learn. It is mostly used to create graphics
applications and games but is by no means limited to that.

• We need to use a text editor like Notepad++ to enter your code and
you can run said code on an emulator without even needing to compile
first. When we are ready to create an APK and deploy, we will be able
to do this using an online tool.

7. Unity:

• Unity is a "game engine," which means it provides things like physics
calculations and 3D graphics rendering and an IDE like Android
Studio.

• It is an open-source tool, which makes it incredibly easy to create our
games, and the community is strong, which means we get a lot of
support. With just a few lines of code, we have a basic platform game
set up in less than an hour. It's multiplatform and is used by many
game studios.

• It is a great way to learn object-oriented programming concept as the
objects are an object.

• This is used to become a game developer.

• For a complete beginner, it is not the entry point to Android
development – but for a small company wanting to create an app for
iOS and Android, it makes sense and there’s plenty of support and
information out there to help you out.

mu
no
tes
.in

179

8. PhoneGap:

• The last simple option you can choose to develop Android apps
program.

• PhoneGap is powered by Apache Cordova and it allows you to create
apps using the same code you would normally use to create a website:
TML, CSS, and JavaScript. This is then shown through a "WebView"
but packaged like an app. It acts like a mediator, which allows
developers to access the basic features of the phone, such as the
camera.

• This is not real Android development, though, and the only real
programming will be JavaScrip

Conclusion:
• There are a lot of apps such as Chat messengers, Music players,

Games. Calculators. etc. that can be created using the above languages.
• No language is correct for Android Development.
• So, it's upon you to make the correct choice of language based on your

objectives and preferences for each project.

Databases that can be used with Android:
1. SQLite:

• SQLite is a relational database, a lite version of SQL designed for
mobile.It is an in-process library that implements a self-contained,
zero-configuration, transactional SQL database engine. Its an
embedded SQL Database engine without any separate server process,
unlike any other SQL database.

• SQLite supports all the relational database features.

• It is an open-source compact library that is by default present in two
main Mobile OS i.e. Android and iOS.

• We can store SQLite both on disk as well as in memory. Each database
file is a single disk file and it can be used for cross-platform. It
requires very little memory to operate and is very fast.

2. Firebase:
• With Firebase, we can focus our time and attention on developing the

best possible applications for our business. The operation and internal
functions are very solid. They have taken care of the Firebase
Interface. We can spend more time in developing high-quality apps
that users want to use.

There are the following features which we can develop:

• Cloud Messaging: Firebase allows us to deliver and receive messages
in a more reliable way across platforms.

mu
no
tes
.in

180

• Authentication: Firebase has little friction with acclaimed
authentication.

• Hosting: Firebase delivers web content faster.

• Remote Configuration: It allows us to customize our app on the go.

• Dynamic Links: Dynamic Links are smart URLs that dynamically
change behavior for providing the best experience across different
platforms.

• These links allow app users to take directly to the content of their
interest after installing the app - no matter whether they are completely
new or lifetime customers.

• Crash Reporting: It keeps our app stable.

• Real-time Database: It can store and sync app data in real-time.

• Storage: We can easily store the file in the database.

3. Realm DB:

The realm is a relational database management system which is
like a conventional database that data can be queried, filtered, and
persisted but also have objects which are life and fully reactive.

Realm database is developed by Realm and specially designed to
run on mobile devices, Like SQLite, Realm is also serverless and cross-
platform. It can be stored in the disk as well as in memory.

Realm has so many advantages over native SQLite, like:

• As we work with the real object there is no need to copy, modify, and
save the object from the database.

• The realm is much faster than SQLite. Realm can query up to 57
record/sec, whereas SQLite can do only up to 20 record/sec.

• Data is secured with transparent encryption and decryption.

• Realm database has a reactive architecture, which means it can be
directly connected to UI, if data changes it will automatically refresh
and appear on the screen.

• One application can have multiple Realm database, both local and
remote Can set different permissions for different users.

4. ORMLite:

• It is a lighter version of Object Relational Mapping which provides
some simple functionality for persisting java object to SQL database.
It is ORM wrapper over any mobile SQL related database.

mu
no
tes
.in

181

• It is used to simplify complicated SQL operations by providing a
flexible query builder. It also provides powerful abstract Database
Access Object (DAO) classes.

• It is helpful in big size applications with complex queries because it
handles "compiled" SQL statements for repetitive query tasks. It also
supports for configuring of tables and fields without annotations and
supports native calls to Android SQLite databases APIs.

• It doesn’t fulfill all the requirements like it is bulky compared to
SQLite or

• Realm, slower than SQLite and Realm but faster than most of the other
ORMs present in the market.

14.4 PROCESS

14.4.1 Introduction:
A process is a - program in execution. It is generally used to accomplish a
task, a process needs resources. For instance, CPU file, memory, etc.
Resources are allocated to processes in two stages
• The stage when the process was created
• Dynamically allocate the process while they are running

A process is more than coding or program of code; it also includes
current activity, the content of processor's registers, etc. A program can
also be called a passive entity and a process can also be called an active
entity. It also contains a feature which is known as a program counter
which is responsible for specifying the next instruction to be executed.
E.g. Word processor can be thought of as a process. So when we talk
about a passive entity it would be like a file containing a set of instructions
saved on a disk which is also known as an executable file, whereas a
process is meant to be an active entity which is backed by a program
counter which in turn specifies the next instruction to be executed along
with a set of associated resources. In other words, the program converts
into a process when it is loaded into memory.

14.4.2 Process in the application:

All components of the same application run in the same process
and most applications do not change this. However, if Developer finds that
Developer needs to control which process a certain component belongs to,
the developer can do so in the manifest file. The manifest entry for each
type of component element like

1. <activity>
2. <service>
3. <receiver>
4. <provider>
5. <application>-to set a default value that applies to all components.

mu
no
tes
.in

182

It supports an android: process attribute that can specify a process
in which that component should run. Developers can set this attribute so
that each component runs in its processor so that some components share a
process while others do not. Developers can also set android: process so
that components of different applications run in the same process means it
provided that the applications share the same Linux user ID and are signed
with the same certificates.

Sometimes, Android might decide to shut down a process at some
point, when memory is low and required by other processes that are more
immediately serving the user. Application components running in the
process that's killed are consequently destroyed and a process is started
again for those components when there's again work for them to do. While
determining which processes to kill, the Android device weighs their
relative importance to the user. For instance, it simply shuts down a
process hosting activities that can be not seen on the display screen, in
comparison to a process hosting seen activities. The selection of whether
or not to terminate a process, consequently, depends on the state of the
components running in that procedure.

14.4.3 Structure of Process:
• Stack: contains temporary data such as parameters of the function and

return addresses also local variables.
• Heap: is dynamically allocated memory during process run time.
• Data: includes global variables
• Text: includes the current activity which is represented by the value of

the program counter and the contents of the processor's registers.

14.4.4 States of process:

The Major transition states of the process are as follows:
1. New: Process is created
2. Running: Instructions are executed
3. Ready: When the Process is ready to get executed and is waiting to get

assigned to the processor
4. Waiting: Any event of the line need to be performed hence the

process is waiting for that event to occur.
5. Terminated: Execution or process is accomplished The transition

states that are represented above found on all systems but certain
operating systems also more finely delineate states of the process. The
names vary on different operating systems. There can be more than
one process that is available which is in the ready or waiting state but
at any instant of time, only one process can be in running state at one
processor of the operating system.

mu
no
tes
.in

183

14.4.5 Process Lifecycle:

The Android system tries to maintain a process for as long as its
possible but eventually needs to remove the old processes to reclaim
memory for more important processes. To find which processes to keep
and which to kill, the system puts each process into an "importance
hierarchy" based on the components running in the process and the state of
components. Processes that have the lowest importance are eliminated
first, then those with the next lowest importance, and so on, as necessary
to recover system resources.

There are a total of five levels in the hierarchy. The following lists
show the different types of processes in order of importance:

1. Foreground process:

A process that is required for what the user is doing. A process is
considered to be in the foreground if any of the following conditions are
true:

• It hosts an Activity that the user is interacting with (the on
Resume() method).

• It hosts the Service that's bound to the activity that the user is
interacting with.

• It hosts the Service that's running "in the foreground"—the service
has called startForeground().

• It hosts the Service that's executing one of its lifecycle callbacks
(onCreate()or onStart(), or onDestroy())

• It hosts another BroadcastReceiver that's executing its onReceive()
method.

2. Generally, only a few foreground processes exist at any given time.
They are killed only as a last resort—if memory is so low that they
cannot all continue to run. Generally, at that point, the device has
reached a memory paging state, so killing some foreground processes
is required to keep the user interface responsive.

3. Visible process:

A process that does not have any foreground components, but still
can affect what the user sees on the screen. A process is considered to be
visible if all the following conditions are true: It hosts an Activity that is
not in the foreground, but it is still visible to its user (its onPause() method
called). This could occur, for eg if the foreground activity starts a dialog,
which would allow the previous activity to be seen behind it. It hosts the
Service that is bound to be visible (or foreground) activity. A visible
process is considered extremely important and will not be killed unless
doing so is required to keep all foreground processes running.

mu
no
tes
.in

184

4. Service process:

A process that is running on the service that has been started with
the startService() method and does not fall into either of the two higher
categories. Although service processes are not directly tied to anything the
user sees, they are generally doing what the user cares about (like playing
music in the background or downloading data on the network), and so the
system keeps them running unless there's not enough memory to
remember them along with all foreground and visible processes in them.

5. Background process:

A process that is holding an activity which is not currently visible
to the user (the activity's onStop() called). These processes have no direct
impact on their user experience, and the system can kill them at any time
to reclaim memory for a foreground, visible, or service process. Usually,
many background processes are running, so they are kept in the least
recently used list to ensure its process with the activity that was most
recently seen by the user is last to be killed. If the activity implements the
lifecycle methods correctly, and saves its current state, killing its process
will have no visible effect on its user experience because when its user
navigates back to its activity, the activity restores all of its visible states.

6. Empty process:

A process that does not hold any active application components is
the only reason to keep the process alive is for its caching purposes, to
improve startup time for its next time a component needs to run it. The
system sometimes kills these processes to balance the system resources
between its process caches and the underlying kernel caches

Android ranks process at the highest level it can, based on the
importance of their components which are currently active in the process.
For eg. if the process hosts a service and a visible activity, the process is
ranked as a visible process, not a service process.

In addition to it, any process's ranking might increase because
other processes are dependent on it so a process that is serving another
process can be never ranked lower than another process it is serving. For
example, if the content provider in process A is serving a client in process
B, or if the service in process A is bound to a component in process B,
process A is considered at least important as process B.

