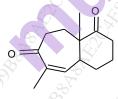
(2 ½ hours)

Total Marks: 60

Please check whether you have got the right question paper.

- **N.B.** (1) All questions are **compulsory.**
 - (2) Figures to the right indicate full marks.
- Q.1 A. Attempt **any two** of the following:

8


- a. Explain structural features and applications of
 - i) Starch ii) Heparin
- b. Explain Wohl degradation studies in structural determination of lactose.
- c. Draw the structure of β -Carotene. How will you prove the presence of following in structure of β -Carotene?
 - i) conjugated double bonds
 - ii) bicyclic compound
 - iii) β-Ionone units
- d. Give the synthesis of cyanin chloride.
- Q.1 B. Attempt **any one** of the following:

4

- a. Give synthesis of Bombykol from acetylene.
- b. i) Give synthesis of Coniine.
 - ii) Draw the structure of morphine and atropine.
- Q.2 A. Attempt **any two** of the following:

8

a. How is longifolene synthesized form

- b. How is phloroglucinol converted to 4,6-dimethyl benzofuranone? Draw the structure of 4-demethoxydaunomycin.
- c. What are lipids? Give its classification with suitable example.
- d. How is decalinedione prepared from resorcinol? Draw the configuration of the two enantiomers of Griseofulvin.
- Q.2 A. Attempt **any one** of the following:

4

- a. Write the structure of reserpine. Give the biological importance of prostaglandine.
- b. Write the synthesis of Triacontanol.

Q.3 A. Attempt **any two** of the following:

a. Using spin system notation, designate the type of spin system in the following compounds:

$$\begin{array}{c|ccccc} & CI & H & CI \\ H & & & & & \\ \hline & & & & & & \\ (i) & & CI & & CI & & CI \\ \end{array}$$

- b. Explain the term double resonance in NMR spectroscopy. Discuss its use in simplifying the complex NMR spectra.
- c. Calculate ¹³CNMR chemical shifts for all the aromatic carbons using incremental shifts of all the aromatic carbon atoms from the table given below for the following compounds:
 - (I) *m*-chloroaniline
- (II) o-bromophenol

Substituents	Increments in ppm			
	Ipso 🔊	Ortho	Meta	Para
-CI	+6.4	+0.2	+1.0	-2.0
-NH ₂	+19.2	-12.4	+1.3	-9.5
-OH	+26.6	-12.7	+1.6	-7.3
-Br	-5.4	+3.4	+2.2	-1.0

d. Explain long range coupling in allylic compounds and hetero aromatic compounds.

Q.3 B. Attempt **any one** of the following:

4

- a. Explain the following statements:
 - (i)At 165°C the ¹HNMR spectrum of N,N-dimethylformamide shows only one methyl singlet.
 - (ii)At -40°C ¹HNMR spectrum of methyl alcohol shows one doublet and one quartet.
- b. The following chemical shifts were observed in 1 HNMR spectrum of 2,4-dichloroaniline in δ ppm.

6.60 (d, J=9Hz), 7.2 (d, J=3Hz), 6.95(dd), 4.0(s).

Match the chemical shifts with appropriate protons and justify your answer.

State whether the spectrum is First order or Second order.

- Q.4 A. Attempt **any two** of the following:
 - a. What is DEPT technique? Explain with suitable example how is it used to determine the number of attached hydrogens in an organic compound.
 - b. Sketch and explain COSY spectrum of 3-methyl-2-butanone.
 - c. What is NOE? What is its significance? Explain with suitable example.
 - d. A compound having molecular formula C₃H₆O₂ shows following spectral data:

Mass spectrum: molecular ion peak m/z=74, base peak m/z=31

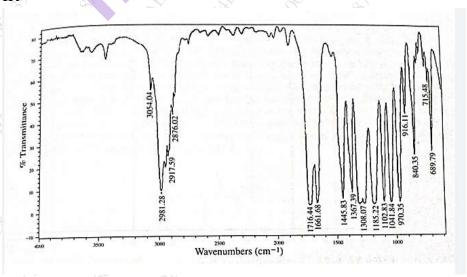
IR (cm⁻¹): 1715(strong)

