[Time: 2hr] [Marks:50]

Please check whether you have got the right question paper.

N.B.: 1. All questions are compulsory.

- 2. Figure to the right indicates full marks.
- 3. Use of non programmable scientific calculator is allowed.

Useful constants

$c = 2.998 \times 10^8 \text{ m.s}^{-1}$		$e = 1.602 \times 10^{-19} C$
$R = 8.314 \text{ J.K}^{-1} \text{mol}^{-1}$		$k = 1.3811 \times 10-23 \text{ J.K}^{-1}$
$= 2.0 \text{ cal.K}^{-1} \text{ mol}^{-1}$		YE 30 1/2
$h = 6.626 \times 10^{-34} \text{ Js}$		$1J = 6.24 \times 10^{18} eV$
$m_e = 9.110 \times 10^{-31} \text{ kg}$	6, 6	$1eV = 8.06 \times 10^3 \text{ cm}^{-1}$
$NA = 6.022 \times 10^{23} \text{ mol}^{-1}$		$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Atomic mass of H = 1 C	-12 N - 14 O - 16	S - 32 C1 - 35.5

Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35.5

- 1. Attempt *any two* of the following:
 - i) Derive the following Maxwell equation. $(\partial T/\partial V)_{S=1}(\partial P/\partial S)_{V}$ 05
 - ii) Calculate μ_{JT} for certain gas at 373 K and 1.01235 X 10⁻⁵ pa taking 05 C_P as 55.5JK⁻mol⁻. The Van der Waals constant a and b are 0.0125 Nm^4mol^{-2} and 3.15 X 10⁻⁵ m^3mol^{-} . Given R = 0.0821 Cal.
 - Define entropy. Write the expression for entropy change in the following 05 phase transition.
 - 1) Vaporization 2) Melting 3) Sublimation 4) Allotropic transformation.
 - iv) State the third law of thermodynamics. How will you determine the absolute entropy of a liquid using third law of thermodynamics.
- 2. Attempt *any two* of the following:
 - i) Set up a Schrodinger wave equation for a particle in one dimensional box and obtain a normalised wave function for it.
 - ii) State the postulates of Quantum Mechanics.
 - iii) Determine the degeneracy of the levels.

a)
$$E = \frac{9h^2}{8ma^2}$$
 b) $E = \frac{26h^2}{8ma^2}$

iv) Derive the Hermite differential from the relation.

$$\frac{d^2\Psi}{dy^2} + \left(\frac{\alpha}{\beta} - y^2\right)\Psi = 0$$

- 3. Attempt *any two* of the following:
 - i) Explain the kinetics of free radical polymerization. 05
 - ii) Explain the Rice-Ramsperger-Kassel-Marcus theory. 05
 - iii) Write the reaction mechanism for the decomposition of acetaldehyde and using steady state principle show that $d/dt[CH_4] = k[CH_3CHO]^{3/2}$.
 - iv) The rate of formation of C in the reaction,
 2A + B → 2C + 3D is 4molL⁻¹s⁻¹.
 State the rate of reaction and the rates of formation or consumption of A,
 B and D.

47655

4. Attempt *any two* of the following:

- i) a) Explain Wein effect for the conductance of strong electrolytes.
 - b) Calculate mean ionic activity coefficient of 0.05m Al₂(SO₄)₃ in 03 aqueous solution at 298K. (Given: A = 0.509 at 298 K).

02

- ii) With the help of diagram explain construction and working of Alkaline 05 fuel cell. Also write one advantage of fuel cell over conventional cell.
- iii) a) Write a note on the electrochemical enzyme catalysed oxidation of 03 Styrene.
 - b) Calculate the resting membrane potential for the following: 02

Ion Species	Intracellular concentration		Extracellular concentration	
(2)	in mM		in mM	4
Cl ⁻	12	267	0.003	9

(Given that
$$\frac{2.303RT}{F}$$
 at $298K = 61$)

- iv) a) What is ion atmosphere? Explain the relaxation effect for the 03 conductance of strong electrolytes.
 - b) Draw well labelled diagram and write one application of Molten 02 carbonate fuel cell.
- 5. Attempt *any five* of the following:
 - i) Explain the term residual entropy. 02
 - ii) Explain exact differential equation. 02
 - iii) If $\widehat{A} = \frac{d^2}{dx^2}$, and $f(x) = \cos(2x)$ then show that $f(x) = \cos(2x)$ is an eigen function of operator $\frac{d^2}{dx^2}$. Find its eigen value
 - iv) Define a) Commutative Operator b) Hamiltonian Operator 02
 - v) In the following reaction scheme, write the rate equation for the removal 02 of species C and D in differential form.
 - 1) A + B k_1 C + I2) C + D k_2 A + B3) C + B k_3 E + D4) 2D k_4 F
 - vi) Explain any two explosion limits of non stationary chain reaction. 02
 - vii) Write Debye-Huckel-Onsager equation and briefly explain its validity for 02 non-aqueous solutions.
 - viii) Write two functions of cell membrane. 02