Because when a process is running the service is ranked higher
than the process with its background activities, an activity that is long-
running operation might do well to start the service for that operation,
rather than simply creating the worker thread - particularly if the operation
is likely to outlast the activity. For e.g. an activity that's uploading the
picture to a web site will be starting a service to perform the upload so the

mu
no
tes
.in

185

upload will continue in the background even if the user leaves the activity.
Using the service guarantees that all the operations will be having at least
"service process" priority, regardless of what happens to the activity. This
is the same reason why the broadcast receivers should always employ
services rather than simply put time-consuming operations in a thread.

14.4.6 Inter process Communication:

Android hosts a variety of applications and is designed in a way
that removes any duplication or redundancy of functionalities in different
applications or to allow functionality to be discovered, etc.

There are two major techniques related to the inter process communication
and they are namely;

Intents: These enable the application to select an Activity based on the
action you want to invoke and the data on which they operate. Path to an
application is needed to use its functions and exchange data with it. With
intent objects, data can be used to pass objects in both directions. It
enables high-level communication.

Remote methods: By this we mean the remote procedure calls with these
APIs can be accessed remotely. With this calls the methods to appear to be
local which are executed in another process.

Android app avoids interprocess communication. It provides
functions in terms of packages loaded by applications that require them.
For applications to exchange data applications need to use file system or
other traditional Unix/Linux mechanisms,

14.5 ANDROID MEMORY MANAGEMENT

14.5.1 Introduction:

In Android memory management instead of providing swap space,
it uses paging and a map which means at your application touches cannot
be paid until you release all your preferences now in Android the Dalvik
virtual Machine heap size for the application process limited and the size
of 2MB and the maximum allocation is limited to 36 MB examples of
large applications are photo editor, camera, gallery, and home screen.

The background application processes in Android are stored in the
LRU cache. According to the cat strategy, it will kill processes in the
system when it runs slow and it will also consider the application which is
the largest consumer.

If kind wants to make an app run and live longer in the background
only to deallocate unnecessary memory in the four more into the

mu
no
tes
.in

186

background system will generate an error message or terminate the
application.

14.5.2 Garbage Collection:

The Dalvik virtual machine maintains track of memory allocation.
Once it gets to know that memory is no longer used by any program if
freeze into a heap without any participation from the programmer. it has
basic two basic goals i.e. to find objects in a program that cannot be used
in the future and second is to reclaim the resources used by the particular
objects. Android memory heap is purely based on the life and size of an
object been allocated.

The duration of garbage collection depends upon the generation of
objects and collecting and how many active objects are there in each of the
generations.

The memory heap of android may be a generalized one, meaning
that there are different allocations that it tracks, supported the expected life
and size of an object being allocated. For example, recently allocated
objects belong within the Young Generation.

Each heap generation has its dedicated upper limit on the quantity
of memory that objects there can occupy. Any time a generation starts to
refill, the system executes a garbage pickup event to release memory.

Even though garbage pickup is often quite fast, it can still affect
your app's performance. You don't generally control when a garbage
pickup event occurs from within your code.

When the standards are satisfied, the system stops executing the
method and begins garbage pickup. If garbage pickup occurs within the
middle of an intensive processing loop like animation or during music
playback, it can increase the time interval.

14.5.3 How to improve memory usage:
1. One should take care of the design pattern with fractions it can help to

build a more flexible software architect. In the mobile world,
abstraction may involve side effects for its extra code to be executed,
which will cost more time and memory. Unless abstraction can
provide application is a significant benefit.

2. Avoid using "enum". Do not use the enum because it doubles the
memory allocation than ordinary static constant.

3. Instead of HashMap try to use the optimized sparse array,
sparseboolean array, and long sparse array containers. Hashmap
allocates and entry object during every mapping which is a memory
inefficient action, also the low performance behavior,

mu
no
tes
.in

187

"autoboxing/unboxing" is spread all over the usage. Instead, sparse
array-like containers map keys into the plane array.

4. We should avoid creating unnecessary objects. Do not allocate
memory especially for the short term temporary objects if you can
avoid it and garbage collection will occur less when fewer objects are
created.

14.5.4 How to avoid memory leaks:
1. After creating a database one should always close the cursor and if one

wants to keep the cursor open for a long time in must be used carefully
and close as another database task is finished.

2. To call unregisterReceiver() after calling registerReceiver ().
3. If you declare static member variable drawable inactivity then call

view.setBackground(drawable) in onCreate(), a new activity instance
will be created and the old activity instance can never be deallocated
because drawable has a set the view as callback and you has reference
to an activity

4. To avoid this kind of leakage do not keep long references to contacts
activity and id3 using the context-application instead of context
activity.

5. Threads in java are the root of garbage collection that is a DVM keeps
data friends to all activity threads in the runtime system and threads
are left running will never be eligible for garbage collection.

14.5.5Allocate and reclaim app memory:

• Dalvik Debug Monitor Service (DDMS) is a debugging tool included
in the Android studio.

• IDE to the applications running on the device is connected by DDMS.

• Every application runs in its process in Android studio, each one of
which hosts it is on a virtual machine (VM) and each process listens to
a debugger on the various port.

• When it begins, DDMS connects to ADB (Android Debug Bridge
which is a command-line utility included with Google’s Android
SDK.).

• This will notify the DDMS when the device is connected or
disconnected the device when connected, a Virtual
machine(VM)monitoring service is created between ADB and DDMS,
which will tell the DDMS when a Virtual Machine on the device is
started or terminated.

• The Dalvik heap is constrained to a single virtual memory range for
every app process. This defines that the logical heap size grows as it
needs a limit that the system defines for each app.

mu
no
tes
.in

188

• The logical size of the heap is not like the amount of physical memory
used by the heap.

• When we are inspecting our app's heap, a value called the Proportional
Set Size (PSS) is computed by Android, that accounts for both dirty
and clean pages which are shared with other processes—but only in an
amount that's proportional to how many apps shared by that RAM.

• This (PSS) total is what the system considers to be the physical
memory footprint. For more information regarding PSS, see the
Investigating Your RAM Usage guide.

• The Dalvik heap enables a compact of the logical size of the heap,
meaning Android does not defragment the heap to the close-up space.

• Android can only shrink by the logical heap size when there is unused
space at the end of the heap. Therefore, the system can still reduce the
physical memory used by the heap.

After the garbage collection process, Dalvik walks the heap and finds the
unused pages, then returns these pages to the kernel using the advice.

14.6 FILE SYSTEM

The Android Operating System is a popular and universally used
operating system for smartphones lately. While on the user's end it might
appear simple and easy to use the Android File Systems Applications tend
to be rather complicated and have several users scratching their head in
amusement in daily. Let us now take a detailed look at the file systems and
what they have to offer to the users as Android.

This informative piece is for people who are thinking to develop
ROMs, Apps, and a lot of other things on the Android operating system.
Without wasting a minute more let us begin with a detailed look at the
Android file system. We would not just be naming the file systems in
android we would also give you a brief explanation about a particular file
system in detail understanding.

14.6.1 Flash Memory- Android OS File System:
1. exFAT: Created by Microsoft for flash memory, the exFAT file

system is not a part of the standard Linux kernel. However, it still
provides support for Android devices in some cases. It stands for
Extended File Allocation Table Application.

2. F2FS: Users of Samsung smartphones are bound to have come across
this type of file system Application if they have been using the
smartphone for a while. F2FS stands for Flash-Friendly File System
Application, which is an Open Source Linux file system. This was
introduced by Samsung 4 years ago in the year 2012.

mu
no
tes
.in

189

3. JFFs2: It stands for the Journal Flash File System version 2. This is
the default flash file system for the Android Application Open Source
Project kernels. This version of the Android File System has been
around since the Android Ice Cream Sandwich Operating system was
released.

14.6.2 Media-based Android File System:
1. EXT2/3/4: Ext, which stands for the extended file systems, are the

standards for the Linux file system. The latest out of these is the
EXT4, which has now been replacing the YAFFS2 and the JFFS2 file
systems on Android smartphones.

2. MS-DOS: Microsoft Disk Operating System is known to be one of
the oldest names in the world of Operating Systems, and it helps FAT
12, FAT 16, and FAT 32 file systems to run seamlessly.

3. vFAT: An extension to the aforementioned FAT 12, FAT 16, and
FAT 32 file systems, the vFAT is a kernel module seen alongside the
msDOS module. External SD cards that help expand the storage space
are formatted using VFAT.

14.6.3 Pseudo File Systems:
1. CGroup: Cgroup stands for Control Group. It is a pseudo-file system

which allows access and meaning to various kernel parameters.
Cgroups are very important for the Android File System as the
Android OS makes use of these control groups for user accounting
and CPU Control.

2. Rootfs: Rootfs acts as the mount point, and it is a minimal file
system. It is located at the mount point "-".

3. Process: The process file system has files that showcase the live
kernel data. Sometimes this file system Application development also
reflects several kernel data structures. These numbers directories are
reflective of process IDs for all the currently running tasks now.

4. Systems: Usually mounted on the /sys directory. The sysfs file system
app helps the kernel identify the devices. Upon identifying a new
device, the kernel builds an object.

5. Tmpfs: A temporary file system, tmpfs is usually mounted on /dev
directory. Data on this is lost when the device is rebooted.

14.6.4 Android | Android Application File Structure :

It is very important to know about the basics of the Android
StudioApplication file structure. In this, some important files/folders, and
their significance is explained for the easy understanding of the android
studio work environment. In the below image, several important files are
marked here below in diagram picture:

mu
no
tes
.in

190

14.6.5 Files in Android Studio and Explained below:
1. AndroidManifest.xml: Every project in Android includes a manifest

file, which is manifest.xml stored in the root directory of its project
hierarchy. The AndroidAppmanifest file is an important part of our
app because it defines the structure and metadata of our application its
components and its requirements. The file includes nodes for each of
the Activities, Services providers Content ProvidersApplication and
Broadcast Receiver App that make the application and using Intent
Filters and Permissions, determines how they co-ordinate with each
other and other Android applications.

2. Java: The Java folder contains the Java source code files in
Application. These files are used as a controller for a controlled layout
file. It gets the data from the layout file App and after processing that
data output Android Application will be shown in the UI layout. It
works on the backend of an Android application.

3. Drawable: A Drawable folder contains a resource type file (something
that can be drawn). Drawables may take a variety of files like Bitmap
Nine Patch, Vector (XML), Shape, Layers, States, Levels, and Scale.

4. Layout: A layout defines the visual structure for the user interface,
such as the UI for an Android application. This Layout folder stores
Layout files that are written in XML language we can add
additional layout objects or widgets as child elements to gradually
build a view hierarchy that defines your layout file.

190

14.6.5 Files in Android Studio and Explained below:
1. AndroidManifest.xml: Every project in Android includes a manifest

file, which is manifest.xml stored in the root directory of its project
hierarchy. The AndroidAppmanifest file is an important part of our
app because it defines the structure and metadata of our application its
components and its requirements. The file includes nodes for each of
the Activities, Services providers Content ProvidersApplication and
Broadcast Receiver App that make the application and using Intent
Filters and Permissions, determines how they co-ordinate with each
other and other Android applications.

