Time: 2:30 Hours Total Marks: 60

- **N.B.:** (1) **All** questions are **compulsory**.
 - (2) **Figures** to the **right** indicate **full** marks.
 - (3) Symbols have their usual meanings unless otherwise stated.
 - (4) Use of log tables / non-programmable calculator is allowed.
 - 1. (a) Attempt any one: -
 - (i) The Hamiltonian operator and two other observables \hat{A} and \hat{B} for a certain physical system are represented by matrices

$$\widehat{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \widehat{A} = \begin{bmatrix} 0 & a & 0 \\ a & 0 & 0 \\ 0 & 0 & 2a \end{bmatrix}, \widehat{B} = \begin{bmatrix} 2b & 0 & 0 \\ 0 & 0 & b \\ 0 & b & 0 \end{bmatrix}$$

Where *a* and *b* are real numbers.

A state is given by $|u\rangle = c_1 |u_1\rangle + c_2 |u_2\rangle + c_3 |u_3\rangle$ where

$$|u_1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \qquad |u_2\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \qquad |u_3\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

And c_1 , c_2 , c_3 are constants.

- 1. Find the relationship between c_1 , c_2 and c_3 such that $|u\rangle$ is normalized.
- 2. Find the expectation values of \hat{H} , \hat{B} and \hat{A} .
- 3. What are the possible values of energies that can describe by vector $|u\rangle$?
- (ii) Write the answers to the following questions.
 - 1. Define a Hermitian conjugate of a general operator \hat{A} and state the condition for it to be Hermitian.
 - 2. Show that the eigenvalues of Hermitian operators are real.
- (b) Attempt any one: -
 - (i) Evaluate
 - 1. $\Delta p_x \Delta E$
 - 2. $\Delta x \Delta E$
 - (ii) A linear harmonic oscillator was initially in the state $\psi(x,0) = 2 \phi_0(x) + i\phi_1(x)$ where ϕ_n are stationary eigenstates with energies $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$
 - 1. Normalize $\psi(x,0)$
 - 2. Find $\psi(x, t > 0)$
- 2. (a) Attempt any one: -
 - (i) For a linear harmonic oscillator evaluate Δx and Δp_x
 - (ii) A particle with energy E > 0 is incident along x axis on a potential barrier which is given by

$$V(x) = V_0$$
 $-a < x < a$
= 0 otherwise

8

Obtain transmission coefficient for the case $E < V_0$

- (b) Attempt any one: -
 - (i) Evaluate $[a, a^{\dagger}], [a^{\dagger}, H]$
 - (ii) A Particle of mass m, which move freely inside an infinite potential well of length

a, is initially in the state
$$\psi(x,0) = \sqrt{\frac{3}{5a}} \sin\left(\frac{3\pi x}{a}\right) + \sqrt{\frac{1}{5a}} \sin\left(\frac{5\pi x}{a}\right)$$
 find

- 1. $\psi(x,t)$ at any later time, t
- 2. Calculate the probability density $\rho(x, t)$.

Calculate current density

17879 Page 1 of 2

Paper / Subject Code: 94654 / Physics: Quantum Mechanics - I (Rev)

- 3. (a) Attempt any one: -
 - (i) The Schrodinger equation for hydrogen atom can be defined as $\frac{d^2u}{d\rho^2} \frac{l(l+1)}{\rho^2}u + \left(\frac{\lambda}{\rho} \frac{1}{4}\right)u = 0$. Solve this equation when (a) ρ is very large i.e. $\rho \to \infty$ and (b) ρ is in neighborhood of origin i.e. $\rho \to 0$. Where u = rR, $\rho = 2kr$, $\lambda^2 = \left(\frac{Ze^2}{\hbar} \cdot \sqrt{\frac{\mu}{2|E|}}\right)$.
 - (ii) Write down Schrodinger equation for two particle system. Redefine the Schrodinger equation in terms of center of mass coordinate \vec{R} and relative coordinate \vec{r} . By using separation of variable technique, derive and solve equation for wavefunction corresponding to center of mass \vec{R} of the system.
 - (b) Attempt any one: -
 - (i) Prove that: $\hat{\vec{L}} \times \hat{\vec{L}} = i\hbar \hat{\vec{L}}$
 - (ii) Evaluate: $[\hat{L}_x, \hat{x}]$ and $[\hat{L}_x, \hat{y}]$ where \hat{x} and \hat{y} are x-component and y-component of position operator $\hat{\vec{r}}$.
- 4. (a) Attempt any one: -
 - (i) Derive J_x , J_y and J_z matrices corresponding to angular momentum state j = 1.
 - (ii) For an electron with a spin state $\chi = \frac{1}{\sqrt{13}} {2 \choose 3}$, calculate the probability that on measurement the electron will be found in
 - (1) Spin down state along y-direction
 - (2) Spin up state along x-direction.
 - (b) Attempt any one: -
 - (i) Note down all coupled and uncoupled representations for $j_1 = \frac{1}{2}$ and $j_2 = \frac{1}{2}$.
 - (ii) Evaluate: $[J_z, J_+]$ and $[J_z, J_-]$.
- 5. Attempt any **four:** -
 - (a) Show that unitary transformations preserve length of vectors
 - (b) consider the operator $A = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
 - 1. show that A is Hermitian
 - 2. Find its eigenvalues.
 - (c) Show that $\langle x \rangle = 0$ and $\langle p \rangle = 0$ using properties of annihilation and creation operator
 - (d) Show that Hamiltonian for harmonic oscillator is

$$H=(aa^{+}-\frac{1}{2})\hbar\omega$$

12

- (e) Evaluate: $\Delta L_x \Delta L_y$
- (f) For the wavefunction $\psi = \frac{1}{\sqrt{5}} [2 Y_3^0 + Y_3^2]$, calculate the expectation value of \hat{L}_z operator.
- (g) Prove that all Pauli matrices follow $\hat{\sigma}^2 = \mathbb{I}$ where \mathbb{I} is a 2 × 2 identity matrix.
- (h) Evaluate: $\hat{J}_{+}|j = \frac{3}{2}$ $m = \frac{1}{2}$.