UV spectrum: no absorption above 205 nm

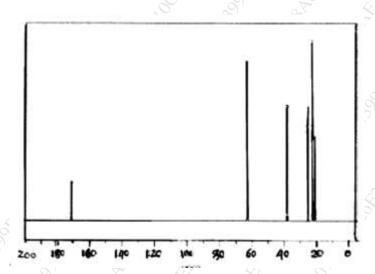
¹HNMR δ (ppm): 8.026 (s,1H), 4.215(q,2H), 1.289(t,3H),1.8(m,2H)

 13 CNMR δ (ppm): 14,60,161

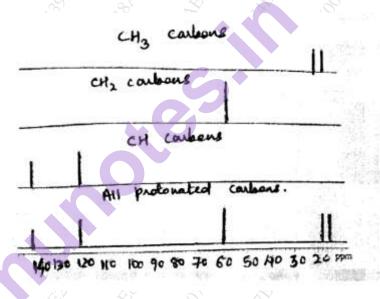
The peak at 161 appears positive peak in DEPT-90 spectrum.

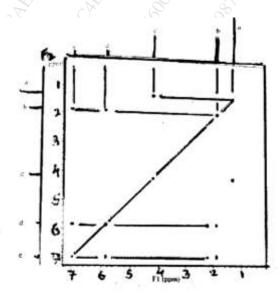

Assign suitable structure to the compound.

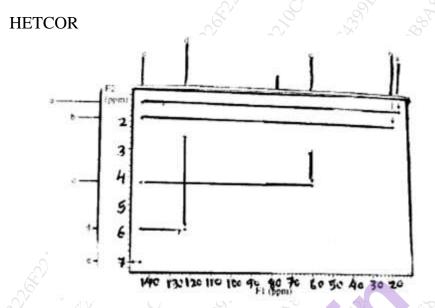
- Q.4 B. Attempt **any one** of the following:
 - a. Explain NOESY technique with suitable example.
 - b. Determine the structure of a compound with molecular formula $C_6H_{10}O_2$. $^1HNMR(\Box ppm)$:


6.97(dq,1H),5.84(dq,1H),1.87(dd,3H),1.3(t,3H),4.2(q,2H)

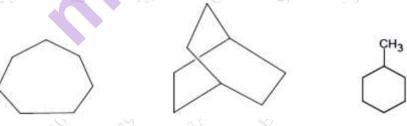
The IR spectrum, ¹³CNMR, DEPT, COSY and HETCOR spectra are shown.


IR

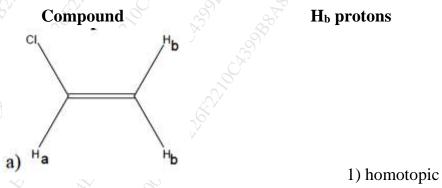


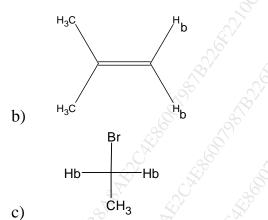


DEPT



COSY




- Q.5 Answer **any four** of the following:
 - a. i) Write a note on Amino sugars.
 - ii) Draw the structure of Ubiquinone.
 - b. i) Explain Alarm pheromones.
 - ii) Write any two biological importance of porphyrins.
 - c. What are insect growth regulator? Discuss the structure features of gibberellic acid.
 - d. Draw the structure of Texol. Give the applications of JH₂ and JH₃
 - e. How many signals you expect in the proton decoupled spectra of following compounds?

f. Match the columns:

18132 Page **5** of **6**

- 2) enantiotopic
- 3) diastereotopic
- g. State whether the following statements are true or false, justify your answer.
 - (i) NOESY spectra gives information about stereoisomers.
 - (ii) Quaternary carbon exhibit small NOE.
- h. Select the correct option:

- (i) In the compound the methyl triplet CH₃(d) at δ 0.9 ppm correlates ¹³C NMR signal at δ _____ ppm in its HETCOR spectrum.
- a) 10.2

b) 22.9

c) 32.3

d) 69.0

(ii) In the compound

C-3 carbon will be detected only in ______ spectrum.

a) FTIR

b) COSY

c) ¹³C NMR

d) DEPT

- (III) In the compound O_2N^{-3} δ CH₃ protons give a signal at δ 2.5 ppm. It correlates with 13 C NMR signal at δ ppm in its
- HETCOR spectrum.

122.1

b) 23.1

c) 147.1

a)

d) 139.8