2. Java: The Java folder contains the Java source code files in
Application. These files are used as a controller for a controlled layout
file. It gets the data from the layout file App and after processing that
data output Android Application will be shown in the UI layout. It
works on the backend of an Android application.

3. Drawable: A Drawable folder contains a resource type file (something
that can be drawn). Drawables may take a variety of files like Bitmap
Nine Patch, Vector (XML), Shape, Layers, States, Levels, and Scale.

4. Layout: A layout defines the visual structure for the user interface,
such as the UI for an Android application. This Layout folder stores
Layout files that are written in XML language we can add
additional layout objects or widgets as child elements to gradually
build a view hierarchy that defines your layout file.

190

14.6.5 Files in Android Studio and Explained below:
1. AndroidManifest.xml: Every project in Android includes a manifest

file, which is manifest.xml stored in the root directory of its project
hierarchy. The AndroidAppmanifest file is an important part of our
app because it defines the structure and metadata of our application its
components and its requirements. The file includes nodes for each of
the Activities, Services providers Content ProvidersApplication and
Broadcast Receiver App that make the application and using Intent
Filters and Permissions, determines how they co-ordinate with each
other and other Android applications.

2. Java: The Java folder contains the Java source code files in
Application. These files are used as a controller for a controlled layout
file. It gets the data from the layout file App and after processing that
data output Android Application will be shown in the UI layout. It
works on the backend of an Android application.

3. Drawable: A Drawable folder contains a resource type file (something
that can be drawn). Drawables may take a variety of files like Bitmap
Nine Patch, Vector (XML), Shape, Layers, States, Levels, and Scale.

4. Layout: A layout defines the visual structure for the user interface,
such as the UI for an Android application. This Layout folder stores
Layout files that are written in XML language we can add
additional layout objects or widgets as child elements to gradually
build a view hierarchy that defines your layout file.

mu
no
tes
.in

191

5. Mipmap: Mipmap Android folder contains the Image Asset file that
can be used in Android Studio Application. Generate the following
icon types like Launcher icons, Action bar, and tab icons and
Notification icons there.

6. Colors.xml: Colors.xml file contains color resources of the Android
Application. Different color values are identified by a unique name
that can be used in the Android application.

7. Strings.xml: The strings.xml file contains string resources of the
Android application the different string value is identified by a unique
name that can be used in the Android application program file also
stores string array by using XML language in Application.

8. Styles.xml: Here styles.xml file contains resources of the theme style
in the Android application. It is written in XML language for all
activities in general in android.

9. build.gradle: This defines and implements the module-specific build
configurations. We add dependencies need in the Android application
here in the Gradle module.

File System provides an interface to a file system and is the factory
for objects to access files and other objects in the file system. The default
file system Application, obtained by invoking the method, provides
defines methods to create file systems that provide access to other types of
file systems.

A file system of Android is the factory for several Types:

• GetPath method: It converts a system-dependent path string,
returning a Path object that may be used to locate and access a file.

• GetPathMatcher method: It is used to create a PathMatcher that
performs match operations on paths.

• GetFileStores method: It returns an iterator over the underlying
FileStore.

• GetUserPrincipalLookupServicemethod: It returns
UserPrincipalLookupService to lookup users /groups by name of the
services mentioned.

• Watch service method: It creates a WatchService that may be used to
watch objects for changes and events.

File systems vary in some cases, the file system of android
Application is a single hierarchy of files with one top-level root directory.
In other cases, it may have several distinct file hierarchies, each with its
top-level root directory Application. The getRootDirectories method may
be used to iterate over the root directories in the system. A file system is
typically composed of one or more underlying File Store that provides the
storage for the files. File stores can also vary in the features they support,

mu
no
tes
.in

192

and the file attributes and meta-data that they associate with files in this
Applications.

A file system is open upon creation and can be closed by invoking
a close method. Once closed any further attempt to access objects in the
file system causes ClosedFileSystemException to be thrown. File systems
created by the default FileSystemProvider cannot be closed in the Android
application.

A FileSystem can provide read-only or read and write access to the
file system. Whether or not a file system provides read-only access is
established when the File System is created and can be tested by invoking
it is a read-only method.

Attempts to write to file stores utilizing an object associated with a
read-only file system throws ReadOnlyFileSystemException.

The android application provides many kinds of storage for
applications to store their data. These storage places are shared
preferences, internal and external storage SQLite storage browser, and
storage via the network connection.

Internal storage is the storage of the private data on the device
memory in the file system.

By default, these files are private and are accessed by only your
application and get deleted, when the user deletes your android
application.

14.7 SECURITY IN ANDROID

The security features provided in Android are:

14.7.1 Authentication:

Android uses the concept of user-authenticated cryptographic
keys which requires cryptographic key storage facilities, service providers,
and user authenticators.

On devices that possess a fingerprint sensor, the users can add
more than one fingerprint to unlock the phone and accomplish different
tasks. The Gatekeeper subsystem is used to perform the authentication of
pattern/password in the TrustedExecution Environment (Trusty). Android
9 & higher versions also include Protected Confirmation which allows the
user to formally confirm critical transactions.

14.7.2 Biometrics:
Android 9 and up consists of a BiometricPrompt API that allows

the developers to integrate biometric authentication within their
applications. Only strong biometrics can integrate with BiometricPrompt.

mu
no
tes
.in

193

14.7.3 Encryption:

After the device is encrypted, all the data created by the user is
automatically encrypted before committing it to the disk and also all the
reads automatically decrypts the data before sending it back to their
respective calling process. Encryption gives assurances that if an
unauthorized user tried to access the data, they would not be able to read
the content of the data.

14.7.4 Keystore:

The Keystore system allows you to store all cryptographic keys
into a container to make it more difficult for the hacker to extract it from
the device. Once keys are stored in the KeyStore, they can be used for
various cryptographic procedures with the key remaining non-exportable.
It offers features such as to restrict how and when the keys can be used,
such as demanding authentication of users for key use and restricting
usage of keys only in some cryptographic methods.

14.7.5 Trusty Trusted Execution Environment (TEE):

Trusty has access to the full power of a device’s main processor
and memory but remains completely isolated. Trusty's isolated position
protects it from various malicious applications installed by the user and
also from potential vulnerabilities that would be discovered in Android.

14.7.6 Verified Boot:

Verified boot cryptographically verifies all executable code and
data which is part of the Android version that is being booted before it can
be used. It ensures that all executable code comes from a trusted source,
rather than from a hacker. It establishes a full chain of trust, starting from
a hardware-protected root of trust to the bootloader, to the boot partition
and also other verified partitions.

14.8 SUMMARY
• Android made this version authorized in the year 2008, with Android

1.0.

• Finally, Google opted to drop the tradition of naming the Android
version after sweets, desserts, and candies. It was launched in
September 2019.

• Android OS provides a beautiful and intuitive user interface.

• Android is a stack of components of the software which is divided into
five layers.

• Android ranks process at the highest level it can, based on the
importance of their components which are currently active in the
process. For e.g. if the process hosts a service and a visible activity,
the process is ranked as a visible process, not a service process.

mu
no
tes
.in

194

• The Dalvik virtual machine maintains track of memory allocation.
Once it gets to know that memory is no longer used by any program if
freeze into a heap without any participation from the programmer.

14.9 LIST OF REFERENCES

1. Modern Operating Systems, Andrew S. Tanenbaum, Herbert , Pearson
4th Edition, 2014

2. Operating Systems – Internals and Design Principles, Willaim
Stallings, Pearson 8th Edition, 2009

3. Operating System -Concepts Abraham Silberschatz, Peter B. Galvineg
Gagne Wiley ,8 th Edition

4. Operating Systems Godbole and Kahate McGraw Hill 3 rd Edition

14.10 BIBLIOGRAPHY
https://www.tutorialspoint.com/
https://www.geeksforgeeks.org/
https://www.javatpoint.com/java-tutorial
https://guru99.com

14.11 UNIT END QUESTIONS
1. Explain Architecture of Android.
2. Explain how database connect in Android
3. Explain memory management in Android
3. Write short note on Process management in Android
4. Write short note on security in Linux

mu
no
tes
.in

195

15
WINDOWS CASE STUDY OBJECTIVES

Unit Structure
15.0 Objectives
15.1 History of Windows
15.2 Programming Windows
15.3 System Structure
15.4 Process and Threads in Windows
15.5 Memory Management in Window
15.6 Windows IO Management
15.7 Windows NT File System
15.8 Windows Power Management
15.9 Security in Windows
15.10 Summary
15.11 List of References
15.12 Bibliography
15.13 Unit End Questions

15.0 OBJECTIVES

• To understand principles of Windows Operatig system
• To learn principles of Process, Memory Management
• To learn principles of IO Management, File System and Security

15.1 HISTORY OF WINDOWS

1) Windows 1.0 (1985) The Windows 1 was released in
November 1985 and was
Microsoft’s first true effort at a
graphical user interface in 16-bit.
It was prominent because it relied
heavily on practice of a mouse
before the mouse was a shared
computer input device. To help
users become familiar with this
odd input system, Microsoft
included a game, Reverse (visible
in the screenshot) that relied on
mouse control, not the keyboard,

195

15
WINDOWS CASE STUDY OBJECTIVES

Unit Structure
15.0 Objectives
15.1 History of Windows
15.2 Programming Windows
15.3 System Structure
15.4 Process and Threads in Windows
15.5 Memory Management in Window
15.6 Windows IO Management
15.7 Windows NT File System
15.8 Windows Power Management
15.9 Security in Windows
15.10 Summary
15.11 List of References
15.12 Bibliography
15.13 Unit End Questions

15.0 OBJECTIVES

• To understand principles of Windows Operatig system
• To learn principles of Process, Memory Management
• To learn principles of IO Management, File System and Security

15.1 HISTORY OF WINDOWS

1) Windows 1.0 (1985) The Windows 1 was released in
November 1985 and was
Microsoft’s first true effort at a
graphical user interface in 16-bit.
It was prominent because it relied
heavily on practice of a mouse
before the mouse was a shared
computer input device. To help
users become familiar with this
odd input system, Microsoft
included a game, Reverse (visible
in the screenshot) that relied on
mouse control, not the keyboard,

195

15
WINDOWS CASE STUDY OBJECTIVES

Unit Structure
15.0 Objectives
15.1 History of Windows
15.2 Programming Windows
15.3 System Structure
15.4 Process and Threads in Windows
15.5 Memory Management in Window
15.6 Windows IO Management
15.7 Windows NT File System
15.8 Windows Power Management
15.9 Security in Windows
15.10 Summary
15.11 List of References
15.12 Bibliography
15.13 Unit End Questions

15.0 OBJECTIVES

• To understand principles of Windows Operatig system
• To learn principles of Process, Memory Management
• To learn principles of IO Management, File System and Security

15.1 HISTORY OF WINDOWS

1) Windows 1.0 (1985) The Windows 1 was released in
November 1985 and was
Microsoft’s first true effort at a
graphical user interface in 16-bit.
It was prominent because it relied
heavily on practice of a mouse
before the mouse was a shared
computer input device. To help
users become familiar with this
odd input system, Microsoft
included a game, Reverse (visible
in the screenshot) that relied on
mouse control, not the keyboard,

mu
no
tes
.in

196

to get people used to moving the
mouse everywhere and clicking
onscreen elements.

