Time: 2 Hrs Marks: 50

- **N.B.**: (1) **All** questions are **compulsory**.
 - (2) Figures to the right indicate full marks.
 - (3) Draw **neat** diagrams wherever **necessary**
 - (4) Symbols have usual meanings unless otherwise stated.
 - (5) Use of **non-programmable** calculator is allowed.
- 1. (a) Attempt any one:-
 - (i) In a double slit experiment, prove that when two non-interacting beams with intensity I_1 and I_2 combine in same region of space, the resultant intensity is $I = I_1 + I_2$, if beam is composed of particle, while resultant intensity is $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\alpha_1 \alpha_2)$, if beam is composed of waves. Here $(\alpha_1 \alpha_2)$ is phase difference between two beams. Interpret the result.
 - (ii) Wavefunction for a system of particle confined to a region $x \in [0, L]$ is given by

$$\psi(x) = \alpha \sin\left(\frac{3\pi x}{L}\right)$$

- (a) Find value of normalization constant α in the wavefunction.
- (b) Calculate probability of finding particle in range $\frac{L}{3}$ to $\frac{2L}{3}$.
- (c) Assume particle behaves like free particle inside the region $x \in [0, L]$ and show that energy eigenvalue for particle is $9\frac{\hbar^2\pi^2}{2mL^2}$.

3

3

- (b) Attempt any one:-
 - (i) Evaluate following commutator relations:

(a)
$$[\hat{p}_x, \hat{y}]$$

(b)
$$p_x, x^2$$

(ii) Find linear momentum expectation value for following wavefunction

$$\psi(x) = \frac{1}{\sqrt{a}} e^{ikx}, \quad for \ x \in [0, a]$$

Paper / Subject Code: N59721 / Quantum Mechanics

2. (a) Attempt any one:-

(i) (a) Check if the following operators are Hermitian

(1) $(\hat{A} + \hat{A}^{\dagger})$, (2) $i(\hat{A} + \hat{A}^{\dagger})$

- (b) For Hermitian operator, prove that all of its eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal.
- (ii) (a) Write a note on Schrodinger Picture

 $\langle \phi_{4} \rangle | \phi_{2} \rangle$ and $| \phi_{2} \rangle$ are

- (b) Consider two states $|\psi\rangle = i|\phi_1\rangle + 3i|\phi_2\rangle |\phi_3\rangle$ where $|\phi_1\rangle, |\phi_2\rangle$ and $|\phi_3\rangle$ are orthonormal, calculate $\langle\psi|\psi\rangle$.
- (b) Attempt any one:-
 - (i) How operators transform under unitary transformation? Show that if operator \hat{A} is Hermitian then its transform \hat{A}' is also Hermitian.
 - (ii) State any 3 properties of Hilbert space.

97

3. (a) Attempt any one:-

- (i) Show that the energy and total momentum of an isolated system are constants of the motion.
- (ii) Derive an expression for one dimensional harmonic oscillator and show in which domain the wave function is (a) Oscillatory (b) Non-Oscillatory.
- (b) Attempt any one:-
 - (i) Show that in the nth Eigen state of the harmonic oscillator, the average kinetic energy <T> 3 is equal to the potential energy <V>.
 - (ii) Show that T+R=1 for all one-dimensional barrier problems.

3

4. (a) Attempt any one:-

(i) Express operator form of L_Z in spherical polar coordinates.

7

(ii) The Schrodinger equation for hydrogen atom can be defined as $\frac{d^2u}{d\rho^2} - \frac{l(l+1)}{\rho^2}u + \left(\frac{\lambda}{\rho} - \frac{1}{4}\right)u = 0$. Solve this equation when (a) ρ is very large i.e. $\rho \to \infty$ and (b) ρ is in neighborhood of origin i.e. $\rho \to 0$.

Where
$$u = rR$$
, $\rho = 2kr$, $\lambda = \left(\frac{Ze^2}{\hbar} \cdot \sqrt{\frac{\mu}{2|E|}}\right)$.

Paper / Subject Code: N59721 / Quantum Mechanics

(b) Attempt any one:-

- (i) Show that $[L_x, L_y] = i\hbar L_z$
- (ii) Ground state of hydrogen atom is given by $\Phi_{100} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$. Find the value of r for which radial probability density is maximum.

5. Attempt any **five:**-

- (a) Explain the concept of de Broglie wavelength.
- (b) What are observables? Give 2 examples of observables.
- (c) Consider a Matrix A which represents operator \hat{A} , a ket $|\psi\rangle$ and a bra $\langle\phi|$:

$$A = \begin{bmatrix} 5 & 3+2i & 3i \\ -i & 3i & 8 \\ 1-i & 1 & 4 \end{bmatrix}, |\psi\rangle = \begin{bmatrix} -1+i \\ 3 \\ 2+3i \end{bmatrix}, \langle \phi | = \begin{bmatrix} 6 & -i & 5 \end{bmatrix}$$

Calculate $\langle \phi | \hat{A} | \psi \rangle$

- (d) Define Hermitian operator and state its properties.
- (e) Write down the Schrodinger equation for free particle of mass m and show the kinetic energy of the particle is $\frac{h^2k^2}{8\pi^2m}$
- (f) Under what conditions is the expectation of an operator A is constant in time?
- (g) Evaluate the minimum value of $\Delta L_y \Delta L_z$
- (h) Evaluate $[L_Z, L_+]$
