M.Sc. (Computer Science)-I First Semester Old

1MSC1 - Discrete Mathematical Structure Paper-I

P. Pages: 3 GUG/W/18/2878

Time : Three Hours

* 3 8 8 0 *

Max. Marks : 80

Notes: 1. All the questions are compulsory & carry equal marks.

- 2. Draw Neat & Labelled diagrams wherever necessary.
- 3. Avoid vague answers and write answers relevant and specific to questions only.

1. Either

3)

- a) To Show 8
 - 1) $A \cap A = A$

 $A \cap (B \cap C) = (A \cap B) \cap C$

- 2) $A \cap \phi = \phi$ 4) $A \cup B = B \cup A$
- b) Let A and B be square matrices, if AB = BA then $(AB)^n = A^n B^n$ for $n \ge 1$.

OR

- c) Construct the truth table for the following formula.
- 8
 - $\mathrm{i)} \hspace{0.5cm} (\neg P \wedge (\neg Q \wedge R)) \vee (Q \wedge R) \vee (P \wedge R)$
 - $ii) \quad \neg (P \vee (Q \wedge R)) \rightleftarrows ((P \vee Q) \wedge (P \vee R))$
- d) Show that $R \to S$ can be derived from the premises $P \to (Q \to S)$, $\neg R \lor P$ and Q.

2. Either

- a) Determine the value of n if **8**
 - 1) $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$ 2) $6 \times {}^{n}P_{3} = 3 \times {}^{n+1}P_{3}$ 3) $3 \times {}^{n}P_{4} = 7 \times {}^{n-1}P_{4}$
- b) Let $x = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (4, 1), (1, 4), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)\}$. Write Matrix of R and also its diagraph.

OR

- c) Let $A = \{a, b, c, d\}$, Let $R = \{(a, b), (a, c), (b, a), (b, c), (c, d), (d, a)\}$ Find the transitive closure of R.
- d) Let $x = \{1, 2, 3\}$, $y = \{a, b\}$ and $z = \{5, 6, 7\}$. Consider the function $f = \{1, a\}$ (2, a) (3, b) $\{0, 1\}$ and $\{0, 2\}$ and $\{0, 3\}$ are $\{0, 3\}$ and $\{0, 4\}$ and $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ and $\{0, 4\}$ are $\{0, 4\}$ are

8

3. Either

a) Show that following graph are isomorphic.

 U_3 U_2 U_3 U_2 U_3 U_2 U_3 U_4 U_5 U_5 U_6 U_7 U_8 U_9 U_9 U_9 U_9

Fig. (b)

b) Show that the graph of fig. (b) does not contain a Hamiltonian cycle.

A graph with no Hamiltonian cycle

OR

c) What do mean by Binary Expression Trees? Construct the tree.

8

8

8

1)
$$(7+(6-2))-(x-(y-4))$$

2)
$$(((2\times7)+x)\div y)\div (3-11)$$

d) Find all the spanning trees of graph G and find which is the minimal spanning tree of G show in fig. (a)

8

Fig. (a)

4. Either

a) Consider the binary operation * on Q, the set of rational number define by $a*b=a+b-ab \forall a, b \in Q$. Determine whether * is associative.

8

b) Let (A, *) be semigroup, show that for a, b, c in A, if a*c=c*a and b*c=c*b, then (a*b)*c=c*(a*b).

8

OR

c) Consider the state transition table given as below:

	a	b
S_0	S_0	S_1
S_1	S_2	S_0
S_2	S_1	S_2

8

8

4

- 1) Draw the diagraph of the machine where state transition table is given above and also find finite state machine.
- 2) Find the state transition function.

d) Let
$$G = (v, s, v_0, \mapsto)$$

$$v = (v_0, a, b)$$

$$s = (a, b)$$

$$\mapsto : v_0 \mapsto aav_0$$

$$v_0 \mapsto a$$

$$v_0 \mapsto b$$

Find L(G)

- **5.** Solve all question.
 - a) Write a short note on SETS and SUBSETS with example.
 - b) Determine the value of following 4
 - 1) ${}^{50}C_{45}$ 2)
 - c) Define the following term's
 - Graph
 Diagraph
 Adjacent node
 Mixed graph
 - d) Define Derivation Trees & Finite state Machines.