2) Windows 2.0 (1987) ● Two years after the release
of Windows 1, Microsoft’s
Windows 2 substituted it in
December 1987.

● The control panel, where
numerous system settings and
formation options were
collected together in one
place, was existing in
Windows 2 and survives to
this day.

● Microsoft Word and Excel
also made their first arrivals
running on Windows 2.

3) Windows 3.0 – 3.1 (1990–1994) ● Windows 3 presented the
skill to run MS-DOS
programmers in windows,
which took multitasking to
heritage programmers, and
sustained 256 colors
bringing a more modern,
colorful look to the interface.

● More important - at least to
the sum total of human time
wasted - it presented the
card-moving TimeSink (and
mouse use trainer) Solitaire.

4) Windows 3.1
● Minesweeper also made its

original arrival. Windows 3.1
required 1MB of RAM to run
and allowed maintained MS-
DOS programs to be skillful
with a mouse for the first
time. Windows 3.1 was also
the first Windows to be
istributed on a CDROM,
although once connected on a
hard drive it only took up 10
to 15MB (a CD can naturally
store up to 700MB).

196

to get people used to moving the
mouse everywhere and clicking
onscreen elements.

2) Windows 2.0 (1987) ● Two years after the release
of Windows 1, Microsoft’s
Windows 2 substituted it in
December 1987.

● The control panel, where
numerous system settings and
formation options were
collected together in one
place, was existing in
Windows 2 and survives to
this day.

● Microsoft Word and Excel
also made their first arrivals
running on Windows 2.

3) Windows 3.0 – 3.1 (1990–1994) ● Windows 3 presented the
skill to run MS-DOS
programmers in windows,
which took multitasking to
heritage programmers, and
sustained 256 colors
bringing a more modern,
colorful look to the interface.

● More important - at least to
the sum total of human time
wasted - it presented the
card-moving TimeSink (and
mouse use trainer) Solitaire.

4) Windows 3.1
● Minesweeper also made its

original arrival. Windows 3.1
required 1MB of RAM to run
and allowed maintained MS-
DOS programs to be skillful
with a mouse for the first
time. Windows 3.1 was also
the first Windows to be
istributed on a CDROM,
although once connected on a
hard drive it only took up 10
to 15MB (a CD can naturally
store up to 700MB).

196

to get people used to moving the
mouse everywhere and clicking
onscreen elements.

2) Windows 2.0 (1987) ● Two years after the release
of Windows 1, Microsoft’s
Windows 2 substituted it in
December 1987.

● The control panel, where
numerous system settings and
formation options were
collected together in one
place, was existing in
Windows 2 and survives to
this day.

● Microsoft Word and Excel
also made their first arrivals
running on Windows 2.

3) Windows 3.0 – 3.1 (1990–1994) ● Windows 3 presented the
skill to run MS-DOS
programmers in windows,
which took multitasking to
heritage programmers, and
sustained 256 colors
bringing a more modern,
colorful look to the interface.

● More important - at least to
the sum total of human time
wasted - it presented the
card-moving TimeSink (and
mouse use trainer) Solitaire.

4) Windows 3.1
● Minesweeper also made its

original arrival. Windows 3.1
required 1MB of RAM to run
and allowed maintained MS-
DOS programs to be skillful
with a mouse for the first
time. Windows 3.1 was also
the first Windows to be
istributed on a CDROM,
although once connected on a
hard drive it only took up 10
to 15MB (a CD can naturally
store up to 700MB).

mu
no
tes
.in

197

5) Windows 95 (1995) ● As the name implies,
Windows 95 reached in
August 1995 and with it
brought the first ever Start
button and Start menu. It also
presented the idea of "plug and
play" connect a peripheral and
the operating system catches
the suitable drivers for it and
makes it work.

● Windows 95 also presented a
32 bit environment, the task
bar andengrossed on
multitasking. MS - DOS still
played an significant role for
Windows 95, which
compulsoryit to run some
programmers and elements.
Internet Explorer also made its
debut on Windows 95, but was
not installed by default needful
the Windows 95 Plus! Pack•

6) Windows 98 (1998) ● Released in June 1998,
Windows 98 made on
Windows 95 and transported
with it IE 4, Outlook Express,
Windows Address Book,
Microsoft Chat and NetShow
Player, which was substituted
by Windows Media Player 6.2
in Windows 98 Second
Edition in 1999.

● USB support was much better
in Windows 98 and led to its
extensive adoption, including
USB hubs and USB mice.

7) Windows 2000 (2000) ● The initiative twin of ME,
Windows 2000 was free in
February 2000 and was
formed on Microsoft’s
business-orientated system
Windows NT and later became
the foundation for Windows
XP.

197

5) Windows 95 (1995) ● As the name implies,
Windows 95 reached in
August 1995 and with it
brought the first ever Start
button and Start menu. It also
presented the idea of "plug and
play" connect a peripheral and
the operating system catches
the suitable drivers for it and
makes it work.

● Windows 95 also presented a
32 bit environment, the task
bar andengrossed on
multitasking. MS - DOS still
played an significant role for
Windows 95, which
compulsoryit to run some
programmers and elements.
Internet Explorer also made its
debut on Windows 95, but was
not installed by default needful
the Windows 95 Plus! Pack•

6) Windows 98 (1998) ● Released in June 1998,
Windows 98 made on
Windows 95 and transported
with it IE 4, Outlook Express,
Windows Address Book,
Microsoft Chat and NetShow
Player, which was substituted
by Windows Media Player 6.2
in Windows 98 Second
Edition in 1999.

● USB support was much better
in Windows 98 and led to its
extensive adoption, including
USB hubs and USB mice.

7) Windows 2000 (2000) ● The initiative twin of ME,
Windows 2000 was free in
February 2000 and was
formed on Microsoft’s
business-orientated system
Windows NT and later became
the foundation for Windows
XP.

197

5) Windows 95 (1995) ● As the name implies,
Windows 95 reached in
August 1995 and with it
brought the first ever Start
button and Start menu. It also
presented the idea of "plug and
play" connect a peripheral and
the operating system catches
the suitable drivers for it and
makes it work.

● Windows 95 also presented a
32 bit environment, the task
bar andengrossed on
multitasking. MS - DOS still
played an significant role for
Windows 95, which
compulsoryit to run some
programmers and elements.
Internet Explorer also made its
debut on Windows 95, but was
not installed by default needful
the Windows 95 Plus! Pack•

6) Windows 98 (1998) ● Released in June 1998,
Windows 98 made on
Windows 95 and transported
with it IE 4, Outlook Express,
Windows Address Book,
Microsoft Chat and NetShow
Player, which was substituted
by Windows Media Player 6.2
in Windows 98 Second
Edition in 1999.

● USB support was much better
in Windows 98 and led to its
extensive adoption, including
USB hubs and USB mice.

7) Windows 2000 (2000) ● The initiative twin of ME,
Windows 2000 was free in
February 2000 and was
formed on Microsoft’s
business-orientated system
Windows NT and later became
the foundation for Windows
XP.

mu
no
tes
.in

198

● Microsoft’s automatic
informing played a significant
role in Windows2000 and
became the first Windows to
support hibernation.

8) Windows ME (2000): ● Released in September 2000, it
was the consumer-aimed
operating system looped with
Windows 2000 meant at the
enterprise market. It presented
some vital concepts to
consumers, with more
automated system recovery
tools.

● IE 5.5, Windows Media
Player 7 and Windows Movie
Maker all made their presence
for the first time.
Autocomplete also seemed in
Windows Explorer, but the
operating system was
dishonorable for being buggy,
failing to install properly and
being generally poor.

9) Windows XP (2001) ● It was built on Windows NT
similar Windows 2000, but
brought the consumer -
friendly basics from Windows
ME. The Start menu and task
bar got a visual renovation,
bringing the acquainted green
Start button, blue task bar and
vista wallpaper, along with
several shadow and other
visual effects.•

● Its major problem was
security though it had a
firewall constructed in, it
was turned off by default.
Windows XP’s vast approval
turned out to be a boon for
hackers and
criminals, who browbeaten its
flaws, especially in Internet
Explorer, pitilessly - leading
Bill Gates to pledge a
Trustworthy Computing‖
initiative and the ensuing
issuance of to Service Pack
updates that tough XP
against attack substantially.

198

● Microsoft’s automatic
informing played a significant
role in Windows2000 and
became the first Windows to
support hibernation.

8) Windows ME (2000): ● Released in September 2000, it
was the consumer-aimed
operating system looped with
Windows 2000 meant at the
enterprise market. It presented
some vital concepts to
consumers, with more
automated system recovery
tools.

● IE 5.5, Windows Media
Player 7 and Windows Movie
Maker all made their presence
for the first time.
Autocomplete also seemed in
Windows Explorer, but the
operating system was
dishonorable for being buggy,
failing to install properly and
being generally poor.

9) Windows XP (2001) ● It was built on Windows NT
similar Windows 2000, but
brought the consumer -
friendly basics from Windows
ME. The Start menu and task
bar got a visual renovation,
bringing the acquainted green
Start button, blue task bar and
vista wallpaper, along with
several shadow and other
visual effects.•

● Its major problem was
security though it had a
firewall constructed in, it
was turned off by default.
Windows XP’s vast approval
turned out to be a boon for
hackers and
criminals, who browbeaten its
flaws, especially in Internet
Explorer, pitilessly - leading
Bill Gates to pledge a
Trustworthy Computing‖
initiative and the ensuing
issuance of to Service Pack
updates that tough XP
against attack substantially.

198

● Microsoft’s automatic
informing played a significant
role in Windows2000 and
became the first Windows to
support hibernation.

8) Windows ME (2000): ● Released in September 2000, it
was the consumer-aimed
operating system looped with
Windows 2000 meant at the
enterprise market. It presented
some vital concepts to
consumers, with more
automated system recovery
tools.

● IE 5.5, Windows Media
Player 7 and Windows Movie
Maker all made their presence
for the first time.
Autocomplete also seemed in
Windows Explorer, but the
operating system was
dishonorable for being buggy,
failing to install properly and
being generally poor.

