M.Sc. - II (Mathematics) Fourth Semester MSC2497 – Algebraic Topology – II (Optional) Paper – VII

P. Pages: 3

Time : Three Hours

Notes : 1. Solve all **five** questions.

> 2. All questions carry equal marks.

UNIT – I

Prove that 1. a)

If u is an open subset of R^2 and $f: u \rightarrow R^2$ is continuous and injective, then f(u) is open in \mathbb{R}^2 and the inverse function f^{-1} : $f(u) \rightarrow u$ is continuous.

Let C be a simple closed curve in s^2 ; let p and q lie in different components of $s^2 - c$. Then 10 b) prove that inclusion mapping $j: c \rightarrow s^2 - p - q$ induces an isomorphism of fundamental groups.

OR

c) Prove that

> Let C be a simple closed curve in s^2 . Then C separates s^2 into precisely two components W_1 and W_2 . Each of the sets W_1 and W_2 has C as its boundary : that is, $C = \overline{W}_i - W_i$ for i = 1, 2.

d) Prove that

> Let X be a theta space that is a subspace of S^2 ; let A, B and C be the arcs whose union is X. Then X separates S^2 into three components, whose boundaries are $A \cup B$, $B \cup C$ and AUC, respectively. The component having AUB as its boundary equals one of the components of $S^2 - A \bigcup B$.

UNIT – II

Let $G = G_1 * G_2$. Let Ni be a normal subgroup of Gi, for i = 1, 2. If N is the least normal 10 2. a) subgroup of G that contains N₁ and N₂, then prove that $G_N \cong \left(\frac{G_1}{N_1} \right) * \left(\frac{G_2}{N_2} \right)$.

Prove that b)

> Given G, the subgroup [G, G] is a normal subgroup of G and the quotient group G/[G, G]is abelian. If $h: G \rightarrow H$ is any homomorphism from G to an abelian group H, then the Kernel of h contains [G, G], so h induces a homomorphism $k:G/[G,G] \rightarrow H$.

OR

10

GUG/W/18/2394

Max. Marks: 100

10

10

10

c) Prove that

The fundamental group of the n - fold dunce cap is a cyclic group of order n.

d) Let X be the wedge of the circles S₁,...,S_n; let p be the common point of these circles. 10 Then show that π₁(X,p) is a free group. If f_i is a loop in Si that represents a generator of π₁(Si,p) then show that the loops f₁,....,f_n represent a system of free generators for π₁(X,p).

UNIT – III

3. a) Prove that

Let X be the space obtained from a finite collection of polygonal regions by pasting edges together according to some labelling scheme. Then X is a compact Housdorff Space.

b) Prove that

Let w be a proper scheme of the form

$$\mathbf{w} = [\mathbf{y}_0]\mathbf{a}[\mathbf{y}_1]\mathbf{a}[\mathbf{y}_2],$$

where some of the y_i may be empty. Then one has the equivalence

w ~ aa
$$\left[y_0 y_1^{-1} y_2 \right]$$

where y_1^{-1} denotes the formal inverse of y_1 .

OR

c) If w is a scheme of projective type, then prove that w is equivalent to a scheme of the same length having the form

 $(a_1 a_1)(a_2 a_2)....(a_k a_k)w_1,$

where $k \ge 1$ and w_1 is either empty or of torus type.

d) If X is the m – fold connected sum of projective planes, then prove that torsion subgroup T(X) of $H_1(X)$ has order 2, and $H_1(X)/T(X)$ is a free abelian group of rank (m – 1).

UNIT – IV

4. a) Prove that

Let B be path connected, locally path connected, and semi locally simply connected. Let $b_0 \in B$. Given a subgroup H of $\pi_1(B, b_0)$, there exists a covering map $p: E \to B$

and point $e_0 \in p^{-1}(b_0)$ such that $P_*(\pi_1(E, e_0)) = H$.

b) Prove that

Let $P: E \to B$ and $P': E' \to B$ be covering maps; let $P(e_0) = P'(e'_0) = b_0$. There is an equivalence $h: E \to E'$ such that $h(e_0) = e'_0$ if and only if the group $H_0 = P_*(\pi_1(E, e_0))$ and $H'_0 = P'_*(\pi_1(E', e'_0))$ are equal. If h exists, it is unique.

OR

2

10

10

10

10

	c)	Prove that Let F be a free group with $n + 1$ free generators; let H be a subgroup of F. If H has index k in F, then H has k_{n+1} free generators.	10
	d)	If X is a linear graph, then prove that X is locally path connected and semi locally simply connected.	10
5.	a)	Let X be the utilities graph. Then prove that X cannot be imbedded in the plane.	5
	b)	Prove that Given an index set J, there exists a space X that is wedge of circles S_{α} for $\alpha \in J$.	5
	c)	Let W be a proper scheme of the form $W = W_0(cc)(aba^{-1}b^{-1})W_1$. Then prove that W is equivalent to the scheme $W'W_0(aabbcc)W_1$.	5
	d)	Prove that A graph X is connected if and only if every pair of vertices of X can be joined by an edge path in X.	5
