| Time | : 2:30 | Hours Total Marks: 60 | | |-------|--------------------------|---|---| | N.B.: | (1)
(2)
(3)
(4) | All questions are compulsory. Figures to the right indicate full marks. Symbols have their usual meanings unless otherwise stated. Use of log tables / non-programmable calculator is allowed. | | | 1. | (a) | Attempt any one: - | 8 | | | | (i) Show that the total angular momentum of system of particles about a point 'O' is the angular momentum of motion concentrated at the center of mass plus the angular momentum of motion about the center of mass. (ii) Obtain Lagrange's equation of motion using D'Alembert's principle. | | | | (b) | Attempt any one: - |) | | | (0) | (i) What are constraints? Explain non-holonomic constraints. | 7 | | | | (ii) Derive the Lagrange's equation for a simple pendulum. | | | | | | | | 2. | (a) | Attempt any one: - | 8 | | | | (i) State and prove the Viral theorem and show that how it leads to ideal gas | | | | | law. | | | | | (ii) Derive differential equation of orbit for a particle under central force. | | | | | | | | | (b) | Attempt any one: - | 4 | | | | (i) Explain the term impact parameter and the differential cross-section. | | | | | (ii) Show that the central force motion is restricted to plane. | | | | | | | | 3. | (a) | Attempt any one: | 8 | | | | (i) For a particle performing small oscillations near the minima of some potential function, derive the Lagrange equations of motion. | | | | | (ii) What are Legendre transformations? Derive Hamilton's equations from | | | | | Legendre transformation. | | | | | | | | | (b) | Attempt any one: - | 4 | | | y 、 / | (i) Explain forced and damped oscillations | | | | | (ii) Write down the steps to find the Hamiltonian from the Lagrangian. | | | | | | | | 4. | (a) | Attempt any one: - | 8 | | | | (i) What is generating function F ? For $F = F_1(q, Q, t)$ derive expressions for | | | | | p_i , P_i and K . (Symbols have their usual meanings.) | | | | | (ii) Show that Poisson Brackets remain invariant under Canonical transformations. | | (b) Attempt any one: - 4 (i) Show that the following transformation is canonical. $$Q = p + iaq$$, $P = \frac{p - iaq}{2ia}$ - (ii) Write down the direct conditions for a transformation to be restricted canonical transformation. - 5. Attempt any **four:** - 12 - (a) Write short note on degrees of freedom. - (b) Show that the shortest distance between two points in a plane is a straight line. - (c) State Kepler's laws of planetary motion. - (d) Explain bounded motion and unbounded motion and give examples. - (e) With proper example, explain the concept of cyclic coordinates. - (f) Show that V_{ij} is symmetric. - (g) Write Hamilton's equations of motion in symplectic form. Explain the terms involved in it. - (h) Show that [A, BC] = [A, B]C + B[A, C] ******