9) Windows XP (2001) ● It was built on Windows NT
similar Windows 2000, but
brought the consumer -
friendly basics from Windows
ME. The Start menu and task
bar got a visual renovation,
bringing the acquainted green
Start button, blue task bar and
vista wallpaper, along with
several shadow and other
visual effects.•

● Its major problem was
security though it had a
firewall constructed in, it
was turned off by default.
Windows XP’s vast approval
turned out to be a boon for
hackers and
criminals, who browbeaten its
flaws, especially in Internet
Explorer, pitilessly - leading
Bill Gates to pledge a
Trustworthy Computing‖
initiative and the ensuing
issuance of to Service Pack
updates that tough XP
against attack substantially.

mu
no
tes
.in

199

10) Windows Vista (2007) ● Windows XP remained the
course for close to six years
before being substituted by
indows Vista in January
2007. Vista efficient the look
and feel of Windows with
more emphasis on transparent
elements, search and security.
Its growth, under the
codename Longhorn‖,
was troubled, with
determined elements
uncontrolled in order to
get it into production.

● It was buggy, loaded the user
with hundreds of
requirements for app
permissions under User
Account Control‖ the
consequence of the
Trustworthy Computing
creativity which now meant
that users had to approve or
disapprove efforts by
programs to make various
changes.

● It also ran gradually on older
computers in spite of them
being thought as Vista
Ready‖ - a labelling that saw
it sued since not all versions
of Vista could run on PCs
with that label.

11) Windows 7 (2009) ● It was sooner, more stable
and easier to practice,
becoming the operating
system most users and
business would advancement
to from Windows XP,
forgoing Vista completely.

● Windows 7 saw Microsoft hit
in Europe with antitrust
inquiries over the pre-
installing of IE, which led to
a browser ballot screen being
shown to original users

199

10) Windows Vista (2007) ● Windows XP remained the
course for close to six years
before being substituted by
indows Vista in January
2007. Vista efficient the look
and feel of Windows with
more emphasis on transparent
elements, search and security.
Its growth, under the
codename Longhorn‖,
was troubled, with
determined elements
uncontrolled in order to
get it into production.

● It was buggy, loaded the user
with hundreds of
requirements for app
permissions under User
Account Control‖ the
consequence of the
Trustworthy Computing
creativity which now meant
that users had to approve or
disapprove efforts by
programs to make various
changes.

● It also ran gradually on older
computers in spite of them
being thought as Vista
Ready‖ - a labelling that saw
it sued since not all versions
of Vista could run on PCs
with that label.

11) Windows 7 (2009) ● It was sooner, more stable
and easier to practice,
becoming the operating
system most users and
business would advancement
to from Windows XP,
forgoing Vista completely.

● Windows 7 saw Microsoft hit
in Europe with antitrust
inquiries over the pre-
installing of IE, which led to
a browser ballot screen being
shown to original users

199

10) Windows Vista (2007) ● Windows XP remained the
course for close to six years
before being substituted by
indows Vista in January
2007. Vista efficient the look
and feel of Windows with
more emphasis on transparent
elements, search and security.
Its growth, under the
codename Longhorn‖,
was troubled, with
determined elements
uncontrolled in order to
get it into production.

● It was buggy, loaded the user
with hundreds of
requirements for app
permissions under User
Account Control‖ the
consequence of the
Trustworthy Computing
creativity which now meant
that users had to approve or
disapprove efforts by
programs to make various
changes.

● It also ran gradually on older
computers in spite of them
being thought as Vista
Ready‖ - a labelling that saw
it sued since not all versions
of Vista could run on PCs
with that label.

11) Windows 7 (2009) ● It was sooner, more stable
and easier to practice,
becoming the operating
system most users and
business would advancement
to from Windows XP,
forgoing Vista completely.

● Windows 7 saw Microsoft hit
in Europe with antitrust
inquiries over the pre-
installing of IE, which led to
a browser ballot screen being
shown to original users

mu
no
tes
.in

200

allowing them to choose,
which browser to connect on
first boot.

12) Windows 8 (2012) ● Released in October 2012,
Windows 8 was Microsoft’s
most essential renovation of
the Windows interface,
scrapping the Start button
and Start menu in favour of a
more touch-friendly Start
screen.

The new smooth interface
saw programmer icons and
live tiles, which showed at-a-
glance info normally related
with widgets substitute the
lists of programmers and
icons. A desktop was still
comprised, which look like
Windows 7 An allowed point
release to

● Windows 8 presented in
ctober 2013, Windows 8.1
noticeable a shift towards
yearly software updates from
Microsoft and comprised the
first step in Microsoft’s U
turn around its novel visual
interface.

13) Windows 8.1 (2013)
● Windows 8.1 re introduced

the Start button, which took
up the Start screen from the
desktop view of Windows
8.1. Users could also select to
boot straight into the desktop
of Windows 8.1, which was
more appropriate for those
using a desktop computer
with a mouse and console
than the touch focused Start
screen.

14) Windows 10 (2015) ● Windows 10 stays a
computer operating system by
Microsoft as fragment of its
Windows family of operating
systems. It was recognized as
Threshold when it was being

200

allowing them to choose,
which browser to connect on
first boot.

12) Windows 8 (2012) ● Released in October 2012,
Windows 8 was Microsoft’s
most essential renovation of
the Windows interface,
scrapping the Start button
and Start menu in favour of a
more touch-friendly Start
screen.

The new smooth interface
saw programmer icons and
live tiles, which showed at-a-
glance info normally related
with widgets substitute the
lists of programmers and
icons. A desktop was still
comprised, which look like
Windows 7 An allowed point
release to

● Windows 8 presented in
ctober 2013, Windows 8.1
noticeable a shift towards
yearly software updates from
Microsoft and comprised the
first step in Microsoft’s U
turn around its novel visual
interface.

13) Windows 8.1 (2013)
● Windows 8.1 re introduced

the Start button, which took
up the Start screen from the
desktop view of Windows
8.1. Users could also select to
boot straight into the desktop
of Windows 8.1, which was
more appropriate for those
using a desktop computer
with a mouse and console
than the touch focused Start
screen.

14) Windows 10 (2015) ● Windows 10 stays a
computer operating system by
Microsoft as fragment of its
Windows family of operating
systems. It was recognized as
Threshold when it was being

200

allowing them to choose,
which browser to connect on
first boot.

12) Windows 8 (2012) ● Released in October 2012,
Windows 8 was Microsoft’s
most essential renovation of
the Windows interface,
scrapping the Start button
and Start menu in favour of a
more touch-friendly Start
screen.

The new smooth interface
saw programmer icons and
live tiles, which showed at-a-
glance info normally related
with widgets substitute the
lists of programmers and
icons. A desktop was still
comprised, which look like
Windows 7 An allowed point
release to

● Windows 8 presented in
ctober 2013, Windows 8.1
noticeable a shift towards
yearly software updates from
Microsoft and comprised the
first step in Microsoft’s U
turn around its novel visual
interface.

13) Windows 8.1 (2013)
● Windows 8.1 re introduced

the Start button, which took
up the Start screen from the
desktop view of Windows
8.1. Users could also select to
boot straight into the desktop
of Windows 8.1, which was
more appropriate for those
using a desktop computer
with a mouse and console
than the touch focused Start
screen.

14) Windows 10 (2015) ● Windows 10 stays a
computer operating system by
Microsoft as fragment of its
Windows family of operating
systems. It was recognized as
Threshold when it was being

mu
no
tes
.in

201

industrialized and proclaimed at
a press event on 30 September
2014. Windows 10 is a
Microsoft operating system for
personal computers, tablets,
encircled devices and internet of
things devices. Microsoft free
Windows 10 in July 2015 as a
follow - up to Windows 8. The
company has said it will update
Windows 10 in eternity rather
than release a new, complete
operating system as a
beneficiary.

15.2 PROGRAMMING WINDOWS

Microsoft Windows is a multi-tasking operating system that
licenses many applications, pointy to here on out as processes. Every
process in Windows is stated some quantity of time, recognized as a time
slice, where the application is definite the right to control the system
without being intermittent by the other processes. The runtime superiority
and the quantity of time assigned to a process are acknowledged by the
scheduler. The scheduler is measured as the manager of this multi-tasking
operating system, making sure that each process is quantified the time and
the importance it requires trusting on the current state of the system.
Windows is what is acknowledged as an event-driven operating system.
When that key is pushed Windows will record an event to the request that
the key is down.

15.2.2 How Windows Program Work:

To make a basic application, you will originally require a compiler
that performs on a Microsoft Windows operating system. Even however
you can apply Win32 on many languages involving Pascal (namely
Borland Delphi), we will use only one language. Actually the Win32
library is written in C, which is also the key
language of the Microsoft Windows operating systems.

Generating a Win32 Program:

All Win32 programs chiefly seem the same and act the same but,
just like C++ programs, there are slight changes in terms of starting a
program, trusting on the compiler you are utilizing. Here we will be
challenging our programs on Borland C++ Builder, Microsoft Visual C++,
and Microsoft Visual C++.NET.

For a important Win32 program, the contents of a Win32 program
are alike. You will feel a difference only when you begin addition some

201

industrialized and proclaimed at
a press event on 30 September
2014. Windows 10 is a
Microsoft operating system for
personal computers, tablets,
encircled devices and internet of
things devices. Microsoft free
Windows 10 in July 2015 as a
follow - up to Windows 8. The
company has said it will update
Windows 10 in eternity rather
than release a new, complete
operating system as a
beneficiary.

15.2 PROGRAMMING WINDOWS

Microsoft Windows is a multi-tasking operating system that
licenses many applications, pointy to here on out as processes. Every
process in Windows is stated some quantity of time, recognized as a time
slice, where the application is definite the right to control the system
without being intermittent by the other processes. The runtime superiority
and the quantity of time assigned to a process are acknowledged by the
scheduler. The scheduler is measured as the manager of this multi-tasking
operating system, making sure that each process is quantified the time and
the importance it requires trusting on the current state of the system.
Windows is what is acknowledged as an event-driven operating system.
When that key is pushed Windows will record an event to the request that
the key is down.

15.2.2 How Windows Program Work:

To make a basic application, you will originally require a compiler
that performs on a Microsoft Windows operating system. Even however
you can apply Win32 on many languages involving Pascal (namely
Borland Delphi), we will use only one language. Actually the Win32
library is written in C, which is also the key
language of the Microsoft Windows operating systems.

Generating a Win32 Program:

All Win32 programs chiefly seem the same and act the same but,
just like C++ programs, there are slight changes in terms of starting a
program, trusting on the compiler you are utilizing. Here we will be
challenging our programs on Borland C++ Builder, Microsoft Visual C++,
and Microsoft Visual C++.NET.

