Tir	ne : 2	Hrs	Marks: 50	
N.I	(; (; (4	2) Fig3) Dra4) Syn	questions are compulsory . gures to the right indicate full marks. aw neat diagrams wherever necessary mbols have usual meanings unless otherwise stated. e of non-programmable calculator is allowed.	
1.	(a)	Atte	mpt any one:-	
		(i)	What is the D Alembert's Principle? Derive Lagrange's equation from D'Alembert's Principle.	7
		(ii)	State Hamilton's principle. Derive Lagrangian equation from Hamilton's principle.	7
	(b)	Atte	mpt any one:-	
		(i)	What is velocity dependent potential? Give an example	, 2 3
		(ii)	By Lagrangian mechanics derive the equation of motion of a single particle in 3 D space using Cartesian coordinates and show that they are equivalent to Newton's laws.	3
2.	(a)	Atte	mpt any one:-	
		(i)	Show that isotropy of space leads to conservation of Angular momentum.	7
		(ii)	Obtain the expression for angular momentum and total energy (first integrals) for motion under central force.	7
	(b)	Atte	mpt any one:-	
		(i)	State Kepler's laws of planetary motion	3
		(ii)	The maximum and minimum velocities of a satellite are v_1 and v_2 respectively, find the eccentricity of the orbit of the satellite.	3
3.	(a)	Atte	mpt any one:-	
		(i)	For a particle near the minima of the potential function, show that	7
			$T_{ij}\eta_j + V_{ij}\eta_j = 0$	
			Where symbols have their usual meanings.	
		(ii)	What are Legendre transformations? Derive Hamilton's equations of motion using them.	7

Paper / Subject Code: N59711 / Classical Mechanics

			2, 7g, 7g, 7g, 7g, 7g, 7g, 7g, 7g, 7g, 7g	
	(b)	Atte	mpt any one: -	
		(i)	What are three types of equilibrium?	3
		(ii)	What is cyclic coordinate? Explain with an example.	3
4.	(a)	Atte	mpt any one: -	
		(i)	What are generating functions for canonical transformations. Explain the four types of generating functions.	7
		(ii)	What are Poisson's brackets? Show that they remain invariant under canonical transformations.	1
	(b)	Atte	mpt any one:-	
		(i)	Obtain the equation of motion in Poisson bracket form.	3
		(ii)	Show that the following transformation is canonical:-	3
			$P = \frac{1}{2}(p^2 + q^2) \text{ and } Q = \tan^{-1}\left(\frac{p}{q}\right)$	
5.		Atte	mpt any five:-	
		(a)	Obtain the degrees of freedom of a simple pendulum.	2
		(b)	Define Holonomic and Non-Holonomic constraints	2
		(c)	State Virial theorem.	2
		(d)	Explain the terms impact parameter and differential scattering cross section.	2
		(e)	Consider the following Lagrangian: $L = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 - V(r)$	2
			Which coordinate is cyclic and why?	
		(f)	State and explain variational principle.	2
		(g)	Verify whether the transformation $Q = \frac{1}{p}$ and $P = qp^2$ is canonical.	2

Explain an exact differential condition for a transformation to be canonical.

2