For a important Win32 program, the contents of a Win32 program
are alike. You will feel a difference only when you begin addition some

201

industrialized and proclaimed at
a press event on 30 September
2014. Windows 10 is a
Microsoft operating system for
personal computers, tablets,
encircled devices and internet of
things devices. Microsoft free
Windows 10 in July 2015 as a
follow - up to Windows 8. The
company has said it will update
Windows 10 in eternity rather
than release a new, complete
operating system as a
beneficiary.

15.2 PROGRAMMING WINDOWS

Microsoft Windows is a multi-tasking operating system that
licenses many applications, pointy to here on out as processes. Every
process in Windows is stated some quantity of time, recognized as a time
slice, where the application is definite the right to control the system
without being intermittent by the other processes. The runtime superiority
and the quantity of time assigned to a process are acknowledged by the
scheduler. The scheduler is measured as the manager of this multi-tasking
operating system, making sure that each process is quantified the time and
the importance it requires trusting on the current state of the system.
Windows is what is acknowledged as an event-driven operating system.
When that key is pushed Windows will record an event to the request that
the key is down.

15.2.2 How Windows Program Work:

To make a basic application, you will originally require a compiler
that performs on a Microsoft Windows operating system. Even however
you can apply Win32 on many languages involving Pascal (namely
Borland Delphi), we will use only one language. Actually the Win32
library is written in C, which is also the key
language of the Microsoft Windows operating systems.

Generating a Win32 Program:

All Win32 programs chiefly seem the same and act the same but,
just like C++ programs, there are slight changes in terms of starting a
program, trusting on the compiler you are utilizing. Here we will be
challenging our programs on Borland C++ Builder, Microsoft Visual C++,
and Microsoft Visual C++.NET.

For a important Win32 program, the contents of a Win32 program
are alike. You will feel a difference only when you begin addition some

mu
no
tes
.in

202

objects known as incomes. To create a Win32 program by means of
Borland C++ Builder, you must make a console application by means of
the Console Wizard.

Running Several Programs Simultaneously:

If you function with many programs concurrently you know how
tedious is to run and launch them one by one! Actually, you need to find
them between the other applications you have connected on your Window,
click their icons and remain for them to open. This operation is fairly
intolerable. That’s why you require a specific shortcut (batch file) which is
able to start all of them in one click! This trick will let you reach a great,
time saving consequence. Opening numerous applications in a matter of a
couple seconds! Stop glancing your computer folders, stop looking for the
right icon. Handle all from the same place.

1. Click Start.
2. Click All Programs.
3. Click Accessories.
4. Click Notepad to open it.
5. Now write the following code:

Start "" (confirm to leave a space before and after “”) shadowed by the
absolute path of the program you wish to open in quote.

Example: Start " "
C:\Users\YourName\AppData\Local\Google\Chrome\Application\chrome.
exe‖

6. Right after that press Enter and write additional line like the one
overhead so as to open a new application.

7. Guarantee to write each Start ‘‘ ’’ command on a new line so that a
line will encircle a Start ‘‘ ’’ command only, or else the batch file
won’t work and you won’t be able to open many programs!

8. Now save the file with any name you wish and settle to save it as .bat
extension (and not as .txt).

3. Code and Resources:
Resources are distinct as the data that you can comprise to the applications
executable file resources can be:

• standard: icon, cursor, menu, dialog box, bitmap, improved metafile,
font,

• accelerator table, message-table entry, string-table entry, or version.

• custom: any kind of data that doesn’t fall into the previous category
(for instance a mp3 file or a dictionary database).

mu
no
tes
.in

203

Accessing Resources from Code:

The keys that know resources if they are clear during XAML are
also used to improve specific resources if you request the resource in code.
The meekest manner to recuperate a resource from code is to call also the
FindResource or the TryFindResource method from framework-level
objects in your application.

Creating Resources with Code:

If you want to produce a whole WPF application in code, you
might also wish to make any resources in that application in code. To
reach this, create a new Resource Dictionary example, and then add all the
resources to the dictionary by means of succeeding calls to Resource
Dictionary.Add. Then, use the Resource Dictionary thus produced to set
the Resources property on an component that is current in a page scope, or
the Application.Resources.

Different Data Types used in Resource File:

Microsoft Windows applications regularly depend on files that
comprise nonexecutable data, such as Extensible Application Markup
Language (XAML), images, video, and audio. Windows Presentation
Foundation (WPF) offers superior provision for configuring, identifying,
and consuming these types of data files, which are called application data
files. This provision revolves around a specific set of application data file
types, comprising

• Resource Files: Data files that are compiled into one or the other an
executable or library WPF assembly.

• Content Files: Standalone data files that have an open association
with an executable WPF assembly.

• Site of Origin Files: Standalone data files that have no suggestion
with an executable WPF assembly.

6. Compiling Windows Program:

Click the Run button (displayed below with the arrow) and pause a
few seconds. This compiles the program to an EXE file and runs it:
When the program runs, you will detect the dialog on the screen. It
appears like this:

mu
no
tes
.in

204

Steps in creating a Dos Programme

Source Code
(Example C)

C Compiler

Objective File
(Example OBJ)

Linker

Finished Programme
(Example . EXE)

Above figure shows a flow diagram for the formation of a
Windows programs. In this figure the source code file gets converts to
objective file from the compilers same as in the DOS. In windows
programs the linker gets a few extra info from a small file called the
"module definition file" with the file name extension ".DEF".This file tells
the linker how to collect the program. The linker combines the module
definition file info and the object file to make an incomplete .EXE file.
The incomplete .EXE file absences the resource data. The main variance
between Windows programs and DOS programs is in the compilation of
the resource data file with the extension of ".RES". In DOS programs
there is no resource data but in windows program the resource data is
added to the incomplete.EXE file to create the complete executable
program. The resource data is essentially stuck onto the end of the
program's code and develops part of the programs file. In addition to
adding the resource data the resource compiler writes the Windows
version number into the program file.

15.3 SYSTEM STRUCTURE

• User application program cooperates with system hardware through
Operating System

• Operating system is such a composite structure; it should be shaped
with utmost care so it can be used and adapted easily.

204

Steps in creating a Dos Programme

Source Code
(Example C)

C Compiler

Objective File
(Example OBJ)

Linker

Finished Programme
(Example . EXE)

Above figure shows a flow diagram for the formation of a
Windows programs. In this figure the source code file gets converts to
objective file from the compilers same as in the DOS. In windows
programs the linker gets a few extra info from a small file called the
"module definition file" with the file name extension ".DEF".This file tells
the linker how to collect the program. The linker combines the module
definition file info and the object file to make an incomplete .EXE file.
The incomplete .EXE file absences the resource data. The main variance
between Windows programs and DOS programs is in the compilation of
the resource data file with the extension of ".RES". In DOS programs
there is no resource data but in windows program the resource data is
added to the incomplete.EXE file to create the complete executable
program. The resource data is essentially stuck onto the end of the
program's code and develops part of the programs file. In addition to
adding the resource data the resource compiler writes the Windows
version number into the program file.

15.3 SYSTEM STRUCTURE

• User application program cooperates with system hardware through
Operating System

• Operating system is such a composite structure; it should be shaped
with utmost care so it can be used and adapted easily.

204

Steps in creating a Dos Programme

Source Code
(Example C)

C Compiler

Objective File
(Example OBJ)

Linker

Finished Programme
(Example . EXE)

Above figure shows a flow diagram for the formation of a
Windows programs. In this figure the source code file gets converts to
objective file from the compilers same as in the DOS. In windows
programs the linker gets a few extra info from a small file called the
"module definition file" with the file name extension ".DEF".This file tells
the linker how to collect the program. The linker combines the module
definition file info and the object file to make an incomplete .EXE file.
The incomplete .EXE file absences the resource data. The main variance
between Windows programs and DOS programs is in the compilation of
the resource data file with the extension of ".RES". In DOS programs
there is no resource data but in windows program the resource data is
added to the incomplete.EXE file to create the complete executable
program. The resource data is essentially stuck onto the end of the
program's code and develops part of the programs file. In addition to
adding the resource data the resource compiler writes the Windows
version number into the program file.

15.3 SYSTEM STRUCTURE

• User application program cooperates with system hardware through
Operating System

• Operating system is such a composite structure; it should be shaped
with utmost care so it can be used and adapted easily.

mu
no
tes
.in

205

• An easy way to do this is to make the operating system in parts. Each
of these parts should be well distinct with clear inputs, outputs and
functions.

• There are two types of Structures in Windows OS: -

15.3.1 Simple Structure:

DIAGRAM :

• Many operating systems have modest structure.
• MS-DOS- written to deliver the most functionality in the smallest

space
• Not distributed into modules
• Although MS-DOS has some structure, its interfaces and levels of

functionality are not well detached

15.3.2 Layered Structure:

205

• An easy way to do this is to make the operating system in parts. Each
of these parts should be well distinct with clear inputs, outputs and
functions.

• There are two types of Structures in Windows OS: -

15.3.1 Simple Structure:

DIAGRAM :

• Many operating systems have modest structure.
• MS-DOS- written to deliver the most functionality in the smallest

space
• Not distributed into modules
• Although MS-DOS has some structure, its interfaces and levels of

functionality are not well detached

15.3.2 Layered Structure:

205

• An easy way to do this is to make the operating system in parts. Each
of these parts should be well distinct with clear inputs, outputs and
functions.

• There are two types of Structures in Windows OS: -

15.3.1 Simple Structure:

DIAGRAM :

• Many operating systems have modest structure.
• MS-DOS- written to deliver the most functionality in the smallest

space
• Not distributed into modules
• Although MS-DOS has some structure, its interfaces and levels of

functionality are not well detached

15.3.2 Layered Structure:mu
no
tes
.in

206

The operating system is divided into a numeral of layers (levels),
each constructed on top of lower layers. The lowest layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

Advantage: Ease of construction and debugging. Difficulty:
Defining the various layers OS inclines to be less well-organized than
other applications.

15.4 PROCESS AND THREADS IN WINDOWS

An application contains of one or more processes. A process, in
the humblest terms, is an executing program. One or more threads run in
the perspective of the process. A thread is the basic unit to which the
operating system assigns processor time.

A thread can achieve any part of the process code, with parts
currently being executed by another thread. Each process brings the
resources desirable to execute a program. A process consumes a virtual
address space, executable code, open grips to system objects, a security
setting, a unique process identifier, environment variables, an importance
class, minimum and maximum working set sizes, and at smallest one
thread of execution. Each process is continuing with a single thread, often
called the primary thread, but can make additional threads from any of its
threads. A thread is the object within a process that can be planned for
execution. All threads of a process part its virtual address space and
system resources. In adding, each thread supports exception handlers, a
scheduling importance, thread local storage, a unique thread identifier, and
a set of creations the system will use to save the thread setting until it is
scheduled.

206

The operating system is divided into a numeral of layers (levels),
each constructed on top of lower layers. The lowest layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

Advantage: Ease of construction and debugging. Difficulty:
Defining the various layers OS inclines to be less well-organized than
other applications.

15.4 PROCESS AND THREADS IN WINDOWS

An application contains of one or more processes. A process, in
the humblest terms, is an executing program. One or more threads run in
the perspective of the process. A thread is the basic unit to which the
operating system assigns processor time.

A thread can achieve any part of the process code, with parts
currently being executed by another thread. Each process brings the
resources desirable to execute a program. A process consumes a virtual
address space, executable code, open grips to system objects, a security
setting, a unique process identifier, environment variables, an importance
class, minimum and maximum working set sizes, and at smallest one
thread of execution. Each process is continuing with a single thread, often
called the primary thread, but can make additional threads from any of its
threads. A thread is the object within a process that can be planned for
execution. All threads of a process part its virtual address space and
system resources. In adding, each thread supports exception handlers, a
scheduling importance, thread local storage, a unique thread identifier, and
a set of creations the system will use to save the thread setting until it is
scheduled.

206

The operating system is divided into a numeral of layers (levels),
each constructed on top of lower layers. The lowest layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

Advantage: Ease of construction and debugging. Difficulty:
Defining the various layers OS inclines to be less well-organized than
other applications.

15.4 PROCESS AND THREADS IN WINDOWS

An application contains of one or more processes. A process, in
the humblest terms, is an executing program. One or more threads run in
the perspective of the process. A thread is the basic unit to which the
operating system assigns processor time.

A thread can achieve any part of the process code, with parts
currently being executed by another thread. Each process brings the
resources desirable to execute a program. A process consumes a virtual
address space, executable code, open grips to system objects, a security
setting, a unique process identifier, environment variables, an importance
class, minimum and maximum working set sizes, and at smallest one
thread of execution. Each process is continuing with a single thread, often
called the primary thread, but can make additional threads from any of its
threads. A thread is the object within a process that can be planned for
execution. All threads of a process part its virtual address space and
system resources. In adding, each thread supports exception handlers, a
scheduling importance, thread local storage, a unique thread identifier, and
a set of creations the system will use to save the thread setting until it is
scheduled.

mu
no
tes
.in

207

15.5 MEMORY MANAGEMENT IN WINDOW

Memory management is the process of directing and organizing
computer memory, passing on portions called blocks to various running
programs to optimize overall system performance. Memory management
be located in hardware, in the OS (operating system), and in programs and
applications.

Memory management is the functionality of an operating system
that handles or manages primary memory and moves processes back and
forth between main memory and disk throughout execution.

15.5.1 Importance of Memory Management:

Single contiguous allocation: Simplest allocation method used by MS-
DOS. All memory is presented to a process.

Partitioned allocation: Memory is separated in different blocks or
partitions. Each procedure is allocated according to the condition.

Paged memory management: Memory is divided into fixed sized units
called page frames, used in a virtual memory environment.

Segmented memory management: Memory is separated in different
segments (a segment is a logical grouping of the process’ data or code). In
this managing, assigned memory doesn’t have to be contiguous. A process
is separated into segments and individual segments have page

15.5.3 32-bit Windows Os Memory Management:

The 64-bit Windows Operating System addressable memory space
is shared among active applications and the kernel as shown in Figure

The kernel address space contains a System Page Table Entry
(PTE) area (kernel memory thread stacks), Paged Pool (page tables, kernel
objects), System Cache (file cache, registry), and Non Paged Pool
(images, etc.)

mu
no
tes
.in

208

The default 64-bit Windows Operating System (OS) configuration
offers up to 16 TB (2^54) of addressable memory space separated
similarly among the kernel and the user applications.

With 16 TB of physical memory available, 8 TB virtual address
(VA) space will be allocated to the kernel and 8 TB VA space to user
application memory. The kernel virtual address space is shared across
processes.

Each 64-bit process has its own space while each 32-bit application runs in
a virtual 2 GB Windows-On-Windows (WOW).

15.5.5 Windows Uses Fifo:
• First in First Out Page Replacement Algorithm (F.I.F.O.).
• The eldest page is selected for replacement.
• It suffers from be lady’s anomaly.
• Page fault rate may increase after we increase amount of frame.
• It has low performance.
• It has maximum number of page faults.

15.5.6 Catching in Window:

15.5.6.1 Caching:

Cache is a sort of memory that is used to increase the rapidity of
information access. Normally, the data required for any process resides in
the main memory. Though, it is moved to the cache memory temporarily if
it is used commonly enough. The process of storing and retrieving
information from a cache is known as caching.

15.5.6.2 Advantages of Cache Memory:

Some of the advantages of cache memory are as follows:

• Cache memory is faster than main memory as it is located on the
processor chip itself. Its speed is similar to the processor registers and
so often required information is stored in the cache memory.

• The memory access time is significantly fewer for cache memory as it
is quite fast. This leads to faster execution of any process.

• The cache memory can store information temporarily as long as it is
often required. After the use of any data has ended, it can be removed
from the cache and replaced by new data from the main memory.

15.6 WINDOWS IO MANAGEMENT
A computer comprises of several devices that offer input and

output (I/O) to and from the outside world. The Windows kernel-mode I/O

mu
no
tes
.in

209

manager manages the communication among applications and the
interfaces providing by device drivers.

15.6.1 File Buffering:

This covers the various considerations for application control of
file buffering, also known as unbuffered file input/output (I/O). File
buffering is usually handled by the system behind the scenes and is
considered part of file caching within the Windows operating system.
Although the terms caching and buffering are sometimes used
interchangeably, this topic uses the term buffering specifically in the
context of explaining how to interact with data that is not being cached
(buffered) by the system, where it is then mostly out of the direct control
of user-mode applications. When opening or creating a file through the
CreateFile function, the FILE_FLAG_NO_BUFFERING flag can be
specified to disable system caching of information being read from or
written to the file. While this gives whole and direct control over data I/O
buffering, in the instance of files and similar devices there are data
alignment requirements that must be considered.

15.6.2 File Caching:

By default, Windows caches file information that is read from
disks and written to disks. This indicates that read operations read file data
from an area in system memory identified as the system file cache, instead
of from the physical disk. Similarly, write operations write file data to the
system file cache instead of to the disk, and this type of cache is stated to
as a write-back cache. Caching is achieved per file object.

The time at which a block of file information is flushed is partly
based on the quantity of time it has been kept in the cache and the amount
of time later the data was last edited in a read operation. This confirms that
file data that is often read will stay available in the system file cache for
the maximum amount of time.

As shown by the solid arrows in the above figure, a 256 KB region
of data is read into a 256 KB cache "slot" in system address space when it
is first demanded by the cache manager through a file read operation. A
user-mode process then copies the information in this slot to its individual
address space

mu
no
tes
.in

210

15.6.3 Synchronous and Asynchronous I/O:

There are two types of input/output (I/O) synchronization:
synchronous I/O and asynchronous I/O. Asynchronous I/O is also denoted
to as overlapped I/O.

In synchronous file I/O, a thread starts an I/O operation and
directly enters a wait state till the I/O request has finished. A thread
performs asynchronous file I/O sends an I/O request to the kernel by
calling an proper function. If the request is acknowledged by the kernel,
the calling thread remains processing another job till
the kernel signs to the thread that the I/O operation is finish. It then
disturbs its current job and processes the information from the I/O
operation as required.

15.7 WINDOWS NT FILE SYSTEM

NTFS (NT file system, sometimes New Technology File System)
is the file system that the Windows NT operating system uses for storing
and recovering files on a hard disk. NTFS is the Windows NT
corresponding of the Windows 95 file allocation table (FAT) and the OS/2
High Performance File System (HPFS). However, NTFS offers a number
of enhancements over FAT and HPFS in terms of performance,
extendibility, and security.

Notable features of NTFS include:
• Use of a b-tree directory structure to keep path of file clusters
• Info about a file's clusters and extra information is kept with each

cluster, not just a governing table
• Support for very large files (up to 2 to the 64th power or around 16

billion bytesin extent)

210

15.6.3 Synchronous and Asynchronous I/O:

There are two types of input/output (I/O) synchronization:
synchronous I/O and asynchronous I/O. Asynchronous I/O is also denoted
to as overlapped I/O.

In synchronous file I/O, a thread starts an I/O operation and
directly enters a wait state till the I/O request has finished. A thread
performs asynchronous file I/O sends an I/O request to the kernel by
calling an proper function. If the request is acknowledged by the kernel,
the calling thread remains processing another job till
the kernel signs to the thread that the I/O operation is finish. It then
disturbs its current job and processes the information from the I/O
operation as required.

15.7 WINDOWS NT FILE SYSTEM

NTFS (NT file system, sometimes New Technology File System)
is the file system that the Windows NT operating system uses for storing
and recovering files on a hard disk. NTFS is the Windows NT
corresponding of the Windows 95 file allocation table (FAT) and the OS/2
High Performance File System (HPFS). However, NTFS offers a number
of enhancements over FAT and HPFS in terms of performance,
extendibility, and security.

Notable features of NTFS include:
• Use of a b-tree directory structure to keep path of file clusters
• Info about a file's clusters and extra information is kept with each

cluster, not just a governing table
• Support for very large files (up to 2 to the 64th power or around 16

billion bytesin extent)

210

15.6.3 Synchronous and Asynchronous I/O:

There are two types of input/output (I/O) synchronization:
synchronous I/O and asynchronous I/O. Asynchronous I/O is also denoted
to as overlapped I/O.

In synchronous file I/O, a thread starts an I/O operation and
directly enters a wait state till the I/O request has finished. A thread
performs asynchronous file I/O sends an I/O request to the kernel by
calling an proper function. If the request is acknowledged by the kernel,
the calling thread remains processing another job till
the kernel signs to the thread that the I/O operation is finish. It then
disturbs its current job and processes the information from the I/O
operation as required.

15.7 WINDOWS NT FILE SYSTEM

NTFS (NT file system, sometimes New Technology File System)
is the file system that the Windows NT operating system uses for storing
and recovering files on a hard disk. NTFS is the Windows NT
corresponding of the Windows 95 file allocation table (FAT) and the OS/2
High Performance File System (HPFS). However, NTFS offers a number
of enhancements over FAT and HPFS in terms of performance,
extendibility, and security.

Notable features of NTFS include:
• Use of a b-tree directory structure to keep path of file clusters
• Info about a file's clusters and extra information is kept with each

cluster, not just a governing table
• Support for very large files (up to 2 to the 64th power or around 16

billion bytesin extent)

mu
no
tes
.in

211

• An access control list (ACL) that lets a server administrator control
who can access detailed files

• Integrated file compression
• Support for names created on Unicode
• Support for long file names in addition to "8 by 3" names
• Data security on equally removable and fixed disks

15.7.1 Architecture of Windows NT:
• The design of Windows NT, a streak of operating systems formed and

shifted by Microsoft, is a layered scheme that contains of two key
constituents, user mode and kernel mode.

• To procedure input/output (I/O) requests, they use packet-driven I/O,
which utilizes I/O request packets (IRPs) and asynchronous I/O.

• Kernel mode in Windows NT has full admission to the hardware and
system resources of the computer. The Windows NT kernel is a hybrid
kernel; the architecture includes a simple kernel, hardware abstraction
layer (HAL), drivers, and a range of services (collectively named
Executive), which all occur in kernel mode.

• User mode in Windows NT is made of subsystems accomplished of
passing I/O requests to the suitable kernel mode device drivers by
using the I/O manager.

• The kernel is also answerable for initializing device drivers at bootup.
• Kernel mode drivers occur in three levels: highest level drivers,

intermediate drivers and low-level drivers.
• Windows Driver Model (WDM) exists in the intermediate layer and

was mostly aimed to be binary and source compatible between
Windows 98 and Windows 2000.

• The lowest level drivers are either legacy Windows NT device drivers
that control a device straight or can be a plug and play (PnP) hardware
bus.

Diagram

211

• An access control list (ACL) that lets a server administrator control
who can access detailed files

• Integrated file compression
• Support for names created on Unicode
• Support for long file names in addition to "8 by 3" names
• Data security on equally removable and fixed disks

15.7.1 Architecture of Windows NT:
• The design of Windows NT, a streak of operating systems formed and

shifted by Microsoft, is a layered scheme that contains of two key
constituents, user mode and kernel mode.

• To procedure input/output (I/O) requests, they use packet-driven I/O,
which utilizes I/O request packets (IRPs) and asynchronous I/O.

• Kernel mode in Windows NT has full admission to the hardware and
system resources of the computer. The Windows NT kernel is a hybrid
kernel; the architecture includes a simple kernel, hardware abstraction
layer (HAL), drivers, and a range of services (collectively named
Executive), which all occur in kernel mode.

• User mode in Windows NT is made of subsystems accomplished of
passing I/O requests to the suitable kernel mode device drivers by
using the I/O manager.

• The kernel is also answerable for initializing device drivers at bootup.
• Kernel mode drivers occur in three levels: highest level drivers,

intermediate drivers and low-level drivers.
• Windows Driver Model (WDM) exists in the intermediate layer and

was mostly aimed to be binary and source compatible between
Windows 98 and Windows 2000.

• The lowest level drivers are either legacy Windows NT device drivers
that control a device straight or can be a plug and play (PnP) hardware
bus.

Diagram

211

• An access control list (ACL) that lets a server administrator control
who can access detailed files

• Integrated file compression
• Support for names created on Unicode
• Support for long file names in addition to "8 by 3" names
• Data security on equally removable and fixed disks

15.7.1 Architecture of Windows NT:
• The design of Windows NT, a streak of operating systems formed and

shifted by Microsoft, is a layered scheme that contains of two key
constituents, user mode and kernel mode.

• To procedure input/output (I/O) requests, they use packet-driven I/O,
which utilizes I/O request packets (IRPs) and asynchronous I/O.

• Kernel mode in Windows NT has full admission to the hardware and
system resources of the computer. The Windows NT kernel is a hybrid
kernel; the architecture includes a simple kernel, hardware abstraction
layer (HAL), drivers, and a range of services (collectively named
Executive), which all occur in kernel mode.

• User mode in Windows NT is made of subsystems accomplished of
passing I/O requests to the suitable kernel mode device drivers by
using the I/O manager.

• The kernel is also answerable for initializing device drivers at bootup.
• Kernel mode drivers occur in three levels: highest level drivers,

intermediate drivers and low-level drivers.
• Windows Driver Model (WDM) exists in the intermediate layer and

was mostly aimed to be binary and source compatible between
Windows 98 and Windows 2000.

• The lowest level drivers are either legacy Windows NT device drivers
that control a device straight or can be a plug and play (PnP) hardware
bus.

Diagrammu
no
tes
.in

212

15.7.2 Layout of NTFS volume:

The Windows NT file system (NTFS) offers a grouping of
performance, dependability, and compatibility not found in the FAT file
system.

The Windows NT file system (NTFS) offers a grouping of
performance, dependability, and compatibility not found in the FAT file
system.

15.7.2 Layout of NTFS volume:

The Windows NT file system (NTFS) offers a grouping of
performance, dependability, and compatibility not found in the FAT file
system.

Sections of layout of NTFS:
• Partition Boot Sector
• Master File Table (MFT)
• System Files
• File Area

15.8 WINDOWS POWER MANAGEMENT

The Windows operating system offers a complete and system-wide
set of power management features. This enables systems to spread battery
life and save energy, decrease heat and noise, and help ensure information
reliability. The power management functions and messages retrieve the
system power status, notify applications of power management events, and
notify the system of each application's power necessities.

mu
no
tes
.in

213

15.8.1 Edit Plan Setting in Windows:

15.8.2 Why Do we need Power Management?:

Windows power management makes computers rapidly available
to users at the touch of a button or key. It also ensures that all elements of
the system - applications, devices, and user interface—can take advantage
of the vast improvements in power management technology and
capabilities.

15.8.3 What are the benefits of Power Management?:

Eliminates start up and shutdown delays. The computer need not
make a full system boot when exiting the sleep state or a complete system
shutdown when the user initiates the sleep state. Allows automated tasks
to run while the computer is in the sleep state. The Task Scheduler allows
the user to schedule applications to run; scheduled events can run even
after the system is in the sleep state. Enables perdevice power
management. Enables users to generate power outlines, set alarms, and
require battery options through the Power Options application in Control
Panel. The operating system manages all power management activities,
based on power policy settings. For more information, see the help file
involved with the Power Options application. Progresses power efficiency.
Power efficiency is mainly important on portable computers. Reducing
system power consumption translates directly to lower energy costs and
longer battery life.

mu
no
tes
.in

214

15.8.4 System Power Status:

The system power status specifies whether the source of power for
a computer is a system battery or AC power. For computers that use
batteries, the system power status also specifies how much battery life
remains and whether the battery is charging.
As of now, we are going to discuss only Six states of System Power:

• Working State (S0)
• Sleep State (Modern Standby)
• Sleep State (S1 – S3)
• Hibernate State (S4)
• Soft Off State (S5)
• Mechanical Off State (G3)

15.9 SECURITY IN WINDOWS

One of the basic beliefs of Windows Security is that each process
runs on behalf of a user. So, each process running is connected with a
security context.security context is a bit of cached data about a user,
counting her SID, group SIDs,privileges. A security principal is an entity
that can be positively recognized and confirmed via a technique known as
authentication. Security principals in Windows are allocated on a process-
by-process basis, via a little kernel object called a token. Each user,
computer or group account is a security principal on th e system running
Windows Server 2003, Windows 2000, and Windows XP. Security
principal obtain permissions to access resources such as files and folders.
There are 3 types of Security Principals
1) User principals
2) Machine principals
3) Service principals

Security Identifier: (SID)

Users reference their accounts by usernames but the Operating
system, internally, references accounts by their security identifier. SID’s
are unique in their scope (domain or local) and are never reused. So, they
are used to uniquely identify user and group account in Windows. By
default, the operating system SID comprises of various parts S
<revision><identifier authority><subauthorities><relative identifiers>

Access Token: A token is a kernel object that caches part of a user's
security profile, containing the user SID, group SIDs, and privileges. A
token contains of the following components. accountID, groupID, Rights,
Owner, Primary group, Source, Type, Impersonation level, statistics,
Restricted SID’s, SessionID

mu
no
tes
.in

215

Account Security: User accounts are core unit of Network security. In
Win Server 2003 & Win2000, domain accounts are kept in Active
Directory directories databases, where as in local accounts, they are kept
in Security Accounts Manager database. The passwords for the accounts
are stored and maintained by System Key. Though the accounts are
protected by default, we can secure them even further. Go to
Administrative tools in control panel (only when you are logged in as an
admin) and click on Local Security and Settings".

Account Lock out policies: Account lockout period: Locks out the
account after a specific period (1- 99,999 minutes). This feature is only
exists is Win Ser 2003, Win 2000, but not in Windows XP.

Password Policies: Enforce password History: Enforces password
history(0-24) Maximum password age: Set max password age(0-999)
Minimum password age: Set min password age(0 to 999) Minimum
password length: set min password length(0 to 14) Password must meet
difficulty necessities: forces user to set complex alpha numeric passwords.
Loading password using reversible encryption for users in the domain: We
allow this if we want the password to be decrypted and related to pain text
using procedures like Challenge Handshake authentication Protocol
(CHAP) or Shiva password Authentication Protocol (SPAP)

Rights : Rights are actions or operations that an account can or cannot
achieve. User Rights are of two types:
a) Privileges:
b) LOGON rights

Where are the passwords stored on the system?:
The system stores the passwords at machine’s password strash, i.e.,

under HKLM/Security/Policy/Secretes. Type at 9:23am /interactive
regedit.exe, substituting whatever time is appropriate: Make it one minute
in the future.) Once regedit fires up, carefully look at the subkeys under
HKLM/Security/Policy/Secrets. You're looking at the machine's password
stash, more formally known as the LSA private data store. The operating
system also, by default, caches (store locally), the last 10 passwords There
are registry settings to turn this feature off or restrict the number of
accounts cached.
a) Location: KEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\Current Version\Winlogon\
b) Type: REG_SZ
c) Key: CachedLogonsCount Default Value 10
d) Recommended value: 0-50 depending on your security needs.

mu
no
tes
.in

216

15.10 SUMMARY

In this Chapter, we learn History of windows, Process and thread,
System structure, Memory Management in Windows, Windows IO
Management, Windows NT file System, Windows Power Management
and Security in Windows.

15.11 LIST OF REFERENCES
1. Modern Operating Systems, Andrew S. Tanenbaum, Herbert , Pearson

4 th, 2014
2. Operating Systems – Internals and Design Principles, Willaim

Stallings, Pearson 8e, 2009
3. Operating System -Concepts Abraham Silberschatz, Peter B. Galvineg

Gagne Wiley ,8e
4. Operating Systems Godbole and Kahate McGraw Hill 3e

15.12 BIBLIOGRAPHY
https://www.tutorialspoint.com/
https://www.geeksforgeeks.org/
https://www.javatpoint.com/java-tutorial
https://guru99.com
https://docs.microsoft.com/
https://www.installsetupconfig.com/

15.13 UNIT END QUESTIONS

1. Explain Architecture of windows.
2. Write short note on memory management in windows
3. Explain Process management in windows
4. Write short note on security in Windows

mu
no
tes
.in

